
 PowerShell
Cookbook
Your Complete Guide to Scripting
the Ubiquitous Object-Based Shell

Lee Holmes

4th Edition

Covers Open Source

PowerShell Core &

W
indows PowerShell

Lee Holmes

PowerShell Cookbook
Your Complete Guide to Scripting the

Ubiquitous Object-Based Shell

FOURTH EDITION

978-1-098-10160-2

[LSI]

PowerShell Cookbook
by Lee Holmes

Copyright © 2021 Lee Holmes. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade
Development Editor: Angela Rufino
Production Editor: Kate Galloway
Copyeditor: Stephanie English
Proofreader: James Fraleigh

Indexer: Judith McConville
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

October 2007: First Edition
August 2010: Second Edition
January 2013: Third Edition
June 2021: Fourth Edition

Revision History for the Fourth Edition
2021-06-16: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098101602 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. PowerShell Cookbook, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098101602

Table of Contents

Foreword. xvii

Preface. xxi

Part I. Tour

A Guided Tour of PowerShell. xxxi

Part II. Fundamentals

1. The PowerShell Interactive Shell. 1
1.0 Introduction 1
1.1 Install PowerShell Core 1
1.2 Run Programs, Scripts, and Existing Tools 5
1.3 Run a PowerShell Command 8
1.4 Resolve Errors Calling Native Executables 9
1.5 Supply Default Values for Parameters 11
1.6 Invoke a Long-Running or Background Command 13
1.7 Program: Monitor a Command for Changes 16
1.8 Notify Yourself of Job Completion 20
1.9 Customize Your Shell, Profile, and Prompt 21
1.10 Customize PowerShell’s User Input Behavior 24
1.11 Customize PowerShell’s Command Resolution Behavior 27
1.12 Find a Command to Accomplish a Task 30
1.13 Get Help on a Command 32
1.14 Update System Help Content 34
1.15 Program: Search Help for Text 36

iii

1.16 Launch PowerShell at a Specific Location 37
1.17 Invoke a PowerShell Command or Script from Outside PowerShell 39
1.18 Understand and Customize PowerShell’s Tab Completion 42
1.19 Program: Learn Aliases for Common Commands 46
1.20 Program: Learn Aliases for Common Parameters 48
1.21 Access and Manage Your Console History 50
1.22 Program: Create Scripts from Your Session History 52
1.23 Invoke a Command from Your Session History 54
1.24 Program: Search Formatted Output for a Pattern 56
1.25 Interactively View and Process Command Output 57
1.26 Program: Interactively View and Explore Objects 59
1.27 Record a Transcript of Your Shell Session 67
1.28 Extend Your Shell with Additional Commands 68
1.29 Find and Install Additional PowerShell Scripts and Modules 70
1.30 Use Commands from Customized Shells 72
1.31 Save State Between Sessions 73

2. Pipelines. 77
2.0 Introduction 77
2.1 Chain Commands Based on Their Success or Error 78
2.2 Filter Items in a List or Command Output 79
2.3 Group and Pivot Data by Name 81
2.4 Interactively Filter Lists of Objects 84
2.5 Work with Each Item in a List or Command Output 84
2.6 Automate Data-Intensive Tasks 88
2.7 Intercept Stages of the Pipeline 92
2.8 Automatically Capture Pipeline Output 93
2.9 Capture and Redirect Binary Process Output 95

3. Variables and Objects. 101
3.0 Introduction 101
3.1 Display the Properties of an Item as a List 102
3.2 Display the Properties of an Item as a Table 104
3.3 Store Information in Variables 106
3.4 Access Environment Variables 107
3.5 Program: Retain Changes to Environment Variables Set by a Batch File 110
3.6 Control Access and Scope of Variables and Other Items 112
3.7 Program: Create a Dynamic Variable 114
3.8 Work with .NET Objects 117
3.9 Create an Instance of a .NET Object 121
3.10 Create Instances of Generic Objects 124
3.11 Use a COM Object 125

iv | Table of Contents

3.12 Learn About Types and Objects 126
3.13 Get Detailed Documentation About Types and Objects 128
3.14 Add Custom Methods and Properties to Objects 130
3.15 Create and Initialize Custom Objects 132
3.16 Add Custom Methods and Properties to Types 136
3.17 Define Custom Formatting for a Type 141

4. Looping and Flow Control. 145
4.0 Introduction 145
4.1 Make Decisions with Comparison and Logical Operators 145
4.2 Adjust Script Flow Using Conditional Statements 148
4.3 Manage Large Conditional Statements with Switches 149
4.4 Repeat Operations with Loops 152
4.5 Process Time-Consuming Action in Parallel 154
4.6 Add a Pause or Delay 157

5. Strings and Unstructured Text. 159
5.0 Introduction 159
5.1 Create a String 159
5.2 Create a Multiline or Formatted String 161
5.3 Place Special Characters in a String 162
5.4 Insert Dynamic Information in a String 163
5.5 Prevent a String from Including Dynamic Information 164
5.6 Place Formatted Information in a String 165
5.7 Search a String for Text or a Pattern 167
5.8 Replace Text in a String 169
5.9 Split a String on Text or a Pattern 171
5.10 Combine Strings into a Larger String 173
5.11 Convert a String to Uppercase or Lowercase 175
5.12 Trim a String 177
5.13 Format a Date for Output 178
5.14 Convert a String Between One Format and Another 180
5.15 Convert Text Streams to Objects 181
5.16 Generate Large Reports and Text Streams 186
5.17 Generate Source Code and Other Repetitive Text 188

6. Calculations and Math. 193
6.0 Introduction 193
6.1 Perform Simple Arithmetic 193
6.2 Perform Complex Arithmetic 195
6.3 Measure Statistical Properties of a List 198
6.4 Work with Numbers as Binary 200

Table of Contents | v

6.5 Simplify Math with Administrative Constants 204
6.6 Convert Numbers Between Bases 205

7. Lists, Arrays, and Hashtables. 209
7.0 Introduction 209
7.1 Create an Array or List of Items 209
7.2 Create a Jagged or Multidimensional Array 211
7.3 Access Elements of an Array 212
7.4 Visit Each Element of an Array 214
7.5 Sort an Array or List of Items 215
7.6 Determine Whether an Array Contains an Item 216
7.7 Combine Two Arrays 217
7.8 Find Items in an Array That Match a Value 218
7.9 Compare Two Lists 219
7.10 Remove Elements from an Array 220
7.11 Find Items in an Array Greater or Less Than a Value 221
7.12 Use the ArrayList Class for Advanced Array Tasks 222
7.13 Create a Hashtable or Associative Array 223
7.14 Sort a Hashtable by Key or Value 225

8. Utility Tasks. 229
8.0 Introduction 229
8.1 Get the System Date and Time 229
8.2 Measure the Duration of a Command 230
8.3 Read and Write from the Clipboard 232
8.4 Generate a Random Number or Object 233
8.5 Convert Time Between Time Zones 235
8.6 Program: Search the Windows Start Menu 236
8.7 Program: Show Colorized Script Content 237

Part III. Common Tasks

9. Simple Files. 245
9.0 Introduction 245
9.1 Get the Content of a File 245
9.2 Store the Output of a Command into a File 247
9.3 Add Information to the End of a File 248
9.4 Search a File for Text or a Pattern 249
9.5 Parse and Manage Text-Based Logfiles 252
9.6 Parse and Manage Binary Files 255
9.7 Create and Manage Temporary Files 257

vi | Table of Contents

9.8 Search and Replace Text in a File 259
9.9 Program: Get the Encoding of a File 262
9.10 View the Hexadecimal Representation of Content 265

10. Structured Files. 267
10.0 Introduction 267
10.1 Access Information in an XML File 268
10.2 Perform an XPath Query Against XML 270
10.3 Convert Objects to XML 272
10.4 Modify Data in an XML File 273
10.5 Easily Import and Export Your Structured Data 275
10.6 Store the Output of a Command in a CSV or Delimited File 277
10.7 Import CSV and Delimited Data from a File 278
10.8 Manage JSON Data Streams 280
10.9 Use Excel to Manage Command Output 281
10.10 Parse and Interpret PowerShell Scripts 283

11. Code Reuse. 287
11.0 Introduction 287
11.1 Write a Script 287
11.2 Write a Function 290
11.3 Find a Verb Appropriate for a Command Name 292
11.4 Write a Script Block 293
11.5 Return Data from a Script, Function, or Script Block 295
11.6 Package Common Commands in a Module 297
11.7 Write Commands That Maintain State 301
11.8 Selectively Export Commands from a Module 303
11.9 Diagnose and Interact with Internal Module State 305
11.10 Handle Cleanup Tasks When a Module Is Removed 307
11.11 Access Arguments of a Script, Function, or Script Block 308
11.12 Add Validation to Parameters 314
11.13 Accept Script Block Parameters with Local Variables 318
11.14 Dynamically Compose Command Parameters 320
11.15 Provide -WhatIf, -Confirm, and Other Cmdlet Features 322
11.16 Add Help to Scripts or Functions 325
11.17 Add Custom Tags to a Function or Script Block 327
11.18 Access a Script’s Pipeline Input 329
11.19 Write Pipeline-Oriented Scripts with Cmdlet Keywords 331
11.20 Write a Pipeline-Oriented Function 335
11.21 Organize Scripts for Improved Readability 336
11.22 Invoke Dynamically Named Commands 338
11.23 Program: Enhance or Extend an Existing Cmdlet 340

Table of Contents | vii

12. Internet-Enabled Scripts. 347
12.0 Introduction 347
12.1 Download a File from an FTP or Internet Site 347
12.2 Upload a File to an FTP Site 348
12.3 Program: Resolve the Destination of an Internet Redirect 350
12.4 Download a Web Page from the Internet 351
12.5 Parse and Analyze a Web Page from the Internet 357
12.6 Script a Web Application Session 359
12.7 Interact with REST-Based Web APIs 363
12.8 Connect to a Web Service 366
12.9 Interact with and Manage Remote SSL Certificates 367
12.10 Export Command Output as a Web Page 369
12.11 Send an Email 369
12.12 Program: Monitor Website Uptimes 370
12.13 Program: Interact with Internet Protocols 372

13. User Interaction. 379
13.0 Introduction 379
13.1 Read a Line of User Input 379
13.2 Read a Key of User Input 380
13.3 Program: Display a Menu to the User 381
13.4 Display Messages and Output to the User 383
13.5 Provide Progress Updates on Long-Running Tasks 386
13.6 Write Culture-Aware Scripts 388
13.7 Support Other Languages in Script Output 391
13.8 Program: Invoke a Script Block with Alternate Culture Settings 394
13.9 Access Features of the Host’s UI 395
13.10 Add a Graphical User Interface to Your Script 397
13.11 Program: Add a Console UI to Your Script 400
13.12 Interact with MTA Objects 402

14. Debugging. 405
14.0 Introduction 405
14.1 Prevent Common Scripting Errors 407
14.2 Write Unit Tests for your Scripts 409
14.3 Trace Script Execution 411
14.4 Set a Script Breakpoint 414
14.5 Debug a Script When It Encounters an Error 417
14.6 Create a Conditional Breakpoint 419
14.7 Investigate System State While Debugging 421
14.8 Debug a Script on a Remote Machine 424
14.9 Program: Watch an Expression for Changes 426

viii | Table of Contents

14.10 Debug a Script in Another Process 428
14.11 Program: Get Script Code Coverage 430

15. Tracing and Error Management. 433
15.0 Introduction 433
15.1 Determine the Status of the Last Command 434
15.2 View the Errors Generated by a Command 435
15.3 Manage the Error Output of Commands 437
15.4 Program: Resolve an Error 439
15.5 Configure Debug, Verbose, and Progress Output 440
15.6 Handle Warnings, Errors, and Terminating Errors 442
15.7 Output Warnings, Errors, and Terminating Errors 445
15.8 Analyze a Script’s Performance Profile 446

16. Environmental Awareness. 449
16.0 Introduction 449
16.1 View and Modify Environment Variables 449
16.2 Modify the User or System Path 451
16.3 Access Information About Your Command’s Invocation 452
16.4 Program: Investigate the InvocationInfo Variable 454
16.5 Find Your Script’s Name 457
16.6 Find Your Script’s Location 457
16.7 Find the Location of Common System Paths 458
16.8 Get the Current Location 461
16.9 Safely Build File Paths Out of Their Components 462
16.10 Interact with PowerShell’s Global Environment 463
16.11 Determine PowerShell Version Information 464
16.12 Test for Administrative Privileges 465

17. Extend the Reach of PowerShell. 467
17.0 Introduction 467
17.1 Automate Programs Using COM Scripting Interfaces 467
17.2 Program: Query a SQL Data Source 469
17.3 Access Windows Performance Counters 472
17.4 Access Windows API Functions 474
17.5 Program: Invoke Simple Windows API Calls 481
17.6 Define or Extend a .NET Class 484
17.7 Add Inline C# to Your PowerShell Script 487
17.8 Access a .NET SDK Library 489
17.9 Create Your Own PowerShell Cmdlet 491
17.10 Add PowerShell Scripting to Your Own Program 494

Table of Contents | ix

18. Security and Script Signing. 499
18.0 Introduction 499
18.1 Enable Scripting Through an Execution Policy 501
18.2 Enable PowerShell Security Logging 504
18.3 Disable Warnings for UNC Paths 509
18.4 Sign a PowerShell Script, Module, or Formatting File 510
18.5 Create a Self-Signed Certificate 512
18.6 Manage PowerShell Security in an Enterprise 513
18.7 Block Scripts by Publisher, Path, or Hash 515
18.8 Verify the Digital Signature of a PowerShell Script 518
18.9 Securely Handle Sensitive Information 519
18.10 Securely Request Usernames and Passwords 521
18.11 Start a Process as Another User 523
18.12 Program: Run a Temporarily Elevated Command 524
18.13 Securely Store Credentials on Disk 526
18.14 Access User and Machine Certificates 528
18.15 Program: Search the Certificate Store 529
18.16 Add and Remove Certificates 531
18.17 Manage Security Descriptors in SDDL Form 532
18.18 Create a Task-Specific Remoting Endpoint 534
18.19 Limit Interactive Use of PowerShell 537
18.20 Detect and Prevent Code Injection Vulnerabilities 539
18.21 Get the Cryptographic Hash of a File 543
18.22 Capture and Validate Integrity of File Sets 544

19. Visual Studio Code. 547
19.0 Introduction 547
19.1 Debug a Script 549
19.2 Connect to a Remote Computer 551
19.3 Interact with Visual Studio Code Through Its Object Model 552
19.4 Quickly Insert Script Snippets 553

Part IV. Administrator Tasks

20. Files and Directories. 557
20.0 Introduction 557
20.1 Determine and Change the Current Location 558
20.2 Get the Files in a Directory 560
20.3 Find All Files Modified Before a Certain Date 562
20.4 Clear the Content of a File 563
20.5 Manage and Change the Attributes of a File 564

x | Table of Contents

20.6 Find Files That Match a Pattern 565
20.7 Manage Files That Include Special Characters 568
20.8 Program: Get Disk Usage Information 569
20.9 Monitor a File for Changes 571
20.10 Get the Version of a DLL or Executable 572
20.11 Create a Directory 573
20.12 Remove a File or Directory 573
20.13 Rename a File or Directory 574
20.14 Move a File or Directory 576
20.15 Create and Map PowerShell Drives 576
20.16 Access Long File and Directory Names 578
20.17 Unblock a File 579
20.18 Interact with Alternate Data Streams 581
20.19 Program: Move or Remove a Locked File 582
20.20 Get the ACL of a File or Directory 584
20.21 Set the ACL of a File or Directory 586
20.22 Program: Add Extended File Properties to Files 587
20.23 Manage ZIP Archives 590

21. The Windows Registry. 593
21.0 Introduction 593
21.1 Navigate the Registry 593
21.2 View a Registry Key 594
21.3 Modify or Remove a Registry Key Value 595
21.4 Create a Registry Key Value 596
21.5 Remove a Registry Key 597
21.6 Safely Combine Related Registry Modifications 598
21.7 Add a Site to an Internet Explorer Security Zone 600
21.8 Modify Internet Explorer Settings 602
21.9 Program: Search the Windows Registry 603
21.10 Get the ACL of a Registry Key 605
21.11 Set the ACL of a Registry Key 606
21.12 Work with the Registry of a Remote Computer 608
21.13 Program: Get Registry Items from Remote Machines 610
21.14 Program: Get Properties of Remote Registry Keys 612
21.15 Program: Set Properties of Remote Registry Keys 613
21.16 Discover Registry Settings for Programs 615

22. Comparing Data. 619
22.0 Introduction 619
22.1 Compare the Output of Two Commands 619
22.2 Determine the Differences Between Two Files 621

Table of Contents | xi

23. Event Logs. 623
23.0 Introduction 623
23.1 List All Event Logs 623
23.2 Get the Oldest Entries from an Event Log 624
23.3 Find Event Log Entries with Specific Text 625
23.4 Retrieve and Filter Event Log Entries 627
23.5 Find Event Log Entries by Their Frequency 630
23.6 Back Up an Event Log 632
23.7 Create or Remove an Event Log 633
23.8 Write to an Event Log 635
23.9 Run a PowerShell Script for Windows Event Log Entries 636
23.10 Clear or Maintain an Event Log 637
23.11 Access Event Logs of a Remote Machine 639

24. Processes. 641
24.0 Introduction 641
24.1 List Currently Running Processes 642
24.2 Launch the Application Associated with a Document 643
24.3 Launch a Process 644
24.4 Stop a Process 646
24.5 Get the Owner of a Process 647
24.6 Get the Parent Process of a Process 648
24.7 Debug a Process 649

25. System Services. 651
25.0 Introduction 651
25.1 List All Running Services 651
25.2 Manage a Running Service 653
25.3 Configure a Service 654

26. Active Directory. 655
26.0 Introduction 655
26.1 Test Active Directory Scripts on a Local Installation 656
26.2 Create an Organizational Unit 658
26.3 Get the Properties of an Organizational Unit 659
26.4 Modify Properties of an Organizational Unit 660
26.5 Delete an Organizational Unit 661
26.6 Get the Children of an Active Directory Container 662
26.7 Create a User Account 662
26.8 Program: Import Users in Bulk to Active Directory 663
26.9 Search for a User Account 666
26.10 Get and List the Properties of a User Account 667

xii | Table of Contents

26.11 Modify Properties of a User Account 667
26.12 Change a User Password 668
26.13 Create a Security or Distribution Group 669
26.14 Search for a Security or Distribution Group 670
26.15 Get the Properties of a Group 671
26.16 Find the Owner of a Group 672
26.17 Modify Properties of a Security or Distribution Group 673
26.18 Add a User to a Security or Distribution Group 674
26.19 Remove a User from a Security or Distribution Group 674
26.20 List a User’s Group Membership 675
26.21 List the Members of a Group 676
26.22 List the Users in an Organizational Unit 676
26.23 Search for a Computer Account 677
26.24 Get and List the Properties of a Computer Account 679

27. Enterprise Computer Management. 681
27.0 Introduction 681
27.1 Join a Computer to a Domain or Workgroup 681
27.2 Remove a Computer from a Domain 682
27.3 Rename a Computer 683
27.4 Program: List Logon or Logoff Scripts for a User 684
27.5 Program: List Startup or Shutdown Scripts for a Machine 685
27.6 Deploy PowerShell-Based Logon Scripts 687
27.7 Enable or Disable the Windows Firewall 688
27.8 Open or Close Ports in the Windows Firewall 688
27.9 Program: List All Installed Software 689
27.10 Uninstall an Application 691
27.11 Manage Computer Restore Points 692
27.12 Reboot or Shut Down a Computer 694
27.13 Determine Whether a Hotfix Is Installed 695
27.14 Manage Scheduled Tasks on a Computer 696
27.15 Retrieve Printer Information 699
27.16 Retrieve Printer Queue Statistics 700
27.17 Manage Printers and Print Queues 702
27.18 Program: Summarize System Information 703
27.19 Renew a DHCP Lease 705
27.20 Assign a Static IP Address 706
27.21 List All IP Addresses for a Computer 708
27.22 List Network Adapter Properties 709

28. CIM and Windows Management Instrumentation. 711
28.0 Introduction 711

Table of Contents | xiii

28.1 Access Windows Management Instrumentation and CIM Data 713
28.2 Modify the Properties of a WMI or CIM Instance 716
28.3 Invoke a Method on a WMI Instance or Class 718
28.4 Program: Determine Properties Available to WMI and CIM Filters 719
28.5 Search for the WMI or CIM Class to Accomplish a Task 720
28.6 Use .NET to Perform Advanced WMI Tasks 725
28.7 Convert a VBScript WMI Script to PowerShell 726

29. Remoting. 731
29.0 Introduction 731
29.1 Find Commands That Support Their Own Remoting 732
29.2 Enable PowerShell Remoting on a Computer 733
29.3 Enable SSH as a PowerShell Remoting Transport 735
29.4 Interactively Manage a Remote Computer 737
29.5 Invoke a Command on a Remote Computer 740
29.6 Disconnect and Reconnect PowerShell Sessions 744
29.7 Program: Remotely Enable PowerShell Remoting 746
29.8 Program: Invoke a PowerShell Expression on a Remote Machine 747
29.9 Test Connectivity Between Two Computers 750
29.10 Limit Networking Scripts to Hosts That Respond 753
29.11 Enable Remote Desktop on a Computer 754
29.12 Configure User Permissions for Remoting 754
29.13 Enable Remoting to Workgroup Computers 756
29.14 Implicitly Invoke Commands from a Remote Computer 758
29.15 Create Sessions with Full Network Access 760
29.16 Pass Variables to Remote Sessions 763
29.17 Manage and Edit Files on Remote Machines 765
29.18 Configure Advanced Remoting Quotas and Options 767
29.19 Invoke a Command on Many Computers 769
29.20 Run a Local Script on a Remote Computer 771
29.21 Determine Whether a Script Is Running on a Remote Computer 772

30. Transactions. 773
30.0 Introduction 773
30.1 Safely Experiment with Transactions 775
30.2 Change Error Recovery Behavior in Transactions 777

31. Event Handling. 781
31.0 Introduction 781
31.1 Respond to Automatically Generated Events 782
31.2 Create and Respond to Custom Events 785
31.3 Create a Temporary Event Subscription 788

xiv | Table of Contents

31.4 Forward Events from a Remote Computer 789
31.5 Investigate Internal Event Action State 790
31.6 Use a Script Block as a .NET Delegate or Event Handler 792

Part V. References

A. PowerShell Language and Environment. 797

B. Regular Expression Reference. 861

C. XPath Quick Reference. 871

D. .NET String Formatting. 875

E. .NET DateTime Formatting. 879

F. Selected .NET Classes and Their Uses. 885

G. WMI Reference. 893

H. Selected COM Objects and Their Uses. 899

I. Selected Events and Their Uses. 903

J. Standard PowerShell Verbs. 911

Index. 917

Table of Contents | xv

Foreword

Welcome to the fourth edition of the Windows PowerShell Cookbook!

Ooops. I got that wrong. Let me try again.

Welcome to the fourth edition of the Windows PowerShell Cookbook!

The name change says it all. Just as the Windows PowerShell Cookbook deserved a
place on the desk of every Windows admin, the PowerShell Cookbook deserves a place
on desk of every admin.

The PowerShell team always focused on giving admins the tools needed to become
the heroes of their company. But the team worked for Microsoft, and as former
Microsoft CEO Steve Ballmer used to say, “Windows is the air we breathe.” That’s why
the first three editions of this book were titled the Windows PowerShell Cookbook.

From the very beginning, the team wanted to support Linux. We knew that fragmen‐
ted technologies produced fragmented organizations. Instead of having an admin
team, companies organized into siloed Windows admin teams and Linux admin
teams. We wanted to deliver a single tool for all admins, regardless of platform (Win‐
dows or Linux), regardless of skill level (simple interactive user, first-time scripter,
advanced systems developers), and regardless of what they managed (Azure, AWS,
Google, VMware, etc.). But our ambition was gated by our .NET dependency. Every‐
thing changed when .NET started porting to Linux. The first version of .NET Core
was cross-platform, and we ported to it as soon as possible. The result was PowerShell
Core v6, which ran on both Windows and Linux. The industry took notice. Our
launch partners included VMware, Google, and AWS: not your typical set of Micro‐
soft partners.

PowerShell Core was great for Linux, but the small number of .NET Core libraries
meant that it was less capable than Windows PowerShell v5 in several important
areas. Windows users were faced with a choice: Windows PowerShell or PowerShell
Core. All that changed in 2020 with the v7 release of PowerShell. That was built
upon .NET Core 3.1, which dramatically increased compatibility on Windows. That

xvii

combined with substantial work on our part produced a no-compromise version. We
changed the name, dropping both “Windows” and “Core.” With version 7, there’s just
“PowerShell”—the single tool for all teams to manage anything that’s in their
environment.

And just as Windows PowerShell evolved to better meet the needs of admins who
want to manage anything, so too, this Cookbook has evolved to better meet the needs
of those same admins. This is a major edition of the book with more than 30,000
deletions and more than 35,000 additions. Lee starts the book with A Guided Tour of
PowerShell. In this, he introduces the reader to the key concepts of PowerShell and
lays the foundation for how to think about problems and how to think about using
PowerShell to solve those problems. This is followed up by Fundamentals, a drill-in
on eight key PowerShell concepts. With this foundation, you’re ready to solve some
problems. The next 10 sections are focused on common tasks like code reuse, debug‐
ging, tracing, and error management. I like to joke that there is “solving a problem”
and there is “solving a problem in a way you don’t regret a month later.” These sec‐
tions teach you the latter. These are the hard-earned lessons of how to write no-
regrets PowerShell for production environments. The next 12 sections cover specific
administrator tasks like dealing with files and directories, the Windows registry,
active directory, and remoting.

While many of these topics were covered in previous editions, this edition brings
them up-to-date with the latest and greatest tools in the PowerShell ecosystem
including the Windows Terminal, Visual Studio Code, and SSH, and the lessons and
perspective that can only be earned through a couple decades of in-the-trench experi‐
ences. As the saying goes, “A wise man doesn’t learn from his mistakes. A wise man
learns from the mistakes of others.” So you can spend the next two decades learning
from your own mistakes, or you can read this book and learn from Lee, who has been
a superstar on the team since the day he joined the original v1 team.

The thing I love the most about the PowerShell Cookbook is that it teaches the reader
how to think about problems. Yes, there are hundreds of pages of solutions to specific
problems and that alone would make this book a must-have for every admin. But Lee
has a “teach a person to fish” mindset, and each of his solutions sets you up to solve
SETs of problems.

So how does one approach a book that has more than a thousand pages?

Certainly, many will get a lot from reading A Guided Tour of PowerShell and Funda‐
mentals, and then hopping to a particular section when a problem arises.

I think a better approach for beginners is grounded in Lev Vygotsky’s activity theory.
Vygotsky identified the distinction between competence and performance. He pointed
out that our performance can exceed our competence when we are being directed by
an expert. Imagine the case where I want to find all the files modified before a certain

xviii | Foreword

date but don’t know any PowerShell—I am not (yet) competent to perform this task.
But because I was smart enough to buy this book, all I do is open to Recipe 20.3.
There I see the solution. I type the commands and I am performing a very sophistica‐
ted task. Lee (expert) helps me solve a complex problem (perform) even though I
don’t know PowerShell (competence).

As awesome as that is, the magic occurs with the next step. Now that I’m able to suc‐
cessfully perform a complex task, I can now experiment, and in experimenting, I
establish and grow my competence.

I run the commands. Then I intentionally make a mistake and see what the error
message is. Next time I see that error message, I now know what mistake I made.
From here, I look up the commands with Get-Help and explore what other parame‐
ters I can use. Lee’s “solution” provides a beachhead of success. We then use our curi‐
osity to explore—What about this? I wonder if…? Why not? Maybe…? This is the
way. And it’s fun as heck.

Our curiosity drives our learning, our understanding, and our competence. At vari‐
ous points, our curiosity will encounter a problem that requires deeper exploration.
At that point, we can go back to A Guided Tour of PowerShell and Fundamentals.
Reading those sections because of a real issue makes them even more relevant, mem‐
orable, and impactful.

—Jeffrey Snover
Coworker of Lee Holmes,

and Microsoft Technical Fellow

Foreword | xix

Preface

In late 2002, Slashdot posted a story about a “next-generation shell” rumored to be in
development at Microsoft. As a longtime fan of the power unlocked by shells and
their scripting languages, the post immediately captured my interest. Could this shell
provide the command-line power and productivity I’d long loved on Unix systems?

Since I had just joined Microsoft six months earlier, I jumped at the chance to finally
get to the bottom of a Slashdot-sourced “Microsoft Mystery.” The post talked about
strong integration with the .NET Framework, so I posted a query to an internal C#
mailing list. I got a response that the project was called “Monad,” which I then used to
track down an internal prototype build.

Prototype was a generous term. In its early stages, the build was primarily a proof of
concept. Want to clear the screen? No problem! Just lean on the Enter key until your
previous commands and output scroll out of view! But even at these early stages, it
was immediately clear that Monad marked a revolution in command-line shells. As
with many things of this magnitude, its beauty was self-evident. Monad passed full-
fidelity .NET objects between its commands. For even the most complex commands,
Monad abolished the (until then, standard) need for fragile text-based parsing. Sim‐
ple and powerful data manipulation tools supported this new model, creating a shell
both powerful and easy to use.

I joined the Monad development team shortly after that to help do my part to bring
this masterpiece of technology to the rest of the world. Since then, Monad has grown
to become a real, tangible product—now called PowerShell.

So why write a book about it? And why this book?

Many users have picked up PowerShell for the sake of learning PowerShell. Any tan‐
gible benefits come by way of side effect. Others, though, might prefer to opportunis‐
tically learn a new technology as it solves their needs. How do you use PowerShell to
navigate the filesystem? How can you manage files and folders? Retrieve a web page?

xxi

This book focuses squarely on helping you learn PowerShell through task-based solu‐
tions to your most pressing problems. Read a recipe, read a chapter, or read the entire
book—regardless, you’re bound to learn something.

Who This Book Is For
This book helps you use PowerShell to get things done. It contains hundreds of solu‐
tions to specific, real-world problems. For systems management, you’ll find plenty of
examples that show how to manage the filesystem, the Windows Registry, event logs,
processes, and more. For enterprise administration, you’ll find two entire chapters
devoted to Windows Management Instrumentation (WMI), Active Directory, and
other enterprise-focused tasks.

Along the way, you’ll also learn an enormous amount about PowerShell: its features,
its commands, and its scripting language—but most importantly, you’ll solve
problems.

How This Book Is Organized
This book consists of five main sections: a guided tour of PowerShell, PowerShell fun‐
damentals, common tasks, administrator tasks, and a detailed reference.

Part I
A Guided Tour of PowerShell breezes through PowerShell at a high level. It introdu‐
ces PowerShell’s core features:

• An interactive shell
• A new command model
• An object-based pipeline
• A razor-sharp focus on administrators
• A consistent model for learning and discovery
• Ubiquitous scripting
• Integration with critical management technologies
• A consistent model for interacting with data stores

The tour helps you become familiar with PowerShell as a whole. This familiarity will
create a mental framework for you to understand the solutions from the rest of the
book.

xxii | Preface

Part II
Chapters 1 through 8 cover the fundamentals that underpin the solutions in this
book. This section introduces you to the PowerShell interactive shell, fundamental
pipeline and object concepts, and many features of the PowerShell scripting language.

Part III
Chapters 9 through 19 cover the tasks you will run into most commonly when start‐
ing to tackle more complex problems in PowerShell. This includes working with sim‐
ple and structured files, internet-connected scripts, code reuse, user interaction, and
more.

Part IV
Chapters 20 through 31 focus on the most common tasks in systems and enterprise
management. Chapters 20 through 25 focus on individual systems: the filesystem, the
registry, event logs, processes, services, and more. Chapters 26 and 27 focus on Active
Directory, as well as the typical tasks most common in managing networked or
domain-joined systems. Chapters 28 and 29 focus on the two crucial facets of robust
multi-machine management: WMI and PowerShell Remoting.

Part V
Many books belch useless information into their appendixes simply to increase page
count. In this book, however, the detailed references underpin an integral and essen‐
tial resource for learning and using PowerShell. The appendixes cover:

• The PowerShell language and environment
• Regular expression syntax and PowerShell-focused examples
• XPath quick reference
• .NET string formatting syntax and PowerShell-focused examples
• .NET DateTime formatting syntax and PowerShell-focused examples
• Administrator-friendly .NET classes and their uses
• Administrator-friendly WMI classes and their uses
• Administrator-friendly COM objects and their uses
• Selected events and their uses
• PowerShell’s standard verbs

Preface | xxiii

What You Need to Use This Book
The majority of this book requires only a working installation of PowerShell. All sup‐
ported versions of Windows (Windows 7 and beyond, as well as Windows Server
2012 and beyond) include Windows PowerShell by default. A significant step up from
this default installation, however, is the open source PowerShell Core. You can learn
more about upgrading to PowerShell Core (or simply PowerShell) in Recipe 1.1.

The Active Directory scripts given in Chapter 26 are most useful when applied to an
enterprise environment, but Recipe 26.1 shows how to install additional software
(Active Directory Lightweight Directory Services, or Active Directory Application
Mode) that lets you run these scripts against a local installation.

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path‐
names, directories, and Unix utilities

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, tags, macros, or the output from commands

Constant width bold

Shows commands or other text that should be typed literally by the user

Constant width italic

Shows text that should be replaced with user-supplied values

This element signifies a tip or suggestion.

This element signifies a tip, suggestion, or general note.

xxiv | Preface

This element indicates a warning or caution.

Access This Book in Digital Format
This PowerShell Cookbook offers free access to an always-available, searchable,
online edition at https://www.powershellcookbook.com.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/LeeHolmes/PowerShellCookbook.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “PowerShell Cookbook by
Lee Holmes (O’Reilly). Copyright 2021 Lee Holmes, 978-1-098-10160-2.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning

Preface | xxv

https://www.powershellcookbook.com
https://github.com/LeeHolmes/PowerShellCookbook
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com

paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/powershell-cookbook-4th.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Writing is the task of crafting icebergs. The heft of the book you hold in your hands is
just a hint of the multiyear, multirelease effort it took to get it there. And by a cast
much larger than me.

The groundwork started decades ago. My parents nurtured my interest in computers
and software, supported an evening-only bulletin board service, put up with “viruses”
that told them to buy a new computer for Christmas, and even listened to me blather
about batch files or how PowerShell compares to Excel. Without their support, who
knows where I’d be.

My family and friends have helped keep me sane for four editions of the book now.
Ariel: you are the light of my life. Robin: thinking of you reminds me each day that
serendipity is still alive and well in this busy world. Thank you to all of my friends
and family for being there for me. You can have me back now. :)

xxvi | Preface

http://oreilly.com
https://oreil.ly/powershell-cookbook-4th
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

I would not have written any edition of this book without the tremendous influence
of Guy Allen, visionary of the University of Toronto’s Professional Writing program.
Guy: your mentoring forever changed me, just as it molds thousands of others from
English hackers into writers.

Of course, members of the PowerShell team (both new and old) are the ones who
made this a book about PowerShell. Building this product with you has been a unique
challenge and experience—but most of all, a distinct pleasure. In addition to the Pow‐
erShell team, the entire PowerShell community defined this book’s focus. From MVPs
to early adopters to newsgroup lurkers: your support, questions, and feedback have
been the inspiration behind each page.

Converting thoughts into print always involves a cast of unsung heroes, even though
each author tries his best to convince the world how important these heroes are.

Thank you to the many technical reviewers who participated in technical reviews,
especially Aleksandar Nikolic, Shay Levy, David Frazer, Neil Desai, and Robert Titus.
I truly appreciate you donating your nights and weekends to help craft something of
which we can all be proud.

To the awesome staff at O’Reilly—Rachel Roumeliotis, Kara Ebrahim, Mike Hen‐
drickson, Genevieve d’Entremont, Teresa Elsey, Laurel Ruma, Angela Rufino, Zan
McQuade, Stephanie English, Kate Galloway, the O’Reilly Tools Monks, and the pro‐
duction team—your patience and persistence helped craft a book that holds true to its
original vision. You also ensured that the book didn’t just knock around in my head
but actually got out the door.

This book would not have been possible without the support from each and every
one of you.

Preface | xxvii

PART I

Tour

A Guided Tour of PowerShell

Introduction
PowerShell promises to revolutionize the world of system management and
command-line shells. From its object-based pipelines to its administrator focus to its
enormous reach into other Microsoft management technologies, PowerShell drasti‐
cally improves the productivity of administrators and power users alike.

When you’re learning a new technology, it’s natural to feel bewildered at first by all
the unfamiliar features and functionality. This perhaps rings especially true for users
new to PowerShell because it may be their first experience with a fully featured
command-line shell. Or worse, they’ve heard stories of PowerShell’s fantastic integra‐
ted scripting capabilities and fear being forced into a world of programming that
they’ve actively avoided until now.

Fortunately, these fears are entirely misguided; PowerShell is a shell that both grows
with you and grows on you. Let’s take a tour to see what it is capable of:

• PowerShell works with standard Windows commands and applications. You
don’t have to throw away what you already know and use.

• PowerShell introduces a powerful new type of command. PowerShell commands
(called cmdlets) share a common Verb-Noun syntax and offer many usability
improvements over standard commands.

• PowerShell understands objects. Working directly with richly structured objects
makes working with (and combining) PowerShell commands immensely easier
than working in the plain-text world of traditional shells.

• PowerShell caters to administrators. Even with all its advances, PowerShell focu‐
ses strongly on its use as an interactive shell: the experience of entering com‐
mands in a running PowerShell application.

xxxi

• PowerShell supports discovery. Using three simple commands, you can learn and
discover almost anything PowerShell has to offer.

• PowerShell enables ubiquitous scripting. With a fully fledged scripting language
that works directly from the command line, PowerShell lets you automate tasks
with ease.

• PowerShell bridges many technologies. By letting you work with .NET, COM,
WMI, XML, and Active Directory, PowerShell makes working with these previ‐
ously isolated technologies easier than ever before.

• PowerShell simplifies management of data stores. Through its provider model,
PowerShell lets you manage data stores using the same techniques you already
use to manage files and folders.

We’ll explore each of these pillars in this introductory tour of PowerShell. If you’re
running any supported version of Windows (Windows 7 or later, or Windows 2012
R2 or later), Windows PowerShell is already installed. That said, a significant step up
from this default installation is the open source PowerShell Core. If you want to jump
ahead a little bit, you can learn more about upgrading to PowerShell Core (or simply
“PowerShell”) in Recipe 1.1.

An Interactive Shell
At its core, PowerShell is first and foremost an interactive shell. While it supports
scripting and other powerful features, its focus as a shell underpins everything.

Getting started in PowerShell is a simple matter of launching powerShell.exe rather
than cmd.exe—the shells begin to diverge as you explore the intermediate and
advanced functionality, but you can be productive in PowerShell immediately.

To launch PowerShell, click Start and then type PowerShell (or pwsh if you’ve jum‐
ped ahead!).

A PowerShell prompt window opens that’s nearly identical to the traditional com‐
mand prompt of its ancestors. The PS C:\Users\Lee> prompt indicates that Power‐
Shell is ready for input, as shown in Figure P-1.

Once you’ve launched your PowerShell prompt, you can enter DOS-style and Unix-
style commands to navigate around the filesystem just as you would with any Win‐
dows or Unix command prompt—as in the interactive session shown in Example P-1.
In this example, we use the pushd, cd, dir, pwd, and popd commands to store the cur‐
rent location, navigate around the filesystem, list items in the current directory, and
then return to the original location. Try it!

xxxii | A Guided Tour of PowerShell

Figure P-1. Windows PowerShell, ready for input

Example P-1. Entering many standard DOS- and Unix-style file manipulation
commands produces the same results you get when you use them with any other
Windows shell

PS C:\Users\Lee> function prompt { "PS > " }
PS > pushd .
PS > cd \
PS > dir

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 5/8/2007 8:37 PM Blurpark
d---- 5/15/2016 4:32 PM Chocolatey
d---- 3/8/2020 12:45 PM DXLab
d---- 4/30/2020 7:00 AM Go
d---- 4/2/2016 3:05 PM Intel
d-r-- 12/15/2020 1:41 PM Program Files
d-r-- 11/28/2020 5:06 PM Program Files (x86)
d---- 5/12/2019 6:37 PM Python27
d---- 3/25/2018 1:11 PM Strawberry
d---- 12/16/2020 8:13 AM temp
d-r-- 8/11/2020 5:02 PM Users
da--- 12/16/2020 10:51 AM Windows

PS > popd
PS > pwd

Path

C:\Users\Lee

A Guided Tour of PowerShell | xxxiii

In this example, our first command customizes the prompt. In cmd.exe, customizing
the prompt looks like prompt PG. In Bash, it looks like PS1="[\h] \w> ". In
PowerShell, you define a function that returns whatever you want displayed. Recipe
11.2 introduces functions and how to write them.

The pushd command is an alternative name (alias) to the much more descriptively
named PowerShell command Push-Location. Likewise, the cd, dir, popd, and pwd
commands all have more memorable counterparts.

Although navigating around the filesystem is helpful, so is running the tools you
know and love, such as ipconfig and notepad. Type the command name and you’ll
see results like those shown in Example P-2.

Example P-2. Windows tools and applications such as ipconfig run in PowerShell just as
they do in cmd.exe

PS > ipconfig

Windows IP Configuration

Ethernet adapter Wireless Network Connection 4:

 Connection-specific DNS Suffix . : hsd1.wa.comcast.net.
 IP Address. : 192.168.1.100
 Subnet Mask : 255.255.255.0
 Default Gateway : 192.168.1.1
PS > notepad
(notepad launches)

Entering ipconfig displays the IP addresses of your current network connections.
Entering notepad runs—as you’d expect—the Notepad editor that ships with Win‐
dows. Try them both on your own machine.

Structured Commands (Cmdlets)
In addition to supporting traditional Windows executables, PowerShell introduces a
powerful new type of command called a cmdlet (pronounced “command-let”). All
cmdlets are named in a Verb-Noun pattern, such as Get-Process, Get-Content, and
Stop-Process.

PS > Get-Process -Name lsass

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 668 13 6228 1660 46 932 lsass

In this example, you provide a value to the ProcessName parameter to get a specific
process by name.

xxxiv | A Guided Tour of PowerShell

Once you know the handful of common verbs in PowerShell,
learning how to work with new nouns becomes much easier. While
you may never have worked with a certain object before (such as a
Service), the standard Get, Set, Start, and Stop actions still apply.
For a list of these common verbs, see Table J-1 in Appendix J.

You don’t always have to type these full cmdlet names, however. PowerShell lets you
use the Tab key to autocomplete cmdlet names and parameter names:

PS > Get-Pro<TAB> -N<TAB> lsass

For quick interactive use, even that may be too much typing. To help improve your
efficiency, PowerShell defines aliases for all common commands and lets you define
your own. In addition to alias names, PowerShell requires only that you type enough
of the parameter name to disambiguate it from the rest of the parameters in that
cmdlet. PowerShell is also case-insensitive. Using the built-in gps alias (which repre‐
sents the Get-Process cmdlet) along with parameter shortening, you can instead
type:

PS > gps -n lsass

Going even further, PowerShell supports positional parameters on cmdlets. Positional
parameters let you provide parameter values in a certain position on the command
line, rather than having to specify them by name. The Get-Process cmdlet takes a
process name as its first positional parameter. This parameter even supports wild‐
cards:

PS > gps l*s

Deep Integration of Objects
PowerShell begins to flex more of its muscle as you explore the way it handles struc‐
tured data and richly functional objects. For example, the following command gener‐
ates a simple text string. Since nothing captures that output, PowerShell displays it to
you:

PS > "Hello World"
Hello World

The string you just generated is, in fact, a fully functional object from the .NET
Framework. For example, you can access its Length property, which tells you how
many characters are in the string. To access a property, you place a dot between the
object and its property name:

PS > "Hello World".Length
11

A Guided Tour of PowerShell | xxxv

All PowerShell commands that produce output generate that output as objects as
well. For example, the Get-Process cmdlet generates a System.Diagnostics.
Process object, which you can store in a variable. In PowerShell, variable names start
with a $ character. If you have an instance of Notepad running, the following com‐
mand stores a reference to it:

$process = Get-Process notepad

Since this is a fully functional Process object from the .NET Framework, you can call
methods on that object to perform actions on it. This command calls the Kill()
method, which stops a process. To access a method, you place a dot between the
object and its method name:

$process.Kill()

PowerShell supports this functionality more directly through the Stop-Process
cmdlet, but this example demonstrates an important point about your ability to inter‐
act with these rich objects.

Administrators as First-Class Users
While PowerShell’s support for objects from the .NET Framework quickens the pulse
of most users, PowerShell continues to focus strongly on administrative tasks. For
example, PowerShell supports MB (for megabyte) and GB (for gigabyte) as some of its
standard administrative constants. For example, how many GIF memes will fit in a
800 GB hard drive?

PS > 800GB / 2.2MB
372363.636363636

Although the .NET Framework is traditionally a development platform, it contains a
wealth of functionality useful for administrators too! In fact, it makes PowerShell a
great calendar. For example, is 2096 a leap year? PowerShell can tell you:

PS > [DateTime]::IsLeapYear(2096)
True

Going further, how might you determine how much time remains until the Y2038
Epochalypse? The following command converts "01/19/2038" (the date of the Year
2038 problem) to a date, and then subtracts the current date from that. It stores the
result in the $result variable, and then accesses the TotalDays property.

PS > $result = [DateTime] "01/19/2038" - [DateTime]::Now
PS > $result.TotalDays
6242.49822756465

xxxvi | A Guided Tour of PowerShell

Composable Commands
Whenever a command generates output, you can use a pipeline character (|) to pass
that output directly to another command as input. If the second command under‐
stands the objects produced by the first command, it can operate on the results. You
can chain together many commands this way, creating powerful compositions out of
a few simple operations. For example, the following command gets all items in the
Path1 directory and moves them to the Path2 directory:

Get-Item Path1* | Move-Item -Destination Path2

You can create even more complex commands by adding additional cmdlets to the
pipeline. In Example P-3, the first command gets all processes running on the system.
It passes those to the Where-Object cmdlet, which runs a comparison against each
incoming item. In this case, the comparison is $_.Handles -ge 500, which checks
whether the Handles property of the current object (represented by the $_ variable) is
greater than or equal to 500. For each object in which this comparison holds true, you
pass the results to the Sort-Object cmdlet, asking it to sort items by their Handles
property. Finally, you pass the objects to the Format-Table cmdlet to generate a table
that contains the Handles, Name, and Description of the process.

Example P-3. You can build more complex PowerShell commands by using pipelines to
link cmdlets, as shown here with Get-Process, Where-Object, Sort-Object, and Format-
Table

PS > Get-Process |
 Where-Object { $_.Handles -ge 500 } |
 Sort-Object Handles |
 Format-Table Handles,Name,Description -Auto

Handles Name Description
------- ---- -----------
 588 winlogon
 592 svchost
 667 lsass
 725 csrss
 742 System
 964 WINWORD Microsoft Office Word
 1112 OUTLOOK Microsoft Office Outlook
 2063 svchost

Techniques to Protect You from Yourself
While aliases, wildcards, and composable pipelines are powerful, their use in com‐
mands that modify system information can easily be nerve-racking. After all, what
does this command do? Think about it, but don’t try it just yet:

PS > gps [b-t]*[c-r] | Stop-Process

A Guided Tour of PowerShell | xxxvii

It appears to stop all processes that begin with the letters b through t and end with
the letters c through r. How can you be sure? Let PowerShell tell you. For commands
that modify data, PowerShell supports -WhatIf and -Confirm parameters that let you
see what a command would do:

PS > gps [b-t]*[c-r] | Stop-Process -whatif
What if: Performing operation "Stop-Process" on Target "ctfmon (812)".
What if: Performing operation "Stop-Process" on Target "Ditto (1916)".
What if: Performing operation "Stop-Process" on Target "dsamain (316)".
What if: Performing operation "Stop-Process" on Target "ehrecvr (1832)".
What if: Performing operation "Stop-Process" on Target "ehSched (1852)".
What if: Performing operation "Stop-Process" on Target "EXCEL (2092)".
What if: Performing operation "Stop-Process" on Target "explorer (1900)".
(...)

In this interaction, using the -WhatIf parameter with the Stop-Process pipelined
command lets you preview which processes on your system will be stopped before
you actually carry out the operation.

Note that this example is not a dare! In the words of one reviewer:
Not only did it stop everything, but on one of my old machines, it forced a shutdown
with only one minute warning!
It was very funny though…At least I had enough time to save everything first!

Common Discovery Commands
While reading through a guided tour is helpful, I find that most learning happens in
an ad hoc fashion. To find all commands that match a given wildcard, use the Get-
Command cmdlet. For example, by entering the following, you can find out which Pow‐
erShell commands (and Windows applications) contain the word process:

PS > Get-Command *process*

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-Process Get-Process [[-Name] <Str...
Application qprocess.exe c:\windows\system32\qproc...
Cmdlet Stop-Process Stop-Process [-Id] <Int32...

To see what a command such as Get-Process does, use the Get-Help cmdlet, like
this:

PS > Get-Help Get-Process

Since PowerShell lets you work with objects from the .NET Framework, it provides
the Get-Member cmdlet to retrieve information about the properties and methods that
an object, such as a .NET System.String, supports. Piping a string to the Get-Member
command displays its type name and its members:

xxxviii | A Guided Tour of PowerShell

PS > "Hello World" | Get-Member

 TypeName: System.String

Name MemberType Definition
---- ---------- ----------
(...)
PadLeft Method System.String PadLeft(Int32 tota...
PadRight Method System.String PadRight(Int32 tot...
Remove Method System.String Remove(Int32 start...
Replace Method System.String Replace(Char oldCh...
Split Method System.String[] Split(Params Cha...
StartsWith Method System.Boolean StartsWith(String...
Substring Method System.String Substring(Int32 st...
ToCharArray Method System.Char[] ToCharArray(), Sys...
ToLower Method System.String ToLower(), System....
ToLowerInvariant Method System.String ToLowerInvariant()
ToString Method System.String ToString(), System...
ToUpper Method System.String ToUpper(), System....
ToUpperInvariant Method System.String ToUpperInvariant()
Trim Method System.String Trim(Params Char[]...
TrimEnd Method System.String TrimEnd(Params Cha...
TrimStart Method System.String TrimStart(Params C...
Chars ParameterizedProperty System.Char Chars(Int32 index) {...
Length Property System.Int32 Length {get;}

Ubiquitous Scripting
PowerShell makes no distinction between the commands typed at the command line
and the commands written in a script. Your favorite cmdlets work in scripts and your
favorite scripting techniques (e.g., the foreach statement) work directly on the com‐
mand line. For example, to add up the handle count for all running processes:

PS > $handleCount = 0
PS > foreach($process in Get-Process) { $handleCount += $process.Handles }
PS > $handleCount
19403

While PowerShell provides a command (Measure-Object) to measure statistics about
collections, this short example shows how PowerShell lets you apply techniques that
normally require a separate scripting or programming language.

In addition to using PowerShell scripting keywords, you can also create and work
directly with objects from the .NET Framework that you may be familiar with. Pow‐
erShell becomes almost like the C# immediate mode in Visual Studio. Example P-4
shows how PowerShell lets you easily interact with the .NET Framework.

A Guided Tour of PowerShell | xxxix

Example P-4. Using objects from the .NET Framework to retrieve a web page and
process its content

PS > $webClient = New-Object System.Net.WebClient
PS > $content = $webClient.DownloadString(
 "https://devblogs.microsoft.com/powershell/feed/")
PS > $content.Substring(0,1000)
<?xml version="1.0" encoding="UTF-8"?><rss version="2.0"
 xmlns:content="http://purl.org/rss/1.0/modules/content/"
 xmlns:wfw="http://wellformedweb.org/CommentAPI/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:atom="http://www.w3.org/2005/Atom"
 xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"
 xmlns:slash="http://purl.org/rss/1.0/modules/slash/" >
<channel>
 <title>PowerShell</title>
 <atom:link href="https://devblogs.microsoft.com/powershell/feed/"
 <link>https://devblogs.microsoft.com/powershell</link>
 <description>Automating the world one-liner at a time...</description>
(...)

Ad Hoc Development
By blurring the lines between interactive administration and writing scripts, the his‐
tory buffers of PowerShell sessions quickly become the basis for ad hoc script devel‐
opment. In this example, you call the Get-History cmdlet to retrieve the history of
your session. For each item, you get its CommandLine property (the thing you typed)
and send the output to a new script file.

PS > Get-History | ForEach-Object { $_.CommandLine } > c:\temp\script.ps1
PS > notepad c:\temp\script.ps1
(save the content you want to keep)
PS > c:\temp\script.ps1

If this is the first time you’ve run a script in PowerShell, you’ll need
to configure your execution policy. For more information about
selecting an execution policy, see Recipe 18.1.

For more detail about saving your session history into a script, see Recipe 1.22.

Bridging Technologies
We’ve seen how PowerShell lets you fully leverage the .NET Framework in your tasks,
but its support for common technologies stretches even farther. As Example P-5
(continued from Example P-4) shows, PowerShell supports XML.

xl | A Guided Tour of PowerShell

Example P-5. Working with XML content in PowerShell

PS > $xmlContent = [xml] $content
PS > $xmlContent

xml xml-stylesheet rss
--- -------------- ---
version="1.0" encoding... type="text/xsl" href="... rss

PS > $xmlContent.rss

version : 2.0
content : http://purl.org/rss/1.0/modules/content/
wfw : http://wellformedweb.org/CommentAPI/
dc : http://purl.org/dc/elements/1.1/
atom : http://www.w3.org/2005/Atom
sy : http://purl.org/rss/1.0/modules/syndication/
slash : http://purl.org/rss/1.0/modules/slash/
channel : channel

PS > $xmlContent.rss.channel.item | select Title

title

PowerShell 7.2 Preview 2 release
Announcing PowerShell Crescendo Preview.1
You’ve got Help!
SecretManagement preview 6 and SecretStore preview 4
Announcing PowerShell 7.1
Announcing PSReadLine 2.1+ with Predictive IntelliSense
Updating help for the PSReadLine module
PowerShell Working Groups
(...)

PowerShell also lets you work with Windows Management Instrumentation (WMI)
and Common Information Model (CIM):

PS > Get-CimInstance Win32_Bios

SMBIOSBIOSVersion : ASUS A7N8X Deluxe ACPI BIOS Rev 1009
Manufacturer : Phoenix Technologies, LTD
Name : Phoenix - AwardBIOS v6.00PG
SerialNumber : xxxxxxxxxxx
Version : Nvidia - 42302e31

Or, as Example P-6 shows, you can work with Active Directory Service Interfaces
(ADSI).

A Guided Tour of PowerShell | xli

Example P-6. Working with Active Directory in PowerShell

PS > [ADSI] "WinNT://./Administrator" | Format-List *

UserFlags : {66113}
MaxStorage : {-1}
PasswordAge : {19550795}
PasswordExpired : {0}
LoginHours : {255 255 255 255 255 255 255 255 255 255 255
 255 255 255 255 255 255 255 255 255 255}
FullName : {}
Description : {Built-in account for administering the computer/domain}
BadPasswordAttempts : {0}
LastLogin : {5/21/2007 3:00:00 AM}
HomeDirectory : {}
LoginScript : {}
Profile : {}
HomeDirDrive : {}
Parameters : {}
PrimaryGroupID : {513}
Name : {Administrator}
MinPasswordLength : {0}
MaxPasswordAge : {3710851}
MinPasswordAge : {0}
PasswordHistoryLength : {0}
AutoUnlockInterval : {1800}
LockoutObservationInterval : {1800}
MaxBadPasswordsAllowed : {0}
RasPermissions : {1}
objectSid : {1 5 0 0 0 0 0 5 21 0 0 0 121 227 252 83 122
 130 50 34 67 23 10 50 244 1 0 0}

Or, as Example P-7 shows, you can even use PowerShell for scripting traditional
COM objects.

Example P-7. Working with COM objects in PowerShell

PS > $firewall = New-Object -com HNetCfg.FwMgr
PS > $firewall.LocalPolicy.CurrentProfile

Type : 1
FirewallEnabled : True
ExceptionsNotAllowed : False
NotificationsDisabled : False
UnicastResponsesToMulticastBroadcastDisabled : False
RemoteAdminSettings : System.__ComObject
IcmpSettings : System.__ComObject
GloballyOpenPorts : {Media Center Extender Service,
 Remote Media Center Experience,
 Adam Test Instance, QWAVE...}
Services : {File and Printer Sharing,
 UPnP Framework, Remote Desktop}

xlii | A Guided Tour of PowerShell

AuthorizedApplications : {Remote Assistance, Windows
 Messenger, Media Center, Trillian...}

Namespace Navigation Through Providers
Another avenue PowerShell offers for working with the system is providers. Power‐
Shell providers let you navigate and manage data stores using the same techniques
you already use to work with the filesystem, as illustrated in Example P-8.

Example P-8. Navigating the filesystem

PS > Set-Location c:\
PS > Get-ChildItem

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 5/8/2007 8:37 PM Blurpark
d---- 5/15/2016 4:32 PM Chocolatey
d---- 3/8/2020 12:45 PM DXLab
d---- 4/30/2020 7:00 AM Go
d---- 4/2/2016 3:05 PM Intel
d-r-- 12/15/2020 1:41 PM Program Files
d-r-- 11/28/2020 5:06 PM Program Files (x86)
d---- 5/12/2019 6:37 PM Python27
d---- 3/25/2018 1:11 PM Strawberry
d---- 12/16/2020 8:13 AM temp
d-r-- 8/11/2020 5:02 PM Users
da--- 12/16/2020 10:51 AM Windows

This also works on the registry, as shown in Example P-9.

Example P-9. Navigating the registry

PS > Set-Location HKCU:\Software\Microsoft\Windows\
PS > Get-ChildItem

 Hive: HKEY_CURRENT_USER\Software\Microsoft\Windows

Name Property
---- --------
CurrentVersion
DWM Composition : 1
 ColorPrevalence : 0
 ColorizationColor : 3290322719
 EnableAeroPeek : 1
 AccentColor : 4280243998
 EnableWindowColorization : 1
Shell
TabletPC
Windows Error Reporting

A Guided Tour of PowerShell | xliii

PS > Set-Location CurrentVersion\Run
PS > Get-ItemProperty .

(...)
OneDrive : "C:\Users\lee\AppData\Local\Microsoft\OneDrive\OneDrive.exe"
 /background
OpenDNS Updater : "C:\Program Files (x86)\OpenDNS Updater\OpenDNSUpdater.exe"
 /autostart
Ditto : C:\Program Files\Ditto\Ditto.exe
(...)

And it even works on the machine’s certificate store, as Example P-10 illustrates.

Example P-10. Navigating the certificate store

PS > Set-Location cert:\CurrentUser\Root
PS > Get-ChildItem

 Directory: Microsoft.PowerShell.Security\Certificate::CurrentUser\Root

Thumbprint Subject
---------- -------
CDD4EEAE6000AC7F40C3802C171E30148030C072 CN=Microsoft Root Certificate...
BE36A4562FB2EE05DBB3D32323ADF445084ED656 CN=Thawte Timestamping CA, OU...
A43489159A520F0D93D032CCAF37E7FE20A8B419 CN=Microsoft Root Authority, ...
9FE47B4D05D46E8066BAB1D1BFC9E48F1DBE6B26 CN=PowerShell Local Certifica...
7F88CD7223F3C813818C994614A89C99FA3B5247 CN=Microsoft Authenticode(tm)...
245C97DF7514E7CF2DF8BE72AE957B9E04741E85 OU=Copyright (c) 1997 Microso...
(...)

Much, Much More
As exciting as this guided tour was, it barely scratches the surface of how you can use
PowerShell to improve your productivity and systems management skills. For more
information about getting started in PowerShell, see Chapter 1.

xliv | A Guided Tour of PowerShell

PART II

Fundamentals

Chapter 1, The PowerShell Interactive Shell
Chapter 2, Pipelines
Chapter 3, Variables and Objects
Chapter 4, Looping and Flow Control
Chapter 5, Strings and Unstructured Text
Chapter 6, Calculations and Math
Chapter 7, Lists, Arrays, and Hashtables
Chapter 8, Utility Tasks

CHAPTER 1

The PowerShell Interactive Shell

1.0 Introduction
Above all else, the design of PowerShell places priority on its use as an efficient and
powerful interactive shell. Even its scripting language plays a critical role in this
effort, as it too heavily favors interactive use.

What surprises most people when they first launch PowerShell is its similarity to the
command prompt that has long existed as part of Windows. Familiar tools continue
to run. Familiar commands continue to run. Even familiar hotkeys are the same. Sup‐
porting this familiar UI, though, is a powerful engine that lets you accomplish once
cumbersome administrative and scripting tasks with ease.

This chapter introduces PowerShell from the perspective of its interactive shell.

1.1 Install PowerShell Core
Problem
You want to install the most recent version of PowerShell on your Windows, Mac, or
Linux system.

Solution
Visit the Microsoft website to find the installation instructions for the operating sys‐
tem and platform you want to install on. For the most common:

1

https://microsoft.com/PowerShell

Windows
Install PowerShell from Microsoft through the Microsoft Store application in the
Start Menu. Then, install Windows Terminal from Microsoft through the Microsoft
Store application in the Start Menu.

Mac
Install PowerShell from Homebrew:

brew install --cask powershell

Linux
Installation instructions vary per Linux distribution, but the most common distribu‐
tion among PowerShell Core users is Ubuntu:

Update the list of packages
sudo apt-get update

Install pre-requisite packages.
sudo apt-get install -y wget apt-transport-https software-properties-common

Download the Microsoft repository GPG keys
wget -q https://packages.microsoft.com/config/ubuntu/20.04/packages-microsoft-prod.deb

Register the Microsoft repository GPG keys
sudo dpkg -i packages-microsoft-prod.deb

Update the list of packages after we added packages.microsoft.com
sudo apt-get update

Install PowerShell
sudo apt-get install -y powershell

Discussion
PowerShell has already led a long and exciting life. For the first 15 years of its exis‐
tence, it was known as “Windows PowerShell”: a fantastic object-based management
shell and platform that made it easy and fun for administrators, developers, and
power users to get their jobs done.

In its earliest stages, this support came as part of the “Windows Management Frame‐
work”: a standalone download that provided this much needed functionality on Win‐
dows. Windows PowerShell eventually became part of Windows itself, and has been a
core part of the operating system since Windows 7.

In 2016, PowerShell made a tremendous shift by announcing that it would ship
PowerShell on multiple operating system platforms—and by the way—made the
entire project open source at the same time! Windows PowerShell got a new name
with its new future: simply PowerShell. This major change opened the doors for vastly

2 | Chapter 1: The PowerShell Interactive Shell

quicker innovation, community participation, and availability through avenues that
previously would never have been possible. While the classic Windows PowerShell is
still included in the operating system by default, it no longer receives updates and
should be avoided.

Installing and running PowerShell on Windows
As mentioned in the Solution, the best way to get PowerShell is to install it through
the Microsoft Store. This makes it easy to install and easy to update. Once you’ve
installed it, you can find PowerShell in the Start Menu like you would any other
application.

If you want to install a system-wide version of PowerShell for auto‐
mation and other adminstration tasks, you will likely prefer the
MSI-based installation mechanism. For more information, see the
Microsoft website.

While you’re installing PowerShell from the Microsoft Store, now is a good time to
install the Windows Terminal application from the Microsoft Store. The traditional
console interface (the window that PowerShell runs inside of) included in Windows
has so many tools and applications depending on its exact quirks that it’s nearly
impossible to meaningfully change. It has fallen woefully behind on what you would
expect of a terminal console interface, so the Windows Terminal application from the
Microsoft Store, as shown in Figure 1-1, is the solution. Like PowerShell, it is open
source, a focus of rapid innovation, and a vast improvement to what ships in Win‐
dows by default.

Figure 1-1. Windows Terminal running PowerShell, Bash, and even Azure Cloud Shell!

1.1 Install PowerShell Core | 3

https://microsoft.com/PowerShell

You can run many shells within tabs in Windows Terminal: PowerShell, Windows
PowerShell, cmd.exe, Bash (if you’ve enabled the Windows Subsystem for Linux), and
even a connection to Azure Cloud Shell. Windows Terminal defaults to PowerShell if
you have it installed.

Customizing PowerShell on Windows Terminal
There are two changes to a default Windows Terminal + PowerShell installation that
really improve the experience: taskbar pinning, and themes.

Taskbar pinning. When you launch Windows Terminal, right-click on its taskbar icon.
Select “Pin to Taskbar”, and then drag the icon to the far left of the taskbar. From now
on, whenever you press the Windows Key + 1 at the same time, you’ll either launch
Windows Terminal and PowerShell (if it’s not already open), or activate it. This is an
incredible way to keep your favorite shell close at hand.

Themes. Windows PowerShell has a gorgeous Noble Blue theme. It’s easy on the eyes,
quick to identify, and sets it apart from the dozens of other shells out there. Power‐
Shell Core did not take this color scheme with it by default, but it’s still possible to
customize your installation. From Windows Terminal, press Ctrl+Comma or click
the downward arrow on the right-hand side of the tab strip to open the Settings dia‐
log of Windows Terminal. The file that contains these settings will open in your
default text editor. Under Profiles, find the item with Windows.Terminal.

PowershellCore as its source, and add Campbell Powershell as a colorScheme. The
result should look like this:

{
 "guid": ...
 "hidden": false,
 "name": "PowerShell",
 "colorScheme": "Campbell Powershell",
 "source": "Windows.Terminal.PowershellCore"
},

Pay attention to capitalization, quotes, colons, and commas, and you should have
your PowerShell sessions looking noble again in no time!

Installing and running PowerShell on Mac and Linux
For the most part, installing PowerShell on Mac and Linux follows the patterns that
you’re likely already familiar with.

On Mac, the recommended installation method is through the popular Homebrew
package manager. Homebrew is not installed by default on macOS, but installation is
quite easy. If you haven’t installed Homebrew yet, you can find instructions at Home‐
brew’s official site.

4 | Chapter 1: The PowerShell Interactive Shell

https://brew.sh
https://brew.sh

On Linux, the installation methods vary depending on the distribution you’re interes‐
ted in. For the most part, installation is as simple as registering the Microsoft reposi‐
tory for your distribution’s package manager, and then installing PowerShell. The Sol‐
ution provides an example specific to Ubuntu 20.04, but you can get specific instruc‐
tions for your distribution and specific version on the Microsoft website.

1.2 Run Programs, Scripts, and Existing Tools
Problem
You rely on a lot of effort invested in your current tools. You have traditional executa‐
bles, Perl scripts, VBScript, and of course, a legacy build system that has organically
grown into a tangled mess of batch files. You want to use PowerShell, but you don’t
want to give up everything you already have.

Solution
To run a program, script, batch file, or other executable command in the system’s
path, enter its filename. For these executable types, the extension is optional:

Program.exe arguments
ScriptName.ps1 arguments
BatchFile.cmd arguments

To run a command that contains a space in its name, enclose its filename in single
quotes (') and precede the command with an ampersand (&), known in PowerShell as
the invoke operator:

& 'C:\Program Files\Program\Program.exe' arguments

To run a command in the current directory, place .\ in front of its filename:
.\Program.exe arguments

To run a command with spaces in its name from the current directory, precede it with
both an ampersand and .\:

& '.\Program With Spaces.exe' arguments

Discussion
In this case, the solution is mainly to use your current tools as you always have. The
only difference is that you run them in the PowerShell interactive shell rather than
cmd.exe.

Specifying the command name
The final three tips in the Solution merit special attention. They are the features of
PowerShell that many new users stumble on when it comes to running programs. The

1.2 Run Programs, Scripts, and Existing Tools | 5

https://oreil.ly/VKXLZ

first is running commands that contain spaces. In cmd.exe, the way to run a com‐
mand that contains spaces is to surround it with quotes:

"C:\Program Files\Program\Program.exe"

In PowerShell, though, placing text inside quotes is part of a feature that lets you eval‐
uate complex expressions at the prompt, as shown in Example 1-1.

Example 1-1. Evaluating expressions at the PowerShell prompt

PS > 1 + 1
2
PS > 26 * 1.15
29.9
PS > "Hello" + " World"
Hello World
PS > "Hello World"
Hello World
PS > "C:\Program Files\Program\Program.exe"
C:\Program Files\Program\Program.exe
PS >

So, a program name in quotes is no different from any other string in quotes. It’s just
an expression. As shown previously, the way to run a command in a string is to pre‐
cede that string with the invoke operator (&). If the command you want to run is a
batch file that modifies its environment, see Recipe 3.5.

By default, PowerShell’s security policies prevent scripts from run‐
ning. Once you begin writing or using scripts, though, you should
configure this policy to something less restrictive. For information
on how to configure your execution policy, see Recipe 18.1.

The second command that new users (and seasoned veterans before coffee!) some‐
times stumble on is running commands from the current directory. In cmd.exe, the
current directory is considered part of the path: the list of directories that Windows
searches to find the program name you typed. If you are in the C:\Programs directory,
cmd.exe looks in C:\Programs (among other places) for applications to run.

PowerShell, like most Unix shells, requires that you explicitly state your desire to run
a program from the current directory. To do that, you use the .\Program.exe syntax,
as shown previously. This prevents malicious users on your system from littering
your hard drive with evil programs that have names similar to (or the same as) com‐
mands you might run while visiting that directory.

To save themselves from having to type the location of commonly used scripts and
programs, many users put commonly used utilities along with their PowerShell
scripts in a “tools” directory, which they add to their system’s path. If PowerShell can

6 | Chapter 1: The PowerShell Interactive Shell

find a script or utility in your system’s path, you do not need to explicitly specify its
location.

If you want PowerShell to automatically look in your current working directory for
scripts, you can add a period (.) to your PATH environment variable.

For more information about updating your system path, see Recipe 16.2.

If you want to capture the output of a command, you can either save the results into a
variable, or save the results into a file. To save the results into a variable, see Recipe
3.3. To save the results into a file, see Recipe 9.2.

Specifying command arguments
To specify arguments to a command, you can type them just as you would in other
shells. For example, to make a specified file read-only (two arguments to attrib.exe),
simply type:

attrib +R c:\path\to\file.txt

Where many scripters get misled when it comes to command arguments is how to
change them within your scripts. For example, how do you get the filename from a
PowerShell variable? The answer is to define a variable to hold the argument value,
and just use that in the place you used to write the command argument:

$filename = "c:\path\to\other\file.txt"
attrib +R $filename

You can use the same technique when you call a PowerShell cmdlet, script, or
function:

$filename = "c:\path\to\other\file.txt"
Get-Acl -Path $filename

If you see a solution that uses the Invoke-Expression cmdlet to compose command
arguments, it is almost certainly incorrect. The Invoke-Expression cmdlet takes the
string that you give it and treats it like a full PowerShell script. As just one example of
the problems this can cause, consider the following: filenames are allowed to contain
the semicolon (;) character, but when Invoke-Expression sees a semicolon, it
assumes that it is a new line of PowerShell script. For example, try running this:

$filename = "c:\file.txt; Write-Warning 'This could be bad'"
Invoke-Expression "Get-Acl -Path $filename"

Given that these dynamic arguments often come from user input, using Invoke-
Expression to compose commands can (at best) cause unpredictable script results.
Worse, it could result in damage to your system or a security vulnerability.

In addition to letting you supply arguments through variables one at a time, Power‐
Shell also lets you supply several of them at once through a technique known as splat‐
ting. For more information about splatting, see Recipe 11.14.

1.2 Run Programs, Scripts, and Existing Tools | 7

See Also
Recipe 3.3, “Store Information in Variables”

Recipe 3.5, “Program: Retain Changes to Environment Variables Set by a Batch File”

Recipe 11.14, “Dynamically Compose Command Parameters”

Recipe 16.2, “Modify the User or System Path”

Recipe 18.1, “Enable Scripting Through an Execution Policy”

1.3 Run a PowerShell Command
Problem
You want to run a PowerShell command.

Solution
To run a PowerShell command, type its name at the command prompt. For example:

PS > Get-Process

 NPM(K) PM(M) WS(M) CPU(s) Id SI ProcessName
 ------ ----- ----- ------ -- -- -----------
 14 3.47 10.55 0.00 6476 0 AGMService
 14 3.16 10.57 0.00 3704 0 AGSService
 37 40.12 40.51 2.06 17676 1 ApplicationFrameHost

Discussion
The Get-Process command is an example of a native PowerShell command, called a
cmdlet. As compared to traditional commands, cmdlets provide significant benefits to
both administrators and developers:

• They share a common and regular command-line syntax.
• They support rich pipeline scenarios (using the output of one command as the

input of another).
• They produce easily manageable object-based output, rather than error-prone

plain-text output.

Because the Get-Process cmdlet generates rich object-based output, you can use its
output for many process-related tasks.

Every PowerShell command lets you provide input to the command through its
parameters. For more information on providing input to commands, see “Running
Commands” on page 841.

8 | Chapter 1: The PowerShell Interactive Shell

The Get-Process cmdlet is just one of the many that PowerShell supports. See Recipe
1.12 to learn techniques for finding additional commands that PowerShell supports.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 1.12, “Find a Command to Accomplish a Task”

Recipe 3.8, “Work with .NET Objects”

“Running Commands” on page 841

1.4 Resolve Errors Calling Native Executables
Problem
You have a command line that works from cmd.exe, and want to resolve errors that
occur from running that command in PowerShell.

Solution
Enclose any affected command arguments in single quotes to prevent them from
being interpreted by PowerShell, and replace any single quotes in the command with
two single quotes:

PS > cmd /c echo '!"#$%&''()*+,-./09:;<=>?@AZ[\]^_`az{|}~'
!"#$%&'()*+,-./09:;<=>?@AZ[\]^_`az{|}~

For complicated commands where this does not work, use the verbatim argument
(--%) syntax:

PS > cmd /c echo 'quotes' "and" $variables @{ etc = $true }
quotes and System.Collections.Hashtable

PS > cmd --% /c echo 'quotes' "and" $variables @{ etc = $true }
'quotes' "and" $variables @{ etc = $true }

Discussion
One of PowerShell’s primary goals has always been command consistency. Because of
this, cmdlets are very regular in the way that they accept parameters. Native executa‐
bles write their own parameter parsing, so you never know what to expect when
working with them. In addition, PowerShell offers many features that make you more
efficient at the command line: command substitution, variable expansion, and more.
Since many native executables were written before PowerShell was developed, they
may use special characters that conflict with these features.

1.4 Resolve Errors Calling Native Executables | 9

As an example, the command given in the Solution uses all the special characters
available on a typical keyboard. Without the quotes, PowerShell treats some of them
as language features, as shown in Table 1-1.

Table 1-1. Sample of special characters
Special character Meaning

" The beginning (or end) of quoted text

The beginning of a comment

$ The beginning of a variable

& The background pipeline operator

() Parentheses used for subexpressions

; Statement separator

{ } Script block

| Pipeline separator

` Escape character

When surrounded by single quotes, PowerShell accepts these characters as written,
without the special meaning.

Despite these precautions, you may still sometimes run into a command that doesn’t
seem to work when called from PowerShell. For the most part, you can resolve these
with the verbatim argument marker (--%) that prevents PowerShell from interpreting
any of the remaining characters on the line. You can place this marker anywhere in
the command’s arguments, letting you benefit from PowerShell constructs where
appropriate. The following example uses a PowerShell variable for some of the com‐
mand arguments, but then uses verbatim arguments for the rest:

PS > $username = "Lee"
PS > cmd /c echo Hello $username with 'quotes' "and" $variables @{ etc = $true }
Hello Lee with quotes and System.Collections.Hashtable
PS > cmd /c echo Hello $username `
 --% with 'quotes' "and" $variables @{ etc = $true }
Hello Lee with 'quotes' "and" $variables @{ etc = $true }

While in this mode, PowerShell also accepts cmd.exe-style environment variables—as
these are frequently used in commands that “just used to work”:

PS > $env:host = "localhost"
PS > ping %host%
Ping request could not find host %host%. Please check the name and try again.
PS > ping --% %host%

Pinging localhost [127.0.1.1] with 32 bytes of data:
(...)

10 | Chapter 1: The PowerShell Interactive Shell

See Also
Appendix A, PowerShell Language and Environment

1.5 Supply Default Values for Parameters
Problem
You want to define a default value for a parameter in a PowerShell command.

Solution
Add an entry to the PSDefaultParameterValues hashtable:

PS > Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 150 13 9692 9612 39 21.43 996 audiodg
 1013 84 45572 42716 315 1.67 4596 WWAHost
(...)

PS > $PSDefaultParameterValues["Get-Process:ID"] = $pid
PS > Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 584 62 132776 157940 985 13.15 9104 powershell

PS > Get-Process -Id 0

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 20 0 0 Idle

Discussion
In PowerShell, many commands (cmdlets and advanced functions) have parameters
that let you configure their behavior. For a full description of how to provide input to
commands, see “Running Commands” on page 841. Sometimes, though, supplying
values for those parameters at each invocation becomes awkward or repetitive.

In early versions of PowerShell, it was the responsibility of each cmdlet author to rec‐
ognize awkward or repetitive configuration properties and build support for “prefer‐
ence variables” into the cmdlet itself. For example, the Send-MailMessage cmdlet
looks for the $PSEmailServer variable if you do not supply a value for its
-SmtpServer parameter.

1.5 Supply Default Values for Parameters | 11

To make this support more consistent and configurable, PowerShell supports the
PSDefaultParameterValues preference variable. This preference variable is a hashta‐
ble. Like all other PowerShell hashtables, entries come in two parts: the key and the
value.

Keys in the PSDefaultParameterValues hashtable must match the pattern
cmdlet:parameter—that is, a cmdlet name and parameter name, separated by a
colon. Either (or both) may use wildcards, and spaces between the command name,
colon, and parameter are ignored.

Values for the cmdlet/parameter pairs can be either a simple parameter value (a
string, boolean value, integer, etc.) or a script block. Simple parameter values are what
you will use most often.

If you need the default value to dynamically change based on what parameter values
are provided so far, you can use a script block as the default. When you do so, Power‐
Shell evaluates the script block and uses its result as the default value. If your script
block doesn’t return a result, PowerShell doesn’t apply a default value.

When PowerShell invokes your script block, $args[0] contains information about
any parameters bound so far: BoundDefaultParameters, BoundParameters, and
BoundPositionalParameters. As one example of this, consider providing default val‐
ues to the -Credential parameter based on the computer being connected to. Here’s
a function that simply outputs the credential being used:

function RemoteConnector
{
 param(
 [Parameter()]
 $ComputerName,

 [Parameter(Mandatory = $true)]
 $Credential)

 "Connecting as " + $Credential.UserName
}

Now, you can define a credential map:
PS > $credmap = @{}
PS > $credmap["RemoteComputer1"] = Get-Credential
PS > $credmap["RemoteComputer2"] = Get-Credential

Then, create a parameter default for all Credential parameters that looks at the
ComputerName bound parameter:

12 | Chapter 1: The PowerShell Interactive Shell

$PSDefaultParameterValues["*:Credential"] = {
 if($args[0].BoundParameters -contains "ComputerName")
 {
 $cred = $credmap[$PSBoundParameters["ComputerName"]]
 if($cred) { $cred }
 }
}

Here is an example of this in use:
PS > RemoteConnector -ComputerName RemoteComputer1
Connecting as UserForRemoteComputer1
PS > RemoteConnector -ComputerName RemoteComputer2
Connecting as UserForRemoteComputer2
PS > RemoteConnector -ComputerName RemoteComputer3

cmdlet RemoteConnector at command pipeline position 1
Supply values for the following parameters:
Credential: (...)

For more information about working with hashtables in PowerShell, see “Hashtables
(Associative Arrays)” on page 809.

See Also
“Hashtables (Associative Arrays)” on page 809

“Running Commands” on page 841

1.6 Invoke a Long-Running or Background Command
Problem
You want to invoke a long-running command on a local or remote computer.

Solution
Invoke the command as a Job to have PowerShell run it in the background:

PS > Start-Job { while($true) { Get-Random; Start-Sleep 5 } } -Name Sleeper

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
1 Sleeper Running True localhost

PS > Receive-Job Sleeper
671032665
1862308704
PS > Stop-Job Sleeper

Or, if your command is a single pipeline, place a & character at the end of the line to
run that pipeline in the background:

1.6 Invoke a Long-Running or Background Command | 13

PS > dir c:\windows\system32 -recurse &

Id Name PSJobTypeName State HasMore
 Data
-- ---- ------------- ----- -------
1 Job1 BackgroundJob Running True

PS > 1+1
2

PS > Receive-Job -id 1 | Select -First 5

 Directory: C:\Windows\System32

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 12/7/2019 1:50 AM 0409
d---- 11/5/2020 7:09 AM 1028
d---- 11/5/2020 7:09 AM 1029
d---- 11/5/2020 7:09 AM 1031
d---- 11/5/2020 7:09 AM 1033

Discussion
PowerShell’s job cmdlets provide a consistent way to create and interact with back‐
ground tasks. In the Solution, we use the Start-Job cmdlet to launch a background
job on the local computer. We give it the name of Sleeper, but otherwise we don’t
customize much of its execution environment.

In addition to allowing you to customize the job name, the Start-Job cmdlet also
lets you launch the job under alternate user credentials or as a 32-bit process (if run
originally from a 64-bit process).

As an alternative to the Start-Job cmdlet, you can also use the Start-ThreadJob
cmdlet. The Start-ThreadJob cmdlet is a bit quicker at starting background jobs and
also lets you supply and interact with live objects in the jobs that you create. However,
it consumes resources of your current PowerShell process and does not let you run
your job under alternate user credentials.

Once you have launched a job, you can use the other Job cmdlets to interact with it:

Get-Job

Gets all jobs associated with the current session. In addition, the -Before,
-After, -Newest, and -State parameters let you filter jobs based on their state or
completion time.

Wait-Job

Waits for a job until it has output ready to be retrieved.

14 | Chapter 1: The PowerShell Interactive Shell

Receive-Job

Retrieves any output the job has generated since the last call to Receive-Job.

Stop-Job

Stops a job.

Remove-Job

Removes a job from the list of active jobs.

In addition to the Start-Job cmdlet, you can also use the -AsJob
parameter in many cmdlets to have them perform their tasks in the
background. Two of the most useful examples are the Invoke-
Command cmdlet (when operating against remote computers) and
the ForEach-Object cmdlet.

If your job generates an error, the Receive-Job cmdlet will display it to you when you
receive the results, as shown in Example 1-2. If you want to investigate these errors
further, the object returned by Get-Job exposes them through the Error property.

Example 1-2. Retrieving errors from a Job

PS > Start-Job -Name ErrorJob { Write-Error Error! }

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
1 ErrorJob Running True localhost

PS > Receive-Job ErrorJob
Write-Error: Error!

PS > $job = Get-Job ErrorJob
PS > $job | Format-List *

State : Completed
HasMoreData : False
StatusMessage :
Location : localhost
Command : Write-Error Error!
JobStateInfo : Completed
Finished : System.Threading.ManualResetEvent
InstanceId : 801e932c-5580-4c8b-af06-ddd1024840b7
Id : 1
Name : ErrorJob
ChildJobs : {Job2}
Output : {}
Error : {}
Progress : {}
Verbose : {}
Debug : {}

1.6 Invoke a Long-Running or Background Command | 15

Warning : {}

PS > $job.ChildJobs[0] | Format-List *
State : Completed
StatusMessage :
HasMoreData : False
Location : localhost
Runspace : System.Management.Automation.RemoteRunspace
Command : Write-Error Error!
JobStateInfo : Completed
Finished : System.Threading.ManualResetEvent
InstanceId : 60fa85da-448b-49ff-8116-6eae6c3f5006
Id : 2
Name : Job2
ChildJobs : {}
Output : {}
Error : {Microsoft.PowerShell.Commands.WriteErrorException,Microso
 ft.PowerShell.Commands.WriteErrorCommand}
Progress : {}
Verbose : {}
Debug : {}
Warning : {}

PS > $job.ChildJobs[0].Error
Write-Error: Error!

PS >

As this example shows, jobs are sometimes containers for other jobs, called child jobs.
Jobs created through the Start-Job cmdlet will always be child jobs attached to a
generic container. To access the errors returned by these jobs, you instead access the
errors in its first child job (called child job number zero).

In addition to long-running jobs that execute under control of the current PowerShell
session, you might want to register and control jobs that run on a schedule, or inde‐
pendently of the current PowerShell session. PowerShell has a handful of commands
to let you work with scheduled jobs like this; for more information, see Recipe 27.14.

See Also
Recipe 27.14, “Manage Scheduled Tasks on a Computer”

Recipe 29.5, “Invoke a Command on a Remote Computer”

1.7 Program: Monitor a Command for Changes
As thrilling as our lives are, some days are reduced to running a command over and
over and over. Did the files finish copying yet? Is the build finished? Is the site still
up?

16 | Chapter 1: The PowerShell Interactive Shell

Usually, the answer to these questions comes from running a command, looking at its
output, and then deciding whether it meets your criteria. And usually this means just
waiting for the output to change, waiting for some text to appear, or waiting for some
text to disappear.

Fortunately, Example 1-3 automates this tedious process for you.

Example 1-3. Watch-Command.ps1

##
##
Watch-Command
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Watches the result of a command invocation, alerting you when the output
either matches a specified string, lacks a specified string, or has simply
changed.

.EXAMPLE

PS > Watch-Command { Get-Process -Name Notepad | Measure } -UntilChanged
Monitors Notepad processes until you start or stop one.

.EXAMPLE

PS > Watch-Command { Get-Process -Name Notepad | Measure } -Until "Count : 1"
Monitors Notepad processes until there is exactly one open.

.EXAMPLE

PS > Watch-Command {
 Get-Process -Name Notepad | Measure } -While 'Count : \d\s*\n'
Monitors Notepad processes while there are between 0 and 9 open
(once number after the colon).

#>

[CmdletBinding(DefaultParameterSetName = "Forever")]
param(
 ## The script block to invoke while monitoring
 [Parameter(Mandatory = $true, Position = 0)]
 [ScriptBlock] $ScriptBlock,

 ## The delay, in seconds, between monitoring attempts
 [Parameter()]
 [Double] $DelaySeconds = 1,

1.7 Program: Monitor a Command for Changes | 17

 ## Specifies that the alert sound should not be played
 [Parameter()]
 [Switch] $Quiet,

 ## Monitoring continues only while the output of the
 ## command remains the same.
 [Parameter(ParameterSetName = "UntilChanged", Mandatory = $false)]
 [Switch] $UntilChanged,

 ## The regular expression to search for. Monitoring continues
 ## until this expression is found.
 [Parameter(ParameterSetName = "Until", Mandatory = $false)]
 [String] $Until,

 ## The regular expression to search for. Monitoring continues
 ## until this expression is not found.
 [Parameter(ParameterSetName = "While", Mandatory = $false)]
 [String] $While
)

Set-StrictMode -Version 3

$initialOutput = ""
$lastCursorTop = 0
Clear-Host

Start a continuous loop
while($true)
{
 ## Run the provided script block
 $r = & $ScriptBlock

 ## Clear the screen and display the results
 $buffer = $ScriptBlock.ToString().Trim() + "`r`n"
 $buffer += "`r`n"
 $textOutput = $r | Out-String
 $buffer += $textOutput

 [Console]::SetCursorPosition(0, 0)
 [Console]::Write($buffer)

 $currentCursorTop = [Console]::CursorTop
 $linesToClear = $lastCursorTop - $currentCursorTop
 if($linesToClear -gt 0)
 {
 [Console]::Write((" " * [Console]::WindowWidth * $linesToClear))
 }

 $lastCursorTop = [Console]::CursorTop
 [Console]::SetCursorPosition(0, 0)

 ## Remember the initial output, if we haven't
 ## stored it yet
 if(-not $initialOutput)
 {

18 | Chapter 1: The PowerShell Interactive Shell

 $initialOutput = $textOutput
 }

 ## If we are just looking for any change,
 ## see if the text has changed.
 if($UntilChanged)
 {
 if($initialOutput -ne $textOutput)
 {
 break
 }
 }

 ## If we need to ensure some text is found,
 ## break if we didn't find it.
 if($While)
 {
 if($textOutput -notmatch $While)
 {
 break
 }
 }

 ## If we need to wait for some text to be found,
 ## break if we find it.
 if($Until)
 {
 if($textOutput -match $Until)
 {
 break
 }
 }

 ## Delay
 Start-Sleep -Seconds $DelaySeconds
}

Notify the user
if(-not $Quiet)
{
 [Console]::Beep(1000, 1000)
}

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

1.7 Program: Monitor a Command for Changes | 19

1.8 Notify Yourself of Job Completion
Problem
You want to notify yourself when a long-running job completes.

Solution
Use the Register-TemporaryEvent command given in Recipe 31.3 to register for the
event’s StateChanged event:

PS > $job = Start-Job -Name TenSecondSleep { Start-Sleep 10 }
PS > Register-TemporaryEvent $job StateChanged -Action {
 [Console]::Beep(100,100)
 Write-Host "Job #$($sender.Id) ($($sender.Name)) complete."
}

PS > Job #6 (TenSecondSleep) complete.
PS >

Discussion
When a job completes, it raises a StateChanged event to notify subscribers that its
state has changed. We can use PowerShell’s event handling cmdlets to register for
notifications about this event, but they’re not geared toward this type of one-time
event handling. To solve that, we use the Register-TemporaryEvent command given
in Recipe 31.3.

In our example action block in the Solution, we simply emit a beep and write a mes‐
sage saying that the job is complete.

As another option, you can also update your prompt function to highlight jobs that
are complete but still have output you haven’t processed:

$psJobs = @(Get-Job -State Completed | ? { $_.HasMoreData })
if($psJobs.Count -gt 0) {
 ($psJobs | Out-String).Trim() | Write-Host -Fore Yellow }

For more information about events and this type of automatic event handling, see
Chapter 31.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Chapter 31

20 | Chapter 1: The PowerShell Interactive Shell

1.9 Customize Your Shell, Profile, and Prompt
Problem
You want to customize PowerShell’s interactive experience with a personalized
prompt, aliases, and more.

Solution
When you want to customize aspects of PowerShell, place those customizations in
your personal profile script. PowerShell provides easy access to this profile script by
storing its location in the $profile variable.

By default, PowerShell’s security policies prevent scripts (including
your profile) from running. Once you begin writing scripts,
though, you should configure this policy to something less restric‐
tive. For information on how to configure your execution policy,
see Recipe 18.1.

To create a new profile (and overwrite one if it already exists):
New-Item -type file -force $profile

To edit your profile (in Visual Studio Code, if you have it installed):
code $profile

To see your profile file:
Get-ChildItem $profile

Once you create a profile script, you can add a function called prompt that returns a
string. PowerShell displays the output of this function as your command-line prompt:

function prompt
{
 "PS [$env:COMPUTERNAME] >"
}

This example prompt displays your computer name, and looks like PS [LEE-DESK] >.

You may also find it helpful to add aliases to your profile. Aliases let you refer to com‐
mon commands by a name that you choose. Personal profile scripts let you automati‐
cally define aliases, functions, variables, or any other customizations that you might
set interactively from the PowerShell prompt. Aliases are among the most common
customizations, as they let you refer to PowerShell commands (and your own scripts)
by a name that is easier to type.

1.9 Customize Your Shell, Profile, and Prompt | 21

If you want to define an alias for a command but also need to mod‐
ify the parameters to that command, then define a function
instead. For more information, see Recipe 11.14.

For example:
Set-Alias new New-Object
Set-Alias browse 'C:\Users\lee\AppData\Local\Microsoft*\MicrosoftEdge.exe'

Your changes will become effective once you save your profile and restart PowerShell.
Alternatively, you can reload your profile immediately by running this command:

. $profile

Functions are also very common customizations, with the most popular being the
prompt function.

Discussion
The Solution discusses three techniques to make useful customizations to your Pow‐
erShell environment: aliases, functions, and a hand-tailored prompt. You can (and
will often) apply these techniques at any time during your PowerShell session, but
your profile script is the standard place to put customizations that you want to apply
to every session.

To remove an alias or function, use the Remove-Item cmdlet:
Remove-Item function:\MyCustomFunction
Remove-Item alias:\new

Although the prompt function returns a simple string, you can also use the function
for more complex tasks. For example, many users update their console window title
(by changing the $host.UI.RawUI.WindowTitle variable) or use the Write-Host
cmdlet to output the prompt in color. If your prompt function handles the screen
output itself, it still needs to return a string (for example, a single space) to prevent
PowerShell from using its default. If you don’t want this extra space to appear in your
prompt, add an extra space at the end of your Write-Host command and return the
backspace ("`b") character, as shown in Example 1-4.

22 | Chapter 1: The PowerShell Interactive Shell

Example 1-4. An example PowerShell prompt

##
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

Set-StrictMode -Version 3

function prompt
{
 $id = 1
 $historyItem = Get-History -Count 1
 if($historyItem)
 {
 $id = $historyItem.Id + 1
 }

 Write-Host -ForegroundColor DarkGray "`n[$(Get-Location)]"
 Write-Host -NoNewLine "PS:$id > "
 $host.UI.RawUI.WindowTitle = "$(Get-Location)"

 "`b"
}

In addition to showing the current location, this prompt also shows the ID for that
command in your history. This lets you locate and invoke past commands with rela‐
tive ease:

[C:\]
PS:73 >5 * 5
25

[C:\]
PS:74 >1 + 1
2

[C:\]
PS:75 >Invoke-History 73
5 * 5
25

[C:\]
PS:76 >

Although the profile referenced by $profile is the one you will almost always want
to use, PowerShell actually supports four separate profile scripts. For further details
on these scripts (along with other shell customization options), see “Common Cus‐
tomization Points” on page 855.

1.9 Customize Your Shell, Profile, and Prompt | 23

See Also
Recipe 18.1, “Enable Scripting Through an Execution Policy”

“Common Customization Points” on page 855

1.10 Customize PowerShell’s User Input Behavior
Problem
You want to override the way that PowerShell reads and handles input at the prompt.

Solution
Use the Set-PSReadLineOption cmdlet to configure properties such as EditMode
(Windows, VI, Emacs) and history management. For example, to make the continua‐
tion line for incomplete input a bit more red than usual:

Set-PSReadLineOption -Colors @{ ContinuationPrompt = "#663333" }

Use the Set-PSReadLineKeyHandler command to configure how PSReadLine
responds to your actual keypresses. For example, to add forward and backward direc‐
tory history navigation for Alt+Comma and Alt+Period:

Set-PSReadLineKeyHandler -Chord 'Alt+,' -ScriptBlock {
 Set-Location -
 [Microsoft.PowerShell.PSConsoleReadLine]::RevertLine()
 [Microsoft.PowerShell.PSConsoleReadLine]::AcceptLine()
}

Set-PSReadLineKeyHandler -Chord 'Alt+.' -ScriptBlock {
 Set-Location +
 [Microsoft.PowerShell.PSConsoleReadLine]::RevertLine()
 [Microsoft.PowerShell.PSConsoleReadLine]::AcceptLine()
}

Discussion
When PowerShell first came on the scene, Unix folks were among the first to notice.
They’d enjoyed a powerful shell and a vigorous heritage of automation for years—and
“when I’m forced to use Windows, PowerShell rocks” is a phrase we’ve heard many
times.

This natural uptake was no mistake. There are many on the team who come from a
deep Unix background, and similarities to traditional Unix shells were intentional.
For folks coming from other shells, though, we still hear the occasional grumble that
some feature or another feels weird. Alt+P doesn’t launch the built-in paging utility?
Ctrl+XX doesn’t move between the beginning of the line and current cursor position?
Abhorrent!

24 | Chapter 1: The PowerShell Interactive Shell

In early versions of PowerShell, there was nothing you could reasonably do to address
this. In those versions, PowerShell read its input from the console in what is known as
Cooked Mode—where the Windows console subsystem handles all the keypresses,
fancy F7 menus, and more. When you press Enter or Tab, PowerShell gets the text of
what you have typed so far, but that’s it. There is no way for it to know that you had
pressed the (Unix-like) Ctrl+R, Ctrl+A, Ctrl+E, or any other keys.

In later versions of PowerShell, most of these questions have gone away with the
introduction of the fantastic PSReadLine module that PowerShell uses for command-
line input. PSReadLine adds rich syntax highlighting, tab completion, history naviga‐
tion, and more.

The PSReadLine module lets you configure it to an incredible degree. The
Set-PSReadLineOption cmdlet supports options for its UI, input handling mode, his‐
tory processing, and much more:

EditMode BellStyle
ContinuationPrompt CompletionQueryItems
HistoryNoDuplicates WordDelimiters
AddToHistoryHandler HistorySearchCaseSensitive
CommandValidationHandler HistorySaveStyle
HistorySearchCursorMovesToEnd HistorySavePath
MaximumHistoryCount AnsiEscapeTimeout
MaximumKillRingCount PromptText
ShowToolTips ViModeIndicator
ExtraPromptLineCount ViModeChangeHandler
DingTone PredictionSource
DingDuration Colors

In addition to letting you configure its runtime behavior, you can also configure how
your keypresses cause it to react. To see all of the behaviors that you can map to key
presses, run Get-PSReadLineKeyHandler. PSReadLine offers pages of options—many
of them not currently assigned to any keypress:

PS > Get-PSReadLineKeyHandler

Basic editing functions
=======================

Key Function Description
--- -------- -----------
Enter AcceptLine Accept the input or move to the next line if
 input is missing a closing token.
Shift+Enter AddLine Move the cursor to the next line without
 attempting to execute the input
Backspace BackwardDeleteChar Delete the character before the cursor
Ctrl+h BackwardDeleteChar Delete the character before the cursor
Ctrl+Home BackwardDeleteLine Delete text from the cursor to the start of
 the line
Ctrl+Backspace BackwardKillWord Move the text from the start of the current
 or previous word to the cursor to the kill
 ring

1.10 Customize PowerShell’s User Input Behavior | 25

Ctrl+w BackwardKillWord Move the text from the start of the current
 or previous word to the cursor to...
(...)

To configure any of these functions, use the Set-PSReadLineKeyHandler command.
For example, to set Ctrl+Shift+C to capture colorized regions of the buffer into your
clipboard, run:

Set-PSReadLineKeyHandler -Chord Ctrl+Shift+C -Function CaptureScreen

If there isn’t a pre-defined function to do what you want, you can use the
-ScriptBlock parameter to have PSReadLine run any code of your choosing when
you press a key or key combination. The example given by the Solution demonstrates
this by adding forward and backward directory history navigation.

To make any of these changes persist, simply add these commands to your Power‐
Shell Profile.

Although really only for extremely advanced scenarios now that PSReadLine covers
almost everything you would ever need, you can customize or augment this function‐
ality even further through the PSConsoleHostReadLine function. When you define
this method in the PowerShell console host, PowerShell calls that function instead of
Windows’ default Cooked Mode input functionality. The default version of this func‐
tion launches PSReadLine’s ReadLine input handler. But if you wish to redefine this
completely, that’s it—the rest is up to you. If you’d like to implement a custom input
method, the freedom (and responsibility) is all yours.

When you define this function, it must process the user input and return the result‐
ing command. Example 1-5 implements a somewhat ridiculous Notepad-based user
input mechanism:

Example 1-5. A Notepad-based user input mechanism

function PSConsoleHostReadLine
{
 $inputFile = Join-Path $env:TEMP PSConsoleHostReadLine
 Set-Content $inputFile "PS > "

 ## Notepad opens. Enter your command in it, save the file,
 ## and then exit.
 notepad $inputFile | Out-Null
 $userInput = Get-Content $inputFile
 $resultingCommand = $userInput.Replace("PS >", "")
 $resultingCommand
}

For more information about handling keypresses and other forms of user input, see
Chapter 13.

26 | Chapter 1: The PowerShell Interactive Shell

See Also
Recipe 1.9, “Customize Your Shell, Profile, and Prompt”

Chapter 13

1.11 Customize PowerShell’s Command Resolution
Behavior
Problem
You want to override or customize the command that PowerShell invokes before it’s
invoked.

Solution
Assign a script block to one or all of the PreCommandLookupAction, PostCommand
LookupAction, or CommandNotFoundAction properties of $executionContext.Ses
sionState.InvokeCommand. Example 1-6 enables easy parent directory navigation
when you type multiple dots.

Example 1-6. Enabling easy parent path navigation through CommandNotFoundAction

##
##
Add-RelativePathCapture
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Adds a new CommandNotFound handler that captures relative path
navigation without having to explicitly call 'Set-Location'

.EXAMPLE

PS C:\Users\Lee\Documents>..
PS C:\Users\Lee>...
PS C:\>

#>

Set-StrictMode -Version 3

$executionContext.SessionState.InvokeCommand.CommandNotFoundAction = {

1.11 Customize PowerShell’s Command Resolution Behavior | 27

 param($CommandName, $CommandLookupEventArgs)

 ## If the command is only dots
 if($CommandName -match '^\.+$')
 {
 ## Associate a new command that should be invoked instead
 $CommandLookupEventArgs.CommandScriptBlock = {

 ## Count the number of dots, and run "Set-Location .." one
 ## less time.
 for($counter = 0; $counter -lt $CommandName.Length - 1; $counter++)
 {
 Set-Location ..
 }

 ## We call GetNewClosure() so that the reference to $CommandName can
 ## be used in the new command.
 }.GetNewClosure()

 ## Stop going through the command resolution process. This isn't
 ## strictly required in the CommandNotFoundAction.
 $CommandLookupEventArgs.StopSearch = $true
 }
}

Discussion
When you invoke a command in PowerShell, the engine goes through three distinct
phases:

1. Retrieve the text of the command.
2. Find the command for that text.
3. Invoke the command that was found.

In PowerShell the $executionContext.SessionState.InvokeCommand property lets
you override any of these stages with script blocks to intercept any or all of the
PreCommandLookupAction, PostCommandLookupAction, or CommandNotFoundAction
stages.

Each script block receives two parameters: the command name, and an object
(CommandLookupEventArgs) to control the command lookup behavior. If your han‐
dler assigns a script block to the CommandScriptBlock property of the Command
LookupEventArgs or assigns a CommandInfo to the Command property of the Command
LookupEventArgs, PowerShell will use that script block or command, respectively. If
your script block sets the StopSearch property to true, PowerShell will do no further
command resolution.

PowerShell invokes the PreCommandLookupAction script block when it knows the
name of a command (i.e., Get-Process) but hasn’t yet looked for the command itself.

28 | Chapter 1: The PowerShell Interactive Shell

You can override this action if you want to react primarily based on the text of the
command name or want to preempt PowerShell’s regular command or alias resolu‐
tion. For example, Example 1-7 demonstrates a PreCommandLookupAction that looks
for commands with an asterisk before their name. When it sees one, it enables the
-Verbose parameter.

Example 1-7. Customizing the PreCommandLookupAction

$executionContext.SessionState.InvokeCommand.PreCommandLookupAction = {
 param($CommandName, $CommandLookupEventArgs)

 ## If the command name starts with an asterisk, then
 ## enable its Verbose parameter
 if($CommandName -match "*")
 {
 ## Remove the leading asterisk
 $NewCommandName = $CommandName -replace '*',''

 ## Create a new script block that invokes the actual command,
 ## passes along all original arguments, and adds in the -Verbose
 ## parameter
 $CommandLookupEventArgs.CommandScriptBlock = {
 & $NewCommandName @args -Verbose

 ## We call GetNewClosure() so that the reference to $NewCommandName
 ## can be used in the new command.
 }.GetNewClosure()
 }
}

PS > dir > 1.txt
PS > dir > 2.txt
PS > del 1.txt
PS > *del 2.txt
VERBOSE: Performing operation "Remove file" on Target "C:\temp\tempfolder\2.txt".

After PowerShell executes the PreCommandLookupAction (if one exists and doesn’t
return a command), it goes through its regular command resolution. If it finds a
command, it invokes the script block associated with the PostCommandLookupAction.
You can override this action if you want to react primarily to a command that is just
about to be invoked. Example 1-8 demonstrates a PostCommandLookupAction that tal‐
lies the commands you use most frequently.

Example 1-8. Customizing the PostCommandLookupAction

$executionContext.SessionState.InvokeCommand.PostCommandLookupAction = {
 param($CommandName, $CommandLookupEventArgs)

 ## Stores a hashtable of the commands we use most frequently
 if(-not (Test-Path variable:\CommandCount))

1.11 Customize PowerShell’s Command Resolution Behavior | 29

 {
 $global:CommandCount = @{}
 }

 ## If it was launched by us (rather than as an internal helper
 ## command), record its invocation.
 if($CommandLookupEventArgs.CommandOrigin -eq "Runspace")
 {
 $commandCount[$CommandName] = 1 + $commandCount[$CommandName]
 }
}

PS > Get-Variable commandCount
PS > Get-Process -id $pid
PS > Get-Process -id $pid
PS > $commandCount

Name Value
---- -----
Out-Default 4
Get-Variable 1
prompt 4
Get-Process 2

If command resolution is unsuccessful, PowerShell invokes the CommandNotFound
Action script block if one exists. At its simplest, you can override this action if you
want to recover from or override PowerShell’s error behavior when it cannot find a
command.

As a more advanced application, the CommandNotFoundAction lets you write Power‐
Shell extensions that alter their behavior based on the form of the name, rather than
the arguments passed to it. For example, you might want to automatically launch
URLs just by typing them or navigate around providers just by typing relative path
locations.

The Solution gives an example of implementing this type of handler. While dynamic
relative path navigation is not a built-in feature of PowerShell, it’s possible to get a
very reasonable alternative by intercepting the CommandNotFoundAction. If we see a
missing command that has a pattern we want to handle (a series of dots), we return a
script block that does the appropriate relative path navigation.

1.12 Find a Command to Accomplish a Task
Problem
You want to accomplish a task in PowerShell but don’t know the command or cmdlet
to accomplish that task.

30 | Chapter 1: The PowerShell Interactive Shell

Solution
Use the Get-Command cmdlet to search for and investigate commands.

To get the summary information about a specific command, specify the command
name as an argument:

Get-Command CommandName

To get the detailed information about a specific command, pipe the output of
Get-Command to the Format-List cmdlet:

Get-Command CommandName | Format-List

To search for all commands with a name that contains text, surround the text with
asterisk characters:

Get-Command *text*

To search for all commands that use the Get verb, supply Get to the -Verb parameter:
Get-Command -Verb Get

To search for all commands that act on a service, use Service as the value of the
-Noun parameter:

Get-Command -Noun Service

Discussion
One of the benefits that PowerShell provides administrators is the consistency of its
command names. All PowerShell commands (called cmdlets) follow a regular Verb-
Noun pattern—for example, Get-Process, Get-Service, and Set-Location. The
verbs come from a relatively small set of standard verbs (as listed in Appendix J) and
describe what action the cmdlet takes. The nouns are specific to the cmdlet and
describe what the cmdlet acts on.

Knowing this philosophy, you can easily learn to work with groups of cmdlets. If you
want to start a service on the local machine, the standard verb for that is Start. A
good guess would be to first try Start-Service (which in this case would be correct),
but typing Get-Command -Verb Start would also be an effective way to see what
things you can start. Going the other way, you can see what actions are supported on
services by typing Get-Command -Noun Service.

When you use the Get-Command cmdlet, PowerShell returns results from the list of all
commands available on your system. If you’d instead like to search just commands
from modules that you’ve loaded either explicitly or through autoloading, use the
-ListImported parameter. For more information about PowerShell’s autoloading of
commands, see Recipe 1.28.

1.12 Find a Command to Accomplish a Task | 31

See Recipe 1.13 for a way to list all commands along with a brief description of what
they do.

The Get-Command cmdlet is one of the three commands you will use most commonly
as you explore PowerShell. The other two commands are Get-Help and Get-Member.

There is one important point to keep in mind when it comes to looking for a Power‐
Shell command to accomplish a particular task. Many times, that PowerShell com‐
mand does not exist, because the task is best accomplished the same way it always
was—for example, ipconfig.exe to get IP configuration information, netstat.exe
to list protocol statistics and current TCP/IP network connections, and many more.

For more information about the Get-Command cmdlet, type Get-Help Get-Command.

See Also
Recipe 1.13

1.13 Get Help on a Command
Problem
You want to learn how a specific command works and how to use it.

Solution
The command that provides help and usage information about a command is called
Get-Help. It supports several different views of the help information, depending on
your needs.

To get the summary of help information for a specific command, provide the com‐
mand’s name as an argument to the Get-Help cmdlet. This primarily includes its syn‐
opsis, syntax, and detailed description:

Get-Help CommandName

or:
CommandName -?

To get the detailed help information for a specific command, supply the -Detailed
flag to the Get-Help cmdlet. In addition to the summary view, this also includes its
parameter descriptions and examples:

Get-Help CommandName -Detailed

To get the full help information for a specific command, supply the -Full flag to the
Get-Help cmdlet. In addition to the detailed view, this also includes its full parameter
descriptions and additional notes:

32 | Chapter 1: The PowerShell Interactive Shell

Get-Help CommandName -Full

To get only the examples for a specific command, supply the -Examples flag to the
Get-Help cmdlet:

Get-Help CommandName -Examples

To retrieve the most up-to-date online version of a command’s help topic, supply the
-Online flag to the Get-Help cmdlet:

Get-Help CommandName -Online

To view a searchable, graphical view of a help topic, use the -ShowWindow parameter:
Get-Help CommandName -ShowWindow

To find all help topics that contain a given keyword, provide that keyword as an argu‐
ment to the Get-Help cmdlet. If the keyword isn’t also the name of a specific help
topic, this returns all help topics that contain the keyword, including its name, cate‐
gory, and synopsis:

Get-Help Keyword

Discussion
The Get-Help cmdlet is the primary way to interact with the help system in Power‐
Shell. Like the Get-Command cmdlet, the Get-Help cmdlet supports wildcards. If you
want to list all commands that have help content that matches a certain pattern (for
example, process), you can simply type:

Get-Help *process*

If the pattern matches only a single command, PowerShell displays the help for that
command. Although command wildcarding and keyword searching is a helpful way
to search PowerShell help, see Recipe 1.15 for a script that lets you search the help
content for a specified pattern.

While there are thousands of pages of custom-written help content at your disposal,
PowerShell by default includes only information that it can automatically generate
from the information contained in the commands themselves: names, parameters,
syntax, and parameter defaults. You need to update your help content to retrieve the
rest. When you run Get-Help for a command that you haven’t downloaded help con‐
tent for, you will see the following remarks as part of that help:

REMARKS
 Get-Help cannot find the Help files for this cmdlet on this computer.
 It is displaying only partial help.
 -- To download and install Help files for the module that includes
 this cmdlet, use Update-Help.
 -- To view the Help topic for this cmdlet online, type: "Get-Help
 Get-Process -Online" or
 go to https://go.microsoft.com/fwlink/?LinkID=2096814.

1.13 Get Help on a Command | 33

Run the Update-Help cmdlet, and PowerShell automatically downloads and installs
the most recent help content for all modules on your system. For more information
on updatable help, see Recipe 1.14.

If you’d like to generate a list of all cmdlets and aliases (along with their brief synop‐
ses), run the following command:

Get-Help * -Category Cmdlet | Select-Object Name,Synopsis | Format-Table -Auto

In addition to console-based help, PowerShell also offers online access to its help con‐
tent. The Solution demonstrates how to quickly access online help content.

The Get-Help cmdlet is one of the three commands you will use most commonly as
you explore PowerShell. The other two commands are Get-Command and Get-Member.

For more information about the Get-Help cmdlet, type Get-Help Get-Help.

See Also
Recipe 1.15, “Program: Search Help for Text”

1.14 Update System Help Content
Problem
You want to update your system’s help content to the latest available.

Solution
Run the Update-Help command. To retrieve help from a local path, use the
-SourcePath cmdlet parameter:

Update-Help

or:
Update-Help -SourcePath \\helpserver\help

Discussion
One of PowerShell’s greatest strengths is the incredible detail of its help content.
Counting only the help content and about_* topics that describe core functionality,
PowerShell’s help includes approximately half a million words and would span 1,200
pages if printed.

The challenge that every version of PowerShell has been forced to deal with is that
this help content is written at the same time as PowerShell itself. Given that its goal is
to help the user, the content that’s ready by the time a version of PowerShell releases is
a best-effort estimate of what users will need help with.

34 | Chapter 1: The PowerShell Interactive Shell

As users get their hands on PowerShell, they start to have questions. Some of these
are addressed by the help topics, while some of them aren’t. Sometimes the help is
simply incorrect due to a product change during the release. To address this, Power‐
Shell supports updatable help.

It’s not only possible to update help, but in fact the Update-Help command is the only
way to get help on your system. Out of the box, PowerShell provides an experience
derived solely from what is built into the commands themselves: name, syntax,
parameters, and default values.

When you run Get-Help for a command that you haven’t downloaded help content
for, you’ll see the following remarks as part of that help:

REMARKS
 Get-Help cannot find the Help files for this cmdlet on this computer.
 It is displaying only partial help.
 -- To download and install Help files for the module that includes
 this cmdlet, use Update-Help.
 -- To view the Help topic for this cmdlet online, type: "Get-Help
 Get-Process -Online" or
 go to https://go.microsoft.com/fwlink/?LinkID=2096814.

Run the Update-Help cmdlet, and PowerShell automatically downloads and installs
the most recent help content for all modules on your system.

When you run Update-Help, PowerShell looks at each module on your system, com‐
paring the help you have for that module with the latest version online. For in-box
modules, PowerShell uses download.microsoft.com to retrieve updated help content.
Other modules that you download from the internet can use the HelpInfoUri mod‐
ule key to support their own updatable help.

PowerShell stores this content in the PowerShell\Help directory in your user docu‐
ments or home directory.

By default, the Update-Help command retrieves its content from the internet. If you
want to update help on a machine not connected to the internet, you can use the
-SourcePath parameter of the Update-Help cmdlet. This path represents a directory
or UNC path where PowerShell should look for updated help content. To populate
this content, first use the Save-Help cmdlet to download the files, and then copy
them to the source location.

For more information about PowerShell help, see Recipe 1.13.

See Also
Recipe 1.13, “Get Help on a Command”

1.14 Update System Help Content | 35

1.15 Program: Search Help for Text
Both the Get-Command and Get-Help cmdlets let you search for command names that
match a given pattern. However, when you don’t know exactly what portions of a
command name you are looking for, you will more often have success searching
through the help content for an answer. On Unix systems, this command is called
Apropos.

The Get-Help cmdlet automatically searches the help database for keyword refer‐
ences when it can’t find a help topic for the argument you supply. In addition to that,
you might want to extend this even further to search for text patterns or even help
topics that talk about existing help topics. PowerShell’s help facilities support a ver‐
sion of wildcarded content searches, but don’t support full regular expressions.

That doesn’t need to stop us, though, as we can write the functionality ourselves.

To run this program, supply a search string to the Search-Help script (given in
Example 1-9). The search string can be either simple text or a regular expression. The
script then displays the name and synopsis of all help topics that match. To see the
help content for that topic, use the Get-Help cmdlet.

Example 1-9. Search-Help.ps1

##
##
Search-Help
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Search the PowerShell help documentation for a given keyword or regular
expression. For simple keyword searches in PowerShell version two or three,
simply use "Get-Help <keyword>"

.EXAMPLE

PS > Search-Help hashtable
Searches help for the term 'hashtable'

.EXAMPLE

PS > Search-Help "(datetime|ticks)"
Searches help for the term datetime or ticks, using the regular expression
syntax.

36 | Chapter 1: The PowerShell Interactive Shell

#>

param(
 ## The pattern to search for
 [Parameter(Mandatory = $true)]
 $Pattern
)

$helpNames = $(Get-Help * | Where-Object { $_.Category -ne "Alias" })

Go through all of the help topics
foreach($helpTopic in $helpNames)
{
 ## Get their text content, and
 $content = Get-Help -Full $helpTopic.Name | Out-String
 if($content -match "(.{0,30}$pattern.{0,30})")
 {
 $helpTopic | Add-Member NoteProperty Match $matches[0].Trim()
 $helpTopic | Select-Object Name,Match
 }
}

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

1.16 Launch PowerShell at a Specific Location
Problem
You want to launch a PowerShell session in a specific location.

Solution
Both Windows and PowerShell offer several ways to launch PowerShell in a specific
location:

• Explorer’s address bar
• PowerShell’s command-line arguments
• Windows Terminal “Open in Windows Terminal” shell extension

1.16 Launch PowerShell at a Specific Location | 37

Discussion
If you are browsing the filesystem with Windows Explorer, typing pwsh.exe or
powershell.exe into the address bar launches PowerShell in that location (as shown
in Figure 1-2).

Figure 1-2. Launching PowerShell from Windows Explorer

Note that what you type must end with the .exe extension, otherwise Explorer will
generally open your PowerShell documents folder. Additionally, you can open Win‐
dows PowerShell directly from the File menu, as shown in Figure 1-3.

For another way to launch PowerShell from Windows Explorer, Windows Terminal
(if you’ve installed it) adds an “Open in Windows Terminal” option when you right-
click on a folder from Windows Explorer.

If you aren’t browsing the desired folder with Windows Explorer, you can use
Start→Run (or any other means of launching an application) to launch PowerShell at
a specific location. For that, use PowerShell’s -NoExit parameter, along with the
-Command parameter. In the -Command parameter, call the Set-Location cmdlet to ini‐
tially move to your desired location.

pwsh -NoExit -Command Set-Location 'C:\Program Files'

38 | Chapter 1: The PowerShell Interactive Shell

Figure 1-3. Launching PowerShell from Explorer

1.17 Invoke a PowerShell Command or Script from
Outside PowerShell
Problem
You want to invoke a PowerShell command or script from a batch file, a logon script,
a scheduled task, or any other non-PowerShell application.

Solution
To invoke a PowerShell command, use the -Command parameter:

pwsh -Command Get-Process; Read-Host

To launch a PowerShell script, use the -File parameter:
pwsh -File 'full path to script' arguments

For example:
pwsh -File 'c:\shared scripts\Get-Report.ps1' Hello World

Discussion
By default, any arguments to pwsh.exe get interpreted as a script to run. If you use the
-Command parameter, PowerShell runs the command as though you had typed it in the

1.17 Invoke a PowerShell Command or Script from Outside PowerShell | 39

interactive shell, and then exits. You can customize this behavior by supplying other
parameters to pwsh.exe, such as -NoExit, -NoProfile, and more.

If you are the author of a program that needs to run PowerShell
scripts or commands, PowerShell lets you call these scripts and
commands much more easily than calling its command-line inter‐
face. For more information about this approach, see Recipe 17.10.

Since launching a script is so common, PowerShell provides the -File parameter to
eliminate the complexities that arise from having to invoke a script from the
-Command parameter. This technique lets you invoke a PowerShell script as the target
of a logon script, advanced file association, scheduled task, and more.

When PowerShell detects that its input or output streams have
been redirected, it suppresses any prompts that it might normally
display. If you want to host an interactive PowerShell prompt inside
another application (such as Emacs), use - as the argument for the
-File parameter. In PowerShell (as with traditional Unix shells),
this implies “taken from standard input.”

pwsh -File -

If the script is for background automation or a scheduled task, these scripts can
sometimes interfere with (or become influenced by) the user’s environment. For these
situations, three parameters come in handy:

-NoProfile

Runs the command or script without loading user profile scripts. This makes the
script launch faster, but it primarily prevents user preferences (e.g., aliases and
preference variables) from interfering with the script’s working environment.

-WindowStyle

Runs the command or script with the specified window style—most commonly
Hidden. When run with a window style of Hidden, PowerShell hides its main win‐
dow immediately. For more ways to control the window style from within Power‐
Shell, see Recipe 24.3.

-ExecutionPolicy

Runs the command or script with a specified execution policy applied only to
this instance of PowerShell. This lets you write PowerShell scripts to manage a
system without having to change the system-wide execution policy. For more
information about scoped execution policies, see Recipe 18.1.

40 | Chapter 1: The PowerShell Interactive Shell

If the arguments to the -Command parameter become complex, special character han‐
dling in the application calling PowerShell (such as cmd.exe) might interfere with the
command you want to send to PowerShell. For this situation, PowerShell supports an
EncodedCommand parameter: a Base64-encoded representation of the Unicode string
you want to run. Example 1-10 demonstrates how to convert a string containing Pow‐
erShell commands to a Base64-encoded form.

Example 1-10. Converting PowerShell commands into a Base64-encoded form

$commands = '1..10 | % { "PowerShell Rocks" }'
$bytes = [System.Text.Encoding]::Unicode.GetBytes($commands)
$encodedString = [Convert]::ToBase64String($bytes)

Once you have the encoded string, you can use it as the value of the EncodedCommand
parameter, as shown in Example 1-11.

Example 1-11. Launching PowerShell with an encoded command from cmd.exe

Microsoft Windows [Version 10.0.19041.685]
(c) 2020 Microsoft Corporation. All rights reserved.

C:\Users\Lee>PowerShell -EncodedCommand MQAuAC4AMQAwACAAfAAgACUAIAB7ACAAIgBQAG8A
 dwBlAHIAUwBoAGUAbABsACAAUgBvAGMAawBzACIAIAB9AA==
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 17.10, “Add PowerShell Scripting to Your Own Program”

1.17 Invoke a PowerShell Command or Script from Outside PowerShell | 41

1.18 Understand and Customize PowerShell’s Tab
Completion
Problem
You want to customize how PowerShell reacts to presses of the Tab key and Ctrl
+Space.

Solution
Create a custom function called TabExpansion2. PowerShell invokes this function
when you press Tab or Ctrl+Space in either the console or Visual Studio Code.

Discussion
When you press Tab, PowerShell invokes a facility known as tab expansion: replacing
what you’ve typed so far with an expanded version of that (if any apply.) For example,
if you type Set-Location C:\ and then press Tab, PowerShell starts cycling through
directories under C:\ for you to navigate into.

The features offered by PowerShell’s built-in tab expansion are quite rich, as shown in
Table 1-2.

Table 1-2. Tab expansion features in PowerShell
Description Example
Command completion. Completes command names when current text
appears to represent a command invocation.

Get-Ch <Tab>

Parameter completion. Completes command parameters for the current
command.

Get-ChildItem -Pat <Tab>

Argument completion. Completes command arguments for the current
command parameter. This applies to any command argument that takes a
fixed set of values (enumerations or parameters that define a Validate
Set attribute). In addition, PowerShell contains extended argument
completion for module names, help topics, CIM / WMI classes, event log
names, job IDs and names, process IDs and names, provider names, drive
names, service names and display names, and trace source names.

Set-ExecutionPolicy
-ExecutionPolicy <Tab>

History text completion. Replaces the current input with items from the
command history that match the text after the # character.

#Process <Tab>

History ID completion. Replaces the current input with the command line
from item number ID in your command history.

#12 <Tab>

Filename completion. Replaces the current parameter value with file
names that match what you’ve typed so far. When applied to the Set-
Location cmdlet, PowerShell further filters results to only directories.

Set-Location C:\Windows\S <Tab>

42 | Chapter 1: The PowerShell Interactive Shell

Description Example
Operator completion. Replaces the current text with a matching operator.
This includes flags supplied to the switch statement.

"Hello World" -rep<Tab>

switch - c <Tab>

Variable completion. Replaces the current text with available PowerShell
variables. PowerShell even incorporates variables from script content that
has never been invoked.

$myGreeting = "Hello World";
$myGr <Tab>

Member completion. Replaces member names for the currently referenced
variable or type. When PowerShell can infer the members from previous
commands in the pipeline, it even supports member completion within
script blocks.

[Console]::Ba <Tab>
Get-Process | Where-Object
{ $_.Ha <Tab>

Type completion. Replaces abbreviated type names with their namespace-
qualified name.

[PSSer <Tab>
$l = New-Object List[Stri <Tab>

If you want to extend PowerShell’s tab expansion capabilities, define a function called
TabExpansion2. You can add this to your PowerShell profile directly, or dot-source it
from your profile. Example 1-12 demonstrates an example custom tab expansion
function that extends the functionality already built into PowerShell.

Example 1-12. A sample implementation of TabExpansion2

##
##
TabExpansion2
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

function TabExpansion2
{
 [CmdletBinding(DefaultParameterSetName = 'ScriptInputSet')]
 Param(
 [Parameter(ParameterSetName = 'ScriptInputSet', Mandatory = $true, Position = 0)]
 [string] $inputScript,

 [Parameter(ParameterSetName = 'ScriptInputSet', Mandatory = $true, Position = 1)]
 [int] $cursorColumn,

 [Parameter(ParameterSetName = 'AstInputSet', Mandatory = $true, Position = 0)]
 [System.Management.Automation.Language.Ast] $ast,

 [Parameter(ParameterSetName = 'AstInputSet', Mandatory = $true, Position = 1)]
 [System.Management.Automation.Language.Token[]] $tokens,

 [Parameter(ParameterSetName = 'AstInputSet', Mandatory = $true, Position = 2)]
 [System.Management.Automation.Language.IScriptPosition] $positionOfCursor,

 [Parameter(ParameterSetName = 'ScriptInputSet', Position = 2)]
 [Parameter(ParameterSetName = 'AstInputSet', Position = 3)]

1.18 Understand and Customize PowerShell’s Tab Completion | 43

 [Hashtable] $options = $null
)

 End
 {
 ## Create a new 'Options' hashtable if one has not been supplied.
 ## In this hashtable, you can add keys for the following options, using
 ## $true or $false for their values:
 ##
 ## IgnoreHiddenShares - Ignore hidden UNC shares (such as \\COMPUTER\ADMIN$)
 ## RelativePaths - When expanding filenames and paths, $true forces PowerShell
 ## to replace paths with relative paths. When $false, forces PowerShell to
 ## replace them with absolute paths. By default, PowerShell makes this
 ## decision based on what you had typed so far before invoking tab completion.
 ## LiteralPaths - Prevents PowerShell from replacing special file characters
 ## (such as square brackets and back-ticks) with their escaped equivalent.
 if(-not $options) { $options = @{} }

 ## Demonstrate some custom tab expansion completers for parameters.
 ## This is a hash table of parameter names (and optionally cmdlet names)
 ## that we add to the $options hashtable.
 ##
 ## When PowerShell evaluates the script block, $args gets the
 ## following: command name, parameter, word being completed,
 ## AST of the command being completed, and currently-bound arguments.
 $options["CustomArgumentCompleters"] = @{
 "Get-ChildItem:Filter" = { "*.ps1","*.txt","*.doc" }
 "ComputerName" = { "ComputerName1","ComputerName2","ComputerName3" }
 }

 ## Also define a completer for a native executable.
 ## When PowerShell evaluates the script block, $args gets the
 ## word being completed, and AST of the command being completed.
 $options["NativeArgumentCompleters"] = @{
 "attrib" = { "+R","+H","+S" }
 }

 ## Define a "quick completions" list that we'll cycle through
 ## when the user types '!!' followed by TAB.
 $quickCompletions = @(
 'Get-Process -Name PowerShell | ? Id -ne $pid | Stop-Process',
 'Set-Location $pshome',
 ('$errors = $error | % { $_.InvocationInfo.Line }; Get-History | ' +
 ' ? { $_.CommandLine -notin $errors }')
)

 ## First, check the built-in tab completion results
 $result = $null
 if ($psCmdlet.ParameterSetName -eq 'ScriptInputSet')
 {
 $result = [System.Management.Automation.CommandCompletion]::CompleteInput(
 <#inputScript#> $inputScript,
 <#cursorColumn#> $cursorColumn,
 <#options#> $options)
 }
 else

44 | Chapter 1: The PowerShell Interactive Shell

 {
 $result = [System.Management.Automation.CommandCompletion]::CompleteInput(
 <#ast#> $ast,
 <#tokens#> $tokens,
 <#positionOfCursor#> $positionOfCursor,
 <#options#> $options)
 }

 ## If we didn't get a result
 if($result.CompletionMatches.Count -eq 0)
 {
 ## If this was done at the command-line or in a remote session,
 ## create an AST out of the input
 if ($psCmdlet.ParameterSetName -eq 'ScriptInputSet')
 {
 $ast = [System.Management.Automation.Language.Parser]::ParseInput(
 $inputScript, [ref]$tokens, [ref]$null)
 }

 ## In this simple example, look at the text being supplied.
 ## We could do advanced analysis of the AST here if we wanted,
 ## but in this case just use its text. We use a regular expression
 ## to check if the text started with two exclamations, and then
 ## use a match group to retain the rest.
 $text = $ast.Extent.Text
 if($text -match '^!!(.*)')
 {
 ## Extract the rest of the text from the regular expression
 ## match group.
 $currentCompletionText = $matches[1].Trim()

 ## Go through each of our quick completions and add them to
 ## our completion results. The arguments to the completion results
 ## are the text to be used in tab completion, a potentially shorter
 ## version to use for display (i.e.: intellisense in the ISE),
 ## the type of match, and a potentially more verbose description to
 ## be used as a tool tip.
 $quickCompletions | Where-Object { $_ -match $currentCompletionText } |
 Foreach-Object { $result.CompletionMatches.Add(
 (New-Object Management.Automation.CompletionResult $_,$_,
 "Text",$_))
 }
 }
 }

 return $result
 }
}

See Also
Recipe 10.10, “Parse and Interpret PowerShell Scripts”

“Common Customization Points” on page 855

1.18 Understand and Customize PowerShell’s Tab Completion | 45

1.19 Program: Learn Aliases for Common Commands
In interactive use, full cmdlet names (such as Get-ChildItem) are cumbersome and
slow to type. Although aliases are much more efficient, it takes a while to discover
them. To learn aliases more easily, you can modify your prompt to remind you of the
shorter version of any aliased commands that you use.

This involves two steps:

1. Add the program, Get-AliasSuggestion.ps1, shown in Example 1-13, to your
tools directory or another directory.

Example 1-13. Get-AliasSuggestion.ps1

##
##
Get-AliasSuggestion
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Get an alias suggestion from the full text of the last command. Intended to
be added to your prompt function to help learn aliases for commands.

.EXAMPLE

PS > Get-AliasSuggestion Remove-ItemProperty
Suggestion: An alias for Remove-ItemProperty is rp

#>

param(
 ## The full text of the last command
 $LastCommand
)

Set-StrictMode -Version 3

$helpMatches = @()

Find all of the commands in their last input
$tokens = [Management.Automation.PSParser]::Tokenize(
 $lastCommand, [ref] $null)
$commands = $tokens | Where-Object { $_.Type -eq "Command" }

Go through each command

46 | Chapter 1: The PowerShell Interactive Shell

foreach($command in $commands)
{
 ## Get the alias suggestions
 foreach($alias in Get-Alias -Definition $command.Content)
 {
 $helpMatches += "Suggestion: An alias for " +
 "$($alias.Definition) is $($alias.Name)"
 }
}

$helpMatches

2. Add the text from Example 1-14 to the Prompt function in your profile. If you
don’t yet have a Prompt function, see Recipe 1.9 to learn how to add one.

Example 1-14. A useful prompt to teach you aliases for common commands

function prompt
{
 ## Get the last item from the history
 $historyItem = Get-History -Count 1

 ## If there were any history items
 if($historyItem)
 {
 ## Get the training suggestion for that item
 $suggestions = @(Get-AliasSuggestion $historyItem.CommandLine)
 ## If there were any suggestions
 if($suggestions)
 {
 ## For each suggestion, write it to the screen
 foreach($aliasSuggestion in $suggestions)
 {
 Write-Host "$aliasSuggestion"
 }
 Write-Host ""

 }
 }

 ## Rest of prompt goes here
 "PS [$env:COMPUTERNAME] >"
}

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 1.9, “Customize Your Shell, Profile, and Prompt”

1.19 Program: Learn Aliases for Common Commands | 47

1.20 Program: Learn Aliases for Common Parameters
Problem
You want to learn aliases defined for command parameters.

Solution
Use the Get-ParameterAlias script, as shown in Example 1-15, to return all aliases
for parameters used by the previous command in your session history.

Example 1-15. Get-ParameterAlias.ps1

##
##
Get-ParameterAlias
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Looks in the session history, and returns any aliases that apply to
parameters of commands that were used.

.EXAMPLE

PS > dir -ErrorAction SilentlyContinue
PS > Get-ParameterAlias
An alias for the 'ErrorAction' parameter of 'dir' is ea

#>

Set-StrictMode -Version 3

Get the last item from their session history
$history = Get-History -Count 1
if(-not $history)
{
 return
}

And extract the actual command line they typed
$lastCommand = $history.CommandLine

Use the Tokenizer API to determine which portions represent
commands and parameters to those commands
$tokens = [System.Management.Automation.PsParser]::Tokenize(

48 | Chapter 1: The PowerShell Interactive Shell

 $lastCommand, [ref] $null)
$currentCommand = $null

Now go through each resulting token
foreach($token in $tokens)
{
 ## If we've found a new command, store that.
 if($token.Type -eq "Command")
 {
 $currentCommand = $token.Content
 }

 ## If we've found a command parameter, start looking for aliases
 if(($token.Type -eq "CommandParameter") -and ($currentCommand))
 {
 ## Remove the leading "-" from the parameter
 $currentParameter = $token.Content.TrimStart("-")

 ## Determine all of the parameters for the current command.
 (Get-Command $currentCommand).Parameters.GetEnumerator() |

 ## For parameters that start with the current parameter name,
 Where-Object { $_.Key -like "$currentParameter*" } |

 ## return all of the aliases that apply. We use "starts with"
 ## because the user might have typed a shortened form of
 ## the parameter name.
 Foreach-Object {
 $_.Value.Aliases | Foreach-Object {
 "Suggestion: An alias for the '$currentParameter' " +
 "parameter of '$currentCommand' is '$_'"
 }
 }
 }
}

Discussion
To make it easy to type command parameters, PowerShell lets you type only as much
of the command parameter as is required to disambiguate it from other parameters of
that command. In addition to shortening implicitly supported by the shell, cmdlet
authors can also define explicit aliases for their parameters—for example, CN as a
short form for ComputerName.

While helpful, these aliases are difficult to discover.

If you want to see the aliases for a specific command, you can access its Parameters
collection:

PS > (Get-Command New-TimeSpan).Parameters.Values | Select Name,Aliases

Name Aliases
---- -------
Start {LastWriteTime}

1.20 Program: Learn Aliases for Common Parameters | 49

End {}
Days {}
Hours {}
Minutes {}
Seconds {}
Verbose {vb}
Debug {db}
ErrorAction {ea}
WarningAction {wa}
InformationAction {infa}
ErrorVariable {ev}
WarningVariable {wv}
InformationVariable {iv}
OutVariable {ov}
OutBuffer {ob}
PipelineVariable {pv}

If you want to learn any aliases for parameters in your previous command, simply
run Get-ParameterAlias.ps1. To make PowerShell do this automatically, add a call
to Get-ParameterAlias.ps1 in your prompt.

This script builds on two main features: PowerShell’s Tokenizer API, and the rich
information returned by the Get-Command cmdlet. PowerShell’s Tokenizer API exam‐
ines its input and returns PowerShell’s interpretation of the input: commands, param‐
eters, parameter values, operators, and more. Like the rich output produced by most
of PowerShell’s commands, Get-Command returns information about a command’s
parameters, parameter sets, output type (if specified), and more.

For more information about the Tokenizer API, see Recipe 10.10.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 10.10, “Parse and Interpret PowerShell Scripts”

“Structured Commands (Cmdlets)” on page xxxiv

1.21 Access and Manage Your Console History
Problem
After working in the shell for a while, you want to invoke commands from your his‐
tory, view your command history, and save your command history.

Solution
The shortcuts given in Recipe 1.9 let you manage your history, but PowerShell offers
several features to help you work with your console in even more detail.

50 | Chapter 1: The PowerShell Interactive Shell

To get the most recent commands from your session, use the Get-History cmdlet (or
its alias of h):

Get-History

To rerun a specific command from your session history, provide its ID to the Invoke-
History cmdlet (or its alias of ihy):

Invoke-History ID

To increase (or limit) the number of commands stored in your session history, assign
a new value to the $MaximumHistoryCount variable:

$MaximumHistoryCount = Count

To save your command history to a file, pipe the output of Get-History to the
Export-CliXml cmdlet:

Get-History | Export-CliXml Filename

To add a previously saved command history to your current session history, call the
Import-CliXml cmdlet and then pipe that output to the Add-History cmdlet:

Import-CliXml Filename | Add-History

To clear all commands from your session history, use the Clear-History cmdlet:
Clear-History

Discussion
Unlike the console history hotkeys discussed in Recipe 1.9, the Get-History cmdlet
produces rich objects that represent information about items in your history. Each
object contains that item’s ID, command line, start of execution time, and end of exe‐
cution time.

Once you know the ID of a history item (as shown in the output of Get-History),
you can pass it to Invoke-History to execute that command again. The example
prompt function shown in Recipe 1.9 makes working with prior history items easy, as
the prompt for each command includes the history ID that will represent it.

You can easily see how long a series of commands took to invoke
by looking at the Duration property. This is a great way to get a
handle on exactly how little time it took to come up with the com‐
mands that just saved you hours of manual work:

PS:29 > Get-History 27,28 | Format-Table *

Id CommandLine StartExecutionTime Duration
-- ----------- ------------------ --------
27 dir 2/15/2021 5:12:49 PM 00:00:00.0319401
28 Start-Sleep -Seconds 45 2/15/2021 5:12:53 PM 00:00:45.0073792

1.21 Access and Manage Your Console History | 51

IDs provided by the Get-History cmdlet differ from the IDs given by the Windows
console common history hotkeys (such as F7), because their history management
techniques differ.

By default, PowerShell stores the last 4,096 entries of your command history. If you
want to raise or lower this amount, set the $MaximumHistoryCount variable to the size
you desire. To make this change permanent, set the variable in your PowerShell pro‐
file script.

By far, the most useful feature of PowerShell’s command history is for reviewing ad
hoc experimentation and capturing it in a script that you can then use over and over.
For an overview of that process (and a script that helps to automate it), see Recipe
1.22.

See Also
Recipe 1.9, “Customize Your Shell, Profile, and Prompt”

Recipe 1.22, “Program: Create Scripts from Your Session History”

Recipe 1.23, “Invoke a Command from Your Session History”

1.22 Program: Create Scripts from Your Session History
After interactively experimenting at the command line for a while to solve a multistep
task, you’ll often want to keep or share the exact steps you used to eventually solve the
problem. The script smiles at you from your history buffer, but it’s unfortunately sur‐
rounded by many more commands that you don’t want to keep.

For an example of using the Out-GridView cmdlet to do this graph‐
ically, see Recipe 2.4.

To solve this problem, use the Get-History cmdlet to view the recent commands that
you’ve typed. Then, call Copy-History with the IDs of the commands you want to
keep, as shown in Example 1-16.

52 | Chapter 1: The PowerShell Interactive Shell

Example 1-16. Copy-History.ps1

##
##
Copy-History
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Copy selected commands from the history buffer into the clipboard as a script.

.EXAMPLE

PS > Copy-History
Copies the entire contents of the history buffer into the clipboard.

.EXAMPLE

PS > Copy-History -5
Copies the last five commands into the clipboard.

.EXAMPLE

PS > Copy-History 2,5,8,4
Copies commands 2,5,8, and 4.

.EXAMPLE

PS > Copy-History (1..10+5+6)
Copies commands 1 through 10, then 5, then 6, using PowerShell's array
slicing syntax.

#>

[CmdletBinding()]
param(
 ## The range of history IDs to copy
 [Alias("Id")]
 [int[]] $Range
)

Set-StrictMode -Version 3

$history = @()

If they haven't specified a range, assume it's everything
if((-not $range) -or ($range.Count -eq 0))
{

1.22 Program: Create Scripts from Your Session History | 53

 $history = @(Get-History -Count ([Int16]::MaxValue))
}
If it's a negative number, copy only that many
elseif(($range.Count -eq 1) -and ($range[0] -lt 0))
{
 $count = [Math]::Abs($range[0])
 $history = (Get-History -Count $count)
}
Otherwise, go through each history ID in the given range
and add it to our history list.
else
{
 foreach($commandId in $range)
 {
 if($commandId -eq -1) { $history += Get-History -Count 1 }
 else { $history += Get-History -Id $commandId }
 }
}

Finally, export the history to the clipboard.
$history | Foreach-Object { $_.CommandLine } | clip.exe

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 2.4, “Interactively Filter Lists of Objects”

1.23 Invoke a Command from Your Session History
Problem
You want to run a command from the history of your current session.

Solution
Use the Invoke-History cmdlet (or its ihy alias) to invoke a specific command by its
ID:

Invoke-History ID

To search through your history for a command containing text:
PS > #text<Tab>

To repopulate your command with the text of a previous command by its ID:
PS > #ID<Tab>

54 | Chapter 1: The PowerShell Interactive Shell

Discussion
Once you’ve had your shell open for a while, your history buffer quickly fills with
useful commands. The history management hotkeys described in Recipe 1.9 show
one way to navigate your history, but this type of history navigation works only for
command lines you’ve typed in that specific session. If you keep a persistent com‐
mand history (as shown in Recipe 1.31), these shortcuts do not apply.

The Invoke-History cmdlet illustrates the simplest example of working with your
command history. Given a specific history ID (perhaps shown in your prompt func‐
tion), calling Invoke-History with that ID will run that command again. For more
information about this technique, see Recipe 1.9.

As part of its tab-completion support, PowerShell gives you easy access to previous
commands as well. If you prefix your command with the # character, tab completion
takes one of two approaches:

ID completion
If you type a number, tab completion finds the entry in your command history
with that ID, and then replaces your command line with the text of that history
entry. This is especially useful when you want to slightly modify a previous his‐
tory entry, since Invoke-History by itself doesn’t support that.

Pattern completion
If you type anything else, tab completion searches for entries in your command
history that contain that text. Under the hood, PowerShell uses the -like opera‐
tor to match your command entries, so you can use all of the wildcard characters
supported by that operator. For more information on searching text for patterns,
see Recipe 5.7.

PowerShell’s tab completion is largely driven by the fully customizable Tab Expan
sion2 function. You can easily change this function to include more advanced func‐
tionality, or even just customize specific behaviors to suit your personal preferences.
For more information, see Recipe 1.18.

See Also
Recipe 1.9, “Customize Your Shell, Profile, and Prompt”

Recipe 1.18, “Understand and Customize PowerShell’s Tab Completion”

Recipe 1.31, “Save State Between Sessions”

Recipe 5.7, “Search a String for Text or a Pattern”

1.23 Invoke a Command from Your Session History | 55

1.24 Program: Search Formatted Output for a Pattern
While PowerShell’s built-in filtering facilities are incredibly flexible (for example, the
Where-Object cmdlet), they generally operate against specific properties of the
incoming object. If you are searching for text in the object’s formatted output, or
don’t know which property contains the text you are looking for, simple text-based
filtering is sometimes helpful.

To solve this problem, you can pipe the output into the Out-String cmdlet before
passing it to the Select-String cmdlet:

Get-Service | Out-String -Stream | Select-String audio

Or, using built-in aliases:
Get-Service | oss | sls audio

In script form, Select-TextOutput (shown in Example 1-17) does exactly this, and it
lets you search for a pattern in the visual representation of command output.

Example 1-17. Select-TextOutput.ps1

##
##
Select-TextOutput
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Searches the textual output of a command for a pattern.

.EXAMPLE

PS > Get-Service | Select-TextOutput audio
Finds all references to "Audio" in the output of Get-Service

#>

param(
 ## The pattern to search for
 $Pattern
)

Set-StrictMode -Version 3
$input | Out-String -Stream | Select-String $pattern

56 | Chapter 1: The PowerShell Interactive Shell

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

1.25 Interactively View and Process Command Output
Problem
You want to graphically explore and analyze the output of a command.

Solution
Use the Out-GridView cmdlet to interactively explore the output of a command.

Discussion
The Out-GridView cmdlet is one of the rare PowerShell cmdlets that displays a graph‐
ical user interface. While the Where-Object and Sort-Object cmdlets are the most
common way to sort and filter lists of items, the Out-GridView cmdlet is very effec‐
tive at the style of repeated refinement that sometimes helps you develop complex
queries. Figure 1-4 shows the Out-GridView cmdlet in action.

Figure 1-4. Out-GridView, ready to filter

1.25 Interactively View and Process Command Output | 57

Out-GridView lets you primarily filter your command output in two ways: a quick
filter expression and a criteria filter.

Quick filters are fairly simple. As you type text in the topmost “Filter” window, Out-
GridView filters the list to contain only items that match that text. If you want to
restrict this text filtering to specific columns, simply provide a column name before
your search string and separate the two with a colon. You can provide multiple search
strings, in which case Out-GridView returns only rows that match all of the required
strings.

Unlike most filtering cmdlets in PowerShell, the quick filters in the
Out-GridView cmdlet do not support wildcards or regular expres‐
sions. For this type of advanced query, criteria-based filtering can
help.

Criteria filters give fine-grained control over the filtering used by the Out-GridView
cmdlet. To apply a criteria filter, click the “Add criteria” button and select a property
to filter on. Out-GridView adds a row below the quick filter field and lets you pick
one of several operations to apply to this property:

• Less than or equal to
• Greater than or equal to
• Between
• Equals
• Does not equal
• Contains
• Does not contain

In addition to these filtering options, Out-GridView also lets you click and rearrange
the header columns to sort by them.

Processing output
Once you’ve sliced and diced your command output, you can select any rows you
want to keep and press Ctrl+C to copy them to the clipboard. Out-GridView copies
the items to the clipboard as tab-separated data, so you can easily paste the informa‐
tion into a spreadsheet or other file for further processing.

In addition to supporting clipboard output, the Out-GridView cmdlet supports full-
fidelity object filtering if you use its -PassThru parameter. For an example of this full-
fidelity filtering, see Recipe 2.4.

58 | Chapter 1: The PowerShell Interactive Shell

See Also
Recipe 2.4, “Interactively Filter Lists of Objects”

1.26 Program: Interactively View and Explore Objects
When working with unfamiliar objects in PowerShell, much of your time is spent
with the Get-Member and Format-List commands—navigating through properties,
reviewing members, and more.

For ad hoc investigation, a graphical interface is often useful.

To solve this problem, Example 1-18 provides an interactive tree view that you can
use to explore and navigate objects. For example, to examine the structure of a script
as PowerShell sees it (its abstract syntax tree):

$ps = { Get-Process -ID $pid }.Ast
Show-Object $ps

For more information about parsing and analyzing the structure of PowerShell
scripts, see Recipe 10.10.

Example 1-18. Show-Object.ps1

###
##
Show-Object
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Provides a graphical interface to let you explore and navigate an object.

.EXAMPLE

PS > $ps = { Get-Process -ID $pid }.Ast
PS > Show-Object $ps

#>

param(
 ## The object to examine
 [Parameter(ValueFromPipeline = $true)]
 $InputObject
)

1.26 Program: Interactively View and Explore Objects | 59

Set-StrictMode -Version 3

Add-Type -Assembly System.Windows.Forms

Figure out the variable name to use when displaying the
object navigation syntax. To do this, we look through all
of the variables for the one with the same object identifier.
$rootVariableName = dir variable:* -Exclude InputObject,Args |
 Where-Object {
 $_.Value -and
 ($_.Value.GetType() -eq $InputObject.GetType()) -and
 ($_.Value.GetHashCode() -eq $InputObject.GetHashCode())
}

If we got multiple, pick the first
$rootVariableName = $rootVariableName| % Name | Select -First 1

If we didn't find one, use a default name
if(-not $rootVariableName)
{
 $rootVariableName = "InputObject"
}

A function to add an object to the display tree
function PopulateNode($node, $object)
{
 ## If we've been asked to add a NULL object, just return
 if(-not $object) { return }

 ## If the object is a collection, then we need to add multiple
 ## children to the node
 if([System.Management.Automation.LanguagePrimitives]::GetEnumerator($object))
 {
 ## Some very rare collections don't support indexing (i.e.: $foo[0]).
 ## In this situation, PowerShell returns the parent object back when you
 ## try to access the [0] property.
 $isOnlyEnumerable = $object.GetHashCode() -eq $object[0].GetHashCode()

 ## Go through all the items
 $count = 0
 foreach($childObjectValue in $object)
 {
 ## Create the new node to add, with the node text of the item and
 ## value, along with its type
 $newChildNode = New-Object Windows.Forms.TreeNode
 $newChildNode.Text = "$($node.Name)[$count] = $childObjectValue"
 $newChildNode.ToolTipText = $childObjectValue.GetType()

 ## Use the node name to keep track of the actual property name
 ## and syntax to access that property.
 ## If we can't use the index operator to access children, add
 ## a special tag that we'll handle specially when displaying
 ## the node names.
 if($isOnlyEnumerable)
 {

60 | Chapter 1: The PowerShell Interactive Shell

 $newChildNode.Name = "@"
 }

 $newChildNode.Name += "[$count]"
 $null = $node.Nodes.Add($newChildNode)

 ## If this node has children or properties, add a placeholder
 ## node underneath so that the node shows a '+' sign to be
 ## expanded.
 AddPlaceholderIfRequired $newChildNode $childObjectValue

 $count++
 }
 }
 else
 {
 ## If the item was not a collection, then go through its
 ## properties
 foreach($child in $object.PSObject.Properties)
 {
 ## Figure out the value of the property, along with
 ## its type.
 $childObject = $child.Value
 $childObjectType = $null
 if($childObject)
 {
 $childObjectType = $childObject.GetType()
 }

 ## Create the new node to add, with the node text of the item and
 ## value, along with its type
 $childNode = New-Object Windows.Forms.TreeNode
 $childNode.Text = $child.Name + " = $childObject"
 $childNode.ToolTipText = $childObjectType
 if([Management.Automation.LanguagePrimitives]::GetEnumerator($childObject))
 {
 $childNode.ToolTipText += "[]"
 }

 $childNode.Name = $child.Name
 $null = $node.Nodes.Add($childNode)

 ## If this node has children or properties, add a placeholder
 ## node underneath so that the node shows a '+' sign to be
 ## expanded.
 AddPlaceholderIfRequired $childNode $childObject
 }
 }
}

A function to add a placeholder if required to a node.
If there are any properties or children for this object, make a temporary
node with the text "..." so that the node shows a '+' sign to be
expanded.
function AddPlaceholderIfRequired($node, $object)
{

1.26 Program: Interactively View and Explore Objects | 61

 if(-not $object) { return }

 if([System.Management.Automation.LanguagePrimitives]::GetEnumerator($object) -or
 @($object.PSObject.Properties))
 {
 $null = $node.Nodes.Add((New-Object Windows.Forms.TreeNode "..."))
 }
}

A function invoked when a node is selected.
function OnAfterSelect
{
 param($Sender, $TreeViewEventArgs)

 ## Determine the selected node
 $nodeSelected = $Sender.SelectedNode

 ## Walk through its parents, creating the virtual
 ## PowerShell syntax to access this property.
 $nodePath = GetPathForNode $nodeSelected

 ## Now, invoke that PowerShell syntax to retrieve
 ## the value of the property.
 $resultObject = Invoke-Expression $nodePath
 $outputPane.Text = $nodePath

 ## If we got some output, put the object's member
 ## information in the text box.
 if($resultObject)
 {
 $members = Get-Member -InputObject $resultObject | Out-String
 $outputPane.Text += "`n" + $members
 }
}

A function invoked when the user is about to expand a node
function OnBeforeExpand
{
 param($Sender, $TreeViewCancelEventArgs)

 ## Determine the selected node
 $selectedNode = $TreeViewCancelEventArgs.Node

 ## If it has a child node that is the placeholder, clear
 ## the placeholder node.
 if($selectedNode.FirstNode -and
 ($selectedNode.FirstNode.Text -eq "..."))
 {
 $selectedNode.Nodes.Clear()
 }
 else
 {
 return
 }

 ## Walk through its parents, creating the virtual

62 | Chapter 1: The PowerShell Interactive Shell

 ## PowerShell syntax to access this property.
 $nodePath = GetPathForNode $selectedNode

 ## Now, invoke that PowerShell syntax to retrieve
 ## the value of the property.
 Invoke-Expression "`$resultObject = $nodePath"

 ## And populate the node with the result object.
 PopulateNode $selectedNode $resultObject
}

A function to handle key presses on the tree view.
In this case, we capture ^C to copy the path of
the object property that we're currently viewing.
function OnTreeViewKeyPress
{
 param($Sender, $KeyPressEventArgs)

 ## [Char] 3 = Control-C
 if($KeyPressEventArgs.KeyChar -eq 3)
 {
 $KeyPressEventArgs.Handled = $true

 ## Get the object path, and set it on the clipboard
 $node = $Sender.SelectedNode
 $nodePath = GetPathForNode $node
 [System.Windows.Forms.Clipboard]::SetText($nodePath)

 $form.Close()
 }
 elseif([System.Windows.Forms.Control]::ModifierKeys -eq "Control")
 {
 if($KeyPressEventArgs.KeyChar -eq '+')
 {
 $SCRIPT:currentFontSize++
 UpdateFonts $SCRIPT:currentFontSize

 $KeyPressEventArgs.Handled = $true
 }
 elseif($KeyPressEventArgs.KeyChar -eq '-')
 {
 $SCRIPT:currentFontSize--
 if($SCRIPT:currentFontSize -lt 1) { $SCRIPT:currentFontSize = 1 }
 UpdateFonts $SCRIPT:currentFontSize

 $KeyPressEventArgs.Handled = $true
 }
 }
}

A function to handle key presses on the form.
In this case, we handle Ctrl-Plus and Ctrl-Minus
to adjust font size.
function OnKeyUp
{
 param($Sender, $KeyUpEventArgs)

1.26 Program: Interactively View and Explore Objects | 63

 if([System.Windows.Forms.Control]::ModifierKeys -eq "Control")
 {
 if($KeyUpEventArgs.KeyCode -in 'Add','OemPlus')
 {
 $SCRIPT:currentFontSize++
 UpdateFonts $SCRIPT:currentFontSize

 $KeyUpEventArgs.Handled = $true
 }
 elseif($KeyUpEventArgs.KeyCode -in 'Subtract','OemMinus')
 {
 $SCRIPT:currentFontSize--
 if($SCRIPT:currentFontSize -lt 1) { $SCRIPT:currentFontSize = 1 }
 UpdateFonts $SCRIPT:currentFontSize

 $KeyUpEventArgs.Handled = $true
 }
 elseif($KeyUpEventArgs.KeyCode -eq 'D0')
 {
 $SCRIPT:currentFontSize = 12
 UpdateFonts $SCRIPT:currentFontSize

 $KeyUpEventArgs.Handled = $true
 }
 }
}

A function to handle mouse wheel scrolling.
In this case, we translate Ctrl-Wheel to zoom.
function OnMouseWheel
{
 param($Sender, $MouseEventArgs)

 if(
 ([System.Windows.Forms.Control]::ModifierKeys -eq "Control") -and
 ($MouseEventArgs.Delta -ne 0))
 {
 $SCRIPT:currentFontSize += ($MouseEventArgs.Delta / 120)
 if($SCRIPT:currentFontSize -lt 1) { $SCRIPT:currentFontSize = 1 }

 UpdateFonts $SCRIPT:currentFontSize
 $MouseEventArgs.Handled = $true
 }
}

A function to walk through the parents of a node,
creating virtual PowerShell syntax to access this property.
function GetPathForNode
{
 param($Node)

 $nodeElements = @()

 ## Go through all the parents, adding them so that
 ## $nodeElements is in order.

64 | Chapter 1: The PowerShell Interactive Shell

 while($Node)
 {
 $nodeElements = ,$Node + $nodeElements
 $Node = $Node.Parent
 }

 ## Now go through the node elements
 $nodePath = ""
 foreach($Node in $nodeElements)
 {
 $nodeName = $Node.Name

 ## If it was a node that PowerShell is able to enumerate
 ## (but not index), wrap it in the array cast operator.
 if($nodeName.StartsWith('@'))
 {
 $nodeName = $nodeName.Substring(1)
 $nodePath = "@(" + $nodePath + ")"
 }
 elseif($nodeName.StartsWith('['))
 {
 ## If it's a child index, we don't need to
 ## add the dot for property access
 }
 elseif($nodePath)
 {
 ## Otherwise, we're accessing a property. Add a dot.
 $nodePath += "."
 }

 ## Append the node name to the path
 $tempNodePath = $nodePath + $nodeName
 if($nodeName -notmatch '^[$\[\]a-zA-Z0-9]+$')
 {
 $nodePath += "'" + $nodeName + "'"
 }
 else
 {
 $nodePath = $tempNodePath
 }
 }

 ## And return the result
 $nodePath
}

function UpdateFonts
{
 param($fontSize)

 $treeView.Font = New-Object System.Drawing.Font "Consolas",$fontSize
 $outputPane.Font = New-Object System.Drawing.Font "Consolas",$fontSize
}

$SCRIPT:currentFontSize = 12

1.26 Program: Interactively View and Explore Objects | 65

Create the TreeView, which will hold our object navigation
area.
$treeView = New-Object Windows.Forms.TreeView
$treeView.Dock = "Top"
$treeView.Height = 500
$treeView.PathSeparator = "."
$treeView.ShowNodeToolTips = $true
$treeView.Add_AfterSelect({ OnAfterSelect @args })
$treeView.Add_BeforeExpand({ OnBeforeExpand @args })
$treeView.Add_KeyPress({ OnTreeViewKeyPress @args })

Create the output pane, which will hold our object
member information.
$outputPane = New-Object System.Windows.Forms.TextBox
$outputPane.Multiline = $true
$outputPane.WordWrap = $false
$outputPane.ScrollBars = "Both"
$outputPane.Dock = "Fill"

Create the root node, which represents the object
we are trying to show.
$root = New-Object Windows.Forms.TreeNode
$root.ToolTipText = $InputObject.GetType()
$root.Text = $InputObject
$root.Name = '$' + $rootVariableName
$root.Expand()
$null = $treeView.Nodes.Add($root)

UpdateFonts $currentFontSize

And populate the initial information into the tree
view.
PopulateNode $root $InputObject

Finally, create the main form and show it.
$form = New-Object Windows.Forms.Form
$form.Text = "Browsing " + $root.Text
$form.Width = 1000
$form.Height = 800
$form.Controls.Add($outputPane)
$form.Controls.Add($treeView)
$form.Add_MouseWheel({ OnMouseWheel @args })
$treeView.Add_KeyUp({ OnKeyUp @args })
$treeView.Select()
$null = $form.ShowDialog()
$form.Dispose()

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 10.10, “Parse and Interpret PowerShell Scripts”

66 | Chapter 1: The PowerShell Interactive Shell

1.27 Record a Transcript of Your Shell Session
Problem
You want to record a log or transcript of your shell session.

Solution
To record a transcript of your shell session, run the command Start-Transcript. It
has an optional -Path parameter that defaults to a filename based on the current sys‐
tem time. By default, PowerShell places this file in the My Documents directory. To
stop recording the transcript of your shell system, run the command Stop-
Transcript.

Discussion
Although the Get-History cmdlet is helpful, it does not record the output produced
during your PowerShell session. To accomplish that, use the Start-Transcript
cmdlet. In addition to the Path parameter described previously, the Start-

Transcript cmdlet also supports parameters that let you control how PowerShell
interacts with the output file.

If you don’t specify a -Path parameter, PowerShell generates a random filename for
you. If you want to process this file after stopping the transcript, PowerShell adds this
as a property name to the output of either Start-Transcript or Stop-Transcript:

PS > $myTranscript = Start-Transcript
PS > Stop-Transcript
Transcript stopped, output file is D:\Lee\PowerShell_transcript...
PS > $myTranscript | fl * -force

Path : D:\Lee\PowerShell_transcript.LEE-DESKTOP.kg_Vsm_o.20201217195052.txt
Length : 104

PS > $myTranscript.Path
D:\Lee\PowerShell_transcript.LEE-DESKTOP.kg_Vsm_o.20201217195052.txt

PowerShell transcripts start with a standard file header that includes time, user, host
name, as well as several other useful items. If you specify the
-IncludeInvocationHeader parameter either interactively or through system-wide
policy, PowerShell also includes a separator between commands to assist in automatic
analysis.

PowerShell transcript start
Start time: 20201217190500
Username: ubuntu-20-04\lee
Machine: ubuntu-20-04 (Unix 4.19.128.0)

1.27 Record a Transcript of Your Shell Session | 67

Host Application: /opt/microsoft/powershell/7/pwsh.dll
Process ID: 1925
OS: Linux 4.19.128-microsoft-standard #1 SMP Tue Jun 23 12:58:10 UTC 2020
(...)

Command start time: 20201217190502

PS /mnt/c/Users/lee> Get-Process

 NPM(K) PM(M) WS(M) CPU(s) Id SI ProcessName
 ------ ----- ----- ------ -- -- -----------
 0 0.00 5.26 0.16 984 984 bash
 0 0.00 0.53 0.02 1 0 init
 0 0.00 0.07 0.00 982 982 init
 0 0.00 0.08 0.32 983 982 init
 0 0.00 96.52 0.64 1925 984 pwsh
 0 0.00 3.25 0.00 1873 …73 rsyslogd

Command start time: 20201217190504

PS /mnt/c/Users/lee> cat /var/log/powershell.log
(...)

In addition to letting you record transcripts manually, PowerShell also lets you set a
system policy to record these automatically. For more information on how to set this
up, see Recipe 18.2.

See Also
Recipe 18.2, “Enable PowerShell Security Logging”

1.28 Extend Your Shell with Additional Commands
Problem
You want to use PowerShell cmdlets, providers, or script-based extensions written by
a third party.

Solution
If the module is part of the standard PowerShell module path, simply run the com‐
mand you want:

Invoke-NewCommand

If it is not, use the Import-Module command to import third-party commands into
your PowerShell session.

68 | Chapter 1: The PowerShell Interactive Shell

To import a module from a specific directory:
Import-Module c:\path\to\module

To import a module from a specific file (module, script, or assembly):
Import-Module c:\path\to\module\file.ext

Discussion
PowerShell supports two sets of commands that enable additional cmdlets and pro‐
viders: *-Module and *-PsSnapin. Snapins were the packages for extensions in ver‐
sion 1 of PowerShell, and are rarely used. Snapins supported only compiled exten‐
sions and had onerous installation requirements.

Version 2 of PowerShell introduced modules that support everything that snapins
support (and more) without the associated installation pain. That said, PowerShell
version 2 also required that you remember which modules contained which com‐
mands and manually load those modules before using them. Windows now includes
thousands of commands in hundreds of modules—quickly making reliance on one’s
memory an unsustainable approach.

Any recent version of PowerShell significantly improves the situation by autoloading
modules for you. Internally, PowerShell maintains a mapping of command names to
the module that contains them. Simply start using a command (which the Get-
Command cmdlet can help you discover), and PowerShell loads the appropriate module
automatically. If you wish to customize this autoloading behavior, you can use the
$PSModuleAutoLoadingPreference preference variable.

When PowerShell imports a module with a given name, it searches through every
directory listed in the PSModulePath environment variable, looking for the first mod‐
ule that contains the subdirectories that match the name you specify. Inside those
directories, it looks for the module (*.psd1, *.psm1, and *.dll) with the same name
and loads it.

When you install a module on your own system, the most common place to put it is
in the PowerShell\Modules directory in your My Documents directory. In Windows
PowerShell, this location will be WindowsPowerShell\Modules. To have PowerShell
look in another directory for modules, add it to your personal PSModulePath envi‐
ronment variable, just as you would add a Tools directory to your personal path.

For more information about managing system paths, see Recipe 16.2.

If you want to load a module from a directory not in PSModulePath, you can provide
the entire directory name and module name to the Import-Module command. For
example, for a module named Test, use Import-Module c:\path\to\Test. As with

1.28 Extend Your Shell with Additional Commands | 69

loading modules by name, PowerShell looks in c:\temp\path\to for a module
(*.psd1, *.psm1, or *.dll) named Test and loads it.

If you know the specific module file you want to load, you can also specify the full
path to that module.

If you want to find additional commands, see Recipe 1.29.

See Also
Recipe 1.9, “Customize Your Shell, Profile, and Prompt”

Recipe 11.6, “Package Common Commands in a Module”

Recipe 16.2, “Modify the User or System Path”

Recipe 1.29, “Find and Install Additional PowerShell Scripts and Modules”

1.29 Find and Install Additional PowerShell Scripts and
Modules
Problem
You want to find additional modules to extend your shell’s functionality.

Solution
Use the Find-Module command to find interesting modules:

PS > Find-Module *Cookbook* | Format-List

Name : PowerShellCookbook
Version : 1.3.6
Type : Module
Description : Sample scripts from the PowerShell Cookbook
Author : Lee Holmes
(...)

Then use Install-Module to add them to your system.
Install-Module PowerShellCookbook -Scope CurrentUser

Similarly, use the Find-Script and Install-Script commands if the item has been
published as a standalone script. If you haven’t already on your machine, make sure
to add My Documents\PowerShell\Scripts to your system path. For more informa‐
tion about modifying your system path, see Recipe 16.2.

PS > Find-Script Get-WordCluster | Install-Script -Scope CurrentUser
PS > Get-WordCluster -Count 3 "Hello","World","Jello",
 "Mellow","Jealous","Wordy","Sword"

70 | Chapter 1: The PowerShell Interactive Shell

Representative Items
-------------- -----
Wordd {World, Wordy, Sword}
Jealou {Jello, Jealous}
Hellow {Hello, Mellow}

Discussion
The PowerShell Gallery is the worldwide hub for publishing and sharing PowerShell
scripts and modules. It contains thousands of modules: official corporate releases by
Microsoft and many other companies, popular community projects like the DbaTools
module for SQL management, and fun whimsical ones like OutConsolePicture to dis‐
play images as ANSI graphics.

The PowerShell Gallery’s web interface lets you search, browse, and explore, but of
course that’s not the way you use it through PowerShell.

In PowerShell, the Find-Module and Install-Module commands let you interact
with the PowerShell Gallery and install modules from it. You can find modules by
name, tags, and even Just Enough Administration role capabilities.

When you first try to install a module from the PowerShell Gallery, PowerShell will
provide a warning:

PS > Install-Module someModule -Scope CurrentUser

Untrusted repository
You are installing the modules from an untrusted repository. If you trust this
repository, change its InstallationPolicy value by running the Set-PSRepository
cmdlet. Are you sure you want to install the modules from 'PSGallery'?
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "N"):

Common to all other code-sharing repositories out there, there are no restrictions on
who can publish to the PowerShell Gallery or what they can publish. If a module is
reported through the abuse reporting mechanisms and found to be malicious or
against the gallery’s Terms of Service, it will of course be removed. But other than
that—you should not consider the gallery to be vetted, approved, or otherwise
implicitly trustworthy. To acknowledge this and remove the warning from future
module installations, you can can declare the PowerShell Gallery to be trusted on
your machine:

Set-PSRepository -Name PSGallery -InstallationPolicy Trusted

In addition to the public PowerShell Gallery, PowerShell can also talk to private gal‐
leries (including file shares!) as well. PowerShell uses the NuGet protocol. For more
information about creating a private PowerShell Gallery, see the PowerShell Gallery
documentation.

1.29 Find and Install Additional PowerShell Scripts and Modules | 71

https://www.powershellgallery.com
https://oreil.ly/8sPaO
https://oreil.ly/8sPaO

See Also
Recipe 16.2, “Modify the User or System Path”

PowerShell Gallery documentation

1.30 Use Commands from Customized Shells
Problem
You want to use the commands from a PowerShell-based product that launches a cus‐
tomized version of the PowerShell console, but in a regular PowerShell session.

Solution
Launch the customized version of the PowerShell console, and then use the Get-
Module and Get-PsSnapin commands to see what additional modules and/or snap
ins it loaded.

Discussion
As described in Recipe 1.28, PowerShell modules and snapins are the two ways that
third parties can distribute and add additional PowerShell commands. Products that
provide customized versions of the PowerShell console do this by launching Power‐
Shell with one of three parameters:

• -PSConsoleFile, to load a console file that provides a list of snapins to load.
• -Command, to specify an initial startup command (that then loads a snapin or

module)
• -File, to specify an initial startup script (that then loads a snapin or module)

Regardless of which one is used, you can examine the resulting set of loaded exten‐
sions to see which ones you can import into your other PowerShell sessions.

Detecting loaded snapins

The Get-PsSnapin command returns all snapins loaded in the current session. It
always returns the set of core PowerShell snapins, but it will also return any addi‐
tional snapins loaded by the customized environment. For example, if the name of a
snapin you recognize is Product.Feature.Commands, you can load that into future
PowerShell sessions by typing Add-PsSnapin Product.Feature.Commands. To auto‐
mate this, add the command into your PowerShell profile.

72 | Chapter 1: The PowerShell Interactive Shell

https://oreil.ly/8sPaO

If you’re uncertain of which snapin to load, you can also use the Get-Command com‐
mand to discover which snapin defines a specific command:

PS > Get-Command Get-Counter | Select PsSnapin

PSSnapIn

Microsoft.PowerShell.Diagnostics

Detecting loaded modules

Like the Get-PsSnapin command, the Get-Module command returns all modules
loaded in the current session. It returns any modules you’ve added so far into that ses‐
sion, but it will also return any additional modules loaded by the customized environ‐
ment. For example, if the name of a module you recognize is ProductModule, you can
load that into future PowerShell sessions by typing Import-Module ProductModule.
To automate this, add the command into your PowerShell profile.

If you are uncertain of which module to load, you can also use the Get-Command com‐
mand to discover which module defines a specific command:

PS > Get-Command Start-BitsTransfer | Select Module

Module

BitsTransfer

See Also
Recipe 1.28, “Extend Your Shell with Additional Commands”

1.31 Save State Between Sessions
Problem
You want to save state or history between PowerShell sessions.

Solution
Subscribe to the PowerShell.Exiting engine event to have PowerShell invoke a
script or script block that saves any state you need.

Discussion
PowerShell provides easy script-based access to a broad variety of system, engine, and
other events. You can register for notification of these events and even automatically
process any of those events. In the following example, we subscribe to the event called
PowerShell.Exiting. PowerShell generates this event when you close a session.

1.31 Save State Between Sessions | 73

You can use this event to save and restore state, variables, and anything else you need.
While the PSReadLine module already automatically saves your command history
between sessions, for demonstration purposes we can implement similar functional‐
ity through the PowerShell.Exiting event. You would place a call to Enable-
HistoryPersistence in your profile (Example 1-19).

Example 1-19. Enable-HistoryPersistence.ps1

##
##
Enable-HistoryPersistence
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Reloads any previously saved command history, and registers for the
PowerShell.Exiting engine event to save new history when the shell
exits.

#>

Set-StrictMode -Version 3

Load our previous history
$GLOBAL:maximumHistoryCount = 32767
$historyFile = (Join-Path (Split-Path $profile) "commandHistory.clixml")
if(Test-Path $historyFile)
{
 Import-CliXml $historyFile | Add-History
}

Register for the engine shutdown event
$null = Register-EngineEvent -SourceIdentifier `
 ([System.Management.Automation.PsEngineEvent]::Exiting) -Action {

 ## Save our history
 $historyFile = (Join-Path (Split-Path $profile) "commandHistory.clixml")
 $maximumHistoryCount = 1kb

 ## Get the previous history items
 $oldEntries = @()
 if(Test-Path $historyFile)
 {
 $oldEntries = Import-CliXml $historyFile -ErrorAction SilentlyContinue
 }

 ## And merge them with our changes

74 | Chapter 1: The PowerShell Interactive Shell

 $currentEntries = Get-History -Count $maximumHistoryCount
 $additions = Compare-Object $oldEntries $currentEntries `
 -Property CommandLine | Where-Object { $_.SideIndicator -eq "=>" } |
 Foreach-Object { $_.CommandLine }

 $newEntries = $currentEntries | ? { $additions -contains $_.CommandLine }

 ## Keep only unique command lines. First sort by CommandLine in
 ## descending order (so that we keep the newest entries,) and then
 ## re-sort by StartExecutionTime.
 $history = @($oldEntries + $newEntries) |
 Sort -Unique -Descending CommandLine | Sort StartExecutionTime

 ## Finally, keep the last 100
 Remove-Item $historyFile
 $history | Select -Last 100 | Export-CliXml $historyFile
}

This script could do anything, but in this example we have it save our command his‐
tory and restore it when we launch PowerShell. Why would we want to do this? Well,
with a rich history buffer, we can more easily find and reuse commands we’ve previ‐
ously run. For two examples of doing this, see Recipes 1.21 and 1.23.

Enable-HistoryPersistence takes two main actions. First, we load our stored com‐
mand history (if any exists). Then, we register an automatic action to be processed
whenever the engine generates its PowerShell.Exiting event. The action itself is rel‐
atively straightforward, although exporting our new history does take a little finesse.
If you have several sessions open at the same time, each will update the saved history
file when it exits. Since we don’t want to overwrite the history saved by the other
shells, we first reload the history from disk and combine it with the history from the
current shell.

Once we have the combined list of command lines, we sort them and pick out the
unique ones before storing them back in the file.

For more information about working with PowerShell engine events, see Recipe 31.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 1.21, “Access and Manage Your Console History”

Recipe 31.2, “Create and Respond to Custom Events”

1.31 Save State Between Sessions | 75

CHAPTER 2

Pipelines

2.0 Introduction
One of the fundamental concepts in a shell is called the pipeline. It also forms the
basis of one of PowerShell’s most significant advances. A pipeline is a big name for a
simple concept—a series of commands where the output of one becomes the input of
the next. A pipeline in a shell is much like an assembly line in a factory: it successively
refines something as it passes between the stages, as shown in Example 2-1.

Example 2-1. A PowerShell pipeline

Get-Process | Where-Object WorkingSet -gt 500kb | Sort-Object -Descending Name

In PowerShell, you separate each stage in the pipeline with the pipe (|) character.

In Example 2-1, the Get-Process cmdlet generates objects that represent actual pro‐
cesses on the system. These process objects contain information about the process’s
name, memory usage, process ID, and more. As the Get-Process cmdlet generates
output, it passes it along. Simultaneously, the Where-Object cmdlet gets to work
directly with those processes, testing easily for those that use more than 500 KB of
memory. It passes those along immediately as it processes them, allowing the Sort-
Object cmdlet to also work directly with those processes and sort them by name in
descending order.

This brief example illustrates a significant advancement in the power of pipelines:
PowerShell passes full-fidelity objects along the pipeline, not their text
representations.

77

In contrast, all other shells pass data as plain text between the stages. Extracting
meaningful information from plain-text output turns the authoring of pipelines into
a black art. Expressing the previous example in a traditional Unix-based shell is
exceedingly difficult, and it’s nearly impossible in cmd.exe.

Traditional text-based shells make writing pipelines so difficult because they require
you to deeply understand the peculiarities of output formatting for each command in
the pipeline, as shown in Example 2-2.

Example 2-2. A traditional text-based pipeline

lee@ubuntu-20-04:~$ ps -F | awk '{ if($5 > 500) print }' | sort -r -k 64,70
UID PID PPID C SZ RSS PSR STIME TTY TIME CMD
lee 8175 7967 0 965 1036 0 21:51 pts/0 00:00:00 ps -F
lee 7967 7966 0 1173 2104 0 21:38 pts/0 00:00:00 -bash

In this example, you have to know that, for every line, group number five represents
the memory usage. You have to know another language (that of the awk tool) to filter
by that column. Finally, you have to know the column range that contains the process
name (columns 64 to 70 on this system) and then provide that to the sort command.
And that’s just a simple example.

An object-based pipeline opens up enormous possibilities, making system adminis‐
tration both immensely more simple and more powerful.

2.1 Chain Commands Based on Their Success or Error
Problem
You wish to chain together multiple commands based on the success of previous
commands in the pipeline.

Solution
Use the && and || pipeline chain operators:

PS > Invoke-Command localhost { "Some output" } && "Connection successful!"
Some command output
Connection successful!

PS > Invoke-Command missing_computer { "Some output" } && "Connection successful!"
OpenError: [missing_computer] Connecting to remote server missing_computer failed...

PS > Invoke-Command missing_computer { "Some output" } || "Connection failed."
OpenError: [missing_computer] Connecting to remote server missing_computer failed...
Connection failed.

78 | Chapter 2: Pipelines

Discussion
If you wish to chain together multiple commands based on the success of other com‐
mands in the pipeline, you can use PowerShell’s pipeline chain operators. The &&
operator only executes the next command if the previous command was successful.
The || operator only executes the next command if the previous command failed.

For the pipeline chain operators, success of a command is determined by the $?
(“dollar hook”) automatic variable. For more information about the $? automatic
variable, see Recipe 15.1.

See Also
Recipe 15.1, “Determine the Status of the Last Command”

2.2 Filter Items in a List or Command Output
Problem
You want to filter the items in a list or command output.

Solution
Use the Where-Object cmdlet to select items in a list (or command output) that
match a condition you provide. The Where-Object cmdlet has the standard aliases
where and ?.

To list all running processes that have “search” in their name, use the -like operator
to compare against the process’s Name property:

Get-Process | Where-Object { $_.Name -like "*Search*" }

To list all stopped services, use the -eq operator to compare against the service’s
Status property:

Get-Service | Where-Object { $_.Status -eq "Stopped" }

To list all processes not responding, test the Responding property:
Get-Process | Where-Object { -not $_.Responding }

For simple comparisons on properties, you can omit the script block syntax and use
the comparison parameters of Where-Object directly:

Get-Process | Where-Object Name -like "*Search*"

2.2 Filter Items in a List or Command Output | 79

Discussion
For each item in its input (which is the output of the previous command), the Where-
Object cmdlet evaluates that input against the script block that you specify. If the
script block returns True, then the Where-Object cmdlet passes the object along.
Otherwise, it does not. A script block is a series of PowerShell commands enclosed by
the { and } characters. You can write any PowerShell commands inside the script
block. In the script block, the $_ (or $PSItem) variable represents the current input
object. For each item in the incoming set of objects, PowerShell assigns that item to
the $_ (or $PSItem) variable and then runs your script block. In the preceding exam‐
ples, this incoming object represents the process, file, or service that the previous
cmdlet generated.

This script block can contain a great deal of functionality, if desired. It can combine
multiple tests, comparisons, and much more. For more information about script
blocks, see Recipe 11.4. For more information about the type of comparisons avail‐
able to you, see “Comparison Operators” on page 818.

For simple filtering, the syntax of using script blocks in the Where-Object cmdlet may
sometimes seem overbearing. For these scenarios, Where-Object offers parameters
that directly support parameters to apply simple comparisons like -Eq, -Match, -In,
and more.

In addition to the script block syntax offered by the Where-Object cmdlet, Powershell
also offers a version built into the language itself: the where() method. This is slightly
faster for very large data collections, although the time it takes to collect those items
(such as getting the list of files in a directory) normally dwarfs any time it takes to
filter them. The where() method does offer several additional useful modes, however,
through its second parameter.

Get the first part of a list
PS > (1..10).where({ $_ -eq 5 }, "Until")
1
2
3
4

Get the second part of a list
PS > (1..10).where({ $_ -eq 5 }, "SkipUntil")
5
6
7
8
9
10

80 | Chapter 2: Pipelines

Split a list
PS > $even,$odd = (1..10).where({ $_ % 2 -eq 0 }, "Split")
PS > $even -join ","
2,4,6,8,10
PS > $odd -join ","
1,3,5,7,9

For complex filtering (for example, the type you would normally rely on a mouse to
do with files in an Explorer window), writing the script block to express your intent
may be difficult or even infeasible. If this is the case, Recipe 2.4 shows a script that
can make manual filtering easier to accomplish.

For more information about the Where-Object cmdlet, type Get-Help Where-

Object. For more information about the where() method, type Get-Help

about_Arrays.

See Also
Recipe 2.4, “Interactively Filter Lists of Objects”

Recipe 11.4, “Write a Script Block”

“Comparison Operators” on page 818

2.3 Group and Pivot Data by Name
Problem
You want to easily access items in a list by a property name.

Solution
Use the Group-Object cmdlet (which has the standard alias group) with the -AsHash
and -AsString parameters. This creates a hashtable with the selected property (or
expression) used as keys in that hashtable:

PS > $h = dir | group -AsHash -AsString Length
PS > $h

Name Value
---- -----
746 {ReplaceTest.ps1}
499 {Format-String.ps1}
20494 {test.dll}

PS > $h["499"]

 Directory: C:\temp

2.3 Group and Pivot Data by Name | 81

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 10/18/2009 9:57 PM 499 Format-String.ps1

PS > $h["746"]

 Directory: C:\temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 10/18/2009 9:51 PM 746 ReplaceTest.ps1

Discussion
In some situations, you might find yourself repeatedly calling the Where-Object
cmdlet to interact with the same list or output:

PS > $processes = Get-Process
PS > $processes | Where-Object { $_.Id -eq 1216 }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 62 3 1012 3132 50 0.20 1216 dwm

PS > $processes | Where-Object { $_.Id -eq 212 }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 614 10 28444 5484 117 1.27 212 SearchIndexer

In these situations, you can instead use the -AsHash parameter of the Group-Object
cmdlet. When you use this parameter, PowerShell creates a hashtable to hold your
results. This creates a map between the property you’re interested in and the object it
represents:

PS > $processes = Get-Process | Group-Object -AsHash Id
PS > $processes[1216]

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 62 3 1012 3132 50 0.20 1216 dwm

PS > $processes[212]

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 610 10 28444 5488 117 1.27 212 SearchIndexer

For simple types of data, this approach works well. Depending on your data, though,
using the -AsHash parameter alone can create difficulties.

82 | Chapter 2: Pipelines

The first issue you might run into arises when the value of a property is $null. Hasht‐
ables in PowerShell (and the .NET Framework that provides the underlying support)
don’t support $null as a value, so you get a misleading error message:

PS > "Hello",(Get-Process -id $pid) | Group-Object -AsHash Id
Group-Object : The objects grouped by this property cannot be expanded
since there is a duplication of the key. Please give a valid property and try
again.

A second issue crops up when more complex data gets stored within the hashtable.
This can unfortunately be true even of data that appears to be simple:

PS > $result = dir | Group-Object -AsHash Length
PS > $result

Name Value
---- -----
746 {ReplaceTest.ps1}
499 {Format-String.ps1}
20494 {test.dll}

PS > $result[746]
(Nothing appears)

This missing result is caused by an incompatibility between the information in the
hashtable and the information you typed. This is normally not an issue in hashtables
that you create yourself, because you provided all of the information to populate
them. In this case, though, the Length values stored in the hashtable come from the
directory listing and are of the type Int64. An explicit cast resolves the issue but takes
a great deal of trial and error to discover:

PS > $result[[int64] 746]

 Directory: C:\temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 10/18/2009 9:51 PM 746 ReplaceTest.ps1

It’s difficult to avoid both of these issues, so the Group-Object cmdlet also offers an
-AsString parameter to convert all of the values to their string equivalents. With that
parameter, you can always assume that the values will be treated as (and accessible
by) strings:

PS > $result = dir | Group-Object -AsHash -AsString Length
PS > $result["746"]

 Directory: C:\temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 10/18/2009 9:51 PM 746 ReplaceTest.ps1

2.3 Group and Pivot Data by Name | 83

For more information about the Group-Object cmdlet, type Get-Help Group-

Object. For more information about PowerShell hashtables, see Recipe 7.13.

See Also
Recipe 7.13, “Create a Hashtable or Associative Array”

“Hashtables (Associative Arrays)” on page 809

2.4 Interactively Filter Lists of Objects
There are times when the scriptblock syntax of Where-Object cmdlet is too powerful.
In those situations, the simplified property access parameters provides a much sim‐
pler alternative. There are also times when the Where-Object cmdlet is too simple—
when expressing your selection logic as code is more cumbersome than selecting it
manually. In those situations, an interactive filter can be much more effective.

PowerShell makes this interactive filtering incredibly easy through the -PassThru
parameter of the Out-GridView cmdlet. For example, you can use this parameter after
experimenting with commands for a while to create a simple script. Simply highlight
the lines you want to keep, and press OK:

PS > $script = Get-History | ForEach-Object CommandLine | Out-GridView -PassThru
PS > $script | Set-Content c:\temp\script.ps1

By default, the Out-GridView cmdlet lets you select multiple items at once before
pressing OK. If you’d rather constrain the selection to a single element, use Single as
the value of the -OutputMode parameter.

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 2.2, “Filter Items in a List or Command Output”

2.5 Work with Each Item in a List or Command Output
Problem
You have a list of items and want to work with each item in that list.

Solution
Usei the ForEach-Object cmdlet (which has the standard aliases foreach and %) to
work with each item in a list.

84 | Chapter 2: Pipelines

To apply a calculation to each item in a list, use the $_ (or $PSItem) variable as part of
a calculation in the script block parameter:

PS > 1..10 | ForEach-Object { $_ * 2 }
2
4
6
8
10
12
14
16
18
20

To run a program on each file in a directory, use the $_ (or $PSItem) variable as a
parameter to the program in the script block parameter:

Get-ChildItem *.txt | ForEach-Object { attrib -r $_ }

To access a method or property for each object in a list, access that method or prop‐
erty on the $_ (or $PSItem) variable in the script block parameter. In this example,
you get the list of running processes called notepad, and then wait for each of them to
exit:

$notepadProcesses = Get-Process notepad
$notepadProcesses | ForEach-Object { $_.WaitForExit() }

Discussion
Like the Where-Object cmdlet, the ForEach-Object cmdlet runs the script block that
you specify for each item in the input. A script block is a series of PowerShell com‐
mands enclosed by the { and } characters. For each item in the set of incoming
objects, PowerShell assigns that item to the $_ (or $PSItem) variable, one element at a
time. In the examples given by the Solution, the $_ (or $PSItem) variable represents
each file or process that the previous cmdlet generated.

The first example in the Solution demonstrates a neat way to gener‐
ate ranges of numbers: 1..10
This is PowerShell’s array range syntax, which you can learn more
about in Recipe 7.3.

This script block can contain a great deal of functionality, if desired. You can combine
multiple tests, comparisons, and much more. For more information about script
blocks, see Recipe 11.4. For more information about the type of comparisons avail‐
able to you, see “Comparison Operators” on page 818.

2.5 Work with Each Item in a List or Command Output | 85

In addition to the script block supported by the ForEach-Object cmdlet to process
each element of the pipeline, it also supports script blocks to be executed at the begin‐
ning and end of the pipeline. For example, consider the following code to measure
the sum of elements in an array:

$myArray = 1,2,3,4,5
$sum = 0
$myArray | ForEach-Object { $sum += $_ }
$sum

You can simplify this to:
$myArray | ForEach-Object -Begin {
 $sum = 0 } -Process { $sum += $_ } -End { $sum }

Since you can also specify the -Begin, -Process, and -End parameters by position,
this can simplify even further to:

$myArray | ForEach-Object { $sum = 0 } { $sum += $_ } { $sum }

For simple scenarios (such as retrieving only a single property), the script-block-
based syntax can get a little ungainly:

Get-Process | ForEach-Object { $_.Name }

In PowerShell, the ForEach-Object cmdlet (and by extension its % alias) also supports
parameters to simplify property and method access dramatically:

Get-Process | ForEach-Object Name
Get-Process | % Name | % ToUpper

As with the Where-Object cmdlet, PowerShell offers a foreach() method on collec‐
tions that let you perform many of these same tasks:

Property access
(Get-Process).foreach("Name")

Script block invocation
$sum = 0
(1..5).foreach({ $sum += $_ })

Type conversion
$bytes = (1..5).foreach([Byte])

In addition to using the ForEach-Object cmdlet to support full member invocation,
the PowerShell language has a quick way to easily enumerate properties. Just as you
are able to access a property on a single element, PowerShell lets you use a similar
syntax to access that property on each item of a collection:

PS > Start-Process PowerShell
PS > Start-Process PowerShell
PS > $processes = Get-Process -Name PowerShell
PS > $processes[0].Id
7928

86 | Chapter 2: Pipelines

PS > $processes.Id
7928
13120

While writing more advanced pipelines, you might sometimes find yourself writing a
Where-Object or ForEach-Object script block within another script block that is
already processing pipeline input. In this situation, you lose access to the outer $_ (or
$PSItem) variable within the inner script block:

Get all processes
Get-Process | ForEach-Object {
 ## Get all of their modules (loaded DLLs)
 $_.Modules | ForEach-Object {
 ## If the DLL is loaded from AppData
 if($_.FileName -match 'AppData') {
 ## Desired behavior: Output the process name
 ## Actual behavior: Outputs the module name
 $_
 }
 }
}

To solve this problem, PowerShell supports the -PipelineVariable parameter. When
you add this parameter to a command, PowerShell saves the command’s current pipe‐
line output into the variable name that you specify in addition to the $_ variable. At
this point you can use it from within other nested script blocks freely without it being
overwritten:

Get all processes
Get-Process -PipelineVariable currentProcess | ForEach-Object {
 ## Get all of their modules (loaded DLLs)
 $_.Modules | ForEach-Object {
 ## If the DLL is loaded from AppData
 if($_.FileName -match 'AppData') {
 ## Output the process name
 $currentProcess
 }
 } | Select-Object -First 1
}

The ForEach-Object cmdlet isn’t the only way to perform actions on items in a list.
The PowerShell scripting language supports several other keywords, such as for, (a
different) foreach, do, and while. For information on how to use those keywords, see
Recipe 4.4.

For more information about the ForEach-Object cmdlet, type Get-Help ForEach-
Object.

For more information about dealing with pipeline input in your own scripts, func‐
tions, and script blocks, see Recipe 11.18.

2.5 Work with Each Item in a List or Command Output | 87

See Also
Recipe 4.4, “Repeat Operations with Loops”

Recipe 7.3, “Access Elements of an Array”

Recipe 11.4, “Write a Script Block”

Recipe 11.18, “Access a Script’s Pipeline Input”

“Comparison Operators” on page 818

2.6 Automate Data-Intensive Tasks
Problem
You want to invoke a simple task on large amounts of data.

Solution
If only one piece of data changes (such as a server name or username), store the data
in a text file. Use the Get-Content cmdlet to retrieve the items, and then use the
ForEach-Object cmdlet (which has the standard aliases foreach and %) to work with
each item in that list. Example 2-3 illustrates this technique.

Example 2-3. Using information from a text file to automate data-intensive tasks

PS > Get-Content servers.txt
SERVER1
SERVER2
PS > $computers = Get-Content servers.txt
PS > $computers | ForEach-Object {
 Get-CimInstance Win32_OperatingSystem -Computer $_ }

SystemDirectory : C:\WINDOWS\system32
Organization :
BuildNumber : 19041
Version : 10.0.19041

SystemDirectory : C:\WINDOWS\system32
Organization :
BuildNumber : 19041
Version : 10.0.19041

If it becomes cumbersome (or unclear) to include the actions in the ForEach-Object
cmdlet, you can also use the foreach scripting keyword, as illustrated in Example 2-4.

88 | Chapter 2: Pipelines

Example 2-4. Using the foreach scripting keyword to make a looping statement easier to
read

$computers = Get-Content servers.txt

foreach($computer in $computers)
{
 ## Get the information about the operating system from WMI
 $system = Get-CimInstance Win32_OperatingSystem -Computer $computer

 ## Determine if it is running Windows XP
 if($system.Version -match "^10.")
 {
 "$computer is running Windows 10"
 }
}

If several aspects of the data change per task (for example, both the CIM class and the
computer name for computers in a large report), create a CSV file with a row for each
task. Use the Import-Csv cmdlet to import that data into PowerShell, and then use
properties of the resulting objects as multiple sources of related data. Example 2-5
illustrates this technique.

Example 2-5. Using information from a CSV to automate data-intensive tasks

PS > Get-Content WmiReport.csv
ComputerName,Class
LEE-DESK,Win32_OperatingSystem
LEE-DESK,Win32_Bios

PS > $data = Import-Csv WmiReport.csv
PS > $data

ComputerName Class
------------ -----
LEE-DESK Win32_OperatingSystem
LEE-DESK Win32_Bios

PS > $data |
 ForEach-Object { Get-CimInstance $_.Class -Computer $_.ComputerName }

SystemDirectory : C:\WINDOWS\system32
Organization :
BuildNumber : 2600
Version : 5.1.2600

SMBIOSBIOSVersion : ASUS A7N8X Deluxe ACPI BIOS Rev 1009
Manufacturer : Phoenix Technologies, LTD
Name : Phoenix - AwardBIOS v6.00PG
SerialNumber : xxxxxxxxxxx
Version : Nvidia - 42302e31

2.6 Automate Data-Intensive Tasks | 89

Discussion
One of the major benefits of PowerShell is its capability to automate repetitive tasks.
Sometimes these repetitive tasks are action-intensive (such as system maintenance
through registry and file cleanup) and consist of complex sequences of commands
that will always be invoked together. In those situations, you can write a script to
combine these operations to save time and reduce errors.

Other times, you need only to accomplish a single task (for example, retrieving the
results of a WMI query) but need to invoke that task repeatedly for a large amount of
data. In those situations, PowerShell’s scripting statements, pipeline support, and data
management cmdlets help automate those tasks.

One of the options given by the Solution is the Import-Csv cmdlet. The Import-Csv
cmdlet reads a CSV file and, for each row, automatically creates an object with prop‐
erties that correspond to the names of the columns. Example 2-6 shows the results of
a CSV that contains a ComputerName and Class header.

Example 2-6. The Import-Csv cmdlet creating objects with ComputerName and Class
properties

PS > $data = Import-Csv WmiReport.csv
PS > $data

ComputerName Class
------------ -----
LEE-DESK Win32_OperatingSystem
LEE-DESK Win32_Bios

PS > $data[0].ComputerName
LEE-DESK

As the Solution illustrates, you can use the ForEach-Object cmdlet to provide data
from these objects to repetitive cmdlet calls. It does this by specifying each parameter
name, followed by the data (taken from a property of the current CSV object) that
applies to it.

If you already have the comma-separated values in a variable
(rather than a file), you can use the ConvertFrom-Csv cmdlet to
convert these values to objects.

90 | Chapter 2: Pipelines

While this is the most general solution, many cmdlet parameters can automatically
retrieve their value from incoming objects if any property of that object has the same
name. This enables you to omit the ForEach-Object and property mapping steps
altogether. Parameters that support this feature are said to support value from pipeline
by property name. The Move-Item cmdlet is one example of a cmdlet with parameters
that support this, as shown by the Accept pipeline input? rows in Example 2-7.

Example 2-7. Help content of the Move-Item cmdlet showing a parameter that accepts
value from pipeline by property name

PS > Get-Help Move-Item -Full
(...)
PARAMETERS

 -path <string[]>
 Specifies the path to the current location of the items. The default
 is the current directory. Wildcards are permitted.

 Required? true
 Position? 1
 Default value <current location>
 Accept pipeline input? true (ByValue, ByPropertyName)
 Accept wildcard characters? true

 -destination <string>
 Specifies the path to the location where the items are being moved.
 The default is the current directory. Wildcards are permitted, but
 the result must specify a single location.

 To rename the item being moved, specify a new name in the value of
 Destination.

 Required? false
 Position? 2
 Default value <current location>
 Accept pipeline input? true (ByPropertyName)
 Accept wildcard characters? True
 (...)

If you purposefully name the columns in the CSV to correspond to parameters that
take their value from pipeline by property name, PowerShell can do some (or all) of
the parameter mapping for you. Example 2-8 demonstrates a CSV file that moves
items in bulk.

Example 2-8. Using the Import-Csv cmdlet to automate a cmdlet that accepts value from
pipeline by property name

PS > Get-Content ItemMoves.csv
Path,Destination
test.txt,Test1Directory
test2.txt,Test2Directory

2.6 Automate Data-Intensive Tasks | 91

PS > dir test.txt,test2.txt | Select Name

Name

test.txt
test2.txt

PS > Import-Csv ItemMoves.csv | Move-Item
PS > dir Test1Directory | Select Name

Name

test.txt

PS > dir Test2Directory | Select Name

Name

test2.txt

For more information about the ForEach-Object cmdlet and foreach scripting key‐
word, see Recipe 2.5. For more information about working with CSV files, see Recipe
10.7. For more information about working with WMI, see Chapter 28.

See Also
Recipe 2.5, “Work with Each Item in a List or Command Output”

Recipe 10.7, “Import CSV and Delimited Data from a File”

Chapter 28

2.7 Intercept Stages of the Pipeline
Problem
You want to intercept or take some action at different stages of the PowerShell
pipeline.

Solution
Use the New-CommandWrapper script given in Recipe 11.23 to wrap the Out-Default
command, and place your custom functionality in that.

92 | Chapter 2: Pipelines

Discussion
For any pipeline, PowerShell adds an implicit call to the Out-Default cmdlet at the
end. By adding a command wrapper over this function we can heavily customize the
pipeline processing behavior.

When PowerShell creates a pipeline, it first calls the BeginProcessing() method of
each command in the pipeline. For advanced functions (the type created by the New-
CommandWrapper script), PowerShell invokes the Begin block. If you want to do any‐
thing at the beginning of the pipeline, then put your customizations in that block.

For each object emitted by the pipeline, PowerShell sends that object to the Process
Record() method of the next command in the pipeline. For advanced functions (the
type created by the New-CommandWrapper script), PowerShell invokes the Process
block. If you want to do anything for each element in the pipeline, put your customi‐
zations in that block.

Finally, when PowerShell has processed all items in the pipeline, it calls the End
Processing() method of each command in the pipeline. For advanced functions (the
type created by the New-CommandWrapper script), PowerShell invokes the End block. If
you want to do anything at the end of the pipeline, then put your customizations in
that block.

For two examples of this approach, see Recipe 2.8 and Recipe 11.22.

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 2.8, “Automatically Capture Pipeline Output”

Recipe 11.22, “Invoke Dynamically Named Commands”

Recipe 11.23, “Program: Enhance or Extend an Existing Cmdlet”

2.8 Automatically Capture Pipeline Output
Problem
You want to automatically capture the output of the last command without explicitly
storing its output in a variable.

2.8 Automatically Capture Pipeline Output | 93

Solution
Use the PSDefaultParameterValues automatic variable to set the -OutVariable
parameter value of the Out-Default command to a variable name of your choice:

$PSDefaultParameterValues["Out-Default:OutVariable"] = "__"

Discussion
Once each object in a command has passed through the pipeline, it eventually rea‐
ches the end. If your script does not capture this output, PowerShell provides it to the
Out-Default cmdlet, which is then responsible for figuring out how to format and
display the output.

Like all cmdlets, the Out-Default cmdlet supports an -OutVariable parameter that
lets you store its output into a variable:

PS > 1..3 | Out-Default -OutVariable myOutput
1
2
3

PS > $myOutput
1
2
3

Knowing this, we can use PowerShell’s $PSDefaultParameterValues infrastructure to
make Out-Default do this every time. The Solution uses two underscore characters
as the variable name to look like the single underscore that represents the current
pipeline input in PowerShell, but you can use any variable name you want:

PS > $PSDefaultParameterValues["Out-Default:OutVariable"] = "lastOutput"

PS > 1..3
1
2
3

PS > $lastOutput
1
2
3

For more information about providing default values to cmdlet parameters, see
Recipe 1.5.

94 | Chapter 2: Pipelines

See Also
Recipe 1.5, “Supply Default Values for Parameters”

Recipe 2.7, “Intercept Stages of the Pipeline”

Recipe 11.23, “Program: Enhance or Extend an Existing Cmdlet”

2.9 Capture and Redirect Binary Process Output
Problem
You want to run programs that transfer complex binary data between themselves.

Solution
Use the Invoke-BinaryProcess script to invoke the program, as shown in
Example 2-9. If it’s the source of binary data, use the -RedirectOutput parameter. If
it consumes binary data, use the -RedirectInput parameter.

Example 2-9. Invoke-BinaryProcess.ps1

##
##
Invoke-BinaryProcess
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Invokes a process that emits or consumes binary data.

.EXAMPLE

PS > Invoke-BinaryProcess binaryProcess.exe -RedirectOutput -ArgumentList "-emit" |
 Invoke-BinaryProcess binaryProcess.exe -RedirectInput -ArgumentList "-consume"

#>

param(
 ## The name of the process to invoke
 [string] $ProcessName,

 ## Specifies that input to the process should be treated as
 ## binary
 [Alias("Input")]

2.9 Capture and Redirect Binary Process Output | 95

 [switch] $RedirectInput,

 ## Specifies that the output of the process should be treated
 ## as binary
 [Alias("Output")]
 [switch] $RedirectOutput,

 ## Specifies the arguments for the process
 [string] $ArgumentList
)

Set-StrictMode -Version 3

Prepare to invoke the process
$processStartInfo = New-Object System.Diagnostics.ProcessStartInfo
$processStartInfo.FileName = (Get-Command $processname).Definition
$processStartInfo.WorkingDirectory = (Get-Location).Path
if($argumentList) { $processStartInfo.Arguments = $argumentList }
$processStartInfo.UseShellExecute = $false

Always redirect the input and output of the process.
Sometimes we will capture it as binary, other times we will
just treat it as strings.
$processStartInfo.RedirectStandardOutput = $true
$processStartInfo.RedirectStandardInput = $true

$process = [System.Diagnostics.Process]::Start($processStartInfo)

If we've been asked to redirect the input, treat it as bytes.
Otherwise, write any input to the process as strings.
if($redirectInput)
{
 $inputBytes = @($input)
 $process.StandardInput.BaseStream.Write($inputBytes, 0, $inputBytes.Count)
 $process.StandardInput.Close()
}
else
{
 $input | % { $process.StandardInput.WriteLine($_) }
 $process.StandardInput.Close()
}

If we've been asked to redirect the output, treat it as bytes.
Otherwise, read any input from the process as strings.
if($redirectOutput)
{
 $byteRead = -1
 do
 {
 $byteRead = $process.StandardOutput.BaseStream.ReadByte()
 if($byteRead -ge 0) { $byteRead }
 } while($byteRead -ge 0)
}
else
{

96 | Chapter 2: Pipelines

 $process.StandardOutput.ReadToEnd()
}

Discussion
When PowerShell launches a native application, one of the benefits it provides is
allowing you to use PowerShell commands to work with the output. For example:

PS > (ipconfig)[7]
 Link-local IPv6 Address : fe80::20f9:871:8365:f368%8
PS > (ipconfig)[8]
 IPv4 Address. : 10.211.55.3

PowerShell enables this by splitting the output of the program on its newline charac‐
ters, and then passing each line independently down the pipeline. This includes pro‐
grams that use the Unix newline (\n) as well as the Windows newline (\r\n).

If the program outputs binary data, however, that reinterpretation can corrupt data as
it gets redirected to another process or file. For example, some programs communi‐
cate between themselves through complicated binary data structures that cannot be
modified along the way. This is common in some image editing utilities and other
non-PowerShell tools designed for pipelined data manipulation.

We can see this through an example BinaryProcess.exe application that either emits
binary data or consumes it. Here is the C# source code to the BinaryProcess.exe
application:

using System;
using System.IO;

public class BinaryProcess
{
 public static void Main(string[] args)
 {
 if(args[0] == "-consume")
 {
 using(Stream inputStream = Console.OpenStandardInput())
 {
 for(byte counter = 0; counter < 255; counter++)
 {
 byte received = (byte) inputStream.ReadByte();
 if(received != counter)
 {
 Console.WriteLine(
 "Got an invalid byte: {0}, expected {1}.",
 received, counter);
 return;
 }
 else
 {
 Console.WriteLine(
 "Properly received byte: {0}.", received, counter);
 }

2.9 Capture and Redirect Binary Process Output | 97

 }
 }
 }

 if(args[0] == "-emit")
 {
 using(Stream outputStream = Console.OpenStandardOutput())
 {
 for(byte counter = 0; counter < 255; counter++)
 {
 outputStream.WriteByte(counter);
 }
 }
 }
 }
}

When we run it with the -emit parameter, PowerShell breaks the output into three
objects:

PS > $output = .\binaryprocess.exe -emit
PS > $output.Count
3

We would expect this output to contain the numbers 0 through 254, but we see that it
does not:

PS > $output | ForEach-Object { "------------";
 $_.ToCharArray() | ForEach-Object { [int] $_ } }

0
1
2
3
4
5
6
7
8
9

11
12

14
15
16
17
18
19
20
21
22
(...)
255
214

98 | Chapter 2: Pipelines

220
162
163
165
8359
402
225

At number 10, PowerShell interprets that byte as the end of the line, and uses that to
split the output into a new element. It does the same for number 13. Things appear to
get even stranger when we get to the higher numbers and PowerShell starts to inter‐
pret combinations of bytes as Unicode characters from another language.

The Solution resolves this behavior by managing the output of the binary process
directly. If you supply the -RedirectInput parameter, the script assumes an incom‐
ing stream of binary data and passes it to the program directly. If you supply the -
RedirectOutput parameter, the script assumes that the output is binary data, and
likewise reads it from the process directly.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

2.9 Capture and Redirect Binary Process Output | 99

CHAPTER 3

Variables and Objects

3.0 Introduction
As touched on in Chapter 2, PowerShell makes life immensely easier by keeping
information in its native form: objects. Users expend most of their effort in traditional
shells just trying to resuscitate information that the shell converted from its native
form to plain text. Tools have evolved that ease the burden of working with plain text,
but that job is still significantly more difficult than it needs to be.

Since PowerShell builds on Microsoft’s .NET Framework, native information comes
in the form of .NET objects—packages of information and functionality closely
related to that information.

Let’s say that you want to get a list of running processes on your system. In other
shells, your command (such as tlist.exe or /bin/ps) generates a plain-text report
of the running processes on your system. To work with that output, you send it
through a bevy of text processing tools—if you’re lucky enough to have them
available.

PowerShell’s Get-Process cmdlet generates a list of the running processes on your
system. In contrast to other shells, though, these are full-fidelity System.

Diagnostics.Process objects straight out of the .NET Framework. The .NET Frame‐
work documentation describes them as objects that “[provide] access to local and
remote processes, and [enable] you to start and stop local system processes.” With
those objects in hand, PowerShell makes it trivial for you to access properties of
objects (such as their process name or memory usage) and to access functionality on
these objects (such as stopping them, starting them, or waiting for them to exit).

101

3.1 Display the Properties of an Item as a List
Problem
You have an item (for example, an error record, directory item, or .NET object), and
you want to display detailed information about that object in a list format.

Solution
To display detailed information about an item, pass that item to the Format-List
cmdlet. For example, to display an error in list format, type the following commands:

$currentError = $error[0]
$currentError | Format-List -Force

Discussion
Many commands by default display a summarized view of their output in a table for‐
mat, for example, the Get-Process cmdlet:

PS > Get-Process PowerShell

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 920 10 43808 48424 183 4.69 1928 powershell
 149 6 18228 8660 146 0.48 1940 powershell
 431 11 33308 19072 172 2816 powershell

In most cases, the output actually contains a great deal more information. You can
use the Format-List cmdlet to view it:

PS > Get-Process pwsh | Format-List *

Name : pwsh
Id : 14820
PriorityClass : Normal
FileVersion : 7.1.0.0
HandleCount : 940
TotalProcessorTime : 00:00:25.7500000
VM : 2204249919488
WS : 81596416
Path : C:\Program Files\WindowsApps\...\pwsh.exe
CommandLine : C:\Users\lee\AppData\Microsoft\WindowsApps\...\pwsh.exe
Parent : System.Diagnostics.Process (WindowsTerminal)
Company : Microsoft Corporation
CPU : 25.765625
ProductVersion : 7.1.0 SHA: cbb7d40f684fdeb56cc276340b3b7435ac649d8f
Description : pwsh
Product : PowerShell(...)

102 | Chapter 3: Variables and Objects

The Format-List cmdlet is one of the four PowerShell formatting cmdlets. These
cmdlets are Format-Table, Format-List, Format-Wide, and Format-Custom. The
Format-List cmdlet takes input and displays information about that input as a list.

By default, PowerShell takes the list of properties to display from the *.format.ps1xml
files in PowerShell’s installation directory. In many situations, you’ll only get a small
set of the properties:

PS > Get-Process pwsh | Format-List

Id : 2816
Handles : 431
CPU :
Name : pwsh

Id : 5244
Handles : 665
CPU : 10.296875
Name : pwsh

To display all properties of the item, type Format-List *. If you type Format-List *
but still do not get a list of the item’s properties, then the item is defined in the
*.format.ps1xml files, but does not define anything to be displayed for the list com‐
mand. In that case, type Format-List -Force.

One common stumbling block in PowerShell’s formatting cmdlets comes from
putting them in the middle of a script or pipeline:

PS > Get-Process PowerShell | Format-List | Sort-Object Name
out-lineoutput : The object of type "Microsoft.PowerShell.Commands.Internal.
Format.FormatEntryData" is not valid or not in the correct sequence. This is
likely caused by a user-specified "format-*" command that is conflicting with
the default formatting.

Internally, PowerShell’s formatting commands generate a new type of object:
Microsoft.PowerShell.Commands.Internal.Format.*. When these objects make it
to the end of the pipeline, PowerShell automatically sends them to an output cmdlet:
by default, Out-Default. These Out-* cmdlets assume that the objects arrive in a cer‐
tain order, so doing anything with the output of the formatting commands causes an
error in the output system.

To resolve this problem, try to avoid calling the formatting cmdlets in the middle of a
script or pipeline. When you do this, the output of your script no longer lends itself
to the object-based manipulation so synonymous with PowerShell.

If you want to use the formatted output directly, send the output through the Out-
String cmdlet as described in Recipe 1.24.

For more information about the Format-List cmdlet, type Get-Help Format-List.

3.1 Display the Properties of an Item as a List | 103

3.2 Display the Properties of an Item as a Table
Problem
You have a set of items (for example, error records, directory items, or .NET objects),
and you want to display summary information about them in a table format.

Solution
To display summary information about a set of items, pass those items to the Format-
Table cmdlet. This is the default type of formatting for sets of items in PowerShell
and provides several useful features.

To use PowerShell’s default formatting, pipe the output of a cmdlet (such as the Get-
Process cmdlet) to the Format-Table cmdlet:

Get-Process | Format-Table

To display specific properties (such as Name and WorkingSet) in the table formatting,
supply those property names as parameters to the Format-Table cmdlet:

Get-Process | Format-Table Name,WS

To instruct PowerShell to format the table in the most readable manner, supply the
-Auto flag to the Format-Table cmdlet. PowerShell defines WS as an alias of the
WorkingSet property for processes:

Get-Process | Format-Table Name,WS -Auto

To define a custom column definition (such as a process’s WorkingSet in megabytes),
supply a custom formatting expression to the Format-Table cmdlet:

$fields = "Name",@{
 Label = "WS (MB)"; Expression = {$_.WS / 1mb}; Align = "Right"}
Get-Process | Format-Table $fields -Auto

Discussion
The Format-Table cmdlet is one of the four PowerShell formatting cmdlets. These
cmdlets are Format-Table, Format-List, Format-Wide, and Format-Custom. The
Format-Table cmdlet takes input and displays information about that input as a
table. By default, PowerShell takes the list of properties to display from the
*.format.ps1xml files in PowerShell’s installation directory. You can display all proper‐
ties of the items if you type Format-Table *, although this is rarely a useful view.

The -Auto parameter to Format-Table is a helpful way to automatically format the
table in the most readable way possible. It does come at a cost, however. To figure out
the best table layout, PowerShell needs to examine each item in the incoming set of

104 | Chapter 3: Variables and Objects

items. For small sets of items, this doesn’t make much difference, but for large sets
(such as a recursive directory listing), it does. Without the -Auto parameter, the
Format-Table cmdlet can display items as soon as it receives them. With the -Auto
flag, the cmdlet displays results only after it receives all the input.

Perhaps the most interesting feature of the Format-Table cmdlet is illustrated by the
last example: the ability to define completely custom table columns. You define a cus‐
tom table column similarly to the way that you define a custom column list. Rather
than specify an existing property of the items, you provide a hashtable. That hashta‐
ble includes up to three keys: the column’s label, a formatting expression, and align‐
ment. The Format-Table cmdlet shows the label as the column header and uses your
expression to generate data for that column. The label must be a string, the expres‐
sion must be a script block, and the alignment must be either "Left", "Center", or
"Right". In the expression script block, the $_ (or $PSItem) variable represents the
current item being formatted.

The Select-Object cmdlet supports a similar hashtable to add cal‐
culated properties, but uses Name (rather than Label) as the key to
identify the property. After realizing how confusing this was, the
PowerShell team updated both cmdlets to accept both Name and
Label.

The expression shown in the last example takes the working set of the current item
and divides it by 1 megabyte (1 MB).

One common stumbling block in PowerShell’s formatting cmdlets comes from
putting them in the middle of a script or pipeline:

PS > Get-Process | Format-Table | Sort-Object Name
out-lineoutput : The object of type "Microsoft.PowerShell.Commands.Internal.
Format.FormatEntryData" is not valid or not in the correct sequence. This is
likely caused by a user-specified "format-*" command that is conflicting with
the default formatting.

Internally, PowerShell’s formatting commands generate a new type of object:
Microsoft.PowerShell.Commands.Internal.Format.*. When these objects make it
to the end of the pipeline, PowerShell then automatically sends them to an output
cmdlet: by default, Out-Default. These Out-* cmdlets assume that the objects arrive
in a certain order, so doing anything with the output of the formatting commands
causes an error in the output system.

To resolve this problem, try to avoid calling the formatting cmdlets in the middle of a
script or pipeline. When you do this, the output of your script no longer lends itself
to the object-based manipulation so synonymous with PowerShell.

3.2 Display the Properties of an Item as a Table | 105

If you want to use the formatted output directly, send the output through the Out-
String cmdlet as described in Recipe 1.24.

For more information about the Format-Table cmdlet, type Get-Help Format-

Table. For more information about hashtables, see Recipe 7.13. For more informa‐
tion about script blocks, see Recipe 11.4.

See Also
Recipe 1.24, “Program: Search Formatted Output for a Pattern”

Recipe 7.13, “Create a Hashtable or Associative Array”

Recipe 11.4, “Write a Script Block”

3.3 Store Information in Variables
Problem
You want to store the output of a pipeline or command for later use or to work with it
in more detail.

Solution
To store output for later use, store the output of the command in a variable. You can
access this information later, or even pass it down the pipeline as though it were the
output of the original command:

PS > $result = 2 + 2
PS > $result
4

PS > $output = ipconfig
PS > $output | Select-String "Default Gateway" | Select -First 1

 Default Gateway : 192.168.11.1

PS > $processes = Get-Process
PS > $processes.Count
85
PS > $processes | Where-Object { $_.ID -eq 0 }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ----- -- -----------
 0 0 0 16 0 0 Idle

106 | Chapter 3: Variables and Objects

Discussion
Variables in PowerShell (and all other scripting and programming languages) let you
store the output of something so that you can use it later. A variable name starts with
a dollar sign ($) and can be followed by nearly any character. A small set of characters
have special meaning to PowerShell, so PowerShell provides a way to make variable
names that include even these.

For more information about the syntax and types of PowerShell variables, see “Vari‐
ables” on page 800.

You can store the result of any pipeline or command in a variable to use it later. If that
command generates simple data (such as a number or string), then the variable con‐
tains simple data. If the command generates rich data (such as the objects that repre‐
sent system processes from the Get-Process cmdlet), then the variable contains that
list of rich data. If the command generates plain text (such as the output of a tradi‐
tional executable), then the variable contains plain text.

If you’ve stored a large amount of data into a variable but no longer
need that data, assign a new value (such as $null) to that variable.
That will allow PowerShell to release the memory it was using to
store that data.

In addition to variables that you create, PowerShell automatically defines several vari‐
ables that represent things such as the location of your profile file, the process ID of
PowerShell, and more. For a full list of these automatic variables, type Get-Help
about_Automatic_Variables.

See Also
“Variables” on page 800

3.4 Access Environment Variables
Problem
You want to use an environment variable (such as the system path or the current
user’s name) in your script or interactive session.

Solution
PowerShell offers several ways to access environment variables.

To list all environment variables, list the children of the env drive:

3.4 Access Environment Variables | 107

Get-ChildItem env:

To get an environment variable using a more concise syntax, precede its name with
$env:

$env:variablename

(For example, $env:username.)

To get an environment variable using its provider path, supply env: or
Environment:: to the Get-ChildItem cmdlet:

Get-ChildItem env:variablename
Get-ChildItem Environment::variablename

Discussion
PowerShell provides access to environment variables through its environment pro‐
vider. Providers let you work with data stores (such as the registry, environment vari‐
ables, and aliases) much as you would access the filesystem.

By default, PowerShell creates a drive (called env) that works with the environment
provider to let you access environment variables. The environment provider lets you
access items in the env: drive as you would any other drive: dir env:\variablename
or dir env:variablename. If you want to access the provider directly (rather than go
through its drive), you can also type dir Environment::variablename.

However, the most common (and easiest) way to work with environment variables is
by typing $env:variablename. This works with any provider but is most typically
used with environment variables.

This is because the environment provider shares something in common with several
other providers—namely, support for the *-Content set of core cmdlets (see
Example 3-1).

Example 3-1. Working with content on different providers

PS > "hello world" > test
PS > Get-Content test
hello world

PS > Get-Content c:test
hello world

PS > Get-Content variable:ErrorActionPreference
Continue

PS > Get-Content function:prompt
"PS $($executionContext.SessionState.Path.CurrentLocation)
 $('>' * ($nestedPromptLevel + 1)) ";
(...)

108 | Chapter 3: Variables and Objects

PS > Get-Content env:systemroot
C:\WINDOWS

For providers that support the content cmdlets, PowerShell lets you interact with this
content through a special variable syntax (see Example 3-2).

Example 3-2. Using PowerShell’s special variable syntax to access content

PS > $function:prompt
"PS $($executionContext.SessionState.Path.CurrentLocation)
 $('>' * ($nestedPromptLevel + 1)) ";

PS > $variable:ErrorActionPreference
Continue
PS > $c:test
hello world
PS > $env:systemroot
C:\WINDOWS

This variable syntax for content management lets you both get and set content:
PS > $function:prompt = { "PS > " }
PS > $function:prompt
 "PS > "

Now, when it comes to accessing complex provider paths using this method, you’ll
quickly run into naming issues (even if the underlying file exists):

PS > $c:\temp\test.txt
Unexpected token '\temp\test.txt' in expression or statement.
At line:1 char:17
+ $c:\temp\test.txt <<<<

The solution to that lies in PowerShell’s escaping support for complex variable names.
To define a complex variable name, enclose it in braces:

PS > ${1234123!@#$!@#12!@#$@!} = "Crazy Variable!"
PS > ${1234123!@#$!@#12!@#$@!}
Crazy Variable!
PS > dir variable:\1*

Name Value
---- -----
1234123!@#$!@#$12$!@#$@! Crazy Variable!

The following is the content equivalent (assuming that the file exists):
PS > ${c:\temp\test.txt}
hello world

Since environment variable names do not contain special characters, this Get-
Content variable syntax is the best (and easiest) way to access environment variables.

3.4 Access Environment Variables | 109

For more information about working with PowerShell variables, see “Variables” on
page 800. For more information about working with environment variables, type
Get-Help About_Environment_Variables.

See Also
“Variables” on page 800

3.5 Program: Retain Changes to Environment Variables
Set by a Batch File
When a batch file modifies an environment variable, cmd.exe retains this change even
after the script exits. This often causes problems, as one batch file can accidentally
pollute the environment of another. That said, batch file authors sometimes inten‐
tionally change the global environment to customize the path and other aspects of the
environment to suit a specific task.

However, environment variables are private details of a process and disappear when
that process exits. This makes the environment customization scripts mentioned ear‐
lier stop working when you run them from PowerShell—just as they fail to work
when you run them from another cmd.exe (for example, cmd.exe /c MyEnvironment
Customizer.cmd).

The script in Example 3-3 lets you run batch files that modify the environment and
retain their changes even after cmd.exe exits. It accomplishes this by storing the envi‐
ronment variables in a text file once the batch file completes, and then setting all
those environment variables again in your PowerShell session.

To run this script, type Invoke-CmdScript Scriptname.cmd or Invoke-CmdScript
Scriptname.bat—whichever extension the batch files uses.

If this is the first time you’ve run a script in PowerShell, you’ll need
to configure your Execution Policy. For more information about
selecting an execution policy, see Recipe 18.1.

Notice that this script uses the full names for cmdlets: Get-Content, ForEach-Object,
Set-Content, and Remove-Item. This makes the script readable and is ideal for scripts
that somebody else will read. It is by no means required, though. For quick scripts
and interactive use, shorter aliases (such as gc, %, sc, and ri) can make you more
productive.

110 | Chapter 3: Variables and Objects

Example 3-3. Invoke-CmdScript.ps1

##
##
Invoke-CmdScript
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Invoke the specified batch file (and parameters), but also propagate any
environment variable changes back to the PowerShell environment that
called it.

.EXAMPLE

PS > type foo-that-sets-the-FOO-env-variable.cmd
@set FOO=%*
echo FOO set to %FOO%.

PS > $env:FOO
PS > Invoke-CmdScript "foo-that-sets-the-FOO-env-variable.cmd" Test

C:\Temp>echo FOO set to Test.
FOO set to Test.

PS > $env:FOO
Test

#>

param(
 ## The path to the script to run
 [Parameter(Mandatory = $true)]
 [string] $Path,

 ## The arguments to the script
 [string] $ArgumentList
)

Set-StrictMode -Version 3

$tempFile = [IO.Path]::GetTempFileName()

Store the output of cmd.exe. We also ask cmd.exe to output
the environment table after the batch file completes
cmd /c " `"$Path`" $argumentList && set > `"$tempFile`" "

Go through the environment variables in the temp file.
For each of them, set the variable in our local environment.
Get-Content $tempFile | Foreach-Object {

3.5 Program: Retain Changes to Environment Variables Set by a Batch File | 111

 if($_ -match "^(.*?)=(.*)$")
 {
 Set-Content "env:\$($matches[1])" $matches[2]
 }
}

Remove-Item $tempFile

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 18.1, “Enable Scripting Through an Execution Policy”

3.6 Control Access and Scope of Variables and Other Items
Problem
You want to control how you define (or interact with) the visibility of variables,
aliases, functions, and drives.

Solution
PowerShell offers several ways to access variables.

To create a variable with a specific scope, supply that scope before the variable name:
$SCOPE:variable = value

To access a variable at a specific scope, supply that scope before the variable name:
$SCOPE:variable

To create a variable that remains even after the script exits, create it in the GLOBAL
scope:

$GLOBAL:variable = value

To change a scriptwide variable from within a function, supply SCRIPT as its scope
name:

$SCRIPT:variable = value

Discussion
PowerShell controls access to variables, functions, aliases, and drives through a mech‐
anism known as scoping. The scope of an item is another term for its visibility. You’re
always in a scope (called the current or local scope), but some actions change what
that means.

112 | Chapter 3: Variables and Objects

When your code enters a nested prompt, script, function, or script block, PowerShell
creates a new scope. That scope then becomes the local scope. When it does this,
PowerShell remembers the relationship between your old scope and your new scope.
From the view of the new scope, the old scope is called the parent scope. From the
view of the old scope, the new scope is called a child scope. Child scopes get access to
all the variables in the parent scope, but changing those variables in the child scope
doesn’t change the version in the parent scope.

Trying to change a scriptwide variable from a function is often a
“gotcha” because a function is a new scope. As mentioned previ‐
ously, changing something in a child scope (the function) doesn’t
affect the parent scope (the script). The rest of this discussion
describes ways to change the value for the entire script.

When your code exits a nested prompt, script, function, or script block, the opposite
happens. PowerShell removes the old scope, then changes the local scope to be the
scope that originally created it—the parent of that old scope.

Some scopes are so common that PowerShell gives them special names:

Global
The outermost scope. Items in the global scope are visible from all other scopes.

Script
The scope that represents the current script. Items in the script scope are visible
from all other scopes in the script.

Local
The current scope.

When you define the scope of an item, PowerShell supports two additional scope
names that act more like options: Private and AllScope. When you define an item to
have a Private scope, PowerShell doesn’t make that item directly available to child
scopes. PowerShell does not hide it from child scopes, though, as child scopes can still
use the -Scope parameter of the Get-Variable cmdlet to get variables from parent
scopes. When you specify the AllScope option for an item (through one of the
*-Variable, *-Alias, or *-Drive cmdlets), child scopes that change the item also
affect the value in parent scopes.

With this background, PowerShell provides several ways for you to control access and
scope of variables and other items.

Variables
To define a variable at a specific scope (or access a variable at a specific scope), use its
scope name in the variable reference. For example:

3.6 Control Access and Scope of Variables and Other Items | 113

$SCRIPT:myVariable = value

As illustrated in “Variables” on page 800, the *-Variable set of cmdlets also lets you
specify scope names through their -Scope parameter.

Functions
To define a function at a specific scope (or access a function at a specific scope), use
its scope name when creating the function. For example:

function GLOBAL:MyFunction { ... }
GLOBAL:MyFunction args

Aliases and drives

To define an alias or drive at a specific scope, use the Option parameter of the
*-Alias and *-Drive cmdlets. To access an alias or drive at a specific scope, use the
Scope parameter of the *-Alias and *-Drive cmdlets.

For more information about scopes, type Get-Help About_Scopes.

See Also
“Variables” on page 800

3.7 Program: Create a Dynamic Variable
When working with variables and commands, some concepts feel too minor to
deserve an entire new command or function, but the readability of your script suffers
without them.

A few examples where this becomes evident are date math (yesterday becomes
(Get-Date).AddDays(-1)) and deeply nested variables (windowTitle becomes
$host.UI.RawUI.WindowTitle).

There are innovative solutions on the internet that use PowerShell’s
debugging facilities to create a breakpoint that changes a variable’s
value whenever you attempt to read from it. While unique, this sol‐
ution causes PowerShell to think that any scripts that rely on the
variable are in debugging mode. This, unfortunately, prevents Pow‐
erShell from enabling some important performance optimizations
in those scripts.

Although we could write our own extensions to make these easier to access, Get-
Yesterday, Get-WindowTitle, and Set-WindowTitle feel too insignificant to deserve
their own commands.

114 | Chapter 3: Variables and Objects

PowerShell lets you define your own types of variables by extending its PSVariable
class, but that functionality is largely designed for developer scenarios, and not for
scripting scenarios. Example 3-4 resolves this quandary by using PowerShell classes
to create a new variable type (DynamicVariable) that supports dynamic script actions
when you get or set the variable’s value.

Example 3-4. New-DynamicVariable.ps1

##
##
New-DynamicVariable
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Creates a variable that supports scripted actions for its getter and setter

.EXAMPLE

PS > .\New-DynamicVariable GLOBAL:WindowTitle `
 -Getter { $host.UI.RawUI.WindowTitle } `
 -Setter { $host.UI.RawUI.WindowTitle = $args[0] }

PS > $windowTitle
Administrator: pwsh.exe
PS > $windowTitle = "Test"
PS > $windowTitle
Test

#>

using namespace System
using namespace System.Collections.ObjectModel
using namespace System.Management.Automation

param(
 ## The name for the dynamic variable
 [Parameter(Mandatory = $true)]
 $Name,

 ## The scriptblock to invoke when getting the value of the variable
 [Parameter(Mandatory = $true)]
 [ScriptBlock] $Getter,

 ## The scriptblock to invoke when setting the value of the variable
 [ScriptBlock] $Setter
)

3.7 Program: Create a Dynamic Variable | 115

Set-StrictMode -Version Latest

class DynamicVariable : PSVariable
{
 DynamicVariable(
 [string] $Name,
 [ScriptBlock] $ScriptGetter,
 [ScriptBlock] $ScriptSetter)
 : base($Name, $null, "AllScope")
 {
 $this.getter = $scriptGetter
 $this.setter = $scriptSetter
 }
 hidden [ScriptBlock] $getter;
 hidden [ScriptBlock] $setter;

 [Object] get_Value()
 {
 if($this.getter -ne $null)
 {
 $results = $this.getter.Invoke()
 if($results.Count -eq 1)
 {
 return $results[0];
 }
 else
 {
 $returnResults = New-Object 'PSObject[]' $results.Count
 $results.CopyTo($returnResults, 0)
 return $returnResults;
 }
 }
 else { return $null; }
 }

 [void] set_Value([Object] $Value)
 {
 if($this.setter -ne $null) { $this.setter.Invoke($Value); }
 }
}

If we've already defined the variable, remove it.
if(Test-Path variable:\$name)
{
 Remove-Item variable:\$name -Force
}

Set the new variable, along with its getter and setter.
$executioncontext.SessionState.PSVariable.Set(
 ([DynamicVariable]::New($name, $getter, $setter)))

116 | Chapter 3: Variables and Objects

3.8 Work with .NET Objects
Problem
You want to use and interact with one of the features that makes PowerShell so pow‐
erful: its intrinsic support for .NET objects.

Solution
PowerShell offers ways to access methods (both static and instance) and properties.

To call a static method on a class, place the type name in square brackets, and then
separate the class name from the method name with two colons:

[ClassName]::MethodName(parameter list)

To call a method on an object, place a dot between the variable that represents that
object and the method name:

$objectReference.MethodName(parameter list)

To access a static property on a class, place the type name in square brackets, and
then separate the class name from the property name with two colons:

[ClassName]::PropertyName

To access a property on an object, place a dot between the variable that represents
that object and the property name:

$objectReference.PropertyName

Discussion
One feature that gives PowerShell its incredible reach into both system administra‐
tion and application development is its capability to leverage Microsoft’s enormous
and broad .NET Framework. The .NET Framework is a large collection of classes.
Each class embodies a specific concept and groups closely related functionality and
information. Working with the .NET Framework is one aspect of PowerShell that
introduces a revolution to the world of management shells.

An example of a class from the .NET Framework is System.Diagnostics.Process—
the grouping of functionality that “provides access to local and remote processes, and
enables you to start and stop local system processes.”

The terms type and class are often used interchangeably.

3.8 Work with .NET Objects | 117

Classes contain methods (which let you perform operations) and properties (which let
you access information).

For example, the Get-Process cmdlet generates System.Diagnostics.Process

objects, not a plain-text report like traditional shells. Managing these processes
becomes incredibly easy, as they contain a rich mix of information (properties) and
operations (methods). You no longer have to parse a stream of text for the ID of a
process; you can just ask the object directly!

PS > $process = Get-Process Notepad
PS > $process.Id
3872

Static methods
[ClassName]::MethodName(parameter list)

Some methods apply only to the concept the class represents. For example, retrieving
all running processes on a system relates to the general concept of processes instead
of a specific process. Methods that apply to the class/type as a whole are called static
methods.

For example:
PS > [System.Diagnostics.Process]::GetProcessById(0)

This specific task is better handled by the Get-Process cmdlet, but it demonstrates
PowerShell’s capability to call methods on .NET classes. It calls the static GetProcess
ById method on the System.Diagnostics.Process class to get the process with the
ID of 0. This generates the following output:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 16 0 0 Idle

Instance methods
$objectReference.MethodName(parameter list)

Some methods relate only to specific, tangible realizations (called instances) of a class.
An example of this would be stopping a process actually running on the system, as
opposed to the general concept of processes. If $objectReference refers to a specific
System.Diagnostics.Process (as output by the Get-Process cmdlet, for example),
you may call methods to start it, stop it, or wait for it to exit. Methods that act on
instances of a class are called instance methods.

118 | Chapter 3: Variables and Objects

The term object is often used interchangeably with the term
instance.

For example:
PS > $process = Get-Process Notepad
PS > $process.WaitForExit()

stores the Notepad process into the $process variable. It then calls the WaitFor
Exit() instance method on that specific process to pause PowerShell until the pro‐
cess exits. To learn about the different sets of parameters (overloads) that a given
method supports, type that method name without any parameters:

PS > $now = Get-Date
PS > $now.ToString

OverloadDefinitions

string ToString()
string ToString(string format)
string ToString(System.IFormatProvider provider)
string ToString(string format, System.IFormatProvider provider)
string IFormattable.ToString(string format, System.IFormatProvider formatProvider)
string IConvertible.ToString(System.IFormatProvider provider)

If you are adapting a C# example from the internet and PowerShell can’t find a
method used in the example, the method may have been added through a relatively
rare technique called explicit interface implementation. If this is the case, you can cast
the object to that interface before calling the method:

$sourceObject = 123
$result = ([IConvertible] $sourceObject).ToUint16($null)

Static properties
[ClassName]::PropertyName

or:
[ClassName]::PropertyName = value

Like static methods, some properties relate only to information about the concept
that the class represents. For example, the System.DateTime class “represents an
instant in time, typically expressed as a date and time of day.” It provides a Now static
property that returns the current time:

PS > [System.DateTime]::Now
Monday, February 15, 2021 9:35:13 PM

3.8 Work with .NET Objects | 119

This specific task is better handled by the Get-Date cmdlet, but it demonstrates Pow‐
erShell’s capability to access properties on .NET objects.

Although they’re relatively rare, some types let you set the value of some static prop‐
erties as well: for example, the [System.Environment]::CurrentDirectory property.
This property represents the process’s current directory—which represents Power‐
Shell’s startup directory, as opposed to the path you see in your prompt.

Instance properties
$objectReference.PropertyName

or:
$objectReference.PropertyName = value

Like instance methods, some properties relate only to specific, tangible realizations
(called instances) of a class. An example of this would be the day of an actual instant
in time, as opposed to the general concept of dates and times. If $objectReference
refers to a specific System.DateTime (as output by the Get-Date cmdlet or
[System.DateTime]::Now, for example), you may want to retrieve its day of week,
day, or month. Properties that return information about instances of a class are called
instance properties.

For example:
PS > $today = Get-Date
PS > $today.DayOfWeek
Saturday

This example stores the current date in the $today variable. It then calls the
DayOfWeek instance property to retrieve the day of the week for that specific date.

Dynamically accessing methods and properties
When you’re working with a .NET type, you might have some advanced scenarios
where you don’t know a method or property name when you’re writing your script,
but do know it at runtime. Even in these rare situations, PowerShell still lets you
access these members through dynamic member invocation. To access a property or
method with a dynamic name, simply store that name in a variable and access it as
you would any other method or property:

PS > $propertyName = "Length"
PS > "Hello World".$propertyName
11
PS > $methodName = "SubString"
PS > "Hello World".$methodName(6)
World
PS > $staticProperty = "OSVersion"
PS > [Environment]::$staticProperty

120 | Chapter 3: Variables and Objects

Platform ServicePack Version VersionString
-------- ----------- ------- -------------
 Win32NT 10.0.19041.0 Microsoft Windows NT 10.0.19041.0

With this knowledge, the next questions are: “How do I learn about the functionality
available in the .NET Framework?” and “How do I learn what an object does?”

For an answer to the first question, see Appendix F for a hand-picked list of the
classes in the .NET Framework most useful to system administrators. For an answer
to the second, see Recipes 3.12 and 3.13.

See Also
Recipe 3.12, “Learn About Types and Objects”

Recipe 3.13, “Get Detailed Documentation About Types and Objects”

Appendix F, Selected .NET Classes and Their Uses

3.9 Create an Instance of a .NET Object
Problem
You want to create an instance of a .NET object to interact with its methods and
properties.

Solution
Use the New-Object cmdlet to create an instance of an object.

To create an instance of an object using its default constructor, use the New-Object
cmdlet with the class name as its only parameter:

PS > $generator = New-Object System.Random
PS > $generator.NextDouble()
0.853699042859347

To create an instance of an object that takes parameters for its constructor, supply
those parameters to the New-Object cmdlet. In some instances, the class may exist
in a separate library not loaded in PowerShell by default, such as the
System.Windows.Forms assembly. In that case, you must first load the assembly that
contains the class:

Add-Type -Assembly System.Windows.Forms
$image = New-Object System.Drawing.Bitmap "$pwd\source.gif"
$image.Save("$pwd\source_converted.jpg", "JPEG")

As an alternative to the New-Object cmdlet, you can also use PowerShell’s new()
method:

3.9 Create an Instance of a .NET Object | 121

$image = [System.Drawing.Bitmap]::new("$pwd\source.gif")

To create an object and use it at the same time (without saving it for later), wrap the
call to New-Object in parentheses:

(New-Object Net.WebClient).DownloadString("http://live.com")

If you plan to work with several classes from the same .NET namespace, the using
statement can make your code easier to read and type:

using namespace System.Collections

$arrayList = New-Object ArrayList
$queue = [Queue]::new()

Discussion
Many cmdlets (such as Get-Process and Get-ChildItem) generate live .NET objects
that represent tangible processes, files, and directories. However, PowerShell supports
much more of the .NET Framework than just the objects that its cmdlets produce.
These additional areas of the .NET Framework supply a huge amount of functionality
that you can use in your scripts and general system administration tasks.

To create an instance of a generic object, see Example 3-5.

When it comes to using most of these classes, the first step is often to create an
instance of the class, store that instance in a variable, and then work with the meth‐
ods and properties on that instance. To create an instance of a class, you use the New-
Object cmdlet. The first parameter to the New-Object cmdlet is the type name, and
the second parameter is the list of arguments to the constructor, if it takes any. The
New-Object cmdlet supports PowerShell’s type shortcuts, so you never have to use the
fully qualified type name. For more information about type shortcuts, see “Type
Shortcuts” on page 835.

In addition to the New-Object cmdlet, you can also use the new() method that Power‐
Shell supports as though it were a static method on that type: surround the type name
with square brackets, add two colons, and then invoke the method with any
parameters:

PS > [System.Drawing.Point]::new(10, 20)

IsEmpty X Y
------- - -
 False 10 20

122 | Chapter 3: Variables and Objects

Most objects support several different constructors that let you create objects in dif‐
ferent ways. The official documentation on MSDN is usually the best place to get
detailed information about these constructors, but PowerShell offers a handy shortcut
by calling its new() method without parenthesis (like you would examine overloads
of other methods):

PS > [System.Drawing.Point]::New

OverloadDefinitions

System.Drawing.Point new(int x, int y)
System.Drawing.Point new(System.Drawing.Size sz)
System.Drawing.Point new(int dw)

A common pattern when working with .NET objects is to create them, set a few prop‐
erties, and then use them. The -Property parameter of the New-Object cmdlet lets
you combine these steps:

$startInfo = New-Object Diagnostics.ProcessStartInfo -Property @{
 'Filename' = "pwsh.exe";
 'WorkingDirectory' = $pshome;
 'Verb' = "RunAs"
}
[Diagnostics.Process]::Start($startInfo)

Or even more simply through PowerShell’s built-in type conversion:
$startInfo = [Diagnostics.ProcessStartInfo] @{
 'Filename' = "pwsh.exe";
 'WorkingDirectory' = $pshome;
 'Verb' = "RunAs"
}

When calling the New-Object cmdlet directly, you might encounter difficulty when
trying to specify a parameter that itself is a list. Assuming $byte is an array of bytes:

PS > [byte[]] $bytes = 1..10
PS > $memoryStream = New-Object System.IO.MemoryStream $bytes
New-Object : Cannot find an overload for ".ctor" and the argument count: "10".
At line:1 char:27
+ $memoryStream = New-Object <<<< System.IO.MemoryStream $bytes

To solve this, create the object using the new() keyword:
[System.IO.MemoryStream]::New($bytes)

The workarounds for New-Object are more complicated, but also work:
PS > $parameters = ,$bytes
PS > $memoryStream = New-Object System.IO.MemoryStream $parameters

or:
PS > $memoryStream = New-Object System.IO.MemoryStream @(,$bytes)

3.9 Create an Instance of a .NET Object | 123

Load types from another assembly
PowerShell makes most common types available by default. However, many are avail‐
able only after you load the library (called the assembly) that defines them. The
Microsoft documentation for a class includes the assembly that defines it. For more
information about loading types from another assembly, please see Recipe 17.8.

For a hand-picked list of the classes in the .NET Framework most useful to system
administrators, see Appendix F. To learn more about the functionality that a class
supports, see Recipe 3.12.

For more information about the New-Object cmdlet, type Get-Help New-Object. For
more information about the Add-Type cmdlet, type Get-Help Add-Type.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 3.12, “Learn About Types and Objects”

Recipe 17.8, “Access a .NET SDK Library”

Appendix F, Selected .NET Classes and Their Uses

Example 3-5

3.10 Create Instances of Generic Objects
When you work with the .NET Framework, you’ll often run across classes that have
the primary responsibility of managing other objects. For example, the
System.Collections.ArrayList class lets you manage a dynamic list of objects. You
can add objects to an ArrayList, remove objects from it, sort the objects inside, and
more. These objects can be any type of object: String objects, integers, DateTime
objects, and many others. However, working with classes that support arbitrary
objects can sometimes be a little awkward. One example is type safety. If you acciden‐
tally add a String to a list of integers, you might not find out until your program
fails.

Although the issue becomes largely moot when you’re working only inside Power‐
Shell, a more common complaint in strongly typed languages (such as C#) is that you
have to remind the environment (through explicit casts) about the type of your object
when you work with it again:

// This is C# code
System.Collections.ArrayList list =
 new System.Collections.ArrayList();
list.Add("Hello World");

string result = (String) list[0];

124 | Chapter 3: Variables and Objects

To address these problems, the .NET Framework includes a feature called generic
types: classes that support arbitrary types of objects but let you specify which type of
object. In this case, a collection of strings:

// This is C# code
System.Collections.ObjectModel.Collection<String> list =
 new System.Collections.ObjectModel.Collection<String>();
list.Add("Hello World");

string result = list[0];

PowerShell supports generic parameters by placing them between square brackets, as
demonstrated in Example 3-5.

Example 3-5. Creating a generic object

PS > $coll = New-Object System.Collections.ObjectModel.Collection[Int]
PS > $coll.Add(15)
PS > $coll.Add("Test")
MethodException: Cannot convert argument "item", with value: "Test", for "Add" to
type "System.Int32": "Cannot convert value "Test" to type "System.Int32".
Error: "Input string was not in a correct format.""

For a generic type that takes two or more parameters, provide a comma-separated list
of types, enclosed in quotes (see Example 3-6).

Example 3-6. Creating a multiparameter generic object

PS > $map = New-Object "System.Collections.Generic.Dictionary[String,Int]"
PS > $map.Add("Test", 15)
PS > $map.Add("Test2", "Hello")
MethodException: Cannot convert argument "Hello", for "Add" to
type "System.Int32": "Cannot convert value "Test" to type "System.Int32".
Error: "Input string was not in a correct format.""

3.11 Use a COM Object
Problem
You want to create a COM object to interact with its methods and properties.

Solution
Use the New-Object cmdlet (with the -ComObject parameter) to create a COM object
from its ProgID. You can then interact with the methods and properties of the COM
object as you would any other object in PowerShell.

$object = New-Object -ComObject ProgId

3.11 Use a COM Object | 125

For example:
PS > $sapi = New-Object -Com Sapi.SpVoice
PS > $sapi.Speak("Hello World")

Discussion
Historically, many applications have exposed their scripting and administration inter‐
faces as COM objects. While .NET APIs (and PowerShell cmdlets) are by far the most
common, interacting with COM objects is still a routine administrative task.

As with classes in the .NET Framework, it’s difficult to know what COM objects you
can use to help you accomplish your system administration tasks. For a hand-picked
list of the COM objects most useful to system administrators, see Appendix H.

For more information about the New-Object cmdlet, type Get-Help New-Object.

See Also
Appendix H, Selected COM Objects and Their Uses

3.12 Learn About Types and Objects
Problem
You have an instance of an object and want to know what methods and properties it
supports.

Solution
The most common way to explore the methods and properties supported by an
object is through the Get-Member cmdlet.

To get the instance members of an object you’ve stored in the $object variable, pipe
it to the Get-Member cmdlet:

$object | Get-Member
Get-Member -InputObject $object

To get the static members of an object you’ve stored in the $object variable, supply
the -Static flag to the Get-Member cmdlet:

$object | Get-Member -Static
Get-Member -Static -InputObject $object

To get the static members of a specific type, pipe that type to the Get-Member cmdlet,
and also specify the -Static flag:

[Type] | Get-Member -Static
Get-Member -Static -InputObject [Type]

126 | Chapter 3: Variables and Objects

To get members of the specified member type (for example, Method or Property)
from an object you have stored in the $object variable, supply that member type to
the -MemberType parameter:

$object | Get-Member -MemberType MemberType
Get-Member -MemberType MemberType -InputObject $object

Discussion
The Get-Member cmdlet is one of the three commands you will use most commonly
as you explore PowerShell. The other two commands are Get-Command and Get-Help.

To interactively explore an object’s methods and properties, see
Recipe 1.26.

If you pass the Get-Member cmdlet a collection of objects (such as an Array or Array
List) through the pipeline, PowerShell extracts each item from the collection and
then passes them to the Get-Member cmdlet one by one. The Get-Member cmdlet then
returns the members of each unique type that it receives. Although helpful the vast
majority of the time, this sometimes causes difficulty when you want to learn about
the members or properties of the collection class itself.

If you want to see the properties of a collection (as opposed to the elements it con‐
tains), provide the collection to the -InputObject parameter instead. Alternatively,
you can wrap the collection in an array (using PowerShell’s unary comma operator) so
that the collection class remains when the Get-Member cmdlet unravels the outer
array:

PS > $files = Get-ChildItem
PS > ,$files | Get-Member

 TypeName: System.Object[]

Name MemberType Definition
---- ---------- ----------
Count AliasProperty Count = Length
Address Method System.Object& Address(Int32)
(...)

For another way to learn detailed information about types and objects, see Recipe
3.13.

For more information about the Get-Member cmdlet, type Get-Help Get-Member.

3.12 Learn About Types and Objects | 127

See Also
Recipe 1.26, “Program: Interactively View and Explore Objects”

Recipe 3.13, “Get Detailed Documentation About Types and Objects”

3.13 Get Detailed Documentation About Types and
Objects
Problem
You have a type of object and want to know detailed information about the methods
and properties it supports.

Solution
The documentation for the .NET Framework is the best way to get detailed documen‐
tation about the methods and properties supported by an object. That exploration
generally comes in two stages:

1. Find the type of the object.
To determine the type of an object, you can either use the type name shown by
the Get-Member cmdlet (as described in Recipe 3.12) or call the GetType()
method of an object (if you have an instance of it):

PS > $date = Get-Date
PS > $date.GetType().ToString()
System.DateTime

2. Enter that type name into the search box.

Discussion
When the Get-Member cmdlet doesn’t provide the information you need, the Micro‐
soft documentation for a type is a great alternative. It provides much more detailed
information than the help offered by the Get-Member cmdlet—usually including
detailed descriptions, related information, and even code samples. Microsoft docu‐
mentation focuses on developers using these types through a language such as C#,
though, so you may find interpreting the information for use in PowerShell to be a
little difficult at first.

Typically, the documentation for a class first starts with a general overview, and then
provides a hyperlink to the members of the class—the list of methods and properties
it supports.

128 | Chapter 3: Variables and Objects

https://docs.microsoft.com/dotnet

To get to the documentation for the members quickly, search for
them more explicitly by adding the term “members” to your search
term: “typename members.”

Documentation for the members of a class lists the methods and properties, as does
the output of the Get-Member cmdlet. The S icon represents static methods and prop‐
erties. Click the member name for more information about that method or property.

Public constructors
This section lists the constructors of the type. You use a constructor when you create
the type through the New-Object cmdlet. When you click on a constructor, the docu‐
mentation provides all the different ways that you can create that object, including the
parameter list that you’ll use with the New-Object cmdlet.

Public fields/public properties
This section lists the names of the fields and properties of an object. The S icon repre‐
sents a static field or property. When you click on a field or property, the documenta‐
tion also provides the type returned by this field or property.

For example, you might see the following in the definition for System.DateTime.Now:
public static DateTime Now { get; }

Public means that the Now property is public—that you can access it from Power‐
Shell. Static means that the property is static (as described in Recipe 3.8). DateTime
means that the property returns a DateTime object when you call it. get; means that
you can get information from this property but cannot set the information. Many
properties support a set; as well (such as the IsReadOnly property on
System.IO.FileInfo), which means that you can change its value.

Public methods
This section lists the names of the methods of an object. The S icon represents a static
method. When you click on a method, the documentation provides all the different
ways that you can call that method, including the parameter list that you will use to
call that method in PowerShell.

For example, you might see the following in the definition for System.DateTime.Add
Days():

C#
public DateTime AddDays (
 double value
)

3.13 Get Detailed Documentation About Types and Objects | 129

Public means that the AddDays method is public—that you can access it from Power‐
Shell. DateTime means that the method returns a DateTime object when you call it.
The text double value means that this method requires a parameter (of type
double). In this case, that parameter determines the number of days to add to the
DateTime object on which you call the method.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 3.12, “Learn About Types and Objects”

3.14 Add Custom Methods and Properties to Objects
Problem
You have an object and want to add your own custom properties or methods (mem‐
bers) to that object.

Solution
Use the Add-Member cmdlet to add custom members to an object.

Discussion
The Add-Member cmdlet is extremely useful in helping you add custom members to
individual objects. For example, imagine that you want to create a report from the
files in the current directory, and that report should include each file’s owner. The
Owner property is not standard on the objects that Get-ChildItem produces, but you
could write a small script to add them, as shown in Example 3-7.

Example 3-7. A script that adds custom properties to its output of file objects

##
##
Get-OwnerReport
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Gets a list of files in the current directory, but with their owner added

130 | Chapter 3: Variables and Objects

to the resulting objects.

.EXAMPLE

PS > Get-OwnerReport | Format-Table Name,LastWriteTime,Owner
Retrieves all files in the current directory, and displays the
Name, LastWriteTime, and Owner

#>

Set-StrictMode -Version 3

$files = Get-ChildItem
foreach($file in $files)
{
 $owner = (Get-Acl $file).Owner
 $file | Add-Member NoteProperty Owner $owner
 $file
}

For more information about running scripts, see Recipe 1.2.

The most common type of information to add to an object is static information in a
NoteProperty. Add-Member even uses this as the default if you omit it:

PS > $item = Get-Item C:\
PS > $item | Add-Member VolumeName "Operating System"
PS > $item.VolumeName
Operating System

In addition to note properties, the Add-Member cmdlet supports several other prop‐
erty and method types, including AliasProperty, ScriptProperty, CodeProperty,
CodeMethod, and ScriptMethod. For a more detailed description of these other prop‐
erty types, see “Working with the .NET Framework” on page 833, as well as the help
documentation for the Add-Member cmdlet.

To create entirely new objects (instead of adding information to
existing ones), see Recipe 3.15.

Although the Add-Member cmdlet lets you customize specific objects, it doesn’t let you
customize all objects of that type. For information on how to do that, see Recipe 3.16.

3.14 Add Custom Methods and Properties to Objects | 131

Calculated properties
Calculated properties are another useful way to add information to output objects. If
your script or command uses a Format-Table or Select-Object command to gener‐
ate its output, you can create additional properties by providing an expression that
generates their value. For example:

Get-ChildItem |
 Select-Object Name,
 @{Name="Size (MB)"; Expression={ "{0,8:0.00}" -f ($_.Length / 1MB) } }

In this command, we get the list of files in the directory. We use the Select-Object
command to retrieve its name and a calculated property called Size (MB). This cal‐
culated property returns the size of the file in megabytes, rather than the default
(bytes).

The Format-Table cmdlet supports a similar hashtable to add cal‐
culated properties, but uses Label (rather than Name) as the key to
identify the property. To eliminate the confusion this produced, the
PowerShell team updated the two cmdlets to accept both Name and
Label.

For more information about the Add-Member cmdlet, type Get-Help Add-Member.

For more information about adding calculated properties, type Get-Help Select-
Object or Get-Help Format-Table.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 3.15, “Create and Initialize Custom Objects”

Recipe 3.16, “Add Custom Methods and Properties to Types”

“Working with the .NET Framework” on page 833

3.15 Create and Initialize Custom Objects
Problem
You want to return structured results from a command so that users can easily sort,
group, and filter them.

132 | Chapter 3: Variables and Objects

Solution
Use the [PSCustomObject] type cast to a new PSCustomObject, supplying a hashtable
with the custom information as its value, as shown in Example 3-8.

Example 3-8. Creating a custom object

$output = [PSCustomObject] @{
 'User' = 'DOMAIN\User';
 'Quota' = 100MB;
 'ReportDate' = Get-Date;
}

If you want to create a custom object with associated functionality, write a PowerShell
class in a module, and create an instance of that class:

using module c:\modules\PlottingObject.psm1

$obj = [PlottingObject]::new()
$obj.Move(10,10)
$obj.Points = SineWave
while($true) { $obj.Rotate(10); $obj.Draw(); Sleep -m 20 }

Discussion
When your script outputs information to the user, always prefer richly structured
data over hand-formatted reports. By emitting custom objects, you give the end user
as much control over your script’s output as PowerShell gives you over the output of
its own commands.

Despite the power afforded by the output of custom objects, user-written scripts have
frequently continued to generate plain-text output. This can be partly blamed on
PowerShell’s previously cumbersome support for the creation and initialization of
custom objects, as shown in Example 3-9.

Example 3-9. Creating a custom object in PowerShell version 1

$output = New-Object PsObject
Add-Member -InputObject $output NoteProperty User 'DOMAIN\user'
Add-Member -InputObject $output NoteProperty Quota 100MB
Add-Member -InputObject $output NoteProperty ReportDate (Get-Date)

$output

In PowerShell version 1, creating a custom object required creating a new object (of
the type PsObject), and then calling the Add-Member cmdlet multiple times to add the
desired properties. PowerShell version 2 made this immensely easier by adding the
-Property parameter to the New-Object cmdlet, which applied to the PSObject type

3.15 Create and Initialize Custom Objects | 133

as well. PowerShell version 3 made this as simple as possible by directly supporting
the [PSCustomObject] type cast.

While creating a PSCustomObject makes it easy to create data-centric objects (often
called property bags), it doesn’t let you add functionality to those objects. When you
need functionality as well, the next step is to create a PowerShell class (see
Example 3-10). Like many other languages, PowerShell classes support constructors,
public properties, and public methods, as well as internal helper variables and
methods.

Example 3-10. Creating a module that exports a custom class

##
##
PlottingObject.psm1
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Demonstrates a module that implements a custom class

.EXAMPLE

function SineWave { -15..15 | % { ,($_,(10 * [Math]::Sin($_ / 3))) } }
function Box { -5..5 | % { ($_,-5),($_,5),(-5,$_),(5,$_) } }

using module PlottingObject

$obj = [PlottingObject]::New(@())
$obj.Points = Box
$obj.Move(10,10)
while($true) { $obj.Rotate(10); $obj.Draw(); Start-Sleep -m 20 }

$obj = [PlottingObject]::New((SineWave))
while($true) { $obj.Rotate(10); $obj.Draw(); Start-Sleep -m 20 }

#>

class PlottingObject
{
 ## Constructors: one with no arguments and another that takes a
 ## set of initial points.
 PlottingObject()
 {
 $this.Points = @()
 }

134 | Chapter 3: Variables and Objects

 PlottingObject($initialPoints)
 {
 $this.Points = $initialPoints
 }

 ## An external property holding the points to plot
 $Points = @()

 ## Internal variables
 hidden $x = 0
 hidden $y = 0
 hidden $angle = 0
 hidden $xScale = -50,50
 hidden $yScale = -50,50
 hidden $windowWidth = [Console]::WindowWidth
 hidden $windowHeight = [Console]::WindowHeight

 ## A public method to rotate the points by a certain amount
 [void] Rotate([int] $angle)
 {
 $this.angle += $angle
 }

 ## A public method to move the points by a certain amount
 [void] Move([int] $xDelta, [int] $yDelta)
 {
 $this.x += $xDelta
 $this.y += $yDelta
 }

 ## A public method to draw the given points
 [void] Draw()
 {
 $degToRad = 180 * [Math]::Pi

 ## Go through each of the supplied points,
 ## move them the amount specified, and then rotate them
 ## by the angle specified
 $frame = foreach($point in $this.Points)
 {
 $pointX,$pointY = $point
 $pointX = $pointX + $this.x
 $pointY = $pointY + $this.y

 $newX = $pointX * [Math]::Cos($this.angle / $degToRad) -
 $pointY * [Math]::Sin($this.angle / $degToRad)
 $newY = $pointY * [Math]::Cos($this.angle / $degToRad) +
 $pointX * [Math]::Sin($this.angle / $degToRad)

 $this.PutPixel($newX, $newY, 'O')
 }

 ## Draw the origin
 $frame += $this.PutPixel(0, 0, '+')

 Clear-Host

3.15 Create and Initialize Custom Objects | 135

 Write-Host "`e[?25l" -NoNewline
 Write-Host $frame -NoNewline
 }

 ## A helper function to draw a pixel on the screen
 hidden [string] PutPixel([int] $x, [int] $y, [char] $character)
 {
 $scaledX = ($x - $this.xScale[0]) / ($this.xScale[1] - $this.xScale[0])
 $scaledX = [int] ($scaledX * $this.windowHeight * 2.38)

 $scaledY = (($y * 4 / 3) - $this.yScale[0]) / ($this.yScale[1] - $this.yScale[0])
 $scaledY = [int] ($scaledY * $this.windowHeight)

 return "`e[$scaledY;${scaledX}H$character"
 }
}

For more information about creating modules, see Recipe 11.6. For more information
about the syntax of PowerShell classes, see “Classes” on page 829.

See Also
Recipe 7.13, “Create a Hashtable or Associative Array”

Recipe 11.6, “Package Common Commands in a Module”

“Classes” on page 829

3.16 Add Custom Methods and Properties to Types
Problem
You want to add your own custom properties or methods to all objects of a certain
type.

Solution
Use the Update-TypeData cmdlet to add custom members to all objects of a type.

Update-TypeData -TypeName AddressRecord `
 -MemberType AliasProperty -Membername Cell -Value Phone

Alternatively, use custom type extension files.

Discussion
Although the Add-Member cmdlet is extremely useful in helping you add custom
members to individual objects, it requires that you add the members to each object
that you want to interact with. It does not let you automatically add them to all

136 | Chapter 3: Variables and Objects

objects of that type. For that purpose, PowerShell supports another mechanism—cus‐
tom type extensions.

The simplest and most common way to add members to all instances of a type is
through the Update-TypeData cmdlet. This cmdlet supports aliases, notes, script
methods, and more:

$r = [PSCustomObject] @{
 Name = "Lee";
 Phone = "555-1212";
 SSN = "123-12-1212"
}
$r.PSTypeNames.Add("AddressRecord")
Update-TypeData -TypeName AddressRecord `
 -MemberType AliasProperty -Membername Cell -Value Phone

Custom type extensions let you easily add your own features to any type exposed by
the system. If you write code (for example, a script or function) that primarily inter‐
acts with a single type of object, then that code might be better suited as an extension
to the type instead.

For example, imagine a script that returns the free disk space on a given drive. That
might be helpful as a script, but instead you might find it easier to make PowerShell’s
PSDrive objects themselves tell you how much free space they have left.

In addition to the Update-TypeData approach, PowerShell supports type extensions
through XML-based type extension files. Since type extension files are XML files,
make sure that your customizations properly encode the characters that have special
meaning in XML files, such as <, >, and &.

For more information about the features supported by these formatting XML files,
type Get-Help about_format.ps1xml.

Getting started
If you haven’t done so already, the first step in creating a type extension file is to cre‐
ate an empty one. The best location for this is probably in the same directory as your
custom profile, with the filename Types.Custom.ps1xml, as shown in Example 3-11.

Example 3-11. Sample Types.Custom.ps1xml file

<?xml version="1.0" encoding="utf-8" ?>
<Types>
</Types>

Next, add a few lines to your PowerShell profile so that PowerShell loads your type
extensions during startup:

$typeFile = (Join-Path (Split-Path $profile) "Types.Custom.ps1xml")
Update-TypeData -PrependPath $typeFile

3.16 Add Custom Methods and Properties to Types | 137

By default, PowerShell loads several type extensions from its internal configuration
stores. The Update-TypeData cmdlet tells PowerShell to also look in your
Types.Custom.ps1xml file for extensions. The -PrependPath parameter makes Power‐
Shell favor your extensions over the built-in ones in case of conflict.

Once you have a custom types file to work with, adding functionality becomes rela‐
tively straightforward. As a theme, these examples do exactly what we alluded to ear‐
lier: add functionality to PowerShell’s PSDrive type.

PowerShell does this automatically. Type Get-PSDrive to see the
result.

To support this, you need to extend your custom types file so that it defines additions
to the System.Management.Automation.PSDriveInfo type, shown in Example 3-12.
System.Management.Automation.PSDriveInfo is the type that the Get-PSDrive
cmdlet generates.

Example 3-12. A template for changes to a custom types file

<?xml version="1.0" encoding="utf-8" ?>
<Types>
 <Type>
 <Name>System.Management.Automation.PSDriveInfo</Name>
 <Members>
 add members such as <ScriptProperty> here
 <Members>
 </Type>
</Types>

Add a ScriptProperty

A ScriptProperty lets you add properties (that get and set information) to types,
using PowerShell script as the extension language. It consists of three child elements:
the Name of the property, the getter of the property (via the GetScriptBlock child),
and the setter of the property (via the SetScriptBlock child).

In both the GetScriptBlock and SetScriptBlock sections, the $this variable refers
to the current object being extended. In the SetScriptBlock section, the $args[0]
variable represents the value that the user supplied as the righthand side of the
assignment.

Example 3-13 adds an AvailableFreeSpace ScriptProperty to PSDriveInfo, and
should be placed within the members section of the template given in Example 3-12.
When you access the property, it returns the amount of free space remaining on the

138 | Chapter 3: Variables and Objects

drive. When you set the property, it outputs what changes you must make to obtain
that amount of free space.

Example 3-13. A ScriptProperty for the PSDriveInfo type

<ScriptProperty>
 <Name>AvailableFreeSpace</Name>
 <GetScriptBlock>
 ## Ensure that this is a FileSystem drive
 if($this.Provider.ImplementingType -eq
 [Microsoft.PowerShell.Commands.FileSystemProvider])
 {
 ## Also ensure that it is a local drive
 $driveRoot = $this.Root
 $fileZone = [System.Security.Policy.Zone]::CreateFromUrl(
 $driveRoot).SecurityZone
 if($fileZone -eq "MyComputer")
 {
 $drive = New-Object System.IO.DriveInfo $driveRoot
 $drive.AvailableFreeSpace
 }
 }
 </GetScriptBlock>
 <SetScriptBlock>
 ## Get the available free space
 $availableFreeSpace = $this.AvailableFreeSpace

 ## Find out the difference between what is available, and what they
 ## asked for.
 $spaceDifference = (([long] $args[0]) - $availableFreeSpace) / 1MB

 ## If they want more free space than they have, give that message
 if($spaceDifference -gt 0)
 {
 $message = "To obtain $args bytes of free space, " +
 " free $spaceDifference megabytes."
 Write-Host $message
 }
 ## If they want less free space than they have, give that message
 else
 {
 $spaceDifference = $spaceDifference * -1
 $message = "To obtain $args bytes of free space, " +
 " use up $spaceDifference more megabytes."
 Write-Host $message
 }
 </SetScriptBlock>
</ScriptProperty>

3.16 Add Custom Methods and Properties to Types | 139

Add an AliasProperty

An AliasProperty gives an alternative name (alias) for a property. The referenced
property doesn’t need to exist when PowerShell processes your type extension file,
since you (or another script) might later add the property through mechanisms such
as the Add-Member cmdlet.

Example 3-14 adds a Free AliasProperty to PSDriveInfo, and it should also be
placed within the members section of the template given in Example 3-12. When you
access the property, it returns the value of the AvailableFreeSpace property. When
you set the property, it sets the value of the AvailableFreeSpace property.

Example 3-14. An AliasProperty for the PSDriveInfo type

<AliasProperty>
 <Name>Free</Name>
 <ReferencedMemberName>AvailableFreeSpace</ReferencedMemberName>
</AliasProperty>

Add a ScriptMethod

A ScriptMethod lets you define an action on an object, using PowerShell script as the
extension language. It consists of two child elements: the Name of the property and the
Script.

In the script element, the $this variable refers to the current object you are extend‐
ing. Like a standalone script, the $args variable represents the arguments to the
method. Unlike standalone scripts, ScriptMethods do not support the param state‐
ment for parameters.

Example 3-15 adds a Remove ScriptMethod to PSDriveInfo. Like the other additions,
place these customizations within the members section of the template given in
Example 3-12. When you call this method with no arguments, the method simulates
removing the drive (through the -WhatIf option to Remove-PSDrive). If you call this
method with $true as the first argument, it actually removes the drive from the Pow‐
erShell session.

Example 3-15. A ScriptMethod for the PSDriveInfo type

<ScriptMethod>
 <Name>Remove</Name>
 <Script>
 $force = [bool] $args[0]
 ## Remove the drive if they use $true as the first parameter
 if($force)
 {
 $this | Remove-PSDrive
 }

140 | Chapter 3: Variables and Objects

 ## Otherwise, simulate the drive removal
 else
 {
 $this | Remove-PSDrive -WhatIf
 }
 </Script>
</ScriptMethod>

Add other extension points
PowerShell supports several additional features in the types extension file, including
CodeProperty, NoteProperty, CodeMethod, and MemberSet. Although not generally
useful to end users, developers of PowerShell providers and cmdlets will find these
features helpful. For more information about these additional features, see the Power‐
Shell software developer’s kit (SDK) or the Microsoft documentation.

3.17 Define Custom Formatting for a Type
Problem
You want to emit custom objects from a script and have them formatted in a specific
way.

Solution
Use a custom format extension file to define the formatting for that type, followed by
a call to the Update-FormatData cmdlet to load them into your session:

$formatFile = Join-Path (Split-Path $profile) "Format.Custom.Ps1Xml"
Update-FormatData -PrependPath $typesFile

If a file-based approach is not an option, use the Formats property of the
[Runspace]::DefaultRunspace.InitialSessionState type to add new formatting
definitions for the custom type.

Discussion
When PowerShell commands produce output, this output comes in the form of richly
structured objects rather than basic streams of text. These richly structured objects
stop being of any use once they make it to the screen, though, so PowerShell guides
them through one last stage before showing them on screen: formatting and output.

The formatting and output system is based on the concept of views. Views can take
several forms: table views, list views, complex views, and more. The most common
view type is a table view. This is the form you see when you use Format-Table in a
command, or when an object has four or fewer properties.

3.17 Define Custom Formatting for a Type | 141

As with the custom type extensions described in Recipe 3.16, PowerShell supports
both file-based and in-memory updates of type formatting definitions.

The simplest and most common way to define formatting for a type is through the
Update-FormatData cmdlet, as shown in the Solution. The Update-FormatData
cmdlet takes paths to Format.ps1xml files as input. There are many examples of for‐
matting definitions in the PowerShell installation directory that you can use. To cre‐
ate your own formatting customizations, use these files as a source of examples, but
do not modify them directly. Instead, create a new file and use the Update-
FormatData cmdlet to load your customizations.

For more information about the features supported by these formatting XML files,
type Get-Help about_format.ps1xml.

In addition to file-based formatting, PowerShell makes it possible (although not easy)
to create formatting definitions from scratch. Example 3-16 provides a script to sim‐
plify this process.

Example 3-16. Add-FormatData.ps1

##
##
Add-FormatData
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Adds a table formatting definition for the specified type name.

.EXAMPLE

PS > $r = [PSCustomObject] @{
 Name = "Lee";
 Phone = "555-1212";
 SSN = "123-12-1212"
}
PS > $r.PSTypeNames.Add("AddressRecord")
PS > Add-FormatData -TypeName AddressRecord -TableColumns Name, Phone
PS > $r

Name Phone
---- -----
Lee 555-1212

#>

142 | Chapter 3: Variables and Objects

param(
 ## The type name (or PSTypeName) that the table definition should
 ## apply to.
 $TypeName,

 ## The columns to be displayed by default
 [string[]] $TableColumns
)

Set-StrictMode -Version 3

Define the columns within a table control row
$rowDefinition = New-Object Management.Automation.TableControlRow

Create left-aligned columns for each provided column name
foreach($column in $TableColumns)
{
 $rowDefinition.Columns.Add(
 (New-Object Management.Automation.TableControlColumn "Left",
 (New-Object Management.Automation.DisplayEntry $column,"Property")))
}

$tableControl = New-Object Management.Automation.TableControl
$tableControl.Rows.Add($rowDefinition)

And then assign the table control to a new format view,
which we then add to an extended type definition. Define this view for the
supplied custom type name.
$formatViewDefinition =
 New-Object Management.Automation.FormatViewDefinition "TableView",$tableControl
$extendedTypeDefinition =
 New-Object Management.Automation.ExtendedTypeDefinition $TypeName
$extendedTypeDefinition.FormatViewDefinition.Add($formatViewDefinition)

Add the definition to the session, and refresh the format data
[Runspace]::DefaultRunspace.InitialSessionState.Formats.Add($extendedTypeDefinition)
Update-FormatData

3.17 Define Custom Formatting for a Type | 143

CHAPTER 4

Looping and Flow Control

4.0 Introduction
As you begin to write scripts or commands that interact with unknown data, the con‐
cepts of looping and flow control become increasingly important.

PowerShell’s looping statements and commands let you perform an operation (or set
of operations) without having to repeat the commands themselves. This includes, for
example, doing something a specified number of times, processing each item in a col‐
lection, or working until a certain condition comes to pass.

PowerShell’s flow control and comparison statements let you adapt your script or
command to unknown data. They let you execute commands based on the value of
that data, skip commands based on the value of that data, and more.

Together, looping and flow control statements add significant versatility to your
PowerShell toolbox.

4.1 Make Decisions with Comparison and Logical
Operators
Problem
You want to compare some data with other data and make a decision based on that
comparison.

Solution
Use PowerShell’s logical operators to compare pieces of data and make decisions
based on them:

145

Comparison operators
-eq, -ne, -ge, -gt, -in, -notin, -lt, -le, -like, -notlike, -match, -notmatch,
-contains, -notcontains, -is, -isnot

Logical operators
-and, -or, -xor, -not

For a detailed description (and examples) of these operators, see “Comparison Opera‐
tors” on page 818.

Discussion
PowerShell’s logical and comparison operators let you compare pieces of data or test
data for some condition. An operator either compares two pieces of data (a binary
operator) or tests one piece of data (a unary operator). All comparison operators are
binary operators (they compare two pieces of data), as are most of the logical opera‐
tors. The only unary logical operator is the -not operator, which returns the true/
false opposite of the data that it tests.

Comparison operators compare two pieces of data and return a result that depends
on the specific comparison operator. For example, you might want to check whether a
collection has at least a certain number of elements:

PS > (dir).Count -ge 4
True

or check whether a string matches a given regular expression:
PS > "Hello World" -match "H.*World"
True

Most comparison operators also adapt to the type of their input. For example, when
you apply them to simple data such as a string, the -like and -match comparison
operators determine whether the string matches the specified pattern. When you
apply them to a collection of simple data, those same comparison operators return all
elements in that collection that match the pattern you provide.

The -match operator takes a regular expression as its argument.
One of the more common regular expression symbols is the $ char‐
acter, which represents the end of line. The $ character also repre‐
sents the start of a PowerShell variable, though! To prevent Power‐
Shell from interpreting characters as language terms or escape
sequences, place the string in single quotes rather than double
quotes:

PS > "Hello World" -match "Hello"
True
PS > "Hello World" -match 'Hello$'
False

146 | Chapter 4: Looping and Flow Control

By default, PowerShell’s comparison operators are case-insensitive. To use the case-
sensitive versions, prefix them with the character c:

-ceq, -cne, -cge, -cgt, -cin, -clt, -cle, -clike, -cnotlike,
-cmatch, -cnotmatch, -ccontains, -cnotcontains

For a detailed description of the comparison operators, their case-sensitive counter‐
parts, and how they adapt to their input, see “Comparison Operators” on page 818.

Logical operators combine true or false statements and return a result that depends
on the specific logical operator. For example, you might want to check whether a
string matches the wildcard pattern you supply and that it is longer than a certain
number of characters:

PS > $data = "Hello World"
PS > ($data -like "*llo W*") -and ($data.Length -gt 10)
True
PS > ($data -like "*llo W*") -and ($data.Length -gt 20)
False

Some of the comparison operators actually incorporate aspects of the logical opera‐
tors. Since using the opposite of a comparison (such as -like) is so common, Power‐
Shell provides comparison operators (such as -notlike) that save you from having to
use the -not operator explicitly.

For a detailed description of the individual logical operators, see “Comparison Opera‐
tors” on page 818.

Comparison operators and logical operators (when combined with flow control state‐
ments) form the core of how we write a script or command that adapts to its data and
input.

See also “Conditional Statements” on page 821 for detailed information about these
statements.

For more information about PowerShell’s operators, type Get-Help

about_Operators.

See Also
“Comparison Operators” on page 818

“Conditional Statements” on page 821

4.1 Make Decisions with Comparison and Logical Operators | 147

4.2 Adjust Script Flow Using Conditional Statements
Problem
You want to control the conditions under which PowerShell executes commands or
portions of your script.

Solution
Use PowerShell’s if, elseif, and else conditional statements to control the flow of
execution in your script.

For example:
$temperature = 90

if($temperature -le 0)
{
 "Balmy Canadian Summer"
}
elseif($temperature -le 32)
{
 "Freezing"
}
elseif($temperature -le 50)
{
 "Cold"
}
elseif($temperature -le 70)
{
 "Warm"
}
else
{
 "Hot"
}

Discussion
Conditional statements include the following:

if statement
Executes the script block that follows it if its condition evaluates to true

elseif statement
Executes the script block that follows it if its condition evaluates to true and none
of the conditions in the if or elseif statements before it evaluate to true

148 | Chapter 4: Looping and Flow Control

else statement
Executes the script block that follows it if none of the conditions in the if or
elseif statements before it evaluate to true

In addition to being useful for script control flow, conditional statements are often a
useful way to assign data to a variable. PowerShell makes this very easy by letting you
assign the results of a conditional statement directly to a variable:

$result = if(Get-Process -Name notepad) { "Running" } else { "Not running" }

For very simple conditional statements such as this, you can also use PowerShell’s ter‐
nary operator:

$result = (Get-Process -Name notepad*) ? "Running" : "Not running"

For more information about these flow control statements, type Get-Help about_If.

4.3 Manage Large Conditional Statements with Switches
Problem
You want to find an easier or more compact way to represent a large if … elseif …
else conditional statement.

Solution
Use PowerShell’s switch statement to more easily represent a large if … elseif …
else conditional statement.

For example:
$temperature = 20

switch($temperature)
{
 { $_ -lt 32 } { "Below Freezing"; break }
 32 { "Exactly Freezing"; break }
 { $_ -le 50 } { "Cold"; break }
 { $_ -le 70 } { "Warm"; break }
 default { "Hot" }
}

Discussion
PowerShell’s switch statement lets you easily test its input against a large number of
comparisons. The switch statement supports several options that allow you to con‐
figure how PowerShell compares the input against the conditions—such as with a
wildcard, regular expression, or even an arbitrary script block. Since scanning
through the text in a file is such a common task, PowerShell’s switch statement

4.3 Manage Large Conditional Statements with Switches | 149

supports that directly. These additions make PowerShell switch statements a great
deal more powerful than those in C and C++.

As another example of the switch statement in action, consider how to determine the
SKU of the current operating system. For example, is the script running on Windows
7 Ultimate? Windows Server Cluster Edition? The Get-CimInstance cmdlet lets you
determine the operating system SKU, but unfortunately returns its result as a simple
number. A switch statement lets you map these numbers to their English equivalents
based on the official documentation:

##
##
Get-OperatingSystemSku
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Gets the sku information for the current operating system

.EXAMPLE

PS > Get-OperatingSystemSku
Professional with Media Center

#>

param($Sku =
 (Get-CimInstance Win32_OperatingSystem).OperatingSystemSku)

Set-StrictMode -Version 3

switch ($Sku)
{
 0 { "An unknown product"; break; }
 1 { "Ultimate"; break; }
 2 { "Home Basic"; break; }
 3 { "Home Premium"; break; }
 4 { "Enterprise"; break; }
 5 { "Home Basic N"; break; }
 6 { "Business"; break; }
 7 { "Server Standard"; break; }
 8 { "Server Datacenter (full installation)"; break; }
 9 { "Windows Small Business Server"; break; }
 10 { "Server Enterprise (full installation)"; break; }
 11 { "Starter"; break; }
 12 { "Server Datacenter (core installation)"; break; }
 13 { "Server Standard (core installation)"; break; }
 14 { "Server Enterprise (core installation)"; break; }

150 | Chapter 4: Looping and Flow Control

https://oreil.ly/1fI6H

 15 { "Server Enterprise for Itanium-based Systems"; break; }
 16 { "Business N"; break; }
 17 { "Web Server (full installation)"; break; }
 18 { "HPC Edition"; break; }
 19 { "Windows Storage Server 2008 R2 Essentials"; break; }
 20 { "Storage Server Express"; break; }
 21 { "Storage Server Standard"; break; }
 22 { "Storage Server Workgroup"; break; }
 23 { "Storage Server Enterprise"; break; }
 24 { "Windows Server 2008 for Windows Essential Server Solutions"; break; }
 25 { "Small Business Server Premium"; break; }
 26 { "Home Premium N"; break; }
 27 { "Enterprise N"; break; }
 28 { "Ultimate N"; break; }
 29 { "Web Server (core installation)"; break; }
 30 { "Windows Essential Business Server Management Server"; break; }
 31 { "Windows Essential Business Server Security Server"; break; }
 32 { "Windows Essential Business Server Messaging Server"; break; }
 33 { "Server Foundation"; break; }
 34 { "Windows Home Server 2011"; break; }
 35 { "Windows Server 2008 without Hyper-V for Windows Essential Server"; break; }
 36 { "Server Standard without Hyper-V"; break; }
 37 { "Server Datacenter without Hyper-V (full installation)"; break; }
 38 { "Server Enterprise without Hyper-V (full installation)"; break; }
 39 { "Server Datacenter without Hyper-V (core installation)"; break; }
 40 { "Server Standard without Hyper-V (core installation)"; break; }
 41 { "Server Enterprise without Hyper-V (core installation)"; break; }
 42 { "Microsoft Hyper-V Server"; break; }
 43 { "Storage Server Express (core installation)"; break; }
 44 { "Storage Server Standard (core installation)"; break; }
 45 { "Storage Server Workgroup (core installation)"; break; }
 46 { "Storage Server Enterprise (core installation)"; break; }
 46 { "Storage Server Enterprise (core installation)"; break; }
 47 { "Starter N"; break; }
 48 { "Professional"; break; }
 49 { "Professional N"; break; }
 50 { "Windows Small Business Server 2011 Essentials"; break; }
 51 { "Server For SB Solutions"; break; }
 52 { "Server Solutions Premium"; break; }
 53 { "Server Solutions Premium (core installation)"; break; }
 54 { "Server For SB Solutions EM"; break; }
 55 { "Server For SB Solutions EM"; break; }
 56 { "Windows MultiPoint Server"; break; }
 59 { "Windows Essential Server Solution Management"; break; }
 60 { "Windows Essential Server Solution Additional"; break; }
 61 { "Windows Essential Server Solution Management SVC"; break; }
 62 { "Windows Essential Server Solution Additional SVC"; break; }
 63 { "Small Business Server Premium (core installation)"; break; }
 64 { "Server Hyper Core V"; break; }
 72 { "Server Enterprise (evaluation installation)"; break; }
 76 { "Windows MultiPoint Server Standard (full installation)"; break; }
 77 { "Windows MultiPoint Server Premium (full installation)"; break; }
 79 { "Server Standard (evaluation installation)"; break; }
 80 { "Server Datacenter (evaluation installation)"; break; }
 84 { "Enterprise N (evaluation installation)"; break; }
 95 { "Storage Server Workgroup (evaluation installation)"; break; }

4.3 Manage Large Conditional Statements with Switches | 151

 96 { "Storage Server Standard (evaluation installation)"; break; }
 98 { "Windows 8 N"; break; }
 99 { "Windows 8 China"; break; }
 100 { "Windows 8 Single Language"; break; }
 101 { "Windows 8"; break; }
 103 { "Professional with Media Center"; break; }

 default {"UNKNOWN: " + $SKU }
}

Although used as a way to express large conditional statements more cleanly, a
switch statement operates much like a large sequence of if statements, as opposed to
a large sequence of if … elseif … elseif … else statements. Given the input that
you provide, PowerShell evaluates that input against each of the comparisons in the
switch statement. If the comparison evaluates to true, PowerShell then executes the
script block that follows it. Unless that script block contains a break statement,
PowerShell continues to evaluate the following comparisons.

For more information about PowerShell’s switch statement, see “Conditional State‐
ments” on page 821 or type Get-Help about_Switch.

See Also
“Conditional Statements” on page 821

4.4 Repeat Operations with Loops
Problem
You want to execute the same block of code more than once.

Solution
Use one of PowerShell’s looping statements (for, foreach, while, and do) or Power‐
Shell’s ForEach-Object cmdlet to run a command or script block more than once.
For a detailed description of these looping statements, see “Looping Statements” on
page 825. For example:

for loop
for($counter = 1; $counter -le 10; $counter++)
{
 "Loop number $counter"
}

foreach loop
foreach($file in dir)
{
 "File length: " + $file.Length
}

152 | Chapter 4: Looping and Flow Control

ForEach-Object cmdlet
Get-ChildItem | ForEach-Object { "File length: " + $_.Length }

while loop
$response = ""
while($response -ne "QUIT")
{
 $response = Read-Host "Type something"
}

do..while loop
$response = ""
do
{
 $response = Read-Host "Type something"
} while($response -ne "QUIT")

do..until loop
$response = ""
do
{
 $response = Read-Host "Type something"
} until($response -eq "QUIT")

Discussion
Although any of the looping statements can be written to be functionally equivalent
to any of the others, each lends itself to certain problems.

You usually use a for loop when you need to perform an operation an exact number
of times. Because using it this way is so common, it is often called a counted for loop.

You usually use a foreach loop when you have a collection of objects and want to
visit each item in that collection. If you do not yet have that entire collection in mem‐
ory (as in the dir collection from the foreach example shown earlier), the ForEach-
Object cmdlet is usually a more efficient alternative.

Unlike the foreach loop, the ForEach-Object cmdlet lets you process each element
in the collection as PowerShell generates it. This is an important distinction; asking
PowerShell to collect the entire output of a large command (such as Get-Content
hugefile.txt) in a foreach loop can easily drag down your system.

Like pipeline-oriented functions, the ForEach-Object cmdlet lets you define com‐
mands to execute before the looping begins, during the looping, and after the looping
completes:

PS > "a","b","c" | ForEach-Object `
 -Begin { "Starting"; $counter = 0 } `
 -Process { "Processing $_"; $counter++ } `
 -End { "Finishing: $counter" }

4.4 Repeat Operations with Loops | 153

Starting
Processing a
Processing b
Processing c
Finishing: 3

To invoke multiple operations in your loop at the same time, use
the -parallel switch of ForEach-Object. For more information, see
Recipe 4.5.

The while and do..while loops are similar, in that they continue to execute the loop
as long as its condition evaluates to true. A while loop checks for this before running
your script block, whereas a do..while loop checks the condition after running your
script block. A do..until loop is exactly like a do..while loop, except that it exits
when its condition returns $true, rather than when its condition returns $false.

For a detailed description of these looping statements, see “Looping Statements” on
page 825 or type Get-Help about_For, Get-Help about_Foreach, Get-Help

about_While, or Get-Help about_Do.

See Also
Recipe 4.5, “Process Time-Consuming Action in Parallel”

“Looping Statements” on page 825

4.5 Process Time-Consuming Action in Parallel
Problem
You have a set of data or actions that you want to run at the same time.

Solution
Use the -parallel switch of the ForEach-Object cmdlet:

PS > Measure-Command { 1..5 | ForEach-Object { Start-Sleep -Seconds 5 } }

(...)
TotalSeconds : 25.0247856
(...)

PS > Measure-Command { 1..5 | ForEach-Object -parallel { Start-Sleep -Seconds 5 } }

(...)
TotalSeconds : 5.1354752
(...)

154 | Chapter 4: Looping and Flow Control

Discussion
There are times in PowerShell when you can significantly speed up a long-running
operation by running parts of it at the same time. Perfect opportunities for this are
scenarios where your script spends most of its time waiting on network resources
(such as downloading files or web pages) or slow operations (such as restarting a ser‐
ies of slow services).

In these scenarios, you can use the -parallel parameter of ForEach-Object to per‐
form these actions at the same time. Under the covers, PowerShell uses background
jobs to run each branch. It caps the number of branches running at the same time to
whatever you specify in the -ThrottleLimit parameter, with a default of 5.

If the reason you want multiple commands in parallel is to accom‐
plish some task quickly across a large set of machines, you should
instead use Invoke-Command. For more information, see Recipe
29.5.

Since PowerShell runs these branches as background jobs, you need to use either the
$USING syntax to bring outside variables into this background job (PowerShell brings
$_ by default) or provide the variables in the -ArgumentList parameter. For example:

PS > $greeting = "World"
PS > 1..5 | ForEach-Object -parallel { "Hello $greeting" }
Hello
Hello
Hello
Hello
Hello

PS > 1..5 | ForEach-Object -parallel { "Hello $USING:greeting" }
Hello World
Hello World
Hello World
Hello World
Hello World

PowerShell runs these background jobs in your main PowerShell process, so you can
act on input as live instances:

$processes = 1..10 | ForEach-Object { Start-Process notepad -PassThru }
$processes | ForEach-Object -parallel { $_.Kill() }

If you need the branches of your parallel loop to communicate back to your main
shell, the recommended approach is to accomplish this through script block output
and then have your main shell process the results. It’s tempting to do this with live
objects, but beware that the path is treacherous and difficult. Let’s take a simple exam‐
ple—running a parallel operation to increment a counter.

4.5 Process Time-Consuming Action in Parallel | 155

It might initially seem like you should use:
$counter = 0
1..10 | ForEach-Object -parallel {
 $myCounter = $USING:counter
 $myCounter = $myCounter + 1
}

However, when you type $counter = $counter + 1 in PowerShell, PowerShell
updates the $counter variable in the current scope. If you want to change an object
from a background job, you need to do so by setting a property on a live object rather
than trying to replace the object. Fortunately, PowerShell has a type called [ref] for
this kind of scenario:

$counter = [ref] 0
1..10 | ForEach-Object -parallel {
 $myCounter = $USING:counter
 $myCounter.Value = $myCounter.Value + 1
}

Initially, this seems to work:
PS > $counter

Value

 10

Now that we’re proud of ourselves, let’s really do this in parallel:
$counter = [ref] 0
1..10000 | ForEach-Object -throttlelimit 100 -parallel {
 $myCounter = $USING:counter
 $myCounter.Value = $myCounter.Value + 1
}

PS > $counter

Value

 9992

Oops! Because we’ve done this with massive parallelism, $myCounter.Value can
change at any time during the parts of the pipeline where PowerShell runs
$myCounter.Value = $myCounter.Value + 1. This is called a race condition, and is
common to any language that lets code from multiple simultaneous blocks of code
run at the same time. To get rid of the weird intermediate states, we have to use the
Interlocked Increment class from the .Net Framework:

$counter = [ref] 0
1..10000 | ForEach-Object -throttlelimit 100 -parallel {
 $myCounter = $USING:counter
 $null = [Threading.Interlocked]::Increment($myCounter)
}

156 | Chapter 4: Looping and Flow Control

Which correctly gives us:
PS > $counter

Value

10000

These problems are gnarly, and bite even professional programmers with regularity.
The best practice to handle this class of issue is to avoid the area altogether by not
processing or operating on shared state.

See Also
Recipe 4.4, “Repeat Operations with Loops”

Recipe 29.5, “Invoke a Command on a Remote Computer”

4.6 Add a Pause or Delay
Problem
You want to pause or delay your script or command.

Solution
To pause until the user presses the Enter key, use the pause command:

PS > pause
Press Enter to continue...:

To pause until the user presses any key, use the ReadKey() method on the $host
object:

PS > $host.UI.RawUI.ReadKey()

To pause a script for a given amount of time, use the Start-Sleep cmdlet:
PS > Start-Sleep 5
PS > Start-Sleep -Milliseconds 300

Discussion
When you want to pause your script until the user presses a key or for a set amount of
time, pause and Start-Sleep are the two cmdlets you’re most likely to use.

If you want to retrieve user input rather than just pause, the Read-
Host cmdlet lets you read input from the user. For more informa‐
tion, see Recipe 13.1.

4.6 Add a Pause or Delay | 157

In other situations, you may sometimes want to write a loop in your script that runs
at a constant speed—such as once per minute or 30 times per second. That is typically
a difficult task, as the commands in the loop might take up a significant amount of
time, or even an inconsistent amount of time.

In the past, many computer games suffered from solving this problem incorrectly. To
control their game speed, game developers added commands to slow down their
game. For example, after much tweaking and fiddling, the developers might realize
that the game plays correctly on a typical machine if they make the computer count
to 1 million every time it updates the screen. Unfortunately, the speed of these com‐
mands (such as counting) depends heavily on the speed of the computer. Since a fast
computer can count to 1 million much more quickly than a slow computer, the game
ends up running much more quickly (often to the point of incomprehensibility) on
faster computers!

To make your loop run at a regular speed, you can measure how long the commands
in a loop take to complete, and then delay for whatever time is left, as shown in
Example 4-1.

Example 4-1. Running a loop at a constant speed

$loopDelayMilliseconds = 650
while($true)
{
 $startTime = Get-Date

 ## Do commands here
 "Executing"

 $endTime = Get-Date
 $loopLength = ($endTime - $startTime).TotalMilliseconds
 $timeRemaining = $loopDelayMilliseconds - $loopLength

 if($timeRemaining -gt 0)
 {
 Start-Sleep -Milliseconds $timeRemaining
 }
}

For more information about the Start-Sleep cmdlet, type Get-Help Start-Sleep.

See Also
Recipe 13.1, “Read a Line of User Input”

158 | Chapter 4: Looping and Flow Control

CHAPTER 5

Strings and Unstructured Text

5.0 Introduction
Creating and manipulating text has long been one of the primary tasks of scripting
languages and traditional shells. In fact, Perl (the language) started as a simple (but
useful) tool designed for text processing. It has grown well beyond those humble
roots, but its popularity provides strong evidence of the need it fills.

In text-based shells, this strong focus continues. When most of your interaction with
the system happens by manipulating the text-based output of programs, powerful
text processing utilities become crucial. These text parsing tools, such as awk, sed, and
grep, form the keystones of text-based systems management.

In PowerShell’s object-based environment, this traditional tool chain plays a less criti‐
cal role. You can accomplish most of the tasks that previously required these tools
much more effectively through other PowerShell commands. However, being an
object-based shell does not mean that PowerShell drops all support for text process‐
ing. Dealing with strings and unstructured text continues to play an important part in
a system administrator’s life. Since PowerShell lets you manage the majority of your
system in its full fidelity (using cmdlets and objects), the text processing tools can
once again focus primarily on actual text processing tasks.

5.1 Create a String
Problem
You want to create a variable that holds text.

159

Solution
Use PowerShell string variables as a way to store and work with text.

To define a string that supports variable expansion and escape characters in its defini‐
tion, surround it with double quotes:

$myString = "Hello World"

To define a literal string (one that doesn’t interpret variable expansion or escape char‐
acters), surround it with single quotes:

$myString = 'Hello World'

Discussion
String literals come in two varieties: literal (nonexpanding) and expanding strings. To
create a literal string, place single quotes ($myString = 'Hello World') around the
text. To create an expanding string, place double quotes ($myString = "Hello

World") around the text.

In a literal string, all the text between the single quotes becomes part of your string.
In an expanding string, PowerShell expands variable names (such as $replacement
String) and escape sequences (such as `n) with their values (such as the content of
$replacementString and the newline character, respectively).

For a detailed explanation of the escape sequences and replacement rules inside
PowerShell strings, see “Strings” on page 802.

One exception to the “all text in a literal string is literal” rule comes from the quote
characters themselves. In either type of string, PowerShell lets you place two of that
string’s quote characters together to add the quote character itself:

$myString = "This string includes ""double quotes"" because it combined quote
characters."
$myString = 'This string includes ''single quotes'' because it combined quote
characters.'

This helps prevent escaping atrocities that would arise when you try to include a sin‐
gle quote in a single-quoted string. For example:

$myString = 'This string includes ' + "'" + 'single quotes' + "'"

This example shows how easy PowerShell makes it to create new
strings by adding other strings together. This is an attractive way to
build a formatted report in a script but should be used with cau‐
tion. Because of the way that the .NET Framework (and therefore
PowerShell) manages strings, adding information to the end of a
large string this way causes noticeable performance problems. If
you intend to create large reports, see Recipe 5.16.

160 | Chapter 5: Strings and Unstructured Text

See Also
Recipe 5.16, “Generate Large Reports and Text Streams”

“Strings” on page 802

5.2 Create a Multiline or Formatted String
Problem
You want to create a variable that holds text with newlines or other explicit
formatting.

Solution
Use a PowerShell here string to store and work with text that includes newlines and
other formatting information.

$myString = @"
This is the first line
of a very long string. A "here string"
lets you create blocks of text
that span several lines.
"@

Discussion
PowerShell begins a here string when it sees the characters @" followed by a newline.
It ends the string when it sees the characters "@ on their own line. These seemingly
odd restrictions let you create strings that include quote characters, newlines, and
other symbols that you commonly use when you create large blocks of preformatted
text.

These restrictions, while useful, can sometimes cause problems
when you copy and paste PowerShell examples from the internet.
Web pages often add spaces at the end of lines, which can interfere
with the strict requirements of the beginning of a here string. If
PowerShell produces an error when your script defines a here
string, check that the here string doesn’t include an errant space
after its first quote character.

Like string literals, here strings may be literal (and use single quotes) or expanding
(and use double quotes).

5.2 Create a Multiline or Formatted String | 161

5.3 Place Special Characters in a String
Problem
You want to place special characters (such as tab and newline) in a string variable.

Solution
In an expanding string, use PowerShell’s escape sequences to include special charac‐
ters such as tab and newline.

PS > $myString = "Report for Today`n----------------"
PS > $myString
Report for Today

Discussion
As discussed in Recipe 5.1, PowerShell strings come in two varieties: literal (or non‐
expanding) and expanding strings. A literal string uses single quotes around its text,
whereas an expanding string uses double quotes around its text.

In a literal string, all the text between the single quotes becomes part of your string.
In an expanding string, PowerShell expands variable names (such as $ENV:System
Root) and escape sequences (such as `n) with their values (such as the SystemRoot
environment variable and the newline character).

Unlike many languages that use a backslash character (\) for escape
sequences, PowerShell uses a backtick (`) character. This stems
from its focus on system administration, where backslashes are
ubiquitous in pathnames.

For a detailed explanation of the escape sequences and replacement rules inside
PowerShell strings, see “Strings” on page 802.

See Also
Recipe 5.1, “Create a String”

“Strings” on page 802

162 | Chapter 5: Strings and Unstructured Text

5.4 Insert Dynamic Information in a String
Problem
You want to place dynamic information (such as the value of another variable) in a
string.

Solution
In an expanding string, include the name of a variable in the string to insert the value
of that variable:

PS > $header = "Report for Today"
PS > $myString = "$header`n----------------"
PS > $myString
Report for Today

To include information more complex than just the value of a variable, enclose it in a
subexpression:

PS > $header = "Report for Today"
PS > $myString = "$header`n$('-' * $header.Length)"
PS > $myString
Report for Today

Discussion
Variable substitution in an expanding string is a simple enough concept, but subex‐
pressions deserve a little clarification.

A subexpression is the dollar sign character, followed by a PowerShell command (or
set of commands) contained in parentheses:

$(subexpression)

When PowerShell sees a subexpression in an expanding string, it evaluates the subex‐
pression and places the result in the expanding string. In the Solution, the expression
'-' * $header.Length tells PowerShell to make a line of dashes $header.Length
long.

Another way to place dynamic information inside a string is to use PowerShell’s
string formatting operator, which uses the same rules that .NET string formatting
does:

PS > $header = "Report for Today"
PS > $myString = "{0}`n{1}" -f $header,('-' * $header.Length)
PS > $myString
Report for Today

5.4 Insert Dynamic Information in a String | 163

For an explanation of PowerShell’s formatting operator, see Recipe 5.6. For more
information about PowerShell’s escape characters, type Get-Help

about_Special_Characters.

See Also
Recipe 5.6, “Place Formatted Information in a String”

5.5 Prevent a String from Including Dynamic Information
Problem
You want to prevent PowerShell from interpreting special characters or variable
names inside a string.

Solution
Use a nonexpanding string to have PowerShell interpret your string exactly as
entered. A nonexpanding string uses the single quote character around its text.

PS > $myString = 'Useful PowerShell characters include: $, `, " and { }'
PS > $myString
Useful PowerShell characters include: $, `, " and { }

If you want to include newline characters as well, use a nonexpanding here string, as
in Example 5-1.

Example 5-1. A nonexpanding here string that includes newline characters

PS > $myString = @'
Tip of the Day

Useful PowerShell characters include: $, `, ', " and { }
'@

PS > $myString
Tip of the Day
Useful PowerShell characters include: $, `, ', " and { }

Discussion
In a literal string, all the text between the single quotes becomes part of your string.
This is in contrast to an expanding string, where PowerShell expands variable names
(such as $myString) and escape sequences (such as `n) with their values (such as the
content of $myString and the newline character).

164 | Chapter 5: Strings and Unstructured Text

Nonexpanding strings are a useful way to manage files and folders
containing special characters that might otherwise be interpreted as
escape sequences. For more information about managing files with
special characters in their name, see Recipe 20.7.

As discussed in Recipe 5.1, one exception to the “all text in a literal string is literal”
rule comes from the quote characters themselves. In either type of string, PowerShell
lets you place two of that string’s quote characters together to include the quote char‐
acter itself:

$myString = "This string includes ""double quotes"" because it combined quote
characters."
$myString = 'This string includes ''single quotes'' because it combined quote
characters.'

See Also
Recipe 5.1, “Create a String”

Recipe 20.7, “Manage Files That Include Special Characters”

5.6 Place Formatted Information in a String
Problem
You want to place formatted information (such as right-aligned text or numbers
rounded to a specific number of decimal places) in a string.

Solution
Use PowerShell’s formatting operator to place formatted information inside a string:

PS > $formatString = "{0,8:D4} {1:C}`n"
PS > $report = "Quantity Price`n"
PS > $report += "---------------`n"
PS > $report += $formatString -f 50,2.5677
PS > $report += $formatString -f 3,9
PS > $report
Quantity Price

 0050 $2.57
 0003 $9.00

Discussion
PowerShell’s string formatting operator (-f) uses the same string formatting rules as
the String.Format() method in the .NET Framework. It takes a format string on its
left side and the items you want to format on its right side.

5.6 Place Formatted Information in a String | 165

In the Solution, you format two numbers: a quantity and a price. The first number
({0}) represents the quantity and is right-aligned in a box of eight characters (,8). It’s
formatted as a decimal number with four digits (:D4). The second number ({1}) rep‐
resents the price, which you format as currency (:C).

If you find yourself hand-crafting text-based reports, STOP! Let
PowerShell’s built-in commands do all the work for you. Instead,
emit custom objects so that your users can work with your script as
easily as they work with regular PowerShell commands. For more
information, see Recipe 3.15.

For a detailed explanation of PowerShell’s formatting operator, see “Simple Opera‐
tors” on page 811. For a detailed list of the formatting rules, see Appendix D.

Although primarily used to control the layout of information, the string-formatting
operator is also a readable replacement for what is normally accomplished with string
concatenation:

PS > $number1 = 10
PS > $number2 = 32
PS > "$number2 divided by $number1 is " + $number2 / $number1
32 divided by 10 is 3.2

The string formatting operator makes this much easier to read:
PS > "{0} divided by {1} is {2}" -f $number2, $number1, ($number2 / $number1)
32 divided by 10 is 3.2

If you want to support named replacements (rather than index-based replacements),
you can use the Format-String script given in Recipe 5.17.

In addition to the string formatting operator, PowerShell provides three formatting
commands (Format-Table, Format-Wide, and Format-List) that let you easily gener‐
ate formatted reports. For detailed information about those cmdlets, see “Custom
Formatting Files” on page 854.

See Also
Recipe 3.15, “Create and Initialize Custom Objects”

“Simple Operators” on page 811

“Custom Formatting Files” on page 854

Appendix D, .NET String Formatting

166 | Chapter 5: Strings and Unstructured Text

5.7 Search a String for Text or a Pattern
Problem
You want to determine whether a string contains another string, or you want to find
the position of a string within another string.

Solution
PowerShell provides several options to help you search a string for text.

Use the -like operator to determine whether a string matches a given DOS-like
wildcard:

PS > "Hello World" -like "*llo W*"
True

Use the -match operator to determine whether a string matches a given regular
expression:

PS > "Hello World" -match '.*l[l-z]o W.*$'
True

Use the Contains() method to determine whether a string contains a specific string:
PS > "Hello World".Contains("World")
True

Use the IndexOf() method to determine the location of one string within another:
PS > "Hello World".IndexOf("World")
6

Discussion
Since PowerShell strings are fully featured .NET objects, they support many string-
oriented operations directly. The Contains() and IndexOf() methods are two exam‐
ples of the many features that the String class supports. To learn what other func‐
tionality the String class supports, see Recipe 3.12.

To search entire files for text or a pattern, see Recipe 9.4.

Although they use similar characters, simple wildcards and regular expressions serve
significantly different purposes. Wildcards are much simpler than regular expres‐
sions, and because of that, more constrained. While you can summarize the rules for

5.7 Search a String for Text or a Pattern | 167

wildcards in just four bullet points, entire books have been written to help teach and
illuminate the use of regular expressions.

A common use of regular expressions is to search for a string that
spans multiple lines. By default, regular expressions do not search
across lines, but you can use the singleline (?s) option to instruct
them to do so:

PS > "Hello `n World" -match "Hello.*World"
False
PS > "Hello `n World" -match "(?s)Hello.*World"
True

Wildcards lend themselves to simple text searches, whereas regular expressions lend
themselves to more complex text searches.

For a detailed description of the -like operator, see “Comparison Operators” on page
818. For a detailed description of the -match operator, see “Simple Operators” on
page 811. For a detailed list of the regular expression rules and syntax, see
Appendix B.

One difficulty sometimes arises when you try to store the result of a PowerShell com‐
mand in a string, as shown in Example 5-2.

Example 5-2. Attempting to store output of a PowerShell command in a string

PS > Get-Help Get-ChildItem

NAME
 Get-ChildItem

SYNOPSIS
 Gets the items and child items in one or more specified locations.

DESCRIPTION
 The `Get-ChildItem` cmdlet gets the items in one or more specified locations. If
 the item is a container, it gets the items inside the container, known as child
 items. You can use the Recurse parameter to get items in all child containers
 and use the Depth parameter to limit the number of levels to recurse.

 `Get-ChildItem` doesn't display empty directories. When a `Get-ChildItem`
 command includes the Depth or Recurse parameters, empty directories aren't
 included in the output.

(...)

PS > $helpContent = Get-Help Get-ChildItem
PS > $helpContent -match "empty directories"
False

168 | Chapter 5: Strings and Unstructured Text

The -match operator searches a string for the pattern you specify but seems to fail in
this case. This is because all PowerShell commands generate objects. If you don’t store
that output in another variable or pass it to another command, PowerShell converts
the output to a text representation before it displays it to you. In Example 5-2, $help
Content is a fully featured object, not just its string representation:

PS > $helpContent.Name
Get-ChildItem

To work with the text-based representation of a PowerShell command, you can
explicitly send it through the Out-String cmdlet. The Out-String cmdlet converts its
input into the text-based form you’re used to seeing on the screen:

PS > $helpContent = Get-Help Get-ChildItem | Out-String -Stream
PS > [bool] ($helpContent -match "empty directories")
True

For a script that makes searching textual command output easier, see Recipe 1.24.

See Also
Recipe 1.24, “Program: Search Formatted Output for a Pattern”

Recipe 3.12, “Learn About Types and Objects”

“Simple Operators” on page 811

“Comparison Operators” on page 818

Appendix B, Regular Expression Reference

5.8 Replace Text in a String
Problem
You want to replace a portion of a string with another string.

Solution
PowerShell provides several options to help you replace text in a string with other
text.

Use the Replace() method on the string itself to perform simple replacements:
PS > "Hello World".Replace("World", "PowerShell")
Hello PowerShell

Use PowerShell’s regular expression -replace operator to perform more advanced
regular expression replacements:

5.8 Replace Text in a String | 169

PS > "Hello World" -replace '(.*) (.*)','$2 $1'
World Hello

Discussion
The Replace() method and the -replace operator both provide useful ways to
replace text in a string. The Replace() method is the quickest but also the most con‐
strained. It replaces every occurrence of the exact string you specify with the exact
replacement string that you provide. The -replace operator provides much more
flexibility because its arguments are regular expressions that can match and replace
complex patterns.

For an approach that uses input and output examples to learn auto‐
matically how to replace text in a string, see Recipe 5.14.

Given the power of the regular expressions it uses, the -replace operator carries with
it some pitfalls of regular expressions as well.

First, the regular expressions that you use with the -replace operator often contain
characters (such as the dollar sign, which represents a group number) that PowerShell
normally interprets as variable names or escape characters. To prevent PowerShell
from interpreting these characters, use a nonexpanding string (single quotes) as
shown in the Solution.

Another, less common pitfall is wanting to use characters that have special meaning
to regular expressions as part of your replacement text. For example:

PS > "Power[Shell]" -replace "[Shell]","ful"
Powfulr[fulfulfulfulful]

That’s clearly not what we intended. In regular expressions, square brackets around a
set of characters means “match any of the characters inside of the square brackets.” In
our example, this translates to “Replace the characters S, h, e, and l with ‘ful’.”

To avoid this, we can use the regular expression escape character to escape the square
brackets:

PS > "Power[Shell]" -replace "\[Shell\]","ful"
Powerful

However, this means knowing all of the regular expression special characters and
modifying the input string. Sometimes we don’t control the input string, so the
[Regex]::Escape() method comes in handy:

PS > "Power[Shell]" -replace ([Regex]::Escape("[Shell]")),"ful"
Powerful

170 | Chapter 5: Strings and Unstructured Text

For extremely advanced regular expression replacement needs, you can use a script
block to accomplish your replacement tasks, as described in Recipe 31.6. For example,
to capitalize the first character (\w) after a word boundary (\b):

PS > "hello world" -replace '\b(\w)',{ $_.Value.ToUpper() }
Hello World

For more information about the -replace operator, see “Simple Operators” on page
811 and Appendix B.

See Also
Recipe 5.14, “Convert a String Between One Format and Another”

“Simple Operators” on page 811

Appendix B, Regular Expression Reference

5.9 Split a String on Text or a Pattern
Problem
You want to split a string based on some literal text or a regular expression pattern.

Solution
Use PowerShell’s -split operator to split on a sequence of characters or specific
string:

PS > "a-b-c-d-e-f" -split "-c-"
a-b
d-e-f

To split on a pattern, supply a regular expression as the first argument:
PS > "a-b-c-d-e-f" -split "b|[d-e]"
a-
-c-
-
-f

Discussion
To split a string, many beginning scripters already comfortable with C# use the
String.Split() and [Regex]::Split() methods from the .NET Framework. While
still available in PowerShell, PowerShell’s -split operator provides a more natural
way to split a string into smaller strings. When used with no arguments (the unary
split operator), it splits a string on whitespace characters, as in Example 5-3.

5.9 Split a String on Text or a Pattern | 171

Example 5-3. PowerShell’s unary split operator

PS > -split "Hello World `t How `n are you?"
Hello
World
How
are
you?

When used with an argument, it treats the argument as a regular expression and then
splits based on that pattern.

PS > "a-b-c-d-e-f" -split 'b|[d-e]'
a-
-c-
-
-f

If the replacement pattern avoids characters that have special meaning in a regular
expression, you can use it to split a string based on another string.

PS > "a-b-c-d-e-f" -split '-c-'
a-b
d-e-f

If the replacement pattern has characters that have special meaning in a regular
expression (such as the . character, which represents “any character”), use the -split
operator’s SimpleMatch option, as in Example 5-4.

Example 5-4. PowerShell’s SimpleMatch split option

PS > "a.b.c" -split '.'
(A bunch of newlines. Something went wrong!)

PS > "a.b.c" -split '.',0,"SimpleMatch"
a
b
c

For more information about the -split operator’s options, type Get-Help

about_split.

While regular expressions offer an enormous amount of flexibility, the -split opera‐
tor gives you ultimate flexibility by letting you supply a script block for a split opera‐
tion. For each character, it invokes the script block and splits the string based on the
result. In the script block, $_ (or $PSItem) represents the current character. For exam‐
ple, Example 5-5 splits a string on even numbers.

172 | Chapter 5: Strings and Unstructured Text

Example 5-5. Using a script block to split a string

PS > "1234567890" -split { ($_ % 2) -eq 0 }
1
3
5
7
9

When you’re using a script block to split a string, $_ represents the current character.
For arguments, $args[0] represents the entire string, and $args[1] represents the
index of the string currently being examined.

To split an entire file by a pattern, use the -Delimiter parameter of the Get-Content
cmdlet:

PS > Get-Content test.txt
Hello
World
PS > (Get-Content test.txt)[0]
Hello
PS > Get-Content test.txt -Delimiter l
He

o
Wor
d

PS > (Get-Content test.txt -Delimiter l)[0]
He
PS > (Get-Content test.txt -Delimiter l)[2]
o
Wor
PS > (Get-Content test.txt -Delimiter l)[3]
d

For more information about the -split operator, see “Simple Operators” on page 811
or type Get-Help about_split.

See Also
“Simple Operators” on page 811

Appendix B, Regular Expression Reference

5.10 Combine Strings into a Larger String
Problem
You want to combine several separate strings into a single string.

5.10 Combine Strings into a Larger String | 173

Solution
Use PowerShell’s unary -join operator to combine separate strings into a larger string
using the default empty separator:

PS > -join ("A","B","C")
ABC

If you want to define the operator that PowerShell uses to combine the strings, use
PowerShell’s binary -join operator:

PS > ("A","B","C") -join "`r`n"
A
B
C

To use a cmdlet for features not supported by the -join operator, use the Join-
String cmdlet:

PS > 1..5 | Join-String -DoubleQuote -Separator ','
"1","2","3","4","5"

Discussion
The -join operator provides a natural way to combine strings. When used with no
arguments (the unary join operator), it joins the list using the default empty separa‐
tor. When used between a list and a separator (the binary join operator), it joins the
strings using the provided separator.

Aside from its performance benefit, the -join operator solves an extremely common
difficulty that arises from trying to combine strings by hand.

When first writing the code to join a list with a separator (for example, a comma and
a space), you usually end up leaving a lonely separator at the beginning or end of the
output:

PS > $list = "Hello","World"
PS > $output = ""
PS >
PS > foreach($item in $list)
{
 $output += $item + ", "
}

PS > $output
Hello, World,

You can resolve this by adding some extra logic to the foreach loop:
PS > $list = "Hello","World"
PS > $output = ""
PS >
PS > foreach($item in $list)

174 | Chapter 5: Strings and Unstructured Text

{
 if($output -ne "") { $output += ", " }
 $output += $item
}

PS > $output
Hello, World

Or, save yourself the trouble and use the -join operator directly:
PS > $list = "Hello","World"
PS > $list -join ", "
Hello, World

If you have advanced needs not covered by the -join operator, the .NET methods
such as [String]::Join() are of course available in PowerShell.

For a more structured way to join strings into larger strings or reports, see Recipe 5.6.

See Also
Recipe 5.6, “Place Formatted Information in a String”

5.11 Convert a String to Uppercase or Lowercase
Problem
You want to convert a string to uppercase or lowercase.

Solution
Use the ToUpper() or ToLower() methods of the string to convert it to uppercase or
lowercase, respectively.

To convert a string to uppercase, use the ToUpper() method:
PS > "Hello World".ToUpper()
HELLO WORLD

To convert a string to lowercase, use the ToLower() method:
PS > "Hello World".ToLower()
hello world

Discussion
Since PowerShell strings are fully featured .NET objects, they support many string-
oriented operations directly. The ToUpper() and ToLower() methods are two exam‐
ples of the many features that the String class supports. To learn what other func‐
tionality the String class supports, see Recipe 3.12.

5.11 Convert a String to Uppercase or Lowercase | 175

Neither PowerShell nor the methods of the .NET String class directly support capi‐
talizing only the first letter of a word. If you want to capitalize only the first character
of a word or sentence, try the following commands:

PS > $text = "hello"
PS > $newText = $text.Substring(0,1).ToUpper() + $text.Substring(1)
PS > $newText

Hello

You can also use an advanced regular expression replacement, as described in Recipe
31.6:

"hello world" -replace '\b(\w)',{ $_.Value.ToUpper() }

One thing to keep in mind as you convert a string to uppercase or lowercase is your
motivation for doing it. One of the most common reasons is for comparing strings, as
shown in Example 5-6.

Example 5-6. Using the ToUpper() method to normalize strings

$text comes from the user, and contains the value "quit"
if($text.ToUpper() -eq "QUIT") { ... }

Unfortunately, explicitly changing the capitalization of strings fails in subtle ways
when your script runs in different cultures. Many cultures follow different capitaliza‐
tion and comparison rules than you may be used to. For example, the Turkish lan‐
guage includes two types of the letter I: one with a dot and one without. The upper‐
case version of the lowercase letter i corresponds to the version of the capital I with a
dot, not the capital I used in QUIT. Those capitalization rules cause the string compar‐
ison code in Example 5-6 to fail in the Turkish culture.

Recipe 13.8 shows us this quite clearly:
PS > Use-Culture tr-TR { "quit".ToUpper() -eq "QUIT" }
False
PS > Use-Culture tr-TR { "quIt".ToUpper() -eq "QUIT" }
True
PS > Use-Culture tr-TR { "quit".ToUpper() }
QUİT

For comparing some input against a hardcoded string in a case-insensitive manner,
the better solution is to use PowerShell’s -eq operator without changing any of the
casing yourself. The -eq operator is case-insensitive and culture-neutral by default:

PS > $text1 = "Hello"
PS > $text2 = "HELLO"
PS > $text1 -eq $text2
True

PS > Use-Culture tr-TR { "quit" -eq "QUIT" }
True

176 | Chapter 5: Strings and Unstructured Text

For more information about writing culture-aware scripts, see Recipe 13.6.

See Also
Recipe 3.12, “Learn About Types and Objects”

Recipe 13.6, “Write Culture-Aware Scripts”

Recipe 31.6, “Use a Script Block as a .NET Delegate or Event Handler”

5.12 Trim a String
Problem
You want to remove leading or trailing spaces from a string or user input.

Solution
Use the Trim() method of the string to remove all leading and trailing whitespace
characters from that string.

PS > $text = " `t Test String`t `t"
PS > "|" + $text.Trim() + "|"
|Test String|

Discussion
The Trim() method cleans all whitespace from the beginning and end of a string. If
you want just one or the other, you can call the TrimStart() or TrimEnd() method to
remove whitespace from the beginning or the end of the string, respectively. If you
want to remove specific characters from the beginning or end of a string, the Trim(),
TrimStart(), and TrimEnd() methods provide options to support that. To trim a list
of specific characters from the end of a string, provide that list to the method, as
shown in Example 5-7.

Example 5-7. Trimming a list of characters from the end of a string

PS > "Hello World".TrimEnd('d','l','r','o','W',' ')
He

If you want to replace text anywhere in a string (and not just from the beginning or
end), see Recipe 5.8.

5.12 Trim a String | 177

At first blush, the following command that attempts to trim the text
"World" from the end of a string appears to work incorrectly:

PS > "Hello World".TrimEnd(" World")
He

This happens because the TrimEnd() method takes a list of charac‐
ters to remove from the end of a string. PowerShell automatically
converts a string to a list of characters if required, and in this case
converts your string to the characters W, o, r, l, d, and a space.
These are in fact the same characters as were used in Example 5-7,
so it has the same effect.

See Also
Recipe 5.8, “Replace Text in a String”

5.13 Format a Date for Output
Problem
You want to control the way that PowerShell displays or formats a date.

Solution
To control the format of a date, use one of the following options:

• The Get-Date cmdlet’s -Format parameter:
PS > Get-Date -Date "05/09/1998 1:23 PM" -Format FileDateTime
19980509T1323000000

PS > Get-Date -Date "05/09/1998 1:23 PM" -Format "dd-MM-yyyy @ hh:mm:ss"
09-05-1998 @ 01:23:00

• PowerShell’s string formatting (-f) operator:
PS > $date = [DateTime] "05/09/1998 1:23 PM"
PS > "{0:dd-MM-yyyy @ hh:mm:ss}" -f $date
09-05-1998 @ 01:23:00

• The object’s ToString() method:
PS > $date = [DateTime] "05/09/1998 1:23 PM"
PS > $date.ToString("dd-MM-yyyy @ hh:mm:ss")
09-05-1998 @ 01:23:00

• The Get-Date cmdlet’s -UFormat parameter, which supports Unix date format
strings:

PS > Get-Date -Date "05/09/1998 1:23 PM" -UFormat "%d-%m-%Y @ %I:%M:%S"
09-05-1998 @ 01:23:00

178 | Chapter 5: Strings and Unstructured Text

Discussion
One of the common needs for converting a date into a string is for use in filenames,
directory names, and similar situations. For these incredibly common scenarios, the
Get-Date cmdlet offers four easy options for its -Format parameter: FileDate, File
DateUniversal, FileDateTime, and FileDateTimeUniversal. These return represen‐
tations of the date (“19980509”) or date and time (“19980509T1323000000”) in either
local or universal time zones.

In addition to these standard format strings, the -Format parameter also supports
standard .NET DateTime format strings. These format strings let you display dates in
one of many standard formats (such as your system’s short or long date patterns), or
in a completely custom manner. For more information on how to specify stan‐
dard .NET DateTime format strings, see Appendix E.

If you’re already used to the Unix-style date formatting strings (or are converting an
existing script that uses a complex one), the -UFormat parameter of the Get-Date
cmdlet may be helpful. It accepts the format strings accepted by the Unix date com‐
mand, but doesn’t provide any functionality that standard .NET date formatting
strings can’t.

When working with the string version of dates and times, be aware that they are the
most common source of internationalization issues—problems that arise from run‐
ning a script on a machine with a different culture than the one it was written on. In
North America, “05/09/1998” means “May 9, 1998.” In many other cultures, though,
it means “September 5, 1998.” Whenever possible, use and compare DateTime objects
(rather than strings) to other DateTime objects, as that avoids these cultural differ‐
ences. Example 5-8 demonstrates this approach.

Example 5-8. Comparing DateTime objects with the -gt operator

PS > $dueDate = [DateTime] "01/01/2006"
PS > if([DateTime]::Now -gt $dueDate)
{
 "Account is now due"
}

Account is now due

PowerShell always assumes the North American date format
when it interprets a DateTime constant such as [DateTime]

"05/09/1998". This is for the same reason that all languages inter‐
pret numeric constants (such as 12.34) in the North American for‐
mat. If it did otherwise, nearly every script that dealt with dates and
times would fail on international systems.

5.13 Format a Date for Output | 179

For more information about the Get-Date cmdlet, type Get-Help Get-Date. For
more information about dealing with dates and times in a culture-aware manner, see
Recipe 13.6.

See Also
Recipe 13.6, “Write Culture-Aware Scripts”

Appendix E, .NET DateTime Formatting

5.14 Convert a String Between One Format and Another
Problem
You have a series of text strings, and you want to convert them into another format.

Solution
Use the Convert-String cmdlet:

PS > $phoneNumbers = "5551212","4524587","2112132","8752113"
PS > $replacementExamples = "5551212=(425) 555-1212","4524587=(425) 452-4587"
PS > $phoneNumbers | Convert-String -Example $replacementExamples
(425) 555-1212
(425) 452-4587
(425) 211-2132
(425) 875-2113

Discussion
The Convert-String cmdlet takes input text in one format and converts it to an out‐
put format. Unlike features in PowerShell that do this through regular expressions
and capture groups and other complicated topics, the Convert-String cmdlet
requires only that you provide it examples of data as it started, along with how it
should look after the conversion is complete.

The Convert-String cmdlet, along with the ConvertFrom-String cmdlet, are based
on the Flash Fill technology that you can find in Excel. They are two of the things that
are likely as close to magic as you’ll ever find in a shell. Rather than ask you to specify
the exact series of steps you want to take to transform the text input, Convert-String
instead learns these operations on your behalf.

In addition to the “Original=Replacement” format of examples, you can supply
objects (such as hashtables or PSCustomObjects) that have Before and After
properties:

180 | Chapter 5: Strings and Unstructured Text

$examples =
 @{ Before = "Get-AclMisconfiguration.ps1"
 After = "Gets the AclMisconfiguration from the system" },
 @{ Before = "Get-AliasSuggestion.ps1"
 After = "Gets the AliasSuggestion from the system" }

PS > dir scripts\Get-* | ForEach-Object Name

Get-AclMisconfiguration.ps1
Get-AliasSuggestion.ps1
Get-Answer.ps1
Get-Arguments.ps1
Get-Characteristics.ps1
Get-Clipboard.ps1
Get-DetailedSystemInformation.ps1
(...)

PS > dir scripts\Get-* | ForEach-Object Name | Convert-String -Example $examples

Gets the AclMisconfiguration from the system
Gets the AliasSuggestion from the system
Gets the Answer from the system
Gets the Arguments from the system
Gets the Characteristics from the system
Gets the Clipboard from the system
Gets the DetailedSystemInformation from the system
(...)

As with hand-written regular expressions or String.Replace() calls, ConvertFrom-
String can sometimes make mistakes in understanding your intention. You can nor‐
mally resolve these by providing more examples. Once you have a set of examples
that you know express your intention, these examples will continue to work for simi‐
lar text in the future.

For more information about using the String.Replace() method or regular expres‐
sions to modify strings, see Recipe 5.8.

See Also
Recipe 5.8, “Replace Text in a String”

Recipe 5.15, “Convert Text Streams to Objects”

5.15 Convert Text Streams to Objects
Problem
You have raw, unstructured text, and want to parse it into PowerShell objects.

5.15 Convert Text Streams to Objects | 181

Solution
Use the -Delimiter parameter of the ConvertFrom-String cmdlet to parse data in
simple column formats. PowerShell automatically generates property names if you
don’t specify them, and automatically converts the strings into more appropriate data
types if possible:

$delimiter = "[]+(?=\d|Services|Console)"
$output = tasklist.exe | Select -Skip 3 | ConvertFrom-String -Delimiter $delimiter

PS > $output | Where-Object P2 -lt 1000 | Format-Table

P1 P2 P3 P4 P5
-- -- -- -- --
System Idle Process 0 Services 0 8 K
System 4 Services 0 2,072 K
Secure System 72 Services 0 39,256 K
Registry 132 Services 0 99,088 K
smss.exe 524 Services 0 1,076 K
(...)

You can also use the -Delimiter parameter to parse entire strings. Any text matched
by your capture groups will be present as the second property and beyond, which you
can name as you like:

PS > $expression = 'FirstName=(.*);LastName=(.*)'
PS > $parsed = "FirstName=Lee;LastName=Holmes" |
 ConvertFrom-String -Delimiter $expression -Property Ignored,FName,LName
PS > $parsed.FName
Lee
PS > $parsed.LName
Holmes

Use the -Template parameter to parse data automatically based on the tagging that
you’ve added to example text in the template:

$template = @"
{FName*:Lee} {LName:Holmes}
{FName*:John} {LName:Smith}
"@

"Lee Holmes","Adam Smith","Some Body","Another Person" |
 ConvertFrom-String -TemplateContent $template

FName LName
----- -----
Lee Holmes
Adam Smith
Some Body
Another Person

182 | Chapter 5: Strings and Unstructured Text

Discussion
One of the strongest features of PowerShell is its object-based pipeline. You don’t
waste your energy creating, destroying, and recreating the object representation of
your data. In other shells, you lose the full-fidelity representation of data when the
pipeline converts it to pure text. You can regain some of it through excessive text
parsing, but not all of it.

However, you still often have to interact with low-fidelity input that originates from
outside PowerShell. Text-based data files and legacy programs are two examples.

PowerShell offers great support for all of the three text-parsing staples you might be
aware of from other shells:

Sed
Replaces text. For that functionality, PowerShell offers the -replace operator and
Convert-String cmdlet.

Grep
Searches text. For that functionality, PowerShell offers the Select-String
cmdlet, among others.

The third traditional text-parsing tool, Awk, lets you chop a line of text into more
intuitive groupings. For this, PowerShell offers the incredibly powerful ConvertFrom-
String cmdlet.

In its simplest form, you can use the ConvertFrom-String cmdlet to parse column-
oriented output based on a delimiter that you provide. The delimiter defaults to runs
of whitespace, but you can also provide strings of your choosing or much more
detailed regular expressions. PowerShell will also convert the text into more appropri‐
ate data types (such as integers and dates), if possible.

For more complicated needs, the ConvertFrom-String cmdlet supports example-
driven parsing. As with the Convert-String cmdlet, this is about as close to magic as
you’ll ever experience in a shell. Rather than forcing you to write complicated parsers
by hand, the ConvertFrom-String cmdlet automatically learns how to extract data
based on how you’ve tagged data in your example template.

Let’s consider trying to parse an address book:
Record

FName: Lee
LName: Holmes

Record

5.15 Convert Text Streams to Objects | 183

FName: Adam
LName: Smith

Record

FName: Some
LName: Body

Last updated: 05/09/2021

To have ConvertFrom-String parse it, we need to give it a template. A good way to
think about templates is to imagine taking some sample output, highlighting regions
of the sample output with a mouse, and then naming those regions.

In a template, the left curly brace { represents the start of your selection, and the right
curly brace } represents the end of your selection. To name your selection, you pro‐
vide a property name and a colon right after the opening brace. So, PowerShell
Rocks becomes {FName:PowerShell} {LName:Rocks}.

Let’s start creating a template. In a new file, start with this as an example, and save it
as addressbook.template.txt (the name is up to you):

{Record:Record

FName: Some
LName: Body}

Last updated: {LastUpdated:05/09/2021}

When you run ConvertFrom-String on this input and template, we get:
PS > $book = Get-Content addressbook.txt |
 ConvertFrom-String -TemplateFile addressbook.template.txt
PS > $book.LastUpdated
05/09/2021

PS > $book.Record

Record

FName: Lee
LName: Holmes

There were several records, though. To tell ConvertFrom-String that the input con‐
tained multiple of a certain pattern, use an asterisk after the property name:

{Record*:Record

FName: Some
LName: Body}

184 | Chapter 5: Strings and Unstructured Text

Last updated: {LastUpdated:05/09/2021}

If we run this, we see that ConvertFrom-String hasn’t quite figured out the record
format. So let’s give it another example:

{Record*:Record

FName: Some
LName: Body}

{Record*:Record

FName: Adam
LName: Smith}

Last updated: {LastUpdated:05/09/2021}

And now, ConvertFrom-String understands records and a footer:
PS > (Get-Content addressbook.txt |
 ConvertFrom-String -TemplateFile addressbook.template.txt)

Record

Record...
Record...
Record...

PS > (Get-Content addressbook.txt |
 ConvertFrom-String -TemplateFile addressbook.template.txt).LastUpdated

05/09/2021

To tell ConvertFrom-String about the inner structure of a record, we simply tag it
and name it as well. Update the first record in your template:

(...)
FName: {FName:Some}
LName: {LName:Body}}
(...)

And now ConvertFrom-String fully understands our database format.
PS > (Get-Content addressbook.txt |
 ConvertFrom-String -TemplateFile addressbook.template.txt)

Record

{@{FName=Lee; LName=Holmes}}
{@{FName=Adam; LName=Smith}}
{@{FName=Some; LName=Body}}

PS > (Get-Content addressbook.txt |

5.15 Convert Text Streams to Objects | 185

 ConvertFrom-String -TemplateFile addressbook.template.txt).Record[0].FName
Lee

As our final magic trick, let’s tell PowerShell that LastUpdate is a [DateTime]. Update
your template to include:

(...)
Last updated: {[DateTime] LastUpdated:05/09/2021}
(...)

Which gives an amazing result:
PS > (Get-Content addressbook.txt |
 ConvertFrom-String -TemplateFile addressbook.template.txt).LastUpdated

Sunday, May 9, 2021 12:00:00 AM

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 5.14, “Convert a String Between One Format and Another”

5.16 Generate Large Reports and Text Streams
Problem
You want to write a script that generates a large report or large amount of data.

Solution
The best approach to generating a large amount of data is to take advantage of Power‐
Shell’s streaming behavior whenever possible. Opt for solutions that pipeline data
between commands:

Get-ChildItem C:*.txt -Recurse | Out-File c:\temp\AllTextFiles.txt

rather than collect the output at each stage:
$files = Get-ChildItem C:*.txt -Recurse
$files | Out-File c:\temp\AllTextFiles.txt

If your script generates a large text report (and streaming is not an option), use the
StringBuilder class:

$output = New-Object System.Text.StringBuilder
Get-ChildItem C:*.txt -Recurse |
 ForEach-Object { [void] $output.AppendLine($_.FullName) }
$output.ToString()

rather than simple text concatenation:

186 | Chapter 5: Strings and Unstructured Text

$output = ""
Get-ChildItem C:*.txt -Recurse | ForEach-Object { $output += $_.FullName }
$output

Discussion
In PowerShell, combining commands in a pipeline is a fundamental concept. As
scripts and cmdlets generate output, PowerShell passes that output to the next com‐
mand in the pipeline as soon as it can. In the Solution, the Get-ChildItem commands
that retrieve all text files on the C: drive take a very long time to complete. However,
since they begin to generate data almost immediately, PowerShell can pass that data
on to the next command as soon as the Get-ChildItem cmdlet produces it. This is
true of any commands that generate or consume data and is called streaming. The
pipeline completes almost as soon as the Get-ChildItem cmdlet finishes producing
its data and uses memory very efficiently as it does so.

The second Get-ChildItem example (which collects its data) prevents PowerShell
from taking advantage of this streaming opportunity. It first stores all the files in an
array, which, because of the amount of data, takes a long time and an enormous
amount of memory. Then, it sends all those objects into the output file, which takes a
long time as well.

However, most commands can consume data produced by the pipeline directly, as
illustrated by the Out-File cmdlet. For those commands, PowerShell provides
streaming behavior as long as you combine the commands into a pipeline. For com‐
mands that do not support data coming from the pipeline directly, the ForEach-
Object cmdlet (with the aliases of foreach and %) lets you work with each piece of
data as the previous command produces it, as shown in the StringBuilder example.

Creating large text reports
When you generate large reports, it’s common to store the entire report into a string,
and then write that string out to a file once the script completes. You can usually
accomplish this most effectively by streaming the text directly to its destination (a file
or the screen), but sometimes this isn’t possible.

Since PowerShell makes it so easy to add more text to the end of a string (as in
$output += $_.FullName), many initially opt for that approach. This works great for
small-to-medium strings, but it causes significant performance problems for large
strings.

5.16 Generate Large Reports and Text Streams | 187

As an example of this performance difference, compare the
following:

PS > Measure-Command {
 $output = New-Object Text.StringBuilder
 1..10000 |
 ForEach-Object { $output.Append("Hello World") }
}

(...)
TotalSeconds : 2.3471592

PS > Measure-Command {
 $output = ""
 1..10000 | ForEach-Object { $output += "Hello World" }
}

(...)
TotalSeconds : 4.9884882

In the .NET Framework (and therefore PowerShell), strings never change after you
create them. When you add more text to the end of a string, PowerShell has to build a
new string by combining the two smaller strings. This operation takes a long time for
large strings, which is why the .NET Framework includes the System.Text.String
Builder class. Unlike normal strings, the StringBuilder class assumes that you will
modify its data—an assumption that allows it to adapt to change much more
efficiently.

5.17 Generate Source Code and Other Repetitive Text
Problem
You want to simplify the creation of large amounts of repetitive source code or other
text.

Solution
Use PowerShell’s string formatting operator (-f) to place dynamic information inside
of a preformatted string, and then repeat that replacement for each piece of dynamic
information.

Discussion
Code generation is a useful technique in nearly any technology that produces output
from some text-based input. For example, imagine having to create an HTML report
to show all of the processes running on your system at that time. In this case, “code” is
the HTML code understood by a web browser.

188 | Chapter 5: Strings and Unstructured Text

HTML pages start with some standard text (<html>, <head>, <body>), and then you
would likely include the processes in an HTML <table>. Each row would include
columns for each of the properties in the process you’re working with.

Generating this by hand would be mind-numbing and error-prone. Instead, you can
write a function to generate the code for the row:

function Get-HtmlRow($process)
{
 $template = "<TR> <TD>{0}</TD> <TD>{1}</TD> </TR>"
 $template -f $process.Name,$process.ID
}

and then generate the report in milliseconds, rather than hours:
"<HTML><BODY><TABLE>" > report.html
Get-Process | ForEach-Object { Get-HtmlRow $_ } >> report.html
"</TABLE></BODY></HTML>" >> report.html
Invoke-Item .\report.html

In addition to the formatting operator, you can sometimes use the String.Replace
method:

$string = @'
Name is __NAME__
Id is __ID__
'@

$string = $string.Replace("__NAME__", $process.Name)
$string = $string.Replace("__ID__", $process.Id)

This works well (and is very readable) if you have tight control over the data you’ll be
using as replacement text. If it is at all possible for the replacement text to contain one
of the special tags (__NAME__ or __ID__, for example), then they will also get replaced
by further replacements and corrupt your final output.

To avoid this issue, you can use the Format-String script shown in Example 5-9.

Example 5-9. Format-String.ps1

##
##
Format-String
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Replaces text in a string based on named replacement tags

5.17 Generate Source Code and Other Repetitive Text | 189

.EXAMPLE

PS > Format-String "Hello {NAME}" @{ NAME = 'PowerShell' }
Hello PowerShell

.EXAMPLE

PS > Format-String "Your score is {SCORE:P}" @{ SCORE = 0.85 }
Your score is 85.00 %

#>

param(
 ## The string to format. Any portions in the form of {NAME}
 ## will be automatically replaced by the corresponding value
 ## from the supplied hashtable.
 $String,

 ## The named replacements to use in the string
 [hashtable] $Replacements
)

Set-StrictMode -Version 3

$currentIndex = 0
$replacementList = @()

if($String -match "{{|}}")
{
 throw "Escaping of replacement terms are not supported."
}

Go through each key in the hashtable
foreach($key in $replacements.Keys)
{
 ## Convert the key into a number, so that it can be used by
 ## String.Format
 $inputPattern = '{(.*)' + $key + '(.*)}'
 $replacementPattern = '{${1}' + $currentIndex + '${2}}'
 $string = $string -replace $inputPattern,$replacementPattern
 $replacementList += $replacements[$key]

 $currentIndex++
}

Now use String.Format to replace the numbers in the
format string.
$string -f $replacementList

PowerShell includes several commands for code generation that you’ve probably used
without recognizing their “code generation” aspect. The ConvertTo-Html cmdlet
applies code generation of incoming objects to HTML reports. The ConvertTo-Csv

190 | Chapter 5: Strings and Unstructured Text

cmdlet applies code generation to CSV files. The ConvertTo-Xml cmdlet applies code
generation to XML files.

Code generation techniques seem to come up naturally when you realize you’re writ‐
ing a report, but they’re often missed when writing source code of another program‐
ming or scripting language. For example, imagine you need to write a C# function
that outputs all of the details of a process. The System.Diagnostics.Process class
has a lot of properties, so that’s going to be a long function. Writing it by hand is
going to be difficult, so you can have PowerShell do most of it for you.

For any object (for example, a process that you’ve retrieved from the Get-Process
command), you can access its PsObject.Properties property to get a list of all of its
properties. Each of those has a Name property, so you can use that to generate the C#
code:

$process.PsObject.Properties |
 ForEach-Object {
 'Console.WriteLine("{0}: " + process.{0});' -f $_.Name }

This generates more than 60 lines of C# source code, rather than having you do it by
hand:

Console.WriteLine("Name: " + process.Name);
Console.WriteLine("Handles: " + process.Handles);
Console.WriteLine("VM: " + process.VM);
Console.WriteLine("WS: " + process.WS);
Console.WriteLine("PM: " + process.PM);
Console.WriteLine("NPM: " + process.NPM);
Console.WriteLine("Path: " + process.Path);
Console.WriteLine("Company: " + process.Company);
Console.WriteLine("CPU: " + process.CPU);
Console.WriteLine("FileVersion: " + process.FileVersion);
Console.WriteLine("ProductVersion: " + process.ProductVersion);
(...)

Similar benefits come from generating bulk SQL statements, repetitive data struc‐
tures, and more.

PowerShell code generation can still help you with large-scale administration tasks,
even when PowerShell is not available. Given a large list of input (for example, a com‐
plex list of files to copy), you can easily generate a cmd.exe batch file or Unix shell
script to automate the task. Generate the script in PowerShell, and then invoke it on
the system of your choice!

5.17 Generate Source Code and Other Repetitive Text | 191

CHAPTER 6

Calculations and Math

6.0 Introduction
Math is an important feature in any scripting language. Math support in a language
includes addition, subtraction, multiplication, and division, of course, but extends
into more advanced mathematical operations. So it shouldn’t surprise you that
PowerShell provides a strong suite of mathematical and calculation-oriented features.

Since PowerShell provides full access to its scripting language from the command
line, this keeps a powerful and useful command-line calculator always at your finger‐
tips! In addition to its support for traditional mathematical operations, PowerShell
also caters to system administrators by working natively with concepts such as mega‐
bytes and gigabytes, simple statistics (such as sum and average), and conversions
between bases.

6.1 Perform Simple Arithmetic
Problem
You want to use PowerShell to calculate simple mathematical results.

Solution
Use PowerShell’s arithmetic operators:

+ Addition

- Subtraction

* Multiplication

/ Division

193

% Modulus

+=, -=, *=, /=, and %= Assignment variations of the previously listed operators

() Precedence/order of operations

For a detailed description of these mathematical operators, see “Simple Operators” on
page 811.

Discussion
One difficulty in many programming languages comes from the way that they handle
data in variables. For example, this C# snippet stores the value of 1 in the result vari‐
able, when the user probably wanted the result to hold the floating-point value of 1.5:

double result = 0;
result = 3/2;

This is because C# (along with many other languages) determines the result of the
division from the type of data being used in the division. In the previous example, it
decides that you want the answer to be an integer because you used two integers in
the division.

PowerShell, on the other hand, avoids this problem. Even if you use two integers in a
division, PowerShell returns the result as a floating-point number if required. This is
called widening.

PS > $result = 0
PS > $result = 3/2
PS > $result
1.5

One exception to this automatic widening is when you explicitly tell PowerShell the
type of result you want. For example, you might use an integer cast ([int]) to say that
you want the result to be an integer after all:

PS > $result = [int] (3/2)
PS > $result
2

Many programming languages drop the portion after the decimal point when they
convert them from floating-point numbers to integers. This is called truncation. Pow‐
erShell, on the other hand, uses banker’s rounding for this conversion. It converts
floating-point numbers to their nearest integer, rounding to the nearest even number
in case of a tie.

Several programming techniques use truncation, though, so it’s still important that a
scripting language somehow support it. PowerShell doesn’t have a built-in operator
that performs truncation-style division, but it does support it through the
[Math]::Truncate() method in the .NET Framework:

194 | Chapter 6: Calculations and Math

PS > $result = 3/2
PS > [Math]::Truncate($result)
1

If that syntax seems burdensome, the following example defines a trunc function that
truncates its input:

PS > function trunc($number) { [Math]::Truncate($number) }
PS > $result = 3/2
PS > trunc $result
1

See Also
“Simple Operators” on page 811

6.2 Perform Complex Arithmetic
Problem
You want to use PowerShell to calculate more complex or advanced mathematical
results.

Solution
PowerShell supports more advanced mathematical tasks primarily through its sup‐
port for the System.Math class in the .NET Framework.

To find the absolute value of a number, use the [Math]::Abs() method:
PS > [Math]::Abs(-10.6)
10.6

To find the power (such as the square or the cube) of a number, use the
[Math]::Pow() method. In this case, the method is finding 123 squared:

PS > [Math]::Pow(123, 2)
15129

To find the square root of a number, use the [Math]::Sqrt() method:
PS > [Math]::Sqrt(100)
10

To find the sine, cosine, or tangent of an angle (given in radians), use the
[Math]::Sin(), [Math]::Cos(), or [Math]::Tan() method:

PS > [Math]::Sin([Math]::PI / 2)
1

To find the angle (given in radians) of a sine, cosine, or tangent value, use the
[Math]::ASin(), [Math]::ACos(), or [Math]::ATan() method:

6.2 Perform Complex Arithmetic | 195

PS > [Math]::ASin(1)
1.5707963267949

See Recipe 3.12 to learn how to find out what other features the System.Math class
provides.

Discussion
Once you start working with the System.Math class, it may seem as though its design‐
ers left out significant pieces of functionality. The class supports the square root of a
number, but doesn’t support other roots (such as the cube root). It supports sine,
cosine, and tangent (and their inverses) in radians, but not in the more commonly
used measure of degrees.

Working with any root
To determine any root (such as the cube root) of a number, you can use the function
given in Example 6-1.

Example 6-1. A root function and some example calculations

PS > function root($number, $root) { [Math]::Pow($number, 1 / $root) }
PS > root 64 3
4
PS > root 25 5
1.90365393871588
PS > [Math]::Pow(1.90365393871588, 5)
25.0000000000001
PS > [Math]::Pow($(root 25 5), 5)
25

This function applies the mathematical fact that the square root of a number is the
same as raising that number to the power of 1/2, the cube of a number is the same as
raising it to the power of 1/3, etc.

The example also illustrates a very important point about math on computers. When
you use this function (or anything else that manipulates floating-point numbers),
always be aware that the results of floating-point answers are only ever approxima‐
tions of the actual result. If you combine multiple calculations in the same statement
(or store intermediate results into variables), programming and scripting languages
can sometimes keep an accurate answer (such as in the second [Math]::Pow()
attempt), but that exception is rare.

Some mathematical systems avoid this problem by working with equations and calcu‐
lations as symbols (and not numbers). Like humans, these systems know that taking
the square of a number that you just took the square root of gives you the original
number right back—so they don’t actually have to do either of those operations.
These systems, however, are extremely specialized and usually very expensive.

196 | Chapter 6: Calculations and Math

Working with degrees instead of radians
Converting radians (the way that mathematicians commonly measure angles) to
degrees (the way that most people commonly measure angles) is much more straight‐
forward than the root function. A circle has 2 * Pi radians if you measure in radi‐
ans, and 360 degrees if you measure in degrees. That gives the following two
functions:

function Convert-RadiansToDegrees($angle) { $angle / (2 * [Math]::Pi) * 360 }
function Convert-DegreesToRadians($angle) { $angle / 360 * (2 * [Math]::Pi) }

and their usage:
PS > Convert-RadiansToDegrees ([Math]::Pi)
180
PS > Convert-RadiansToDegrees ([Math]::Pi / 2)
90
PS > Convert-DegreesToRadians 360
6.28318530717959
PS > Convert-DegreesToRadians 45
0.785398163397448
PS > [Math]::Tan((Convert-DegreesToRadians 45))
1

Working with large numbers
In addition to its support for all of the standard .NET data types (bytes, integers,
floats, and decimals), PowerShell also lets you work with extremely large numbers
that these standard data types can’t handle:

PS > [Math]::Pow(12345, 123)
Infinity

PS > [BigInt]::Pow(12345, 123)
17922747853679707527695216231943419712992696443062340535140391466684
40953031931423861053031289352606613314821666096691426463815891552569
61299625923906846736377224598990446854741893321648522851663303862851
16587975372427272838604280411617304001701448802369380754772495091658
80584554994292720483269340987503673640044881128194397555564034430275
23561951313385041616743787240003466700321402142800004483416756392021
35945746171990585436418152506177298295938033884123488041067995268917
9117442108690738677978515625

In addition to the static methods offered by the BigInt class, you can do standard
mathematical operations (addition, subtraction, multiplication, division) with big
integers directly using the n numeric literal suffix:

PS > $num1 = 962822088399213984108510902933777372323n
PS > $num2 = 986516486816816168176871687167106806788n
PS > $num1 * $num2
949839864077222593647087206583370147511597229917261205272142276616785899728524

As an important note, when working with BigInt numbers be sure to always use the
n numeric literal suffix (or enclose BigInt numbers in strings, and then cast them to

6.2 Perform Complex Arithmetic | 197

the BigInt type). If you don’t, PowerShell thinks that you’re trying to provide a num‐
ber of type Double (which loses data for extremely large numbers), and then converts
that number to the big integer.

PS > $r = 962822088399213984108510902933777372323
PS > $r
9.62822088399214E+38

PS > [BigInt] $r
962822088399213912109618944997163270144

PS > [BigInt] 962822088399213984108510902933777372323
962822088399213912109618944997163270144

PS > [BigInt] "962822088399213984108510902933777372323"
962822088399213984108510902933777372323

Working with imaginary and complex numbers
When you need to work with calculations that involve the square root of −1, the
System.Numerics.Complex class provides a great deal of support:

PS > [System.Numerics.Complex]::ImaginaryOne | Format-List

Real : 0
Imaginary : 1
Magnitude : 1
Phase : 1.5707963267949

In addition to the static methods offered by the Complex class, you can do standard
mathematical operations (addition, subtraction, multiplication, division) with com‐
plex numbers directly:

PS > [System.Numerics.Complex]::ImaginaryOne *
 [System.Numerics.Complex]::ImaginaryOne | Format-List

Real : -1
Imaginary : 0
Magnitude : 1
Phase : 3.14159265358979

See Also
Recipe 3.12, “Learn About Types and Objects”

6.3 Measure Statistical Properties of a List
Problem
You want to measure the numeric (minimum, maximum, sum, average) or textual
(characters, words, lines) features of a list of objects.

198 | Chapter 6: Calculations and Math

Solution
Use the Measure-Object cmdlet to measure these statistical properties of a list.

To measure the numeric features of a stream of objects, pipe those objects to the
Measure-Object cmdlet:

PS > 1..10 | Measure-Object -Average -Sum

Count : 10
Average : 5.5
Sum : 55
Maximum :
Minimum :
StandardDeviation :
Property :

To measure the numeric features of a specific property in a stream of objects, supply
that property name to the -Property parameter of the Measure-Object cmdlet. For
example, in a directory with files:

PS > Get-ChildItem |
 Measure-Object -Property Length -Max -Min -Average -Sum -StandardDeviation

Count : 57
Average : 29769.0526315789
Sum : 1696836
Maximum : 135519
Minimum : 26
StandardDeviation : 30753.5324436891
Property : Length

To measure the textual features of a stream of objects, use the -Character, -Word, and
-Line parameters of the Measure-Object cmdlet:

PS > Get-ChildItem > output.txt
PS > Get-Content output.txt | Measure-Object -Character -Word -Line

 Lines Words Characters Property
 ----- ----- ---------- --------
 964 6083 33484

Discussion
By default, the Measure-Object cmdlet counts only the number of objects it receives.
If you want to measure additional properties (such as the maximum, minimum, aver‐
age, sum, characters, words, or lines) of those objects, then you need to specify them
as options to the cmdlet.

For the numeric properties, though, you usually don’t want to measure the objects
themselves. Instead, you probably want to measure a specific property from the list—
such as the Length property of a file. For that purpose, the Measure-Object cmdlet

6.3 Measure Statistical Properties of a List | 199

supports the -Property parameter to which you provide the property you want to
measure.

Sometimes you might want to measure a property that isn’t a simple number—such
as the LastWriteTime property of a file. Since the LastWriteTime property is a Date
Time, you can’t determine its average immediately. However, if any property allows
you to convert it to a number and back in a meaningful way (such as the Ticks prop‐
erty of a DateTime), then you can still compute its statistical properties. Example 6-2
shows how to get the average LastWriteTime from a list of files.

Example 6-2. Using the Ticks property of the DateTime class to determine the average
LastWriteTime of a list of files

PS > ## Get the LastWriteTime from each file
PS > $times = dir | ForEach-Object { $_.LastWriteTime }

PS > ## Measure the average Ticks property of those LastWriteTime
PS > $results = $times | Measure-Object Ticks -Average

PS > ## Create a new DateTime out of the average Ticks
PS > New-Object DateTime $results.Average

Sunday, June 11, 2006 6:45:01 AM

For more information about the Measure-Object cmdlet, type Get-Help Measure-
Object.

6.4 Work with Numbers as Binary
Problem
You want to work with the individual bits of a number or work with a number built
by combining a series of flags.

Solution
To directly enter a hexadecimal number, use the 0x prefix:

PS > $hexNumber = 0x1234
PS > $hexNumber
4660

To convert a number to its binary representation, supply a base of 2 to the
[Convert]::ToString() method:

PS > [Convert]::ToString(1234, 2)
10011010010

200 | Chapter 6: Calculations and Math

To convert a binary number into its decimal representation, use the binary prefix 0b:
$myBinary = 0b10011010010

If you have the value as a string, supply a base of 2 to the [Convert]::ToInt32()
method:

PS > [Convert]::ToInt32("10011010010", 2)
1234

To manage the individual bits of a number, use PowerShell’s binary operators. In this
case, the Archive flag is just one of the many possible attributes that may be true of a
given file:

PS > $archive = [System.IO.FileAttributes] "Archive"
PS > attrib +a test.txt
PS > Get-ChildItem | Where { $_.Attributes -band $archive } | Select Name

Name

test.txt
PS > attrib -a test.txt
PS > Get-ChildItem | Where { $_.Attributes -band $archive } | Select Name
PS >

Discussion
In some system administration tasks, it’s common to come across numbers that seem
to mean nothing by themselves. The attributes of a file are a perfect example:

PS > (Get-Item test.txt).Encrypt()
PS > (Get-Item test.txt).IsReadOnly = $true
PS > [int] (Get-Item test.txt -force).Attributes
16417
PS > (Get-Item test.txt -force).IsReadOnly = $false
PS > (Get-Item test.txt).Decrypt()
PS > [int] (Get-Item test.txt).Attributes
32

What can the numbers 16417 and 32 possibly tell us about the file?

The answer to this comes from looking at the attributes in another light—as a set of
features that can be either true or false. Take, for example, the possible attributes for
an item in a directory shown by Example 6-3.

Example 6-3. Possible attributes of a file

PS > [Enum]::GetNames([System.IO.FileAttributes])
ReadOnly
Hidden
System
Directory
Archive

6.4 Work with Numbers as Binary | 201

Device
Normal
Temporary
SparseFile
ReparsePoint
Compressed
Offline
NotContentIndexed
Encrypted
IntegrityStream
NoScrubData

If a file is ReadOnly, Archive, and Encrypted, then you might consider the following
as a succinct description of the attributes on that file:

ReadOnly = True
Archive = True
Encrypted = True

It just so happens that computers have an extremely concise way of representing sets
of true and false values—a representation known as binary. To represent the
attributes of a directory item as binary, you simply put them in a table. We give the
item a 1 if the attribute applies to the item and a 0 otherwise (see Table 6-1).

Table 6-1. Attributes of a directory item
Attribute True (1) or false (0)

Encrypted 1

NotContentIndexed 0

Offline 0

Compressed 0

ReparsePoint 0

SparseFile 0

Temporary 0

Normal 0

Device 0

Archive 1

Directory 0

<Unused> 0

System 0

Hidden 0

ReadOnly 1

202 | Chapter 6: Calculations and Math

If we treat those features as the individual binary digits in a number, that gives us the
number 100000000100001. If we convert that number to its decimal form, it becomes
clear where the number 16417 came from:

PS > 0b100000000100001
16417

This technique sits at the core of many properties that you can express as a combina‐
tion of features or flags. Rather than list the features in a table, though, the documen‐
tation usually describes the number that would result from that feature being the only
one active—such as FILE_ATTRIBUTE_REPARSEPOINT = 0x400. Example 6-4 shows
the various representations of these file attributes.

Example 6-4. Integer, hexadecimal, and binary representations of possible file attributes

PS > $attributes = [Enum]::GetValues([System.IO.FileAttributes])
PS > $attributes | Select-Object `
 @{"Name"="Property";
 "Expression"= { $_ } },
 @{"Name"="Integer";
 "Expression"= { [int] $_ } },
 @{"Name"="Hexadecimal";
 "Expression"= { [Convert]::ToString([int] $_, 16) } },
 @{"Name"="Binary";
 "Expression"= { [Convert]::ToString([int] $_, 2) } } |
 Format-Table -auto

 Property Integer Hexadecimal Binary
 -------- ------- ----------- ------
 ReadOnly 1 1 1
 Hidden 2 2 10
 System 4 4 100
 Directory 16 10 10000
 Archive 32 20 100000
 Device 64 40 1000000
 Normal 128 80 10000000
 Temporary 256 100 100000000
 SparseFile 512 200 1000000000
 ReparsePoint 1024 400 10000000000
 Compressed 2048 800 100000000000
 Offline 4096 1000 1000000000000
NotContentIndexed 8192 2000 10000000000000
 Encrypted 16384 4000 100000000000000
 IntegrityStream 32768 8000 1000000000000000
 NoScrubData 131072 20000 100000000000000000

Knowing how that 16417 number was formed, you can now use the properties in
meaningful ways. For example, PowerShell’s -band operator allows you to check
whether a certain bit has been set (assuming that you’ve set test.txt to be encrypted
through either the Explorer UI or other means):

6.4 Work with Numbers as Binary | 203

PS > $encrypted = 16384
PS > $attributes = (Get-Item test.txt -force).Attributes
PS > ($attributes -band $encrypted) -eq $encrypted
True

PS > $compressed = 2048
PS > ($attributes -band $compressed) -eq $compressed
False

Although that example uses the numeric values explicitly, it would be more common
to enter the number by its name:

PS > $archive = [System.IO.FileAttributes] "Archive"
PS > ($attributes -band $archive) -eq $archive
True

For more information about PowerShell’s binary operators, see “Simple Operators”
on page 811.

See Also
“Simple Operators” on page 811

6.5 Simplify Math with Administrative Constants
Problem
You want to work with common administrative numbers (that is, kilobytes, mega‐
bytes, gigabytes, terabytes, and petabytes) without having to remember or calculate
those numbers.

Solution
Use PowerShell’s administrative constants (KB, MB, GB, TB, and PB) to help work with
these common numbers.

For example, we can calculate the download time (in seconds) of a 10.18 megabyte
file over a connection that gets 215 kilobytes per second:

PS > 10.18mb / 215kb
48.4852093023256

Discussion
PowerShell’s administrative constants are based on powers of two, since they are the
type most commonly used when working with computers. Each is 1,024 times bigger
than the one before it:

1kb = 1024
1mb = 1024 * 1 kb

204 | Chapter 6: Calculations and Math

1gb = 1024 * 1 mb
1tb = 1024 * 1 gb
1pb = 1024 * 1 tb

Some people (such as hard drive manufacturers) prefer to call numbers based on
powers of two “kibibytes,” “mebibytes,” and “gibibytes.” They use the terms “kilo‐
bytes,” “megabytes,” and “gigabytes” to mean numbers that are 1,000 times bigger
than the ones before them—numbers based on powers of 10.

Although not represented by administrative constants, PowerShell still makes it easy
to work with these numbers in powers of 10—for example, to figure out how big a
“300 GB” hard drive is when reported by Windows. To do this, use scientific (expo‐
nential) notation:

PS > $kilobyte = 1e3
PS > $kilobyte
1000

PS > $megabyte = 1e6
PS > $megabyte
1000000

PS > $gigabyte = 1e9
PS > $gigabyte
1000000000

PS > (300 * $gigabyte) / 1GB
279.396772384644

See Also
“Simple Assignment” on page 804

6.6 Convert Numbers Between Bases
Problem
You want to convert a number to a different base.

Solution
The PowerShell scripting language allows you to enter both decimal and hexadecimal
numbers directly. It doesn’t natively support other number bases, but its support for
interaction with the .NET Framework enables conversion both to and from binary,
octal, decimal, and hexadecimal.

6.6 Convert Numbers Between Bases | 205

To convert a hexadecimal number into its decimal representation, prefix the number
with 0x:

PS > $myErrorCode = 0xFE4A
PS > $myErrorCode
65098

To convert a binary number into its decimal representation, prefix it with 0b:
PS > 0b10011010010
1234

If you have the value as a string, you can supply a base of 2 to the
[Convert]::ToInt32() method:

PS > [Convert]::ToInt32("10011010010", 2)
1234

To convert an octal number into its decimal representation, supply a base of 8 to the
[Convert]::ToInt32() method:

PS > [Convert]::ToInt32("1234", 8)
668

To convert a number into its hexadecimal representation, use either the [Convert]
class or PowerShell’s format operator:

PS > ## Use the [Convert] class
PS > [Convert]::ToString(1234, 16)
4d2

PS > ## Use the formatting operator
PS > "{0:X4}" -f 1234
04D2

If you have a large array of bytes that you want to convert into its hexadecimal repre‐
sentation, you can use the BitConverter class:

PS > $bytes = Get-Content hello_world.txt -AsByteStream
PS > [System.BitConverter]::ToString($bytes).Replace("-","")
FFFE480065006C006C006F00200057006F0072006C006400200031000D000A00

To convert a number into its binary representation, supply a base of 2 to the
[Convert]::ToString() method:

PS > [Convert]::ToString(1234, 2)
10011010010

To convert a number into its octal representation, supply a base of 8 to the
[Convert]::ToString() method:

PS > [Convert]::ToString(1234, 8)
2322

206 | Chapter 6: Calculations and Math

Discussion
It’s most common to want to convert numbers between bases when you’re dealing
with numbers that represent binary combinations of data, such as the attributes of a
file. For more information on how to work with binary data like this, see Recipe 6.4.

See Also
Recipe 6.4, “Work with Numbers as Binary”

6.6 Convert Numbers Between Bases | 207

CHAPTER 7

Lists, Arrays, and Hashtables

7.0 Introduction
Most scripts deal with more than one thing—lists of servers, lists of files, lookup
codes, and more. To enable this, PowerShell supports many features to help you
through both its language features and utility cmdlets.

PowerShell makes working with arrays and lists much like working with other data
types: you can easily create an array or list and then add or remove elements from it.
You can just as easily sort it, search it, or combine it with another array. When you
want to store a mapping between one piece of data and another, a hashtable fulfills
that need perfectly.

7.1 Create an Array or List of Items
Problem
You want to create an array or list of items.

Solution
To create an array that holds a given set of items, separate those items with commas:

PS > $myArray = 1,2,"Hello World"
PS > $myArray
1
2
Hello World

To create an array of a specific size, use the New-Object cmdlet:

209

PS > $myArray = New-Object string[] 10
PS > $myArray[5] = "Hello"
PS > $myArray[5]
Hello

To create an array of a specific type, use a strongly typed collection:
PS > $list = New-Object Collections.Generic.List[Int]
PS > $list.Add(10)
PS > $list.Add("Hello")
Cannot convert argument "0", with value: "Hello", for "Add" to type "System
.Int32": "Cannot convert value "Hello" to type "System.Int32". Error:
"Input string was not in a correct format.""

To store the output of a command that generates a list, use variable assignment:
PS > $myArray = Get-Process
PS > $myArray

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 274 6 1316 3908 33 3164 alg
 983 7 3636 7472 30 688 csrss
 69 4 924 3332 30 0.69 2232 ctfmon
 180 5 2220 6116 37 2816 dllhost
(...)

To create an array that you plan to modify frequently, use an ArrayList, as shown by
Example 7-1.

Example 7-1. Using an ArrayList to manage a dynamic collection of items

PS > $myArray = New-Object System.Collections.ArrayList
PS > [void] $myArray.Add("Hello")
PS > [void] $myArray.AddRange(("World","How","Are","You"))
PS > $myArray
Hello
World
How
Are
You
PS > $myArray.RemoveAt(1)
PS > $myArray
Hello
How
Are
You

Discussion
Aside from the primitive data types (such as strings, integers, and decimals), lists of
items are a common concept in the scripts and commands that you write. Most com‐
mands generate lists of data: the Get-Content cmdlet generates a list of strings in a

210 | Chapter 7: Lists, Arrays, and Hashtables

file, the Get-Process cmdlet generates a list of processes running on the system, and
the Get-Command cmdlet generates a list of commands, just to name a few.

The Solution shows how to store the output of a command that
generates a list. If a command outputs only one item (such as a sin‐
gle line from a file, a single process, or a single command), then
that output is no longer a list. If you want to treat that output as a
list even when it’s not, use the list evaluation syntax, @(), to force
PowerShell to interpret it as an array:

$myArray = @(Get-Process Explorer)

When you want to create a list of a specific type, the Solution demonstrates how to
use the System.Collections.Generic.List collection to do that. After the type
name, you define the type of the list in square brackets, such as [Int], [String], or
whichever type you want to restrict your collection to. These types of specialized
objects are called generic objects. For more information about creating generic
objects, see “Creating Instances of Types” on page 836.

For more information on lists and arrays in PowerShell, see “Arrays and Lists” on
page 807.

See Also
“Arrays and Lists” on page 807

“Creating Instances of Types” on page 836

7.2 Create a Jagged or Multidimensional Array
Problem
You want to create an array of arrays or an array of multiple dimensions.

Solution
To create an array of arrays (a jagged array), use the @() array syntax:

PS > $jagged = @(
 (1,2,3,4),
 (5,6,7,8)
)

PS > $jagged[0][1]
2
PS > $jagged[1][3]
8

7.2 Create a Jagged or Multidimensional Array | 211

To create a (nonjagged) multidimensional array, use the New-Object cmdlet:
PS > $multidimensional = New-Object "int32[,]" 2,4
PS > $multidimensional[0,1] = 2
PS > $multidimensional[1,3] = 8
PS >
PS > $multidimensional[0,1]
2
PS > $multidimensional[1,3]
8

Discussion
Jagged and multidimensional arrays are useful for holding lists of lists and arrays of
arrays. Jagged arrays are arrays of arrays, where each array has only as many elements
as it needs. A nonjagged array is more like a grid or matrix, where every array needs
to be the same size. Jagged arrays are much easier to work with (and use less mem‐
ory), but nonjagged multidimensional arrays are sometimes useful for dealing with
large grids of data.

Since a jagged array is an array of arrays, creating an item in a jagged array follows
the same rules as creating an item in a regular array. If any of the arrays are single-
element arrays, use the unary comma operator. For example, to create a jagged array
with one nested array of one element:

PS > $oneByOneJagged = @(
 ,(,1)
)

PS > $oneByOneJagged[0][0]
1

For more information on lists and arrays in PowerShell, see “Arrays and Lists” on
page 807.

See Also
“Arrays and Lists” on page 807

7.3 Access Elements of an Array
Problem
You want to access the elements of an array.

Solution
To access a specific element of an array, use PowerShell’s array access mechanism:

212 | Chapter 7: Lists, Arrays, and Hashtables

PS > $myArray = 1,2,"Hello World"
PS > $myArray[1]
2

To access a range of array elements, use array ranges and array slicing:
PS > $myArray = 1,2,"Hello World"
PS > $myArray[1..2 + 0]
2
Hello World
1

Discussion
PowerShell’s array access mechanisms provide a convenient way to access either spe‐
cific elements of an array or more complex combinations of elements in that array. In
PowerShell (as with most other scripting and programming languages), the item at
index 0 represents the first item in the array.

For long lists of items, knowing the index of an element can sometimes pose a prob‐
lem. For a solution to this, see the Add-FormatTableIndexParameter script included
with this book’s code examples. This script adds a new -IncludeIndex parameter to
the Format-Table cmdlet:

PS > $items = Get-Process outlook,powershell,emacs,notepad
PS > $items

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 163 6 17660 24136 576 7.63 7136 emacs
 74 4 1252 6184 56 0.19 11820 notepad
 3262 48 46664 88280 376 20.98 8572 OUTLOOK
 285 11 31328 21952 171 613.71 4716 powershell
 767 14 56568 66032 227 104.10 11368 powershell

PS > $items | Format-Table -IncludeIndex

PSIndex Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------- ------ ----- ----- ----- ------ -- -----------
0 163 6 17660 24136 576 7.63 7136 emacs
1 74 4 1252 6184 56 0.19 11820 notepad
2 3262 48 46664 88280 376 20.98 8572 OUTLOOK
3 285 11 31328 21952 171 613.71 4716 powershell
4 767 14 56568 66032 227 104.15 11368 powershell

PS > $items[2]

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 3262 48 46664 88280 376 20.98 8572 OUTLOOK

7.3 Access Elements of an Array | 213

Although working with the elements of an array by their numerical index is helpful,
you may find it useful to refer to them by something else—such as their name, or
even a custom label. This type of array is known as an associative array (or hashtable).
For more information about working with hashtables and associative arrays, see
Recipe 7.13.

For more information on lists and arrays in PowerShell (including the array ranges
and slicing syntax), see “Arrays and Lists” on page 807. For more information about
obtaining the code examples for this book, see “Using Code Examples” on page xxv.

See Also
Recipe 7.13, “Create a Hashtable or Associative Array”

“Arrays and Lists” on page 807

7.4 Visit Each Element of an Array
Problem
You want to work with each element of an array.

Solution
To access each item in an array one by one, use the ForEach-Object cmdlet:

PS > $myArray = 1,2,3
PS > $sum = 0
PS > $myArray | ForEach-Object { $sum += $_ }
PS > $sum
6

To access each item in an array in a more script-like fashion, use the foreach script‐
ing keyword:

PS > $myArray = 1,2,3
PS > $sum = 0
PS > foreach($element in $myArray) { $sum += $element }
PS > $sum
6

To access items in an array by position, use a for loop:
PS > $myArray = 1,2,3
PS > $sum = 0
PS > for($counter = 0; $counter -lt $myArray.Count; $counter++) {
 $sum += $myArray[$counter]
}

PS > $sum
6

214 | Chapter 7: Lists, Arrays, and Hashtables

Discussion
PowerShell provides three main alternatives to working with elements in an array.
The ForEach-Object cmdlet and foreach scripting keyword techniques visit the
items in an array one element at a time, whereas the for loop (and related looping
constructs) lets you work with the items in an array in a less structured way.

For more information about the ForEach-Object cmdlet, see Recipe 2.5.

For more information about the foreach scripting keyword, the for keyword, and
other looping constructs, see Recipe 4.4.

See Also
Recipe 2.5, “Work with Each Item in a List or Command Output”

Recipe 4.4, “Repeat Operations with Loops”

7.5 Sort an Array or List of Items
Problem
You want to sort the elements of an array or list.

Solution
To sort a list of items, use the Sort-Object cmdlet:

PS > Get-ChildItem | Sort-Object -Descending Length | Select Name,Length

Name Length
---- ------
Convert-TextObject.ps1 6868
Select-FilteredObject.ps1 3252
Get-PageUrls.ps1 2878
Get-Characteristics.ps1 2515
Get-Answer.ps1 1890
New-GenericObject.ps1 1490
Invoke-CmdScript.ps1 1313

Discussion
The Sort-Object cmdlet provides a convenient way for you to sort items by a prop‐
erty that you specify. If you don’t specify a property, the Sort-Object cmdlet follows
the sorting rules of those items if they define any.

The Sort-Object cmdlet also supports custom sort expressions, rather than just sort‐
ing on existing properties. To sort by your own logic, use a script block as the sort
expression. This example sorts by the second character:

7.5 Sort an Array or List of Items | 215

PS > "Hello","World","And","PowerShell" | Sort-Object { $_.Substring(1,1) }
Hello
And
PowerShell
World

If you want to sort a list that you’ve saved in a variable, you can either store the results
back in that variable or use the [Array]::Sort() method from the .NET Framework:

PS > $list = "Hello","World","And","PowerShell"
PS > $list = $list | Sort-Object
PS > $list
And
Hello
PowerShell
World
PS > $list = "Hello","World","And","PowerShell"
PS > [Array]::Sort($list)
PS > $list
And
Hello
PowerShell
World

In addition to sorting by a property or expression in ascending or descending order,
the Sort-Object cmdlet’s -Unique switch also allows you to remove duplicates from
the sorted collection.

For more information about the Sort-Object cmdlet, type Get-Help Sort-Object.

7.6 Determine Whether an Array Contains an Item
Problem
You want to determine whether an array or list contains a specific item.

Solution
To determine whether a list contains a specific item, use the -contains operator:

PS > "Hello","World" -contains "Hello"
True
PS > "Hello","World" -contains "There"
False

Alternatively, use the -in operator, which acts like the -contains operator with its
operands reversed:

PS > "Hello" -in "Hello","World"
True
PS > "There" -in "Hello","World"
False

216 | Chapter 7: Lists, Arrays, and Hashtables

Discussion
The -contains and -in operators are useful ways to quickly determine whether a list
contains a specific element. To search a list for items that instead match a pattern, use
the -match or -like operators.

For more information about the -contains, -in, -match, and -like operators, see
“Comparison Operators” on page 818.

See Also
“Comparison Operators” on page 818

7.7 Combine Two Arrays
Problem
You have two arrays and want to combine them into one.

Solution
To combine PowerShell arrays, use the addition operator (+):

PS > $firstArray = "Element 1","Element 2","Element 3","Element 4"
PS > $secondArray = 1,2,3,4
PS >
PS > $result = $firstArray + $secondArray
PS > $result
Element 1
Element 2
Element 3
Element 4
1
2
3
4

Discussion
One common reason to combine two arrays is when you want to add data to the end
of one of the arrays. For example:

PS > $array = 1,2
PS > $array = $array + 3,4
PS > $array
1
2
3
4

7.7 Combine Two Arrays | 217

You can write this more clearly as:
PS > $array = 1,2
PS > $array += 3,4
PS > $array
1
2
3
4

When this is written in the second form, however, you might think that PowerShell
simply adds the items to the end of the array while keeping the array itself intact. This
is not true, since arrays in PowerShell (like most other languages) stay the same
length once you create them. To combine two arrays, PowerShell creates a new array
large enough to hold the contents of both arrays and then copies both arrays into the
destination array.

If your plan is to add and remove data from an array frequently, the
System.Collections.ArrayList class provides a more dynamic alternative. For
more information about using the ArrayList class, see Recipe 7.12.

See Also
Recipe 7.12, “Use the ArrayList Class for Advanced Array Tasks”

7.8 Find Items in an Array That Match a Value
Problem
You have an array and want to find all elements that match a given item or term—
either exactly, by pattern, or by regular expression.

Solution
To find all elements that match an item, use the -eq, -like, and -match comparison
operators:

PS > $array = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS > $array -eq "Item 1"
Item 1
Item 1
PS > $array -like "*1*"
Item 1
Item 1
Item 12
PS > $array -match "Item .."
Item 12

218 | Chapter 7: Lists, Arrays, and Hashtables

Discussion
The -eq, -like, and -match operators are useful ways to find elements in a collection
that match your given term. The -eq operator returns all elements that are equal to
your term, the -like operator returns all elements that match the wildcard given in
your pattern, and the -match operator returns all elements that match the regular
expression given in your pattern.

For more complex comparison conditions, the Where-Object cmdlet lets you find
elements in a list that satisfy much more complex conditions:

PS > $array = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS > $array | Where-Object { $_.Length -gt 6 }
Item 12

For more information about filtering items in a list, see Recipe 2.2.

For more information about the -eq, -like, and -match operators, see “Comparison
Operators” on page 818.

See Also
Recipe 2.2, “Filter Items in a List or Command Output”

“Comparison Operators” on page 818

7.9 Compare Two Lists
Problem
You have two lists and want to find items that exist in only one or the other list.

Solution
To compare two lists, use the Compare-Object cmdlet:

PS > $array1 = "Item 1","Item 2","Item 3","Item 12"
PS > $array2 = "Item 1","Item 8","Item 3","Item 9","Item 12"
PS > Compare-Object $array1 $array2 -IncludeEqual

InputObject SideIndicator
----------- -------------
Item 1 ==
Item 3 ==
Item 12 ==
Item 8 =>
Item 9 =>
Item 2 <=

7.9 Compare Two Lists | 219

Discussion
The Compare-Object cmdlet lets you compare two lists. By default, it shows only the
items that exist exclusively in one of the lists, although its -IncludeEqual parameter
lets you include items that exist in both. If it returns no results, the two lists are equal.

For more information on comparing data, see Chapter 22.

See Also
Chapter 22

7.10 Remove Elements from an Array
Problem
You want to remove all elements from an array that match a given item or term—
either exactly, by pattern, or by regular expression.

Solution
To remove all elements from an array that match a pattern, use the -ne, -notlike,
and -notmatch comparison operators, as shown in Example 7-2.

Example 7-2. Removing elements from an array using the -ne, -notlike, and -notmatch
operators

PS > $array = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS > $array -ne "Item 1"
Item 2
Item 3
Item 12
PS > $array -notlike "*1*"
Item 2
Item 3
PS > $array -notmatch "Item .."
Item 1
Item 2
Item 3
Item 1

To actually remove the items from the array, store the results back in the array:
PS > $array = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS > $array = $array -ne "Item 1"
PS > $array
Item 2
Item 3
Item 12

220 | Chapter 7: Lists, Arrays, and Hashtables

Discussion
The -eq, -like, and -match operators are useful ways to find elements in a collection
that match your given term. Their opposites, the -ne, -notlike, and -notmatch oper‐
ators, return all elements that do not match that given term.

To remove all elements from an array that match a given pattern, you can then save
all elements that do not match that pattern.

For more information about the -ne, -notlike, and -notmatch operators, see “Com‐
parison Operators” on page 818.

See Also
“Comparison Operators” on page 818

7.11 Find Items in an Array Greater or Less Than a Value
Problem
You have an array and want to find all elements greater or less than a given item or
value.

Solution
To find all elements greater or less than a given value, use the -gt, -ge, -lt, and -le
comparison operators:

PS > $array = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS > $array -ge "Item 3"
Item 3
PS > $array -lt "Item 3"
Item 1
Item 2
Item 1
Item 12

Discussion
The -gt, -ge, -lt, and -le operators are useful ways to find elements in a collection
that are greater or less than a given value. Like all other PowerShell comparison oper‐
ators, these use the comparison rules of the items in the collection. Since the array in
the Solution is an array of strings, this result can easily surprise you:

PS > $array -lt "Item 2"
Item 1
Item 1
Item 12

7.11 Find Items in an Array Greater or Less Than a Value | 221

The reason for this becomes clear when you look at the sorted array—Item 12 comes
before Item 2 alphabetically, which is the way that PowerShell compares arrays of
strings:

PS > $array | Sort-Object
Item 1
Item 1
Item 12
Item 2
Item 3

For more information about the -gt, -ge, -lt, and -le operators, see “Comparison
Operators” on page 818.

See Also
“Comparison Operators” on page 818

7.12 Use the ArrayList Class for Advanced Array Tasks
Problem
You have an array that you want to frequently add elements to, remove elements
from, search, and modify.

Solution
To work with an array frequently after you define it, use the
System.Collections.ArrayList class:

PS > $myArray = New-Object System.Collections.ArrayList
PS > [void] $myArray.Add("Hello")
PS > [void] $myArray.AddRange(("World","How","Are","You"))
PS > $myArray
Hello
World
How
Are
You
PS > $myArray.RemoveAt(1)
PS > $myArray
Hello
How
Are
You

222 | Chapter 7: Lists, Arrays, and Hashtables

Discussion
Like in most other languages, arrays in PowerShell stay the same length once you cre‐
ate them. PowerShell allows you to add items, remove items, and search for items in
an array, but these operations may be time-consuming when you’re dealing with large
amounts of data. For example, to combine two arrays, PowerShell creates a new array
large enough to hold the contents of both arrays and then copies both arrays into the
destination array.

In comparison, the ArrayList class is designed to let you easily add, remove, and
search for items in a collection.

PowerShell passes along any data that your script generates, unless
you capture it or cast it to [void]. Since it is designed primarily to
be used from programming languages, the System.Collec

tions.ArrayList class produces output, even though you may not
expect it to. To prevent it from sending data to the output pipeline,
either capture the data or cast it to [void]:

PS > $collection = New-Object System.Collections.ArrayList
PS > $collection.Add("Hello")
0
PS > [void] $collection.Add("World")

If you plan to add and remove data to and from an array frequently, the
System.Collections.ArrayList class provides a more dynamic alternative.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

7.13 Create a Hashtable or Associative Array
Problem
You have a collection of items that you want to access through a label that you
provide.

Solution
To define a mapping between labels and items, use a hashtable (associative array):

7.13 Create a Hashtable or Associative Array | 223

PS > $myHashtable = @{ Key1 = "Value1"; "Key 2" = 1,2,3 }
PS > $myHashtable["New Item"] = 5
PS >
PS > $myHashTable

Name Value
---- -----
Key 2 {1, 2, 3}
New Item 5
Key1 Value1

Discussion
Hashtables are much like arrays that let you access items by whatever label you want
—not just through their index in the array. Because of that freedom, they form the
keystone of a huge number of scripting techniques. Because they let you map names
to values, they form the natural basis for lookup tables such as those for zip codes and
area codes. Because they let you map names to fully featured objects and script
blocks, they can often take the place of custom objects. And because you can map
rich objects to other rich objects, they can even form the basis of more advanced data
structures such as caches and object graphs.

The Solution demonstrates how to create and initialize a hashtable at the same time,
but you can also create one and work with it incrementally:

PS > $myHashtable = @{}
PS > $myHashtable["Hello"] = "World"
PS > $myHashtable.AnotherHello = "AnotherWorld"
PS > $myHashtable

Name Value
---- -----
AnotherHello AnotherWorld
Hello World

When working with hashtables, you might notice that they usually list their elements
out of order—or at least, in a different order than how you inserted them. To create a
hashtable that retains its insertion order, use the [ordered] type cast as described in
Recipe 7.14.

This ability to map labels to structured values also proves helpful in interacting with
cmdlets that support advanced configuration parameters, such as the calculated prop‐
erty parameters available on the Format-Table and Select-Object cmdlets. For an
example of this use, see Recipe 3.2.

For more information about working with hashtables, see “Hashtables (Associative
Arrays)” on page 809.

224 | Chapter 7: Lists, Arrays, and Hashtables

See Also
Recipe 3.2, “Display the Properties of an Item as a Table”

Recipe 7.14, “Sort a Hashtable by Key or Value”

“Hashtables (Associative Arrays)” on page 809

7.14 Sort a Hashtable by Key or Value
Problem
You have a hashtable of keys and values, and you want to get the list of values that
result from sorting the keys in order.

Solution
To sort a hashtable, use the GetEnumerator() method on the hashtable to access its
individual elements. Then use the Sort-Object cmdlet to sort by Name or Value:

foreach($item in $myHashtable.GetEnumerator() | Sort-Object Name)
{
 $item.Value
}

If you control the definition of the hashtable, use the [Ordered] type cast while defin‐
ing the hashtable to have it retain the order supplied in the definition.

$orderedHashtable = [Ordered] @{ Item1 = "Hello"; Item2 = "World" }

Discussion
Since the primary focus of a hashtable is to simply map keys to values, it doesn’t usu‐
ally retain any ordering whatsoever—such as the order you added the items, the sor‐
ted order of the keys, or the sorted order of the values. This becomes clear in
Example 7-3.

Example 7-3. A demonstration of hashtable items not retaining their order

PS > $myHashtable = @{}
PS > $myHashtable["Hello"] = 3
PS > $myHashtable["Ali"] = 2
PS > $myHashtable["Alien"] = 4
PS > $myHashtable["Duck"] = 1
PS > $myHashtable["Hectic"] = 11
PS > $myHashtable

Name Value
---- -----
Hectic 11

7.14 Sort a Hashtable by Key or Value | 225

Duck 1
Alien 4
Hello 3
Ali 2

However, the hashtable object supports a GetEnumerator() method that lets you deal
with the individual hashtable entries—all of which have a Name and Value property.
Once you have those, we can sort by them as easily as we can sort any other Power‐
Shell data. Example 7-4 demonstrates this technique.

Example 7-4. Sorting a hashtable by name and value

PS > $myHashtable.GetEnumerator() | Sort-Object Name

Name Value
---- -----
Ali 2
Alien 4
Duck 1
Hectic 11
Hello 3

PS > $myHashtable.GetEnumerator() | Sort-Object Value

Name Value
---- -----
Duck 1
Ali 2
Hello 3
Alien 4
Hectic 11

By using the [Ordered] type cast, you can create a hashtable that retains the order in
which you define and add items:

PS > $myHashtable = [Ordered] @{
 Duck = 1;
 Ali = 2;
 Hectic = 11;
 Alien = 4;
 }

PS > $myHashtable["Hello"] = 3
PS > $myHashtable

Name Value
---- -----
Duck 1
Ali 2
Hectic 11
Alien 4
Hello 3

226 | Chapter 7: Lists, Arrays, and Hashtables

For more information about working with hashtables, see “Hashtables (Associative
Arrays)” on page 809.

See Also
“Hashtables (Associative Arrays)” on page 809

7.14 Sort a Hashtable by Key or Value | 227

CHAPTER 8

Utility Tasks

8.0 Introduction
When you’re scripting or just using the interactive shell, a handful of needs arise that
are simple but useful: measuring commands, getting random numbers, and more.

8.1 Get the System Date and Time
Problem
You want to get the system date.

Solution
To get the system date, run the command Get-Date.

Discussion
The Get-Date command generates rich object-based output, so you can use its result
for many date-related tasks. For example, to determine the current day of the week:

PS > $date = Get-Date
PS > $date.DayOfWeek
Sunday

If you want to format the date for output (for example, as a logfile stamp), see Recipe
5.13.

For more information about the Get-Date cmdlet, type Get-Help Get-Date.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

229

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 5.13, “Format a Date for Output”

8.2 Measure the Duration of a Command
Problem
You want to know how long a command takes to execute.

Solution
To measure the duration of a command, use the Measure-Command cmdlet:

PS > Measure-Command { Start-Sleep -Milliseconds 337 }

Days : 0
Hours : 0
Minutes : 0
Seconds : 0
Milliseconds : 339
Ticks : 3392297
TotalDays : 3.92626967592593E-06
TotalHours : 9.42304722222222E-05
TotalMinutes : 0.00565382833333333
TotalSeconds : 0.3392297
TotalMilliseconds : 339.2297

Discussion
In interactive use, it’s common to want to measure the duration of a command. An
example of this might be running a performance benchmark on an application you’ve
developed. The Measure-Command cmdlet makes this easy to do. Because the com‐
mand generates rich object-based output, you can use its output for many date-
related tasks. See Recipe 3.8 for more information.

If the accuracy of a command measurement is important, general system activity can
easily influence the timing of the result. A common technique for improving accu‐
racy is to repeat the measurement many times, ignore the outliers (the top and bot‐
tom 10 percent), and then average the remaining results. Example 8-1 implements
this technique.

230 | Chapter 8: Utility Tasks

Example 8-1. Measure-CommandPerformance.ps1

##
##
Measure-CommandPerformance
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Measures the average time of a command, accounting for natural variability by
automatically ignoring the top and bottom 10%.

.EXAMPLE

PS > Measure-CommandPerformance.ps1 { Start-Sleep -m 300 }

Count : 30
Average : 312.10155
(...)

#>

param(
 ## The command to measure
 [Scriptblock] $Scriptblock,

 ## The number of times to measure the command's performance
 [int] $Iterations = 30
)

Set-StrictMode -Version 3

Figure out how many extra iterations we need to account for the outliers
$buffer = [int] ($iterations * 0.1)
$totalIterations = $iterations + (2 * $buffer)

Get the results
$results = 1..$totalIterations |
 Foreach-Object { Measure-Command $scriptblock }

Sort the results, and skip the outliers
$middleResults = $results | Sort TotalMilliseconds |
 Select -Skip $buffer -First $iterations

Show the average
$middleResults | Measure-Object -Average TotalMilliseconds

8.2 Measure the Duration of a Command | 231

For more information about the Measure-Command cmdlet, type Get-Help Measure-
Command.

See Also
Recipe 3.8, “Work with .NET Objects”

8.3 Read and Write from the Clipboard
Problem
You want to interact with the PowerShell clipboard.

Solution
Use PowerShell’s Get-Clipboard and Set-Clipboard cmdlets:

PS > 1..5 | Set-Clipboard
PS > Get-Clipboard | Where-Object { ([int] $_) -lt 3 }
1
2

If you want to retrieve the entire contents of the clipboard at once (without Power‐
Shell’s default per-line behavior), use the -Raw parameter:

PS > $allContent = Get-Clipboard -Raw
PS > $allContent.Replace("`r`n", ".")
1.2.3.4.5

Discussion
While Windows includes a command-line utility (clip.exe) to place text in the Win‐
dows clipboard, it doesn’t support direct input (e.g., clip.exe "Hello World"), and
it doesn’t have a corresponding utility to retrieve the contents from the Windows
clipboard.

The Set-Clipboard and Get-Clipboard cmdlets resolve both of these issues.

One benefit to the Get-Clipboard and Set-Clipboard commands is that they auto‐
matically adapt their behavior to integrate with the operating system platform you are
running PowerShell on. On Linux, PowerShell uses xclip if available. On macOS,
PowerShell uses pbcopy. A great way to use the Get-Clipboard and Set-Clipboard
cmdlets is to help with repetitive ad hoc content manipulation. For example, you can
copy some content from a document into the clipboard, and then run a bit of Power‐
Shell to get the content, change it, and replace the clipboard content with the new
value. Then, you just paste the modified content back into the document. For more
information about replacing text in strings, see Recipe 5.8.

232 | Chapter 8: Utility Tasks

See Also
Recipe 5.8, “Replace Text in a String”

8.4 Generate a Random Number or Object
Problem
You want to generate a random number or pick a random element from a set of
objects.

Solution
Call the Get-Random cmdlet to generate a random positive integer:

Get-Random

Use the -Minimum and -Maximum parameters to generate a number between Minimum
and up to (but not including) Maximum:

Get-Random -Minimum 1 -Maximum 21

Use simple pipeline input to pick a random element from a list:
PS > $suits = "Hearts","Clubs","Spades","Diamonds"
PS > $faces = (2..10)+"A","J","Q","K"
PS > $cards = foreach($suit in $suits) {
 foreach($face in $faces) { "$face of $suit" } }
PS > $cards | Get-Random
A of Spades
PS > $cards | Get-Random
2 of Clubs

Discussion
The Get-Random cmdlet solves the problems usually associated with picking random
numbers or random elements from a collection: scaling and seeding.

Most random number generators only generate numbers between 0 and 1. If you
need a number from a different range, you have to go through a separate scaling step
to map those numbers to the appropriate range. Although not terribly difficult, it’s a
usability hurdle that requires more than trivial knowledge to do properly.

Ensuring that the random number generator picks good random numbers is a differ‐
ent problem entirely. Most general-purpose random number generators use a mathe‐
matical equation to generate their values. These are called pseudo-random number
generators, or PRNGs. They make new values by incorporating the number they gen‐
erated just before that—a feedback process that guarantees evenly distributed

8.4 Generate a Random Number or Object | 233

sequences of numbers. Maintaining this internal state is critical, as restarting from a
specific point will always generate the same number, which is not very random at all!

To create their first value, these generators need a random number seed that they usu‐
ally derive from the system time.

So unless you reuse the same random number generator, this last point usually leads
to the downfall of realistically random numbers. When you generate them quickly,
you create new random number generators that are likely to have the same seed. This
tends to create runs of duplicate random numbers:

PS > 1..10 | ForEach-Object { (New-Object System.Random).Next(1, 21) }
20
7
7
15
15
11
11
18
18
18

The Get-Random cmdlet saves you from this issue in two ways. Early versions of Pow‐
erShell’s Get-Random cmdlet implemented a PRNG. The first way that it saved you
from this issue was by internally maintaining a random number generator and its
state to vastly improve randomness:

PS > 1..10 | ForEach-Object { Get-Random -Min 1 -Max 21 }
20
18
7
12
16
10
9
13
16
14

However, even as good as this pseudo-randomness was, administrators who didn’t
realize it wasn’t truly random also used this cmdlet to generate passwords and other
sensitive things. That is dangerous: if the only two things that went into the genera‐
tion of a password were the time it was generated and the well-known formula that
the random number generator used, that password isn’t very secure.

Despite that, assuming that you could use the Get-Random cmdlet to generate random
passwords is realistically an assumption that anybody should be allowed to make. So,
the second way that PowerShell saves you from this issue is by using a cryptographic
random number generator. Numbers that Get-Random generates are suitable for use
in passwords, cryptographic keys, and more.

234 | Chapter 8: Utility Tasks

For scenarios where you want reproducible results, you can use the -SetSeed param‐
eter of the Get-Random cmdlet to supply a seed directly for testing purposes.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

8.5 Convert Time Between Time Zones
Problem
You want to determine what a specific time in one time zone is when represented in
another.

Solution
Use the TimeZoneInfo class from the .NET Framework:

$targetTime = [DateTime] "11/05/2022 9:00 AM"
$targetTimeZone = [TimeZoneInfo]::GetSystemTimeZones() |
 Where-Object Id -match Israel
[TimeZoneInfo]::ConvertTime($targetTime, $targetTimeZone)

Saturday, November 5, 2022 6:00:00 PM

If the time you specify is not your own time zone:
$targetTime = [DateTime] "11/05/2022 9:00 AM"

$sourceTimeZone = [TimeZoneInfo]::GetSystemTimeZones() |
 Where-Object Id -match India
$targetTimeZone = [TimeZoneInfo]::GetSystemTimeZones() |
 Where-Object Id -match Israel
[TimeZoneInfo]::ConvertTime($targetTime, $sourceTimeZone, $targetTimeZone)

Saturday, November 5, 2022 5:30:00 AM

Discussion
When working with people from around the world, keeping track of time zone differ‐
ences can be overwhelming. The observation of daylight saving time is inconsistent
around the world, and mental math when the international date line is involved is
enough to make your head hurt in the best of times.

Fortunately, the TimeZoneInfo class from the .NET Framework can help with these
challenges. It understands 140 different representations of time zones, their Coordi‐
nated Universal Time (UTC) offset, calendar changes, time adjustments, and more.

8.5 Convert Time Between Time Zones | 235

See Also
Recipe 3.8, “Work with .NET Objects”

8.6 Program: Search the Windows Start Menu
When working at the command line, you might want to launch a program that’s nor‐
mally found only on your Start menu. While you could certainly click through the
Start menu to find it, you could also search the Start menu with a script, as shown in
Example 8-2.

Example 8-2. Search-StartMenu.ps1

##
##
Search-StartMenu
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/blog)
##
##

<#

.SYNOPSIS

Search the Start Menu for items that match the provided text. This script
searches both the name (as displayed on the Start Menu itself,) and the
destination of the link.

.EXAMPLE

PS > Search-StartMenu "Character Map" | Invoke-Item
Searches for the "Character Map" application, and then runs it

PS > Search-StartMenu PowerShell | Select-FilteredObject | Invoke-Item
Searches for anything with "PowerShell" in the application name, lets you
pick which one to launch, and then launches it.

#>

param(
 ## The pattern to match
 [Parameter(Mandatory = $true)]
 $Pattern
)

Set-StrictMode -Version 3

Get the locations of the start menu paths
$myStartMenu = [Environment]::GetFolderPath("StartMenu")
$shell = New-Object -Com WScript.Shell

236 | Chapter 8: Utility Tasks

$allStartMenu = $shell.SpecialFolders.Item("AllUsersStartMenu")

Escape their search term, so that any regular expression
characters don't affect the search
$escapedMatch = [Regex]::Escape($pattern)

Search in "my start menu" for text in the link name or link destination
dir $myStartMenu *.lnk -rec | Where-Object {
 ($_.Name -match "$escapedMatch") -or
 ($_ | Select-String "\\[^\\]*$escapedMatch\." -Quiet)
}

Search in "all start menu" for text in the link name or link destination
dir $allStartMenu *.lnk -rec | Where-Object {
 ($_.Name -match "$escapedMatch") -or
 ($_ | Select-String "\\[^\\]*$escapedMatch\." -Quiet)
}

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

8.7 Program: Show Colorized Script Content
Discussion
When viewing or demonstrating scripts, syntax highlighting makes the information
immensely easier to read. Viewing the scripts in Visual Studio Code is the most natu‐
ral (and powerful) option, but you might want to view them in the console as well.

In addition to basic syntax highlighting, other useful features during script review are
line numbers and highlighting ranges of lines. Range highlighting is especially useful
when discussing portions of a script in a larger context.

Example 8-3 enables all of these scenarios by providing syntax highlighting of scripts
in a console session. Figure 8-1 shows a sample of the colorized content.

8.7 Program: Show Colorized Script Content | 237

Figure 8-1. Sample colorized content

In addition to having utility all on its own, Show-ColorizedContent.ps1 demon‐
strates how to use PowerShell’s Tokenizer API, as introduced in Recipe 10.10. While
many of the techniques in this example are specific to syntax highlighting in a Power‐
Shell console, many more apply to all forms of script manipulation.

Example 8-3. Show-ColorizedContent.ps1

##
##
Show-ColorizedContent
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Displays syntax highlighting, line numbering, and range highlighting for
PowerShell scripts.

.EXAMPLE

PS > Show-ColorizedContent Invoke-MyScript.ps1

001 | function Write-Greeting
002 | {
003 | param($greeting)
004 | Write-Host "$greeting World"
005 | }
006 |
007 | Write-Greeting "Hello"

.EXAMPLE

238 | Chapter 8: Utility Tasks

PS > Show-ColorizedContent Invoke-MyScript.ps1 -highlightRange (1..3+7)

001 > function Write-Greeting
002 > {
003 > param($greeting)
004 | Write-Host "$greeting World"
005 | }
006 |
007 > Write-Greeting "Hello"

#>

param(
 ## The path to colorize
 [Parameter(Mandatory = $true)]
 $Path,

 ## The range of lines to highlight
 $HighlightRange = @(),

 ## Switch to exclude line numbers
 [Switch] $ExcludeLineNumbers
)

Set-StrictMode -Version 3

Colors to use for the different script tokens.
To pick your own colors:
[Enum]::GetValues($host.UI.RawUI.ForegroundColor.GetType()) |
Foreach-Object { Write-Host -Fore $_ "$_" }
$replacementColors = @{
 'Attribute' = 'DarkCyan'
 'Command' = 'Blue'
 'CommandArgument' = 'Magenta'
 'CommandParameter' = 'DarkBlue'
 'Comment' = 'DarkGreen'
 'GroupEnd' = 'Black'
 'GroupStart' = 'Black'
 'Keyword' = 'DarkBlue'
 'LineContinuation' = 'Black'
 'LoopLabel' = 'DarkBlue'
 'Member' = 'Black'
 'NewLine' = 'Black'
 'Number' = 'Magenta'
 'Operator' = 'DarkGray'
 'Position' = 'Black'
 'StatementSeparator' = 'Black'
 'String' = 'DarkRed'
 'Type' = 'DarkCyan'
 'Unknown' = 'Black'
 'Variable' = 'Red'
}

$highlightColor = "Red"
$highlightCharacter = ">"
$highlightWidth = 6

8.7 Program: Show Colorized Script Content | 239

if($excludeLineNumbers) { $highlightWidth = 0 }

Read the text of the file, and tokenize it
$content = Get-Content $Path -Raw
$parsed = [System.Management.Automation.PsParser]::Tokenize(
 $content, [ref] $null) | Sort StartLine,StartColumn

Write a formatted line -- in the format of:
<Line Number> <Separator Character> <Text>
function WriteFormattedLine($formatString, [int] $line)
{
 if($excludeLineNumbers) { return }

 ## By default, write the line number in gray, and use
 ## a simple pipe as the separator
 $hColor = "DarkGray"
 $separator = "|"

 ## If we need to highlight the line, use the highlight
 ## color and highlight separator as the separator
 if($highlightRange -contains $line)
 {
 $hColor = $highlightColor
 $separator = $highlightCharacter
 }

 ## Write the formatted line
 $text = $formatString -f $line,$separator
 Write-Host -NoNewLine -Fore $hColor -Back White $text
}

Complete the current line with filler cells
function CompleteLine($column)
{
 ## Figure how much space is remaining
 $lineRemaining = $host.UI.RawUI.WindowSize.Width -
 $column - $highlightWidth + 1

 ## If we have less than 0 remaining, we've wrapped onto the
 ## next line. Add another buffer width worth of filler
 if($lineRemaining -lt 0)
 {
 $lineRemaining += $host.UI.RawUI.WindowSize.Width
 }

 Write-Host -NoNewLine -Back White (" " * $lineRemaining)
}

Write the first line of context information (line number,
highlight character.)
Write-Host
WriteFormattedLine "{0:D3} {1} " 1

Now, go through each of the tokens in the input
script

240 | Chapter 8: Utility Tasks

$column = 1
foreach($token in $parsed)
{
 $color = "Gray"

 ## Determine the highlighting color for that token by looking
 ## in the hashtable that maps token types to their color
 $color = $replacementColors[[string]$token.Type]
 if(-not $color) { $color = "Gray" }

 ## If it's a newline token, write the next line of context
 ## information
 if(($token.Type -eq "NewLine") -or ($token.Type -eq "LineContinuation"))
 {
 CompleteLine $column
 WriteFormattedLine "{0:D3} {1} " ($token.StartLine + 1)
 $column = 1
 }
 else
 {
 ## Do any indenting
 if($column -lt $token.StartColumn)
 {
 $text = " " * ($token.StartColumn - $column)
 Write-Host -Back White -NoNewLine $text
 $column = $token.StartColumn
 }

 ## See where the token ends
 $tokenEnd = $token.Start + $token.Length - 1

 ## Handle the line numbering for multi-line strings and comments
 if(
 (($token.Type -eq "String") -or
 ($token.Type -eq "Comment")) -and
 ($token.EndLine -gt $token.StartLine))
 {
 ## Store which line we've started at
 $lineCounter = $token.StartLine

 ## Split the content of this token into its lines
 ## We use the start and end of the tokens to determine
 ## the position of the content, but use the content
 ## itself (rather than the token values) for manipulation.
 $stringLines = $(
 -join $content[$token.Start..$tokenEnd] -split "`n")

 ## Go through each of the lines in the content
 foreach($stringLine in $stringLines)
 {
 $stringLine = $stringLine.Trim()

 ## If we're on a new line, fill the right hand
 ## side of the line with spaces, and write the header
 ## for the new line.
 if($lineCounter -gt $token.StartLine)

8.7 Program: Show Colorized Script Content | 241

 {
 CompleteLine $column
 WriteFormattedLine "{0:D3} {1} " $lineCounter
 $column = 1
 }

 ## Now write the text of the current line
 Write-Host -NoNewLine -Fore $color -Back White $stringLine
 $column += $stringLine.Length
 $lineCounter++
 }
 }
 ## Write out a regular token
 else
 {
 ## We use the start and end of the tokens to determine
 ## the position of the content, but use the content
 ## itself (rather than the token values) for manipulation.
 $text = (-join $content[$token.Start..$tokenEnd])
 Write-Host -NoNewLine -Fore $color -Back White $text
 }

 ## Update our position in the column
 $column = $token.EndColumn
 }
}

CompleteLine $column
Write-Host

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 10.10, “Parse and Interpret PowerShell Scripts”

242 | Chapter 8: Utility Tasks

PART III

Common Tasks

Chapter 9, Simple Files
Chapter 10, Structured Files
Chapter 11, Code Reuse
Chapter 12, Internet-Enabled Scripts
Chapter 13, User Interaction
Chapter 14, Debugging
Chapter 15, Tracing and Error Management
Chapter 16, Environmental Awareness
Chapter 17, Extend the Reach of PowerShell
Chapter 18, Security and Script Signing
Chapter 19, Visual Studio Code

CHAPTER 9

Simple Files

9.0 Introduction
When administering a system, you naturally spend a significant amount of time
working with the files on that system. Many of the things you want to do with these
files are simple: get their content, search them for a pattern, or replace text inside
them.

For even these simple operations, PowerShell’s object-oriented flavor adds several
unique and powerful twists.

9.1 Get the Content of a File
Problem
You want to get the content of a file.

Solution
Provide the filename as an argument to the Get-Content cmdlet:

PS > $content = Get-Content c:\temp\file.txt

Place the filename in a ${} section to use the cmdlet Get-Content variable syntax:
PS > $content = ${c:\temp\file.txt}

Provide the filename as an argument to the ReadAllLines() or ReadAllText() meth‐
ods to use the System.IO.File class from the .NET Framework:

PS > $content = Get-Content c:\temp\file.txt -Raw
PS > $contentLines = [System.IO.File]::ReadAllLines("c:\temp\file.txt")

245

Discussion
PowerShell offers three primary ways to get the content of a file. The first is the Get-
Content cmdlet—the cmdlet designed for this purpose. In fact, the Get-Content
cmdlet works on any PowerShell drive that supports the concept of items with con‐
tent. This includes Alias:, Function:, and more. The second and third ways are the
Get-Content variable syntax and the ReadAllText() method.

When working against files, the Get-Content cmdlet returns the content of the file
line by line. When it does this, PowerShell supplies additional information about that
output line. This information, which PowerShell attaches as properties to each output
line, includes the drive and path from where that line originated, among other things.

If you want PowerShell to split the file content based on a string
that you choose (rather than the default of newlines), the Get-
Content cmdlet’s -Delimiter parameter lets you provide one.

While useful, having PowerShell attach this extra information when you’re not using
it can sometimes slow down scripts that operate on large files. If you need to process
a large file more quickly, the Get-Content cmdlet’s ReadCount parameter lets you
control how many lines PowerShell reads from the file at once. With a ReadCount of 1
(which is the default), PowerShell returns each line one by one. With a ReadCount of
2, PowerShell returns two lines at a time. With a ReadCount of less than 1, PowerShell
returns all lines from the file at once.

Beware of using a ReadCount of less than 1 for extremely large files.
One of the benefits of the Get-Content cmdlet is its streaming
behavior. No matter how large the file, you’ll still be able to process
each line of the file without using up all your system’s memory.
Since a ReadCount of less than 1 reads the entire file before return‐
ing any results, large files have the potential to use up your system’s
memory. For more information about how to effectively take
advantage of PowerShell’s streaming capabilities, see Recipe 5.16.

If performance is a primary concern, the [System.IO.File]::ReadAllLines()
method from the .NET Framework returns all of the lines of a file, but doesn’t attach
the additional (sometimes useful) properties to each line. This method also loads the
entire file into memory before giving you access to it, so may be unsuitable for
extremely large files.

246 | Chapter 9: Simple Files

When you want to deal with the entire content of a file at once (and not split it into
lines), use the -Raw parameter of the Get-Content cmdlet:

$rawContent = Get-Content c:\temp\file.txt -Raw

For more information about the Get-Content cmdlet, type Get-Help Get-Content.
For information on how to work with more structured files (such as XML and CSV),
see Chapter 10. For more information on how to work with binary files, see Recipe
9.6.

See Also
Recipe 5.16, “Generate Large Reports and Text Streams”

Recipe 9.6, “Parse and Manage Binary Files”

Chapter 10

9.2 Store the Output of a Command into a File
Problem
You want to redirect the output of a command or pipeline into a file.

Solution
To redirect the output of a command into a file, use either the Out-File cmdlet or
one of the redirection operators.

Out-File:

Get-ChildItem | Out-File unicodeFile.txt
Get-Content filename.cs | Out-File -Encoding ASCII file.txt
Get-ChildItem | Out-File -Width 120 unicodeFile.cs

Redirection operators:
Get-ChildItem > files.txt
Get-ChildItem 2> errors.txt
Get-ChildItem n> otherStreams.txt

Discussion
The Out-File cmdlet and redirection operators share a lot in common. For the most
part, you can use either. The redirection operators are unique because they give the
greatest amount of control over redirecting individual streams. The Out-File cmdlet
is unique primarily because it lets you easily configure the formatting width and
encoding.

9.2 Store the Output of a Command into a File | 247

If you want to save the objects from a command into a file (rather
than the text-based representation that you see on screen), see
Recipe 10.5.

The default formatting width and the default output encoding are two aspects of out‐
put redirection that can sometimes cause difficulty.

The default formatting width sometimes causes problems because redirecting
PowerShell-formatted output into a file is designed to mimic what you see on the
screen. If your screen is 80 characters wide, the file will be 80 characters wide as well.
Examples of PowerShell-formatted output include directory listings (that are implic‐
itly formatted as a table) as well as any commands that you explicitly format using
one of the Format-* set of cmdlets. If this causes problems, you can customize the
width of the file with the -Width parameter on the Out-File cmdlet.

The default output encoding sometimes causes unexpected results because Power‐
Shell creates all files using the UTF-16 Unicode encoding by default. This allows
PowerShell to fully support the entire range of international characters, cmdlets, and
output. Although this is a great improvement on traditional shells, it may cause an
unwanted surprise when running large search-and-replace operations on ASCII
source code files, for example. To force PowerShell to send its output to a file in the
ASCII encoding, use the -Encoding parameter on the Out-File cmdlet.

For more information about the Out-File cmdlet, type Get-Help Out-File. For a
full list of supported redirection operators, see “Capturing Output” on page 854.

See Also
Recipe 10.5, “Easily Import and Export Your Structured Data”

“Capturing Output” on page 854

9.3 Add Information to the End of a File
Problem
You want to redirect the output of a pipeline into a file but add the information to the
end of that file.

Solution
To redirect the output of a command into a file, use either the -Append parameter of
the Out-File cmdlet or one of the appending redirection operators described in

248 | Chapter 9: Simple Files

“Capturing Output” on page 854. Both support options to append text to the end of a
file.

Out-File:

Get-ChildItem | Out-File -Append files.txt

Redirection operators:
Get-ChildItem >> files.txt

Discussion
The Out-File cmdlet and redirection operators share a lot in common. For the most
part, you can use either. See the discussion in Recipe 9.2 for a more detailed compari‐
son of the two approaches, including reasons that you would pick one over the other.

See Also
Recipe 9.2, “Store the Output of a Command into a File”

“Capturing Output” on page 854

9.4 Search a File for Text or a Pattern
Problem
You want to find a string or regular expression in a file.

Solution
To search a file for an exact (but case-insensitive) match, use the -Simple parameter
of the Select-String cmdlet:

Select-String -Simple SearchText file.txt

To search a file for a regular expression, provide that pattern to the Select-String
cmdlet:

Select-String "\(...\) ...-...." phone.txt

To recursively search all *.txt files for a regular expression, pipe the results of Get-
ChildItem to the Select-String cmdlet:

Get-ChildItem *.txt -Recurse | Select-String pattern

Or, using built-in aliases:
dir *.txt -rec | sls pattern

9.4 Search a File for Text or a Pattern | 249

Discussion
The Select-String cmdlet is the easiest way to search files for a pattern or specific
string. In contrast to the traditional text-matching utilities (such as grep) that sup‐
port the same type of functionality, the matches returned by the Select-String
cmdlet include detailed information about the match itself:

PS > $matches = Select-String "output file" transcript.txt
PS > $matches | Select LineNumber,Line

 LineNumber Line
 ---------- ----
 7 Transcript started, output file...

With a regular expression match, you’ll often want to find out exactly what text was
matched by the regular expression. PowerShell captures this in the Matches property
of the result. For each match, the Value property represents the text matched by your
pattern:

PS > Select-String "\(...\) ...-...." phone.txt | Select -Expand Matches

...
Value : (425) 555-1212

...
Value : (416) 556-1213

If your regular expression defines groups (portions of the pattern enclosed in paren‐
theses), you can access the text matched by those groups through the Groups prop‐
erty. The first group (Group[0]) represents all of the text matched by your pattern.
Additional groups (1 and on) represent the groups you defined. In this case, we add
additional parentheses around the area code to capture it:

PS > Select-String "\((...)\) ...-...." phone.txt |
 Select -Expand Matches | Foreach { $_.Groups[1] }

Success : True
Captures : {425}
Index : 1
Length : 3
Value : 425

Success : True
Captures : {416}
Index : 1
Length : 3
Value : 416

If your regular expression defines a named capture (with the text ?<Name> at the
beginning of a group), the Groups collection lets you access those by name. In this
example, we capture the area code using AreaCode as the capture name:

250 | Chapter 9: Simple Files

PS > Select-String "\((?<AreaCode>...)\) ...-...." phone.txt |
 Select -Expand Matches | Foreach { $_.Groups["AreaCode"] }

Success : True
Captures : {425}
Index : 1
Length : 3
Value : 425

Success : True
Captures : {416}
Index : 1
Length : 3
Value : 416

By default, the Select-String cmdlet captures only the first match per line of input.
If the input can have multiple matches per line, use the -AllMatches parameter:

PS > Get-Content phone.txt
(425) 555-1212
(416) 556-1213 (416) 557-1214

PS > Select-String "\((...)\) ...-...." phone.txt |
 Select -Expand Matches | Select -Expand Value

(425) 555-1212
(416) 556-1213

PS > Select-String "\((...)\) ...-...." phone.txt -AllMatches |
 Select -Expand Matches | Select -Expand Value

(425) 555-1212
(416) 556-1213
(416) 557-1214

For more information about captures, named captures, and other aspects of regular
expressions, see Appendix B.

If the information you need is on a different line than the line that
has the match, use the -Context parameter to have that line
included in Select-String’s output. PowerShell places the result in
the Context.PreContext and Context.PostContext properties of
Select-String’s output.

If you want to search multiple files of a specific extension, the Select-String cmdlet
lets you use wildcards (such as *.txt) on the filename. For more complicated lists of
files (which includes searching all files in the directory), it is usually better to use the
Get-ChildItem cmdlet to generate the list of files as shown previously in the Solution.

9.4 Search a File for Text or a Pattern | 251

Since the Select-String cmdlet outputs the filename, line number, and matching
line for every match it finds, this output may sometimes include too much detail. A
perfect example is when you are searching for a binary file that contains a specific
string. A binary file (such as a DLL or EXE) rarely makes sense when displayed as
text, so your screen quickly fills with apparent garbage.

The solution to this problem comes from Select-String’s -Quiet switch. It simply
returns true or false, depending on whether the file contains the string. So, to find
the DLL or EXE in the current directory that contains the text “Debug”:

Get-ChildItem | Where { $_ | Select-String "Debug" -Quiet }

Two other common tools used to search files for text are the -match operator and the
switch statement with the -file option. For more information about those, see
Recipe 5.7 and Recipe 4.3. For more information about the Select-String cmdlet,
type Get-Help Select-String.

See Also
Recipe 4.3, “Manage Large Conditional Statements with Switches”

Recipe 5.7, “Search a String for Text or a Pattern”

Appendix B, Regular Expression Reference

9.5 Parse and Manage Text-Based Logfiles
Problem
You want to parse and analyze a text-based logfile using PowerShell’s standard object-
based commands.

Solution
Use the ConvertFrom-String cmdlet described in Recipe 5.15 to work with text-
based logfiles. With your assistance, it converts streams of text into streams of objects,
which you can then easily work with using PowerShell’s standard commands.

Discussion
The ConvertFrom-String script primarily takes two arguments when you’re parsing
logfiles:

• A regular expression that describes how to break the incoming text into groups
• A list of property names that the script then assigns to those text groups

252 | Chapter 9: Simple Files

As Example 9-1 demonstrates, you can use firewall logs from the Windows directory.
If enabled, these logs track inbound and outbound network connections on a
machine.

Example 9-1. Examining the Windows firewall log

PS C:\WINDOWS\system32> Get-Content .\Logfiles\Firewall\pfirewall.log -Head 10
#Version: 1.5
#Software: Microsoft Windows Firewall
#Time Format: Local
#Fields: date time action protocol src-ip dst-ip src-port dst-port size tcpflags tcpsyn

2020-12-22 15:49:56 ALLOW UDP 192.168.1.132 208.67.222.222 51411 53 0 - - - - SEND
2020-12-22 15:49:57 ALLOW TCP 192.168.1.251 192.168.1.132 43223 32400 0 - 0 0 RECEIVE
2020-12-22 15:50:00 ALLOW TCP 192.168.1.251 192.168.1.132 43231 32400 0 - 0 0 RECEIVE
2020-12-22 15:50:01 ALLOW UDP 192.168.1.132 208.67.222.222 49998 53 0 - - - - SEND
2020-12-22 15:50:02 ALLOW TCP 192.168.1.132 168.62.58.130 58406 443 0 - 0 0 0 SEND
(...)

Like most logfiles, the format of the text is very regular but hard to manage. In this
example, you have 10 fields that seem to be filled out, and some that aren’t.

Fortunately, this logfile documents its fields, so we can store those into an array:
$fields = -split ("date time action protocol src-ip dst-ip src-port dst-port size " +
 "tcpflags tcpsyn tcpack tcpwin icmptype icmpcode info path")

We don’t care about the first four lines because they’re just headers, so we can use
Select-Object to skip those:

PS C:\WINDOWS\system32> Get-Content .\Logfiles\Firewall\pfirewall.log -Head 10 |
>> Select-Object -Skip 4

2020-12-22 15:49:56 ALLOW UDP 192.168.1.132 208.67.222.222 51411 53 0 - - - - - SEND
2020-12-22 15:49:57 ALLOW TCP 192.168.1.251 192.168.1.132 43223 32400 0 - 0 0 0 RECEIVE
2020-12-22 15:50:00 ALLOW TCP 192.168.1.251 192.168.1.132 43231 32400 0 - 0 0 0 RECEIVE
2020-12-22 15:50:01 ALLOW UDP 192.168.1.132 208.67.222.222 49998 53 0 - - - - - SEND
2020-12-22 15:50:02 ALLOW TCP 192.168.1.132 168.62.58.130 58406 443 0 - 0 0 0 - SEND

And then finally let ConvertFrom-String parse the results based on whitespace:
PS C:\WINDOWS\system32> Get-Content .\Logfiles\Firewall\pfirewall.log -Head 10 |
>> Select-Object -Skip 4 | ConvertFrom-String -PropertyNames $fields

date :

 2020-12-22
time : 15:49:56
action : ALLOW
protocol : UDP
src-ip : 192.168.1.132
dst-ip : 208.67.222.222
src-port : 51411

9.5 Parse and Manage Text-Based Logfiles | 253

dst-port : 53
size : 0
tcpflags : -
tcpsyn : -
tcpack : -
tcpwin : -
icmptype : -
icmpcode : -
info : -
path : SEND

Once we’re happy with the results, we can remove the -Head 10 parameter to Get-
Content to have PowerShell parse the whole logfile.

If this input wasn’t so regular, we could also use a custom parsing expression on these
records. For example, if we wanted to capture only the protocol (TCP or UDP) and
whether it was a SEND or RECEIVE, we could do the following:

PS C:\WINDOWS\system32> $parseExpression = '.*(UDP|TCP).*(SEND|RECEIVE)'
>> Get-Content .\Logfiles\Firewall\pfirewall.log -Head 10 |
>> Select-Object -Skip 4 |
>> ConvertFrom-String -Delimiter $parseExpression -Property Ignored,
>> Protocol,Direction

Ignored Protocol Direction P4
------- -------- --------- --
 UDP SEND
 TCP RECEIVE
 TCP RECEIVE
 UDP SEND
 TCP SEND

We can now easily query those objects using PowerShell’s built-in commands. For
example, you can find the IP addresses your system is communicating with the most:

$allConnections = Get-Content .\Logfiles\Firewall\pfirewall.log |
 Select-Object -Skip 4 | ConvertFrom-String -PropertyNames $fields
$allConnections | Group-Object dst-ip

Using this technique, you can work with most text-based logfiles.

For extremely large logfiles, handwritten parsing tools may not meet your needs. In
those situations, specialized log management tools can prove helpful. One example is
Microsoft’s free Log Parser. Another common alternative is to import the log entries
to a SQL database, and then perform ad hoc queries on database tables instead.

See Also
Recipe 5.15, “Convert Text Streams to Objects”

Appendix B, Regular Expression Reference

254 | Chapter 9: Simple Files

https://aka.ms/logparser

9.6 Parse and Manage Binary Files
Problem
You want to work with binary data in a file.

Solution
There are two main techniques when working with binary data in a file. The first is to
read the file using the Byte encoding, so that PowerShell doesn’t treat the content as
text. The second is to use the BitConverter class to translate these bytes back and
forth into numbers that you more commonly care about.

Example 9-2 displays the “characteristics” of a Windows executable. The beginning
section of any executable (a .dll, .exe, or any of several others) starts with a binary
section known as the Portable Executable (PE) header—which contains a Common
Object File Format (COFF) header. Part of this header includes characteristics about
that file, such as whether the file is a DLL.

For more information about the PE header format, see the PE header format specifi‐
cation.

Example 9-2. Get-Characteristics.ps1

##
##
Get-Characteristics
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Get the file characteristics of a file in the PE Executable File Format.

.EXAMPLE

PS > Get-Characteristics $env:WINDIR\notepad.exe
IMAGE_FILE_LOCAL_SYMS_STRIPPED
IMAGE_FILE_RELOCS_STRIPPED
IMAGE_FILE_EXECUTABLE_IMAGE
IMAGE_FILE_32BIT_MACHINE
IMAGE_FILE_LINE_NUMS_STRIPPED

#>

9.6 Parse and Manage Binary Files | 255

https://oreil.ly/u833N
https://oreil.ly/u833N

param(
 ## The path to the file to check
 [Parameter(Mandatory = $true)]
 [string] $Path
)

Set-StrictMode -Version 3

Define the characteristics used in the PE file header.
Taken from:
http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
$characteristics = @{}
$characteristics["IMAGE_FILE_RELOCS_STRIPPED"] = 0x0001
$characteristics["IMAGE_FILE_EXECUTABLE_IMAGE"] = 0x0002
$characteristics["IMAGE_FILE_LINE_NUMS_STRIPPED"] = 0x0004
$characteristics["IMAGE_FILE_LOCAL_SYMS_STRIPPED"] = 0x0008
$characteristics["IMAGE_FILE_AGGRESSIVE_WS_TRIM"] = 0x0010
$characteristics["IMAGE_FILE_LARGE_ADDRESS_AWARE"] = 0x0020
$characteristics["RESERVED"] = 0x0040
$characteristics["IMAGE_FILE_BYTES_REVERSED_LO"] = 0x0080
$characteristics["IMAGE_FILE_32BIT_MACHINE"] = 0x0100
$characteristics["IMAGE_FILE_DEBUG_STRIPPED"] = 0x0200
$characteristics["IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP"] = 0x0400
$characteristics["IMAGE_FILE_NET_RUN_FROM_SWAP"] = 0x0800
$characteristics["IMAGE_FILE_SYSTEM"] = 0x1000
$characteristics["IMAGE_FILE_DLL"] = 0x2000
$characteristics["IMAGE_FILE_UP_SYSTEM_ONLY"] = 0x4000
$characteristics["IMAGE_FILE_BYTES_REVERSED_HI"] = 0x8000

Get the content of the file, as an array of bytes
$fileBytes = Get-Content $path -ReadCount 0 -AsByteStream

The offset of the signature in the file is stored at location 0x3c.
$signatureOffset = [BitConverter]::ToUint32($fileBytes, 0x3c)

Ensure it is a PE file
$signature = [char[]] $fileBytes[$signatureOffset..($signatureOffset + 3)]
if(($signature -join '') -ne "PE`0`0")
{
 throw "This file does not conform to the PE specification."
}

The location of the COFF header is 4 bytes into the signature
$coffHeader = $signatureOffset + 4

The characteristics data are 18 bytes into the COFF header. The
BitConverter class manages the conversion of the 4 bytes into an integer.
$characteristicsData = [BitConverter]::ToInt32($fileBytes, $coffHeader + 18)

Go through each of the characteristics. If the data from the file has that
flag set, then output that characteristic.
foreach($key in $characteristics.Keys)
{
 $flag = $characteristics[$key]
 if(($characteristicsData -band $flag) -eq $flag)
 {

256 | Chapter 9: Simple Files

 $key
 }
}

Discussion
For most files, this technique is the easiest way to work with binary data. If you
actually modify the binary data, then you will also want to use the Byte encoding
when you send it back to disk:

$fileBytes | Set-Content modified.exe -AsByteStream

For extremely large files, though, it may be unacceptably slow to load the entire file
into memory when you work with it. If you begin to run against this limit, the solu‐
tion is to use file management classes from the .NET Framework. These classes
include BinaryReader, StreamReader, and others. For more information about work‐
ing with classes from the .NET Framework, see Recipe 3.8. For more information
about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 3.8, “Work with .NET Objects”

9.7 Create and Manage Temporary Files
Problem
You want to create a file for temporary purposes or manage temporary files that
already exist.

Solution
Use the New-TemporaryFile cmdlet to create a temporary file:

$file = New-TemporaryFile
$file | Set-Content "Some temporary content"
 (... use the file ...)
$file | Remove-Item

Use the temp: PowerShell drive to manage temporary files that already exist. To find
all temporary files older than 30 days:

dir temp: | Where-Object LastWriteTime -lt ((Get-Date).AddDays(-30))

9.7 Create and Manage Temporary Files | 257

Discussion
It’s common to want to create a file for temporary purposes. For example, you might
want to search and replace text inside a file. Doing this to a large file requires a tem‐
porary file (see Recipe 9.8). Another example is the temporary file used by Recipe 2.4.

Often, people create this temporary file wherever they can think of: in C:\, the script’s
current location, or any number of other places. Although this may work on the
author’s system, it rarely works well elsewhere. For example, if the user doesn’t use
their Administrator account for day-to-day tasks, your script will not have access to
C:\ and will fail.

Another difficulty comes from trying to create a unique name for the temporary file.
If your script just hardcodes a name (no matter how many random characters it has),
it will fail if you run two copies at the same time. You might even craft a script smart
enough to search for a filename that doesn’t exist, create it, and then use it. Unfortu‐
nately, this could still break if another copy of your script creates that file after you see
that it’s missing but before you actually create the file.

Finally, there are several security vulnerabilities that your script might introduce
should it write its temporary files to a location that other users can read or write.

Luckily, the New-TemporaryFile cmdlet resolves these problems for you. It creates a
unique filename in a reliable location and in a secure manner. The method returns a
file object, which you can then use as you want.

Remember to delete this file when your script no longer needs it;
otherwise, your script will waste disk space and cause needless clut‐
ter on your users’ systems. Remember: your scripts should solve
the administrator’s problems, not cause them!

By default, the New-TemporaryFile cmdlet returns a file with a .tmp extension. For
most purposes, the file extension doesn’t matter, and this works well. In the rare
instances when you need to create a file with a specific extension, use the Rename-
Item cmdlet to rename your temporary file. The following example creates a new
temporary file that uses the .cs file extension:

$file = New-TemporaryFile
$file = $file | Rename-Item -NewName { $_.Name + ".cs" } -PassThru

(... use the file ...)

$file | Remove-Item

When you want to manage temporary files in the system-wide common temporary
files location, you can use the temp: PowerShell drive. On Windows, this is the same

258 | Chapter 9: Simple Files

as the $env:TEMP location. On Linux machines, this is /tmp. For more information on
working with files in custom PowerShell drives, see Recipe 20.15.

See Also
Recipe 2.4, “Interactively Filter Lists of Objects”

Recipe 9.8, “Search and Replace Text in a File”

Recipe 20.15, “Create and Map PowerShell Drives”

9.8 Search and Replace Text in a File
Problem
You want to search for text in a file and replace that text with something new.

Solution
To search and replace text in a file, first store the content of the file in a variable, and
then store the replaced text back in that file, as shown in Example 9-3.

Example 9-3. Replacing text in a file

PS > $filename = "file.txt"
PS > $match = "source text"
PS > $replacement = "replacement text"
PS >
PS > $content = Get-Content $filename
PS > $content
This is some source text that we want
to replace. One of the things you may need
to be careful about with Source
Text is when it spans multiple lines,
and may have different Source Text
capitalization.
PS >
PS > $content = $content -creplace $match,$replacement
PS > $content
This is some replacement text that we want
to replace. One of the things you may need
to be careful about with Source
Text is when it spans multiple lines,
and may have different Source Text
capitalization.
PS > $content | Set-Content $filename

9.8 Search and Replace Text in a File | 259

Discussion
Using PowerShell to search and replace text in a file (or many files!) is one of the best
examples of using a tool to automate a repetitive task. What could literally take
months by hand can be shortened to a few minutes (or hours, at most).

Notice that the Solution uses the -creplace operator to replace text
in a case-sensitive manner. This is almost always what you will
want to do, as the replacement text uses the exact capitalization that
you provide. If the text you want to replace is capitalized in several
different ways (as in the term Source Text from the Solution),
then search and replace several times with the different possible
capitalizations.

Example 9-3 illustrates what is perhaps the simplest (but actually most common)
scenario:

• You work with an ASCII text file.
• You replace some literal text with a literal text replacement.
• You don’t worry that the text match might span multiple lines.
• Your text file is relatively small.

If some of those assumptions don’t hold true, then this discussion shows you how to
tailor the way you search and replace within this file.

Work with files encoded in Unicode or another (OEM) code page

By default, the Set-Content cmdlet assumes that you want the output file to contain
plain ASCII text. If you work with a file in another encoding (for example, Unicode
or an OEM code page such as Cyrillic), use the -Encoding parameter of the Out-File
cmdlet to specify that:

$content | Out-File -Encoding Unicode $filename
$content | Out-File -Encoding OEM $filename

Replace text using a pattern instead of plain text
Although it’s most common to replace one literal string with another literal string,
you might want to replace text according to a pattern in some advanced scenarios.
One example might be swapping first name and last name. PowerShell supports this
type of replacement through its support of regular expressions in its replacement
operator:

PS > $content = Get-Content names.txt
PS > $content
John Doe

260 | Chapter 9: Simple Files

Mary Smith
PS > $content -replace '(.*) (.*)','$2, $1'
Doe, John
Smith, Mary

Replace text that spans multiple lines

The Get-Content cmdlet used in the Solution retrieves a list of lines from the file.
When you use the -replace operator against this array, it replaces your text in each
of those lines individually. If your match spans multiple lines, as shown between lines
3 and 4 in Example 9-3, the -replace operator will be unaware of the match and will
not perform the replacement.

If you want to replace text that spans multiple lines, then it becomes necessary to stop
treating the input text as a collection of lines. Once you stop treating the input as a
collection of lines, it’s also important to use a replacement expression that can ignore
line breaks, as shown in Example 9-4.

Example 9-4. Replacing text across multiple lines in a file

$singleLine = Get-Content file.txt -Raw
$content = $singleLine -creplace "(?s)Source(\s*)Text",'Replacement$1Text'

The first and second lines of Example 9-4 read the entire content of the file as a single
string. They do this by using the -Raw parameter of the Get-Content cmdlet, since the
Get-Content cmdlet by default splits the content of the file into individual lines.

The third line of this solution replaces the text by using a regular expression pattern.
The section Source(\s*)Text scans for the word Source, followed optionally by
some whitespace, followed by the word Text. Since the whitespace portion of the reg‐
ular expression has parentheses around it, we want to remember exactly what that
whitespace was. By default, regular expressions don’t let newline characters count as
whitespace, so the first portion of the regular expression uses the single-line option
(?s) to allow newline characters to count as whitespace. The replacement portion of
the -replace operator replaces that match with Replacement, followed by the exact
whitespace from the match that we captured ($1), followed by Text. For more infor‐
mation, see “Simple Operators” on page 811.

Replace text in large files
The approaches used so far store the entire contents of the file in memory as they
replace the text in them. Once we’ve made the replacements in memory, we write the
updated content back to disk. This works well when replacing text in small, medium,
and even moderately large files. For extremely large files (for example, more than sev‐
eral hundred megabytes), using this much memory may burden your system and

9.8 Search and Replace Text in a File | 261

slow down your script. To solve that problem, you can work on the files line by line,
rather than with the entire file at once.

Since you’re working with the file line by line, it will still be in use when you try to
write replacement text back into it. You can avoid this problem if you write the
replacement text into a temporary file until you’ve finished working with the main
file. Once you’ve finished scanning through your file, you can delete it and replace it
with the temporary file.

$filename = "file.txt"
$temporaryFile = [System.IO.Path]::GetTempFileName()

$match = "source text"
$replacement = "replacement text"

Get-Content $filename |
 ForEach-Object { $_ -creplace $match,$replacement } |
 Add-Content $temporaryFile

Remove-Item $filename
Move-Item $temporaryFile $filename

See Also
“Simple Operators” on page 811

9.9 Program: Get the Encoding of a File
Both PowerShell and the .NET Framework do a lot of work to hide from you the
complexities of file encodings. The Get-Content cmdlet automatically detects the
encoding of a file, and then handles all encoding issues before returning the content
to you. When you do need to know the encoding of a file, though, the solution
requires a bit of work.

Example 9-5 resolves this by doing the hard work for you. Files with unusual encod‐
ings are supposed to (and almost always do) have a byte order mark to identify the
encoding. After the byte order mark, they have the actual content. If a file lacks the
byte order mark (no matter how the content is encoded), Get-FileEncoding assumes
the .NET Framework’s default encoding of UTF-7. If the content isn’t actually enco‐
ded as defined by the byte order mark, Get-FileEncoding still outputs the declared
encoding.

262 | Chapter 9: Simple Files

Example 9-5. Get-FileEncoding.ps1

##
##
Get-FileEncoding
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Gets the encoding of a file

.EXAMPLE

Get-FileEncoding.ps1 .\UnicodeScript.ps1

BodyName : unicodeFFFE
EncodingName : Unicode (Big-Endian)
HeaderName : unicodeFFFE
WebName : unicodeFFFE
WindowsCodePage : 1200
IsBrowserDisplay : False
IsBrowserSave : False
IsMailNewsDisplay : False
IsMailNewsSave : False
IsSingleByte : False
EncoderFallback : System.Text.EncoderReplacementFallback
DecoderFallback : System.Text.DecoderReplacementFallback
IsReadOnly : True
CodePage : 1201

#>

param(
 ## The path of the file to get the encoding of.
 $Path
)

Set-StrictMode -Version 3

First, check if the file is binary. That is, if the first
5 lines contain any non-printable characters.
$nonPrintable = [char[]] (0..8 + 10..31 + 127 + 129 + 141 + 143 + 144 + 157)
$lines = Get-Content $Path -ErrorAction Ignore -TotalCount 5
$result = @($lines | Where-Object { $_.IndexOfAny($nonPrintable) -ge 0 })
if($result.Count -gt 0)
{
 "Binary"
 return

9.9 Program: Get the Encoding of a File | 263

}

Next, check if it matches a well-known encoding.

The hashtable used to store our mapping of encoding bytes to their
name. For example, "255-254 = Unicode"
$encodings = @{}

Find all of the encodings understood by the .NET Framework. For each,
determine the bytes at the start of the file (the preamble) that the .NET
Framework uses to identify that encoding.
foreach($encoding in [System.Text.Encoding]::GetEncodings())
{
 $preamble = $encoding.GetEncoding().GetPreamble()
 if($preamble)
 {
 $encodingBytes = $preamble -join '-'
 $encodings[$encodingBytes] = $encoding.GetEncoding()
 }
}

Find out the lengths of all of the preambles.
$encodingLengths = $encodings.Keys | Where-Object { $_ } |
 Foreach-Object { ($_ -split "-").Count }

Assume the encoding is UTF7 by default
$result = [System.Text.Encoding]::UTF7

Go through each of the possible preamble lengths, read that many
bytes from the file, and then see if it matches one of the encodings
we know about.
foreach($encodingLength in $encodingLengths | Sort -Descending)
{
 $bytes = Get-Content -AsByteStream -readcount $encodingLength $path | Select -First 1
 $encoding = $encodings[$bytes -join '-']

 ## If we found an encoding that had the same preamble bytes,
 ## save that output and break.
 if($encoding)
 {
 $result = $encoding
 break
 }
}

Finally, output the encoding.
$result

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

264 | Chapter 9: Simple Files

9.10 View the Hexadecimal Representation of Content
Problem
You want to see the bytes and special characters in file content.

Solution
Use the Format-Hex cmdlet to display a file’s content:

PS > "Hello World" | Out-File unicode.txt -Encoding unicode
PS > Format-Hex unicode.txt

 Label: C:\scripts\unicode.txt

 Offset Bytes Ascii
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 ------ --- -----
0000000000000000 FF FE 48 00 65 00 6C 00 6C 00 6F 00 20 00 57 00 ÿþH e l l o W
0000000000000010 6F 00 72 00 6C 00 64 00 0D 00 0A 00 o r l d

PS > "Hello World" | Out-File ascii.txt -Encoding ASCII
PS > Format-Hex ascii.txt

 Label: C:\scripts\ascii.txt

 Offset Bytes Ascii
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 ------ --- -----
0000000000000000 48 65 6C 6C 6F 20 57 6F 72 6C 64 0D 0A Hello World

Discussion
When dealing with binary data, it is often useful to see the value of the actual bytes
being used in that binary data. In addition to the value of the data, finding its offset in
the file or content is usually important as well.

PowerShell’s Format-Hex cmdlet enables both scenarios by displaying content in a
report that shows all of this information. The leftmost column displays the offset into
the content, increasing by 16 bytes at a time. The middle 16 columns display the hex‐
adecimal representation of the byte at that position in the content. The header of each
column shows how far into the 16-byte chunk that character is. The far-right column
displays the ASCII representation of the characters in that row.

To determine the position of a byte within the input, add the number at the far left of
the row to the number at the top of the column for that character. For example,
0000000000000010 (shown at the far left) + 0A (shown at the top of the column) =
000000000000001A. Therefore, the byte in this example is at offset 1A in the content.

9.10 View the Hexadecimal Representation of Content | 265

In addition to this text-based view, PowerShell’s Format-Hex cmdlet returns richly
structured objects. For example, to see what the hexadecimal representation of the
bytes were in the second line of output (index 1 in the collection), you can type:

PS > $output = Format-Hex unicode.txt
PS > $output[1].HexBytes
6F 00 72 00 6C 00 64 00 0D 00 0A 00

For more information about interacting with binary data, see Recipe 9.6.

See Also
Recipe 9.6, “Parse and Manage Binary Files”

266 | Chapter 9: Simple Files

CHAPTER 10

Structured Files

10.0 Introduction
In the world of text-only system administration, managing structured files is often a
pain. For example, working with (or editing) an XML file means either loading it into
an editor to modify by hand or writing a custom tool that can do that for you. Even
worse, it may mean modifying the file as though it were plain text while hoping to
not break the structure of the XML itself.

In that same world, working with a file in comma-separated values (CSV) format
means going through the file yourself, splitting each line by the commas in it. It’s a
seemingly great approach, until you find yourself faced with anything but the sim‐
plest of data.

Structure and structured files don’t come only from other programs, either. When
you’re writing scripts, one common goal is to save structured data so that you can use
it later. In most scripting (and programming) languages, this requires that you design
a data structure to hold that data, design a way to store and retrieve it from disk, and
bring it back to a usable form when you want to work with it again.

Fortunately, working with XML, CSV, and even your own structured files becomes
much easier with PowerShell at your side.

267

10.1 Access Information in an XML File
Problem
You want to work with and access information in an XML file.

Solution
Use PowerShell’s XML cast to convert the plain-text XML into a form that you can
more easily work with. In this case, we use the RSS feed downloaded from the Power‐
Shell blog:

PS > $xml = [xml] (Get-Content powershell_blog.xml)

See Recipe 12.1 for more detail about how to use PowerShell to
download this file:

Invoke-WebRequest https://devblogs.microsoft.com/powershell/feed/ `
 -OutFile powershell_blog.xml

Like other rich objects, PowerShell displays the properties of the XML as you explore.
These properties are child nodes and attributes in the XML, as shown by
Example 10-1.

Example 10-1. Accessing properties of an XML document

PS > $xml
xml xml-stylesheet rss
--- -------------- ---
 rss

PS > $xml.rss

version : 2.0
dc : http://purl.org/dc/elements/1.1/
slash : http://purl.org/rss/1.0/modules/slash/
wfw : http://wellformedweb.org/CommentAPI/
channel : channel

If more than one node shares the same name (as in the item nodes of an RSS feed),
then the property name represents a collection of nodes:

PS > ($xml.rss.channel.item).Count
15

You can access those items individually, like you would normally work with an array,
as shown in Example 10-2.

268 | Chapter 10: Structured Files

Example 10-2. Accessing individual items in an XML document

PS > ($xml.rss.channel.item)[0]

title : Windows Management Framework is here!
link : http://blogs.msdn.com/powershell/archive/2009/10/27/windows-
 management-framework-is-here.aspx
pubDate : Tue, 27 Oct 2009 18:25:13 GMT
guid : guid
creator : PowerShellTeam
comments : {15, http://blogs.msdn.com/powershell/comments/9913618.aspx}
commentRss : http://blogs.msdn.com/powershell/commentrss.aspx?PostID=9913
 618
comment : http://blogs.msdn.com/powershell/rsscomments.aspx?PostID=991
 3618
description : <p>Windows Management Framework, which includes Windows Power
 Shell 2.0, WinRM 2.0, and BITS 4.0, was officially released
 to the world this morning.
(...)

You can access properties of those elements the same way you would normally work
with an object:

PS > ($xml.rss.channel.item)[0].title
Windows Management Framework is here!

Since these are rich PowerShell objects, Example 10-3 demonstrates how you can use
PowerShell’s advanced object-based cmdlets for further work, such as sorting and
filtering.

Example 10-3. Sorting and filtering items in an XML document

PS > $xml.rss.channel.item | Sort-Object title | Select-Object title

title

Analyzing Weblog Data Using the Admin Development Model
Announcing: Open Source PowerShell Cmdlet and Help Designer
Help Us Improve Microsoft Windows Management Framework
Introducing the Windows 7 Resource Kit PowerShell Pack
New and Improved PowerShell Connect Site
PowerShell V2 Virtual Launch Party
Remoting for non-Admins
Select -ExpandProperty <PropertyName>
The Glory of Quick and Dirty Scripting
Tonight Is the Virtual Launch Party @ PowerScripting Podcast
Understanding the Feedback Process
What's New in PowerShell V2 - By Joel "Jaykul" Bennett
What's Up With Command Prefixes?
Windows Management Framework is here!
XP and W2K3 Release Candidate Versions of PowerShell Are Now Available ...

10.1 Access Information in an XML File | 269

Discussion
PowerShell’s native XML support provides an excellent way to easily navigate and
access XML files. By exposing the XML hierarchy as properties, you can perform
most tasks without having to resort to text-only processing or custom tools.

In fact, PowerShell’s support for interaction with XML goes beyond just presenting
your data in an object-friendly way. The objects created by the [xml] cast in fact rep‐
resent fully featured System.Xml.XmlDocument objects from the .NET Framework.
Each property of the resulting objects represents a System.Xml.XmlElement object
from the .NET Framework as well. The underlying objects provide a great deal of
additional functionality that you can use to perform both common and complex tasks
on XML files.

The underlying System.Xml.XmlDocument and System.Xml.XmlElement objects that
support your XML also provide useful properties in their own right: Attributes,
Name, OuterXml, and more.

PS > $xml.rss.Attributes

#text

2.0
http://purl.org/dc/elements/1.1/
http://purl.org/rss/1.0/modules/slash/
http://wellformedweb.org/CommentAPI/

For more information about using the underlying .NET objects for more advanced
tasks, see Recipe 10.2 and Recipe 10.4.

For more information about working with XML in PowerShell, see Table F-11 in
Appendix F.

See Also
Recipe 10.2, “Perform an XPath Query Against XML”

Recipe 10.4, “Modify Data in an XML File”

Recipe 12.1, “Download a File from an FTP or Internet Site”

Table F-11

10.2 Perform an XPath Query Against XML
Problem
You want to perform an advanced query against an XML file using XML’s standard
XPath syntax.

270 | Chapter 10: Structured Files

Solution
Use PowerShell’s Select-Xml cmdlet to perform an XPath query against a file.

For example, to find all post titles shorter than 30 characters in an RSS feed:
PS > $query = "/rss/channel/item[string-length(title) < 30]/title"
PS > Select-Xml -XPath $query -Path .\powershell_blog.xml | Select -Expand Node

#text

Remoting for non-Admins

Discussion
Although a language all of its own, the XPath query syntax provides a powerful,
XML-centric way to write advanced queries for XML files. The Select-Xml cmdlet
lets you apply these concepts to files, XML nodes, or simply plain text.

The XPath queries supported by the Select-Xml cmdlet are a pop‐
ular industry standard. Beware, though. Unlike those in the rest of
PowerShell, these queries are case-sensitive!

The Select-Xml cmdlet generates a SelectXmlInfo object. This lets you chain sepa‐
rate XPath queries together. To retrieve the actual result of the selection, access the
Node property:

PS > Get-Content page.html
<HTML>
 <HEAD>
 <TITLE>Welcome to my Website</TITLE>
 </HEAD>
 <BODY>
 <P>...</P>
 </BODY>
</HTML>
PS > $content = [xml] (Get-Content page.html)
PS > $result = $content | Select-Xml "/HTML/HEAD" | Select-Xml "TITLE"
PS > $result

Node Path Pattern
---- ---- -------
TITLE InputStream TITLE

PS > $result.Node

#text

Welcome to my Website

10.2 Perform an XPath Query Against XML | 271

This works even for content accessed through PowerShell’s XML support, as in this
case, which uses the RSS feed downloaded from the PowerShell blog:

PS > $xml = [xml] (Get-Content powershell_blog.xml)
PS > $xml | Select-Xml $query | Select -Expand Node

#text

Remoting for non-Admins

For simpler queries, you may find PowerShell’s object-based XML navigation con‐
cepts easier to work with. For more information about working with XML through
PowerShell’s XML type, see Table F-11 in Appendix F. For more information about
XPath syntax, see Appendix C.

See Also
Appendix C, XPath Quick Reference

Table F-11

10.3 Convert Objects to XML
Problem
You want to convert command output to XML for further processing or viewing.

Solution
Use PowerShell’s ConvertTo-Xml cmdlet to save the output of a command as XML:

$xml = Get-Process | ConvertTo-Xml

You can then use PowerShell’s XML support (XML navigation, Select-Xml, and
more) to work with the content.

Discussion
Although it’s usually easiest to work with objects in their full fidelity, you may some‐
times want to convert them to XML for further processing by other programs. The
solution is the ConvertTo-Xml cmdlet.

PowerShell includes another similar-sounding cmdlet called
Export-CliXml. Unlike the ConvertTo-Xml cmdlet, which is
intended to produce useful output for humans and programs alike,
the Export-CliXml cmdlet is designed for PowerShell-centric data
interchange. For more information, see Recipe 10.5.

272 | Chapter 10: Structured Files

The ConvertTo-Xml cmdlet gives you two main targets for this conversion. The
default is an XML document, which is the same type of object created by the [xml]
cast in PowerShell. This is also the format supported by the Select-Xml cmdlet, so
you can pipe the output of ConvertTo-Xml directly into it.

PS > $xml = Get-Process | ConvertTo-Xml
PS > $xml | Select-Xml '//Property[@Name = "Name"]' | Select -Expand Node

Name Type #text
---- ---- -----
Name System.String audiodg
Name System.String csrss
Name System.String dwm
(...)

The second format is a simple string, and it’s suitable for redirection into a file. To
save the XML into a file, use the -As parameter with String as the argument, and
then use the file redirection operator:

Get-Process | ConvertTo-Xml -As String > c:\temp\processes.xml

If you already have an XML document that you obtained from ConvertTo-Xml or
PowerShell’s [xml] cast, you can still save it into a file by calling its Save() method:

$xml = Get-Process | ConvertTo-Xml
$xml.Save("c:\temp\output.xml")

For more information on how to work with XML data in PowerShell, see Recipe 10.1.

See Also
Recipe 10.1, “Access Information in an XML File”

Recipe 10.5, “Easily Import and Export Your Structured Data”

10.4 Modify Data in an XML File
Problem
You want to use PowerShell to modify the data in an XML file.

Solution
To modify data in an XML file, load the file into PowerShell’s XML data type, change
the content you want, and then save the file back to disk. Example 10-4 demonstrates
this approach.

10.4 Modify Data in an XML File | 273

Example 10-4. Modifying an XML file from PowerShell

PS > ## Store the filename
PS > $filename = (Get-Item phone.xml).FullName
PS >
PS > ## Get the content of the file, and load it
PS > ## as XML
PS > Get-Content $filename
<AddressBook>
 <Person contactType="Personal">
 <Name>Lee</Name>
 <Phone type="home">555-1212</Phone>
 <Phone type="work">555-1213</Phone>
 </Person>
 <Person contactType="Business">
 <Name>Ariel</Name>
 <Phone>555-1234</Phone>
 </Person>
</AddressBook>
PS > $phoneBook = [xml] (Get-Content $filename)
PS >
PS > ## Get the part with data we want to change
PS > $person = $phoneBook.AddressBook.Person[0]
PS >
PS > ## Change the text part of the information,
PS > ## and the type (which was an attribute)
PS > $person.Phone[0]."#text" = "555-1214"
PS > $person.Phone[0].type = "mobile"
PS >
PS > ## Add a new phone entry
PS > $newNumber = [xml] '<Phone type="home">555-1215</Phone>'
PS > $newNode = $phoneBook.ImportNode($newNumber.Phone, $true)
PS > [void] $person.AppendChild($newNode)
PS >
PS > ## Save the file to disk
PS > $phoneBook.Save($filename)
PS > Get-Content $filename
<AddressBook>
 <Person contactType="Personal">
 <Name>Lee</Name>
 <Phone type="mobile">555-1214</Phone>
 <Phone type="work">555-1213</Phone>
 <Phone type="home">555-1215</Phone>
 </Person>
 <Person contactType="Business">
 <Name>Ariel</Name>
 <Phone>555-1234</Phone>
 </Person>
</AddressBook>

274 | Chapter 10: Structured Files

Discussion
In the preceding Solution, you change Lee’s phone number (which was the “text” por‐
tion of the XML’s original first Phone node) from 555-1212 to 555-1214. You also
change the type of the phone number (which was an attribute of the Phone node)
from "home" to "mobile".

Adding new information to the XML is nearly as easy. To add information to an XML
file, you need to add it as a child node to another node in the file. The easiest way to
get that child node is to write the string that represents the XML and then create a
temporary PowerShell XML document from that. From that temporary document,
you use the main XML document’s ImportNode() function to import the node you
care about—specifically, the Phone node in this example.

Once we have the child node, you need to decide where to put it. Since we want this
Phone node to be a child of the Person node for Lee, we’ll place it there. To add a
child node ($newNode in Example 10-4) to a destination node ($person in the exam‐
ple), use the AppendChild() method from the destination node.

The Save() method on the XML document allows you to save to
more than just files. For a quick way to convert XML into a “beauti‐
fied” form, save it to the console:

$phoneBook.Save([Console]::Out)

Finally, we save the XML back to the file from which it came.

10.5 Easily Import and Export Your Structured Data
Problem
You have a set of data (such as a hashtable or array) and want to save it to disk so that
you can use it later. Conversely, you have saved structured data to a file and want to
import it so that you can use it.

Solution
Use PowerShell’s Export-CliXml cmdlet to save structured data to disk, and the
Import-CliXml cmdlet to import it again from disk.

For example, imagine storing a list of your favorite directories in a hashtable, so that
you can easily navigate your system with a “Favorite CD” function. Example 10-5
shows this function.

10.5 Easily Import and Export Your Structured Data | 275

Example 10-5. A function that requires persistent structured data

PS > $favorites = @{}
PS > $favorites["temp"] = "c:\temp"
PS > $favorites["music"] = "h:\lee\my music"
PS > function fcd {
 param([string] $location) Set-Location $favorites[$location]
}

PS > Get-Location

Path

HKLM:\software

PS > fcd temp
PS > Get-Location

Path

C:\temp

Unfortunately, the $favorites variable vanishes whenever you close PowerShell.

To get around this, you could recreate the $favorites variable in your profile, but
another approach is to export it directly to a file. This command assumes that you
have already created a profile, and it places the file in the same location as that profile:

PS > $filename = Join-Path (Split-Path $profile) favorites.clixml
PS > $favorites | Export-CliXml $filename
PS > $favorites = $null
PS > $favorites
PS >

Once the file is on disk, you can reload it using the Import-CliXml cmdlet, as shown
in Example 10-6.

Example 10-6. Restoring structured data from disk

PS > $favorites = Import-CliXml $filename
PS > $favorites

Name Value
---- -----
music h:\lee\my music
temp c:\temp

PS > fcd music
PS > Get-Location

Path

H:\lee\My Music

276 | Chapter 10: Structured Files

Discussion
PowerShell provides the Export-CliXml and Import-CliXml cmdlets to let you easily
move structured data into and out of files. These cmdlets accomplish this in a very
data-centric and future-proof way—by storing only the names, values, and basic data
types for the properties of that data.

By default, PowerShell stores one level of data: all directly accessi‐
ble simple properties (such as the WorkingSet of a process) but a
plain-text representation for anything deeper (such as a process’s
Threads collection). For information on how to control the depth
of this export, type Get-Help Export-CliXml and see the explana‐
tion of the -Depth parameter.

After you import data saved by Export-CliXml, you again have access to the proper‐
ties and values from the original data. PowerShell converts some objects back to their
fully featured objects (such as System.DateTime objects), but for the most part
doesn’t retain functionality (for example, methods) from the original objects.

10.6 Store the Output of a Command in a CSV or
Delimited File
Problem
You want to store the output of a command in a CSV file for later processing. This is
helpful when you want to export the data for later processing outside PowerShell.

Solution
Use PowerShell’s Export-Csv cmdlet to save the output of a command into a CSV file.
For example, to create an inventory of the processes running on a system:

Get-Process | Export-Csv c:\temp\processes.csv

You can then review this output in a tool such as Excel, mail it to others, or do what‐
ever else you might want to do with a CSV file.

Discussion
The CSV file format is one of the most common formats for exchanging semistruc‐
tured data between programs and systems.

10.6 Store the Output of a Command in a CSV or Delimited File | 277

PowerShell’s Export-Csv cmdlet provides an easy way to export data from the Power‐
Shell environment while still allowing you to keep a fair amount of your data’s struc‐
ture. When PowerShell exports your data to the CSV, it creates a row for each object
that you provide. For each row, PowerShell creates columns in the CSV that represent
the values of your object’s properties.

If you want to use the CSV-structured data as input to another tool
that supports direct CSV pipeline input, you can use the
ConvertTo-Csv cmdlet to bypass the step of storing it in a file.

If you want to separate the data with a character other than a comma, use the
-Delimiter parameter. If you want to append to a CSV file rather than create a new
one, use the -Append parameter.

One thing to keep in mind is that the CSV file format supports only plain strings for
property values. If a property on your object isn’t actually a string, PowerShell con‐
verts it to a string for you. Having PowerShell convert rich property values (such as
integers) to strings, however, does mean that a certain amount of information is not
preserved. If your ultimate goal is to load this unmodified data again in PowerShell,
the Export-CliXml cmdlet provides a much better alternative. For more information
about the Export-CliXml cmdlet, see Recipe 10.5.

For more information on how to import data from a CSV file into PowerShell, see
Recipe 10.7.

See Also
Recipe 10.5, “Easily Import and Export Your Structured Data”

Recipe 10.7, “Import CSV and Delimited Data from a File”

10.7 Import CSV and Delimited Data from a File
Problem
You want to import structured data that has been stored in a CSV file or a file that
uses some other character as its delimiter.

Solution
Use PowerShell’s Import-Csv cmdlet to import structured data from a CSV file. Use
the -Delimiter parameter if fields are separated by a character other than a comma.

278 | Chapter 10: Structured Files

For example, to load a (space-separated) IIS web server log:
$header = "date","time","s-ip","cs-method","cs-uri-stem","cs-uri-query"
$log = Get-Content u_*.log | Select-String -Notmatch '^(#|\-)' |
 ConvertFrom-Csv -Delimiter " " -Header $header

Then, manage the log as you manage other rich PowerShell output:
$log | Group-Object cs-uri-stem

Discussion
As mentioned in Recipe 10.6, the CSV file format is one of the most common formats
for exchanging semi-structured data between programs and systems.

PowerShell’s Import-Csv cmdlet provides an easy way to import this data into the
PowerShell environment from other programs. When PowerShell imports your data
from the CSV, it creates a new object for each row in the CSV. For each object, Power‐
Shell creates properties on the object from the values of the columns in the CSV.

If the names of the CSV columns match parameter names, many
commands let you pipe this output to automatically set the values
of parameters.
For more information about this feature, see Recipe 2.6.

If you’re dealing with data in a CSV format that is the output of another tool or com‐
mand, the Import-Csv cmdlet’s file-based behavior won’t be of much help. In this
case, use the ConvertFrom-Csv cmdlet.

One thing to keep in mind is that the CSV file format supports only plain strings for
property values. When you import data from a CSV, properties that look like dates
will still only be strings. Properties that look like numbers will only be strings. Prop‐
erties that look like any sort of rich data type will only be strings. This means that
sorting on any property will always be an alphabetical sort, which is usually not the
same as the sorting rules for the rich data types that the property might look like.

If your ultimate goal is to load rich unmodified data from something that you’ve pre‐
viously exported from PowerShell, the Import-CliXml cmdlet provides a much better
alternative. For more information about the Import-CliXml cmdlet, see Recipe 10.5.

For more information on how to export data from PowerShell to a CSV file, see
Recipe 10.6.

10.7 Import CSV and Delimited Data from a File | 279

See Also
Recipe 2.6, “Automate Data-Intensive Tasks”

Recipe 10.5, “Easily Import and Export Your Structured Data”

Recipe 10.6, “Store the Output of a Command in a CSV or Delimited File”

10.8 Manage JSON Data Streams
Problem
You want to work with sources that produce or consume JSON-formatted data.

Solution
Use PowerShell’s ConvertTo-Json and ConvertFrom-Json commands to convert data
to and from JSON formatting, respectively:

PS > $object = [PSCustomObject] @{
 Name = "Lee";
 Phone = "555-1212"
}

PS > $json = ConvertTo-Json $object
PS > $json
{
 "Name": "Lee",
 "Phone": "555-1212"
}

PS > $newObject = ConvertFrom-Json $json
PS > $newObject

Name Phone
---- -----
Lee 555-1212

Discussion
When you’re writing scripts to interact with web APIs and web services, the JSON
data format is one of the most common that you’ll find. JSON stands for JavaScript
Object Notation, and gained prominence with JavaScript-heavy websites and web
APIs as an easy way to transfer structured data.

If you use PowerShell’s Invoke-RestMethod cmdlet to interact with these web APIs,
PowerShell automatically converts objects to and from JSON if required. If you use
the Invoke-WebRequest cmdlet to retrieve data from a web page (or simply need
JSON in another scenario), these cmdlets can prove extremely useful.

280 | Chapter 10: Structured Files

Because the JSON encoding format uses very little markup, it’s an
excellent way to visualize complex objects—especially properties
and nested properties:

$s = Get-Service -Name winrm
$s | ConvertTo-Json -Depth 2

One common reason for encoding JSON is to use it in a web application. In that case,
it’s common to compress the resulting JSON to remove any spaces and newlines that
are not required. The ConvertTo-Json cmdlet supports this through its -Compress
parameter:

PS > ConvertTo-Json $object -Compress
{"Name":"Lee","Phone":"555-1212"}

For more information about working with JSON-based web APIs, see Recipe 12.7.

See Also
Recipe 12.7, “Interact with REST-Based Web APIs”

10.9 Use Excel to Manage Command Output
Problem
You want to use Excel to manipulate or visualize the output of a command.

Solution
Use PowerShell’s Export-Csv cmdlet to save the output of a command in a CSV file,
and then load that CSV in Excel. If you have Excel associated with .csv files, the
Invoke-Item cmdlet launches Excel when you provide it with a .csv file as an
argument.

Example 10-7 demonstrates how to generate a CSV file containing the disk usage for
subdirectories of the current directory.

Example 10-7. Using Excel to visualize disk usage on the system

PS > $filename = "c:\temp\diskusage.csv"
PS >
PS > $output = Get-ChildItem -Attributes Directory |
 Select-Object Name,
 @{ Name="Size";
 Expression={ ($_ | Get-ChildItem -Recurse |
 Measure-Object -Sum Length).Sum + 0 } }

PS > $output | Export-Csv $filename

10.9 Use Excel to Manage Command Output | 281

PS >
PS > Invoke-Item $filename

In Excel, you can manipulate or format the data as you wish. As Figure 10-1 shows,
we can manually create a pie chart.

Figure 10-1. Visualizing data in Excel

Discussion
Although used only as a demonstration, Example 10-7 packs quite a bit into just a few
lines.

The first Get-ChildItem line uses the -Directory parameter to list all of the directo‐
ries in the current directory. For each of those directories, you use the Select-Object
cmdlet to pick out its Name and Size.

Directories don’t have a Size property, though. To get that, we use Select-Object’s
hashtable syntax to generate a calculated property. This calculated property (as
defined by the Expression script block) uses the Get-ChildItem and Measure-
Object cmdlets to add up the Length of all files in the given directory.

For more information about creating and working with calculated properties, see
Recipe 3.14.

282 | Chapter 10: Structured Files

See Also
Recipe 3.14, “Add Custom Methods and Properties to Objects”

10.10 Parse and Interpret PowerShell Scripts
Problem
You want to access detailed structural and language-specific information about the
content of a PowerShell script.

Solution
For simple analysis of the script’s textual representation, use PowerShell’s Tokenizer
API to convert the script into the same internal representation that PowerShell uses
to understand the script’s elements.

PS > $script = '$myVariable = 10'
PS > $errors = [System.Management.Automation.PSParseError[]] @()
PS > [Management.Automation.PsParser]::Tokenize($script, [ref] $errors) |
 Format-Table -Auto

Content Type Start Length StartLine StartColumn EndLine EndColumn
------- ---- ----- ------ --------- ----------- ------- ---------
myVariable Variable 0 11 1 1 1 12
= Operator 12 1 1 13 1 14
10 Number 14 2 1 15 1 17

For detailed analysis of the script’s structure, use PowerShell’s Abstract Syntax Tree
(AST) API to convert the script into the same internal representation that PowerShell
uses to understand the script’s structure.

PS > $script = { $myVariable = 10 }
PS > $script.Ast.EndBlock.Statements[0].GetType()
IsPublic IsSerial Name
-------- -------- ----
True False AssignmentStatementAst

PS > $script.Ast.EndBlock.Statements[0]

Left : $myVariable
Operator : Equals
Right : 10
ErrorPosition : =
Extent : $myVariable = 10
Parent : $myVariable = 10

Discussion
When PowerShell loads a script, it goes through two primary steps to interpret it:
tokenization and AST generation.

10.10 Parse and Interpret PowerShell Scripts | 283

Tokenization
When PowerShell loads a script, the first step is to tokenize that script. Tokenization is
based on the textual representation of a script, and determines which portions of the
script represent variables, numbers, operators, commands, parameters, aliases, and
more.

While this is a fairly advanced concept, the Tokenizer API exposes the results of this
step. This lets you work with the rich visual structure of PowerShell scripts the same
way that the PowerShell engine does.

Without the support of a Tokenizer API, tool authors are usually required to build
complicated regular expressions that attempt to emulate the PowerShell engine.
Although these regular expressions are helpful for many situations, they tend to fall
apart on more complex scripts.

As an example of this problem, consider the first line of Figure 10-2. "Write-Host" is
an argument to the Write-Host cmdlet, but gets parsed as a string. The second line,
while still providing an argument to the Write-Host cmdlet, doesn’t treat the argu‐
ment the same way. In fact, since it matches a cmdlet name, the argument gets col‐
ored like another call to the Write-Host cmdlet. In the here string that follows, the
Write-Host cmdlet name gets highlighted again, even though it’s really just part of a
string.

Figure 10-2. Tokenization errors from a simple online highlighter on a complex script

Because the Tokenizer API follows the same rules as the PowerShell engine, it avoids
the pitfalls of the regular-expression-based approach while producing output that is
much easier to consume. When run on the same input, it produces the output shown
in Example 10-8.

284 | Chapter 10: Structured Files

Example 10-8. Successfully tokenizing a complex script

PS > [Management.Automation.PsParser]::Tokenize($content, [ref] $errors) | ft -auto

Content Type StartLine StartColumn EndLine EndColumn
------- ---- --------- ----------- ------- ---------
Write-Host Command 1 1 1 11
Write-Host String 1 12 1 24
... NewLine 1 24 2 1
Write-Host Command 2 1 2 11
Write-Host CommandArgument 2 12 2 22
... NewLine 2 22 3 1
... NewLine 3 1 4 1
Write-Host Write-Host String 4 1 4 24
... NewLine 4 24 5 1
... NewLine 5 1 6 1
testContent Variable 6 1 6 13
= Operator 6 14 6 15
Write-Host Hello World String 6 16 8 3
... NewLine 8 3 9 1

This adds a whole new dimension to the way you can interact with PowerShell
scripts. Some natural outcomes are:

• Syntax highlighting
• Automated script editing (for example, replacing aliased commands with their

expanded equivalents)
• Script style and form verification

If the script contains any errors, PowerShell captures those in the $errors collection
you’re required to supply. If you don’t want to keep track of errors, you can supply
[ref] $null as the value for that parameter.

For an example of the Tokenizer API in action, see Recipe 8.7.

AST generation
After PowerShell parses the textual tokens from your script, it generates a tree struc‐
ture to represent the actual structure of your script. For example, scripts don’t just
have loose collections of tokens—they have Begin, Process, and End blocks. Those
blocks may have Statements, which themselves can contain PipelineElements with
Commands. For example:

PS > $ast = { Get-Process -Id $pid }.Ast
PS > $ast.EndBlock.Statements[0].PipelineElements[0].CommandElements[0].Value
Get-Process

As the Solution demonstrates, the easiest way to retrieve the AST for a command is to
access the AST property on its script block. For example:

10.10 Parse and Interpret PowerShell Scripts | 285

PS C:\Users\Lee> function prompt { "PS > " }
PS > $ast = (Get-Command prompt).ScriptBlock.Ast
PS > $ast

IsFilter : False
IsWorkflow : False
Name : prompt
Parameters :
Body : { "PS > " }
Extent : function prompt { "PS > " }
Parent : function prompt { "PS > " }

If you want to create an AST from text content, use the [ScriptBlock]::Create()
method:

PS > $scriptBlock = [ScriptBlock]::Create('Get-Process -ID $pid')
PS > $scriptBlock.Ast

ParamBlock :
BeginBlock :
ProcessBlock :
EndBlock : Get-Process -ID $pid
DynamicParamBlock :
ScriptRequirements :
Extent : Get-Process -ID $pid
Parent :

With the PowerShell AST at your disposal, advanced script analysis is easier than it’s
ever been. Here’s a simple example of using the [Ast]::FindAll() method to find the
nodes in a script that have the exact text, $pid:

$scriptBlock.Ast.FindAll({
 param($Ast)
 if($Ast.Extent.Text -eq '$pid')
 {
 return $true
 }
}, $true)

To learn more about the methods and properties exposed by the PowerShell AST, see
Recipe 3.12.

See Also
Recipe 3.12, “Learn About Types and Objects”

Recipe 8.7, “Program: Show Colorized Script Content”

286 | Chapter 10: Structured Files

CHAPTER 11

Code Reuse

11.0 Introduction
One thing that surprises many people is how much you can accomplish in PowerShell
from the interactive prompt alone. Since PowerShell makes it so easy to join its pow‐
erful commands together into even more powerful combinations, enthusiasts grow to
relish this brevity. In fact, there’s a special place in the heart of most scripting enthusi‐
asts set aside entirely for the most compact expressions of power: the one-liner.

Despite its interactive efficiency, you probably don’t want to retype all your brilliant
ideas anew each time you need them. When you want to save or reuse the commands
that you’ve written, PowerShell provides many avenues to support you: scripts, mod‐
ules, functions, script blocks, and more.

11.1 Write a Script
Problem
You want to store your commands in a script so that you can share them or reuse
them later.

Solution
To write a PowerShell script, create a plain-text file with your editor of choice. Add
your PowerShell commands to that script (the same PowerShell commands you use
from the interactive shell), and then save it with a .ps1 extension.

287

Discussion
One of the most important things to remember about PowerShell is that running
scripts and working at the command line are essentially equivalent operations. If you
see it in a script, you can type it or paste it at the command line. If you typed it on the
command line, you can paste it into a text file and call it a script.

Once you write your script, PowerShell lets you call it in the same way that you call
other programs and existing tools. Running a script does the same thing as running
all the commands in that script.

PowerShell introduces a few features related to running scripts and
tools that may at first confuse you if you aren’t aware of them. For
more information about how to call scripts and existing tools, see
Recipe 1.2.

The first time you try to run a script in PowerShell, you’ll likely see the following
error message:

File c:\tools\myFirstScript.ps1 cannot be loaded because the execution of
scripts is disabled on this system. Please see "get-help about_signing" for
more details.
At line:1 char:12
+ myFirstScript <<<<

Since relatively few computer users write scripts, PowerShell’s default security policies
prevent scripts from running. Once you begin writing scripts, though, you should
configure this policy to something less restrictive. For information on how to config‐
ure your execution policy, see Recipe 18.1.

When it comes to the filename of your script, picking a descriptive name is the best
way to guarantee that you’ll always remember what that script does—or at least have a
good idea. This is an issue that PowerShell tackles elegantly, by naming every cmdlet
in the Verb-Noun pattern: a command that performs an action (verb) on an item
(noun). As a demonstration of the usefulness of this philosophy, consider the names
of typical Windows commands given in Example 11-1.

Example 11-1. The names of some standard Windows commands

PS > dir $env:WINDIR\System32*.exe | Select-Object Name

Name

accwiz.exe
actmovie.exe
ahui.exe
alg.exe
append.exe

288 | Chapter 11: Code Reuse

arp.exe
asr_fmt.exe
asr_ldm.exe
asr_pfu.exe
at.exe
atmadm.exe
attrib.exe
(...)

Compare this to the names of some standard PowerShell cmdlets, given in
Example 11-2.

Example 11-2. The names of some standard PowerShell cmdlets

PS > Get-Command | Select-Object Name

Name

Add-Content
Add-History
Add-Member
Add-PSSnapin
Clear-Content
Clear-Item
Clear-ItemProperty
Clear-Variable
Compare-Object
ConvertFrom-SecureString
Convert-Path
ConvertTo-Html
(...)

As an additional way to improve discovery, PowerShell takes this even further with
the philosophy (and explicit goal) that “you can manage 80% of your system with
fewer than 50 verbs.” As you learn the standard verbs for a concept, such as Get
(which represents the standard concepts of read, open, and so on), you can often
guess the verb of a command as the first step in discovering it.

When you name your script (especially if you intend to share it), make every effort to
pick a name that follows these conventions. Recipe 11.3 shows a useful cmdlet to help
you find a verb to name your scripts properly. As evidence of its utility for scripts,
consider some of the scripts included in this book:

PS > dir | select Name

Name

Compare-Property.ps1
Convert-TextObject.ps1
Get-AliasSuggestion.ps1
Get-Answer.ps1
Get-Characteristics.ps1

11.1 Write a Script | 289

Get-OwnerReport.ps1
Get-PageUrls.ps1
Invoke-CmdScript.ps1
New-GenericObject.ps1
Select-FilteredObject.ps1
(...)

Like the PowerShell cmdlets, the names of these scripts are clear, easy to understand,
and use verbs from PowerShell’s standard verb list.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 11.3, “Find a Verb Appropriate for a Command Name”

Appendix J, Standard PowerShell Verbs

11.2 Write a Function
Problem
You have commands in your script that you want to call multiple times or a section of
your script that you consider to be a “helper” for the main purpose of your script.

Solution
Place this common code in a function, and then call that function instead. For exam‐
ple, this Celsius conversion code in a script:

param([double] $fahrenheit)

Convert it to Celsius
$celsius = $fahrenheit - 32
$celsius = $celsius / 1.8

Output the answer
"$fahrenheit degrees Fahrenheit is $celsius degrees Celsius."

could be placed in a function (itself placed in a script):
param([double] $fahrenheit)

Convert Fahrenheit to Celsius
function ConvertFahrenheitToCelsius([double] $fahrenheit)
{
 $celsius = $fahrenheit - 32
 $celsius = $celsius / 1.8
 $celsius
}

$celsius = ConvertFahrenheitToCelsius $fahrenheit

290 | Chapter 11: Code Reuse

Output the answer
"$fahrenheit degrees Fahrenheit is $celsius degrees Celsius."

Although using a function arguably makes this specific script longer and more diffi‐
cult to understand, the technique is extremely valuable (and used) in almost all non‐
trivial scripts.

Discussion
Once you define a function, any command after that definition can use it. This means
that you must define your function before any part of your script that uses it. You
might find this unwieldy if your script defines many functions, as the function defini‐
tions obscure the main logic portion of your script. If this is the case, you can put
your main logic in a Main function, as described in Recipe 11.21.

A common question that comes from those accustomed to batch
scripting in cmd.exe is, “What is the PowerShell equivalent of a
GOTO?” In situations where the GOTO is used to call subroutines or
other isolated helper parts of the batch file, use a PowerShell func‐
tion to accomplish that task. If the GOTO is used as a way to loop
over something, PowerShell’s looping mechanisms are more
appropriate.

In PowerShell, calling a function is designed to feel just like calling a cmdlet or a
script. As a user, you shouldn’t have to know whether a little helper routine was writ‐
ten as a cmdlet, script, or function. When you call a function, simply add the parame‐
ters after the function name, with spaces separating each one (as shown in the Solu‐
tion). This is in contrast to the way that you call functions in many programming lan‐
guages (such as C#), where you use parentheses after the function name and commas
between each parameter:

Correct
ConvertFahrenheitToCelsius $fahrenheit

Incorrect
ConvertFahrenheitToCelsius($fahrenheit)

Also, notice that the return value from a function is anything that the function writes
to the output pipeline (such as $celsius in the Solution). You can write return
$celsius if you want, but it’s unnecessary.

For more information about writing functions, see “Writing Scripts, Reusing Func‐
tionality” on page 839. For more information about PowerShell’s looping statements,
see Recipe 4.4.

11.2 Write a Function | 291

See Also
Recipe 4.4, “Repeat Operations with Loops”

“Writing Scripts, Reusing Functionality” on page 839

11.3 Find a Verb Appropriate for a Command Name
Problem
You are writing a new script or function and want to select an appropriate verb for
that command.

Solution
Review the output of the Get-Verb command to find a verb appropriate for your
command:

PS > Get-Verb In* | Format-Table -Auto

Verb Group
---- -----
Initialize Data
Install Lifecycle
Invoke Lifecycle

Discussion
Consistency of command names is one of PowerShell’s most beneficial features,
largely due to its standard set of verbs. While descriptive command names (such as
Stop-Process) make it clear what a command does, standard verbs make commands
easier to discover.

For example, many technologies have their own words for creating something: new,
create, instantiate, build, and more. When a user looks for a command (without the
benefit of standard verbs), the user has to know the domain-specific terminology for
that action. If the user doesn’t know the domain-specific verb, they are forced to page
through long lists of commands in the hope that something rings a bell.

When commands use PowerShell’s standard verbs, however, discovery becomes
much easier. Once users learn the standard verb for an action, they don’t need to
search for its domain-specific alternatives. Most importantly, the time they invest
(actively or otherwise) learning the standard PowerShell verbs improves their effi‐
ciency with all commands, not just commands from a specific domain.

292 | Chapter 11: Code Reuse

This discoverability issue is so important that PowerShell generates
a warning message when a module defines a command with a non‐
standard verb. To support domain-specific names for your com‐
mands in addition to the standard names, simply define an alias.
For more information, see Recipe 11.8.

To make it easier to select a standard verb while writing a script or function, Power‐
Shell provides a Get-Verb function. You can review the output of that function to
find a verb suitable for your command. For an even more detailed description of the
standard verbs, see Appendix J.

See Also
Recipe 11.8, “Selectively Export Commands from a Module”

Appendix J, Standard PowerShell Verbs

11.4 Write a Script Block
Problem
You have a section of your script that works nearly the same for all input, aside from a
minor change in logic.

Solution
As shown in Example 11-3, place the minor logic differences in a script block, and
then pass that script block as a parameter to the code that requires it. Use the invoke
operator (&) to execute the script block.

Example 11-3. A script that applies a script block to each element in the pipeline

##
##
Invoke-ScriptBlock
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Apply the given mapping command to each element of the input. (Note that
PowerShell includes this command natively, and calls it Foreach-Object)

11.4 Write a Script Block | 293

.EXAMPLE

PS > 1,2,3 | Invoke-ScriptBlock { $_ * 2 }

#>

param(
 ## The script block to apply to each incoming element
 [ScriptBlock] $MapCommand
)

begin
{
 Set-StrictMode -Version 3
}
process
{
 & $mapCommand
}

Discussion
Imagine a script that needs to multiply all the elements in a list by two:

function MultiplyInputByTwo
{
 process
 {
 $_ * 2
 }
}

but it also needs to perform a more complex calculation:
function MultiplyInputComplex
{
 process
 {
 ($_ + 2) * 3
 }
}

These two functions are strikingly similar, except for the single line that actually per‐
forms the calculation. As we add more calculations, this quickly becomes more evi‐
dent. Adding each new seven-line function gives us only one unique line of value!

PS > 1,2,3 | MultiplyInputByTwo
2
4
6
PS > 1,2,3 | MultiplyInputComplex
9
12
15

294 | Chapter 11: Code Reuse

If we instead use a script block to hold this “unknown” calculation, we don’t need to
keep on adding new functions:

PS > 1,2,3 | Invoke-ScriptBlock { $_ * 2 }
2
4
6
PS > 1,2,3 | Invoke-ScriptBlock { ($_ + 2) * 3 }
9
12
15
PS > 1,2,3 | Invoke-ScriptBlock { ($_ + 3) * $_ }
4
10
18

In fact, the functionality provided by Invoke-ScriptBlock is so helpful that it’s a
standard PowerShell cmdlet—called ForEach-Object. For more information about
script blocks, see “Writing Scripts, Reusing Functionality” on page 839. For more
information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

“Writing Scripts, Reusing Functionality” on page 839

11.5 Return Data from a Script, Function, or Script Block
Problem
You want your script or function to return data to whatever called it.

Solution
To return data from a script or function, write that data to the output pipeline:

##
Get-Tomorrow
##
Get the date that represents tomorrow
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

Set-StrictMode -Version 3

function GetDate
{

11.5 Return Data from a Script, Function, or Script Block | 295

 Get-Date
}

$tomorrow = (GetDate).AddDays(1)
$tomorrow

Discussion
In PowerShell, any data that your function or script generates gets sent to the output
pipeline, unless something captures that output. The GetDate function generates data
(a date) and doesn’t capture it, so that becomes the output of the function. The por‐
tion of the script that calls the GetDate function captures that output and then
manipulates it.

Finally, the script writes the $tomorrow variable to the pipeline without capturing it,
so that becomes the return value of the script itself.

Some .NET methods—such as the System.Collections.Array
List class—produce output, even though you may not expect them
to. To prevent these methods from sending data to the output pipe‐
line, either capture the data or cast it to [void]:

PS > $collection = New-Object System.Collections.ArrayList
PS > $collection.Add("Hello")
0
PS > [void] $collection.Add("Hello")

Even with this “pipeline output becomes the return value” philosophy, PowerShell
continues to support the traditional return keyword as a way to return from a func‐
tion or script. If you specify anything after the keyword (such as return "Hello"),
PowerShell treats that as a "Hello" statement followed by a return statement.

If you want to make your intention clear to other readers of your
script, you can use the Write-Output cmdlet to explicitly send data
down the pipeline. Both produce the same result, so this is only a
matter of preference.

If you write a collection (such as an array or ArrayList) to the output pipeline, Pow‐
erShell in fact writes each element of that collection to the pipeline. To keep the col‐
lection intact as it travels down the pipeline, prefix it with a comma when you return
it. This returns a collection (that will be unraveled) with one element: the collection
you wanted to keep intact.

function WritesObjects
{
 $arrayList = New-Object System.Collections.ArrayList
 [void] $arrayList.Add("Hello")

296 | Chapter 11: Code Reuse

 [void] $arrayList.Add("World")

 $arrayList
}

function WritesArrayList
{
 $arrayList = New-Object System.Collections.ArrayList
 [void] $arrayList.Add("Hello")
 [void] $arrayList.Add("World")

 ,$arrayList
}

$objectOutput = WritesObjects

The following command would generate an error
$objectOutput.Add("Extra")

$arrayListOutput = WritesArrayList
$arrayListOutput.Add("Extra")

Although relatively uncommon in PowerShell’s world of fully structured data, you
may sometimes want to use an exit code to indicate the success or failure of your
script. For this, PowerShell offers the exit keyword.

For more information about the return and exit statements, please see “Writing
Scripts, Reusing Functionality” on page 839 and Recipe 15.1.

See Also
Recipe 15.1, “Determine the Status of the Last Command”

“Writing Scripts, Reusing Functionality” on page 839

11.6 Package Common Commands in a Module
Problem
You’ve developed a useful set of commands or functions. You want to offer them to
the user or share them between multiple scripts.

Solution
First, place these common function definitions by themselves in a file with the exten‐
sion .psm1, as shown in Example 11-4.

11.6 Package Common Commands in a Module | 297

Example 11-4. A module of temperature commands

##
##
Temperature.psm1
Commands that manipulate and convert temperatures
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

Convert Fahrenheit to Celsius
function Convert-FahrenheitToCelsius([double] $fahrenheit)
{
 $celsius = $fahrenheit - 32
 $celsius = $celsius / 1.8
 $celsius
}

Convert Celsius to Fahrenheit
function Convert-CelsiusToFahrenheit([double] $celsius)
{
 $fahrenheit = $celsius * 1.8
 $fahrenheit = $fahrenheit + 32
 $fahrenheit
}

Next, place that file in your Modules directory (as defined in the PSModulePath envi‐
ronment variable), in a subdirectory with the same name. For example, place
Temperature.psm1 in <My Documents>\PowerShell\Modules\Temperature. Call the
Import-Module command to import the module (and its commands) into your ses‐
sion, as shown by Example 11-5.

Example 11-5. Importing a module

PS > Import-Module Temperature
PS > Convert-FahrenheitToCelsius 81
27.2222222222222

Discussion
PowerShell modules give you an easy way to package related commands and func‐
tionality. As the Solution demonstrates, writing a module is as simple as adding func‐
tions to a file.

As with the naming of core commands, the naming of commands packaged in a
module plays a critical role in giving users a consistent and discoverable PowerShell
experience. When you name the commands in your module, ensure that they follow
a Verb-Noun syntax and that you select verbs from PowerShell’s standard set of verbs.

298 | Chapter 11: Code Reuse

If your module doesn’t follow these standards, your users will receive a warning mes‐
sage when they load your module. For information about how to make your module
commands discoverable (and as domain-specific as required), see Recipe 11.8.

In addition to creating the .psm1 file that contains your module’s commands, you
should also create a module manifest to describe its contents and system require‐
ments. Module manifests let you define the module’s author, company, copyright
information, and more. For more information, see the New-ModuleManifest cmdlet.

After writing a module, the last step is making it available to the system. When you
call Import-Module <module name> to load a module, PowerShell looks through each
directory listed in the PSModulePath environment variable.

The PSModulePath variable is an environment variable, just like the
system’s PATH environment variable. For more information on how
to view and modify environment variables, see Recipe 16.1.

If PowerShell finds a directory named <module name>, it looks in that directory for a
psm1 file with that name as well. Once it finds the psm1 file, it loads that module into
your session. In addition to psm1 files, PowerShell also supports module manifest
(psd1) files that let you define a great deal of information about the module: its
author, description, nested modules, version requirements, and much more. For
more information, type Get-Help New-ModuleManifest.

If you want to make your module available to just yourself (or the “current user” if
you’re installing your module as part of a setup process), place it in the per-user mod‐
ules folder: <My Documents>\PowerShell\Modules\<module name>. If you want to
make the module available to all users of the system, place your module in its own
directory under the Program Files directory, and then add that directory to the
system-wide PSModulePath environment variable.

If you don’t want to permanently install your module, you can instead specify the
complete path to the psm1 file when you load the module. For example:

Import-Module c:\tools\Temperature.psm1

If you want to load a module from the same directory that your script is in, see Recipe
16.6.

When you load a module from a script, PowerShell makes the commands from that
module available to the entire session. If your script loads the Temperature module,
for example, the functions in that module will still be available after your script exits.
To ensure that your script doesn’t accidentally influence the user’s session after it
exits, you should remove any modules that you load:

11.6 Package Common Commands in a Module | 299

$moduleToRemove = $null
if(-not (Get-Module <Module Name>))
{
 $moduleToRemove = Import-Module <Module Name> -Passthru
}

######################
##
script goes here
##
######################

if($moduleToRemove)
{
 $moduleToRemove | Remove-Module
}

If you have a module that loads a helper module (as opposed to a script that loads a
helper module), this step is not required. Modules loaded by a module impact only
the module that loads them.

If you want to let users configure your module when they load it, you can define a
parameter block at the beginning of your module. These parameters then get filled
through the -ArgumentList parameter of the Import-Module command. For exam‐
ple, a module that takes a “retry count” and website as parameters:

param(
 [int] $RetryCount,
 [URI] $Website
)

function Get-Page
{

}

The user would load the module with the following command line:
Import-Module <module name> -ArgumentList 10,"http://www.example.com"
Get-Page "/index.html"

One important point when it comes to the -ArgumentList parameter is that its sup‐
port for user input is much more limited than support offered for most scripts, func‐
tions, and script blocks. PowerShell lets you access the parameters in most param()
statements by name, by alias, and in or out of order. Arguments supplied to the
Import-Module command, on the other hand, must be supplied as values only, and in
the exact order the module defines them.

For more information about accessing arguments of a command, see Recipe 11.11.
For more information about importing a module (and the different types of modules
available), see Recipe 1.28. For more information about modules, type Get-Help
about_Modules.

300 | Chapter 11: Code Reuse

See Also
Recipe 1.28, “Extend Your Shell with Additional Commands”

Recipe 11.8, “Selectively Export Commands from a Module”

Recipe 11.11, “Access Arguments of a Script, Function, or Script Block”

Recipe 16.1, “View and Modify Environment Variables”

11.7 Write Commands That Maintain State
Problem
You have a function or script that needs to maintain state between invocations.

Solution
Place those commands in a module. Store any information you want to retain in a
variable, and give that variable a SCRIPT scope. See Example 11-6.

Example 11-6. A module that maintains state

##
##
PersistentState.psm1
Demonstrates persistent state through module-scoped variables
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

$SCRIPT:memory = $null

function Set-Memory
{
 param(
 [Parameter(ValueFromPipeline = $true)]
 $item
)

 begin { $SCRIPT:memory = New-Object System.Collections.ArrayList }
 process { $null = $memory.Add($item) }
}

function Get-Memory
{
 $memory.ToArray()
}

Set-Alias remember Set-Memory

11.7 Write Commands That Maintain State | 301

Set-Alias recall Get-Memory

Export-ModuleMember -Function Set-Memory,Get-Memory
Export-ModuleMember -Alias remember,recall

Discussion
When writing scripts or commands, you’ll frequently need to maintain state between
the invocation of those commands. For example, your commands might remember
user preferences, cache configuration data, or store other types of module state. See
Example 11-7.

Example 11-7. Working with commands that maintain state

PS > Import-Module PersistentState
PS > Get-Process -Name PowerShell | remember
PS > recall

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 527 6 32704 44140 172 2.13 2644 powershell
 517 7 23080 33328 154 1.81 2812 powershell
 357 6 31848 33760 165 1.42 3576 powershell

In basic scripts, the only way to maintain state across invocations is to store the infor‐
mation in a global variable. This introduces two problems, though.

The first problem is that global variables impact much more than just the script that
defines them. Once your script stores information in a global variable, it pollutes the
user’s session. If the user has a variable with the same name, your script overwrites its
contents. The second problem is the natural counterpart to this pollution. When your
script stores information in a global variable, both the user and other scripts have
access to it. Due to accident or curiosity, it’s quite easy for these “internal” global vari‐
ables to be damaged or corrupted.

You can resolve this issue through the use of modules. By placing your commands in
a module, PowerShell makes variables with a script scope available to all commands
in that module. In addition to making script-scoped variables available to all of your
commands, PowerShell maintains their value between invocations of those
commands.

Like variables, PowerShell drives obey the concept of scope. When
you use the New-PSDrive cmdlet from within a module, that drive
stays private to that module. To create a new drive that’s visible
from outside your module as well, create it with a global scope:

New-PSDrive -Name Temp FileSystem -Root C:\Temp -Scope Global

302 | Chapter 11: Code Reuse

For more information about variables and their scopes, see Recipe 3.6. For more
information about defining a module, see Recipe 11.6.

See Also
Recipe 3.6, “Control Access and Scope of Variables and Other Items”

Recipe 11.6, “Package Common Commands in a Module”

11.8 Selectively Export Commands from a Module
Problem
You have a module and want to export only certain commands from that module.

Solution
Use the Export-ModuleMember cmdlet to declare the specific commands you want
exported. All other commands then remain internal to your module. See
Example 11-8.

Example 11-8. Exporting specific commands from a module

##
##
SelectiveCommands.psm1
Demonstrates the selective export of module commands
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

An internal helper function
function MyInternalHelperFunction
{
 "Result from my internal helper function"
}

A command exported from the module
function Get-SelectiveCommandInfo
{
 "Getting information from the SelectiveCommands module"
 MyInternalHelperFunction
}

Alternate names for our standard command
Set-Alias gsci Get-SelectiveCommandInfo
Set-Alias DomainSpecificVerb-Info Get-SelectiveCommandInfo

11.8 Selectively Export Commands from a Module | 303

Export specific commands
Export-ModuleMember -Function Get-SelectiveCommandInfo
Export-ModuleMember -Alias gsci,DomainSpecificVerb-Info

Discussion
When PowerShell imports a module, it imports all functions defined in that module
by default. This makes it incredibly simple (for you as a module author) to create a
library of related commands.

Once your module commands get more complex, you’ll often write helper functions
and support routines. Since these commands aren’t intended to be exposed directly to
users, you’ll instead need to selectively export commands from your module. The
Export-ModuleMember command allows exactly that.

Once your module includes a call to Export-ModuleMember, PowerShell no longer
exports all functions in your module. Instead, it exports only the commands that you
define. The first call to Export-ModuleMember in Example 11-8 demonstrates how to
selectively export a function from a module.

Since consistency of command names is one of PowerShell’s most beneficial features,
PowerShell generates a warning message if your module exports functions (either
explicitly or by default) that use nonstandard verbs. For example, imagine that you
have a technology that uses regenerate configuration as a highly specific phrase for a
task. In addition, it already has a regen command to accomplish this task.

You might naturally consider Regenerate-Configuration and regen as function
names to export from your module, but doing that would alienate users who don’t
have a strong background in your technology. Without your same technical expertise,
they wouldn’t know the name of the command, and instead would instinctively look
for Reset-Configuration, Restore-Configuration, or Initialize-Configuration
based on their existing PowerShell knowledge. In this situation, the solution is to
name your functions with a standard verb and also use command aliases to support
your domain-specific experts.

The Export-ModuleMember cmdlet supports this situation as well. In addition to let‐
ting you selectively export commands from your module, it also lets you export alter‐
native names (aliases) for your module commands. The second call to Export-
ModuleMember in Example 11-8 (along with the alias definitions that precede it) dem‐
onstrates how to export aliases from a module.

For more information about command naming, see Recipe 11.3. For more informa‐
tion about writing a module, see Recipe 11.6.

304 | Chapter 11: Code Reuse

See Also
Recipe 3.6, “Control Access and Scope of Variables and Other Items”

Recipe 11.3, “Find a Verb Appropriate for a Command Name”

Recipe 11.6, “Package Common Commands in a Module”

11.9 Diagnose and Interact with Internal Module State
Problem
You have a module and want to examine its internal variables and functions.

Solution
Use the Enter-Module script (Example 11-9) to temporarily enter the module and
invoke commands within its scope.

Example 11-9. Invoking commands from within the scope of a module

##
##
Enter-Module
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Lets you examine internal module state and functions by executing user
input in the scope of the supplied module.

.EXAMPLE

PS > Import-Module PersistentState
PS > Get-Module PersistentState

ModuleType Name ExportedCommands
---------- ---- ----------------
Script PersistentState {Set-Memory, Get-Memory}

PS > "Hello World" | Set-Memory
PS > $m = Get-Module PersistentState
PS > Enter-Module $m
PersistentState: dir variable:\mem*

11.9 Diagnose and Interact with Internal Module State | 305

Name Value
---- -----
memory {Hello World}

PersistentState: exit
PS >

#>

param(
 ## The module to examine
 [System.Management.Automation.PSModuleInfo] $Module
)

Set-StrictMode -Version 3

$userInput = Read-Host $($module.Name)
while($userInput -ne "exit")
{
 $scriptblock = [ScriptBlock]::Create($userInput)
 & $module $scriptblock

 $userInput = Read-Host $($module.Name)
}

Discussion
PowerShell modules are an effective way to create sets of related commands that
share private state. While commands in a module can share private state between
themselves, PowerShell prevents that state from accidentally impacting the rest of
your PowerShell session.

When you’re developing a module, though, you might sometimes need to interact
with this internal state for diagnostic purposes. To support this, PowerShell lets you
target a specific module with the invocation (&) operator:

PS > $m = Get-Module PersistentState
PS > & $m { dir variable:\mem* }

Name Value
---- -----
memory {Hello World}

This syntax gets cumbersome for more detailed investigation tasks, so Enter-Module
automates the prompting and invocation for you.

For more information about writing a module, see Recipe 11.6.

See Also
Recipe 11.6, “Package Common Commands in a Module”

306 | Chapter 11: Code Reuse

11.10 Handle Cleanup Tasks When a Module Is Removed
Problem
You have a module and want to perform some action (such as cleanup tasks) when
that module is removed.

Solution
Assign a script block to the $MyInvocation.MyCommand.ScriptBlock.Module.

OnRemove event. Place any cleanup commands in that script block. See
Example 11-10.

Example 11-10. Handling cleanup tasks from within a module

##
##
TidyModule.psm1
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS
Demonstrates how to handle cleanup tasks when a module is removed

.EXAMPLE

PS > Import-Module TidyModule
PS > $TidyModuleStatus
Initialized
PS > Remove-Module TidyModule
PS > $TidyModuleStatus
Cleaned Up

#>

Perform some initialization tasks
$GLOBAL:TidyModuleStatus = "Initialized"

Register for cleanup
$MyInvocation.MyCommand.ScriptBlock.Module.OnRemove = {
 $GLOBAL:TidyModuleStatus = "Cleaned Up"
}

11.10 Handle Cleanup Tasks When a Module Is Removed | 307

Discussion
PowerShell modules have a natural way to define initialization requirements (any
script written in the body of the module), but cleanup requirements aren’t as simple.

During module creation, you can access your module using the $MyInvocation.
MyCommand.ScriptBlock.Module property. Each module has an OnRemove event,
which you can then subscribe to by assigning it a script block. When PowerShell
unloads your module, it invokes that script block.

Beware of using this technique for extremely sensitive cleanup requirements. If the
user simply exits the PowerShell window, the OnRemove event isn’t processed. If this is
a concern, register for the PowerShell.Exiting engine event and remove your mod‐
ule from there:

Register-EngineEvent PowerShell.Exiting { Remove-Module TidyModule }

This saves the user from having to remember to call Remove-Module.

For more information about writing a module, see Recipe 11.6. For more information
about PowerShell events, see Recipe 31.2.

See Also
Recipe 11.6, “Package Common Commands in a Module”

Recipe 31.2, “Create and Respond to Custom Events”

11.11 Access Arguments of a Script, Function, or Script
Block
Problem
You want to access the arguments provided to a script, function, or script block.

Solution
To access arguments by name, use a param statement:

param($firstNamedArgument, [int] $secondNamedArgument = 0)

"First named argument is: $firstNamedArgument"
"Second named argument is: $secondNamedArgument"

To access unnamed arguments by position, use the $args array:
"First positional argument is: " + $args[0]
"Second positional argument is: " + $args[1]

308 | Chapter 11: Code Reuse

You can use these techniques in exactly the same way with scripts, functions, and
script blocks, as illustrated by Example 11-11.

Example 11-11. Working with arguments in scripts, functions, and script blocks

##
##
Get-Arguments
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Uses command-line arguments

#>

param(
 ## The first named argument
 $FirstNamedArgument,

 ## The second named argument
 [int] $SecondNamedArgument = 0
)

Set-StrictMode -Version 3

Display the arguments by name
"First named argument is: $firstNamedArgument"
"Second named argument is: $secondNamedArgument"

function GetArgumentsFunction
{
 ## We could use a param statement here, as well
 ## param($firstNamedArgument, [int] $secondNamedArgument = 0)

 ## Display the arguments by position
 "First positional function argument is: " + $args[0]
 "Second positional function argument is: " + $args[1]
}

GetArgumentsFunction One Two

$scriptBlock =
{
 param($firstNamedArgument, [int] $secondNamedArgument = 0)

 ## We could use $args here, as well
 "First named scriptblock argument is: $firstNamedArgument"

11.11 Access Arguments of a Script, Function, or Script Block | 309

 "Second named scriptblock argument is: $secondNamedArgument"
}

& $scriptBlock -First One -Second 4.5

Example 11-11 produces the following output:
PS > Get-Arguments First 2
First named argument is: First
Second named argument is: 2
First positional function argument is: One
Second positional function argument is: Two
First named scriptblock argument is: One
Second named scriptblock argument is: 4

Discussion
Although PowerShell supports both the param keyword and the $args array, you will
most commonly want to use the param keyword to define and access script, function,
and script block parameters.

In most languages, the most common reason to access parameters
through an $args array is to determine the name of the currently
running script. For information about how to do this in Power‐
Shell, see Recipe 16.3.

When you use the param keyword to define your parameters, PowerShell provides
your script or function with many useful features that allow users to work with your
script much as they work with cmdlets:

• Users need to specify only enough of the parameter name to disambiguate it
from other parameters.

• Users can understand the meaning of your parameters much more clearly.
• You can specify the type of your parameters, which PowerShell uses to convert

input if required.
• You can specify default values for your parameters.

Supporting PowerShell’s common parameters
In addition to the parameters you define, you might also want to support Power‐
Shell’s standard parameters: -Verbose, -Debug, -ErrorAction, -WarningAction,
-InformationAction, -ErrorVariable, -WarningVariable, -InformationVariable,
-OutVariable, -OutBuffer, and -PipelineVariable.

310 | Chapter 11: Code Reuse

To get these additional parameters, add the [CmdletBinding()] attribute inside your
function, or declare it at the top of your script. The param() statement is required,
even if your function or script declares no parameters. These (and other associated)
additional features now make your function an advanced function. See
Example 11-12.

Example 11-12. Declaring an advanced function

function Invoke-MyAdvancedFunction
{
 [CmdletBinding()]
 param()

 Write-Verbose "Verbose Message"
}

If your function defines a parameter with advanced validation, you don’t need to
explicitly add the [CmdletBinding()] attribute. In that case, PowerShell already
knows to treat your command as an advanced function.

During PowerShell’s beta phases, advanced functions were known
as script cmdlets. We decided to change the name because the term
script cmdlets caused a sense of fear of the great unknown. Users
would be comfortable writing functions, but “didn’t have the time
to learn those new script cmdlet things.” Because script cmdlets
were just regular functions with additional power, the new name
made a lot more sense.

Although PowerShell adds all of its common parameters to your function, you don’t
actually need to implement the code to support them. For example, calls to Write-
Verbose usually generate no output. When the user specifies the -Verbose parameter
to your function, PowerShell then automatically displays the output of the Write-
Verbose cmdlet.

PS > Invoke-MyAdvancedFunction
PS > Invoke-MyAdvancedFunction -Verbose
VERBOSE: Verbose Message

If your cmdlet modifies system state, it’s extremely helpful to support the standard
-WhatIf and -Confirm parameters. For information on how to accomplish this, see
Recipe 11.15.

11.11 Access Arguments of a Script, Function, or Script Block | 311

Using the $args array
Despite all of the power exposed by named parameters, common parameters, and
advanced functions, the $args array is still sometimes helpful. For example, it pro‐
vides a clean way to deal with all arguments at once:

function Reverse
{
 $argsEnd = $args.Length - 1
 $args[$argsEnd..0]
}

This produces:
PS > Reverse 1 2 3 4
4
3
2
1

If you have defined parameters in your script, the $args array represents any argu‐
ments not captured by those parameters:

function MyParamsAndArgs {
 param($MyArgument)

 "Got MyArgument: $MyArgument"
 "Got Args: $args"
}

PS > MyParamsAndArgs -MyArgument One Two Three
Got MyArgument: One
Got Args: Two Three

Until this point, all examples in this recipe have shown how to access command
parameters from within the command itself. In some situations, you might need to
know how some other command would process input if it were supplied. For this sce‐
nario, you can use the PowerShell static parameter binder class. For example, this
advanced function allows positional parameters, but whether the first one gets coun‐
ted as the Id or Name depends on exactly what you pass in:

function Invoke-ComplexFunction
{
 param(
 [Parameter(ParameterSetName = "ById", Position = 0)]
 [int] $Id,

 [Parameter(ParameterSetName = "ByName", Position = 0)]
 [string] $Name,

 [Parameter(Position = 1)]
 [string] $Extra
)
}

312 | Chapter 11: Code Reuse

If we use the static parameter binder, we can see how PowerShell would have
treated that input:

$script = { Invoke-ComplexFunction 1234 Hello }
$command = $script.Ast.Find(
 { param($Ast) $Ast -is [Management.Automation.Language.CommandAst] }, $false)
$results = [Management.Automation.Language.StaticParameterBinder]::BindCommand(
 $command)

When we peek into $results, we can see that PowerShell would have picked the Id
and Extra parameters:

PS > $results.BoundParameters

Key Value
--- -----
Id System.Management.Automation.Language.ParameterBindingResult
Extra System.Management.Automation.Language.ParameterBindingResult

And even what values they would have been given:
PS > $results.BoundParameters.Id

ConstantValue Value
------------- -----
 1234 1234

PS > $results.BoundParameters.Extra

ConstantValue Value
------------- -----
Hello Hello

For more information about the param statement, see “Writing Scripts, Reusing Func‐
tionality” on page 839. For more information about running scripts, see Recipe 1.2.
For more information about functionality (such as -Whatif and -Confirm) exposed
by the PowerShell engine, see Recipe 11.15.

For information about how to declare parameters with rich validation and behavior,
see Recipe 11.12.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 11.12, “Add Validation to Parameters”

Recipe 11.15, “Provide -WhatIf, -Confirm, and Other Cmdlet Features”

Recipe 16.3, “Access Information About Your Command’s Invocation”

“Writing Scripts, Reusing Functionality” on page 839

11.11 Access Arguments of a Script, Function, or Script Block | 313

11.12 Add Validation to Parameters
Problem
You want to ensure that user input to a parameter satisfies certain restrictions or
constraints.

Solution
Use the [Parameter()] attribute to declare the parameter as mandatory, positional,
part of a mutually exclusive set of parameters, or able to receive its input from the
pipeline.

param(
 [Parameter(
 Mandatory = $true,
 Position = 0,
 ValueFromPipeline = $true,
 ValueFromPipelineByPropertyName = $true)]
 [string[]] $Name
)

Use additional validation attributes to define aliases, support for null or empty values,
count restrictions (for collections), length restrictions (for strings), regular expression
requirements, range requirements (for numbers), permissible value requirements, or
even arbitrary script requirements.

param(
 [ValidateLength(5,10)]
 [string] $Name
)

"Hello $Name"

Discussion
Traditional shells require extensions (scripts and commands) to write their parameter
support by hand, resulting in a wide range of behavior. Some implement a bare, con‐
fusing minimum of support. Others implement more complex features, but differ‐
ently than any other command. The bare, confusing minimum is by far the most
common, as writing fully featured parameter support is a complex endeavor.

Luckily, the PowerShell engine already wrote all of the complex parameter handling
support and manages all of this detail for you. Rather than write the code to enforce
it, you can simply mark parameters as mandatory or positional or state their valida‐
tion requirements. This built-in support for parameter behavior and validation forms
a centerpiece of PowerShell’s unique consistency.

314 | Chapter 11: Code Reuse

Parameter validation is one of the main distinctions between scripts that are well
behaved and those that are not. When running a new script (or one you wrote dis‐
tantly in the past), reviewing the parameter definitions and validation requirements is
one of the quickest ways to familiarize yourself with how that script behaves.

From the script author’s perspective, validation requirements save you from writing
verification code that you’ll need to write anyway.

Defining parameter behavior

The elements of the [Parameter()] attribute mainly define how your parameter
behaves in relation to other parameters. All elements are optional.

You can omit the = $true assignment for any element that simply takes a $true or
$false value:

Mandatory = $true
Defines the parameter as mandatory. If the user doesn’t supply a value to this
parameter, PowerShell automatically prompts the user for it. When not specified,
the parameter is optional.

Position = position
Defines the position of this parameter. This applies when the user provides
parameter values without specifying the parameter they apply to (for example,
Argument2 in Invoke-MyFunction -Param1 Argument1 Argument2). PowerShell
supplies these values to parameters that have defined a Position, from lowest to
highest. When not specified, the name of this parameter must be supplied by the
user.

ParameterSetName = name
Defines this parameter as a member of a set of other related parameters. Parame‐
ter behavior for this parameter is then specific to this related set of parameters,
and the parameter exists only in parameter sets in which it’s defined. This feature
is used, for example, when the user may supply only a Name or ID. To include a
parameter in two or more specific parameter sets, use two or more
[Parameter()] attributes. When not specified, this parameter is a member of all
parameter sets. To define the default parameter set name of your cmdlet, supply
it in the CmdletBinding attribute: [CmdletBinding(DefaultParameterSetName
= "Name")].

ValueFromPipeline = $true
Declares this parameter as one that directly accepts pipeline input. If the user
pipes data into your script or function, PowerShell assigns this input to your
parameter in your command’s process {} block. For more information about
accepting pipeline input, see Recipe 11.18. Beware of applying this parameter to

11.12 Add Validation to Parameters | 315

String parameters, as almost all input can be converted to strings—often pro‐
ducing a result that doesn’t make much sense. When not specified, this parameter
doesn’t accept pipeline input directly.

ValueFromPipelineByPropertyName = $true
Declares this parameter as one that accepts pipeline input if a property of an
incoming object matches its name. If this is true, PowerShell assigns the value of
that property to your parameter in your command’s process {} block. For more
information about accepting pipeline input, see Recipe 11.18. When not speci‐
fied, this parameter doesn’t accept pipeline input by property name.

ValueFromRemainingArguments = $true
Declares this parameter as one that accepts all remaining input that hasn’t other‐
wise been assigned to positional or named parameters. Only one parameter can
have this element. If no parameter declares support for this capability, PowerShell
generates an error for arguments that cannot be assigned.

Defining parameter validation

In addition to the [Parameter()] attribute, PowerShell lets you apply other attributes
that add further behavior or validation constraints to your parameters. All validation
attributes are optional:

[Alias("name")]

Defines an alternate name for this parameter. This is especially helpful for long
parameter names that are descriptive but have a more common colloquial term.
When not specified, the parameter can be referred to only by the name you origi‐
nally declared. You can supply many aliases to a parameter. To learn about aliases
for command parameters, see Recipe 1.20.

[AllowNull()]

Allows this parameter to receive $null as its value. This is required only for
mandatory parameters. When not specified, mandatory parameters can’t receive
$null as their value, although optional parameters can.

[AllowEmptyString()]

Allows this string parameter to receive an empty string as its value. This is
required only for mandatory parameters. When not specified, mandatory string
parameters can’t receive an empty string as their value, although optional string
parameters can. You can apply this to parameters that aren’t strings, but it has no
impact.

316 | Chapter 11: Code Reuse

[AllowEmptyCollection()]

Allows this collection parameter to receive an empty collection as its value. This
is required only for mandatory parameters. When not specified, mandatory col‐
lection parameters can’t receive an empty collection as their value, although
optional collection parameters can. You can apply this to parameters that aren’t
collections, but it has no impact.

[ValidateCount(lower limit, upper limit)]

Restricts the number of elements that can be in a collection supplied to this
parameter. When not specified, mandatory parameters have a lower limit of one
element. Optional parameters have no restrictions. You can apply this to parame‐
ters that aren’t collections, but it has no impact.

[ValidateLength(lower limit, upper limit)]

Restricts the length of strings that this parameter can accept. When not specified,
mandatory parameters have a lower limit of one character. Optional parameters
have no restrictions. You can apply this to parameters that aren’t strings, but it
has no impact.

[ValidatePattern("regular expression")]

Enforces a pattern that input to this string parameter must match. When not
specified, string inputs have no pattern requirements. You can apply this to
parameters that aren’t strings, but it has no impact.

If your parameter has a pattern requirement, though, it may be more effective to
validate the parameter in the body of your script or function instead. The error
message that PowerShell generates when a parameter fails to match this pattern is
not very user-friendly (“The argument…does not match the <pattern> pattern”).
Instead, you can generate a message to explain the intent of the pattern:

if($EmailAddress -notmatch Pattern)
{
 throw "Please specify a valid email address."
}

[ValidateRange(lower limit, upper limit)]

Restricts the upper and lower limit of numerical arguments that this parameter
can accept. When not specified, parameters have no range limit. You can apply
this to parameters that aren’t numbers, but it has no impact.

[ValidateScript({ script block })]

Ensures that input supplied to this parameter satisfies the condition that you sup‐
ply in the script block. PowerShell assigns the proposed input to the $_ (or $PSI
tem) variable, and then invokes your script block. If the script block returns
$true (or anything that can be converted to $true, such as nonempty strings),
PowerShell considers the validation to have been successful.

11.12 Add Validation to Parameters | 317

[ValidateSet("First Option", "Second Option", …, "Last Option")]

Ensures that input supplied to this parameter is equal to one of the options in the
set. PowerShell uses its standard meaning of equality during this comparison (the
same rules used by the -eq operator). If your validation requires nonstandard
rules (such as case-sensitive comparison of strings), you can instead write the
validation in the body of the script or function.

[ValidateNotNull()]

Ensures that input supplied to this parameter is not null. This is the default
behavior of mandatory parameters, and this attribute is useful only for optional
parameters. When applied to string parameters, a $null parameter value instead
gets converted to an empty string.

[ValidateNotNullOrEmpty()]

Ensures that input supplied to this parameter is neither null nor empty. This is
the default behavior of mandatory parameters, and this attribute is useful only
for optional parameters. When applied to string parameters, the input must be a
string with a length greater than 1. When applied to collection parameters, the
collection must have at least one element. When applied to other types of param‐
eters, this attribute is equivalent to the [ValidateNotNull()] attribute.

For more information on advanced parameter validation, type Get-Help

about_functions_advanced_parameters.

See Also
Recipe 1.20, “Program: Learn Aliases for Common Parameters”

Recipe 11.18, “Access a Script’s Pipeline Input”

“Providing Input to Commands” on page 844

11.13 Accept Script Block Parameters with Local Variables
Problem
Your command takes a script block as a parameter. When you invoke that script
block, you want variables to refer to variables from the user’s session, not your script.

Solution
Call the GetNewClosure() method on the supplied script block before either defining
any of your own variables or invoking the script block. See Example 11-13.

318 | Chapter 11: Code Reuse

Example 11-13. A command that supports variables from the user’s session

##
##
Invoke-ScriptBlockClosure
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Demonstrates the GetNewClosure() method on a script block that pulls variables
in from the user's session (if they are defined.)

.EXAMPLE

PS > $name = "Hello There"
PS > Invoke-ScriptBlockClosure { $name }
Hello There
Hello World
Hello There

#>

param(
 ## The script block to invoke
 [ScriptBlock] $ScriptBlock
)

Set-StrictMode -Version 3

Create a new script block that pulls variables
from the user's scope (if defined.)
$closedScriptBlock = $scriptBlock.GetNewClosure()

Invoke the script block normally. The contents of
the $name variable will be from the user's session.
& $scriptBlock

Define a new variable
$name = "Hello World"

Invoke the script block normally. The contents of
the $name variable will be "Hello World", now from
our scope.
& $scriptBlock

Invoke the "closed" script block. The contents of
the $name variable will still be whatever was in the user's session
(if it was defined.)
& $closedScriptBlock

11.13 Accept Script Block Parameters with Local Variables | 319

Discussion
Whenever you invoke a script block (for example, one passed by the user as a param‐
eter value), PowerShell treats variables in that script block as though you had typed
them yourself. For example, if a variable referenced by the script block is defined in
your script or module, PowerShell will use that value when it evaluates the variable.

This is often desirable behavior, although its use ultimately depends on your script.
For example, Recipe 11.4 accepts a script block parameter that’s intended to refer to
variables defined within the script: $_ (or $PSItem), specifically.

Alternatively, this might not always be what you want. Sometimes, you might prefer
that variable names refer to variables from the user’s session, rather than potentially
from your script.

The solution, in this case, is to call the GetNewClosure() method. This method makes
the script block self-contained, or closed. Variables maintain the value they had when
the GetNewClosure() method was called, even if a new variable with that name is
created.

See Also
Recipe 3.6, “Control Access and Scope of Variables and Other Items”

Recipe 11.4, “Write a Script Block”

11.14 Dynamically Compose Command Parameters
Problem
You want to specify the parameters of a command you’re about to invoke but don’t
know beforehand what those parameters will be.

Solution
Define the parameters and their values as elements of a hashtable, and then use the @
character to pass that hashtable to a command:

PS > $parameters = @{
 Name = "PowerShell";
 WhatIf = $true
}

PS > Stop-Process @parameters
What if: Performing operation "Stop-Process" on Target "powershell (2380)".
What if: Performing operation "Stop-Process" on Target "powershell (2792)".

320 | Chapter 11: Code Reuse

Discussion
When you’re writing commands that call other commands, a common problem is not
knowing the exact parameter values that you’ll pass to a target command. The solu‐
tion to this is simple, and comes by storing the parameter values in variables:

PS > function Stop-ProcessWhatIf($name)
{
 Stop-Process -Name $name -Whatif
}

PS > Stop-ProcessWhatIf PowerShell
What if: Performing operation "Stop-Process" on Target "powershell (2380)".
What if: Performing operation "Stop-Process" on Target "powershell (2792)".

When you’re using this approach, things seem to get much more difficult if you don’t
know beforehand which parameter names you want to pass along. PowerShell signifi‐
cantly improves the situation through a technique called splatting that lets you pass
along parameter values and names.

The first step is to define a variable—for example, parameters. In that variable, store
a hashtable of parameter names and their values. When you call a command, you can
pass the hashtable of parameter names and values with the @ character and the vari‐
able name that stores them. Note that you use the @ character to represent the vari‐
able, instead of the usual $ character:

Stop-Process @parameters

This is a common need when you’re writing commands that are designed to enhance
or extend existing commands. In that situation, you simply want to pass all of the
user’s input (parameter values and names) on to the existing command, even though
you don’t know exactly what they supplied.

To simplify this situation even further, advanced functions have access to an automatic
variable called PSBoundParameters. This automatic variable is a hashtable that stores
all parameters passed to the current command, and it’s suitable for both tweaking and
splatting. For an example of this approach, see Recipe 11.23.

In addition to supporting splatting of the PSBoundParameters automatic variable,
PowerShell also supports splatting of the $args array for extremely lightweight com‐
mand wrappers:

PS > function rsls { dir -rec | Select-String @args }
PS > rsls -SimpleMatch '["Pattern"]'

For more information about advanced functions, see Recipe 11.11.

11.14 Dynamically Compose Command Parameters | 321

See Also
Recipe 11.11, “Access Arguments of a Script, Function, or Script Block”

Recipe 11.23, “Program: Enhance or Extend an Existing Cmdlet”

11.15 Provide -WhatIf, -Confirm, and Other Cmdlet
Features
Problem
You want to support the standard -WhatIf and -Confirm parameters and access
cmdlet-centric support in the PowerShell engine.

Solution
Ensure that your script or function declares the [CmdletBinding()] attribute, and
then access engine features through the $psCmdlet automatic variable.

function Invoke-MyAdvancedFunction
{
 [CmdletBinding(SupportsShouldProcess = $true)]
 param()

 if($psCmdlet.ShouldProcess("test.txt", "Remove Item"))
 {
 "Removing test.txt"
 }

 Write-Verbose "Verbose Message"
}

Discussion
When a script or function progresses to an advanced function, PowerShell defines an
additional $psCmdlet automatic variable. This automatic variable exposes support for
the -WhatIf and -Confirm automatic parameters. If your command defined parame‐
ter sets, it also exposes the parameter set name that PowerShell selected based on the
user’s choice of parameters. For more information about advanced functions, see
Recipe 11.11.

To support the -WhatIf and -Confirm parameters, add the [CmdletBinding(
SupportsShouldProcess = $true)] attribute inside of your script or function. You
should support this on any scripts or functions that modify system state, as they let
your users investigate what your script will do before actually doing it. Then, you
simply surround the portion of your script that changes the system with an

322 | Chapter 11: Code Reuse

if($psCmdlet.ShouldProcess(…)) { } block. Example 11-14 demonstrates this
approach.

Example 11-14. Adding support for -WhatIf and -Confirm

function Invoke-MyAdvancedFunction
{
 [CmdletBinding(SupportsShouldProcess = $true)]
 param()

 if($psCmdlet.ShouldProcess("test.txt", "Remove Item"))
 {
 "Removing test.txt"
 }

 Write-Verbose "Verbose Message"
}

Now your advanced function is as well-behaved as built-in PowerShell cmdlets!
PS > Invoke-MyAdvancedFunction -WhatIf
What if: Performing operation "Remove Item" on Target "test.txt".

If your command causes a high-impact result that should be evaluated with caution,
call the $psCmdlet.ShouldContinue() method. This generates a warning for users—
but be sure to support a -Force parameter that lets them bypass this message.

function Invoke-MyDangerousFunction
{
 [CmdletBinding()]
 param(
 [Switch] $Force
)

 if($Force -or $psCmdlet.ShouldContinue(
 "Do you wish to invoke this dangerous operation?
 Changes can not be undone.",
 "Invoke dangerous action?"))
 {
 "Invoking dangerous action"
 }
}

This generates a standard PowerShell confirmation message:
PS > Invoke-MyDangerousFunction

Invoke dangerous action?
Do you wish to invoke this dangerous operation? Changes can not be undone.
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"):
Invoking dangerous action

PS > Invoke-MyDangerousFunction -Force
Invoking dangerous action

11.15 Provide -WhatIf, -Confirm, and Other Cmdlet Features | 323

To explore the $psCmdlet automatic variable further, you can use Example 11-15.
This command creates the bare minimum of advanced functions, and then invokes
whatever script block you supply within it.

Example 11-15. Invoke-AdvancedFunction.ps1

param(
 [Parameter(Mandatory = $true)]
 [ScriptBlock] $Scriptblock
)

Invoke the script block supplied by the user.
& $scriptblock

For open-ended exploration, use $host.EnterNestedPrompt() as the script block:
PS > Invoke-AdvancedFunction { $host.EnterNestedPrompt() }
PS > $psCmdlet | Get-Member

 TypeName: System.Management.Automation.PSScriptCmdlet

Name MemberType Definition
---- ---------- ----------
(...)
WriteDebug Method System.Void WriteDebug(s...
WriteError Method System.Void WriteError(S...
WriteObject Method System.Void WriteObject(...
WriteProgress Method System.Void WriteProgres...
WriteVerbose Method System.Void WriteVerbose...
WriteWarning Method System.Void WriteWarning...
(...)
ParameterSetName Property System.String ParameterS...

(Now at a nested prompt)
PS >> exit

(Now back to the regular prompt)
PS >

For more about cmdlet support in the PowerShell engine, see the developer’s refer‐
ence in the PowerShell Programmer’s Guide.

See Also
Recipe 11.11, “Access Arguments of a Script, Function, or Script Block”

324 | Chapter 11: Code Reuse

https://oreil.ly/jJrgp

11.16 Add Help to Scripts or Functions
Problem
You want to make your command and usage information available to the Get-Help
command.

Solution
Add descriptive help comments (with help-specific special tags like .SYNOP

SIS, .EXAMPLE, and .OUTPUTS) at the beginning of your script for its synopsis, descrip‐
tion, examples, notes, and more. Add descriptive help comments before parameters
to describe their meaning and behavior:

##
##
Measure-CommandPerformance
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Measures the average time of a command, accounting for natural variability by
automatically ignoring the top and bottom 10%.

.EXAMPLE

PS > Measure-CommandPerformance.ps1 { Start-Sleep -m 300 }

Count : 30
Average : 312.10155
(...)

#>

param(
 ## The command to measure
 [Scriptblock] $Scriptblock,

 ## The number of times to measure the command's performance
 [int] $Iterations = 30
)

Set-StrictMode -Version 3

Figure out how many extra iterations we need to account for the outliers
$buffer = [int] ($iterations * 0.1)

11.16 Add Help to Scripts or Functions | 325

$totalIterations = $iterations + (2 * $buffer)

Get the results
$results = 1..$totalIterations |
 Foreach-Object { Measure-Command $scriptblock }

Sort the results, and skip the outliers
$middleResults = $results | Sort TotalMilliseconds |
 Select -Skip $buffer -First $iterations

Show the average
$middleResults | Measure-Object -Average TotalMilliseconds

Discussion
Like parameter validation, discussed in Recipe 11.12, rich help is something tradi‐
tionally supported in only the most high-end commands. For most commands,
you’re lucky if you can figure out how to get some form of usage message.

As with PowerShell’s easy-to-define support for advanced parameter validation,
adding help to commands and functions is extremely simple. Despite its simplicity,
comment-based help provides all the power you’ve come to expect of fully featured
PowerShell commands: overview, description, examples, parameter-specific details,
and more.

PowerShell creates help for your script or function by looking at its comments. If the
comments include any supported help tags (like .SYNOPSIS, .EXAMPLE, .OUTPUTS),
PowerShell adds those to the help for your command.

To speed up processing of these help comments, PowerShell places
restrictions on where they may appear. In addition, if it encounters
a comment that is not a help-based comment, it stops searching
that block of comments for help tags. This may come as a surprise
if you’re used to placing headers or copyright information at the
beginning of your script. The Solution demonstrates how to avoid
this problem by putting the header and comment-based help in
separate comment blocks. For more information about these
guidelines, type Get-Help about_Comment_Based_Help.

You can place your help tags in either single-line comments or multiline (block) com‐
ments. You may find multiline comments easier to work with, as you can write them
in editors that support spelling and grammar checks and then simply paste them into
your script. Also, adjusting the word-wrapping of your comment is easier when you
don’t have to repair comment markers at the beginning of the line. From the user’s
perspective, multiline comments offer a significant benefit for the .EXAMPLES sec‐
tion because they require much less modification before being tried.

326 | Chapter 11: Code Reuse

For a list of the most common help tags, see “Help Comments” on page 799.

See Also
Recipe 11.12, “Add Validation to Parameters”

“Help Comments” on page 799

11.17 Add Custom Tags to a Function or Script Block
Problem
You want to tag or add your own custom information to a function or script block.

Solution
If you want the custom information to always be associated with the function or
script block, declare a System.ComponentModel.Description attribute inside that
function:

function TestFunction
{
 [System.ComponentModel.Description("Information I care about")]
 param()

 "Some function with metadata"
}

If you don’t control the source code of the function, create a new System.Component
Model.Description attribute, and add it to the script block’s Attributes collection
manually:

$testFunction = Get-Command TestFunction
$newAttribute =
 New-Object ComponentModel.DescriptionAttribute "More information I care about"
$testFunction.ScriptBlock.Attributes.Add($newAttribute)

To retrieve any attributes associated with a function or script block, access the Script
Block.Attributes property:

PS > $testFunction = Get-Command TestFunction
PS > $testFunction.ScriptBlock.Attributes

Description TypeId
----------- ------
Information I care about System.ComponentModel.Description...

11.17 Add Custom Tags to a Function or Script Block | 327

Discussion
Although a specialized need for sure, it is sometimes helpful to add your own custom
information to functions or script blocks. For example, once you’ve built up a large
set of functions, many are really useful only in a specific context. Some functions
might apply to only one of your clients, whereas others are written for a custom web‐
site you’re developing. If you forget the name of a function, you might have difficulty
going through all of your functions to find the ones that apply to your current
context.

You might find it helpful to write a new function, Get-CommandForContext, that takes
a context (for example, website) and returns only commands that apply to that
context.

function Get-CommandForContext($context)
{
 Get-Command -CommandType Function |
 Where-Object { $_.ScriptBlock.Attributes |
 Where-Object { $_.Description -eq "Context=$context" } }
}

Then write some functions that apply to specific contexts:
function WebsiteFunction
{
 [System.ComponentModel.Description("Context=Website")]
 param()

 "Some function I use with my website"
}

function ExchangeFunction
{
 [System.ComponentModel.Description("Context=Exchange")]
 param()

 "Some function I use with Exchange"
}

Then, by building on these two, we have a context-sensitive equivalent to Get-
Command:

PS > Get-CommandForContext Website

CommandType Name Definition
----------- ---- ----------
Function WebsiteFunction ...

PS > Get-CommandForContext Exchange

CommandType Name Definition
----------- ---- ----------
Function ExchangeFunction ...

328 | Chapter 11: Code Reuse

While the System.ComponentModel.Description attribute is the most generically
useful, PowerShell lets you place any attribute in a function. You can define your own
(by deriving from the System.Attribute class in the .NET Framework) or use any of
the other attributes included in the .NET Framework. Example 11-16 shows the Pow‐
erShell commands to find all attributes that have a constructor that takes a single
string as its argument. These attributes are likely to be generally useful.

Example 11-16. Finding all useful attributes

$types = [Appdomain]::CurrentDomain.GetAssemblies() |
 ForEach-Object { $_.GetTypes() }

foreach($type in $types)
{
 if($type.BaseType -eq [System.Attribute])
 {
 foreach($constructor in $type.GetConstructors())
 {
 if($constructor.ToString() -match "\(System.String\)")
 {
 $type
 }
 }
 }
}

For more information about working with .NET objects, see Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

11.18 Access a Script’s Pipeline Input
Problem
You want to interact with input that a user sends to your function, script, or script
block via the pipeline.

Solution
To access pipeline input from the user from within a script, use the $input variable,
as shown in Example 11-17.

11.18 Access a Script’s Pipeline Input | 329

Example 11-17. Accessing pipeline input

function InputCounter
{
 $count = 0
 ## Go through each element in the pipeline, and add up
 ## how many elements there were.
 foreach($element in $input)
 {
 $count++
 }

 $count
}

This function produces the following (or similar) output when run against your Win‐
dows system directory:

PS > dir $env:WINDIR | InputCounter
295

Discussion
When passing pipeline input between two commands, you’ve probably seen the
Foreach-Object cmdlet use the $_ variable.

When you’re writing your own scripts, you also have another option: the $input
variable.

In your scripts, functions, and script blocks, the $input variable represents an enu‐
merator (as opposed to a simple array) for the pipeline input the user provides. An
enumerator lets you use a foreach statement to efficiently scan over the elements of
the input (as shown in Example 11-17) but does not let you directly access specific
items (such as the fifth element in the input).

An enumerator only lets you scan forward through its contents.
Once you access an element, PowerShell automatically moves on to
the next one. If you need to access an item that you’ve already
accessed, you must either call $input.Reset() to scan through the
list again from the beginning or store the input in an array.

If you need to access specific elements in the input (or access items multiple times),
the best approach is to store the input in an array. This prevents your script from tak‐
ing advantage of the $input enumerator’s streaming behavior, but is sometimes the
only alternative. To store the input in an array, use PowerShell’s list evaluation syntax
(@()) to force PowerShell to interpret it as an array:

330 | Chapter 11: Code Reuse

function ReverseInput
{
 $inputArray = @($input)
 $inputEnd = $inputArray.Count - 1

 $inputArray[$inputEnd..0]
}

This produces:
PS > 1,2,3,4 | ReverseInput
4
3
2
1

If dealing with pipeline input plays a major role in your script, function, or script
block, PowerShell provides an alternative means of dealing with pipeline input that
may make your script easier to write and understand. For more information, see
Recipe 11.19.

See Also
Recipe 11.19, “Write Pipeline-Oriented Scripts with Cmdlet Keywords”

11.19 Write Pipeline-Oriented Scripts with Cmdlet
Keywords
Problem
Your script, function, or script block primarily takes input from the pipeline, and you
want to write it in a way that makes this intention both easy to implement and easy to
read.

Solution
To cleanly separate your script into regions that deal with the initialization, per-
record processing, and cleanup portions, use the begin, process, and end keywords,
respectively. For example, a pipeline-oriented conversion of the Solution in Recipe
11.18 looks like Example 11-18.

Example 11-18. A pipeline-oriented script that uses cmdlet keywords

function InputCounter
{
 begin
 {
 $count = 0
 }

11.19 Write Pipeline-Oriented Scripts with Cmdlet Keywords | 331

 ## Go through each element in the pipeline, and add up
 ## how many elements there were.
 process
 {
 Write-Debug "Processing element $_"
 $count++
 }

 end
 {
 $count
 }
}

This produces the following output:
PS > $debugPreference = "Continue"
PS > dir | InputCounter
DEBUG: Processing element Compare-Property.ps1
DEBUG: Processing element Convert-TextObject.ps1
DEBUG: Processing element ConvertFrom-FahrenheitWithFunction.ps1
DEBUG: Processing element ConvertFrom-FahrenheitWithoutFunction.ps1
DEBUG: Processing element Get-AliasSuggestion.ps1
(...)
DEBUG: Processing element Select-FilteredObject.ps1
DEBUG: Processing element Set-ConsoleProperties.ps1
20

Discussion
If your script, function, or script block deals primarily with input from the pipeline,
the begin, process, and end keywords let you express your solution most clearly.
Readers of your script (including you!) can easily see which portions of your script
deal with initialization, per-record processing, and cleanup. In addition, separating
your code into these blocks lets your script consume elements from the pipeline as
soon as the previous script produces them.

Take, for example, the Get-InputWithForeach and Get-InputWithKeyword functions
shown in Example 11-19. The first function visits each element in the pipeline with a
foreach statement over its input, whereas the second uses the begin, process, and
end keywords.

332 | Chapter 11: Code Reuse

Example 11-19. Two functions that take different approaches to processing pipeline
input

From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)

Set-StrictMode -Version 3

Process each element in the pipeline, using a
foreach statement to visit each element in $input
function Get-InputWithForeach($identifier)
{
 Write-Host "Beginning InputWithForeach (ID: $identifier)"

 foreach($element in $input)
 {
 Write-Host "Processing element $element (ID: $identifier)"
 $element
 }

 Write-Host "Ending InputWithForeach (ID: $identifier)"
}

Process each element in the pipeline, using the
cmdlet-style keywords to visit each element in $input
function Get-InputWithKeyword($identifier)
{
 begin
 {
 Write-Host "Beginning InputWithKeyword (ID: $identifier)"
 }

 process
 {
 Write-Host "Processing element $_ (ID: $identifier)"
 $_
 }

 end
 {
 Write-Host "Ending InputWithKeyword (ID: $identifier)"
 }
}

Both of these functions act the same when run individually, but the difference
becomes clear when we combine them with other scripts or functions that take pipe‐
line input. When a script uses the $input variable, it must wait until the previous
script finishes producing output before it can start. If the previous script takes a long
time to produce all its records (for example, a large directory listing), then your user
must wait until the entire directory listing completes to see any results, rather than
seeing results for each item as the script generates it.

11.19 Write Pipeline-Oriented Scripts with Cmdlet Keywords | 333

If a script, function, or script block uses the cmdlet-style keywords,
it must place all its code (aside from comments or its param state‐
ment if it uses one) inside one of the three blocks. If your code
needs to define and initialize variables or define functions, place
them in the begin block. Unlike most blocks of code contained
within curly braces, the code in the begin, process, and end blocks
has access to variables and functions defined within the blocks
before it.

When we chain together two scripts that process their input with the begin, process,
and end keywords, the second script gets to process input as soon as the first script
produces it.

PS > 1,2,3 | Get-InputWithKeyword 1 | Get-InputWithKeyword 2
Starting InputWithKeyword (ID: 1)
Starting InputWithKeyword (ID: 2)
Processing element 1 (ID: 1)
Processing element 1 (ID: 2)
1
Processing element 2 (ID: 1)
Processing element 2 (ID: 2)
2
Processing element 3 (ID: 1)
Processing element 3 (ID: 2)
3
Stopping InputWithKeyword (ID: 1)
Stopping InputWithKeyword (ID: 2)

When we chain together two scripts that process their input with the $input variable,
the second script can’t start until the first completes.

PS > 1,2,3 | Get-InputWithForeach 1 | Get-InputWithForeach 2
Starting InputWithForeach (ID: 1)
Processing element 1 (ID: 1)
Processing element 2 (ID: 1)
Processing element 3 (ID: 1)
Stopping InputWithForeach (ID: 1)
Starting InputWithForeach (ID: 2)
Processing element 1 (ID: 2)
1
Processing element 2 (ID: 2)
2
Processing element 3 (ID: 2)
3
Stopping InputWithForeach (ID: 2)

When the first script uses the cmdlet-style keywords, and the second script uses the
$input variable, the second script can’t start until the first completes.

PS > 1,2,3 | Get-InputWithKeyword 1 | Get-InputWithForeach 2
Starting InputWithKeyword (ID: 1)
Processing element 1 (ID: 1)
Processing element 2 (ID: 1)

334 | Chapter 11: Code Reuse

Processing element 3 (ID: 1)
Stopping InputWithKeyword (ID: 1)
Starting InputWithForeach (ID: 2)
Processing element 1 (ID: 2)
1
Processing element 2 (ID: 2)
2
Processing element 3 (ID: 2)
3
Stopping InputWithForeach (ID: 2)

When the first script uses the $input variable and the second script uses the cmdlet-
style keywords, the second script gets to process input as soon as the first script pro‐
duces it. Notice, however, that InputWithKeyword starts before InputWithForeach.
This is because functions with no explicit begin, process, or end blocks have all of
their code placed in an end block by default.

PS > 1,2,3 | Get-InputWithForeach 1 | Get-InputWithKeyword 2
Starting InputWithKeyword (ID: 2)
Starting InputWithForeach (ID: 1)
Processing element 1 (ID: 1)
Processing element 1 (ID: 2)
1
Processing element 2 (ID: 1)
Processing element 2 (ID: 2)
2
Processing element 3 (ID: 1)
Processing element 3 (ID: 2)
3
Stopping InputWithForeach (ID: 1)
Stopping InputWithKeyword (ID: 2)

For more information about dealing with pipeline input, see “Writing Scripts, Reus‐
ing Functionality” on page 839.

See Also
Recipe 11.18, “Access a Script’s Pipeline Input”

“Writing Scripts, Reusing Functionality” on page 839

11.20 Write a Pipeline-Oriented Function
Problem
Your function primarily takes its input from the pipeline, and you want it to perform
the same steps for each element of that input.

11.20 Write a Pipeline-Oriented Function | 335

Solution
To write a pipeline-oriented function, define your function using the filter key‐
word, rather than the function keyword. PowerShell makes the current pipeline
object available as the $_ (or $PSItem) variable:

filter Get-PropertyValue($property)
{
 $_.$property
}

Discussion
A filter is the equivalent of a function that uses the cmdlet-style keywords and has all
its code inside the process section.

The Solution demonstrates an extremely useful filter: one that returns the value of a
property for each item in a pipeline:

PS > Get-Process | Get-PropertyValue Name
audiodg
avgamsvr
avgemc
avgrssvc
avgrssvc
avgupsvc
(...)

For more information about the cmdlet-style keywords, see Recipe 11.19.

See Also
Recipe 11.19, “Write Pipeline-Oriented Scripts with Cmdlet Keywords”

11.21 Organize Scripts for Improved Readability
Problem
You have a long script that includes helper functions, but those helper functions
obscure the main intent of the script.

Solution
Place the main logic of your script in a function called Main, and place that function
at the top of your script. At the bottom of your script (after all the helper functions
have also been defined), dot-source the Main function:

336 | Chapter 11: Code Reuse

LongScript.ps1

function Main
{
 "Invoking the main logic of the script"
 CallHelperFunction1
 CallHelperFunction2
}

function CallHelperFunction1
{
 "Calling the first helper function"
}

function CallHelperFunction2
{
 "Calling the second helper function"
}

. Main

Discussion
When PowerShell invokes a script, it executes it in order from the beginning to the
end. Just as when you type commands in the console, PowerShell generates an error if
you try to call a function that you haven’t yet defined.

When writing a long script with lots of helper functions, this usually results in those
helper functions migrating to the top of the script so that they are all defined by the
time your main logic finally executes them. When reading the script, then, you’re
forced to wade through pages of seemingly unrelated helper functions just to reach
the main logic of the script.

You might wonder why PowerShell requires this strict ordering of
function definitions and when they are called. After all, a script is
self-contained, and it would be possible for PowerShell to process
all of the function definitions before invoking the script.
The reason is parity with the interactive environment. Pasting a
script into the console window is a common diagnostic or experi‐
mental technique, as is highlighting portions of a script in Visual
Studio Code and selecting “Run Selection.” If PowerShell did some‐
thing special in an imaginary script mode, these techniques
wouldn’t be possible.

To resolve this problem, you can place the main script logic in a function of its own.
The name doesn’t matter, but Main is a traditional name. If you place this function at
the top of the script, your main logic is visible immediately.

11.21 Organize Scripts for Improved Readability | 337

Functions aren’t automatically executed, so the final step is to invoke the Main func‐
tion. Place this call at the end of your script, and you can be sure that all the required
helper functions have been defined. Dot-sourcing this function ensures that it is pro‐
cessed in the script scope, rather than the isolated function scope that would normally
be created for it.

For more information about dot sourcing and script scopes, see Recipe 3.6.

See Also
Recipe 3.6, “Control Access and Scope of Variables and Other Items”

11.22 Invoke Dynamically Named Commands
Problem
You want to take an action based on the pattern of a command name, as opposed to
the name of the command itself.

Solution
Add a $executionContext.SessionState.InvokeCommand.CommandNotFoundAction
that intercepts PowerShell’s CommandNotFound error and takes action based on the
CommandName that wasn’t found.

Example 11-20 illustrates this technique by supporting relative path navigation
without an explicit call to Set-Location.

Example 11-20. Add-RelativePathCapture.ps1

##
##
Add-RelativePathCapture
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Adds a new CommandNotFound handler that captures relative path
navigation without having to explicitly call 'Set-Location'

.EXAMPLE

PS C:\Users\Lee\Documents>..

338 | Chapter 11: Code Reuse

PS C:\Users\Lee>...
PS C:\>

#>

Set-StrictMode -Version 3

$executionContext.SessionState.InvokeCommand.CommandNotFoundAction = {
 param($CommandName, $CommandLookupEventArgs)

 ## If the command is only dots
 if($CommandName -match '^\.+$')
 {
 ## Associate a new command that should be invoked instead
 $CommandLookupEventArgs.CommandScriptBlock = {

 ## Count the number of dots, and run "Set-Location .." one
 ## less time.
 for($counter = 0; $counter -lt $CommandName.Length - 1; $counter++)
 {
 Set-Location ..
 }

 ## We call GetNewClosure() so that the reference to $CommandName can
 ## be used in the new command.
 }.GetNewClosure()

 ## Stop going through the command resolution process. This isn't
 ## strictly required in the CommandNotFoundAction.
 $CommandLookupEventArgs.StopSearch = $true
 }
}

Discussion
PowerShell supports several useful forms of named commands (cmdlets, functions,
and aliases), but you may find yourself wanting to write extensions that alter their
behavior based on the form of the name, rather than the arguments passed to it. For
example, you might want to automatically launch URLs just by typing them or navi‐
gate around providers just by typing relative path locations.

While relative path navigation isn’t a built-in feature of PowerShell, it’s possible to get
a very reasonable alternative by customizing PowerShell’s CommandNotFoundAction.
For more information on customizing PowerShell’s command resolution behavior,
see Recipe 1.11.

See Also
Recipe 1.11, “Customize PowerShell’s Command Resolution Behavior”

11.22 Invoke Dynamically Named Commands | 339

11.23 Program: Enhance or Extend an Existing Cmdlet
While PowerShell’s built-in commands are useful, you may sometimes wish they
included an additional parameter or supported a minor change to their functionality.
This is usually a difficult proposition: in addition to the complexity of parsing param‐
eters and passing only the correct ones along, wrapped commands should also be able
to benefit from the streaming nature of PowerShell’s pipeline.

PowerShell significantly improves the situation by combining three features:

Steppable pipelines
Given a script block that contains a single pipeline, the GetSteppablePipeline()
method returns a SteppablePipeline object that gives you control over the
Begin, Process, and End stages of the pipeline.

Argument splatting
Given a hashtable of names and values, PowerShell lets you pass the entire hash
table to a command. If you use the @ symbol to identify the hashtable variable
name (rather than the $ symbol), PowerShell then treats each element of the
hashtable as though it were a parameter to the command.

Proxy command APIs
With enough knowledge of steppable pipelines, splatting, and parameter valida‐
tion, you can write your own function that can effectively wrap another com‐
mand. The proxy command APIs make this significantly easier by autogenerat‐
ing large chunks of the required boilerplate script.

These three features finally enable the possibility of powerful command extensions,
but putting them together still requires a fair bit of technical expertise. To make
things easier, use the New-CommandWrapper script (Example 11-21) to easily create
commands that wrap (and extend) existing commands.

Example 11-21. New-CommandWrapper.ps1

##
##
New-CommandWrapper
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Adds parameters and functionality to existing cmdlets and functions.

340 | Chapter 11: Code Reuse

.EXAMPLE

New-CommandWrapper Get-Process `
 -AddParameter @{
 SortBy = {
 $newPipeline = {
 __ORIGINAL_COMMAND__ | Sort-Object -Property $SortBy
 }
 }
 }

This example adds a 'SortBy' parameter to Get-Process. It accomplishes
this by adding a Sort-Object command to the pipeline.

.EXAMPLE

$parameterAttributes = @'
 [Parameter(Mandatory = $true)]
 [ValidateRange(50,75)]
 [Int]
'@

New-CommandWrapper Clear-Host `
 -AddParameter @{
 @{
 Name = 'MyMandatoryInt';
 Attributes = $parameterAttributes
 } = {
 Write-Host $MyMandatoryInt
 Read-Host "Press ENTER"
 }
 }

This example adds a new mandatory 'MyMandatoryInt' parameter to
Clear-Host. This parameter is also validated to fall within the range
of 50 to 75. It doesn't alter the pipeline, but does display some
information on the screen before processing the original pipeline.

#>

param(
 ## The name of the command to extend
 [Parameter(Mandatory = $true)]
 $Name,

 ## Script to invoke before the command begins
 [ScriptBlock] $Begin,

 ## Script to invoke for each input element
 [ScriptBlock] $Process,

 ## Script to invoke at the end of the command
 [ScriptBlock] $End,

 ## Parameters to add, and their functionality.

11.23 Program: Enhance or Extend an Existing Cmdlet | 341

 ##
 ## The Key of the hashtable can be either a simple parameter name,
 ## or a more advanced parameter description.
 ##
 ## If you want to add additional parameter validation (such as a
 ## parameter type,) then the key can itself be a hashtable with the keys
 ## 'Name' and 'Attributes'. 'Attributes' is the text you would use when
 ## defining this parameter as part of a function.
 ##
 ## The value of each hashtable entry is a script block to invoke
 ## when this parameter is selected. To customize the pipeline,
 ## assign a new script block to the $newPipeline variable. Use the
 ## special text, __ORIGINAL_COMMAND__, to represent the original
 ## command. The $targetParameters variable represents a hashtable
 ## containing the parameters that will be passed to the original
 ## command.
 [HashTable] $AddParameter
)

Set-StrictMode -Version 3

Store the target command we are wrapping, and its command type
$target = $Name
$commandType = "Cmdlet"

If a function already exists with this name (perhaps it's already been
wrapped,) rename the other function and chain to its new name.
if(Test-Path function:\$Name)
{
 $target = "$Name" + "-" + [Guid]::NewGuid().ToString().Replace("-","")
 Rename-Item function:\GLOBAL:$Name GLOBAL:$target
 $commandType = "Function"
}

The template we use for generating a command proxy
$proxy = @'

__CMDLET_BINDING_ATTRIBUTE__
param(
__PARAMETERS__
)
begin
{
 try {
 __CUSTOM_BEGIN__

 ## Access the REAL Foreach-Object command, so that command
 ## wrappers do not interfere with this script
 $foreachObject = $executionContext.InvokeCommand.GetCmdlet(
 "Microsoft.PowerShell.Core\Foreach-Object")

 $wrappedCmd = $ExecutionContext.InvokeCommand.GetCommand(
 '__COMMAND_NAME__',
 [System.Management.Automation.CommandTypes]::__COMMAND_TYPE__)

 ## TargetParameters represents the hashtable of parameters that

342 | Chapter 11: Code Reuse

 ## we will pass along to the wrapped command
 $targetParameters = @{}
 $PSBoundParameters.GetEnumerator() |
 & $foreachObject {
 if($command.Parameters.ContainsKey($_.Key))
 {
 $targetParameters.Add($_.Key, $_.Value)
 }
 }

 ## finalPipeline represents the pipeline we wil ultimately run
 $newPipeline = { & $wrappedCmd @targetParameters }
 $finalPipeline = $newPipeline.ToString()

 __CUSTOM_PARAMETER_PROCESSING__

 $steppablePipeline = [ScriptBlock]::Create(
 $finalPipeline).GetSteppablePipeline()
 $steppablePipeline.Begin($PSCmdlet)
 } catch {
 throw
 }
}

process
{
 try {
 __CUSTOM_PROCESS__
 $steppablePipeline.Process($_)
 } catch {
 throw
 }
}

end
{
 try {
 __CUSTOM_END__
 $steppablePipeline.End()
 } catch {
 throw
 }
}

dynamicparam
{
 ## Access the REAL Get-Command, Foreach-Object, and Where-Object
 ## commands, so that command wrappers do not interfere with this script
 $getCommand = $executionContext.InvokeCommand.GetCmdlet(
 "Microsoft.PowerShell.Core\Get-Command")
 $foreachObject = $executionContext.InvokeCommand.GetCmdlet(
 "Microsoft.PowerShell.Core\Foreach-Object")
 $whereObject = $executionContext.InvokeCommand.GetCmdlet(
 "Microsoft.PowerShell.Core\Where-Object")

 ## Find the parameters of the original command, and remove everything

11.23 Program: Enhance or Extend an Existing Cmdlet | 343

 ## else from the bound parameter list so we hide parameters the wrapped
 ## command does not recognize.
 $command = & $getCommand __COMMAND_NAME__ -Type __COMMAND_TYPE__
 $targetParameters = @{}
 $PSBoundParameters.GetEnumerator() |
 & $foreachObject {
 if($command.Parameters.ContainsKey($_.Key))
 {
 $targetParameters.Add($_.Key, $_.Value)
 }
 }

 ## Get the argument list as it would be passed to the target command
 $argList = @($targetParameters.GetEnumerator() |
 Foreach-Object { "-$($_.Key)"; $_.Value })

 ## Get the dynamic parameters of the wrapped command, based on the
 ## arguments to this command
 $command = $null
 try
 {
 $command = & $getCommand __COMMAND_NAME__ -Type __COMMAND_TYPE__ `
 -ArgumentList $argList
 }
 catch
 {

 }

 $dynamicParams = @($command.Parameters.GetEnumerator() |
 & $whereObject { $_.Value.IsDynamic })

 ## For each of the dynamic parameters, add them to the dynamic
 ## parameters that we return.
 if ($dynamicParams.Length -gt 0)
 {
 $paramDictionary = `
 New-Object Management.Automation.RuntimeDefinedParameterDictionary
 foreach ($param in $dynamicParams)
 {
 $param = $param.Value
 $arguments = $param.Name, $param.ParameterType, $param.Attributes
 $newParameter = `
 New-Object Management.Automation.RuntimeDefinedParameter `
 $arguments
 $paramDictionary.Add($param.Name, $newParameter)
 }
 return $paramDictionary
 }
}

<#

.ForwardHelpTargetName __COMMAND_NAME__

.ForwardHelpCategory __COMMAND_TYPE__

344 | Chapter 11: Code Reuse

#>

'@

Get the information about the original command
$originalCommand = Get-Command $target
$metaData = New-Object System.Management.Automation.CommandMetaData `
 $originalCommand
$proxyCommandType = [System.Management.Automation.ProxyCommand]

Generate the cmdlet binding attribute, and replace information
about the target
$proxy = $proxy.Replace("__CMDLET_BINDING_ATTRIBUTE__",
 $proxyCommandType::GetCmdletBindingAttribute($metaData))
$proxy = $proxy.Replace("__COMMAND_NAME__", $target)
$proxy = $proxy.Replace("__COMMAND_TYPE__", $commandType)

Stores new text we'll be putting in the param() block
$newParamBlockCode = ""

Stores new text we'll be putting in the begin block
(mostly due to parameter processing)
$beginAdditions = ""

If the user wants to add a parameter
$currentParameter = $originalCommand.Parameters.Count
if($AddParameter)
{
 foreach($parameter in $AddParameter.Keys)
 {
 ## Get the code associated with this parameter
 $parameterCode = $AddParameter[$parameter]

 ## If it's an advanced parameter declaration, the hashtable
 ## holds the validation and / or type restrictions
 if($parameter -is [Hashtable])
 {
 ## Add their attributes and other information to
 ## the variable holding the parameter block additions
 if($currentParameter -gt 0)
 {
 $newParamBlockCode += ","
 }

 $newParamBlockCode += "`n`n " +
 $parameter.Attributes + "`n" +
 ' $' + $parameter.Name

 $parameter = $parameter.Name
 }
 else
 {
 ## If this is a simple parameter name, add it to the list of
 ## parameters. The proxy generation APIs will take care of
 ## adding it to the param() block.
 $newParameter =

11.23 Program: Enhance or Extend an Existing Cmdlet | 345

 New-Object System.Management.Automation.ParameterMetadata `
 $parameter
 $metaData.Parameters.Add($parameter, $newParameter)
 }

 $parameterCode = $parameterCode.ToString()

 ## Create the template code that invokes their parameter code if
 ## the parameter is selected.
 $templateCode = @"

 if(`$PSBoundParameters['$parameter'])
 {
 $parameterCode

 ## Replace the __ORIGINAL_COMMAND__ tag with the code
 ## that represents the original command
 `$alteredPipeline = `$newPipeline.ToString()
 `$finalPipeline = `$alteredPipeline.Replace(
 '__ORIGINAL_COMMAND__', `$finalPipeline)
 }
"@

 ## Add the template code to the list of changes we're making
 ## to the begin() section.
 $beginAdditions += $templateCode
 $currentParameter++
 }
}

Generate the param() block
$parameters = $proxyCommandType::GetParamBlock($metaData)
if($newParamBlockCode) { $parameters += $newParamBlockCode }
$proxy = $proxy.Replace('__PARAMETERS__', $parameters)

Update the begin, process, and end sections
$proxy = $proxy.Replace('__CUSTOM_BEGIN__', $Begin)
$proxy = $proxy.Replace('__CUSTOM_PARAMETER_PROCESSING__', $beginAdditions)
$proxy = $proxy.Replace('__CUSTOM_PROCESS__', $Process)
$proxy = $proxy.Replace('__CUSTOM_END__', $End)

Save the function wrapper
Write-Verbose $proxy
Set-Content function:\GLOBAL:$NAME $proxy

If we were wrapping a cmdlet, hide it so that it doesn't conflict with
Get-Help and Get-Command
if($commandType -eq "Cmdlet")
{
 $originalCommand.Visibility = "Private"
}

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

346 | Chapter 11: Code Reuse

CHAPTER 12

Internet-Enabled Scripts

12.0 Introduction
Although PowerShell provides an enormous benefit even when your scripts interact
only with the local system, working with data sources from the internet opens excit‐
ing and unique opportunities. For example, you might download files or information
from the internet, interact with a web service, store your output as HTML, or even
send an email that reports the results of a long-running script.

Through its cmdlets and access to the networking support in the .NET Framework,
PowerShell provides ample opportunities for internet-enabled administration.

12.1 Download a File from an FTP or Internet Site
Problem
You want to download a file from an FTP location or website on the internet.

Solution
Use the -OutFile parameter of the Invoke-WebRequest cmdlet:

PS > $source = "http://www.leeholmes.com/favicon.ico"
PS > $destination = "c:\temp\favicon.ico"
PS >
PS > Invoke-WebRequest $source -OutFile $destination

347

Discussion
The Invoke-WebRequest cmdlet lets you easily upload and download data from
remote web servers. It acts much like a web browser in that you can specify a user
agent, a proxy (if your outgoing connection requires one), and even credentials.

While the Solution demonstrates downloading a file from a web (HTTP) resource,
the Invoke-WebRequest cmdlet also supports FTP locations. To specify an FTP loca‐
tion, use ftp:// at the beginning of the source, as shown in Example 12-1.

Example 12-1. Downloading a file from an FTP site

PS > $source = "ftp://site.com/users/user/backups/backup.zip"
PS > $destination = "c:\temp\backup.zip"
PS >
PS > Invoke-WebRequest $source -OutFile $destination -Credential myFtpUser

Unlike files downloaded from most internet sites, FTP transfers usually require a
username and password. To specify your username and password, use the
-Credential parameter.

If the file you’re downloading is ultimately a web page that you want to parse or read
through, the Invoke-WebRequest cmdlet has other features designed more specifi‐
cally for that scenario. For more information on how to download and parse web
pages, see Recipe 12.4.

See Also
Recipe 12.4, “Download a Web Page from the Internet”

12.2 Upload a File to an FTP Site
Problem
You want to upload a file to an FTP site.

Solution
To upload a file to an FTP site, use the System.Net.WebClient class from the .NET
Framework:

PS > $source = "c:\temp\backup.zip"
PS > $destination = "ftp://site.com/users/user/backups/backup.zip"
PS > $cred = Get-Credential
PS > $wc = New-Object System.Net.WebClient
PS > $wc.Credentials = $cred
PS > $wc.UploadFile($destination, $source)
PS > $wc.Dispose()

348 | Chapter 12: Internet-Enabled Scripts

Discussion
For basic file uploads to a remote FTP site, the System.Net.WebClient class offers an
extremely simple solution. For more advanced FTP scenarios (such as deleting files),
the System.Net.WebRequest class offers much more fine-grained control, as shown
in Example 12-2.

Example 12-2. Deleting a file from an FTP site

$file = "ftp://site.com/users/user/backups/backup.zip"
$request = [System.Net.WebRequest]::Create($file)
$cred = Get-Credential
$request.Credentials = $cred
$request.Method = [System.Net.WebRequestMethods+Ftp]::DeleteFile
$response = $request.GetResponse()
$response
$response.Close()

In addition to Delete, the WebRequest class supports many other FTP methods. You
can see them all by getting the static properties of the [System.Net.WebRequest
Methods+Ftp] class, as shown in Example 12-3.

Example 12-3. Standard supported FTP methods

PS > [System.Net.WebRequestMethods+Ftp] | Get-Member -Static -Type Property

 TypeName: System.Net.WebRequestMethods+Ftp

Name MemberType Definition
---- ---------- ----------
AppendFile Property static string AppendFile {get;}
DeleteFile Property static string DeleteFile {get;}
DownloadFile Property static string DownloadFile {get;}
GetDateTimestamp Property static string GetDateTimestamp {get;}
GetFileSize Property static string GetFileSize {get;}
ListDirectory Property static string ListDirectory {get;}
ListDirectoryDetails Property static string ListDirectoryDetails {get;}
MakeDirectory Property static string MakeDirectory {get;}
PrintWorkingDirectory Property static string PrintWorkingDirectory {get;}
RemoveDirectory Property static string RemoveDirectory {get;}
Rename Property static string Rename {get;}
UploadFile Property static string UploadFile {get;}
UploadFileWithUniqueName Property static string UploadFileWithUniqueName {get;}

These properties are just strings that correspond to the standard FTP commands, so
you can also just use their values directly if you know them:

$request.Method = "DELE"

If you want to download files from an FTP site, see Recipe 12.1.

12.2 Upload a File to an FTP Site | 349

See Also
Recipe 12.1, “Download a File from an FTP or Internet Site”

12.3 Program: Resolve the Destination of an Internet
Redirect
Example 12-4 shows how to use the System.Net.HttpWebRequest class to connect to
a web server to determine where a link redirects to, rather than simply obtaining the
page contents from the final destination.

Example 12-4. Resolving the destination of a redirect

##
##
Resolve-Uri
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Resolve a URI to the URIs it redirects to

.EXAMPLE

PS> Resolve-Uri https://bit.ly/e0Mw9w

https://bit.ly/e0Mw9w
http://www.leeholmes.com/projects/ps_html5/Invoke-PSHtml5.ps1

#>

param(
 ## The URI to resolve
 [Parameter(Mandatory, Position = 0)]
 $Uri
)

$ProgressPreference = "Ignore"
$ErrorActionPreference = "Stop"

While we still have a URI to process
while($Uri)
{
 $Uri

 ## Connect to the URI. Don't allow redirects, so that we can see

350 | Chapter 12: Internet-Enabled Scripts

 ## where it redirects to.
 $wc = [System.Net.HttpWebRequest]::Create($Uri)
 $wc.AllowAutoRedirect = $false

 try
 {
 $response = $wc.GetResponse()

 ## If it was a redirect (with a "Location" header), store that and
 ## process it the next time around.
 if($response.Headers["Location"])
 {
 $Uri = $response.Headers["Location"]
 }
 else
 {
 $Uri = $null
 }
 }
 catch
 {
 ## Some scenarios handle the scenario above through an exception, so
 ## handle that here.
 if($_.Exception.InnerException.Response.StatusCode -eq "Moved")
 {
 $Uri = $_.Exception.InnerException.Response.Headers["Location"]
 }
 else
 {
 throw $_
 }
 }
}

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

12.4 Download a Web Page from the Internet
Problem
You want to download a web page from the internet and work with the content
directly.

Solution
Use the Invoke-WebRequest cmdlet to download a web page, and then access the
Content property (or cast the result to a [string]):

12.4 Download a Web Page from the Internet | 351

PS > $source = "http://www.bing.com/search?q=sqrt(2)"
PS > $result = [string] (Invoke-WebRequest $source)

Discussion
When writing automation in a web-connected world, we aren’t always fortunate
enough to have access to a web service that returns richly structured data. Because of
this, retrieving data from services on the internet often comes by means of screen
scraping: downloading the HTML of the web page and then carefully separating out
the content you want from the vast majority of the content that you do not.

If extracting structured data from a web page is your primary goal,
the Invoke-WebRequest cmdlet offers options much more powerful
than basic screen scraping. For more information, see Recipe 12.5.

The technique of screen scraping has been around much longer than the internet! As
long as computer systems have generated output designed primarily for humans,
screen scraping tools have risen to make this output available to other computer
programs.

Unfortunately, screen scraping is an error-prone way to extract content. And that’s no
exaggeration! As proof, Example 12-6 (shown later in this recipe) broke four or five
times while the first edition of this book was being written, and then again after it was
published. Then it broke several times during the second edition, and again after it
was published. Then, it broke after the third edition was published. Although it was
fixed for the fourth edition, it’s likely broken as you read this. Such are the perils of
screen scraping.

If the web page authors change the underlying HTML, your code will usually stop
working correctly. If the site’s HTML is written as valid XHTML, you may be able to
use PowerShell’s built-in XML support to more easily parse the content.

For more information about PowerShell’s built-in XML support, see Recipe 10.1.

Despite its fragility, pure screen scraping is often the only alternative. Since screen
scraping is just text manipulation, you have the same options you do with other text
reports. For some fairly structured web pages, you can get away with a single regular
expression replacement (plus cleanup), as shown in Example 12-5.

352 | Chapter 12: Internet-Enabled Scripts

Example 12-5. Search-Bing.ps1

##
##
Search-Bing
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Search Bing for a given term

.EXAMPLE

PS > Search-Bing PowerShell
Searches Bing for the term "PowerShell"

#>

param(
 ## The term to search for
 $Pattern = "PowerShell"
)

Set-StrictMode -Version 3

Create the URL that contains the Bing search results
Add-Type -Assembly System.Web
$queryUrl = 'http://www.bing.com/search?q={0}'
$queryUrl = $queryUrl -f ([System.Web.HttpUtility]::UrlEncode($pattern))

Download the web page
$results = [string] (Invoke-WebRequest $queryUrl)

Extract the text of the results, which are contained in
segments that look like "<div class="sb_tlst">...</div>"
$matches = $results |
 Select-String -Pattern '(?s)<div[^>]*sb_tlst[^>]*>.*?</div>' -AllMatches

foreach($match in $matches.Matches)
{
 ## Extract the URL, keeping only the text inside the quotes
 ## of the HREF
 $url = $match.Value -replace '.*href="(.*?)".*','$1'
 $url = [System.Web.HttpUtility]::UrlDecode($url)

 ## Extract the page name, replace anything in angle
 ## brackets with an empty string.
 $item = $match.Value -replace '<[^>]*>', ''

12.4 Download a Web Page from the Internet | 353

 ## Output the item
 [PSCustomObject] @{ Item = $item; Url = $url }
}

Text parsing on less structured web pages, while possible to accomplish with compli‐
cated regular expressions, can often be made much simpler through more straightfor‐
ward text manipulation. Example 12-6 uses this second approach to fetch “Instant
Answers” from Bing.

Example 12-6. Get-Answer.ps1

##
##
Get-Answer
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Uses Bing Answers to answer your question

.EXAMPLE

PS > Get-Answer "sqrt(2)"
sqrt(2) = 1.41421356

.EXAMPLE

PS > Get-Answer msft stock
Microsoft Corp (US:MSFT) NASDAQ
29.66 -0.35 (-1.17%)
After Hours: 30.02 +0.36 (1.21%)
Open: 30.09 Day's Range: 29.59 - 30.20
Volume: 55.60 M 52 Week Range: 17.27 - 31.50
P/E Ratio: 16.30 Market Cap: 260.13 B

.EXAMPLE

PS > Get-Answer "What is the time in Seattle, WA?"
Current time in Seattle, WA
01:12:41 PM
08/18/2012 ? Pacific Daylight Time

#>

Set-StrictMode -Version 3

$question = $args -join " "

354 | Chapter 12: Internet-Enabled Scripts

function Main
{
 ## Load the System.Web.HttpUtility DLL, to let us URLEncode
 Add-Type -Assembly System.Web

 ## Get the web page into a single string with newlines between
 ## the lines.
 $encoded = [System.Web.HttpUtility]::UrlEncode($question)
 $url = "http://www.bing.com/search?q=$encoded"
 $text = [String] (Invoke-WebRequest $url)

 ## Find the start of the answers section
 $startIndex = $text.IndexOf('<li class="b_ans')

 ## The end may be defined by one of the following strings, depending on the
 ## answer type. Pick the first.
 $endStrings = "Was this helpful","finf_mod",'<li class="b_algo',
 "People also search for","Feedback"
 $answerIndexes = $endStrings | Foreach-Object { $text.IndexOf($_, $startIndex) } |
 Where-Object { $_ -ge 0 }
 $endIndex = ($answerIndexes | Sort-Object)[0]

 ## If we found a result, then filter the result
 if(($startIndex -ge 0) -and ($endIndex -ge 0))
 {
 ## Pull out the text between the start and end portions
 $partialText = $text.Substring($startIndex, $endIndex - $startIndex)

 ## Very fragile screen scraping here. Replace a bunch of
 ## tags that get placed on new lines with the newline
 ## character, and a few others with spaces.
 $partialText = $partialText -replace '<div[^>]*>',"`n"
 $partialText = $partialText -replace '<tr[^>]*>',"`n"
 $partialText = $partialText -replace '<li[^>]*>',"`n"
 $partialText = $partialText -replace '<br[^>]*>',"`n"
 $partialText = $partialText -replace '<p [^>]*>',"`n"
 $partialText = $partialText -replace '<span[^>]*>'," "
 $partialText = $partialText -replace '<td[^>]*>'," "

 $partialText = CleanHtml $partialText

 ## Now split the results on newlines, trim each line, and then
 ## join them back.
 $partialText = $partialText -split "`n" |
 Foreach-Object { $_.Trim() } | Where-Object { $_ }
 $partialText = $partialText -join "`n"

 [System.Web.HttpUtility]::HtmlDecode($partialText.Trim())
 }
 else
 {
 "No answer found."
 }
}

12.4 Download a Web Page from the Internet | 355

Clean HTML from a text chunk
function CleanHtml ($htmlInput)
{
 $tempString = [Regex]::Replace($htmlInput, "(?s)<[^>]*>", "")
 $tempString.Replace(" ", "")
}

Main

When using the Invoke-WebRequest cmdlet, you might notice some web applications
acting oddly or returning an error that you’re using an unsupported browser.

The reason for this is that all web browsers send a user agent identifier along with
their web request. This identifier tells the website what application is making the
request—such as Edge, Firefox, or an automated crawler from a search engine. Many
websites check this user agent identifier to determine how to display the page.
Unfortunately, many fail entirely if they can’t determine the user agent for the incom‐
ing request.

By default, PowerShell identifies itself with a brower-like user agent: Mozilla/5.0
(Windows NT 10.0; Microsoft Windows 10.0.19041; en-US) PowerShell/7.1.0.
If you need to customize the user agent string for a request, you can specify this with
the -UserAgent parameter. This parameter takes a simple string. Static properties of
the [Microsoft.PowerShell.Commands.PSUserAgent] class provide some pre-
configured defaults:

PS > $userAgent = [Microsoft.PowerShell.Commands.PSUserAgent]::Chrome
PS > $result = Invoke-WebRequest http://www.bing.com -UserAgent $userAgent

For more information about parsing web pages, see Recipe 12.5.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 10.1, “Access Information in an XML File”

Recipe 12.5, “Parse and Analyze a Web Page from the Internet”

356 | Chapter 12: Internet-Enabled Scripts

12.5 Parse and Analyze a Web Page from the Internet
Problem
You want to parse and interact with content from a web page.

Solution
Use the Invoke-WebRequest cmdlet to download a web page, and then access the
ParsedHtml property:

PS > $source = "http://www.bing.com/search?q=sqrt(2)"
PS > $result = Invoke-WebRequest $source
PS > $resultContainer = $result.ParsedHtml.GetElementById("results_container")
PS > $answerElement = $resultContainer.getElementsByTagName("div") |
 Where-Object ClassName -eq "ans" | Select -First 1
PS > $answerElement.innerText

To retrieve just the images, links, or input fields, access those properties on the result
of Invoke-WebRequest:

PS > $source = "http://www.bing.com/search?q=sqrt(2)"
PS > $result = Invoke-WebRequest $source
PS > $result.Links

Discussion
When you’re retrieving data from web pages on the internet, the usual approach relies
on text manipulation—regular expressions, string replacement, and formatting. If
you’re very lucky, the web page is written carefully in a way that makes it also an XML
document—in which case, you can use PowerShell’s XML support to extract informa‐
tion. Recipe 12.4 describes this approach.

If you need to interact with an XML or REST-based internet API,
see Recipe 12.7.

The risk of these approaches is that a change of a few characters or spaces can easily
break whatever text manipulation you’ve designed.

The solution usually comes from using toolkits that parse a web page the way a
browser would. Most importantly, these toolkits need to account for poorly written
HTML: unmatched quote characters, missing closing tags, character encodings, and
anything else the sewers of the internet can manage to throw at it.

12.5 Parse and Analyze a Web Page from the Internet | 357

Fortunately, PowerShell’s Invoke-WebRequest cmdlet exposes an extremely powerful
parsing engine: the one that ships in the operating system itself with Internet
Explorer.

When you access the ParsedHtml property of the object returned by Invoke-
WebRequest, you’re given access directly to the Document Object Model (DOM) that
Internet Explorer uses when it parses web pages. This property returns an HTML ele‐
ment that initially represents the entire HTML document. To access HTML elements,
it supports useful methods and properties—the most useful being getElementById
(to find elements with a specific ID), getElementsByTagName (to find all DIV ele‐
ments, IMG elements, etc.), and childNodes (to retrieve child elements specifically by
position).

The Internet Explorer engine required by the ParsedHtml property
is not supported on some versions of PowerShell. If you want to do
web page parsing when this property doesn’t exist, be sure to sup‐
ply the -UseBasicParsing parameter of Invoke-WebRequest. This
mode performs only limited parsing on the requested web page—
images, input fields, links, and raw HTML content. For additional
functionality, consider external HTML parsing libraries such as
HTML Agility Pack.

To see all of methods and properties available through the ParsedHtml property, use
the Get-Member cmdlet:

PS > $result = Invoke-WebRequest $source
PS > $result.ParsedHtml | Get-Member

When you retrieve an item (such as a DIV or paragraph) using these methods and
properties, you get back another element that supports the same properties. This
makes iteration and refinement both possible and generally accurate. You’ll typically
have to review the HTML content itself to discover the element IDs, names, and class
names that you can use to find the specific HTML elements that you need.

Given the amount of information in a web page, it’s important to narrow down your
search as quickly as possible so that Internet Explorer and PowerShell don’t need to
search though every element looking for the item that matches. The getElement
ById() method is the quickest way to narrow down your search, followed by
getElementsByTagName() and finally by using the Where-Object cmdlet.

358 | Chapter 12: Internet-Enabled Scripts

If you have to rely on the Where-Object cmdlet to filter your
results, be sure to use the Select-Object cmdlet to pick only the
first item as shown in the Solution. This prompts PowerShell to
stop searching for HTML elements as soon as it finds the one you
need. Otherwise, it will continue to look through all of the remain‐
ing document elements—a very slow process.

Once you’ve narrowed down the element you need, the InnerText and InnerHtml
properties are very useful. If you still need to do additional text or HTML manipula‐
tion, they represent the plain-text content of your element and actual HTML text of
your element, respectively.

In addition to parsing single HTML web pages, you may want to script multipage
web sessions. For an example of this, see Recipe 12.6.

See Also
Recipe 10.1, “Access Information in an XML File”

Recipe 12.4, “Download a Web Page from the Internet”

Recipe 12.6, “Script a Web Application Session”

Recipe 12.7, “Interact with REST-Based Web APIs”

12.6 Script a Web Application Session
Problem
You want to interact with a website or application that requires dynamic cookies, log‐
ins, or multiple requests.

Solution
Use the Invoke-WebRequest cmdlet to download a web page, and access the
-SessionVariable and -WebSession parameters. For example, to retrieve the num‐
ber of active Facebook notifications:

$cred = Get-Credential
$login = Invoke-WebRequest http://www.facebook.com/login.php -SessionVariable fb
$login.Forms[0].Fields.email = $cred.GetNetworkCredential().UserName
$login.Forms[0].Fields.pass = $cred.GetNetworkCredential().Password
$main = Invoke-WebRequest $login.Forms[0].Action
 -WebSession $fb -Body $login -Method Post
$main.ParsedHtml.getElementById("notificationsCountValue").InnerText

12.6 Script a Web Application Session | 359

Discussion
While many pages on the internet provide their information directly when you access
a web page, many others aren’t so simple. For example, the site may be protected by a
login page (which then sets cookies), followed by another form (which requires those
cookies) that returns a search result.

Automating these scenarios almost always requires a fairly in-depth understanding of
the web application in question, as well as how web applications work in general.

Even with that understanding, automating these scenarios usually requires a vast
amount of scripting: parsing HTTP headers, sending them in subsequent requests,
hand-crafting form POST responses, and more.

As an example of bare scripting of a Facebook login, consider the following example
that merely determines the login cookie to be used in further page requests:

$Credential = Get-Credential

Get initial cookies
$wc = New-Object System.Net.WebClient
$wc.Headers.Add("User-Agent", "User-Agent: Mozilla/4.0 (compatible; MSIE 7.0;)")

$result = $wc.DownloadString("https://www.facebook.com/")
$cookie = $wc.ResponseHeaders["Set-Cookie"]
$cookie = ($cookie.Split(',') -match '^\S+=\S+;' -replace ';.*','') -join '; '

$wc = New-Object System.Net.WebClient
$wc.Headers.Add("User-Agent", "User-Agent: Mozilla/4.0 (compatible; MSIE 7.0;)")
$wc.Headers.Add("Cookie", $cookie)
$postValues = New-Object System.Collections.Specialized.NameValueCollection
$postValues.Add("email", $credential.GetNetworkCredential().Username)
$postValues.Add("pass", $credential.GetNetworkCredential().Password)

Get the resulting cookie, and convert it into the form to be returned
in the query string
$result = $wc.UploadValues(
 "https://login.facebook.com/login.php?login_attempt=1", $postValues)
$cookie = $wc.ResponseHeaders["Set-Cookie"]
$cookie = ($cookie.Split(',') -match '^\S+=\S+;' -replace ';.*','') -join '; '
$cookie

This is just for the login. Scripting a full web session using this manual approach can
easily take hundreds of lines of script.

If supported in your version of PowerShell, the -SessionVariable and -WebSession
parameters of the Invoke-WebRequest cmdlet don’t remove the need to understand
how your target web application works. They do, however, remove the drudgery and
complexity of dealing with the bare HTTP requests and responses. This improved
session support comes primarily through four features:

360 | Chapter 12: Internet-Enabled Scripts

Automated cookie management
Most web applications store their state in cookies—session IDs and login infor‐
mation being the two most common things to store. When a web application
requests that a cookie be stored or deleted, Invoke-WebRequest automatically
records this information in the provided session variable. Subsequent requests
that use this session variable automatically supply any cookies required by the
web application. You can see the cookies in use by looking at the Cookies prop‐
erty of the session variable:

$fb.Cookies.GetCookies("https://www.facebook.com") | Select Name,Value

Automatic redirection support
After you submit a web form (especially a login form), many sites redirect
through a series of intermediate pages before you finally land on the destination
page. In basic HTTP scripting, this forces you to handle the many HTTP redirect
status codes, parse the Location header, and resubmit all the appropriate values.
The Invoke-WebRequest cmdlet handles this for you; the result it returns comes
from the final page in any redirect sequences. If you wish to override this behav‐
ior, use the -MaximumRedirection parameter.

Form detection
Applications that require advanced session scripting tend to take most of their
input data from fields in HTML forms, rather than items in the URL itself.
Invoke-WebRequest exposes these forms through the Forms property of its result.
This collection returns the form ID (useful if there are multiple forms), the form
action (URL that should be used to submit the form), and fields defined by the
form.

Form submission
In traditional HTTP scripting, submitting a form is a complicated process. You
need to gather all the form fields, encode them properly, determine the resulting
encoded length, and POST all of this data to the destination URL.
Invoke-WebRequest makes this very simple through the -Body parameter used as
input when you select POST as the value of the -Method parameter. The -Body
parameter accepts input in one of three formats:

• The result of a previous Invoke-WebRequest call, in which case values from
the first form are used (if the response contains only one form).

• A specific form (as manually selected from the Forms property of a previous
Invoke-WebRequest call), in which case values from that form are used.

• An IDictionary (hashtable), in which case names and values from that dic‐
tionary are used.

12.6 Script a Web Application Session | 361

• An XML node, in which case the XML is encoded directly. This is used pri‐
marily for scripting REST APIs, and is unlikely to be used when scripting
web application sessions.

• A byte array, in which case the bytes are used and encoded directly. This is
used primarily for scripting data uploads.

Let’s take a look at how these play a part in the script from the Solution, which detects
how many notifications are pending on Facebook. Given how fast web applications
change, it’s unlikely that this example will continue to work for long. It does demon‐
strate the thought process, however.

When you first connect to Facebook, you need to log in. Facebook funnels this
through a page called login.php:

$login = Invoke-WebRequest http://www.facebook.com/login.php -SessionVariable fb

If you look at the page that gets returned, there is a single form that includes email
and pass fields:

PS > $login.Forms.Fields

Key Value
--- -----
(...)
return_session 0
legacy_return 1
session_key_only 0
trynum 1
email
pass
persist_box 1
default_persistent 0
(...)

We fill these in:
$cred = Get-Credential
$login.Forms[0].Fields.email = $cred.UserName
$login.Forms[0].Fields.pass = $cred.GetNetworkCredential().Password

And submit the form. We use $fb for the -WebSession parameter, as that is what we
used during the original request. We POST to the URL referred to in the Action field
of the login form, and use the $login variable as the request body. The $login vari‐
able is the response that we got from the first request, where we customized the email
and pass form fields. PowerShell recognizes that this was the result of a previous web
request, and uses that single form as the POST body:

$mainPage = Invoke-WebRequest $login.Forms[0].Action -WebSession $fb `
 -Body $login -Method Post

362 | Chapter 12: Internet-Enabled Scripts

If you look at the raw HTML returned by this response (the Content property), you
can see that the notification count is contained in a span element with the ID of
notificationsCountValue:

(...) 1 (...)

To retrieve this element, we use the ParsedHtml property of the response, call the
GetElementById method, and return the InnerText property:

$mainPage.ParsedHtml.getElementById("notificationsCountValue").InnerText

Using these techniques, we can unlock a great deal of functionality on the internet
previously hidden behind complicated HTTP scripting.

For more information about using the ParsedHtml property to parse and analyze web
pages, see Recipe 12.5.

See Also
Recipe 12.5, “Parse and Analyze a Web Page from the Internet”

12.7 Interact with REST-Based Web APIs
Problem
You want to work with an XML or JSON REST-based API.

Solution
Use the Invoke-RestMethod cmdlet to work with REST-based APIs. Example 12-7
demonstrates using the StackOverflow API to retrieve the 10 most recent unanswered
quesions tagged “PowerShell.”

Example 12-7. Using Invoke-RestMethod with the StackOverflow API

PS > $url = "https://api.stackexchange.com/2.0/questions/unanswered" +
 "?order=desc&sort=activity&tagged=powershell&pagesize=10&site=stackoverflow"
PS > $result = Invoke-RestMethod $url
PS > $result.Items | ForEach-Object { $_.Title; $_.Link; "" }

Can I have powershell scripts in file with no extension?
http://stackoverflow.com/questions/12230228/can-i-have-powershell-scripts...

Powershell: Replacing regex named groups with variables
http://stackoverflow.com/questions/12225415/powershell-replacing-regex-named...

(...)

12.7 Interact with REST-Based Web APIs | 363

Discussion
Most web pages that return useful data provide this information with the intention
that it will only ever be displayed by a web browser. Extracting this information is
always difficult, although Recipe 12.5 usually makes the solution simpler than straight
text manipulation.

When a web page is designed to be consumed by other programs or scripts, it is usu‐
ally called a web service or web API. Web services are the more fully featured of the
two. They rely on a technology called SOAP (Simple Object Access Protocol), and
mimic traditional programming APIs that support rigid structures, standardized call‐
ing behavior, and strongly typed objects. Recipe 12.8 demonstrates how to interact
with web services from PowerShell.

While much less structured, web APIs tend to follow some similar basic design phi‐
losophies—primarily URL structures, standard HTTP methods (GET/POST), and
data types (JSON/XML). These loosely defined design philosophies are usually grou‐
ped under the term REST (Representational State Transfer), making REST API the
term most commonly used for non-SOAP web services.

While still designed to be consumed by programs or scripts, REST APIs have a much
less rigid structure. Because of their simplicity, they have become the dominant form
of web service on the internet.

The Invoke-RestMethod cmdlet forms the basis of how you interact with REST APIs
from PowerShell. It acts much like the Invoke-WebRequest cmdlet in that it lets you
invoke standard HTTP operations against URLs: GET, PUT, POST, and more. Unlike
Invoke-WebRequest, though, Invoke-RestMethod assumes that the data returned
from the website is designed to be consumed by a program. Depending on the data
returned by the web service (XML or JSON), it automatically interprets the returned
data and converts it into PowerShell objects.

If this interpretation is incorrect for a website or REST API, you
can always use the Invoke-WebRequest cmdlet directly.

As another example of interacting with REST APIs, Example 12-8 demonstrates using
the StackOverflow API to find the accepted answer for the PowerShell questions
matching your search term.

364 | Chapter 12: Internet-Enabled Scripts

Example 12-8. Searching StackOverflow for answers to a PowerShell question

##
##
Search-StackOverflow
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Searches Stack Overflow for PowerShell questions that relate to your
search term, and provides the link to the accepted answer.

.EXAMPLE

PS > Search-StackOverflow upload ftp
Searches StackOverflow for questions about how to upload FTP files

.EXAMPLE

PS > $answers = Search-StackOverflow.ps1 upload ftp
PS > $answers | Out-GridView -PassThru | Foreach-Object { start $_ }

Launches Out-GridView with the answers from a search. Select the URLs
that you want to launch, and then press OK. PowerShell then launches
your default web browser for those URLs.

#>

Set-StrictMode -Off
Add-Type -Assembly System.Web

$query = $args -join " "
$query = [System.Web.HttpUtility]::UrlEncode($query)

Use the StackOverflow API to retrieve the answer for a question
$url = "https://api.stackexchange.com/2.0/search?order=desc&sort=relevance" +
 "&pagesize=5&tagged=powershell&intitle=$query&site=stackoverflow"
$question = Invoke-RestMethod $url

Now go through and show the questions and answers
$question.Items | Where-Object accepted_answer_id | Foreach-Object {
 "Question: " + $_.Title
 "https://www.stackoverflow.com/questions/$($_.accepted_answer_id)"
 ""
}

12.7 Interact with REST-Based Web APIs | 365

See Also
Recipe 12.5, “Parse and Analyze a Web Page from the Internet”

12.8 Connect to a Web Service
Problem
You want to connect to and interact with an internet web service.

Solution
Use the New-WebserviceProxy cmdlet to work with a web service.

PS > $url = "http://dneonline.com/calculator.asmx"
PS > $calculator = New-WebserviceProxy $url -Namespace Cookbook
PS > $calculator.Add(2, 3)
5

Discussion
Although screen scraping (parsing the HTML of a web page) is the most common
way to obtain data from the internet, web services are becoming increasingly com‐
mon. Web services provide a significant advantage over HTML parsing, as they’re
much less likely to break when the web designer changes minor features in a design.

If you need to interact with an XML or REST-based internet API,
see Recipe 12.7.

The benefit of web services isn’t just their more stable interface, however. When
you’re working with web services, the .NET Framework lets you generate proxies that
enable you to interact with the web service as easily as you would work with a regu‐
lar .NET object. That’s because to you, the web service user, these proxies act almost
exactly the same as any other .NET object. To call a method on the web service, sim‐
ply call a method on the proxy.

The New-WebserviceProxy cmdlet simplifies all of the work required to connect to a
web service, making it just as easy as a call to the New-Object cmdlet.

The primary differences you’ll notice when working with a web service proxy (as
opposed to a regular .NET object) are the speed and internet connectivity require‐
ments. Depending on conditions, a method call on a web service proxy could easily
take several seconds to complete. If your computer (or the remote computer)

366 | Chapter 12: Internet-Enabled Scripts

experiences network difficulties, the call might even return a network error message
(such as a timeout) instead of the information you’d hoped for.

If the web service requires authentication in a domain, specify the
-UseDefaultCredential parameter. If it requires explicit credentials, use the
-Credential parameter.

When you create a new web service proxy, PowerShell creates a new .NET object on
your behalf that connects to that web service. All .NET types live within a namespace
to prevent them from conflicting with other types that have the same name, so Pow‐
erShell automatically generates the namespace name for you. You normally won’t
need to pay attention to this namespace. However, some web services require input
objects that the web service also defines, such as the Place object in the Solution. For
these web services, use the -Namespace parameter to place the web service (and its
support objects) in a namespace of your choice.

Support objects from one web service proxy can’t be consumed by
a different web service proxy, even if they are two proxies to a web
service at the same URL. If you need to work with two connections
to a web service at the same URL, and your task requires creating
support objects for that service, be sure to use two different name‐
spaces for those proxies.

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 12.7, “Interact with REST-Based Web APIs”

12.9 Interact with and Manage Remote SSL Certificates
Problem
You want to retrieve the SSL/TLS certificate from a remote web server to examine its
validity date or other properties.

Solution
Use the System.Net.WebRequest class from the .NET Framework, and then set its
ServerCertificateValidationCallback property to capture the certificate:

$webRequest = [Net.WebRequest]::Create("https://www.powershellcookbook.com")
$webRequest.ServerCertificateValidationCallback = {
 param($Request, $Certificate, $SslPolicyErrors)

12.9 Interact with and Manage Remote SSL Certificates | 367

 $GLOBAL:certificateResult = $Certificate

 ## Returning $true ignores all errors
 $true
}
$null = $webRequest.GetResponse()
$certificateResult | Format-List

Subject : CN=sni.cloudflaressl.com, O="Cloudflare, Inc.", L=San Francisco, S=CA,
Issuer : CN=Cloudflare Inc ECC CA-3, O="Cloudflare, Inc.", C=US
Thumbprint : 53D9FE57E262D018AB656BA212FAB67D84C75660
FriendlyName :
NotBefore : 8/7/2020 5:00:00 PM
NotAfter : 8/8/2021 5:00:00 AM
Extensions : {System.Security.Cryptography.Oid, System.Security.Cryptography.Oid,
 System.Security.Cryptography.Oid, System.Security.Cryptography.Oid...}

Discussion
For as much security as SSL/TLS certificates bring, expired ones are one of the lead‐
ing causes of major service outages on the internet. A good way to reduce this risk in
your environment is to regularly scan for certificates on your web servers that are
about to expire so that you can prioritize rotating and replacing them. Once you’ve
retrieved the certificate from a remote machine (as shown by the Solution), you can
easily examine its NotAfter property or any others that you’re interested in.

In addition, you may sometimes have the need to interact with websites that have an
expired, misconfigured, or corrupted SSL certificate. These are risky to work with,
because many of the errors that seem like misconfigurations can in fact be malicious.
For this reason, PowerShell generates an error when you attempt to connect by
default. To skip this error, supply the -SkipCertificateCheck parameter:

PS > Invoke-WebRequest https://expired-rsa-dv.ssl.com/
Invoke-WebRequest: The remote certificate is invalid because of errors in the
certificate chain: NotTimeValid
PS > Invoke-WebRequest https://expired-rsa-dv.ssl.com/ -SkipCertificateCheck

StatusCode : 200
StatusDescription : OK
Content : <HTML>
 This is a test site authenticated by <a
 href="https://www.ssl.com"
 target="_blank">SSL.com using SSL/TLS Certificate!
 </HTML>

See Also
Recipe 12.4, “Download a Web Page from the Internet”

368 | Chapter 12: Internet-Enabled Scripts

12.10 Export Command Output as a Web Page
Problem
You want to export the results of a command as a web page so that you can post it to
a web server.

Solution
Use PowerShell’s ConvertTo-Html cmdlet to convert command output into a web
page. For example, to create a quick HTML summary of PowerShell’s commands:

PS > $filename = "c:\temp\help.html"
PS >
PS > $commands = Get-Command | Where { $_.CommandType -ne "Alias" }
PS > $summary = $commands | Get-Help | Select Name,Synopsis
PS > $summary | ConvertTo-Html | Set-Content $filename

Discussion
When you use the ConvertTo-Html cmdlet to export command output to a file, Pow‐
erShell generates an HTML table that represents the command output. In the table, it
creates a row for each object that you provide. For each row, PowerShell creates col‐
umns to represent the values of your object’s properties.

If the table format makes the output difficult to read, ConvertTo-Html offers the -As
parameter that lets you set the output style to either Table or List.

While the default output is useful, you can customize the structure and style of the
resulting HTML as much as you see fit. For example, the -PreContent and
-PostContent parameters let you include additional text before and after the result‐
ing table or list. The -Head parameter lets you define the content of the head section
of the HTML. Even if you want to generate most of the HTML from scratch, you can
still use the -Fragment parameter to generate just the inner table or list.

For more information about the ConvertTo-Html cmdlet, type Get-Help ConvertTo-
Html.

12.11 Send an Email
Problem
You want to send an email.

12.10 Export Command Output as a Web Page | 369

Solution
Use the Send-MailMessage cmdlet to send an email.

PS > Send-MailMessage -To guide@leeholmes.com `
 -From user@example.com `
 -Subject "Hello!" `
 -Body "Hello, from another satisfied Cookbook reader!" `
 -SmtpServer mail.example.com

Discussion
The Send-MailMessage cmdlet supports everything you would expect an email-
centric cmdlet to support: attachments, plain-text messages, HTML messages, prior‐
ity, receipt requests, and more. The most difficult aspect usually is remembering the
correct SMTP server to use.

The Send-MailMessage cmdlet helps solve this problem as well. If you don’t specify
the -SmtpServer parameter, it uses the server specified in the $PSEmailServer vari‐
able, if any.

For most of its functionality, the Send-MailMessage cmdlet leverages the
System.Net.Mail.MailMessage class from the .NET Framework. If you need func‐
tionality not exposed by the Send-MailMessage cmdlet, working with that class
directly may be an option.

12.12 Program: Monitor Website Uptimes
When managing a website (or even your own blog), it’s useful to track the response
times and availability of a URL. This can help detect site outages, or simply times of
unexpected load.

The Invoke-WebRequest cmdlet makes this incredibly easy to implement:
PS > Test-Uri http://www.leeholmes.com/blog

Time : 9/1/2012 8:10:22 PM
Uri : http://www.leeholmes.com/blog
StatusCode : 200
StatusDescription : OK
ResponseLength : 126750
TimeTaken : 1800.7406

If you combine this with a scheduled job that logs the results to a CSV, you can easily
monitor the health of a site over time. For an example of this approach, see Recipe
27.14.

Example 12-9 shows how to use the Invoke-WebRequest cmdlet as the basis of a web‐
site uptime monitor.

370 | Chapter 12: Internet-Enabled Scripts

Example 12-9. Testing a URI for its status and responsiveness

##
##
Test-Uri
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Connects to a given URI and returns status about it: URI, response code,
and time taken.

.EXAMPLE

PS > Test-Uri bing.com

Uri : bing.com
StatusCode : 200
StatusDescription : OK
ResponseLength : 34001
TimeTaken : 459.0009

#>

param(
 ## The URI to test
 $Uri
)

$request = $null
$time = try
{
 ## Request the URI, and measure how long the response took.
 $result = Measure-Command { $request = Invoke-WebRequest -Uri $uri }
 $result.TotalMilliseconds
}
catch
{
 ## If the request generated an exception (i.e.: 500 server
 ## error or 404 not found), we can pull the status code from the
 ## Exception.Response property
 $request = $_.Exception.Response
 $time = -1
}

$result = [PSCustomObject] @{
 Time = Get-Date;
 Uri = $uri;
 StatusCode = [int] $request.StatusCode;
 StatusDescription = $request.StatusDescription;

12.12 Program: Monitor Website Uptimes | 371

 ResponseLength = $request.RawContentLength;
 TimeTaken = $time;
}

$result

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

12.13 Program: Interact with Internet Protocols
Although it’s common to work at an abstract level with websites and web services, an
entirely separate style of internet-enabled scripting comes from interacting with the
remote computer at a much lower level. This lower level (called the TCP level, for
Transmission Control Protocol) forms the communication foundation of most internet
protocols—such as Telnet, SMTP (sending mail), POP3 (receiving mail), and HTTP
(retrieving web content).

The .NET Framework provides classes that let you interact with many of the internet
protocols directly: the System.Net.Mail.SmtpClient class for SMTP, the
System.Net.WebClient class for HTTP, and a few others. When the .NET Frame‐
work doesn’t support an internet protocol that you need, though, you can often script
the application protocol directly if you know the details of how it works.

Example 12-10 shows how to receive information about mail waiting in a remote
POP3 mailbox, using the Send-TcpRequest script given in Example 12-11.

Example 12-10. Interacting with a remote POP3 mailbox

Get the user credential
if(-not (Test-Path Variable:\mailCredential))
{
 $mailCredential = Get-Credential
}
$address = $mailCredential.UserName
$password = $mailCredential.GetNetworkCredential().Password

Connect to the remote computer, send the commands, and receive the output
$pop3Commands = "USER $address","PASS $password","STAT","QUIT"
$output = $pop3Commands | Send-TcpRequest mail.myserver.com 110
$inbox = $output.Split("`n")[3]

Parse the output for the number of messages waiting and total bytes
$status = $inbox |
 ConvertFrom-String -PropertyName "Response","Waiting","BytesTotal","Extra"
"{0} messages waiting, totaling {1} bytes." -f $status.Waiting, $status.BytesTotal

372 | Chapter 12: Internet-Enabled Scripts

In Example 12-10, you connect to port 110 of the remote mail server. You then issue
commands to request the status of the mailbox in a form that the mail server under‐
stands. The format of this network conversation is specified and required by the stan‐
dard POP3 protocol. Example 12-10 uses the ConvertFrom-String command, which
is provided in Recipe 5.15.

Example 12-11 supports the core functionality of Example 12-10. It lets you easily
work with plain-text TCP protocols.

Example 12-11. Send-TcpRequest.ps1

##
##
Send-TcpRequest
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Send a TCP request to a remote computer, and return the response.
If you do not supply input to this script (via either the pipeline, or the
-InputObject parameter,) the script operates in interactive mode.

.EXAMPLE

PS > $http = @"
 GET / HTTP/1.1
 Host:bing.com
 `n`n
"@

$http | Send-TcpRequest bing.com 80

#>

[CmdletBinding()]
param(
 ## The computer to connect to
 [Parameter()]
 [string] $ComputerName = "localhost",

 ## A switch to determine if you just want to test the connection
 [Parameter()]
 [switch] $Test,

 ## The port to use
 [Parameter()]
 [int] $Port = 80,

12.13 Program: Interact with Internet Protocols | 373

 ## A switch to determine if the connection should be made using SSL
 [Parameter()]
 [switch] $UseSSL,

 ## The input string to send to the remote host
 [Parameter(ValueFromPipeline)]
 [string] $InputObject,

 ## The delay, in milliseconds, to wait between commands
 [Parameter()]
 [int] $Delay = 100
)

Set-StrictMode -Version 3

[string] $SCRIPT:output = ""

Store the input into an array that we can scan over. If there was no input,
then we will be in interactive mode.
$currentInput = $inputObject
if(-not $currentInput)
{
 $currentInput = @($input)
}
$scriptedMode = ([bool] $currentInput) -or $test

function Main
{
 ## Open the socket, and connect to the computer on the specified port
 if(-not $scriptedMode)
 {
 write-host "Connecting to $computerName on port $port"
 }

 try
 {
 $tcpClient = New-Object Net.Sockets.TcpClient($computerName, $port)
 }
 catch
 {
 if($test) { $false }
 else { Write-Error "Could not connect to remote computer: $_" }

 return
 }

 ## If we're just testing the connection, we've made the connection
 ## successfully, so just return $true
 if($test) { $true; return }

 ## If this is interactive mode, supply the prompt
 if(-not $scriptedMode)
 {
 write-host "Connected. Press ^D followed by [ENTER] to exit.`n"
 }

374 | Chapter 12: Internet-Enabled Scripts

 $stream = $tcpClient.GetStream()

 ## If we wanted to use SSL, set up that portion of the connection
 if($UseSSL)
 {
 try
 {
 $sslStream = New-Object System.Net.Security.SslStream $stream,$false
 $sslStream.AuthenticateAsClient($ComputerName)
 $stream = $sslStream
 }
 catch [System.IO.IOException]
 {
 ## Try again with explicit SSL (TLS)

 $tcpClient = new-object System.Net.Sockets.TcpClient($ComputerName, $port)
 $stream = $tcpClient.GetStream()

 $writer = new-object System.IO.StreamWriter $stream

 $writer.WriteLine("EHLO")
 $writer.Flush()

 $writer.WriteLine("STARTTLS")
 $writer.Flush()
 $null = GetOutput

 $sslStream = New-Object System.Net.Security.SslStream $stream,$false
 $sslStream.AuthenticateAsClient($ComputerName)
 $stream = $sslStream
 }
 }

 $writer = new-object System.IO.StreamWriter $stream

 while($true)
 {
 ## Receive the output that has buffered so far
 $SCRIPT:output += GetOutput

 ## If we're in scripted mode, send the commands,
 ## receive the output, and exit.
 if($scriptedMode)
 {
 foreach($line in $currentInput)
 {
 $writer.WriteLine($line)
 $writer.Flush()
 Start-Sleep -m $Delay
 $SCRIPT:output += GetOutput
 }

 break
 }
 ## If we're in interactive mode, write the buffered

12.13 Program: Interact with Internet Protocols | 375

 ## output, and respond to input.
 else
 {
 if($output)
 {
 foreach($line in $output.Split("`n"))
 {
 write-host $line
 }
 $SCRIPT:output = ""
 }

 ## Read the user's command, quitting if they hit ^D
 $command = read-host
 if($command -eq ([char] 4)) { break; }

 ## Otherwise, write their command to the remote host
 $writer.WriteLine($command)
 $writer.Flush()
 }
 }

 ## Close the streams
 $writer.Close()
 $stream.Close()

 ## If we're in scripted mode, return the output
 if($scriptedMode)
 {
 $output
 }
}

Read output from a remote host
function GetOutput
{
 ## Create a buffer to receive the response
 $buffer = new-object System.Byte[] 1024
 $encoding = new-object System.Text.AsciiEncoding

 $outputBuffer = ""
 $foundMore = $false

 ## Read all the data available from the stream, writing it to the
 ## output buffer when done.
 do
 {
 ## Allow data to buffer for a bit
 start-sleep -m 1000

 ## Read what data is available
 $foundmore = $false
 $stream.ReadTimeout = 1000

 do
 {

376 | Chapter 12: Internet-Enabled Scripts

 try
 {
 $read = $stream.Read($buffer, 0, 1024)

 if($read -gt 0)
 {
 $foundmore = $true
 $outputBuffer += ($encoding.GetString($buffer, 0, $read))
 }
 } catch { $foundMore = $false; $read = 0 }
 } while($read -gt 0)
 } while($foundmore)

 $outputBuffer
}

. Main

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 5.15, “Convert Text Streams to Objects”

12.13 Program: Interact with Internet Protocols | 377

CHAPTER 13

User Interaction

13.0 Introduction
Although most scripts are designed to run automatically, you’ll frequently find it use‐
ful to have your scripts interact with the user.

The best way to get input from your user is through the arguments
and parameters to your script or function. This lets your users run
your script without having to be there as it runs!

If your script greatly benefits from (or requires) an interactive experience, PowerShell
offers a range of possibilities. This might be simply waiting for a keypress, prompting
for input, or displaying a richer choice-based prompt.

User input isn’t the only aspect of interaction, though. In addition to its input facili‐
ties, PowerShell supports output as well—from displaying simple text strings to much
more detailed progress reporting and interaction with UI frameworks.

13.1 Read a Line of User Input
Problem
You want to use input from the user in your script.

Solution
To obtain user input, use the Read-Host cmdlet:

379

PS > $directory = Read-Host "Enter a directory name"
Enter a directory name: C:\MyDirectory
PS > $directory
C:\MyDirectory

Discussion
The Read-Host cmdlet reads a single line of input from the user. If the input contains
sensitive data, the cmdlet supports an -AsSecureString parameter to read this input
as a SecureString.

If the user input represents a date, time, or number, be aware that most cultures rep‐
resent these data types differently. For more information about writing culture-aware
scripts, see Recipe 13.6.

For more information about the Read-Host cmdlet, type Get-Help Read-Host. For
an example of reading user input through a graphical prompt, see the Read-InputBox
script included in this book’s code examples. For more information about obtaining
these examples, see “Using Code Examples” on page xxv.

See Also
Recipe 13.6, “Write Culture-Aware Scripts”

13.2 Read a Key of User Input
Problem
You want your script to get a single keypress from the user.

Solution
For most purposes, use the [Console]::ReadKey() method to read a key:

PS > $key = [Console]::ReadKey($true)
PS > $key

 KeyChar Key Modifiers
 ------- --- ---------
 h H Alt

For highly interactive use (for example, when you care about key down and key up),
use:

PS > $key = $host.UI.RawUI.ReadKey("NoEcho,IncludeKeyDown")
PS > $key

 VirtualKeyCode Character ControlKeyState KeyDown
 -------------- --------- --------------- -------
 16 ...ssed, NumLockOn True

380 | Chapter 13: User Interaction

PS > $key.ControlKeyState
ShiftPressed, NumLockOn

Discussion
For most purposes, the [Console]::ReadKey() is the best way to get a keystroke
from a user, as it accepts simple keypresses and more complex keypresses that might
include the Ctrl, Alt, and Shift keys. We pass the $true parameter to tell the method
to not display the character on the screen, and only to return it to us.

If you want to read a key of user input as a way to pause your
script, you can use PowerShell’s built-in pause command.

If you need to capture individual key down and key up events (including those of the
Ctrl, Alt, and Shift keys), use the $host.UI.RawUI.ReadKey() method.

13.3 Program: Display a Menu to the User
It is often useful to read input from the user but restrict input to a list of choices that
you specify. The following script lets you access PowerShell’s prompting functionality
in a manner that is friendlier than what PowerShell exposes by default. It returns a
number that represents the position of the user’s choice from the list of options you
provide.

PowerShell’s prompting requires that you include an accelerator key (the & before a
letter in the option description) to define the keypress that represents that option.
Since you don’t always control the list of options (for example, a list of possible direc‐
tories), Example 13-1 automatically generates sensible accelerator characters for any
descriptions that lack them.

Example 13-1. Read-HostWithPrompt.ps1

###
##
Read-HostWithPrompt
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

13.3 Program: Display a Menu to the User | 381

.SYNOPSIS

Read user input, with choices restricted to the list of options you
provide.

.EXAMPLE

PS > $caption = "Please specify a task"
PS > $message = "Specify a task to run"
PS > $option = "&Clean Temporary Files","&Defragment Hard Drive"
PS > $helptext = "Clean the temporary files from the computer",
>> "Run the defragment task"
>>
PS > $default = 1
PS > Read-HostWithPrompt $caption $message $option $helptext $default

Please specify a task
Specify a task to run
[C] Clean Temporary Files [D] Defragment Hard Drive [?] Help
(default is "D"):?
C - Clean the temporary files from the computer
D - Run the defragment task
[C] Clean Temporary Files [D] Defragment Hard Drive [?] Help
(default is "D"):C
0

#>

param(
 ## The caption for the prompt
 $Caption = $null,

 ## The message to display in the prompt
 $Message = $null,

 ## Options to provide in the prompt
 [Parameter(Mandatory = $true)]
 $Option,

 ## Any help text to provide
 $HelpText = $null,

 ## The default choice
 $Default = 0
)

Set-StrictMode -Version 3

Create the list of choices
$choices = New-Object `
 Collections.ObjectModel.Collection[Management.Automation.Host.ChoiceDescription]

Go through each of the options, and add them to the choice collection
for($counter = 0; $counter -lt $option.Length; $counter++)
{
 $choice = New-Object Management.Automation.Host.ChoiceDescription `

382 | Chapter 13: User Interaction

 $option[$counter]

 if($helpText -and $helpText[$counter])
 {
 $choice.HelpMessage = $helpText[$counter]
 }

 $choices.Add($choice)
}

Prompt for the choice, returning the item the user selected
$host.UI.PromptForChoice($caption, $message, $choices, $default)

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

13.4 Display Messages and Output to the User
Problem
You want to display messages and other information to the user.

Solution
Simply have your script output the string information. If you like to be more explicit
in your scripting, call the Write-Output cmdlet:

PS > function Get-Information
{
 "Hello World"
 Write-Output (1 + 1)
}

PS > Get-Information
Hello World
2
PS > $result = Get-Information
PS > $result[1]
2

Discussion
Most scripts that you write should output richly structured data, such as the actual
count of bytes in a directory (if you’re writing a directory information script). That
way, other scripts can use the output of that script as a building block for their
functionality.

13.4 Display Messages and Output to the User | 383

When you do want to provide output specifically to the user, use the Write-Host,
Write-Debug, and Write-Verbose cmdlets:

PS > function Get-DirectorySize
{
 $size = (Get-ChildItem | Measure-Object -Sum Length).Sum
 Write-Host ("Directory size: {0:N0} bytes" -f $size)
}

PS > Get-DirectorySize
Directory size: 46,581 bytes
PS > $size = Get-DirectorySize
Directory size: 46,581 bytes

In addition to plain text, the Write-Host cmdlet lets you set output colors through its
-ForegroundColor and -BackgroundColor parameters. For full control, you can even
emit ANSI escape sequences directly, as shown in Figure 13-1.

Figure 13-1. Write-Host being used for advanced text output

If you want a message to help you (or the user) diagnose and debug your script, use
the Write-Debug cmdlet. If you want a message to provide detailed trace-type output,
use the Write-Verbose cmdlet, as shown in Example 13-2.

Example 13-2. A function that provides debug and verbose output

PS > function Get-DirectorySize
{
 Write-Debug "Current Directory: $(Get-Location)"

 Write-Verbose "Getting size"
 $size = (Get-ChildItem | Measure-Object -Sum Length).Sum
 Write-Verbose "Got size: $size"

384 | Chapter 13: User Interaction

 Write-Host ("Directory size: {0:N0} bytes" -f $size)
}

PS > $DebugPreference = "Continue"
PS > Get-DirectorySize
DEBUG: Current Directory: D:\lee\OReilly\Scripts\Programs
Directory size: 46,581 bytes
PS > $DebugPreference = "SilentlyContinue"
PS > $VerbosePreference = "Continue"
PS > Get-DirectorySize
VERBOSE: Getting size
VERBOSE: Got size: 46581
Directory size: 46,581 bytes
PS > $VerbosePreference = "SilentlyContinue"

However, be aware that this type of output bypasses normal file redirection and is
therefore difficult for the user to capture. In the case of the Write-Host cmdlet, use it
only when your script already generates other structured data that the user would
want to capture in a file or variable. For more information about capturing Write-
Host output, see “Capturing Output” on page 854.

Most script authors eventually run into the problem illustrated by Example 13-3
when their script tries to output formatted data to the user.

Example 13-3. An error message caused by formatting statements

PS > ## Get the list of items in a directory, sorted by length
PS > function Get-ChildItemSortedByLength($path = (Get-Location))
{
 Get-ChildItem $path | Format-Table | Sort-Object Length
}

PS > Get-ChildItemSortedByLength
out-lineoutput : Object of type "Microsoft.PowerShell.Commands.Internal.
Format.FormatEntryData" is not legal or not in the correct sequence. This is
likely caused by a user-specified "format-*" command which is conflicting
with the default formatting.

This happens because the Format-* cmdlets actually generate formatting information
for the Out-Host cmdlet to consume. The Out-Host cmdlet (which PowerShell adds
automatically to the end of your pipelines) then uses this information to generate for‐
matted output. To resolve this problem, always ensure that formatting commands are
the last commands in your pipeline, as shown in Example 13-4.

Example 13-4. A function that does not generate formatting errors

PS > ## Get the list of items in a directory, sorted by length
PS > function Get-ChildItemSortedByLength($path = (Get-Location))
{
 ## Problematic version

13.4 Display Messages and Output to the User | 385

 ## Get-ChildItem $path | Format-Table | Sort-Object Length

 ## Fixed version
 Get-ChildItem $path | Sort-Object Length | Format-Table
}

PS > Get-ChildItemSortedByLength

(...)
Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 3/11/2007 3:21 PM 59 LibraryProperties.ps1
-a--- 3/6/2007 10:27 AM 150 Get-Tomorrow.ps1
-a--- 3/4/2007 3:10 PM 194 ConvertFrom-FahrenheitWithout
 Function.ps1
-a--- 3/4/2007 4:40 PM 257 LibraryTemperature.ps1
-a--- 3/4/2007 4:57 PM 281 ConvertFrom-FahrenheitWithLib
 rary.ps1
-a--- 3/4/2007 3:14 PM 337 ConvertFrom-FahrenheitWithFunc
 tion.ps1
(...)

These examples are included as LibraryDirectory.ps1 in this book’s code examples. For
more information about obtaining these examples, see “Using Code Examples” on
page xxv.

When it comes to producing output for the user, a common reason is to provide pro‐
gress messages. PowerShell actually supports this in a much richer way, through its
Write-Progress cmdlet. For more information about the Write-Progress cmdlet,
see Recipe 13.5.

See Also
Recipe 13.5

13.5 Provide Progress Updates on Long-Running Tasks
Problem
You want to display status information to the user for long-running tasks.

Solution
To provide status updates, use the Write-Progress cmdlet shown in Example 13-5.

386 | Chapter 13: User Interaction

Example 13-5. Using the Write-Progress cmdlet to display status updates

##
##
Invoke-LongRunningOperation
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Demonstrates the functionality of the Write-Progress cmdlet

#>

Set-StrictMode -Version 3

$activity = "A long running operation"
$status = "Initializing"

Initialize the long-running operation
for($counter = 0; $counter -lt 100; $counter++)
{
 $currentOperation = "Initializing item $counter"
 Write-Progress $activity $status -PercentComplete $counter `
 -CurrentOperation $currentOperation
 Start-Sleep -m 20
}

$status = "Running"

Initialize the long-running operation
for($counter = 0; $counter -lt 100; $counter++)
{
 $currentOperation = "Running task $counter"
 Write-Progress $activity $status -PercentComplete $counter `
 -CurrentOperation $currentOperation
 Start-Sleep -m 20
}

Discussion
The Write-Progress cmdlet enables you to provide structured status information to
the users of your script for long-running operations (see Figure 13-2).

13.5 Provide Progress Updates on Long-Running Tasks | 387

Figure 13-2. Example output from a long-running operation

Like the other detailed information channels (Write-Debug, Write-Verbose, and the
other Write-* cmdlets), PowerShell lets users control how much of this information
they see.

For more information about the Write-Progress cmdlet, type Get-Help Write-
Progress.

13.6 Write Culture-Aware Scripts
Problem
You want to ensure that your script works well on computers around the world.

Solution
To write culture-aware scripts, keep the following guidelines in mind as you develop
your scripts:

• Create dates, times, and numbers using PowerShell’s language primitives.
• Compare strings using PowerShell’s built-in operators.
• Avoid treating user input as a collection of characters.
• Use Parse() methods to convert user input to dates, times, and numbers.

388 | Chapter 13: User Interaction

Discussion
Writing culture-aware programs has long been isolated to the world of professional
software developers. It’s not that users of simple programs and scripts can’t benefit
from culture awareness, though. It has just frequently been too difficult for nonpro‐
fessional programmers to follow the best practices. However, PowerShell makes this
much easier than traditional programming languages.

As your script travels between different cultures, several things change.

Date, time, and number formats
Most cultures have unique date, time, and number formats. To guarantee that your
script works in all cultures, PowerShell first ensures that its language primitives
remain consistent no matter where your script runs. Even if your script runs on a
machine in France (which uses a comma for its decimal separator), you can always
rely on the statement $myDouble = 3.5 to create a number halfway between three
and four. Likewise, you can always count on the statement $christmas = [Date
Time]"12/25/2007" to create a date that represents Christmas in 2007—even in cul‐
tures that write dates in the order of day, month, year.

Culture-aware programs always display dates, times, and numbers using the prefer‐
ences of that culture. This doesn’t break scripts as they travel between cultures and is
an important aspect of writing culture-aware scripts. PowerShell handles this for you,
as it uses the current culture’s preferences whenever it displays data.

If your script asks the user for a date, time, or number, make sure
that you respect the format of the user’s culture when you do so. To
convert user input to a specific type of data, use the Get-Date
cmdlet:

$userInput = Read-Host "Please enter a date"
$enteredDate = Get-Date -Date $userInput

So, to ensure that your script remains culture-aware with respect to dates, times, and
number formats, simply use PowerShell’s language primitives when you define them
in your script. When you read them from the user, use Parse() methods when you
convert them from strings.

Complexity of user input and file content
English is a rare language in that its alphabet is so simple. This leads to all kinds of
programming tricks that treat user input and file content as arrays of bytes or simple
plain-text (ASCII) characters. In most international languages, these tricks fail. In
fact, many international symbols take up two characters’ worth of data in the string
that contains them.

13.6 Write Culture-Aware Scripts | 389

PowerShell uses the standard Unicode character set for all string-based operations:
reading input from the user, displaying output to the user, sending data through the
pipeline, and working with files.

Although PowerShell fully supports Unicode, the Windows Con‐
sole that hosts pwsh.exe doesn’t output some characters correctly
because of limitations in the Windows console system. Graphical
PowerShell hosts (such as Visual Studio Code and the many third-
party PowerShell IDEs) are not affected by these limitations,
however.

If you use PowerShell’s standard features when working with user input, you don’t
have to worry about its complexity. If you want to work with individual characters or
words in the input, though, you will need to take special precautions. The
System.Globalization.StringInfo class lets you do this in a culture-aware way. For
more information about working with the StringInfo class, see the Microsoft docu‐
mentation.

So, to ensure that your script remains culture-aware with respect to user input, simply
use PowerShell’s support for string operations whenever possible.

Capitalization rules
A common requirement in scripts is to compare user input against some predefined
text (such as a menu selection). You normally want this comparison to be case insen‐
sitive, so that "QUIT" and "qUiT" mean the same thing.

A traditional way to accomplish this is to convert the user input to uppercase or
lowercase:

$text comes from the user, and contains the value "quit"
if($text.ToUpper() -eq "QUIT") { ... }

Unfortunately, explicitly changing the capitalization of strings fails in subtle ways
when run in different cultures, as many cultures have different capitalization and
comparison rules. For example, the Turkish language includes two types of the letter
I: one with a dot and one without. The uppercase version of the lowercase letter i
corresponds to the version of the capital I with a dot, not the capital I used in QUIT.
That example causes the preceding string comparison to fail on a Turkish system.

Recipe 13.8 lets us see this quite clearly:
PS > Use-Culture tr-TR { "quit".ToUpper() -eq "QUIT" }
False
PS > Use-Culture tr-TR { "quIt".ToUpper() -eq "QUIT" }
True
PS > Use-Culture tr-TR { "quit".ToUpper() }
QUİT

390 | Chapter 13: User Interaction

https://oreil.ly/jRnWp
https://oreil.ly/jRnWp

To compare some input against a hardcoded string in a case-insensitive manner, the
better solution is to use PowerShell’s -eq operator without changing any of the casing
yourself. The -eq operator is case-insensitive and culture-neutral by default:

PS > $text1 = "Hello"
PS > $text2 = "HELLO"
PS > $text1 -eq $text2
True

So, to ensure that your script remains culture-aware with respect to capitalization
rules, simply use PowerShell’s case-insensitive comparison operators whenever it’s
possible.

Sorting rules
Sorting rules frequently change between cultures. For example, compare English and
Danish with the script given in Recipe 13.8:

PS > Use-Culture en-US { "Apple","Æble" | Sort-Object }
Æble
Apple
PS > Use-Culture da-DK { "Apple","Æble" | Sort-Object }
Apple
Æble

To ensure that your script remains culture-aware with respect to sorting rules,
assume that output is sorted correctly after you sort it—but don’t depend on the
actual order of sorted output.

Other guidelines
For other resources on writing culture-aware programs, see the Microsoft documen‐
tation on globalizing and localizing .NET applications.

See Also
Recipe 13.8, “Program: Invoke a Script Block with Alternate Culture Settings”

13.7 Support Other Languages in Script Output
Problem
You are displaying text messages to the user and want to support international
languages.

Solution
Use the Import-LocalizedData cmdlet, shown in Example 13-6.

13.7 Support Other Languages in Script Output | 391

https://oreil.ly/Qxz6i
https://oreil.ly/Qxz6i

Example 13-6. Importing culture-specific strings for a script or module

Create some default messages for English cultures, and
when culture-specific messages are not available.
$messages = DATA {
 @{
 Greeting = "Hello, {0}"
 Goodbye = "So long."
 }
}

Import localized messages for the current culture.
Import-LocalizedData messages -ErrorAction SilentlyContinue

Output the localized messages
$messages.Greeting -f "World"
$messages.Goodbye

Discussion
The Import-LocalizedData cmdlet lets you easily write scripts that display different
messages for different languages.

The core of this localization support comes from the concept of a message table: a
simple mapping of message IDs (such as a Greeting or Goodbye message) to the
actual message it represents. Instead of directly outputting a string to the user, you
instead retrieve the string from the message table and output that. Localization of
your script comes from replacing the message table with one that contains messages
appropriate for the current language.

PowerShell uses standard hashtables to define message tables. Keys and values in the
hashtable represent message IDs and their corresponding strings, respectively.

The Solution defines the default message table within a DATA sec‐
tion. As with loading messages from .psd1 files, this places Power‐
Shell in a data-centric subset of the full PowerShell language. While
not required, it’s a useful practice for both error detection and
consistency.

After defining a default message table in your script, the next step is to create local‐
ized versions and place them in language-specific directories alongside your script.
The real magic of the Import-LocalizedData cmdlet comes from the intelligence it
applies when loading the appropriate message file.

As a background, the standard way to refer to a culture (for localization purposes) is
an identifier that combines the culture and region. For example, German as spoken in
Germany is defined by the identifier de-DE. English as spoken in the United States is

392 | Chapter 13: User Interaction

defined by the identifier en-US, whereas English as spoken in Canada is defined by
the identifier en-CA. Most languages are spoken in many regions.

When you call the Import-LocalizedData cmdlet, PowerShell goes to the same
directory as your script, and first tries to load your messages from a directory with a
name that matches the full name of the current culture (for example, en-CA or en-
GB). If that fails, it falls back to the region-neutral directory (such as en or de) and on
to the other fallback languages defined by the operating system.

To make your efforts available to the broadest set of languages, place your localized
messages in the most general directory that applies. For example, place French mes‐
sages (first) in the fr directory so that all French-speaking regions can benefit. If you
want to customize your messages to a specific region after that, place them in a
region-specific directory.

Rather than define these message tables in script files (like your main script), place
them in .psd1 files that have the same name as your script. For example,
Example 13-6 places its localized messages in Import-LocalizedData.psd1. Power‐
Shell’s psd1 files represent a data-centric subset of the full PowerShell language and
are ideally suited for localization. In the .psd1 file, define a hashtable
(Example 13-7)—but do not store it in a variable like you do for the default message
table.

Example 13-7. A localized .psd1 file that defines a message table

@{
 Greeting = "Guten Tag, {0}"
 Goodbye = "Auf Wiedersehen."
}

If you already use a set of tools to help you manage the software localization process,
they may not understand the PowerShell .psd1 file format. Another standard message
format is simple name-value mapping, so PowerShell supports that through the
ConvertFrom-StringData cmdlet:

ConvertFrom-StringData @'
Greeting = Guten Tag, {0}
Goodbye = Auf Wiedersehen
'@

Notice that the Greeting message in Example 13-6 uses {0}-style placeholders (and
PowerShell’s string formatting operator) to output strings with replaceable text. Using
this technique is vastly preferable to using string concatenation (e.g., $messages.Gree
tingBeforeName + " World " + $messages.GreetingAftername) because it gives
additional flexibility during localization of languages with different sentence
structures.

13.7 Support Other Languages in Script Output | 393

To test your script under different languages, you can use Recipe 13.8, as in this
example:

PS > Use-Culture de-DE { Invoke-LocalizedScript }
Guten Tag, World
Auf Wiedersehen.

For more information about script internationalization, type Get-Help

about_Script_Internationalization.

See Also
Recipe 13.8

13.8 Program: Invoke a Script Block with Alternate
Culture Settings
Given PowerShell’s diverse user community, scripts that you share will often be run
on a system set to a language other than English. To ensure that your script runs
properly in other languages, it’s helpful to give it a test run in that culture.
Example 13-8 lets you run the script block you provide in a culture of your choosing.

Example 13-8. Use-Culture.ps1

###
##
Use-Culture
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
###

<#

.SYNOPSIS

Invoke a script block under the given culture

.EXAMPLE

PS > Use-Culture fr-FR { Get-Date -Date "25/12/2007" }
mardi 25 decembre 2007 00:00:00

#>

param(
 ## The culture in which to evaluate the given script block
 [Parameter(Mandatory = $true)]
 [System.Globalization.CultureInfo] $Culture,

394 | Chapter 13: User Interaction

 ## The code to invoke in the context of the given culture
 [Parameter(Mandatory = $true)]
 [ScriptBlock] $ScriptBlock
)

Set-StrictMode -Version 3

A helper function to set the current culture
function Set-Culture([System.Globalization.CultureInfo] $culture)
{
 [System.Threading.Thread]::CurrentThread.CurrentUICulture = $culture
 [System.Threading.Thread]::CurrentThread.CurrentCulture = $culture
}

Remember the original culture information
$oldCulture = [System.Threading.Thread]::CurrentThread.CurrentUICulture

Restore the original culture information if
the user's script encounters errors.
trap { Set-Culture $oldCulture }

Set the current culture to the user's provided
culture.
Set-Culture $culture

Invoke the user's script block
& $ScriptBlock

Restore the original culture information.
Set-Culture $oldCulture

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

13.9 Access Features of the Host’s UI
Problem
You want to interact with features in the UI of the hosting application, but PowerShell
doesn’t directly provide cmdlets for them.

Solution
To access features of the host’s UI, use the $host.UI.RawUI variable:

$host.UI.RawUI.WindowTitle = Get-Location

13.9 Access Features of the Host’s UI | 395

Discussion
PowerShell itself consists of two main components. The first is an engine that inter‐
prets commands, executes pipelines, and performs other similar actions. The second
is the hosting application—the way that users interact with the PowerShell engine.

The default shell, pwsh.exe, is a UI based on the traditional Windows console. The
graphical Visual Studio Code hosts PowerShell in a graphical user interface. In fact,
PowerShell makes it relatively simple for developers to build their own hosting appli‐
cations, or even to embed the PowerShell engine features into their own applications.

You (and your scripts) can always depend on the functionality available through the
$host.UI variable, as that functionality remains the same for all hosts. Example 13-9
shows the features available to you in all hosts.

Example 13-9. Functionality available through the $host.UI property

PS > $host.UI | Get-Member | Select Name,MemberType | Format-Table -Auto

Name MemberType
---- ----------
(...)
Prompt Method
PromptForChoice Method
PromptForCredential Method
ReadLine Method
ReadLineAsSecureString Method
Write Method
WriteDebugLine Method
WriteErrorLine Method
WriteLine Method
WriteProgress Method
WriteVerboseLine Method
WriteWarningLine Method
RawUI Property

If you (or your scripts) want to interact with portions of the UI specific to the current
host, PowerShell provides that access through the $host.UI.RawUI variable.
Example 13-10 shows the features available to you in the PowerShell console host.

Example 13-10. Functionality available through the default console host

PS > $host.UI.RawUI | Get-Member |
 Select Name,MemberType | Format-Table -Auto

Name MemberType
---- ----------
(...)
FlushInputBuffer Method
GetBufferContents Method
GetHashCode Method

396 | Chapter 13: User Interaction

GetType Method
LengthInBufferCells Method
NewBufferCellArray Method
ReadKey Method
ScrollBufferContents Method
SetBufferContents Method
BackgroundColor Property
BufferSize Property
CursorPosition Property
CursorSize Property
ForegroundColor Property
KeyAvailable Property
MaxPhysicalWindowSize Property
MaxWindowSize Property
WindowPosition Property
WindowSize Property
WindowTitle Property

If you rely on the host-specific features from $host.UI.RawUI, be aware that your
script will require modifications (perhaps major modifications) before it will run
properly on other hosts.

13.10 Add a Graphical User Interface to Your Script
Problem
You want to create a script that visualizes complex information for the user or sup‐
ports advanced user interaction.

Solution
Add the System.Windows.Forms library to your script, and then use its types and
objects to create your graphical interface:

Add-Type -Assembly System.Windows.Forms

$form = New-Object Windows.Forms.Form
$form.Size = New-Object Drawing.Size @(600,300)
$form.Text = "Hello Window Title!"

$label = New-Object Windows.Forms.Label
$label.Text = "Hello World!"
$label.Size = New-Object Drawing.Size @(550,200)
$label.TextAlign = "MiddleCenter"
$form.Controls.Add($label)

$form.ShowDialog()

13.10 Add a Graphical User Interface to Your Script | 397

Discussion
Although the techniques provided in the rest of this chapter usually are all you need,
it’s sometimes helpful to provide a graphical user interface to interact with the user.

Since PowerShell fully supports traditional executables, simple compiled applications
usually can fill this need. If creating a simple program in an environment such as Vis‐
ual Studio is inconvenient, you can often use PowerShell to create these applications
directly.

Example 13-11 demonstrates the techniques you can use to develop a Windows
Forms application using PowerShell scripting alone. The functionality itself is now
covered in PowerShell by the Out-GridView cmdlet, but it demonstrates several useful
techniques.

For an example of using the Out-GridView cmdlet to do this directly, see Recipe 2.4.

Example 13-11. Select-GraphicalFilteredObject.ps1

##
##
Select-GraphicalFilteredObject
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Display a Windows Form to help the user select a list of items piped in.
Any selected items get passed along the pipeline.

.EXAMPLE

PS > dir | Select-GraphicalFilteredObject

 Directory: C:\

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 10/7/2006 4:30 PM Documents and Settings
d---- 3/18/2007 7:56 PM Windows

#>

Set-StrictMode -Version 2

$objectArray = @($input)

398 | Chapter 13: User Interaction

Ensure that they've piped information into the script
if($objectArray.Count -eq 0)
{
 Write-Error "This script requires pipeline input."
 return
}

Load the Windows Forms assembly
Add-Type -Assembly System.Windows.Forms

Create the main form
$form = New-Object Windows.Forms.Form
$form.Size = New-Object Drawing.Size @(600,600)

Create the listbox to hold the items from the pipeline
$listbox = New-Object Windows.Forms.CheckedListBox
$listbox.CheckOnClick = $true
$listbox.Dock = "Fill"
$form.Text = "Select the list of objects you wish to pass down the pipeline"
$listBox.Items.AddRange($objectArray)

Create the button panel to hold the OK and Cancel buttons
$buttonPanel = New-Object Windows.Forms.Panel
$buttonPanel.Size = New-Object Drawing.Size @(600,30)
$buttonPanel.Dock = "Bottom"

Create the Cancel button, which will anchor to the bottom right
$cancelButton = New-Object Windows.Forms.Button
$cancelButton.Text = "Cancel"
$cancelButton.DialogResult = "Cancel"
$cancelButton.Top = $buttonPanel.Height - $cancelButton.Height - 5
$cancelButton.Left = $buttonPanel.Width - $cancelButton.Width - 10
$cancelButton.Anchor = "Right"

Create the OK button, which will anchor to the left of Cancel
$okButton = New-Object Windows.Forms.Button
$okButton.Text = "Ok"
$okButton.DialogResult = "Ok"
$okButton.Top = $cancelButton.Top
$okButton.Left = $cancelButton.Left - $okButton.Width - 5
$okButton.Anchor = "Right"

Add the buttons to the button panel
$buttonPanel.Controls.Add($okButton)
$buttonPanel.Controls.Add($cancelButton)

Add the button panel and list box to the form, and also set
the actions for the buttons
$form.Controls.Add($listBox)
$form.Controls.Add($buttonPanel)
$form.AcceptButton = $okButton
$form.CancelButton = $cancelButton
$form.Add_Shown({ $form.Activate() })

Show the form, and wait for the response
$result = $form.ShowDialog()

13.10 Add a Graphical User Interface to Your Script | 399

If they pressed OK (or Enter,) go through all the
checked items and send the corresponding object down the pipeline
if($result -eq "OK")
{
 foreach($index in $listBox.CheckedIndices)
 {
 $objectArray[$index]
 }
}

In addition to creating Windows Forms applications through PowerShell scripts, you
can use similar techniques to create UIs through the Windows Presentation Founda‐
tion (WPF) framework, or even with a console-based UI for scripts that need to dis‐
play an advanced UI over remote sessions. For more information about adding a
console-based UI to your script, see Recipe 13.11.

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 2.4, “Interactively Filter Lists of Objects”

Recipe 13.11, “Program: Add a Console UI to Your Script”

13.11 Program: Add a Console UI to Your Script
When you want to create a script that visualizes complex information for the user or
supports advanced user interaction, sometimes you need this interface to work over
remote connections or a web interface like Azure Cloud Shell.

This isn’t possible with graphical libraries such as WinForms, but as Figure 13-3
shows, console UIs handle this quite well. Also, sometimes you just need a good dose
of nostalgia!

As a solution to this, you can use the Terminal.Gui library included as part of the
Microsoft.PowerShell.ConsoleGuiTools module. Once you install this module,
you can use the types and methods from the Terminal.Gui library to create as simple
or complex UIs as you need. Example 13-12 demonstrates this in action.

400 | Chapter 13: User Interaction

Figure 13-3. A console interface running in Azure Cloud Shell

Example 13-12. Show-ConsoleHelloWorld.ps1

#requires -Module Microsoft.PowerShell.ConsoleGuiTools
using namespace Terminal.Gui

Load the required assemblies
$guiTools = (Get-Module Microsoft.PowerShell.ConsoleGuiTools -List).ModuleBase
Add-Type -Path (Join-path $guiTools Terminal.Gui.dll)

Initialize our application
[Application]::Init()

Create a window with a label and a button
$window = [Window] @{
 Title = 'Hello Window Title!'
 Height = 20
 Width = 50
}

$label = [Label] @{
 X = [Pos]::Center(); Y = [Pos]::Center() - 1
 Width = 11
 Text = 'Hello World'
}
$window.Add($label)

13.11 Program: Add a Console UI to Your Script | 401

$button = [Button] @{
 X = [Pos]::Center(); Y = [Pos]::Center() + 1
 Text = 'OK'
}
$window.Add($button)

Console windows doesn't have any features that let applications close
by default (like Alt+F4 does on a Windows Forms application),
so associate this with the "OK" button.
$button.add_Clicked({ [Application]::RequestStop() })

Add the window to the application and run it.
[Application]::Top.Add($window)
[Application]::Run()

Our script gets here once the user clicks the "OK" button
[Application]::Shutdown()

For more information about running scripts, see Recipe 1.2. For more information
about installing modules, see Recipe 1.29.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 1.29, “Find and Install Additional PowerShell Scripts and Modules”

13.12 Interact with MTA Objects
Problem
You want to interact with an object that requires that the current thread be in multi‐
threaded apartment (MTA) mode.

Solution
Launch PowerShell with the -MTA switch. If you do this as part of a script or helper
command, you can also use the -NoProfile switch to avoid the performance impact
and side effects of loading the user’s profile:

PS > $output = PowerShell -NoProfile -MTA -Command {
 $myObject = New-Object SomeObjectThatRequiresMTA
 $myObject.SomeMethod()
}

Discussion
Threading modes define an agreement between an application and how it interacts
with some of its objects. Most objects in the .NET Framework (and thus, PowerShell

402 | Chapter 13: User Interaction

and nearly everything it interacts with) ignore the threading mode and aren’t impac‐
ted by it.

Some objects do require a specific threading mode, though, called multithreaded
apartment. PowerShell uses a threading mode called single-threaded apartment (STA)
by default, so some rare objects will generate an error about their threading require‐
ments when you’re working with them.

If you frequently find that you need to use MTA mode, you can simply modify the
PowerShell link on your Start menu to always load PowerShell with the -MTA
parameter.

If your entire script requires MTA mode, you have two primary options: detect the
current threading mode or relaunch yourself under STA mode.

To detect the current threading mode, you can access the $host.Runspace.
ApartmentState variable. If its value is not STA, the current threading mode is MTA.

If your script has simple parameter requirements, you may be able to relaunch your‐
self automatically, as in Example 13-13.

Example 13-13. A script that relaunches itself in MTA mode

###
##
Invoke-ScriptThatRequiresMta
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
###

<#

.SYNOPSIS

Demonstrates a technique to relaunch a script that requires MTA mode.
This is useful only for simple parameter definitions that can be
specified positionally.

#>

param(
 $Parameter1,
 $Parameter2
)

Set-StrictMode -Version 3

"Current threading mode: " + $host.Runspace.ApartmentState
"Parameter1 is: $parameter1"
"Parameter2 is: $parameter2"

13.12 Interact with MTA Objects | 403

if($host.Runspace.ApartmentState -eq "STA")
{
 "Relaunching"
 $file = $myInvocation.MyCommand.Path
 powershell -NoProfile -Mta -File $file $parameter1 $parameter2
 return
}

"After relaunch - current threading mode: " + $host.Runspace.ApartmentState

When you run this script, you get the following output:
PS > .\Invoke-ScriptThatRequiresMta.ps1 Test1 Test2
Current threading mode: STA
Parameter1 is: Test1
Parameter2 is: Test2
Relaunching
Current threading mode: Unknown
Parameter1 is: Test1
Parameter2 is: Test2
After relaunch - current threading mode: Unknown

For more information about PowerShell’s command-line parameters, see Recipe 1.17.
For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 1.17, “Invoke a PowerShell Command or Script from Outside PowerShell”

404 | Chapter 13: User Interaction

CHAPTER 14

Debugging

14.0 Introduction
While developing scripts and functions, you’ll often find yourself running into behav‐
ior that you didn’t intend. This is a natural part of software development, and the
path to diagnosing these issues is the fine art known as debugging.

For the simplest of problems, a well-placed call to Write-Host can answer many of
your questions. Did your script get to the places you thought it should? Were the
variables set to the values you thought they should be?

Once problems get more complex, print-style debugging quickly becomes cumber‐
some and unwieldy. Rather than continually modifying your script to diagnose its
behavior, you can leverage PowerShell’s much more extensive debugging facilities to
help you get to the root of the problem:

PS > Set-PsBreakPoint .\Invoke-ComplexDebuggerScript.ps1 -Line 14

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 0 Invoke-Comple... 14

PS > .\Invoke-ComplexDebuggerScript.ps1
Calculating lots of complex information
1225
89
Entering debug mode. Use h or ? for help.

Hit Line breakpoint on
'Z:\Documents\CookbookV4\chapters\current\PowerShellCookbook\Invoke-Complex
DebuggerScript.ps1:14'

Invoke-ComplexDebuggerScript.ps1:14 $dirCount = 0

405

PS > ?

 s, stepInto Single step (step into functions, scripts, etc.)
 v, stepOver Step to next statement (step over functions, scripts,
 etc.)
 o, stepOut Step out of the current function, script, etc.

 c, continue Continue execution
 q, quit Stop execution and exit the debugger

 k, Get-PSCallStack Display call stack

 l, list List source code for the current script.
 Use "list" to start from the current line, "list <m>"
 to start from line <m>, and "list <m> <n>" to list <n>
 lines starting from line <m>

 <enter> Repeat last command if it was stepInto, stepOver, or
 list

 ?, h Displays this help message

For instructions about how to customize your debugger prompt, type "help
about_prompt".

PS > k

Command Arguments Location
------- --------- --------
HelperFunction {} Invoke-ComplexDebugge...
Invoke-ComplexDebugge... {} Invoke-ComplexDebugge...
prompt {} prompt

By leveraging strict mode, you can often save yourself from writing bugs in the first
place. Once you discover an issue, script tracing can help you get a quick overview of
the execution flow taken by your script. For interactive diagnosis, Visual Studio Code
offers full-featured graphical debugging support. From the command line, the
*-PsBreakPoint cmdlets let you investigate your script when it hits a specific line,
condition, or error.

406 | Chapter 14: Debugging

14.1 Prevent Common Scripting Errors
Problem
You want to have PowerShell warn you when your script contains an error likely to
result in a bug.

Solution
Use the Set-StrictMode cmdlet to place PowerShell in a mode that prevents many of
the scripting errors that tend to introduce bugs:

PS > function BuggyFunction
{
 $testVariable = "Hello"
 if($testVariab1e -eq "Hello")
 {
 "Should get here"
 }
 else
 {
 "Should not get here"
 }
}

PS > BuggyFunction
Should not get here

PS > Set-StrictMode -Version Latest
PS > BuggyFunction
InvalidOperation:
Line |
 4 | if($testVariab1e -eq "Hello")
 | ~~~~~~~~~~~~~
 | The variable '$testVariab1e' cannot be retrieved because it has not been set.

Discussion
By default, PowerShell allows you to assign data to variables you haven’t yet created
(thereby creating those variables). It also allows you to retrieve data from variables
that don’t exist—which usually happens by accident and almost always causes bugs.
The Solution demonstrates this trap, where the l in variable was accidentally replaced
by the number 1.

To help save you from getting stung by this problem and others like it, PowerShell
provides a strict mode that generates an error if you attempt to access a nonexisting
variable. Example 14-1 demonstrates this mode.

14.1 Prevent Common Scripting Errors | 407

Example 14-1. PowerShell operating in strict mode

PS > $testVariable = "Hello"
PS > $tsetVariable += " World"
PS > $testVariable
Hello
PS > Remove-Item Variable:\tsetvariable
PS > Set-StrictMode -Version Latest
PS > $testVariable = "Hello"
PS > $tsetVariable += " World"
InvalidOperation: The variable '$tsetVariable' cannot be retrieved because it
has not been set.

In addition to saving you from accessing nonexistent variables, strict mode also
detects the following:

• Accessing nonexistent properties on an object
• Calling functions as though they were methods

One unique feature of the Set-StrictMode cmdlet is the -Version parameter. As
PowerShell releases new versions of the Set-StrictMode cmdlet, the cmdlet will
become more powerful and detect additional scripting errors. Because of this, a script
that works with one version of strict mode might not work under a later version. Use
-Version Latest if you can change your script in response to possible bugs it might
discover. If you won’t have the flexibility to modify your script to account for new
strict mode rules, use -Version 3 (or whatever version of PowerShell you support) as
the value of the -Version parameter.

The Set-StrictMode cmdlet is scoped, meaning that the strict
mode set in one script or function doesn’t impact the scripts or
functions that call it. To temporarily disable strict mode for a
region of a script, do so in a new script block:

& { Set-StrictMode -Off; $tsetVariable }

For the sake of your script debugging health and sanity, strict mode should be one of
the first additions you make to your PowerShell profile.

See Also
Recipe 1.9, “Customize Your Shell, Profile, and Prompt”

408 | Chapter 14: Debugging

14.2 Write Unit Tests for your Scripts
Problem
You want to write tests that automatically validate your script’s behavior.

Solution
Install the Pester module:

Install-Module Pester -Scope CurrentUser

Create a file with .tests.ps1 in the name, with a Describe statement and at least one
It statement:

BeforeAll {
 Import-Module PowerShellCookbook
}

Test the Use-Culture command
Describe 'Use Culture tests' {
 It 'Testing on English' {
 $result = Use-Culture en-US { "quit".ToUpper() }
 $result | Should -Be "QUIT"
 }

 It 'Testing on Turkish' {
 $result = Use-Culture tr-TR { "quit".ToUpper() }
 $result | Should -Be "QUİT"
 }
}

In that file’s directory, run Invoke-Pester.

Discussion
One of the best feelings when you’re writing scripts is when you fix a bug. One of the
worst feelings, though, is when you realize that your “simple bug fix” introduced two
more bugs.

As scripters, we try to prevent this by manually verifying our main scenarios before
we send out a new version. For especially complicated changes, maybe we’ll spend
some extra time manually verifying some of the corner cases. But because manual
testing is time consuming, we tend to avoid it.

What if you could have automation do all of this manual testing for you? And not just
the easy stuff—all the hard and challenging corner cases you ever considered? It turns
out, this is quite possible—it’s called unit testing, and is what keeps quality high in any
major software development endeavor. Since your target is your PowerShell scripts

14.2 Write Unit Tests for your Scripts | 409

(which are ideally supposed to be automated), unit testing is far easier than in most
other fields.

The unit testing framework for PowerShell is an amazing community project called
Pester. In fact, most of the unit tests for PowerShell itself are written as Pester tests.
While it’s installed by default on Windows, it is best to get the most recent version
from the PowerShell Gallery.

When you run Pester, it will find all the scripts that you’ve written in that directory
and run them. If you have introduced an error, you’ll see output similar to:

PS > Invoke-Pester

Starting discovery in 1 files.
Discovery finished in 171ms.
[-] Use Culture tests.Testing on Turkish 76ms (75ms|2ms)
 Expected strings to be the same, but they were different.
 String lengths are both 4.
 Strings differ at index 2.
 Expected: 'QUIT'
 But was: 'QUİT'
 at $result | Should -Be "QUIT", ...\UseCulture.tests.ps1:14
 at <ScriptBlock>, ...UseCulture.tests.ps1:14
Tests completed in 1.75s
Tests Passed: 1, Failed: 1, Skipped: 0 NotRun: 0

Once you fix the underlying issue, you’ll be greeted with one of the most satisfying
pieces of UI in all of software engineering (Figure 14-1).

Figure 14-1. Pester Tests reporting a successful test pass

See Also
Recipe 1.29, “Find and Install Additional PowerShell Scripts and Modules”

410 | Chapter 14: Debugging

14.3 Trace Script Execution
Problem
You want to review the flow of execution taken by your script as PowerShell runs it.

Solution
Use the -Trace parameter of the Set-PsDebug cmdlet to have PowerShell trace your
script as it executes it:

PS > function BuggyFunction
{
 $testVariable = "Hello"
 if($testVariab1e -eq "Hello")
 {
 "Should get here"
 }
 else
 {
 "Should not get here"
 }
}

PS > Set-PsDebug -Trace 1
PS > BuggyFunction
DEBUG: 1+ <<<< BuggyFunction
DEBUG: 3+ $testVariable = <<<< "Hello"
DEBUG: 4+ if <<<< ($testVariab1e -eq "Hello")
DEBUG: 10+ "Should not get here" <<<<
Should not get here

Discussion
When it comes to simple interactive debugging (as opposed to bug prevention), Pow‐
erShell supports several of the most useful debugging features that you might be
accustomed to. For the full experience, Visual Studio Code offers a full-fledged graph‐
ical debugger. For more information about debugging in Visual Studio Code, see
Recipe 19.1.

From the command line, though, you still have access to tracing (through the Set-
PsDebug -Trace statement), stepping (through the Set-PsDebug -Step statement),
and environment inspection (through the $host.EnterNestedPrompt() call). The
*-PsBreakpoint cmdlets support much more functionality in addition to these prim‐
itives, but the Set-PsDebug cmdlet is useful for some simple problems.

As a demonstration of these techniques, consider Example 14-2.

14.3 Trace Script Execution | 411

Example 14-2. A complex script that interacts with PowerShell’s debugging features

###
##
Invoke-ComplexScript
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Demonstrates the functionality of PowerShell's debugging support.

#>

Set-StrictMode -Version 3

Write-Host "Calculating lots of complex information"

$runningTotal = 0
$runningTotal += [Math]::Pow(5 * 5 + 10, 2)

Write-Debug "Current value: $runningTotal"

Set-PsDebug -Trace 1
$dirCount = @(Get-ChildItem $env:WINDIR).Count

Set-PsDebug -Trace 2
$runningTotal -= 10
$runningTotal /= 2

Set-PsDebug -Step
$runningTotal *= 3
$runningTotal /= 2

$host.EnterNestedPrompt()

Set-PsDebug -off

As you try to determine why this script isn’t working as you expect, a debugging ses‐
sion might look like Example 14-3.

Example 14-3. Debugging a complex script

PS > $debugPreference = "Continue"
PS > Invoke-ComplexScript.ps1
Calculating lots of complex information
DEBUG: Current value: 1225
DEBUG: 17+ $dirCount = @(Get-ChildItem $env:WINDIR).Count
DEBUG: 17+ $dirCount = @(Get-ChildItem $env:WINDIR).Count

412 | Chapter 14: Debugging

DEBUG: 19+ Set-PsDebug -Trace 2
DEBUG: 20+ $runningTotal -= 10
DEBUG: ! SET $runningTotal = '1215'.
DEBUG: 21+ $runningTotal /= 2
DEBUG: ! SET $runningTotal = '607.5'.
DEBUG: 23+ Set-PsDebug -Step

Continue with this operation?
 24+ $runningTotal *= 3
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 24+ $runningTotal *= 3
DEBUG: ! SET $runningTotal = '1822.5'.

Continue with this operation?
 25+ $runningTotal /= 2
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 25+ $runningTotal /= 2
DEBUG: ! SET $runningTotal = '911.25'.

Continue with this operation?
 27+ $host.EnterNestedPrompt()
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 27+ $host.EnterNestedPrompt()
DEBUG: ! CALL method 'System.Void EnterNestedPrompt()'
PS > $dirCount
296
PS > $dirCount + $runningTotal
1207.25
PS > exit

Continue with this operation?
 29+ Set-PsDebug -off
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"):y
DEBUG: 29+ Set-PsDebug -off

Together, these interactive debugging features are bound to help you diagnose and
resolve simple problems quickly. For more complex problems, PowerShell’s graphical
debugger (in Visual Studio Code) and the *-PsBreakpoint cmdlets are here to help.

For more information about the Set-PsDebug cmdlet, type Get-Help Set-PsDebug.
For more information about setting script breakpoints, see Recipe 14.4.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 14.4, “Set a Script Breakpoint”

Recipe 19.1, “Debug a Script”

14.3 Trace Script Execution | 413

14.4 Set a Script Breakpoint
Problem
You want PowerShell to enter debugging mode when it executes a specific command,
executes a particular line in your script, or updates a variable.

Solution
Use the Set-PsBreakpoint cmdlet to set a new breakpoint:

Set-PsBreakPoint .\Invoke-ComplexDebuggerScript.ps1 -Line 21
Set-PSBreakpoint -Command Get-ChildItem
Set-PsBreakPoint -Variable dirCount

To have PowerShell break at a specific line of your script, you can also temporarily
add a call to the Wait-Debugger command:

"Some script content"

Wait-Debugger
"The line PowerShell will next stop at"

To break into a running script, use the Ctrl+Break hot key.

Discussion
A breakpoint is a location (or condition) that causes PowerShell to temporarily pause
execution of a running script. When PowerShell hits this location (or condition), it
enters debugging mode. Debugging mode lets you investigate the state of the script
and also gives you fine-grained control over the script’s execution.

For more information about interacting with PowerShell’s debugging mode, see
Recipe 14.7.

The Set-PsBreakpoint cmdlet supports three primary types of breakpoints:

Positional
Positional breakpoints (lines and optionally columns) cause PowerShell to pause
execution once it reaches the specified location in the script you identify.

PS > Set-PSBreakpoint -Script .\Invoke-ComplexDebuggerScript.ps1 -Line 21

ID Script Line Command Variable Action
-- ------ ---- ------- -------- ------
 0 Invoke-ComplexDebuggerScript.ps1 21

PS > .\Invoke-ComplexDebuggerScript.ps1
Calculating lots of complex information
Entering debug mode. Use h or ? for help.

414 | Chapter 14: Debugging

Hit Line breakpoint on
'(...)\Invoke-ComplexDebuggerScript.ps1:21'

Invoke-ComplexDebuggerScript.ps1:21 $runningTotal

When running the debugger from the command line, you can use Recipe 8.7 to
determine script line numbers.

Command
Command breakpoints cause PowerShell to pause execution before calling the
specified command. This is especially helpful for diagnosing in-memory func‐
tions or for pausing before your script invokes a cmdlet. If you specify the
-Script parameter, PowerShell pauses only when the command is either defined
by that script (as in the case of dot-sourced functions) or called by that script.
Although command breakpoints do not support the -Line parameter, you can
get the same effect by setting a positional breakpoint on the script that defines
them.

PS > Show-ColorizedContent $profile.CurrentUserAllHosts

(...)
084 | function grep(
085 | [string] $text = $(throw "Specify a search string"),
086 | [string] $filter = "*",
087 | [switch] $rec,
088 | [switch] $edit
089 |)
090 | {
091 | $results = & {
092 | if($rec) { gci . $filter -rec | select-string $text }
093 | else {gci $filter | select-string $text }
094 | }
095 | $results
096 | }
(...)

PS > Set-PsBreakpoint $profile.CurrentUserAllHosts -Line 92 -Column 18

 ID Script Line Command Variable
 -- ------ ---- ------- --------
 0 profile.ps1 92

PS > grep "function grep" *.ps1 -rec
Entering debug mode. Use h or ? for help.

Hit Line breakpoint on 'E:\Lee\PowerShell\profile.ps1:92, 18'

profile.ps1:92 if($rec) { gci . $filter -rec | select-string $text }

(...)

14.4 Set a Script Breakpoint | 415

Variable
By default, variable breakpoints cause PowerShell to pause execution before
changing the value of a variable.

PS > Set-PsBreakPoint -Variable dirCount

ID Script Line Command Variable Action
-- ------ ---- ------- -------- ------
 0 dirCount

PS > .\Invoke-ComplexDebuggerScript.ps1
Calculating lots of complex information
1225
Entering debug mode. Use h or ? for help.

Hit Variable breakpoint on '$dirCount' (Write access)

Invoke-ComplexDebuggerScript.ps1:23
$dirCount = @(Get-ChildItem $env:WINDIR).Count
PS >

In addition to letting you break before it changes the value of a variable, PowerShell
also lets you break before it accesses the value of a variable.

Once you have a breakpoint defined, you can use the Disable-PsBreakpoint and
Enable-PsBreakpoint cmdlets to control how PowerShell reacts to those break‐
points. If a breakpoint is disabled, PowerShell does not pause execution when it rea‐
ches that breakpoint. To remove a breakpoint completely, use the Remove-

PsBreakpoint cmdlet.

While the Set-PSBreakpoint command is useful, you might sometimes want to tem‐
porarily have the debugger stop at a certain location in your script’s code. If you move
that code around, line-based breakpoints become out of sync and will prevent the
debugger from stopping properly. If you run into this scenario, you can use the Wait-
Debugger command. When PowerShell runs this command, it will force the debugger
to stop at the line that immediately follows it.

Be sure to remove the Wait-Debugger command when you’re fin‐
ished debugging! If you don’t, your script will appear to hang.

In addition to interactive debugging, PowerShell also lets you define actions to per‐
form automatically when it reaches a breakpoint. For more information, see Recipe
14.6.

For more information about PowerShell’s debugging support, type Get-Help

about_Debuggers.

416 | Chapter 14: Debugging

See Also
Recipe 14.6, “Create a Conditional Breakpoint”

Recipe 14.7, “Investigate System State While Debugging”

14.5 Debug a Script When It Encounters an Error
Problem
You want PowerShell to enter debugging mode as soon as it encounters an error.

Solution
Run the Enable-BreakOnError script (as shown in Example 14-4) to have PowerShell
automatically pause script execution when it encounters an error.

Example 14-4. Enable-BreakOnError.ps1

###
##
Enable-BreakOnError
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Creates a breakpoint that only fires when PowerShell encounters an error

.EXAMPLE

PS > Enable-BreakOnError

ID Script Line Command Variable Action
-- ------ ---- ------- -------- ------
 0 Out-Default ...

PS > 1/0
Entering debug mode. Use h or ? for help.

Hit Command breakpoint on 'Out-Default'

PS > $error
Attempted to divide by zero.

14.5 Debug a Script When It Encounters an Error | 417

#>

Set-StrictMode -Version 3

Store the current number of errors seen in the session so far
$GLOBAL:EnableBreakOnErrorLastErrorCount = $error.Count

Set-PSBreakpoint -Command Out-Default -Action {

 ## If we're generating output, and the error count has increased,
 ## break into the debugger.
 if($error.Count -ne $EnableBreakOnErrorLastErrorCount)
 {
 $GLOBAL:EnableBreakOnErrorLastErrorCount = $error.Count
 break
 }
}

Discussion
When PowerShell generates an error, its final action is displaying that error to you.
This goes through the Out-Default cmdlet, as does all other PowerShell output.
Knowing this, Example 14-4 defines a conditional breakpoint. That breakpoint fires
only when the number of errors in the global $error collection changes from the last
time it checked.

If you don’t want PowerShell to break on all errors, you might just want to set
a breakpoint on the last error you encountered. For that, run Set-

PsBreakpointLastError (Example 14-5) and then run your script again.

Example 14-5. Set-PsBreakpointLastError.ps1

Set-StrictMode -Version 3

$lastError = $error[0]
Set-PsBreakpoint $lastError.InvocationInfo.ScriptName `
 $lastError.InvocationInfo.ScriptLineNumber

For more information about intercepting stages of the PowerShell pipeline via the
Out-Default cmdlet, see Recipe 2.7. For more information about conditional break‐
points, see Recipe 14.6.

For more information about PowerShell’s debugging support, type Get-Help

about_Debuggers.

See Also
Recipe 2.7, “Intercept Stages of the Pipeline”

Recipe 14.6, “Create a Conditional Breakpoint”

418 | Chapter 14: Debugging

14.6 Create a Conditional Breakpoint
Problem
You want PowerShell to enter debugging mode when it encounters a breakpoint, but
only when certain other conditions hold true as well.

Solution
Use the -Action parameter to define an action that PowerShell should take when it
encounters the breakpoint. If the action includes a break statement, PowerShell pau‐
ses execution and enters debugging mode.

PS > Get-Content .\looper.ps1
for($count = 0; $count -lt 10; $count++)
{
 "Count is: $count"
}

PS > Set-PsBreakpoint .\looper.ps1 -Line 3 -Action {
 if($count -eq 4) { break }
}

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 0 looper.ps1 3 ...

PS > .\looper.ps1
Count is: 0
Count is: 1
Count is: 2
Count is: 3
Entering debug mode. Use h or ? for help.

Hit Line breakpoint on 'C:\temp\looper.ps1:3'

looper.ps1:3 "Count is: $count"
PS > $count
4
PS > c
Count is: 4
Count is: 5
Count is: 6
Count is: 7
Count is: 8
Count is: 9

14.6 Create a Conditional Breakpoint | 419

Discussion
Conditional breakpoints are a great way to automate repetitive interactive debugging.
When you’re debugging an often-executed portion of your script, the problematic
behavior often doesn’t occur until that portion of your script has been executed hun‐
dreds or thousands of times. By narrowing down the conditions under which the
breakpoint should apply (such as the value of an interesting variable), you can drasti‐
cally simplify your debugging experience.

The Solution demonstrates a conditional breakpoint that triggers only when the value
of the $count variable is 4. When the -Action script block executes a break state‐
ment, PowerShell enters debug mode.

Inside the -Action script block, you have access to all variables that exist at that time.
You can review them, or even change them if desired.

In addition to being useful for conditional breakpoints, the -Action script block also
proves helpful for generalized logging or automatic debugging. For example, consider
the following action that logs the text of a line whenever the script reaches that line:

PS > cd c:\temp
PS > Set-PsBreakpoint .\looper.ps1 -line 3 -Action {
 $debugPreference = "Continue"
 Write-Debug (Get-Content .\looper.ps1)[2]
}

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 0 looper.ps1 3 ...

PS > .\looper.ps1
DEBUG: "Count is: $count"
Count is: 0
DEBUG: "Count is: $count"
Count is: 1
DEBUG: "Count is: $count"
Count is: 2
DEBUG: "Count is: $count"
(...)

When we create the breakpoint, we know which line we’ve set it on. When we hit the
breakpoint, we can simply get the content of the script and return the appropriate
line.

For an even more complete example of conditional breakpoints being used to per‐
form code coverage analysis, see Recipe 14.11.

For more information about PowerShell’s debugging support, type Get-Help

about_Debuggers.

420 | Chapter 14: Debugging

See Also
Recipe 14.11, “Program: Get Script Code Coverage”

14.7 Investigate System State While Debugging
Problem
PowerShell has paused execution after hitting a breakpoint, and you want to investi‐
gate the state of your script.

Solution
Examine the $PSDebugContext variable to investigate information about the current
breakpoint and script location. Examine other variables to investigate the internal
state of your script. Use the debug mode commands (Get-PsCallstack, List, and
others) for more information about how you got to the current breakpoint and what
source code corresponds to the current location:

PS > Get-Content .\looper.ps1
param($userInput)

for($count = 0; $count -lt 10; $count++)
{
 "Count is: $count"
}

if($userInput -eq "One")
{
 "Got 'One'"
}

if($userInput -eq "Two")
{
 "Got 'Two'"
}

PS > Set-PsBreakpoint c:\temp\looper.ps1 -Line 5

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 0 looper.ps1 5

PS > c:\temp\looper.ps1 -UserInput "Hello World"
Entering debug mode. Use h or ? for help.

Hit Line breakpoint on 'C:\temp\looper.ps1:5'

looper.ps1:5 "Count is: $count"
PS > $PSDebugContext.InvocationInfo.Line

14.7 Investigate System State While Debugging | 421

 "Count is: $count"
PS > $PSDebugContext.InvocationInfo.ScriptLineNumber
5
PS > $count
0
PS > s
Count is: 0
looper.ps1:3 for($count = 0; $count -lt 10; $count++)
PS > s
looper.ps1:3 for($count = 0; $count -lt 10; $count++)
PS > s
Hit Line breakpoint on 'C:\temp\looper.ps1:5'

looper.ps1:5 "Count is: $count"
PS > s
Count is: 1
looper.ps1:3 for($count = 0; $count -lt 10; $count++)
PS > $count
1
PS > $userInput
Hello World
PS > Get-PsCallStack

Command Arguments Location
------- --------- --------
looper.ps1 {userInput=Hello World} looper.ps1: Line 3
prompt {} prompt

PS > l 3 3

 3:* for($count = 0; $count -lt 10; $count++)
 4: {
 5: "Count is: $count"

PS >

Discussion
When PowerShell pauses your script as it hits a breakpoint, it enters a debugging
mode very much like the regular console session you’re used to. You can execute
commands, get and set variables, and otherwise explore the state of the system.

What makes debugging mode unique, however, is its context. When you enter com‐
mands in the PowerShell debugger, you’re investigating the live state of the script. If
you pause in the middle of a loop, you can view and modify the counter variable that
controls that loop. Commands that you enter, in essence, become temporary parts of
the script itself.

422 | Chapter 14: Debugging

In addition to the regular variables available to you, PowerShell creates a new
$PSDebugContext automatic variable whenever it reaches a breakpoint. The $PSDebug
Context.BreakPoints property holds the current breakpoint, whereas the $PSDebug
Context.InvocationInfo property holds information about the current location in
the script:

PS > $PSDebugContext.InvocationInfo

MyCommand :
BoundParameters : {}
UnboundArguments : {}
ScriptLineNumber : 3
OffsetInLine : 40
HistoryId : -1
ScriptName : C:\temp\looper.ps1
Line : for($count = 0; $count -lt 10; $count++)
PositionMessage :
 At C:\temp\looper.ps1:3 char:40
 + for($count = 0; $count -lt 10; $count++ <<<<)
InvocationName : ++
PipelineLength : 0
PipelinePosition : 0
ExpectingInput : False
CommandOrigin : Internal

For information about the nesting of functions and commands that called each other
to reach this point (the call stack), type Get-PsCallStack.

If you find yourself continually monitoring a specific variable (or set of variables) for
changes, Recipe 14.9 shows a script that lets you automatically watch an expression of
your choice.

After investigating the state of the script, you can analyze its flow of execution
through the three stepping commands: step into, step over, and step out. These func‐
tions single-step through your script with three different behaviors: entering func‐
tions and scripts as you go, skipping over functions and scripts as you go, or popping
out of the current function or script (while still executing its remainder.)

For more information about PowerShell’s debugging support, type Get-Help

about_Debuggers.

See Also
Recipe 14.9, “Program: Watch an Expression for Changes”

14.7 Investigate System State While Debugging | 423

14.8 Debug a Script on a Remote Machine
Problem
You have a script on a remote machine, and need to diagnose an error in it.

Solution
Use the Enter-PSSession command to connect to the machine through PowerShell
Remoting. As you would when debugging local scripts, use the Set-PSBreakpoint
command to set a breakpoint on the line of your script that needs investigation, and
then run your script. Even though the script is run remotely, PowerShell’s local
debugging experience lets you investigate the remote script.

PS > Enter-PSSession localhost
[localhost]: PS D:\Lee> Set-PSBreakpoint C:\Invoke-ComplexDebuggerScript.ps1 -Line 41

 ID Script Line Command Variable Action
 -- ------ ---- ------- -------- ------
 0 Invoke-ComplexDebuggerSc... 41

[localhost]: PS D:\Lee> C:\Invoke-ComplexDebuggerScript.ps1
Entering debug mode. Use h or ? for help.

Hit Line breakpoint on 'C:\Invoke-ComplexDebuggerScript.ps1:41'

At C:\Invoke-ComplexDebuggerScript.ps1:41 char:1
+ $runningTotal
+ ~~~~~~~~~~~~~

[localhost]: [DBG]: PS D:\Lee>> $runningTotal
607.5

[localhost]: [DBG]: PS D:\Lee>> c
Calculating lots of complex information
1225
(...)

Discussion
One of the features that always feels like magic in PowerShell is its incredible support
for the debugging experience. Because of the rich functionality the PowerShell Engine
offers to applications that host the PowerShell engine (pwsh.exe, Visual Studio Code,
the PowerShell ISE), you get a very capable and consistent debugging experience in
all of them.

As richly demonstrated in the rest of this chapter, this experience lets you get and set
breakpoints, inspect variables, control script execution, and more.

424 | Chapter 14: Debugging

Normally, this level of functionality breaks down when you need to debug a script on
a remote machine. When you use vanilla SSH to connect to a remote machine and
run the gdb debugger, it’s a fairly stifling experience. SSH shuttles the text back and
forth, but that’s about it.

In contrast, Figure 14-2 is a great example of how the rich debugging functionality in
the PowerShell engine makes the fact that a PowerShell session is remote almost
seamless. With the debugging support applications like pwsh.exe and Visual Studio
Code have already implemented for local script debugging, they get full remote
debugging almost for free. In graphical hosts like Visual Studio Code and the Power‐
Shell ISE, this even includes a local view of the remote file that you can see, edit, and
save over this remote session.

Figure 14-2. Visual Studio Code remotely debugging a script

For more information about managing and editing files in remote PowerShell ses‐
sions, see Recipe 29.17. For more information about interacting with remote systems,
see Chapter 29.

14.8 Debug a Script on a Remote Machine | 425

See Also
Recipe 29.17, “Manage and Edit Files on Remote Machines”

Chapter 29

14.9 Program: Watch an Expression for Changes
When debugging a script (or even just generally using the shell), you might find
yourself monitoring the same expression very frequently. This gets tedious to type by
hand, so Example 14-6 simplifies the task by automatically displaying the value of
expressions that interest you as part of your prompt.

Example 14-6. Watch-DebugExpression.ps1

###
##
Watch-DebugExpression
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Updates your prompt to display the values of information you want to track.

.EXAMPLE

PS > Watch-DebugExpression { (Get-History).Count }

Expression Value
---------- -----
(Get-History).Count 3

PS > Watch-DebugExpression { $count }

Expression Value
---------- -----
(Get-History).Count 4
$count

PS > $count = 100

Expression Value
---------- -----
(Get-History).Count 5
$count 100

426 | Chapter 14: Debugging

PS > Watch-DebugExpression -Reset
PS >

#>

param(
 ## The expression to track
 [ScriptBlock] $ScriptBlock,

 ## Switch to no longer watch an expression
 [Switch] $Reset
)

Set-StrictMode -Version 3

if($Reset)
{
 Set-Item function:\prompt ([ScriptBlock]::Create($oldPrompt))

 Remove-Item variable:\expressionWatch
 Remove-Item variable:\oldPrompt

 return
}

Create the variableWatch variable if it doesn't yet exist
if(-not (Test-Path variable:\expressionWatch))
{
 $GLOBAL:expressionWatch = @()
}

Add the current variable name to the watch list
$GLOBAL:expressionWatch += $scriptBlock

Update the prompt to display the expression values,
if needed.
if(-not (Test-Path variable:\oldPrompt))
{
 $GLOBAL:oldPrompt = Get-Content function:\prompt
}

if($oldPrompt -notlike '*$expressionWatch*')
{
 $newPrompt = @'
 $results = foreach($expression in $expressionWatch)
 {
 New-Object PSObject -Property @{
 Expression = $expression.ToString().Trim();
 Value = & $expression
 } | Select Expression,Value
 }
 Write-Host "`n"
 Write-Host ($results | Format-Table -Auto | Out-String).Trim()
 Write-Host "`n"

'@

14.9 Program: Watch an Expression for Changes | 427

 $newPrompt += $oldPrompt

 Set-Item function:\prompt ([ScriptBlock]::Create($newPrompt))
}

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

14.10 Debug a Script in Another Process
Problem
You have an application or shell running a PowerShell script, and you need to investi‐
gate the behavior of that script.

Solution
Use the Get-PSHostProcessInfo, Enter-PSHostProcess, and Debug-Runspace com‐
mands to debug what is currently running in the other process.

PS > $command = '-Command "$counter = 0; while($true) {
 Get-Random; $counter++; Start-Sleep -m 400 }"'
PS > $process = Start-Process pwsh -ArgumentList $command -PassThru
PS > $process.Id
23800
PS > Get-PSHostProcessInfo

ProcessName ProcessId AppDomainName MainWindowTitle
----------- --------- ------------- ---------------
MonitoringHost 20460 DefaultAppDomain
powershell 23076 DefaultAppDomain Windows PowerShell
powershell 27492 DefaultAppDomain Windows PowerShell
pwsh 19240 DefaultAppDomain
pwsh 16272 DefaultAppDomain
pwsh 27736 DefaultAppDomain
pwsh 23800 DefaultAppDomain C:\...\WindowsApps\Microsoft.PowerShell_...

PS > Enter-PSHostProcess -Id $process.Id
[Process:23800]: PS D:\Lee> Get-Runspace

 Id Name ComputerName Type State Availability
 -- ---- ------------ ---- ----- ------------
 1 Runspace1 localhost Local Opened Available
 2 RemoteHost localhost Local Opened Busy

[Process:23800]: PS D:\Lee> Debug-Runspace -Id 1
Debugging Runspace: Runspace1
To end the debugging session type the 'Detach' command at the debugger prompt,

428 | Chapter 14: Debugging

or type 'Ctrl+C' otherwise.

At line:1 char:21
+ ... nter = 0; while($true) { Get-Random; $counter++; Start-Sleep -m 400 }
+ ~~~

[DBG]: [Process:23800]: [Runspace1]: PS D:\Lee>> $counter
126

[DBG]: [Process:23800]: [Runspace1]: PS D:\Lee>> detach
[Process:23800]: PS D:\Lee> exit
PS > Stop-Process -Id $process.Id

Discussion
Developing a robust monitoring or management script can be an exhilarating experi‐
ence. You set up some automation to run it as a scheduled task or part of some
orchestration engine, and watch it seemly keep the world together—silently, and in
the background.

This feeling of elation can sometimes come crashing down, however, when this back‐
ground script starts misbehaving. If you were running it in your local PowerShell
console, the PowerShell ISE, or Visual Studio Code, you could break into the script
and debug it. But how do you do this if there isn’t even a window for you to access?

The answer to this problem comes from PowerShell’s Runspace debugging feature.
Runspace debugging acts a little like PowerShell remoting: you connect to a process,
connect to the session within it running your PowerShell code, and then debug your
script like you usually would.

A term new to this solution is the concept of a Runspace. A Power‐
Shell Runspace is like an isolated, separate, mini-session of Power‐
Shell within a process. You can have multiple runspaces within a
PowerShell process running their own commands simultaneously.
Tabs in the PowerShell ISE leverage runspaces, as does PowerShell’s
lightweight ThreadJobs.

One slight challenge to debugging scripts in other processes is that you might not
know which runspace contains the code you want to investigate. As the Solution
shows, there will always be at least two: RemoteHost (the one hosting the bits of the
engine you’re using to debug with), and at least one other actually running code of
interest. For the most part, there will be only one (Id 1, named Runspace1). If there
are more than one, you’ll need to try debugging each in turn to find the one running
the code you’re looking for.

14.10 Debug a Script in Another Process | 429

As with other Windows debugging features, you can only use this runspace debug‐
ging functionality to attach to your own processes. However, if you’re an administra‐
tor, you can connect to any process on the system. For security purposes, these con‐
nections are logged in the PowerShell event log under event ID 53507.

See Also
Recipe 1.6, “Invoke a Long-Running or Background Command”

14.11 Program: Get Script Code Coverage
When developing a script, testing it (either automatically or by hand) is a critical step
in knowing how well it does the job you think it does. While you can spend enor‐
mous amounts of time testing new and interesting variations in your script, how do
you know when you’re done?

Code coverage is the standard technique to answer this question. You instrument
your script so that the system knows what portions it executed, and then review the
report at the end to see which portions were not executed. If a portion wasn’t exe‐
cuted during your testing, you have untested code and can improve your confidence
in its behavior by adding more tests.

In PowerShell, we can combine two powerful techniques to create a code coverage
analysis tool: the Tokenizer API and conditional breakpoints.

First, we use the Tokenizer API to discover all of the unique elements of our script: its
statements, variables, loops, and more. Each token tells us the line and column that
holds it, so we then create breakpoints for all of those line and column combinations.

When we hit a breakpoint, we record that we hit it and then continue.

Once the script in Example 14-7 completes, we can compare the entire set of tokens
against the ones we actually hit. Any tokens that were not hit by a breakpoint repre‐
sent gaps in our tests.

Example 14-7. Get-ScriptCoverage.ps1

###
##
Get-ScriptCoverage
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

430 | Chapter 14: Debugging

.SYNOPSIS

Uses conditional breakpoints to obtain information about what regions of
a script are executed when run.

.EXAMPLE

PS > Get-Content c:\temp\looper.ps1

param($userInput)

for($count = 0; $count -lt 10; $count++)
{
 "Count is: $count"
}

if($userInput -eq "One")
{
 "Got 'One'"
}

if($userInput -eq "Two")
{
 "Got 'Two'"
}

PS > $action = { c:\temp\looper.ps1 -UserInput 'One' }
PS > $coverage = Get-ScriptCoverage c:\temp\looper.ps1 -Action $action
PS > $coverage | Select Content,StartLine,StartColumn | Format-Table -Auto

Content StartLine StartColumn
------- --------- -----------
userInput 1 7
Got 'Two' 15 5

This example exercises a 'looper.ps1' script, and supplies it with some
user input. The output demonstrates that we didn't exercise the
"Got 'Two'" statement.

#>

param(
 ## The path of the script to monitor
 $Path,

 ## The command to exercise the script
 [ScriptBlock] $Action = { & $path }
)

Set-StrictMode -Version 3

Determine all of the tokens in the script
$scriptContent = Get-Content $path
$ignoreTokens = "Comment","NewLine","StatementSeparator","Keyword",
 "GroupStart","GroupEnd"
$tokens = [System.Management.Automation.PsParser]::Tokenize(

14.11 Program: Get Script Code Coverage | 431

 $scriptContent, [ref] $null) |
 Where-Object { $ignoreTokens -notcontains $_.Type }
$tokens = $tokens | Sort-Object StartLine,StartColumn

Create a variable to hold the tokens that PowerShell actually hits
$visited = New-Object System.Collections.ArrayList

Go through all of the tokens
$breakpoints = foreach($token in $tokens)
{
 ## Create a new action. This action logs the token that we
 ## hit. We call GetNewClosure() so that the $token variable
 ## gets the _current_ value of the $token variable, as opposed
 ## to the value it has when the breakpoints gets hit.
 $breakAction = { $null = $visited.Add($token) }.GetNewClosure()

 ## Set a breakpoint on the line and column of the current token.
 ## We use the action from above, which simply logs that we've hit
 ## that token.
 Set-PsBreakpoint $path -Line `
 $token.StartLine -Column $token.StartColumn -Action $breakAction
}

Invoke the action that exercises the script
$null = . $action

Remove the temporary breakpoints we set
$breakpoints | Remove-PsBreakpoint

Sort the tokens that we hit, and compare them with all of the tokens
in the script. Output the result of that comparison.
$visited = $visited | Sort-Object -Unique StartLine,StartColumn
Compare-Object $tokens $visited -Property StartLine,StartColumn -PassThru

Clean up our temporary variable
Remove-Item variable:\visited

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 10.10, “Parse and Interpret PowerShell Scripts”

Recipe 14.6, “Create a Conditional Breakpoint”

432 | Chapter 14: Debugging

CHAPTER 15

Tracing and Error Management

15.0 Introduction
What if it doesn’t all go according to plan? This is the core question behind error
management in any system and it plays a large part in writing PowerShell scripts as
well.

Although this is a chief concern in many systems, PowerShell’s support for error
management provides several unique features designed to make your job easier. The
primary benefit is a distinction between terminating and nonterminating errors.

When you’re running a complex script or scenario, the last thing you want is for your
world to come crashing down because a script can’t open one of the thousand files it’s
operating on. Although the system should make you aware of the failure, the script
should still continue to the next file. That’s an example of a nonterminating error. But
what if the script runs out of disk space while running a backup? That should abso‐
lutely be an error that causes the script to exit—also known as a terminating error.

Given this helpful distinction, PowerShell provides several features that let you man‐
age errors generated by scripts and programs, and also allows you to generate errors
yourself.

433

15.1 Determine the Status of the Last Command
Problem
You want to get status information about the last command you executed, such as
whether it succeeded.

Solution
Use one of the two variables PowerShell provides to determine the status of the last
command you executed: the $lastExitCode variable and the $? variable.

$lastExitCode

A number that represents the exit code/error level of the last script or application
that exited

$? (pronounced “dollar hook”)
A boolean value that represents the success or failure of the last command

Discussion
The $lastExitCode PowerShell variable is similar to the %errorlevel% variable in
DOS. It holds the exit code of the last application to exit. This lets you continue to
interact with traditional executables (such as ping, findstr, and choice) that use exit
codes as a primary communication mechanism. PowerShell also extends the meaning
of this variable to include the exit codes of scripts, which can set their status using the
exit statement. Example 15-1 demonstrates this interaction.

Example 15-1. Interacting with the $lastExitCode and $? variables

PS > ping localhost

Pinging MyComputer [127.0.0.1] with 32 bytes of data:

Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128
Reply from 127.0.0.1: bytes=32 time<1ms TTL=128

Ping statistics for 127.0.0.1:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milliseconds:
 Minimum = 0ms, Maximum = 0ms, Average = 0ms
PS > $?
True
PS > $lastExitCode
0
PS > ping missing-host

434 | Chapter 15: Tracing and Error Management

Ping request could not find host missing-host. Please check the name and try again.
PS > $?
False
PS > $lastExitCode
1

The $? variable describes the exit status of the last application in a more general man‐
ner. PowerShell sets this variable to False on error conditions such as the following:

• An application exits with a nonzero exit code.
• A cmdlet or script writes anything to its error stream.
• A cmdlet or script encounters a terminating error or exception.

For commands that do not indicate an error condition, PowerShell sets the $? vari‐
able to True.

If you wish to chain together multiple commands based on the success of previous
commands in the pipeline, you can use PowerShell’s pipeline chain operators. For
more information about these operators, see Recipe 2.1.

See Also
Recipe 2.1, “Chain Commands Based on Their Success or Error”

15.2 View the Errors Generated by a Command
Problem
You want to view the errors generated in the current session.

Solution
To access the list of errors generated so far, use the $error variable, as shown by
Example 15-2.

Example 15-2. Viewing errors contained in the $error variable

PS > 1/0
RuntimeException: Attempted to divide by zero.

PS > $error[0] | Format-List -Force

ErrorRecord : Attempted to divide by zero.
StackTrace : at System.Management.Automation.Expressio
 (...)
WasThrownFromThrowStatement : False
Message : Attempted to divide by zero.

15.2 View the Errors Generated by a Command | 435

Data : {}
InnerException : System.DivideByZeroException: Attempted to
 divide by zero.
 at System.Management.Automation.ParserOps
 .PolyDiv(ExecutionContext context, Token op
 Token, Object lval, Object rval)
TargetSite : System.Collections.ObjectModel.Collection`1[
 System.Management.Automation.PSObject] Invoke
 (System.Collections.IEnumerable)
HelpLink :
Source : System.Management.Automation

Discussion
The PowerShell $error variable always holds the list of errors generated so far in the
current shell session. This list includes both terminating and nonterminating errors.

PowerShell displays fairly detailed information when it encounters an error:
PS > Stop-Process -name IDoNotExist
Stop-Process: Cannot find a process with the name "IDoNotExist".
Verify the process name and call the cmdlet again.

If you want to view an error in a table or list (through the Format-Table or Format-
List cmdlets), you must also specify the -Force option to override this customized
view.

For extremely detailed information about an error, see Recipe 15.4.

If you want to display errors in a more detailed manner, PowerShell supports an addi‐
tional view (the one used in previous versions of PowerShell) called NormalView that
you set through the $errorView preference variable:

PS > Get-ChildItem IDoNotExist
Get-ChildItem: Cannot find path 'C:\IDoNotExist' because it does not exist.

PS > $errorView = "NormalView"
PS > Get-ChildItem IDoNotExist
Get-ChildItem : Cannot find path 'C:\IDoNotExist' because it does not exist.
At line:1 char:14
+ Get-ChildItem <<<< IDoNotExist
 + CategoryInfo : ObjectNotFound: (C:\IDoNotExist:String)
 [Get-ChildItem], ItemNotFoundException
 + FullyQualifiedErrorId : PathNotFound,Microsoft.PowerShell.Commands.
 GetChildItemCommand

436 | Chapter 15: Tracing and Error Management

In this view, one unique feature about these errors is that they benefit from a diverse
and international community of PowerShell users. Notice the FullyQualifiedEr
rorId line: an error identifier that remains the same no matter which language the
error occurs in. When a user pastes this error message on an internet forum, news‐
group, or blog, this fully qualified error ID never changes. English-speaking users can
then benefit from errors posted by non-English-speaking PowerShell users, and vice
versa.

To clear the list of errors, call the Clear() method on the $error list:
PS > $error.Count
2
PS > $error.Clear()
PS > $error.Count
0

For more information about PowerShell’s preference variables, type Get-Help
about_preference_variables. If you want to determine only the success or failure
of the last command, see Recipe 15.1.

See Also
Recipe 15.1, “Determine the Status of the Last Command”

Recipe 15.4, “Program: Resolve an Error”

15.3 Manage the Error Output of Commands
Problem
You want to display detailed information about errors that come from commands.

Solution
To list all errors (up to $MaximumErrorCount) that have occurred in this session,
access the $error array:

$error

To list the last error that occurred in this session, access the first element in the
$error array:

$error[0]

To get detailed information about the last error that occurred in this session, use the
Get-Error cmdlet:

Get-Error

15.3 Manage the Error Output of Commands | 437

To list detailed information about an error, pipe the error into the Format-List
cmdlet with the -Force parameter:

$currentError = $error[0]
$currentError | Format-List -Force

To list detailed information about the command that caused an error, access its
InvocationInfo property:

$currentError = $error[0]
$currentError.InvocationInfo

To display errors in a more succinct category-based view, change the $errorView
variable to "CategoryView":

$errorView = "CategoryView"

To clear the list of errors collected by PowerShell so far, call the Clear() method on
the $error variable:

$error.Clear()

Discussion
Errors are a simple fact of life in the administrative world. Not all errors mean disas‐
ter, though. Because of this, PowerShell separates errors into two categories: nonter‐
minating and terminating.

Nonterminating errors are the most common type of error. They indicate that the
cmdlet, script, function, or pipeline encountered an error that it was able to recover
from or was able to continue past. An example of a nonterminating error comes from
the Copy-Item cmdlet. If it fails to copy a file from one location to another, it can still
proceed with the rest of the files specified.

A terminating error, on the other hand, indicates a deeper, more fundamental error
in the operation. An example of this can again come from the Copy-Item cmdlet
when you specify invalid command-line parameters.

Digging into an error (and its nested errors) can be cumbersome, so for a script that
automates this task, see Recipe 15.4.

See Also
Recipe 15.4

438 | Chapter 15: Tracing and Error Management

15.4 Program: Resolve an Error
Analyzing an error frequently requires several different investigative steps: displaying
the error, exploring its context, and analyzing its inner exceptions. In most scenarios,
use the Get-Error cmdlet to see extended information about errors you encounter.

Sometimes, however, you need to investigate the errors that caused these errors (the
inner exception), the errors that caused those, and more. Example 15-3 automates
these mundane tasks for you.

Example 15-3. Resolve-Error.ps1

###
##
Resolve-Error
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Displays detailed information about an error and its context.

#>

param(
 ## The error to resolve
 $ErrorRecord = ($error[0])
)

Set-StrictMode -Off

""
"If this is an error in a script you wrote, use the Set-PsBreakpoint cmdlet"
"to diagnose it."
""

'Error details ($error[0] | Format-List * -Force)'
"-"*80
$errorRecord | Format-List * -Force

'Information about the command that caused this error ' +
 '($error[0].InvocationInfo | Format-List *)'
"-"*80
$errorRecord.InvocationInfo | Format-List *

'Information about the error''s target ' +
 '($error[0].TargetObject | Format-List *)'
"-"*80

15.4 Program: Resolve an Error | 439

$errorRecord.TargetObject | Format-List *

'Exception details ($error[0].Exception | Format-List * -Force)'
"-"*80

$exception = $errorRecord.Exception

for ($i = 0; $exception; $i++, ($exception = $exception.InnerException))
{
 "$i" * 80
 $exception | Format-List * -Force
}

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

15.5 Configure Debug, Verbose, and Progress Output
Problem
You want to manage the detailed debug, verbose, and progress output generated by
cmdlets and scripts.

Solution
To enable debug output for scripts and cmdlets that generate it:

$debugPreference = "Continue"
Start-DebugCommand

To enable verbose mode for a cmdlet that checks for the -Verbose parameter:
Copy-Item c:\temp*.txt c:\temp\backup\ -Verbose

To disable progress output from a script or cmdlet that generates it:
$progressPreference = "SilentlyContinue"
Get-Progress.ps1

Discussion
In addition to error output (as described in Recipe 15.3), many scripts and cmdlets
generate several other types of output. These include the following types:

Debug output
Helps you diagnose problems that may arise and can provide a view into the
inner workings of a command. You can use the Write-Debug cmdlet to produce
this type of output in a script or the WriteDebug() method to produce this type

440 | Chapter 15: Tracing and Error Management

of output in a cmdlet. PowerShell displays this output in yellow by default, but
you can customize it through the $host.PrivateData.Debug* color configura‐
tion variables.

Verbose output
Helps you monitor the actions of commands at a finer level than the default. You
can use the Write-Verbose cmdlet to produce this type of output in a script or
the WriteVerbose() method to produce this type of output in a cmdlet. Power‐
Shell displays this output in yellow by default, but you can customize it through
the $host.PrivateData.Verbose* color configuration variables.

Progress output
Helps you monitor the status of long-running commands. You can use the
Write-Progress cmdlet to produce this type of output in a script or the Write
Progress() method to produce this type of output in a cmdlet. PowerShell dis‐
plays this output in yellow by default, but you can customize the color through
the $host.PrivateData.Progress* color configuration variables.

Some cmdlets generate verbose and debug output only if you specify the -Verbose
and -Debug parameters, respectively.

Like PowerShell’s parameter disambiguation support that lets you
type only as much of a parameter as is required to disambiguate it
from other parameters of the same cmdlet, PowerShell supports
enumeration disambiguation when parameter values are limited to
a specific set of values. This is perhaps most useful when interac‐
tively running a command that you know will generate errors:

PS > Get-ChildItem c:\windows -Recurse -ErrorAction Ignore
PS > dir c:\windows -rec -ea ig

To configure the debug, verbose, and progress output of a script or cmdlet, modify
the $debugPreference, $verbosePreference, and $progressPreference shell vari‐
ables. These variables can accept the following values:

Ignore

Do not display this output, and do not add it to the $error collection. Only sup‐
ported when supplied to the ErrorAction parameter of a command.

SilentlyContinue

Do not display this output, but add it to the $error collection.

Stop

Treat this output as an error.

15.5 Configure Debug, Verbose, and Progress Output | 441

Continue

Display this output.

Inquire

Display a continuation prompt for this output.

See Also
Recipe 15.3, “Manage the Error Output of Commands”

15.6 Handle Warnings, Errors, and Terminating Errors
Problem
You want to handle warnings, errors, and terminating errors generated by scripts or
other tools that you call.

Solution
To control how your script responds to warning messages, set the $warningPrefer
ence variable. In this example, to ignore them:

$warningPreference = "SilentlyContinue"

To control how your script responds to nonterminating errors, set the $errorAction
Preference variable. In this example, to ignore them:

$errorActionPreference = "SilentlyContinue"

To control how your script responds to terminating errors, you can use either the
try/catch/finally statements or the trap statement. In this example, we output a
message and continue with the script:

try
{
 1 / $null
}
catch [DivideByZeroException]
{
 "Don't divide by zero: $_"
}
finally
{
 "Script that will be executed even if errors occur in the try statement"
}

Use the trap statement if you want its error handling to apply to the entire scope:
trap [DivideByZeroException] { "Don't divide by zero!"; continue }
1 / $null

442 | Chapter 15: Tracing and Error Management

Discussion
PowerShell defines several preference variables that help you control how your script
reacts to warnings, errors, and terminating errors. As an example of these error man‐
agement techniques, consider the following script.

##
##
Get-WarningsAndErrors
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Demonstrates the functionality of the Write-Warning, Write-Error, and throw
statements

#>

Set-StrictMode -Version 3

Write-Warning "Warning: About to generate an error"
Write-Error "Error: You are running this script"
throw "Could not complete operation."

For more information about running scripts, see Recipe 1.2.

You can now see how a script might manage those separate types of errors:
PS > $warningPreference = "Continue"
PS > Get-WarningsAndErrors
WARNING: Warning: About to generate an error
Exception: C:\scripts\Get-WarningsAndErrors.ps1:23
Line |
 23 | throw "Could not complete operation."
 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | Could not complete operation.

Once you modify the warning preference, the original warning message gets sup‐
pressed. A value of SilentlyContinue is useful when you’re expecting an error of
some sort.

PS > $warningPreference = "SilentlyContinue"
PS > Get-WarningsAndErrors
Write-Error: Error: You are running this script
Exception: C:\scripts\Get-WarningsAndErrors.ps1:23
Line |
 23 | throw "Could not complete operation."
 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | Could not complete operation.

15.6 Handle Warnings, Errors, and Terminating Errors | 443

When you modify the error preference, you suppress errors and exceptions as well:
PS > $errorActionPreference = "SilentlyContinue"
PS > Get-WarningsAndErrors
PS >

In addition to the $errorActionPreference variable, all cmdlets let you specify your
preference during an individual call. With an error action preference of SilentlyCon
tinue, PowerShell doesn’t display or react to errors. It does, however, still add the
error to the $error collection for futher processing. If you want to suppress even that,
use an error action preference of Ignore.

PS > $errorActionPreference = "Continue"
PS > Get-ChildItem IDoNotExist
Get-ChildItem : Cannot find path '...\IDoNotExist' because it does not exist.
At line:1 char:14
+ Get-ChildItem <<<< IDoNotExist
PS > Get-ChildItem IDoNotExist -ErrorAction SilentlyContinue
PS >

If you reset the error preference back to Continue, you can see the impact of a try/
catch/finally statement. The message from the Write-Error call makes it through,
but the exception does not:

PS > $errorActionPreference = "Continue"
PS > try { Get-WarningsAndErrors } catch { "Caught an error" }
WARNING: Warning: About to generate an error
Get-WarningsAndErrors: Error: You are running this script
Caught an error

The try/catch/finally statement acts like the similar statement in other program‐
ming languages. First, it executes the code inside of its script block. If it encounters a
terminating error, it executes the code inside of the catch script block. It executes the
code in the finally statement no matter what—an especially useful feature for
cleanup or error-recovery code.

A similar technique is the trap statement:
PS > $errorActionPreference = "Continue"
PS > trap { "Caught an error"; continue }; Get-WarningsAndErrors
WARNING: Warning: About to generate an error
Get-WarningsAndErrors: Error: You are running this script
Caught an error

Within a catch block or trap statement, the $_ (or $PSItem) variable represents the
current exception or error being processed.

Unlike the try statement, the trap statement handles terminating errors for anything
in the scope that defines it. For more information about scopes, see Recipe 3.6.

444 | Chapter 15: Tracing and Error Management

After handling an error, you can also remove it from the system’s
error collection by typing $error.RemoveAt(0).

For more information about PowerShell’s automatic variables, type Get-Help

about_automatic_variables. For more information about error management in
PowerShell, see “Managing Errors” on page 850. For more detailed information about
the valid settings of these preference variables, see Appendix A.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 3.6, “Control Access and Scope of Variables and Other Items”

“Managing Errors” on page 850

Appendix A, PowerShell Language and Environment

15.7 Output Warnings, Errors, and Terminating Errors
Problem
You want your script to notify its caller of a warning, error, or terminating error.

Solution
To write warnings and errors, use the Write-Warning and Write-Error cmdlets,
respectively. Use the throw statement to generate a terminating error.

Discussion
When you need to notify the caller of your script about an unusual condition, the
Write-Warning, Write-Error, and throw statements are the way to do it. If your user
should consider the message as more of a warning, use the Write-Warning cmdlet. If
your script encounters an error (but can reasonably continue past that error), use the
Write-Error cmdlet. If the error is fatal and your script simply cannot continue, use a
throw statement.

For more information on generating these errors and handling them when thrown by
other scripts, see Recipe 15.6. For more information about error management in
PowerShell, see “Managing Errors” on page 850. For more information about running
scripts, see Recipe 1.2.

15.7 Output Warnings, Errors, and Terminating Errors | 445

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 15.6, “Handle Warnings, Errors, and Terminating Errors”

“Managing Errors” on page 850

15.8 Analyze a Script’s Performance Profile
Problem
You have an interactive or time-intensive script and want to see which parts are slow‐
ing it down.

Solution
Install the PSProfiler module from the PowerShell Gallery, and use the Measure-
Script command to see the lines of your script that are consuming the most time. In
this example, we are investigating burn-console-original.ps1, a fun little script
that displays a demoscene-like fire effect in the PowerShell console:

PS > Install-Module -Name PSProfiler -Scope CurrentUser
PS > $profileData = Measure-Script (Get-Command burn-console-original.ps1).Path
PS > $profileData | Sort-Object ExecutionTime -Desc | Select -First 18

 Count Line Time Taken Statement
 ----- ---- ---------- ---------
 1 252 00:12.7965373 . main
 1 57 00:12.6452424 $totalTime = Measure-Command {
 26 60 00:11.1477132 updateBuffer
 26 61 00:01.4885363 updateScreen
111020 146 00:00.4423771 $nextScreen[$row, $column] = `
104312 122 00:00.3652381 $tempWorkingBuffer[$baseOffset - $windowWidth] = `
104312 110 00:00.3542900 $colour += $screenBuffer[$baseOffset + $windowWidth]
104312 103 00:00.3332991 $baseOffset = ($windowWidth * $row) + $column
104312 108 00:00.3325509 $colour += $screenBuffer[$baseOffset - 1]
104312 107 00:00.3277796 $colour = $screenBuffer[$baseOffset]
104312 109 00:00.3223024 $colour += $screenBuffer[$baseOffset + 1]
104312 111 00:00.2604536 $colour /= 4.0
102983 116 00:00.2573369 if($colour -le 70) { $colour -= 3 }
101458 117 00:00.2492673 if($colour -lt 20) { $colour -= 1 }
100910 118 00:00.2466116 if($colour -lt 0) { $colour = 0 }
 26 152 00:00.0921347 $host.UI.RawUI.SetBufferContents($origin, $nextScreen)
 1 46 00:00.0609062 clear-host
 1 49 00:00.0515547 generatePalette

Discussion
When you write scripts that cause the user or other systems to wait on the result, you
may sometimes feel that your script could benefit from better performance.

446 | Chapter 15: Tracing and Error Management

The first rule for tackling performance problems is to measure the problem. Unless
you can guide your optimization efforts with hard performance data, you’re almost
certainly directing your efforts to the wrong spots. Random cute performance
improvements will quickly turn your code into an unreadable mess, often with no
appreciable performance gain! Low-level optimization has its place, but it should
always be guided by hard data that supports it.

The way to obtain hard performance data is from a profiler. PowerShell doesn’t ship
with a script profiler, but it does ship with the features that let the community write
one! The PSProfiler module was written in collaboration with several members of
the PowerShell team, and is an excellent addition to your toolchest.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 1.29, “Find and Install Additional PowerShell Scripts and Modules”

15.8 Analyze a Script’s Performance Profile | 447

CHAPTER 16

Environmental Awareness

16.0 Introduction
While many of your scripts will be designed to work in isolation, you’ll often find it
helpful to give your script information about its execution environment: its name,
current working directory, environment variables, common system paths, and more.

PowerShell offers several ways to get at this information—from its cmdlets and built-
in variables to features that it offers from the .NET Framework.

16.1 View and Modify Environment Variables
Problem
You want to interact with your system’s environment variables.

Solution
To interact with environment variables, access them in almost the same way that you
access regular PowerShell variables. The only difference is that you place env:
between the dollar sign ($) and the variable name:

PS > $env:Username
Lee

You can modify environment variables this way, too. For example, to temporarily add
the current directory to the path:

PS > Invoke-DemonstrationScript
Invoke-DemonstrationScript.ps1: The term 'Invoke-DemonstrationScript.ps1' is not
recognized as a name of a cmdlet, function, script file, or executable program.
Check the spelling of the name, or if a path was included, verify that the path

449

is correct and try again.

Suggestion [3,General]: The command Invoke-DemonstrationScript.ps1 was not found,
but does exist in the current location. PowerShell does not load commands from
the current location by default. If you trust this command, instead type:
".\Invoke-DemonstrationScript.ps1". See "get-help about_Command_Precedence"
for more details.

PS > $env:PATH = $env:PATH + ".;"
PS > Invoke-DemonstrationScript
The script ran!

Discussion
In batch files, environment variables are the primary way to store temporary infor‐
mation or to transfer information between batch files. PowerShell variables and script
parameters are more effective ways to solve those problems, but environment vari‐
ables continue to provide a useful way to access common system settings, such as the
system’s path, temporary directory, domain name, username, and more.

PowerShell surfaces environment variables through its environment provider: a con‐
tainer that lets you work with environment variables much as you would work with
items in the filesystem or registry providers. By default, PowerShell defines an env:
drive (much like c: or d:) that provides access to this information:

PS > dir env:

Name Value
---- -----
Path c:\progra~1\ruby\bin;C:\WINDOWS\system32;C:\
TEMP C:\DOCUME~1\Lee\LOCALS~1\Temp
SESSIONNAME Console
PATHEXT .COM;.EXE;.BAT;.CMD;.VBS;.VBE;.JS;.JSE;.WSF;
(...)

Since it’s a regular PowerShell drive, the full way to get the value of an environment
variable looks like this:

PS > Get-Content Env:\Username
Lee

When it comes to environment variables, though, that is a syntax you will almost
never need to use, because of PowerShell’s support for the Get-Content and Set-
Content variable syntax, which shortens that to:

PS > $env:Username
Lee

This syntax works for all drives but is used most commonly to access environment
variables. For more information about this syntax, see Recipe 16.3.

450 | Chapter 16: Environmental Awareness

Some environment variables actually get their values from a combination of two
places: the machine-wide settings and the current-user settings. If you want to access
environment variable values specifically configured at the machine or user level, use
the [Environment]::GetEnvironmentVariable() method. For example, if you’ve
defined a tools directory in your path, you might see:

PS > [Environment]::GetEnvironmentVariable("Path", "User")
d:\lee\tools

To set these machine- or user-specific environment variables permanently, use the
[Environment]::SetEnvironmentVariable() method:

[Environment]::SetEnvironmentVariable(<name>, <value>, <target>)

The target parameter defines where this variable should be stored: User for the cur‐
rent user and Machine for all users on the machine. For example, to permanently add
your tools directory to your path:

$pathElements = @([Environment]::GetEnvironmentVariable("Path", "User") -split ";")
$pathElements += "d:\tools"
$newPath = $pathElements -join ";"
[Environment]::SetEnvironmentVariable("Path", $newPath, "User")

For more information about modifying the system path, see Recipe 16.2.

For more information about the Get-Content and Set-Content variable syntax, see
“Variables” on page 800. For more information about the environment provider, type
Get-Help about_Environment_Provider.

See Also
Recipe 16.2, “Modify the User or System Path”

Recipe 16.3, “Access Information About Your Command’s Invocation”

“Variables” on page 800

16.2 Modify the User or System Path
Problem
You want to update your (or the system’s) PATH variable.

Solution
Use the [Environment]::SetEnvironmentVariable() method to set the PATH envi‐
ronment variable:

16.2 Modify the User or System Path | 451

$scope = "User"
$pathElements = @([Environment]::GetEnvironmentVariable("Path", $scope)
 -split ";")
$pathElements += "d:\tools"
$newPath = $pathElements -join ";"
[Environment]::SetEnvironmentVariable("Path", $newPath, $scope)

Discussion
In Windows, the PATH environment variable describes the list of directories that
applications should search when looking for executable commands. As a convention,
items in the path are separated by the semicolon character.

As mentioned in Recipe 16.1, environment variables have two scopes: systemwide
variables, and per-user variables. The PATH variable that you see when you type
$env:PATH is the result of combining these two.

When you want to modify the path, you need to decide if you want the path changes
to apply to all users on the system, or just yourself. If you want the changes to apply
to the entire system, use a scope of Machine in the example given by the Solution. If
you want it to apply just to your user account, use a scope of User.

As mentioned, elements in the path are separated by the semicolon character. To
update the path, the Solution first uses the -split operator to create a list of the indi‐
vidual directories that were separated by semicolons. It adds a new element to the
path, and then uses the -join operator to recombine the elements with the semicolon
character. This helps prevent doubled-up semicolons, missing semicolons, or having
to worry whether the semicolons go before the path element or after.

For more information about working with environment variables, see Recipe 16.1.

See Also
Recipe 16.1, “View and Modify Environment Variables”

16.3 Access Information About Your Command’s
Invocation
Problem
You want to learn about how the user invoked your script, function, or script block.

Solution
To access information about how the user invoked your command, use the
$PSScriptRoot, $PSCommandPath, and $myInvocation variables:

452 | Chapter 16: Environmental Awareness

"Script's path: $PSCommandPath"
"Script's location: $PSScriptRoot"
"You invoked this script by typing: " + $myInvocation.Line

Discussion
The $PSScriptRoot and $PSCommandPath variables provide quick access to the infor‐
mation a command most commonly needs about itself: its full path and location.

In addition, the $myInvocation variable provides a great deal of information about
the current script, function, or script block—and the context in which it was invoked:

MyCommand

Information about the command (script, function, or script block) itself.

ScriptLineNumber

The line number in the script that called this command.

ScriptName

In a function or script block, the name of the script that called this command.

Line

The verbatim text used in the line of script (or command line) that called this
command.

InvocationName

The name that the user supplied to invoke this command. This will be different
from the information given by MyCommand if the user has defined an alias for the
command.

PipelineLength

The number of commands in the pipeline that invoked this command.

PipelinePosition

The position of this command in the pipeline that invoked this command.

One important point about working with the $myInvocation variable is that it
changes depending on the type of command from which you call it. If you access this
information from a function, it provides information specific to that function—not
the script from which it was called. Since scripts, functions, and script blocks are
fairly unique, information in the $myInvocation.MyCommand variable changes slightly
between the different command types.

16.3 Access Information About Your Command’s Invocation | 453

Scripts

Definition and Path
The full path to the currently running script

Name

The name of the currently running script

CommandType

Always ExternalScript

Functions

Definition and ScriptBlock
The source code of the currently running function

Options

The options (None, ReadOnly, Constant, Private, AllScope) that apply to the
currently running function

Name

The name of the currently running function

CommandType

Always Function

Script blocks

Definition and ScriptBlock
The source code of the currently running script block

Name

Empty

CommandType

Always Script

16.4 Program: Investigate the InvocationInfo Variable
When you’re experimenting with the information available through the
$myInvocation variable, it is helpful to see how this information changes between
scripts, functions, and script blocks. For a useful deep dive into the resources pro‐
vided by the $myInvocation variable, review the output of Example 16-1.

454 | Chapter 16: Environmental Awareness

Example 16-1. Get-InvocationInfo.ps1

##
##
Get-InvocationInfo
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Display the information provided by the $myInvocation variable

#>

param(
 ## Switch to no longer recursively call ourselves
 [switch] $PreventExpansion
)

Set-StrictMode -Version 3

Define a helper function, so that we can see how $myInvocation changes
when it is called, and when it is dot-sourced
function HelperFunction
{
 " MyInvocation from function:"
 "-"*50
 $myInvocation

 " Command from function:"
 "-"*50
 $myInvocation.MyCommand
}

Define a script block, so that we can see how $myInvocation changes
when it is called, and when it is dot-sourced
$myScriptBlock = {
 " MyInvocation from script block:"
 "-"*50
 $myInvocation

 " Command from script block:"
 "-"*50
 $myInvocation.MyCommand
}

Define a helper alias
Set-Alias gii .\Get-InvocationInfo

Illustrate how $myInvocation.Line returns the entire line that the
user typed.

16.4 Program: Investigate the InvocationInfo Variable | 455

"You invoked this script by typing: " + $myInvocation.Line

Show the information that $myInvocation returns from a script
"MyInvocation from script:"
"-"*50
$myInvocation

"Command from script:"
"-"*50
$myInvocation.MyCommand

If we were called with the -PreventExpansion switch, don't go
any further
if($preventExpansion)
{
 return
}

Show the information that $myInvocation returns from a function
"Calling HelperFunction"
"-"*50
HelperFunction

Show the information that $myInvocation returns from a dot-sourced
function
"Dot-Sourcing HelperFunction"
"-"*50
. HelperFunction

Show the information that $myInvocation returns from an aliased script
"Calling aliased script"
"-"*50
gii -PreventExpansion

Show the information that $myInvocation returns from a script block
"Calling script block"
"-"*50
& $myScriptBlock

Show the information that $myInvocation returns from a dot-sourced
script block
"Dot-Sourcing script block"
"-"*50
. $myScriptBlock

Show the information that $myInvocation returns from an aliased script
"Calling aliased script"
"-"*50
gii -PreventExpansion

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

456 | Chapter 16: Environmental Awareness

16.5 Find Your Script’s Name
Problem
You want to know the path and name of the currently running script.

Solution
To determine the full path and filename of the currently executing script, use the
$PSCommandPath variable. To determine the text that the user actually typed to invoke
your script (for example, in a “Usage” message), use the $myInvocation.Invocation
Name variable.

Discussion
Because it’s so commonly used, PowerShell provides access to the script’s full path
through the $PSCommandPath variable. If you want to know just the name of the script
(rather than its full path), use the Split-Path cmdlet:

$scriptName = Split-Path -Leaf $PSCommandPath

For more information about working with the $myInvocation variable, see Recipe
16.3.

See Also
Recipe 16.3, “Access Information About Your Command’s Invocation”

16.6 Find Your Script’s Location
Problem
You want to know the location of the currently running script.

Solution
To determine the location of the currently executing script, use the $PSScriptRoot
variable. For example, to load a data file from the same location as your script:

$dataPath = Join-Path $PSScriptRoot data.clixml

Or to run a command from the same location as your script:
$helperUtility = Join-Path $PSScriptRoot helper.exe
& $helperUtility

16.5 Find Your Script’s Name | 457

Discussion
Because it’s so commonly used, PowerShell provides access to the script’s location
through the $PSScriptRoot variable.

Once we know the root of a script’s path, the Join-Path cmdlet makes it easy to form
new paths based on that path.

For more information about the Join-Path cmdlet, see Recipe 16.9.

See Also
Recipe 16.3, “Access Information About Your Command’s Invocation”

Recipe 16.5, “Find Your Script’s Name”

Recipe 16.9, “Safely Build File Paths Out of Their Components”

16.7 Find the Location of Common System Paths
Problem
You want to know the location of common system paths and special folders, such as
My Documents and Program Files.

Solution
To determine the location of common system paths and special folders, use the
[Environment]::GetFolderPath() method:

PS > [Environment]::GetFolderPath("System")
C:\WINDOWS\system32

For paths not supported by this method (such as All Users Start Menu), use the
WScript.Shell COM object:

$shell = New-Object -Com WScript.Shell
$allStartMenu = $shell.SpecialFolders.Item("AllUsersStartMenu")

Discussion
The [Environment]::GetFolderPath() method lets you access the many common
locations used in Windows. To use it, provide the short name for the location (such as
System or Personal). You probably don’t have all these short names memorized, so
one way to see all these values is to use the [Enum]::GetValues() method:

PS > [Enum]::GetValues([Environment+SpecialFolder])
Desktop
Programs

458 | Chapter 16: Environmental Awareness

Personal
Favorites
Startup
Recent
SendTo
StartMenu
MyMusic
DesktopDirectory
MyComputer
Templates
ApplicationData
LocalApplicationData
InternetCache
Cookies
History
CommonApplicationData
System
ProgramFiles
MyPictures
CommonProgramFiles
(...)

Since this is such a common task for all enumerated constants, though, PowerShell
actually provides the possible values in the error message if it is unable to convert
your input:

PS > [Environment]::GetFolderPath("aouaoue")
MethodException: Cannot convert argument "folder", with value: "aouaoue", for
"GetFolderPath" to type "System.Environment+SpecialFolder": "Cannot convert
value "aouaoue" to type "System.Environment+SpecialFolder". Error: "Unable to
match the identifier name aouaoue to a valid enumerator name. Specify one of
the following enumerator names and try again:

Desktop, Programs, MyDocuments, Personal, Favorites, Startup, Recent, SendTo,
StartMenu, MyMusic, MyVideos, DesktopDirectory, MyComputer, NetworkShortcuts,
Fonts, Templates, CommonStartMenu, CommonPrograms, CommonStartup,
CommonDesktopDirectory, ApplicationData, PrinterShortcuts, LocalApplicationData,
InternetCache, Cookies, History, CommonApplicationData, Windows, System,
ProgramFiles, MyPictures, UserProfile, SystemX86, ProgramFilesX86,
CommonProgramFiles, CommonProgramFilesX86, CommonTemplates, CommonDocuments,
CommonAdminTools, AdminTools, CommonMusic, CommonPictures, CommonVideos,
Resources, LocalizedResources, CommonOemLinks, CDBurning""

Although this method provides access to the most-used common system paths, it
does not provide access to all of them. For the paths that the [Environment]::Get
FolderPath() method does not support, use the WScript.Shell COM object. The
WScript.Shell COM object supports the following paths: AllUsersDesktop, AllUsers‐
StartMenu, AllUsersPrograms, AllUsersStartup, Desktop, Favorites, Fonts, MyDocu‐
ments, NetHood, PrintHood, Programs, Recent, SendTo, StartMenu, Startup, and
Templates.

16.7 Find the Location of Common System Paths | 459

It would be nice if you could use either the [Environment]::GetFolderPath()
method or the WScript.Shell COM object, but each of them supports a significant
number of paths that the other doesn’t, as we can see:

PS > $shell = New-Object -Com WScript.Shell
PS > $shellPaths = $shell.SpecialFolders | Sort-Object
PS >
PS > $netFolders = [Enum]::GetValues([Environment+SpecialFolder])
PS > $netPaths = $netFolders |
 ForEach-Object { [Environment]::GetFolderPath($_) } | Sort-Object

PS > ## See the shell-only paths
PS > Compare-Object $shellPaths $netPaths |
 Where-Object { $_.SideIndicator -eq "<=" }

InputObject SideIndicator
----------- -------------
C:\Users\lee\AppData\Roaming\Microsoft\Windows\Printer Shortcuts <=

PS > ## See the .NET-only paths
PS > Compare-Object $shellPaths $netPaths |
 Where-Object { $_.SideIndicator -eq "=>" }

InputObject SideIndicator
----------- -------------
C:\Program Files =>
C:\Program Files (x86) =>
C:\Program Files (x86)\Common Files =>
C:\Program Files\Common Files =>
C:\WINDOWS =>
C:\WINDOWS\resources =>
C:\WINDOWS\system32 =>
C:\WINDOWS\SysWOW64 =>
D:\Lee =>
D:\Lee\My Music =>
D:\Lee\My Pictures =>
(...)

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

460 | Chapter 16: Environmental Awareness

16.8 Get the Current Location
Problem
You want to determine the current location.

Solution
To determine the current location, use the Get-Location cmdlet:

PS > Get-Location

Path

C:\temp

PS > $currentLocation = (Get-Location).Path
PS > $currentLocation
C:\temp

In addition, PowerShell also provides access to the current location through the $pwd
automatic variable:

PS > $pwd

Path

C:\temp

PS > $currentLocation = $pwd.Path
PS > $currentLocation
C:\temp

Discussion
One problem that sometimes impacts scripts that work with the .NET Framework is
that PowerShell’s concept of “current location” isn’t always the same as the pwsh.exe
process’s “current directory.” Take, for example:

PS > Get-Location

Path

C:\temp

PS > Get-Process | Export-CliXml processes.xml
PS > $reader = New-Object Xml.XmlTextReader processes.xml
PS > $reader.BaseURI
file:///C:/users/Lee/processes.xml

PowerShell keeps these concepts separate because it supports multiple pipelines of
execution. The process-wide current directory affects the entire process, so you

16.8 Get the Current Location | 461

would risk corrupting the environment of all background tasks as you navigate
around the shell if that changed the process’s current directory.

When you use filenames in most .NET methods, the best practice is to use fully quali‐
fied pathnames. The Resolve-Path cmdlet makes this easy:

PS > Get-Location

Path

C:\temp

PS > Get-Process | Export-CliXml processes.xml
PS > $reader = New-Object Xml.XmlTextReader (Resolve-Path processes.xml)
PS > $reader.BaseURI
file:///C:/temp/processes.xml

If you want to access a path that doesn’t already exist, use the Join-Path cmdlet in
combination with the Get-Location cmdlet:

PS > Join-Path (Get-Location) newfile.txt
C:\temp\newfile.txt

For more information about the Join-Path cmdlet, see Recipe 16.9.

See Also
Recipe 16.9

16.9 Safely Build File Paths Out of Their Components
Problem
You want to build a new path out of a combination of subpaths.

Solution
To join elements of a path together, use the Join-Path cmdlet:

PS > Join-Path (Get-Location) newfile.txt
C:\temp\newfile.txt

Discussion
The usual way to create new paths is by combining strings for each component, plac‐
ing a path separator between them:

PS > "$(Get-Location)\newfile.txt"
C:\temp\newfile.txt

Unfortunately, this approach suffers from a handful of problems:

462 | Chapter 16: Environmental Awareness

• What if the directory returned by Get-Location already has a slash at the end?
• What if the path contains forward slashes instead of backslashes?
• What if we are talking about registry paths instead of filesystem paths?

Fortunately, the Join-Path cmdlet resolves these issues and more.

For more information about the Join-Path cmdlet, type Get-Help Join-Path.

16.10 Interact with PowerShell’s Global Environment
Problem
You want to store information in the PowerShell environment so that other scripts
have access to it.

Solution
To make a variable available to the entire PowerShell session, use a $GLOBAL: prefix
when you store information in that variable:

Create the web service cache, if it doesn't already exist
if(-not (Test-Path Variable:\Lee.Holmes.WebServiceCache))
{
 ${GLOBAL:Lee.Holmes.WebServiceCache} = @{}
}

Discussion
The primary guidance when it comes to storing information in the session’s global
environment is to avoid it when possible. Scripts that store information in the global
scope are prone to breaking other scripts and prone to being broken by other scripts.

This is a common practice in batch file programming, but script parameters and
return values usually provide a much cleaner alternative.

Most scripts that use global variables do that to maintain state between invocations.
PowerShell handles this in a much cleaner way through the use of modules. For infor‐
mation about this technique, see Recipe 11.7.

If you do need to write variables to the global scope, make sure that you create them
with a name unique enough to prevent collisions with other scripts, as illustrated in
the Solution. Good options for naming prefixes are the script name, author’s name, or
company name.

For more information about setting variables at the global scope (and others), see
Recipe 3.6.

16.10 Interact with PowerShell’s Global Environment | 463

See Also
Recipe 3.6, “Control Access and Scope of Variables and Other Items”

Recipe 11.7, “Write Commands That Maintain State”

16.11 Determine PowerShell Version Information
Problem
You want information about the current PowerShell version, .NET CLR (Common
Language Runtime) version, compatible PowerShell versions, and more.

Solution
Access the $PSVersionTable automatic variable:

PS > $PSVersionTable

Name Value
---- -----
PSVersion 7.1.0
PSEdition Core
GitCommitId 7.1.0
OS Linux 4.19.128-microsoft-standard #1 SMP
Platform Unix
PSCompatibleVersions {1.0, 2.0, 3.0, 4.0...}
PSRemotingProtocolVersion 2.3
SerializationVersion 1.1.0.1
WSManStackVersion 3.0

Discussion
The $PSVersionTable automatic variable holds version information for all of Power‐
Shell’s components: the PowerShell version, its edition (Core or Desktop), the operat‐
ing system it’s running on (including Mac and Linux!), and more.

This technique isn’t completely sufficient for writing scripts that work in all versions
of PowerShell, however. If your script uses language features introduced by newer
versions of PowerShell (such as new keywords), the script will fail to load in earlier
versions.

If the ability to run your script in multiple versions of PowerShell is a strong require‐
ment, the best approach is to simply write a script that works in the oldest version of
PowerShell that you need to support. It will automatically work in newer versions.

464 | Chapter 16: Environmental Awareness

16.12 Test for Administrative Privileges
Problem
You have a script that will fail if not run from an administrative session and want to
detect this as soon as the script starts.

Solution
Specify the -RunAsAdministrator parameter in the first line of your script as part of a
#requires statement:

#requires -RunAsAdministrator

Some administrative tasks here
Get-Process -IncludeUserName

Discussion
Testing for administrative rights, while seemingly simple, is a much trickier task than
might be expected.

Before PowerShell, many batch files tried to simply write a file into the operating sys‐
tem’s installation directory. If that worked, you’re an administrator, so you can clean
up and move on. If not, generate an error. But if you use C:\Windows as the path, your
script will fail when somebody installs the operating system on a different drive. If
you use the %SYSTEMROOT% environment variable, you still might trigger suspicion
from antivirus programs.

As an improvement to that technique, some batch files try to parse the output of the
NET LOCALGROUP Administrators command. Unfortunately, this fails on non-
English machines, where the group name might be Administratoren. Most impor‐
tantly, it detects only if the user is part of the Administrators group, not if their cur‐
rent shell is elevated and they can act as one.

Fortunately, PowerShell addresses these concerns with its #requires statement. This
statement lets you declare conditions that your script requires to run, and PowerShell
automatically validates these on your behalf. The #requires statement supports sev‐
eral tests, which you combine into one #requires statement as needed:

• #requires -shellid <shellID>

• #requires -version <major.minor>

• #requires -psedition <edition>

• #requires -pssnapin <psSnapInName>

16.12 Test for Administrative Privileges | 465

• #requires -version <major.minor>

• #requires -modules <ModuleSpecification>

• #requires -RunAsAdministrator

If you specify #requires -RunAsAdministrator in your script and a user tries to run
it from a non-elevated shell, PowerShell responds with the following message:

./example.ps1: The script 'example.ps1' cannot be run because it contains a
"#requires" statement for running as Administrator. The current PowerShell
session is not running as Administrator. Start PowerShell by using the Run
as Administrator option, and then try running the script again.

See Also
Recipe 13.6, “Write Culture-Aware Scripts”

466 | Chapter 16: Environmental Awareness

CHAPTER 17

Extend the Reach of PowerShell

17.0 Introduction
The PowerShell environment is phenomenally comprehensive. It provides a great
surface of cmdlets to help you manage your system, a great scripting language to let
you automate those tasks, and direct access to all the utilities and tools you already
know.

The cmdlets, scripting language, and preexisting tools are just part of what makes
PowerShell so comprehensive, however. In addition to these features, PowerShell pro‐
vides access to a handful of technologies that drastically increase its capabilities:
the .NET Framework, WMI, COM automation objects, native Windows API calls,
and more.

Not only does PowerShell give you access to these technologies, but it also gives you
access to them in a consistent way. The techniques you use to interact with properties
and methods of PowerShell objects are the same techniques that you use to interact
with properties and methods of .NET objects. In turn, those are the same techniques
that you use to work with WMI and COM objects.

Working with these techniques and technologies provides another huge benefit—
knowledge that easily transfers to working in .NET programming languages such as
C#.

17.1 Automate Programs Using COM Scripting Interfaces
Problem
You want to automate a program or system task through its COM automation
interface.

467

Solution
To instantiate and work with COM objects, use the New-Object cmdlet’s -ComObject
parameter.

$shell = New-Object -ComObject "Shell.Application"
$shell.Windows() | Format-Table LocationName,LocationUrl

Discussion
Like WMI, COM automation interfaces have long been a standard tool for scripting
and system administration. When an application exposes management or automation
tasks, COM objects are the second most common interface (right after custom
command-line tools).

PowerShell exposes COM objects like it exposes most other management objects in
the system. Once you have access to a COM object, you work with its properties and
methods in the same way that you work with methods and properties of other objects
in PowerShell.

Some COM objects require a special interaction mode called multi‐
threaded apartment (MTA) to work correctly. For information
about how to interact with components that require MTA interac‐
tion, see Recipe 13.12.

In addition to automation tasks, many COM objects exist entirely to improve the
scripting experience in languages such as VBScript. Two examples are working with
files and sorting an array.

Most of these COM objects become obsolete in PowerShell, as PowerShell often pro‐
vides better alternatives to them! In many cases, PowerShell’s cmdlets, scripting lan‐
guage, or access to the .NET Framework provide the same or similar functionality to
a COM object that you might be used to.

For more information about working with COM objects, see Recipe 3.11. For a list of
the most useful COM objects, see Appendix H.

See Also
Recipe 3.11, “Use a COM Object”

Appendix H, Selected COM Objects and Their Uses

468 | Chapter 17: Extend the Reach of PowerShell

17.2 Program: Query a SQL Data Source
It’s often helpful to perform ad hoc queries and commands against a data source such
as a SQL server, Access database, or even an Excel spreadsheet. This is especially true
when you want to take data from one system and put it in another, or when you want
to bring the data into your PowerShell environment for detailed interactive manipu‐
lation or processing.

Although you can directly access each of these data sources in PowerShell (through
its support of the .NET Framework), each data source requires a unique and hard-to-
remember syntax. Example 17-1 makes working with these SQL-based data sources
both consistent and powerful.

Example 17-1. Invoke-SqlCommand.ps1

##
##
Invoke-SqlCommand
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Return the results of a SQL query or operation

.EXAMPLE

Invoke-SqlCommand.ps1 -Sql "SELECT TOP 10 * FROM Orders"
Invokes a command using Windows authentication

.EXAMPLE

PS > $cred = Get-Credential
PS > Invoke-SqlCommand.ps1 -Sql "SELECT TOP 10 * FROM Orders" -Cred $cred
Invokes a command using SQL Authentication

.EXAMPLE

PS > $server = "MYSERVER"
PS > $database = "Master"
PS > $sql = "UPDATE Orders SET EmployeeID = 6 WHERE OrderID = 10248"
PS > Invoke-SqlCommand $server $database $sql
Invokes a command that performs an update

.EXAMPLE

PS > $sql = "EXEC SalesByCategory 'Beverages'"

17.2 Program: Query a SQL Data Source | 469

PS > Invoke-SqlCommand -Sql $sql
Invokes a stored procedure

.EXAMPLE

PS > Invoke-SqlCommand (Resolve-Path access_test.mdb) -Sql "SELECT * FROM Users"
Access an Access database

.EXAMPLE

PS > Invoke-SqlCommand (Resolve-Path xls_test.xls) -Sql 'SELECT * FROM [Sheet1$]'
Access an Excel file

#>

param(
 ## The data source to use in the connection
 [string] $DataSource = ".\SQLEXPRESS",

 ## The database within the data source
 [string] $Database = "Northwind",

 ## The SQL statement(s) to invoke against the database
 [Parameter(Mandatory = $true)]
 [string[]] $SqlCommand,

 ## The timeout, in seconds, to wait for the query to complete
 [int] $Timeout = 60,

 ## The credential to use in the connection, if any.
 $Credential
)

Set-StrictMode -Version 3

Prepare the authentication information. By default, we pick
Windows authentication
$authentication = "Integrated Security=SSPI;"

If the user supplies a credential, then they want SQL
authentication
if($credential)
{
 $credential = Get-Credential $credential
 $plainCred = $credential.GetNetworkCredential()
 $authentication =
 ("uid={0};pwd={1};" -f $plainCred.Username,$plainCred.Password)
}

Prepare the connection string out of the information they
provide
$connectionString = "Provider=sqloledb; " +
 "Data Source=$dataSource; " +
 "Initial Catalog=$database; " +
 "$authentication; "

470 | Chapter 17: Extend the Reach of PowerShell

If they specify an Access database or Excel file as the connection
source, modify the connection string to connect to that data source
if($dataSource -match '\.xls$|\.mdb$')
{
 $connectionString = "Provider=Microsoft.Jet.OLEDB.4.0; " +
 "Data Source=$dataSource; "

 if($dataSource -match '\.xls$')
 {
 $connectionString += 'Extended Properties="Excel 8.0;"; '

 ## Generate an error if they didn't specify the sheet name properly
 if($sqlCommand -notmatch '\[.+\$\]')
 {
 $error = 'Sheet names should be surrounded by square brackets, ' +
 'and have a dollar sign at the end: [Sheet1$]'
 Write-Error $error
 return
 }
 }
}

Connect to the data source and open it
$connection = New-Object System.Data.OleDb.OleDbConnection $connectionString
$connection.Open()

foreach($commandString in $sqlCommand)
{
 $command = New-Object Data.OleDb.OleDbCommand $commandString,$connection
 $command.CommandTimeout = $timeout

 ## Fetch the results, and close the connection
 $adapter = New-Object System.Data.OleDb.OleDbDataAdapter $command
 $dataset = New-Object System.Data.DataSet
 [void] $adapter.Fill($dataSet)

 ## Return all of the rows from their query
 $dataSet.Tables | Select-Object -Expand Rows
}

$connection.Close()

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

17.2 Program: Query a SQL Data Source | 471

17.3 Access Windows Performance Counters
Problem
You want to access system performance counter information from PowerShell.

Solution
To retrieve information about a specific performance counter, use the Get-Counter
cmdlet, as shown in Example 17-2.

Example 17-2. Accessing performance counter data through the Get-Counter cmdlet

PS > $counter = Get-Counter "\System\System Up Time"
PS > $uptime = $counter.CounterSamples[0].CookedValue
PS > New-TimeSpan -Seconds $uptime

Days : 8
Hours : 1
Minutes : 38
Seconds : 58
Milliseconds : 0
Ticks : 6971380000000
TotalDays : 8.06872685185185
TotalHours : 193.649444444444
TotalMinutes : 11618.9666666667
TotalSeconds : 697138
TotalMilliseconds : 697138000

Alternatively, WMI’s Win32_Perf* set of classes supports many of the most common
performance counters:

Get-CimInstance Win32_PerfFormattedData_Tcpip_NetworkInterface

Discussion
The Get-Counter cmdlet provides handy access to all Windows performance coun‐
ters. With no parameters, it summarizes system activity:

PS > Get-Counter -Continuous

Timestamp CounterSamples
--------- --------------
1/9/2010 7:26:49 PM \\...\network interface(ethernet
 adapter)\bytes total/sec :
 102739.3921377

 \\...\processor(_total)\% processor
 time :
 35.6164383561644

472 | Chapter 17: Extend the Reach of PowerShell

 \\...\memory\% committed bytes in use
 :
 29.4531607006855

 \\...\memory\cache faults/sec :
 98.1952324093294

 \\...\physicaldisk(_total)\% disk time
 :
 144.227945205479

 \\...\physicaldisk(_total)\current disk
 queue length :
 0
(...)

When you supply a path to a specific counter, the Get-Counter cmdlet retrieves only
the samples for that path. The -Computer parameter lets you target a specific remote
computer, if desired:

PS > $computer = $ENV:Computername
PS > Get-Counter -Computer $computer "processor(_total)\% processor time"

Timestamp CounterSamples
--------- --------------
1/9/2010 7:31:58 PM \\...\processor(_total)\% processor time :
 15.8710351576814

If you don’t know the path to the performance counter you want, you can use the
-ListSet parameter to search for a counter or set of counters. To see all counter sets,
use * as the parameter value:

PS > Get-Counter -List * | Format-List CounterSetName,Description

CounterSetName : TBS counters
Description : Performance counters for the TPM Base Services component.

CounterSetName : WSMan Quota Statistics
Description : Displays quota usage and violation information for WS-
 Management processes.

CounterSetName : Netlogon
Description : Counters for measuring the performance of Netlogon.

(...)

If you want to find a specific counter, use the Where-Object cmdlet to compare
against the Description or Paths property:

Get-Counter -ListSet * | Where-Object { $_.Description -match "garbage" }
Get-Counter -ListSet * | Where-Object { $_.Paths -match "Gen 2 heap" }

CounterSetName : .NET CLR Memory

17.3 Access Windows Performance Counters | 473

MachineName : .
CounterSetType : MultiInstance
Description : Counters for CLR Garbage Collected heap.
Paths : {\.NET CLR Memory(*)\# Gen 0 Collections, \.NET CLR
 Memory(*)\# Gen 1 Collections, \.NET CLR Memory(*)\#
 Gen 2 Collections, \.NET CLR Memory(*)\Promoted Memory
 from Gen 0...}
PathsWithInstances : {\.NET CLR Memory(_Global_)\# Gen 0 Collections, \.NET
 CLR Memory(powershell)\# Gen 0 Collections, \.NET CLR
 Memory(powershell_ise)\# Gen 0 Collections, \.NET
 CLR Memory(PresentationFontCache)\# Gen 0 Collections
 ...}
Counter : {\.NET CLR Memory(*)\# Gen 0 Collections, \.NET CLR
 Memory(*)\# Gen 1 Collections, \.NET CLR Memory(*)\#
 Gen 2 Collections, \.NET CLR Memory(*)\Promoted Memory
 from Gen 0...}

Once you’ve retrieved a set of counters, you can use the Export-Counter cmdlet to
save them in a format supported by other tools, such as the .blg files supported by the
Windows Performance Monitor application.

The example in the solution uses performance counters to retrieve
the system uptime. You will likely prefer PowerShell’s built-in com‐
mand to do this: Get-Uptime.

If you already have a set of performance counters saved in a .blg file or .tsv file that
were exported from Windows Performance Monitor, you can use the Import-
Counter cmdlet to work with those samples in PowerShell.

17.4 Access Windows API Functions
Problem
You want to access functions from the Windows API, as you would access them
through a Platform Invoke (P/Invoke) in a .NET language such as C#.

Solution
As shown in Example 17-3, obtain (or create) the signature of the Windows API
function, and then pass that to the -MemberDefinition parameter of the Add-Type
cmdlet. Store the output object in a variable, and then use the method on that vari‐
able to invoke the Windows API function.

474 | Chapter 17: Extend the Reach of PowerShell

Example 17-3. Get-PrivateProfileString.ps1

###
##
Get-PrivateProfileString
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Retrieves an element from a standard .INI file

.EXAMPLE

PS > Get-PrivateProfileString c:\windows\system32\tcpmon.ini `
 "<Generic Network Card>" Name
Generic Network Card

#>

param(
 ## The INI file to retrieve
 $Path,

 ## The section to retrieve from
 $Category,

 ## The item to retrieve
 $Key
)

Set-StrictMode -Version 3

The signature of the Windows API that retrieves INI
settings
$signature = @'
[DllImport("kernel32.dll")]
public static extern uint GetPrivateProfileString(
 string lpAppName,
 string lpKeyName,
 string lpDefault,
 StringBuilder lpReturnedString,
 uint nSize,
 string lpFileName);
'@

Create a new type that lets us access the Windows API function
$type = Add-Type -MemberDefinition $signature `
 -Name Win32Utils -Namespace GetPrivateProfileString `
 -Using System.Text -PassThru

17.4 Access Windows API Functions | 475

The GetPrivateProfileString function needs a StringBuilder to hold
its output. Create one, and then invoke the method
$builder = New-Object System.Text.StringBuilder 1024
$null = $type::GetPrivateProfileString($category,
 $key, "", $builder, $builder.Capacity, $path)

Return the output
$builder.ToString()

Discussion
You can access many simple Windows APIs using the script given in Recipe 17.5.
This approach is difficult for more complex APIs, however.

To support interacting with Windows APIs, use PowerShell’s Add-Type cmdlet.

Add-Type offers four basic modes of operation:
PS > Get-Command Add-Type | Select -Expand ParameterSets | Select Name

Name

FromSource
FromMember
FromPath
FromLiteralPath
FromAssemblyName

These modes of operation are:

FromSource

Compile some C# (or other language) code that completely defines a type. This is
useful when you want to define an entire class, its methods, namespace, etc. You
supply the actual code as the value to the -TypeDefinition parameter, usually
through a variable. For more information about this technique, see Recipe 17.6.

FromPath

Compile from a file on disk, or load the types from an assembly at that location.
For more information about this technique, see Recipe 17.8.

FromAssemblyName

Load an assembly from the .NET Global Assembly Cache (GAC) by its shorter
name. This is not the same as the [Reflection.Assembly]::LoadWithPartial
Name method, since that method introduces your script to many subtle breaking
changes. Instead, PowerShell maintains a large mapping table that converts the
shorter name you type into a strongly named assembly reference. For more
information about this technique, see Recipe 17.8.

476 | Chapter 17: Extend the Reach of PowerShell

FromMember

Generates a type out of a member definition (or a set of them). For example, if
you specify only a method definition, PowerShell automatically generates the
wrapper class for you. This parameter set is explicitly designed to easily support
P/Invoke calls.

Now, how do you use the FromMember parameter set to call a Windows API? The Sol‐
ution shows the end result of this process, but let’s take it step by step. First, imagine
that you want to access sections of an INI configuration file.

PowerShell doesn’t have a native way to manage INI files, and neither does the .NET
Framework. However, the Windows API does, through a call to the function called
GetPrivateProfileString. The .NET Framework lets you access Windows functions
through a technique called P/Invoke (Platform Invocation Services). Most calls boil
down to a simple P/Invoke definition, which usually takes a lot of trial and error.
However, a great community has grown around these definitions, resulting in an
enormous resource called P/Invoke .NET. The .NET Framework team also supports a
tool called the P/Invoke Interop Assistant that generates these definitions as well, but
we won’t consider that for now.

First, we’ll create a script called Get-PrivateProfileString.ps1. It’s a template for now:
Get-PrivateProfileString.ps1
param(
 $Path,
 $Category,
 $Key)

$null

To start fleshing this out, we visit P/Invoke .NET and search for GetPrivateProfile
String, as shown in Figure 17-1.

17.4 Access Windows API Functions | 477

http://www.pinvoke.net/

Figure 17-1. Visiting P/Invoke .NET

Click into the definition, and we see the C# signature, as shown in Figure 17-2.

Figure 17-2. The Windows API signature for GetPrivateProfileString

Next, we copy that signature as a here string into our script. Notice in the following
code example that we’ve added public to the declaration. The signatures on P/
Invoke .NET assume that you’ll call the method from within the C# class that defines
it. We’ll be calling it from scripts (which are outside of the C# class that defines it), so
we need to change its visibility by adding the word “public”:

Get-PrivateProfileString.ps1
param(
 $Path,
 $Category,
 $Key)

478 | Chapter 17: Extend the Reach of PowerShell

$signature = @'
[DllImport("kernel32.dll")]
public static extern uint GetPrivateProfileString(
 string lpAppName,
 string lpKeyName,
 string lpDefault,
 StringBuilder lpReturnedString,
 uint nSize,
 string lpFileName);
'@

$null

Now we add the call to Add-Type. This signature becomes the building block for a
new class, so we only need to give it a name. To prevent its name from colliding with
other classes with the same name, we also put it in a namespace. The name of our
script is a good choice:

Get-PrivateProfileString.ps1
param(
 $Path,
 $Category,
 $Key)

$signature = @'
[DllImport("kernel32.dll")]
public static extern uint GetPrivateProfileString(
 string lpAppName,
 string lpKeyName,
 string lpDefault,
 StringBuilder lpReturnedString,
 uint nSize,
 string lpFileName);
'@

$type = Add-Type -MemberDefinition $signature `
 -Name Win32Utils -Namespace GetPrivateProfileString `
 -PassThru

$null

When we try to run this script, though, we get an error:
The type or namespace name 'StringBuilder' could not be found (are you missing a
using directive or an assembly reference?)
c:\Temp\obozeqo1.0.cs(12) : string lpDefault,
c:\Temp\obozeqo1.0.cs(13) : >>> StringBuilder lpReturnedString,
c:\Temp\obozeqo1.0.cs(14) : uint nSize,

Indeed we are missing something. The StringBuilder class is defined in the
System.Text namespace, which requires a using directive to be placed at the top of
the program by the class definition. Since we’re letting PowerShell define the type for
us, we can either rename StringBuilder to System.Text.StringBuilder or add a
-UsingNamespace parameter to have PowerShell add the using statement for us.

17.4 Access Windows API Functions | 479

PowerShell adds references to the System and System.

Runtime.InteropServices namespaces by default.

Let’s do the latter:
Get-PrivateProfileString.ps1
param(
 $Path,
 $Category,
 $Key)

$signature = @'
[DllImport("kernel32.dll")]
public static extern uint GetPrivateProfileString(
 string lpAppName,
 string lpKeyName,
 string lpDefault,
 StringBuilder lpReturnedString,
 uint nSize,
 string lpFileName);
'@

$type = Add-Type -MemberDefinition $signature `
 -Name Win32Utils -Namespace GetPrivateProfileString `
 -Using System.Text -PassThru

$builder = New-Object System.Text.StringBuilder 1024
$null = $type::GetPrivateProfileString($category,
 $key, "", $builder, $builder.Capacity, $path)

$builder.ToString()

Now we can plug in all of the necessary parameters. The GetPrivateProfileString
function puts its output in a StringBuilder, so we’ll have to feed it one and return its
contents. This gives us the script shown in Example 17-3.

PS > Get-PrivateProfileString c:\windows\system32\tcpmon.ini `
 "<Generic Network Card>" Name
Generic Network Card

So now we have it. With just a few lines of code, we’ve defined and invoked a Win32
API call.

For more information about working with classes from the .NET Framework, see
Recipe 1.2.

480 | Chapter 17: Extend the Reach of PowerShell

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 17.5, “Program: Invoke Simple Windows API Calls”

Recipe 17.6, “Define or Extend a .NET Class”

Recipe 17.8, “Access a .NET SDK Library”

17.5 Program: Invoke Simple Windows API Calls
There are times when neither PowerShell’s cmdlets nor its scripting language directly
support a feature you need. In most of those situations, PowerShell’s direct support
for the .NET Framework provides another avenue to let you accomplish your task. In
some cases, though, even the .NET Framework doesn’t support a feature you need to
resolve a problem, and the only solution is to access the core Windows APIs.

For complex API calls (ones that take highly structured data), the solution is to use
the Add-Type cmdlet (or write a PowerShell cmdlet) that builds on the Platform
Invoke (P/Invoke) support in the .NET Framework. The P/Invoke support in
the .NET Framework is designed to let you access core Windows APIs directly.

Although it’s possible to determine these P/Invoke definitions yourself, it’s usually
easiest to build on the work of others. If you want to know how to call a specific Win‐
dows API from a .NET language, the P/Invoke .NET website is the best place to start.

If the API you need to access is straightforward (one that takes and returns only sim‐
ple data types), however, Example 17-4 can do most of the work for you.

Example 17-4. Invoke-WindowsApi.ps1

##
##
Invoke-WindowsApi
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Invoke a native Windows API call that takes and returns simple data types.

.EXAMPLE

Prepare the parameter types and parameters for the CreateHardLink function

17.5 Program: Invoke Simple Windows API Calls | 481

http://www.pinvoke.net

PS > $filename = "c:\temp\hardlinked.txt"
PS > $existingFilename = "c:\temp\link_target.txt"
PS > Set-Content $existingFilename "Hard Link target"
PS > $parameterTypes = [string], [string], [IntPtr]
PS > $parameters = [string] $filename, [string] $existingFilename,
 [IntPtr]::Zero

Call the CreateHardLink method in the Kernel32 DLL
PS > $result = Invoke-WindowsApi "kernel32" ([bool]) "CreateHardLink" `
 $parameterTypes $parameters
PS > Get-Content C:\temp\hardlinked.txt
Hard Link target

#>

param(
 ## The name of the DLL that contains the Windows API, such as "kernel32"
 [string] $DllName,

 ## The return type expected from Windows API
 [Type] $ReturnType,

 ## The name of the Windows API
 [string] $MethodName,

 ## The types of parameters expected by the Windows API
 [Type[]] $ParameterTypes,

 ## Parameter values to pass to the Windows API
 [Object[]] $Parameters
)

Set-StrictMode -Version 3

Begin to build the dynamic assembly
$domain = [AppDomain]::CurrentDomain
$name = New-Object Reflection.AssemblyName 'PInvokeAssembly'
$assembly = $domain.DefineDynamicAssembly($name, 'Run')
$module = $assembly.DefineDynamicModule('PInvokeModule')
$type = $module.DefineType('PInvokeType', "Public,BeforeFieldInit")

Go through all of the parameters passed to us. As we do this,
we clone the user's inputs into another array that we will use for
the P/Invoke call.
$inputParameters = @()
$refParameters = @()

for($counter = 1; $counter -le $parameterTypes.Length; $counter++)
{
 ## If an item is a PSReference, then the user
 ## wants an [out] parameter.
 if($parameterTypes[$counter - 1] -eq [Ref])
 {
 ## Remember which parameters are used for [Out] parameters
 $refParameters += $counter

482 | Chapter 17: Extend the Reach of PowerShell

 ## On the cloned array, we replace the PSReference type with the
 ## .NET reference type that represents the value of the PSReference,
 ## and the value with the value held by the PSReference.
 $parameterTypes[$counter - 1] =
 $parameters[$counter - 1].Value.GetType().MakeByRefType()
 $inputParameters += $parameters[$counter - 1].Value
 }
 else
 {
 ## Otherwise, just add their actual parameter to the
 ## input array.
 $inputParameters += $parameters[$counter - 1]
 }
}

Define the actual P/Invoke method, adding the [Out]
attribute for any parameters that were originally [Ref]
parameters.
$method = $type.DefineMethod(
 $methodName, 'Public,HideBySig,Static,PinvokeImpl',
 $returnType, $parameterTypes)

foreach($refParameter in $refParameters)
{
 [void] $method.DefineParameter($refParameter, "Out", $null)
}

Apply the P/Invoke constructor
$ctor = [Runtime.InteropServices.DllImportAttribute].GetConstructor([string])
$attr = New-Object Reflection.Emit.CustomAttributeBuilder $ctor, $dllName
$method.SetCustomAttribute($attr)

Create the temporary type, and invoke the method.
$realType = $type.CreateType()

$realType.InvokeMember(
 $methodName, 'Public,Static,InvokeMethod', $null, $null,$inputParameters)

Finally, go through all of the reference parameters, and update the
values of the PSReference objects that the user passed in.
foreach($refParameter in $refParameters)
{
 $parameters[$refParameter - 1].Value = $inputParameters[$refParameter - 1]
}

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

17.5 Program: Invoke Simple Windows API Calls | 483

17.6 Define or Extend a .NET Class
Problem
You want to define a new .NET class or extend an existing one.

Solution
For most situations, you can define your .NET class in PowerShell itself:

class GreatnessComparer : System.Collections.IComparer
{
 [int] Compare([Object] $X, [Object] $Y)
 {
 if($X -eq "Powershell") { return -1 }
 elseif($Y -eq "Powershell") { return 1 }
 else { return [String]::Compare($X, $Y) }
 }
}

PS > $languages = "Perl","Ruby","Python","PowerShell","VBScript"
PS > [Array]::Sort($languages, [GreatnessComparer]::New())
PS > $languages

PowerShell
Perl
Python
Ruby
VBScript

For other situations, use the -TypeDefinition parameter of the Add-Type class, as in
Example 17-5.

Example 17-5. Invoke-AddTypeTypeDefinition.ps1

###
##
Invoke-AddTypeTypeDefinition
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Demonstrates the use of the -TypeDefinition parameter of the Add-Type
cmdlet.

#>

484 | Chapter 17: Extend the Reach of PowerShell

Set-StrictMode -Version 3

Define the new C# class
$newType = @'
using System;

namespace PowerShellCookbook
{
 public class AddTypeTypeDefinitionDemo
 {
 public string SayHello(string name)
 {
 string result = String.Format("Hello {0}", name);
 return result;
 }
 }
}

'@

Add it to the Powershell session
Add-Type -TypeDefinition $newType

Show that we can access it like any other .NET type
$greeter = New-Object PowerShellCookbook.AddTypeTypeDefinitionDemo
$greeter.SayHello("World")

Discussion
For most instances in Powershell where you want to add structure to data or provide
methods to act on that data, you can use PowerShell classes to provide this function‐
ality. For more information about writing PowerShell classes, see Example 3-8. For an
additional example of extending .NET classes with PowerShell, see Recipe 3.7.

For other scenarios, the Add-Type cmdlet is one of the major aspects of the glue-like
nature of PowerShell. It offers several unique ways to interact deeply with the .NET
Framework. One of its major modes of operation comes from the -TypeDefinition
parameter, which lets you define entirely new .NET classes. In addition to the exam‐
ple given in the Solution, Recipe 3.7 demonstrates an effective use of this technique.

Once you call the Add-Type cmdlet, PowerShell compiles the source code you provide
into a real .NET class. This action is equivalent to defining the class in a traditional
development environment, such as Visual Studio, and is just as powerful.

17.6 Define or Extend a .NET Class | 485

The thought of compiling source code as part of the execution of
your script may concern you because of its performance impact.
Fortunately, PowerShell saves your objects when it compiles them.
If you call the Add-Type cmdlet a second time with the same source
code and in the same session, PowerShell reuses the result of the
first call. If you want to change the behavior of a type you’ve
already loaded, exit your session and create it again.

PowerShell assumes C# as the default language for source code supplied to the
-TypeDefinition parameter. In addition to C#, the Add-Type cmdlet also supports
C# version 3 (LINQ, the var keyword, etc.), Visual Basic, and JScript. It also supports
languages that implement the .NET-standard CodeProvider requirements (such as
F#).

If the code you want to compile already exists in a file, you don’t have to specify it in-
line. Instead, you can provide its path to the -Path parameter. This parameter auto‐
matically detects the extension of the file and compiles using the appropriate lan‐
guage as needed.

In addition to supporting input from a file, you might also want to store the output
into a file—such as a cmdlet DLL or console application. The Add-Type cmdlet makes
this possible through the -OutputAssembly parameter. For example, the following
adds a cmdlet on the fly:

PS > $cmdlet = @'
using System.Management.Automation;

namespace PowerShellCookbook
{
 [Cmdlet("Invoke", "NewCmdlet")]
 public class InvokeNewCmdletCommand : Cmdlet
 {
 [Parameter(Mandatory = true)]
 public string Name
 {
 get { return _name; }
 set { _name = value; }
 }
 private string _name;

 protected override void BeginProcessing()
 {
 WriteObject("Hello " + _name);
 }
 }
}

'@

486 | Chapter 17: Extend the Reach of PowerShell

PS > Add-Type -TypeDefinition $cmdlet -OutputAssembly MyNewModule.dll
PS > Import-Module .\MyNewModule.dll
PS > Invoke-NewCmdlet

cmdlet Invoke-NewCmdlet at command pipeline position 1
Supply values for the following parameters:
Name: World
Hello World

For advanced scenarios, you might want to customize how PowerShell compiles your
source code: embedding resources, changing the warning options, and more. For this,
use the -CompilerParameters parameter.

For an example of using the Add-Type cmdlet to generate inline C#, see Recipe 17.7.

See Also
Example 3-8

Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 3.7, “Program: Create a Dynamic Variable”

Recipe 17.5, “Program: Invoke Simple Windows API Calls”

Recipe 17.7, “Add Inline C# to Your PowerShell Script”

Recipe 17.9, “Create Your Own PowerShell Cmdlet”

17.7 Add Inline C# to Your PowerShell Script
Problem
You want to write a portion of your script in C# (or another .NET language).

Solution
Use the -MemberDefinition parameter of the Add-Type class, as in Example 17-6.

Example 17-6. Invoke-Inline.ps1

###
##
Invoke-Inline
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
###

<#

17.7 Add Inline C# to Your PowerShell Script | 487

.SYNOPSIS

Demonstrates the Add-Type cmdlet to invoke inline C#

#>

Set-StrictMode -Version 3

$inlineType = Add-Type -Name InvokeInline_Inline -PassThru `
 -MemberDefinition @'
 public static int RightShift(int original, int places)
 {
 return original >> places;
 }
'@

$inlineType::RightShift(1024, 3)

Discussion
One of the natural languages to explore after learning PowerShell is C#. It uses many
of the same programming techniques as PowerShell, and it also uses the same classes
and methods in the .NET Framework. In addition, C# sometimes offers language fea‐
tures or performance benefits that aren’t available through PowerShell.

Rather than having to move to C# completely for these situations, Example 17-6
demonstrates how you can use the Add-Type cmdlet to write and invoke C# directly
in your script.

Once you call the Add-Type cmdlet, PowerShell compiles the source code you provide
into a real .NET class. This action is equivalent to defining the class in a traditional
development environment, such as Visual Studio, and gives you equivalent function‐
ality. When you use the -MemberDefinition parameter, PowerShell adds the sur‐
rounding source code required to create a complete .NET class.

By default, PowerShell will place your resulting type in the Microsoft.Power
Shell.Commands.AddType.AutoGeneratedTypes namespace. If you use the
-PassThru parameter (and define your method as static), you don’t need to pay
much attention to the name or namespace of the generated type. However, if you
don’t define your method as static, you’ll need to use the New-Object cmdlet to cre‐
ate a new instance of the object before using it. In this case, you’ll need to use the full
name of the resulting type when creating it. For example:

New-Object Microsoft.PowerShell.Commands.AddType.
 AutoGeneratedTypes.InvokeInline_Inline

488 | Chapter 17: Extend the Reach of PowerShell

The thought of compiling source code as part of the execution of
your script may concern you because of its performance impact.
Fortunately, PowerShell saves your objects when it compiles them.
If you call the Add-Type cmdlet a second time with the same source
code and in the same session, PowerShell reuses the result of the
first call. If you want to change the behavior of a type you’ve
already loaded, exit your session and create it again.

PowerShell assumes C# as the default language of code supplied to the
-MemberDefinition parameter. It also supports C# version 3 (LINQ, the var key‐
word, etc.), Visual Basic, and JScript. In addition, it supports languages that imple‐
ment the .NET-standard CodeProvider requirements (such as F#).

For an example of the -MemberDefinition parameter being used as part of a larger
script, see Recipe 17.4. For an example of using the Add-Type cmdlet to create entire
types, see Recipe 17.6.

See Also
Recipe 17.4, “Access Windows API Functions”

Recipe 17.6, “Define or Extend a .NET Class”

17.8 Access a .NET SDK Library
Problem
You want to access the functionality exposed by a .NET DLL, but that DLL is pack‐
aged as part of a developer-oriented software developer’s kit (SDK).

Solution
To create objects contained in a DLL, use the -Path parameter of the Add-Type
cmdlet to load the DLL and the New-Object cmdlet to create objects contained in it.
Example 17-7 illustrates this technique.

Example 17-7. Interacting with classes from the SharpZipLib SDK DLL

Add-Type -Path d:\bin\ICSharpCode.SharpZipLib.dll
$namespace = "ICSharpCode.SharpZipLib.Zip.{0}"

$zipName = Join-Path (Get-Location) "PowerShell_Scripts.zip"
$zipFile = New-Object ($namespace -f "ZipOutputStream") ([IO.File]::Create($zipName))

foreach($file in dir *.ps1)
{
 ## Add the file to the ZIP archive.

17.8 Access a .NET SDK Library | 489

 $zipEntry = New-Object ($namespace -f "ZipEntry") $file.Name
 $zipFile.PutNextEntry($zipEntry)
}

$zipFile.Close()

Discussion
While C# and VB.NET developers are usually the consumers of SDKs created for
the .NET Framework, PowerShell lets you access the SDK features just as easily. To do
this, use the -Path parameter of the Add-Type cmdlet to load the SDK assembly, and
then work with the classes from that assembly as you would work with other classes
in the .NET Framework.

Although PowerShell lets you access developer-oriented SDKs
easily, it can’t change the fact that these SDKs are developer-
oriented. SDKs and programming interfaces are rarely designed
with the administrator in mind, so be prepared to work with pro‐
gramming models that require multiple steps to accomplish your
task.

To load any of the typical assemblies included in the .NET Framework, use the
-Assembly parameter of the Add-Type cmdlet:

Add-Type -Assembly System.Web

Like most PowerShell cmdlets, the Add-Type cmdlet supports wildcards to make long
assembly names easier to type:

Add-Type -Assembly system.win*.forms

If the wildcard matches more than one assembly, Add-Type generates an error.

The .NET Framework offers a similar feature through the LoadWithPartialName
method of the System.Reflection.Assembly class, shown in Example 17-8.

Example 17-8. Loading an assembly by its partial name

PS > [Reflection.Assembly]::LoadWithPartialName("System.Web")

GAC Version Location
--- ------- --------
True v2.0.50727 C:\WINDOWS\assembly\GAC_32\(...)\System.Web.dll

PS > [Web.HttpUtility]::UrlEncode("http://www.bing.com")
http%3a%2f%2fwww.bing.com

The difference between the two is that the LoadWithPartialName method is unsuita‐
ble for scripts that you want to share with others or use in a production environment.

490 | Chapter 17: Extend the Reach of PowerShell

It loads the most current version of the assembly, which may not be the same as the
version you used to develop your script. If that assembly changes between versions,
your script will no longer work. The Add-Type command, on the other hand, inter‐
nally maps the short assembly names to the fully qualified assembly names contained
in a typical installation of the .NET Framework versions 2.0 and 3.5.

One thing you’ll notice when working with classes from an SDK is that it quickly
becomes tiresome to specify their fully qualified type names. For example, zip-related
classes from the SharpZipLib all start with ICSharpCode.SharpZipLib.Zip. This is
called the namespace of that class. Like most programming languages, PowerShell sol‐
ves this problem with a using statement that lets you specify a list of namespaces for
PowerShell to search when you type a plain class name such as HttpUtility:

using namespace System.Web
[HttpUtility]::UrlEncode("http://www.bing.com")

Note that prepackaged SDKs aren’t the only DLLs you can load this way. An SDK
library is simply a DLL that somebody wrote, compiled, packaged, and released. If
you’re comfortable with any of the .NET languages, you can also create your own
DLL, compile it, and use it exactly the same way. To see an example of this approach,
see Recipe 17.6.

For more information about working with classes from the .NET Framework, see
Recipe 3.9.

See Also
Recipe 3.9, “Create an Instance of a .NET Object”

Recipe 17.6, “Define or Extend a .NET Class”

17.9 Create Your Own PowerShell Cmdlet
Problem
You want to write your own PowerShell cmdlet.

Solution
To create a compiled cmdlet, use features of the PowerShell Standard Library in
a .NET Standard class library.

17.9 Create Your Own PowerShell Cmdlet | 491

Discussion
As mentioned in “Structured Commands (Cmdlets)” on page xxxiv, PowerShell
cmdlets offer several significant advantages over traditional executable programs.
From the user’s perspective, cmdlets are incredibly consistent. Their support for
strongly typed objects as input makes them incredibly powerful, too. From the cmdlet
author’s perspective, cmdlets are incredibly easy to write when compared to the
amount of power they provide.

In most cases, writing a script-based cmdlet (also known as an advanced function)
should be all you need. To learn how to create a script-based cmdlet, see Recipe 11.15.

However, you can also use the C# programming language to create a cmdlet.

As with the ease of creating advanced functions, creating and exposing a new
command-line parameter is as easy as creating a new public property on a class. Sup‐
porting a rich pipeline model is as easy as placing your implementation logic into one
of three standard method overrides.

Although a full discussion on how to implement a cmdlet is outside the scope of this
book, the following steps illustrate the process behind implementing a simple cmdlet.
While implementation typically happens in a fully featured development environ‐
ment (such as Visual Studio), Example 17-9 demonstrates how to compile a cmdlet
simply through the dotnet command-line toolchain.

For more information on how to write a PowerShell cmdlet, see the MSDN topic
“Writing a PowerShell Cmdlet,” in the PowerShell Developer’s Documentation.

Step 1: Download the .NET SDK
The .NET SDK contains the compiler, reference assemblies, and other information
that you’ll need to develop PowerShell cmdlets. This example installs the .NET SDK
to a temporary working directory, but there are also options to install the SDK
system-wide if you wish:

Invoke-WebRequest https://dot.net/v1/dotnet-install.ps1 -Out ./dotnet-install.ps1
.\dotnet-install.ps1 -Channel Current

Step 2: Create a project to hold the cmdlet source code and PowerShell SDK
dotnet new classlib --name TemplateBinaryModule
cd TemplateBinaryModule
dotnet add package PowerShellStandard.Library

Step 3: Customize the cmdlet source code
Edit the file called Class1.cs with the content from Example 17-9 and save it.

492 | Chapter 17: Extend the Reach of PowerShell

https://oreil.ly/tBzjc

Example 17-9. Invoke-TemplateCmdletImplementation

using System;
using System.Management.Automation;

/*
To build and install:

1) Invoke-WebRequest https://dot.net/v1/dotnet-install.ps1 -outfile ./dotnet-install.ps1
2) .\dotnet-install.ps1
3) dotnet new classlib --name TemplateBinaryModule
4) cd TemplateBinaryModule
5) dotnet add package PowerShellStandard.Library
6) notepad .\Class1.cs (use the content of this file)
7) dotnet build
8) Import-Module .\bin\Debug\netstandard2.0\TemplateBinaryModule.dll

To run:

PS > "Hello World" | Invoke-TemplateCmdlet
*/

namespace Template.Commands
{
 [Cmdlet("Invoke", "TemplateCmdlet")]
 public class InvokeTemplateCmdletCommand : Cmdlet
 {
 [Parameter(Mandatory=true, Position=0, ValueFromPipeline=true)]
 public string Text { get; set; }

 protected override void BeginProcessing()
 {
 WriteObject("Processing Started");
 }

 protected override void ProcessRecord()
 {
 WriteObject("Processing " + Text);
 }

 protected override void EndProcessing()
 {
 WriteObject("Processing Complete.");
 }
 }
}

Step 4: Compile the project
dotnet build

Step 5: Load the module
A PowerShell cmdlet is a simple .NET class. The DLL that contains one or more com‐
piled cmdlets is called a binary module.

17.9 Create Your Own PowerShell Cmdlet | 493

Once you have compiled the module, the final step is to load it:
Import-Module .\bin\Debug\net5.0\TemplateBinaryModule.dll

For more information about binary modules, see Recipe 1.28.

Step 6: Use the module
Once you’ve added the module to your session, you can call commands from that
module as you would call any other cmdlet.

PS > "Hello World" | Invoke-TemplateCmdlet
Processing Started
Processing Hello World
Processing Complete.

In addition to binary modules, PowerShell supports almost all of the functionality of
cmdlets through advanced functions. If you want to create functions with the power
of cmdlets and the ease of scripting, see Recipe 11.15.

See Also
“Structured Commands (Cmdlets)” on page xxxiv

Recipe 1.28, “Extend Your Shell with Additional Commands”

Recipe 11.15, “Provide -WhatIf, -Confirm, and Other Cmdlet Features”

Recipe 17.6, “Define or Extend a .NET Class”

17.10 Add PowerShell Scripting to Your Own Program
Problem
You want to provide your users with an easy way to automate your program, but don’t
want to write a scripting language on your own.

Solution
To build PowerShell scripting into your own program, use the PowerShell’s
System.Management.Automation SDK.

Discussion
One of the fascinating aspects of PowerShell is how easily it lets you add many of its
capabilities to your own program. This is because PowerShell is, at its core, a power‐
ful engine that any application can use. The PowerShell console application is in fact
just a text-based interface to this engine.

494 | Chapter 17: Extend the Reach of PowerShell

Although a full discussion of the PowerShell hosting model is outside the scope of
this book, the following example illustrates the techniques behind exposing features
of your application for your users to script.

To frame the premise of Example 17-10 (shown later), imagine an email application
that lets you run rules when it receives an email. While you’ll want to design a stan‐
dard interface that allows users to create simple rules, you also will want to provide a
way for users to write incredibly complex rules. Rather than design a scripting lan‐
guage yourself, you can simply use PowerShell’s scripting language. In the following
example, we provide user-written scripts with a variable called $message that repre‐
sents the current message and then runs the commands.

PS > Get-Content VerifyCategoryRule.ps1
if($message.Body -match "book")
{
 [Console]::WriteLine("This is a message about the book.")
}
else
{
 [Console]::WriteLine("This is an unknown message.")
}
PS > .\RulesWizardExample.exe .\VerifyCategoryRule.ps1
This is a message about the book.

For more information on how to host PowerShell in your own application, see the
MSDN topic “Windows PowerShell Host Quickstart,” available in the PowerShell
Developer’s Documentation.

Step 1: Download the .NET SDK
The .NET SDK contains the compiler, reference assemblies, and other information
that you will need to develop PowerShell hosting applications. This example installs
the .NET SDK to a temporary working directory, but there are also options to install
the SDK system-wide if you wish:

Invoke-WebRequest https://dot.net/v1/dotnet-install.ps1 -OutFile ./dotnet-install.ps1
.\dotnet-install.ps1 -Channel Current

Step 2: Create a project to hold the cmdlet source code and PowerShell SDK
dotnet new console --name RulesWizardExample
cd RulesWizardExample
dotnet add package System.Management.Automation

Step 3: Customize the application source code
Edit the file called Program.cs with the content from Example 17-10, and save it on
your hard drive.

17.10 Add PowerShell Scripting to Your Own Program | 495

https://oreil.ly/H1Y8M
https://oreil.ly/H1Y8M

Example 17-10. Program.cs

using System;
using System.Management.Automation;
using System.Management.Automation.Runspaces;

namespace Template
{
 // Define a simple class that represents a mail message
 public class MailMessage
 {
 public MailMessage(string to, string from, string body)
 {
 this.To = to;
 this.From = from;
 this.Body = body;
 }

 public String To;
 public String From;
 public String Body;
 }

 public class RulesWizardExample
 {
 public static void Main(string[] args)
 {
 // Ensure that they've provided some script text
 if(args.Length == 0)
 {
 Console.WriteLine("Usage:");
 Console.WriteLine(" RulesWizardExample <script text>");
 return;
 }

 // Create an example message to pass to our rules wizard
 MailMessage mailMessage =
 new MailMessage(
 "guide_feedback@leeholmes.com",
 "guide_reader@example.com",
 "This is a message about your book.");

 // Create a variable, called "$message" in the Runspace, and populate
 // it with a reference to the current message in our application.
 // Scripts in the PowerShell instance can interact with this object like any
 // other .NET object.
 InitialSessionState iss = InitialSessionState.CreateDefault2();
 iss.Variables.Add(
 new SessionStateVariableEntry(
 "message", mailMessage, "The message to be processed."));

 // Create a PowerShell instance (an environment for running commands) based on
 // that initial session state
 using(PowerShell psInstance = PowerShell.Create(iss))
 {
 // Add a script (given in the first command line argument) to the

496 | Chapter 17: Extend the Reach of PowerShell

 // PowerShell instance
 psInstance.AddScript(args[0]);

 // Invoke (execute) the pipeline.
 psInstance.Invoke();
 }
 }
 }
}

Step 4: Compile the project
dotnet build

Step 5: Run the project
Although the example itself provides very little functionality, it demonstrates the core
concepts behind adding PowerShell scripting to your own program.

Here we give our rules wizard a simple rule to just output the sender of the sample
mail message:

PS > bin\Debug\net5.0\RulesWizardExample.exe '[Console]::WriteLine($message.From)'
guide_reader@example.com

or, we can have it run more complicated rules based on the script we saw earlier:
PS > bin\Debug\net5.0\RulesWizardExample.exe .\VerifyCategoryRule.ps1
This is a message about the book.

See Also
“Structured Commands (Cmdlets)” on page xxxiv

17.10 Add PowerShell Scripting to Your Own Program | 497

CHAPTER 18

Security and Script Signing

18.0 Introduction
Security plays two important roles in PowerShell. The first role is the security of Pow‐
erShell itself. Scripting languages have long been a vehicle of email-based malware on
Windows, so PowerShell’s security features have been carefully designed to thwart
this danger. The second role is the set of security-related tasks you are likely to
encounter when working with your computer: script signing, certificates, and creden‐
tials, just to name a few.

When it comes to talking about security in the scripting and command-line world, a
great deal of folklore and superstition clouds the picture. One of the most common
misconceptions is that scripting languages and command-line shells somehow let
users bypass the security protections of the Windows graphical user interface.

The Windows security model protects resources—not the way you get to them. That’s
because, in effect, the programs that you run are you. If you can do it, so can a pro‐
gram. If a program can do it, then you can do it without having to use that program.
For example, consider the act of changing critical data in the Windows Registry. If
you use the Windows Registry Editor graphical user interface, it provides an error
message when you attempt to perform an operation that you don’t have permission
for, as shown in Figure 18-1.

499

Figure 18-1. Error message from the Windows Registry Editor

The Registry Editor provides this error message because it’s unable to delete that key,
not because it wanted to prevent you from doing it. Windows itself protects the regis‐
try keys, not the programs you use to access them.

Likewise, PowerShell provides an error message when you attempt to perform an
operation that you don’t have permission for—not because PowerShell contains extra
security checks for that operation, but simply because Windows itself prevents the
operation:

PS > New-Item "HKLM:\Software\Microsoft\Windows\CurrentVersion\Run\New"
New-Item : Requested registry access is not allowed.
At line:1 char:9
+ New-Item <<<< "HKLM:\Software\Microsoft\Windows\CurrentVersion\Run\New"

While perhaps clear after explanation, this misunderstanding often gets used as a rea‐
son to prevent users from running command shells or scripting languages altogether.

Defending Against PowerShell Attacks
As this book provides a firm testament to, PowerShell is an incredibly powerful tool.
While this power has improved the lives of millions of developers and administrators,
PowerShell has also sometimes found itself an unwilling participant in the toolchains
of malicious computer attackers.

This is nothing new, of course. Attackers have leveraged powerful built-in operating
system tools for decades: bash, perl, cmd.exe, python, vbscript, PowerShell, C#, as
well as tools and binaries that attackers compile themselves. If this list sounds famil‐
iar, it’s because it probably is—attackers are mostly just unauthorized system
administrators.

500 | Chapter 18: Security and Script Signing

One thing that’s common with every item on this list is that they are never the initial
entry point of an attack. Attackers first find their way in through other means (a user
opening a malicious email attachment, or an administrator leaving their password in
an unsecure location, for example), and then leverage what they can to accomplish
their goal.

One thing on this list is not like the others, however, and that is PowerShell. From its
very inception, PowerShell recognized the dangers of unauthorized use and took pre‐
cautions to mitigate them. As the attack landscape changed, PowerShell continued to
evolve through amazing engagement with the community and top-tier legitimate
security researchers in the information security industry.

PowerShell’s security mechanisms make it by far the most security transparent man‐
agement tool in the industry. Large and extensive intrusions that relied on a multi‐
tude of tools have come crumbling down simply because the attacker made the mis‐
take of using PowerShell on a system with security logging properly configured.

In this chapter, we’ll show how you can make your systems the kind that attackers
fear.

18.1 Enable Scripting Through an Execution Policy
Problem
PowerShell provides an error message, such as the following, when you try to run a
script:

PS > .\Test.ps1
File C:\temp\test.ps1 cannot be loaded because the execution of scripts is
disabled on this system. Please see "get-help about_signing" for more details.
At line:1 char:10
+ .\Test.ps1 <<<<

Solution
To prevent this error message, use the Set-ExecutionPolicy cmdlet to change the
PowerShell execution policy to one of the policies that allow scripts to run:

Set-ExecutionPolicy RemoteSigned -Scope CurrentUser

Discussion
As normally configured, PowerShell operates strictly as an interactive shell. By disa‐
bling the execution of scripts by default, PowerShell prevents malicious PowerShell
scripts from affecting users who have PowerShell installed but who may never have
used (or even heard of!) PowerShell.

18.1 Enable Scripting Through an Execution Policy | 501

You (as a reader of this book and PowerShell user) are not part of that target audi‐
ence. You will want to configure PowerShell to run under one of the following five
execution policies:

Restricted

PowerShell operates as an interactive shell only. Attempting to run a script gener‐
ates an error message. This is PowerShell’s default execution policy.

AllSigned

PowerShell runs only those scripts that contain a digital signature. When you
attempt to run a script signed by a publisher that PowerShell hasn’t seen before,
PowerShell asks whether you trust that publisher to run scripts on your system.

RemoteSigned (recommended)
PowerShell runs most scripts without prompting, but requires that scripts from
the internet contain a digital signature. As in AllSigned mode, PowerShell asks
whether you trust that publisher to run scripts on your system when you run a
script signed by a publisher it hasn’t seen before. PowerShell considers a script to
have come from the internet when it has been downloaded to your computer by
a popular communications program such as Edge, Outlook, or Messenger.

Unrestricted

PowerShell doesn’t require a digital signature on any script, but (like Windows
Explorer) warns you when a script has been downloaded from the internet.

Bypass

PowerShell places the responsibility of security validation entirely upon the user.

When it comes to evaluating script signatures, always remember that a signed script
does not mean a safe script! The signature on a script gives you a way to verify who
the script came from, but not that you can trust its author to run commands on your
system. You need to make that decision for yourself, which is why PowerShell asks
you.

Run the Set-ExecutionPolicy cmdlet to configure the system’s execution policy. It
supports three scopes:

Process

Impacts the current session and any that it launches. This scope modifies the
PSExecutionPolicyPreference environment variable and is also supported
through the -ExecutionPolicy parameter to pwsh.exe.

CurrentUser

Modifies the execution policy for the current user, and stores its value in the
HKEY_CURRENT_USER hive of the Windows Registry.

502 | Chapter 18: Security and Script Signing

LocalMachine

Modifies the execution policy for the entire machine, and stores its value in the
HKEY_LOCAL_MACHINE hive of the Windows Registry. Modifying the execution
policy at this scope requires that you launch PowerShell with Administrator priv‐
ileges. If you want to configure your execution policy, right-click the PowerShell
link for the option to launch PowerShell as the Administrator.

If you specify the value Undefined for the execution policy at a specific scope, Power‐
Shell removes any execution policy you previously defined for that scope.

Alternatively, you can directly modify the registry key that PowerShell uses to store its
execution policy. In Windows PowerShell, for the Currentuser and LocalMachine
scopes, this is the ExecutionPolicy property under the registry path SOFTWARE
\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell. In PowerShell Core, you can
find these settings alongside your user and system profile paths: <documents>\power
shell\powershell.config.json, and $pshome\powershell.config.json.

In an enterprise setting, PowerShell also lets you override this local preference
through Group Policy. For more information about PowerShell’s Group Policy sup‐
port, see Recipe 18.6.

Execution policies are not user restrictions
It’s easy to understand the power of an execution policy to prevent scripts from run‐
ning, but administrators often forget to consider from whom. They might think that
enforcing an AllSigned policy is a way to prevent the user from running unapproved
applications, when really it’s designed as a way to prevent the attacker from running
scripts that the user doesn’t approve. This misconception is often wrongly reinforced
by the original location of the ExecutionPolicy configuration key in PowerShell ver‐
sion 1—in a registry location that only machine administrators have access to.

Systemwide PowerShell execution policies can’t prevent the user from doing some‐
thing the user wants to do. That job is left to the Windows Account Model, which is
designed as a security boundary. It controls what users can do: what files they can
access, what registry keys they can open, and more. PowerShell is a user-mode appli‐
cation, and is therefore (as defined by the Windows security model) completely under
the user’s control.

Instead, execution policies are a user-focused feature, similar to seatbelts or helmets.
It’s best to keep them on, but you always have the option to take them off. Power‐
Shell’s installer sets the execution policy to Restricted as a safe default for the vast
majority of Windows users who will never run a PowerShell script in their life. A sys‐
tem administrator might set the execution policy to AllSigned to define it as a best
practice or to let nontechnical users run a subset of safe scripts.

18.1 Enable Scripting Through an Execution Policy | 503

At any time, users can decide otherwise. They can type the commands by hand, paste
the script into their PowerShell prompt, or use any of a countless number of other
workarounds. These are all direct results of a Windows core security principle: you
have complete control over any application you’re running. PowerShell makes this
reality transparent through its fine-grained execution policy scopes.

At its core, execution policy scopes let administrators and users tailor their safety har‐
nesses. Jane might be fluent and technical (and opt for a RemoteSigned execution pol‐
icy), whereas Bob (another user of the same machine with different security preferen‐
ces) can still get the benefits of an AllSigned default execution policy. In addition,
agents or automation tools can invoke PowerShell commands without having to
modify the permanent state of the system.

See Also
Recipe 18.6, “Manage PowerShell Security in an Enterprise”

18.2 Enable PowerShell Security Logging
Problem
You want to ensure you have the maximum amount of data available to you to inves‐
tigate suspicious or malicious use of PowerShell.

Solution
Set PowerShell Core to use the policy configuration options from Windows
PowerShell:

$policies = "ScriptBlockLogging","ModuleLogging","Transcription"
foreach($policy in $policies)
{
 $basePath = "HKLM:\Software\Policies\Microsoft\PowerShellCore\$policy"
 if(-not (Test-Path $basePath))
 {
 $null = New-Item $basePath -Force
 }
 Set-ItemProperty $basePath -Name UseWindowsPowerShellPolicySetting -Value 1
}

Enable PowerShell Script Block Logging and Module Logging:
$basePath = "HKLM:\Software\Policies\Microsoft\Windows\PowerShell\ScriptBlockLogging"
if(-not (Test-Path $basePath))
{
 $null = New-Item $basePath -Force
}
Set-ItemProperty $basePath -Name EnableScriptBlockLogging -Value 1

504 | Chapter 18: Security and Script Signing

$basePath = "HKLM:\Software\Policies\Microsoft\Windows\PowerShell\ModuleLogging"
if(-not (Test-Path $basePath))
{
 $null = New-Item $basePath -Force
}
Set-ItemProperty $basePath -Name EnableModuleLogging -Value 1

$basePath = "HKLM:\Software\Policies\Microsoft\Windows\PowerShell\" +
 "ModuleLogging\ModuleNames"
if(-not (Test-Path $basePath))
{
 $null = New-Item $basePath -Force
}

Set-ItemProperty $basePath -Name EnableModuleLogging -Value 1
Set-ItemProperty $basePath -Name "*" -Value "*"

Enable PowerShell Transcription:
$basePath = "HKLM:\Software\Policies\Microsoft\Windows\PowerShell\Transcription"
if(-not (Test-Path $basePath))
{
 $null = New-Item $basePath -Force
}
Set-ItemProperty $basePath -Name EnableTranscripting -Value 1
Set-ItemProperty $basePath -Name EnableInvocationHeader -Value 1

$transcriptPath = "C:\ProgramData\WindowsPowerShell\Transcripts"
Set-ItemProperty $basePath -Name OutputDirectory -Value $transcriptPath

On non-Windows systems, configure these settings by editing $pshome/power
shell.config.json:

{
 "PowerShellPolicies": {
 "ScriptExecution": {
 "ExecutionPolicy": "RemoteSigned",
 "EnableScripts": true
 },
 "ScriptBlockLogging": {
 "EnableScriptBlockLogging": true
 },
 "ModuleLogging": {
 "EnableModuleLogging": true,
 "ModuleNames": ["*"]
 },
 "Transcription": {
 "EnableTranscripting": true,
 "EnableInvocationHeader": true,
 "OutputDirectory": "/mnt/c/ProgramData/PowerShellCore/Transcripts"
 },
 },
 "LogLevel": "verbose"
}

18.2 Enable PowerShell Security Logging | 505

Discussion
PowerShell’s security logging comes primarily in four forms: engine logging, module
logging, script block logging, and transcription.

The Solution gives examples of how to configure these settings on individual systems,
but you’re likely going to want to deploy these settings across your broader environ‐
ment. For information about how to manage PowerShell settings in an enterprise
context, see Recipe 18.6.

Windows PowerShell logs to the Microsoft-Windows-PowerShell/Operational log,
and PowerShell Core on Windows logs to the PowerShellCore/Operational log. For
more information about reading from Windows Event Logs, see Chapter 23.

PowerShell Core on Linux logs to syslog, and os_log on macOS. To quickly enable
syslog logging to /var/log/powershell.log on Ubuntu, simply run the following
from within pwsh:

echo ':syslogtag, contains, "powershell[" /var/log/powershell.log' |
 sudo tee /etc/rsyslog.d/40-powershell.conf
echo "&stop" | sudo tee -a /etc/rsyslog.d/40-powershell.conf
sudo service rsyslog restart

Engine logging
By default (and since version 1), PowerShell writes to the event log when important
engine events occur—such as PowerShell being launched, a user connecting to
another process with the PowerShell debugger, and more. On Windows, you can find
this in the classic Windows PowerShell application log. The most useful event in this
log is event ID 400, which tells you when the PowerShell engine is starting and which
version is running. Early versions of PowerShell did not have as much security log‐
ging, so some attackers try to use one of those earlier versions instead. Monitoring for
events that show loading a HostVersion less than 5.0 is a good practice.

Module logging
Module logging lets you record the details of every PowerShell cmdlet that’s run. If
configured, this shows up in the PowerShell Operational log as event ID 4103.

Script block logging
Script block logging, as shown in Figure 18-2, lets you record the details of every
script block that PowerShell runs: commands that the user types interactively, the
contents of scripts that they load, and even dynamic content that malicious scripts
might pull down from the internet.

506 | Chapter 18: Security and Script Signing

Figure 18-2. Script block logging capturing dynamic internet content on Ubuntu

If configured, all script block content shows up in the PowerShell Operational log as
event ID 4104. In its default configuration, PowerShell automatically logs all script
blocks (using a logging level of Warning) that contain keywords and techniques com‐
monly used in malicious contexts.

Transcription
PowerShell transcripts act as an “over the shoulder” view of what happens in a con‐
sole. If configured, PowerShell logs this text-based transcript to the directory that you
choose for every session. Transcripts are a complementary and useful addition to
your security monitoring, as they also include the output of commands (whereas
script block logging does not).

For more information about PowerShell transcripts, see Recipe 1.27.

18.2 Enable PowerShell Security Logging | 507

Protecting Against Information Disclosure
One risk with detailed logging is the chance that sensitive information might be cap‐
tured in logs. This might include sensitive credentials, machine names, or other
resources. While we tend to be aware of the risk of somebody reading the content of
the security logs from other user sessions, we should also be mindful of the risk of
historical data. If an attacker takes over a user’s machine, their historical data might
be just as (or more) sensitive than the data from other users.

For PowerShell Transcripts, you should write these to a file share that users can write
to but can’t read—such as a file share on a remote system. The follows example cre‐
ates a file share that follows these best practices:

md c:\Transcripts

Remove all inherited permissions
$acl = Get-Acl c:\Transcripts
$acl.SetAccessRuleProtection($true, $false)

Grant Administrators full control
$administrators = [System.Security.Principal.NTAccount] "Administrators"
$permission = $administrators,"FullControl","ObjectInherit,ContainerInherit",
 "None","Allow"
$accessRule =
 New-Object System.Security.AccessControl.FileSystemAccessRule $permission
$acl.AddAccessRule($accessRule)

Grant everyone else Write and ReadAttributes. This prevents users from listing
transcripts from other machines on the domain.
$everyone = [System.Security.Principal.NTAccount] "Everyone"
$permission = $everyone,"Write,ReadAttributes","ObjectInherit,ContainerInherit",
 "None","Allow"
$accessRule =
 New-Object System.Security.AccessControl.FileSystemAccessRule $permission
$acl.AddAccessRule($accessRule)

Deny "Creator Owner" everything. This prevents users (or attackers on their
computer) from viewing the content of previously written files.
$creatorOwner = [System.Security.Principal.NTAccount] "Creator Owner"
$permission =
 $creatorOwner,"FullControl","ObjectInherit,ContainerInherit","InheritOnly","Deny"
$accessRule =
 New-Object System.Security.AccessControl.FileSystemAccessRule $permission
$acl.AddAccessRule($accessRule)

Set the ACL
$acl | Set-Acl c:\Transcripts\

Create the SMB Share, granting Everyone the right to read and write files.
Specific actions will actually be enforced by the ACL on the file folder.
New-SmbShare -Name Transcripts -Path c:\Transcripts -ChangeAccess Everyone

508 | Chapter 18: Security and Script Signing

For the PowerShell event log content that you might want to protect even from
administrators on the machine, PowerShell supports a feature called Protected Event
Logging. Through the magic of public and private key cryptography, Protected Event
Logging lets PowerShell encrypt event logs with a public key so that only the holder of
the companion private key can decrypt them. If you keep this private key on a trusted
server (such as the log collection server), attackers can’t read your PowerShell event
logs on a machine even if they gain administrative privileges.

For more information about setting up Protected Event Logging, see Get-Help
about_logging_windows.

See Also
Chapter 23

Recipe 1.27, “Record a Transcript of Your Shell Session”

Recipe 18.6, “Manage PowerShell Security in an Enterprise”

Get-Help about_logging_windows

“Defending Against PowerShell Attacks”

18.3 Disable Warnings for UNC Paths
Problem
PowerShell warns you when it tries to load a script from an intranet (UNC) path.

Solution
If it makes sense, copy the file locally and run it from your local location. If you want
to keep the script on the UNC path, enable Internet Explorer’s UncAsIntranet set‐
ting, or add the UNC path to the list of trusted sites. Example 18-1 adds server to the
list of trusted sites.

Example 18-1. Adding a server to the list of trusted hosts

$path = "HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Internet Settings\" +
 "ZoneMap\Domains\server"
New-Item -Path $path | New-ItemProperty -Name File -PropertyType DWORD -Value 2

Discussion
When using an execution policy that detects internet-based scripts, you may want to
stop PowerShell from treating those scripts as remote.

18.3 Disable Warnings for UNC Paths | 509

https://oreil.ly/Sk2EE

In an enterprise setting, PowerShell sometimes warns of the dangers of internet-
based scripts even if they’re located only on a network share. This is a security
precaution, as it’s possible for network paths (such as UNC shares) to be spoofed, or
for the content of those scripts to be changed without your knowledge. If you have a
high trust in your network and the security of the remote system, you might want to
avoid these precautions.

To remove this warning, first ensure the scripts haven’t actually been downloaded
from the internet. The easiest way is to use the Unblock-File cmdlet to unblock the
file and then restart PowerShell. Alternatively, you can right-click on the file from
Windows Explorer, select Properties, and then click Unblock. This also requires that
you restart PowerShell.

If unblocking the file doesn’t resolve the issue (or is not an option), your machine has
likely been configured to restrict access to network shares. This is common with
Internet Explorer’s Enhanced Security Configuration mode. To prevent this message,
add the path of the network share to Internet Explorer’s Intranet or Trusted Sites
zone. For more information on managing Internet Explorer’s zone mappings, see
Recipe 21.7.

If you’re using an Unrestricted execution policy and want to get rid of this warning
for remote files without altering the Trusted Sites zone, you can use the Bypass exe‐
cution policy to bypass PowerShell’s security features entirely. For more information
about execution policies, see Recipe 18.1.

See Also
Recipe 18.1, “Enable Scripting Through an Execution Policy”

Recipe 21.7, “Add a Site to an Internet Explorer Security Zone”

18.4 Sign a PowerShell Script, Module, or Formatting File
Problem
You want to sign a PowerShell script, module, or formatting file so that it can be run
on systems that have their execution policy set to require signed scripts.

Solution
To sign the script with your standard code-signing certificate, use the Set-
AuthenticodeSignature cmdlet:

$cert = @(Get-ChildItem cert:\CurrentUser\My -CodeSigning)[0]
Set-AuthenticodeSignature file.ps1 $cert

510 | Chapter 18: Security and Script Signing

Alternatively, you can also use other traditional applications (such as signtool.exe) to
sign PowerShell .ps1, .psm1, .psd1, and .ps1xml files.

Discussion
Signing a script or formatting file provides you and your customers with two primary
benefits: publisher identification and file integrity. When you sign a script, module, or
formatting file, PowerShell appends your digital signature to the end of that file. This
signature verifies that the file came from you and also ensures that nobody can tam‐
per with the content in the file without detection. If you try to load a file that has been
tampered with, PowerShell provides the following error message:

File C:\temp\test.ps1 cannot be loaded. The contents of file C:\temp\test.ps1
may have been tampered because the hash of the file does not match the hash
stored in the digital signature. The script will not execute on the system.
Please see "get-help about_signing" for more details.
At line:1 char:10
+ .\test.ps1 <<<<

When it comes to the signing of scripts, modules, and formatting files, PowerShell
participates in the standard Windows Authenticode infrastructure. Because of that,
techniques you may already know for signing files and working with their signatures
continue to work with PowerShell scripts and formatting files. Although the Set-
AuthenticodeSignature cmdlet is primarily designed to support scripts and format‐
ting files, it also supports DLLs and other standard Windows executable file types.

To sign a file, the Set-AuthenticodeSignature cmdlet requires that you provide it
with a valid code-signing certificate. Most certification authorities provide Authenti‐
code code-signing certificates for a fee. By using an Authenticode code-signing certif‐
icate from a reputable certification authority (such as VeriSign or Thawte), you can be
sure that all users will be able to verify the signature on your script. Some online serv‐
ices offer extremely cheap code-signing certificates, but be aware that many machines
may be unable to verify the digital signatures created by those certificates.

You can still gain many of the benefits of code signing on your own
computers by generating your own code-signing certificate. While
other computers will not be able to recognize the signature, it still
provides tamper protection on your own computer. For more
information about this approach, see Recipe 18.5.

The -TimeStampServer parameter lets you sign your script or formatting file in a way
that makes the signature on your script or formatting file valid even after your code‐
signing certificate expires.

For more information about the Set-AuthenticodeSignature cmdlet, type Get-Help
Set-AuthenticodeSignature.

18.4 Sign a PowerShell Script, Module, or Formatting File | 511

See Also
Recipe 18.5

18.5 Create a Self-Signed Certificate
Problem
You want to create a Code Signing, Document Encryption, or SSL certificate for test‐
ing purposes.

Solution
Use the New-SelfSignedCertificate cmdlet.

To create a certificate suitable for use with PowerShell Script Signing:
Generate the self-signed certificate (requires an administrative console)
New-SelfSignedCertificate -DnsName 'guide@leeholmes.com' -Type CodeSigningCert
$cert = dir cert:\LocalMachine\My -DnsName 'guide@leeholmes.com' -CodeSign

Make it trusted on this machine
$caCert = Get-ChildItem cert:\LocalMachine\CA -DnsName 'guide@leeholmes.com'
$caCert | Move-Item -Destination Cert:\LocalMachine\Root

Sign the file
Set-AuthenticodeSignature .\SignedScript.ps1 $cert

To create a certificate suitable for use with the Cryptographic Message Syntax (CMS)
cmdlets:

Generate the self-signed document encryption certificate (requires an
administrative console)
New-SelfSignedCertificate -DnsName 'guide@leeholmes.com'
 -Type DocumentEncryptionCertLegacyCsp
$cert = Get-ChildItem cert:\localmachine\my -DocumentEncryptionCert

Encrypt the message
"Hello World" | Protect-CmsMessage -To $cert

Discussion
It’s possible to benefit from the tamper-protection features of signed scripts without
having to pay for an official code-signing certificate. You do this by creating a self-
signed certificate. Scripts signed with a self-signed certificate will not be recognized as
valid on other computers, but you can still sign and use them on your own computer.

When New-SelfSignedCertificate runs, it by default generates two certificates: a
test issuing Certificate Authority and a certificate (your signing certificate) generated
from it. When Windows validates digital signatures, the issuing Certificate Authority

512 | Chapter 18: Security and Script Signing

(or one of its issuers) must be present in the “Trusted Root CA” location in the
certificate store. So, to make our certificate trusted on our machine, we move our test
Certificate Authority into the Trusted Root store.

If you wish to protect your certificate with a password or biometric
proof, you can use the -KeyProtection parameter of New-

SelfSignedCertificate. This will prevent other applications from
using your key on your behalf.

We use a very similar process to generate Document Encryption certificates. Since
Document Encryption certificates don’t need to come from a trusted root authority,
we can skip the step that makes it trusted on our machine.

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

18.6 Manage PowerShell Security in an Enterprise
Problem
You want to control PowerShell’s security features in an enterprise setting.

Solution
You have two ways to manage PowerShell’s security features enterprise-wide:

• Apply PowerShell’s Group Policy templates to control PowerShell’s execution pol‐
icy through Group Policy.

• Deploy Microsoft Certificate Services to automatically generate Authenticode
code-signing certificates for domain accounts.

Discussion
Either separately or together, these features let you customize your PowerShell envi‐
ronment across your entire domain.

Apply PowerShell’s Group Policy templates
The administrative templates for Windows PowerShell let you override the machine’s
local execution policy preference at both the machine and per-user level.

18.6 Manage PowerShell Security in an Enterprise | 513

Administrative templates for Windows PowerShell are included in Windows by
default. You can find the administrative templates for PowerShell Core in its $PSHome
installation directory. To use them, copy the ADMX file into C:\Windows\PolicyDefi
nitions and the ADML file into C:\Windows\PolicyDefinitions\en-US, or use the
InstallPSCorePolicyDefinitions.ps1 script to do this for you.

Although Group Policy settings override local preferences, Power‐
Shell’s execution policy shouldn’t be considered a security measure
that protects the system from the user. It’s a security measure that
helps prevent untrusted scripts from running on the system. As
mentioned in Recipe 18.1, PowerShell is only a vehicle that allows
users to do what they already have the Windows permissions to do.

To edit the Group Policy settings, launch the Group Policy Object Editor MMC snap-
in. The Group Policy Editor MMC snap-in provides PowerShell as an option under
its Administrative Templates node, as shown in Figure 18-3. You can find PowerShell
Core in the root of the Administrative Templates tree, and Windows PowerShell
under Windows Components.

Figure 18-3. PowerShell Group Policy configuration

The default state is Not Configured. In this state, PowerShell takes its settings from
the machine’s local preference (as described in Recipe 18.1). If you change the state to
one of the Enabled options (or Disabled), PowerShell uses this configuration instead
of the machine’s local preference.

514 | Chapter 18: Security and Script Signing

PowerShell respects these Group Policy settings no matter what.
This includes settings that the machine’s administrator may con‐
sider to reduce security—such as an Unrestricted group policy
overriding an AllSigned local preference.

Per-user Group Policy settings override the machine’s local preference, whereas per-
machine Group Policy settings override per-user settings.

Deploy Microsoft Certificate Services
Although outside the scope of this book, Microsoft Certificate Services lets you auto‐
matically deploy code-signing certificates to any or all domain users. This provides a
significant benefit, as it helps protect users from accidental or malicious script
tampering.

For an introduction to this topic, visit the Miscrosoft documentation site and search
for “Enterprise Design for Certificate Services.” For more information about script
signing, see Recipe 18.4.

See Also
Recipe 18.1, “Enable Scripting Through an Execution Policy”

Recipe 18.4, “Sign a PowerShell Script, Module, or Formatting File”

18.7 Block Scripts by Publisher, Path, or Hash
Problem
In addition to PowerShell’s execution policy, you want to block or audit scripts and
applications running on your system.

Solution
Deploy a Windows Defender Application Control policy to enforce a Code Integrity
policy:

Move to a temporary location
Set-Location ~/Desktop

Create a merged policy out of two sample policies that audits all software
that runs, except for software that is part of Windows or signed by Microsoft
$allowMicrosoft =
 "C:\windows\schemas\CodeIntegrity\ExamplePolicies\AllowMicrosoft.xml"
$denyAllAuditPolicy =
 "C:\windows\schemas\CodeIntegrity\ExamplePolicies\DenyAllAudit.xml"
Merge-CIPolicy -OutputFilePath CurrentPolicy.xml `
 -PolicyPaths $allowMicrosoft,$denyAllAuditPolicy

18.7 Block Scripts by Publisher, Path, or Hash | 515

http://technet.microsoft.com

Convert this policy to its binary form
$outputPath = "C:\Windows\System32\CodeIntegrity\SIPolicy.p7b"
ConvertFrom-CIPolicy -XmlFilePath CurrentPolicy.xml -BinaryFilePath $outputPath

Install the policy
Invoke-CimMethod -Namespace root/microsoft/Windows/CI `
 -ClassName PS_UpdateAndCompareCIPolicy `
 -MethodName Update -Arguments @{ FilePath = $outputPath }

Discussion
Being aware of and logging what is running on your systems is a critical step to mak‐
ing them both easier to defend and harder to attack. When you log all of the unexpec‐
ted software that runs on your systems, you have a much better chance of unravelling
what’s happened in the case of a security incident. Better yet, if you limit your systems
to allow only specifically approved software, most attacks fail due to being unable to
rely on the vast majority of their tools.

Windows has gone through three major iterations to support this: Software Restric‐
tion Policies, AppLocker, and Windows Defender Application Control.

The current, and by far the most robust solution is Windows Defender Application
Control.

One great feature of Windows Defender Application Control is that it includes a set
of starter policies in $env:SystemRoot\schemas\CodeIntegrity\ExamplePolicies.
These are an excellent resource to learn how to build your own policies, but you can
even use them as starter components for your own policy. The example given by the
Solution is an excellent way to get started—a policy that merges two of the sample
policies to audit and log everything that runs on your system except for binaries that
are part of Windows or distributed by Microsoft.

The policy given in the Solution is safe and will not harm your
computer, but it’s easy to create a policy that prevents your system
from booting or running applications that you require. While
developing these Code Integrity policies, it’s recommended to try
them first in a Virtual Machine or other system that’s easy to
rebuild.
The “Windows 10 Dev Environment” offered by Hyper-V is a good
option, as are Virtual Machines hosted in Azure.

Once you have this policy installed, you can easily store and forward the Microsoft-
Windows-CodeIntegrity/Operational log for analysis and even active queries.

As an example, let’s quickly compile an application that has never been seen before on
the system—the way that an attacker might—and then run it:

516 | Chapter 18: Security and Script Signing

https://oreil.ly/6iVhW
https://oreil.ly/6iVhW

$code = 'public class HelloWorld {
 public static void Main() { System.Console.WriteLine("Hello World!"); } }'
Add-Type -TypeDefinition $code -OutputAssembly HelloWorld.exe
./HelloWorld.exe

You can see this being executed in the log:
Get-WinEvent -FilterHashtable @{
 LogName = 'Microsoft-Windows-CodeIntegrity/Operational'
 Id = 3076
} | Where-Object Message -match HelloWorld.exe | Format-List

ProviderName : Microsoft-Windows-CodeIntegrity
Id : 3076
Message : Code Integrity determined that a process
 (\Device\HarddiskVolume4\Windows\explorer.exe)
 attempted to load \Device\HarddiskVolume4\temp\cip
 olicy\HelloWorld.exe that did not meet the
 Enterprise signing level requirements or violated
 code integrity policy (Policy
 ID:{a244370e-44c9-4c06-b551-f6016e563076}).
 However, due to code integrity auditing policy,
 the image was allowed to load.

If you want to search for an item by its file hash, Windows Defender Application
Control gives you several options. It logs both the Portable Executable (PE) hash (a
cryptographic hash that excludes some portions of the executable file), as well as the
flat hash (the cryptographic hash of the raw bytes on disk). Both are useful for differ‐
ent purposes, but let’s look for evidence of a file execution based on a binary we found
on a system:

PS > Get-FileHash .\SuspiciousBinary.exe

Algorithm Hash
--------- ----
SHA256 8361174EDF48D434BB7CF8D58CCD278201F9ACFC0EF87EDA6494D2520DABAC20

Get-WinEvent -FilterHashtable @{
 LogName = 'Microsoft-Windows-CodeIntegrity/Operational'
 Id = 3076
} | Where-Object {
 $flatHash = [BitConverter]::ToString($_.Properties[14].Value).Replace("-","")
 $flatHash -eq '8361174EDF48D434BB7CF8D58CCD278201F9ACFC0EF87EDA6494D2520DABAC20'
} | Format-List

And the result:
ProviderName : Microsoft-Windows-CodeIntegrity
Id : 3076
Message : Code Integrity determined that a process
 (\Device\HarddiskVolume4\Windows\explorer.exe) attempted to load
 \Device\HarddiskVolume4\temp\cipolicy\HelloWorld.exe that did not
 meet the Enterprise signing level requirements or violated code
 integrity policy (Policy ID:{a244370e-44c9-4c06-b551-f6016e563076}).
 However, due to code integrity auditing policy, the image was allowed
 to load.

18.7 Block Scripts by Publisher, Path, or Hash | 517

The richness of policies supported by this infrastructure is much deeper than what
we’ve covered here. The online documentation for Windows Defender Application
Control goes into much further detail, including how to add your own applications,
your own signing certificate authorities, your own paths, and more.

Once you have properly configured your audit policy and the applications that run on
them (such as code signing those applications with the appropriate certificate) and no
longer see audit failures, you can flip your policy to enforce mode. In that mode,
Windows will block anything you haven’t explicitly allowed.

See Also
Recipe 18.1, “Enable Scripting Through an Execution Policy”

Recipe 18.4, “Sign a PowerShell Script, Module, or Formatting File”

18.8 Verify the Digital Signature of a PowerShell Script
Problem
You want to verify the digital signature of a PowerShell script or formatting file.

Solution
To validate the signature of a script or formatting file, use the Get-

AuthenticodeSignature cmdlet:
PS > Get-AuthenticodeSignature .\test.ps1

 Directory: C:\temp

SignerCertificate Status Path
----------------- ------ ----
FD48FAA9281A657DBD089B5A008FAFE61D3B32FD Valid test.ps1

Discussion
The Get-AuthenticodeSignature cmdlet gets the Authenticode signature from a file.
This can be a PowerShell script or formatting file, but the cmdlet also supports DLLs
and other Windows standard executable file types.

By default, PowerShell displays the signature in a format that summarizes the certifi‐
cate and its status. For more information about the signature, use the Format-List
cmdlet, as shown in Example 18-2.

518 | Chapter 18: Security and Script Signing

Example 18-2. PowerShell displaying detailed information about an Authenticode
signature

PS > Get-AuthenticodeSignature .\test.ps1 | Format-List

SignerCertificate : [Subject]
 CN=PowerShell User

 [Issuer]
 CN=PowerShell Local Certificate Root

 [Serial Number]
 454D75B8A18FBDB445D8FCEC4942085C

 [Not Before]
 4/22/2007 12:32:37 AM

 [Not After]
 12/31/2039 3:59:59 PM

 [Thumbprint]
 FD48FAA9281A657DBD089B5A008FAFE61D3B32FD

TimeStamperCertificate :
Status : Valid
StatusMessage : Signature verified.
Path : C:\temp\test.ps1

One useful feature of the Get-AuthenticodeSignature cmdlet is that it lets you easily
determine if a given file is shipped as part of Windows, and therefore considered an
Operating System Binary. Here’s an example of examining Notepad.exe:

PS > Get-AuthenticodeSignature C:\windows\system32\notepad.exe | Format-List

(...)

Status : Valid
StatusMessage : Signature verified.
Path : C:\windows\system32\notepad.exe
SignatureType : Catalog
IsOSBinary : True

For more information about the Get-AuthenticodeSignature cmdlet, type Get-Help
Get-AuthenticodeSignature.

18.9 Securely Handle Sensitive Information
Problem
You want to request sensitive information from the user, but want to do this as
securely as possible.

18.9 Securely Handle Sensitive Information | 519

Solution
To securely handle sensitive information, store it in a SecureString whenever possi‐
ble. The Read-Host cmdlet (with the -AsSecureString parameter) lets you prompt
the user for (and handle) sensitive information by returning the user’s response as a
SecureString:

PS > $secureInput = Read-Host -AsSecureString "Enter your private key"
Enter your private key:
PS > $secureInput
System.Security.SecureString

Discussion
When you use any string in the .NET Framework (and therefore PowerShell), it
retains that string so that it can efficiently reuse it later. Unlike most .NET data,
unused strings persist even after you finish using them. When this data is in memory,
there’s always the chance that it could get captured in a crash dump or swapped to
disk in a paging operation. Because some data (such as passwords and other confi‐
dential information) may be sensitive, the .NET Framework includes the
SecureString class: a container for text data that the framework encrypts when it
stores it in memory. Code that needs to interact with the plain-text data inside a
SecureString does so as securely as possible.

When a cmdlet author asks you for sensitive data (for example, an encryption key),
the best practice is to designate that parameter as a SecureString to help keep your
information confidential. You can provide the parameter with a SecureString vari‐
able as input, or the host prompts you for the SecureString if you don’t provide one.
PowerShell also supports two cmdlets (ConvertTo-SecureString and ConvertFrom-
SecureString) that let you securely persist this data to disk. For more information
about securely storing information on disk, see Recipe 18.13.

Credentials are a common source of sensitive information. See
Recipe 18.10 for information on how to securely manage creden‐
tials in PowerShell.

By default, the SecureString cmdlets use the Windows Data Protection API (DPAPI)
when they convert your SecureString to and from its text representation. The key it
uses to encrypt your data is based on your Windows logon credentials, so only you
can decrypt the data that you’ve encrypted. If you want the exported data to work on
another system or separate user account, you can use the cmdlet options that let you
provide an explicit key. PowerShell treats this sensitive data as an opaque blob—and
so should you.

520 | Chapter 18: Security and Script Signing

However, there are many instances when you may want to automatically provide the
SecureString input to a cmdlet rather than have the host prompt you for it. In these
situations, the ideal solution is to use the ConvertTo-SecureString cmdlet to import
a previously exported SecureString from disk. This retains the confidentiality of
your data and still lets you automate the input.

If the data is highly dynamic (for example, coming from a CSV), then the ConvertTo-
SecureString cmdlet supports an -AsPlainText parameter:

$secureString = ConvertTo-SecureString "Kinda Secret" -AsPlainText -Force

Since you’ve already provided plain-text input in this case, placing this data in a
SecureString no longer provides a security benefit. To prevent a false sense of secu‐
rity, the cmdlet requires the -Force parameter to convert plain-text data into a
SecureString.

Once you have data in a SecureString, you may want to access its plain-text repre‐
sentation. PowerShell doesn’t provide a direct way to do this, as that defeats the pur‐
pose of a SecureString. If you still want to convert a SecureString to plain text, you
have two options:

• Use the GetNetworkCredential() method of the PsCredential class:
$secureString = Read-Host -AsSecureString
$temporaryCredential = New-Object `
 System.Management.Automation.PsCredential "TempUser",$secureString
$unsecureString = $temporaryCredential.GetNetworkCredential().Password

• Use the .NET Framework’s Marshal class:
$secureString = Read-Host -AsSecureString
$unsecureString = [Runtime.InteropServices.Marshal]::PtrToStringAuto(
 [Runtime.InteropServices.Marshal]::SecureStringToBSTR($secureString))

See Also
Recipe 18.10, “Securely Request Usernames and Passwords”

Recipe 18.13, “Securely Store Credentials on Disk”

18.10 Securely Request Usernames and Passwords
Problem
Your script requires that users provide it with a username and password, but you
want to do this as securely as possible.

18.10 Securely Request Usernames and Passwords | 521

Solution
To request a credential from the user, use the Get-Credential cmdlet:

$credential = Get-Credential

Discussion
The Get-Credential cmdlet reads credentials from the user as securely as possible
and ensures that the user’s password remains highly protected the entire time. For an
example of using the Get-Credential cmdlet effectively in a script, see Recipe 18.11.

Once you have the username and password, you can pass that information around to
any other command that accepts a PowerShell credential object without worrying
about disclosing sensitive information. If a command doesn’t accept a PowerShell cre‐
dential object (but does support a SecureString for its sensitive information), the
resulting PsCredential object provides a Username property that returns the user‐
name in the credential and a Password property that returns a SecureString contain‐
ing the user’s password.

Unfortunately, not everything that requires credentials can accept either a PowerShell
credential or SecureString. If you need to provide a credential to one of these com‐
mands or API calls, the PsCredential object provides a GetNetworkCredential()
method to convert the PowerShell credential to a less secure NetworkCredential
object. Once you’ve converted the credential to a NetworkCredential, the UserName
and Password properties provide unencrypted access to the username and password
from the original credential. Many network-related classes in the .NET Framework
support the NetworkCredential class directly.

The NetworkCredential class is less secure than the PsCredential
class because it stores the user’s password in plain text. For more
information about the security implications of storing sensitive
information in plain text, see Recipe 18.9.

If a frequently run script requires credentials, you might consider caching those cre‐
dentials in memory to improve the usability of that script. For example, in the region
of the script that calls the Get-Credential cmdlet, you can instead use the techniques
shown by Example 18-3.

522 | Chapter 18: Security and Script Signing

Example 18-3. Caching credentials in memory to improve usability

$credential = $null
if(Test-Path Variable:\Lee.Holmes.CommonScript.CachedCredential)
{
 $credential = ${GLOBAL:Lee.Holmes.CommonScript.CachedCredential}
}

${GLOBAL:Lee.Holmes.CommonScript.CachedCredential} =
 Get-Credential $credential

$credential = ${GLOBAL:Lee.Holmes.CommonScript.CachedCredential}

The script prompts the user for credentials the first time it’s called but uses the cached
credentials for subsequent calls. If your command is part of a PowerShell module,
you can avoid storing the information in a global variable. For more information
about this technique, see Recipe 11.7.

To cache these credentials on disk (to support unattended operations), see Recipe
18.13.

For more information about the Get-Credential cmdlet, type Get-Help Get-
Credential.

See Also
Recipe 11.7, “Write Commands That Maintain State”

Recipe 18.9, “Securely Handle Sensitive Information”

Recipe 18.11, “Start a Process as Another User”

Recipe 18.13, “Securely Store Credentials on Disk”

18.11 Start a Process as Another User
Problem
You want to launch an application under credentials other than your own.

Solution
Use the -Credential parameter of the Start-Process cmdlet.

$path = (Get-Command powershell.exe).Path
Start-Process -Path $path -Credential (Get-Credential) -WorkingDirectory c:\

18.11 Start a Process as Another User | 523

Discussion
In early editions of PowerShell, starting a process as another user used to be a compli‐
cated task. Fortunately, however, PowerShell now includes this functionality by
default through the Start-Process cmdlet.

The -Path parameter to Start-Process requires that you specify the full path to the
executable, and not just its name. As the Solution demonstrates, you can use the Get-
Command cmdlet to quickly determine the full path to the command you wish to
launch.

One subtlety to keep in mind when you start a process as another user is that Power‐
Shell by default tries to launch the new process using your current working directory
as its active working directory. If your current working directory is your personal
documents directory, the other user account won’t have access to this directory and
PowerShell will generate an error. To avoid this issue, use the -WorkingDirectory
parameter to specify a working directory (such as C:\) that the new user does have
access to.

For a neat trick that lets you invoke PowerShell commands in an elevated session and
easily interact with the results, see Recipe 18.12.

See Also
Recipe 18.12

18.12 Program: Run a Temporarily Elevated Command
One popular feature of many Unix-like operating systems is the sudo command: a
feature that lets you invoke commands as another user without switching context.

This is a common desire in Windows, where User Access Control (UAC) means that
most interactive sessions don’t have their Administrator privileges enabled. Enabling
these privileges is often a clumsy task, requiring that you launch a new instance of
PowerShell with the “Run as Administrator” option enabled.

Example 18-4 resolves many of these issues by launching an administrative shell for
you and letting it participate in a regular (nonelevated) PowerShell pipeline.

To do this, it first streams all of your input into a richly structured CliXml file on
disk. It invokes the elevated command and stores its results into another richly struc‐
tured CliXml file on disk. Finally, it imports the structured data from disk and
removes the temporary files.

524 | Chapter 18: Security and Script Signing

Example 18-4. Invoke-ElevatedCommand.ps1

##
##
Invoke-ElevatedCommand
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Runs the provided script block under an elevated instance of PowerShell as
through it were a member of a regular pipeline.

.EXAMPLE

PS > Get-Process | Invoke-ElevatedCommand.ps1 {
 $input | Where-Object { $_.Handles -gt 500 } } | Sort Handles

#>

param(
 ## The script block to invoke elevated
 [Parameter(Mandatory = $true)]
 [ScriptBlock] $Scriptblock,

 ## Any input to give the elevated process
 [Parameter(ValueFromPipeline = $true)]
 $InputObject,

 ## Switch to enable the user profile
 [switch] $EnableProfile
)

begin
{
 Set-StrictMode -Version 3
 $inputItems = New-Object System.Collections.ArrayList
}

process
{
 $null = $inputItems.Add($inputObject)
}

end
{
 ## Create some temporary files for streaming input and output
 $outputFile = [IO.Path]::GetTempFileName()
 $inputFile = [IO.Path]::GetTempFileName()

 ## Stream the input into the input file

18.12 Program: Run a Temporarily Elevated Command | 525

 $inputItems.ToArray() | Export-CliXml -Depth 1 $inputFile

 ## Start creating the command line for the elevated PowerShell session
 $commandLine = ""
 if(-not $EnableProfile) { $commandLine += "-NoProfile " }

 ## Convert the command into an encoded command for PowerShell
 $commandString = "Set-Location '$($pwd.Path)'; " +
 "`$output = Import-CliXml '$inputFile' | " +
 "& {" + $scriptblock.ToString() + "} 2>&1; " +
 "`$output | Export-CliXml -Depth 1 '$outputFile'"

 $commandBytes = [System.Text.Encoding]::Unicode.GetBytes($commandString)
 $encodedCommand = [Convert]::ToBase64String($commandBytes)
 $commandLine += "-EncodedCommand $encodedCommand"

 ## Start the new PowerShell process
 $process = Start-Process -FilePath (Get-Command powershell).Definition `
 -ArgumentList $commandLine -Verb RunAs `
 -WindowStyle Hidden `
 -Passthru
 $process.WaitForExit()

 ## Return the output to the user
 if((Get-Item $outputFile).Length -gt 0)
 {
 Import-CliXml $outputFile
 }

 ## Clean up
 Remove-Item $outputFile
 Remove-Item $inputFile
}

For more information about the CliXml commands, see Recipe 10.5. For more infor‐
mation about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 10.5, “Easily Import and Export Your Structured Data”

18.13 Securely Store Credentials on Disk
Problem
Your script performs an operation that requires credentials, but you don’t want it to
require user interaction when it runs.

526 | Chapter 18: Security and Script Signing

Solution
Use the Export-CliXml and Import-CliXml cmdlets to import and export credentials.

Save the credential’s password to disk
The first step for storing a password on disk is usually a manual one. There’s nothing
mandatory about the filename, but we’ll use a convention to name the file Current‐
Script.ps1.credential. Given a credential that you’ve stored in the $credential vari‐
able, you can safely use the Export-CliXml cmdlet to save the credential to disk.
Replace CurrentScript with the name of the script that will be loading it:

PS > $credPath = Join-Path (Split-Path $profile) CurrentScript.ps1.credential
PS > $credential | Export-CliXml $credPath

Recreate the credential from the password stored on disk
In the script that you want to run automatically, add the following commands:

$credPath = Join-Path (Split-Path $profile) CurrentScript.ps1.credential
$credential = Import-CliXml $credPath

These commands create a new credential object (for the CachedUser user) and store
that object in the $credential variable.

Discussion
When reading the Solution, you might at first be wary of storing a password on disk.
While it is natural (and prudent) to be cautious of littering your hard drive with sen‐
sitive information, the Export-CliXml cmdlet encrypts credential objects using the
Windows standard Data Protection API. This ensures that only your user account
can properly decrypt its contents. Similarly, the ConvertFrom-SecureString cmdlet
also encrypts the password you provide.

While keeping a password secure is an important security feature, you may some‐
times want to store a password (or other sensitive information) on disk so that other
accounts have access to it. This is often the case with scripts run by service accounts
or scripts designed to be transferred between computers. The ConvertFrom-

SecureString and ConvertTo-SecureString cmdlets support this by letting you
specify an encryption key.

When used with a hardcoded encryption key, this technique no
longer acts as a security measure. If a user can access the content of
your automated script, that user has access to the encryption key. If
the user has access to the encryption key, the user has access to the
data you were trying to protect.

18.13 Securely Store Credentials on Disk | 527

Although the Solution stores the password in the directory that contains your profile,
you could also load it from the same location as your script. To learn how to load it
from the same location as your script, see Recipe 16.6.

For more information about the ConvertTo-SecureString and ConvertFrom-

SecureString cmdlets, type Get-Help ConvertTo-SecureString or Get-Help

ConvertFrom-SecureString.

See Also
Recipe 16.6, “Find Your Script’s Location”

18.14 Access User and Machine Certificates
Problem
You want to retrieve information about certificates for the current user or local
machine.

Solution
To browse and retrieve certificates on the local machine, use PowerShell’s certificate
drive. This drive is created by the certificate provider, as shown in Example 18-5.

Example 18-5. Exploring certificates in the certificate provider

PS > Set-Location cert:\CurrentUser\
PS > $cert = Get-ChildItem -Rec -CodeSign
PS > $cert | Format-List

Subject : CN=PowerShell User
Issuer : CN=PowerShell Local Certificate Root
Thumbprint : FD48FAA9281A657DBD089B5A008FAFE61D3B32FD
FriendlyName :
NotBefore : 4/22/2007 12:32:37 AM
NotAfter : 12/31/2039 3:59:59 PM
Extensions : {System.Security.Cryptography.Oid, System.Security.
 Cryptography.Oid}

Discussion
The certificate drive provides a useful way to navigate and view certificates for the
current user or local machine. For example, if your execution policy requires the use
of digital signatures, the following command tells you which publishers are trusted to
run scripts on your system:

Get-ChildItem cert:\CurrentUser\TrustedPublisher

528 | Chapter 18: Security and Script Signing

The certificate provider is probably most commonly used to select a code-signing
certificate for the Set-AuthenticodeSignature cmdlet. The following command
selects the “best” code-signing certificate (i.e., the one that expires last):

$certificates = Get-ChildItem Cert:\CurrentUser\My -CodeSign
$signingCert = @($certificates | Sort-Object -Desc NotAfter)[0]

The -CodeSign parameter lets you search for certificates in the certificate store that
support code signing. To search for certificates used for other purposes, see Recipe
18.15.

Although the certificate provider is useful for browsing and retrieving information
from the computer’s certificate stores, it doesn’t let you add items to these locations. If
you want to manage certificates in the certificate store, the System.Security.Cryp
tography.X509Certificates.X509Store class (and other related classes from the
System.Security.Cryptography.X509Certificates namespace) from the .NET
Framework supports that functionality. For an example of this approach, see Recipe
18.16.

For more information about the certificate provider, type Get-Help Certificate.

See Also
Recipe 18.15, “Program: Search the Certificate Store”

Recipe 18.16, “Add and Remove Certificates”

18.15 Program: Search the Certificate Store
One useful feature of the certificate provider is its support for a -CodeSign parameter
that lets you search for certificates in the certificate store that support code signing.

This parameter is called a dynamic parameter: one that has been added by a provider
to a core PowerShell cmdlet. You can discover the dynamic parameters for a provider
by navigating to that provider and then reviewing the output of Get-Command
-Syntax. For example:

PS > Set-Location cert:\
PS > Get-Command Get-ChildItem -Syntax
Get-ChildItem [[-Path] <String[]>] [[-Filter] <String>] (...) [-CodeSigningCert]

In addition to the output of Get-Command, the help topic for the provider often
describes the dynamic parameters it supports. For a list of the provider help topics,
type Get-Help -Category Provider.

Code-signing certificates aren’t the only kind of certificates, however; other fre‐
quently used certificate types are Encrypting File System, Client Authentication, and
more.

18.15 Program: Search the Certificate Store | 529

Example 18-6 lets you search the certificate provider for certificates that support a
given Enhanced Key Usage (EKU).

Example 18-6. Search-CertificateStore.ps1

##
##
Search-CertificateStore
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Search the certificate provider for certificates that match the specified
Enhanced Key Usage (EKU).

.EXAMPLE

PS > Search-CertificateStore "Encrypting File System"
Searches the certificate store for Encrypting File System certificates

#>

param(
 ## The friendly name of an Enhanced Key Usage
 ## (such as 'Code Signing')
 [Parameter(Mandatory = $true)]
 $EkuName
)

Set-StrictMode -Off

Go through every certificate in the current user's "My" store
foreach($cert in Get-ChildItem cert:\CurrentUser\My)
{
 ## For each of those, go through its extensions
 foreach($extension in $cert.Extensions)
 {
 ## For each extension, go through its Enhanced Key Usages
 foreach($certEku in $extension.EnhancedKeyUsages)
 {
 ## If the friendly name matches, output that certificate
 if($certEku.FriendlyName -eq $ekuName)
 {
 $cert
 }
 }
 }
}

530 | Chapter 18: Security and Script Signing

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

18.16 Add and Remove Certificates
Problem
You want to add and remove certificates in the certificate store.

Solution
To remove a certificate, use the Remove-Item cmdlet. For example, to remove tempo‐
rary certificates that you create when debugging SSL websites with the Fiddler HTTP
debugging proxy:

PS Cert:\CurrentUser\My > dir |
 Where Subject -like "*OU=Created by http://www.fiddler2.com" | Remove-Item

To add a certificate, use the certificate store APIs from the .NET Framework, as
shown in Example 18-7.

Example 18-7. Adding certificates

Adding a certificate from disk
$cert = Get-PfxCertificate <path_to_certificate>
$store = New-Object System.Security.Cryptography.X509Certificates.X509Store `
 "TrustedPublisher","CurrentUser"
$store.Open("ReadWrite")
$store.Add($cert)
$store.Close()

Discussion
The certificate drive provides a useful way to navigate and view certificates for the
current user or local machine. For example, if your execution policy requires the use
of digital signatures, the following command tells you which publishers are trusted to
run scripts on your system:

Get-ChildItem cert:\CurrentUser\TrustedPublisher

If you want to remove a trusted publisher from this store, simply use the Remove-
Item cmdlet to do so.

18.16 Add and Remove Certificates | 531

While it’s easy to remove a certificate, adding a certificate is not as easy. For example,
the Get-PfxCertificate cmdlet lets you review a certificate from a file that contains
it, but it doesn’t let you install it into the certificate store permanently. The .NET APIs
provide the way to import the certificate for good.

For more information about retrieving certificates from the certificate provider,
please see Recipe 18.14. For more information about working with classes from
the .NET Framework, please see Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 18.14, “Access User and Machine Certificates”

18.17 Manage Security Descriptors in SDDL Form
Problem
You want to work with a security identifier in Security Descriptor Definition Lan‐
guage (SDDL) form.

Solution
Use the ConvertFrom-SddlString cmdlet to see the human-readable version of a
SDDL string:

PS > ConvertFrom-SddlString (Get-Acl C:\).Sddl

Owner : NT SERVICE\TrustedInstaller
Group : NT SERVICE\TrustedInstaller
DiscretionaryAcl : {NT AUTHORITY\Authenticated Users: AccessAllowed
 (CreateDirectories), NT
 AUTHORITY\SYSTEM: AccessAllowed (ChangePermissions,
 CreateDirectories, Delete, DeleteSubdirectoriesAndFiles,
 ExecuteKey, FullControl, FullControl, FullControl, FullControl,
 GenericAll, GenericExecute, GenericRead, GenericWrite,
 ListDirectory, Modify, Read, ReadAndExecute, ReadAttributes,
 ReadExtendedAttributes, ReadPermissions, Synchronize,
 TakeOwnership, Traverse, Write, WriteAttributes, WriteData,
 WriteExtendedAttributes, WriteKey),
 BUILTIN\Administrators: AccessAllowed (ChangePermissions,
 CreateDirectories, Delete, DeleteSubdirectoriesAndFiles,
 ExecuteKey, FullControl, FullControl, FullControl, FullControl,
 GenericAll, GenericExecute, GenericRead, GenericWrite,
 ListDirectory, Modify, Read, ReadAndExecute, ReadAttributes,
 ReadExtendedAttributes, ReadPermissions, Synchronize,
 TakeOwnership, Traverse, Write, WriteAttributes, WriteData,
 WriteExtendedAttributes, WriteKey),
 BUILTIN\Users: AccessAllowed (GenericWrite, ListDirectory, Read,

532 | Chapter 18: Security and Script Signing

 ReadAndExecute, ReadAttributes, ReadExtendedAttributes,
 ReadPermissions, Synchronize, Traverse)}
SystemAcl : {}
RawDescriptor : System.Security.AccessControl.CommonSecurityDescriptor

Use the System.Security.AccessControl.CommonSecurityDescriptor class from
the .NET Framework, as shown by Example 18-8.

Example 18-8. Automating security configuration of the PowerShell Remoting Users
group

Get the SID for the "PowerShell Remoting Users" group
$account = New-Object Security.Principal.NTAccount "PowerShell Remoting Users"
$sid = $account.Translate([Security.Principal.SecurityIdentifier]).Value

Get the security descriptor for the existing configuration
$config = Get-PSSessionConfiguration Microsoft.PowerShell
$existingSddl = $config.SecurityDescriptorSddl

Create a CommonSecurityDescriptor object out of the existing SDDL
so that we don't need to manage the string by hand
$arguments = $false,$false,$existingSddl
$mapper = New-Object Security.AccessControl.CommonSecurityDescriptor $arguments

Create a new access rule that adds the "PowerShell Remoting Users" group
$mapper.DiscretionaryAcl.AddAccess("Allow",$sid,268435456,"None","None")

Get the new SDDL for that configuration
$newSddl = $mapper.GetSddlForm("All")

Update the endpoint configuration
Set-PSSessionConfiguration Microsoft.PowerShell -SecurityDescriptorSddl $newSddl

Discussion
Security descriptors are often shown (or requested) in SDDL form. The SDDL form
of a security descriptor is cryptic, highly specific, and plain text. All of these aspects
make this format difficult to work with reliably, so you can use the
System.Security.AccessControl.CommonSecurityDescriptor class from the .NET
Framework to do most of the gritty work for you.

For more information about the SDDL format, see the Microsoft documentation. For
an example of this in action, see Recipe 29.12.

See Also
Recipe 29.12, “Configure User Permissions for Remoting”

18.17 Manage Security Descriptors in SDDL Form | 533

https://oreil.ly/WlRkX

18.18 Create a Task-Specific Remoting Endpoint
Problem
You want to create a PowerShell Remoting endpoint that lets authorized users accom‐
plish limited administrative tasks on a machine without requiring that they be a full
administrator of that machine.

Solution
Use the New-PSSessionConfigurationFile command to create a session configura‐
tion, and then use the Register-PSSessionConfiguration cmdlet to create an end‐
point based on that configuration.

###
Prepare the Session Configuration
###
New-LocalGroup InventoryUsers
New-LocalUser -Name DiagnosticUser
Add-LocalGroupMember -Group InventoryUsers -Member DiagnosticUser

New-PSSessionConfigurationFile -Path c:\temp\inventory.pssc `
 -RoleDefinitions @{ 'InventoryUsers' = @{
 RoleCapabilities = 'InventoryReader' } } `
 -SessionType RestrictedRemoteServer -RunAsVirtualAccount
Register-PSSessionConfiguration -Name Inventory `
 -Path c:\temp\inventory.pssc -Force

###
Create the module that controls its behavior
###
$modulePath = Join-Path $env:ProgramFiles "WindowsPowerShell\Modules\InventoryReader"
New-Item -ItemType Directory -Path $modulePath
New-ModuleManifest -Path (
 Join-Path $modulePath InventoryReader.psd1) -RootModule "InventoryReader.psm1"

Create a module that has a primary function you want to expose (Get-Inventory),
as well as some that you don't (Invoke-MyHelperFunction)
Set-Content -Path (Join-Path $modulePath InventoryReader.psm1) -Value @"
function Get-Inventory
{
 Invoke-MyHelperFunction
}

function Invoke-MyHelperFunction
{
 Get-WmiObject Win32_OperatingSystem
}

Export-ModuleMember Get-Inventory
"@

534 | Chapter 18: Security and Script Signing

Create the RoleCapabilities folder and copy in the PSRC file
$rcFolder = Join-Path $modulePath RoleCapabilities
New-Item -ItemType Directory $rcFolder

New-PSRoleCapabilityFile -Path InventoryReader.psrc -ModulesToImport InventoryReader
Copy-Item -Path .\InventoryReader.psrc -Destination $rcFolder

PS > $s = nsn -ConfigurationName Inventory -Credential DiagnosticUser
PS > Invoke-Command $s { Get-Process }
Get-Process: The term 'Get-Process' is not recognized as the name of a cmdlet,
function, script file, or operable program. Check the spelling of the name,
or if a path was included, verify that the path is correct and try again.

PS > Invoke-Command $s { 1+1 }
The syntax is not supported by this runspace. This might be because it is in
no-language mode.

PS > Invoke-Command $s { Get-Inventory }

SystemDirectory : C:\WINDOWS\system32
Organization :
BuildNumber : 19041
RegisteredUser : Lee
SerialNumber : 00330-80000-97745-AA866
Version : 10.0.19041
PSComputerName : localhost

Discussion
In addition to its main feature of offering full and rich remoting endpoints, Power‐
Shell lets you configure a session to the other extreme as well. This is through a fea‐
ture called Just Enough Administration (JEA). JEA lets you control which commands
you expose to users, create proxy functions to wrap commands with more secure ver‐
sions, and remove access to the PowerShell language altogether.

In early versions of PowerShell, implementing task-specific endpoints was a chore
that took a team of developers to accomplish: creating a custom assembly, building an
initial session state, hosting all of this inside a web server, and more. This was incredi‐
bly powerful, however, and forms the basis of incredibly successful remote manage‐
ment systems like Exchange Online and SharePoint Online.

But through the features of JEA, creating these task-specific endpoints to limit the
sprawl of highly-privileged administrators in your environment is something that you
can do quite easily. In fact, JEA has been used to restrict access to nuclear reactors,
limit IT department administrative sprawl in the Mercedes Formula One Team, and
more. In one instance, a company managed to bring its total list of domain adminis‐
trators down from almost 300 to just 3!

The foundation of JEA is that PowerShell understands the concepts of two types of
commands: public and private. The main distinction is that users can call only public
commands, while public commands can internally call both public and private

18.18 Create a Task-Specific Remoting Endpoint | 535

commands. This lets you write a public function, for example, that calls many private
PowerShell cmdlets to accomplish its task.

The first step in getting started with JEA is to create a session configuration file. The
Solution demonstrates the framework of an Inventory endpoint that exposes just the
Get-Inventory command. The three most critical parameters to this cmdlet are
-SessionType RestrictedRemoteServer (which sets security defaults that make this
suitable for a JEA endpoint), -RunAsVirtualAccount (which lets non-admin users
accomplish tasks that require administrative credentials), and -RoleDefinitions
(which tells PowerShell the actual commands that your endpoint should allow).

Session configuration files let you adjust many additional aspects of a JEA endpoint:
the directory used for security transcripts, the ability to mount temporary user drives
for file transfers, and more.

When creating a JEA configuration, do not change the Session
Type or LanguageMode parameters. This will introduce security vul‐
nerabilities (such as letting users define their own functions) that
will let them compromise the server hosting your JEA endpoint.

When users connect to your JEA endpoint, PowerShell surfaces whatever commands
you have allowed for that user. The easiest way to do this is through a script module
specific to each possible role—such as the InventoryReader module we created in
our example. You can flesh out this module to implement any functionality you see
fit, and then use the Export-ModuleMember cmdlet to select which commands Power‐
Shell should make available to connecting users. Once you have a module imple‐
mented for each role, the -RoleDefinitions parameter lets you tell PowerShell which
security groups should be allowed to access which roles. While the Solution gives an
example of one security group being given access to one role, PowerShell supports
much richer behaviors as well.

As you create modules for various roles, be aware that certain coding mistakes—pri‐
marily ones around code injection—can easily become security vulnerabilities. For
example, if you have a system that delegates access to the Set-AdUser cmdlet and you
call that command insecurely, malicious input can easily compromise your domain:

function Set-PersonalDisplayName($DisplayName)
{
 $c = "Set-AdUser -UserPrincipalName " +
 "$($PSSenderInfo.UserInfo.Identity.Name) -DisplayName $DisplayName"
 Invoke-Expression $c
}

Because Invoke-Expression runs all the code you give it (including semicolons and
other code), the following malicious input would let the user add themselves to
domain admins:

536 | Chapter 18: Security and Script Signing

Set-PersonalDisplayName 'Attacker; Add-GroupMember "Domain Admins" DOMAIN\Attacker'

A secure implementation of this same function is:
function Set-PersonalDisplayName($DisplayName)
{
 Set-AdUser -UserPrincipalName $PSSenderInfo.UserInfo.Identity.Name `
 -DisplayName $DisplayName
}

For information about how to audit and protect yourself from code injection risks,
see Recipe 18.20.

For more information about PowerShell Remoting, see Chapter 29.

See Also
Recipe 18.20, “Detect and Prevent Code Injection Vulnerabilities”

Chapter 29

18.19 Limit Interactive Use of PowerShell
Problem
You have a jump box, kiosk, or other secure host, and want to allow a limited degree
of administration via PowerShell.

Solution
Set the ConsoleSessionConfiguration registry policy to force all local instances of
PowerShell to transparently connect to the specified Just Enough Administration
(JEA) endpoint. Here’s one that forces all interactive shells to connect to the Jumpbox
endpoint:

$path = "HKLM:\Software\Policies\Microsoft\Windows\" +
 "PowerShell\ConsoleSessionConfiguration"
if(-not (Test-Path $path)) { New-Item $path -Force }
Set-ItemProperty $path ConsoleSessionConfigurationName Jumpbox
Set-ItemProperty $path EnableConsoleSessionConfiguration 1

Discussion
When you’re trying to configure a highly secure system (such as a jump box or
kiosk), you might sometimes need to expose additional advanced functionality to the
interactive user. While the traditional approach to tightly locking down systems is to
block all command-line access, this requires that you to write custom one-off applica‐
tions for every additional task you need to surface. Writing custom scripts and

18.19 Limit Interactive Use of PowerShell | 537

PowerShell functions is of course easier, but you might be uncomfortable exposing
cmd or PowerShell directly.

More importantly, if you want to expose any functionality that requires administra‐
tive access to non-administrative users, you can throw any traditional applications
out of the window. For an application to run with administrative access, the user
needs to either be an administrator or you need to somehow make them temporary
administrators and tightly control what they can do during this time.

While this can seem like an insurmountable challenge, PowerShell already has a
major feature to get you most of the way there: Just Enough Administration (JEA).
JEA primarily caters to remote scenarios where you want to let users perform admin‐
istrative tasks on a server without making them administrators on the server itself.
For more information about creating a task-specific remoting endpoint, see Recipe
18.18. Using JEA, you can create task-specific endpoints that accomplish everything
you want to expose to the user.

The final stage to applying this to interactive use is through PowerShell’s ConsoleSes
sionConfiguration policy. When you set this to a PowerShell JEA configuration
name, all PowerShell console instances connect to that endpoint rather than load a
local interactive shell—similar to if the user had run Enter-PSSession to connect to
that session directly.

When you create this policy, it applies to all users on the machine. Through the
power of dynamic Role Definitions in JEA, you can easily set this endpoint up to
adapt its behavior to the user connecting. Here’s an example of creating a Role Capa‐
bility for “Unrestricted” use of the endpoint—one that you might want to expose to
local users that are intended to be unrestricted administrators:

$modulePath = Join-Path $env:ProgramFiles "WindowsPowerShell\Modules\Unrestricted"
$null = New-Item -ItemType Directory -Path $modulePath
New-ModuleManifest -Path (Join-Path $modulePath Unrestricted.psd1)

Create an initialization script for the Unrestricted role that
re-enables Full Language mode
Set-Content -Path (Join-Path $modulePath init.ps1) -Value @"
`$null = [PowerShell]::Create().AddScript(@'
 param(`$rs)
 while(`$rs.RunspaceAvailability -ne `"Available`") {
 Start-Sleep -Milliseconds 500 }
 `$rs.LanguageMode = `"FullLanguage`"
'@).AddArgument([Runspace]::DefaultRunspace).BeginInvoke()
"@

Create the RoleCapabilities folder and copy in the PSRC file
$rcFolder = Join-Path $modulePath RoleCapabilities
$null = New-Item -ItemType Directory $rcFolder

New-PSRoleCapabilityFile -Path Unrestricted.psrc -VisibleAliases * `
 -VisibleCmdlets * -VisibleFunctions * -VisibleExternalCommands * `

538 | Chapter 18: Security and Script Signing

 -VisibleProviders * -ScriptsToProcess (Join-Path $modulePath init.ps1)

Copy-Item -Path .\Unrestricted.psrc -Destination $rcFolder

With this role capability available, here’s how you could combine it with a restricted
role capability (for example, the InventoryReader capability from Recipe 18.18):

New-PSSessionConfigurationFile -Path c:\temp\jumpbox.pssc `
 -RoleDefinitions @{
 'Users' = @{ RoleCapabilities = 'InventoryReader' }
 'Administrators' = @{ RoleCapabilities = 'Unrestricted' }
 } -SessionType RestrictedRemoteServer -RunAsVirtualAccount
Register-PSSessionConfiguration -Name Jumpbox `
 -Path c:\temp\jumpbox.pssc -Force

As with all JEA endpoints, be aware that certain coding mistakes—primarily ones
around code injection—can easily become security vulnerabilities. For information
about how to audit and protect yourself from code injection risks, see Recipe 18.20.

For more information about PowerShell Remoting, see Chapter 29.

See Also
Recipe 18.18, “Create a Task-Specific Remoting Endpoint”

Recipe 18.20, “Detect and Prevent Code Injection Vulnerabilities”

Chapter 29

18.20 Detect and Prevent Code Injection Vulnerabilities
Problem
You have a script or function that you are exposing across a security boundary (for
example, a JEA endpoint), and want to ensure that it’s not vulnerable to code injec‐
tion attacks.

Solution
Install and run the InjectionHunter module from the PowerShell Gallery.

Install-Module -Name PSScriptAnalyzer -Scope CurrentUser -Force
Install-Module -Name InjectionHunter -Scope CurrentUser -Force

@'
function Set-PersonalDisplayName($DisplayName)
{
 $c = "Set-AdUser -UserPrincipalName DOMAIN\user -DisplayName $DisplayName"
 Invoke-Expression $c
}
'@ > $env:TEMP\injectable.ps1

18.20 Detect and Prevent Code Injection Vulnerabilities | 539

Invoke-ScriptAnalyzer -Path $env:TEMP\injectable.ps1 `
 -CustomRulePath (Get-Module InjectionHunter -List).Path

RuleName ScriptName Line Message
-------- ---------- ---- -------
InjectionRisk.InvokeExpression injectable.ps1 4 Possible script injection risk
 via the Invoke-Expression
 cmdlet. Untrusted input can
 cause arbitrary PowerShell
 expressions to be run.
 (...)

Discussion
One of the incredibly powerful things about JEA and related features is that they let
you effectively reduce the number of broadly privileged administrators in your orga‐
nization. When you have employees that only need to help users reset forgotten pass‐
words, it’s a huge increase of operational risk to make them all domain
administrators.

JEA lets you vastly improve this by implementing a trusted subsystem—an endpoint
that approved low-privileged users can connect to, but where the actions themselves
(exposed as scripts or functions that you write) are performed in a highly privileged
context. This transition between low trust and high trust is known as a trust bound‐
ary, and any code you expose to the lower-trust side of the equation is called attack
surface, and becomes a possible security risk.

There are several examples where PowerShell scripts can become part of an attack
surface:

• Functions or scripts that you expose in JEA endpoints
• Helper scripts that you run as a response to administrative web UIs
• Signed scripts that are on a system that has deployed Windows Defender Appli‐

cation Control

The most common cause of security vulnerabilities in PowerShell scripts that are part
of a trust boundary is called script injection: where code that you write incorporates
user input in an unsafe manner. This then lets the untrusted user code run in the
“high trust” side of the attack surface. This class of problem shows up in every tech‐
nology that involves a trust boundary in one way or another: SQL Injection, Cross-
site scripting, and buffer overflows are just a few other examples.

A very simple example of this is given in the Solution, where user input gets unsafely
blended into an Invoke-Expression command through the use of variable
expansion:

540 | Chapter 18: Security and Script Signing

function Set-PersonalDisplayName($DisplayName)
{
 $c = "Set-AdUser -User DOMAIN\user -DisplayName $DisplayName"
 Invoke-Expression $c
}

Invoke-Expression is PowerShell’s cmdlet to take whatever input you give it, treat it
like PowerShell code, and run it. Administrators are often lucky that their scripts
work at all when they use it in conjunction with user input. Let’s look at a simple
example:

Set-PersonalDisplayName -DisplayName "James O'Neil"

This script runs:
Invoke-Expression "Set-AdUser -User DOMAIN\user -DisplayName James O'Neil"

which is like running this at the command line:
Set-AdUser -User DOMAIN\user -DisplayName James O'Neil

and then you start getting help desk calls from users who have the misfortune of
being born with a last name that contains only an open quote and not the corre‐
sponding closing quote:

Invoke-Expression:
Line |
 4 | Invoke-Expression $c
 | ~~~~~~~~~~~~~~~~~~~~
 | The string is missing the terminator: '.

If an attacker is a bit more selective in their placement of special PowerShell charac‐
ters, they might try something like:

PS > Set-PersonalDisplayName -DisplayName "James'' Revenge; calc"

For more information about the risks of Invoke-Expression and alternative
approaches that are both easier and safer to use, see Recipe 1.2.

The Injection Hunter module from the PowerShell Gallery lets you detect this class of
problems and also provides suggestions on how to write your code more securely.
You can even incorporate it into Visual Studio Code to have it run while you write
your scripts, as shown in Figure 18-4.

18.20 Detect and Prevent Code Injection Vulnerabilities | 541

Figure 18-4. Injection Hunter pointing out a script injection vulnerability

To do this, open up the PowerShell Script Analyzer settings by typing Ctrl+Comma,
and then type analyzer. Under Script Analyzer Settings Path, type a path for these
settings—such as alongside your profile: d:\lee\PowerShell\PSScriptAnalyzerSet
tings.psd1. In it, place the following:

@{
 IncludeDefaultRules = $true
 CustomRulePath =
 "D:\Lee\WindowsPowerShell\Modules\InjectionHunter\1.0.0\InjectionHunter.psd1"
}

For the CustomRulePath setting, you can get the path to Injection Hunter by typing:
Get-Module InjectionHunter -List | ForEach-Object Path

Injection Hunter detects security issues from Invoke Expression, dangerous API
usage, command injection, method and property tampering, as well as unsafe input
escaping.

To learn how to write analysis rules yourself, see Recipe 10.10 to get started. With that
under your belt, Injection Hunter is written as a script module. You can read the con‐
tents of InjectionHunter.psm1 to see how it implements its existing rules.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 10.10, “Parse and Interpret PowerShell Scripts”

Recipe 18.18, “Create a Task-Specific Remoting Endpoint”

542 | Chapter 18: Security and Script Signing

18.21 Get the Cryptographic Hash of a File
Problem
You want to validate the cryptographic (MD5, SHA1, SHA2) hash of a file.

Solution
Use the Get-FileHash cmdlet:

$url = "https://github.com/PowerShell/PowerShell/releases/download/" +
 "v7.1.3/powershell-7.1.3-linux-arm64.tar.gz"
Invoke-WebRequest $url -OutFile powershell-7.1.3-linux-arm64.tar.gz

PS > Get-FileHash .\powershell-7.1.3-linux-arm64.tar.gz | Format-List

Algorithm : SHA256
Hash : B4ECB166EBBD7232CDF2ED3CC84D90FF1A01E62F5307EB58868697CA6CB3B4A2
Path : C:\temp\powershell-7.1.3-linux-arm64.tar.gz

To get the cryptographic hash of a string or other raw binary content, use the
-InputStream parameter:

$bytes = [Text.Encoding]::Unicode.GetBytes("My future prediction")
Get-FileHash -InputStream ([IO.MemoryStream] $bytes)

Discussion
File hashes provide a useful way to check for damage or modification to a file. A digi‐
tal hash acts like the fingerprint of a file and detects even minor modifications. If the
content of a file changes, then so does its hash. Many online download services pro‐
vide the hash of a file on that file’s download page so you can determine whether the
transfer somehow corrupted the file (see Figure 18-5).

Figure 18-5. File hashes as a verification mechanism

18.21 Get the Cryptographic Hash of a File | 543

There are three common ways to generate the hash of a file: MD5, SHA1, and
SHA256. The most common is MD5, and the next most common is SHA1. While
popular, these hash types can be trusted to detect only accidental file modification.
They can be fooled if somebody wants to tamper with the file without changing its
hash. The SHA256 algorithm can be used to protect against even intentional file
tampering.

The Get-FileHash cmdlet lets you determine the hash of a file (or of multiple files if
provided by the pipeline).

To efficiently record and compare file hashes for large sets of files, see Recipe 18.22.

See Also
Recipe 18.22

18.22 Capture and Validate Integrity of File Sets
Problem
You want to detect if any files change in a directory or published file catalog.

Solution
Use the New-FileCatalog and Test-FileCatalog cmdlets:

Create some files for our catalog
"Hello World 1" > unchanged.txt
"Hello World 2" > tamper_target.txt
"Hello World 3" > delete_target.txt

Create the catalog
New-FileCatalog catalog.cat

Change a file, remove a file, and create a new file
"Hello World Tampered" > tamper_target.txt
Remove-item delete_target.txt
"Hello World 5" > newfile.txt

Test the file catalog
PS > Test-FileCatalog catalog.cat -Detailed

Status : ValidationFailed
HashAlgorithm : SHA256
CatalogItems : {[delete_target.txt,
 FD36E8BD105A56796600C6CE8697685FE520F3AA154497AFA6B849C8A3E73B14],
 [tamper_target.txt,
 678DF656B70CC98AD0D00AC5B7C8FE3A96B9C1B7040EFCC7610C3FE4987A45DA],
 [unchanged.txt,
 216A9860C6B4E0149B27C127DB443A11199375DADC388BD3401A00D191E037B5]}
PathItems : {[newfile.txt,

544 | Chapter 18: Security and Script Signing

 F720B1FD7899F6AE3FED8C6640A36D61AB95BD794CA530CACA70D5D1603CA9E7],
 [tamper_target.txt,
 1713559C3BDEBAC97A5B073B72F59F1AC2A9082DFDC64048A64C86B7A835E434],
 [unchanged.txt,
 216A9860C6B4E0149B27C127DB443A11199375DADC388BD3401A00D191E037B5]}
Signature : System.Management.Automation.Signature

Discussion
File catalogs are a mechanism in Windows that lets you validate the file integrity of a
list of files. When you use the New-FileCatalog cmdlet to create a file catalog, Power‐
Shell captures the filenames and file hashes from the current directory tree and
includes them in the file catalog.

When you want to validate a file catalog later, the Test-FileCatalog cmdlet lets you
compare all files and their file hashes to determine if any content has changed and if
any files have been added or removed.

You can use the Get-AuthenticodeSignature and Set-AuthenticodeSignature
cmdlets to protect the integrity of file catalog itself.

While the Test-FileCatalog cmdlet tells you whether anything has changed, there’s
one additional step required to see exactly what has changed. You can use the
Compare-Object cmdlet to see the differences between what’s in the catalog and
what’s in a given path:

$catalog = Test-FileCatalog catalog.cat -Detailed
$catalogItems = @($catalog.CatalogItems.GetEnumerator())
$pathItems = @($catalog.PathItems.GetEnumerator())

PS > Compare-Object $catalogItems $pathItems -Property Key,Value

Key Value SideIndicator
--- ----- -------------
newfile.txt 4CC21EBD3C69C4CAF1B4DD8CE9977CD4C0630BA2 =>
tamper_target.txt 4A1825A9E671973222A8D15972EDAEEAC299AD63 =>
tamper_target.txt CAAECB998B7B532D71ED3DF9E620733C475729C7 <=
delete_target.txt 675A2C8FB1A83D83B8F3AFE69404D42E69E80D10 <=

To test just one file in a catalog, you can save validation time by using the -Path
parameter of Test-FileCatalog.

$target = "tamper_target.txt"
$catalog = Test-FileCatalog -CatalogFilePath catalog.cat -Path $target -Detailed
$catalogItems = $catalog.CatalogItems.GetEnumerator() | Where-Object Key -eq $target
$pathItems = $catalog.PathItems.GetEnumerator() | Where-Object Key -eq $target

PS > Compare-Object $catalogItems $pathItems -Property Key,Value

Key Value SideIndicator
--- ----- -------------
tamper_target.txt 4A1825A9E671973222A8D15972EDAEEAC299AD63 =>
tamper_target.txt CAAECB998B7B532D71ED3DF9E620733C475729C7 <=

18.22 Capture and Validate Integrity of File Sets | 545

This path filtering doesn’t influence PowerShell’s overall evaluation of whether a file
catalog is still valid, however. Even if you target a specific file, PowerShell will still
return a status of ValidationFailed if any file in the catalog has been modified.

See Also
Recipe 18.4, “Sign a PowerShell Script, Module, or Formatting File”

Recipe 18.8, “Verify the Digital Signature of a PowerShell Script”

546 | Chapter 18: Security and Script Signing

CHAPTER 19

Visual Studio Code

19.0 Introduction
While text-mode PowerShell is great for its efficiency and automation, there’s not
much to be said for its UI. As far as console applications go (especially in Windows
Terminal), it’s amazing. But compared to the experience you get from traditional
Integrated Development Environments, it’s got a ways to go.

All of these are simple side effects of pwsh.exe being a console application. These
problems impact every console application on every operating system and likely
always will.

Aside from the UI oddities, the fatal flaw with console applications comes from their
lack of full support for the Unicode standard: the way that most international lan‐
guages represent their alphabets. While the Windows console supports a few basic
non-English characters (such as accented letters), it provides full support for very lit‐
tle else. The Windows Terminal application vastly improves this, but its coverage is
still not complete.

This proves to be quite a problem for worldwide administrators! Since typing inter‐
national characters directly at the command line was so difficult, administrators in
many countries were forced to write scripts in Notepad to get full Unicode support,
and then use PowerShell to run the scripts, even if the command was ultimately only
a single line.

PowerShell resolves these issues by offering full-fledged integration with Visual
Studio Code.

Visual Studio Code gives PowerShell the UI you expect from a modern application,
supports full Unicode input and multiple tabbed sessions, and provides a great expe‐
rience for interactive debugging.

547

Conceptually, Visual Studio Code consists of two main components (shown in
Figure 19-1):

Editor
The editor is the top pane of Visual Studio Code, and it’s geared toward multiline
script editing and creation. It offers line numbering and syntax highlighting, and
it supports a great debugging experience.

One unique aspect of the scripting pane is that it supports selective execution: the
ability to run just what you’ve highlighted rather than the entire script you’re
working on. This makes script authoring a breeze. As you start to write your
script, you can interactively experiment with commands until you get them right.
Once they work as expected, you can keep them, move on, and then continue to
build your script one piece at a time. As you’ve come to expect from PowerShell’s
console shell, script editing in the scripting pane supports tab completion of
commands, parameters, paths, and more.

Console panel
The console panel, which sits in the bottom of the application, is where you’ll
spend most of your interactive sessions in Visual Studio Code. Like the com‐
mand prompt in the PowerShell console, the console pane supports tab
completion.

As with the Windows Terminal, if you find your command growing too long,
you can press Shift-Enter to enable multiline editing for the current command.

If you want Visual Studio Code to look like the PowerShell Integrated Scripting Envi‐
ronment, simply select View → Command Palette, and then search for “PowerShell:
Enable ISE Mode”.

In addition to these features, Visual Studio Code offers extensive customization,
scripting, and remoting support.

548 | Chapter 19: Visual Studio Code

Figure 19-1. Visual Studio Code

19.1 Debug a Script
Problem
You want to use PowerShell’s debugging commands through an interface more
friendly than its *-PsBreakpoint cmdlets.

Solution
Use the Run menu in Visual Studio Code to add and remove breakpoints and manage
debugging behavior when PowerShell reaches a breakpoint.

Discussion
Visual Studio Code gives you a rich set of interactive graphical debugging commands
to help you diagnose errors in your scripts. It exposes these through the Run menu,
and it behaves like many other graphical debugging environments you may have
experience with. Figure 19-2 shows the debugging options available in Visual Studio
Code.

19.1 Debug a Script | 549

Figure 19-2. Debugging options in the Visual Studio Code

To set a breakpoint, first save your script. Then, select the Toggle Breakpoint menu
item, or click just to the left of the line numbers beside the line you want to stop on.
Once PowerShell hits the breakpoint in your script, it pauses to let you examine vari‐
ables, script state, and whatever else interests you. To control the flow of execution,
you can use the stepping commands: Step Over, Step Into, and Step Out.

Step Over continues to the next line of the script, executing (but not debugging into)
any function calls that you come across. Step Into continues to the next line of the
script, debugging into any function calls that you come across. If you’re in a function,
the Step Out command lets PowerShell complete execution of the function and
resumes debugging once the function completes.

One unique aspect of debugging in Visual Studio Code is that it builds its support
entirely on the core debugging cmdlets discussed in Chapter 14. Changes that you
make from the debugging menu (such as adding a breakpoint) are immediately
reflected in the cmdlets (such as listing breakpoints). Likewise, breakpoints that you
add or modify from the integrated command line show up in the UI as though you
had created them from the Debug menu itself.

In fact, the features exposed by PowerShell’s breakpoint cmdlets in
many cases surpass the functionality exposed by Visual Studio
Code’s debug menu. For example, the Set-PsDebug cmdlet sup‐
ports command breakpoints, conditional breakpoints, variable
breakpoints, and much more. For more information about the Set-
PsDebug cmdlet, see Recipe 14.4.

550 | Chapter 19: Visual Studio Code

Unlike most graphical debugging environments, Visual Studio Code makes it incredi‐
bly easy to investigate the dynamic state of your script while you’re debugging it. For
more information about how to investigate the state of your script while debugging,
see Recipe 14.7.

See Also
Recipe 14.7, “Investigate System State While Debugging”

Chapter 14

19.2 Connect to a Remote Computer
Problem
You want to interact with a remote PowerShell session and its files through Visual
Studio Code.

Solution
From the terminal window, use the Enter-PSSession cmdlet.

Discussion
When you create a remote PowerShell session in Visual Studio Code, the PowerShell
Extension automatically recognizes that you’ve made the connection and enriches
your editor session with additional remote support.

Once you’ve connected a remote session, interacting with that remote system in the
terminal window is just like interacting with a local one. Prompts from the remote
system show up like prompts from the local system, as do progress bars, credential
requests, and PowerShell’s other feedback mechanisms.

If your remote script hits a debug breakpoint, Visual Studio Code automatically pulls
a copy of that script down to your local computer and gives you an interactive debug‐
ging experience for that script as though you had the script on your own computer.
You can examine system state, step in and out of functions, and even edit the script
itself. For more information about PowerShell’s support for remote debugging, see
Recipe 14.8.

If you want to edit a file on the remote system, you can use Visual Studio Code’s
psedit command. For example:

[localhost]: PS D:\Lee> psedit c:\temp\scratch.txt
(scratch.txt opens in your local Visual Studio Code editor)

19.2 Connect to a Remote Computer | 551

Visual Studio Code automatically mirrors any changes you make to this file back to
the remote system.

For more information about PowerShell Remoting, see Chapter 29.

See Also
Recipe 14.8, “Debug a Script on a Remote Machine”

Chapter 29

19.3 Interact with Visual Studio Code Through Its Object
Model
Problem
You want to interact with the Visual Studio Code object model to implement
advanced functionality and features.

Solution
Explore and modify properties of the $psEditor automatic variable to interact with
the PowerShell Editor Services object model. For example, to clean up trailing spaces
from the script you’re currently editing, use the following:

$currentFile = $psEditor.GetEditorContext().CurrentFile
$currentText = $currentFile.GetText()
$currentText = $currentText -replace '(?m)\s+$',''
$endLine = $currentFile.FileRange.End.Line
$endColumn = $currentFile.FileRange.End.Column
$currentFile.InsertText($currentText, 1, 1, $endLine, $endColumn)

Discussion
In addition to the features already available, Visual Studio Code offers many addi‐
tional automation opportunities through its object model. The object model exposes
the nuts and bolts you need to create your own functionality—and makes it available
through the $psEditor automatic variable.

As with other .NET object models, the Get-Member and Format-List cmdlets are the
keys to exploring the PowerShell Editor Services object model. At its first level, the
object model gives you access to the workspace and window:

PS > $psEditor | Format-List

EditorServicesVersion : 2.2.0.0
Workspace : Microsoft.PowerShell.EditorServices...EditorWorkspace
Window : Microsoft.PowerShell.EditorServices...EditorWindow

552 | Chapter 19: Visual Studio Code

As you explore deeper, you’ll find lots of interesting functionality. For example, the
$psEditor.GetEditorContext().CurrentFile variable provides programmatic
access to the text and behavior of the current file:

PS > $psEditor.GetEditorContext().CurrentFile | Get-Member

 TypeName: Microsoft.PowerShell.EditorServices.Extensions.FileContext

Name MemberType Definition
---- ---------- ----------
Equals Method bool Equals(System.Object obj)
GetHashCode Method int GetHashCode()
GetText Method string GetText(), string GetText(Microsoft.PowerShell...
GetTextLines Method string[] GetTextLines(), string[] GetTextLines(Microso...
GetType Method type GetType()
InsertText Method void InsertText(string textToInsert), void InsertText(...
Save Method void Save()
SaveAs Method void SaveAs(string newFilePath)
ToString Method string ToString()
Ast Property System.Management.Automation.Language.Ast Ast {get;}
FileRange Property Microsoft.PowerShell.EditorServices.Extensions.IFileRa...
Language Property string Language {get;}
Path Property string Path {get;}
Tokens Property System.Collections.Generic.IReadOnlyList[System.Manage...
Uri Property uri Uri {get;}
WorkspacePath Property string WorkspacePath {get;}

By leveraging the object model, you can write tools to automatically process your
scripts (for example, commenting and uncommenting regions of your script, process‐
ing script output, and more).

For more information about working with .NET objects, see Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

19.4 Quickly Insert Script Snippets
Problem
You want to quickly insert common snippets of PowerShell script.

Solution
Press Ctrl+Alt+J to open the Visual Studio Code snippets menu (see Figure 19-3).

19.4 Quickly Insert Script Snippets | 553

Figure 19-3. Inserting a snippet

Discussion
Even with all of the great resources available, remembering the syntax for scripting
constructs such as switch statements and comment-based help escapes all of us at
some point in time. To help solve this problem, Visual Studio Code includes support
for snippets—small sections of PowerShell script that you can insert simply by press‐
ing Ctrl+Alt+J. Typing automatically searches for snippets that match the text you
type.

By default, the Visual Studio Code includes snippets for most sections of the Power‐
Shell language. You can also extend this menu with snippets of your own.

If you’ve got a multiline snippet that you’d like to add, open File → Preferences →
User Snippets. Select PowerShell in the menu that pops up, and Visual Studio Code
opens your custom snippets file. Here’s an example of a snippet that lets you add your
standard script header when you type “Header” in the snippets menu:

"Standard script header": {
 "prefix": "header",
 "body": [
 "##",
 "##",
 "## My Standard Script Header",
 "##",
 "##"
],
 "description": "Insert a standard script header"
}

554 | Chapter 19: Visual Studio Code

PART IV

Administrator Tasks

Chapter 20, Files and Directories
Chapter 21, The Windows Registry
Chapter 22, Comparing Data
Chapter 23, Event Logs
Chapter 24, Processes
Chapter 25, System Services
Chapter 26, Active Directory
Chapter 27, Enterprise Computer Management
Chapter 28, CIM and Windows Management Instrumentation
Chapter 29, Remoting
Chapter 30, Transactions
Chapter 31, Event Handling

CHAPTER 20

Files and Directories

20.0 Introduction
One of the most common tasks when administering a system is working with its files
and directories. This is true when you administer the computer at the command line,
and it’s true when you write scripts to administer it automatically.

Fortunately, PowerShell makes scripting files and directories as easy as working at the
command line—a point that many seasoned programmers and scripters often miss. A
perfect example of this comes when you wrestle with limited disk space and need to
find the files taking up the most space.

A typical programmer might approach this task by writing functions to scan a spe‐
cific directory of a system. For each file, they check whether the file is big enough to
care about. If so, they add it to a list. For each directory in the original directory, the
programmer repeats this process (until there are no more directories to process).

As the saying goes, though, “You can write C in any programming language.” The
habits and preconceptions you bring to a language often directly influence how open
you are to advances in that language.

Being an administrative shell, PowerShell directly supports tasks such as visiting all
the files in a subdirectory or moving a file from one directory to another. That com‐
plicated programmer-oriented script turns into a one-liner:

Get-ChildItem -Recurse | Sort-Object -Descending Length | Select -First 10

Before diving into your favorite programmer’s toolkit, check to see what PowerShell
supports in that area. In many cases, it can handle the task without requiring your
programmer’s bag of tricks.

557

20.1 Determine and Change the Current Location
Problem
You want to determine the current location from a script or command or change to a
different directory.

Solution
To retrieve the current location, use the Get-Location cmdlet. The Get-Location
cmdlet provides the drive and path as two common properties:

$currentLocation = (Get-Location).Path

As a short form for (Get-Location).Path, use the $pwd automatic variable.

To change the current location, use the Set-Location cmdlet. For example, to change
to your home directory:

Set-Location ~

Discussion

Getting your current location

The Get-Location cmdlet returns information about the current location. From the
information it returns, you can access the current drive, provider, and path.

This current location affects PowerShell commands and programs that you launch
from PowerShell. This doesn’t apply when you interact with the .NET Framework,
however. If you need to call a .NET method that interacts with the filesystem, always
be sure to provide fully qualified paths:

[System.IO.File]::ReadAllText("c:\temp\file.txt")

If you’re sure that the file exists, the Resolve-Path cmdlet lets you translate a relative
path to an absolute path:

$filePath = (Resolve-Path file.txt).Path
[System.IO.File]::ReadAllText($filePath)

Or alternatively,
[System.IO.File]::ReadAllText("$pwd\file.txt")

If the file doesn’t exist, use the Join-Path cmdlet in combination with the Get-
Location cmdlet to specify the file:

$filePath = Join-Path (Get-Location) file.txt

558 | Chapter 20: Files and Directories

Another alternative that combines the functionality of both approaches is a bit more
advanced but also lets you specify relative locations. It comes from methods in the
PowerShell $executionContext variable, which provides functionality normally used
by cmdlet and provider authors:

$executionContext.SessionState.Path.`
 GetUnresolvedProviderPathFromPSPath("..\file.txt")

For more information about the Get-Location cmdlet, type Get-Help Get-

Location.

Setting your current location

The PowerShell command to change your current location is Set-Location, with an
alias of cd. It supports three main modes of operation:

• Set-Location <path>: Changes the current directory to the path specified. This
can be an absolute path (like c:\users) or a relative path (like .. or ..\..\sys
tem32). See Recipe 1.11 for a way to add support for further levels of parent
directories, such as Set-Location The <path> parameter supports several
shortcuts: ~ (for your home directory), $pshome for the installation directory of
PowerShell, or even complicated wildcards. For example, if you don’t know
which of the Program Files directories some software is installed to, you can
still quickly navigate to it with: cd c:\progra**steam*.

• Set-Location -: Changes the current directory to the last directory you visited,
similar to Alt+Back in a web browser.

• Set-Location +: Changes the current directory to the next directory in your
directory history, similar to Alt+Forward in a web browser.

To add hot key support for navigating back and forth in your directory history, see
Recipe 1.10.

See Also
Recipe 1.11, “Customize PowerShell’s Command Resolution Behavior”

Recipe 1.10, “Customize PowerShell’s User Input Behavior”

20.1 Determine and Change the Current Location | 559

20.2 Get the Files in a Directory
Problem
You want to get or list the files in a directory.

Solution
To retrieve the list of files in a directory, use the Get-ChildItem cmdlet. To get a spe‐
cific item, use the Get-Item cmdlet:

• To list all items in the current directory, use the Get-ChildItem cmdlet:
Get-ChildItem

• To list all items that match a wildcard, supply a wildcard to the Get-ChildItem
cmdlet:

Get-ChildItem *.txt

• To list all files that match a wildcard in the current directory (and all its children),
use the -Recurse parameter of the Get-ChildItem cmdlet:

Get-ChildItem *.txt -Recurse

• To list all directories in the current directory, use the -Attributes parameter:
Get-ChildItem -Attributes Directory
dir -ad

• To get information about a specific item, use the Get-Item cmdlet:
Get-Item test.txt

Discussion
Although most commonly used on the filesystem, the Get-ChildItem and Get-Item
cmdlets in fact work against any items on any of the PowerShell drives. In addition to
A: through Z: (the standard filesystem drives), they also work on Alias:, Cert:,
Env:, Function:, HKLM:, HKCU:, and Variable:.

While the Solution demonstrates some simple wildcard scenarios that the Get-
ChildItem cmdlet supports, PowerShell in fact enables several more advanced sce‐
narios. For more information about these scenarios, see Recipe 20.6. One specific
point of interest is that the third example in the Solution lists files that match a wild‐
card in a directory and all its children. That example works on any PowerShell pro‐
vider. However, PowerShell can retrieve your results more quickly if you use a
provider-specific filter, as described in Recipe 20.6.

When you’re working in the filesystem, the Get-ChildItem cmdlet exposes several
parameters (-Directory, -File, -ReadOnly, -Hidden, and -System) to make filtering

560 | Chapter 20: Files and Directories

as simple as possible. These parameters have aliases as well (for example, -ad), mak‐
ing short work of most common tasks:

Get-ChildItem -Directory
dir -ad

For less common attributes, the -Attributes parameter supports powerful filtering
against all other file and directory properties. At its most basic level, you can supply
any standard file attribute. PowerShell only returns files with that attribute set:

Get-ChildItem -Attributes Compressed

To return items that do not have an attribute set (a “not” scenario), use an exclama‐
tion point:

Get-ChildItem -Attributes !Archive

To return items that have any of several attributes set (an “or” scenario), use a
comma:

Get-ChildItem -Attributes "Hidden, ReadOnly"

To return items that have all of several attributes set (an “and” scenario), use a plus:
Get-ChildItem -Attributes "ReadOnly + Hidden"

You can combine these filters at will. For example, to find all items that are ReadOnly
or Hidden and not System:

Get-ChildItem c:\ -Attributes "ReadOnly, Hidden + !System"

In the filesystem, these cmdlets return objects from the .NET Framework that repre‐
sent files and directories—instances of System.IO.FileInfo and System.IO.

DirectoryInfo classes, respectively. Each provides a great deal of useful information:
attributes, modification times, full name, and more. Although the default directory
listing exposes a lot of information, PowerShell provides even more. For more infor‐
mation about working with classes from the .NET Framework, please see Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 20.6, “Find Files That Match a Pattern”

20.2 Get the Files in a Directory | 561

20.3 Find All Files Modified Before a Certain Date
Problem
You want to find all files last modified before a certain date.

Solution
To find all files modified before a certain date, use the Get-ChildItem cmdlet to list
the files in a directory, and then use the Where-Object cmdlet to compare the Last
WriteTime property to the date you’re interested in. For example, to find all files cre‐
ated before the year 2007:

Get-ChildItem -Recurse | Where-Object { $_.LastWriteTime -lt "01/01/2007" }

Discussion
A common reason to compare files against a certain date is to find recently modified
(or not recently modified) files. The code for this looks almost the same as the exam‐
ple given by the Solution, except your script can’t know the exact date to compare
against.

In this case, the AddDays() method in the .NET Framework’s DateTime class gives
you a way to perform some simple calendar arithmetic. If you have a DateTime object,
you can add or subtract time from it to represent a different date altogether. For
example, to find all files modified in the last 30 days:

$compareDate = (Get-Date).AddDays(-30)
Get-ChildItem -Recurse | Where-Object { $_.LastWriteTime -ge $compareDate }

Similarly, to find all files more than 30 days old:
$compareDate = (Get-Date).AddDays(-30)
Get-ChildItem -Recurse | Where-Object { $_.LastWriteTime -lt $compareDate }

In this example, the Get-Date cmdlet returns an object that represents the current
date and time. You call the AddDays() method to subtract 30 days from that time,
which stores the date representing “30 days ago” in the $compareDate variable. Next,
you compare that date against the LastWriteTime property of each file that the Get-
ChildItem cmdlet returns.

The DateTime class is the administrator’s favorite calendar!
PS > [DateTime]::IsLeapYear(2008)
True
PS > $daysTillChristmas = [DateTime] "December 25" - (Get-Date)
PS > $daysTillChristmas.Days
327

562 | Chapter 20: Files and Directories

For more information about the Get-ChildItem cmdlet, type Get-Help Get-

ChildItem. For more information about the Where-Object cmdlet, see Recipe 2.2.

See Also
Recipe 2.2, “Filter Items in a List or Command Output”

20.4 Clear the Content of a File
Problem
You want to clear the content of a file.

Solution
To clear the content of a file, use the Clear-Content cmdlet, as shown by
Example 20-1.

Example 20-1. Clearing content from a file

PS > Get-Content test.txt
Hello World
PS > Clear-Content test.txt
PS > Get-Content test.txt
PS > Get-Item test.txt

 Directory: C:\temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 4/23/2007 8:05 PM 0 test.txt

Discussion
The (aptly named) Clear-Content cmdlet clears the content from an item. Although
the Solution demonstrates this only for files in the filesystem, it in fact applies to any
PowerShell providers that support the concept of “content.” Examples of other drives
that support these content concepts are Function:, Alias:, and Variable:.

For information on how to remove an item entirely, see Recipe 20.12.

For more information about the Remove-Item or Clear-Content cmdlets, type Get-
Help Remove-Item or Get-Help Clear-Content.

See Also
Recipe 20.12, “Remove a File or Directory”

20.4 Clear the Content of a File | 563

20.5 Manage and Change the Attributes of a File
Problem
You want to update the ReadOnly, Hidden, or System attributes of a file.

Solution
Most of the time, you’ll want to use the familiar attrib.exe program to change the
attributes of a file:

attrib +r test.txt
attrib -s test.txt

To set only the ReadOnly attribute, you can optionally set the IsReadOnly property on
the file:

$file = Get-Item test.txt
$file.IsReadOnly = $true

To apply a specific set of attributes, use the Attributes property on the file:
$file = Get-Item test.txt
$file.Attributes = "ReadOnly,NotContentIndexed"

Directory listings show the attributes on a file, but you can also access the Mode or
Attributes property directly:

PS > $file.Attributes = "ReadOnly","System","NotContentIndexed"
PS > $file.Mode
--r-s
PS > $file.Attributes
ReadOnly, System, NotContentIndexed

Discussion
When the Get-Item or Get-ChildItem cmdlets retrieve a file, the resulting output has
an Attributes property. This property doesn’t offer much in addition to the regular
attrib.exe program, although it does make it easier to set the attributes to a specific
state.

Be aware that setting the Hidden attribute on a file removes it from
most default views. If you want to retrieve it after hiding it, most
commands require a -Force parameter. Similarly, setting the
ReadOnly attribute on a file causes most write operations on that
file to fail unless you call that command with the -Force

parameter.

564 | Chapter 20: Files and Directories

If you want to add an attribute to a file using the Attributes property (rather than
attrib.exe for some reason), this is how you would do that:

$file = Get-Item test.txt
$readOnly = [IO.FileAttributes] "ReadOnly"
$file.Attributes = $file.Attributes -bor $readOnly

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

20.6 Find Files That Match a Pattern
Problem
You want to get a list of files that match a specific pattern.

Solution
Use the Get-ChildItem cmdlet for both simple and advanced wildcard support:

• To find all items in the current directory that match a PowerShell wildcard, sup‐
ply that wildcard to the Get-ChildItem cmdlet:

Get-ChildItem *.txt

• To find all items in the current directory that match a provider-specific filter, sup‐
ply that filter to the -Filter parameter:

Get-ChildItem -Filter *~2*

• To find all items in the current directory that do not match a PowerShell wild‐
card, supply that wildcard to the -Exclude parameter:

Get-ChildItem -Exclude *.txt

• To find all items in subdirectories that match a PowerShell wildcard, use the
-Include and -Recurse parameters, or use the wildcard as part of the -Path
parameter:

Get-ChildItem -Include *.txt -Recurse
Get-ChildItem *.txt -Recurse
Get-ChildItem -Path c:\temp*.txt -Recurse

• To find all items in subdirectories that match a provider-specific filter, use the
-Filter and -Recurse parameters:

Get-ChildItem -Filter *.txt -Recurse

• To find all items in subdirectories that do not match a PowerShell wildcard, use
the -Exclude and -Recurse parameters:

20.6 Find Files That Match a Pattern | 565

Get-ChildItem -Exclude *.txt -Recurse

Use the Where-Object cmdlet for advanced regular expression support:
• To find all items with a filename that matches a regular expression, use the
Where-Object cmdlet to compare the Name property to the regular expression:

Get-ChildItem | Where-Object { $_.Name -match '^KB[0-9]+\.log$' }

• To find all items with a directory name that matches a regular expression, use the
Where-Object cmdlet to compare the DirectoryName property to the regular
expression:

Get-ChildItem -Recurse | Where-Object { $_.DirectoryName -match 'Release' }

• To find all items with a directory name or filename that matches a regular
expression, use the Where-Object cmdlet to compare the FullName property to
the regular expression:

Get-ChildItem -Recurse | Where-Object { $_.FullName -match 'temp' }

Discussion
The Get-ChildItem cmdlet supports wildcarding through three parameters:

Path

The -Path parameter is the first (and default) parameter. While you can enter
simple paths such as ., C:\, or D:\Documents, you can also supply paths that
include wildcards—such as *, *.txt, [a-z]???.log, or even C:\win**.N[a-f]?
\F*\v2*\csc.exe.

Include/Exclude
The -Include and -Exclude parameters act as a filter on wildcarding that hap‐
pens on the -Path parameter. If you specify the -Recurse parameter, the
-Include and -Exclude wildcards apply to all items returned.

The most common mistake with the -Include parameter comes
when you use it against a path with no wildcards. For example, this
doesn’t seem to produce the expected results:

Get-ChildItem $env:WINDIR -Include *.log

That command produces no results because you haven’t supplied
an item wildcard to the path. Instead, the correct command is:

Get-ChildItem $env:WINDIR* -Include *.log

Or simply:
Get-ChildItem $env:WINDIR*.log

566 | Chapter 20: Files and Directories

Filter

The -Filter parameter lets you filter results based on the provider-specific filter‐
ing language of the provider from which you retrieve items. Since PowerShell’s
wildcarding support closely mimics filesystem wildcards, and most people use
the -Filter parameter only on the filesystem, this seems like a redundant (and
equivalent) parameter. A SQL provider, however, would use SQL syntax in its
-Filter parameter. Likewise, an Active Directory provider would use LDAP
paths in its -Filter parameter.

It may not be obvious, but the filesystem provider’s filtering language isn’t exactly the
same as the PowerShell wildcard syntax. For example, the -Filter parameter doesn’t
support character ranges:

PS > Get-ChildItem | Select-Object Name

Name

A Long File Name With Spaces Also.txt
A Long File Name With Spaces.txt

PS > Get-ChildItem -Filter "[a-z]*"
PS > Get-ChildItem "[a-z]*" | Select-Object Name

Name

A Long File Name With Spaces Also.txt
A Long File Name With Spaces.txt

Provider-specific filtering can often return results far more quickly
than the more feature-rich PowerShell wildcards. Because of this,
PowerShell internally rewrites your wildcards into a combination
of wildcards and provider-specific filtering to give you the best of
both worlds!

For more information about PowerShell’s wildcard syntax, type Get-Help

about_WildCards.

When you want to perform even more advanced filtering than what PowerShell’s
wildcard syntax offers, the Where-Object cmdlet provides infinite possibilities. For
example, to exclude certain directories from a search, use the following:

Get-ChildItem -Rec | Where-Object { $_.DirectoryName -notmatch "Debug" }

Or, in a simpler form:
Get-ChildItem -Rec | ? DirectoryName -notmatch Debug

For a filter that’s difficult (or impossible) to specify programmatically, use the Out-
GridView cmdlet as demonstrated in Recipe 2.4 to interactively filter the output.

20.6 Find Files That Match a Pattern | 567

Because of PowerShell’s pipeline model, an advanced file set generated by Get-
ChildItem automatically turns into an advanced file set for other cmdlets to operate
on:

PS > Get-ChildItem -Rec | Where-Object { $_.Length -gt 20mb } |
 Sort-Object -Descending Length | Select-FilteredObject |
 Remove-Item -WhatIf

What if: Performing operation "Remove File" on Target "C:\temp\backup092.zip".
What if: Performing operation "Remove File" on Target "C:\temp\slime.mov".
What if: Performing operation "Remove File" on Target "C:\temp\hello.mov".

For more information about the Get-ChildItem cmdlet, type Get-Help Get-

ChildItem.

For more information about the Where-Object cmdlet, type Get-Help Where-

Object.

See Also
Recipe 2.4, “Interactively Filter Lists of Objects”

20.7 Manage Files That Include Special Characters
Problem
You want to use a cmdlet that supports wildcarding but provide a filename that
includes wildcard characters.

Solution
To prevent PowerShell from treating those characters as wildcard characters, use the
cmdlet’s -LiteralPath (or similarly named) parameter if it defines one:

Get-ChildItem -LiteralPath '[My File].txt'

Discussion
One consequence of PowerShell’s advanced wildcard support is that the square brack‐
ets used to specify character ranges sometimes conflict with actual filenames. Con‐
sider the following example:

PS > Get-ChildItem | Select-Object Name

Name

[My File].txt

PS > Get-ChildItem '[My File].txt' | Select-Object Name
PS > Get-ChildItem -LiteralPath '[My File].txt' | Select-Object Name

568 | Chapter 20: Files and Directories

Name

[My File].txt

The first command clearly demonstrates that we have a file called [My File].txt. When
we try to retrieve it (passing its name to the Get-ChildItem cmdlet), we see no
results. Since square brackets are wildcard characters in PowerShell (as are * and ?),
the text we provided turns into a search expression rather than a filename.

The -LiteralPath parameter (or a similarly named parameter in other cmdlets) tells
PowerShell that the filename is named exactly—not a wildcard search term.

In addition to wildcard matching, filenames may sometimes run afoul of PowerShell
escape sequences. For example, the backtick character (`) in PowerShell means the
start of an escape sequence, such as `t (tab), `n (newline), or `a (alarm). To prevent
PowerShell from interpreting a backtick as an escape sequence, surround that string
in single quotes instead of double quotes.

For more information about the Get-ChildItem cmdlet, type Get-Help Get-

ChildItem. For more information about PowerShell’s special characters, type Get-
Help About_Special_Characters.

20.8 Program: Get Disk Usage Information
When disk space starts running low, you’ll naturally want to find out where to focus
your cleanup efforts. Sometimes you may tackle this by looking for large directories
(including the directories in them), but other times, you may solve this by looking for
directories that are large simply from the files they contain.

To review the disk usage statistics for an entire drive, use the Get-
PSDrive cmdlet.

Example 20-2 collects both types of data. It also demonstrates an effective use of cal‐
culated properties. Like the Add-Member cmdlet, calculated properties let you add
properties to output objects by specifying the expression that generates their data.

For more information about calculated properties and the Add-Member cmdlet, see
Recipe 3.14.

20.8 Program: Get Disk Usage Information | 569

Example 20-2. Get-DiskUsage.ps1

##
##
Get-DiskUsage
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Retrieve information about disk usage in the current directory and all
subdirectories. If you specify the -IncludeSubdirectories flag, this
script accounts for the size of subdirectories in the size of a directory.

.EXAMPLE

PS > Get-DiskUsage
Gets the disk usage for the current directory.

.EXAMPLE

PS > Get-DiskUsage -IncludeSubdirectories
Gets the disk usage for the current directory and those below it,
adding the size of child directories to the directory that contains them.

#>

param(
 ## Switch to include subdirectories in the size of each directory
 [switch] $IncludeSubdirectories
)

Set-StrictMode -Version 3

If they specify the -IncludeSubdirectories flag, then we want to account
for all subdirectories in the size of each directory
if($includeSubdirectories)
{
 Get-ChildItem -Directory |
 Select-Object Name,
 @{ Name="Size";
 Expression={ ($_ | Get-ChildItem -Recurse |
 Measure-Object -Sum Length).Sum + 0 } }
}
Otherwise, we just find all directories below the current directory,
and determine their size
else
{
 Get-ChildItem -Recurse -Directory |

570 | Chapter 20: Files and Directories

 Select-Object FullName,
 @{ Name="Size";
 Expression={ ($_ | Get-ChildItem |
 Measure-Object -Sum Length).Sum + 0 } }
}

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 3.14, “Add Custom Methods and Properties to Objects”

20.9 Monitor a File for Changes
Problem
You want to monitor the end of a file for new content.

Solution
To monitor the end of a file for new content, use the -Wait parameter of the Get-
Content cmdlet:

Get-Content log.txt -Wait

Discussion
The -Wait parameter of the Get-Content cmdlet acts much like the traditional Unix
tail command with the --follow parameter. If you provide the -Wait parameter, the
Get-Content cmdlet reads the content of the file but doesn’t exit. When a program
appends new content to the end of the file, the Get-Content cmdlet returns that con‐
tent and continues to wait.

If you want to monitor a large file, the initial output displayed by the -Wait parame‐
ter Get-Content might flood your screen or take a long time to complete. To read
from the end of the file, use the -Tail parameter. For example, to start with the final
10 lines:

Get-Content log.txt -Tail 10 -Wait

For more information about the Get-Content cmdlet, type Get-Help Get-Content.
For more information about the -Wait parameter, type Get-Help about_File Sys
tem_Provider.

20.9 Monitor a File for Changes | 571

20.10 Get the Version of a DLL or Executable
Problem
You want to examine the version information of a file.

Solution
Use the Get-Item cmdlet to retrieve the file, and then access the VersionInfo prop‐
erty to retrieve its version information:

PS > $file = Get-Item $pshome\pwsh.exe
PS > $file.VersionInfo

ProductVersion FileVersion FileName
-------------- ----------- --------
7.1.0 SHA: cbb7... 7.1.0.0 C:\Program Files\Windows...\pwsh.exe

Discussion
One common task in system administration is identifying file and version informa‐
tion of installed software. PowerShell makes this simple through the VersionInfo
property, which it automatically attaches to files that you retrieve through the Get-
Item cmdlet. To generate a report for a directory, simply pass the output of Get-
ChildItem to the Select-Object cmdlet, and use the -ExpandProperty parameter to
expand the VersionInfo property.

PS > Get-ChildItem $env:WINDIR |
 Select -Expand VersionInfo -ErrorAction SilentlyContinue

ProductVersion FileVersion FileName
-------------- ----------- --------
 C:\Windows\autologon.log
6.0.6000.16386 6.0.6000.1638... C:\Windows\bfsvc.exe
 C:\Windows\bootstat.dat
 C:\Windows\DtcInstall.log
6.0.6000.16386 6.0.6000.1638... C:\Windows\explorer.exe
6.0.6000.16386 6.0.6000.1638... C:\Windows\fveupdate.exe
6.0.6000.16386 6.0.6000.1638... C:\Windows\HelpPane.exe
6.0.6000.16386 6.0.6000.1638... C:\Windows\hh.exe
(...)

For more information about the Get-ChildItem cmdlet, see Recipe 20.2.

See Also
Recipe 20.2, “Get the Files in a Directory”

572 | Chapter 20: Files and Directories

20.11 Create a Directory
Problem
You want to create a directory or file folder.

Solution
To create a directory, use the md or mkdir function:

PS > md NewDirectory

 Directory: C:\temp

Mode LastWriteTime Length Name
---- ------------- -----------
d---- 4/29/2007 7:31 PM NewDirectory

Discussion
The md and mkdir functions are simple wrappers around the more sophisticated New-
Item cmdlet. As you might guess, the New-Item cmdlet creates an item at the location
you provide. To create a directory using the New-Item cmdlet directly, supply
Directory to the -Type parameter.

New-Item -Path C:\Temp\NewDirectory -Type Directory

The New-Item cmdlet doesn’t work against only the filesystem, however. Any provid‐
ers that support the concept of items automatically support this cmdlet as well.

When you are working with the FileSystem provider, the New-Item cmdlet also sup‐
ports symbolic links, junctions, and hard links.

For more information about the New-Item cmdlet, type Get-Help New-Item.

20.12 Remove a File or Directory
Problem
You want to remove a file or directory.

Solution
To remove a file or directory, use the Remove-Item cmdlet:

PS > Test-Path NewDirectory
True

20.11 Create a Directory | 573

PS > Remove-Item NewDirectory
PS > Test-Path NewDirectory
False

Discussion
The Remove-Item cmdlet removes an item from the location you provide. The
Remove-Item cmdlet doesn’t work against only the filesystem, however. Any providers
that support the concept of items automatically support this cmdlet as well.

The Remove-Item cmdlet lets you specify multiple files through its
Path, Include, Exclude, and Filter parameters. For information
on how to use these parameters effectively, see Recipe 20.6.

If the item is a container (for example, a directory), PowerShell warns you that your
action will also remove anything inside that container. You can provide the -Recurse
flag if you want to prevent this message.

For more information about the Remove-Item cmdlet, type Get-Help Remove-Item.

See Also
Recipe 20.6, “Find Files That Match a Pattern”

20.13 Rename a File or Directory
Problem
You want to rename a file or directory.

Solution
To rename an item in a provider, use the Rename-Item cmdlet:

Rename-Item example.txt example2.txt

Discussion
The Rename-Item cmdlet changes the name of an item.

Some shells let you rename multiple files at the same time. In those shells, the com‐
mand looks like this:

ren *.gif *.jpg

574 | Chapter 20: Files and Directories

PowerShell doesn’t support this syntax, but provides even more power through its
-replace operator. As a simple example, we can emulate the preceding command:

Get-ChildItem *.gif | Rename-Item -NewName { $_.Name -replace '.gif$','.jpg' }

This syntax provides an immense amount of power. Consider removing underscores
from filenames and replacing them with spaces:

Get-ChildItem *_* | Rename-Item -NewName { $_.Name -replace '_',' ' }

or restructuring files in a directory with the naming convention of <Report_Project_
Quarter>.txt:

PS > Get-ChildItem | Select Name

Name

Report_Project1_Q3.txt
Report_Project1_Q4.txt
Report_Project2_Q1.txt

You might want to change that to <Quarter_Project>.txt with an advanced replace‐
ment pattern:

PS > Get-ChildItem |
 Rename-Item -NewName { $_.Name -replace '.*_(.*)_(.*)\.txt','$2_$1.txt' }

PS > Get-ChildItem | Select Name

Name

Q1_Project2.txt
Q3_Project1.txt
Q4_Project1.txt

For more information about the -replace operator, see Recipe 5.8.

Like the other *-Item cmdlets, the Rename-Item doesn’t work against only the filesys‐
tem. Any providers that support the concept of items automatically support this
cmdlet as well. For more information about the Rename-Item cmdlet, type Get-Help
Rename-Item.

See Also
Recipe 5.8, “Replace Text in a String”

20.13 Rename a File or Directory | 575

20.14 Move a File or Directory
Problem
You want to move a file or directory.

Solution
To move a file or directory, use the Move-Item cmdlet:

Move-Item example.txt c:\temp\example2.txt

Discussion
The Move-Item cmdlet moves an item from one location to another. Like the other
*-Item cmdlets, Move-Item doesn’t work against only the filesystem. Any providers
that support the concept of items automatically support this cmdlet as well.

The Move-Item cmdlet lets you specify multiple files through its
Path, Include, Exclude, and Filter parameters. For information
on how to use these parameters effectively, see Recipe 20.6.

Although the Move-Item cmdlet works in every provider, you can’t move items
between providers. For more information about the Move-Item cmdlet, type Get-
Help Move-Item.

See Also
Recipe 20.6, “Find Files That Match a Pattern”

20.15 Create and Map PowerShell Drives
Problem
You want to create a custom drive letter for use within PowerShell.

Solution
To create a custom drive, use the New-PSDrive cmdlet:

576 | Chapter 20: Files and Directories

PS > $myDocs = [Environment]::GetFolderPath("MyDocuments")
PS > New-PSDrive -Name MyDocs -Root $myDocs -PSProvider FileSystem

Name Used (GB) Free (GB) Provider Root
---- --------- --------- -------- ----
MyDocs 1718.98 FileSystem G:\Lee

PS > dir MyDocs:\Cookbook

 Directory: G:\Lee\Cookbook

Mode LastWriteTime Length Name
---- ------------- ------ ----
d---- 7/10/2012 1:12 PM Admin
d---- 2/15/2010 10:39 AM chapters
(...)

To create a custom drive available throughout all of Windows, use the -Persist flag:
PS > $serverDocs = "\\server\shared\documents"
PS > New-PSDrive -Name Z -Root $serverDocs -PSProvider FileSystem -Persist

Discussion
In addition to the standard drive letters you’re used to (A: through Z:), PowerShell
also lets you define drives with completely custom names. Using the New-PSDrive
cmdlet, you can create friendly drive names for all of your most commonly used
paths.

When you use the New-PSDrive cmdlet to create a custom drive mapping, PowerShell
automatically creates a new virtual drive with the name and root location that you
specify. This mapping exists only for the current PowerShell session, so be sure to put
it in your PowerShell profile if you want it to be available in every session.

To see the available drives in your session, type Get-PSDrive.

While extremely flexible and powerful, custom drives created this way come with
some limitations. PowerShell’s core commands (Get-Item, Get-Content, etc.) all
understand how to handle these virtual drives, but most of the rest of the system does
not:

PS > more.com MyDocs:\blogMonitor.csv
Cannot access file G:\lee\MyDocs:\blogMonitor.csv

To resolve this issue, use the Get-Item cmdlet to convert these virtual filenames to
their real filenames:

more.com (Get-Item MyDocs:\blogMonitor.csv)

While creating custom drives can provide easier access to local files, a common sce‐
nario with the New-PSDrive cmdlet is to map a drive to provide access to network

20.15 Create and Map PowerShell Drives | 577

resources. To do this, simply supply a UNC path to the -Root parameter of New-
PSDrive.

When you supply a UNC path to the -Root parameter, PowerShell also supports a
-Persist flag. When you specify -Persist, your drive becomes a persistent Power‐
Shell drive and survives across PowerShell sessions. Unlike locally mapped drives, the
items in this drive become available to all of Windows in a way that all applications
can understand. For most purposes, this -Persist parameter can replace the net use
command you’re most likely familiar with.

The primary limitation to the -Persist flag is that you can only
use the traditional single-letter drive names (A: through Z:) as the
names of drives you create.

To remove a persistent mapped drive, use the Remove-PSDrive cmdlet:
Remove-PSDrive -Name Z

One additional benefit of drives created with the -Persist flag is that they support
the use of alternate credentials. If you supply a -Credential parameter when map‐
ping a network drive, PowerShell will use that credential any time it uses that drive to
access files on the network location.

20.16 Access Long File and Directory Names
Problem
You want to access a file in a deeply nested directory.

Solution
Use the -Persist parameter of the New-PSDrive cmdlet to create a new drive, using
the long portion of the path as the root:

PS > $root = "\\server\share\some_long_directory_name"
PS > New-PSDrive -Name L -Root $root -PSProvider FileSystem -Persist
PS > Get-Item L:\some_long_file_name.txt

Discussion
When working on some complicated directory structures, you may get the following
error message:

Get-ChildItem : The specified path, file name, or both are too long. The fully
qualified file name must be less than 260 characters, and the directory name
must be less than 248 characters.

578 | Chapter 20: Files and Directories

This is caused by the MAX_PATH limitation built into most of Windows. This limitation
enforces—not surprisingly—the maximum length of a path. If you try to create a file
or directory structure in Windows Explorer longer than 260 characters, you’ll get an
error. If you try to interact with a file or directory structure in Windows longer than
260 characters, you’ll get an error.

Then how did something manage to create this problematic file? It’s because Win‐
dows actually has a limitation of 32,000 characters. If you tread carefully, there are
functions in Windows that let you create and work with files longer than 260
characters.

Unfortunately, support for huge filenames only became mainstream with the release
of Windows XP. Before that, the vast majority of Windows was written to understand
only paths of fewer than 260 characters. Because most of Windows can’t work with
long filenames, the system prevents ad hoc interaction with them—through Windows
Explorer, the .NET Framework, and more.

If you find yourself in the situation of having to work with long filenames, you can
enable support in Windows for this by visiting Microsoft’s documentation on Ena‐
bling Long Path Support. PowerShell will then support these long paths automatically.

If you cannot modify system configuration, the solution is to map a new drive (using
the -Persist parameter), putting as much of the long path into the drive’s -Root
parameter as possible. This mapping happens very deeply within Windows, so appli‐
cations that can’t understand long filenames aren’t even aware. Rather than \\server
\share\some_long_directory_name\some_long_file_name.txt, they simply see L:
\some_long_file_name.txt.

For more information about the New-PSDrive cmdlet, see Recipe 20.15.

See Also
Recipe 20.15, “Create and Map PowerShell Drives”

20.17 Unblock a File
Problem
You want to prevent Windows Explorer or PowerShell from warning that a file has
been downloaded from the internet.

20.17 Unblock a File | 579

https://oreil.ly/U2qYw
https://oreil.ly/U2qYw

Solution
Use the Unblock-File cmdlet to clear the “Downloaded from the Internet” flag on a
file:

Unblock-File c:\downloads\file.zip

To unblock many files (for example, an expanded ZIP archive), pipe the results of the
Get-ChildItem cmdlet into the Unblock-File cmdlet:

Get-ChildItem -Recurse | Unblock-File

Discussion
When you download a file from the internet, many web browsers, email clients, and
chat programs add a marker to the file that identifies it as having come from the
internet. This marker is contained in the Zone.Identifier alternate data stream:

PS > Get-Item .\Download.zip -Stream *

 FileName: C:\Users\Lee\Downloads\Download.zip

Stream Length
------ ------
:$DATA 1010884
Zone.Identifier 26

PS > Get-Content .\Download.zip -Stream Zone.Identifier
[ZoneTransfer]
ZoneId=3

When you try to use Windows Explorer to launch an application with this zone iden‐
tifier, Windows cautions you that the program has been downloaded from the inter‐
net. Similarily, PowerShell cautions you when you try to run a script that has been
downloaded from the internet.

To prevent this warning, simply run the Unblock-File cmdlet. This cmdlet removes
the Zone.Identifier alternate data stream.

If you unblock a script after getting the warning that it has been downloaded from
the internet, you’ll have to restart PowerShell to see the effect.

For more information about alternate data streams, see Recipe 20.18.

See Also
Recipe 20.18

580 | Chapter 20: Files and Directories

20.18 Interact with Alternate Data Streams
Problem
You want to access and manage the alternate data streams associated with a file.

Solution
Use the -Stream parameter of the Get-Item, Get-Content, Remove-Item, Set-
Content, Clear-Content, and Add-Content cmdlets:

PS C:\Downloads > Get-Item * -Stream Zone.Identifier -ErrorAction Ignore |
 Select Filename, Length | Format-Table -Auto

FileName Length
-------- ------
C:\Downloads\a.zip 26
C:\Downloads\b.exe 26
C:\Downloads\c.txt 26

PS > Get-Content .\a.zip -Stream Zone.Identifier
[ZoneTransfer]
ZoneId=3

Additionally, use the colon syntax to name a specific stream in a filename:
PS C:\Downloads > Get-Content .\a.zip:Zone.Identifier
[ZoneTransfer]
ZoneId=3

Discussion
In addition to storing the basic content of files, Windows supports a mechanism
called alternate data streams to store additional metadata about these files.

PS > Get-Item .\a.zip -Stream *

 FileName: C:\Downloads\a.zip

Stream Length
------ ------
:$DATA 6878348
Zone.Identifier 26

The :$DATA stream represents the content you normally see when you open a file.

In this example, the file has an additional alternate data stream, called Zone.Identi
fier. When you download a file from the internet, many web browsers, email clients,
and chat programs add a marker to the file that identifies it as having come from the
internet. They place this marker in the Zone.Identifier alternate data stream.

To place your own content in a stream, you can use the Set-Content cmdlet:

20.18 Interact with Alternate Data Streams | 581

PS > Set-Content .\a.zip:MyCustomStream -Value "Hello World"
PS > Get-Item .\a.zip -Stream *

 FileName: C:\Downloads\a.zip

Stream Length
------ ------
:$DATA 6878348
MyCustomStream 13
Zone.Identifier 26

PS > Get-Content .\a.zip:MyCustomStream
Hello World

While it’s an attractive idea to store additional data in alternate data streams, you
should use them with caution. Many programs are unaware of alternate data streams
and unintentionally remove them when copying or modifying the file. For example,
transferring a file over Remote Desktop or FTP doesn’t retain the alternate data
streams. Additionally, they’re not retained when you copy files to filesystems based
on the FAT32 format—USB keys being the most common example.

By far, our most frequent brush with alternate data streams comes from the warning
generated by Windows and PowerShell when a file has been downloaded from the
internet. To learn how to remove this warning, see Recipe 20.17.

See Also
Recipe 20.17, “Unblock a File”

20.19 Program: Move or Remove a Locked File
Once in a while, you’ll run into a file that’s been locked by the operating system, and
you’ll want to move it or delete it.

This is a common problem encountered by patches, installers, and hotfixes, so Win‐
dows has a special mechanism that lets it move files before any process has the chance
to lock it. If a file that an installer needs to change is locked, it uses this special mech‐
anism to complete its setup tasks. Windows can do this only during a reboot, which is
why you sometimes receive warnings from installers about locked files requiring a
restart.

The underlying mechanism that enables this is the MoveFileEx Windows API. Call‐
ing this API with the MOVEFILE_DELAY_UNTIL_REBOOT flag tells Windows to move (or
delete) your file at the next boot. If you specify a source and destination path, Win‐
dows moves the file. If you specify $null as a destination path, Windows deletes the
file.

582 | Chapter 20: Files and Directories

Example 20-3 uses the Add-Type cmdlet to expose this functionality through Power‐
Shell. While it exposes only the functionality to move locked files, you can easily
rename it and modify it to delete locked files.

Example 20-3. Move-LockedFile.ps1

##
##
Move-LockedFile
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Registers a locked file to be moved at the next system restart.

.EXAMPLE

PS > Move-LockedFile c:\temp\locked.txt c:\temp\locked.txt.bak

#>

param(
 ## The current location of the file to move
 $Path,

 ## The target location of the file
 $Destination
)

Set-StrictMode -Version 3

Convert the the path and destination to fully qualified paths
$path = (Resolve-Path $path).Path
$destination = $executionContext.SessionState.`
 Path.GetUnresolvedProviderPathFromPSPath($destination)

Define a new .NET type that calls into the Windows API to
move a locked file.
$MOVEFILE_DELAY_UNTIL_REBOOT = 0x00000004
$memberDefinition = @'
[DllImport("kernel32.dll", SetLastError=true, CharSet=CharSet.Auto)]
public static extern bool MoveFileEx(
 string lpExistingFileName, string lpNewFileName, int dwFlags);
'@
$type = Add-Type -Name MoveFileUtils `
 -MemberDefinition $memberDefinition -PassThru

20.19 Program: Move or Remove a Locked File | 583

Move the file
$type::MoveFileEx($path, $destination, $MOVEFILE_DELAY_UNTIL_REBOOT)

For more information about interacting with the Windows API, see Recipe 17.4. For
more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 17.4, “Access Windows API Functions”

20.20 Get the ACL of a File or Directory
Problem
You want to retrieve the ACL of a file or directory.

Solution
To retrieve the ACL of a file, use the Get-Acl cmdlet:

PS > Get-Acl example.txt

 Directory: C:\temp

Path Owner Access
---- ----- ------
example.txt LEE-DESK\Lee BUILTIN\Administrator...

Discussion
The Get-Acl cmdlet retrieves the security descriptor of an item. This cmdlet doesn’t
work against only the filesystem, however. Any provider (for example, the registry
provider) that supports the concept of security descriptors also supports the Get-Acl
cmdlet.

The Get-Acl cmdlet returns an object that represents the security descriptor of the
item and is specific to the provider that contains the item. In the filesystem, this
returns a .NET System.Security.AccessControl.FileSecurity object that you can
explore for further information. For example, Example 20-4 searches a directory for
possible ACL misconfigurations by ensuring that each file contains an Administrator,
Full Control ACL.

584 | Chapter 20: Files and Directories

Example 20-4. Get-AclMisconfiguration.ps1

##
##
Get-AclMisconfiguration
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Demonstration of functionality exposed by the Get-Acl cmdlet. This script
goes through all access rules in all files in the current directory, and
ensures that the Administrator group has full control of that file.

#>

Set-StrictMode -Version 3

Get all files in the current directory
foreach($file in Get-ChildItem)
{
 ## Retrieve the ACL from the current file
 $acl = Get-Acl $file
 if(-not $acl)
 {
 continue
 }

 $foundAdministratorAcl = $false

 ## Go through each access rule in that ACL
 foreach($accessRule in $acl.Access)
 {
 ## If we find the Administrator, Full Control access rule,
 ## then set the $foundAdministratorAcl variable
 if(($accessRule.IdentityReference -like "*Administrator*") -and
 ($accessRule.FileSystemRights -eq "FullControl"))
 {
 $foundAdministratorAcl = $true
 }
 }

 ## If we didn't find the administrator ACL, output a message
 if(-not $foundAdministratorAcl)
 {
 "Found possible ACL Misconfiguration: $file"
 }
}

20.20 Get the ACL of a File or Directory | 585

For more information about the Get-Acl command, type Get-Help Get-Acl. For
more information about working with classes from the .NET Framework, see Recipe
3.8. For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 3.8, “Work with .NET Objects”

20.21 Set the ACL of a File or Directory
Problem
You want to change the ACL of a file or directory.

Solution
To change the ACL of a file, use the Set-Acl cmdlet. This example prevents the Guest
account from accessing a file:

$acl = Get-Acl example.txt
$arguments = "LEE-DESK\Guest","FullControl","Deny"
$accessRule =
 New-Object System.Security.AccessControl.FileSystemAccessRule $arguments
$acl.SetAccessRule($accessRule)
$acl | Set-Acl example.txt

Discussion
The Set-Acl cmdlet sets the security descriptor of an item. This cmdlet doesn’t work
against only the filesystem, however. Any provider (for example, the registry pro‐
vider) that supports the concept of security descriptors also supports the Set-Acl
cmdlet.

The Set-Acl cmdlet requires that you provide it with an ACL to apply to the item.
While it’s possible to construct the ACL from scratch, it’s usually easiest to retrieve it
from the item beforehand (as demonstrated in the Solution). To retrieve the ACL, use
the Get-Acl cmdlet. Once you’ve modified the access control rules on the ACL, sim‐
ply pipe them to the Set-Acl cmdlet to make them permanent.

586 | Chapter 20: Files and Directories

In the Solution, the $arguments list that we provide to the FileSystemAccessRule
constructor explicitly sets a Deny rule on the Guest account of the LEE-DESK computer
for FullControl permission. For more information about working with classes from
the .NET Framework (such as the FileSystemAccessRule class), see Recipe 3.8.

Although the Set-Acl command is powerful, you may already be familiar with
command-line tools that offer similar functionality (such as cacls.exe). Although
these tools generally don’t work on the registry (or other providers that support Pow‐
erShell security descriptors), you can, of course, continue to use these tools from
PowerShell.

For more information about the Set-Acl cmdlet, type Get-Help Set-Acl. For more
information about the Get-Acl cmdlet, see Recipe 20.20.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 20.20, “Get the ACL of a File or Directory”

20.22 Program: Add Extended File Properties to Files
The Explorer shell provides useful information about a file when you click on its
Properties dialog. It includes the authoring information, image information, music
information, and more (see Figure 20-1).

PowerShell doesn’t expose this information by default, but it is possible to obtain
these properties from the Shell.Application COM object. Example 20-5 does just
that—and adds this extended information as properties to the files returned by the
Get-ChildItem cmdlet.

20.22 Program: Add Extended File Properties to Files | 587

Figure 20-1. Extended file properties in Windows Explorer

Example 20-5. Add-ExtendedFileProperties.ps1

##
##
Add-ExtendedFileProperties
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Add the extended file properties normally shown in Explorer's
"File Properties" tab.

.EXAMPLE

PS > Get-ChildItem | Add-ExtendedFileProperties.ps1 | Format-Table Name,"Bit Rate"

588 | Chapter 20: Files and Directories

#>

begin
{
 Set-StrictMode -Version 3

 ## Create the Shell.Application COM object that provides this
 ## functionality
 $shellObject = New-Object -Com Shell.Application

 ## Remember the column property mappings
 $columnMappings = @{}
}

process
{
 ## Store the property names and identifiers for all of the shell
 ## properties
 $itemProperties = @{}

 ## Get the file from the input pipeline. If it is just a filename
 ## (rather than a real file,) piping it to the Get-Item cmdlet will
 ## get the file it represents.
 $fileItem = $_ | Get-Item

 ## Don't process directories
 if($fileItem.PsIsContainer)
 {
 $fileItem
 return
 }

 ## Extract the file name and directory name
 $directoryName = $fileItem.DirectoryName
 $filename = $fileItem.Name

 ## Create the folder object and shell item from the COM object
 $folderObject = $shellObject.NameSpace($directoryName)
 $item = $folderObject.ParseName($filename)

 ## Populate the item properties
 $counter = 0
 $columnName = ""
 do
 {
 if(-not $columnMappings[$counter])
 {
 $columnMappings[$counter] = $folderObject.GetDetailsOf(
 $folderObject.Items, $counter)
 }

 $columnName = $columnMappings[$counter]
 if($columnName)
 {
 $itemProperties[$columnName] =
 $folderObject.GetDetailsOf($item, $counter)

20.22 Program: Add Extended File Properties to Files | 589

 }

 $counter++
 } while($columnName)

 ## Process extended properties
 foreach($name in
 $item.ExtendedProperty('System.PropList.FullDetails').Split(';'))
 {
 $name = $name.Replace("*","")
 $itemProperties[$name] = $item.ExtendedProperty($name)
 }

 ## Now, go through each property and add its information as a
 ## property to the file we are about to return
 foreach($itemProperty in $itemProperties.Keys)
 {
 $value = $itemProperties[$itemProperty]
 if($value)
 {
 $fileItem | Add-Member NoteProperty $itemProperty `
 $value -ErrorAction `
 SilentlyContinue
 }
 }

 ## Finally, return the file with the extra shell information
 $fileItem
}

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

20.23 Manage ZIP Archives
Problem
You want to create, manage, and extract files and ZIP archives.

Solution
Use the Compress-Archive cmdlet to create an archive:

dir *.asciidoc | Compress-Archive -DestinationPath backup.zip

Use the Expand-Archive cmdlet to extract files from an archive:
Expand-Archive backup.zip -DestinationPath c:\temp\restored

590 | Chapter 20: Files and Directories

Discussion
When transporting or archiving files, it’s useful to store those files in an archive. ZIP
archives are the most common type of archive, and it’s very useful to have a cmdlet to
help manage them. These PowerShell cmdlets act as you would likely expect them to.

When you expand an archive, it’s not required that the DestinationPath exist. If it
exists, PowerShell expands the files into that directory. If it does not exist, PowerShell
creates a new directory to contain the files. If you omit the parameter entirely, Power‐
Shell creates a new directory with a name that matches the archive name and expands
the files into it.

The Expand-Archive cmdlet doesn’t let you examine the files in an archive without
expanding it. If you want to see which files are in an archive, you can use the
System.IO.Compression.ZipFile class from the .NET Framework:

PS > $archive = [System.IO.Compression.ZipFile]::OpenRead("$pwd\backup.zip")
PS > $archive.Entries | Measure-Object CompressedLength -Sum | ForEach-Object Sum
486755

PS > $archive.Entries | Measure-Object Length -Sum | ForEach-Object Sum
1676380

PS > $archive.Dispose()

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

20.23 Manage ZIP Archives | 591

CHAPTER 21

The Windows Registry

21.0 Introduction
As the configuration store for the vast majority of applications, the registry plays a
central role in system administration. It’s also generally hard to manage.

Although command-line tools (such as reg.exe) exist to help you work with the regis‐
try, their interfaces are usually inconsistent and confusing. The Registry Editor
graphical user interface is easy to use, but it doesn’t support scripted administration.

PowerShell tackles this problem by exposing the Windows Registry as a navigation
provider: a data source that you navigate and manage in exactly the same way that
you work with the filesystem.

21.1 Navigate the Registry
Problem
You want to navigate and explore the Windows Registry.

Solution
Use the Set-Location cmdlet to navigate the registry, just as you would navigate the
filesystem:

PS > Set-Location HKCU:
PS > Set-Location \Software\Microsoft\Windows\CurrentVersion\Run
PS > Get-Location

Path

HKCU:\Software\Microsoft\Windows\CurrentVersion\Run

593

Discussion
PowerShell lets you navigate the Windows Registry in exactly the same way that you
navigate the filesystem, certificate drives, and other navigation-based providers. Like
these other providers, the registry provider supports the Set-Location cmdlet (with
the standard aliases of sl, cd, and chdir), Push-Location (with the standard alias
pushd), Pop-Location (with the standard alias popd), and more.

For information about how to change registry keys once you get to a registry loca‐
tion, see Recipe 21.3. For more information about the registry provider, type Get-
Help about_Registry_Provider.

See Also
Recipe 21.3, “Modify or Remove a Registry Key Value”

21.2 View a Registry Key
Problem
You want to view the value of a specific registry key.

Solution
To retrieve the value(s) of a registry key, use the Get-ItemProperty cmdlet, as shown
in Example 21-1.

Example 21-1. Retrieving properties of a registry key

PS > Set-Location HKCU:
PS > Set-Location \Software\Microsoft\Windows\CurrentVersion\Run
PS > Get-ItemProperty .

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_U
 SER\Software\Microsoft\Windows\CurrentVersion\Run
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_U
 SER\Software\Microsoft\Windows\CurrentVersion
PSChildName : Run
PSDrive : HKCU
PSProvider : Microsoft.PowerShell.Core\Registry
FolderShare : "C:\Program Files\FolderShare\FolderShare.exe" /
 background
TaskSwitchXP : d:\lee\tools\TaskSwitchXP.exe
ctfmon.exe : C:\WINDOWS\system32\ctfmon.exe
Ditto : C:\Program Files\Ditto\Ditto.exe
QuickTime Task : "C:\Program Files\QuickTime Alternative\qttask.exe
 " -atboottime
H/PC Connection Agent : "C:\Program Files\Microsoft ActiveSync\wcescomm.exe"

594 | Chapter 21: The Windows Registry

Discussion
In the registry provider, PowerShell treats registry keys as items and key values as
properties of those items. To get the properties of an item, use the Get-ItemProperty
cmdlet. The Get-ItemProperty cmdlet has the standard alias gp.

Example 21-1 lists all property values associated with that specific key. To retrieve the
value of a specific item, use the Get-ItemPropertyValue cmdlet:

PS > Get-ItemPropertyValue . -Name OneDrive
"C:\Users\lee\AppData\Local\Microsoft\OneDrive\OneDrive.exe" /background

Alternatively, you can access item properties it as you would access a property on
a .NET object or anywhere else in PowerShell:

PS > $item = Get-ItemProperty .
PS > $item.OneDrive
"C:\Users\lee\AppData\Local\Microsoft\OneDrive\OneDrive.exe" /background

For more information about the Get-ItemProperty cmdlet, type Get-Help Get-
ItemProperty. For more information about the registry provider, type Get-Help
about_Registry_Provider.

21.3 Modify or Remove a Registry Key Value
Problem
You want to modify or remove a property of a specific registry key.

Solution
To set the value of a registry key, use the Set-ItemProperty cmdlet:

PS > (Get-ItemProperty .).MyProgram
c:\temp\MyProgram.exe
PS > Set-ItemProperty . MyProgram d:\Lee\tools\MyProgram.exe
PS > (Get-ItemProperty .).MyProgram
d:\Lee\tools\MyProgram.exe

To remove the value of a registry key, use the Remove-ItemProperty cmdlet:
PS > Remove-ItemProperty . MyProgram
PS > (Get-ItemProperty .).MyProgram

Discussion
In the registry provider, PowerShell treats registry keys as items and key values as
properties of those items. To change the value of a key property, use the Set-
ItemProperty cmdlet. The Set-ItemProperty cmdlet has the standard alias sp. To
remove a key property altogether, use the Remove-ItemProperty cmdlet.

21.3 Modify or Remove a Registry Key Value | 595

As always, use caution when changing information in the registry.
Deleting or changing the wrong item can easily render your system
unbootable.

For more information about the Get-ItemProperty cmdlet, type Get-Help Get-
ItemProperty. For information about the Set-ItemProperty and Remove-

ItemProperty cmdlets, type Get-Help Set-ItemProperty or Get-Help Remove-
ItemProperty, respectively. For more information about the registry provider, type
Get-Help about_Registry_Provider.

21.4 Create a Registry Key Value
Problem
You want to add a new key value to an existing registry key.

Solution
To add a value to a registry key, use the New-ItemProperty cmdlet. Example 21-2
adds MyProgram.exe to the list of programs that start when the current user logs in.

Example 21-2. Creating new properties on a registry key

PS > Set-Location HKCU:\Software\Microsoft\Windows\CurrentVersion\Run
PS > New-ItemProperty . -Name MyProgram -Value c:\temp\MyProgram.exe

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER
 \Software\Microsoft\Windows\CurrentVersion\Run
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_USER
 \Software\Microsoft\Windows\CurrentVersion
PSChildName : Run
PSDrive : HKCU
PSProvider : Microsoft.PowerShell.Core\Registry
MyProgram : c:\temp\MyProgram.exe

PS > Get-ItemProperty .

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_
 USER\Software\Microsoft\Windows\CurrentVersion\Run

PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_CURRENT_
 USER\Software\Microsoft\Windows\CurrentVersion
PSChildName : Run
PSDrive : HKCU
PSProvider : Microsoft.PowerShell.Core\Registry
FolderShare : "C:\Program Files\FolderShare\FolderShare.exe"
 /background

596 | Chapter 21: The Windows Registry

TaskSwitchXP : d:\lee\tools\TaskSwitchXP.exe
ctfmon.exe : C:\WINDOWS\system32\ctfmon.exe
Ditto : C:\Program Files\Ditto\Ditto.exe
QuickTime Task : "C:\Program Files\QuickTime Alternative\qttask.exe"
 -atboottime
H/PC Connection Agent : "C:\Program Files\Microsoft ActiveSync\wcescomm.exe"
MyProgram : c:\temp\MyProgram.exe

Discussion
In the registry provider, PowerShell treats registry keys as items and key values as
properties of those items. To create a key property, use the New-ItemProperty cmdlet.

For more information about the New-ItemProperty cmdlet, type Get-Help New-
ItemProperty. For more information about the registry provider, type Get-Help
about_Registry_Provider.

21.5 Remove a Registry Key
Problem
You want to remove a registry key and all its properties.

Solution
To remove a registry key, use the Remove-Item cmdlet:

PS > dir

 Hive: HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Run

SKC VC Name Property
--- -- ---- --------
 0 0 Spyware {}

PS > Remove-Item Spyware

Discussion
As mentioned in Recipe 21.4, the registry provider lets you remove items and con‐
tainers with the Remove-Item cmdlet. The Remove-Item cmdlet has the standard
aliases rm, rmdir, del, erase, and rd.

As always, use caution when changing information in the registry.
Deleting or changing the wrong item can easily render your system
unbootable.

21.5 Remove a Registry Key | 597

As in the filesystem, the Remove-Item cmdlet lets you specify multiple files through
its Path, Include, Exclude, and Filter parameters. For information on how to use
these parameters effectively, see Recipe 20.6.

For more information about the Remove-Item cmdlet, type Get-Help Remove-Item.
For more information about the registry provider, type Get-Help about_Regis
try_Provider.

See Also
Recipe 20.6, “Find Files That Match a Pattern”

Recipe 21.4, “Create a Registry Key Value”

21.6 Safely Combine Related Registry Modifications
Problem
You have several related registry modifications, and you want to group them so that
either they all apply or none apply.

Solution
Use the Start-Transaction cmdlet to start a transaction, and make your registry
modifications within it. Use the Complete-Transaction cmdlet to make the registry
modifications permanent:

PS > Set-Location HKCU:
PS > Start-Transaction

Suggestion [1,Transactions]: Once a transaction is started, only commands
that get called with the -UseTransaction flag become part of that transaction.
PS > mkdir TempKey -UseTransaction

 Hive: HKEY_CURRENT_USER

SKC VC Name Property
--- -- ---- --------
 0 0 TempKey {}

PS > Set-Location TempKey -UseTransaction
PS > New-Item TempKey2 -UseTransaction

 Hive: HKEY_CURRENT_USER\TempKey

SKC VC Name Property
--- -- ---- --------
 0 0 TempKey2 {}

598 | Chapter 21: The Windows Registry

PS > Set-Location \
PS > Get-ChildItem TempKey
Get-ChildItem : Cannot find path 'HKEY_CURRENT_USER\TempKey' because it
does not exist.

PS > Complete-Transaction
PS > Get-ChildItem TempKey

 Hive: HKEY_CURRENT_USER\TempKey

SKC VC Name Property
--- -- ---- --------
 0 0 TempKey2 {}

Discussion
When working in the registry, you might sometimes want to chain a set of related
changes and be sure that they all get applied as a single unit. These are goals known as
atomicity and consistency: the desire to avoid situations where an error during any
step of the operation could cause an inconsistent system state if the other operations
are not also successful.

To support this type of management task, PowerShell supports a change management
strategy known as transactions. PowerShell’s registry provider fully supports
transactions.

When you start a transaction, any commands in that transaction are virtual and don’t
actually apply to the system until you complete the transaction. Within the context of
the transaction, through, each participating command sees the system as though the
state really had changed. Once you complete a transaction, changes are applied as a
single unit.

Some systems that support transactions (such as databases) put locks on any resour‐
ces that are being changed by a transaction. If another user tries to modify the locked
resources, the user gets an error message. This isn’t supported in the Windows Regis‐
try. If something alters a resource that your transaction depends on, the changes con‐
tained in your transaction will be abandoned and you’ll receive an error message
when you try to complete that transaction. For more information about transactions,
see Chapter 30.

See Also
Chapter 30

21.6 Safely Combine Related Registry Modifications | 599

21.7 Add a Site to an Internet Explorer Security Zone
Problem
You want to add a site to a specific Internet Explorer security zone.

Solution
To create the registry keys and properties required to add a site to a specific security
zone, use the New-Item and New-ItemProperty cmdlets. Example 21-3 adds
www.example.com to the list of sites trusted by Internet Explorer.

Example 21-3. Adding www.example.com to the list of trusted sites in Internet Explorer

Set-Location "HKCU:\Software\Microsoft\Windows\CurrentVersion\Internet Settings"
Set-Location ZoneMap\Domains
New-Item example.com
Set-Location example.com
New-Item www
Set-Location www
New-ItemProperty . -Name http -Value 2 -Type DWORD

Discussion
One task that requires modifying data in the registry is working with Internet
Explorer to add and remove sites from its different security zones.

Internet Explorer stores its zone mapping information in the registry at HKCU:\Soft‐
ware\Microsoft\Windows\CurrentVersion\InternetSettings\ZoneMap\Domains.
Below that key, Explorer stores the domain name (such as leeholmes.com) with the
hostname (such as www) as a subkey of that one (see Figure 21-1). In the host key,
Explorer stores a property (such as http) with a DWORD value that corresponds to the
zone identifier.

The Internet Explorer zone identifiers are:

• My Computer
• Local intranet
• Trusted sites
• Internet
• Restricted sites

600 | Chapter 21: The Windows Registry

Figure 21-1. Internet Explorer zone configuration

When Internet Explorer is configured in its Enhanced Security Configuration mode,
you must also update entries under the EscDomains key.

Once a machine has enabled Internet Explorer’s Enhanced Security
Configuration, those settings persist even after you remove
Enhanced Security Configuration. The following commands let
your machine trust UNC paths again:

Set-Location "HKCU:\Software\Microsoft\Windows\"
Set-Location "CurrentVersion"
Set-Location "Internet Settings"
Set-ItemProperty ZoneMap UNCAsIntranet -Type DWORD 1
Set-ItemProperty ZoneMap IntranetName -Type DWORD 1

To remove the zone mapping for a specific domain, use the Remove-Item cmdlet:
PS > Get-ChildItem

 Hive: HKEY_CURRENT_USER\Software\...\Internet Settings\ZoneMap\Domains

SKC VC Name Property
--- -- ---- --------
 1 0 example.com {}

PS > Remove-Item -Recurse example.com
PS > Get-ChildItem
PS >

21.7 Add a Site to an Internet Explorer Security Zone | 601

For more information about using the Internet Explorer registry entries to configure
security zones, see the Microsoft KB article “Internet Explorer Security Zones Regis‐
try Entries for Advanced Users”. For more information about managing Internet
Explorer’s Enhanced Security Configuration, search for it on the official Microsoft
documentation site.

For more information about modifying data in the registry, see Recipe 21.3.

See Also
Recipe 21.3, “Modify or Remove a Registry Key Value”

21.8 Modify Internet Explorer Settings
Problem
You want to modify Internet Explorer’s configuration options.

Solution
To modify the Internet Explorer configuration registry keys, use the Set-

ItemProperty cmdlet. For example, to update the proxy:
Set-Location "HKCU:\Software\Microsoft\Windows\CurrentVersion\Internet Settings"
Set-ItemProperty . -Name ProxyServer -Value http://proxy.example.com
Set-ItemProperty . -Name ProxyEnable -Value 1

Discussion
Internet Explorer stores its main configuration information as properties on the reg‐
istry key HKCU:\Software\Microsoft\Windows\CurrentVersion\Internet Settings. To
change these properties, use the Set-ItemProperty cmdlet as demonstrated in the
Solution.

Another common set of properties to tweak are the configuration parameters that
define a security zone. An example of this is to prevent scripts from running in the
Restricted Sites zone. For each zone, Internet Explorer stores this information as
properties of the registry key HKCU:\Software\Microsoft\Windows\CurrentVersion
\Internet Settings\Zones\<Zone>, where <Zone> represents the zone identifier (0, 1,
2, 3, or 4) to manage.

The Internet Explorer zone identifiers are:

• My Computer
• Local intranet
• Trusted sites

602 | Chapter 21: The Windows Registry

http://support.microsoft.com/kb/182569
http://support.microsoft.com/kb/182569
http://technet.microsoft.com
http://technet.microsoft.com

• Internet
• Restricted sites

The names of the properties in this key aren’t designed for human consumption, as
they carry illuminating titles such as 1A04 and 1809. While they are not well named,
you can still script them.

For more information about using the Internet Explorer registry settings to configure
security zones, see the Microsoft KB article “Internet Explorer Security Zones Regis‐
try Entries for Advanced Users”.

For more information about modifying data in the registry, see Recipe 21.3.

See Also
Recipe 21.3, “Modify or Remove a Registry Key Value”

21.9 Program: Search the Windows Registry
Although the Windows Registry Editor is useful for searching the registry, sometimes
it might not provide the power you need. For example, the Registry Editor doesn’t
support searches with wildcards or regular expressions.

In the filesystem, we have the Select-String cmdlet to search files for content. Pow‐
erShell doesn’t offer that ability for other stores, but we can write a script to do it. The
key here is to think of registry key values like you think of content in a file:

• Directories have items; items have content.
• Registry keys have properties; properties have values.

Example 21-4 goes through all registry keys (and their values) for a search term and
returns information about the match.

Example 21-4. Search-Registry.ps1

##
##
Search-Registry
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

21.9 Program: Search the Windows Registry | 603

http://support.microsoft.com/kb/182569
http://support.microsoft.com/kb/182569

Search the registry for keys or properties that match a specific value.

.EXAMPLE

PS > Set-Location HKCU:\Software\Microsoft\
PS > Search-Registry Run

#>

param(
 ## The text to search for
 [Parameter(Mandatory = $true)]
 [string] $Pattern
)

Set-StrictMode -Off

Helper function to create a new object that represents
a registry match from this script
function New-RegistryMatch
{
 param($matchType, $keyName, $propertyName, $line)

 $registryMatch = New-Object PsObject -Property @{
 MatchType = $matchType;
 KeyName = $keyName;
 PropertyName = $propertyName;
 Line = $line
 }

 $registryMatch
}

Go through each item in the registry
foreach($item in Get-ChildItem -Recurse -ErrorAction SilentlyContinue)
{
 ## Check if the key name matches
 if($item.Name -match $pattern)
 {
 New-RegistryMatch "Key" $item.Name $null $item.Name
 }

 ## Check if a key property matches
 foreach($property in (Get-ItemProperty $item.PsPath).PsObject.Properties)
 {
 ## Skip the property if it was one PowerShell added
 if(($property.Name -eq "PSPath") -or
 ($property.Name -eq "PSChildName"))
 {
 continue
 }

 ## Search the text of the property
 $propertyText = "$($property.Name)=$($property.Value)"
 if($propertyText -match $pattern)

604 | Chapter 21: The Windows Registry

 {
 New-RegistryMatch "Property" $item.Name `
 property.Name $propertyText
 }
 }
}

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

21.10 Get the ACL of a Registry Key
Problem
You want to retrieve the ACL of a registry key.

Solution
To retrieve the ACL of a registry key, use the Get-Acl cmdlet:

PS > Get-Acl HKLM:\Software

Path Owner Access
---- ----- ------
Microsoft.PowerShell.... BUILTIN\Administrators CREATOR OWNER Allow

Discussion
As mentioned in Recipe 20.20, the Get-Acl cmdlet retrieves the security descriptor of
an item. This cmdlet doesn’t work against only the registry, however. Any provider
(for example, the filesystem provider) that supports the concept of security descrip‐
tors also supports the Get-Acl cmdlet.

The Get-Acl cmdlet returns an object that represents the security descriptor of the
item and is specific to the provider that contains the item. In the registry provider,
this returns a .NET System.Security.AccessControl.RegistrySecurity object that
you can explore for further information. For an example of changing the ACL of a
registry key with this result, see Recipe 21.11. For an example of a script that works
with ACLs, see Recipe 20.20.

For more information about the Get-Acl command, type Get-Help Get-Acl. For
more information about working with classes from the .NET Framework, see Recipe
3.8.

21.10 Get the ACL of a Registry Key | 605

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 20.20, “Get the ACL of a File or Directory”

Recipe 21.11, “Set the ACL of a Registry Key”

21.11 Set the ACL of a Registry Key
Problem
You want to change the ACL of a registry key.

Solution
To set the ACL on a registry key, use the Set-Acl cmdlet. This example grants an
account write access to a registry key under HKLM:\Software. This is especially useful
for programs that write to administrator-only regions of the registry, which prevents
them from running under a nonadministrator account:

##
##
Grant-RegistryAccessFullControl
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Grants full control access to a user for the specified registry key.

.EXAMPLE

PS > $registryPath = "HKLM:\Software\MyProgram"
PS > Grant-RegistryAccessFullControl "LEE-DESK\LEE" $registryPath

#>

param(
 ## The user to grant full control
 [Parameter(Mandatory = $true)]
 $User,

 ## The registry path that should have its permissions modified
 [Parameter(Mandatory = $true)]
 $RegistryPath
)

606 | Chapter 21: The Windows Registry

Set-StrictMode -Version 3

Push-Location
Set-Location -LiteralPath $registryPath

Retrieve the ACL from the registry key
$acl = Get-Acl .

Prepare the access rule, and set the access rule
$arguments = $user,"FullControl","Allow"
$accessRule = New-Object Security.AccessControl.RegistryAccessRule $arguments
$acl.SetAccessRule($accessRule)

Apply the modified ACL to the registry key
$acl | Set-Acl .

Pop-Location

Discussion
As mentioned in Recipe 20.21, the Set-Acl cmdlet sets the security descriptor of an
item. This cmdlet doesn’t work against only the registry, however. Any provider (for
example, the filesystem provider) that supports the concept of security descriptors
also supports the Set-Acl cmdlet.

The Set-Acl cmdlet requires that you provide it with an ACL to apply to the item.
Although it’s possible to construct the ACL from scratch, it’s usually easiest to retrieve
it from the item beforehand (as demonstrated in the Solution). To retrieve the ACL,
use the Get-Acl cmdlet. Once you’ve modified the access control rules on the ACL,
simply pipe them to the Set-Acl cmdlet to make them permanent.

In the Solution, the $arguments list that we provide to the RegistryAccessRule con‐
structor explicitly sets an Allow rule on the Lee account of the LEE-DESK computer for
FullControl permission. For more information about working with classes from
the .NET Framework (such as the RegistryAccessRule class), see Recipe 3.8.

Although the Set-Acl command is powerful, you may already be familiar with
command-line tools that offer similar functionality (such as SubInAcl.exe). You can,
of course, continue to use these tools from PowerShell.

For more information about the Set-Acl cmdlet, type Get-Help Set-Acl. For more
information about the Get-Acl cmdlet, see Recipe 21.10.

21.11 Set the ACL of a Registry Key | 607

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 20.20, “Get the ACL of a File or Directory”

Recipe 21.11, “Set the ACL of a Registry Key”

21.12 Work with the Registry of a Remote Computer
Problem
You want to work with the registry keys and values of a remote computer.

Solution
To work with the registry of a remote computer, use the scripts provided in this
chapter: Get-RemoteRegistryChildItem (Recipe 21.13), Get-Remote RegistryKey

Property (Recipe 21.14), and Set-RemoteRegistryKeyProperty (Recipe 21.15).
These scripts require that the remote computer has the remote registry service
enabled and running. Example 21-5 updates the PowerShell execution policy of a
remote machine.

Example 21-5. Setting the PowerShell execution policy of a remote machine

PS > $registryPath = "HKLM:\Software\Microsoft\PowerShell\1"
PS > Get-RemoteRegistryChildItem LEE-DESK $registryPath

SKC VC Name Property
--- -- ---- --------
 0 1 1033 {Install}
 0 5 PowerShellEngine {ApplicationBase, ConsoleHost...
 2 0 PowerShellSnapIns {}
 1 0 ShellIds {}

PS > Get-RemoteRegistryChildItem LEE-DESK $registryPath\ShellIds

SKC VC Name Property
--- -- ---- --------
 0 2 Microsoft.PowerShell {Path, ExecutionPolicy}

PS > $registryPath = "HKLM:\Software\Microsoft\PowerShell\1\" +
 "ShellIds\Microsoft.PowerShell"

PS > Get-RemoteRegistryKeyProperty LEE-DESK $registryPath ExecutionPolicy

ExecutionPolicy

Unrestricted

608 | Chapter 21: The Windows Registry

PS > Set-RemoteRegistryKeyProperty LEE-DESK $registryPath `
 "ExecutionPolicy" "RemoteSigned"

PS > Get-RemoteRegistryKeyProperty LEE-DESK $registryPath ExecutionPolicy

ExecutionPolicy

RemoteSigned

Discussion
Although this specific task is perhaps better solved through PowerShell’s Group Pol‐
icy support, it demonstrates a useful scenario that includes both remote registry
exploration and modification.

If the remote computer does not have the remote registry service running (but does
have WMI enabled), you can use WMI’s StdRegProv class to work with the registry as
well. The following example demonstrates how to get and set the registry key that
controls Remote Desktop:

$HKEY_CLASSES_ROOT = [Convert]::ToUInt32(80000000, 16)
$HKEY_CURRENT_USER = [Convert]::ToUInt32(80000001, 16)
$HKEY_LOCAL_MACHINE = [Convert]::ToUInt32(80000002, 16)
$HKEY_USERS = [Convert]::ToUInt32(80000003, 16)
$HKEY_CURRENT_CONFIG = [Convert]::ToUInt32(80000005, 16)

Connect to the registry via WMI
$reg = Get-CimClass -ComputerName LEE-DESK `
 -Namespace root\default StdRegProv

Get and set DWORD values on the remote machine
$reg | Invoke-CimMethod -Name GetDWORDValue -Arguments @{
 hDefKey = $HKEY_LOCAL_MACHINE;
 sSubKeyName = "SYSTEM\CurrentControlSet\Control\Terminal Server";
 sValueName = "fDenyTSConnections"
}

$reg | Invoke-CimMethod -Name SetDWORDValue -Arguments @{
 hDefKey = $HKEY_LOCAL_MACHINE;
 sSubKeyName = "SYSTEM\CurrentControlSet\Control\Terminal Server";
 sValueName = "fDenyTSConnections";
 uValue = 0
}

For more information about the Get-RemoteRegistryChildItem, Get-

RemoteRegistryKeyProperty, and Set-RemoteRegistryKeyProperty scripts, see
Recipes 21.13, 21.14, and 21.15.

21.12 Work with the Registry of a Remote Computer | 609

See Also
Recipe 21.13, “Program: Get Registry Items from Remote Machines”

Recipe 21.14, “Program: Get Properties of Remote Registry Keys”

Recipe 21.15, “Program: Set Properties of Remote Registry Keys”

21.13 Program: Get Registry Items from Remote Machines
Although PowerShell doesn’t directly let you access and manipulate the registry of a
remote computer, it still supports this by working with the .NET Framework. The
functionality exposed by the .NET Framework is a bit more developer-oriented than
we want, so we can instead use a script to make it easier to work with.

Example 21-6 lets you list child items in a remote registry key, much like you do on
the local computer. For this script to succeed, the target computer must have the
remote registry service enabled and running.

Example 21-6. Get-RemoteRegistryChildItem.ps1

##
##
Get-RemoteRegistryChildItem
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Get the list of subkeys below a given key on a remote computer.

.EXAMPLE

Get-RemoteRegistryChildItem LEE-DESK HKLM:\Software

#>

param(
 ## The computer that you wish to connect to
 [Parameter(Mandatory = $true)]
 $ComputerName,

 ## The path to the registry items to retrieve
 [Parameter(Mandatory = $true)]
 $Path
)

610 | Chapter 21: The Windows Registry

Set-StrictMode -Version 3

Validate and extract out the registry key
if($path -match "^HKLM:\\(.*)")
{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 "LocalMachine", $computername)
}
elseif($path -match "^HKCU:\\(.*)")
{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 "CurrentUser", $computername)
}
else
{
 Write-Error ("Please specify a fully-qualified registry path " +
 "(i.e.: HKLM:\Software) of the registry key to open.")
 return
}

Open the key
$key = $baseKey.OpenSubKey($matches[1])

Retrieve all of its children
foreach($subkeyName in $key.GetSubKeyNames())
{
 ## Open the subkey
 $subkey = $key.OpenSubKey($subkeyName)

 ## Add information so that PowerShell displays this key like regular
 ## registry key
 $returnObject = [PsObject] $subKey
 $returnObject | Add-Member NoteProperty PsChildName $subkeyName
 $returnObject | Add-Member NoteProperty Property $subkey.GetValueNames()

 ## Output the key
 $returnObject

 ## Close the child key
 $subkey.Close()
}

Close the key and base keys
$key.Close()
$baseKey.Close()

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

21.13 Program: Get Registry Items from Remote Machines | 611

21.14 Program: Get Properties of Remote Registry Keys
Although PowerShell doesn’t directly let you access and manipulate the registry of a
remote computer, it still supports this by working with the .NET Framework. The
functionality exposed by the .NET Framework is a bit more developer-oriented than
we want, so we can instead use a script to make it easier to work with.

Example 21-7 lets you get the properties (or a specific property) from a given remote
registry key. For this script to succeed, the target computer must have the remote reg‐
istry service enabled and running.

Example 21-7. Get-RemoteRegistryKeyProperty.ps1

##
##
Get-RemoteRegistryKeyProperty
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Get the value of a remote registry key property

.EXAMPLE

PS > $registryPath =
 "HKLM:\software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell"
PS > Get-RemoteRegistryKeyProperty LEE-DESK $registryPath ExecutionPolicy

#>

param(
 ## The computer that you wish to connect to
 [Parameter(Mandatory = $true)]
 $ComputerName,

 ## The path to the registry item to retrieve
 [Parameter(Mandatory = $true)]
 $Path,

 ## The specific property to retrieve
 $Property = "*"
)

Set-StrictMode -Version 3

Validate and extract out the registry key
if($path -match "^HKLM:\\(.*)")

612 | Chapter 21: The Windows Registry

{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 "LocalMachine", $computername)
}
elseif($path -match "^HKCU:\\(.*)")
{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 "CurrentUser", $computername)
}
else
{
 Write-Error ("Please specify a fully-qualified registry path " +
 "(i.e.: HKLM:\Software) of the registry key to open.")
 return
}

Open the key
$key = $baseKey.OpenSubKey($matches[1])
$returnObject = New-Object PsObject

Go through each of the properties in the key
foreach($keyProperty in $key.GetValueNames())
{
 ## If the property matches the search term, add it as a
 ## property to the output
 if($keyProperty -like $property)
 {
 $returnObject |
 Add-Member NoteProperty $keyProperty $key.GetValue($keyProperty)
 }
}

Return the resulting object
$returnObject

Close the key and base keys
$key.Close()
$baseKey.Close()

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

21.15 Program: Set Properties of Remote Registry Keys
Although PowerShell doesn’t directly let you access and manipulate the registry of a
remote computer, it still supports this by working with the .NET Framework. The
functionality exposed by the .NET Framework is a bit more developer-oriented than
we want, so we can instead use a script to make it easier to work with.

21.15 Program: Set Properties of Remote Registry Keys | 613

Example 21-8 lets you set the value of a property on a given remote registry key. For
this script to succeed, the target computer must have the remote registry service
enabled and running.

Example 21-8. Set-RemoteRegistryKeyProperty.ps1

##
##
Set-RemoteRegistryKeyProperty
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Set the value of a remote registry key property

.EXAMPLE

PS >$registryPath =
 "HKLM:\software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell"
PS >Set-RemoteRegistryKeyProperty LEE-DESK $registryPath `
 "ExecutionPolicy" "RemoteSigned"

#>

param(
 ## The computer to connect to
 [Parameter(Mandatory = $true)]
 $ComputerName,

 ## The registry path to modify
 [Parameter(Mandatory = $true)]
 $Path,

 ## The property to modify
 [Parameter(Mandatory = $true)]
 $PropertyName,

 ## The value to set on the property
 [Parameter(Mandatory = $true)]
 $PropertyValue
)

Set-StrictMode -Version 3

Validate and extract out the registry key
if($path -match "^HKLM:\\(.*)")
{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(

614 | Chapter 21: The Windows Registry

 "LocalMachine", $computername)
}
elseif($path -match "^HKCU:\\(.*)")
{
 $baseKey = [Microsoft.Win32.RegistryKey]::OpenRemoteBaseKey(
 "CurrentUser", $computername)
}
else
{
 Write-Error ("Please specify a fully-qualified registry path " +
 "(i.e.: HKLM:\Software) of the registry key to open.")
 return
}

Open the key and set its value
$key = $baseKey.OpenSubKey($matches[1], $true)
$key.SetValue($propertyName, $propertyValue)

Close the key and base keys
$key.Close()
$baseKey.Close()

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

21.16 Discover Registry Settings for Programs
Problem
You want to automate the configuration of a program, but that program doesn’t docu‐
ment its registry configuration settings.

Solution
To discover a registry setting for a program, use the Sysinternals Process Monitor to
observe registry access by that program. Process Monitor is available at the Sysinter‐
nals download site.

Discussion
In an ideal world, all programs would fully support command-line administration
and configuration through PowerShell cmdlets. Many programs do not, however, so
the solution is to look through their documentation in the hope that they list the reg‐
istry keys and properties that control their settings. While many programs document
their registry configuration settings, many still do not.

21.16 Discover Registry Settings for Programs | 615

https://oreil.ly/KGiqe
https://oreil.ly/KGiqe

Although these programs may not document their registry settings, you can usually
observe their registry access activity to determine the registry paths they use. To illus‐
trate this, we’ll use the Sysinternals Process Monitor to discover Windows Power‐
Shell’s execution policy configuration keys. Although Windows PowerShell docu‐
ments these keys and makes its automated configuration a breeze, this example illus‐
trates the general technique.

PowerShell (as opposed to Windows PowerShell) uses a configura‐
tion file (powershell.config.json) for these settings, rather than the
registry. If you want to follow along, be sure to use Windows Pow‐
erShell!

Launch and configure Process Monitor
Once you’ve downloaded Process Monitor, the first step is to filter its output to
include only the program you’re interested in. By default, Process Monitor logs
almost all registry and file activity on the system.

First, launch Process Monitor, and then press Ctrl+E (or click the magnifying glass
icon) to temporarily prevent it from capturing any data (see Figure 21-2). Next, press
Ctrl+X (or click the white sheet with an eraser icon) to clear the extra information
that it captured automatically. Finally, drag the target icon and drop it on top of the
application in question. You can press Ctrl+L (or click the funnel icon) to see the fil‐
ter that Process Monitor now applies to its output.

Figure 21-2. Process Monitor ready to capture

616 | Chapter 21: The Windows Registry

Prepare to manually set the configuration option
Next, prepare to manually set the program’s configuration option. Usually, this means
typing and clicking all the property settings, but just not clicking OK or Apply. For
this PowerShell example, type the Set-ExecutionPolicy command line, but do not
press Enter (see Figure 21-3).

Figure 21-3. Preparing to apply the configuration option

Tell Process Monitor to begin capturing information
Switch to the Process Monitor window, and then press Ctrl+E (or click the magnify‐
ing glass icon). Process Monitor now captures all registry access for the program in
question.

Manually set the configuration option
Click OK, Apply, or whatever action it takes to actually complete the program’s con‐
figuration. For the PowerShell example, this means pressing Enter.

Tell Process Monitor to stop capturing information
Switch again to the Process Monitor window, and then press Ctrl+E (or click the
magnifying glass icon). Process Monitor now no longer captures the application’s
activity.

Review the capture logs for registry modification
The Process Monitor window now shows all registry keys that the application inter‐
acted with when it applied its configuration setting.

Press Ctrl+F (or click the binoculars icon), and then search for RegSetValue. Process
Monitor highlights the first modification to a registry key, as shown in Figure 21-4.

21.16 Discover Registry Settings for Programs | 617

Figure 21-4. Process Monitor’s registry access detail

Press Enter (or double-click the highlighted row) to see the details about this specific
registry modification. In this example, we can see that PowerShell changed the value
of the ExecutionPolicy property (under HKLM:\Software\Microsoft\PowerShell
\1\ShellIds\Microsoft.PowerShell) to RemoteSigned. Press F3 to see the next entry that
corresponds to a registry modification.

Automate these registry writes
Now that you know all registry writes that the application performed when it updated
its settings, judgment and experimentation will help you determine which modifica‐
tions actually represent this setting. Because PowerShell performed only one registry
write (to a key that by name appears to represent the execution policy), the choice is
pretty clear in this example.

Once you’ve discovered the registry keys, properties, and values that the application
uses to store its configuration data, you can use the techniques discussed in Recipe
21.3 to automate these configuration settings, as in the following example:

PS > $key = "HKLM:\Software\Microsoft\PowerShell\1\" +
 "ShellIds\Microsoft.PowerShell"

PS > Set-ItemProperty $key ExecutionPolicy AllSigned
PS > Get-ExecutionPolicy
AllSigned
PS > Set-ItemProperty $key ExecutionPolicy RemoteSigned
PS > Get-ExecutionPolicy
RemoteSigned

See Also
Recipe 21.3, “Modify or Remove a Registry Key Value”

618 | Chapter 21: The Windows Registry

CHAPTER 22

Comparing Data

22.0 Introduction
When you’re working in PowerShell, it’s common to work with collections of objects.
Most PowerShell commands generate objects, as do many of the methods that you
work with in the .NET Framework. To help you work with these object collections,
PowerShell introduces the Compare-Object cmdlet. The Compare-Object cmdlet pro‐
vides functionality similar to the well-known diff commands, but with an object-
oriented flavor.

22.1 Compare the Output of Two Commands
Problem
You want to compare the output of two commands.

Solution
To compare the output of two commands, store the output of each command in vari‐
ables, and then use the Compare-Object cmdlet to compare those variables:

PS > notepad
PS > $processes = Get-Process
PS > Stop-Process -ProcessName Notepad
PS > $newProcesses = Get-Process
PS > Compare-Object $processes $newProcesses

InputObject SideIndicator
----------- -------------
System.Diagnostics.Process (notepad) <=

619

Discussion
The Solution shows how to determine which processes have exited between the two
calls to Get-Process. The SideIndicator of <= tells us that the process was present in
the left collection ($processes) but not in the right ($newProcesses). To work with
the actual object that was different, access the InputObject property:

PS > $diff = @(Compare-Object $processes $newProcesses)[0]
PS > $process = $diff.InputObject
PS > $process.Handles
55

By default, the Compare-Object cmdlet uses the comparison functionality built into
most .NET objects. This works as expected most of the time, but sometimes you
might want to override that comparison behavior. For example, you might want two
processes to be considered different if their memory usage changes. In that case, use
the -Property parameter.

PS > Compare-Object $processes $newProcesses -Property Name,WS | Sort-Object Name

Name WS SideIndicator
---- -- -------------
dwm 31358976 <=
dwm 29540352 =>
explorer 37969920 <=
explorer 38023168 =>
lsass 1548288 =>
lsass 1372160 <=
notepad 5701632 <=
notepad 2891776 =>
powershell 44281856 =>
powershell 44290048 <=
SearchIndexer 13606912 =>
SearchIndexer 13619200 <=
svchost 56061952 <=
svchost 43982848 <=
svchost 56037376 =>
svchost 44048384 =>
svchost 12193792 <=
svchost 12201984 =>
taskeng 9220096 <=
taskeng 9228288 =>

When you use the -Property parameter, the Compare-Object cmdlet outputs custom
objects that have only the properties you used in the comparison. If you still want
access to the original objects used in the comparison, also use the -PassThru parame‐
ter. In that case, PowerShell instead adds the SideIndicator property to the original
objects.

620 | Chapter 22: Comparing Data

If the objects you’re comparing are already in proper order (for
example, the lines in a file), you can improve the performance of
the comparison process by using the -SyncWindow parameter. A
sync window of five, for example, looks for differences only within
the surrounding five objects.

For more information about the Compare-Object cmdlet, type Get-Help Compare-
Object.

22.2 Determine the Differences Between Two Files
Problem
You want to determine the differences between two files.

Solution
To determine simple differences in the content of each file, store their content in vari‐
ables, and then use the Compare-Object cmdlet to compare those variables:

PS > "Hello World" > c:\temp\file1.txt
PS > "Hello World" > c:\temp\file2.txt
PS > "More Information" >> c:\temp\file2.txt
PS > $content1 = Get-Content c:\temp\file1.txt
PS > $content2 = Get-Content c:\temp\file2.txt
PS > Compare-Object $content1 $content2

InputObject SideIndicator
----------- -------------
More Information =>

Discussion
The primary focus of the Compare-Object cmdlet is to compare two unordered sets
of objects. Although those sets of objects can be strings (as in the content of two files),
the output of Compare-Object when run against files is usually counterintuitive
because of the content losing its order.

When comparing large files (or files where the order of comparison matters), you can
still use traditional file comparison tools such as diff.exe or the WinDiff application
that comes with both the Windows Support Tools and Visual Studio.

For more information about the Compare-Object cmdlet, type Get-Help Compare-
Object.

22.2 Determine the Differences Between Two Files | 621

CHAPTER 23

Event Logs

23.0 Introduction
Event logs form the core of most monitoring and diagnosis on Windows. To support
this activity, PowerShell offers the Get-WinEvent cmdlet to let you query and work
with event log data on a system. In addition to simple event log retrieval, PowerShell
also includes many other cmdlets to create, delete, customize, and interact with event
logs.

23.1 List All Event Logs
Problem
You want to determine which event logs exist on a system.

Solution
Use the Get-WinEvent cmdlet. In addition to classic event logs, the Get-WinEvent
cmdlet supports Application and Services event logs:

PS > Get-WinEvent -ListLog * | Select LogName,RecordCount

LogName RecordCount
------- -----------
Application 1933
DFS Replication 0
HardwareEvents 0
Internet Explorer 0
Key Management Service 0
Media Center 0
OAlerts 2
ScriptEvents 424

623

Security 39005
System 55957
Windows PowerShell 2865
ForwardedEvents
Microsoft-Windows-Backup 0
Microsoft-Windows-Bits-Client/Ana ...
Microsoft-Windows-Bits-Client/Oper... 2232
Microsoft-Windows-Bluetooth-MTPEnu... 0
Microsoft-Windows-CAPI2/Operational
(...)

To browse event logs using the Windows Event Viewer graphical user interface, use
the Show-EventLog cmdlet.

Discussion
The -List parameter of the Get-WinEvent cmdlet generates a list of the event logs
registered on the system. In addition to supporting event logs on the current system,
it also lets you supply the -ComputerName parameter to interact with event logs on a
remote system.

Once you’ve determined which event log you’re interested in, you can use the Get-
WinEvent cmdlet to search, filter, and retrieve specific entries from those logs. For
information on how to retrieve event log entries, see Recipes 23.2, 23.3, and 23.4.

For more information about the Get-WinEvent cmdlet, type Get-Help Get-

WinEvent.

See Also
Recipe 23.2, “Get the Oldest Entries from an Event Log”

Recipe 23.3, “Find Event Log Entries with Specific Text”

Recipe 23.4, “Retrieve and Filter Event Log Entries”

23.2 Get the Oldest Entries from an Event Log
Problem
You want to retrieve events from an event log in the order that they were written.

Solution
To retrieve the entries from an event log in the order they were written, use the
-Oldest parameter of the Get-WinEvent cmdlet, as shown in Example 23-1.

624 | Chapter 23: Event Logs

Example 23-1. Retrieving the 10 oldest entries from the System event log

PS > Get-WinEvent System -Oldest | Select -First 10 | Format-Table Index,Source,Message

 ProviderName: Microsoft-Windows-DistributedCOM

TimeCreated Id LevelDisplayName Message
----------- -- ---------------- -------
11/24/2020 5:56:14 AM 10016 Warning The mach...
11/24/2020 5:56:14 AM 10016 Warning The appl...
11/24/2020 5:56:14 AM 10016 Warning The mach...
11/24/2020 5:56:53 AM 10016 Warning The appl...

 ProviderName: Service Control Manager

TimeCreated Id LevelDisplayName Message
----------- -- ---------------- -------
11/24/2020 5:58:03 AM 7040 Information The start...

Discussion
By default, the Get-WinEvent cmdlet returns the most recent entries in an event log,
which is usually what you want.

If you need to sort event log entries by date from oldest to newest (without using the
Sort-Object cmdlet), you can use the -Oldest parameter of the Get-WinEvent
cmdlet. To list the event logs available on the system, see Recipe 23.1.

For more information about the Get-WinEvent cmdlet, type Get-Help Get-

WinEvent.

See Also
Recipe 23.1, “List All Event Logs”

23.3 Find Event Log Entries with Specific Text
Problem
You want to retrieve all event log entries that contain a given term.

Solution
To find specific event log entries, use the Get-WinEvent cmdlet to retrieve the items,
and then pipe them to the Where-Object cmdlet to filter them, as shown in
Example 23-2.

23.3 Find Event Log Entries with Specific Text | 625

Example 23-2. Searching the event log for entries that mention the term “disk”

PS > Get-WinEvent System | Where-Object { $_.Message -match "disk" }

Index Time Type Source EventID Message
----- ---- ---- ------ ------- -------
 2920 May 06 09:18 Info Service Control M... 7036 The Logical Disk...
 2919 May 06 09:17 Info Service Control M... 7036 The Logical Disk...
 2918 May 06 09:17 Info Service Control M... 7035 The Logical Disk...
 2884 May 06 00:28 Erro sr 1 The System Resto...
 2333 Apr 03 00:16 Erro Disk 11 The driver detec...
 2332 Apr 03 00:16 Erro Disk 11 The driver detec...
 2131 Mar 27 13:59 Info Service Control M... 7036 The Logical Disk...
 2127 Mar 27 12:48 Info Service Control M... 7036 The Logical Disk...
 2126 Mar 27 12:48 Info Service Control M... 7035 The Logical Disk...
 2123 Mar 27 12:31 Info Service Control M... 7036 The Logical Disk...
 2122 Mar 27 12:29 Info Service Control M... 7036 The Logical Disk...
 2121 Mar 27 12:29 Info Service Control M... 7035 The Logical Disk...

Discussion
Since the Get-WinEvent cmdlet retrieves rich objects that represent event log entries,
you can pipe them to the Where-Object cmdlet for equally rich filtering.

The Get-WinEvent cmdlet supports a promising advanced filtering
parameter for event logs called -FilterXPath. While powerful, its
filtering language unfortunately does not support wildcard string
searches.

By default, PowerShell’s table formatting displays a summary of event log entries. If
you’re searching the event log message, however, you’re probably interested in seeing
more details about the message itself. In this case, use the Format-List cmdlet to for‐
mat these entries in a more detailed list view. Example 23-3 shows this view.

Example 23-3. A detailed list view of an event log entry

PS > Get-WinEvent System | Where-Object Message -match "disk" | Format-List *

Message : Disk 7 has been surprise removed.
Id : 157
Version : 0
Qualifiers : 32772
Level : 3
Task : 0
Opcode : 0
Keywords : 36028797018963968
RecordId : 184407
ProviderName : disk
ThreadId : 30988
TimeCreated : 12/18/2020 2:39:50 PM

626 | Chapter 23: Event Logs

ContainerLog : System
MatchedQueryIds : {}
Bookmark : System.Diagnostics.Eventing.Reader.EventBookmark
LevelDisplayName : Warning
KeywordsDisplayNames : {Classic}
Properties : {System.Diagnostics.Eventing.Reader.EventProperty,
 System.Diagnostics.Eventing.Reader.EventProperty,
 System.Diagnostics.Eventing.Reader.EventProperty}
(...)

For more information about the Get-WinEvent cmdlet, type Get-Help Get-

WinEvent. For more information about filtering command output, see Recipe 2.2.

See Also
Recipe 2.2, “Filter Items in a List or Command Output”

23.4 Retrieve and Filter Event Log Entries
Problem
You want to retrieve a specific event log entry or filter by advanced search criteria.

Solution
To retrieve a specific event log entry, use the Get-WinEvent cmdlet to retrieve the
entries in the event log, and then pipe them to the Where-Object cmdlet to filter them
to the one you’re looking for:

PS > Get-WinEvent Microsoft-Windows-PowerShell/Operational |
 Where-Object { $_.Properties[2].Value -match "Invoke-WebRequest" }

 ProviderName: Microsoft-Windows-PowerShell

TimeCreated Id LevelDisplayName Message
----------- -- ---------------- -------
12/18/2020 3:14:17 PM 4104 Warning Creating Scriptblo...
12/18/2020 3:14:17 PM 4104 Warning Creating Scriptblo...
12/18/2020 3:14:05 PM 4104 Warning Creating Scriptblo...
12/18/2020 3:14:05 PM 4104 Warning Creating Scriptblo...

For more advanced (or performance-sensitive) queries, use the -FilterXml, the
-FilterHashtable, or the -FilterXPath parameters of the Get-WinEvent cmdlet:

Get-WinEvent -LogName "System" -FilterXPath "*[System[EventRecordID = 2920]]"

Discussion
If you’ve listed the items in an event log or searched it for entries that have a message
with specific text, you often want to get more details about a specific event log entry.

23.4 Retrieve and Filter Event Log Entries | 627

Since the Get-WinEvent cmdlet retrieves rich objects that represent event log entries,
you can pipe them to the Where-Object cmdlet for equally rich filtering.

By default, PowerShell’s default table formatting displays a summary of event log
entries. If you’re retrieving a specific entry, however, you are probably interested in
seeing more details about the entry. In this case, use the Format-List cmdlet to for‐
mat these entries in a more detailed list view.

While the Where-Object cmdlet works well for simple (or one-off) tasks, the Get-
WinEvent cmdlet offers three parameters that can make your event log searches both
more powerful and more efficient.

Efficiently processing simple queries

If you have a simple event log query, you can use the -FilterHashtable parameter of
the Get-WinEvent cmdlet to filter the event log very efficiently.

The hashtable that you supply to this parameter lets you filter on LogName, Provider
Name, Path, Keywords, ID, Level, StartTime, EndTime, and UserID. This can replace
many Where-Object style filtering operations. This example retrieves all critical and
error events in the System event log:

Get-WinEvent -FilterHashtable @{ LogName = "System"; Level = 1,2 }

Automating GUI-generated searches
When you’re reviewing an event log, the Windows Event Viewer offers a Filter Cur‐
rent Log action on the righthand side. This interface lets you select data ranges, event
severity, keywords, task categories, and more. After customizing a filter, you can click
the XML tab to see an XML representation of your query. You can copy and paste
that XML directly into a here string in a script, and then pass it to the -FilterXml
parameter of the Get-WinEvent cmdlet:

Gets all Critical and Error events from the last 24 hours
$xml = @'
<QueryList>
 <Query Id="0" Path="System">
 <Select Path="System">
 *[System[(Level=1 or Level=2) and
 TimeCreated[timediff(@SystemTime) <= 86400000]]]
 </Select>
 </Query>
</QueryList>
'@

Get-WinEvent -FilterXml $xml

628 | Chapter 23: Event Logs

Performing complex event analysis and correlation
Under the covers, event logs store their event information in an XML format. In addi‐
tion to the -FilterHashtable and -FilterXml parameters, the Get-WinEvent cmdlet
lets you filter event logs with a subset of the standard XPath XML querying language.
XPath lets your filters describe complex hierarchical queries, value ranges, and more.

Like regular expressions, the XPath query language is by no means
simple or easy to understand. This parameter can help if you
already have some degree of knowledge or comfort in XPath, but
don’t let it intimidate or frustrate you. There is always more than
one way to do it.

While the XPath querying language is powerful, the type of rules you can express
ultimately depend on what is contained in the XML of the actual events. To see what
can be contained in the XML of an event, search MSDN for “Windows ‘event
schema.’” The online reference is useful, but actual events tend to contain an
extremely small subset of the supported XML nodes. Because of that, you might have
more success reviewing the XML of events that interest you and forming XPath quer‐
ies based on those. Here are some example queries that build on the -FilterXPath
parameter:

Search by Event ID
Get-WinEvent -LogName "System" -FilterXPath "*[System[(EventID=1)]]"

Search for events associated with a given Process ID
Get-WinEvent -LogName "System" -FilterXPath "*[System/Execution[@ProcessID=428]]"

Search for events that have 'Volume Shadow Copy' as one of the
replacement strings
Get-WinEvent -LogName "System" -FilterXPath `
 "*[EventData[Data = 'Volume Shadow Copy']]"

Search for Windows Installer Events associated with a given KB
$query = "*[UserData/CbsPackageInitiateChanges[PackageIdentifier = 'KB936330']]"
Get-WinEvent -LogName "System" -FilterXPath $query

While the richness of the XPath filtering language is extremely powerful, one painful
absence is the inability to use wildcards to search within strings. If you need to search
within strings, you’ll need to use the Where-Object cmdlet, as shown in Recipe 23.3.

See Also
Recipe 2.2, “Filter Items in a List or Command Output”

Recipe 23.3, “Find Event Log Entries with Specific Text”

Appendix C, XPath Quick Reference

23.4 Retrieve and Filter Event Log Entries | 629

23.5 Find Event Log Entries by Their Frequency
Problem
You want to find the event log entries that occur most frequently.

Solution
To find event log entries by frequency, use the Get-WinEvent cmdlet to retrieve the
entries in the event log, and then pipe them to the Group-Object cmdlet to group
them by their message.

PS > Get-WinEvent System | Group-Object Message | Sort-Object -Desc Count

Count Name Group
----- ---- -----
 161 Driver Microsoft XPS D... {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 23 The Background Intelli... {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 23 The Background Intelli... {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 3 The Logical Disk Manag... {LEE-DESK, LEE-DESK, LEE-DESK}
 3 The Logical Disk Manag... {LEE-DESK, LEE-DESK, LEE-DESK}
 3 The Logical Disk Manag... {LEE-DESK, LEE-DESK, LEE-DESK}
(...)

Discussion
The Group-Object cmdlet is a useful way to determine which events occur most fre‐
quently on your system. It also provides a useful way to summarize the information
in the event log.

If you want more information about the items in a specific group, use the Where-
Object cmdlet. Since we used the Message property in the Group-Object cmdlet, we
need to filter on Message in the Where-Object cmdlet. For example, to learn more
about the entries relating to the Microsoft XPS Driver (from the scenario in the
Solution):

PS > Get-WinEvent System |
 Where-Object { $_.Message -like "Driver Microsoft XPS*" }

Index Time Type Source EventID Message
----- ---- ---- ------ ------- -------
 2917 May 06 09:13 Erro TermServDevices 1111 Driver Microsoft...
 2883 May 05 10:40 Erro TermServDevices 1111 Driver Microsoft...
 2877 May 05 08:10 Erro TermServDevices 1111 Driver Microsoft...
(...)

If grouping by message doesn’t provide useful information, you can group by any
other property—such as the provider name:

630 | Chapter 23: Event Logs

PS > Get-WinEvent Application | Group ProviderName

Count Name Group
----- ---- -----
 42 .NET Runtime {System.Diagnostics.Even...
 2 .NET Runtime Optimizatio… {System.Diagnostics.Even...
 17 ADMConnector {System.Diagnostics.Even...
 15 AGMService {System.Diagnostics.Even...
 15 AGSService {System.Diagnostics.Even...
 94 Application Error {System.Diagnostics.Even...
 2 Application Hang {System.Diagnostics.Even...
 47 Bonjour Service {System.Diagnostics.Even...
(...)

If you’ve listed the items in an event log or searched it for entries that have a message
with specific text, you often want to get more details about a specific event log entry.

By default, PowerShell’s table formatting displays a summary of event log entries. If
you are searching the event log message, however, you are probably interested in see‐
ing more details about the message itself. In this case, use the Format-List cmdlet to
format these entries in a more detailed list view. Example 23-4 shows this view.

Example 23-4. A detailed list view of an event log entry

PS > Get-WinEvent System | Where-Object Message -match "disk" | Format-List *

Message : Disk 7 has been surprise removed.
Id : 157
Version : 0
Qualifiers : 32772
Level : 3
Task : 0
Opcode : 0
Keywords : 36028797018963968
RecordId : 184407
ProviderName : disk
ThreadId : 30988
TimeCreated : 12/18/2020 2:39:50 PM
ContainerLog : System
MatchedQueryIds : {}
Bookmark : System.Diagnostics.Eventing.Reader.EventBookmark
LevelDisplayName : Warning
KeywordsDisplayNames : {Classic}
Properties : {System.Diagnostics.Eventing.Reader.EventProperty,
 System.Diagnostics.Eventing.Reader.EventProperty,
 System.Diagnostics.Eventing.Reader.EventProperty}
(...)

For more information about the Get-WinEvent cmdlet, type Get-Help Get-

WinEvent. For more information about filtering command output, see Recipe 2.2. For
more information about the Group-Object cmdlet, type Get-Help Group-Object.

23.5 Find Event Log Entries by Their Frequency | 631

See Also
Recipe 2.2, “Filter Items in a List or Command Output”

23.6 Back Up an Event Log
Problem
You want to store the information in an event log in a file for storage or later review.

Solution
To store event log entries in a file, use the wevtutil.exe application:

PS > wevtutil epl System c:\temp\system.bak.evtx

After exporting the event log, use the Get-WinEvent cmdlet to query the exported log
as though it were live:

PS > Get-WinEvent -FilterHashtable @{
 LogName="System"; Level=1,2 } -MaxEvents 2 | Format-Table -Auto

TimeCreated ProviderName Id Message
----------- ------------ -- -------
2/15/2021 11:49:31 AM Ntfs 55 The file system structure on the disk is...
2/15/2021 11:49:31 AM Ntfs 55 The file system structure on the disk is...

PS > Get-WinEvent -FilterHashtable @{
 Path="c:\temp\system.bak.evtx"; Level=1,2 } -MaxEvents 2 |
 Format-Table -Auto

TimeCreated ProviderName Id Message
----------- ------------ -- -------
2/15/2010 11:49:31 AM Ntfs 55 The file system structure on the disk is...
2/15/2010 11:49:31 AM Ntfs 55 The file system structure on the disk is...

If you need to process the event logs on a system where the Get-WinEvent cmdlet is
not available, use the Get-EventLog cmdlet to retrieve the entries in the event log,
and then pipe them to the Export-CliXml cmdlet to store them in a file.

Get-EventLog System | Export-CliXml c:\temp\SystemLogBackup.clixml

Discussion
While there’s no PowerShell cmdlet to export event logs, the wevtutil.exe application
provides an easy way to save an event log to disk in its full fidelity. After exporting the
event log, you can import it again, or even use the Get-WinEvent cmdlet to query
against it directly.

632 | Chapter 23: Event Logs

If you want to analyze the event logs on a machine where the Get-WinEvent cmdlet is
not available, you can use the Export-CliXml cmdlet to save event logs to disk—just
as PowerShell lets you save any other structured data to disk. Once you’ve exported
the events from an event log, you can archive them, or use the Import-CliXml cmdlet
to review them on any machine that has PowerShell installed:

PS > $archivedLogs = Import-CliXml c:\temp\SystemLogBackup.clixml
PS > $archivedLogs | Group Source

Count Name Group
----- ---- -----
 856 Service Control Manager {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 640 TermServDevices {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 91 Print {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 100 WMPNetworkSvc {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 123 Tcpip {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
(...)

In addition to the Export-CliXml cmdlet, you can also use WMI’s Win32_NTEventLog
File class to back up classic event logs:

$log = Get-CimInstance Win32_NTEventLogFile -Filter "LogFileName = 'Application'"
$log | Invoke-CimMethod -Name BackupEventLog -Arguments @{
 ArchiveFileName = "c:\temp\application_backup.log" }

After saving a log, you can use the Open Saved Log feature in the Windows Event
Viewer to review it.

For more information about the Get-EventLog cmdlet, type Get-Help Get-

EventLog. For more information about the Export-CliXml and Import-CliXml
cmdlets, type Get-Help Export-CliXml and Get-Help Import-CliXml, respectively.

23.7 Create or Remove an Event Log
Problem
You want to create or remove an event log.

Solution
Use the New-EventLog and Remove-EventLog cmdlets to create and remove event
logs:

PS > New-EventLog -Logname ScriptEvents -Source PowerShellCookbook
PS > Get-EventLog -List

 Max(K) Retain OverflowAction Entries Log
 ------ ------ -------------- ------- ---
 20,480 0 OverwriteAsNeeded 1,930 Application
(...)
 512 7 OverwriteOlder 0 ScriptEvents

23.7 Create or Remove an Event Log | 633

(...)
 15,360 0 OverwriteAsNeeded 2,847 Windows PowerShell

PS > Remove-EventLog ScriptEvents

Both cmdlets support remote administration via the -ComputerName parameter.

Discussion
Although Windows offers the standard Application event log, you might sometimes
want to make separate event logs to hold events of special interest. For this, Power‐
Shell includes the New-EventLog cmdlet. It takes two parameters: the event log name
and the source identifier for events. If the event log doesn’t already exist, PowerShell
creates it. If both the event log and event log source already exist, the New-EventLog
cmdlet generates an error.

After you create the event log, the Limit-EventLog cmdlet lets you manage its reten‐
tion policy. For more information about the Limit-EventLog cmdlet, see Recipe
23.10.

The Remove-EventLog cmdlet lets you remove both event logs and event log sources.

Be careful when deleting event logs, as it’s difficult to recreate all
the event sources if you delete the wrong log by accident. If you
delete a standard event log, you have little hope for recovery.

To remove just an event log source, use the -Source parameter:
Remove-EventLog -Source PowerShellCookbook

To remove an event log altogether, specify the log name in the -Logname parameter:
Remove-EventLog -LogName ScriptEvents

Once you have created an event log, you can use the Write-EventLog cmdlet to work
with it. For more information about writing to event logs, see Recipe 23.8.

See Also
Recipe 23.8

634 | Chapter 23: Event Logs

23.8 Write to an Event Log
Problem
You want to add an entry to an event log.

Solution
Use the Write-EventLog cmdlet to write events to an event log:

PS > Write-EventLog -LogName ScriptEvents -Source PowerShellCookbook `
 -EventId 1234 -Message "Hello World"

PS > Get-EventLog ScriptEvents | Select EntryType,Source,InstanceId,Message

 EntryType Source InstanceId Message
 --------- ------ ---------- -------
 Information PowerShellCookbook 1234 Hello World

Discussion
The Write-EventLog cmdlet lets you write event log messages to a specified event log.
To write an event log message, you must supply a valid log name and a registered
event log source. If you need to create a new event log or register a new event source,
see Recipe 23.7.

In addition to the log name and source, the Write-EventLog cmdlet also requires an
event ID and message. Within an event log and event source, each event ID should
uniquely identify the situation being logged: for example, logon failure or disk full.
This makes it easy for scripts and other management tasks to automatically respond
to system events. The event message should elaborate on the situation being logged
(for example, the username or drive letter), but should not be required to identify its
reason.

While PowerShell also includes a Write-WinEvent cmdlet (the WinEvent cmdlets
being almost entirely the only event log cmdlets you would ever need to use), the
Write-WinEvent cmdlet only works for event log sources that you’ve defined and reg‐
istered with a complicated custom manifest—by far too complex to make it worth‐
while for ad hoc events.

See Also
Recipe 23.7, “Create or Remove an Event Log”

23.8 Write to an Event Log | 635

23.9 Run a PowerShell Script for Windows Event Log
Entries
Problem
You want to run a PowerShell script when the system generates a specific event log
entry.

Solution
Use the schtasks.exe tool to define a new task that reacts to event log entries. As its
action, call powershell.exe with the arguments to disable the profile, customize the
execution policy, hide its window, and launch a script:

$cred = Get-Credential
$password = $cred.GetNetworkCredential().Password

Define the command that task scheduler should run when the event
occurs
$command = "PowerShell -NoProfile -ExecutionPolicy RemoteSigned " +
 "-WindowStyle Hidden -File 'C:\Program Files\TaskScripts\ScriptEvents.ps1'"

Create a new scheduled task
SCHTASKS /Create /TN "ScriptEvents Monitor" /TR $command /SC ONEVENT `
 /RL Highest /RU $cred.Username /RP $password `
 /EC ScriptEvents /MO *[System/EventID=1010]

Discussion
The Windows event log lets you define custom actions that launch when an event is
generated. Although you can use the UI to create these tasks and filters, the
schtasks.exe tool lets you create them all from the automation-friendly command line.

As an example of this in action, imagine trying to capture the processes running on a
system when a problematic event occurs. That script might look like:

$logTag = "{0:yyyyMMdd_HHmm}" -f (Get-Date)
$logPath = 'C:\Program Files\TaskScripts\ScriptEvents-{0}.txt' -f $logTag

Start-Transcript -Path $logPath

Get-CimInstance Win32_OperatingSystem | Format-List | Out-String
Get-Process | Format-Table | Out-String

Stop-Transcript

After generating an event, we can see the log being created just moments after:
PS > dir

 Directory: C:\Program Files\TaskScripts

636 | Chapter 23: Event Logs

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2/21/2020 8:38 PM 278 ScriptEvents.ps1

PS > Write-EventLog -LogName ScriptEvents -Source PowerShellCookbook `
 -EventId 1010 -Message "Hello World"

PS > dir

 Directory: C:\Program Files\TaskScripts

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2/21/2020 9:50 PM 12766 ScriptEvents-20200221_2150.txt
-a--- 2/21/2020 8:38 PM 278 ScriptEvents.ps1

When we define the task, we use the /TN parameter to define a name for our task. As
the command (specified by the /TR parameter), we tell Windows to launch power‐
Shell.exe with several parameters to customize its environment. We use the /RL
parameter to ensure that the task is run with elevated permissions (as it writes to the
Program Files directory). To define the actual event log filter, we use the /EC parame‐
ter to define the event channel—in this case, the ScriptEvents log. In the /MO
(“modifier”) parameter, we specify the XPath filter required to match events that we
care about. In this case, we search for EventId 1010. The System/ prefix doesn’t tell
Windows to search the System event log; it tells it to look in the standard system
properties: EventID, Level, Task, Keywords, Computer, and more.

For more information about the event viewer’s XPath syntax, see Recipe 23.4.

See Also
Recipe 1.17, “Invoke a PowerShell Command or Script from Outside PowerShell”

Recipe 23.4, “Retrieve and Filter Event Log Entries”

23.10 Clear or Maintain an Event Log
Problem
You want to clear an event log or manage its retention policy.

Solution
To clear an event log, use the wevtutil.exe application. For example, to clear the
Microsoft Office Alerts log:

wevtutil cl 'OAlerts'

23.10 Clear or Maintain an Event Log | 637

Similarly, to configure log properties (such as increasing retention limits):
wevtutil sl Microsoft-Windows-PowerShell/Operational /ms:$(200mb)

Discussion
The default policies of most event logs are for the most part sensible. However, event
logs you will likely want to modify are your security event logs: the operating system
defaults for these of a few tens of megabytes is unlikely going to help you in the case
of a security incident.

PowerShell includes cmdlets for managing the older classic event logs (Application,
Security, etc.), but you’ll need to use wevtutil.exe for modern event logs.

For permanent policy changes to classic event logs, use the Limit-EventLog cmdlet.
This cmdlet lets you limit the log size, maximum event age, and overwrite behavior
for the event log that you apply it to. While the size and age limits are fairly self-
describing parameters, configuring the overflow behavior is more subtle.

The -OverflowAction parameter supports one of three options. Each describes a dif‐
ferent strategy for Windows to take when writing to a full event log:

DoNotOverwrite

Discards new entries.

OverwriteAsNeeded

Overwrites the oldest entry.

OverwriteOlder

Overwrites entries older than the age limit specified for the event log (via the
RetentionDays parameter). If there are no old entries to overwrite, Windows
discards the new entry.

To clear a classic event log entirely, use the Clear-EventLog cmdlet. For modern
event logs, use the cl parameter of wevtutil.exe. If you want to save the contents of
the event log before clearing it, see Recipe 23.6.

If you want to remove an event log entirely, see Recipe 23.7.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 23.6, “Back Up an Event Log”

Recipe 23.7, “Create or Remove an Event Log”

638 | Chapter 23: Event Logs

23.11 Access Event Logs of a Remote Machine
Problem
You want to access event log entries from a remote machine.

Solution
To access event logs on a remote machine, use the -ComputerName parameter of any
of the EventLog cmdlets:

PS > Get-WinEvent System -ComputerName LEE-DESK | Group-Object Source

Count Name Group
----- ---- -----
 91 Print {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 640 TermServDevices {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 148 W32Time {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 100 WMPNetworkSvc {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 856 Service Control Manager {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
 123 Tcpip {LEE-DESK, LEE-DESK, LEE-DESK, LEE-DESK...
(...)

To use the graphical event log viewer to browse event logs on a remote machine, use
the Show-EventLog cmdlet:

Show-EventLog Computername

Discussion
The -ComputerName parameter of the *-EventLog cmdlets makes it easy to manage
event logs of remote computers. Using these cmdlets, you can create event logs,
remove event logs, write event log entries, and more.

If you want to use a graphical user interface to work with event logs on a remote
machine in a more ad hoc way, use the Show-EventLog cmdlet. If the Remote Even‐
tlog Management firewall rule is enabled on the remote computer (and you have the
appropriate permissions), PowerShell launches the Windows Event Viewer targeted
to that machine (see Figure 23-1).

By default, the Windows Event Viewer tries to use the credentials of your current
account to connect to the remote computer. If you need to connect as another
account, click the “Connect to Another Computer” action on the righthand side of
the Event Viewer window that opens. In that window, specify both the remote com‐
puter name and new user information.

23.11 Access Event Logs of a Remote Machine | 639

Figure 23-1. Event Viewer targeting a remote machine

For information about how to get event logs, see Recipe 23.1. For more information
about how to create or delete event logs, see Recipe 23.7. For more information about
how to write event log entries, see Recipe 23.8.

See Also
Recipe 23.1, “List All Event Logs”

Recipe 23.7, “Create or Remove an Event Log”

Recipe 23.8, “Write to an Event Log”

640 | Chapter 23: Event Logs

CHAPTER 24

Processes

24.0 Introduction
Working with system processes is a natural aspect of system administration. It’s also
the source of most of the regular expression magic that make system administrators
proud. After all, who wouldn’t boast about this Unix one-liner to stop all processes
using more than 100 MB of memory:

ps -el | awk '{ if ($6 > (1024*100)) { print $3 } }' | grep -v PID | xargs kill

While helpful, it also demonstrates the inherently fragile nature of pure text process‐
ing. For this command to succeed, it must:

• Depend on the ps command to display memory usage in column 6
• Depend on column 6 of the ps command’s output to represent the memory usage

in kilobytes
• Depend on column 3 of the ps command’s output to represent the process ID
• Remove the header column from the ps command’s output

While the ps command has parameters that simplify some of this work, this form of
“prayer-based parsing” is common when manipulating the output of tools that pro‐
duce only text.

Since PowerShell’s Get-Process cmdlet returns information as highly struc‐
tured .NET objects, fragile text parsing becomes a thing of the past:

Get-Process | Where-Object { $_.WorkingSet -gt 100mb } | Stop-Process -WhatIf

641

If brevity is important, PowerShell defines aliases to make most commands easier to
type:

gps | ? WS -gt 100mb | kill -WhatIf

In addition to simple process control, PowerShell also offers commands for starting
processes, customizing their execution environment, waiting for processes to exit,
and more.

24.1 List Currently Running Processes
Problem
You want to see which processes are running on the system.

Solution
To retrieve the list of currently running processes, use the Get-Process cmdlet:

PS > Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 274 6 1328 3940 33 1084 alg
 85 4 3816 6656 57 5.67 3460 AutoHotkey
 50 2 2292 1980 14 384.25 1560 BrmfRsmg
 71 3 2520 4680 35 0.42 2592 cmd
 946 7 3676 6204 32 848 csrss
 84 4 732 2248 22 3144 csrss
 68 4 936 3364 30 0.38 3904 ctfmon
 243 7 3648 9324 48 2.02 2892 Ditto
(...)

Discussion
The Get-Process cmdlet retrieves information about all processes running on the
system. Because these are rich .NET objects (of the type System.Diagnostics.
Process), advanced filters and operations are easier than ever before.

For example, to find all processes using more than 100 MB of memory:
PS > Get-Process | Where-Object { $_.WorkingSet -gt 100mb }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 1458 29 83468 105824 273 323.80 3992 BigBloatedApp

642 | Chapter 24: Processes

To group processes by company:
PS > Get-Process | Group-Object Company

Count Name Group
----- ---- -----
 39 {alg, csrss, csrss, dllhost...}
 4 {AutoHotkey, Ditto, gnuserv, mafwTray}
 1 Brother Industries, Ltd. {BrmfRsmg}
 19 Microsoft Corporation {cmd, ctfmon, EXCEL, explorer...}
 1 Free Software Foundation {emacs}
 1 Microsoft (R) Corporation {FwcMgmt}
(...)

Or perhaps to sort by start time (with the most recent first):
PS > Get-Process | Sort-Object -Descending StartTime | Select-Object -First 10

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 1810 39 53616 33964 193 318.02 1452 iTunes
 675 6 41472 50180 146 49.36 296 powershell
 1240 35 48220 58860 316 167.58 4012 OUTLOOK
 305 8 5736 2460 105 21.22 3384 WindowsSearch...
 464 7 29704 30920 153 6.00 3680 powershell
 1458 29 83468 105824 273 324.22 3992 iexplore
 478 6 24620 23688 143 17.83 3548 powershell
 222 8 8532 19084 144 20.69 3924 EXCEL
 14 2 396 1600 15 0.06 2900 logon.scr
 544 18 21336 50216 294 180.72 2660 WINWORD

These advanced tasks become incredibly simple due to the rich amount of informa‐
tion that PowerShell returns for each process. For more information about the Get-
Process cmdlet, type Get-Help Get-Process. For more information about filtering,
grouping, and sorting in PowerShell commands, see Recipe 2.2.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 2.2, “Filter Items in a List or Command Output”

Recipe 3.8, “Work with .NET Objects”

24.2 Launch the Application Associated with a Document
Problem
You want to launch the application associated with a document or with another shell
association.

24.2 Launch the Application Associated with a Document | 643

Solution
Use the Start-Process cmdlet (or its start alias) to launch the document or
location:

PS > Start-Process https://devblogs.microsoft.com/powershell/
PS > start https://www.bing.com
PS > start c:\temp\output.csv

To launch one of the predefined actions for a document (usually exposed through its
right-click menu), use the -Verb parameter:

start c:\documents\MyDoc.docx -Verb Print

Discussion
The Start-Process cmdlet gives you a great deal of flexibility over how you launch
an application. In addition to launching applications, it also gives you access to Win‐
dows shell associations: functionality associated with URLs and documents.

Windows defines many shell associations: for HTTP websites, FTP locations, and
even Explorer-specific behavior. For example, to launch the All Tasks view of the
Windows control panel:

start 'shell:::{ED7BA470-8E54-465E-825C-99712043E01C}'

If the document you’re launching defines an action (such as Edit or Print), you can
use the -Verb parameter to invoke that action.

For more information about the Start-Process cmdlet and launching system pro‐
cesses, see Recipe 24.3.

See Also
Recipe 24.3, “Launch a Process”

24.3 Launch a Process
Problem
You want to launch a new process on the system, but you also want to configure its
startup environment.

Solution
To launch a new process, use the Start-Process cmdlet.

Start-Process mmc -Verb RunAs -WindowStyle Maximized

644 | Chapter 24: Processes

For advanced tasks that aren’t covered by the Start-Process cmdlet, call the
[System.Diagnostics.Process]::Start() method. To control the process’s startup
environment, supply it with a System.Diagnostics.ProcessStartInfo object that
you prepare, as shown in Example 24-1.

Example 24-1. Configuring the startup environment of a new process

$processname = "pwsh.exe"

Prepare to invoke the process
$processStartInfo = New-Object System.Diagnostics.ProcessStartInfo
$processStartInfo.FileName = (Get-Command $processname).Definition
$processStartInfo.WorkingDirectory = (Get-Location).Path
if($argumentList) { $processStartInfo.Arguments = $argumentList }
$processStartInfo.UseShellExecute = $false

Always redirect the input and output of the process.
Sometimes we will capture it as binary, other times we will
just treat it as strings.
$processStartInfo.RedirectStandardOutput = $true
$processStartInfo.RedirectStandardInput = $true

$process = [System.Diagnostics.Process]::Start($processStartInfo)

Discussion
Normally, launching a process in PowerShell is as simple as typing the program
name:

notepad c:\temp\test.txt

However, you may sometimes need detailed control over the process details, such as
its credentials, working directory, window style, and more. In those situations, use the
Start-Process cmdlet. It exposes most of these common configuration options
through simple parameters.

For an example of how to start a process as another user (or as an
elevated PowerShell command), see Recipe 18.11.

If your needs are more complex than the features offered by the Start-Process
cmdlet, you can use the [System.Diagnostics.Process]::Start() method from
the .NET Framework to provide that additional functionality. Example 24-1 is taken
from Recipe 2.9, and gives an example of this type of advanced requirement.

24.3 Launch a Process | 645

For more information about launching programs from PowerShell, see Recipe 1.2.
For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 3.8, “Work with .NET Objects”

24.4 Stop a Process
Problem
You want to stop a process on the system.

Solution
To stop a process, use the Stop-Process cmdlet, as shown in Example 24-2.

Example 24-2. Stopping a process using the Stop-Process cmdlet

PS > notepad
PS > Get-Process Notepad

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 42 3 1276 3916 32 0.09 3520 notepad

PS > Stop-Process -ProcessName notepad
PS > Get-Process Notepad
Get-Process : Cannot find a process with the name 'Notepad'. Verify the
process name and call the cmdlet again.
At line:1 char:12
+ Get-Process <<<< Notepad

Discussion
Although the parameters of the Stop-Process cmdlet are useful in their own right,
PowerShell’s pipeline model lets you be even more precise. The Stop-Process cmdlet
stops any processes that you pipeline into it, so an advanced process set generated by
Get-Process automatically turns into an advanced process set for the Stop-Process
cmdlet to operate on:

PS > Get-Process | Where-Object { $_.WorkingSet -lt 10mb } |
 Sort-Object -Descending Name | Stop-Process -WhatIf

What if: Performing operation "Stop-Process" on Target "svchost (1368)".
What if: Performing operation "Stop-Process" on Target "sqlwriter (1772)".

646 | Chapter 24: Processes

What if: Performing operation "Stop-Process" on Target "qttask (3672)".
What if: Performing operation "Stop-Process" on Target "Ditto (2892)".
What if: Performing operation "Stop-Process" on Target "ctfmon (3904)".
What if: Performing operation "Stop-Process" on Target "csrss (848)".
What if: Performing operation "Stop-Process" on Target "BrmfRsmg (1560)".
What if: Performing operation "Stop-Process" on Target "AutoHotkey (3460)".
What if: Performing operation "Stop-Process" on Target "alg (1084)".

Notice that this example uses the -WhatIf flag on the Stop-
Process cmdlet. This flag lets you see what would happen if you
were to run the command, but doesn’t actually perform the action.

Another common need when it comes to stopping a process is simply waiting for one
to exit. Most scripts handle this by creating a loop that exits only when the Get-
Process cmdlet returns no results for the process in question. PowerShell greatly
simplifies this need by offering the Wait-Process cmdlet, which lets you pause your
script until the specified process has exited. If you still want some degree of control
while waiting for the process to stop, the -Timeout parameter lets you control how
long PowerShell should wait for the process to exit. When the timeout elapses, Pow‐
erShell returns control to your script—giving you the opportunity to continue wait‐
ing, forcibly terminate the process, or do whatever else you wish.

For more information about the Stop-Process cmdlet, type Get-Help Stop-

Process. For more information about the Wait-Process cmdlet, type Get-Help
Wait-Process.

24.5 Get the Owner of a Process
Problem
You want to know the user account that launched a given process.

Solution
Use the -IncludeUserName parameter of the Get-Process cmdlet.

PS > Get-Process -Name Notepad -IncludeUserName

Handles WS(K) CPU(s) Id UserName ProcessName
------- ----- ------ -- -------- -----------
 245 15128 0.08 15084 LEE-DESK\lee notepad

24.5 Get the Owner of a Process | 647

Discussion
While the output returned by the Get-Process command contains a lot of informa‐
tion, it doesn’t return the owner of a process by default. For this, we can use the
-IncludeUserName parameter.

There is one major caveat, however. On Windows, viewing the owner of a process
(when that process isn’t your own) is a feature restricted to Administrators. Because
of that, if you try to use this parameter as a non-administrator, PowerShell will gener‐
ate an error.

While there are alternative non-administrative ways to find out the user account that
launched a given process (such as through WMI or tasklist.exe), they all return
blank information for processes that aren’t your own if you try to run them as a non-
administrator.

See Also
Recipe 28.3, “Invoke a Method on a WMI Instance or Class”

24.6 Get the Parent Process of a Process
Problem
You want to know the process that launched a given process.

Solution
Use the Parent property of the Process object returned by the Get-Process cmdlet.

PS > $process = Get-Process -Name Notepad
PS > $process.Parent

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 529 31 72196 87928 659 9.86 3376 powershell

Discussion
Determining which process launched a given process is normally a more complicated
issue than it sounds like it should be.

Windows records the parent process ID when a process is launched, but there’s no
guarantee that the parent process didn’t exit after launching the process in question.
Since Windows recycles process IDs, this property can sometimes appear to return
incorrect results. You can see this for yourself if you use WMI’s process management
classes themselves:

648 | Chapter 24: Processes

PS > $null = Start-Process (Get-Command pwsh).Path -ArgumentList "-Command notepad"
PS > Get-Process -Name notepad

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName
------- ------ ----- ----- ------ -- -- -----------
 251 14 3264 15160 0.06 19952 1 notepad

PS > (Get-CimInstance Win32_Process -Filter "ProcessId = 19952").ParentProcessId
50560
PS > Get-Process -Id 50560
Get-Process : Cannot find a process with the process identifier 50560.

In the first line of our example, PowerShell launches Notepad and then exits. Notepad
stays running. We can see that the system still knows of Notepad’s original process ID,
but that the parent process has exited.

At some point, another process will get process ID 50560, and most scripts will react
incorrectly. The important step to getting this correct is ensuring that the parent pro‐
cess started before the process in question (through the StartTime property), but
PowerShell handles this for you. If the parent process has exited, the Parent property
of the Get-Process output will be empty.

If you still need to access the historical parent process ID, you can use the Win32_Pro
cess CIM instance directly. For more information about working with CIM and
WMI, see Recipe 28.1.

See Also
Recipe 28.1, “Access Windows Management Instrumentation and CIM Data”

24.7 Debug a Process
Problem
You want to attach a debugger to a running process on the system.

Solution
To debug a process, use the Debug-Process cmdlet.

Discussion
If you have a software debugger installed on your computer (such as Visual Studio or
the Debugging Tools for Windows), the Debug-Process cmdlet lets you start a debug‐
ging session from the PowerShell command line. It is not designed to automate the
debugging tools after launching them, but it does provide a useful shortcut.

24.7 Debug a Process | 649

To debug a PowerShell script, see Chapter 14.

The Debug-Process cmdlet launches the systemwide debugger, as configured in the
HKLM:\Software\Microsoft\WindowsNT\CurrentVersion\AeDebug registry key. To
change the debugger launched by this cmdlet (and other tools that launch the default
debugger), change the Debugger property:

PS > Get-Location

Path

HKLM:\Software\Microsoft\Windows NT\CurrentVersion\AeDebug

PS > Get-ItemProperty .

PSPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE
 \Software\Microsoft\Windows NT\CurrentVersion\AeDebug
PSParentPath : Microsoft.PowerShell.Core\Registry::HKEY_LOCAL_MACHINE
 \Software\Microsoft\Windows NT\CurrentVersion
PSChildName : AeDebug
PSDrive : HKLM
PSProvider : Microsoft.PowerShell.Core\Registry
UserDebuggerHotKey : 0
Debugger : "c:\Windows\system32\vsjitdebugger.exe" -p %ld -e %ld

For more information about the Debug-Process cmdlet, type Get-Help Debug-

Process.

See Also
Chapter 14

650 | Chapter 24: Processes

CHAPTER 25

System Services

25.0 Introduction
As the support mechanism for many administrative tasks on Windows, managing
and working with system services naturally fits into the administrator’s toolbox.

PowerShell offers a handful of cmdlets to help make working with system services
easier: from listing services to lifecycle management and even service installation.

25.1 List All Running Services
Problem
You want to see which services are running on the system.

Solution
To list all running services, use the Get-Service cmdlet:

PS > Get-Service

Status Name DisplayName
------ ---- -----------
Running ADAM_Test Test
Stopped Alerter Alerter
Running ALG Application Layer Gateway Service
Stopped AppMgmt Application Management
Stopped aspnet_state ASP.NET State Service
Running AudioSrv Windows Audio
Running BITS Background Intelligent Transfer Ser...
Running Browser Computer Browser
(...)

651

Discussion
The Get-Service cmdlet retrieves information about all services running on the sys‐
tem. Because these are rich .NET objects (of the type System.ServiceProcess.
ServiceController), you can apply advanced filters and operations to make manag‐
ing services straightforward.

For example, to find all running services:
PS > Get-Service | Where-Object { $_.Status -eq "Running" }

Status Name DisplayName
------ ---- -----------
Running ADAM_Test Test
Running ALG Application Layer Gateway Service
Running AudioSrv Windows Audio
Running BITS Background Intelligent Transfer Ser...
Running Browser Computer Browser
Running COMSysApp COM+ System Application
Running CryptSvc Cryptographic Services

Or, to sort services by the number of services that depend on them:
PS > Get-Service | Sort-Object -Descending { $_.DependentServices.Count }

Status Name DisplayName
------ ---- -----------
Running RpcSs Remote Procedure Call (RPC)
Running PlugPlay Plug and Play
Running lanmanworkstation Workstation
Running SSDPSRV SSDP Discovery Service
Running TapiSrv Telephony
(...)

Since PowerShell returns full-fidelity .NET objects that represent system services,
these tasks and more become incredibly simple due to the rich amount of informa‐
tion that PowerShell returns for each service. For more information about the Get-
Service cmdlet, type Get-Help Get-Service. For more information about filtering,
grouping, and sorting in PowerShell commands, see Recipe 2.2.

The Get-Service cmdlet displays most (but not all) information
about running services. For additional information (such as the
service’s process ID), use the Get-CimInstance cmdlet:

$service = Get-CimInstance Win32_Service |
 Where-Object { $_.Name -eq "AudioSrv" }
$service.ProcessID

In addition to supporting services on the local machine, the Get-Service cmdlet lets
you retrieve and manage services on a remote machine as well:

652 | Chapter 25: System Services

PS > Get-Service -Computer <Computer> |
 Sort-Object -Descending { $_.DependentServices.Count }

Status Name DisplayName
------ ---- -----------
Running RpcEptMapper RPC Endpoint Mapper
Running DcomLaunch DCOM Server Process Launcher
Running RpcSs Remote Procedure Call (RPC)
Running PlugPlay Plug and Play
Running nsi Network Store Interface Service
Running SamSs Security Accounts Manager
(...)

For more information about working with classes from the .NET Framework, see
Recipe 3.8. For more information about working with the Get-CimInstance cmdlet,
see Chapter 28.

See Also
Recipe 2.2, “Filter Items in a List or Command Output”

Recipe 3.8, “Work with .NET Objects”

Chapter 28

25.2 Manage a Running Service
Problem
You want to manage a running service.

Solution
To stop a service, use the Stop-Service cmdlet:

PS > Stop-Service AudioSrv -WhatIf
What if: Performing operation "Stop-Service" on Target "Windows Audio
(AudioSrv)".

Likewise, use the Suspend-Service, Restart-Service, and Resume-Service cmdlets
to suspend, restart, and resume services, respectively.

Discussion
The Stop-Service cmdlet lets you stop a service either by name or display name.

For more information about the Stop-Service cmdlet, type Get-Help Stop-

Service. If you want to suspend, restart, or resume a service, see the help for the
Suspend-Service, Restart-Service, and Resume-Service cmdlets, respectively.

25.2 Manage a Running Service | 653

Notice that the Solution uses the -WhatIf flag on the Stop-Service
cmdlet. This parameter lets you see what would happen if you were
to run the command but doesn’t actually perform the action.

To configure a service (for example, its description or startup type), see Recipe 25.3.
In addition to letting you configure a service, the Set-Service cmdlet described in
that recipe also lets you stop a service on a remote computer.

See Also
Recipe 25.3, “Configure a Service”

Chapter 28

25.3 Configure a Service
Problem
You want to configure properties or startup behavior of a service.

Solution
To configure a service, use the Set-Service cmdlet:

Set-Service WinRM -DisplayName 'Windows Remote Management (WS-Management)' `
 -StartupType Manual

To create a new service or uninstall an existing one, use the New-Service and
Remove-Service cmdlets.

Discussion
The Set-Service cmdlet lets you manage the configuration of a service: its name,
display name, description, and startup type.

If you change the startup type of a service, your natural next step is to verify that the
changes were applied correctly. Recipe 25.1 shows how to view the properties of a ser‐
vice, including the startup type.

See Also
Recipe 25.1, “List All Running Services”

654 | Chapter 25: System Services

CHAPTER 26

Active Directory

26.0 Introduction
By far, the one thing that makes system administration on the Windows platform
unique is its interaction with Active Directory. As the centralized authorization,
authentication, and information store for Windows networks, Active Directory auto‐
mation forms the core of many enterprise administration tasks.

In the core PowerShell language, the primary way to interact with Active Directory
comes through its support for Active Directory Service Interface (ADSI) type
shortcuts.

In addition, the Active Directory team has created an immensely feature-filled Pow‐
erShell module to manage Active Directory domains. The Active Directory module
includes a PowerShell provider (Set-Location AD:\) and almost 100 task-specific
PowerShell cmdlets.

Working with the Active Directory module has two requirements:

Support from the server
This module works with any domain that has enabled the Active Directory Web
Services feature. Windows Server 2008 R2 enables this feature by default on
Active Directory instances, and you can install it on any recent server operating
system from Windows Server 2003 on.

Support from the client
The module itself is included in the Windows 7 Remote Server Administration
Tools (RSAT) package. After downloading and installing the package, you can
enable it through the “Turn Windows Features On or Off ” dialog in the Control
Panel.

655

If working with the Active Directory module is an option at all, import it and use its
commands. The Get-Command and Get-Help commands should be the two key steps
you need to get started. In addition to the help built into the commands, MSDN pro‐
vides a great task-based introduction to the Active Directory module.

If the Active Directory module is not an option, PowerShell provides fluid integration
with Active Directory through its [adsi] and [adsisearcher] built-in type shortcuts.
This chapter covers their use for most common Active Directory tasks.

26.1 Test Active Directory Scripts on a Local Installation
Problem
You want to test your Active Directory scripts against a local installation.

Solution
To test your scripts against a local system, install Active Directory Lightweight Direc‐
tory Services (AD LDS) and its sample configuration.

Discussion
For most purposes, Active Directory Lightweight Services works as a lightweight ver‐
sion of Active Directory. Although it doesn’t support any of Active Directory’s infra‐
structure features, its programming model is close enough that you can easily use it to
experiment with Active Directory scripting. In its early days, Active Directory Light‐
weight Directory Services was known as Active Directory Application Mode
(ADAM), so you’re likely to find references to ADAM as you learn to use it. To test
your scripts against a local installation, you’ll need to enable the AD LDS optional
Windows feature (as shown in Figure 26-1) and then create a test instance.

656 | Chapter 26: Active Directory

https://oreil.ly/JiH6q

Figure 26-1. Enabling the AD LDS optional feature

Create a test instance
From the Start menu, find and launch the Active Directory Lightweight Directory
Services Setup Wizard.

On the Setup Options page that appears next, select “A unique instance.” On the
Instance Name page, type Test as an instance name. On the Ports page, accept the
default ports, and then on the Application Directory Partition page, select “Yes, create
an application directory partition.” As the partition name, type DC=Fabrikam,DC=COM.

In the next pages, accept the default file locations, service accounts, and
administrators.

When the setup wizard gives you the option to import LDIF files, import all available
files except for MS-AZMan.LDF. Click Next on this page and the confirmation page
to complete the instance setup.

26.1 Test Active Directory Scripts on a Local Installation | 657

Open a PowerShell window, and test your new instance:
PS > [adsi] "LDAP://localhost:389/dc=Fabrikam,dc=COM"

distinguishedName

{DC=Fabrikam,DC=COM}

The [adsi] tag is a type shortcut, like several other type shortcuts in PowerShell. The
[adsi] type shortcut provides a quick way to create and work with directory entries
through Active Directory Service Interfaces.

When you first try this shortcut, you may receive this unhelpful
error message:

format-default : The following exception occurred while retrieving
member "PSComputerName": "Unknown error (0x80005000)"

If you receive this error, ensure that you’ve capitalized the LDAP in
LDAP://localhost.

Although scripts that act against an AD LDS test environment are almost identical to
those that operate directly against Active Directory, there are a few minor differences.
AD LDS scripts specify the host and port in their binding string (that is, localhost:
389/), whereas Active Directory scripts do not.

For more information about type shortcuts in PowerShell, see “Working with
the .NET Framework” on page 833.

See Also
“Working with the .NET Framework” on page 833

26.2 Create an Organizational Unit
Problem
You want to create an organizational unit (OU) in Active Directory.

Solution
To create an OU in a container, use the [adsi] type shortcut to bind to a part of the
Active Directory, and then call the Create() method.

$domain = [adsi] "LDAP://localhost:389/dc=Fabrikam,dc=COM"
$salesOrg = $domain.Create("OrganizationalUnit", "OU=Sales")
$salesOrg.Put("Description", "Sales Headquarters, SF")
$salesOrg.Put("wwwHomePage", "http://fabrikam.com/sales")
$salesOrg.SetInfo()

658 | Chapter 26: Active Directory

Discussion
The Solution shows an example of creating a Sales OU at the root of the organiza‐
tion. You can use the same syntax to create OUs under other OUs as well.
Example 26-1 demonstrates how to create more sales divisions.

Example 26-1. Creating North, East, and West sales divisions

$sales = [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"

$east = $sales.Create("OrganizationalUnit", "OU=East")
$east.Put("wwwHomePage", "http://fabrikam.com/sales/east")
$east.SetInfo()

$west = $sales.Create("OrganizationalUnit", "OU=West")
$west.Put("wwwHomePage", "http://fabrikam.com/sales/west")
$west.SetInfo()

$north = $sales.Create("OrganizationalUnit", "OU=North")
$north.Put("wwwHomePage", "http://fabrikam.com/sales/north")
$north.SetInfo()

When you initially create an item, notice that you need to use the Put() method to
set properties on the new item. Once you’ve created the item, you can instead use
simple property access to change those properties. For more information about
changing properties of an OU, see Recipe 26.4.

To check that these OUs have been created, see Recipe 26.6.

Using the Active Directory module, the cmdlet to create an OU is New-

ADOrganizationalUnit. For more information on how to accomplish these tasks
through the Active Directory module, see the module’s online help documentation.

See Also
Recipe 26.4, “Modify Properties of an Organizational Unit”

Recipe 26.6, “Get the Children of an Active Directory Container”

26.3 Get the Properties of an Organizational Unit
Problem
You want to get and list the properties of a specific OU.

26.3 Get the Properties of an Organizational Unit | 659

https://oreil.ly/JiH6q

Solution
To list the properties of an OU, use the [adsi] type shortcut to bind to the OU in
Active Directory, and then pass the OU to the Format-List cmdlet:

$organizationalUnit =
 [adsi] "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$organizationalUnit | Format-List *

Discussion
The Solution retrieves the Sales West OU. By default, the Format-List cmdlet shows
only the distinguished name of the group, so we type Format-List * to display all
properties.

If you know the property for which you want the value, you can specify it by name:
PS > $organizationalUnit.wWWHomePage
http://fabrikam.com/sales/west

If you’re having trouble getting a property that you know exists, you can also retrieve
the property using the Get() method on the container. While the name property can
be accessed using the usual property syntax, the following example demonstrates the
alternative approach:

PS > $organizationalUnit.Get("name")
West

Using the Active Directory module, the cmdlet to get the properties of an organiza‐
tional unit is Get-ADOrganizationalUnit. For more information on how to accom‐
plish these tasks through the Active Directory module, see the module’s online help
documentation.

26.4 Modify Properties of an Organizational Unit
Problem
You want to modify properties of a specific OU.

Solution
To modify the properties of an OU, use the [adsi] type shortcut to bind to the OU in
Active Directory. If the property has already been set, you can change the value of a
property as you would with any other PowerShell object. If you’re setting a property
for the first time, use the Put() method. Finally, call the SetInfo() method to apply
the changes.

660 | Chapter 26: Active Directory

https://oreil.ly/JiH6q
https://oreil.ly/JiH6q

$organizationalUnit =
 [adsi] "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$organizationalUnit.Put("Description", "Sales West Organization")
$organizationalUnit.wwwHomePage = "http://fabrikam.com/sales/west/fy2012"
$organizationalUnit.SetInfo()

Discussion
The Solution retrieves the Sales West OU. It then sets the description to Sales West
Organization, updates the home page, and then applies those changes to Active
Directory.

Using the Active Directory module, the cmdlet to modify the properties of an OU is
Set-ADOrganizationalUnit. For more information on how to accomplish these tasks
through the Active Directory module, see the module’s online help documentation.

26.5 Delete an Organizational Unit
Problem
You want to delete a specific OU.

Solution
To delete an OU, use the [adsi] type shortcut to bind to the OU in Active Directory.
Finally, call its DeleteTree() method to apply the changes.

$organizationalUnit =
 [adsi] "LDAP://localhost:389/ou=North,ou=Sales,dc=Fabrikam,dc=COM"
$organizationalUnit.DeleteTree()

Discussion
The Solution retrieves the Sales North OU. It then calls the DeleteTree() method
to permanently delete the OU and all of its children.

Using the Active Directory module, the cmdlet to remove an OU is Remove-
ADOrganizationalUnit. For more information on how to accomplish these tasks
through the Active Directory module, see the module’s online help documentation.

26.5 Delete an Organizational Unit | 661

https://oreil.ly/JiH6q
https://oreil.ly/JiH6q

26.6 Get the Children of an Active Directory Container
Problem
You want to list all the children of an Active Directory container.

Solution
To list the items in a container, use the [adsi] type shortcut to bind to the OU in
Active Directory, and then access the Children property of that container:

$sales =
 [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"
$sales.Children

Discussion
The Solution lists all the children of the Sales OU. This is the level of information
you typically get from selecting a node in the ADSIEdit MMC snap-in. If you want to
filter this information to include only users, other OUs, or more complex queries, see
Recipe 26.9.

Using the Active Directory module, the Active Directory provider lets you get the
children of an OU. For example:

PS > Set-Location 'AD:\ou=Sales,dc=Fabrikam,dc=COM'
PS > dir

For more information on how to accomplish these tasks through the Active Directory
module, see the module’s online help documentation.

See Also
Recipe 26.9, “Search for a User Account”

26.7 Create a User Account
Problem
You want to create a user account in a specific OU.

Solution
To create a user in a container, use the [adsi] type shortcut to bind to the OU in
Active Directory, and then call the Create() method:

$salesWest =
 [adsi] "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"

662 | Chapter 26: Active Directory

https://oreil.ly/JiH6q

$user = $salesWest.Create("User", "CN=MyerKen")
$user.Put("userPrincipalName", "Ken.Myer@fabrikam.com")
$user.Put("displayName", "Ken Myer")
$user.SetInfo()

Discussion
The Solution creates a user under the Sales West OU. It sets the userPrincipalName
(a unique identifier for the user), as well as the user’s display name.

If this step generates an error saying, “The specified directory ser‐
vice attribute or value does not exist,” verify that you properly
imported the LDIF files at the beginning of the AD LDS installa‐
tion steps. Importing those LDIF files creates the Active Directory
schema required for many of these steps.

When you run this script against a real Active Directory deployment (as opposed to
an AD LDS instance), be sure to update the sAMAccountName property, or you’ll get an
autogenerated default.

To check that these users have been created, see Recipe 26.6. If you need to create
users in bulk, see Recipe 26.8.

Using the Active Directory module, the cmdlet to create a user account is New-
ADUser. For more information on how to accomplish these tasks through the Active
Directory module, see the module’s online help documentation.

See Also
Recipe 26.6, “Get the Children of an Active Directory Container”

Recipe 26.8, “Program: Import Users in Bulk to Active Directory”

26.8 Program: Import Users in Bulk to Active Directory
When importing several users into Active Directory, it quickly becomes tiresome to
do it by hand (or even to script the addition of each user one by one). To solve this
problem, we can put all our data into a CSV, and then do a bulk import from the
information in the CSV.

Example 26-2 supports this in a flexible way. You provide a container to hold the user
accounts and a CSV that holds the account information. For each row in the CSV, the
script creates a user from the data in that row. The only mandatory column is a CN
column to define the common name of the user. Any other columns, if present, rep‐
resent other Active Directory attributes you want to define for that user.

26.8 Program: Import Users in Bulk to Active Directory | 663

https://oreil.ly/JiH6q

Example 26-2. Import-ADUser.ps1

###
##
Import-AdUser
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
###

<#

.SYNOPSIS

Create users in Active Directory from the content of a CSV.

.DESCRIPTION

In the user CSV, One column must be named "CN" for the user name.
All other columns represent properties in Active Directory for that user.

For example:
CN,userPrincipalName,displayName,manager
MyerKen,Ken.Myer@fabrikam.com,Ken Myer,
DoeJane,Jane.Doe@fabrikam.com,Jane Doe,"CN=MyerKen,OU=West,OU=Sales,DC=..."
SmithRobin,Robin.Smith@fabrikam.com,Robin Smith,"CN=MyerKen,OU=West,OU=..."

.EXAMPLE

PS > $container = "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"
PS > Import-ADUser.ps1 $container .\users.csv

#>

param(
 ## The container in which to import users
 ## For example:
 ## "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM)")
 [Parameter(Mandatory = $true)]
 $Container,

 ## The path to the CSV that contains the user records
 [Parameter(Mandatory = $true)]
 $Path
)

Set-StrictMode -Off

Bind to the container
$userContainer = [adsi] $container

Ensure that the container was valid
if(-not $userContainer.Name)
{
 Write-Error "Could not connect to $container"

664 | Chapter 26: Active Directory

 return
}

Load the CSV
$users = @(Import-Csv $Path)
if($users.Count -eq 0)
{
 return
}

Go through each user from the CSV
foreach($user in $users)
{
 ## Pull out the name, and create that user
 $username = $user.CN
 $newUser = $userContainer.Create("User", "CN=$username")

 ## Go through each of the properties from the CSV, and set its value
 ## on the user
 foreach($property in $user.PsObject.Properties)
 {
 ## Skip the property if it was the CN property that sets the
 ## user name
 if($property.Name -eq "CN")
 {
 continue
 }

 ## Ensure they specified a value for the property
 if(-not $property.Value)
 {
 continue
 }

 ## Set the value of the property
 $newUser.Put($property.Name, $property.Value)
 }

 ## Finalize the information in Active Directory
 $newUser.SetInfo()
}

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

26.8 Program: Import Users in Bulk to Active Directory | 665

26.9 Search for a User Account
Problem
You want to search for a specific user account, but you don’t know the user’s distin‐
guished name.

Solution
To search for a user in Active Directory, use the [adsi] type shortcut to bind to a
container that holds the user account, and then use the [adsisearcher] type shortcut
to search for the user:

$domain = [adsi] "LDAP://localhost:389/dc=Fabrikam,dc=COM"
$searcher = [adsisearcher] $domain
$searcher.Filter = '(&(objectClass=User)(displayName=Ken Myer))'
$userResult = $searcher.FindOne()
$user = $userResult.GetDirectoryEntry()
$user

Discussion
When you don’t know the full distinguished name of a user account, the [adsi
searcher] type shortcut lets you search for it.

You provide an LDAP filter (in this case, searching for users with the display name of
Ken Myer), and then call the FindOne() method. The FindOne() method returns the
first search result that matches the filter, so we retrieve its actual Active Directory
entry. If you expect your query to return multiple results, use the FindAll() method
instead. Although the Solution searches on the user’s display name, you can search on
any field in Active Directory—the userPrincipalName and sAMAccountName are two
other good choices.

When you do this search, always try to restrict it to the lowest level of the domain
possible. If we know that Ken Myer is in the Sales OU, it would be better to bind to
that OU instead:

$domain = [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"

For more information about the LDAP search filter syntax, search the Microsoft doc‐
umentation site for “LDAP Search Filter Syntax.”

Using the Active Directory module, the cmdlet to search for a user account is Get-
ADUser. While you can use a LDAP filter to search for users, the Get-ADUser cmdlet
also lets you supply PowerShell expressions:

Get-ADUser -Filter { Name -like "*Ken*" }

666 | Chapter 26: Active Directory

http://msdn.microsoft.com
http://msdn.microsoft.com

For more information on how to accomplish these tasks through the Active Directory
module, see the module’s online help documentation.

26.10 Get and List the Properties of a User Account
Problem
You want to get and list the properties of a specific user account.

Solution
To list the properties of a user account, use the [adsi] type shortcut to bind to the
user in Active Directory, and then pass the user to the Format-List cmdlet:

$user =
 [adsi] "LDAP://localhost:389/cn=MyerKen,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$user | Format-List *

Discussion
The Solution retrieves the MyerKen user from the Sales West OU. By default, the
Format-List cmdlet shows only the distinguished name of the user, so we type
Format-List * to display all properties.

If you know the property for which you want the value, specify it by name:
PS > $user.DirectReports
CN=SmithRobin,OU=West,OU=Sales,DC=Fabrikam,DC=COM
CN=DoeJane,OU=West,OU=Sales,DC=Fabrikam,DC=COM

If you’re having trouble getting a property that you know exists, you can also retrieve
the property using the Get() method on the container. While the userPrincipalName
property can be accessed using the usual property syntax, the following example
demonstrates the alternate approach:

PS > $user.Get("userPrincipalName")
Ken.Myer@fabrikam.com

Using the Active Directory module, the cmdlet to retrieve a user account is Get-
ADUser. For more information on how to accomplish these tasks through the Active
Directory module, see the module’s online help documentation.

26.11 Modify Properties of a User Account
Problem
You want to modify properties of a specific user account.

26.10 Get and List the Properties of a User Account | 667

https://oreil.ly/JiH6q
https://oreil.ly/JiH6q

Solution
To modify a user account, use the [adsi] type shortcut to bind to the user in Active
Directory. If the property has already been set, you can change the value of a property
as you would with any other PowerShell object. If you’re setting a property for the
first time, use the Put() method. Finally, call the SetInfo() method to apply the
changes.

$user =
 [adsi] "LDAP://localhost:389/cn=MyerKen,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$user.Put("Title", "Sr. Exec. Overlord")
$user.SetInfo()

Discussion
The Solution retrieves the MyerKen user from the Sales West OU. It then sets the
user’s title to Sr. Exec. Overlord and applies those changes to Active Directory.

The cmdlet to modify a user account using the Active Directory module is Set-
ADUser. For more information on how to accomplish these tasks through the Active
Directory module, see the module’s online help documentation.

26.12 Change a User Password
Problem
You want to change a user’s password.

Solution
To change a user’s password, use the [adsi] type shortcut to bind to the user in
Active Directory, and then call the SetPassword() method:

$user =
 [adsi] "LDAP://localhost:389/cn=MyerKen,ou=West,ou=Sales,dc=Fabrikam,dc=COM"
$user.SetPassword("newpassword")

Discussion
Changing a user password in Active Directory is a relatively straightforward opera‐
tion, requiring simply calling the SetPassword() method.

Unfortunately, configuring your local experimental AD LDS
instance to support password changes is complicated and beyond
the scope of this book.

668 | Chapter 26: Active Directory

https://oreil.ly/JiH6q

One thing to notice is that the SetPassword() method takes a plain-text password as
its input. Active Directory protects this password as it sends it across the network, but
storing passwords securely until needed is a security best practice. Recipe 18.9 dis‐
cusses how to handle sensitive strings and also shows you how to convert one back to
plain text when needed.

The cmdlet to change a user password using the Active Directory module is Set-
ADAccountPassword. For more information on how to accomplish these tasks
through the Active Directory module, see the module’s online help documentation.

See Also
Recipe 18.9, “Securely Handle Sensitive Information”

26.13 Create a Security or Distribution Group
Problem
You want to create a security or distribution group.

Solution
To create a security or distribution group, use the [adsi] type shortcut to bind to a
container in Active Directory, and then call the Create() method:

$salesWest =
 [adsi] "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"
$management = $salesWest.Create("Group", "CN=Management")
$management.SetInfo()

Discussion
The Solution creates a group named Management in the Sales West OU.

When you run this script against a real Active Directory deploy‐
ment (as opposed to an AD LDS instance), be sure to update the
sAMAccountName property, or you’ll get an autogenerated default.

When you create a group in Active Directory, it is customary to also set the type of
group by defining the groupType attribute on that group. To specify a group type, use
the -bor operator to combine group flags, and use the resulting value as the group
Type property. Example 26-3 defines the group as a global, security-enabled group.

26.13 Create a Security or Distribution Group | 669

https://oreil.ly/JiH6q

Example 26-3. Creating an Active Directory security group with a custom groupType

$ADS_GROUP_TYPE_GLOBAL_GROUP = 0x00000002
$ADS_GROUP_TYPE_DOMAIN_LOCAL_GROUP = 0x00000004
$ADS_GROUP_TYPE_LOCAL_GROUP = 0x00000004
$ADS_GROUP_TYPE_UNIVERSAL_GROUP = 0x00000008
$ADS_GROUP_TYPE_SECURITY_ENABLED = 0x80000000

$salesWest =
 [adsi] "LDAP://localhost:389/ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$groupType = $ADS_GROUP_TYPE_SECURITY_ENABLED -bor
 $ADS_GROUP_TYPE_GLOBAL_GROUP

$management = $salesWest.Create("Group", "CN=Management")
$management.Put("groupType", $groupType)
$management.SetInfo()

If you need to create groups in bulk from the data in a CSV, the Import-ADUser script
given in Recipe 26.8 provides an excellent starting point. To make the script create
groups instead of users, change this line:

$newUser = $userContainer.Create("User", "CN=$username")

to this:
$newUser = $userContainer.Create("Group", "CN=$username")

If you change the script to create groups in bulk, it’s helpful to also change the vari‐
able names ($user, $users, $username, and $newUser) to correspond to group-
related names: $group, $groups, $groupname, and $newgroup.

The cmdlet to create a group using the Active Directory module is New-ADGroup. For
more information on how to accomplish these tasks through the Active Directory
module, see the module’s online help documentation.

See Also
Recipe 26.8, “Program: Import Users in Bulk to Active Directory”

26.14 Search for a Security or Distribution Group
Problem
You want to search for a specific group, but you don’t know its distinguished name.

670 | Chapter 26: Active Directory

https://oreil.ly/JiH6q

Solution
To search for a security or distribution group, use the [adsi] type shortcut to bind to
a container that holds the group, and then use the [adsisearcher] type shortcut to
search for the group:

$domain = [adsi] "LDAP://localhost:389/dc=Fabrikam,dc=COM"
$searcher = [adsisearcher] $domain
$searcher.Filter = '(&(objectClass=Group)(name=Management))'
$groupResult = $searcher.FindOne()
$group = $groupResult.GetDirectoryEntry()
$group

Discussion
When you don’t know the full distinguished name of a group, the [adsisearcher]
type shortcut lets you search for it.

You provide an LDAP filter (in this case, searching for groups with the name of Man
agement), and then call the FindOne() method. The FindOne() method returns the
first search result that matches the filter, so we retrieve its actual Active Directory
entry. If you expect your query to return multiple results, use the FindAll() method
instead. Although the Solution searches on the group’s name, you can search on any
field in Active Directory—the mailNickname and sAMAccountName are two other good
choices.

When you do this search, always try to restrict it to the lowest level of the domain
possible. If we know that the Management group is in the Sales OU, it would be better
to bind to that OU instead:

$domain = [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"

For more information about the LDAP search filter syntax, search the Microsoft doc‐
umentation site for “LDAP Search Filter Syntax.”

The cmdlet to search for a security or distribution group using the Active Directory
module is Get-ADGroup. While you can use a LDAP filter to search for a group, the
Get-ADGroup cmdlet also lets you supply PowerShell expressions:

Get-ADGroup -Filter { Name -like "*Management*" }

For more information on how to accomplish these tasks through the Active Directory
module, see the module’s online help documentation.

26.15 Get the Properties of a Group
Problem
You want to get and list the properties of a specific security or distribution group.

26.15 Get the Properties of a Group | 671

http://msdn.microsoft.com
http://msdn.microsoft.com
https://oreil.ly/JiH6q

Solution
To list the properties of a group, use the [adsi] type shortcut to bind to the group in
Active Directory, and then pass the group to the Format-List cmdlet:

$group =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$group | Format-List *

Discussion
The Solution retrieves the Management group from the Sales West OU. By default,
the Format-List cmdlet shows only the distinguished name of the group, so we type
Format-List * to display all properties.

If you know the property for which you want the value, specify it by name:
PS > $group.Member
CN=SmithRobin,OU=West,OU=Sales,DC=Fabrikam,DC=COM
CN=MyerKen,OU=West,OU=Sales,DC=Fabrikam,DC=COM

If you’re having trouble getting a property that you know exists, you can also retrieve
the property using the Get() method on the container. While the name property can
be accessed using the usual property syntax, the following example demonstrates the
alternative approach:

PS > $group.Get("name")
Management

The cmdlet to get the properties of a group using the Active Directory module is Get-
ADGroup. For more information on how to accomplish these tasks through the Active
Directory module, see the module’s online help documentation.

26.16 Find the Owner of a Group
Problem
You want to get the owner of a security or distribution group.

Solution
To determine the owner of a group, use the [adsi] type shortcut to bind to the group
in Active Directory, and then retrieve the ManagedBy property:

$group =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$group.ManagedBy

672 | Chapter 26: Active Directory

https://oreil.ly/JiH6q

Discussion
The Solution retrieves the owner of the Management group from the Sales West OU.
To do this, it accesses the ManagedBy property of that group. This property exists only
when populated by the administrator of the group but is fairly reliable: Active Direc‐
tory administrators consider it a best practice to create and populate this property.

The cmdlet to find the owner of a group using the Active Directory module is Get-
ADGroup. This cmdlet does not retrieve the ManagedBy property by default, so you also
need to specify ManagedBy as the value of the -Property parameter. For more infor‐
mation on how to accomplish these tasks through the Active Directory module, see
the module’s online help documentation.

26.17 Modify Properties of a Security or Distribution
Group
Problem
You want to modify properties of a specific security or distribution group.

Solution
To modify a security or distribution group, use the [adsi] type shortcut to bind to
the group in Active Directory. If the property has already been set, you can change
the value of a property as you would with any other PowerShell object. If you’re set‐
ting a property for the first time, use the Put() method. Finally, call the SetInfo()
method to apply the changes.

$group =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

PS > $group.Put("Description", "Managers in the Sales West Organization")
PS > $group.SetInfo()
PS > $group.Description

Discussion
The Solution retrieves the Management group from the Sales West OU. It then sets
the description to “Managers in the Sales West Organization,” and applies those
changes to Active Directory.

The cmdlet to modify the properties of a security or distribution group using the
Active Directory module is Set-ADGroup. For more information on how to accom‐
plish these tasks through the Active Directory module, see the module’s online help
documentation.

26.17 Modify Properties of a Security or Distribution Group | 673

https://oreil.ly/JiH6q
https://oreil.ly/JiH6q
https://oreil.ly/JiH6q

26.18 Add a User to a Security or Distribution Group
Problem
You want to add a user to a security or distribution group.

Solution
To add a user to a security or distribution group, use the [adsi] type shortcut to bind
to the group in Active Directory, and then call the Add() method:

$management =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$user = "LDAP://localhost:389/cn=MyerKen,ou=West,ou=Sales,dc=Fabrikam,dc=COM"
$management.Add($user)

Discussion
The Solution adds the MyerKen user to a group named Management in the Sales West
OU. To check whether you have added the user successfully, see Recipe 26.20.

The cmdlet to add a user to a security or distribution group using the Active Direc‐
tory module is Add-ADGroupMember. For more information on how to accomplish
these tasks through the Active Directory module, see the module’s online help docu‐
mentation.

See Also
Recipe 26.20, “List a User’s Group Membership”

26.19 Remove a User from a Security or Distribution
Group
Problem
You want to remove a user from a security or distribution group.

Solution
To remove a user from a security or distribution group, use the [adsi] type shortcut
to bind to the group in Active Directory, and then call the Remove() method:

$management =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

674 | Chapter 26: Active Directory

https://oreil.ly/JiH6q
https://oreil.ly/JiH6q

$user = "LDAP://localhost:389/cn=MyerKen,ou=West,ou=Sales,dc=Fabrikam,dc=COM"
$management.Remove($user)

Discussion
The Solution removes the MyerKen user from a group named Management in the
Sales West OU. To check whether you have removed the user successfully, see
Recipe 26.20.

The cmdlet to remove a user from a security or distribution group using the Active
Directory module is Remove-ADGroupMember. For more information on how to
accomplish these tasks through the Active Directory module, see the module’s online
help documentation.

See Also
Recipe 26.20

26.20 List a User’s Group Membership
Problem
You want to list the groups to which a user belongs.

Solution
To list a user’s group membership, use the [adsi] type shortcut to bind to the user in
Active Directory, and then access the MemberOf property:

$user =
 [adsi] "LDAP://localhost:389/cn=MyerKen,ou=West,ou=Sales,dc=Fabrikam,dc=COM"
$user.MemberOf

Discussion
The Solution lists all groups in which the MyerKen user is a member. Since Active
Directory stores this information as a user property, this is simply a specific case of
retrieving information about the user. For more information about retrieving infor‐
mation about a user, see Recipe 26.10.

The cmdlet to retrieve a user’s group membership using the Active Directory module
is Get-ADUser. This cmdlet does not retrieve the MemberOf property by default, so you
also need to specify MemberOf as the value of the -Property parameter. For more
information on how to accomplish these tasks through the Active Directory module,
see the module’s online help documentation.

26.20 List a User’s Group Membership | 675

https://oreil.ly/JiH6q
https://oreil.ly/JiH6q
https://oreil.ly/JiH6q

See Also
Recipe 26.10, “Get and List the Properties of a User Account”

26.21 List the Members of a Group
Problem
You want to list all the members in a group.

Solution
To list the members of a group, use the [adsi] type shortcut to bind to the group in
Active Directory, and then access the Member property:

$group =
 [adsi] "LDAP://localhost:389/cn=Management,ou=West,ou=Sales,dc=Fabrikam,dc=COM"
$group.Member

Discussion
The Solution lists all members of the Management group in the Sales West OU. Since
Active Directory stores this information as a property of the group, this is simply a
specific case of retrieving information about the group. For more information about
retrieving information about a group, see Recipe 26.15.

The cmdlet to list the members of a security or distribution group using the Active
Directory module is Get-ADGroupMember. For more information on how to accom‐
plish these tasks through the Active Directory module, see the module’s online help
documentation.

See Also
Recipe 26.15, “Get the Properties of a Group”

26.22 List the Users in an Organizational Unit
Problem
You want to list all the users in an OU.

Solution
To list the users in an OU, use the [adsi] type shortcut to bind to the OU in Active
Directory. Use the [adsisearcher] type shortcut to create a searcher for that OU,

676 | Chapter 26: Active Directory

https://oreil.ly/JiH6q
https://oreil.ly/JiH6q

and then set its Filter property to (objectClass=User). Finally, call the searcher’s
FindAll() method to perform the search.

$sales =
 [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"

$searcher = [adsisearcher] $sales
$searcher.Filter = '(objectClass=User)'
$searcher.FindAll()

Discussion
The Solution lists all users in the Sales OU. It does this through the [adsisearcher]
type shortcut, which lets you search and query Active Directory. The Filter property
specifies an LDAP filter string.

By default, an [adsisearcher] searches the given container and all
containers below it. Set the SearchScope property to change this
behavior. A value of Base searches only the current container,
whereas a value of OneLevel searches only the immediate children.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

The cmdlet to list the users in an organizational unit using the Active Directory mod‐
ule is Get-ADUser. To restrict the results to a specific OU, specify that OU as the -
SearchBase parameter. Alternatively, navigate to that path in the Active Directory
provider, and then call the Get-ADUser cmdlet. For more information on how to
accomplish these tasks through the Active Directory module, see the module’s online
help documentation.

See Also
Recipe 3.8, “Work with .NET Objects”

26.23 Search for a Computer Account
Problem
You want to search for a specific computer account, but you don’t know its distin‐
guished name.

26.23 Search for a Computer Account | 677

https://oreil.ly/JiH6q
https://oreil.ly/JiH6q

Solution
To search for a computer account, use the [adsi] type shortcut to bind to a container
that holds the account, and then use the [adsisearcher] type shortcut to search for
the account:

$domain = [adsi] "LDAP://localhost:389/dc=Fabrikam,dc=COM"
$searcher = [adsisearcher] $domain
$searcher.Filter = '(&(objectClass=Computer)(name=kenmyer_laptop))'
$computerResult = $searcher.FindOne()
$computer = $computerResult.GetDirectoryEntry()

Discussion
When you don’t know the full distinguished name of a computer account, the [adsi
searcher] type shortcut lets you search for it.

This recipe requires a full Active Directory instance, as AD LDS
does not support computer objects.

You provide an LDAP filter (in this case, searching for computers with the name of
kenmyer_laptop), and then call the FindOne() method. The FindOne() method
returns the first search result that matches the filter, so we retrieve its actual Active
Directory entry. If you expect your query to return multiple results, use the
FindAll() method instead. Although the solution searches on the computer’s name,
you can search on any field in Active Directory. The sAMAccountName and operating
system characteristics (operatingSystem, operatingSystemVersion, operatingSys
temServicePack) are other good choices.

When you do this search, always try to restrict it to the lowest level of the domain
possible. If you know that the computer is in the Sales OU, it would be better to bind
to that OU instead:

$domain = [adsi] "LDAP://localhost:389/ou=Sales,dc=Fabrikam,dc=COM"

For more information about the LDAP search filter syntax, search the Microsoft doc‐
umentation for “LDAP Search Filter Syntax.”

The cmdlet to search for a computer account using the Active Directory module is
Get-ADComputer. While you can use a LDAP filter to search for a computer, the Get-
ADComputer cmdlet also lets you supply PowerShell expressions:

Get-ADComputer -Filter { Name -like "*kenmyer*" }

678 | Chapter 26: Active Directory

http://msdn.microsoft.com
http://msdn.microsoft.com

For more information on how to accomplish these tasks through the Active Directory
module, see the module’s online help documentation.

26.24 Get and List the Properties of a Computer Account
Problem
You want to get and list the properties of a specific computer account.

Solution
To list the properties of a computer account, use the [adsi] type shortcut to bind to
the computer in Active Directory and then pass the computer to the Format-List
cmdlet:

$computer =
 [adsi] "LDAP://localhost:389/cn=laptop_212,ou=West,ou=Sales,dc=Fabrikam,dc=COM"

$computer | Format-List *

Discussion
The Solution retrieves the kenmyer_laptop computer from the Sales West OU. By
default, the Format-List cmdlet shows only the distinguished name of the computer,
so we type Format-List * to display all properties.

This recipe requires a full Active Directory instance, as AD LDS
does not support computer objects.

If you know the property for which you want the value, specify it by name:
PS > $computer.OperatingSystem
Windows Server 2003

If you’re having trouble getting a property that you know exists, you can also retrieve
the property using the Get() method on the container. While the operatingSystem
property can be accessed using the usual property syntax, the following example
demonstrates the alternative approach:

PS > $computer.Get("operatingSystem")
Windows Server 2003

Using the Active Directory module, the cmdlet to list the properties of a computer
account is Get-ADComputer. For more information on how to accomplish these tasks
through the Active Directory module, see the module’s online help documentation.

26.24 Get and List the Properties of a Computer Account | 679

https://oreil.ly/JiH6q
https://oreil.ly/JiH6q

CHAPTER 27

Enterprise Computer Management

27.0 Introduction
When working with Windows systems across an enterprise, this question often arises:
“How do I do <some task> in PowerShell?” In an administrator’s perfect world, any‐
body who designs a feature with management implications also supports (via Power‐
Shell cmdlets) the tasks that manage that feature. Many management tasks have been
around longer than PowerShell, though, so the answer can sometimes be, “The same
way you did it before PowerShell.”

That’s not to say that your life as an administrator doesn’t improve with the introduc‐
tion of PowerShell, however. Pre-PowerShell administration tasks generally fall into
one of several models: command-line utilities, Windows Management Instrumenta‐
tion (WMI) interaction, registry manipulation, file manipulation, interaction with
COM objects, or interaction with .NET objects.

PowerShell makes it easier to interact with all these task models, and therefore makes
it easier to manage functionality that depends on them.

27.1 Join a Computer to a Domain or Workgroup
Problem
You want to join a computer to a domain or workgroup.

Solution
Use the -DomainName parameter of the Add-Computer cmdlet to add a computer to a
domain. Use the -WorkGroupName parameter to add it to a workgroup:

681

PS > Add-Computer -DomainName MyDomain -Credential MyDomain\MyUser
PS > Restart-Computer

Discussion
The Add-Computer cmdlet’s name is fairly self-descriptive: it lets you add a computer
to a domain or workgroup. Since a domain join only takes effect once you restart the
computer, always call the Restart-Computer cmdlet after joining a domain.

In addition to supporting the local computer, the Add-Computer cmdlet lets you add
remote computers to a domain, as well. Adding a remote computer to a domain
requires that it have WMI enabled, and that you have the administrative privileges on
the remote computer.

Perhaps the most complex parameter of the Add-Computer cmdlet is the -Unsecure
parameter. When you add a computer to a domain, a machine account is normally
created with a unique password. An unsecure join (as enabled by the -Unsecure
parameter) instead uses a default password: the first 14 characters of the computer
name, all in lowercase. Once the domain join is complete, the system automatically
changes the password. This parameter is primarily intended for unattended
installations.

To remove a computer from a domain, see Recipe 27.2.

See Also
Recipe 27.2

27.2 Remove a Computer from a Domain
Problem
You want to remove a computer from a domain.

Solution
Use the Remove-Computer cmdlet to depart a domain.

PS > Remove-Computer
PS > Restart-Computer

Discussion
The Remove-Computer cmdlet lets you remove a computer from a domain. In addi‐
tion to supporting the local computer, the Remove-Computer cmdlet lets you remove a
remote computer. Removing a remote computer from a domain requires that it have

682 | Chapter 27: Enterprise Computer Management

WMI enabled, and that you have the administrative privileges on the remote
computer.

Once you remove a computer from a domain, it reverts to its default workgroup.
Since domain changes only take effect once you restart the computer, always call the
Restart-Computer cmdlet after departing a domain.

Once you remove a computer from a domain, you can no longer use domain creden‐
tials to manage that computer. Before departing a domain, make sure that you know
(or create) a local administrator’s account for that machine.

To rejoin a domain, see Recipe 27.1.

See Also
Recipe 27.1, “Join a Computer to a Domain or Workgroup”

27.3 Rename a Computer
Problem
You want to rename a computer in a workgroup or domain.

Solution
Use the Rename-Computer cmdlet to rename a computer.

PS > Rename-Computer -NewName <NewName>
PS > Restart-Computer

Discussion
The Rename-Computer lets you rename a computer. In addition to supporting the
local computer, the Rename-Computer cmdlet lets you rename a remote computer.
Renaming a remote computer from a domain requires that it have WMI enabled, and
that you have the administrative privileges on the remote computer.

Since a name change only takes effect once you restart the computer, always call the
Restart-Computer cmdlet after renaming a computer.

27.3 Rename a Computer | 683

27.4 Program: List Logon or Logoff Scripts for a User
The Group Policy system in Windows stores logon and logoff scripts under the two
registry keys HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Group Policy
\State\<UserSID>\Scripts\Logon and HKLM:\SOFTWARE\Microsoft\Windows\Cur‐
rentVersion\Group Policy\State\<UserSID>\Scripts\Logoff. Each key has a subkey for
each Group Policy object that applies. Each of those child keys has another level of
keys that correspond to individual scripts that apply to the user.

This can be difficult to investigate when you don’t know the security identifier (SID)
of the user in question, so Example 27-1 automates the mapping of username to SID
as well as all the registry manipulation tasks required to access this information.

Example 27-1. Get-UserLogonLogoffScript.ps1

##
##
Get-UserLogonLogoffScript
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Get the logon or logoff scripts assigned to a specific user

.EXAMPLE

Get-UserLogonLogoffScript LEE-DESK\LEE Logon
Gets all logon scripts for the user 'LEE-DESK\Lee'

#>

param(
 ## The username to examine
 [Parameter(Mandatory = $true)]
 $Username,

 [Parameter(Mandatory = $true)]
 [ValidateSet("Logon","Logoff")]
 $ScriptType
)

Set-StrictMode -Version 3

Find the SID for the username
$account = New-Object System.Security.Principal.NTAccount $username
$sid =

684 | Chapter 27: Enterprise Computer Management

 $account.Translate([System.Security.Principal.SecurityIdentifier]).Value

Map that to their group policy scripts
$registryKey = "HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\" +
 "Group Policy\State\$sid\Scripts"

if(-not (Test-Path $registryKey))
{
 return
}

Go through each of the policies in the specified key
foreach($policy in Get-ChildItem $registryKey\$scriptType)
{
 ## For each of the scripts in that policy, get its script name
 ## and parameters
 foreach($script in Get-ChildItem $policy.PsPath)
 {
 Get-ItemProperty $script.PsPath | Select Script,Parameters
 }
}

For more information about working with the Windows Registry in PowerShell, see
Chapter 21. For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Chapter 21

27.5 Program: List Startup or Shutdown Scripts for a
Machine
The Group Policy system in Windows stores startup and shutdown scripts under the
registry keys HKLM:\SOFTWARE\Policies\Microsoft\Windows\System\Scripts
\Startup and HKLM:\SOFTWARE\Policies\Microsoft\Windows\System\Scripts\Shut‐
down. Each key has a subkey for each Group Policy object that applies. Each of those
child keys has another level of keys that correspond to individual scripts that apply to
the machine.

Example 27-2 allows you to easily retrieve and access the startup and shutdown
scripts for a machine.

27.5 Program: List Startup or Shutdown Scripts for a Machine | 685

Example 27-2. Get-MachineStartupShutdownScript.ps1

##
##
Get-MachineStartupShutdownScript
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Get the startup or shutdown scripts assigned to a machine

.EXAMPLE

PS > Get-MachineStartupShutdownScript -ScriptType Startup
Gets startup scripts for the machine

#>

param(
 ## The type of script to search for: Startup, or Shutdown.
 [Parameter(Mandatory = $true)]
 [ValidateSet("Startup","Shutdown")]
 $ScriptType
)

Set-StrictMode -Version 3

Store the location of the group policy scripts for the machine
$registryKey = "HKLM:\SOFTWARE\Policies\Microsoft\Windows\System\Scripts"

There may be no scripts defined
if(-not (Test-Path $registryKey))
{
 return
}

Go through each of the policies in the specified key
foreach($policy in Get-ChildItem $registryKey\$scriptType)
{
 ## For each of the scripts in that policy, get its script name
 ## and parameters
 foreach($script in Get-ChildItem $policy.PsPath)
 {
 Get-ItemProperty $script.PsPath | Select Script,Parameters
 }
}

686 | Chapter 27: Enterprise Computer Management

For more information about working with the Windows Registry in PowerShell, see
Chapter 21. For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Chapter 21

27.6 Deploy PowerShell-Based Logon Scripts
Problem
You want to use a PowerShell script in a logon, logoff, startup, or shutdown script.

Solution
Simply add a new script in the PowerShell Scripts tab.

Discussion
In the first version of PowerShell, launching a PowerShell script as a Group Policy
script was a difficult task. Although you could use the -Command parameter of power‐
shell.exe to invoke a command, the quoting rules made it difficult to specify the script
correctly. After getting the quoting rules correct, you still had to contend with the
Execution Policy of the client computer.

Fortunately, the situation improved significantly. Group Policy now supports Power‐
Shell scripts as first-class citizens for the four different user and computer scripts.

When Group Policy’s native support isn’t an option, powershell.exe includes two
parameters that make it easier to control the execution environment:
-ExecutionPolicy and -File. For more information about these (and PowerShell’s
other) parameters, see Recipe 1.17.

See Also
Recipe 1.17, “Invoke a PowerShell Command or Script from Outside PowerShell”

27.6 Deploy PowerShell-Based Logon Scripts | 687

27.7 Enable or Disable the Windows Firewall
Problem
You want to enable or disable the Windows Firewall.

Solution
To manage the Windows Firewall, use the LocalPolicy.CurrentProfile.Firewal
lEnabled property of the HNetCfg.FwMgr COM object:

PS > $firewall = New-Object -com HNetCfg.FwMgr
PS > $firewall.LocalPolicy.CurrentProfile.FirewallEnabled = $true
PS > $firewall.LocalPolicy.CurrentProfile.FirewallEnabled
True

Discussion
The HNetCfg.FwMgr COM object provides programmatic access to the Windows Fire‐
wall in Windows XP SP2 and later. The LocalPolicy.CurrentProfile property pro‐
vides the majority of its functionality.

For more information about managing the Windows Firewall through its COM API,
visit the Miscrosoft documenation site and search for “Using Windows Firewall API.”
The documentation provides examples in VBScript but gives a useful overview of the
functionality available.

For more information about working with COM objects in PowerShell, see Recipe
17.1.

See Also
Recipe 17.1, “Automate Programs Using COM Scripting Interfaces”

27.8 Open or Close Ports in the Windows Firewall
Problem
You want to open or close ports in the Windows Firewall.

Solution
To open or close ports in the Windows Firewall, use the LocalPolicy.CurrentPro
file.GloballyOpenPorts collection of the HNetCfg.FwMgr COM object.

688 | Chapter 27: Enterprise Computer Management

http://msdn.microsoft.com

To open a port, create a HNetCfg.FWOpenPort COM object to represent the port, and
then add it to the GloballyOpenPorts collection:

$PROTOCOL_TCP = 6
$firewall = New-Object -com HNetCfg.FwMgr
$port = New-Object -com HNetCfg.FWOpenPort

$port.Name = "Webserver at 8080"
$port.Port = 8080
$port.Protocol = $PROTOCOL_TCP

$firewall.LocalPolicy.CurrentProfile.GloballyOpenPorts.Add($port)

To close a port, remove it from the GloballyOpenPorts collection:
$PROTOCOL_TCP = 6
$firewall.LocalPolicy.CurrentProfile.
 GloballyOpenPorts.Remove(8080, $PROTOCOL_TCP)

Discussion
The HNetCfg.FwMgr COM object provides programmatic access to the Windows Fire‐
wall in Windows XP SP2 and later. The LocalPolicy.CurrentProfile property pro‐
vides the majority of its functionality.

For more information about managing the Windows Firewall through its COM API,
visit the Microsoft documentation site and search for “Using Windows Firewall API.”
The documentation provides examples in VBScript but gives a useful overview of the
functionality available.

For more information about working with COM objects in PowerShell, see Recipe
17.1.

See Also
Recipe 17.1, “Automate Programs Using COM Scripting Interfaces”

27.9 Program: List All Installed Software
The best place to find information about currently installed software is actually from
the place that stores information about how to uninstall it: the HKLM:\SOFTWARE
\Microsoft\Windows\CurrentVersion\Uninstall registry key.

Each child of that registry key represents a piece of software you can uninstall—tradi‐
tionally through the Add/Remove Programs entry in the Control Panel. In addition
to the DisplayName of the application, other useful properties usually exist (depend‐
ing on the application). Examples include Publisher, UninstallString, and Help
Link.

27.9 Program: List All Installed Software | 689

http://msdn.microsoft.com

To see all the properties available from software installed on your system, type the
following:

$properties = Get-InstalledSoftware |
 ForEach-Object { $_.PsObject.Properties }

$properties | Select-Object Name | Sort-Object -Unique Name

This lists all properties mentioned by at least one installed application (although very
few are shared by all installed applications).

To work with this data, though, you first need to retrieve it. Example 27-3 provides a
script to list all installed software on the current system, returning all information as
properties of PowerShell objects.

Example 27-3. Get-InstalledSoftware.ps1

##
##
Get-InstalledSoftware
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Lists installed software on the current computer.

.EXAMPLE

PS > Get-InstalledSoftware *Frame* | Select DisplayName

DisplayName

Microsoft .NET Framework 3.5 SP1
Microsoft .NET Framework 3.5 SP1
Hotfix for Microsoft .NET Framework 3.5 SP1 (KB953595)
Hotfix for Microsoft .NET Framework 3.5 SP1 (KB958484)
Update for Microsoft .NET Framework 3.5 SP1 (KB963707)

#>

param(
 ## The name of the software to search for
 $DisplayName = "*"
)

Set-StrictMode -Off

Get all the listed software in the Uninstall key

690 | Chapter 27: Enterprise Computer Management

$keys =
 Get-ChildItem HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall

Get all of the properties from those items
$items = $keys | Foreach-Object { Get-ItemProperty $_.PsPath }

For each of those items, display the DisplayName and Publisher
foreach($item in $items)
{
 if(($item.DisplayName) -and ($item.DisplayName -like $displayName))
 {
 $item
 }
}

For more information about working with the Windows Registry in PowerShell, see
Chapter 21. For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Chapter 21

27.10 Uninstall an Application
Problem
You want to uninstall a specific software application.

Solution
To uninstall an application, use the Get-InstalledSoftware script provided in
Recipe 27.9 to retrieve the command that uninstalls the software. Since the
UninstallString uses batch file syntax, use cmd.exe to launch the uninstaller:

PS > $software = Get-InstalledSoftware UnwantedProgram
PS > cmd /c $software.UninstallString

Alternatively, use the Win32_Product WMI class for an unattended installation:
$application = Get-CimInstance Win32_Product -filter "Name='UnwantedProgram'"
$application | Invoke-CimMethod -Name Uninstall

Discussion
The UninstallString provided by applications starts the interactive experience you
would see if you were to uninstall the application through the Add/Remove Programs
entry in the Control Panel. If you need to remove the software in an unattended man‐
ner, you have two options: use the “quiet mode” of the application’s uninstaller (for

27.10 Uninstall an Application | 691

example, the /quiet switch to msiexec.exe) or use the software removal functionality
of the Win32_Product WMI class as demonstrated in the solution.

For more information about working with WMI in PowerShell, see Recipe 28.1.

See Also
Recipe 27.9, “Program: List All Installed Software”

Recipe 28.1, “Access Windows Management Instrumentation and CIM Data”

27.11 Manage Computer Restore Points
Problem
You want to create a computer restore point, restore a computer to a previous restore
point, or manage the schedule for automatic restore points.

Solution
Use the Enable-ComputerRestore and Disable-ComputerRestore cmdlets to enable
and disable automatic computer checkpoints. Use the Get-ComputerRestorePoint
and Restore-Computer cmdlets to list all restore points and to restore a computer to
one of them, respectively. Use the Checkpoint-Computer cmdlet to create a new sys‐
tem restore point.

PS > Get-ComputerRestorePoint |
 Select Description,SequenceNumber,RestorePointType |
 Format-Table -Auto

Description SequenceNumber RestorePointType
----------- -------------- ----------------
Windows Update 122 0
Windows Update 123 0
Scheduled Checkpoint 124 7
Scheduled Checkpoint 125 7
Windows Update 126 0
Scheduled Checkpoint 127 7
Scheduled Checkpoint 128 7
Windows Update 129 0
Scheduled Checkpoint 130 7
Windows Update 131 0
Scheduled Checkpoint 132 7
Windows Update 133 0
Manual Checkpoint 134 0
Before driver updates 135 0

PS > Checkpoint-Computer "Before driver updates"

692 | Chapter 27: Enterprise Computer Management

Discussion
The computer restore point cmdlets give you an easy way to manage Windows sys‐
tem restore points. You can use the Checkpoint-Computer to create a new restore
point before a potentially disruptive installation or system change. Figure 27-1 shows
the Checkpoint-Computer cmdlet in progress. If you need to restore the computer to
a previous state, you can use the Get-ComputerRestorePoint cmdlet to list existing
restore points, and then use the Restore-Computer cmdlet to restore the computer to
its previously saved state.

Figure 27-1. Managing computer restore points

System restore points are finely tuned toward managing the state of the operating sys‐
tem and aren’t designed to protect user data. System restore points primarily protect
the Windows Registry, core operating system files, local user profiles, and COM and
WMI registration databases.

To conserve disk space, Windows limits the amount of space consumed by restore
points, and removes the oldest restore points as needed. If you plan to create manual
checkpoints more frequently than the ones automatically scheduled by Windows,
consider increasing the amount of space dedicated to system restore points. If you
don’t, you run the risk of being unable to recover from system errors that took you a
long time to detect.

By default, Windows schedules automatic restore points for your main system vol‐
ume. To enable or disable these automatic checkpoints for this (or any) volume, use
the Enable-ComputerRestore and Disable-ComputerRestore cmdlets.

27.11 Manage Computer Restore Points | 693

The Control Panel lets you configure how much space Windows reserves for restore
points. To do this, open the System group in the Control Panel, and then open System
Protection.

27.12 Reboot or Shut Down a Computer
Problem
You want to restart or shut down a local or remote computer.

Solution
Use the Restart-Computer cmdlet to restart a computer:

PS > Restart-Computer -ComputerName Computer

Use the Stop-Computer cmdlet to shut it down entirely:
PS > Stop-Computer -ComputerName Computer

If you want to perform the same action on many computers, use the cmdlet’s throt‐
tling support:

PS > $computers = Get-Content computers.txt
PS > Restart-Computer -ComputerName $computers -ThrottleLimit

Discussion
Both the Restart-Computer and Stop-Computer cmdlets let you manage the reboot
and shutdown process of a local or remote computer. Since they build on Power‐
Shell’s WMI support, they also offer the -ThrottleLimit parameter to let you control
how many machines should be controlled at a time.

By default, these cmdlets reject a restart or a shutdown if a user is logged on to the
computer. To restart the computer anyway, use the -Force parameter to override this
behavior.

While restarting a computer, you might sometimes want to have
the computer take some action after it comes back online. To do
this, create a new scheduled task with an -AtStartup trigger. For
more information, see Recipe 27.14.

If you want to wait for the computer to restart before continuing with a script, use the
-Wait parameter. This waits until a PowerShell Remoting connection can be success‐
fully made to the target computer. If you need only WSMan or WMI connectivity, use
the -For parameter:

694 | Chapter 27: Enterprise Computer Management

PS > Restart-Computer -ComputerName Computer -Wait -For Wmi

Rather than shut down or restart a computer, you might instead want to suspend or
hibernate it. While neither the Restart-Computer nor Stop-Computer cmdlets sup‐
port this, you can use the System.Windows.Forms.Application class from the .NET
Framework to do so:

Add-Type -Assembly System.Windows.Forms
[System.Windows.Forms.Application]::SetSuspendState("Suspend", $false, $false)

Add-Type -Assembly System.Windows.Forms
[System.Windows.Forms.Application]::SetSuspendState("Hibernate", $false, $false)

This technique does not let you suspend or hibernate remote computers, but you can
use PowerShell Remoting to invoke those commands on remote systems.

For more information about PowerShell Remoting, see Chapter 29.

See Also
Recipe 27.14, “Manage Scheduled Tasks on a Computer”

Chapter 29

27.13 Determine Whether a Hotfix Is Installed
Problem
You want to determine whether a specific hotfix is installed on a system.

Solution
To retrieve a list of hotfixes applied to the system, use the Get-Hotfix cmdlet:

PS > Get-HotFix KB968930 | Format-List

Description : Windows Management Framework Core
FixComments : Update
HotFixID : KB968930
InstallDate :
InstalledBy : XPMUser
InstalledOn :
Name :
ServicePackInEffect : SP10
Status :

To search by description, use the -Description parameter:
PS > Get-HotFix -Description *Framework* | Format-List

Description : Windows Management Framework Core
FixComments : Update

27.13 Determine Whether a Hotfix Is Installed | 695

HotFixID : KB968930
InstallDate :
InstalledBy : XPMUser
InstalledOn :
Name :
ServicePackInEffect : SP10
Status :

Discussion
The Get-Hotfix cmdlet lets you determine whether a hotfix is installed on a specific
system. By default, it retrieves hotfixes from the local system, but you can use the
-ComputerName parameter to retrieve hotfix information from a remote system.

27.14 Manage Scheduled Tasks on a Computer
Problem
You want to schedule a task on a computer.

Solution
To schedule a task, use the Register-ScheduledJob cmdlet.

$trigger = New-ScheduledTaskTrigger -Once -At (Get-Date) `
 -RepetitionInterval (New-TimeSpan -Hours 1) `
 -RepetitionDuration ([TimeSpan]::MaxValue)

Register-ScheduledJob -Name blogMonitor -Trigger $trigger -ScriptBlock {
 $myDocs = [Environment]::GetFolderPath("MyDocuments")
 $outputPath = Join-Path $myDocs blogMonitor.csv
 Test-Uri http://www.leeholmes.com/blog | Export-Csv -Append $outputPath
}

To view the list of scheduled jobs:
PS > Get-ScheduledJob

Id Name JobTriggers Command
-- ---- ----------- -------
1 blogMonitor 1 ...

To remove a scheduled job, use the Unregister-ScheduledJob cmdlet:
PS > Register-ScheduledJob -Name UnwantedScheduledJob -ScriptBlock { "Oops" }

Id Name JobTriggers Command
-- ---- ----------- -------
2 UnwantedSche... 0 "Oops"

PS > Unregister-ScheduledJob -Name UnwantedScheduledJob

696 | Chapter 27: Enterprise Computer Management

Discussion
PowerShell scheduled jobs offer an extremely easy way to automate system actions,
PowerShell-based or otherwise.

Unlike scheduled tasks (as exposed by the Task Scheduler and *-ScheduledTask
cmdlets), scheduled jobs give you the full experience you’re used to with regular Pow‐
erShell jobs: background execution, state monitoring, rich object-based output, and a
standard set of cmdlets. The primary difference is that Register-ScheduledJob
cmdlet runs the script block you provide in the future.

For more information about PowerShell jobs, see Recipe 1.6.

Scheduled jobs are based on two concepts: a job (the familiar PowerShell concept of a
command line or script block that runs in the background) and the thing that triggers
it.

In its simplest form, a scheduled job can be registered with no trigger at all. In that
case, the -DefinitionName parameter of the Start-Job cmdlet starts the actual job:

PS > Register-ScheduledJob -Name DateChecker -ScriptBlock { Get-Date }

Id Name JobTriggers Command Enabled
-- ---- ----------- ------- -------
4 DateChecker 0 Get-Date True

PS > Start-Job -DefinitionName DateChecker

Id Name PSJobTypeName State HasMoreData Location Command
-- ---- ------------- ----- ----------- -------- -------
2 DateChecker PSScheduledJob Running True localhost Get-Date

PS > Receive-Job -Id 2

Saturday, September 1, 2012 9:27:30 PM

Running a job this way isn’t much use, however. To make it useful, you’ll want to
attach a trigger. For example, to reset a development web server that’s causing issues:

$trigger = New-ScheduledTaskTrigger -Daily -At "3:00 AM"
Register-ScheduledJob -Name WebsiteFix -ScriptBlock { iisreset }

For most scheduled tasks, the -Daily, -Weekly, -AtStartup, and -AtLogOn parame‐
ters will be all you need. Use the -At parameter to specify the start of this repetition.
The -At parameter is a DateTime object, so most natural forms of dates and times

27.14 Manage Scheduled Tasks on a Computer | 697

(such as 3:00 AM) will work. If you want to be more specific, you can use the Get-
Date cmdlet:

$date = Get-Date -Hour 15 -Minute 59
$trigger = New-ScheduledTaskTrigger -Daily -At $date

If the built-in daily or weekly patterns don’t work, you can use the -Once parameter.
By default, this schedules a task to run only once in the future:

$trigger = New-ScheduledTaskTrigger -Once -At "9/2/2012 10:00 AM"

However, you can also use the -Once parameter to schedule tasks that start at the time
you supply, but then repeat at intervals more granular than simply daily or weekly.
The -RepetitionInterval parameter defines how long the task scheduler should
wait between invocations, while the -RepetitionDuration defines how far in the
future the job will be allowed to run.

For example, to create a scheduled task that kills a specific runaway process every five
minutes forever:

PS > $t = New-ScheduledTaskTrigger -Once -At (Get-Date) `
 -RepetitionInterval (New-TimeSpan -Minutes 5) `
 -RepetitionDuration ([TimeSpan]::MaxValue)
PS > Register-ScheduledJob -ScriptBlock { Stop-Process -Name RunawayProcess } `
 -Trigger $t -Name Zombie

Id Name JobTriggers Command
-- ---- ----------- -------
31 Zombie 1 Stop-Process -Name RunawayProcess

When registering scheduled jobs, you can also provide options to the
-ScheduledJobOption parameter. To create the options used for this parameter, use
the New-ScheduledJobOption cmdlet. You’ll rarely need most of them, but the
-RequireNetwork parameter deserves special attention.

As with PowerShell Remoting connections, scheduled tasks don’t let you automati‐
cally connect to network resources such as UNC paths and Active Directory. Doing
this requires that the scheduled task store your credentials, which becomes an annoy‐
ance to keep up-to-date whenever your system requires you to change your
password.

If your scheduled task fails when trying to access network locations, you can specify
the -RequireNetwork parameter to get around this issue. If you use this parameter,
you’ll also have to provide your credentials when registering the scheduled job. If you
change your password, be sure to use the Set-ScheduledJob cmdlet to update your
credential.

In addition to scheduling new commands on the system, you may want to interact
with tasks scheduled by other programs or applications. Tasks scheduled by other
programs don’t have the rich job model that PowerShell does, but are used frequently

698 | Chapter 27: Enterprise Computer Management

for simple task invocation. If you have access to a Windows 8 computer, use the
ScheduledTask cmdlet:

PS > Get-Command -Noun ScheduledTask
(...)

PS > Get-Help -Command Register-ScheduledTask
(...)

PS > Get-ScheduledTask -TaskName ProactiveScan | Format-List

Actions : {MSFT_TaskComHandlerAction}
Author : Microsoft Corporation
Date :
Description : NTFS Volume Health Scan
Documentation :
Principal : MSFT_TaskPrincipal2
SecurityDescriptor : D:AI(A;;FA;;;BA)(A;;FA;;;SY)(A;;FRFX;;;LS)(A;;FR;;;AU)
Settings : MSFT_TaskSettings3
Source : Microsoft Corporation
State : Ready
TaskName : ProactiveScan
TaskPath : \Microsoft\Windows\Chkdsk\
Triggers :
URI : \Microsoft\Windows\Chkdsk\ProactiveScan
Version :
PSComputerName :

For more information about automating PowerShell from other applications, see
Recipe 1.17.

See Also
Recipe 1.6, “Invoke a Long-Running or Background Command”

Recipe 1.17, “Invoke a PowerShell Command or Script from Outside PowerShell”

27.15 Retrieve Printer Information
Problem
You want to get information about printers on the current system.

Solution
To retrieve information about printers attached to the system, use the Win32_Printer
WMI class:

27.15 Retrieve Printer Information | 699

PS > Get-CimInstance Win32_Printer | Select-Object Name,PrinterStatus

Name PrinterStatus
---- -------------
Microsoft Office Document Image Wr... 3
Microsoft Office Document Image Wr... 3
CutePDF Writer 3
Brother DCP-1000 3

To retrieve information about a specific printer, apply a filter based on its name:
PS > $device = Get-CimInstance Win32_Printer -Filter "Name='Brother DCP-1000'"
PS > $device | Format-List *
Status : Unknown
Name : Brother DCP-1000
Attributes : 588
Availability :
AvailableJobSheets :
AveragePagesPerMinute : 0
Capabilities : {4, 2, 5}
CapabilityDescriptions : {Copies, Color, Collate}
Caption : Brother DCP-1000
(...)

To retrieve specific properties, access them as you would access properties on other
PowerShell objects:

PS > $device.VerticalResolution
600
PS > $device.HorizontalResolution
600

Discussion
The example in the Solution uses the Win32_Printer WMI class to retrieve informa‐
tion about installed printers on the computer. While the Win32_Printer class
gives access to the most commonly used information, WMI supports several addi‐
tional printer-related classes: Win32_TCPIPPrinterPort, Win32_PrinterDriver,
CIM_Printer, Win32_PrinterConfiguration, Win32_PrinterSetting, Win32_Print
erController, Win32_PrinterShare, and Win32_PrinterDriverDll. For more infor‐
mation about working with WMI in PowerShell, see Recipe 28.1.

See Also
Recipe 28.1, “Access Windows Management Instrumentation and CIM Data”

27.16 Retrieve Printer Queue Statistics
Problem
You want to get information about print queues for printers on the current system.

700 | Chapter 27: Enterprise Computer Management

Solution
To retrieve information about printers attached to the system, use the Win32_PerfFor
mattedData_Spooler_PrintQueue WMI class:

PS > Get-CimInstance Win32_PerfFormattedData_Spooler_PrintQueue |
 Select Name,TotalJobsPrinted

Name TotalJobsPrinted
---- ----------------
Microsoft Office Document Image Wr... 0
Microsoft Office Document Image Wr... 0
CutePDF Writer 0
Brother DCP-1000 2
_Total 2

To retrieve information about a specific printer, apply a filter based on its name, as
shown in Example 27-4.

Example 27-4. Retrieving information about a specific printer

PS > $queueClass = "Win32_PerfFormattedData_Spooler_PrintQueue"
PS > $filter = "Name='Brother DCP-1000'"
PS > $stats = Get-CimInstance $queueClass -Filter $filter
PS > $stats | Format-List *

AddNetworkPrinterCalls : 129
BytesPrintedPersec : 0
Caption :
Description :
EnumerateNetworkPrinterCalls : 0
Frequency_Object :
Frequency_PerfTime :
Frequency_Sys100NS :
JobErrors : 0
Jobs : 0
JobsSpooling : 0
MaxJobsSpooling : 1
MaxReferences : 3
Name : Brother DCP-1000
NotReadyErrors : 0
OutofPaperErrors : 0
References : 2
Timestamp_Object :
Timestamp_PerfTime :
Timestamp_Sys100NS :
TotalJobsPrinted : 2
TotalPagesPrinted : 0

To retrieve specific properties, access them as you would access properties on other
PowerShell objects:

PS > $stats.TotalJobsPrinted
2

27.16 Retrieve Printer Queue Statistics | 701

Discussion
The Win32_PerfFormattedData_Spooler_PrintQueue WMI class provides access to
the various Windows performance counters associated with print queues. Because of
this, you can also access them through the .NET Framework, as mentioned in Recipe
17.3:

PS > Get-Counter "\Print Queue($printer)\Jobs" | Select -Expand CounterSamples |
 Select InstanceName,CookedValue | Format-Table -Auto

InstanceName CookedValue
------------ -----------
brother dcp-1000 usb 1

For more information about working with WMI in PowerShell, see Recipe 28.1.

See Also
Recipe 17.3, “Access Windows Performance Counters”

Recipe 28.1, “Access Windows Management Instrumentation and CIM Data”

27.17 Manage Printers and Print Queues
Problem
You want to clear pending print jobs from a printer.

Solution
To manage printers attached to the system, use the Win32_Printer WMI class. By
default, the WMI class lists all printers:

PS > Get-CimInstance Win32_Printer | Select-Object Name,PrinterStatus

Name PrinterStatus
---- -------------
Microsoft Office Document Image Wr... 3
Microsoft Office Document Image Wr... 3
CutePDF Writer 3
Brother DCP-1000 3

To clear the print queue of a specific printer, apply a filter based on its name and call
the CancelAllJobs() method:

PS > $device = Get-CimInstance Win32_Printer -Filter "Name='Brother DCP-1000'"
PS > $device | Invoke-CimMethod -Name CancelAllJobs

__GENUS : 2
__CLASS : __PARAMETERS
__SUPERCLASS :

702 | Chapter 27: Enterprise Computer Management

__DYNASTY : __PARAMETERS
__RELPATH :
__PROPERTY_COUNT : 1
__DERIVATION : {}
__SERVER :
__NAMESPACE :
__PATH :
ReturnValue : 5

Discussion
The example in the Solution uses the Win32_Printer WMI class to cancel all jobs for
a printer. In addition to cancelling all print jobs, the Win32_Printer class supports
other tasks:

PS > Get-CimClass Win32_Printer | ForEach-Object CimClassMethods

Name ReturnType Parameters
---- ---------- ----------
SetPowerState UInt32 {PowerState, Time}
Reset UInt32 {}
Pause UInt32 {}
Resume UInt32 {}
CancelAllJobs UInt32 {}
AddPrinterConnection UInt32 {Name}
RenamePrinter UInt32 {NewPrinterName}
PrintTestPage UInt32 {}
SetDefaultPrinter UInt32 {}
GetSecurityDescriptor UInt32 {Descriptor}
SetSecurityDescriptor UInt32 {Descriptor}

For more information about working with WMI in PowerShell, see Recipe 28.1.

See Also
Recipe 28.1, “Access Windows Management Instrumentation and CIM Data”

27.18 Program: Summarize System Information
WMI provides an immense amount of information about the current system or
remote systems. In fact, the msinfo32.exe application traditionally used to gather sys‐
tem information is based largely on WMI.

For most purposes, you can use the Get-ComputerInfo cmdlet to retrieve a detailed
summary of system information. If you wish to create your own system configuration
reports, you can use Example 27-5 as a starting point. The script shown in
Example 27-5 summarizes the most common information, but WMI provides a great
deal more than that. For a list of other commonly used WMI classes, see Appendix G.
For more information about working with WMI in PowerShell, see Recipe 28.1.

27.18 Program: Summarize System Information | 703

Example 27-5. Get-DetailedSystemInformation.ps1

##
##
Get-DetailedSystemInformation
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Get detailed information about a system.

.EXAMPLE

PS > Get-DetailedSystemInformation LEE-DESK > output.txt
Gets detailed information about LEE-DESK and stores the output into output.txt

#>

param(
 ## The computer to analyze
 $Computer = "."
)

Set-StrictMode -Version 3

"#"*80
"System Information Summary"
"Generated $(Get-Date)"
"#"*80
""
""

"#"*80
"Computer System Information"
"#"*80
Get-CimInstance Win32_ComputerSystem -Computer $computer | Format-List *

"#"*80
"Operating System Information"
"#"*80
Get-CimInstance Win32_OperatingSystem -Computer $computer | Format-List *

"#"*80
"BIOS Information"
"#"*80
Get-CimInstance Win32_Bios -Computer $computer | Format-List *

"#"*80
"Memory Information"
"#"*80

704 | Chapter 27: Enterprise Computer Management

Get-CimInstance Win32_PhysicalMemory -Computer $computer | Format-List *

"#"*80
"Physical Disk Information"
"#"*80
Get-CimInstance Win32_DiskDrive -Computer $computer | Format-List *

"#"*80
"Logical Disk Information"
"#"*80
Get-CimInstance Win32_LogicalDisk -Computer $computer | Format-List *

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 28.1, “Access Windows Management Instrumentation and CIM Data”

Appendix G, WMI Reference

27.19 Renew a DHCP Lease
Problem
You want to renew the Dynamic Host Configuration Protocol (DHCP) lease for a
connection on a computer.

Solution
To renew DHCP leases, use the ipconfig application. To renew the lease on all
connections:

ipconfig /renew

To renew the lease on a specific connection:
ipconfig /renew "Wireless Network Connection 4"

Discussion
The standard ipconfig application works well to manage network configuration
options on a local machine. To renew the DHCP lease on a remote computer, you
have two options.

27.19 Renew a DHCP Lease | 705

Use the Win32_NetworkAdapterConfiguration WMI class

To renew the lease on a remote computer, you can use the Win32_NetworkAdapterCon
figuration WMI class. The WMI class requires that you know the description of the
network adapter, so first obtain that by reviewing the output of Get-CimInstance
Win32_NetworkAdapterConfiguration -Computer ComputerName:

PS > Get-CimInstance Win32_NetworkAdapterConfiguration -Computer LEE-DESK

(...)
DHCPEnabled : True
IPAddress : {192.168.1.100}
DefaultIPGateway : {192.168.1.1}
DNSDomain : hsd1.wa.comcast.net.
ServiceName : USB_RNDIS
Description : Linksys Wireless-G USB Network Adapter with (...)
Index : 13
(...)

Knowing which adapter you want to renew, call its RenewDHCPLease() method:
$description = "Linksys Wireless-G USB"
$adapter = Get-CimInstance Win32_NetworkAdapterConfiguration -Computer LEE-DESK |
 Where-Object { $_.Description -match $description}
$adapter | Invoke-CimMethod -Name RenewDHCPLease

Run ipconfig on the remote computer
Another way to renew the DHCP lease on a remote computer is to use either Power‐
Shell Remoting or the solution offered by Recipe 29.8:

PS > Invoke-Command LEE-DESK { ipconfig /renew }
PS > Invoke-RemoteExpression \\LEE-DESK { ipconfig /renew }

For more information about working with WMI in PowerShell, see Recipe 28.1.

See Also
Recipe 28.1, “Access Windows Management Instrumentation and CIM Data”

Recipe 29.8, “Program: Invoke a PowerShell Expression on a Remote Machine”

27.20 Assign a Static IP Address
Problem
You want to assign a static IP address to a computer.

706 | Chapter 27: Enterprise Computer Management

Solution
Use the Win32_NetworkAdapterConfiguration WMI class to manage network set‐
tings for a computer:

$description = "Linksys Wireless-G USB"
$staticIp = "192.168.1.100"
$subnetMask = "255.255.255.0"
$gateway = "192.168.1.1"

$adapter = Get-CimInstance Win32_NetworkAdapterConfiguration -Computer LEE-DESK |
 Where-Object { $_.Description -match $description}
$adapter | Invoke-CimMethod -Name EnableStatic -Arguments @{
 IPAddress = $staticIp; SubnetMask = $subnetMask }
$adapter | Invoke-CimMethod -Name SetGateways -Arguments @{
 DefaultIPGateway = $gateway; GatewayCostMetric = [UInt16] 1 }

Discussion
When you’re managing network settings for a computer, the Win32_NetworkAdapter
Configuration WMI class requires that you know the description of the network
adapter. Obtain that by reviewing the output of Get-CimInstance Win32_Network
AdapterConfiguration -Computer ComputerName:

PS > Get-CimInstance Win32_NetworkAdapterConfiguration -Computer LEE-DESK

(...)
DHCPEnabled : True
IPAddress : {192.168.1.100}
DefaultIPGateway : {192.168.1.1}
DNSDomain : hsd1.wa.comcast.net.
ServiceName : USB_RNDIS
Description : Linksys Wireless-G USB Network Adapter with (...)
Index : 13
(...)

Knowing which adapter you want to renew, you can now call methods on that object
as illustrated in the solution. To enable DHCP on an adapter again, use the
EnableDHCP() method:

PS > $adapter | Invoke-CimMethod -Name EnableDHCP

For more information about working with WMI in PowerShell, see Recipe 28.1.

See Also
Recipe 28.1, “Access Windows Management Instrumentation and CIM Data”

27.20 Assign a Static IP Address | 707

27.21 List All IP Addresses for a Computer
Problem
You want to list all IP addresses for a computer.

Solution
To list IP addresses assigned to a computer, use the ipconfig application:

ipconfig

Discussion
The standard ipconfig application works well to manage network configuration
options on a local machine. To view IP addresses on a remote computer, you have
two options.

Use the Win32_NetworkAdapterConfiguration WMI class

To view the IP addresses of a remote computer, use the Win32_NetworkAdapterCon
figuration WMI class. Since that lists all network adapters, use the Where-Object
cmdlet to restrict the results to those with an IP address assigned to them:

PS > Get-CimInstance Win32_NetworkAdapterConfiguration -Computer LEE-DESK |
 Where-Object { $_.IpEnabled }

DHCPEnabled : True
IPAddress : {192.168.1.100}
DefaultIPGateway : {192.168.1.1}
DNSDomain : hsd1.wa.comcast.net.
ServiceName : USB_RNDIS
Description : Linksys Wireless-G USB Network Adapter with SpeedBooste
 r v2 - Packet Scheduler Miniport
Index : 13

Run ipconfig on the remote computer
Another way to view the IP addresses of a remote computer is to use either Power‐
Shell Remoting or the solution offered by Recipe 29.8:

PS > Invoke-Command LEE-DESK { ipconfig }
PS > Invoke-RemoteExpression \\LEE-DESK { ipconfig }

For more information about working with WMI in PowerShell, see Recipe 28.1.

708 | Chapter 27: Enterprise Computer Management

See Also
Recipe 28.1, “Access Windows Management Instrumentation and CIM Data”

Recipe 29.8, “Program: Invoke a PowerShell Expression on a Remote Machine”

27.22 List Network Adapter Properties
Problem
You want to retrieve information about network adapters on a computer.

Solution
To retrieve information about network adapters on a computer, use the Win32_Net
workAdapterConfiguration WMI class:

Get-CimInstance Win32_NetworkAdapterConfiguration -Computer <ComputerName>

To list only those with IP addresses assigned to them, use the Where-Object cmdlet to
filter on the IpEnabled property:

PS > Get-CimInstance Win32_NetworkAdapterConfiguration -Computer LEE-DESK |
 Where-Object { $_.IpEnabled }

DHCPEnabled : True
IPAddress : {192.168.1.100}
DefaultIPGateway : {192.168.1.1}
DNSDomain : hsd1.wa.comcast.net.
ServiceName : USB_RNDIS
Description : Linksys Wireless-G USB Network Adapter with SpeedBooster
 v2 - Packet Scheduler Miniport
Index : 13

Discussion
The solution uses the Win32_NetworkAdapterConfiguration WMI class to retrieve
information about network adapters on a given system. By default, PowerShell dis‐
plays only the most important information about the network adapter, but it provides
access to much more.

To see all information available, use the Format-List cmdlet, as shown in
Example 27-6.

27.22 List Network Adapter Properties | 709

Example 27-6. Using the Format-List cmdlet to see detailed information about a
network adapter

PS > $adapter = Get-CimInstance Win32_NetworkAdapterConfiguration |
 Where-Object { $_.IpEnabled }

PS > $adapter
DHCPEnabled : True
IPAddress : {192.168.1.100}
DefaultIPGateway : {192.168.1.1}
DNSDomain : hsd1.wa.comcast.net.
ServiceName : USB_RNDIS
Description : Linksys Wireless-G USB Network Adapter with SpeedBooster
 v2 - Packet Scheduler Miniport
Index : 13

PS > $adapter | Format-List *

DHCPLeaseExpires : 20070521221927.000000-420
Index : 13
Description : Linksys Wireless-G USB Network Adapter with
 SpeedBooster v2 - Packet Scheduler Miniport
DHCPEnabled : True
DHCPLeaseObtained : 20070520221927.000000-420
DHCPServer : 192.168.1.1
DNSDomain : hsd1.wa.comcast.net.
DNSDomainSuffixSearchOrder :
DNSEnabledForWINSResolution : False
DNSHostName : Lee-Desk
DNSServerSearchOrder : {68.87.69.146, 68.87.85.98}
DomainDNSRegistrationEnabled : False
FullDNSRegistrationEnabled : True
IPAddress : {192.168.1.100}
IPConnectionMetric : 25
IPEnabled : True
IPFilterSecurityEnabled : False
WINSEnableLMHostsLookup : True
(...)

To retrieve specific properties, access them as you would access properties on other
PowerShell objects:

PS > $adapter.MacAddress
00:12:17:77:B4:EB

For more information about working with WMI in PowerShell, see Recipe 28.1.

See Also
Recipe 28.1, “Access Windows Management Instrumentation and CIM Data”

710 | Chapter 27: Enterprise Computer Management

CHAPTER 28

CIM and Windows Management
Instrumentation

28.0 Introduction
Windows Management Instrumentation (WMI) has long been a core management
feature in Windows. It offers amazing breadth, wide reach, and ubiquitous remoting.

What WMI lacked in the past, though, was a good way to get to it. Graphically, the
wbemtest.exe utility lets you experiment with WMI, its namespaces, and classes. It
truly is a testing tool, though, as its complex UI makes it impractical to use for most
scenarios (see Figure 28-1).

A more user-friendly alternative is the wmic.exe command-line tool. The WMIC tool
lets you interactively query WMI—but more importantly, automate its behavior. As
with PowerShell, results within WMIC retain a great deal of their structured informa‐
tion and let you write fairly detailed queries:

PS > WMIC logicaldisk WHERE drivetype=3 `
 GET "name,freespace,SystemName,FileSystem,Size"

FileSystem FreeSpace Name Size SystemName
NTFS 10587656192 C: 34357637120 LEEHOLMES1C23

The language is limited, however, and all of the data’s structure is lost once WMIC
converts its output to text.

By far, the most popular UI for WMI has been VBScript, the administrator’s tradi‐
tional scripting language. VBScript offers much richer language facilities than WMIC
and retains WMI’s structured data for the entire duration of your script.

711

Figure 28-1. Using wbemtest.exe to retrieve a Win32_Process

VBScript has its own class of usability difficulties, however. For example, generating a
report of the processes running on a computer often ends up looking like this:

strComputer = "atl-dc-01"
Set objWMIService = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate}!\\" _
 & strComputer & "\root\cimv2")
Set colProcessList = objWMIService.ExecQuery _
 ("Select * from Win32_Process")
For Each objProcess in colProcessList
 Wscript.Echo "Process: " & objProcess.Name
 Wscript.Echo "Process ID: " & objProcess.ProcessID
 Wscript.Echo "Thread Count: " & objProcess.ThreadCount
 Wscript.Echo "Page File Size: " _
 & objProcess.PageFileUsage
 Wscript.Echo "Page Faults: " _
 & objProcess.PageFaults
 Wscript.Echo "Working Set Size: " _
 & objProcess.WorkingSetSize
Next

712 | Chapter 28: CIM and Windows Management Instrumentation

It also requires that you write an entire script, and it offers no lightweight interactive
experience. The Microsoft Scripting Guys’ Scriptomatic tool helps make it easier to
create many of these mundane scripts, but it still doesn’t address one-off queries.

Enter PowerShell.

PowerShell elevates WMI to a first-class citizen for both ad hoc and structured quer‐
ies. Because most of the template VBScript for dealing with WMI instances ends up
being used to display the results, PowerShell eliminates this step completely. The
PowerShell equivalent of the preceding VBScript is simply:

Get-CimInstance Win32_Process -Computer atl-dc-01

Or, if you want a subset of properties:
Get-CimInstance Win32_Process | Select Name,ProcessId,ThreadCount

By providing a deep and user-friendly integration with WMI, PowerShell puts a great
deal of functionality at the fingertips of every administrator.

The Shift to CIM
While you may be most familiar with WMI on Windows, the concepts you’ve become
familiar with are actually an implementation of the Distributed Management Task
Force (DMTF) standard. However, the DMTF standard has advanced significantly
since WMI was introduced, and improvements to WMI in the meantime have created
a set of differences—both technical and philosophical—that are hard to reconcile.

To address these differences, PowerShell supports standards-based CIM cmdlets
through the CimCmdlets module. The commands in this module are fully aligned to
the CIM standard. They use standard CIM namespaces and schemas, use the stan‐
dard WS-MAN communication protocol, and represent objects in a standard way.

The benefit of this transition is enormous. Expertise that you gained using the WMI
cmdlets essentially applied only to interactions with Windows systems. With the CIM
cmdlets, though, expertise that you gain applies to a broad spectrum of vendors and
devices.

28.1 Access Windows Management Instrumentation and
CIM Data
Problem
You want to work with data and functionality provided by the WMI and CIM facili‐
ties in Windows.

28.1 Access Windows Management Instrumentation and CIM Data | 713

Solution
To retrieve all instances of a WMI or CIM class, use the Get-CimInstance cmdlet:

Get-CimInstance -ComputerName Computer -Class Win32_Bios

To retrieve specific instances of a WMI or CIM class using a filter, supply an argu‐
ment to the -Filter parameter of the Get-CimInstance cmdlet. This is the WHERE
clause of a WQL (WMI Query Language) statement, but without the WHERE keyword:

Get-CimInstance Win32_Service -Filter "StartMode = 'Auto'"

For WMI instances specifically, you can use the [Wmi] type shortcut:
[Wmi] 'Win32_Service.Name="winmgmt"'

To retrieve instances of a class using WMI’s WQL language, use the -Query parameter
of Get-CimInstance:

Get-CimInstance -Query "SELECT * FROM Win32_Service WHERE StartMode = 'Auto'"

For WMI instances specifically, use the [WmiSearcher] type shortcut:
$query = [WmiSearcher] "SELECT * FROM Win32_Service WHERE StartMode = 'Auto'"
$query.Get()

To retrieve a property of a WMI or CIM instance, access that property as you would
access a .NET property:

$service = [Wmi] 'Win32_Service.Name="winmgmt"'
$service.StartMode

To invoke a method on a CIM instance, use the Invoke-CimMethod cmdlet:
$service = Get-CimInstance Win32_Service -Filter "Name = 'winmgmt'"
$service | Invoke-CimMethod -Name ChangeStartMode -Arguments @{
 StartMode = "Manual" }

Alternatively, for WMI instances specifically, invoke that method as you would
invoke a .NET method:

$service = [Wmi] 'Win32_Service.Name="winmgmt"'
$service.ChangeStartMode("Manual")
$service.ChangeStartMode("Automatic")

To invoke a method on a WMI class, use the Invoke-CimMethod cmdlet. You can also
use the [WmiClass] type shortcut to access that WMI class. Then, invoke that method
as you would invoke a .NET method:

Invoke-CimMethod -Class Win32_Process -Name Create -Arguments @{
 CommandLine = "notepad" }

$class = [WmiClass] "Win32_Process"
$class.Create("Notepad")

714 | Chapter 28: CIM and Windows Management Instrumentation

To retrieve a WMI class from a specific namespace, use its fully qualified name along
with the [WmiClass] type shortcut:

[WmiClass] "\\COMPUTER\Root\Cimv2:Win32_Process"

Discussion
Working with WMI has long been a staple of managing Windows systems—especially
systems that are part of corporate domains or enterprises. WMI supports a huge
number of Windows management tasks, albeit not in a very user-friendly way.

Traditionally, administrators required either VBScript or the WMIC command-line
tool to access and manage these systems through WMI. While powerful and useful,
these techniques still provided plenty of opportunities for improvement. VBScript
lacks support for an ad hoc investigative approach, and WMIC fails to provide (or
take advantage of) knowledge that applies to anything outside WMIC.

In comparison, PowerShell lets you work with WMI and CIM just like you work with
the rest of the shell. WMI and CIM instances provide methods and properties, and
you work with them the same way you work with methods and properties of other
objects in PowerShell.

Not only does PowerShell make working with WMI instances and classes easy once
you have them, but it also provides a clean way to access them in the first place. For
most tasks, you need only to use the simple [Wmi], [WmiClass], or [WmiSearcher]
syntax as shown in the Solution.

Along with WMI’s huge scope, though, comes a related problem: finding the WMI
class that accomplishes your task. To assist you in learning what WMI or CIM classes
are available, Appendix G provides a helpful listing of the most common ones. For a
script that helps you search for WMI and CIM classes by name, description, property
name, or property description, see Recipe 28.5.

When you want to access a specific WMI instance with the [Wmi] accelerator, you
might at first struggle to determine what properties WMI lets you search on. These
properties are called key properties on the class. For a script that lists these key prop‐
erties, see Recipe 28.4.

For more information about the Get-CimInstance cmdlet, type Get-Help Get-

CimInstance.

See Also
Recipe 28.4, “Program: Determine Properties Available to WMI and CIM Filters”

Recipe 28.5, “Search for the WMI or CIM Class to Accomplish a Task”

Appendix G, WMI Reference

28.1 Access Windows Management Instrumentation and CIM Data | 715

28.2 Modify the Properties of a WMI or CIM Instance
Problem
You want to modify the properties of a WMI or CIM instance.

Solution
Use the Set-CimInstance cmdlet:

PS > $bootVolume = Get-CimInstance Win32_LogicalDisk |
 Where-Object { $_.DeviceID -eq 'C:' }

PS > $bootVolume

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 10587656192
Size : 34357637120
VolumeName : Boot Volume

PS > $bootVolume | Set-CimInstance -Arguments @{
 VolumeName = 'Operating System' }

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 10587656192
Size : 34357637120
VolumeName : Operating System

Discussion
Although you can assign new property values to the objects output by Get-
CimInstance, changes you make ultimately are not reflected in the permanent system
state, as this example shows:

PS > $bootVolume = Get-CimInstance Win32_LogicalDisk |
 Where-Object { $_.DeviceID -eq 'C:' }

PS > $bootVolume

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 10587656192
Size : 34357637120
VolumeName : OS

PS > $bootVolume.VolumeName = "Boot Volume"

PS > Get-CimInstance Win32_LogicalDisk |

716 | Chapter 28: CIM and Windows Management Instrumentation

 Where-Object { $_.DeviceID -eq 'C:' }

DeviceID : C:
DriveType : 3
ProviderName :
FreeSpace : 10587652096
Size : 34357637120
VolumeName : OS

Instead, the Set-CimInstance cmdlet lets you permanently modify values of WMI
and CIM instances. While the Set-CimInstance cmdlet supports WMI instances as
pipeline input, you can also use the -Query parameter to select the instance you want
to modify:

Set-CimInstance -Query "SELECT * FROM Win32_LogicalDisk WHERE DeviceID='C:'" `
 -Property @{ VolumeName="OS" }

To determine which properties can be modified on an instance, you need to investi‐
gate the CIM class that defines it. Each CIM class has a CimClassProperties collec‐
tion, and each property has a Qualifiers collection. If Write is one of the qualifiers,
then that property is writeable:

PS > Get-CimClass Win32_LogicalDisk | ForEach-Object CimClassProperties

(...)
Name : VolumeName
Value :
CimType : String
Flags : Property, NullValue
Qualifiers : {MappingStrings, read, write}
ReferenceClassName :

Name : VolumeSerialNumber
Value :
CimType : String
Flags : Property, ReadOnly, NullValue
Qualifiers : {MappingStrings, read}
ReferenceClassName :
(...)

To automatically see all writeable classes in the ROOT\CIMV2 namespace, simply run
this snippet of PowerShell script:

Get-CimClass Win32_LogicalDisk | ForEach-Object {
 $_.CimClassName; $_.CimClassProperties |
 Where-Object { $_.Qualifiers["Write"] } | ForEach-Object Name
}

See Also
Recipe 28.1, “Access Windows Management Instrumentation and CIM Data”

Appendix G, WMI Reference

28.2 Modify the Properties of a WMI or CIM Instance | 717

28.3 Invoke a Method on a WMI Instance or Class
Problem
You want to invoke a method supported by a WMI instance or class.

Solution
Use the Invoke-CimMethod cmdlet:

PS > Invoke-CimMethod -Class Win32_Process -Name Create -Arguments @{
 CommandLine = "notepad" }
(notepad starts)

ProcessId ReturnValue PSComputerName
--------- ----------- --------------
 5976 0 leeholmes1c23

Discussion
As with .NET types, WMI classes describe the functionality and features of a related
set of items. For example, the Win32_Process class describes the features and behav‐
ior of an entity called an operating system process. When WMI or CIM returns infor‐
mation about a specific operating system process, that is called an instance.

As with static methods on .NET types, many WMI and CIM classes offer methods
that relate broadly to the entity they try to represent. For example, the Win32_Process
class defines methods to start processes, stop them, and more. To invoke any of these
methods, call the Invoke-CimMethod cmdlet.

While you may already know the method you want to call, PowerShell also offers a
way to see the methods exposed by WMI and CIM classes on your system. Each
WMI class has a CimClassMethods collection, and reviewing that collection lists all
methods supported by that class. The following snippet lists all methods supported by
the Win32_Process class:

Get-CimClass Win32_Process | ForEach-Object CimClassMethods

Once you find a method you want to invoke, you can access the Parameters property
to see how to invoke the method:

PS > $methods = Get-CimClass Win32_Process | ForEach-Object CimClassMethods
PS > $methods | Where-Object Name -eq Create | ForEach-Object Parameters

Name CimType Qualifiers
---- ------- ----------
CommandLine String {ID, In, MappingStrings}
CurrentDirectory String {ID, In, MappingStrings}
ProcessStartupInformation Instance {EmbeddedInstance, ID, In, MappingStrings}
ProcessId UInt32 {ID, MappingStrings, Out}

718 | Chapter 28: CIM and Windows Management Instrumentation

In addition to the Invoke-CimMethod cmdlet, the [WmiClass] type shortcut also lets
you refer to a WMI class and invoke its methods:

$processClass = [WmiClass] "Win32_Process"
$processClass.Create("notepad.exe")

This method, however, does not easily support customization of impersonation,
authentication, or privilege restrictions.

For more information about working with WMI classes, see Recipe 28.1.

See Also
Recipe 28.1, “Access Windows Management Instrumentation and CIM Data”

Appendix G, WMI Reference

28.4 Program: Determine Properties Available to WMI
and CIM Filters
When you want to access a specific WMI or CIM instance with PowerShell, you
might at first struggle to determine what properties WMI or CIM lets you search on.
These properties are called key properties on the class. Example 28-1 gets all the prop‐
erties you can use in a WMI filter for a given class.

Example 28-1. Get-WmiClassKeyProperty.ps1

##
##
Get-WmiClassKeyProperty
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Get all of the properties that you may use in a WMI filter for a given class.

.EXAMPLE

PS > Get-WmiClassKeyProperty Win32_Process
Handle

#>

param(
 ## The WMI class to examine

28.4 Program: Determine Properties Available to WMI and CIM Filters | 719

 [WmiClass] $WmiClass
)

Set-StrictMode -Version 3

WMI classes have properties
foreach($currentProperty in $wmiClass.Properties)
{
 ## WMI properties have qualifiers to explain more about them
 foreach($qualifier in $currentProperty.Qualifiers)
 {
 ## If it has a 'Key' qualifier, then you may use it in a filter
 if($qualifier.Name -eq "Key")
 {
 $currentProperty.Name
 }
 }
}

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

28.5 Search for the WMI or CIM Class to Accomplish a Task
Problem
You want to find the WMI or CIM class that can help you accomplish a task.

Solution
Use the Get-CimClass cmdlet, using wildcards to filter for keywords of interest:

PS > Get-CimClass *restore* -namespace root/default

 NameSpace: ROOT/default

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
SystemRestoreConfig {} {DiskPercent, MyKey, RPGlobalInte...
SystemRestore CreateRestorePoint… {CreationTime, Description, Event...

Discussion
Along with WMI’s huge scope comes a related problem: finding the WMI or CIM
class that accomplishes your task. To help you learn what WMI classes are available,
Appendix G provides a helpful listing of the most common ones.

720 | Chapter 28: CIM and Windows Management Instrumentation

For the most part, though, you can use the Get-CimClass cmdlet to search for classes
that will help you accomplish a task. The Get-CimClass cmdlet searches within a spe‐
cific namespace for classes that match the wildcard you provide, defaulting to ROOT
\CIMV2 if you don’t specify a namespace.

PS > Get-CimClass *printer*

 NameSpace: ROOT/cimv2

CimClassName CimClassMethods CimClassProperties
------------ --------------- ------------------
CIM_Printer {SetPowerState, Res… {Caption, Description, InstallD…
Win32_Printer {SetPowerState, Res… {Caption, Description, InstallD…
Win32_PrinterDriver {StartService, Stop… {Caption, Description, InstallD…
Win32_TCPIPPrinterPort {} {Caption, Description, InstallD…
Win32_PrinterController {} {Antecedent, Dependent, Negotia…
Win32_PrinterDriverDll {} {Antecedent, Dependent}
Win32_PrinterShare {} {Antecedent, Dependent}
Win32_PrinterSetting {} {Element, Setting}
Win32_PrinterConfiguration {} {Caption, Description, SettingI…

Windows has many useful WMI namespaces with many useful classes—here’s a
sampling:

Count Name
----- ----
 1814 ROOT\WMI
 1337 ROOT\CIMV2
 495 ROOT\virtualization\v2
 408 ROOT\CIMV2\mdm\dmmap
 359 ROOT\StandardCimv2
 273 ROOT\HyperVCluster\v2
 269 ROOT\Microsoft\Windows\Storage\Providers_v2
 205 ROOT\Microsoft\Windows\Storage
 150 ROOT\ServiceModel
 104 ROOT\CIMV2\TerminalServices
 100 ROOT\PEH
 99 ROOT\Microsoft\Windows\DesiredStateConfiguration
 98 ROOT\Hardware
 98 ROOT\CIMV2\power
 95 ROOT\Microsoft\Windows\TaskScheduler
 93 ROOT\CIMV2\mdm
 90 ROOT\Microsoft\Windows\RemoteAccess\Client
 89 ROOT\Intel_ME
 85 ROOT\msdtc
 82 ROOT\Microsoft\Windows\SMB
 80 ROOT\aspnet
 79 ROOT\DEFAULT
 (...)

To find others, you can use the Get-WmiObject cmdlet in Windows PowerShell (not
PowerShell Core). For example, the command that generated the preceding list:

28.5 Search for the WMI or CIM Class to Accomplish a Task | 721

$allClasses = Get-WmiObject -List -Recurse -Namespace "ROOT"
$results = $allClasses | Group-Object { $_.Path.NamespacePath }
$results | Sort-Object -Descending count | Select-Object Count,Name

If you want to dig a little deeper, Example 28-2 lets you search for WMI classes by
name, description, property name, or property description. It relies on Get-
WmiObject, so you must run it in Windows PowerShell.

Example 28-2. Search-WmiNamespace.ps1

##
##
Search-WmiNamespace
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Search the WMI classes installed on the system for the provided match text.

.EXAMPLE

PS > Search-WmiNamespace Registry
Searches WMI for any classes or descriptions that mention "Registry"

.EXAMPLE

Search-WmiNamespace Process ClassName,PropertyName
Searchs WMI for any classes or properties that mention "Process"

.EXAMPLE

Search-WmiNamespace CPU -Detailed
Searches WMI for any class names, descriptions, or properties that mention
"CPU"

#>

param(
 ## The pattern to search for
 [Parameter(Mandatory = $true)]
 [string] $Pattern,

 ## Switch parameter to look for class names, descriptions, or properties
 [switch] $Detailed,

 ## Switch parameter to look for class names, descriptions, properties, and
 ## property description.
 [switch] $Full,

722 | Chapter 28: CIM and Windows Management Instrumentation

 ## Custom match options.
 ## Supports any or all of the following match options:
 ## ClassName, ClassDescription, PropertyName, PropertyDescription
 [string[]] $MatchOptions = ("ClassName","ClassDescription")
)

Set-StrictMode -Off

Helper function to create a new object that represents
a Wmi match from this script
function New-WmiMatch
{
 param($matchType, $className, $propertyName, $line)

 $wmiMatch = New-Object PsObject -Property @{
 MatchType = $matchType;
 ClassName = $className;
 PropertyName = $propertyName;
 Line = $line
 }

 $wmiMatch
}

If they've specified the -detailed or -full options, update
the match options to provide them an appropriate amount of detail
if($detailed)
{
 $matchOptions = "ClassName","ClassDescription","PropertyName"
}

if($full)
{
 $matchOptions =
 "ClassName","ClassDescription","PropertyName","PropertyDescription"
}

Verify that they specified only valid match options
foreach($matchOption in $matchOptions)
{
 $fullMatchOptions =
 "ClassName","ClassDescription","PropertyName","PropertyDescription"

 if($fullMatchOptions -notcontains $matchOption)
 {
 $error = "Cannot convert value {0} to a match option. " +
 "Specify one of the following values and try again. " +
 "The possible values are ""{1}""."
 $ofs = ", "
 throw ($error -f $matchOption, ([string] $fullMatchOptions))
 }
}

Go through all of the available classes on the computer
foreach($class in Get-WmiObject -List -Rec)

28.5 Search for the WMI or CIM Class to Accomplish a Task | 723

{
 ## Provide explicit get options, so that we get back descriptions
 ## as well
 $managementOptions = New-Object System.Management.ObjectGetOptions
 $managementOptions.UseAmendedQualifiers = $true
 $managementClass =
 New-Object Management.ManagementClass $class.Name,$managementOptions

 ## If they want us to match on class names, check if their text
 ## matches the class name
 if($matchOptions -contains "ClassName")
 {
 if($managementClass.Name -match $pattern)
 {
 New-WmiMatch "ClassName" `
 $managementClass.Name $null $managementClass.__PATH
 }
 }

 ## If they want us to match on class descriptions, check if their text
 ## matches the class description
 if($matchOptions -contains "ClassDescription")
 {
 $description =
 $managementClass.Qualifiers |
 foreach { if($_.Name -eq "Description") { $_.Value } }
 if($description -match $pattern)
 {
 New-WmiMatch "ClassDescription" `
 $managementClass.Name $null $description
 }
 }

 ## Go through the properties of the class
 foreach($property in $managementClass.Properties)
 {
 ## If they want us to match on property names, check if their text
 ## matches the property name
 if($matchOptions -contains "PropertyName")
 {
 if($property.Name -match $pattern)
 {
 New-WmiMatch "PropertyName" `
 $managementClass.Name $property.Name $property.Name
 }
 }

 ## If they want us to match on property descriptions, check if
 ## their text matches the property name
 if($matchOptions -contains "PropertyDescription")
 {
 $propertyDescription =
 $property.Qualifiers |
 foreach { if($_.Name -eq "Description") { $_.Value } }
 if($propertyDescription -match $pattern)
 {

724 | Chapter 28: CIM and Windows Management Instrumentation

 New-WmiMatch "PropertyDescription" `
 $managementClass.Name $property.Name $propertyDescription
 }
 }
 }
}

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Appendix G, WMI Reference

28.6 Use .NET to Perform Advanced WMI Tasks
Problem
You want to work with advanced features of WMI, but PowerShell’s access (through
the [Wmi], [WmiClass], and [WmiSearcher] accelerators) does not directly support
them.

Solution
To interact with advanced features of WMI objects, access their methods and
properties.

Advanced instance features

To get CIM instances related to a given instance (its associators), use the Get-
CimAssociatedInstance cmdlet:

Get-CimInstance Win32_Service -Filter "Name='winmgmt'" |
 Get-CimAssociatedInstance

When dealing with WMI, use the GetRelated() method:
$instance = [Wmi] 'Win32_Service.Name="winmgmt"'
$instance.GetRelated()

When dealing with WMI (as opposed to CIM cmdlets), connectivity options play a
major role in some scenarios. To change advanced scope options, access the
Scope.Options property:

$system = [WmiClass] 'Win32_OperatingSystem'
$system.Scope.Options.EnablePrivileges = $true
$system.SetDateTime($system.ConvertFromDateTime("01/01/2007"))

28.6 Use .NET to Perform Advanced WMI Tasks | 725

Advanced class features

To retrieve the properties and qualifiers of a class, access the CimClassProperties
property:

$class = Get-CimClass Win32_Process
$class.CimClassProperties

Advanced query feature
When dealing with the WMI, advanced query options play a major role in some sce‐
narios. To configure connection options on a query, such as Packet Privacy and
Authentication, set the options on the Scope property:

$credential = Get-Credential
$query = [WmiSearcher] "SELECT * FROM IISWebServerSetting"
$query.Scope.Path = "\\REMOTE_COMPUTER\Root\MicrosoftIISV2"
$query.Scope.Options.Username = $credential.Username
$query.Scope.Options.Password = $credential.GetNetworkCredential().Password
$query.Scope.Options.Authentication = "PacketPrivacy"
$query.get() | Select-Object AnonymousUserName

Discussion
The [Wmi], [WmiClass], and [WmiSearcher] type shortcuts return instances of .NET
System.Management.ManagementObject, System.Management.ManagementClass, and
System.Management.ManagementObjectSearcher classes, respectively.

As might be expected, the .NET Framework provides comprehensive support for
WMI queries, with PowerShell providing an easier-to-use interface to that support. If
you need to step outside the support offered directly by PowerShell, these classes in
the .NET Framework provide an advanced outlet.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

28.7 Convert a VBScript WMI Script to PowerShell
Problem
You want to perform a WMI or CIM task in PowerShell, but you can find only
VBScript examples that demonstrate the solution to the problem.

726 | Chapter 28: CIM and Windows Management Instrumentation

Solution
To accomplish the task of a script that retrieves data from a computer, use the Get-
CimInstance cmdlet:

foreach($printer in Get-CimInstance -Computer COMPUTER Win32_Printer)
{
 ## Work with the properties
 $printer.Name
}

To accomplish the task of a script that calls methods on an instance, use the [Wmi] or
[WmiSearcher] accelerators to retrieve the instances, and then call methods on the
instances like you would call any other PowerShell method.

$service = [WMI] 'Win32_Service.Name="winmgmt"'
$service.ChangeStartMode("Manual")
$service.ChangeStartMode("Automatic")

Additionally, you can use the Get-CimInstance and Invoke-CimMethod cmdlets to do
the same:

$service = Get-CimInstance Win32_Service -Filter "Name = 'winmgmt'"
$service | Invoke-CimMethod -Name ChangeStartMode -Arguments @{
 StartMode = "Manual" }
$service | Invoke-CimMethod -Name ChangeStartMode -Arguments @{
 StartMode = "Automatic" }

To accomplish the task of a script that calls methods on a class, use the Invoke-
CimMethod cmdlet, or use the [WmiClass] accelerator to retrieve the class, and then
call methods on the class like you would call any other PowerShell method:

Invoke-CimMethod -Class Win32_Process -Name Create -Arguments @{
 CommandLine = "notepad" }

$class = [WmiClass] "Win32_Process"
$class.Create("Notepad")

Discussion
For many years, VBScript has been the preferred language that administrators use to
access WMI data. Because of that, the vast majority of scripts available in books and
on the internet come written in VBScript.

These scripts usually take one of three forms: retrieving data and accessing proper‐
ties, calling methods of an instance, and calling methods of a class.

28.7 Convert a VBScript WMI Script to PowerShell | 727

Although most WMI scripts on the internet accomplish unique
tasks, PowerShell supports many of the traditional WMI tasks
natively. If you want to translate a WMI example to PowerShell,
first check that there aren’t any PowerShell cmdlets that might
accomplish the task directly.

Retrieving data
One of the most common uses of WMI is for data collection and system inventory
tasks. A typical VBScript that retrieves data looks like Example 28-3.

Example 28-3. Retrieving printer information from WMI using VBScript

strComputer = "."
Set objWMIService = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")

Set colInstalledPrinters = objWMIService.ExecQuery _
 ("Select * from Win32_Printer")

For Each objPrinter in colInstalledPrinters
 Wscript.Echo "Name: " & objPrinter.Name
 Wscript.Echo "Location: " & objPrinter.Location
 Wscript.Echo "Default: " & objPrinter.Default
Next

The first three lines prepare a WMI connection to a given computer and namespace.
The next two lines of code prepare a WMI query that requests all instances of a class.
The For Each block loops over all the instances, and the objPrinter.Property state‐
ments interact with properties on those instances.

In PowerShell, the Get-CimInstance cmdlet takes care of most of that by retrieving
all instances of a class from the computer and namespace that you specify. The first
five lines of code then become:

$installedPrinters = Get-CimInstance Win32_Printer -ComputerName computer

If you need to specify a different computer, namespace, or query restriction, the Get-
CimInstance cmdlets supports those through optional parameters.

In PowerShell, the For Each block becomes:
foreach($printer in $installedPrinters)
{
 $printer.Name
 $printer.Location
 $printer.Default
}

Notice that we spend the bulk of the PowerShell conversion of this script showing
how to access properties. If you don’t actually need to work with the properties (and

728 | Chapter 28: CIM and Windows Management Instrumentation

only want to display them for reporting purposes), PowerShell’s formatting com‐
mands simplify that even further:

Get-CimInstance Win32_Printer -ComputerName computer |
 Format-List Name,Location,Default

For more information about working with the Get-CimInstance cmdlet, see Recipe
28.1.

Calling methods on an instance
Although data retrieval scripts form the bulk of WMI management examples,
another common task is to call methods of an instance that invoke actions.

For example, Example 28-4 changes the startup type of a service.

Example 28-4. Changing the startup type of a service from WMI using VBScript

strComputer = "."
Set objWMIService = GetObject("winmgmts:" _
 & "{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")

Set colServiceList = objWMIService.ExecQuery _
 ("Select * from Win32_Service where StartMode = 'Manual'")

For Each objService in colServiceList
 errReturnCode = objService.ChangeStartMode("Disabled")
Next

The first three lines prepare a WMI connection to a given computer and namespace.
The next two lines of code prepare a WMI query that requests all instances of a class
and adds an additional filter (StartMode = 'Manual') to the query. The For Each
block loops over all the instances, and the objService.Change(…) statement calls the
Change() method on the service.

In PowerShell, the Get-CimInstance cmdlet takes care of most of the setup by
retrieving all instances of a class from the computer and namespace that you specify.
The first five lines of code then become:

$services = Get-CimInstance Win32_Service -Filter "StartMode = 'Manual'"

If you need to specify a different computer or namespace, the Get-CimInstance
cmdlet supports those through optional parameters.

In PowerShell, the For Each block becomes:
foreach($service in $services)
{
 $service | Invoke-CimMethod -Name ChangeStartMode -Arguments @{
 StartMode = "Manual" }
}

28.7 Convert a VBScript WMI Script to PowerShell | 729

For more information about working with the Get-CimInstance cmdlet, see Recipe
28.1.

Calling methods on a class
Although less common than calling methods on an instance, it’s sometimes helpful to
call methods on a WMI class. PowerShell makes this work almost exactly like calling
methods on an instance.

For example, a script that creates a process on a remote computer looks like this:
strComputer = "COMPUTER"
Set objWMIService = GetObject _
 ("winmgmts:\\" & strComputer & "\root\cimv2:Win32_Process")

objWMIService.Create("notepad.exe")

The first three lines prepare a WMI connection to a given computer and namespace.
The final line calls the Create() method on the class.

In PowerShell, the Invoke-CimMethod cmdlet lets you easily work with methods on a
class. The entire segment of code then becomes:

Invoke-CimMethod -Computername COMPUTER -Class Win32_Process -Name Create `
 -Arguments @{ CommandLine = "notepad" }

For more information about invoking methods on WMI classes, see Recipe 28.3.

See Also
Recipe 28.1, “Access Windows Management Instrumentation and CIM Data”

Recipe 28.3, “Invoke a Method on a WMI Instance or Class”

730 | Chapter 28: CIM and Windows Management Instrumentation

CHAPTER 29

Remoting

29.0 Introduction
PowerShell’s support for local and interactive computer automation makes it a very
attractive platform for computer management and administration. Its rich, object-
flavored perspective takes even the simplest of management tasks to the next level.

While PowerShell supports interaction with traditional remoting technologies (SSH,
FTP, Telnet, PsExec, and more), that support is fairly equivalent to that offered by any
other shell. Where PowerShell’s remote management really takes off is, unsurpris‐
ingly, through its unique object-based approach.

Of course, any feature that provides remote access to your systems should be viewed
with a cautious eye. Security is a natural concern with any technology that supports
network connections, and is something that PowerShell Remoting takes very seri‐
ously. In addition, ubiquitous support for remote headless management across your
entire enterprise is a core value that any sane server platform offers. How does Win‐
dows Server ensure that both hold true? As of PowerShell version 3, PowerShell
Remoting is enabled by default for most common remote management scenarios:

• On desktop machines (i.e., Windows 10 client), PowerShell does not listen to net‐
work connections by default and must be explicitly activated.

• On untrusted networks (i.e., a server that accepts connections from the internet),
PowerShell listens only to network connections that originate from that same
subnet. Machines on the same subnet are generally connected to the same physi‐
cal network.

• On trusted networks (i.e., a domain or network interface explicitly marked as
trusted), PowerShell listens to network connections by default.

731

With these protections in place, PowerShell Remoting offers a robust, reliable, and
secure way to remotely manage your machines.

Starting with standard interactive remoting, PowerShell lets you easily connect to a
remote system and work with it one to one:

PS > Enter-PSSession Lee-Desk
[Lee-Desk]: PS > Get-Process -n PowerShell

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id Process PSComputer
 Name Name
------- ------ ----- ----- ----- ------ -- --------- ---------
 628 17 39084 58908 214 4.26 7540 powers... lee-des...

If you want to import the commands from that remote system (but still have them
run on the remote system), implicit remoting often lets you forget you are managing a
remote system altogether. Expanding on interactive and implicit remoting, large-scale
fan-out remoting is a natural next step. Fan-out remoting lets you manage many
computers at a time in a bulk, command-based approach:

PS > Invoke-Command Lee-Desk,Lee-Desk { Get-Process -n PowerShell } -Cred Lee

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id Process PSComputer
 Name Name
------- ------ ----- ----- ----- ------ -- --------- ---------
 628 17 39084 58908 214 4.26 7540 powers... lee-des...
 628 17 39084 58908 214 4.26 7540 powers... lee-des...

As with the rest of PowerShell, fan-out remoting offers a unique, object-focused
treatment that elevates its experience past plain-text-based approaches.

29.1 Find Commands That Support Their Own Remoting
Problem
You want to find commands that let you access remote computers but that don’t
require PowerShell Remoting.

Solution
Use the -ParameterName parameter of the Get-Command cmdlet to find all commands
that expose a -ComputerName parameter:

PS > Get-Command -CommandType Cmdlet -ParameterName ComputerName

CommandType Name Definition
----------- ---- ----------
Cmdlet Clear-EventLog Clear-EventLog [-LogName]...
Cmdlet Connect-WSMan Connect-WSMan [[-Computer...
Cmdlet Disconnect-WSMan Disconnect-WSMan [[-Compu...
Cmdlet Enter-PSSession Enter-PSSession [-Compute...

732 | Chapter 29: Remoting

Cmdlet Get-Counter Get-Counter [[-Counter] <...
Cmdlet Get-EventLog Get-EventLog [-LogName] <...
Cmdlet Get-HotFix Get-HotFix [[-Id] <String...
Cmdlet Get-Process Get-Process [[-Name] <Str...
(...)

Discussion
While PowerShell Remoting offers great power and consistency, sometimes you
might need to invoke a command against a system that does not have PowerShell
installed. A simple Remote Desktop session is a common approach, but PowerShell
still offers plenty of remote management options that work independently of its core
remoting support.

Each command shown by the output of Get-Command that exposes a -ComputerName
parameter does so using its own built-in remoting technology. The CIM cmdlets use
a CIM-specific form of Web Services for Management (WSMAN)-based remoting.
The WSMan cmdlets use SOAP-based remoting. Many of the other cmdlets offer
Remote Procedure Call (RPC)-based remoting.

By building on their own existing remoting protocols, these commands integrate
easily with environments that have already enabled WMI or event log management,
for example. Since these protocols are designed to handle only their specific technol‐
ogy, often they can offer performance benefits as well.

Despite their benefits, commands that offer a -ComputerName parameter can’t replace
a generalized remoting technology for most purposes. Since each command builds on
its own protocol, using that command means managing firewall rules, services, and
more. Command-based remoting generally offers limited functionality as well, and
something as simple as alternate credentials is rarely supported.

For more information about enabling PowerShell Remoting, see Recipe 29.2.

See Also
Recipe 29.2

29.2 Enable PowerShell Remoting on a Computer
Problem
You want to allow remote management of a computer via PowerShell Remoting.

Solution
Use the Enable-PSRemoting cmdlet to enable PowerShell Remoting:

29.2 Enable PowerShell Remoting on a Computer | 733

PS > Enable-PSRemoting

WinRM Quick Configuration
Running command "Set-WSManQuickConfig" to enable this machine for remote
management through WinRM service.
 This includes:
 1. Starting or restarting (if already started) the WinRM service
 2. Setting the WinRM service type to autostart
 3. Creating a listener to accept requests on any IP address
 4. Enabling firewall exception for WS-Management traffic (for http only).

Do you want to continue?
[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help
(default is "Y"): Y

WinRM has been updated to receive requests.
WinRM service type changed successfully.
WinRM service started.
Configured LocalAccountTokenFilterPolicy to grant administrative rights
remotely to local users.

WinRM has been updated for remote management.
Created a WinRM listener on HTTP://* to accept WS-Man requests to any IP on
this machine.
WinRM firewall exception enabled.

Discussion
As mentioned in this chapter’s introduction, PowerShell enables remoting by default
for typical management scenarios: servers within a trusted or domain network and
within the local subnet. On client machines or untrusted networks, PowerShell does
not listen to network connections by default and it must be explicitly enabled.

PowerShell Remoting does not require any specific configuration to let you connect
to a remote computer, but it does require a configuration step to allow connections
from remote computers.

Enable remoting on a single local machine
Once you’ve decided to enable remoting, PowerShell makes this a snap (after inform‐
ing you of the impact). Simply call Enable-PSRemoting from an elevated shell. The
solution demonstrates this approach. To bypass any user prompts or confirmation,
also specify the -Force flag.

By default, Enable-PSRemoting is blocked on networks identified as public networks.
If you generally trust the network you’re connected to, use the Set-

NetConnectionProfile cmdlet to change the network profile to private:
Set-NetConnectionProfile -NetworkCategory Private

734 | Chapter 29: Remoting

If you don’t generally trust the network you’re connected to but want to enable Pow‐
erShell Remoting, use the -SkipNetworkProfileCheck parameter.

As part of the Enable-PSRemoting process, PowerShell connects to the local WS-
Management service to create and configure the PowerShell Remoting endpoint. This
is done through a local network connection, so it’s impacted by the Windows restric‐
tions on network connections. For example, Windows does not allow network con‐
nections to any account that has a blank password. If your administrator account has
a blank password, PowerShell will be unable to properly create and configure the
WSMan endpoint.

Enable remoting on a remote machine
Remotely enabling PowerShell Remoting offers many unique challenges. Although
you can certainly use Remote Desktop to connect to the system (and then essentially
enable it locally), Remote Desktop does not lend itself to automation.

Instead, you can leverage another remoting technology that does lend itself to auto‐
mation: Windows Management Instrumentation (WMI). WMI is enabled on most
domain machines, but it offers only a minor facility for remote command execution:
the Create() method of the Win32_Process WMI class. For more information about
this approach, see Recipe 29.7.

Enable remoting in an enterprise
If you want to enable PowerShell Remoting in an enterprise, Group Policy is the most
flexible and scalable option. Through Group Policy settings, you can enable auto‐
matic configuration of WinRM endpoints and firewall rules. For more information
about this approach, type Get-Help about_remote_troubleshooting.

See Also
Recipe 29.7, “Program: Remotely Enable PowerShell Remoting”

29.3 Enable SSH as a PowerShell Remoting Transport
Problem
You want to use PowerShell Remoting to connect to remote Linux and macOS
machines.

29.3 Enable SSH as a PowerShell Remoting Transport | 735

Solution
Edit /etc/ssh/sshd_config (Linux) or /private/etc/ssh/sshd_config (macOS)
on the machine you want to connect to and configure /usr/bin/pwsh (Linux)
or /usr/local/bin/pwsh (macOS) as an SSH subsystem:

(...)
Subsystem sftp /usr/lib/openssh/sftp-server
Subsystem powershell /usr/bin/pwsh -sshs -NoLogo

Then restart sshd:
sudo service ssh restart

Discussion
As we’ve discussed throughout this chapter, PowerShell Remoting is an incredibly
versatile technology. It forms the rich communication channel for parallel script
blocks, thread jobs, background jobs, cross-process debugging, remote debugging,
Hyper-V console remoting, Container connections, and of course both interactive
and fan-out remoting for Windows computers.

In addition to all of these options, you can also configure PowerShell to use SSH as a
transport mechanism for PowerShell Remoting connections. If you’ve installed Pow‐
erShell Core on a remote machine, you can simply edit that machine’s SSH configura‐
tion to enable PowerShell as a recognized subsystem. After you’ve done that, interact‐
ing with a Linux or macOS system provides powerful and rich object-based manage‐
ment functionality that SSH itself could never have offered:

PS > $s = New-PSSession 172.27.124.129 -SSHTransport
lee@172.27.124.129's password: ***************************
PS > Invoke-Command $s { $PSVersionTable } -OutVariable versionTable

Name Value
---- -----
PSCompatibleVersions {1.0, 2.0, 3.0, 4.0…}
GitCommitId 7.1.0
Platform Unix
WSManStackVersion 3.0
PSVersion 7.1.0
SerializationVersion 1.1.0.1
PSEdition Core
OS Linux 5.4.0-48-generic #52-Ubuntu SMP
PSRemotingProtocolVersion 2.3

PS > $versionTable.OS
Linux 5.4.0-48-generic #52-Ubuntu SMP Thu Sep 10 10:58:49 UTC 2020

See Also
Recipe 1.1, “Install PowerShell Core”

736 | Chapter 29: Remoting

29.4 Interactively Manage a Remote Computer
Problem
You want to interactively work with a remote computer as though it were a local Pow‐
erShell session.

Solution
Use the Enter-PSSession cmdlet to connect to a remote session and manage it
interactively:

PS > Enter-PSSession Lee-Desk
[lee-desk]: PS E:\Lee> Get-Process -Name PowerShell

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 2834 14 85500 86256 218 ...22.83 8396 powershell
 421 12 39220 54204 189 7.41 9708 powershell

[lee-desk]: PS E:\Lee> exit
PS >

If your current account doesn’t have access to the remote computer, you can use the -
Credential parameter to supply alternate credentials:

PS > $cred = Get-Credential LEE-DESK\Lee
PS > Enter-PSSession Lee-Desk -Cred $cred

Discussion
Like many traditional shells, PowerShell Remoting offers a simple, direct, interactive
management experience known simply as interactive remoting. You can use interac‐
tive remoting with remote computers, Hyper-V virtual machines, containers, and
even Linux and macOS machines over SSH.

Just as in your local PowerShell sessions, you type commands and see their output.
This remote PowerShell is just as powerful as your local one; all of the filtering, pipe‐
lining, and integrated language features continue to work.

Two aspects make an interactive remote session different from a local one, however.

The first thing to note is that your remote PowerShell sessions have no associated
desktop or graphical user interface. PowerShell will launch Notepad if you ask it to,
but the UI won’t be displayed to anybody.

29.4 Interactively Manage a Remote Computer | 737

When you use your normal technique (i.e., PS > notepad.exe) to
launch an application in interactive remoting, PowerShell waits for
it to close before returning control to you. This ends up blocking
your session, so press Ctrl+C to regain control of your session. If
you want to launch a graphical application, use either the Start-
Process cmdlet or command-based remoting.

Also, if you launch a program (such as edit.com or ftp.exe’s interactive mode) that
directly interacts with the console window for its UI, this program won’t work as
expected. Some applications (such as ftp.exe’s interactive mode) detect that they have
no console window available and simply exit. Others (such as edit.com) hang and
cause PowerShell’s interactive remoting to become unresponsive as well. To break free
from misbehaving applications like this, press Ctrl+C.

The second aspect to interactive remoting is shared by all Windows network technol‐
ogies that work without explicit credentials: the double-hop problem. Once you’ve
connected to a computer remotely, Windows gives you full access to all local resour‐
ces as though you were logged into the computer directly. When it comes to network
resources, however, Windows prevents your user information from being automati‐
cally used on another computer. This typically shows up when you’re trying to access
either restricted network shares from a remoting system or intranet websites that
require implicit authentication. For information about how to launch a remoting ses‐
sion that supports this type of credential forwarding, see Recipe 29.15.

In addition to supplying a computer name to the Enter-PSSession cmdlet, you can
also use the New-PSSession cmdlet to connect to a computer. After connecting, you
can enter and exit that session at will:

PS > $session = New-PSSession Lee-Desk -Cred $cred
PS > Get-PSSession

 Id Name ComputerName State ConfigurationName Availability
 -- ---- ------------ ----- ----------------- ------------
 1 Session1 lee-desk Opened Microsoft.PowerShell Available

PS > Enter-PSSession $session
[lee-desk]: PS E:\Lee> Start-Process calc
[lee-desk]: PS E:\Lee> Get-Process -n calc

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 64 5 4172 7272 44 0.06 7148 calc

[lee-desk]: PS E:\Lee> exit
PS > Get-Process -n calc
Get-Process : Cannot find a process with the name "calc". Verify the process
name and call the cmdlet again.

738 | Chapter 29: Remoting

PS > Enter-PSSession $session
[lee-desk]: PS E:\Lee> Get-Process -n calc

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 64 5 4172 7272 44 0.06 7148 calc

[lee-desk]: PS E:\Lee>

After creating a session, you can even combine interactive remoting with bulk,
command-based fan-out remoting. For more information about command-based
remoting, see Recipe 29.5.

If you’re experimenting with PowerShell Remoting on a home
machine that you use your Microsoft Account to log in, you’ll also
need to specify the -EnableNetworkAccess parameter when you
create PowerShell Remoting sessions. Otherwise, you may get an
error message similar to:

Connecting to remote server localhost failed with the
following error message : WinRM cannot process the
request. The following error with errorcode 0x8009030e
occurred while using Negotiate authentication: A
specified logon session does not exist. It may already
have been terminated.

When working with a PowerShell session, you may have commands that require
access to network resources such as file shares. If this is a requirement for a session
you’re creating on the local machine, you can use the -EnableNetworkAccess param‐
eter of the different PowerShell Remoting cmdlets. If this is a session you’re creating
on another machine, you’ll need to use the CredSSP authentication mechanism. For
more information on enabling and using CredSSP, see Recipe 29.15.

See Also
Recipe 29.5, “Invoke a Command on a Remote Computer”

Recipe 29.15, “Create Sessions with Full Network Access”

29.4 Interactively Manage a Remote Computer | 739

29.5 Invoke a Command on a Remote Computer
Problem
You want to invoke a command on one or many remote computer(s).

Solution
Use the Invoke-Command cmdlet:

PS > Invoke-Command -Computer Lee-Desk,LEEHOLMES1C23 -Command { Get-PsDrive } |
 Format-Table Name,Used,Free,PSComputerName -Auto
Name Used Free PSComputerName
---- ---- ---- --------------
Alias lee-desk
C 44830642176 105206947840 lee-desk
E 37626998784 61987717120 lee-desk
F 126526734336 37394722816 lee-desk
G 93445226496 6986330112 lee-desk
H 1703936 0 lee-desk
I 349184 18099200 lee-desk
J 40442880 0 lee-desk
C 24018575360 10339061760 leeholmes1c23
D 0 leeholmes1c23
(...)

If your current account doesn’t have access to the remote computer, you can use the -
Credential parameter to supply alternate credentials:

PS > $cred = Get-Credential LEE-DESK\Lee
PS > Invoke-Command Lee-Desk { Get-Process } -Cred $cred

Discussion
As shown in Recipe 29.4, PowerShell offers simple interactive remoting to handle sit‐
uations when you want to quickly explore or manage a single remote system. For
many scenarios, though, one-to-one interactive remoting is not realistic. Simple auto‐
mation (which by definition is noninteractive) is the most basic example, but another
key point is large-scale automation.

Running a command (or set of commands) against a large number of machines has
always been a challenging task. To address both one-to-one automation as well as
large-scale automation, PowerShell supports fan-out remoting: a command-based,
batch-oriented approach to system management.

740 | Chapter 29: Remoting

In addition to supporting connections to remote computers,
PowerShell also supports Virtual machines, Containers, and SSH.

Fan-out remoting integrates all of the core features you’ve come to expect from your
local PowerShell experience: richly structured output, consistency, and most of all,
reach. While a good number of PowerShell cmdlets support their own native form of
remoting, PowerShell’s support provides it to every command—cmdlets as well as
console applications.

When you call the Invoke-Command cmdlet simply with a computer name and script
block, PowerShell automatically connects to that machine, invokes the command,
and returns the results:

PS > $result = Invoke-Command leeholmes1c23 { Get-PSDrive }
PS > $result | Format-Table Name,Used,Free,Root,PSComputerName -Auto

Name Used Free Root PSComputerName
---- ---- ---- ---- --------------
A 0 A:\ leeholmes1c23
Alias leeholmes1c23
C 24018575360 10339061760 C:\ leeholmes1c23
cert \ leeholmes1c23
D 0 D:\ leeholmes1c23
Env leeholmes1c23
Function leeholmes1c23
HKCU HKEY_CURRENT_USER leeholmes1c23
HKLM HKEY_LOCAL_MACHINE leeholmes1c23
Variable leeholmes1c23
WSMan leeholmes1c23

So far, this remoting experience looks similar to many other technologies. Notice the
PSComputerName property, though. PowerShell automatically adds this property to all
of your results, which lets you easily work with the output of multiple computers at
once. We get to see PowerShell’s unique remoting treatment once we start working
with results. For example:

PS > $result | Sort-Object Name | Where { $_.Root -like "**" }

Name Used (GB) Free (GB) Provider Root
---- --------- --------- -------- ----
A A:\
C 22.37 9.63 C:\
cert \
D D:\

PS > $result[2].Used
24018575360

29.5 Invoke a Command on a Remote Computer | 741

PS > $result[2].Used * 4
96074301440

Rather than transport plain text like other remoting technologies, PowerShell trans‐
ports data in a way that preserves a great deal of information about the original com‐
mand output. Before sending objects to you, PowerShell serializes them into a format
that can be moved across the network. This format retains the following “primitive”
types, and converts all others to their string representation:

Byte UInt16 TimeSpan SecureString

SByte UInt32 DateTime Boolean

Byte[] UInt64 ProgressRecord Guid

Int16 Decimal Char Uri

Int32 Single String Version

Perhaps most importantly, serialization removes all methods from
non-primitive objects. By converting these objects to what are
called property bags, your scripts can depend on an interface that
won’t change between PowerShell releases, .NET releases, or oper‐
ating system releases.

When the objects reach your computer, PowerShell rehydrates them. During this pro‐
cess, it creates objects that have their original structure and repopulates the proper‐
ties. Any properties that were primitive types will again be fully functional: integer
properties can be sorted and computed, XML documents can be navigated, and more.

When PowerShell reassembles an object, it prepends Deserialized to its type name.
When PowerShell displays a deserialized object, it will use any formatting definitions
that apply to the full-fidelity object:

PS > $result[2] | Get-Member

 TypeName: Deserialized.System.Management.Automation.PSDriveInfo

Name MemberType Definition
---- ---------- ----------
ToString Method string ToString(), string ToString(stri...
Free NoteProperty System.UInt64 Free=10339061760
PSComputerName NoteProperty System.String PSComputerName=leeholmes1c23
PSShowComputerName NoteProperty System.Boolean PSShowComputerName=True
RunspaceId NoteProperty System.Guid RunspaceId=33f45afd-2381-44...
Used NoteProperty System.UInt64 Used=24018575360
Credential Property Deserialized.System.Management.Automati...
CurrentLocation Property System.String {get;set;}
Description Property System.String {get;set;}
Name Property System.String {get;set;}
Provider Property System.String {get;set;}
Root Property System.String {get;set;}

742 | Chapter 29: Remoting

In addition to supplying a computer name to the Invoke-Command cmdlet, you can
also use the New-PSSession cmdlet to connect to a computer. After connecting, you
can invoke commands in that session at will:

PS > $session = New-PSSession leeholmes1c23 -Cred $cred
PS > Get-PSSession

 Id Name ComputerName State ConfigurationName Availability
 -- ---- ------------ ----- ----------------- ------------
 1 Session1 leeholmes1c23 Opened Microsoft.PowerShell Available

PS > Invoke-Command -Session $session { Get-Process -Name PowerShell }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id Process PSCompu
 Name terName
------- ------ ----- ----- ----- ------ -- -------- -------
 716 12 48176 65060 201 23.31 4684 power... leeh...

After creating a session, you can even combine commands with interactive remoting,
as shown in Recipe 29.4.

If network interruptions cause an interruption in your session,
PowerShell tries to automatically disconnect your session so that
you can reconnect to it when you again have network availability.
For more information, see Recipe 29.6.

Using these techniques, you can easily scale your automation across many, many
machines. For more information about this technique, see Recipe 29.19.

One of the primary challenges you’ll run into with fan-out remoting is shared by all
of the Windows network technologies that work without explicit credentials: the
double-hop problem. Once you’ve connected to a computer remotely, Windows gives
you full access to all local resources as though you were logged into the computer
directly. When it comes to network resources, however, Windows prevents your user
information from being automatically used on another computer. This typically
shows up when you try to access restricted network shares from a remoting system or
intranet websites that require implicit authentication. For information about how to
launch a remoting session that supports this type of credential forwarding, see Recipe
29.15.

See Also
Recipe 29.4, “Interactively Manage a Remote Computer”

Recipe 29.15, “Create Sessions with Full Network Access”

Recipe 29.19, “Invoke a Command on Many Computers”

29.5 Invoke a Command on a Remote Computer | 743

29.6 Disconnect and Reconnect PowerShell Sessions
Problem
You have an active PowerShell session and want to disconnect from it or reconnect to
it.

Solution
If you have an active PowerShell session, use the Disconnect-PSSession cmdlet to
disconnect from it. Use the Connect-PSSession to reconnect at a later time:

PS > $s = New-PSSession RemoteComputer -Name ConnectTest
PS > Invoke-Command $s { $saved = "Hello World" }
PS > Disconnect-PSSession $s

 Id Name ComputerName State ConfigurationName
 -- ---- ------------ ----- -----------------
 7 ConnectTest RemoteComputer Disconnected Microsoft.PowerShell

From potentially another shell or computer
PS > $s2 = Get-PSSession -ComputerName RemoteComputer -Name ConnectTest
PS > Connect-PSSession $s2

 Id Name ComputerName State ConfigurationName
 -- ---- ------------ ----- -----------------
 7 ConnectTest RemoteComputer Disconnected Microsoft.PowerShell

PS > Invoke-Command $s2 { $saved }
Hello World

Discussion
With many remote management technologies, a common problem is that closing
your local instance automatically closes any remote shells you’re connected to. If your
remote shell had valuable information in it or was running jobs, this information was
lost.

To resolve this issue, PowerShell supports the Disconnect-PSSession and Connect-
PSSession cmdlets. These let you disconnect and connect to remote sessions,
respectively.

When you want to discover disconnected sessions on a remote computer, use the
-ComputerName parameter of the Get-PSSession cmdlet to retrieve them.

In addition to disconnecting specific sessions, you can invoke a long-running com‐
mand on a computer and immediately disconnect from it. For this purpose, the
Invoke-Command cmdlet offers the -InDisconnectedSession parameter:

744 | Chapter 29: Remoting

PS > Invoke-Command RemoteComputer {
 1..10 | % { Start-Sleep -Seconds 10; $_ } } -InDisconnectedSession

 Id Name ComputerName State ConfigurationName
 -- ---- ------------ ----- -----------------
 3 Session2 RemoteComputer Disconnected Microsoft.PowerShell

PS > $s = Get-PSSession -Computername RemoteComputer -Name Session2

PS > Connect-PSSession $s

 Id Name ComputerName State ConfigurationName
 -- ---- ------------ ----- -----------------
 3 Session2 RemoteComputer Opened Microsoft.PowerShell

PS > Receive-PSSession $s
1
2
3
(...)

When you use the -InDisconnectedSession parameter, the command you run is
likely to generate output. If it generates more than a megabyte of output while dis‐
connected, PowerShell pauses your command until you connect and call the
Receive-PSSession command to retrieve it. When calculating this megabyte of out‐
put, PowerShell considers only output that would normally have been sent directly to
the connected client—output that you would typically see on your screen. Output
stored in variables doesn’t count toward this limit, nor does output that you redirect
to files.

If you’d like PowerShell to keep running your command no matter how much output
it generates, you can use the OutputBufferingMode property of the -SessionOption
parameter:

Invoke-Command RemoteComputer {
 ... commands ...
} -InDisconnectedSession -SessionOption @{ OutputBufferingMode = "Drop" }

When you specify Drop as the OutputBufferingMode, PowerShell retains only the last
megabyte of output.

See Also
Recipe 29.4, “Interactively Manage a Remote Computer”

Recipe 29.5, “Invoke a Command on a Remote Computer”

29.6 Disconnect and Reconnect PowerShell Sessions | 745

29.7 Program: Remotely Enable PowerShell Remoting
Although not required for Windows Server by default, you may sometimes need to
remotely enable PowerShell Remoting. Unfortunately, most machines are not config‐
ured to support remote task management. Most are, however, configured to support
WMI connections. As a bootstrapping step, we can use the Create() method of the
Win32_Process class to launch an instance of PowerShell, and then provide Power‐
Shell with the commands to enable PowerShell Remoting.

The script shown in Example 29-1 automates this cumbersome process.

Example 29-1. Enable-RemotePSRemoting.ps1

##
##
Enable-RemotePsRemoting
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Enables PowerShell Remoting on a remote computer. Requires that the machine
responds to WMI requests, and that its operating system is Windows Vista or
later.

.EXAMPLE

PS > Enable-RemotePsRemoting <Computer>

#>

param(
 ## The computer on which to enable remoting
 $Computername,

 [Switch] $SkipNetworkProfileCheck,

 ## The credential to use when connecting
 [PSCredential] $Credential
)

Set-StrictMode -Version 3

$VerbosePreference = "Continue"

Write-Verbose "Configuring $computername"
$skipNetworkProfileCheckFlag = '$' + $SkipNetworkProfileCheck.IsPresent

746 | Chapter 29: Remoting

$command = "powershell -NoProfile -Command" +
 "Enable-PSRemoting -SkipNetworkProfileCheck:$skipNetworkProfileCheckFlag -Force"

if($Credential)
{
 $null = Invoke-WmiMethod -Computer $computername -Credential $credential `
 Win32_Process Create -Args $command

 Start-Sleep -Seconds 10

 Write-Verbose "Testing connection"
 Invoke-Command $computername {
 Get-WmiObject Win32_ComputerSystem } -Credential $credential
}
else {
 $null = Invoke-WmiMethod -Computer $computername Win32_Process Create -Args $command
 Start-Sleep -Seconds 10

 Write-Verbose "Testing connection"
 Invoke-Command $computername { Get-WmiObject Win32_ComputerSystem }
}

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 28.1, “Access Windows Management Instrumentation and CIM Data”

Recipe 29.2, “Enable PowerShell Remoting on a Computer”

29.8 Program: Invoke a PowerShell Expression on a
Remote Machine
PowerShell includes fantastic support for command execution on remote machines
through its PowerShell Remoting features. These require only that the remote system
have PowerShell available and have Remoting enabled.

If PowerShell Remoting is not available on a remote machine, many commands sup‐
port their own remoting over WMI or DCOM. These do not require PowerShell
Remoting to be configured on the remote system, but do require the specific protocol
(WMI or DCOM) to be enabled.

If none of these prerequisites is possible, Example 29-3 offers an alternative. It uses
PsExec to support the actual remote command execution.

This script offers more power than just remote command execution, however. As
Example 29-2 demonstrates, it leverages PowerShell’s capability to import and export
strongly structured data, so you can work with the command output using many of

29.8 Program: Invoke a PowerShell Expression on a Remote Machine | 747

https://oreil.ly/QVeM9

the same techniques you use to work with command output on the local system. It
demonstrates this power by filtering command output on the remote system but sort‐
ing it on the local system.

Example 29-2. Invoking a PowerShell expression on a remote machine

PS > $command = { Get-Process | Where-Object { $_.Handles -gt 1000 } }
PS > Invoke-RemoteExpression \\LEE-DESK $command | Sort-Object Handles
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 1025 8 3780 3772 32 134.42 848 csrss
 1306 37 50364 64160 322 409.23 4012 OUTLOOK
 1813 39 54764 36360 321 340.45 1452 iTunes
 2316 273 29168 41164 218 134.09 1244 svchost

Since this strongly structured data comes from objects on another system, PowerShell
doesn’t regenerate the functionality of those objects (except in rare cases). For more
information about importing and exporting structured data, see Recipe 10.5.

Example 29-3. Invoke-RemoteExpression.ps1

##
##
Invoke-RemoteExpression
##
From PowerShell Cookbook (O'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##
##

<#

.SYNOPSIS

Invoke a PowerShell expression on a remote machine. Requires PsExec from
http://live.sysinternals.com/tools/psexec.exe. If the remote machine
supports PowerShell Remoting, use that instead!

.EXAMPLE

PS > Invoke-RemoteExpression LEE-DESK { Get-Process }
Retrieves the output of a simple command from a remote machine

.EXAMPLE

PS > (Invoke-RemoteExpression LEE-DESK { Get-Date }).AddDays(1)
Invokes a command on a remote machine. Since the command returns one of
PowerShell's primitive types (a DateTime object,) you can manipulate
its output as an object afterward.

.EXAMPLE

748 | Chapter 29: Remoting

PS > Invoke-RemoteExpression LEE-DESK { Get-Process } | Sort Handles
Invokes a command on a remote machine. The command does not return one of
PowerShell's primitive types, but you can still use PowerShell's filtering
cmdlets to work with its structured output.

#>

param(
 ## The computer on which to invoke the command.
 $ComputerName = "$ENV:ComputerName",

 ## The scriptblock to invoke on the remote machine.
 [Parameter(Mandatory = $true)]
 [ScriptBlock] $ScriptBlock,

 ## The username / password to use in the connection
 $Credential,

 ## Determines if PowerShell should load the user's PowerShell profile
 ## when invoking the command.
 [switch] $NoProfile
)

Set-StrictMode -Version 3

Prepare the computername for PSExec
if($ComputerName -notmatch '^\\')
{
 $ComputerName = "\\$ComputerName"
}

Prepare the command line for PsExec. We use the XML output encoding so
that PowerShell can convert the output back into structured objects.
PowerShell expects that you pass it some input when being run by PsExec
this way, so the 'echo .' statement satisfies that appetite.
$commandLine = "echo . | powershell -Output XML "

if($noProfile)
{
 $commandLine += "-NoProfile "
}

Convert the command into an encoded command for PowerShell
$commandBytes = [System.Text.Encoding]::Unicode.GetBytes($scriptblock)
$encodedCommand = [Convert]::ToBase64String($commandBytes)
$commandLine += "-EncodedCommand $encodedCommand"

Collect the output and error output
$errorOutput = [IO.Path]::GetTempFileName()

if($Credential)
{
 ## This lets users pass either a username, or full credential to our
 ## credential parameter
 $credential = Get-Credential $credential
 $networkCredential = $credential.GetNetworkCredential()

29.8 Program: Invoke a PowerShell Expression on a Remote Machine | 749

 $username = $networkCredential.Username
 $password = $networkCredential.Password

 $output = psexec $computername /user $username /password $password `
 /accepteula cmd /c $commandLine 2>$errorOutput
}
else
{
 $output = psexec /acceptEula $computername cmd /c $commandLine 2>$errorOutput
}

Check for any errors
$errorContent = Get-Content $errorOutput
Remove-Item $errorOutput

if($lastExitCode -ne 0)
{
 $OFS = "`n"
 $errorMessage = "Could not execute remote expression. "
 $errorMessage += "Ensure that your account has administrative " +
 "privileges on the target machine.`n"
 $errorMessage += ($errorContent -match "psexec.exe :")

 Write-Error $errorMessage
}

Return the output to the user
$output

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 10.5, “Easily Import and Export Your Structured Data”

Recipe 29.1, “Find Commands That Support Their Own Remoting”

29.9 Test Connectivity Between Two Computers
Problem
You want to determine the network availability of a computer or between two
computers.

Solution
Use the Test-Connection cmdlet to perform a traditional network ping:

750 | Chapter 29: Remoting

PS > Test-Connection leeholmes.com

Source Destination IPV4Address IPV6Address
------ ----------- ----------- -----------
LEE-DESK leeholmes.com 66.186.25.131 {}
LEE-DESK leeholmes.com 66.186.25.131 {}
LEE-DESK leeholmes.com 66.186.25.131 {}
LEE-DESK leeholmes.com 66.186.25.131 {}

Alternatively, the ping.exe utility continues to work:
PS > ping leeholmes.com

Pinging leeholmes.com [66.186.25.131] with 32 bytes of data:
Reply from 66.186.25.131: bytes=32 time=38ms TTL=115
Reply from 66.186.25.131: bytes=32 time=36ms TTL=115
Reply from 66.186.25.131: bytes=32 time=37ms TTL=115
Reply from 66.186.25.131: bytes=32 time=41ms TTL=115

Ping statistics for 66.186.25.131:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 36ms, Maximum = 41ms, Average = 38ms

Discussion
As a command-line shell, PowerShell of course continues to support traditional
command-line utilities. One of the most common network diagnostic tools is
ping.exe, and it works as expected from PowerShell.

The Test-Connection cmdlet offers the same features as ping.exe plus a great deal of
additional functionality. Most ping utilities let you verify the connection between the
current computer and a target computer, but the Test-Connection cmdlet lets you
also specify the source computer for the network test.

Perhaps the main benefit of the Test-Connection cmdlet is its object-based output—
making filtering, sorting, and analysis immensely easier. For example, a simple script
to monitor the average response time of a cluster of domains:

$topTen = "google.com","facebook.com","youtube.com","yahoo.com",
 "live.com","wikipedia.org","blogger.com","baidu.com","msn.com",
 "qq.com"

Test all of the connections, grouping by destination
$results = Test-Connection $topTen -ErrorAction SilentlyContinue |
 Group Destination

Go through each of the addresses
$averages = foreach($group in $results)
{
 ## Figure out the average response time
 $averageResponse = $group.Group |
 Measure-Object -Average Latency | Select -Expand Average

29.9 Test Connectivity Between Two Computers | 751

 ## Create a new custom object to output the Address and ResponseTime
 [PSCustomObject] @{
 Address = $group.Name;
 ResponseTime = $averageResponse
 }
}

Output the results
$averages | Sort-Object ResponseTime | Select Address,ResponseTime

That script gives the following output:
Destination ResponseTime
----------- ------------
google.com 22
blogger.com 22.5
facebook.com 35.25
yahoo.com 37.5
youtube.com 86.25
wikipedia.org 99
baidu.com 203.25
qq.com 259.25

One thing to notice about this script’s output is that not all of the top 10 websites are
present. A ping request is a simple network-based handshake, but many websites
block them to conserve network bandwidth or for perceived security hardening.
When the Test-Connection cmdlet fails to make a connection, it generates the fol‐
lowing error message:

Test-Connection : Testing connection to computer 'bing.com' failed: Error
due to lack of resources

To verify connectivity to these resources, you can use the -Test parameter of the
Send-TcpRequest script given in Recipe 12.13:

PS > Send-TcpRequest bing.com -Test
True
PS > Send-TcpRequest bing.com -Test -Port 443
True
PS > Send-TcpRequest bing.com -Test -Port 23
False

For an effective use of the Test-Connection cmdlet to verify network resources
before trying to manage them, see Recipe 29.10.

See Also
Recipe 12.13, “Program: Interact with Internet Protocols”

Recipe 29.10, “Limit Networking Scripts to Hosts That Respond”

752 | Chapter 29: Remoting

29.10 Limit Networking Scripts to Hosts That Respond
Problem
You have a distributed network management task and want to avoid the delays caused
by hosts that are offline or not responding.

Solution
Use the -Quiet parameter of the Test-Connection to filter your computer set to only
hosts that respond to a network ping:

$computers = "MISSING",$env:ComputerName,"DOWN","localhost"
$skipped = @()

foreach($computer in $computers)
{
 ## If the computer is not responding, record that we skipped it and
 ## continue. We can review this collection after the script completes.
 if(-not (Test-Connection -Quiet $computer -Count 1))
 {
 $skipped += $computer
 continue
 }

 ## Perform some batch of networked operations
 Get-CimInstance -Computer $computer Win32_OperatingSystem
}

Discussion
One difficulty when writing scripts that manage a large collection of computers is
that a handful of them are usually off or nonresponsive. If you don’t address this sit‐
uation, you’re likely to run into many errors and delays as your script attempts to
repeatedly manage a system that can’t be reached.

In most domains, a network ping is the most reliable way to determine the respon‐
siveness of a computer. The Test-Connection cmdlet provides ping support in Pow‐
erShell, so the Solution builds on that.

For more information about the Test-Connection cmdlet, see Recipe 29.9.

See Also
Recipe 29.9, “Test Connectivity Between Two Computers”

29.10 Limit Networking Scripts to Hosts That Respond | 753

29.11 Enable Remote Desktop on a Computer
Problem
You want to enable Remote Desktop on a computer.

Solution
Set the fDenyTSConnections property of the Remote Desktop registry key to 0:

$regKey = "HKLM:\SYSTEM\CurrentControlSet\Control\Terminal Server"
Set-ItemProperty $regKey fDenyTSConnections 0

Discussion
Remote Desktop is the de facto interactive management protocol, but it can be diffi‐
cult to enable automatically. Fortunately, its configuration settings come from the
Windows Registry, so you can use PowerShell’s registry provider to enable it.

To disable Remote Desktop, set the fDenyTSConnections property to 1.

To enable Remote Desktop on a remote computer, use PowerShell Remoting to
change the registry properties, or remotely manage the registry settings directly. To
see how to manage remote registry settings directly, see Recipe 21.12.

See Also
Recipe 21.12, “Work with the Registry of a Remote Computer”

29.12 Configure User Permissions for Remoting
Problem
You want to control the users who are allowed to make remote connections to a
machine.

Solution
Simply add users to the built-in Remote Management Users group:

PS > net localgroup "Remote Management Users" /add DOMAIN\User
The command completed successfully.

If you wish to use an additional or alternative user group for equivalent functionality,
create a new Windows group to define which users can connect to the machine, and
then use the Set-PSSessionConfiguration cmdlet to add this group to the permis‐
sion list of the endpoint:

754 | Chapter 29: Remoting

PS > net localgroup "PowerShell Remoting Users" /Add
The command completed successfully.

PS > net localgroup "PowerShell Remoting Users" Administrators /Add
The command completed successfully.

PS > Set-PSSessionConfiguration Microsoft.PowerShell -ShowSecurityDescriptorUI

Discussion
Like many objects in Windows, the WS-Management endpoint that provides access
to PowerShell Remoting has an associated access control list. In PowerShell by
default, this access control list provides access to Administrators of the machine as
well as the built-in Remote Management Users group.

In some advanced scenarios, you might want more fine-grained control than the
built-in Remote Management Users Group. In these situations, you can create your
own user group and add it to the access control lists of your PowerShell remoting
endpoints.

For a one-off configuration, the -ShowSecurityDescriptorUI parameter of the Set-
PSSessionConfiguration cmdlet lets you manage the access control list as you
would manage a file, directory, or computer share.

To automate this process, though, you need to speak the language of security rules
directly—a language called SDDL: the Security Descriptor Definition Language. This
format isn’t really designed to be consumed by humans, but it’s the format exposed by
the -SecurityDescriptorSddl parameter of the Set-PSSessionConfiguration

cmdlet. Although it’s not user-friendly, you can use several classes from the .NET
Framework to create a security rule or SDDL string. Example 29-4 demonstrates this
approach.

Example 29-4. Automating security configuration of PowerShell Remoting

Get the SID for the "PowerShell Remoting Users" group
$account = New-Object Security.Principal.NTAccount "PowerShell Remoting Users"
$sid = $account.Translate([Security.Principal.SecurityIdentifier]).Value

Get the security descriptor for the existing configuration
$config = Get-PSSessionConfiguration Microsoft.PowerShell
$existingSddl = $config.SecurityDescriptorSddl

Create a CommonSecurityDescriptor object out of the existing SDDL
so that we don't need to manage the string by hand
$arguments = $false,$false,$existingSddl
$mapper = New-Object Security.AccessControl.CommonSecurityDescriptor $arguments

Create a new access rule that adds the "PowerShell Remoting Users" group
$mapper.DiscretionaryAcl.AddAccess("Allow",$sid,268435456,"None","None")

29.12 Configure User Permissions for Remoting | 755

Get the new SDDL for that configuration
$newSddl = $mapper.GetSddlForm("All")

Update the endpoint configuration
Set-PSSessionConfiguration Microsoft.PowerShell -SecurityDescriptorSddl $newSddl

For more information about working with the .NET Framework, see Recipe 3.8. For
more information about working with SDDL strings, see Recipe 18.17.

See Also
Recipe 3.8, “Work with .NET Objects”

Recipe 18.17, “Manage Security Descriptors in SDDL Form”

29.13 Enable Remoting to Workgroup Computers
Problem
You want to connect to a machine in a workgroup or by IP address.

Solution
Update the TrustedHosts collection on the wsman:\localhost\client path:

PS > $trustedHosts = Get-Item wsman:\localhost\client\TrustedHosts
PS > $trustedHosts.Value += ",RemoteComputer"
PS > Set-Item wsman:\localhost\client\TrustedHosts $trustedHosts.Value

WinRM Security Configuration.
This command modifies the TrustedHosts list for the WinRM client. The
computers in the TrustedHosts list might not be authenticated. The client
might send credential information to these computers. Are you sure that
you want to modify this list?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): Y

PS > Get-Item wsman:\localhost\client\TrustedHosts

 WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Client

Name Value
---- -----
TrustedHosts Lee-Desk,RemoteComputer

Discussion
One of the main aspects of client-side security in any remoting technology is being
able to trust who you’re connecting to. When you’re at a coffee shop, you can connect
to your bank’s website in a browser. If you use SSL, you’re guaranteed that it’s really

756 | Chapter 29: Remoting

your bank and not some fake proxy put up by an attacker who’s manipulating the net‐
work traffic. This class of interception attack is called a man-in-the-middle attack.

PowerShell Remoting gives the same guarantee. When you connect to a computer
inside of a domain, Kerberos authentication secures the connection. Kerberos
authentication guarantees the identity of the endpoint—ensuring that no attacker can
intercept your connection. When you’re outside of a domain, SSL is the only standard
way to guarantee this, which is why HTTPS is such an important protocol on the
internet.

There are two situations where built-in authentication mechanisms can’t protect
against man-in-the-middle attacks:

• Connecting to a host by IP (inside a domain or not)
• Using any authentication mechanism except for Kerberos, SSL, or CredSSP

Workgroup remoting (or cross-forest remoting) is an example of this. When you try
to make a connection in either of these scenarios, PowerShell gives the error message:

PS > Enter-PSSession SomeComputer

Enter-PSSession : Connecting to remote server failed with the following
error message : The WinRM client cannot process the request. If the
authentication scheme is different from Kerberos, or if the client computer
is not joined to a domain, then HTTPS transport must be used or the destination
machine must be added to the TrustedHosts configuration setting. Use
winrm.cmd to configure TrustedHosts. Note that computers in the TrustedHosts
list might not be authenticated. You can get more information about that by
running the following command: winrm help config. For more information,
see the about_Remote_Troubleshooting Help topic.

While wordy, this error message exactly explains the problem.

Since PowerShell can’t guarantee the identity of the remote computer in this situation,
it fails safe and generates an error. All remoting protocols run into this problem:

• Remote Desktop: “…cannot verify the identity of the computer you want to con‐
nect to…”

• SSH: “The authenticity of the host…can’t be established…”

The other protocols implement the equivalent of “I acknowledge this and want to
continue,” but PowerShell’s experience is unfortunately more complex.

If you want to connect to a machine that PowerShell can’t verify, you can update the
TrustedHosts configuration setting. Its name is unfortunately vague, however, as it
really means, “I trust my network during connections to this machine.”

29.13 Enable Remoting to Workgroup Computers | 757

When you configure the TrustedHosts setting, you have three options: an explicit list
(as shown in the Solution), <local> to bypass this message for all computers in the
subnet or workgroup, or * to disable the message altogether.

For more information, type Get-Help about_Remote_Troubleshooting.

29.14 Implicitly Invoke Commands from a Remote
Computer
Problem
You have commands on a remote computer that you want to invoke as though they
were local.

Solution
Use the Import-PSSession cmdlet to import them into the current session:

PS > $cred = Get-Credential

PS > $session = New-PSSession -ConfigurationName Microsoft.Exchange `
 -ConnectionUri https://ps.outlook.com/powershell/ -Credential $cred `
 -Authentication Basic -AllowRedirection

PS > Invoke-Command $session { Get-OrganizationalUnit } |
 Select DistinguishedName

DistinguishedName

OU=leeholmes.com,OU=Microsoft Exchange Hosted Organizations,DC=prod,DC=...
OU=Hosted Organization Security Groups,OU=leeholmes.com,OU=Microsoft Ex...

PS > Import-PSSession $session -CommandName Get-OrganizationalUnit

ModuleType Name ExportedCommands
---------- ---- ----------------
Script tmp_1e510382-9a3d-43a5... Get-OrganizationalUnit

PS > Get-OrganizationalUnit | Select DistinguishedName

DistinguishedName

OU=leeholmes.com,OU=Microsoft Exchange Hosted Organizations,DC=prod,DC=...
OU=Hosted Organization Security Groups,OU=leeholmes.com,OU=Microsoft Ex...

758 | Chapter 29: Remoting

Discussion
When you frequently work with commands from a remote system, the mental and
conceptual overhead of continually calling the Invoke-Command and going through
PowerShell’s remoting infrastructure quickly adds up. When you write a script that
primarily uses commands from the remote system, the majority of the script ends up
being for the remoting infrastructure itself. When pipelining commands to one
another, this gets even more painful:

PS > Invoke-Command $session { Get-User } |
 Where-Object { $_.Identity -eq "guide@leeholmes.com" } |
 Invoke-Command $session { Get-Mailbox } |
 Select Identity,OriginatingServer,ExchangeVersion,DistinguishedName

Identity OriginatingServer ExchangeVersion DistinguishedName
-------- ----------------- --------------- -----------------
guide@leeholmes.com BL2PRD0103DC006... 0.10 (14.0.100.0) CN=guide@leeh....

To address these issues, PowerShell Remoting supports the Import-PSSession cmdlet
to let you import and seamlessly use commands from a remote session. This is espe‐
cially helpful, for example, in scenarios such as Exchange Online. It’s not reasonable
to install an entire toolkit of commands just to manage your mailboxes in the cloud.

Once you’ve imported those commands, PowerShell enables implicit remoting on
them:

PS > Import-PSSession $session -CommandName Get-Mailbox,GetUser

PS > Get-User | Where-Object { $_.Identity -eq "guide@leeholmes.com" } |
 Get-MailBox |
 Select Identity,OriginatingServer,ExchangeVersion,DistinguishedName

Identity OriginatingServer ExchangeVersion DistinguishedName
-------- ----------------- --------------- -----------------
guide@leeholmes.com BL2PRD0103DC006... 0.10 (14.0.100.0) CN=guide@leeh....

PS > Get-Help Get-User -Examples

NAME
 Get-User

SYNOPSIS
 Use the Get-User cmdlet to retrieve all users in the forest that match
 the specified conditions.

 -------------------------- EXAMPLE 1 --------------------------
 This example retrieves information about users in the Marketing OU.

 Get-User -OrganizationalUnit "Marketing"
(...)

29.14 Implicitly Invoke Commands from a Remote Computer | 759

Expanding on this further, PowerShell even lets you export commands from a session
into a module:

PS > $commands = "Get-Mailbox","Get-User"
PS > Export-PSSession $session -CommandName $commands -Module ExchangeCommands

 Directory: E:\Lee\WindowsPowerShell\Modules\ExchangeCommands

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2/19/2010 11:11 PM 13177 ExchangeCommands.psm1
-a--- 2/19/2010 11:11 PM 99 ExchangeCommands.format.ps1xml
-a--- 2/19/2010 11:11 PM 605 ExchangeCommands.psd1

When you import the module, PowerShell creates new implicit remoting commands
for all commands that you exported. When you invoke a command, it recreates the
remoting session (if required), and then invokes your command in that new
session—even in a fresh instance of PowerShell:

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

PS > Import-Module ExchangeCommands
PS > Get-User | Where-Object { $_.Identity -eq "guide@leeholmes.com" } |
 Get-MailBox |
 Select Identity,OriginatingServer,ExchangeVersion,DistinguishedName

Creating a new session for implicit remoting of "Get-User" command...

Identity OriginatingServer ExchangeVersion DistinguishedName
-------- ----------------- --------------- -----------------
guide@leeholmes.com BL2PRD0103DC006... 0.10 (14.0.100.0) CN=guide@leeh....

For more information about command-based remoting, see Recipe 29.5. For more
information about PowerShell modules, see Recipe 1.28.

See Also
Recipe 1.28, “Extend Your Shell with Additional Commands”

Recipe 29.5, “Invoke a Command on a Remote Computer”

29.15 Create Sessions with Full Network Access
Problem
You want to create a PowerShell Remoting session (interactive, fan-out, or implicit)
that has full access to network resources.

760 | Chapter 29: Remoting

Solution
Use the -Authentication parameter, and pick CredSSP as the authentication
mechanism:

PS > Invoke-Command leeholmes1c23 {
 "Hello World"; dir \\lee-desk\c$ } -Authentication CredSSP -Cred Lee

Hello World

 Directory: \\lee-desk\c$

Mode LastWriteTime Length Name PSComputerName
---- ------------- ------ ---- --------------
d---- 2/5/2010 12:31 AM inetpub leeholmes1c23
d---- 7/13/2009 7:37 PM PerfLogs leeholmes1c23
d-r-- 2/16/2010 3:14 PM Program Files leeholmes1c23
(...)

Discussion
When connecting to a computer using PowerShell Remoting, you might sometimes
see errors running commands that access a network location:

PS > Invoke-Command leeholmes1c23 {
 "Hello World"; dir \\lee-desk\c$ } -Cred Lee

Hello World
Get-ChildItem: Cannot find path '\\lee-desk\c$' because it does not exist.

When you remotely connect to a computer in a domain, Windows (and PowerShell
Remoting) by default uses an authentication mechanism called Kerberos. While you
have full access to local resources when connected this way, security features of Ker‐
beros prevent the remote computer from being able to use your account information
to connect to additional computers.

This reduces the risk of connecting to a remote computer that has been compromised
or otherwise has malicious software running on it. Without these protections, the
malicious software can act on your behalf across the entire network—an especially
dangerous situation if you’re connecting with powerful domain credentials.

Although this Kerberos policy can be managed at the domain level by marking the
computer “Trusted for Delegation,” changing domain-level policies to accomplish ad
hoc management tasks is a cumbersome process.

To solve this problem, PowerShell supports another authentication mechanism called
CredSSP—the same authentication mechanism used by Remote Desktop and Termi‐
nal Services. Because of its security impact, you must explicitly enable support on
both the client you’re connecting from and the server you’re connecting to.

29.15 Create Sessions with Full Network Access | 761

If you’re making a connection back to the local computer rather
than another computer on the network, you can instead use the
-EnableNetworkAccess parameter of the remoting cmdlets to
enable network access.

From the client side, specify -Role Client to the Enable-WsManCredSSP cmdlet. You
can specify either specific computer names in the -DelegateComputer parameter or *
to enable the setting for all target computers.

PS > Enable-WSManCredSSP -Role Client -DelegateComputer leeholmes1c23

CredSSP Authentication Configuration for WS-Management
CredSSP authentication allows the user credentials on this computer to be
sent to a remote computer. If you use CredSSP authentication for a
connection to a malicious or compromised computer, that computer will have
access to your username and password. For more information, see the
Enable-WSManCredSSP Help topic.
Do you want to enable CredSSP authentication?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): Y

If you want to use CredSSP authentication within a workgroup (instead of a domain),
one additional step is required. Authentication within a workgroup uses a protocol
called NTLM, which doesn’t offer the same security guarantees that Kerberos does—
specifically, you can’t guarantee the identity of the computer you’re connecting to.
This is the same caution that drives the TrustedHosts configuration requirement, as
discussed in Recipe 29.13. To enable CredSSP over NTLM connections, open
gpedit.msc, and then navigate to Computer Configuration → Administrative Tem‐
plates → System → Credentials Delegation. Enable the “Allow Delegating Fresh Cre‐
dentials with NTLM-only Server Authentication” setting, and then add wsman/comput
ername to the list of supported computers. In the previous example, this would be
wsman/leeholmes1c23. As with the -DelegateComputer parameter, you can also
specify wsman/* to enable the setting for all target computers.

From the server side, specify -Role Server to the Enable-WsManCredSSP cmdlet. You
can invoke this cmdlet remotely, if needed:

PS > Enable-WsManCredSSP -Role Server

CredSSP Authentication Configuration for WS-Management
CredSSP authentication allows the server to accept user credentials from a
remote computer. If you enable CredSSP authentication on the server, the
server will have access to the username and password of the client computer
if the client computer sends them. For more information, see the
Enable-WSManCredSSP Help topic.
Do you want to enable CredSSP authentication?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"):

Remotely enabling CredSSP is just as easy:

762 | Chapter 29: Remoting

PS > Invoke-Command -ComputerName leeholmes1c23 {
 Enable-WsManCredSSP -Role Server }

CredSSP Authentication Configuration for WS-Management
CredSSP authentication allows the user credentials on this computer to be
sent to a remote computer. If you use CredSSP authentication for a
connection to a malicious or compromised computer, that computer will have
access to your username and password. For more information, see the
Enable-WSManCredSSP Help topic.
Do you want to enable CredSSP authentication?
[Y] Yes [N] No [S] Suspend [?] Help (default is "Y"): Y

After completing these configuration steps, your remote sessions will have unrestric‐
ted network access.

See Also
Recipe 29.7, “Program: Remotely Enable PowerShell Remoting”

Recipe 29.13, “Enable Remoting to Workgroup Computers”

29.16 Pass Variables to Remote Sessions
Problem
You want to invoke a command on a remote computer but supply some of its infor‐
mation as a dynamic argument.

Solution
Add $USING to the variable name when using a variable from your computer within
the context of a remoting session:

PS > $s = New-PSSession
PS > $myNumber = 10
PS > Invoke-Command $s { 2 * $myNumber }
0
PS > Invoke-Command $s { 2 * $USING:myNumber }
20

Discussion
When processing commands on a remote system, you sometimes need dynamic
information from the local system—such as the value of a variable or something that
changes for each invocation.

The solution gives an example of this approach. When you supply $myNumber by
itself, that refers to $myNumber within the context of the remote session that $s

29.16 Pass Variables to Remote Sessions | 763

represents. If you add the $USING: prefix, PowerShell takes the value of that variable
from your local session—the one that created and controls $s.

The $USING: prefix was added in PowerShell version 3, and works even when con‐
necting to a machine that supports only PowerShell version 2.

In some scenarios, though, you might need to pass data in a way other than through
the $USING: prefix. Example 29-5 demonstrates how to solve this problem. On a cli‐
ent computer, we request data (for example, a credential) from the user. We make a
connection to RemoteComputer using that credential and invoke a command. In this
example, the command itself makes yet another connection—this time to lee
holmes1c23. That final command simply retrieves the computer name of the remote
system. Rather than hardcode a username and password (or request them again), it
uses the $cred variable passed in to the original call to Invoke-Command.

Example 29-5. Passing values through the ArgumentList parameter

PS > $cred = Get-Credential

PS > $command = {
 param($cred)

 Invoke-Command leeholmes1c23 {
 "Hello from $($env:Computername)" } -Credential $cred
}

PS > Invoke-Command RemoteComputer $command -ArgumentList $cred -Credential $cred
Hello from LEEHOLMES1C23

To support this, the Invoke-Command cmdlet offers the -ArgumentList parameter.
Variables supplied to this parameter will be converted into a version safe for remot‐
ing, which will then be made available to the commands inside of the -ScriptBlock
parameter.

Arguments that you supply to the -ArgumentList parameter go
through a serialization process before being sent to the remote
computer. Although their properties closely resemble the original
objects, they no longer have methods. For more information about
PowerShell serialization, see Recipe 29.5.

As with arguments in other scripts, functions, and script blocks, the script block used
in Invoke-Command can access arguments directly through the $args array, or
through a param() statement to make the script easier to read. Unlike most param()
statements, however, these parameter statements must all be positional. Named argu‐
ments (e.g., -ArgumentList "-Cred","$cred") are not supported, nor are advanced
parameter attributes (such as [Parameter(Mandatory = $true)]).

764 | Chapter 29: Remoting

For more information about arguments and param() statements, see Recipe 11.11.

See Also
Recipe 11.11, “Access Arguments of a Script, Function, or Script Block”

Recipe 29.5, “Invoke a Command on a Remote Computer”

29.17 Manage and Edit Files on Remote Machines
Problem
You have a remote machine and want to send and receive files from it. Or, you want
to edit a file on the remote machine directly.

Solution
Use the Copy-Item -ToSession and -FromSession parameters to move files between
machines over an active PowerShell Remoting session:

PS > "Hello World" > myfile.txt
PS > $s = New-PSSession -Computername lee-desk
PS > Copy-Item myfile.txt -ToSession $s -Destination c:\temp\copied.txt
PS > Invoke-Command $s { Get-Content c:\temp\copied.txt }
Hello World
PS > Invoke-Command $s { Set-Content c:\temp\copied.txt "Heya!" }
PS > Copy-Item -FromSession $s -Path c:\temp\copied.txt -Destination newfile.txt
PS > Get-Content newfile.txt
Heya!

In the PowerShell ISE or Visual Studio Code, use the psedit command to edit a file
on a remote machine directly:

====> PowerShell Integrated Console v2020.6.0 <=====

PS > $s = New-PSSession localhost
PS > "Hello World" > c:\temp\hello.txt
PS > Enter-PSSession $s

[localhost]: PS > psedit c:\temp\hello.txt

(... edit the file in the window that pops up ...)

[localhost]: PS > exit

PS > Get-Content c:\temp\hello.txt

Back at you!

29.17 Manage and Edit Files on Remote Machines | 765

Discussion
When you’re working with remote computers, a common problem you’ll face is how
to bring your local tools and environment to that computer. Using file shares or FTP
transfers is a common way to share tools between systems, but these options aren’t
always available. Especially if you’ve been careful about securing them, they likely
don’t have SMB or the remote administrative share enabled.

Often, PowerShell Remoting is the only avenue you have to a machine.

To solve these problems, the Copy-Item cmdlet offers both the -FromSession and
-ToSession parameters. When you supply one of these parameters with an active
PowerShell Remoting session, PowerShell will automatically transfer files back and
forth on your behalf.

This capability is disabled by default when you connect to Just
Enough Administration task-specific endpoints. To enable this
functionality safely, your endpoint will need to enable the User
Drive feature. For more information about Just Enough Adminis‐
tration, see Recipe 18.18.

As demonstrated by the Solution, the psedit command is another way to quickly edit
scripts and files on a remote machine. This command requires that you’ve entered an
interactive session with either the PowerShell ISE or Visual Studio Code. When you
run this command, these hosts bring a copy of the remote file back to your computer.
Edits that you make to your local copy then get transparently sent back to the remote
computer on your behalf.

Visual Studio Code extends this remote editing experience even further by support‐
ing it during interactive debugging sessions. If a script on a remote machine hits a
debugging breakpoint while you’re connected, Visual Studio Code will automatically
open a copy of the target script in the UI to let you interactively debug and edit that
script. To see an example of this in action, see Recipe 14.8.

See Also
Recipe 14.8, “Debug a Script on a Remote Machine”

Recipe 18.18, “Create a Task-Specific Remoting Endpoint”

766 | Chapter 29: Remoting

29.18 Configure Advanced Remoting Quotas and Options
Problem
You want to configure compression, profiles, proxy authentication, certificate verifi‐
cation, or culture information for a remote session.

Solution
For client-side configuration settings, call the New-PSSessionOption cmdlet and pro‐
vide values for parameters that you want to customize:

PS > $options = New-PSSessionOption -Culture "fr-CA"
PS > $sess = New-PSSession Lee-Desk -Cred Lee -SessionOption $options
PS > Invoke-Command $sess { Get-Date | Out-String }

20 février 2010 17:40:16

For server-side configuration settings, review the options under WSMan:\localhost
\Shell and WSMan:localhost\Service:

Set-Item WSMan:\localhost\shell\MaxShellsPerUser 10

Discussion
PowerShell lets you define advanced client connection options through two paths: the
New-PSSessionOption cmdlet and the $PSSessionOption automatic variable.

When you call the New-PSSession cmdlet, PowerShell returns an object that holds
configuration settings for a remote session. You can customize all of the values
through the cmdlet’s parameters or set properties on the object that is returned.

Several of the options refer to timeout values: OperationTimeout,
OpenTimeout, CancelTimeout, and IdleTimeout. These parameters
are generally not required (for example, even when invoking a
long-running command), but they can be used to overcome errors
when you encounter extremely slow or congested network
conditions.

If you want to configure session options for every new connection, a second alterna‐
tive is the $PSSessionOption automatic variable:

PS > $PSSessionOption

MaximumConnectionRedirectionCount : 5
NoCompression : False
NoMachineProfile : False
ProxyAccessType : None
ProxyAuthentication : Negotiate

29.18 Configure Advanced Remoting Quotas and Options | 767

ProxyCredential :
SkipCACheck : False
SkipCNCheck : False
SkipRevocationCheck : False
OperationTimeout : 00:03:00
NoEncryption : False
UseUTF16 : False
IncludePortInSPN : False
OutputBufferingMode : None
Culture :
UICulture :
MaximumReceivedDataSizePerCommand :
MaximumReceivedObjectSize : 209715200
ApplicationArguments :
OpenTimeout : 00:03:00
CancelTimeout : 00:01:00
IdleTimeout : -00:00:00.0010000

If you don’t provide explicit settings during a connection attempt, PowerShell Remot‐
ing looks at the values in this variable for its defaults.

From the server perspective, all configuration sits in the WSMan drive. The most
common configuration options come from the WSMan:\localhost\Shell path. These
settings let you configure how many shells can be open simultaneously per user, how
much memory they can use, and more.

PS > dir WSMan:\localhost\Shell

WSManConfig: Microsoft.WSMan.Management\WSMan::localhost\Shell

Type Name SourceOfValue Value
---- ---- ------------- -----
System.String AllowRemoteShellAccess true
System.String IdleTimeout 7200000
System.String MaxConcurrentUsers 10
System.String MaxShellRunTime 2147483647
System.String MaxProcessesPerShell 25
System.String MaxMemoryPerShellMB 1024
System.String MaxShellsPerUser 30

In addition to server-wide settings, you can further restrict these settings through
configuration of individual endpoint configurations (plug-ins). If you want to
increase the default values, you have to increase the quotas both at the server-wide
level, as well as for the endpoint (such as the default Microsoft.PowerShell end‐
point) that users will connect to.

PS WSMan:\localhost\Plugin\Restrictive\Quotas> Set-Item MaxShellsPerUser 1

WARNING: The updated configuration is effective only if it is less than or equal
to the value of global quota WSMan:\localhost\Shell\MaxShellsPerUser. Verify the
value for the global quota using the PowerShell cmdlet "Get-Item WSMan:\localhost
\Shell\MaxShellsPerUser".

WARNING: The configuration changes you made will only be effective after the

768 | Chapter 29: Remoting

WinRM service is restarted. To restart the WinRM service, run the following
command: 'Restart-Service winrm'

PS WSMan:\localhost\Plugin\Restrictive\Quotas> dir

WSManConfig: Microsoft.WSMan.Management\WSMan::...\Plugin\Restrictive\Quotas

Type Name SourceOfValue Value
---- ---- ------------- -----
System.String IdleTimeoutms 7200000
System.String MaxConcurrentUsers 5
System.String MaxProcessesPerShell 15
System.String MaxMemoryPerShellMB 1024
System.String MaxShellsPerUser 1
System.String MaxConcurrentCommandsPerShell 1000
System.String MaxShells 25
System.String MaxIdleTimeoutms 43200000

See Also
Recipe 29.5, “Invoke a Command on a Remote Computer”

29.19 Invoke a Command on Many Computers
Problem
You want to manage many computers simultaneously.

Solution
Use the -ThrottleLimit and -AsJob parameters to configure how PowerShell scales
out your commands:

PS > $sessions = $(
 New-PSSession localhost;
 New-PSSession localhost;
 New-PSSession localhost)

PS > $start = Get-Date
PS > Invoke-Command $sessions { Start-Sleep 2; "Test $pid" }
Test 720
Test 6112
Test 4792
PS > (Get-Date) - $start | Select TotalSeconds | Format-Table -Auto

TotalSeconds

 2.09375

PS >
PS > $start = Get-Date

29.19 Invoke a Command on Many Computers | 769

PS > Invoke-Command $sessions { Start-Sleep 2; "Test $pid" } -ThrottleLimit 1
Test 6112
Test 4792
Test 720
PS > (Get-Date) - $start | Select TotalSeconds | Format-Table -Auto

TotalSeconds

 6.25

Discussion
One of the largest difficulties in traditional networking scripts comes from managing
many computers at once. Remote computer management is typically network-bound,
so most scripts spend the majority of their time waiting for the network.

The solution to this is to scale. Rather than manage one computer at a time, you man‐
age several. Not too many, however, as few machines can handle the demands of con‐
necting to hundreds or thousands of remote machines at once.

Despite the benefits, writing a networking script that supports smart automatic throt‐
tling is beyond the capability of many and too far down “the big list of things to do” of
most. Fortunately, PowerShell Remoting’s main focus is to solve these common prob‐
lems, and throttling is no exception.

By default, PowerShell Remoting connects to 32 computers at a time. After running
your command on the first 32 computers in your list, it waits for commands to com‐
plete before running your command on additional computers. As each command
completes, PowerShell invokes the next one waiting.

To demonstrate this automatic scaling, the Solution shows the difference between
calling Invoke-Command with the default throttle limit and calling it with a throttle
limit of one computer.

When working against many computers at a time, you might want to continue using
your shell while these long-running tasks process in the background. To support
background processing of tasks, the Invoke-Command cmdlet offers -AsJob, which lets
you run your command as a PowerShell Job.

For more information about PowerShell Jobs, see Recipe 1.6.

See Also
Recipe 1.6, “Invoke a Long-Running or Background Command”

Recipe 29.5, “Invoke a Command on a Remote Computer”

770 | Chapter 29: Remoting

29.20 Run a Local Script on a Remote Computer
Problem
You have a local script and want to run it on a remote computer.

Solution
Use the -FilePath parameter of the Invoke-Command cmdlet:

PS > Get-Content .\Get-ProcessByName.ps1
param($name)

Get-Process -Name $name

PS > Invoke-Command -Computername Lee-Desk `
 -FilePath .\Get-ProcessByname.ps1 -ArgumentList PowerShell `
 -Cred Lee

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id Process PSComputer
 Name Name
------- ------ ----- ----- ----- ------ -- --------- ---------
 628 17 39084 58908 214 4.26 7540 powers... lee-des...

Discussion
For quick one-off actions, the -ScriptBlock parameter of the Invoke-Command
cmdlet lets you easily invoke commands against a remote computer:

PS > Invoke-Command Lee-Desk { Get-Process -n PowerShell } -Cred Lee

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id Process PSComputer
 Name Name
------- ------ ----- ----- ----- ------ -- --------- ---------
 628 17 39084 58908 214 4.26 7540 powers... lee-des...

When these commands become more complicated, however, writing them all in a
script block becomes cumbersome. You have no syntax highlighting, line numbering,
or any of the other creature comforts offered by writing script-based execution.

To let you write scripts against a remote computer instead, PowerShell offers the
-FilePath parameter on the Invoke-Command cmdlet. When you use this parameter,
PowerShell reads the script from disk and invokes its contents on the remote
computer.

In this mode, PowerShell makes no attempt to address dependencies during this pro‐
cess. If your script requires any other scripts, commands, or environmental depen‐
dencies, ensure that they are available on the remote computer.

For one option on how to transfer items to a remote computer, see Recipe 29.17.

29.20 Run a Local Script on a Remote Computer | 771

See Also
Recipe 29.5, “Invoke a Command on a Remote Computer”

Recipe 29.17, “Manage and Edit Files on Remote Machines”

29.21 Determine Whether a Script Is Running on a
Remote Computer
Problem
You have a script that needs to know whether it’s running on a local or remote
computer.

Solution
Review the output of the $host.Name property. If it’s ServerRemoteHost, it is running
remotely. If it’s anything else, it is running locally.

PS > $host.Name
ConsoleHost

PS > Invoke-Command leeholmes1c23 { $host.Name }
ServerRemoteHost

Discussion
While your scripts should work no matter whether they’re running locally or
remotely, you might run into situations where you need to verify which environment
your script is being launched under.

The $host automatic variable exposes information about the current host, of which
PowerShell Remoting is one. When you access this variable in a remoting session, the
value is ServerRemoteHost. Although the value on the console host is ConsoleHost,
you should not depend on this as an indicator of a local script. There are many other
PowerShell hosts—such as Visual Studio Code (Where $host is Visual Studio Code
Host), PowerGUI, PowerShell Plus, and more. Each has a customized host name, but
none is ServerRemoteHost.

For more information about the $host automatic variable, see Recipe 13.9.

See Also
Recipe 13.9, “Access Features of the Host’s UI”

772 | Chapter 29: Remoting

CHAPTER 30

Transactions

30.0 Introduction
Transactions describe a system’s cability to support tentative or multistep changes.
When you make changes within the context of a transaction, the system provides
four main guarantees:

Isolation
To observers not participating in the transaction, the commands inside the trans‐
action haven’t impacted the system.

Atomicity
Once you decide to finalize (commit) a transaction, either all of the changes take
effect or none of them do.

Consistency
Errors caused during a transaction that would cause an inconsistent system state
are dealt with to bring the system back to a consistent state.

Durability
Once the system has informed you of the transaction’s successful completion, you
can be certain that the changes are permanent.

As a real-world example of a transaction, consider a money transfer between two
bank accounts. This might happen in two stages: subtract the money from the first
account, and then add the money to the second account. In this situation, you have
the exact same goals for robustness and correctness:

773

Isolation
While the money transfer is taking place (but has not yet completed), the balance
of both bank accounts appears unchanged.

Atomicity
At some point in the process, it’s possible that we’ve subtracted the money from
the first account but haven’t added it yet to the second account. When we process
the money transfer, it’s critical that the system never show this intermediate state.
Either all of the changes take effect or none of them do.

Consistency
If an error occurs during the money transfer, the system takes corrective action
to ensure that it’s not left in an intermediate state. Perhaps it accounts for a lack
of funds by adding an overdraft charge or by abandoning the money transfer
altogether. It should not, for example, take the funds from one account without
depositing them into the second account.

Durability
Once the money transfer completes, you don’t have to worry about a system
error undoing all or part of it.

Although transactions are normally a developer topic, PowerShell exposes transac‐
tions as an end-user concept, opening a great deal of potential for consistent system
management.

To start a transaction, call the Start-Transaction cmdlet. To use a cmdlet that sup‐
ports transactions, specify the -UseTransaction parameter. Being explicit about this
parameter is crucial, as many cmdlets that support transactions can work equally well
without one. Because of that, PowerShell lets the cmdlet participate in the transaction
only when you supply this parameter.

PowerShell’s registry provider supports transactions as a first-class concept. You can
see this in action in Recipe 21.6.

PS > Set-Location HKCU:
PS > Start-Transaction

PS > mkdir TempKey -UseTransaction

 Hive: HKEY_CURRENT_USER

SKC VC Name Property
--- -- ---- --------
 0 0 TempKey {}

PS > New-Item TempKey\TempKey2 -UseTransaction

 Hive: HKEY_CURRENT_USER\TempKey

774 | Chapter 30: Transactions

SKC VC Name Property
--- -- ---- --------
 0 0 TempKey2 {}

PS > Get-ChildItem TempKey
Get-ChildItem : Cannot find path 'HKEY_CURRENT_USER\TempKey' because it
does not exist.

PS > Complete-Transaction
PS > Get-ChildItem TempKey

 Hive: HKEY_CURRENT_USER\TempKey

SKC VC Name Property
--- -- ---- --------
 0 0 TempKey2 {}

Once you have completed the transactional work, call either the Complete-

Transaction cmdlet to make it final or the Undo-Transaction cmdlet to discard the
changes. While you may now be tempted to experiment with transactions on other
providers (for example, the filesystem), be aware that only the registry provider cur‐
rently supports them.

30.1 Safely Experiment with Transactions
Problem
You want to experiment with PowerShell’s transactions support but don’t want to use
the Registry Provider as your playground.

Solution
Use PowerShell’s System.Management.Automation.TransactedString object along
with the Use-Transaction cmdlet to experiment with a string, rather than registry
keys:

PS > Start-Transaction

Suggestion [1,Transactions]: Once a transaction is started, only commands that
get called with the -UseTransaction flag become part of that transaction.
PS >
PS > $transactedString = New-Object Microsoft.PowerShell.Commands.Management.
 TransactedString
PS > $transactedString.Append("Hello ")
PS >
PS > Use-Transaction -UseTransaction { $transactedString.Append("World") }
Suggestion [2,Transactions]: The Use-Transaction cmdlet is intended for
scripting of transaction-enabled .NET objects. Its ScriptBlock should contain
nothing else.
PS >
PS > $transactedString.ToString()

30.1 Safely Experiment with Transactions | 775

Hello
PS >
PS > Complete-Transaction
PS >
PS > $transactedString.ToString()
Hello World
PS >

Discussion
PowerShell’s transaction support builds on four core cmdlets: Start-Transaction,
Use-Transaction, Complete-Transaction, and Undo-Transaction.

The Start-Transaction begins a transaction, creating a context where changes are
visible to commands within the transaction, but not outside of it. For the most part,
after starting a transaction, you’ll apply commands to that transaction by adding the
-UseTransaction parameter to a cmdlet that supports it. For example, when a Pow‐
erShell provider supports transactions, all of PowerShell’s core cmdlets (Get-
ChildItem, Remove-Item, etc.) let you specify the -UseTransaction parameter for
actions against that provider.

The Use-Transaction cmdlet is slightly different. Although it still requires the
-UseTransaction parameter to apply its script block to the current transaction, its
sole purpose is to let you script against .NET objects that support transactions them‐
selves. Since they have no way to supply a -UseTransaction parameter, PowerShell
offers this generic cmdlet for any type of transactional .NET scripting.

Other transaction-enabled cmdlets should not be called within the
Use-Transaction script block. You still need to provide the
-UseTransaction parameter to the cmdlet being called, and there’s
a chance that they might cause instability with your PowerShell-
wide transactions.

To give users an opportunity to play with something a little less risky than the
Windows Registry, PowerShell includes the Microsoft.PowerShell.Commands.Man
agement.TransactedString class. This class acts like you’d expect any transacted
command to act and lets you become familiar with how the rest of PowerShell’s trans‐
action cmdlets work together. Because this is a .NET object, it must be called from
within the script block of the Use-Transaction cmdlet.

Finally, when you’re finished performing tasks for the current transaction, call either
the Complete-Transaction or the Undo-Transaction cmdlet. As compared to the
solution, here’s an example session where the Undo-Transaction cmdlet lets you dis‐
card changes made during the transaction:

776 | Chapter 30: Transactions

PS > Start-Transaction

Suggestion [1,Transactions]: Once a transaction is started, only commands that
get called with the -UseTransaction flag become part of that transaction.
PS >
PS > $transactedString = New-Object Microsoft.PowerShell.Commands.Management.
TransactedString
PS > $transactedString.Append("Hello ")
PS >
PS > Use-Transaction -UseTransaction { $transactedString.Append("World") }

Suggestion [2,Transactions]: The Use-Transaction cmdlet is intended for
scripting of transaction-enabled .NET objects. Its ScriptBlock should contain
nothing else.
PS >
PS > $transactedString.ToString()
Hello
PS >
PS > Undo-Transaction
PS >
PS > $transactedString.ToString()
Hello

For more information about transactions in the Windows Registry, see Recipe 21.6.

See Also
Recipe 21.6, “Safely Combine Related Registry Modifications”

30.2 Change Error Recovery Behavior in Transactions
Problem
You want to change how PowerShell responds to errors during the execution of a
transacted cmdlet.

Solution
Use the -RollbackPreference parameter of the Start-Transaction cmdlet to con‐
trol what type of error will cause PowerShell to automatically undo your transaction:

HKCU:\ > Start-Transaction
HKCU:\ > New-Item Foo -UseTransaction

 Hive: HKEY_CURRENT_USER

SKC VC Name Property
--- -- ---- --------
 0 0 Foo {}

HKCU:\ > Copy IDoNotExist Foo -UseTransaction
Copy-Item : Cannot find path 'HKCU:\IDoNotExist' because it does not exist.

30.2 Change Error Recovery Behavior in Transactions | 777

HKCU:\ > Complete-Transaction
Complete-Transaction : Cannot commit transaction. The transaction has been
rolled back or has timed out.

HKCU:\ > Start-Transaction -RollbackPreference TerminatingError

 Hive: HKEY_CURRENT_USER

SKC VC Name Property
--- -- ---- --------
 0 0 Foo {}

HKCU:\ > Copy IDoNotExist Foo -UseTransaction
Copy-Item : Cannot find path 'HKCU:\IDoNotExist' because it does not exist.

HKCU:\ > Complete-Transaction
HKCU:\ > Get-Item Foo

 Hive: HKEY_CURRENT_USER

SKC VC Name Property
--- -- ---- --------
 0 0 Foo {}

Discussion
Errors in scripts are an extremely frequent cause of system inconsistency. If a script
incorrectly assumes the existence of a registry key or other system state, this type of
error tends to waterfall through the entire script. As the script continues, some of the
operations succeed while others fail. When the script completes, you’re in the difficult
situation of not knowing exactly what portions of the script worked correctly.

Sometimes running the script again will magically make the problems go away.
Unfortunately, it’s just as common to face a painstaking manual cleanup effort.

Addressing these consistency issues is one of the primary goals of system
transactions.

When PowerShell creates a new transaction, it undoes (rolls back) your transaction
for any error it encounters that is operating in the context of that transaction. When
PowerShell rolls back your transaction, the system impact is clear: no part of your
transaction was made permanent, so your system is still entirely consistent.

Some situations are simply too volatile to depend on this rigid interpretation of con‐
sistency, though, so PowerShell offers the -RollbackPreference parameter on the
Start-Transaction to let you configure how it should respond to errors:

778 | Chapter 30: Transactions

Error

PowerShell rolls back your transaction when any error occurs.

TerminatingError

PowerShell rolls back your transaction only when a terminating error occurs.

Never

PowerShell never automatically rolls back your transaction in response to errors.

For more information about PowerShell’s error handling and error levels, see
Chapter 15.

See Also
Chapter 15

30.2 Change Error Recovery Behavior in Transactions | 779

CHAPTER 31

Event Handling

31.0 Introduction
Much of system administration is reactionary: taking some action when a system ser‐
vice shuts down, when files are created or deleted, when changes are made to the
Windows Registry, or even on a timed interval.

The easiest way to respond to system changes is to simply poll for them. If you’re
waiting for a file to be created, just check for it every once in a while until it shows up.
If you’re waiting for a process to start, just keep calling the Get-Process cmdlet until
it’s there.

This approach is passable for some events (such as waiting for a process to come or
go), but it quickly falls apart when you need to monitor huge portions of the
system—such as the entire registry or filesystem.

An an alternative to polling for system changes, many technologies support auto‐
matic notifications—known as events. When an application registers for these auto‐
matic notifications, it can respond to them as soon as they happen, rather than having
to poll for them.

Unfortunately, each technology offers its own method of event notification: .NET
defines one approach and WMI defines another. When you have a script that wants
to generate its own events, neither technology offers an option.

PowerShell addresses this complexity by introducing a single, consistent set of event-
related cmdlets. These cmdlets let you work with all of these different event sources.
When an event occurs, you can let PowerShell store the notification for you in its
event queue or use an Action script block to process it automatically:

PS > "Hello" > file.txt
PS > Get-Item file.txt

781

 Directory: C:\temp

Mode LastWriteTime Length Name
---- ------------- ------ ----
-a--- 2/21/2010 12:57 PM 16 file.txt

PS > Get-Process notepad

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 64 3 1140 6196 63 0.06 3240 notepad

PS > Register-CimIndicationEvent Win32_ProcessStopTrace `
 -SourceIdentifier ProcessStopWatcher `
 -Action {
 if($EventArgs.NewEvent.ProcessName -eq "notepad.exe")
 {
 Remove-Item c:\temp\file.txt
 }
 }

PS > Stop-Process -n notepad
PS > Get-Item c:\temp\file.txt
Get-Item : Cannot find path 'C:\temp\file.txt' because it does not exist.

By building on PowerShell eventing, you can write scripts to quickly react to an ever-
changing system.

31.1 Respond to Automatically Generated Events
Problem
You want to respond automatically to a .NET, WMI, or engine event.

Solution
Use the -Action parameter of the Register-ObjectEvent, Register-

CimIndicationEvent, and Register-EngineEvent cmdlets to be notified when an
event arrives and have PowerShell invoke the script block you supply:

PS > $timer = New-Object Timers.Timer
PS > $timer.Interval = 1000
PS > Register-ObjectEvent $timer Elapsed -SourceIdentifier Timer.Elapsed `
 -Action { $GLOBAL:lastRandom = Get-Random }

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
2 Timer.Elapsed NotStarted False

PS > $timer.Enabled = $true
PS > $lastRandom

782 | Chapter 31: Event Handling

836077209
PS > $lastRandom
2030675971
PS > $lastRandom
1617766254
PS > Unregister-Event Timer.Elapsed

Discussion
PowerShell’s event registration cmdlets give you a consistent way to interact with
many different event technologies: .NET events, WMI events, and PowerShell engine
events.

By default, when you register for an event, PowerShell adds a new entry to the ses‐
sionwide event repository called the event queue. You can use the Get-Event cmdlet
to see events added to this queue and the Remove-Event cmdlet to remove events
from this queue.

In addition to its support for manual processing of events, you can also supply a
script block to the -Action parameter of the event registration cmdlets. When you
provide a script block to the -Action parameter, PowerShell automatically processes
events when they arrive.

However, doing two things at once means multithreading. And multithreading? Thar
be dragons! To prevent you from having to deal with multithreading issues, Power‐
Shell tightly controls the execution of these script blocks. When it’s time to process an
action, it suspends the current script or pipeline, executes the action, and then
resumes where it left off. It processes only one action at a time.

PS > $timer = New-Object Timers.Timer
PS > $timer.Interval = 1000
PS > Register-ObjectEvent $timer Elapsed -SourceIdentifier Timer.Elapsed `
 -Action { Write-Host "Processing event" }
$timer.Enabled = $true

PS > while($true) { Write-Host "Processing loop"; Sleep 1 }
Processing loop
Processing event
Processing loop
Processing event
Processing loop
Processing event
Processing loop
Processing event
Processing loop
(...)

Inside the -Action script block, PowerShell gives your script access to five automatic
variables:

31.1 Respond to Automatically Generated Events | 783

$eventSubscriber

The subscriber (event registration) that generated this event.

$event

The details of the event itself: MessageData, TimeGenerated, etc.

$args

The arguments and parameters of the event handler. Most events place the event
sender and customized event information as the first two arguments, but this
depends on the event handler.

$sender

The object that fired the event (if any).

$eventArgs

The customized event information that the event defines, if any. For example, the
Timers.Timer object provides a TimerElapsedEventArgs object for this parame‐
ter. This object includes a SignalTime parameter, which identifies exactly when
the timer fired. Likewise, WMI events define an object that places most of the
information in the $eventArgs.NewEvent property.

In addition to the script block that you supply to the -Action parameter, you can also
supply any objects you’d like to the -MessageData parameter during your event regis‐
tration. PowerShell associates this data with any event notifications it generates for
this event registration.

To prevent your script block from accidentally corrupting the state of scripts that it
interrupts, PowerShell places it in a very isolated environment. Primarily, PowerShell
gives you access to your event action through its job infrastructure. As with other
PowerShell jobs, you can use the Receive-Job cmdlet to retrieve any output gener‐
ated by your event action:

PS > $timer = New-Object Timers.Timer
PS > $timer.Interval = 1000
PS > Register-ObjectEvent $timer Elapsed -SourceIdentifier Timer.Elapsed `
 -Action {
 $SCRIPT:triggerCount = 1 + $SCRIPT:triggerCount
 "Processing Event $triggerCount"
 }
PS > $timer.Enabled = $true

Id Name State HasMoreData Location
-- ---- ----- ----------- --------
1 Timer.Elapsed NotStarted False

PS > Get-Job 1
Id Name State HasMoreData Location
-- ---- ----- ----------- --------
1 Timer.Elapsed Running True

784 | Chapter 31: Event Handling

PS > Receive-Job 1
Processing Event 1
Processing Event 2
Processing Event 3
(...)

For more information about working with PowerShell jobs, see Recipe 1.6.

In addition to exposing your event actions through a job interface, PowerShell also
uses a module to ensure that your -Action script block is not impacted by (and does
not impact) other scripts running on the system. As with all modules, $GLOBAL vari‐
ables are shared by the entire session. $SCRIPT variables are shared and persisted for
all invocations of the script block. All other variables persist only for the current trig‐
gering of your event action. For more information about PowerShell modules, see
Recipe 11.7.

For more information about useful .NET and WMI events, see Appendix I.

See Also
Recipe 1.6, “Invoke a Long-Running or Background Command”

Recipe 11.7, “Write Commands That Maintain State”

Appendix I, Selected Events and Their Uses

31.2 Create and Respond to Custom Events
Problem
You want to create new events for other scripts to consume or want to respond auto‐
matically when they occur.

Solution
Use the New-Event cmdlet to generate a custom event. Use the -Action parameter of
the Register-EngineEvent cmdlet to respond to that event automatically.

PS > Register-EngineEvent -SourceIdentifier Custom.Event `
 -Action { Write-Host "Received Event" }

PS > $null = New-Event Custom.Event
Received Event

Discussion
The New-Event cmdlet lets you create new custom events for other scripts or event
registrations to consume. When you call the New-Event cmdlet, PowerShell adds a

31.2 Create and Respond to Custom Events | 785

new entry to the sessionwide event repository called the event queue. You can use the
Get-Event cmdlet to see events added to this queue, or you can use the Register-
EngineEvent cmdlet to have PowerShell respond automatically.

One prime use of the New-Event cmdlet is to adapt complex events surfaced through
the generic WMI and .NET event cmdlets. By writing task-focused commands to sur‐
face this adapted data, you can offer and work with data that is simpler to consume.

To accomplish this goal, use the Register-ObjectEvent or Register-

CimIndicationEvent cmdlets to register for one of their events. In the -Action script
block, use the New-Event cmdlet to generate a new, more specialized event.

In this scenario, the event registrations that interact with .NET or WMI directly are
merely “support” events, and users wouldn’t expect to see them when they use the
Get-EventSubscriber cmdlet. To hide these event registrations by default, both the
Register-ObjectEvent and Register-CimIndicationEvent cmdlets offer a
-SupportEvent parameter.

Here’s an example of two functions that notify you when a new process starts:
Enable process creation events
function Enable-ProcessCreationEvent
{
 $identifier = "WMI.ProcessCreated"
 $query = "SELECT * FROM __instancecreationevent " +
 "WITHIN 5 " +
 "WHERE targetinstance isa 'win32_process'"
 Register-CimIndicationEvent -Query $query -SourceIdentifier $identifier `
 -SupportEvent -Action {
 [void] (New-Event "PowerShell.ProcessCreated" `
 -Sender $sender `
 -EventArguments $EventArgs.NewEvent.TargetInstance)
 }
}

Disable process creation events
function Disable-ProcessCreationEvent
{
 Unregister-Event -Force -SourceIdentifier "WMI.ProcessCreated"
}

When used in the shell, the experience is much simpler than working with the WMI
events directly:

PS > Enable-ProcessCreationEvent
PS > calc
PS > Get-Event

ComputerName :
RunspaceId : feeda302-4386-4360-81d9-f5455d74950f
EventIdentifier : 2
Sender : System.Management.ManagementEventWatcher

786 | Chapter 31: Event Handling

SourceEventArgs :
SourceArgs : {calc.exe}
SourceIdentifier : PowerShell.ProcessCreated
TimeGenerated : 2/21/2010 3:15:57 PM
MessageData :

PS > (Get-Event).SourceArgs

(...)
Caption : calc.exe
CommandLine : "C:\Windows\system32\calc.exe"
CreationClassName : Win32_Process
CreationDate : 20100221151553.574124-480
CSCreationClassName : Win32_ComputerSystem
CSName : LEEHOLMES1C23
Description : calc.exe
ExecutablePath : C:\Windows\system32\calc.exe
(...)

PS > Disable-ProcessCreationEvent
PS > notepad
PS > Get-Event

ComputerName :
RunspaceId : feeda302-4386-4360-81d9-f5455d74950f
EventIdentifier : 2
Sender : System.Management.ManagementEventWatcher
SourceEventArgs :
SourceArgs : {calc.exe}
SourceIdentifier : PowerShell.ProcessCreated
TimeGenerated : 2/21/2010 3:15:57 PM
MessageData :

In addition to events that you create, engine events also represent events generated by
the engine itself. PowerShell supports three of these: PowerShell.Exiting to let you
do some work when the PowerShell session exits, PowerShell.OnIdle to let you
coordinate activity in a PowerShell session, and PowerShell.OnScriptBlockInvoke
to let you process script blocks before they’re invoked.

For an example of working with the PowerShell.Exiting event, see Recipe 1.31.

PowerShell treats engine events like any other type of event. You can use the
Register-EngineEvent cmdlet to automatically react to these events, just as you can
use the Register-ObjectEvent and Register-CimIndicationEvent cmdlets to react
to .NET and WMI events, respectively. For information about how to respond to
events automatically, see Recipe 31.1.

See Also
Recipe 1.31, “Save State Between Sessions”

Recipe 31.1, “Respond to Automatically Generated Events”

31.2 Create and Respond to Custom Events | 787

31.3 Create a Temporary Event Subscription
Problem
You want to automatically perform an action when an event arrives but automatically
remove the event subscription once that event fires.

Solution
Use the -MaxTriggerCount parameter of the event registration command to limit
PowerShell to one occurrence of the event:

PS > $timer = New-Object Timers.Timer
PS > $job = Register-ObjectEvent $timer Disposed -Action {
 [Console]::Beep(100,100) } -MaxTriggerCount 1
PS > Get-EventSubscriber
PS > $timer.Dispose()
PS > Get-EventSubscriber
PS > Remove-Job $job

Discussion
When you provide a script block for the -Action parameter of Register-

ObjectEvent, PowerShell creates an event subscriber to represent that subscription,
and it also creates a job that lets you interact with the environment and results of that
action. If the event registration is really a “throwaway” registration that you no longer
want after the event gets generated, cleaning up afterward can be complex.

Fortunately, PowerShell supports the -MaxTriggerCount parameter that lets you con‐
figure a limit on how many times the event should trigger. Once the event subscrip‐
tion reaches that limit, PowerShell automatically unregisters that event subscriber.

When dealing with temporary event subscriptions, the solution demonstrates one
additional step if your event subscription defines an -Action script block. PowerShell
does not automatically remove the job associated with that action, as it may be hold‐
ing important results. If you do not need these results, be sure to call the Remove-Job
cmdlet as well.

For a script that combines both of these steps, see the Register-TemporaryEvent
script included in this book’s examples.

See Also
Recipe 31.1, “Respond to Automatically Generated Events”

788 | Chapter 31: Event Handling

31.4 Forward Events from a Remote Computer
Problem
You have a client connected to a remote machine through PowerShell Remoting, and
you want to be notified when an event occurs on that machine.

Solution
Use any of PowerShell’s event registration cmdlets to subscribe to the event on the
remote machine. Then, use the -Forward parameter to tell PowerShell to forward
these events when they arrive:

PS > Get-Event
PS > $session = New-PSSession leeholmes1c23
PS > Enter-PSSession $session

[leeholmes1c23]: PS C:\> $timer = New-Object Timers.Timer
[leeholmes1c23]: PS C:\> $timer.Interval = 1000
[leeholmes1c23]: PS C:\> $timer.AutoReset = $false
[leeholmes1c23]: PS C:\> Register-ObjectEvent $timer Elapsed `
 -SourceIdentifier Timer.Elapsed -Forward
[leeholmes1c23]: PS C:\> $timer.Enabled = $true
[leeholmes1c23]: PS C:\> Exit-PSSession

PS > Get-Event

ComputerName : leeholmes1c23
RunspaceId : 053e6232-528a-4626-9b86-c50b8b762440
EventIdentifier : 1
Sender : System.Timers.Timer
SourceEventArgs : System.Management.Automation.ForwardedEventArgs
SourceArgs : {System.Timers.Timer, System.Timers.ElapsedEventArgs}
SourceIdentifier : Timer.Elapsed
TimeGenerated : 2/21/2010 11:01:54 PM
MessageData :

Discussion
PowerShell’s eventing infrastructure lets you define one of three possible actions
when you register for an event:

• Add the event notifications to the event queue.
• Automatically process the event notifications with an -Action script block.
• Forward the event notifications to a client computer.

The -Forward parameter on all of the event registration cmdlets enables this third
option. When you’re connected to a remote machine that has this type of behavior
enabled on an event registration, PowerShell will automatically forward those event

31.4 Forward Events from a Remote Computer | 789

notifications to your client machine. Using this technique, you can easily monitor
many remote computers for system changes that interest you.

For more information about registering for events, see Recipe 31.1. For more infor‐
mation about PowerShell Remoting, see Chapter 29.

See Also
Recipe 31.1, “Respond to Automatically Generated Events”

Chapter 29

31.5 Investigate Internal Event Action State
Problem
You want to investigate the internal environment or state of an event subscriber’s
action.

Solution
Retrieve the event subscriber and then interact with the Subscriber.Action

property:
PS > $null = Register-EngineEvent -SourceIdentifier Custom.Event `
 -Action {
 "Hello World"

 Write-Error "Got an Error"

 $SCRIPT:privateVariable = 10
 }

PS > $null = New-Event Custom.Event
PS > $subscriber = Get-EventSubscriber Custom.Event
PS > $subscriber.Action | Format-List

Module : __DynamicModule_f2b39042-e89a-49b1-b460-6211b9895acc
StatusMessage :
HasMoreData : True
Location :
Command :
 "Hello World"
 Write-Error "Got an Error"
 $SCRIPT:privateVariable = 10

JobStateInfo : Running
Finished : System.Threading.ManualResetEvent
InstanceId : b3fcceae-d878-4c8b-a53e-01873f2cfbea
Id : 1
Name : Custom.Event

790 | Chapter 31: Event Handling

ChildJobs : {}
Output : {Hello World}
Error : {Got an Error}
Progress : {}
Verbose : {}
Debug : {}
Warning : {}
State : Running

PS > $subscriber.Action.Error

Write-Error:
Line |
 2 | -Action {
 | ~
 | Got an Error

Discussion
When you supply an -Action script block to any of the event registration cmdlets,
PowerShell creates a PowerShell job to let you interact with that action. When inter‐
acting with this job, you have access to the job’s output, errors, progress, verbose out‐
put, debug output, and warnings.

For more information about working with PowerShell jobs, see Recipe 1.6.

In addition to the job interface, PowerShell’s event system generates a module to iso‐
late your script block from the rest of the system—for the benefit of both you and the
system.

When you want to investigate the internal state of your action, PowerShell surfaces
this state through the action’s Module property. By passing the module to the invoke
operator, you can invoke commands from within that module:

PS > $module = $subscriber.Action.Module
PS > & $module { dir variable:\privateVariable }

Name Value
---- -----
privateVariable 10

To make this even easier, you can use the Enter-Module script given by Recipe 11.9.

See Also
Recipe 1.6, “Invoke a Long-Running or Background Command”

Recipe 11.9, “Diagnose and Interact with Internal Module State”

Recipe 31.1, “Respond to Automatically Generated Events”

31.5 Investigate Internal Event Action State | 791

31.6 Use a Script Block as a .NET Delegate or Event
Handler
Problem
You want to use a PowerShell script block to directly handle a .NET event or delegate.

Solution
For objects that support a .NET delegate, simply assign the script block to that
delegate:

$replacer = {
 param($match)

 $chars = $match.Groups[0].Value.ToCharArray()
 [Array]::Reverse($chars)
 $chars -join ''
}

PS > $regex = [Regex] "\w+"
PS > $regex.Replace("Hello World", $replacer)
olleH dlroW

To have a script block directly handle a .NET event, call that object’s Add_Event()
method:

$form.Add_Shown({ $form.Activate(); $textbox.Focus() })

Discussion
When working with some .NET developer APIs, you might run into a method that
takes a delegate as one of its arguments. Delegates in .NET act as a way to provide
custom logic to a .NET method that accepts them. For example, the solution supplies
a custom delegate to the regular expression Replace() method to reverse the charac‐
ters in the match—something not supported by regular expressions at all.

As another example, many array classes support custom delegates for searching, sort‐
ing, filtering, and more. In this example, we create a custom sorter to sort an array by
the length of its elements:

PS > $list = New-Object System.Collections.Generic.List[String]
PS > $list.Add("1")
PS > $list.Add("22")
PS > $list.Add("3333")
PS > $list.Add("444")
PS > $list.Add("5")
PS > $list.Sort({ $args[0].Length - $args[1].Length })
PS > $list
5

792 | Chapter 31: Event Handling

1
22
444
3333

Perhaps the most useful delegate per character is the ability to customize the behavior
of the .NET Framework when it encounters an invalid certificate in a web network
connection. This happens, for example, when you try to connect to a website that has
an expired SSL certificate. The .NET Framework lets you override this behavior
through a delegate that you supply to the ServerCertificateValidationCallback
property in the System.Net.ServicePointManager class. Your delegate should return
$true if the certificate should be accepted and $false otherwise. To accept all certifi‐
cates during a development session, simply run the following statement:

[System.Net.ServicePointManager]::ServerCertificateValidationCallback = { $true }

In addition to delegates, you can also assign PowerShell script blocks directly to
events on .NET objects.

Normally, you’ll want to use PowerShell eventing to support this scenario. PowerShell
eventing provides a very rich set of cmdlets that let you interact with events from
many technologies: .NET, WMI, and the PowerShell engine itself. When you use
PowerShell eventing to handle .NET events, PowerShell protects you from the dan‐
gers of having multiple script blocks running at once and keeps them from interfering
with the rest of your PowerShell session.

However, when you write a self-contained script that uses events to handle events in a
WinForms application, directly assigning script blocks to those events can be a much
more lightweight development experience. For an example of this approach, see
Recipe 13.10.

For more information about PowerShell’s event handling, see Recipe 31.1.

See Also
Recipe 13.10, “Add a Graphical User Interface to Your Script”

Recipe 31.1, “Respond to Automatically Generated Events”

31.6 Use a Script Block as a .NET Delegate or Event Handler | 793

PART V

References

Appendix A, PowerShell Language and Environment
Appendix B, Regular Expression Reference
Appendix C, XPath Quick Reference
Appendix D, .NET String Formatting
Appendix E, .NET DateTime Formatting
Appendix F, Selected .NET Classes and Their Uses
Appendix G, WMI Reference
Appendix H, Selected COM Objects and Their Uses
Appendix I, Selected Events and Their Uses
Appendix J, Standard PowerShell Verbs

APPENDIX A

PowerShell Language and Environment

Commands and Expressions
PowerShell breaks any line that you enter into its individual units (tokens), and then
interprets each token in one of two ways: as a command or as an expression. The
difference is subtle: expressions support logic and flow control statements (such as
if, foreach, and throw), whereas commands do not.

You will often want to control the way that PowerShell interprets your statements, so
Table A-1 lists the options available to you.

Table A-1. PowerShell evaluation controls
Statement Explanation

Precedence control: () Forces the evaluation of a command or expression, similar to the way that parentheses are
used to force the order of evaluation in a mathematical expression.
For example:

PS > 5 * (1 + 2)
15

PS > (dir).Count
227

797

Statement Explanation

Expression subparse: $() Forces the evaluation of a command or expression, similar to the way that parentheses are
used to force the order of evaluation in a mathematical expression.
However, a subparse is as powerful as a subprogram and is required only when the
subprogram contains logic or flow control statements.
This statement is also used to expand dynamic information inside a string.
For example:

PS > "The answer is (2+2)"
The answer is (2+2)

PS > "The answer is $(2+2)"
The answer is 4

PS > $value = 10
PS > $result = $(
 if($value -gt 0) { $true }
 else { $false })
PS > $result
True

List evaluation: @() Forces an expression to be evaluated as a list. If it is already a list, it will remain a list. If it is
not, PowerShell temporarily treats it as one.
For example:

PS > "Hello".Length
5

PS > @("Hello").Length
1

PS > ([PSCustomObject] @{
 Property1 = "Hello"
 Count = 100 }).Count
100

PS > @([PSCustomObject] @{
 Property1 = "Hello"
 Count = 100 }).Count
1

DATA evaluation: DATA { } Evaluates the given script block in the context of the PowerShell data language. The data
language supports only data-centric features of the PowerShell language.
For example:

PS > DATA { 1 + 1 }
2

PS > DATA { $myVariable = "Test" }
Assignment statements are not
allowed in restricted language
mode or a Data section.

798 | Appendix A: PowerShell Language and Environment

Comments
To create single-line comments, begin a line with the # character. To create a block (or
multiline) comment, surround the region with the characters <# and #>.

This is a regular comment

<# This is a block comment

function MyTest
{
 "This should not be considered a function"
}

$myVariable = 10;

Block comment ends
#>

This is regular script again

Help Comments
PowerShell creates help for your script or function by looking at its comments. If the
comments include any supported help tags, PowerShell adds those to the help for
your command.

Comment-based help supports the following tags, which are all case-insensitive:

.SYNOPSIS

A short summary of the command, ideally a single sentence.

.DESCRIPTION

A more detailed description of the command.

.PARAMETER name
A description of parameter name, with one for each parameter you want to
describe. While you can write a .PARAMETER comment for each parameter, Pow‐
erShell also supports comments written directly above the parameter. Putting
parameter help alongside the actual parameter makes it easier to read and
maintain.

.EXAMPLE

An example of this command in use, with one for each example you want to pro‐
vide. PowerShell treats the line immediately beneath the .EXAMPLE tag as the
example command. If this line doesn’t contain any text that looks like a prompt,
PowerShell adds a prompt before it. It treats lines that follow the initial line as
additional output and example commentary.

PowerShell Language and Environment | 799

.INPUTS

A short summary of pipeline input(s) supported by this command. For each
input type, PowerShell’s built-in help follows this convention:

System.String
 You can pipe a string that contains a path to Get-ChildItem.

.OUTPUTS

A short summary of items generated by this command. For each output type,
PowerShell’s built-in help follows this convention:

System.ServiceProcess.ServiceController
 This cmdlet returns objects that represent the services on the computer.

.NOTES

Any additional notes or remarks about this command.

.LINK

A link to a related help topic or command, with one .LINK tag per link. If the
related help topic is a URL, PowerShell launches that URL when the user supplies
the -Online parameter to Get-Help for your command.

Although these are all of the supported help tags you are likely to use, comment-
based help also supports tags for some of Get-Help’s more obscure features:

• .COMPONENT

• .ROLE

• .FUNCTIONALITY

• .FORWARDHELPTARGETNAME

• .FORWARDHELPCATEGORY

• .REMOTEHELPRUNSPACE

• .EXTERNALHELP

For more information about these tags, type Get-Help about_Comment_Based_Help.

Variables
PowerShell provides several ways to define and access variables, as summarized in
Table A-2.

800 | Appendix A: PowerShell Language and Environment

Table A-2. PowerShell variable syntaxes
Syntax Meaning

$simpleVariable = "Value" A simple variable name. The variable name must consist of
alphanumeric characters. Variable names are not case-sensitive.

$variable1, $variable2 =
"Value1", "Value2"

Multiple variable assignment. PowerShell populates each variable from
the value in the corresponding position on the righthand side. Extra
values are assigned as a list to the last variable listed.

${ arbitrary!@#@\#{var}iable } =
"Value"

An arbitrary variable name. The variable name must be surrounded by
curly braces, but it may contain any characters. Curly braces in the
variable name must be escaped with a backtick (`).

${c:\filename. extension} Variable “Get and Set Content” syntax. This is similar to the arbitrary
variable name syntax. If the name corresponds to a valid PowerShell
path, you can get and set the content of the item at that location by
reading and writing to the variable.

[datatype] $variable = "Value" Strongly typed variable. Ensures that the variable may contain only
data of the type you declare. PowerShell throws an error if it cannot
coerce the data to this type when you assign it.

[constraint] $variable = "Value" Constrained variable. Ensures that the variable may contain only data
that passes the supplied validation constraints.

PS > [ValidateLength(4, 10)] $a = "Hello"

The supported validation constraints are the same as those supported
as parameter validation attributes.

$SCOPE:variable Gets or sets the variable at that specific scope. Valid scope names are
global (to make a variable available to the entire shell), script
(to make a variable available only to the current script or persistent
during module commands), local (to make a variable available only
to the current scope and subscopes), and private (to make a
variable available only to the current scope). The default scope is the
current scope: global when defined interactively in the shell,
script when defined outside any functions or script blocks in a
script, and local elsewhere.

New-Item Variable:\variable
-Value value

Creates a new variable using the variable provider.

Get-Item Variable:\variable

Get-Variable variable
Gets the variable using the variable provider or Get-Variable
cmdlet. This lets you access extra information about the variable, such
as its options and description.

New-Variable variable -Option option
-Value value

Creates a variable using the New-Variable cmdlet. This lets you
provide extra information about the variable, such as its options and
description.

PowerShell Language and Environment | 801

Unlike some languages, PowerShell rounds (rather than truncates)
numbers when it converts them to the [int] data type:

PS > (3/2)
1.5
PS > [int] (3/2)
2

To have PowerShell truncate a number, see Chapter 6.

Booleans
Boolean (true or false) variables are most commonly initialized to their literal values
of $true and $false. When PowerShell evaluates variables as part of a Boolean
expression (for example, an if statement), though, it maps them to a suitable Boolean
representation, as listed in Table A-3.

Table A-3. PowerShell Boolean interpretations
Result Boolean representation

$true True

$false False

$null False

Nonzero number True

Zero False

Nonempty string True

Empty string False

Empty array False

Single-element array The Boolean representation of its single element

Multi-element array True

Hashtable (either empty or not) True

Strings
PowerShell offers several facilities for working with plain-text data.

Literal and Expanding Strings
To define a literal string (one in which no variable or escape expansion occurs),
enclose it in single quotes:

$myString = 'hello `t $ENV:SystemRoot'

$myString gets the actual value of hello `t $ENV:SystemRoot.

802 | Appendix A: PowerShell Language and Environment

To define an expanding string (one in which variable and escape expansion occur),
enclose it in double quotes:

$myString = "hello `t $ENV:SystemRoot"

$myString gets a value similar to hello C:\WINDOWS.

To include a single quote in a single-quoted string or a double quote in a double-
quoted string, include two of the quote characters in a row:

PS > "Hello ""There""!"
Hello "There"!
PS > 'Hello ''There''!'
Hello 'There'!

To include a complex expression inside an expanding string, use a
subexpression. For example:

$prompt = "$(get-location) >"

$prompt gets a value similar to c:\temp >.
Accessing the properties of an object requires a subexpression:

$version = "Current PowerShell version is:"
 $PSVersionTable.PSVersion.Major

$version gets a value similar to:
Current PowerShell version is: 3

Here Strings
To define a here string (one that may span multiple lines), place the two characters @"
at the beginning and the two characters "@ on their own line at the end.

For example:
$myHereString = @"
This text may span multiple lines, and may
contain "quotes."
"@

Here strings may be of either the literal (single-quoted) or expanding (double-
quoted) variety.

Escape Sequences
PowerShell supports escape sequences inside strings, as listed in Table A-4.

PowerShell Language and Environment | 803

Table A-4. PowerShell escape sequences
Sequence Meaning

`0 The null character. Often used as a record separator.

`a The alarm character. Generates a beep when displayed on the console.

`b The backspace character. The previous character remains in the string but is overwritten
when displayed on the console.

`e The escape character. Marks the beginning of an ANSI escape sequence such as "`e[2J“.

`f A form feed. Creates a page break when printed on most printers.

`n A newline.

`r A carriage return. Newlines in PowerShell are indicated entirely by the `n character, so this is
rarely required.

`t A tab.

`u{hex-code} A unicode character literal. Creates a character represented by the specified hexadecimal
Unicode code point such as "`u{2265}" (≥).

`v A vertical tab.

'' (two single quotes) A single quote, when in a literal string.

"" (two double quotes) A double quote, when in an expanding string.

`any other character That character, taken literally.

Numbers
PowerShell offers several options for interacting with numbers and numeric data.

Simple Assignment
To define a variable that holds numeric data, simply assign it as you would other vari‐
ables. PowerShell automatically stores your data in a format that is sufficient to accu‐
rately hold it:

$myInt = 10

$myUnsignedInt = 10u
$myUnsignedInt = [uint] 10

$myInt gets the value of 10, as a (32-bit) integer. $myUnsignedInt gets the value of 10
as an unsigned integer.

$myDouble = 3.14

$myDouble gets the value of 3.14, as a (53-bit, 9 bits of precision) double.

To explicitly assign a number as a byte (8-bit) or short (16-bit) number, use the y or s
suffixes. Prefixing either with u creates an unsigned version of that data type. You can
also use the [byte], [int16], and [short] casts:

804 | Appendix A: PowerShell Language and Environment

$myByte = 127y
$myByte = [byte] 127
$myUnsignedByte = 127uy

$myShort = 32767s
$myShort = [int16] 32767
$myShort = [short] 32767

$myUnsignedShort = 32767us
$myUnsignedShort = [ushort] 32767

To explicitly assign a number as a long (64-bit) integer or decimal (96-bit, 96 bits of
precision), use the long (l) and decimal (d) suffixes. You can also use the [long] cast:

$myLong = 2147483648l
$myLong = [long] 2147483648

$myUnsignedLong = 2147483648ul
$myUnsignedLong = [ulong] 2147483648

$myDecimal = 0.999d

To explicitly assign a number as a BigInteger (an arbitrary large integer with no upper
or lower bounds), use the BigInteger (n) suffix:

$myBigInt = 99999999999999999999999999999n

PowerShell also supports scientific notation, where e<number> represents multiplying
the original number by the <number> power of 10:

$myPi = 3141592653e-9

$myPi gets the value of 3.141592653.

The data types in PowerShell (integer, long integer, double, and decimal) are built on
the .NET data types of the same names.

Administrative Numeric Constants
Since computer administrators rarely get the chance to work with numbers in even
powers of 10, PowerShell offers the numeric constants of pb, tb, gb, mb, and kb to rep‐
resent petabytes (1,125,899,906,842,624), terabytes (1,099,511,627,776), gigabytes
(1,073,741,824), megabytes (1,048,576), and kilobytes (1,024), respectively:

PS > $downloadTime = (1gb + 250mb) / 120kb
PS > $downloadTime
10871.4666666667

You can combine these numeric multipliers with a data type as long as the result fits
in that data type, such as 250ngb.

PowerShell Language and Environment | 805

Hexadecimal and Other Number Bases
To directly enter a hexadecimal number, use the hexadecimal prefix 0x:

$myErrorCode = 0xFE4A

$myErrorCode gets the integer value 65098.

To directly enter a binary number, use the binary prefix 0b:
$myBinary = 0b101101010101

$myBinary gets the integer value of 2901.

If you don’t know the hex or binary value as a constant or need to convert into octal,
use the [Convert] class from the .NET Framework. The first parameter is the value
to convert, and the second parameter is the base (2, 8, 10, or 16):

$myOctal = [Convert]::ToInt32("1234567", 8)

$myOctal gets the integer value of 342391.
$myHexString = [Convert]::ToString(65098, 16)

$myHexString gets the string value of fe4a.
$myBinaryString = [Convert]::ToString(12345, 2)

$myBinaryString gets the string value of 11000000111001.

See “Working with the .NET Framework” on page 833 to learn
more about using PowerShell to interact with the .NET Frame‐
work.

Large Numbers
To work with extremely large numbers, use the BigInt class:

[BigInt]::Pow(12345, 123)

To do math with several large numbers, use the [BigInt] cast (or the n BigInt data
type) for all operands:

PS > 98123498123498123894n * 98123498123498123894n
9628220883992139841085109029337773723236

PS > $val = "98123498123498123894"
PS > ([BigInt] $val) * ([BigInt] $val)
9628220883992139841085109029337773723236

806 | Appendix A: PowerShell Language and Environment

Imaginary and Complex Numbers
To work with imaginary and complex numbers, use the System.Numerics.Complex
class:

PS > [System.Numerics.Complex]::ImaginaryOne *
 [System.Numerics.Complex]::ImaginaryOne | Format-List

Real : -1
Imaginary : 0
Magnitude : 1
Phase : 3.14159265358979

Arrays and Lists
Array Definitions
PowerShell arrays hold lists of data. The @() (array cast) syntax tells PowerShell to
treat the contents between the parentheses as an array. To create an empty array, type:

$myArray = @()

To define a nonempty array, use a comma to separate its elements:
$mySimpleArray = 1,"Two",3.14

Arrays may optionally be only a single element long:
$myList = ,"Hello"

Or, alternatively (using the array cast syntax):
$myList = @("Hello")

Elements of an array don’t need to be all of the same data type, unless you declare it as
a strongly typed array. In the following example, the outer square brackets define a
strongly typed variable (as mentioned in “Variables” on page 800), and int[] repre‐
sents an array of integers:

[int[]] $myArray = 1,2,3.14

In this mode, PowerShell generates an error if it cannot convert any of the elements
in your list to the required data type. In this case, it rounds 3.14 to the integer value
of 3:

PS > $myArray[2]
3

To ensure that PowerShell treats collections of uncertain length
(such as history lists or directory listings) as a list, use the list eval‐
uation syntax @(…) described in “Commands and Expressions” on
page 797.

PowerShell Language and Environment | 807

Arrays can also be multidimensional jagged arrays (arrays within arrays):
$multiDimensional = @(
 (1,2,3,4),
 (5,6,7,8)
)

$multiDimensional[0][1] returns 2, coming from row 0, column 1.

$multiDimensional[1][3] returns 8, coming from row 1, column 3.

To define a multidimensional array that is not jagged, create a multidimensional
instance of the .NET type. For integers, that would be an array of System.Int32:

$multidimensional = New-Object "Int32[,]" 2,4
$multidimensional[0,1] = 2
$multidimensional[1,3] = 8

Array Access
To access a specific element in an array, use the [] operator. PowerShell numbers
your array elements starting at zero. Using $myArray = 1,2,3,4,5,6 as an example:

$myArray[0]

returns 1, the first element in the array.
$myArray[2]

returns 3, the third element in the array.
$myArray[-1]

returns 6, the last element of the array.
$myArray[-2]

returns 5, the second-to-last element of the array.

You can also access ranges of elements in your array:
PS > $myArray[0..2]
1
2
3

returns elements 0 through 2, inclusive.
PS > $myArray[-1..2]
6
1
2
3

returns the final element, wraps around, and returns elements 0 through 2, inclusive.
PowerShell wraps around because the first number in the range is negative, and the
second number in the range is positive.

808 | Appendix A: PowerShell Language and Environment

PS > $myArray[-1..-3]
6
5
4

returns the last element of the array through to the third-to-last element in the array,
in descending order. PowerShell does not wrap around (and therefore scans back‐
ward in this case) because both numbers in the range share the same sign.

If the array being accessed might be null, you can use the null conditional array access
operator (?[]). The result of the expression will be null if the array being accessed did
not exist. It will be the element at the specified index otherwise:

(Get-Process -id 0).Modules?[0]

Array Slicing
You can combine several of the statements in the previous section at once to extract
more complex ranges from an array. Use the + sign to separate array ranges from
explicit indexes:

$myArray[0,2,4]

returns the elements at indices 0, 2, and 4.
$myArray[0,2+4..5]

returns the elements at indices 0, 2, and 4 through 5, inclusive.
$myArray[,0+2..3+0,0]

returns the elements at indices 0, 2 through 3 inclusive, 0, and 0 again.

You can use the array slicing syntax to create arrays as well:
$myArray = ,0+2..3+0,0

Hashtables (Associative Arrays)
Hashtable Definitions
PowerShell hashtables (also called associative arrays) let you associate keys with val‐
ues. To define a hashtable, use the syntax:

$myHashtable = @{}

You can initialize a hashtable with its key/value pairs when you create it. PowerShell
assumes that the keys are strings, but the values may be any data type.

$myHashtable = @{ Key1 = "Value1"; "Key 2" = 1,2,3; 3.14 = "Pi" }

PowerShell Language and Environment | 809

To define a hashtable that retains its insertion order, use the [ordered] cast:
$orderedHash = [ordered] @{}
$orderedHash["NewKey"] = "Value"

Hashtable Access
To access or modify a specific element in an associative array, you can use either the
array-access or property-access syntax:

$myHashtable["Key1"]

returns "Value1".
$myHashtable."Key 2"

returns the array 1,2,3.
$myHashtable["New Item"] = 5

adds "New Item" to the hashtable.
$myHashtable."New Item" = 5

also adds "New Item" to the hashtable.

XML
PowerShell supports XML as a native data type. To create an XML variable, cast a
string to the [xml] type:

$myXml = [xml] @"
<AddressBook>
 <Person contactType="Personal">
 <Name>Lee</Name>
 <Phone type="home">555-1212</Phone>
 <Phone type="work">555-1213</Phone>
 </Person>
 <Person contactType="Business">
 <Name>Ariel</Name>
 <Phone>555-1234</Phone>
 </Person>
</AddressBook>
"@

PowerShell exposes all child nodes and attributes as properties. When it does this,
PowerShell automatically groups children that share the same node type:

$myXml.AddressBook

returns an object that contains a Person property.
$myXml.AddressBook.Person

810 | Appendix A: PowerShell Language and Environment

returns a list of Person nodes. Each person node exposes contactType, Name, and
Phone as properties.

$myXml.AddressBook.Person[0]

returns the first Person node.
$myXml.AddressBook.Person[0].ContactType

returns Personal as the contact type of the first Person node.

Simple Operators
Once you have defined your data, the next step is to work with it.

Arithmetic Operators
The arithmetic operators let you perform mathematical operations on your data, as
shown in Table A-5.

The System.Math class in the .NET Framework offers many power‐
ful operations in addition to the native operators supported by
PowerShell:

PS > [Math]::Pow([Math]::E, [Math]::Pi)
23.1406926327793

See “Working with the .NET Framework” on page 833 to learn
more about using PowerShell to interact with the .NET
Framework.

Table A-5. PowerShell arithmetic operators
Operator Meaning
+ The addition operator:

$leftValue + $rightValue

When used with numbers, returns their sum.
When used with strings, returns a new string created by appending the second string to the first.
When used with arrays, returns a new array created by appending the second array to the first.
When used with hashtables, returns a new hashtable created by merging the two hashtables. Since
hashtable keys must be unique, PowerShell returns an error if the second hashtable includes any keys
already defined in the first hashtable.
When used with any other type, PowerShell uses that type’s addition operator (op_Addition) if it
implements one.

PowerShell Language and Environment | 811

Operator Meaning
- The subtraction operator:

$leftValue - $rightValue

When used with numbers, returns their difference.
This operator does not apply to strings, arrays, or hashtables.
When used with any other type, PowerShell uses that type’s subtraction operator (op_Subtrac
tion) if it implements one.

* The multiplication operator:
$leftValue * $rightValue

When used with numbers, returns their product.
When used with strings ("=" * 80), returns a new string created by appending the string to itself the
number of times you specify.
When used with arrays (1..3 * 7), returns a new array created by appending the array to itself the
number of times you specify.
This operator does not apply to hashtables.
When used with any other type, PowerShell uses that type’s multiplication operator (op_Multiply)
if it implements one.

/ The division operator:
$leftValue / $rightValue

When used with numbers, returns their quotient.
This operator does not apply to strings, arrays, or hashtables.
When used with any other type, PowerShell uses that type’s division operator (op_Division) if it
implements one.

% The modulus operator:
$leftValue % $rightValue

When used with numbers, returns the remainder of their division.
This operator does not apply to strings, arrays, or hashtables.
When used with any other type, PowerShell uses that type’s modulus operator (op_Modulus) if it
implements one.

+=
-=
*=
/=
%=

Assignment operators:
$variable operator= value

These operators match the simple arithmetic operators (+, -, *, /, and %) but store the result in the
variable on the lefthand side of the operator. It is a short form for

$variable = $variable operator value.

Logical Operators
The logical operators let you compare Boolean values, as shown in Table A-6.

812 | Appendix A: PowerShell Language and Environment

Table A-6. PowerShell logical operators
Operator Meaning

-and Logical AND:
$leftValue -and $rightValue

Returns $true if both lefthand and righthand arguments evaluate to $true. Returns $false
otherwise.
You can combine several -and operators in the same expression:

$value1 -and $value2 -and $value3 …

PowerShell implements the -and operator as a short-circuit operator and evaluates arguments
only if all arguments preceding it evaluate to $true.

-or Logical OR:
$leftValue -or $rightValue

Returns $true if the lefthand or righthand arguments evaluate to $true. Returns $false
otherwise.
You can combine several -or operators in the same expression:

$value1 -or $value2 -or $value3 ...

PowerShell implements the -or operator as a short-circuit operator and evaluates arguments
only if all arguments preceding it evaluate to $false.

-xor Logical exclusive OR:
$leftValue -xor $rightValue

Returns $true if either the lefthand or righthand argument evaluates to $true, but not if both
do.
Returns $false otherwise.

-not

!

Logical NOT:
-not $value

Returns $true if its righthand (and only) argument evaluates to $false. Returns $false
otherwise.

Binary Operators
The binary operators, listed in Table A-7, let you apply the Boolean logical operators
bit by bit to the operator’s arguments. When comparing bits, a 1 represents $true,
whereas a 0 represents $false.

PowerShell Language and Environment | 813

Table A-7. PowerShell binary operators
Operator Meaning

-band Binary AND:
$leftValue -band $rightValue

Returns a number where bits are set to 1 if the bits of the lefthand and righthand arguments at
that position are both 1. All other bits are set to 0.
For example:

PS > $int1 = 0b110110110
PS > $int2 = 0b010010010
PS > $result = $int1 -band $int2
PS > [Convert]::ToString($result, 2)
10010010

-bor Binary OR:
$leftValue -bor $rightValue

Returns a number where bits are set to 1 if either of the bits of the lefthand and righthand
arguments at that position is 1. All other bits are set to 0.
For example:

PS > $int1 = 0b110110110
PS > $int2 = 0b010010010
PS > $result = $int1 -bor $int2
PS > [Convert]::ToString($result, 2)
110110110

-bxor Binary exclusive OR:
$leftValue -bxor $rightValue

Returns a number where bits are set to 1 if either of the bits of the lefthand and righthand
arguments at that position is 1, but not if both are. All other bits are set to 0.
For example:

PS > $int1 = 0b110110110
PS > $int2 = 0b010010010
PS > $result = $int1 -bxor $int2
PS > [Convert]::ToString($result, 2)
100100100

-bnot Binary NOT:
-bnot $value

Returns a number where bits are set to 1 if the bit of the righthand (and only) argument at that
position is set to 1. All other bits are set to 0.
For example:

PS > $int1 = 0b110110110
PS > $result = -bnot $int1
PS > [Convert]::ToString($result, 2)
11111111111111111111111001001001

814 | Appendix A: PowerShell Language and Environment

Operator Meaning

-shl Binary shift left:
$value -shl $count

Shifts the bits of a number to the left $count places. Bits on the righthand side are set to 0.
For example:

PS > $int1 = 438
PS > [Convert]::ToString($int1, 2)
110110110

PS > $result = $int1 -shl 5
PS > [Convert]::ToString($result, 2)
11011011000000

-shr Binary shift right:
$value -shr $count

Shifts the bits of a number to the right $count places. For signed values, bits on the lefthand
side have their sign preserved.
For example:

PS > $int1 = -2345
PS > [Convert]::ToString($int1, 2)
11111111111111111111011011010111

PS > $result = $int1 -shr 3
PS > [Convert]::ToString($result, 2)
11111111111111111111111011011010

Other Operators
PowerShell supports several other simple operators, as listed in Table A-8.

PowerShell Language and Environment | 815

Table A-8. Other PowerShell operators
Operator Meaning

-replace The replace operator:
"target" -replace "pattern","replacement"

Returns a new string, where the text in "target" that matches the regular expression "pat
tern" has been replaced with the replacement text "replacement".

"target" -replace "pattern",{ scriptblock }

Returns a new string, where the text in "target" that matches the regular expression "pat
tern" has been replaced with the output value of the script block supplied. In the script block,
the $_ variable represents the current System.Text.RegularExpressions.Match.
By default, PowerShell performs a case-insensitive comparison. The -ireplace operator makes
this case-insensitivity explicit, whereas the -creplace operator performs a case-sensitive
comparison.
If the regular expression pattern contains named captures or capture groups, the replacement
string may reference those as well.
For example:

PS > "Hello World" -replace "(.*) (.*)",'$2 $1'
World Hello

If "target" represents an array, the -replace operator operates on each element of that
array.
For more information on the details of regular expressions, see Appendix B.

-f The format operator:
"Format String" -f values

Returns a string where the format items in the format string have been replaced with the text
equivalent of the values in the value array.
For example:

PS > "{0:n0}" -f 1000000000
1,000,000,000

The format string for the format operator is exactly the format string supported by the .NET
String.Format method.
For more details about the syntax of the format string, see Appendix D.

-as The type conversion operator:
$value -as [Type]

Returns $value cast to the given .NET type. If this conversion is not possible, PowerShell returns
$null.
For example:

PS > 3/2 -as [int]
2
PS > $result = "Hello" -as [int]
PS > $result -eq $null
True

816 | Appendix A: PowerShell Language and Environment

Operator Meaning

-split The unary split operator:
-split "Input String"

Breaks the given input string into an array, using whitespace (\s+) to identify the boundary
between elements. It also trims the results.
For example:

PS > -split " Hello World "
Hello
World

The binary split operator:
"Input String" -split "delimiter",maximum,options
"Input String" -split { Scriptblock },maximum

Breaks the given input string into an array, using the given delimiter or script block to
identify the boundary between elements.
Delimiter is interpreted as a regular expression match. Scriptblock is called for each
character in the input, and a split is introduced when it returns $true.
Maximum defines the maximum number of elements to be returned, leaving unsplit elements as
the last item. This item is optional. Use "0" for unlimited if you want to provide options but not
alter the maximum.
Options define special behavior to apply to the splitting behavior. The possible enumeration
values are:

• SimpleMatch: Split on literal strings, rather than regular expressions they may
represent.

• RegexMatch: Split on regular expressions. This option is the default.

• CultureInvariant: Does not use culture-specific capitalization rules when doing a
case-insensitive split.

• IgnorePatternWhitespace: Ignores spaces and regular expression comments in the
split pattern.

• Multiline: Allows the ^ and $ characters to match line boundaries, not just the
beginning and end of the content.

• Singleline: Treats the ^ and $ characters as the beginning and end of the content.
This option is the default.

• IgnoreCase: Ignores the capitalization of the content when searching for matches.

• ExplicitCapture: In a regular expression match, only captures named groups. This
option has no impact on the -split operator.

For example:
PS > "1a2B3" -split "[a-z]+",0,"IgnoreCase"
1
2
3

PowerShell Language and Environment | 817

Operator Meaning

-join The unary join operator:
-join ("item1","item2",...,"item_n")

Combines the supplied items into a single string, using no separator. For example:
PS > -join ("a","b")
ab

The binary join operator:
("item1","item2",...,"item_n") -join Delimiter

Combines the supplied items into a single string, using Delimiter as the separator. For
example:

PS > ("a","b") -join ", "
a, b

Comparison Operators
The PowerShell comparison operators, listed in Table A-9, let you compare expres‐
sions against each other. By default, PowerShell’s comparison operators are case-
insensitive. For all operators where case sensitivity applies, the -i prefix makes this
case insensitivity explicit, whereas the -c prefix performs a case-sensitive compari‐
son.

Table A-9. PowerShell comparison operators
Operator Meaning

-eq The equality operator:
$leftValue -eq $rightValue

For all primitive types, returns $true if $leftValue and $rightValue are equal.
When used with arrays, returns all elements in $leftValue that are equal to $rightValue.
When used with any other type, PowerShell uses that type’s Equals() method if it implements
one.

-ne The negated equality operator:
$leftValue -ne $rightValue

For all primitive types, returns $true if $leftValue and $rightValue are not equal.
When used with arrays, returns all elements in $leftValue that are not equal to $right
Value.
When used with any other type, PowerShell returns the negation of that type’s Equals()
method if it implements one.

818 | Appendix A: PowerShell Language and Environment

Operator Meaning

-ge The greater-than-or-equal operator:
$leftValue -ge $rightValue

For all primitive types, returns $true if $leftValue is greater than or equal to $right
Value.
When used with arrays, returns all elements in $leftValue that are greater than or equal to
$rightValue.
When used with any other type, PowerShell returns the result of that object’s Compare()
method if it implements one. If the method returns a number greater than or equal to zero, the
operator returns $true.

-gt The greater-than operator:
$leftValue -gt $rightValue

For all primitive types, returns $true if $leftValue is greater than $rightValue.
When used with arrays, returns all elements in $leftValue that are greater than $right
Value.
When used with any other type, PowerShell returns the result of that object’s Compare()
method if it implements one. If the method returns a number greater than zero, the operator
returns $true.

-in The in operator:
$value -in $list

Returns $true if the value $value is contained in the list $list. That is, if $item -eq
$value returns $true for at least one item in the list. This is equivalent to the -contains
operator with the operands reversed.

-notin The negated in operator:
Returns $true when the -in operator would return $false.

-lt The less-than operator:
$leftValue -lt $rightValue

For all primitive types, returns $true if $leftValue is less than $rightValue.
When used with arrays, returns all elements in $leftValue that are less than $right
Value.
When used with any other type, PowerShell returns the result of that object’s Compare()
method if it implements one. If the method returns a number less than zero, the operator returns
$true.

-le The less-than-or-equal operator:
$leftValue -le $rightValue

For all primitive types, returns $true if $leftValue is less than or equal to $rightValue.
When used with arrays, returns all elements in $leftValue that are less than or equal to
$rightValue.
When used with any other type, PowerShell returns the result of that object’s Compare()
method if it implements one. If the method returns a number less than or equal to zero, the
operator returns $true.

PowerShell Language and Environment | 819

Operator Meaning

-like The like operator:
$leftValue -like Pattern

Evaluates the pattern against the target, returning $true if the simple match is successful.
When used with arrays, returns all elements in $leftValue that match Pattern.
The -like operator supports the following simple wildcard characters:

• ?: Any single unspecified character

• *: Zero or more unspecified characters

• [a-b]: Any character in the range of a–b

• [ab]: The specified characters a or b

For example:
PS > "Test" -like "[A-Z]e?[tr]"
True

-notlike The negated like operator:
Returns $true when the -like operator would return $false.

-match The match operator:
"Target" -match Regular Expression

Evaluates the regular expression against the target, returning $true if the match is successful.
Once complete, PowerShell places the successful matches in the $matches variable.
When used with arrays, returns all elements in Target that match Regular Expression.
The $matches variable is a hashtable that maps the individual matches to the text they match.
0 is the entire text of the match, 1 and on contain the text from any unnamed captures in the
regular expression, and string values contain the text from any named captures in the regular
expression.
For example:

PS > "Hello World" -match "(.*) (.*)"
True
PS > $matches[1]
Hello

For more information on the details of regular expressions, see Appendix B.

-notmatch The negated match operator:
Returns $true when the -match operator would return $false.
The -notmatch operator still populates the $matches variable with the results of match.

-contains The contains operator:
$list -contains $value

Returns $true if the list specified by $list contains the value $value—that is, if $item
-eq $value returns $true for at least one item in the list. This is equivalent to the -in
operator with the operands reversed.

-notcontains The negated contains operator:
Returns $true when the -contains operator would return $false.

820 | Appendix A: PowerShell Language and Environment

Operator Meaning

-is The type operator:
$leftValue -is [type]

Returns $true if $value is (or extends) the specified .NET type.

-isnot The negated type operator:
Returns $true when the -is operator would return $false.

Conditional Statements
Conditional statements in PowerShell let you change the flow of execution in your
script.

if, elseif, and else Statements
if(condition)
{
 statement block
}
elseif(condition)
{
 statement block
}
else
{
 statement block
}

If condition evaluates to $true, PowerShell executes the statement block you pro‐
vide. Then, it resumes execution at the end of the if/elseif/else statement list.
PowerShell requires the enclosing braces around the statement block, even if the
statement block contains only one statement.

See “Simple Operators” on page 811 and “Comparison Operators”
on page 818 for a discussion on how PowerShell evaluates expres‐
sions as conditions.

If condition evaluates to $false, PowerShell evaluates any following (optional)
elseif conditions until one matches. If one matches, PowerShell executes the state‐
ment block associated with that condition, and then resumes execution at the end of
the if/elseif/else statement list.

For example:
$textToMatch = Read-Host "Enter some text"
$matchType = Read-Host "Apply Simple or Regex matching?"
$pattern = Read-Host "Match pattern"

PowerShell Language and Environment | 821

if($matchType -eq "Simple")
{
 $textToMatch -like $pattern
}
elseif($matchType -eq "Regex")
{
 $textToMatch -match $pattern
}
else
{
 Write-Host "Match type must be Simple or Regex"
}

If none of the conditions evaluate to $true, PowerShell executes the statement block
associated with the (optional) else clause, and then resumes execution at the end of
the if/elseif/else statement list.

To apply an if statement to each element of a list and filter it to return only the
results that match the supplied condition, use the Where-Object cmdlet or .where()
method:

Get-Process | Where-Object { $_.Handles -gt 500 }

(Get-Process).where({ $_.Handles -gt 500})

Ternary Operators
$result = condition ? true value : false value

A short-form version of an if/else statement. If condition evaluates to $true, the
result of the expression is the value of the true value clause. Otherwise, the result of
the expression is the value of the false value clause. For example:

(Get-Random) % 2 -eq 0 ? "Even number" : "Odd number"

Null Coalescing and Assignment Operators
$result = nullable value ?? default value

assignment version:
$result = nullable value
$result ??= default value

A short-form version of a ternary operator that only checks if the expression is null or
not. If it is null, the result of the expression is the value of the default value clause. For
example:

Get-Process | ForEach-Object { $_.CPU ?? "<Unavailable>" }

or
$cpu = (Get-Process -id 0).CPU
$cpu ??= "Unavailable"

822 | Appendix A: PowerShell Language and Environment

switch Statements
switch options expression
{
 comparison value { statement block }
 -or-
 { comparison expression } { statement block }
 (...)
 default { statement block }
}

or:
switch options -file filename
{
 comparison value { statement block }
 -or
 { comparison expression } { statement block }
 (...)
 default { statement block }
}

When PowerShell evaluates a switch statement, it evaluates expression against the
statements in the switch body. If expression is a list of values, PowerShell evaluates
each item against the statements in the switch body. If you specify the -file option,
PowerShell treats the lines in the file as though they were a list of items in
expression.

The comparison value statements let you match the current input item against the
pattern specified by comparison value. By default, PowerShell treats this as a case-
insensitive exact match, but the options you provide to the switch statement can
change this, as shown in Table A-10.

Table A-10. Options supported by PowerShell switch statements
Option Meaning

-casesensitive

-c

Case-sensitive match.
With this option active, PowerShell executes the associated statement block only if the current
input item exactly matches the value specified by comparison value. If the current input
object is a string, the match is case-sensitive.

-exact

-e

Exact match
With this option active, PowerShell executes the associated statement block only if the current
input item exactly matches the value specified by comparison value. This match is case-
insensitive. This is the default mode of operation.

-regex

-r

Regular-expression match
With this option active, PowerShell executes the associated statement block only if the current
input item matches the regular expression specified by comparison value. This match is
case-insensitive.

PowerShell Language and Environment | 823

Option Meaning

-wildcard

-w

Wildcard match
With this option active, PowerShell executes the associated statement block only if the current
input item matches the wildcard specified by comparison value.
The wildcard match supports the following simple wildcard characters:

• ?: Any single unspecified character

• *: Zero or more unspecified characters

• [a-b]: Any character in the range of a–b

• [ab]: The specified characters a or b

This match is case-insensitive.

The { comparison expression } statements let you process the current input item,
which is stored in the $_ (or $PSItem) variable, in an arbitrary script block. When it
processes a { comparison expression } statement, PowerShell executes the associ‐
ated statement block only if { comparison expression } evaluates to $true.

PowerShell executes the statement block associated with the (optional) default state‐
ment if no other statements in the switch body match.

When processing a switch statement, PowerShell tries to match the current input
object against each statement in the switch body, falling through to the next state‐
ment even after one or more have already matched. To have PowerShell discontinue
the current comparison (but retry the switch statement with the next input object),
include a continue statement as the last statement in the statement block. To have
PowerShell exit a switch statement completely after it processes a match, include a
break statement as the last statement in the statement block.

For example:
$myPhones = "(555) 555-1212","555-1234"

switch -regex ($myPhones)
{
 { $_.Length -le 8 } { "Area code was not specified"; break }
 { $_.Length -gt 8 } { "Area code was specified" }
 "\((555)\).*" { "In the $($matches[1]) area code" }
}

produces the output:
Area code was specified
In the 555 area code
Area code was not specified

824 | Appendix A: PowerShell Language and Environment

See the next section on looping statements for more information
about the break statement.

By default, PowerShell treats this as a case-insensitive exact match, but the options
you provide to the switch statement can change this.

Looping Statements
Looping statements in PowerShell let you execute groups of statements multiple
times.

for Statement
:loop_label for (initialization; condition; increment)
{
 statement block
}

When PowerShell executes a for statement, it first executes the expression given by
initialization. It next evaluates condition. If condition evaluates to $true,
PowerShell executes the given statement block. It then executes the expression given
by increment. PowerShell continues to execute the statement block and increment
statement as long as condition evaluates to $true.

For example:
for($counter = 0; $counter -lt 10; $counter++)
{
 Write-Host "Processing item $counter"
}

The break and continue statements (discussed later in this appendix) can specify the
loop_label of any enclosing looping statement as their target.

foreach Statement
:loop_label foreach(variable in expression)
{
 statement block
}

When PowerShell executes a foreach statement, it executes the pipeline given by
expression—for example, Get-Process | Where-Object {$_.Handles -gt 500}
or 1..10. For each item produced by the expression, it assigns that item to the vari‐
able specified by variable and then executes the given statement block. For example:

PowerShell Language and Environment | 825

$handleSum = 0
foreach($process in Get-Process |
 Where-Object { $_.Handles -gt 500 })
{
 $handleSum += $process.Handles
}
$handleSum

In addition to the foreach statement, you can also use the foreach method on collec‐
tions directly:

$handleSum = 0
(Get-Process).foreach({ $handleSum += $_.Handles })

The break and continue statements (discussed later in this appendix) can specify the
loop_label of any enclosing looping statement as their target. In addition to the
foreach statement, PowerShell also offers the ForEach-Object cmdlet with similar
capabilities. For more information, see Recipe 4.4.

while Statement
:loop_label while(condition)
{
 statement block
}

When PowerShell executes a while statement, it first evaluates the expression given
by condition. If this expression evaluates to $true, PowerShell executes the given
statement block. PowerShell continues to execute the statement block as long as con
dition evaluates to $true. For example:

$command = "";
while($command -notmatch "quit")
{
 $command = Read-Host "Enter your command"
}

The break and continue statements (discussed later in this appendix) can specify the
loop_label of any enclosing looping statement as their target.

do … while Statement/do … until Statement
:loop_label do
{
 statement block
} while(condition)

or
:loop_label do
{
 statement block
} until(condition)

826 | Appendix A: PowerShell Language and Environment

When PowerShell executes a do … while or do … until statement, it first executes
the given statement block. In a do … while statement, PowerShell continues to exe‐
cute the statement block as long as condition evaluates to $true. In a do … until
statement, PowerShell continues to execute the statement as long as condition evalu‐
ates to $false. For example:

$validResponses = "Yes","No"
$response = ""
do
{
 $response = Read-Host "Yes or No?"
} while($validResponses -notcontains $response)
"Got it."

$response = ""
do
{
 $response = Read-Host "Yes or No?"
} until($validResponses -contains $response)
"Got it."

The break and continue statements (discussed later in this appendix) can specify the
loop_label of any enclosing looping statement as their target.

Flow Control Statements
PowerShell supports two statements to help you control flow within loops: break and
continue.

break

The break statement halts execution of the current loop. PowerShell then resumes
execution at the end of the current looping statement, as though the looping state‐
ment had completed naturally. For example:

for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 break
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output (notice the second column never reaches the value 2):
Processing item 0,0
Processing item 0,1

PowerShell Language and Environment | 827

Processing item 1,0
Processing item 1,1
Processing item 2,0
Processing item 2,1
Processing item 3,0
Processing item 3,1
Processing item 4,0
Processing item 4,1

If you specify a label with the break statement—for example, break outer_loop—
PowerShell halts the execution of that loop instead. For example:

:outer_loop for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 break outer_loop
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output:
Processing item 0,0
Processing item 0,1

continue

The continue statement skips execution of the rest of the current statement block.
PowerShell then continues with the next iteration of the current looping statement, as
though the statement block had completed naturally. For example:

for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 continue
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output:
Processing item 0,0
Processing item 0,1
Processing item 0,3
Processing item 0,4
Processing item 1,0

828 | Appendix A: PowerShell Language and Environment

Processing item 1,1
Processing item 1,3
Processing item 1,4
Processing item 2,0
Processing item 2,1
Processing item 2,3
Processing item 2,4
Processing item 3,0
Processing item 3,1
Processing item 3,3
Processing item 3,4
Processing item 4,0
Processing item 4,1
Processing item 4,3
Processing item 4,4

If you specify a label with the continue statement—for example, continue

outer_loop—PowerShell continues with the next iteration of that loop instead.

For example:
:outer_loop for($counter = 0; $counter -lt 5; $counter++)
{
 for($counter2 = 0; $counter2 -lt 5; $counter2++)
 {
 if($counter2 -eq 2)
 {
 continue outer_loop
 }

 Write-Host "Processing item $counter,$counter2"
 }
}

produces the output:
Processing item 0,0
Processing item 0,1
Processing item 1,0
Processing item 1,1
Processing item 2,0
Processing item 2,1
Processing item 3,0
Processing item 3,1
Processing item 4,0
Processing item 4,1

Classes
A class called "Example" that inherits from "BaseClass"
and implements the "ImplementedInterface" interface
class Example : BaseClass, ImplementedInterface
{
 ## Default constructor, which also invokes the constructor
 ## from the base class.
 Example() : base()

PowerShell Language and Environment | 829

 {
 [Example]::lastInstantiated = Get-Date
 }

 ## Constructor with parameters
 Example([string] $Name)
 {
 $this.Name = $Name
 [Example]::lastInstantiated = Get-Date
 }

 ## A publicly visible property with validation attributes
 [ValidateLength(2,20)]
 [string] $Name

 ## A property that is hidden from default views
 static hidden [DateTime] $lastInstantiated

 ## A publicly visible method that returns a value
 [string] ToString()
 {
 ## Return statement is required. Implicit / pipeline output
 ## is not treated as output like it is with functions.
 return $this.ToString([Int32]::MaxValue)
 }

 ## A publicly visible method that returns a value
 [string] ToString([int] $MaxLength)
 {
 $output = "Name = $($this.Name);" +
 "LastInstantiated = $([Example]::lastInstantiated)"
 $outputLength = [Math]::Min($MaxLength, $output.Length)
 return $output.Substring(0, $outputLength)
 }

}

Base classes and interfaces
To define a class that inherits from a base class or implements an interfaces, provide
the base class and/or interface names after the class name, separated by a colon.
Deriving from a base class or implementing any interfaces is optional.

class Example [: BaseClass, ImplementedInterface]

Constructors
To define a class constructor, create a method with the same name as the class. You
can define several constructors, including those with parameters. To automatically
call a constructor from the base class, add : base() to the end of the method name.

Example() [: base()]

Example([int] $Parameter1, [string] $Parameter2) [: base()]

830 | Appendix A: PowerShell Language and Environment

Properties
To define a publicly visible property, define a PowerShell variable in your class. As
with regular Powershell variables, you may optionally add validation attributes or
declare a type constraint for the property.

[ValidateLength(2,20)]
[string] $Name

To hide the property from default views (similar to a member variable in other lan‐
guages), use the hidden keyword. Users are still able to access hidden properties if
desired: they are just removed from default views. You can make a property static if
you want it to be shared with all instances of your class in the current process.

static hidden [DateTime] $lastInstantiated

Methods
Define a method as though you would define a PowerShell function, but without the
function keyword and without the param() statement. Methods support parameters,
parameter validation, and can also have the same name as long as their parameters
differ.

[string] ToString() { ... }

[string] ToString([int] $MaxLength) { ... }

Custom Enumerations
To define a custom enumeration, use the enum keyword:

enum MyColor {
 Red = 1
 Green = 2
 Blue = 3
}

If enumeration values are intended to be combined through bitwise operators, use the
[Flags()] attribute. If you require that the enumerated values derive from a specific
integral data type (byte, sbyte, short, ushort, int, uint, long or ulong), provide
that data type after the colon character.

[Flags()] enum MyColor : uint {
 Red = 1
 Green = 2
 Blue = 4
}

PowerShell Language and Environment | 831

Workflow-Specific Statements
Within a workflow, PowerShell supports three statements not supported in tradi‐
tional PowerShell scripts: InlineScript, Parallel, and Sequence.

Workflows are no longer supported in PowerShell. This section
exists to help you understand and work with workflows that have
already been written.

InlineScript

The InlineScript keyword defines an island of PowerShell script that will be
invoked as a unit, and with traditional PowerShell scripting semantics. For example:

workflow MyWorkflow
{
 ## Method invocation not supported in a workflow
 ## [Math]::Sqrt(100)

 InlineScript
 {
 ## Supported in an InlineScript
 [Math]::Sqrt(100)
 }
}

Parallel/Sequence

The Parallel keyword specifies that all statements within the statement block should
run in parallel. To group statements that should be run as a unit, use the Sequence
keyword:

workflow MyWorkflow
{
 Parallel
 {
 InlineScript { Start-Sleep -Seconds 2; "One thing run in parallel" }
 InlineScript { Start-Sleep -Seconds 4; "Another thing run in parallel" }
 InlineScript { Start-Sleep -Seconds 3; "A third thing run in parallel" }

 Sequence
 {
 Start-Sleep -Seconds 1
 "A fourth"
 "and fifth thing run as a unit, in parallel"
 }
 }
}

832 | Appendix A: PowerShell Language and Environment

Note that you should not use PowerShell Workflows for the parallel statement
alone—the -Parallel parameter to the ForEach-Object cmdlet is much more effi‐
cient.

Working with the .NET Framework
One feature that gives PowerShell its incredible reach into both system administra‐
tion and application development is its capability to leverage Microsoft’s enormous
and broad .NET Framework.

Work with the .NET Framework in PowerShell comes mainly by way of one of two
tasks: calling methods or accessing properties.

Static Methods
To call a static method on a class, type:

[ClassName]::MethodName(parameter list)

For example:
PS > [System.Diagnostics.Process]::GetProcessById(0)

gets the process with the ID of 0 and displays the following output:
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
------- ------ ----- ----- ----- ------ -- -----------
 0 0 0 16 0 0 Idle

Instance Methods
To call a method on an instance of an object, type:

$objectReference.MethodName(parameter list)

For example:
PS > $process = [System.Diagnostics.Process]::GetProcessById(0)
PS > $process.Refresh()

This stores the process with ID of 0 into the $process variable. It then calls the
Refresh() instance method on that specific process.

Explicitly Implemented Interface Methods
To call a method on an explictly implemented interface:

([Interface] $objectReference).MethodName(parameter list)

For example:
PS > ([IConvertible] 123).ToUint16($null)

PowerShell Language and Environment | 833

Static Properties
To access a static property on a class, type:

[ClassName]::PropertyName

or:
[ClassName]::PropertyName = value

For example, the [System.DateTime] class provides a Now static property that returns
the current time:

PS > [System.DateTime]::Now
Sunday, July 16, 2006 2:07:20 PM

Although this is rare, some types let you set the value of some static properties.

Instance Properties
To access an instance property on an object, type:

$objectReference.PropertyName

or:
$objectReference.PropertyName = value

For example:
PS > $today = [System.DateTime]::Now
PS > $today.DayOfWeek
Sunday

This stores the current date in the $today variable. It then calls the DayOfWeek
instance property on that specific date.

If the value of the property might be null, you can use the null conditional property
access operator (?.). The result of the expression will be null if any property in the
chain did not exist. It will be the final property’s value otherwise:

(Get-Process -id 0)?.MainModule?.Filename

Learning About Types
The two primary avenues for learning about classes and types are the Get-Member
cmdlet and the documentation for the .NET Framework.

The Get-Member cmdlet

To learn what methods and properties a given type supports, pass it through the Get-
Member cmdlet, as shown in Table A-11.

834 | Appendix A: PowerShell Language and Environment

Table A-11. Working with the Get-Member cmdlet
Action Result

[typename] | Get-Member-Static All the static methods and properties of a given type.

$objectReference | Get-Member-Static All the static methods and properties provided by the type in
$objectReference.

$objectReference | Get-Member All the instance methods and properties provided by the type in
$objectReference. If $objectReference represents a
collection of items, PowerShell returns the instances and properties of
the types contained by that collection. To view the instances and
properties of a collection itself, use the -InputObject parameter of
Get-Member:

Get-Member -InputObject $objectReference

[typename] | Get-Member All the instance methods and properties of a System.Runtime
Type object that represents this type.

.NET Framework documentation
Another source of information about the classes in the .NET Framework is the docu‐
mentation itself, available through the search facilities at Microsoft’s developer docu‐
mentation site.

Typical documentation for a class first starts with a general overview, and then pro‐
vides a hyperlink to the members of the class—the list of methods and properties it
supports.

To get to the documentation for the members quickly, search for
them more explicitly by adding the term “members” to your
MSDN search term:

classname members

The documentation for the members of a class lists their constructors, methods,
properties, and more. It uses an S icon to represent the static methods and properties.
Click the member name for more information about that member, including the type
of object that the member produces.

Type Shortcuts
When you specify a type name, PowerShell lets you use a short form for some of the
most common types, as listed in Table A-12.

PowerShell Language and Environment | 835

https://docs.microsoft.com
https://docs.microsoft.com

Table A-12. PowerShell type shortcuts
Type shortcut Full classname

[Adsi] [System.DirectoryServices.DirectoryEntry]

[AdsiSearcher] [System.DirectoryServices.DirectorySearcher]

[Float] [System.Single]

[Hashtable] [System.Collections.Hashtable]

[Int] [System.Int32]

[IPAddress] [System.Net.IPAddress]

[Long] [System.Collections.Int64]

[PowerShell] [System.Management.Automation.PowerShell]

[PSCustomObject] [System.Management.Automation.PSObject]

[PSModuleInfo] [System.Management.Automation.PSModuleInfo]

[PSObject] [System.Management.Automation.PSObject]

[Ref] [System.Management.Automation.PSReference]

[Regex] [System.Text.RegularExpressions.Regex]

[Runspace] [System.Management.Automation.Runspaces.Runspace]

[RunspaceFactory] [System.Management.Automation.Runspaces.RunspaceFactory]

[ScriptBlock] [System.Management.Automation.ScriptBlock]

[Switch] [System.Management.Automation.SwitchParameter]

[Wmi] [System.Management.ManagementObject]

[WmiClass] [System.Management.ManagementClass]

[WmiSearcher] [System.Management.ManagementObjectSearcher]

[Xml] [System.Xml.XmlDocument]

[TypeName] [System.TypeName]

Creating Instances of Types
$objectReference = New-Object TypeName parameters
$objectReference = [TypeName]::new(parameters)

Although static methods and properties of a class generate objects, you’ll often want
to create them explicitly yourself. PowerShell’s New-Object cmdlet lets you create an
instance of the type you specify. The parameter list must match the list of parameters
accepted by one of the type’s constructors, as described in the SDK documentation.

For example:
$webClient = New-Object Net.WebClient
$webClient.DownloadString("http://search.msn.com")

836 | Appendix A: PowerShell Language and Environment

If the type represents a generic type, enclose its type parameters in square brackets:
PS > $hashtable = New-Object "System.Collections.Generic.Dictionary[String,Bool]"
PS > $hashtable["Test"] = $true

Most common types are available by default. However, many types are available only
after you load the library (called the assembly) that defines them. The Microsoft doc‐
umentation for a class includes the assembly that defines it.

To load an assembly, use the -AssemblyName parameter of the Add-Type cmdlet:
PS > Add-Type -AssemblyName System.Web
PS > [System.Web.HttpUtility]::UrlEncode("http://www.bing.com")
http%3a%2f%2fwww.bing.com

To update the list of namespaces that PowerShell searches by default, specify that
namespace in a using statement:

PS > using namespace System.Web
PS > [HttpUtility]::UrlEncode("http://www.bing.com")

Interacting with COM Objects
PowerShell lets you access methods and properties on COM objects the same way
you would interact with objects from the .NET Framework. To interact with a COM
object, use its ProgId with the -ComObject parameter (often shortened to -Com) on
New-Object:

PS > $shell = New-Object -Com Shell.Application
PS > $shell.Windows() | Select-Object LocationName,LocationUrl

For more information about the COM objects most useful to system administrators,
see Appendix H.

Extending Types
PowerShell supports two ways to add your own methods and properties to any type:
the Add-Member cmdlet and a custom types extension file.

The Add-Member cmdlet

The Add-Member cmdlet lets you dynamically add methods, properties, and more to
an object. It supports the extensions shown in Table A-13.

PowerShell Language and Environment | 837

Table A-13. Selected member types supported by the Add-Member cmdlet
Member type Meaning

AliasProperty A property defined to alias another property:
PS > $testObject = [PsObject] "Test"
PS > $testObject | Add-Member "AliasProperty" Count Length
PS > $testObject.Count
4

CodeProperty A property defined by a System.Reflection.MethodInfo.
This method must be public, static, return results (nonvoid), and take one parameter of type
PsObject.

NoteProperty A property defined by the initial value you provide:
PS > $testObject = [PsObject] "Test"
PS > $testObject | Add-Member NoteProperty Reversed tseT
PS > $testObject.Reversed
tseT

ScriptProperty A property defined by the script block you provide. In that script block, $this refers to the
current instance:

PS > $testObject = [PsObject] ("Hi" * 100)
PS > $testObject | Add-Member ScriptProperty IsLong {
 $this.Length -gt 100
 }
PS > $testObject.IsLong

True

PropertySet A property defined as a shortcut to a set of properties. Used in cmdlets such as Select-
Object:

$testObject = [PsObject] [DateTime]::Now
$collection = New-Object `
 Collections.ObjectModel.Collection``1[System.String]
$collection.Add("Month")
$collection.Add("Year")
$testObject | Add-Member PropertySet MonthYear $collection

PS > $testObject | select MonthYear

Month Year
----- ----
 3 2010

CodeMethod A method defined by a System.Reflection.MethodInfo.
This method must be public, static, and take one parameter of type PsObject.

838 | Appendix A: PowerShell Language and Environment

Member type Meaning

ScriptMethod A method defined by the script block you provide. In that script block, $this refers to the
current instance, and $args refers to the input parameters:

PS > $testObject = [PsObject] "Hello"
PS > $testObject | Add-Member ScriptMethod IsLong {
 $this.Length -gt $args[0]
 }
PS > $testObject.IsLong(3)
True

PS > $testObject.IsLong(100)
False

Custom type extension files

While the Add-Member cmdlet lets you customize individual objects, PowerShell also
supports configuration files that let you customize all objects of a given type. For
example, you might want to add a Reverse() method to all strings or a HelpUrl
property (based on the MSDN Url Aliases) to all types.

PowerShell adds several type extensions to the file types.ps1xml, in the PowerShell
installation directory. This file is useful as a source of examples, but you should not
modify it directly. Instead, create a new one and use the Update-TypeData cmdlet to
load your customizations. The following command loads Types.custom.ps1xml from
the same directory as your profile:

$typesFile = Join-Path (Split-Path $profile) "Types.Custom.Ps1Xml"
Update-TypeData -PrependPath $typesFile

For more information about custom type extensions files, see Recipe 3.16.

Writing Scripts, Reusing Functionality
When you want to start packaging and reusing your commands, the best place to put
them is in scripts, functions, and script blocks. A script is a text file that contains a
sequence of PowerShell commands. A function is also a sequence of PowerShell com‐
mands but is usually placed within a script to break it into smaller, more easily under‐
stood segments. A script block is a function with no name. All three support the same
functionality, except for how you define them.

Writing Commands

Writing scripts
To write a script, write your PowerShell commands in a text editor and save the file
with a .ps1 extension.

PowerShell Language and Environment | 839

Writing functions
Functions let you package blocks of closely related commands into a single unit that
you can access by name.

function SCOPE:name(parameters)
{
 statement block
}

or:
filter SCOPE:name(parameters)
{
 statement block
}

Valid scope names are global (to create a function available to the entire shell),
script (to create a function available only to the current script), local (to create a
function available only to the current scope and subscopes), and private (to create a
function available only to the current scope). The default scope is the local scope,
which follows the same rules as those of default variable scopes.

The content of a function’s statement block follows the same rules as the content of a
script. Functions support the $args array, formal parameters, the $input enumerator,
cmdlet keywords, pipeline output, and equivalent return semantics.

A common mistake is to call a function as you would call a
method:

$result = GetMyResults($item1, $item2)

PowerShell treats functions as it treats scripts and other com‐
mands, so this should instead be:

$result = GetMyResults $item1 $item2

The first command passes an array that contains the items $item1
and $item2 to the GetMyResults function.

A filter is simply a function where the statements are treated as though they are con‐
tained within a process statement block. For more information about process state‐
ment blocks, see “Cmdlet keywords in commands” on page 849.

840 | Appendix A: PowerShell Language and Environment

Commands in your script can access only functions that have
already been defined. This can often make large scripts difficult to
understand when the beginning of the script is composed entirely
of helper functions. Structuring a script in the following manner
often makes it more clear:

function Main
{
 (...)
 HelperFunction
 (...)
}

function HelperFunction
{
 (...)
}

. Main

Writing script blocks
$objectReference =
{
 statement block
}

PowerShell supports script blocks, which act exactly like unnamed functions and
scripts. Like both scripts and functions, the content of a script block’s statement block
follows the same rules as the content of a function or script. Script blocks support the
$args array, formal parameters, the $input enumerator, cmdlet keywords, pipeline
output, and equivalent return semantics.

As with both scripts and functions, you can either invoke or dot-source a script
block. Since a script block does not have a name, you either invoke it directly
(& { "Hello"}) or invoke the variable (& $objectReference) that contains it.

Running Commands
There are two ways to execute a command (script, function, or script block): by
invoking it or by dot-sourcing it.

Invoking
Invoking a command runs the commands inside it. Unless explicitly defined with the
GLOBAL scope keyword, variables and functions defined in the script do not persist
once the script exits.

PowerShell Language and Environment | 841

By default, a security feature in PowerShell called the Execution
Policy prevents scripts from running. When you want to enable
scripting in PowerShell, you must change this setting. To under‐
stand the different execution policies available to you, type Get-
Help about_signing. After selecting an execution policy, use the
Set-ExecutionPolicy cmdlet to configure it:

Set-ExecutionPolicy RemoteSigned

If the command name has no spaces, simply type its name:
c:\temp\Invoke-Commands.ps1 parameter1 parameter2 ...
Invoke-MyFunction parameter1 parameter2 ...

To run the command as a background job, use the background operator (&):
c:\temp\Invoke-Commands.ps1 parameter1 parameter2 ... &

You can use either a fully qualified path or a path relative to the current location. If
the script is in the current directory, you must explicitly say so:

.\Invoke-Commands.ps1 parameter1 parameter2 ...

If the command’s name has a space (or the command has no name, in the case of a
script block), you invoke the command by using the invoke/call operator (&) with the
command name as the parameter.

& "C:\Script Directory\Invoke-Commands.ps1" parameter1 parameter2 ...

Script blocks have no name, so you place the variable holding them after the invoca‐
tion operator:

$scriptBlock = { "Hello World" }
& $scriptBlock parameter1 parameter2 ...

If you want to invoke the command within the context of a module, provide a refer‐
ence to that module as part of the invocation:

$module = Get-Module PowerShellCookbook
& $module Invoke-MyFunction parameter1 parameter2 ...
& $module $scriptBlock parameter1 parameter2 ...

Dot-sourcing
Dot-sourcing a command runs the commands inside it. Unlike simply invoking a
command, variables and functions defined in the script do persist after the script
exits.

You invoke a script by using the dot operator (.) and providing the command name
as the parameter:

. "C:\Script Directory\Invoke-Commands.ps1" Parameters

. Invoke-MyFunction parameters

. $scriptBlock parameters

842 | Appendix A: PowerShell Language and Environment

When dot-sourcing a script, you can use either a fully qualified path or a path relative
to the current location. If the script is in the current directory, you must explicitly say
so:

. .\Invoke-Commands.ps1 Parameters

If you want to dot-source the command within the context of a module, provide a
reference to that module as part of the invocation:

$module = Get-Module PowerShellCookbook
. $module Invoke-MyFunction parameters
. $module $scriptBlock parameters

Parameters
Commands that require or support user input do so through parameters. You can use
the Get-Command cmdlet to see the parameters supported by a command:

PS > Get-Command Stop-Process -Syntax

Stop-Process [-Id] <int[]> [-PassThru] [-Force] [-WhatIf] [-Confirm] [...]
Stop-Process -Name <string[]> [-PassThru] [-Force] [-WhatIf] [-Confirm] [...]
Stop-Process [-InputObject] <Process[]> [-PassThru] [-Force] [-WhatIf] [...]

In this case, the supported parameters of the Stop-Process command are Id, Name,
InputObject, PassThru, Force, WhatIf, and Confirm.

To supply a value for a parameter, use a dash character, followed by the parameter
name, followed by a space, and then the parameter value.

Stop-Process -Id 1234

If the parameter value contains spaces, surround it with quotes:
Stop-Process -Name "Process With Spaces"

If a variable contains a value that you want to use for a parameter, supply that
through PowerShell’s regular variable reference syntax:

$name = "Process With Spaces"
Stop-Process -Name $name

If you want to use other PowerShell language elements as a parameter value, sur‐
round the value with parentheses:

Get-Process -Name ("Power" + "Shell")

You only need to supply enough of the parameter name to disambiguate it from the
rest of the parameters.

Stop-Process -N "Process With Spaces"

If a command’s syntax shows the parameter name in square brackets (such as [-Id]),
then it is positional and you may omit the parameter name and supply only the value.

PowerShell Language and Environment | 843

PowerShell supplies these unnamed values to parameters in the order of their
position.

Stop-Process 1234

Rather than explicitly providing parameter names and values, you can provide a
hashtable that defines them and use the splatting operator:

$parameters = @{
 Path = "c:\temp"
 Recurse = $true
}

Get-ChildItem @parameters

To define the default value to be used for the parameter of a command (if the param‐
eter value is not specified directly), assign a value to the PSDefaultParameterValues
hashtable. The keys of this hashtable are command names and parameter names, sep‐
arated by a colon. Either (or both) may use wildcards. The values of this hashtable are
either simple parameter values, or script blocks that will be evaluated dynamically.

PS > $PSDefaultParameterValues["Get-Process:ID"] = $pid
PS > Get-Process

PS > $PSDefaultParameterValues["Get-Service:Name"] = {
 Get-Service -Name * | ForEach-Object Name | Get-Random }
PS > Get-Service

Providing Input to Commands
PowerShell offers several options for processing input to a command.

Argument array
To access the command-line arguments by position, use the argument array that
PowerShell places in the $args special variable:

$firstArgument = $args[0]
$secondArgument = $args[1]
$argumentCount = $args.Count

Formal parameters
To define a command with simple parameter support:

param(
 [TypeName] $VariableName = Default,
 ...
)

To define one with support for advanced functionality:
[CmdletBinding(cmdlet behavior customizations)]
param(

844 | Appendix A: PowerShell Language and Environment

 [Parameter(Mandatory = $true, Position = 1, ...)]
 [Alias("MyParameterAlias"]
 [...]
 [TypeName] $VariableName = Default,
 ...
)

Formal parameters let you benefit from some of the many benefits of PowerShell’s
consistent command-line parsing engine.

PowerShell exposes your parameter names (for example, $VariableName) the same
way that it exposes parameters in cmdlets. Users need to type only enough of your
parameter name to disambiguate it from the rest of the parameters.

If you define a command with simple parameter support, PowerShell attempts to
assign the input to your parameters by their position if the user does not type param‐
eter names.

When you add the [CmdletBinding()] attribute, [Parameter()] attribute, or any of
the validation attributes, PowerShell adds support for advanced parameter validation.

Command behavior customizations

The elements of the [CmdletBinding()] attribute describe how your script or func‐
tion interacts with the system.

SupportsShouldProcess = $true

If $true, enables the -WhatIf and -Confirm parameters, which tells the user that
your command modifies the system and can be run in one of these experimental
modes. When specified, you must also call the $psCmdlet.ShouldProcess()
method before modifying system state. When not specified, the default is $false.

DefaultParameterSetName = name
Defines the default parameter set name of this command. This is used to resolve
ambiguities when parameters declare multiple sets of parameters and the user
input doesn’t supply enough information to pick between available parameter
sets. When not specified, the command has no default parameter set name.

ConfirmImpact = "High"
Defines this command as one that should have its confirmation messages (gener‐
ated by the $psCmdlet.ShouldProcess() method) shown by default. More
specifically, PowerShell defines three confirmation impacts: Low, Medium, and
High. PowerShell generates the cmdlet’s confirmation messages automatically
whenever the cmdlet’s impact level is greater than the preference variable. When
not specified, the command’s impact is Medium.

PowerShell Language and Environment | 845

Parameter attribute customizations

The elements of the [Parameter()] attribute mainly define how your parameter
behaves in relation to other parameters. All elements are optional.

Mandatory = $true

Defines the parameter as mandatory. If the user doesn’t supply a value to this
parameter, PowerShell automatically prompts them for it. When not specified,
the parameter is optional.

Position = position
Defines the position of this parameter. This applies when the user provides
parameter values without specifying the parameter they apply to (e.g., Argument2
in Invoke-MyFunction -Param1 Argument1 Argument2). PowerShell supplies
these values to parameters that have defined a Position, from lowest to highest.
When not specified, the name of this parameter must be supplied by the user.

ParameterSetName = name
Defines this parameter as a member of a set of other related parameters. Parame‐
ter behavior for this parameter is then specific to this related set of parameters,
and the parameter exists only in the parameter sets that it is defined in. This fea‐
ture is used, for example, when the user may supply only a Name or ID. To
include a parameter in two or more specific parameter sets, use two or more
[Parameter()] attributes. When not specified, this parameter is a member of all
parameter sets.

ValueFromPipeline = $true

Declares this parameter as one that directly accepts pipeline input. If the user
pipes data into your script or function, PowerShell assigns this input to your
parameter in your command’s process {} block. When not specified, this
parameter does not accept pipeline input directly.

ValueFromPipelineByPropertyName = $true

Declares this parameter as one that accepts pipeline input if a property of an
incoming object matches its name. If this is true, PowerShell assigns the value of
that property to your parameter in your command’s process {} block. When
not specified, this parameter does not accept pipeline input by property name.

ValueFromRemainingArguments = $true

Declares this parameter as one that accepts all remaining input that has not
otherwise been assigned to positional or named parameters. Only one parameter
can have this element. If no parameter declares support for this capability, Pow‐
erShell generates an error for arguments that cannot be assigned.

846 | Appendix A: PowerShell Language and Environment

Parameter validation attributes

In addition to the [Parameter()] attribute, PowerShell lets you apply other attributes
that add behavior or validation constraints to your parameters. All validation
attributes are optional.

[Alias(" name ")]
Defines an alternate name for this parameter. This is especially helpful for long
parameter names that are descriptive but have a more common colloquial term.
When not specified, the parameter can be referred to only by the name you origi‐
nally declared.

[AllowNull()]

Allows this parameter to receive $null as its value. This is required only for
mandatory parameters. When not specified, mandatory parameters cannot
receive $null as their value, although optional parameters can.

[AllowEmptyString()]

Allows this string parameter to receive an empty string as its value. This is
required only for mandatory parameters. When not specified, mandatory string
parameters cannot receive an empty string as their value, although optional
string parameters can. You can apply this to parameters that are not strings, but it
has no impact.

[AllowEmptyCollection()]

Allows this collection parameter to receive an empty collection as its value. This
is required only for mandatory parameters. When not specified, mandatory col‐
lection parameters cannot receive an empty collection as their value, although
optional collection parameters can. You can apply this to parameters that are not
collections, but it has no impact.

[ValidateCount(lower limit, upper limit)]
Restricts the number of elements that can be in a collection supplied to this
parameter. When not specified, mandatory parameters have a lower limit of one
element. Optional parameters have no restrictions. You can apply this to parame‐
ters that are not collections, but it has no impact.

[ValidateLength(lower limit, upper limit)]
Restricts the length of strings that this parameter can accept. When not specified,
mandatory parameters have a lower limit of one character. Optional parameters
have no restrictions. You can apply this to parameters that are not strings, but it
has no impact.

PowerShell Language and Environment | 847

[ValidatePattern("regular expression")]

Enforces a pattern that input to this string parameter must match. When not
specified, string inputs have no pattern requirements. You can apply this to
parameters that are not strings, but it has no impact.

[ValidateRange(lower limit, upper limit)]
Restricts the upper and lower limit of numerical arguments that this parameter
can accept. When not specified, parameters have no range limit. You can apply
this to parameters that are not numbers, but it has no impact.

[ValidateScript({ script block })]
Ensures that input supplied to this parameter satisfies the condition that you sup‐
ply in the script block. PowerShell assigns the proposed input to the $_ (or
$PSItem) variable, and then invokes your script block. If the script block returns
$true (or anything that can be converted to $true, such as nonempty strings),
PowerShell considers the validation to have been successful.

[ValidateSet("First Option", "Second Option", …, "Last Option")]

Ensures that input supplied to this parameter is equal to one of the options in the
set. PowerShell uses its standard meaning of equality during this comparison: the
same rules used by the -eq operator. If your validation requires nonstandard
rules (such as case-sensitive comparison of strings), you can instead write the
validation in the body of the script or function.

[ValidateNotNull()]

Ensures that input supplied to this parameter is not null. This is the default
behavior of mandatory parameters, so this is useful only for optional parameters.
When applied to string parameters, a $null parameter value gets instead con‐
verted to an empty string.

[ValidateNotNullOrEmpty()]

Ensures that input supplied to this parameter is not null or empty. This is the
default behavior of mandatory parameters, so this is useful only for optional
parameters. When applied to string parameters, the input must be a string with a
length greater than one. When applied to collection parameters, the collection
must have at least one element. When applied to other types of parameters, this
attribute is equivalent to the [ValidateNotNull()] attribute.

Pipeline input
To access the data being passed to your command via the pipeline, use the input enu‐
merator that PowerShell places in the $input special variable:

848 | Appendix A: PowerShell Language and Environment

foreach($element in $input)
{
 "Input was: $element"
}

The $input variable is a .NET enumerator over the pipeline input. Enumerators sup‐
port streaming scenarios very efficiently but do not let you access arbitrary elements
as you would with an array. If you want to process their elements again, you must call
the Reset() method on the $input enumerator once you reach the end.

If you need to access the pipeline input in an unstructured way, use the following
command to convert the input enumerator to an array:

$inputArray = @($input)

Cmdlet keywords in commands
When pipeline input is a core scenario of your command, you can include statement
blocks labeled begin, process, and end:

param(...)

begin
{
 ...
}
process
{
 ...
}
end
{
 ...
}

PowerShell executes the begin statement when it loads your command, the process
statement for each item passed down the pipeline, and the end statement after all
pipeline input has been processed. In the process statement block, the $_ (or
$PSItem) variable represents the current pipeline object.

When you write a command that includes these keywords, all the commands in your
script must be contained within the statement blocks.

$MyInvocation automatic variable

The $MyInvocation automatic variable contains information about the context under
which the script was run, including detailed information about the command
(MyCommand), the script that defines it (ScriptName), and more.

PowerShell Language and Environment | 849

Retrieving Output from Commands
PowerShell provides three primary ways to retrieve output from a command.

Pipeline output
any command

The return value/output of a script is any data that it generates but does not capture.
If a command contains:

"Text Output"
5*5

then assigning the output of that command to a variable creates an array with the two
values Text Output and 25.

Return statement
return value

The statement:
return $false

is simply a short form for pipeline output:
$false
return

Exit statement
exit errorlevel

The exit statement returns an error code from the current command or instance of
PowerShell. If called anywhere in a script (inline, in a function, or in a script block), it
exits the script. If called outside of a script (for example, a function), it exits Power‐
Shell. The exit statement sets the $LastExitCode automatic variable to errorLevel.
In turn, that sets the $? automatic variable to $false if errorLevel is not zero.

Type Get-Help about_automatic_variables for more informa‐
tion about automatic variables.

Managing Errors
PowerShell supports two classes of errors: nonterminating and terminating. It collects
both types of errors as a list in the $error automatic variable.

850 | Appendix A: PowerShell Language and Environment

Nonterminating Errors
Most errors are nonterminating errors, in that they do not halt execution of the cur‐
rent cmdlet, script, function, or pipeline. When a command outputs an error (via
PowerShell’s error-output facilities), PowerShell writes that error to a stream called
the error output stream.

You can output a nonterminating error using the Write-Error cmdlet (or the Write
Error() API when writing a cmdlet).

The $ErrorActionPreference automatic variable lets you control how PowerShell
handles nonterminating errors. It supports the following values, shown in Table A-14.

Table A-14. ErrorActionPreference automatic variable values
Value Meaning

Ignore Do not display errors, and do not add them to the $error collection. Only supported when
supplied to the ErrorAction parameter of a command.

SilentlyContinue Do not display errors, but add them to the $error collection.

Stop Treat nonterminating errors as terminating errors.

Continue Display errors, but continue execution of the current cmdlet, script, function, or pipeline. This is
the default.

Inquire Display a prompt that asks how PowerShell should treat this error.

Most cmdlets let you configure this explicitly by passing one of these values to the
ErrorAction parameter.

Terminating Errors
A terminating error halts execution of the current cmdlet, script, function, or pipeline.
If a command (such as a cmdlet or .NET method call) generates a structured excep‐
tion (for example, if you provide a method with parameters outside their valid range),
PowerShell exposes this as a terminating error. PowerShell also generates a terminat‐
ing error if it fails to parse an element of your script, function, or pipeline.

You can generate a terminating error in your script using the throw keyword:
throw message

In your own scripts and cmdlets, generate terminating errors only
when the fundamental intent of the operation is impossible to
accomplish. For example, failing to execute a command on a
remote server should be considered a nonterminating error,
whereas failing to connect to the remote server altogether should
be considered a terminating error.

PowerShell Language and Environment | 851

You can intercept terminating errors through the try, catch, and finally state‐
ments, as supported by many other programming languages:

try
{
 statement block
}
catch [exception type]
{
 error handling block
}
catch [alternate exception type]
{
 alternate error handling block
}
finally
{
 cleanup block
}

After a try statement, you must provide a catch statement, a finally statement, or
both. If you specify an exception type (which is optional), you may specify more than
one catch statement to handle exceptions of different types. If you specify an excep‐
tion type, the catch block applies only to terminating errors of that type.

PowerShell also lets you intercept terminating errors if you define a trap statement
before PowerShell encounters that error:

trap [exception type]
{
 statement block
 [continue or break]
}

If you specify an exception type, the trap statement applies only to terminating errors
of that type.

Within a catch block or trap statement, the $_ (or $PSItem) variable represents the
current exception or error being processed.

If specified, the continue keyword tells PowerShell to continue processing your
script, function, or pipeline after the point at which it encountered the terminating
error.

If specified, the break keyword tells PowerShell to halt processing the rest of your
script, function, or pipeline after the point at which it encountered the terminating
error. The default mode is break, and it applies if you specify neither break nor
continue.

852 | Appendix A: PowerShell Language and Environment

Formatting Output
Pipeline | Formatting Command

When objects reach the end of the output pipeline, PowerShell converts them to text
to make them suitable for human consumption. PowerShell supports several options
to help you control this formatting process, as listed in Table A-15.

Table A-15. PowerShell formatting commands
Formatting command Result

Format-Table Properties Formats the properties of the input objects as a table, including only the object
properties you specify. If you do not specify a property list, PowerShell picks a default
set.
In addition to supplying object properties, you may also provide advanced
formatting statements:

PS > Get-Process | `
 Format-Table -Auto Name,`
 @{Label="HexId";
 Expression={ "{0:x}" -f $_.Id}
 Width=4
 Align="Right"
 }

The advanced formatting statement is a hashtable with the keys Label and
Expression (or any short form of them). The value of the expression key should
be a script block that returns a result for the current object (represented by the $_
variable).
For more information about the Format-Table cmdlet, type Get-Help
Format-Table.

Format-List Properties Formats the properties of the input objects as a list, including only the object
properties you specify. If you do not specify a property list, PowerShell picks a default
set.
The Format-List cmdlet supports advanced formatting statements as used by
the Format-Table cmdlet.
The Format-List cmdlet is the one you will use most often to get a detailed
summary of an object’s properties.
The command Format-List * returns all properties, but it does not include
those that PowerShell hides by default. The command Format-List * -
Force returns all properties.
For more information about the Format-List cmdlet, type Get-Help
Format-List.

PowerShell Language and Environment | 853

Formatting command Result

Format-Wide Property Formats the properties of the input objects in an extremely terse summary view. If
you do not specify a property, PowerShell picks a default.
In addition to supplying object properties, you can also provide advanced formatting
statements:

PS > Get-Process | `
 Format-Wide -Auto `
 @{ Expression={ "{0:x}" -f $_.Id} }

The advanced formatting statement is a hashtable with the key Expression (or
any short form of it). The value of the expression key should be a script block that
returns a result for the current object (represented by the $_ variable).
For more information about the Format-Wide cmdlet, type Get-Help
Format-Wide.

Custom Formatting Files
All the formatting defaults in PowerShell (for example, when you do not specify a for‐
matting command, or when you do not specify formatting properties) are driven by
the *.Format.Ps1Xml files in the installation directory in a manner similar to the type
extension files mentioned in Recipe 3.16.

To create your own formatting customizations, use these files as a source of examples,
but do not modify them directly. Instead, create a new file and use the Update-
FormatData cmdlet to load your customizations. The Update-FormatData cmdlet
applies your changes to the current instance of PowerShell. If you wish to load them
every time you launch PowerShell, call Update-FormatData in your profile script. The
following command loads Format.custom.ps1xml from the same directory as your
profile:

$formatFile = Join-Path (Split-Path $profile) "Format.Custom.Ps1Xml"
Update-FormatData -PrependPath $typesFile

To add formatting information without using format files, see Recipe 3.17.

Capturing Output
There are several ways to capture the output of commands in PowerShell, as listed in
Table A-16.

Table A-16. Capturing output in PowerShell
Command Result

$variable = Command Stores the objects produced by the PowerShell command into $vari
able.

$variable = Command | Out-String Stores the visual representation of the PowerShell command into
$variable. This is the PowerShell command after it’s been
converted to human-readable output.

854 | Appendix A: PowerShell Language and Environment

Command Result

$variable = NativeCommand Stores the (string) output of the native command into $variable.
PowerShell stores this as a list of strings—one for each line of output
from the native command.

Command -OutVariable variable For most commands, stores the objects produced by the PowerShell
command into $variable. The parameter -OutVariable can
also be written -Ov.

Command > File Redirects the visual representation of the PowerShell (or standard
output of a native command) into File, overwriting File if it exists.
Errors are not captured by this redirection.

Command >> File Redirects the visual representation of the PowerShell (or standard
output of a native command) into File, appending to File if it
exists. Errors are not captured by this redirection.

Command 2> File Redirects the errors from the PowerShell or native command into
File, overwriting File if it exists.

Command n>File Redirects stream number n into File, overwriting File if it exists.
Supported streams are 2 for error, 3 for warning, 4 for verbose, 5 for
debug, 6 for the structured information stream, and * for all.

Command 2>> File Redirects the errors from the PowerShell or native command into
File, appending to File if it exists.

Command n>> File Redirects stream number n into File, appending to File if it exists.
Supported streams are 2 for error, 3 for warning, 4 for verbose, 5 for
debug, 6 for the structured information stream, and * for all.

Command > File 2>&1 Redirects both the error and standard output streams of the PowerShell
or native command into File, overwriting File if it exists.

Command >> File 2>&1 Redirects both the error and standard output streams of the PowerShell
or native command into File, appending to File if it exists.

While output from the Write-Host cmdlet normally goes directly to the screen, you
can use the structured information stream to capture it into a variable:

PS > function HostWriter { Write-Host "Console Output" }
PS > $a = HostWriter
Console Output
PS > $a
PS > $a = HostWriter 6>&1
PS > $a
Console Output

Common Customization Points
As useful as it is out of the box, PowerShell offers several avenues for customization
and personalization.

PowerShell Language and Environment | 855

Console Settings
The Windows PowerShell UI offers several features to make your shell experience
more efficient.

Adjust your font size
Both the Windows Terminal application and the default Windows Console let you
adjust your font size.

To temporarily change your font size, hold down the Ctrl key and use the mouse to
scroll up or down. In the Windows Terminal application, you can also use the Ctrl
+Plus or Ctrl+Minus hotkeys. In the Windows Terminal application, Ctrl+0 resets the
font size back to your default.

To change your font size default in the default Windows Console, open the System
menu (right-click the title bar at the top left of the console window), select Proper‐
ties→Font. If you launch Windows PowerShell from the Start menu, it launches with
some default modifications to the font and window size. To change your font size
default in the Windows Terminal application, add a fontSize setting to any of your
terminal profiles:

 {
 "guid": "...",
 "name": "PowerShell (Demos)",
 "fontSize": 18,
 "colorScheme": "Campbell Powershell",
 "source": "Windows.Terminal.PowershellCore"
 },

Adjust other Windows Terminal settings
The Windows Terminal application includes a wealth of configuration settings. A
sample of these include:

• Configuring the list of available shells and applications (such as bash.exe)
• Color schemes and UI themes
• Binding actions to hotkeys
• Text selection behavior
• Window transparency
• Background images

For a full list of these, see the documentation for global settings and general profile
settings in Windows Terminal.

856 | Appendix A: PowerShell Language and Environment

https://aka.ms/terminal-global-settings
https://aka.ms/terminal-profile-settings
https://aka.ms/terminal-profile-settings

Use hotkeys to operate the shell more efficiently
The PowerShell console supports many hotkeys that help make operating the console
more efficient, as shown in Table A-17.

Table A-17. PowerShell hotkeys
Hotkey Meaning
Press and release the Windows key, and then
type pwsh or powershell

Launch PowerShell or Windows PowerShell. The Win+X hotkey also
provides a quick way to launch Windows PowerShell.

Up arrow Scan backward through your command history.

Down arrow Scan forward through your command history.

Left arrow Move cursor one character to the left on your command line.

Right arrow Move cursor one character to the right on your command line. If at the end
of the line, inserts a character from the text of your last command at that
position.

Ctrl+Left arrow Move the cursor one word to the left on your command line.

Ctrl+Right arrow Move the cursor one word to the right on your command line.

Home Move the cursor to the beginning of the command line.

End Move the cursor to the end of the command line.

Ctrl+Shift+PgUp, Ctrl+Shift+PgDn In the Windows Terminal application, scroll through the screen buffer. In the
Windows Console, you can use PgUp and PgDn.

Ctrl+Shift+F In the Windows Terminal application, searches for text in the screen buffer.
In the Windows Console, you can use Alt+Space E F.

Alt+Space E K In the Windows Console, selects text to be copied from the screen buffer. For
an additional method to do this, see Recipe 1.10.

Ctrl+C Cancel the current operation. If any text is selected, Ctrl+C copies this text
into the clipboard.

Ctrl+V Paste clipboard contents.

Ctrl+Shift+T In the Windows Terminal application, opens a new tab. You can also use Ctrl
+Shift+1, Ctrl+Shift+2, and similar to open a tab for that numbered profile
(such as bash.exe).

Ctrl+Shift+W, Alt+F4 In the Windows Terminal application, close the current tab or entire
application. In the Windows Console, you can use Alt+Space C to close the
entire application.

Ctrl+Break In the Windows Console, breaks the PowerShell debugger into the currently
running script.

Ctrl+Home Deletes characters from the beginning of the current command line up to
(but not including) the current cursor position.

Ctrl+End Deletes characters from (and including) the current cursor position to the
end of the current command line.

Ctrl+Z, Ctrl+Y Undo and Redo.

F8 Scan backward through your command history, only displaying matches for
commands that match the text you’ve typed so far on the command line.

PowerShell Language and Environment | 857

Hotkey Meaning
Ctrl+R Begins an interactive search backward through your command history based

on text you type interactively.

The command-line editing experience offered in PowerShell
through the PSReadLine module is far richer that what this table
lists. It includes Emacs and Vi key bindings, as well as the ability to
define your own—you can see the full default list by typing Get-
PSReadLineKeyHandler. For more information, see Recipe 1.10.

Profiles
PowerShell automatically runs the four scripts listed in Table A-18 during startup.
Each, if present, lets you customize your execution environment. PowerShell runs
anything you place in these files as though you had entered it manually at the com‐
mand line.

Table A-18. PowerShell profiles
Profile purpose Profile location
Customization of all PowerShell sessions, including PowerShell hosting
applications for all users on the system

InstallationDirectory\profile.ps1

Customization of pwsh.exe sessions for all users on the system InstallationDirectory
\Microsoft.PowerShell_profile.ps1

Customization of all PowerShell sessions, including PowerShell hosting
applications

<My Documents>\PowerShell\profile.ps1

Typical customization of pwsh.exe sessions <My Documents>\PowerShell
\Microsoft.PowerShell_profile.ps1

In Windows PowerShell, some of these locations will be different.

PowerShell makes editing your profile script simple by defining the automatic vari‐
able $profile. By itself, it points to the “current user, pwsh.exe” profile. In addition,
the $profile variable defines additional properties that point to the other profile
locations:

PS > $profile | Format-List -Force

AllUsersAllHosts : C:\...Microsoft.PowerShell...\profile.ps1
AllUsersCurrentHost : C:\...Microsoft.PowerShell...\Microsoft.PowerShell_profile.ps1
CurrentUserAllHosts : D:\Lee\PowerShell\profile.ps1
CurrentUserCurrentHost : D:\Lee\PowerShell\Microsoft.PowerShell_profile.ps1

To create a new profile, type:
New-Item -Type file -Force $profile

To edit this profile, type:

858 | Appendix A: PowerShell Language and Environment

notepad $profile

Prompts
To customize your prompt, add a prompt function to your profile. This function
returns a string. For example:

function prompt
{
 "PS [$env:COMPUTERNAME] >"
}

For more information about customizing your prompt, see also Recipe 1.9.

Tab Completion
You can define a TabExpansion2 function to customize the way that PowerShell com‐
pletes properties, variables, parameters, and files when you press the Tab key.

Your TabExpansion function overrides the one that PowerShell defines by default,
though, so you may want to use its definition as a starting point:

Get-Content function:\TabExpansion2

For more information about customizing tab expansion, see Recipe 1.18.

User Input
You can define a PSConsoleHostReadLine function to customize the way that the
PowerShell console host (not the Integrated Scripting Environment [ISE]) reads input
from the user. This function is responsible for handling all of the user’s keypresses,
and finally returning the command that PowerShell should invoke.

For more information about overriding user input, see Recipe 1.10.

Command Resolution
You can intercept PowerShell’s command resolution behavior in three places by
assigning a script block to one or all of the PreCommandLookupAction, PostCommand
LookupAction, or CommandNotFoundAction properties of $executionContext.

SessionState.InvokeCommand.

PowerShell invokes the PreCommandLookupAction after the user types a command
name, but before it has tried to resolve the command. It invokes the PostCommand
LookupAction once it has resolved a command, but before it executes the command.
It invokes the CommandNotFoundAction when a command is not found, but before it
generates an error message. Each script block receives two arguments: CommandName
and CommandLookupEventArgs.

PowerShell Language and Environment | 859

$executionContext.SessionState.InvokeCommand.CommandNotFoundAction = {
 param($CommandName, $CommandLookupEventArgs)

 (...)
}

If your script block assigns a script block to the CommandScriptBlock property of the
CommandLookupEventArgs or assigns a CommandInfo to the Command property of the
CommandLookupEventArgs, PowerShell will use that script block or command, respec‐
tively. If your script block sets the StopSearch property to true, PowerShell will do
no further command resolution.

For more information about overriding user input, see Recipe 1.11.

860 | Appendix A: PowerShell Language and Environment

APPENDIX B

Regular Expression Reference

Regular expressions play an important role in most text parsing and text matching
tasks. They form an important underpinning of the -split and -match operators, the
switch statement, the Select-String cmdlet, and more. Tables B-1 through B-9 list
commonly used regular expressions.

Table B-1. Character classes: patterns that represent sets of characters
Character class Matches

. Any character except for a newline. If the regular expression uses the SingleLine
option, it matches any character.

PS > "T" -match '.'
True

[characters] Any character in the brackets. For example: [aeiou].
PS > "Test" -match '[Tes]'
True

[^characters] Any character not in the brackets. For example: [^aeiou].
PS > "Test" -match '[^Tes]'
False

[start-end] Any character between the characters start and end, inclusive. You may include
multiple character ranges between the brackets. For example, [a-eh-j].

PS > "Test" -match '[e-t]'
True

[^start-end] Any character not between any of the character ranges start through end, inclusive.
You may include multiple character ranges between the brackets. For example,
[^a-eh-j].

PS > "Test" -match '[^e-t]'
False

861

Character class Matches

\p{character class} Any character in the Unicode group or block range specified by {character class}.
PS > "+" -match '\p{Sm}'
True

\P{character class} Any character not in the Unicode group or block range specified by {character
class}.

PS > "+" -match '\P{Sm}'
False

\w Any word character. Note that this is the Unicode definition of a word character, which
includes digits, as well as many math symbols and various other symbols.

PS > "a" -match '\w'
True

\W Any nonword character.
PS > "!" -match '\W'
True

\s Any whitespace character.
PS > "`t" -match '\s'
True

\S Any nonwhitespace character.
PS > " `t" -match '\S'
False

\d Any decimal digit.
PS > "5" -match '\d'
True

\D Any character that isn’t a decimal digit.
PS > "!" -match '\D'
True

Table B-2. Quantifiers: expressions that enforce quantity on the preceding expression
Quantifier Meaning
<none> One match.

PS > "T" -match 'T'
True

* Zero or more matches, matching as much as possible.
PS > "A" -match 'T*'
True

PS > "TTTTT" -match '^T*$'
True

PS > 'ATTT' -match 'AT*'; $matches[0]
True
ATTT

862 | Appendix B: Regular Expression Reference

Quantifier Meaning

+ One or more matches, matching as much as possible.
PS > "A" -match 'T+'
False

PS > "TTTTT" -match '^T+$'
True

PS > 'ATTT' -match 'AT+'; $matches[0]
True
ATTT

? Zero or one matches, matching as much as possible.
PS > "TTTTT" -match '^T?$'
False

PS > 'ATTT' -match 'AT?'; $matches[0]
True
AT

{n} Exactly n matches.
PS > "TTTTT" -match '^T{5}$'
True

{n,} n or more matches, matching as much as possible.
PS > "TTTTT" -match '^T{4,}$'
True

{n,m} Between n and m matches (inclusive), matching as much as possible.
PS > "TTTTT" -match '^T{4,6}$'
True

*? Zero or more matches, matching as little as possible.
PS > "A" -match '^AT*?$'
True

PS > 'ATTT' -match 'AT*?'; $matches[0]
True
A

+? One or more matches, matching as little as possible.
PS > "A" -match '^AT+?$'
False

PS > 'ATTT' -match 'AT+?'; $matches[0]
True
AT

Regular Expression Reference | 863

Quantifier Meaning

?? Zero or one matches, matching as little as possible.
PS > "A" -match '^AT??$'
True

PS > 'ATTT' -match 'AT??'; $matches[0]
True
A

{n}? Exactly n matches.
PS > "TTTTT" -match '^T{5}?$'
True

{n,}? n or more matches, matching as little as possible.
PS > "TTTTT" -match '^T{4,}?$'
True

{n,m}? Between n and m matches (inclusive), matching as little as possible.
PS > "TTTTT" -match '^T{4,6}?$'
True

Table B-3. Grouping constructs: expressions that let you group characters, patterns, and other
expressions

Grouping construct Description

(text) Captures the text matched inside the parentheses. These captures are named by number (starting
at one) based on the order of the opening parenthesis.

PS > "Hello" -match '^(.*)llo$'; $matches[1]
True
He

(?<name>) Captures the text matched inside the parentheses. These captures are named by the name given
in name.

PS > "Hello" -match '^(?<One>.*)llo$'; $matches.One
True
He

(?<name1-name2>) A balancing group definition. This is an advanced regular expression construct, but lets you match
evenly balanced pairs of terms.

864 | Appendix B: Regular Expression Reference

Grouping construct Description

(?:) Noncapturing group.
PS > "A1" -match '((A|B)\d)'; $matches
True

Name Value
---- -----
2 A
1 A1
0 A1

PS > "A1" -match '((?:A|B)\d)'; $matches
True

Name Value
---- -----
1 A1
0 A1

(?imnsx-imnsx:) Applies or disables the given option for this group. Supported options are:
i case-insensitive
m multiline
n explicit capture
s singleline
x ignore whitespace

PS > "Te`nst" -match '(T e.st)'
False

PS > "Te`nst" -match '(?sx:T e.st)'
True

(?=) Zero-width positive lookahead assertion. Ensures that the given pattern matches to the right,
without actually performing the match.

PS > "555-1212" -match '(?=...-)(.*)'; $matches[1]
True
555-1212

(?!) Zero-width negative lookahead assertion. Ensures that the given pattern does not match to the
right, without actually performing the match.

PS > "friendly" -match '(?!friendly)friend'
False

(?<=) Zero-width positive lookbehind assertion. Ensures that the given pattern matches to the left,
without actually performing the match.

PS > "public int X" -match '^.*(?<=public)int .*$'
True

(?<!) Zero-width negative lookbehind assertion. Ensures that the given pattern does not match to the
left, without actually performing the match.

PS > "private int X" -match '^.*(?<!private)int .*$'
False

Regular Expression Reference | 865

Grouping construct Description

(?>) Nonbacktracking subexpression. Matches only if this subexpression can be matched completely.
PS > "Hello World" -match '(Hello.*)orld'
True

PS > "Hello World" -match '(?>Hello.*)orld'
False

The nonbacktracking version of the subexpression fails to match, as its complete match would be
“Hello World”.

Table B-4. Atomic zero-width assertions: patterns that restrict where a match may occur
Assertion Restriction

^ The match must occur at the beginning of the string (or line, if the Multiline option is in effect).
PS > "Test" -match '^est'
False

$ The match must occur at the end of the string (or line, if the Multiline option is in effect).
PS > "Test" -match 'Tes$'
False

\A The match must occur at the beginning of the string.
PS > "The`nTest" -match '(?m:^Test)'
True

PS > "The`nTest" -match '(?m:\ATest)'
False

\Z The match must occur at the end of the string, or before \n at the end of the string.
PS > "The`nTest`n" -match '(?m:The$)'
True

PS > "The`nTest`n" -match '(?m:The\Z)'
False

PS > "The`nTest`n" -match 'Test\Z'
True

\z The match must occur at the end of the string.
PS > "The`nTest`n" -match 'Test\z'
False

\G The match must occur where the previous match ended. Used with
System.Text.RegularExpressions.Match.NextMatch()

\b The match must occur on a word boundary: the first or last characters in words separated by
nonalphanumeric characters.

PS > "Testing" -match 'ing\b'
True

866 | Appendix B: Regular Expression Reference

Assertion Restriction

\B The match must not occur on a word boundary.
PS > "Testing" -match 'ing\B'
False

Table B-5. Substitution patterns: patterns used in a regular expression replace operation
Pattern Substitution

$number The text matched by group number number.
PS > "Test" -replace "(.*)st",'$1ar'
Tear

${name} The text matched by group named name.
PS > "Test" -replace "(?<pre>.*)st",'${pre}ar'
Tear

$$ A literal $.
PS > "Test" -replace ".",'$$'
$$$$

$& A copy of the entire match.
PS > "Test" -replace "^.*$",'Found: $&'
Found: Test

$` The text of the input string that precedes the match.
PS > "Test" -replace "est$",'Te$`'
TTeT

$' The text of the input string that follows the match.
PS > "Test" -replace "^Tes",'Res$'''
Restt

$+ The last group captured.
PS > "Testing" -replace "(.*)ing",'$+ed'
Tested

$_ The entire input string.
PS > "Testing" -replace "(.*)ing",'String: $_'
String: Testing

Regular Expression Reference | 867

Table B-6. Alternation constructs: expressions that let you perform either/or logic
Alternation construct Description

| Matches any of the terms separated by the vertical bar character.
PS > "Test" -match '(B|T)est'
True

(?(expression)yes|no) Matches the yes term if expression matches at this point. Otherwise, matches the no
term. The no term is optional.

PS > "3.14" -match '(?(\d)3.14|Pi)'
True

PS > "Pi" -match '(?(\d)3.14|Pi)'
True

PS > "2.71" -match '(?(\d)3.14|Pi)'
False

(?(name)yes|no) Matches the yes term if the capture group named name has a capture at this point.
Otherwise, matches the no term. The no term is optional.

PS > "123" -match '(?<one>1)?(?(one)23|234)'
True

PS > "23" -match '(?<one>1)?(?(one)23|234)'
False

PS > "234" -match '(?<one>1)?(?(one)23|234)'
True

Table B-7. Backreference constructs: expressions that refer to a capture group within the
expression

Backreference construct Refers to

\number Group number number in the expression.
PS > "|Text|" -match '(.)Text\1'
True

PS > "|Text+" -match '(.)Text\1'
False

\k<name> The group named name in the expression.
PS > "|Text|" -match '(?<Symbol>.)Text\k<Symbol>'
True

PS > "|Text+" -match '(?<Symbol>.)Text\k<Symbol>'
False

868 | Appendix B: Regular Expression Reference

Table B-8. Other constructs: other expressions that modify a regular expression
Construct Description

(?imnsx-imnsx) Applies or disables the given option for the rest of this expression. Supported options are:
i case-insensitive
m multiline
n explicit capture
s singleline
x ignore whitespace

PS > "Te`nst" -match '(?sx)T e.st'
True

(?#) Inline comment. This terminates at the first closing parenthesis.
PS > "Test" -match '(?# Match "Test")Test'
True

[to end of line] Comment form allowed when the regular expression has the IgnoreWhitespace
option enabled.

PS > "Test" -match '(?x)Test # Matches Test'
True

Table B-9. Character escapes: character sequences that represent another character
Escaped
character

Match

<ordinary
characters>

Characters other than . $ ^ { [(|) * + ? \ match themselves.

\a A bell (alarm) \u0007.

\b A backspace \u0008 if in a [] character class. In a regular expression, \b denotes a word boundary
(between \w and \W characters) except within a [] character class, where \b refers to the backspace
character. In a replacement pattern, \b always denotes a backspace.

\t A tab \u0009.

\r A carriage return \u000D.

\v A vertical tab \u000B.

\f A form feed \u000C.

\n A new line \u000A.

\e An escape \u001B.

\ddd An ASCII character as octal (up to three digits). Numbers with no leading zero are treated as
backreferences if they have only one digit, or if they correspond to a capturing group number.

\xdd An ASCII character using hexadecimal representation (exactly two digits).

\cC An ASCII control character; for example, \cC is Control-C.

\udddd A Unicode character using hexadecimal representation (exactly four digits).

\ When followed by a character that is not recognized as an escaped character, matches that character. For
example, * is the literal character *.

Regular Expression Reference | 869

APPENDIX C

XPath Quick Reference

Just as regular expressions are the standard way to interact with plain text, XPath is
the standard way to interact with XML. Because of that, XPath is something you’re
likely to run across in your travels. Several cmdlets support XPath queries: Select-
Xml, Get-WinEvent, and more. Tables C-1 and C-2 give a quick overview of XPath
concepts.

For these examples, consider this sample XML:
<AddressBook>
 <Person contactType="Personal">
 <Name>Lee</Name>
 <Phone type="home">555-1212</Phone>
 <Phone type="work">555-1213</Phone>
 </Person>
 <Person contactType="Business">
 <Name>Ariel</Name>
 <Phone>555-1234</Phone>
 </Person>
</AddressBook>

Table C-1. Navigation and selection
Syntax Meaning

/ Represents the root of the XML tree. For example:
PS > $xml | Select-Xml "/" | Select -Expand Node

AddressBook

AddressBook

871

Syntax Meaning

/Node Navigates to the node named Node from the root of the XML tree. For example:
PS > $xml | Select-Xml "/AddressBook" | Select -Expand Node

Person

{Lee, Ariel}

/Node/*/Node2 Navigates to the noded named Node2 via Node, allowing any single node in between. For example:
PS > $xml | Select-Xml "/AddressBook/*/Name" | Select -Expand Node

#text

Lee
Ariel

//Node Finds all nodes named Node, anywhere in the XML tree. For example:
PS > $xml | Select-Xml "//Phone" | Select -Expand Node

type #text
---- -----
home 555-1212
work 555-1213
 555-1234

.. Retrieves the parent node of the given node. For example:
PS > $xml | Select-Xml "//Phone" | Select -Expand Node

type #text
---- -----
home 555-1212
work 555-1213
 555-1234

PS > $xml | Select-Xml "//Phone/.."| Select -Expand Node

contactType Name Phone
----------- ---- -----
Personal Lee {Phone, Phone}
Business Ariel 555-1234

@ Attribute Accesses the value of the attribute named Attribute. For example:
PS > $xml | Select-Xml "//Phone/@type" | Select -Expand Node

#text

home
work

872 | Appendix C: XPath Quick Reference

Table C-2. Comparisons
Syntax Meaning

[] Filtering, similar to the Where-Object cmdlet.
For example:

PS > $xml | Select-Xml "//Person[@contactType = 'Personal']" |
 Select -Expand Node

contactType Name Phone
----------- ---- -----
Personal Lee {Phone, Phone}

PS > $xml | Select-Xml "//Person[Name = 'Lee']" |
 Select -Expand Node

contactType Name Phone
----------- ---- -----
Personal Lee {Phone, Phone}

and Logical and.

or Logical or.

not() Logical negation.

= Equality.

!= Inequality.

XPath Quick Reference | 873

APPENDIX D

.NET String Formatting

String Formatting Syntax
The format string supported by the format (-f) operator is a string that contains for‐
mat items. Each format item takes the form of:

{index[,alignment][:formatString]}

index represents the zero-based index of the item in the object array following the
format operator.

alignment is optional and represents the alignment of the item. A positive number
aligns the item to the right of a field of the specified width. A negative number aligns
the item to the left of a field of the specified width.

PS > ("{0,6}" -f 4.99), ("{0,6:##.00}" -f 15.9)
 4.99
 15.90

formatString is optional and formats the item using that type’s specific format string
syntax (as laid out in Tables D-1 and D-2).

Standard Numeric Format Strings
Table D-1 lists the standard numeric format strings. All format specifiers may be fol‐
lowed by a number between 0 and 99 to control the precision of the formatting.

875

Table D-1. Standard numeric format strings
Format
specifier

Name Description

C or c Currency A currency amount:
PS > "{0:C}" -f 1.23
$1.23

D or d Decimal A decimal amount (for integral types). The precision specifier controls the minimum number of
digits in the result:

PS > "{0:D4}" -f 2
0002

E or e Scientific Scientific (exponential) notation. The precision specifier controls the number of digits past the
decimal point:

PS > "{0:E3}" -f [Math]::Pi
3.142E+000

F or f Fixed-point Fixed-point notation. The precision specifier controls the number of digits past the decimal
point:

PS > "{0:F3}" -f [Math]::Pi
3.142

G or g General The most compact representation (between fixed-point and scientific) of the number. The
precision specifier controls the number of significant digits:

PS > "{0:G3}" -f [Math]::Pi
3.14

PS > "{0:G3}" -f 1mb
1.05E+06

N or n Number The human-readable form of the number, which includes separators between number groups.
The precision specifier controls the number of digits past the decimal point:

PS > "{0:N4}" -f 1mb
1,048,576.0000

P or p Percent The number (generally between 0 and 1) represented as a percentage. The precision specifier
controls the number of digits past the decimal point:

PS > "{0:P4}" -f 0.67
67.0000 %

R or r Roundtrip The Single or Double number formatted with a precision that guarantees the string (when
parsed) will result in the original number again:

PS > "{0:R}" -f (1mb/2.0)
524288

PS > "{0:R}" -f (1mb/9.0)
116508.44444444444

X or x Hexadecimal The number converted to a string of hexadecimal digits. The case of the specifier controls the
case of the resulting hexadecimal digits. The precision specifier controls the minimum number
of digits in the resulting string:

PS > "{0:X4}" -f 1324
052C

876 | Appendix D: .NET String Formatting

Custom Numeric Format Strings
You can use custom numeric strings, listed in Table D-2, to format numbers in ways
not supported by the standard format strings.

Table D-2. Custom numeric format strings
Format specifier Name Description

0 Zero
placeholder

Specifies the precision and width of a number string. Zeros not matched by digits in the
original number are output as zeros:

PS > "{0:00.0}" -f 4.12341234
04.1

Digit
placeholder

Specifies the precision and width of a number string. # symbols not matched by digits
in the input number are not output:

PS > "{0:##.#}" -f 4.12341234
4.1

. Decimal point Determines the location of the decimal:
PS > "{0:##.#}" -f 4.12341234
4.1

, Thousands
separator

When placed between a zero or digit placeholder before the decimal point in a
formatting string, adds the separator character between number groups:

PS > "{0:#,#.#}" -f 1234.121234
1,234.1

, Number
scaling

When placed before the literal (or implicit) decimal point in a formatting string, divides
the input by 1,000. You can apply this format specifier more than once:

PS > "{0:##,,.000}" -f 1048576
1.049

% Percentage
placeholder

Multiplies the input by 100, and inserts the percent sign where shown in the format
specifier:

PS > "{0:%##.000}" -f .68
%68.000

E0

E+0

E-0

e0

e+0

e-0

Scientific
notation

Displays the input in scientific notation. The number of zeros that follow the E define
the minimum length of the exponent field:

PS > "{0:##.#E000}" -f 2.71828
27.2E-001

'text'

"text"

Literal string Inserts the provided text literally into the output without affecting formatting:
PS > "{0:#.00'##'}" -f 2.71828
2.72##

.NET String Formatting | 877

Format specifier Name Description
; Section

separator
Allows for conditional formatting.
If your format specifier contains no section separators, the formatting statement
applies to all input.
If your format specifier contains one separator (creating two sections), the first section
applies to positive numbers and zero, and the second section applies to negative
numbers.
If your format specifier contains two separators (creating three sections), the sections
apply to positive numbers, negative numbers, and zero:

PS > "{0:POS;NEG;ZERO}" -f -14
NEG

Other Other
character

Inserts the provided text literally into the output without affecting formatting:
PS > "{0:$## Please}" -f 14
$14 Please

878 | Appendix D: .NET String Formatting

APPENDIX E

.NET DateTime Formatting

DateTime format strings convert a DateTime object to one of several standard for‐
mats, as listed in Table E-1.

Table E-1. Standard DateTime format strings
Format
specifier

Name Description

d Short date The culture’s short date format:
PS > "{0:d}" -f [DateTime] "01/23/4567"
1/23/4567

D Long date The culture’s long date format:
PS > "{0:D}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567

f Full date/short
time

Combines the long date and short time format patterns:
PS > "{0:f}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567 12:00 AM

F Full date/long
time

Combines the long date and long time format patterns:
PS > "{0:F}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567 12:00:00 AM

g General date/
short time

Combines the short date and short time format patterns:
PS > "{0:g}" -f [DateTime] "01/23/4567"
1/23/4567 12:00 AM

G General date/
long time

Combines the short date and long time format patterns:
PS > "{0:G}" -f [DateTime] "01/23/4567"
1/23/4567 12:00:00 AM

879

Format
specifier

Name Description

M or m Month day The culture’s MonthDay format:
PS > "{0:M}" -f [DateTime] "01/23/4567"
January 23

o Round-trip
date/time

The date formatted with a pattern that guarantees the string (when parsed) will result in the
original DateTime again:

PS > "{0:o}" -f [DateTime] "01/23/4567"
4567-01-23T00:00:00.0000000

R or r RFC1123 The standard RFC1123 format pattern:
PS > "{0:R}" -f [DateTime] "01/23/4567"
Fri, 23 Jan 4567 00:00:00 GMT

s Sortable Sortable format pattern. Conforms to ISO 8601 and provides output suitable for sorting:
PS > "{0:s}" -f [DateTime] "01/23/4567"
4567-01-23T00:00:00

t Short time The culture’s ShortTime format:
PS > "{0:t}" -f [DateTime] "01/23/4567"
12:00 AM

T Long time The culture’s LongTime format:
PS > "{0:T}" -f [DateTime] "01/23/4567"
12:00:00 AM

u Universal
sortable

The culture’s UniversalSortable DateTime format applied to the UTC equivalent
of the input:

PS > "{0:u}" -f [DateTime] "01/23/4567"
4567-01-23 00:00:00Z

U Universal The culture’s FullDateTime format applied to the UTC equivalent of the input:
PS > "{0:U}" -f [DateTime] "01/23/4567"
Friday, January 23, 4567 8:00:00 AM

Y or y Year month The culture’s YearMonth format:
PS > "{0:Y}" -f [DateTime] "01/23/4567"
January, 4567

Custom DateTime Format Strings
You can use the custom DateTime format strings listed in Table E-2 to format dates in
ways not supported by the standard format strings.

Single-character format specifiers are by default interpreted as a
standard DateTime formatting string unless they are used with
other formatting specifiers. Add the % character before them to
have them interpreted as a custom format specifier.

880 | Appendix E: .NET DateTime Formatting

Table E-2. Custom DateTime format strings
Format specifier Description

d Day of the month as a number between 1 and 31. Represents single-digit days without a leading zero:
PS > "{0:%d}" -f [DateTime] "01/02/4567"
2

dd Day of the month as a number between 1 and 31. Represents single-digit days with a leading zero:
PS > "{0:dd}" -f [DateTime] "01/02/4567"
02

ddd Abbreviated name of the day of week:
PS > "{0:ddd}" -f [DateTime] "01/02/4567"
Fri

dddd Full name of the day of the week:
PS > "{0:dddd}" -f [DateTime] "01/02/4567"
Friday

f Most significant digit of the seconds fraction (milliseconds):
PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:%f}" -f $date
0

ff Two most significant digits of the seconds fraction (milliseconds):
PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:ff}" -f $date
09

fff Three most significant digits of the seconds fraction (milliseconds):
PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:fff}" -f $date
093

ffff Four most significant digits of the seconds fraction (milliseconds):
PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:ffff}" -f $date
0937

fffff Five most significant digits of the seconds fraction (milliseconds):
PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:fffff}" -f $date
09375

.NET DateTime Formatting | 881

Format specifier Description

ffffff Six most significant digits of the seconds fraction (milliseconds):
PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:ffffff}" -f $date
093750

fffffff Seven most significant digits of the seconds fraction (milliseconds):
PS > $date = Get-Date
PS > $date.Millisecond
93
PS > "{0:fffffff}" -f $date
0937500

F

FF

FFF

(…)

FFFFFFF

Most significant digit of the seconds fraction (milliseconds).
When compared to the lowercase series of 'f' specifiers, displays nothing if the number is zero:

PS > "{0:|F FF FFF FFFF|}" -f [DateTime] "01/02/4567"
| |----

%g or gg Era (e.g., A.D.):
PS > "{0:gg}" -f [DateTime] "01/02/4567"
A.D.

%h Hours, as a number between 1 and 12. Single digits do not include a leading zero:
PS > "{0:%h}" -f [DateTime] "01/02/4567 4:00pm"
4

hh Hours, as a number between 01 and 12. Single digits include a leading zero. Note: this is interpreted as
a standard DateTime formatting string unless used with other formatting specifiers:

PS > "{0:hh}" -f [DateTime] "01/02/4567 4:00pm"
04

%H Hours, as a number between 0 and 23. Single digits do not include a leading zero:
PS > "{0:%H}" -f [DateTime] "01/02/4567 4:00pm"
16

HH Hours, as a number between 00 and 23. Single digits include a leading zero:
PS > "{0:HH}" -f [DateTime] "01/02/4567 4:00am"
04

K DateTime.Kind specifier that corresponds to the kind (i.e., local, UTC, or unspecified) of input date:
PS > "{0:%K}" -f [DateTime]::Now.ToUniversalTime()
Z

m Minute, as a number between 0 and 59. Single digits do not include a leading zero:
PS > "{0:%m}" -f [DateTime]::Now
 7

mm Minute, as a number between 00 and 59. Single digits include a leading zero:
PS > "{0:mm}" -f [DateTime]::Now
08

882 | Appendix E: .NET DateTime Formatting

Format specifier Description

M Month, as a number between 1 and 12. Single digits do not include a leading zero:
PS > "{0:%M}" -f [DateTime] "01/02/4567"
1

MM Month, as a number between 01 and 12. Single digits include a leading zero:
PS > "{0:MM}" -f [DateTime] "01/02/4567"
01

MMM Abbreviated month name:
PS > "{0:MMM}" -f [DateTime] "01/02/4567"
Jan

MMMM Full month name:
PS > "{0:MMMM}" -f [DateTime] "01/02/4567"
January

s Seconds, as a number between 0 and 59. Single digits do not include a leading zero:
PS > $date = Get-Date
PS > "{0:%s}" -f $date
7

ss Seconds, as a number between 00 and 59. Single digits include a leading zero:
PS > $date = Get-Date
PS > "{0:ss}" -f $date
07

t First character of the a.m./p.m. designator:
PS > $date = Get-Date
PS > "{0:%t}" -f $date
P

tt a.m./p.m. designator:
PS > $date = Get-Date
PS > "{0:tt}" -f $date
PM

y Year, in (at most) two digits:
PS > "{0:%y}" -f [DateTime] "01/02/4567"
67

yy Year, in (at most) two digits:
PS > "{0:yy}" -f [DateTime] "01/02/4567"
67

yyy Year, in (at most) four digits:
PS > "{0:yyy}" -f [DateTime] "01/02/4567"
4567

yyyy Year, in (at most) four digits:
PS > "{0:yyyy}" -f [DateTime] "01/02/4567"
4567

.NET DateTime Formatting | 883

Format specifier Description

yyyyy Year, in (at most) five digits:
PS > "{0:yyyyy}" -f [DateTime] "01/02/4567"
04567

z Signed time zone offset from GMT. Does not include a leading zero:
PS > "{0:%z}" -f [DateTime]::Now
-8

zz Signed time zone offset from GMT. Includes a leading zero:
PS > "{0:zz}" -f [DateTime]::Now
-08

zzz Signed time zone offset from GMT, measured in hours and minutes:
PS > "{0:zzz}" -f [DateTime]::Now
-08:00

: Time separator:
PS > "{0:y/m/d h:m:s}" -f [DateTime] "01/02/4567 4:00pm"
67/0/2 4:0:0

/ Date separator:
PS > "{0:y/m/d h:m:s}" -f [DateTime] "01/02/4567 4:00pm"
67/0/2 4:0:0

"text"

'text'

Inserts the provided text literally into the output without affecting formatting:
PS > "{0:'Day: 'dddd}" -f [DateTime]::Now
Day: Monday

%c Syntax allowing for single-character custom formatting specifiers. The % sign is not added to the
output:

PS > "{0:%h}" -f [DateTime] "01/02/4567 4:00pm"
4

Other Inserts the provided text literally into the output without affecting formatting:
PS > "{0:dddd!}" -f [DateTime]::Now
Monday!

884 | Appendix E: .NET DateTime Formatting

APPENDIX F

Selected .NET Classes and Their Uses

Tables F-1 through F-16 provide pointers to types in the .NET Framework that use‐
fully complement the functionality that PowerShell provides. For detailed descrip‐
tions and documentation, refer to the official documentation.

Table F-1. PowerShell
Class Description

System.Management.Automation.PSObject Represents a PowerShell object to which you can add
notes, properties, and more.

Table F-2. Utility
Class Description

System.DateTime Represents an instant in time, typically expressed as a date
and time of day.

System.Guid Represents a globally unique identifier (GUID).

System.Math Provides constants and static methods for trigonometric,
logarithmic, and other common mathematical functions.

System.Random Represents a pseudorandom number generator, a device
that produces a sequence of numbers that meet certain
statistical requirements for randomness.

System.Convert Converts a base data type to another base data type.

System.Environment Provides information about, and means to manipulate, the
current environment and platform.

System.Console Represents the standard input, output, and error streams
for console applications.

System.Text.RegularExpressions.Regex Represents an immutable regular expression.

System.Diagnostics.Debug Provides a set of methods and properties that help debug
your code.

885

https://oreil.ly/UJrRW

Class Description

System.Diagnostics.EventLog Provides interaction with Windows event logs.

System.Diagnostics.Process Provides access to local and remote processes and enables
you to start and stop local system processes.

System.Diagnostics.Stopwatch Provides a set of methods and properties that you can use
to accurately measure elapsed time.

System.Media.SoundPlayer Controls playback of a sound from a .wav file.

Table F-3. Collections and object utilities
Class Description

System.Array Provides methods for creating, manipulating, searching,
and sorting arrays, thereby serving as the base class for all
arrays in the Common Language Runtime.

System.Enum Provides the base class for enumerations.

System.String Represents text as a series of Unicode characters.

System.Text.StringBuilder Represents a mutable string of characters.

System.Collections.Specialized.Ordered
Dictionary

Represents a collection of key/value pairs that are
accessible by the key or index.

System.Collections.ArrayList Implements the IList interface using an array whose size is
dynamically increased as required.

Table F-4. The .NET Framework
Class Description

System.AppDomain Represents an application domain, which is an isolated
environment where applications execute.

System.Reflection.Assembly Defines an Assembly, which is a reusable, versionable, and
self-describing building block of a Common Language
Runtime application.

System.Type Represents type declarations: class types, interface types,
array types, value types, enumeration types, type
parameters, generic type definitions, and open or closed
constructed generic types.

System.Threading.Thread Creates and controls a thread, sets its priority, and gets its
status.

System.Runtime.InteropServices.Marshal Provides a collection of methods for allocating unmanaged
memory, copying unmanaged memory blocks, and
converting managed to unmanaged types, as well as other
miscellaneous methods used when interacting with
unmanaged code.

Microsoft.CSharp.CSharpCodeProvider Provides access to instances of the C# code generator and
code compiler.

886 | Appendix F: Selected .NET Classes and Their Uses

Table F-5. Registry
Class Description

Microsoft.Win32.Registry Provides RegistryKey objects that represent the root keys in the
local and remote Windows Registry and static methods to access key/
value pairs.

Microsoft.Win32.RegistryKey Represents a key-level node in the Windows Registry.

Table F-6. Input and Output
Class Description

System.IO.Stream Provides a generic view of a sequence of bytes.

System.IO.BinaryReader Reads primitive data types as binary values.

System.IO.BinaryWriter Writes primitive types in binary to a stream.

System.IO.BufferedStream Adds a buffering layer to read and write operations on another
stream.

System.IO.Directory Exposes static methods for creating, moving, and enumerating
through directories and subdirectories.

System.IO.FileInfo Provides instance methods for the creation, copying, deletion,
moving, and opening of files, and aids in the creation of File
Stream objects.

System.IO.DirectoryInfo Exposes instance methods for creating, moving, and enumerating
through directories and subdirectories.

System.IO.File Provides static methods for the creation, copying, deletion, moving,
and opening of files, and aids in the creation of FileStream
objects.

System.IO.MemoryStream Creates a stream whose backing store is memory.

System.IO.Path Performs operations on String instances that contain file or
directory path information. These operations are performed in a cross-
platform manner.

System.IO.TextReader Represents a reader that can read a sequential series of characters.

System.IO.StreamReader Implements a TextReader that reads characters from a byte
stream in a particular encoding.

System.IO.TextWriter Represents a writer that can write a sequential series of characters.

System.IO.StreamWriter Implements a TextWriter for writing characters to a stream in a
particular encoding.

System.IO.StringReader Implements a TextReader that reads from a string.

System.IO.StringWriter Implements a TextWriter for writing information to a string.

System.IO.Compression.DeflateStream Provides methods and properties used to compress and decompress
streams using the Deflate algorithm.

System.IO.Compression.GZipStream Provides methods and properties used to compress and decompress
streams using the GZip algorithm.

System.IO.FileSystemWatcher Listens to the filesystem change notifications and raises events when
a directory or file in a directory changes.

Selected .NET Classes and Their Uses | 887

Table F-7. Security
Class Description

System.Security.Principal.WindowsIdentity Represents a Windows user.

System.Security.Principal.WindowsPrincipal Allows code to check the Windows group
membership of a Windows user.

System.Security.Principal.WellKnownSidType Defines a set of commonly used security
identifiers (SIDs).

System.Security.Principal.WindowsBuiltInRole Specifies common roles to be used with IsIn
Role.

System.Security.SecureString Represents text that should be kept confidential.
The text is encrypted for privacy when being
used and deleted from computer memory when
no longer needed.

System.Security.Cryptography.TripleDESCrypto
ServiceProvider

Defines a wrapper object to access the
cryptographic service provider (CSP) version of
the TripleDES algorithm.

System.Security.Cryptography.PasswordDeriveBytes Derives a key from a password using an
extension of the PBKDF1 algorithm.

System.Security.Cryptography.SHA1 Computes the SHA1 hash for the input data.

System.Security.AccessControl.FileSystemSecurity Represents the access control and audit security
for a file or directory.

System.Security.AccessControl.RegistrySecurity Represents the Windows access control security
for a registry key.

Table F-8. UI
Class Description

System.Windows.Forms.Form Represents a window or dialog box that makes up an
application’s UI.

System.Windows.Forms.FlowLayoutPanel Represents a panel that dynamically lays out its contents.

Table F-9. Image manipulation
Class Description

System.Drawing.Image A class that provides functionality for the Bitmap and
Metafile classes.

System.Drawing.Bitmap Encapsulates a GDI+ bitmap, which consists of the pixel
data for a graphics image and its attributes. A bitmap is an
object used to work with images defined by pixel data.

888 | Appendix F: Selected .NET Classes and Their Uses

Table F-10. Networking
Class Description

System.Uri Provides an object representation of a uniform resource
identifier (URI) and easy access to the parts of the URI.

System.Net.NetworkCredential Provides credentials for password-based authentication
schemes such as basic, digest, Kerberos authentication,
and NTLM.

System.Net.Dns Provides simple domain name resolution functionality.

System.Net.FtpWebRequest Implements a File Transfer Protocol (FTP) client.

System.Net.HttpWebRequest Provides an HTTP-specific implementation of the
WebRequest class.

System.Net.WebClient Provides common methods for sending data to and
receiving data from a resource identified by a URI.

System.Net.Sockets.TcpClient Provides client connections for TCP network services.

System.Net.Mail.MailAddress Represents the address of an electronic mail sender or
recipient.

System.Net.Mail.MailMessage Represents an email message that can be sent using the
SmtpClient class.

System.Net.Mail.SmtpClient Allows applications to send email by using the Simple Mail
Transfer Protocol (SMTP).

System.IO.Ports.SerialPort Represents a serial port resource.

System.Web.HttpUtility Provides methods for encoding and decoding URLs when
processing web requests.

Table F-11. XML
Class Description

System.Xml.XmlTextWriter Represents a writer that provides a fast, noncached,
forward-only way of generating streams or files containing
XML data that conforms to the W3C Extensible Markup
Language (XML) 1.0 and the namespaces in XML
recommendations.

System.Xml.XmlDocument Represents an XML document.

Selected .NET Classes and Their Uses | 889

Table F-12. Windows Management Instrumentation (WMI)
Class Description

System.Management.ManagementObject Represents a WMI instance.

System.Management.ManagementClass Represents a management class. A management class
is a WMI class such as Win32_LogicalDisk, which
can represent a disk drive, or Win32_Process,
which represents a process such as an instance of
Notepad.exe. The members of this class enable you to
access WMI data using a specific WMI class path. For
more information, see “Win32 Classes” in the official
Windows Management Instrumentation
documentation.

System.Management.ManagementObjectSearcher Retrieves a collection of WMI management objects
based on a specified query. This class is one of the more
commonly used entry points to retrieving management
information. For example, it can be used to enumerate
all disk drives, network adapters, processes, and many
more management objects on a system or to query for
all network connections that are up, services that are
paused, and so on. When instantiated, an instance of
this class takes as input a WMI query represented in an
ObjectQuery or its derivatives, and optionally a
ManagementScope representing the WMI
namespace to execute the query in. It can also take
additional advanced options in an Enumeration
Options. When the Get method on this object is
invoked, the ManagementObjectSearcher
executes the given query in the specified scope and
returns a collection of management objects that match
the query in a ManagementObjectCollection.

System.Management.ManagementDateTime
Converter

Provides methods to convert DMTF datetime and time
intervals to CLR-compliant DateTime and Time
Span formats, and vice versa.

System.Management.ManagementEventWatcher Subscribes to temporary event notifications based on a
specified event query.

Table F-13. Active Directory
Class Description

System.DirectoryServices.DirectorySearcher Performs queries against Active Directory.

System.DirectoryServices.DirectoryEntry The DirectoryEntry class encapsulates a node or
object in the Active Directory hierarchy.

890 | Appendix F: Selected .NET Classes and Their Uses

https://aka.ms/wmi
https://aka.ms/wmi

Table F-14. Database
Class Description

System.Data.DataSet Represents an in-memory cache of data.

System.Data.DataTable Represents one table of in-memory data.

System.Data.SqlClient.SqlCommand Represents a Transact-SQL statement or stored
procedure to execute against a SQL Server database.

System.Data.SqlClient.SqlConnection Represents an open connection to a SQL Server database.

System.Data.SqlClient.SqlDataAdapter Represents a set of data commands and a database
connection that are used to fill the DataSet and update
a SQL Server database.

System.Data.Odbc.OdbcCommand Represents a SQL statement or stored procedure to execute
against a data source.

System.Data.Odbc.OdbcConnection Represents an open connection to a data source.

System.Data.Odbc.OdbcDataAdapter Represents a set of data commands and a connection to a
data source that are used to fill the DataSet and update
the data source.

Table F-15. Message queuing
Class Description

System.Messaging.MessageQueue Provides access to a queue on a Message Queuing server.

Table F-16. Transactions
Class Description

System.Transactions.Transaction Represents a transaction.

Selected .NET Classes and Their Uses | 891

APPENDIX G

WMI Reference

The Windows Management Instrumentation (WMI) facilities in Windows offer
thousands of classes that provide information of interest to administrators. Table G-1
lists the categories and subcategories covered by WMI and can be used to get a gen‐
eral idea of the scope of WMI classes. Table G-2 provides a selected subset of the
most useful WMI classes. For more information about a category, search the official
WMI documentation.

Table G-1. WMI class categories and subcategories
Category Subcategory
Computer system hardware Cooling device, input device, mass storage, motherboard, controller and

port, networking device, power, printing, telephony, video, and monitor

Operating system COM, desktop, drivers, filesystem, job objects, memory and page files,
multimedia audio/visual, networking, operating system events,
operating system settings, processes, registry, scheduler jobs, security,
services, shares, Start menu, storage, users, Windows NT event log,
Windows product activation

WMI Service Management WMI configuration, WMI management

General Installed applications, performance counter, security descriptor

Table G-2. Selected WMI classes
Class Description

CIM_DataFile Represents a named collection of data or executable code. Currently,
the provider returns files on fixed and mapped logical disks. In the
future, only instances of files on local fixed disks will be returned.

Win32_BaseBoard Represents a baseboard, which is also known as a motherboard or
system board.

Win32_BIOS Represents the attributes of the computer system’s basic input/output
services (BIOS) that are installed on a computer.

893

https://aka.ms/wmi

Class Description

Win32_BootConfiguration Represents the boot configuration of a Windows system.

Win32_CacheMemory Represents internal and external cache memory on a computer system.

Win32_CDROMDrive Represents a CD-ROM drive on a Windows computer system. Be aware
that the name of the drive does not correspond to the logical drive
letter assigned to the device.

Win32_ComputerSystem Represents a computer system in a Windows environment.

Win32_ComputerSystemProduct Represents a product. This includes software and hardware used on this
computer system.

Win32_DCOMApplication Represents the properties of a DCOM application.

Win32_Desktop Represents the common characteristics of a user’s desktop. The
properties of this class can be modified by the user to customize the
desktop.

Win32_DesktopMonitor Represents the type of monitor or display device attached to the
computer system.

Win32_DeviceMemoryAddress Represents a device memory address on a Windows system.

Win32_Directory Represents a directory entry on a Windows computer system. A
directory is a type of file that logically groups data files and provides
path information for the grouped files. Win32_Directory does not
include directories of network drives.

Win32_DiskDrive Represents a physical disk drive as seen by a computer running the
Windows operating system. Any interface to a Windows physical disk
drive is a descendant (or member) of this class. The features of the disk
drive seen through this object correspond to the logical and
management characteristics of the drive. In some cases, this may not
reflect the actual physical characteristics of the device. Any object based
on another logical device would not be a member of this class.

Win32_DiskPartition Represents the capabilities and management capacity of a partitioned
area of a physical disk on a Windows system (for example, Disk #0,
Partition #1).

Win32_DiskQuota Tracks disk space usage for NTFS filesystem volumes. A system
administrator can configure Windows to prevent further disk space use
and log an event when a user exceeds a specified disk space limit. An
administrator can also log an event when a user exceeds a specified disk
space warning level. This class is new in Windows XP.

Win32_DMAChannel Represents a direct memory access (DMA) channel on a Windows
computer system. DMA is a method of moving data from a device to
memory (or vice versa) without the help of the microprocessor. The
system board uses a DMA controller to handle a fixed number of
channels, each of which can be used by one (and only one) device at a
time.

Win32_Environment Represents an environment or system environment setting on a
Windows computer system. Querying this class returns environment
variables found in HKLM\System\CurrentControlSet\Control
\Sessionmanager\Environment as well as HKEY_USERS\<user sid>
\Environment.

894 | Appendix G: WMI Reference

Class Description

Win32_Group Represents data about a group account. A group account allows access
privileges to be changed for a list of users (for example, Administrators).

Win32_IDEController Manages the capabilities of an integrated device electronics (IDE)
controller device.

Win32_IRQResource Represents an interrupt request line (IRQ) number on a Windows
computer system. An interrupt request is a signal sent to the CPU by a
device or program for time-critical events. IRQ can be hardware- or
software-based.

Win32_LoadOrderGroup Represents a group of system services that define execution
dependencies. The services must be initiated in the order specified by
the Load Order Group, as the services are dependent on one another.
These dependent services require the presence of the antecedent
services to function correctly. The data in this class is derived by the
provider from the registry key System\CurrentControlSet\Control
\GroupOrderList.

Win32_LogicalDisk Represents a data source that resolves to an actual local storage device
on a Windows system.

Win32_LogonSession Describes the logon session or sessions associated with a user logged on
to Windows NT or Windows 2000.

Win32_NetworkAdapter Represents a network adapter of a computer running on a Windows
operating system.

Win32_NetworkAdapterConfiguration Represents the attributes and behaviors of a network adapter. This class
includes extra properties and methods that support the management of
the TCP/IP and Internetworking Packet Exchange (IPX) protocols that
are independent from the network adapter.

WIN32_NetworkClient Represents a network client on a Windows system. Any computer
system on the network with a client relationship to the system is a
descendant (or member) of this class (for example, a computer running
Windows 2000 Workstation or Windows 98 that is part of a Windows
2000 domain).

Win32_NetworkConnection Represents an active network connection in a Windows environment.

Win32_NetworkLoginProfile Represents the network login information of a specific user on a
Windows system. This includes but is not limited to password status,
access privileges, disk quotas, and login directory paths.

Win32_NetworkProtocol Represents a protocol and its network characteristics on a Win32
computer system.

Win32_NTDomain Represents a Windows NT domain.

Win32_NTEventlogFile Represents a logical file or directory of Windows NT events. The file is
also known as the event log.

Win32_NTLogEvent Used to translate instances from the Windows NT event log. An
application must have SeSecurityPrivilege to receive events
from the security event log; otherwise, “Access Denied” is returned to
the application.

Win32_OnBoardDevice Represents common adapter devices built into the motherboard
(system board).

WMI Reference | 895

Class Description

Win32_OperatingSystem Represents an operating system installed on a computer running on a
Windows operating system. Any operating system that can be installed
on a Windows system is a descendant or member of this class.
Win32_OperatingSystem is a singleton class. To get the single
instance, use @ for the key.
Windows Server 2003, Windows XP, Windows 2000, and Windows NT
4.0: If a computer has multiple operating systems installed, this class
returns only an instance for the currently active operating system.

Win32_OSRecoveryConfiguration Represents the types of information that will be gathered from memory
when the operating system fails. This includes boot failures and system
crashes.

Win32_PageFileSetting Represents the settings of a page file. Information contained within
objects instantiated from this class specifies the page file parameters
used when the file is created at system startup. The properties in this
class can be modified and deferred until startup. These settings are
different from the runtime state of a page file expressed through the
associated class Win32_PageFileUsage.

Win32_PageFileUsage Represents the file used for handling virtual memory file swapping on a
Win32 system. Information contained within objects instantiated from
this class specifies the runtime state of the page file.

Win32_PerfRawData_PerfNet_Server Provides raw data from performance counters that monitor
communications using the WINS Server service.

Win32_PhysicalMemoryArray Represents details about the computer system physical memory. This
includes the number of memory devices, memory capacity available,
and memory type (for example, system or video memory).

Win32_PortConnector Represents physical connection ports, such as DB-25 pin male,
Centronics, or PS/2.

Win32_PortResource Represents an I/O port on a Windows computer system.

Win32_Printer Represents a device connected to a computer running on a Microsoft
Windows operating system that can produce a printed image or text on
paper or another medium.

Win32_PrinterConfiguration Represents the configuration for a printer device. This includes
capabilities such as resolution, color, fonts, and orientation.

Win32_PrintJob Represents a print job generated by a Windows application. Any unit of
work generated by the Print command of an application that is running
on a computer running on a Windows operating system is a descendant
or member of this class.

Win32_Process Represents a process on an operating system.

Win32_Processor Represents a device that can interpret a sequence of instructions on a
computer running on a Windows operating system. On a multiprocessor
computer, one instance of the Win32_Processor class exists for
each processor.

Win32_Product Represents products as they are installed by Windows Installer. A
product generally correlates to one installation package. For
information about support or requirements for installation of a specific
operating system, visit the Microsoft developer documentation site and
search for “Operating System Availability of WMI Components.”

896 | Appendix G: WMI Reference

https://aka.ms/wmi

Class Description

Win32_QuickFixEngineering Represents system-wide Quick Fix Engineering (QFE) or updates that
have been applied to the current operating system.

Win32_QuotaSetting Contains setting information for disk quotas on a volume.

Win32_Registry Represents the system registry on a Windows computer system.

Win32_ScheduledJob Represents a job created with the AT command. The Win32_
ScheduledJob class does not represent a job created with the
Scheduled Task Wizard from the Control Panel. You cannot change a
task created by WMI in the Scheduled Tasks UI.
Windows 2000 and Windows NT 4.0: You can use the Scheduled Tasks
UI to modify the task you originally created with WMI. However,
although the task is successfully modified, you can no longer access the
task using WMI.
Each job scheduled against the schedule service is stored persistently
(the scheduler can start a job after a reboot) and is executed at the
specified time and day of the week or month. If the computer is not
active or if the scheduled service is not running at the specified job
time, the schedule service runs the specified job on the next day at the
specified time.
Jobs are scheduled according to Universal Coordinated Time (UTC) with
bias offset from Greenwich Mean Time (GMT), which means that a job
can be specified using any time zone. The Win32_ScheduledJob
class returns the local time with UTC offset when enumerating an
object, and converts to local time when creating new jobs. For example,
a job specified to run on a computer in Boston at 10:30 p.m. Monday
PST will be scheduled to run locally at 1:30 a.m. Tuesday EST. Note that
a client must take into account whether daylight saving time is in
operation on the local computer, and if it is, then subtract a bias of 60
minutes from the UTC offset.

Win32_SCSIController Represents a SCSI controller on a Windows system.

Win32_Service Represents a service on a computer running on a Microsoft Windows
operating system. A service application conforms to the interface rules
of the Service Control Manager (SCM), and can be started by a user
automatically at system start through the Services Control Panel utility
or by an application that uses the service functions included in the
Windows API. Services can start when there are no users logged on to
the computer.

Win32_Share Represents a shared resource on a Windows system. This may be a disk
drive, printer, interprocess communication, or other shareable device.

Win32_SoftwareElement Represents a software element, part of a software feature (a distinct
subset of a product, which may contain one or more elements). Each
software element is defined in a Win32_SoftwareElement
instance, and the association between a feature and its Win32_
SoftwareFeature instance is defined in the Win32_Software
FeatureSoftwareElements association class. For information
about support or requirements for installation on a specific operating
system, visit the Microsoft developer documentation site and search for
“Operating System Availability of WMI Components.”

WMI Reference | 897

https://aka.ms/wmi

Class Description

Win32_SoftwareFeature Represents a distinct subset of a product that consists of one or more
software elements. Each software element is defined in a
Win32_SoftwareElement instance, and the association between
a feature and its Win32_SoftwareFeature instance is defined in
the Win32_SoftwareFeatureSoftwareElements association
class. For information about support or requirements for installation on
a specific operating system, visit the Microsoft developer
documentation site and search for “Operating System Availability of
WMI Components.”

WIN32_SoundDevice Represents the properties of a sound device on a Windows computer
system.

Win32_StartupCommand Represents a command that runs automatically when a user logs on to
the computer system.

Win32_SystemAccount Represents a system account. The system account is used by the
operating system and services that run under Windows NT. There are
many services and processes within Windows NT that need the
capability to log on internally—for example, during a Windows NT
installation. The system account was designed for that purpose.

Win32_SystemDriver Represents the system driver for a base service.

Win32_SystemEnclosure Represents the properties that are associated with a physical system
enclosure.

Win32_SystemSlot Represents physical connection points, including ports, motherboard
slots and peripherals, and proprietary connection points.

Win32_TapeDrive Represents a tape drive on a Windows computer. Tape drives are
primarily distinguished by the fact that they can be accessed only
sequentially.

Win32_TemperatureProbe Represents the properties of a temperature sensor (e.g., electronic
thermometer).

Win32_TimeZone Represents the time zone information for a Windows system, which
includes changes required for the daylight saving time transition.

Win32_UserAccount Contains information about a user account on a computer running on a
Windows operating system.
Because both the Name and Domain are key properties, enumerating
Win32_UserAccount on a large network can affect performance
negatively. Calling GetObject or querying for a specific instance has
less impact.

Win32_VoltageProbe Represents the properties of a voltage sensor (electronic voltmeter).

Win32_VolumeQuotaSetting Relates disk quota settings with a specific disk volume. Windows
2000/NT: This class isn’t available.

Win32_WMISetting Contains the operational parameters for the WMI service. This class can
have only one instance, which always exists for each Windows system
and cannot be deleted. Additional instances can’t be created.

898 | Appendix G: WMI Reference

https://aka.ms/wmi
https://aka.ms/wmi

APPENDIX H

Selected COM Objects and Their Uses

As an extensibility and administration interface, many applications expose useful
functionality through COM objects. Although PowerShell handles many of these
tasks directly, many COM objects still provide significant value.

Table H-1 lists a selection of the COM objects most useful to system administrators.

Table H-1. COM identifiers and descriptions
Identifier Description

Access.Application Allows for interaction and automation of Microsoft Access.

Agent.Control Allows for the control of Microsoft Agent 3D animated characters.

AutoItX3.Control (nondefault) Provides access to Windows Automation via the AutoIt
administration tool.

CEnroll.CEnroll Provides access to certificate enrollment services.

Certificate Authority.Request Provides access to a request to a certificate authority.

COMAdmin.COMAdminCatalog Provides access to and management of the Windows COM+ catalog.

Excel.Application Allows for interaction and automation of Microsoft Excel.

Excel.Sheet Allows for interaction with Microsoft Excel worksheets.

HNetCfg.FwMgr Provides access to the management functionality of the Windows
Firewall.

HNetCfg.HNetShare Provides access to the management functionality of Windows
Connection Sharing.

HTMLFile Allows for interaction and authoring of a new Internet Explorer
document.

InfoPath.Application Allows for interaction and automation of Microsoft InfoPath.

InternetExplorer. Application Allows for interaction and automation of Internet Explorer.

IXSSO.Query Allows for interaction with Microsoft Index Server.

899

Identifier Description

IXSSO.Util Provides access to utilities used along with the IXSSO.Query object.

LegitCheckControl.LegitCheck Provide access to information about Windows Genuine Advantage
status on the current computer.

MakeCab.MakeCab Provides functionality to create and manage cabinet (.cab) files.

MAPI.Session Provides access to a Messaging Application Programming Interface
(MAPI) session, such as folders, messages, and the address book.

Messenger.MessengerApp Allows for interaction and automation of Messenger.

Microsoft.FeedsManager Allows for interaction with the Microsoft RSS feed platform.

Microsoft.ISAdm Provides management of Microsoft Index Server.

Microsoft.Update. AutoUpdate Provides management of the auto update schedule for Microsoft
Update.

Microsoft.Update.Installer Allows for installation of updates from Microsoft Update.

Microsoft.Update.Searcher Provides search functionality for updates from Microsoft Update.

Microsoft.Update.Session Provides access to local information about Microsoft Update history.

Microsoft.Update.SystemInfo Provides access to information related to Microsoft Update for the
current system.

MMC20.Application Allows for interaction and automation of Microsoft Management
Console (MMC).

MSScriptControl. ScriptControl Allows for the evaluation and control of WSH scripts.

Msxml2.XSLTemplate Allows for processing of XSL transforms.

Outlook.Application Allows for interaction and automation of your email, calendar, contacts,
tasks, and more through Microsoft Outlook.

OutlookExpress.MessageList Allows for interaction and automation of your email through Microsoft
Outlook Express.

PowerPoint.Application Allows for interaction and automation of Microsoft PowerPoint.

Publisher.Application Allows for interaction and automation of Microsoft Publisher.

RDS.DataSpace Provides access to proxies of Remote DataSpace business objects.

SAPI.SpVoice Provides access to the Microsoft Speech API.

Scripting.FileSystemObject Provides access to the computer’s filesystem. Most functionality is
available more directly through PowerShell or through PowerShell’s
support for the .NET Framework.

Scripting.Signer Provides management of digital signatures on WSH files.

Scriptlet.TypeLib Allows the dynamic creation of scripting type library (.tlb) files.

ScriptPW.Password Allows for the masked input of plain-text passwords. When possible,
you should avoid this, preferring the Read-Host cmdlet with the
-AsSecureString parameter.

SharePoint.OpenDocuments Allows for interaction with Microsoft SharePoint Services.

Shell.Application Provides access to aspects of the Windows Explorer Shell application,
such as managing windows, files and folders, and the current session.

900 | Appendix H: Selected COM Objects and Their Uses

Identifier Description

Shell.LocalMachine Provides access to information about the current machine related to the
Windows shell.

Shell.User Provides access to aspects of the current user’s Windows session and
profile.

SQLDMO.SQLServer Provides access to the management functionality of Microsoft SQL
Server.

Vim.Application (nondefault) Allows for interaction and automation of the VIM editor.

WIA.CommonDialog Provides access to image capture through the Windows Image
Acquisition facilities.

WMPlayer.OCX Allows for interaction and automation of Windows Media Player.

Word.Application Allows for interaction and automation of Microsoft Word.

Word.Document Allows for interaction with Microsoft Word documents.

WScript.Network Provides access to aspects of a networked Windows environment, such
as printers and network drives, as well as computer and domain
information.

WScript.Shell Provides access to aspects of the Windows Shell, such as applications,
shortcuts, environment variables, the registry, and the operating
environment.

WSHController Allows the execution of WSH scripts on remote computers.

Selected COM Objects and Their Uses | 901

APPENDIX I

Selected Events and Their Uses

PowerShell’s eventing commands give you access to events from the .NET Frame‐
work, as well as events surfaced by Windows Management Instrumentation (WMI).
Table I-1 lists a selection of .NET events. Table I-2 lists a selection of WMI events.

Table I-1. Selected .NET events
Type Event Description

System.AppDomain AssemblyLoad Occurs when an assembly is loaded.

System.AppDomain TypeResolve Occurs when the resolution of a type
fails.

System.AppDomain ResourceResolve Occurs when the resolution of a
resource fails because the resource is
not a valid linked or embedded
resource in the assembly.

System.AppDomain AssemblyResolve Occurs when the resolution of an
assembly fails.

System.AppDomain ReflectionOnlyAssembly
Resolve

Occurs when the resolution of an
assembly fails in the reflection-only
context.

System.AppDomain UnhandledException Occurs when an exception is not
caught.

System.Console CancelKeyPress Occurs when the Control modifier key
(Ctrl) and C console key (C) are pressed
simultaneously (Ctrl+C).

Microsoft.Win32.SystemEvents DisplaySettingsChanging Occurs when the display settings are
changing.

Microsoft.Win32.SystemEvents DisplaySettingsChanged Occurs when the user changes the
display settings.

Microsoft.Win32.SystemEvents InstalledFontsChanged Occurs when the user adds fonts to or
removes fonts from the system.

903

Type Event Description

Microsoft.Win32.SystemEvents LowMemory Occurs when the system is running out
of available RAM.

Microsoft.Win32.SystemEvents PaletteChanged Occurs when the user switches to an
application that uses a different
palette.

Microsoft.Win32.SystemEvents PowerModeChanged Occurs when the user suspends or
resumes the system.

Microsoft.Win32.SystemEvents SessionEnded Occurs when the user is logging off or
shutting down the system.

Microsoft.Win32.SystemEvents SessionEnding Occurs when the user is trying to log
off or shut down the system.

Microsoft.Win32.SystemEvents SessionSwitch Occurs when the currently logged-in
user has changed.

Microsoft.Win32.SystemEvents TimeChanged Occurs when the user changes the time
on the system clock.

Microsoft.Win32.SystemEvents UserPreferenceChanged Occurs when a user preference has
changed.

Microsoft.Win32.SystemEvents UserPreferenceChanging Occurs when a user preference is
changing.

System.Net.WebClient OpenReadCompleted Occurs when an asynchronous
operation to open a stream containing
a resource completes.

System.Net.WebClient OpenWriteCompleted Occurs when an asynchronous
operation to open a stream to write
data to a resource completes.

System.Net.WebClient DownloadStringCompleted Occurs when an asynchronous
resource-download operation
completes.

System.Net.WebClient DownloadDataCompleted Occurs when an asynchronous data
download operation completes.

System.Net.WebClient DownloadFileCompleted Occurs when an asynchronous file
download operation completes.

System.Net.WebClient UploadStringCompleted Occurs when an asynchronous string-
upload operation completes.

System.Net.WebClient UploadDataCompleted Occurs when an asynchronous data-
upload operation completes.

System.Net.WebClient UploadFileCompleted Occurs when an asynchronous file-
upload operation completes.

System.Net.WebClient UploadValuesCompleted Occurs when an asynchronous upload
of a name/value collection completes.

System.Net.WebClient DownloadProgressChanged Occurs when an asynchronous
download operation successfully
transfers some or all of the data.

904 | Appendix I: Selected Events and Their Uses

Type Event Description

System.Net.WebClient UploadProgressChanged Occurs when an asynchronous upload
operation successfully transfers some
or all of the data.

System.Net.Sockets.Socket
AsyncEventArgs

Completed The event used to complete an
asynchronous operation.

System.Net.Network
Information.NetworkChange

NetworkAvailability
Changed

Occurs when the availability of the
network changes.

System.Net.Network
Information.NetworkChange

NetworkAddressChanged Occurs when the IP address of a
network interface changes.

System.IO.FileSystemWatcher Changed Occurs when a file or directory in the
specified path is changed.

System.IO.FileSystemWatcher Created Occurs when a file or directory in the
specified path is created.

System.IO.FileSystemWatcher Deleted Occurs when a file or directory in the
specified path is deleted.

System.IO.FileSystemWatcher Renamed Occurs when a file or directory in the
specified path is renamed.

System.Timers.Timer Elapsed Occurs when the interval elapses.

System.Diagnostics.EventLog EntryWritten Occurs when an entry is written to an
event log on the local computer.

System.Diagnostics.Process OutputDataReceived Occurs when an application writes to
its redirected StandardOutput stream.

System.Diagnostics.Process ErrorDataReceived Occurs when an application writes to
its redirected StandardError stream.

System.Diagnostics.Process Exited Occurs when a process exits.

System.IO.Ports.SerialPort ErrorReceived Represents the method that handles
the error event of a SerialPort
object.

System.IO.Ports.SerialPort PinChanged Represents the method that will
handle the serial pin changed event of
a SerialPort object.

System.IO.Ports.SerialPort DataReceived Represents the method that will
handle the data received event of a
SerialPort object.

System.Management.
Automation.Job

StateChanged Event fired when the status of the job
changes, such as when the job has
completed in all runspaces or failed in
any one runspace.

System.Management.
Automation.Debugger

DebuggerStop Event raised when PowerShell stops
execution of the script and enters the
debugger as the result of encountering
a breakpoint or executing a step
command.

Selected Events and Their Uses | 905

Type Event Description

System.Management.
Automation.Debugger

BreakpointUpdated Event raised when the breakpoint is
updated, such as when it is enabled or
disabled.

System.Management.
Automation.Runspaces.
Runspace

StateChanged Event that is raised when the state of
the runspace changes.

System.Management.
Automation.Runspaces.
Runspace

AvailabilityChanged Event that is raised when the
availability of the runspace changes,
such as when the runspace becomes
available and when it is busy.

System.Management.
Automation.Runspaces.
Pipeline

StateChanged Event raised when the state of the
pipeline changes.

System.Management.
Automation.PowerShell

InvocationStateChanged Event raised when the state of the
pipeline of the PowerShell object
changes.

System.Management.
Automation.PSDataCol
lection[T]

DataAdded Event that is fired after data is added
to the collection.

System.Management.
Automation.PSDataCol
lection[T]

Completed Event that is fired when the Com
plete method is called to indicate
that no more data is to be added to
the collection.

System.Management.
Automation.Runspaces.
RunspacePool

StateChanged Event raised when the state of the
runspace pool changes.

System.Management.
Automation.Runspaces.
PipelineReader[T]

DataReady Event fired when data is added to the
buffer.

System.Diagnostics.
Eventing.Reader.EventLog
Watcher

EventRecordWritten Allows setting a delegate (event
handler method) that gets called every
time an event is published that
matches the criteria specified in the
event query for this object.

System.Data.Common.
DbConnection

StateChange Occurs when the state of the event
changes.

System.Data.SqlClient.
SqlBulkCopy

SqlRowsCopied Occurs every time that the number of
rows specified by the NotifyAfter
property have been processed.

System.Data.SqlClient.
SqlCommand

StatementCompleted Occurs when the execution of a
Transact-SQL statement completes.

System.Data.SqlClient.
SqlConnection

InfoMessage Occurs when SQL Server returns a
warning or informational message.

System.Data.SqlClient.
SqlConnection

StateChange Occurs when the state of the event
changes.

906 | Appendix I: Selected Events and Their Uses

Type Event Description

System.Data.SqlClient.
SqlDataAdapter

RowUpdated Occurs during Update after a
command is executed against the data
source. The attempt to update is made,
so the event fires.

System.Data.SqlClient.
SqlDataAdapter

RowUpdating Occurs during Update before a
command is executed against the data
source. The attempt to update is made,
so the event fires.

System.Data.SqlClient.
SqlDataAdapter

FillError Returned when an error occurs during
a fill operation.

System.Data.SqlClient.
SqlDependency

OnChange Occurs when a notification is received
for any of the commands associated
with this SqlDependency object.

Table I-2. Selected WMI Events
Event Description

__InstanceCreationEvent This event class generically represents the creation of instances in WMI providers,
such as Processes, Services, Files, and more. A registration for this generic event
looks like:

$query = "SELECT * FROM __InstanceCreationEvent " +
 "WITHIN 5 " +
 "WHERE targetinstance is a
 'Win32_UserAccount'
Register-CimIndicationEvent -Query $query

__InstanceDeletionEvent This event class generically represents the removal of instances in WMI providers,
such as Processes, Services, Files, and more. A registration for this generic event
looks like:

$query = "SELECT * FROM __InstanceDeletionEvent " +
 "WITHIN 5 " +
 "WHERE targetinstance is a
 'Win32_UserAccount'
Register-CimIndicationEvent -Query $query

__InstanceModification
Event

This event class generically represents the modification of instances in WMI
providers, such as Processes, Services, Files, and more. A registration for this generic
event looks like:

$query = "SELECT * FROM __InstanceModificationEvent "
 + "WITHIN 5 " +
 "WHERE targetinstance is a
 'Win32_UserAccount'
Register-CimIndicationEvent -Query $query

Selected Events and Their Uses | 907

Event Description

Msft_WmiProvider_
OperationEvent

The Msft_WmiProvider_OperationEvent event class is the root definition
of all WMI provider events. A provider operation is defined as some execution on
behalf of a client via WMI that results in one or more calls to a provider executable.
The properties of this class define the identity of the provider associated with the
operation being executed and is uniquely associated with instances of the class
Msft_Providers. Internally, WMI can contain any number of objects that refer
to a particular instance of __Win32Provider since it differentiates each object
based on whether the provider supports per-user or per-locale instantiation and also
depending on where the provider is being hosted. Currently Transaction
Identifier is always an empty string.

Win32_ComputerSystemEvent This event class represents events related to a computer system.

Win32_ComputerShutdown
Event

This event class represents events when a computer has begun the process of
shutting down.

Win32_IP4RouteTableEvent The Win32_IP4RouteTableEvent class represents IP route change events
resulting from the addition, removal, or modification of IP routes on the computer
system.

RegistryEvent The registry event classes allow you to subscribe to events that involve changes in
hive subtrees, keys, and specific values.

RegistryKeyChangeEvent The RegistryKeyChangeEvent class represents changes to a specific key. The
changes apply only to the key, not its subkeys.

RegistryTreeChangeEvent The RegistryTreeChangeEvent class represents changes to a key and its
subkeys.

RegistryValueChangeEvent The RegistryValueChangeEvent class represents changes to a single value
of a specific key.

Win32_SystemTrace The SystemTrace class is the base class for all system trace events. System trace
events are fired by the kernel logger via the event tracing API.

Win32_ProcessTrace This event is the base event for process events.

Win32_ProcessStartTrace The ProcessStartTrace event class indicates a new process has started.

Win32_ProcessStopTrace The ProcessStopTrace event class indicates a process has terminated.

Win32_ModuleTrace The ModuleTrace event class is the base event for module events.

Win32_ModuleLoadTrace The ModuleLoadTrace event class indicates a process has loaded a new module.

Win32_ThreadTrace The ThreadTrace event class is the base event for thread events.

Win32_ThreadStartTrace The ThreadStartTrace event class indicates a new thread has started.

Win32_ThreadStopTrace The ThreadStopTrace event class indicates a thread has terminated.

Win32_PowerManagement
Event

The Win32_PowerManagementEvent class represents power management
events resulting from power state changes. These state changes are associated with
either the Advanced Power Management (APM) or the Advanced Configuration and
Power Interface (ACPI) system management protocols.

Win32_DeviceChangeEvent The Win32_DeviceChangeEvent class represents device change events
resulting from the addition, removal, or modification of devices on the computer
system. This includes changes in the hardware configuration (docking and
undocking), the hardware state, or newly mapped devices (mapping of a network
drive). For example, a device has changed when a WM_DEVICECHANGE message is
sent.

908 | Appendix I: Selected Events and Their Uses

Event Description

Win32_SystemConfiguration
ChangeEvent

The Win32_SystemConfigurationChangeEvent is an event class that
indicates the device list on the system has been refreshed, meaning a device has
been added or removed or the configuration changed. This event is fired when the
Windows message “DevMgrRefreshOn<ComputerName>” is sent. The exact change
to the device list is not contained in the message, and therefore a device refresh is
required in order to obtain the current system settings. Examples of configuration
changes affected are IRQ settings, COM ports, and BIOS version, to name a few.

Win32_VolumeChangeEvent The Win32_VolumeChangeEvent class represents a local drive event resulting
from the addition of a drive letter or mounted drive on the computer system (e.g.,
CD-ROM). Network drives are not currently supported.

Selected Events and Their Uses | 909

APPENDIX J

Standard PowerShell Verbs

Cmdlets and scripts should be named using a Verb-Noun syntax—for example, Get-
ChildItem. The official guidance is that, with rare exception, cmdlets should use the
standard PowerShell verbs. They should avoid any synonyms or concepts that can be
mapped to the standard. This allows administrators to quickly understand a set of
cmdlets that use a new noun.

To quickly access this list (without the definitions), type Get-Verb.

Verbs should be phrased in the present tense, and nouns should be singular. Tables
J-1 through J-6 list the different categories of standard PowerShell verbs.

Table J-1. Standard PowerShell common verbs
Verb Meaning Synonyms

Add Adds a resource to a container or attaches an element to
another element

Append, Attach,
Concatenate, Insert

Clear Removes all elements from a container Flush, Erase, Release,
Unmark, Unset, Nullify

Close Removes access to a resource Shut, Seal

Copy Copies a resource to another name or container Duplicate, Clone, Replicate

Enter Sets a resource as a context Push, Telnet, Open

Exit Returns to the context that was present before a new
context was entered

Pop, Disconnect

Find Searches within an unknown context for a desired item Dig, Discover

911

Verb Meaning Synonyms

Format Converts an item to a specified structure or layout Layout, Arrange

Get Retrieves data Read, Open, Cat, Type, Dir,
Obtain, Dump, Acquire,
Examine, Find, Search

Hide Makes a display not visible Suppress

Join Joins a resource Combine, Unite, Connect,
Associate

Lock Locks a resource Restrict, Bar

Move Moves a resource Transfer, Name, Migrate

New Creates a new resource Create, Generate, Build,
Make, Allocate

Open Enables access to a resource Release, Unseal

Optimize Increases the effectiveness of a resource Improve, Fix

Pop Removes an item from the top of a stack Remove, Paste

Push Puts an item onto the top of a stack Put, Add, Copy

Redo Repeats an action or reverts the action of an Undo Repeat, Retry, Revert

Resize Changes the size of a resource Change, Grow, Shrink

Remove Removes a resource from a container Delete, Cut

Rename Gives a resource a new name Ren, Swap

Reset Restores a resource to a predefined or original state Restore, Revert

Select Creates a subset of data from a larger data set Pick, Grep, Filter

Search Finds a resource (or summary information about that
resource) in a collection (does not actually retrieve the
resource but provides information to be used when
retrieving it)

Find, Get, Grep, Select

Set Places data Write, Assign, Configure

Show Retrieves, formats, and displays information Display, Report

Skip Bypasses an element in a seek or navigation Bypass, Jump

Split Separates data into smaller elements Divide, Chop, Parse

Step Moves a process or navigation forward by one unit Next, Iterate

Switch Alternates the state of a resource between different
alternatives or options

Toggle, Alter, Flip

Undo Sets a resource to its previous state Revert, Abandon

Unlock Unlocks a resource Free, Unrestrict

Use Applies or associates a resource with a context With, Having

Watch Continually monitors an item Monitor, Poll

912 | Appendix J: Standard PowerShell Verbs

Table J-2. Standard PowerShell communication verbs
Verb Meaning Synonyms

Connect Connects a source to a destination Join, Telnet

Disconnect Disconnects a source from a destination Break, Logoff

Read Acquires information from a nonconnected source Prompt, Get

Receive Acquires information from a connected source Read, Accept, Peek

Send Writes information to a connected destination Put, Broadcast, Mail

Write Writes information to a nonconnected destination Puts, Print

Table J-3. Standard PowerShell data verbs
Verb Meaning Synonyms

Backup Backs up data Save, Burn

Checkpoint Creates a snapshot of the current state of data or its
configuration

Diff, StartTransaction

Compare Compares a resource with another resource Diff, Bc

Compress Reduces the size or resource usage of an item Zip, Squeeze, Archive

Convert Changes from one representation to another when the cmdlet
supports bidirectional conversion or conversion of many data
types

Change, Resize, Resample

ConvertFrom Converts from one primary input to several supported outputs Export, Output, Out

ConvertTo Converts from several supported inputs to one primary output Import, Input, In

Dismount Detaches a name entity from a location in a namespace Dismount, Unlink

Edit Modifies an item in place Change, Modify, Alter

Expand Increases the size or resource usage of an item Extract, Unzip

Export Stores the primary input resource into a backing store or
interchange format

Extract, Backup

Group Combines an item with other related items Merge, Combine, Map

Import Creates a primary output resource from a backing store or
interchange format

Load, Read

Initialize Prepares a resource for use and initializes it to a default state Setup, Renew, Rebuild

Limit Applies constraints to a resource Quota, Enforce

Merge Creates a single data instance from multiple data sets Combine, Join

Mount Attaches a named entity to a location in a namespace Attach, Link

Out Sends data to a terminal location Print, Format, Send

Publish Make a resource known or visible to others Deploy, Release, Install

Restore Restores a resource to a set of conditions that have been
predefined or set by a checkpoint

Repair, Return, Fix

Save Stores pending changes to a recoverable store Write, Retain, Submit

Sync Synchronizes two resources with each other Push, Update

Standard PowerShell Verbs | 913

Verb Meaning Synonyms

Unpublish Removes a resource from public visibility Uninstall, Revert

Update Updates or refreshes a resource Refresh, Renew, Index

Table J-4. Standard PowerShell diagnostic verbs
Verb Meaning Synonyms

Debug Examines a resource, diagnoses operational problems Attach, Diagnose

Measure Identifies resources consumed by an operation or retrieves
statistics about a resource

Calculate, Determine,
Analyze

Ping Determines whether a resource is active and responsive (in most
instances, this should be replaced by the verb Test)

Connect, Debug

Repair Recovers an item from a damaged or broken state Fix, Recover, Rebuild

Resolve Maps a shorthand representation to a more complete one Expand, Determine

Test Verify the validity or consistency of a resource Diagnose, Verify,
Analyze

Trace Follow the activities of the resource Inspect, Dig

Table J-5. Standard PowerShell lifecycle verbs
Verb Meaning Synonyms

Approve Gives approval or permission for an item or resource Allow, Let

Assert Declares the state of an item or fact Verify, Check

Build Creates an artifact (usually a binary or document) out of some
set of input files (usually source code or declarative documents)

Compile, Generate

Complete Finalizes a pending operation Finalize, End

Confirm Approves or acknowledges a resource or process Check, Validate

Deny Disapproves or disallows a resource or process Fail, Halt

Deploy Sends an application, website, or solution to a remote target[s]
in such a way that a consumer of that solution can access it after
deployment is complete

Ship, Release

Disable Configures an item to be unavailable Halt, Hide

Enable Configures an item to be available Allow, Permit

Install Places a resource in the specified location and optionally
initializes it

Setup, Configure

Invoke Calls or launches an activity that cannot be stopped Run, Call, Perform

Register Adds an item to a monitored or publishing resource Record, Submit,
Journal, Subscribe

Request Submits for consideration or approval Ask, Query

Restart Stops an operation and starts it again Recycle, Hup

Resume Begins an operation after it has been suspended Continue

Start Begins an activity Launch, Initiate

914 | Appendix J: Standard PowerShell Verbs

Verb Meaning Synonyms

Stop Discontinues an activity Halt, End, Discontinue

Submit Adds to a list of pending actions or sends for approval Send, Post

Suspend Pauses an operation, but does not discontinue it Pause, Sleep, Break

Uninstall Removes a resource from the specified location Remove, Clear, Clean

Unregister Removes an item from a monitored or publishing resource Unsubscribe, Erase,
Remove

Wait Pauses until an expected event occurs Sleep, Pause, Join

Table J-6. Standard PowerShell security verbs
Verb Meaning Synonyms

Block Restricts access to a resource Prevent, Limit, Deny

Grant Grants access to a resource Allow, Enable

Protect Limits access to a resource Encrypt, Seal

Revoke Removes access to a resource Remove, Disable

Unblock Removes a restriction of access to a resource Clear, Allow

Unprotect Removes restrictions from a protected resource Decrypt, Decode

Standard PowerShell Verbs | 915

Index

Symbols
" (double quotes), beginning/ending quoted

text, 10
"…" (double quotes)

enclosing expanding strings, 160
enclosing multiple parameters, 125

(pound sign), preceding comments, 10, 799
$ (dollar sign)

preceding subexpression names, 163
preceding variable names, xxxvi, 10, 107
in regular expressions, 146

$? (dollar sign, question mark) dollar hook
variable, 79, 434

$_ (current object variable), 80, 85, 320, 336
${…} (dollar sign, braces), Get-Content vari‐

able, 245
% (percent sign), modulus operator, 812
%= (percent sign, equal), modulus assignment

operator, 193, 812
& (ampersand)

background pipeline operator, 10, 13
invoke operator, 5, 293, 306
preceding accelerator key, 381

&& (pipeline chain operator), 78
'…' (single quotes)

enclosing commands with spaces in name, 5
enclosing literal strings, 160, 164, 802
preventing arguments from being inter‐

preted, 9
(…) (parentheses)

enclosing New-Object call, 122
specifying precedence, 193
used for subexpressions, 10

* (asterisk)

multiplication operator, 193, 812
in regular expressions, 862
in XPath queries, 872

*= (asterisk, equal), multiplication assignment
operator, 193, 812

+ (plus sign)
addition operator, 193, 217, 811
combining arrays, 809
in regular expressions, 863

+= (plus sign, equal), addition assignment
operator, 193, 812

, (comma), separating array items with, 209
, (unary comma operator), 127, 212
--% (verbatim argument marker), 9
. (dot notation)

accessing methods or properties, xxxv-
xxxvi, 7, 117

in regular expressions, 861
sourcing functions or scripts, 842

.\ (current directory), 5
/ (forward slash)

division operator, 193, 812
in XPath queries, 872

/= (forward slash, equal), division assignment
operator, 193, 812

0x prefix for numbers, 200, 206, 806
: (colon), preceding streams in filenames, 581
:: (colon, double), accessing static methods or

properties, 122
; (semicolon)

in filenames, 7
separating elements in the path, 452
as statement separator, 10

917

<#…#˃ (angle brackets, pound sign), enclosing
comments, 799

= (assignment operator), 812
? (question mark), in regular expressions, 863
?s (single-line option), 168, 261, 861
?[…] (null conditional array access operator),

809
@ (at sign)

preceding variable names, 340
preceding variables passed as parameters,

320, 340
in XPath queries, 872

@"…"@ (at sign, double quotes), enclosing here
strings, 161, 803

@(…) (at sign, parentheses)
array cast syntax, 211, 807
list evaluation, 211, 330

@{…} (at sign, braces), hashtable syntax, 809
[…] (square brackets)

enclosing array indexes, 808
enclosing class name, 117, 122
enclosing generic parameters, 125
in filenames, 568
in regular expressions, 861, 873

\n (newline character), 97
\r\n (newline characters), 97
` (backtick)

escape character, 10, 162, 569, 803
in regular expressions, 862

{…} (curly braces)
in script blocks, 10, 80, 85
in templates, 184

| (vertical bar), pipeline character, xxxvii, 10, 77
|| (pipeline chain operator), 78
− (minus sign), subtraction operator, 193, 812
−= (minus sign, equal), subtraction assignment

operator, 193, 812

A
absolute value, 195
abstract syntax tree, 59
Abstract Syntax Tree (AST) API, 283
accelerator key, 381
access control lists (ACLs)

getting, 584
getting ACLs of registry keys, 605
setting, 586
setting ACLs of registry keys, 606

-Action parameter, 419, 782, 785, 788, 791

Active Directory
computer accounts

getting and listing properties of, 679
searching for, 677

groups
adding users to security or distribution

groups, 674
creating security or distribution groups,

669
finding owners of, 672
getting properties of, 671
listing members of, 676
listings user's group membership, 675
modifying properties of security or dis‐

tribution groups, 673
removing user from security or distribu‐

tion groups, 674
searching for security or distribution

groups, 670
organizational units

creating, 658
deleting, 661
getting children of Active Directory con‐

tainers, 662
getting properties of, 659
listing users in, 676
modifying properties of, 660

overview of, 655
testing scripts on local installations, 656
user accounts

changing passwords, 668
creating, 662
getting and listing properties of, 667
importing users in bulk to, 663
modifying properties of, 667
searching for, 666

Active Directory Application Mode (ADAM),
656

Active Directory Lightweight Directory Serv‐
ices (AD LDS), 656

Active Directory Service Interface (ADSI), xli,
655

Add() method, 674
Add-ADGroupMember cmdlet, 674
Add-Computer cmdlet, 681
Add-Content cmdlet, 581
Add-ExtendedFileProperties script, 587
Add-FormatData script, 142
Add-FormatTableIndexParameter script, 213

918 | Index

Add-History cmdlet, 51
Add-Member cmdlet, 130, 133, 136, 140, 569,

837
Add-RelativePathCapture script, 27
Add-Type cmdlet, 474, 481, 484, 487, 489, 583
AddDays() method, 562
addition operator (+), 193, 217
administrative constants, 204, 805
administrative privileges, 465
[adsisearcher] type shortcut, 666-679
[adsi] tags, 658
advanced functions, 311-321
advanced validation, 311
aliases

adding to personal profile script, 21
controlling access and scope of, 112
for module commands, 304
learning aliases for common commands, 46
learning aliases for common parameters, 48
removing, 22

AliasProperty, 131, 140
-AllMatches parameter, 251
AllSigned execution policy, 502
alternate data streams, 581
ampersand (&)

background pipeline operator, 10, 13
invoke operator, 5, 293, 306
preceding accelerator key, 381

-and operator, 145
angle brackets, pound sign (<#…#>), enclosing

comments, 799
-Append parameter, 248, 278
applications, uninstalling, 691
Archive flag, 201
$args array, 308, 312
$args variable, 138, 140
argument splatting, 340
-ArgumentList parameter, 155, 300
arguments (see parameters)
arithmetic operators, 193, 811
array access mechanism, 212
array ranges, 213
array slicing, 213, 809
ArrayList class, 210, 218, 222
arrays (see lists, arrays, and hashtables)
-as operator, 816
-As parameter, 273, 369
ASCII text files, 260
-AsHash parameter, 81

-AsJob parameter, 15, 769, 770
-AsPlainText parameter, 521
-AsSecureString parameter, 380, 520
-Assembly parameter, 490
assignment operator (=), 812
associative arrays, 214, 223, 809
-AsString parameter, 81
asterisk (*)

multiplication operator, 193, 812
in regular expressions, 862
in XPath queries, 872

asterisk, equal (*=), multiplication assignment
operator, 193, 812

at sign (@)
preceding variable names, 340
preceding variables passed as parameters,

320, 340
in XPath queries, 872

at sign, braces (@{…}), hashtable syntax, 809
at sign, double quotes (@"…"@), enclosing here

strings, 161, 803
at sign, parentheses (@(…))

array cast syntax, 211, 807
list evaluation, 211, 330

-AtLogOn parameter, 697
atomicity, 599, 773
-AtStartup parameter, 694, 697
attacks, defending against, 500

(see also security and script signing)
attrib.exe program, 564
Attributes collection, 327
-Attributes parameter, 560
Attributes property, 564
Authentication, 726, 756
-Auto flag, 104
autocompletion, xxxv, 42, 55
automated cookie management, 361
automatic computer checkpoints, 692
automatic redirection support, 361
awk utility, 183

B
background commands, 13, 40
-BackgroundColor parameter, 384
backtick (`)

escape character, 10, 162, 569, 803
in regular expressions, 862

-band operator, 203, 814
banker’s rounding, 194

Index | 919

bare scripting, 360
base classes, 830
Base64, converting to, 41
bases, converting numbers between, 205
batch files

retaining changes to environment variables,
110

running in interactive shell, 5
Begin block, 93
begin keyword, 331
-Begin parameter, 86
BeginProcessing() method, 93
BigInt class, 197, 806
binary -join operator, 174, 818
binary data, capturing and redirecting output,

95
binary files, 252, 255
binary modules, 493
binary numbers, 200, 806
binary operators, 146, 813
BinaryProcess.exe example application, 97
BinaryReader class, 257
BitConverter class, 206, 255
.blg files, 474
-bnot operator, 814
Boolean expressions, 802
-bor operator, 669, 814
braces, curly ({…})

in script blocks, 10, 80, 85
in templates, 184

break statements, 419, 827
breakpoints

command breakpoints, 415
creating conditional breakpoints, 419, 430
positional breakpoints, 414
setting in Visual Studio Code, 550
setting script breakpoints, 414
variable breakpoints, 416

brower-like user agent, 356
buffer overflows, 540
bugs, alerts for, 407

(see also debugging)
-bxor operator, 814
Bypass execution policy, 502, 510
Byte encoding, 255
byte order mark, 262

C
C#

adding inline C# to scripts, 487
explicit interface implementation, 119
generic types, 124

calculated properties, 132, 282, 569
calculations and math

complex arithmetic, 195
converting numbers between bases, 205
date math, 114
overview of, 193
simple arithmetic, 193
simplifying math with administrative con‐

stants, 204
statistical properties of lists, 198
working with numbers as binary, 200

calendars, xxxvi, 562
call stack, 423
CancelAllJobs() method, 702
CancelTimeout parameter, 767
capitalization, 176, 390
case sensitivity, 147, 271, 390
CategoryView, 438
cd command, xxxii
certificate drive, 528, 531
certificate store

adding/removing certificates, 531
navigating, xliv
searching, 529

chaining commands, 78
Checkpoint-Computer cmdlet, 692
checkpoints, managing, 692
child jobs, 16
child nodes, 275
child scope, 113
CIM (see Common Information Model)
CimClassMethods collection, 718
CimClassProperties collection, 717
CimClassProperties property, 726
CIM_DataFile, 893
classes, 829-831
cleanup tasks, 307, 569
Clear() method, 437, 438
Clear-Content cmdlet, 563, 581
Clear-EventLog cmdlet, 638
Clear-History cmdlet, 51
client-side configuration settings, 767
clipboard, 232
cmd.exe, 9
[CmdletBinding()] attribute, 311, 322
cmdlets (structured commands)

920 | Index

CimCmdlets module, 713
creating your own, 491
disabling progress output from, 440
enabling debug output, 440
enabling verbose mode, 440
enhancing/extending existing cmdlets, 340
getting help on, 32
linking with pipeline character, xxxvii
overview of, xxxiv
parameter default values, 12
third-party, 68
versus traditional commands, 8
ubiquitous scripting, xxxix
writing pipeline-oriented scripts with

cmdlet keywords, 331
code coverage, 430
code examples, obtaining and using, xxv
code generation, 188
code injection attacks, 539
Code Integrity policy, 515
code reuse

accepting script block parameters with local
variables, 318

accessing arguments of script, functions, or
script blocks, 308

accessing pipeline input, 329
adding custom tags to functions or script

blocks, 327
adding help to scripts or functions, 325
adding validation to parameters, 314
diagnosing and interacting with internal

module state, 305
dynamically composing command parame‐

ters, 320
enhancing/extending existing cmdlets, 340
finding verbs appropriate for command

names, 292
handling cleanup tasks when modules are

removed, 307
invoking dynamically named commands,

338
organizing scripts for improved readability,

336
overview of, 287
packaging common commands in modules,

297
providing -WhatIf, -Confirm, and other

cmdlet features, 322

returning data from scripts, functions, or
script blocks, 295

selectively exporting commands from mod‐
ules, 303

writing commands that maintain state, 301
writing functions, 290
writing pipeline-oriented functions, 335
writing pipeline-oriented scripts with

cmdlet keywords, 331
writing script blocks, 293
writing scripts, 287

CodeMethod, 131, 141
CodeProperty, 131, 141
-CodeSign parameter, 529
colon (:), preceding streams in filenames, 581
colon, double (::), accessing static methods or

properties, 122
COM (Component Object Model)

automating programs using COM scripting
interfaces, 467

bridging technologies, xlii
HNetCfg.FwMgr COM object, 688-689
select COM objects and their uses, 899-901
using COM objects, 125, 837

command breakpoints, 415
-Command parameter, 38-41, 72, 687
command prompt

customizing, xxxiv, 21, 24
using scrips versus commands, 288

CommandNotFound error, 338
CommandNotFoundAction property, 27
commands

accessing and managing console history, 50
accessing information about invocation, 452
adding help comments to, 325
adding pauses or delays, 157
chaining based on success/error, 78
common discovery, xxxviii
comparing output of two, 619
composable, xxxvii
converting into Base64-encoded form, 41
determining status of last command, 434
dynamically composing command parame‐

ters, 320
exporting command output as web pages,

369
versus expressions, 797
extending shells with additional, 68

Index | 921

finding commands that support their own
remoting, 732

finding commands to accomplish tasks, 30
finding verbs appropriate for command

names, 292
implicitly invoking from remote computers,

758
interactively viewing and processing com‐

mand output, 57
invoking a command on many computers,

769
invoking dynamically named commands,

338
invoking from outside PowerShell, 39
invoking from session history, 54
invoking long-running or background com‐

mands, 13
invoking on remote computers, 740
learning aliases for common commands, 46
locating and invoking past, 23
managing error output of commands, 437
measuring duration of commands, 230
monitoring for changes, 16
packaging common commands in modules,

297
phases of execution, 28
previewing, xxxvii
public versus private, 535
reference documentation, 797, 839-850
running PowerShell commands, 8
running temporarily elevated commands,

524
running traditional executables, 5
selectively exporting commands from mod‐

ules, 303
sharing and reusing, 287
storing output in variables, 106, 210
storing output of commands, 247
ubiquitous scripting, xxxix
using Excel to manage command output,

281
using from customized shells, 72
using standard object-based commands, 252
viewing errors generated by commands, 435
wrapped commands, 340
writing commands that maintain state, 301

comments
help comments, 799
multiline comments, 799

single-line comments, 799
comments and questions, xxvi
Common Information Model (CIM)

accessing CIM data, 713
bridging technologies, xli
CIM_Printer class, 700
determining properties available to CIM fil‐

ters, 719
modifying properties of CIM instances, 716
searching for CIM classes to accomplish

tasks, 720
shift to, 713

Common Object File Format (COFF) header,
255

-ComObject parameter, 125, 468
Compare-Object cmdlet, 219, 545, 619, 621
comparison operators, 145, 218-222, 391,

818-821
Complete-Transaction cmdlet, 598, 776
complex arithmetic, 195
Complex class, 198
complex numbers, 198, 807
Component Object Model (see COM)
Compress-Archive cmdlet, 590
computer accounts, Active Directory

getting and listing properties of, 679
searching for, 677

-Computer parameter, 473
-ComputerName parameter, 624, 639, 732, 744
computers (see enterprise computer manage‐

ment; remote computers)
conditional breakpoints, 419, 430
conditional statements, 148, 821-825
-Confirm parameter, xxxvii, 322
Connect-PSSession cmdlet, 744
consistency, 599, 773
console history

accessing and managing, 50
invoking commands from, 54
saving state between sessions, 73
showing colorized script content, 237

console UIs, 400
ConsoleSessionConfiguration registry policy,

537
[Console]::ReadKey() method, 380
-contains operator, 145, 216, 820
Contains() method, 167
content cmdlets, 109
Content property, 351

922 | Index

-Context parameter, 251
Context.PostContext property, 251
Context.PreContext property, 251
continue statement, 828
Convert-String cmdlet, 180, 183
ConvertFrom-Csv cmdlet, 90
ConvertFrom-Json cmdlet, 280
ConvertFrom-SddlString cmdlet, 532
ConvertFrom-SecureString cmdlet, 527
ConvertFrom-String cmdlet, 180-186, 252
ConvertFrom-StringData cmdlet, 393
converting numbers

between bases, 205
binary to decimal, 206
degrees to radians, 197
hexadecimal to decimal, 206
octal to decimal, 206
radians to degrees, 197

ConvertTo-Csv cmdlet, 190
ConvertTo-Html cmdlet, 190, 369
ConvertTo-Json cmdlet, 280
ConvertTo-SecureString cmdlet, 521, 527
ConvertTo-Xml cmdlet, 191, 272
[Convert]::ToInt32() method, 206
[Convert]::ToString() method, 200, 206
Cooked Mode, 25
cookies, 359, 361
Coordinated Universal Time (UTC), 235
Copy-History script, 52
Copy-Item cmdlet, 438, 765
cosine, 195
counted for loops, 153
Create() method, 658, 662, 669, 735, 746
-Credential parameter, 12, 367, 523, 578, 737,

740
CredSSP authentication, 761
-creplace operator, 260
criteria filters, 58
cross-forest remoting, 757
Cross-site scripting, 540
cryptographic hash, validating, 543
cryptographic random number generator, 234
.cs file extension, 258
CSV files

automating data-intensive tasks, 89
converting variables to objects, 90
importing CSV and delimited data from

files, 278

importing users in bulk to Active Directory,
663

storing command outputs in CVS or delimi‐
ted files, 277

cube root, 195
culture-aware programs, 388 (see also interna‐

tionalization)
current directory (.\), 5
current location

determining and changing, 558
getting, 461
storing, xxxii

current object variable ($_), 80, 85, 320, 336
current scope, 112
custom enumerations, 831
custom events, 785
custom formatting, 854
custom objects, 132
custom parsing expressions, 254
custom tags/information, adding, 327
custom type extensions, 136
custom-written help, 33

D
-Daily parameter, 697
data comparisons

comparing output of two commands, 619
determining differences between two files,

621
overview of, 619

data-intensive tasks, 88
dates and times

converting time between zones, 235
dynamic variables for date math, 114
finding all files modified before a certain

date, 562
formatting dates for output, 178
getting oldest entries from event logs, 624
getting system date and time, 229
internationalization and, 388
.NET DateTime formatting, 879-884

DateTime objects, 179, 879-884
DbaTools module, 71
debug output, enabling, 440
-Debug parameter, 310, 441
Debug-Process cmdlet, 649
Debug-Runspace cmdlet, 428
debugging (see also tracing and error manage‐

ment)

Index | 923

creating conditional breakpoints, 419
debugging scripts upon error encounters,

417
displaying messages and output to users,

384
getting script code coverage, 430
interactive debugging, 411, 420
investigating system state while debugging,

421
on remote machines, 424
overview of, 405
preventing common scripting errors, 407
processes, 649
removing temporary certificates, 531
scripts in other processes, 428
setting script breakpoints, 414
tracing script execution, 411
using Visual Studio Code, 549
watching expressions for changes, 426
writing unit tests for scripts, 409

$debugPreference variable, 441
-DefinitionName parameter, 697
degrees, converting to radians, 197
-DelegateComputer parameter, 762
DeleteTree() method, 661
-Delimiter parameter, 182, 246, 278
-DenyTSConnections property, 754
-Description parameter, 695
-Detailed flag, 32
development, ad hoc, xl
DHCP (Dynamic Host Configuration Proto‐

col), 705
digital signatures, verifying, 518
-Directory parameter, 282
Disable-ComputerRestore cmdlet, 692
Disable-PsBreakpoint cmdlet, 416
Disconnect-PSSession cmdlet, 744
disk full events, 635
disk usage information, 569
Distributed Management Task Force (DMTF)

standard, 713
distribution groups, Active Directory

adding users to, 674
creating, 669
finding owners of, 672
getting properties of, 671
modifying properties of, 673
removing users from, 674
searching for, 670

DLLs (Dynamic Link Libraries), 491, 511, 518,
572

DMTF (Distributed Management Task Force)
standard, 713

do statement, 152, 826
Document Object Model (DOM), 358
dollar sign ($)

preceding subexpression names, 163
preceding variable names, xxxvi, 10, 107
in regular expressions, 146

dollar sign, braces (${…}), Get-Content vari‐
able, 245

dollar sign, question mark ($?) dollar hook
variable, 79, 434

-DomainName parameter, 681
domains

joining computers to, 681
removing computers from, 682
renaming computers in, 683

dot notation (.)
accessing methods or properties, xxxv-

xxxvi, 7, 117
in regular expressions, 861
sourcing functions or scripts, 842

dotnet command-line toolchain, 492
double-hop problem, 738, 743
DPAPI (Windows Data Protection API), 520
drives, controlling access and scope of, 112
durability, 773
Duration property, 51
dynamic cookies, 359
Dynamic Host Configuration Protocol

(DHCP), 705
dynamic information

inserting in strings, 163
preventing strings from including, 164

Dynamic Link Libraries (DLLs), 491, 511, 518,
572

dynamic member invocation, 120
dynamic parameters, 529
dynamic variables, 114

E
EditMode property, 24
elevated commands, 524
else statement, 148, 821
elseif statement, 148, 821
email

checking status of mailbox, 373

924 | Index

protocols, 373
sending, 370

Enable-BreakOnError script, 417
Enable-ComputerRestore cmdlet, 692
Enable-HistoryPersistence script, 74
Enable-PsBreakpoint cmdlet, 416
Enable-PSRemoting cmdlet, 733
Enable-WsManCredSSP cmdlet, 762
EnableDHCP() method, 707
-EnableNetworkAccess parameter, 739
EncodedCommand parameter, 41
encoding

converting to Base64-encoding, 41
getting encoding of files, 262
UTF-16 Unicode encoding, 248
working with files in non-ASCII encodings,

260
-Encoding parameter, 248, 260
End block, 93
end keyword, 331
-End parameter, 86
EndProcessing() method, 93
engine events, 787
engine logging, 506
Enhanced Key Usage (EKU), 530
Enhanced Security Configuration mode, 601
Enter-Module script, 305, 791
Enter-PSSession cmdlet, 424, 551, 737
enterprise computer management

computers (see also remote computers;
Remoting)
assigning static IP addresses, 706
determining whether a hotfix is

installed, 695
enabling Remoting, 735
joining to domains or workgroups, 681
listing all IP addresses for, 708
listing network adapter properties, 709
managing restore points, 692
managing scheduled tasks on, 696
rebooting or shutting down, 694
removing from domains, 682
renaming, 683
renewing DHCP leases, 705
summarizing system information, 703

overview of, 681
printers

managing printers and print queues, 702
retrieving printer information, 699

retrieving printer queue statistics, 700
scripts

deploying PowerShell-based logon
scripts, 687

listing logon or logoff for users, 684
listing startup or shutdown scripts for

machines, 685
software

listing all installed, 689
uninstalling applications, 691

Windows Firewall
enabling or disabling, 688
open or closing ports in, 688

enum keyword, 831
enumeration disambiguation, 441
[Enum]::GetValues() method, 458
env: drive, 450
$env:PATH, 452
environment (see language and environment)
environment provider, 108, 450
environment variables

accessing, 107
retaining changes to, 110

environmental awareness
accessing information about command

invocation, 452
determining PowerShell version informa‐

tion, 464
finding location of common system paths,

458
finding script locations, 457
finding script names, 457
getting current location, 461
interacting with global environment, 463
investigating InvocationInfo variable, 454
modifying user or system path, 451
overview of, 449
safely building file paths out of components,

462
testing for administrative privileges, 465
viewing and modifying environment vari‐

ables, 449
[Environment]::GetEnvironmentVariable()

method, 451
[Environment]::GetFolderPath() method, 458
[Environment]::SetEnvironmentVariable()

method, 451
-eq operator, 79, 145, 176, 219, 391, 818
$error array, 437

Index | 925

error management (see tracing and error man‐
agement)

Error property, 15
$error variable, 435
-ErrorAction parameter, 310
$errorActionPreference variable, 442
-ErrorVariable parameter, 310
$errorView variable, 438
escape (`) character, 10
escape sequences, 162, 803
EscDomains key, 601
evaluation controls, 797
event handling

creating and responding to custom events,
785

creating temporary event subscriptions, 788
forwarding events from remote computers,

789
introduction to, 781
investigating internal event action state, 790
notification of job completion, 20
OnRemove event, 308
PowerShell.Exiting event, 73, 308
responding to automatically generated

events, 782
select events and their uses, 903-907
select WMI events and their uses, 907-909
using script blocks as .NET delegates or

event handlers, 792
event logs

accessing of remote machines, 639
backing up, 632
clearing or maintaining, 637
creating or removing, 633
finding log entries by frequency, 630
finding log entries with specific text, 625
getting oldest entries from, 624
listing all, 623
overview of, 623
retrieving and filtering entries in, 627
running scripts for Windows Event Log

Entries, 636
writing to, 635

event queues, 783, 785
-Examples flag, 33
-Exclude parameter, 565
$execution Context.SessionState.InvokeCom‐

mand variable, 27
execution policies

disabling warnings for UNC paths, 509
enabling scripting through, 501
setting of remote machines, 608

$executionContext.SessionState.InvokeCom‐
mand.CommandNotFoundAction, 338

-ExecutionPolicy parameter, 40, 687
exit codes, 434
exit keyword, 297
Expand-Archive cmdlet, 590
expanding strings, 160
-ExpandProperty parameter, 572
explicit interface implementation, 119
explicitly implemented interface methods, 833
Export-CliXml cmdlet, 51, 272, 275, 527, 632
Export-Counter cmdlet, 474
Export-Csv cmdlet, 277, 281
Export-ModuleMember cmdlet, 303, 536
expressions

versus commands, 797
watching for changes during debugging, 426

F
-f (string formatting operator), 163, 165, 178,

188, 875
false statements, 147
fan-out remoting, 732, 739, 740
Favorite CD function, 275
$favorites variable, 276
file management classes, 257
-file option, 252
-File parameter, 39, 72, 687
-FilePath parameter, 771
files and directories (see also structured file

handling)
accessing long file and directory names, 578
adding extended file properties to files, 587
capturing and validating integrity of file

sets, 544
checking for damage or modification to

files, 543
clearing contents of files, 563
creating and mapping drives, 576
creating directories, 573
custom formatting files, 854
determining and changing current location,

558
determining differences between two files,

621

926 | Index

downloading/uploading files to FTP sites,
347-349

finding all files modified before a certain
date, 562

finding files that match a pattern, 565
getting ACLs of, 584
getting cryptographic hash of files, 543
getting disk usage information, 569
getting files in a directory, 560
getting version information for DLLs or

executables, 572
interacting with alternate data streams, 581
LastWriteTime property, 200
listing items in current directory, xxxii
managing and changing attributes of files,

564
managing and editing files on remote

machines, 765
managing files that include special charac‐

ters, 568
managing ZIP archives, 590
monitoring files for changes, 571
moving, 576
moving or removing locked files, 582
navigating filesystems, xxxii, xliii
overview of, 557
possible directory attributes, 202
possible file attributes, 201
removing, 573
renaming, 574
running programs on each file, 85
setting ACLs of, 586
signing formatting files, 510
simple file handling, 245-266
structured file handling, 267-286
unblocking files, 579

filter keyword, 336
-Filter parameter, 565, 714
Filter property, 676
-FilterHashtable parameter, 627
filtering facilities

criteria filters, 58
filtering items in lists or command outputs,

79
interactively filtering lists of objects, 84
quick filters, 58

filtering facilities. text-based filtering, 56
-FilterXml parameter, 627
-FilterXPath parameter, 626-628

Find-Module cmdlet, 70
Find-Script cmdlet, 70
FindAll() method, 666-671, 677-679
FindOne() method, 666, 671, 678
flat hash, 517
floating-point numbers, 194, 196
flow control (see looping and flow control)
font size, adjusting, 856
for statement, 152, 214, 825
-Force parameter, 323, 436-438, 521, 564, 694,

734
foreach scripting keyword, 88, 214
foreach statement, 152, 330, 825
foreach() method, 86
ForEach-Object cmdlet, 15, 84, 88, 152, 154,

187, 214, 295
-ForegroundColor parameter, 384
form detection, 361
form submission, 361
-Format parameter, 178
Format-Custom cmdlet, 103
Format-Hex cmdlet, 265
Format-List cmdlet, 59, 102, 438, 518, 552, 626,

631, 660, 667, 672, 679, 709, 853
Format-Table cmdlet, xxxvii, 103-106, 132, 141,

213, 224, 853
Format-Wide cmdlet, 103, 854
Formats property, 141
-Forward parameter, 789
forward slash (/)

division operator, 193, 812
in XPath queries, 872

forward slash, equal (/=), division assignment
operator, 193, 812

-Fragment parameter, 369
-FromSession parameter, 765
FTP sites

deleting files from, 349
downloading files from, 347
standard supported FTP methods, 349
uploading files to, 348

-Full flag, 32
FullyQualifiedErrorId, 437
function keyword, 336
functions

accessing arguments of, 308
accessing information about command

invocation, 452
accessing pipeline input, 329

Index | 927

adding custom tags to, 327
adding help comments to, 325
advanced functions, 311-321
attempting to call as methods, 408
controlling access and scope o f, 112
naming conventions, 304
packaging common commands in modules,

297
reference documentation, 839-850
removing, 22
returning data from, 295
writing, 290
writing pipeline-oriented functions, 335
writing pipeline-oriented scripts with

cmdlet keywords, 331

G
GB constant (gigabytes), 204
-ge operator, 145, 221, 819
generic objects, 211
Get() method, 660, 667, 672
Get-Acl cmdlet, 584, 605
Get-ADComputer cmdlet, 678, 679
Get-ADGroup cmdlet, 671-673
Get-ADOrganizationalUnit cmdlet, 660
Get-ADUser cmdlet, 666-677
Get-AliasSuggestion script, 46
Get-AuthenticodeSignature cmdlet, 518, 545
Get-ChildItem cmdlet, 21, 107, 122, 249, 282,

560-563, 565-573, 580, 587
Get-CimAssociatedInstance cmdlet, 725
Get-CimClass cmdlet, 720
Get-CimInstance cmdlet, 150, 714, 716, 727
Get-Clipboard cmdlet, 232
Get-Command cmdlet, xxxviii, 30, 524, 732,

843
Get-ComputerRestorePoint cmdlet, 693
Get-Content cmdlet, xxxiv, 88, 210, 245, 261,

262, 571, 581
Get-Content variable syntax, 245, 450
Get-Counter cmdlet, 472
Get-Credential cmdlet, 521
Get-Date cmdlet, 120, 178, 229, 562, 697
Get-DiskUsage script, 569
Get-Event cmdlet, 783
Get-EventLog cmdlet, 632
Get-EventSubscriber cmdlet, 786
Get-FileEncoding script, 262
Get-FileHash cmdlet, 543

Get-Help cmdlet, xxxviii, 32, 35
Get-History cmdlet, xl, 51, 67
Get-Hotfix cmdlet, 695
Get-InstalledSoftware script, 689-692
Get-InvocationInfo script, 454
Get-Item cmdlet, 560, 572, 581
Get-ItemProperty cmdlet, 594
Get-ItemPropertyValue cmdlet, 595
Get-Job cmdlet, 14
Get-Location cmdlet, 461, 558
Get-Member cmdlet, xxxviii, 59, 126, 128, 358,

552, 834
Get-Module cmdlet, 72
Get-OperatingSystemSku cmdlet, 150
Get-OwnerReport script, 130
Get-ParameterAlias script, 48
Get-PfxCertificate cmdlet, 532
Get-Process cmdlet, xxxiv-xxxix, 8, 31, 77, 101,

118, 122, 642, 646-649
Get-PsCallstack cmdlet, 421
Get-PSDrive cmdlet, 138, 569, 577
Get-PSHostProcessInfo cmdlet, 428
Get-PSReadLineKeyHandler, 25
Get-PSSession cmdlet, 744
Get-PsSnapin cmdlet, 72
Get-Random cmdlet, 233
Get-RemoteRegistryChildItem, 608
Get-RemoteRegistryKeyProperty, 608
Get-Service cmdlet, 31, 651
Get-Uptime cmdlet, 474
Get-Verb cmdlet, 292
Get-WarningsAndErrors script, 443
Get-WindowTitle cmdlet, 114
Get-WinEvent cmdlet, 623-633, 871
Get-WmiObject cmdlet, 721
Get-Yesterday cmdlet, 114
getElementById method, 358
getElementsByTagName method, 358
GetEnumerator() method, 225
GetNetworkCredential() method, 521, 522
GetNewClosure() method, 318
GetPrivateProfileString script, 477
GetRelated() method, 725
GetScriptBlock child, 138
GetSteppablePipeline() method, 340
gigabytes, GB constant for, 204
Global scope, 113, 302, 463, 785
GOTO, 291
gps alias, xxxv

928 | Index

Graphical User Interface (GUI), 57, 397-400
grep utility, 183, 250
grids, 212
Group Policy system, 684, 685, 735
Group Policy templates, 513
Group-Object cmdlet, 81, 630
-gt operator, 145, 179, 221, 819
GUI (Graphical User Interface), 397-400

H
hashtables, 214

(see also lists, arrays, and hashtables)
-Head parameter, 369
help comments, 799
help content

adding help to scripts or functions, 325
custom-written, 33
getting help on commands, 32
searching text of, 36
updating, 34

here strings, 161, 164, 803
hexadecimal number, 200, 206, 806

converting to, 206
hexadecimal representation of content, 265
Hidden attribute, 564
history

accessing and managing console history, 50
invoking commands from session history,

54
retrieving session, xl
saving state between sessions, 73
showing colorized script content, 237

history management, 24, 55
HKLM:\SOFTWARE \Microsoft\Windows

\CurrentVersion\Uninstall registry key, 689
HNetCfg.FwMgr COM object, 688-689
$host automatic variable, 772
$host.EnterNestedPrompt() method, 324, 411
$host.Name property, 772
$host.PrivateData.Debug* variables, 441
$host.Runspace.ApartmentState variable, 403
$host.UI.RawUI variable, 395
hotfixes, determining installations status, 695
hotkeys, 857
HTML Agility Pack, 358
HTTP (HyperText Transfer Protocol), 372

I
ID completion, 55

IdleTimeout parameter, 767
if statement, 148, 821
Ignore value, 444
imaginary numbers, 198, 807
implicit remoting, 732, 759
Import-ADUser script, 663, 670
Import-CliXml cmdlet, 51, 275, 527, 633
Import-Counter cmdlet, 474
Import-Csv cmdlet, 89, 278
Import-LocalizedData cmdlet, 391
Import-Module cmdlet, 68, 300
Import-PSSession cmdlet, 758
ImportNode() function, 275
-in operator, 145, 216, 819
-In parameter, 80
-Include parameter, 565
-IncludeIndex parameter, 213
-IncludeInvocationHeader parameter, 67
-IncludeUserName parameter, 647
IndexOf() method, 167
-InDisconnectedSession parameter, 744
information disclosure, protecting against, 508
-InformationAction parameter, 310
-InformationVariable parameter, 310
injection attacks, 539
InjectionHunter module, 539
InlineScript keyword, 832
InnerHtml property, 359
InnerText property, 359
input

accessing pipeline input, 329
customizing user behavior, 24, 859
reading keypresses of user input, 380
reading lines of user input, 379
running script blocks for each item in, 85

$input variable, 329, 333
$input.Reset(), 330
-InputObject parameter, 127
InputObject property, 620
-InputStream parameter, 543
Install-Module cmdlet, 70
Install-Script cmdlet, 70
installation, 1-2
instance methods, 118, 833
instance properties, 120, 834
instances, 718, 836
interactive debugging, 411, 420
interactive remoting, 732, 737
interactive shell

Index | 929

accessing and managing console history, 50
benefits of, 1
creating scripts from session history, 52
customizing command resolution behavior,

27, 859
customizing shells, profiles, and prompts,

21, 855-860
customizing user input behavior, 24
extending with additional commands, 68
finding and installing additional scripts and

modules, 70
finding commands to accomplish tasks, 30
getting help on commands, 32
installing and running, 1
interactively viewing and exploring objects,

59
interactively viewing and processing com‐

mand output, 57
invoking commands from session history,

54
invoking commands/scripts from outside

PowerShell, 39
invoking long-running or background com‐

mands, 13
launching PowerShell to specific locations,

37
learning aliases for common parameters, 46,

48
monitoring commands for changes, 16
notification of job completion, 20
overview of, xxxii-xxxiv
recording transcripts of shell sessions, 67
resolving errors calling native executables, 9
running PowerShell commands, 8
running programs, scripts, and existing

tools, 5
saving state between sessions, 73
searching formatted output for patterns, 56
searching help content, 36
supplying default values for parameters, 11
understanding and customizing autocom‐

pletion, 42
updating system help content, 34
using commands from customized shells, 72

Interlocked Increment class, 156
internationalization

capitalization, 176, 390
converting time between zones, 235
dates and times, 179

invoking script blocks with alternate culture
settings, 394

lack of full support for Unicode standard,
547

supporting other languages in script output,
391

UTF-16 Unicode encoding, 248
working with files in non-ASCII encodings,

260
writing culture-aware scripts, 388

Internet Explorer
adding sites to Security Zone, 600
modifying settings, 602

internet-enabled scripts
connecting to web services, 366
downloading files from FTP or internet

sites, 347
downloading web pages from the internet,

351
exporting command output as web pages,

369
interacting with and managing remote SSL

certificates, 367
interacting with internet protocols, 372
interacting with REST-based web APIs, 363
monitoring website uptimes, 370
overview of, 347
parsing and analyzing web pages form the

internet, 357
resolving destination of internet redirects,

350
scripting web application sessions, 359
sending emails, 370
uploading files to FTP sites, 348

InvocationInfo property, 438, 454
invoke operator (&), 5, 293, 306
Invoke-BinaryProcess script, 95
Invoke-CimMethod cmdlet, 714, 718, 727
Invoke-CmdScript script, 110
Invoke-Command cmdlet, 15, 740, 744, 771
Invoke-Expression cmdlet, 7, 536, 540
Invoke-History cmdlet, 51, 54
Invoke-Item cmdlet, 281
Invoke-RestMethod cmdlet, 280, 363
Invoke-ScriptBlock script, 293
Invoke-ScriptBlockClosure command, 318
Invoke-SqlCommand script, 469
Invoke-WebRequest cmdlet, 280, 347, 351, 357,

359, 370

930 | Index

IP addresses
assigning static, 706
listing all, 708

ipconfig program, xxxiv, 32, 705, 708
-is operator, 145, 821
-isnot operator, 145, 821
isolation, 773
IsReadOnly attribute, 564

J
jagged arrays, 211, 808
JEA (Just Enough Administration), 535, 538
jobs

access to event actions, 784
child jobs, 16
customizing job names, 14
investigating job errors, 15
invoking long-running or background com‐

mands, 13
managing scheduled, 696
notification of job completion, 20

-join operator, 174, 452
Join-Path cmdlet, 458-463, 558
Join-String cmdlet, 174
JSON data, converting to and from, 280
JSON REST-based web APIs, 363
jump boxes, 537
Just Enough Administration (JEA), 535, 538,

766

K
KB constant (kilobytes), 204
Kerberos authentication, 757, 761
key properties, 719
keypresses

configuring behavior, 25
reading, 380

Kill() method, xxxvi
kilobytes, KB constant for, 204
kiosks, 537

L
language and environment

arrays and lists, 807
Booleans, 802
capturing output, 854
commands and expressions, 797
comments, 799

common customization points, 855-860
comparison operators, 818-821
conditional statements, 821-825
formatting output, 853
hashtables, 809
help comments, 799
looping statements, 825-833
managing errors, 851
.NET Framework, 833-839
numbers, 804
simple operators, 811-818
special characters, 10
strings, 802
variables, 800
writing scripts and code reuse, 839-850
XML, 810

languages, supporting other in script output,
391 (see also internationalization)

large-scale automation, 740
Last WriteTime property, 562
$lastExitCode variable, 434
LastWriteTime property, 200
LDAP filter, 666, 671, 678
-le operator, 145, 221, 819
Length property, xxxv
-like operator, 55, 79, 145, 167, 219, 820
Limit-EventLog cmdlet, 634, 638
line numbers, 237
-Line parameter, 415
list evaluation syntax (@(…)), 211, 330
-List parameter, 624
-ListImported parameter, 31
lists, arrays, and hashtables

accessing elements of arrays, 212
accessing list items by property name, 81
combining two arrays, 217
comparing two lists, 219
creating arrays or lists of items, 209
creating hashtables or associative arrays, 223
creating jagged or multidimensional arrays,

211
determining whether arrays contain items,

216
displaying properties of items as lists, 102
dynamically composing command parame‐

ters, 320
filtering items in lists, 79
finding items in arrays greater or less than

values, 221

Index | 931

finding items in arrays that match values,
218

getting cryptographic hash of files, 543
interactively filtering lists of objects, 84
message tables, 392
overview of, 209
passing hashtables to commands, 340
reference documentation, 807-810
removing elements from arrays, 220
sorting arrays or lists of items, 215
sorting hastables by key or value, 225
statistical properties of lists, 198
using ArrayList class for advanced tasks, 222
visiting each element of arrays, 214
working with each list item, 84
writing collections to output pipelines, 296

-ListSet parameter, 473
literal (nonexpanding) strings, 160, 164, 802
-LiteralPath parameter, 568
LoadWithPartialName method, 490
local administrator’s account, 683
Local scope, 113
local variables, accepting script block parame‐

ters with, 318
LocalPolicy.CurrentProfile.FirewallEnabled

property, 688
LocalPolicy.CurrentProfile.GloballyOpenPorts

collection, 688
Log Parser, 254
logfiles, 252, 504
logical operators, 145, 812
-Logname parameter, 634
logon failures, 635
long-running commands, 13, 154, 386, 441,

446, 770
looping and flow control

accessing items in arrays by position, 214
adding pauses or delays, 157
adjusting flow using conditional statements,

148
easier to read looping statements, 88
making decisions with comparison and logi‐

cal operators, 145
making loops run at constant speed, 158
managing large conditional statements with

switches, 149
overview of, 145
processing time-consuming actions in par‐

allel, 154

reference documentation, 825-833
repeating operations with loops, 152

lowercase, converting strings to, 175, 390
-lt operator, 145, 221, 819

M
Main function, 291, 336
man-in-the-middle attacks, 756
ManagedBy property, 672
Marshal class, 521
-match operator, 145, 167, 219, 252, 820, 861
-Match parameter, 80
math (see calculations and math)
Math class, 195
matrices, 212
-Maximum parameter, 233
$MaximumHistoryCount variable, 51
-MaxTriggerCount parameter, 788
MAX_PATH limitation, 579
MB constant (megabytes), 204
md function, 573
MD5 hash algorithm, 544
Measure-Command cmdlet, 230
Measure-CommandPerformance script, 230
Measure-Object cmdlet, xxxix, 199
Measure-Script cmdlet, 446
megabytes, MB constant for, 204
Member property, 676
-MemberDefinition parameter, 474, 487
MemberOf property, 675
MemberSet, 141
-MemberType parameter, 127
menus, displaying to users, 381
message tables, 392
-MessageData parameter, 784
messages

displaying to users, 383
warning messages, 442

methods
accessing, xxxvi
accessing for each object in lists, 85
accessing in .NET objects, 117
adding custom to objects, 130
adding custom to types, 136
defining, 831
exploring methods supported by objects,

126
getting detailed information about, 128
invoking on WMI instances or classes, 718

932 | Index

reference documentation, 833
Microsoft Certificate Services, 513
Microsoft documentation, 128
Microsoft Scripting Guys’ Scriptomatic tool,

713
Microsoft.CSharp.CSharpCodeProvider class,

886
Microsoft.PowerShell.Commands.Manage‐

ment.TransactedString class, 776
Microsoft.PowerShell.ConsoleGuiTools mod‐

ule, 400
Microsoft.Win32.Registry class, 887
Microsoft.Win32.RegistryKey class, 887
-Minimum parameter, 233
minus sign (−), subtraction operator, 193, 812
minus sign, equal (−=), subtraction assignment

operator, 193, 812
mkdir function, 573
module logging, 506
module manifests, 299
Module property, 791
modules

binary modules, 493
detecting loaded, 73
diagnosing and interacting with internal

module state, 305
finding and installing additional, 70
handling cleanup tasks when modules are

removed, 307
installing and running, 69
maintaining state with, 301
packaging common commands in modules,

297
selectively exporting commands from mod‐

ules, 303
signing, 510
using commands from customized shells, 72

modulus operator (%), 812
Monad, xxi
Move-Item cmdlet, 91, 576
MoveFileEx Windows API, 582
msinfo32.exe application, 703
MTA (multithreaded apartment) mode, 402
multidimensional arrays, 211, 808
multiline comments, 799
multithreading, 783
$myInvocation variable, 452, 454, 849
$myInvocation.InvocationName variable, 457

$MyInvocation.MyCommand.Script‐
Block.Module.OnRemove event, 307

N
name property, 660
named capture groups, 250
-Namespace parameter, 367
namespaces

navigation through providers, xliii
searching for WMI or CIM classes to

accomplish tasks, 722
specifying list of, 491
web services and, 367

naming conventions
commands packaged in modules, 298
finding verbs appropriate for command

names, 292
functions, 304
scripts, 288
variables, xxxvi, 107

-ne operator, 145, 220, 818
.NET CLR (Common Language Runtime) ver‐

sion, 464
.NET Framework

accessing .NET SDK libraries, 489
[Array]::Sort() method, 216
creating instances of .NET objects, 121
DateTime formatting, 879-884
defining or extending .NET classes, 484
file management classes, 257
getting detailed documentation about types

and objects, 128
Interlocked Increment class, 156
internet protocols and, 372
LoadWithPartialName method, 490
Marshal class, 521
[Math]::Truncate() method, 194
P/Invoke Interop Assistant, 477
reference documentation, 833-839
[Regex]::Split() method, 171
SecureString class, 520
select .NET events and their uses, 903-907
select classes and their uses, 885-891
string formatting, 875-878
String.Format() method, 165
String.Split() method, 171
[String]::Join(), 175
support for, xxxvi
System.IO.File class, 245

Index | 933

System.Math class, 195, 811
System.Net.Mail.MailMessage class, 370
System.Net.WebClient class, 348
System.Net.WebRequest class, 367
System.Security.AccessControl.CommonSe‐

curityDescriptor class, 533
System.Xml.XmlDocument objects, 270
System.Xml.XmlElement objects, 270
TimeZoneInfo class, 235
using script blocks as .NET delegates or

event handlers, 792
using to perform advanced WMI tasks, 725
working with objects from, xxxviii-xxxix,

101, 117
netstat program, 32
network settings (see also remote computers;

Remoting)
blank passwords and network connections,

735
creating sessions with full network access,

760
limiting networking scripts to hosts that

respond, 753
listing properties of network adapters, 709
managing for computers, 706

new() method, 121, 123
New-ADGroup cmdlet, 670
New-ADOrganizationalUnit, 659
New-ADUser cmdlet, 663
New-CommandWrapper script, 92, 340
New-DynamicVariable script, 114
New-Event cmdlet, 785
New-EventLog cmdlet, 633
New-FileCatalog cmdlet, 544
New-Item cmdlet, 573, 600
New-ItemProperty cmdlet, 596, 600
New-ModuleManifest cmdlet, 299
New-Object cmdlet, 121, 125, 133, 209, 212,

468, 488, 836
New-PSDrive cmdlet, 302, 576, 578
New-PSSession cmdlet, 738, 743
New-PSSessionConfigurationFile cmdlet, 534
New-PSSessionOption cmdlet, 767
New-ScheduledJobOption cmdlet, 698
New-SelfSignedCertificate cmdlet, 512
New-Service cmdlet, 654
New-TemporaryFile cmdlet, 257
New-WebserviceProxy cmdlet, 366
newline characters

\n, 97
\r\n, 97

Noble Blue theme, 4
-NoExit parameter, 38
nonexpanding strings, 164
nonterminating errors, 438, 851
-NoProfile parameter, 40, 402
-not operator, 145
NotAfter property, 368
-notcontains operator, 145, 820
notepad tool, xxxiv
NoteProperty, 131, 141
-notin operator, 145, 819
-notlike operator, 145, 220, 820
-notmatch operator, 145, 220, 820
NTLM protocol, 762
NuGet protocol, 71
null coalescing operator, 822
null conditional array access operator (?[…]),

809
$null values

error messages due to, 83
releasing memory with, 107

numbers
converting between bases, 205
floating-point, 194, 196
generating ranges of, 85
reference documentation, 804
working with imaginary and complex, 198
working with large, 197
working with numbers as binary, 200

numeric constants, 805

O
object model (Visual Studio Code), 552
object-based pipelines, 78, 183, 269
objects (see variables and objects)
octal number, 205

converting from, 206
converting to, 206, 806

-Oldest parameter, 624
-Once parameter, 698
-Online flag, 33
OnRemove event, 308
opaque blobs, 520
OpenTimeout parameter, 767
OperationTimeout parameter, 767
-or operator, 145
organizational units (OUs), Active Directory

934 | Index

creating, 658
deleting, 661
getting properties of, 659
listing users in, 676
modifying properties, 660

Out-Default cmdlet, 92, 94, 103, 105, 418
Out-File cmdlet, 187, 247-249
Out-GridView cmdlet, 57, 84, 398
Out-Host cmdlet, 385
Out-String cmdlet, 56, 169
-OutBuffer parameter, 310
OutConsolePicture module, 71
-OutFile parameter, 347
OutputBufferingMode property, 745
-OutVariable parameter, 94, 310
-OverflowAction parameter, 638

P
P/Invoke (Platform Invocation Services), 477
Packet Privacy, 726
Parallel keyword, 832
-parallel switch, 154
param statement, 308, 311
parameter disambiguation, 441
[Parameter()] attribute, 314
-ParameterName parameter, 732
parameters

accepting script block parameters with local
variables, 318

accessing arguments of script, functions, or
script blocks, 308

adding validation to, 314
autocompletion of names, xxxv
defining behavior, 315
dynamic parameters, 529
dynamically composing command parame‐

ters, 320
learning aliases for common parameters, 48
positional, xxxv
reference documentation, 843-844
specifying argument values for, 7
supplying default values for, 11
supporting common parameters, 310

Parent property, 648
parent scope, 113
parentheses ((…))

enclosing New-Object call, 122
specifying precedence, 193
used for subexpressions, 10

Parse() methods, 388
ParsedHtml property, 357
-PassThru parameter, 84, 488
passwords

blank passwords and network connections,
735

changing for Active Directory user
accounts, 668

requesting securely, 521
storing securely on disk, 527
updating credentials in scheduled jobs, 698

PATH environment variable, modifying, 451
-Path parameter, 67, 489, 524, 545, 565
paths

blocking scripts by, 515
disabling warnings for UNC paths, 509
finding full path and filenames, 457
finding location of common system paths,

458
MAX_PATH limitation, 579
modifying user or system paths, 451
safely building file paths out of components,

462
pattern completion, 55
pattern matching, 33, 565
pause command, 157, 381
PB constant (petabytes), 204
pbcopy, 232
PE (Portable Executable) header, 255
percent sign (%), modulus operator, 812
percent sign, equal (%=), modulus assignment

operator, 193, 812
performance counters, 472
performance problems, 446
-Persist flag, 578-579
personal profile script, 21
Pester module, 409
petabytes, PB constant for, 204
PII (personally identifiable information)

protecting against disclosure, 508
requesting, 520

ping.exe utility, 751
pipeline chain operator (&&), 78
pipeline chain operator (||), 78
pipeline character (|), xxxvii, 10, 77
pipeline-oriented functions, 153, 335
pipeline-oriented scripts, 331
pipelines

accessing pipeline input, 329

Index | 935

automatically capturing output, 93
automating data-intensive tasks, 88
capturing and redirecting binary process

outputs, 95
chaining commands based on success/error,

78
filtering items in lists or command outputs,

79
grouping and pivoting data by name, 81
interactively filtering lists of objects, 84
intercepting stages of pipelines, 92
overview of, 77
steppable, 340
storing output in variables, 106
working with each item in lists or command

outputs, 84
writing data to output, 295

-PipelineVariable parameter, 87, 310
Platform Invocation Services (P/Invoke), 477
plus sign (+)

addition operator, 193, 217, 811
combining arrays, 809
in regular expressions, 863

plus sign, equal (+=), addition assignment
operator, 193, 812

Pop-Location cmdlet, 594
POP3 protocol, 372
popd command, xxxii
Portable Executable (PE) header, 255, 517
positional breakpoints, 414
positional parameters, xxxv
-PostContent parameter, 369
pound sign (#), preceding comments, 10, 799
PowerShell

administrator tasks
Active Directory, 655-679
data comparisons, 619-621
enterprise computer management,

681-710
event handling, 781-793
event logs, 623-640
files and directories, 557-591
processes, 641-650
Remoting, 731-772
support for, xxxvi
system services, 651-654
transactions, 773-779
Windows Management Instrumentation

(WMI), 711-730

Windows Registry, 593-618
approach to learning, xxii
benefits of, xxxi
common tasks

code reuse, 287-340
debugging, 405-432
environmental awareness, 449-466
internet-enabled scripts, 347-377
security and script signing, 499-546
simple file handling, 245-266
structured file handling, 267-286
techniques and technologies, 467-497
tracing and error management, 433-447
user interaction, 379-404
Visual Studio Code, 547-554

core features
ability to preview commands, xxxvii
ad hoc development, xl
administrators as first-class users, xxxvi
bridging technologies, xl
cmdlets (structured commands), xxxiv
common discovery commands, xxxviii
composable commands, xxxvii
deep integration of objects, xxxv
interactive shell, xxxii-xxxiv
namespace navigation through provid‐

ers, xliii
ubiquitous scripting, xxxix

development of, xxi, 2
fundamentals

calculations and math, 193-207
lists, arrays, and hashtables, 209-227
looping and flow control, 145-158
pipelines, 77-99
PowerShell interactive shell, 1-75
strings and unstructured text, 159-191
utility tasks, 229-242
variables and objects, 101-142

language and environment, 797-860
arrays and lists, 807
Booleans, 802
capturing output, 854
commands and expressions, 797
comments, 799
common customization points, 855-860
comparison operators, 818-821
conditional statements, 821-825
formatting output, 853
hashtables, 809

936 | Index

help comments, 799
looping statements, 825-833
managing errors, 851
.NET Framework, 833-839
numbers, 804
simple operators, 811-818
strings, 802
variables, 800
writing scripts and code reuse, 839-850
XML, 810

standard PowerShell verbs, 911-915
target audience, xxii
working environment, xxiv

PowerShell Gallery, 71
PowerShell Runspace, 429
powershell.exe

launching PowerShell, xxxii
launching PowerShell at specific locations,

38
PowerShell.Exiting event, 73, 787
PowerShell.OnIdle event, 787
PowerShell.OnScriptBlockInvoke event, 787
PreCommandLookupAction property, 27
-PreContent parameter, 369
preference variables, 11
-PrependPath parameter, 138
printers

managing printers and print queues, 702
retrieving printer information, 699
retrieving printer queue statistics, 700

private commands, 535
Process block, 93
process keyword, 331
Process object, xxxvi, 101, 118, 886
-Process parameter, 86
Process Record() method, 93
processes

capturing and redirecting binary process
outputs, 95

debugging, 649
getting owners of, 647
getting parent processes, 648
launching applications associated with

documents, 643
launching processes, 644
listing currently running, 642
overview of, 641
stopping, xxxvi, 646

ProcessName parameter, xxxiv

$profile variable, 21
programs

adding console-based UIs to scripts, 400
adding custom methods and properties to

objects, 130
adding PowerShell scripting to your own

programs, 494
automating using COM scripting interfaces,

467
creating dynamic variables, 114
creating scripts from session history, 52
culture-aware programs, 388

(see also internationalization)
defining custom formatting for types, 141
determining properties available to WMI

and CIM filters, 719
discovering registry setting for programs,

615
displaying menus to users, 381
enhancing/extending existing cmdlets, 92,

340
getting disk usage information, 569
getting encoding of files, 262
getting properties of remote registry keys,

612
getting registry items from remote

machines, 610
getting script code coverage, 430
importing users in bulk to Active Directory,

663
interacting with internet protocols, 372
interactively viewing and exploring objects,

59
investigating InvocationInfo variable, 454
invoking PowerShell expressions on remote

machines, 747
invoking script blocks with alternate culture

settings, 394
invoking simple Windows API calls, 481
learning aliases for common commands, 46
learning aliases for common parameters, 48
listing all installed software, 689
listing logon or logoff scripts, 684
listing startup or shutdown scripts, 685
monitoring website uptimes, 370
querying SQL data sources, 469
remotely enabling PowerShell Remoting,

746

Index | 937

resolving destination of internet redirects,
350

resolving errors, 439
retaining changes to environment variables,

110
running on each file in directories, 85
running temporarily elevated commands,

524
saving state between sessions, 73
searching certificate store, 529
searching formatted output for patterns, 56
searching help for text, 36
searching the Registry, 603
searching Windows Start menu, 236
setting properties of remote registry keys,

613
showing colorized script content, 237
summarizing system information, 703
transferring complex binary data between,

95
watching expressions for changes, 426

progress output, disabling, 440
progress updates, 386
$progressPreference variable, 441
prompt function, 21
prompting functionality, 381
properties

accessing, xxxv
accessing for each object in lists, 85
accessing in .NET objects, 117
accessing list items by property name, 81
Active Directory

getting and listing properties of com‐
puter accounts, 679

getting and listing properties of user
accounts, 667

getting properties of groups, 671
getting properties of organizational

units, 659
modifying properties of groups, 673
modifying properties of organizational

units, 660
modifying properties of user accounts,

667
adding custom to objects, 130
adding custom to types, 136
attempting to access nonexistant, 408
calculated properties, 569
comparing, 79

creating new properties on registry keys,
596

defining, 831
displaying properties of items as lists, 102
displaying properties of items as tables, 104
enumerating, 86
exploring properties supported by objects,

126
getting detailed information about, 128
getting properties of remote registry keys,

612
hiding from default views, 831
modifying or removing properties of regis‐

try keys, 595
retrieving properties of registry keys, 594
setting properties of remote registry keys,

613
property bags, 134, 742
-Property parameter, 123, 133, 199, 673, 675
Protected Event Logging, 509
providers

environment provider, 108
namespace navigation through, xliii

proxies, 366
proxy command APIs, 340
.ps1 extension, 287
PSBoundParameters variable, 321
$psCmdlet variable, 322
$psCmdlet.ShouldContinue() method, 323
$PSCommandPath variable, 452, 457
PSComputerName property, 741
-PSConsoleFile parameter, 72
PSConsoleHostReadLine function, 26, 859
PsCredential object, 522
[PSCustomObject] type, 133
$PSDebugContext variable, 421
PSDefaultParameterValues hashtable, 11
PSDefaultParameterValues variable, 94
psedit command, 551, 765
$psEditor automatic variable, 552
$PSEmailServer variable, 11
pseudo-random number generators (PRNGs),

233
PSExecutionPolicyPreference environment

variable, 502
$PSItem variable, 80, 85, 320, 336
.psm1 extension, 297
PSModulePath environment variable, 299
PSProfiler module, 446

938 | Index

PSReadLine module, 25, 74
$PSScriptRoot variable, 452, 457
$PSSessionOption automatic variable, 767
$PSVersionTable automatic variable, 464
public commands, 535
Push-Location cmdlet, 594
pushd command, xxxii
Put() method, 659, 660, 668, 673
$pwd automatic variable, 461, 558
pwd command, xxxii
pwsh.exe, 38, 39

Q
-Query parameter, 714, 717
question mark (?), in regular expressions, 863
questions and comments, xxvi
quick filters, 58
-Quiet parameter, 753
-Quiet switch, 252
quotes, double ("), beginning/ending quoted

text, 10
quotes, double ("…")

enclosing expanding strings, 160
enclosing multiple parameters, 125

quotes, single ('…')
enclosing commands with spaces in name, 5
enclosing literal strings, 160, 164, 802
preventing arguments from being inter‐

preted, 9

R
race conditions, 156
radians, converting to degrees, 197
random number generation, 233
-Raw parameter, 232, 247, 261
Read-Host cmdlet, 157, 379, 520
Read-HostWithPrompt script, 381
ReadAllLines() method, 245
ReadAllText() method, 245
ReadCount parameter, 246
ReadKey() method, 157
ReadOnly attribute, 564
Receive-Job cmdlet, 15, 784
Receive-PSSession cmdlet, 745
-Recurse parameter, 560, 565
-RedirectInput parameter, 95
redirection operators, 247
redirection support (web pages), 361
-RedirectOutput parameter, 95

[ref] type, 156
[Regex]::Escape() method, 170
Register-CimIndicationEvent cmdlet, 782, 786
Register-EngineEvent cmdlet, 782, 785
Register-ObjectEvent cmdlet, 782, 786, 788
Register-PSSessionConfiguration cmdlet, 534
Register-ScheduledJob cmdlet, 696
Register-TemporaryEvent cmdlet, 20
Registry

adding sites to Internet Explorer Security
Zones, 600

creating registry key values, 596
discovering registry setting for programs,

615
getting ACLs of registry keys, 605
getting properties of remote registry keys,

612
getting registry items from remote

machines, 610
graphical user interface, 499
modifying Internet Explorer settings, 602
modifying or removing registry key values,

595
navigating, xliii, 593
overview of, 593
removing registry keys, 597
safely combining related registry modifica‐

tions, 598
searching, 603
setting ACLs of registry keys, 606
setting properties of remote registry keys,

613
viewing registry keys, 594
working with registry of remote computers,

608
regular expressions

dollar sign ($) in, 146
named capture groups, 250
reference documentation, 861-869
replacing text spanning multiple lines, 261
replacing text using patterns, 260
searching across lines, 168
searching files for text or patterns, 249

rehydration, 742
relative path navigation, 338
remote computers (see also Remoting)

accessing event logs of, 639
creating task-specific endpoints, 534
determining if hotfixes are installed on, 695

Index | 939

determining whether scripts are running
on, 772

diagnosing errors, 424
forwarding events from, 789
getting properties of remote registry keys,

612
getting registry items from remote

machines, 610
implicitly invoking commands from, 758
interactively managing, 737
invoking commands on, 740
invoking PowerShell expressions on, 747
managing and editing files on, 765
renewing DHCP leases, 706
restarting or shutting down remote comput‐

ers, 694
running local scripts on, 771
setting properties of remote registry keys,

613
viewing IP addresses of, 708
through Visual Studio Code, 551
working with registry of remote computers,

608
Remote Desktop, 754
Remote Eventlog Management firewall rule,

639
remote headless management, 731
Remote Management Users group, 754
Remote Procedure Call (RPC)-based remoting,

733
Remote Server Administration Tools (RSAT),

655
RemoteSigned execution policy, 502
Remoting (see also remote computers)

configuring advanced remoting quotas and
options, 767

configuring user permissions for, 754
creating sessions with full network access,

760
disconnecting and reconnecting PowerShell

sessions, 744
enabling PowerShell Remoting on comput‐

ers, 733
enabling Remote Desktop on computers,

754
enabling SSH as PowerShell Remoting

transport, 735
enabling to workgroup computers, 756

finding commands that support their own
remoting, 732

invoking a command on many computers,
769

limiting networking scripts to hosts that
respond, 753

overview of, 731
passing variables to remote sessions, 763
remotely enabling PowerShell Remoting,

746
testing connectivity between two comput‐

ers, 750
Remove() method, 674
Remove-ADGroupMember cmdlet, 675
Remove-ADOrganizationalUnit cmdlet, 661
Remove-Computer cmdlet, 682
Remove-Event cmdlet, 783
Remove-EventLog cmdlet, 633
Remove-Item cmdlet, 22, 531, 531, 573, 581,

597, 601
Remove-ItemProperty cmdlet, 595
Remove-Job cmdlet, 15
Remove-PsBreakpoint cmdlet, 416
Remove-Service cmdlet, 654
Rename-Computer cmdlet, 683
Rename-Item cmdlet, 258, 574
RenewDHCPLease() method, 706
-RepetitionDuration parameter, 698
-RepetitionInterval parameter, 698
repetitive tasks, 90
-replace operator, 169, 183, 261, 575, 816
Replace() method, 169, 792
-RequireNetwork parameter, 698
#requires statement, 465
Resolve-Error script, 439
Resolve-Path cmdlet, 462, 558
Responding property, 79
REST (Representational State Transfer), 364
REST-based web APIs, 363
Restart-Computer cmdlet, 682-683, 694
Restart-Service cmdlet, 653
restore points, managing, 692
Restore-Computer cmdlet, 693
Restricted execution policy, 502
Resume-Service cmdlet, 653
rich help, 326
-Role Client parameter, 762
-RoleDefinitions parameter, 536
-RollbackPreference parameter, 777

940 | Index

-Root parameter, 578
RSS feeds, 268
-RunAsAdministrator parameter, 465
Runspace debugging, 429

S
sAMAccountName property, 663
Save() method, 273
scaling, 233
scheduled tasks, 40, 696
-ScheduledJobOption parameter, 698
ScheduledTask cmdlet, 698
schtasks.exe tool, 636
$SCOPE, 112
Scope.Options property, 725
scoping

controlling access and scope, 112
execution policy scope, 502

screen scraping, 352
$SCRIPT, 785
script block logging, 506
Script Block.Attributes property, 327
script blocks

accepting script block parameters with local
variables, 318

accessing arguments of, 308
accessing information about command

invocation, 452
accessing pipeline input, 329
adding custom tags to, 327
as default parameter value, 12
executing at beginning/ending of pipelines,

86
filtering items in lists or command outputs,

80
invoking with alternate culture settings, 394
returning data from, 295
running for each item in inputs, 85
sorting arrays or lists of items, 215
using script blocks as .NET delegates or

event handlers, 792
writing, 293
writing pipeline-oriented scripts with

cmdlet keywords, 331
script cmdlets, 311
script injection, 540
-Script parameter, 415
Script scope, 113, 301, 338, 785
script signing (see security and script signing)

-ScriptBlock parameter, 26, 771
ScriptMethod, 131, 140
ScriptProperty, 131, 138
scripts (see also debugging; internet-enabled

scripts; security and script signing)
accessing arguments of, 308
accessing information about command

invocation, 452
accessing pipeline input, 329
adding graphical user interface to, 397
adding help comments to, 325
adding inline C# to scripts, 487
adding pauses or delays, 157
adding PowerShell scripting to your own

programs, 494
adjusting script flow using conditional state‐

ments, 148
analyzing performance profile, 446
blocking, 515
converting VBScript to PowerShell, 726
deploying PowerShell-based logon scripts,

687
determining whether scripts are running on

remote computers, 772
enabling through execution policies, 501
finding and installing additional, 70
finding script locations, 457
finding script names, 457
foreach scripting keyword, 88
generating large reports and text streams,

186
inserting script snippets, 553
invoking from outside PowerShell, 39
limiting networking scripts to hosts that

respond, 753
listing logon or logoff scripts, 684
listing startup or shutdown scripts, 685
organizing for improved readability, 336
parsing and interpreting PowerShell scripts,

283
reference documentation, 839-850
returning data from, 295
running local scripts on remote computers,

771
running PowerShell scripts for Windows

Event Log Entries, 636
script-based extensions, 68
scripting web application sessions, 359
sharing commands between, 297

Index | 941

showing colorized script content, 237
testing Active Directory scripts on local

installations, 656
ubiquitous scripting, xxxix
writing, 287
writing culture-aware scripts, 388
writing pipeline-oriented scripts with

cmdlet keywords, 331
SDDL (Security Descriptor Definition Lan‐

guage), 532, 755
search and replace, 259
Search-StartMenu script, 236
SecureString class, 520
security and script signing

accessing user and machine certificates, 528
adding sites to Internet Explorer Security

Zones, 600
adding/removing certificates, 531
blocking scripts by publisher, path, or hash,

515
capturing and validating integrity of file

sets, 544
creating self-signed certificates, 512
creating task-specific remoting endpoints,

534
detecting and preventing code injection vul‐

nerabilities, 539
disabling warnings for UNC paths, 509
enabling PowerShell security logging, 504
enabling scripting through execution poli‐

cies, 501
Enhanced Security Configuration mode,

601
getting cryptographic hash of files, 543
handling sensitive information, 519
Invoke-Expression cmdlet, 7
limiting interactive use, 537
managing security descriptors in SDDL

form, 532
managing security in enterprise settings,

513
overview of, 499
Remoting, 731, 756
requesting usernames and passwords, 521
running temporarily elevated commands,

524
searching certificate store, 529
security identifier (SID), 684

signing scripts, modules or formatting files,
510

SSL/TLS certificates, 367
starting processes as other users, 523
storing credentials on disk, 526
temporary files, 258
updating credentials in scheduled jobs, 698
verifying digital signatures, 518

Security Descriptor Definition Language
(SDDL), 532, 755

security groups, Active Directory
adding users to, 674
creating, 669
finding owners of, 672
getting properties of, 671
modifying properties of, 673
removing users from, 674
security groups, Active Directory, 670

security identifier (SID), 684
-SecurityDescriptorSddl parameter, 755
sed utility, 183
seeding, 233
Select-GraphicalFilteredObject script, 398
Select-Object cmdlet, 105, 132, 224, 282, 359,

572
Select-String cmdlet, 56, 183, 249, 603, 861
Select-TextOutput script, 56
Select-Xml cmdlet, 271, 871
selective execution, 548
SelectXmlInfo object, 271
self-signed certificates, 512
semicolon (;)

in filenames, 7
separating elements in the path, 452
as statement separator, 10

Send-MailMessage cmdlet, 11, 370
Send-TcpRequest script, 372
sensitive information

handling of, 519
protecting against disclosure, 508

Sequence keyword, 832
serialization, 742
ServerCertificateValidationCallback property,

367, 793
ServerRemoteHost, 772
services (see system services)
-SessionOption parameter, 745
sessions

accessing and managing history of, 50

942 | Index

configuring client-side sessions, 767
creating with full network access, 760
disconnecting and reconnecting PowerShell

sessions, 744
invoking commands from history, 54
passing variables to remote sessions, 763
recording transcripts of shell sessions, 67
retrieving history of, xl
saving state between sessions, 73
scripting web application sessions, 359
showing colorized script content, 237
storing information in global environment,

463
viewing errors generated in current, 435

-SessionVariable parameter, 359
Set-Acl cmdlet, 586, 606
Set-ADAccountPassword cmdlet, 669
Set-ADGroup cmdlet, 673
Set-ADOrganizationalUnit cmdlet, 661
Set-ADUser cmdlet, 668
Set-AuthenticodeSignature cmdlet, 510, 529,

545
Set-CimInstance cmdlet, 716
Set-Clipboard cmdlet, 232
Set-Content cmdlet, 260, 581
set-Content variable syntax, 450
Set-ExecutionPolicy cmdlet, 501
Set-ItemProperty cmdlet, 595, 602
Set-Location cmdlet, 31, 38, 558, 593
Set-PsBreakpoint cmdlet, 414, 424
Set-PsBreakpointLastError script, 418
Set-PsDebug cmdlet, 411-413
Set-PSReadLineKeyHandler cmdlet, 24-26
Set-PSReadLineOption cmdlet, 24-26
Set-PSSessionConfiguration cmdlet, 754
Set-ScheduledJob cmdlet, 698
Set-Service cmdlet, 654
Set-StrictMode cmdlet, 407
Set-WindowTitle cmdlet, 114
SetInfo() method, 660, 668, 673
SetPassword() method, 668
SetScriptBlock child, 138
-SetSeed parameter, 235
SHA256 algorithm, 544
shell associations, 644
-shl operator, 815
Show-ColorizedContent script, 238
Show-ConsoleHelloWorld script, 400
Show-EventLog cmdlet, 624, 639

Show-Object script, 59
-ShowSecurityDescriptorUI parameter, 755
-ShowWindow parameter, 33
-shr operator, 815
SID (security identifier), 684
SilentlyContinue value, 443
simple assignment, 804
simple file handling

adding information to end of files, 248
creating and managing temporary files, 257
getting encoding of files, 262
getting file contents, 245
overview of, 245
parsing and managing binary files, 255
parsing and managing text-based logfiles,

252
searching and replacing text in files, 259
searching files for text or patterns, 249
storing output of commands, 247
viewing hexadecimal representation of con‐

tent, 265
simple operators

arithmetic operators, 811
binary operators, 813
logical operators, 812
other operators, 815

-Simple parameter, 249
sine, 195
single-line comments, 799
single-line option (?s), 168, 261
single-threaded apartment (STA) mode, 403
singleline (?s) option, 861
-SkipCertificateCheck parameter, 368
-SkipNetworkProfileCheck parameter, 735
SKU, determining, 150
slicing, 213, 809
SMTP protocol, 372
-SmtpServer parameter, 11
snapins, 69, 72
snippets, 553
SOAP (Simple Object Access Protocol), 364
SOAP-based remoting, 733
software

listing all installed, 689
uninstalling applications, 691

Sort-Object cmdlet, xxxvii, 57, 77, 215-216, 225
sorting rules, 391
-Source parameter, 634
-SourcePath parameter, 34

Index | 943

spaces, removing, 177
special characters

in commands, 10
in files, 568
placing in strings, 162
preventing interpretation of, 164
seeing in file content, 265

splatting, 321, 340
-split operator, 171, 452, 861
-split operator, 817
Split-Path cmdlet, 457
SQL data sources, 469
SQL Injection, 540
square brackets ([…])

enclosing array indexes, 808
enclosing class name, 117, 122
enclosing generic parameters, 125
in filenames, 568
in regular expressions, 861, 873

square root, 195
SSL/TLS certificates, 367
STA (single-threaded apartment) mode, 403
standard verbs, 31, 911-915
Start menu, 236
Start-Job cmdlet, 13, 16, 697
Start-Process cmdlet, 523, 644-646, 738
Start-Sleep cmdlet, 157
Start-ThreadJob cmdlet, 14
Start-Transaction cmdlet, 598, 776-779
Start-Transcript cmdlet, 67
state

investigating system state while debugging,
421

maintaining, 301, 305
StateChanged event, 20
-Static flag, 126
static IP addresses, 706
static methods, 118, 833
static parameter binder class, 312
static properties, 119, 834
statistical properties of lists, 198
status information, 386, 441
StdRegProv class, 609
-Step parameter, 411
stepping commands, 423
Stop-Computer cmdlet, 694
Stop-Job cmdlet, 15
Stop-Process cmdlet, xxxiv, xxxvi, xxxviii, 646
Stop-Service cmdlet, 653

Stop-Transcript cmdlet, 67
-Stream parameter, 581
streaming behavior, 186
StreamReader class, 257
strict mode, 407
string concatenation, 166
string formatting operator (-f), 163, 165, 178,

188
String.Replace() calls, 181
StringBuilder class, 186
StringInfo class, 390
strings and unstructured text (see also struc‐

tured file handling)
combining strings into larger strings, 173
converting strings between formats, 180
converting strings to uppercase/lowercase,

175
converting text streams to objects, 181
creating multiline or formatted strings, 161
creating strings, 159
formatting dates for output, 178
generating large reports and text streams,

186
generating source code or repetitive text,

188
getting cryptographic hash of strings, 543
inserting dynamic information in strings,

163
internationalization and, 388
.NET string formatting, 875-878
overview of, 159
placing formatted information in strings,

165
placing special characters in strings, 162
preventing strings from including dynamic

information, 164
reference documentation, 802
removing leading/trailing spaces, 177
replacing text in strings, 169
searching files for text or patterns, 249
searching strings for text or patterns, 167
splitting strings on text or patterns, 171

strongly typed collections, 210
structured commands (see cmdlets)
structured file handling (see also strings and

unstructured text)
accessing information in XML files, 268
converting objects to XML, 272

944 | Index

importing and exporting structured data,
275

importing CSV and delimited data from
files, 278

managing JSON data streams, 280
modifying data in XML files, 273
overview of, 267
parsing and interpreting PowerShell scripts,

283
performing XPath queries against XML, 270
storing command outputs in CVS or delimi‐

ted files, 277
using Excel to manage command output,

281
subexpressions, 163
Subscriber.Action property, 790
sudo command, 524
-SupportEvent parameter, 786
Suspend-Service cmdlet, 653
switch statement, 149, 252, 823, 861
-SyncWindow parameter, 621
syntax highlighting, 237, 285
Sysinternals Process Monitor, 615
system actions, automating, 697
System attribute, 564
system date and time, 229
system help

adding help to scripts or functions, 325
custom-written help, 33
getting help on commands, 32
searching text of, 36
updating content, 34

system information, summarizing, 703
system management, batch-oriented, 740
system path

finding full path and filename, 457
finding location of common system paths,

458
modifying, 451

system restore points, 692
system services

configuring services, 654
listing all running services, 651
managing running services, 653
overview of, 651

System.AppDomain class, 886
System.Array class, 886
System.Collections.ArrayList class, 218, 222,

886

System.Collections.Generic.List collection, 211
System.Collections.Specialized.OrderedDic‐

tionary class, 886
System.ComponentModel.Description

attribute, 327
System.Console class, 885
System.Convert class, 885
System.Data.DataSet class, 891
System.Data.DataTable class, 891
System.Data.Odbc.OdbcCommand class, 891
System.Data.Odbc.OdbcConnection class, 891
System.Data.Odbc.OdbcDataAdapter class, 891
System.Data.SqlClient.SqlCommand class, 891
System.Data.SqlClient.SqlConnection class, 891
System.Data.SqlClient.SqlDataAdapter class,

891
System.DateTime class, 885
System.Diagnostics.Debug, 885
System.Diagnostics.EventLog, 886
System.Diagnostics.Process object (see Process

object)
[System.Diagnostics.Process]::Start() method,

645
System.Diagnostics.Stopwatch class, 886
System.DirectoryServices.DirectoryEntry class,

890
System.DirectoryServices.DirectorySearcher

class, 890
System.Drawing.Bitmap class, 888
System.Drawing.Image class, 888
System.Enum class, 886
System.Environment class, 885
System.Globalization.StringInfo class, 390
System.Guid class, 885
System.IO.BinaryReader class, 887
System.IO.BinaryWriter class, 887
System.IO.BufferedStream class, 887
System.IO.Compression.DeflateStream class,

887
System.IO.Compression.GZipStream class, 887
System.IO.Directory class, 887
System.IO.DirectoryInfo class, 887
System.IO.File class, 245
System.IO.FileInfo class, 887
System.IO.FileSystemWatcher class, 887
[System.IO.File]::ReadAllLines() method, 246
System.IO.MemoryStream class, 887
System.IO.Path class, 887
System.IO.Ports.SerialPort class, 889

Index | 945

System.IO.Stream class, 887
System.IO.StreamReader class, 887
System.IO.StreamWriter class, 887
System.IO.StringReader class, 887
System.IO.StringWriter class, 887
System.IO.TextReader class, 887
System.IO.TextWriter class, 887
System.Management.Automation SDK, 494
System.Management.Automation.PSObject

class, 885
System.Management.Automation.Transacted‐

String object, 775
System.Management.ManagementClass class,

890
System.Management.ManagementDateTime‐

Converter class, 890
System.Management.ManagementEvent‐

Watcher class, 890
System.Management.ManagementObject class,

890
System.Management.ManagementObject‐

Searcher class, 890
System.Math class, 195, 811, 885
System.Media.SoundPlayer class, 886
System.Messaging.MessageQueue class, 891
System.Net.Dns class, 889
System.Net.FtpWebRequest class, 889
System.Net.HttpWebRequest class, 350, 889
System.Net.Mail.MailAddress class, 889
System.Net.Mail.MailMessage class, 370, 889
System.Net.Mail.SmtpClient class, 372, 889
System.Net.NetworkCredential class, 889
System.Net.Sockets.TcpClient class, 889
System.Net.WebClient class, 348, 372, 889
System.Net.WebRequest class, 367
System.Numerics.Complex class, 198
System.Random class, 885
System.Reflection.Assembly class, 886
System.Runtime.InteropServices.Marshal class,

886
System.Security.AccessControl.CommonSecur‐

ityDescriptor class, 533
System.Security.AccessControl.FileSystemSe‐

curity class, 888
System.Security.AccessControl.RegistrySecurity

class, 888
System.Security.Cryptography.PasswordDerive‐

Bytes class, 888
System.Security.Cryptography.SHA1 class, 888

System.Security.Cryptography.TripleDESCryp‐
toServiceProvider class, 888

System.Security.Principal.WellKnownSidType
class, 888

System.Security.Principal.WindowsBuiltInRole
class, 888

System.Security.Principal.WindowsIdentity
class, 888

System.Security.Principal.WindowsPrincipal
class, 888

System.Security.SecureString class, 888
System.String class, 886
System.Text.RegularExpressions.Regex class,

885
System.Text.StringBuilder class, 886
System.Threading.Thread class, 886
System.Transactions.Transaction class, 891
System.Type class, 886
System.Uri class, 889
System.Web.HttpUtility class, 889
System.Windows.Forms.FlowLayoutPanel

class, 888
System.Windows.Forms.Form class, 888
System.Xml.XmlDocument objects, 270
System.Xml.XmlElement objects, 270
%SYSTEMROOT% environment variable, 465

T
tab expansion features, 42, 55, 859
TabExpansion2 function, 42, 55, 859
table view, 141
tables, displaying properties of items as tables,

104
tags, adding custom, 327
tangent, 195
target parameter, 451
taskbar pinning, 4
tasks

background, 13, 40, 770
data-intensive tasks, 88
finding commands to accomplish tasks, 30
managing scheduled, 696
providing progress updates, 386
scheduled, 40
task-specific endpoints, 534

TB constant (terabytes), 204
techniques and technologies

accessing .NET SDK libraries, 489
accessing Windows API functions, 474

946 | Index

accessing Windows performance counters,
472

adding inline C# to scripts, 487
adding PowerShell scripting to your own

programs, 494
automating programs using COM scripting

interfaces, 467
bridging technologies, xl
creating your own cmdlets, 491
defining or extending .NET classes, 484
extending PowerShell, 467
invoking simple Windows API calls, 481
querying SQL data sources, 469

technology (see techniques and technologies)
Telnet protocol, 372
-Template parameter, 182
temporarily elevated commands, 524
temporary files, 257
terabytes, TB constant for, 204
terminal console interfaces, 3
Terminal.Gui library, 400
terminating errors, 438, 442, 851
ternary operators, 822
Test-Connection cmdlet, 750
Test-FileCatalog cmdlet, 544-546
tests, unit tests, 409

(see also debugging)
text-based filtering, 56
text-based logfiles, 252
text-based shells, 78
themes, 4
third-party commands, 68
$this variable, 138, 140
threading, 402
-ThrottleLimit parameter, 694, 769
throttling, 694, 770
throw statement, 445
-Timeout parameter, 647
-TimeStampServer parameter, 511
TimeZoneInfo class, 235
.tmp file extension, 258
Tokenizer API, 50, 238, 283, 430
tokens, 797
ToLower() method, 175
-ToSession parameter, 765
ToString() method, 178
ToUpper() method, 175
-Trace parameter, 411
tracing and error management

analyzing script performance profile, 446
changing error recovery behavior in trans‐

actions, 777
configuring debug, verbose, and progress

output, 440
connecting to remote servers, 757
connection test failure, 752
copying and pasting examples from the

internet, 161
detailed trace-type output, 384
determining status of last command, 434
displaying errors in list format, 102
errors caused by formatting statements, 385
execution of scripts disabled, 501
handling warnings, errors, and terminating

errors, 442
insufficient permission, 500
investigating job errors, 15
lengthy file or path names, 578
managing error output of commands, 437
most-used common system paths, 459
non-existent directories, 663
output warnings, errors, and terminating

errors, 445
overview of, 433
reference documentation, 851
resolving errors, 439
terminating and nonterminating errors, 438
Tokenizer API, 285
tracing script execution, 411
viewing errors generated by commands, 435
viewing process owners, 648
Windows Registry, 499

transactions
changing error recovery behavior in, 777
overview of, 773
safely experimenting with, 775
support for, 599

transcripts
complimenting security monitoring, 507
protecting against information disclosure,

508
recording manually, 67

Transmission Control Protocol (TCP), 372
trap statement, 442
Trim() method, 177
true statements, 147
truncation, 194
trust boundary, 540

Index | 947

Trusted for Delegation, 761
TrustedHosts collection, 756
try/catch/finally statements, 442
.tsv (tab-separated value) files, 474
type conversion, 123
type conversion operator (-as), 816
type operator (-is), 821
type safety, 124
type shortcuts, 122, 658, 835
-TypeDefinition parameter, 484

U
-UFormat parameter, 178
unary -join operator, 174, 818
unary comma operator (,), 127, 212
unary operators, 146
unary split operator (-split), 171, 817
unauthorized users, 500

(see also security and script signing)
Unblock-File cmdlet, 510, 580
UNC (Uniform Naming Convention) paths,

running scripts from, 509, 601
Undo-Transaction cmdlet, 776
uninstalling applications, 691
-Unique switch, 216
unit tests, 409

(see also debugging)
Universal Resource Identifier (URI), 350, 370
Unix date format, 178
Unregister-ScheduledJob cmdlet, 696
Unrestricted execution policy, 502, 510
-Unsecure parameter, 682
unstructured text (see strings and unstructured

text)
updatable help, 35
Update-FormatData cmdlet, 141, 854
Update-Help cmdlet, 34
Update-TypeData cmdlet, 136
uppercase, converting strings to, 175, 390
Use-Culture script, 394
Use-Transaction cmdlet, 775
-UseBasicParsing parameter, 358
-UseDefaultCredential parameter, 367
User Access Control (UAC), 524
user accounts, Active Directory

changing passwords, 668
creating, 662
getting and listing properties of, 667
modifying properties of, 667

searching for, 666
user agent string, 356
user credentials

accessing user and machine certificates, 528
requesting securely, 521
storing securely on disk, 526

user input, customizing behavior, 24
user interaction

accessing features of Host UIs, 395
adding console-based UIs to scripts, 400
adding graphical user interface to scripts,

397
displaying menus to users, 381
displaying messages and output to users,

383
interact with MTA objects, 402
invoking script blocks with alternate culture

settings, 394
overview of, 379
providing progress updates, 386
reading keypresses of user input, 380
reading lines of user input, 379
supporting other languages in script output,

391
writing culture-aware scripts, 388

-UserAgent parameter, 356
usernames, requesting securely, 521
-UseTransaction parameter, 776
using statement, 122
$USING syntax, 155, 763
UTF-16 Unicode encoding, 248
utility tasks

converting time between zones, 235
generating random numbers or objects, 233
getting system date and time, 229
measuring duration of commands, 230
reading and writing from clipboards, 232
searching Windows Start menu, 236
showing colorized script content, 237

V
validation, 311, 314
value from pipeline by property name, 91
variable breakpoints, 416
variable substitution, 163
variables and objects

accepting script block parameters with local
variables, 318

accessing environment variables, 107

948 | Index

adding custom methods and properties to
objects, 130

adding custom methods and properties to
types, 136

assigning results of conditional statements
to variables, 149

comparing objects, xxxvii
comparing variables, 619, 621
controlling access and scope of variables,

112
converting objects to XML, 272
converting text streams to objects, 181
creating and initializing custom objects, 132
creating dynamic variables, 114
creating instances of .NET objects, 121
creating instances of generic objects, 124
creating variables that hold text, 159
deep integration of objects, xxxv
defining custom formatting for types, 141
displaying properties of items as lists, 102
displaying properties of items as tables, 104
generic objects, 211
getting detailed documentation about types

and objects, 128
interactively filtering lists of objects, 84
interactively viewing and exploring objects,

59
learning about types and objects, 126, 834
naming conventions, xxxvi
overview of, 101
passing variables to remote sessions, 763
preference variables, 11
preventing strings from including dynamic

information, 164
reference documentation, 800
retaining changes to environment variables,

110
storing information in variables, 106, 210
transporting objects during remoting, 742
using COM objects, 125
viewing and modifying environment vari‐

ables, 449
working with .NET objects, 117

VBScript, 468, 711, 726
-Verb parameter, 644
Verb-Noun pattern, xxxiv, 31, 288, 298, 911
verbatim argument marker (--%), 9
verbose mode, 440
-Verbose parameter, 310, 440

$verbosePreference variable, 441
-Version Latest parameter, 408
VersionInfo property, 572
vertical bar (|), pipeline character, 10, 77
views, 141
Visual Studio Code

connecting to remote computers, 551
debugging scripts, 549
inserting script snippets, 553
interacting through its object model, 552
overview of, 547
remote debugging, 425

W
-Wait parameter, 571, 694
Wait-Debugger cmdlet, 414, 416
Wait-Job cmdlet, 14
Wait-Process cmdlet, 647
WaitForExit() instance method, 119
warning messages, 442
-WarningAction parameter, 310
$warningPreference variable, 442
-WarningVariable parameter, 310
Watch-Command cmdlet, 16
wbemtest.exe utility, 711
web pages

downloading from the internet, 351
exporting command outputs as, 369
interacting with internet protocols, 372
interacting with REST-based web APIs, 363
monitoring website uptimes, 370
parsing and analyzing, 357
scripting web application sessions, 359

Web Services for Management (WSMAN), 733
web services, connecting to, 366
-WebSession parameter, 359
-Weekly parameter, 697
wevtutil.exe application, 632, 637
-WhatIf parameter, xxxvii, 322, 647, 654
WHERE clause, 714
where() method, 80
Where-Object cmdlet, xxxvii, 56, 57, 77-87,

358, 473, 562, 566, 625-633
while statement, 152, 826
whitespace, removing, 177
widening, 194
wildcards

in cmdlet parameters, xxxv, 33
in discovery commands, xxxviii

Index | 949

finding files that match a pattern, 565
searching for WMI or CIM classes to

accomplish tasks, 720
searching multiple files of specific exten‐

sions, 251
string searches using, 167

Win32_BaseBoard class, 893
Win32_BIOS class, 893
Win32_BootConfiguration class, 894
Win32_CacheMemory class, 894
Win32_CDROMDrive class, 894
Win32_Computer System class, 894
Win32_Computer SystemProduct class, 894
Win32_DCOMApplication class, 894
Win32_Desktop class, 894
Win32_DesktopMonitor class, 894
Win32_DeviceMemoryAddress class, 894
Win32_Directory class, 894
Win32_DiskDrive class, 894
Win32_DiskPartition class, 894
Win32_DiskQuota class, 894
Win32_DMAChannel class, 894
Win32_Environment class, 894
Win32_Group class, 895
Win32_IDEController class, 895
Win32_IRQResource class, 895
Win32_LoadOrderGroup class, 895
Win32_Logical Disk class, 895
Win32_LogonSession class, 895
Win32_NetworkAdapter class, 895
Win32_NetworkAdapterConfiguration class,

706-708, 895
WIN32_NetworkClient class, 895
Win32_NetworkConnection class, 895
Win32_NetworkLoginProfile class, 895
Win32_NetworkProtocol class, 895
Win32_NTDomain class, 895
Win32_NTEventLog File class, 633
Win32_NTEventlogFile class, 895
Win32_NTLogEvent class, 895
Win32_OnBoardDevice class, 895
Win32_OperatingSystem class, 896
Win32_OSRecoveryConfiguration class, 896
Win32_PageFileSetting class, 896
Win32_PageFileUsage class, 896
Win32_Perf* set of classes, 472
Win32_PerfFormattedData_Spooler_Print‐

Queue class, 701

Win32_PerfRaw_Data_PerfNet_Server class,
896

Win32_PhysicalMemoryArray class, 896
Win32_PortConnector class, 896
Win32_PortResource class, 896
Win32_Printer class, 896
Win32_Printer WMI class, 699, 702
Win32_PrinterConfiguration class, 700, 896
Win32_PrinterController class, 700
Win32_PrinterDriver class, 700
Win32_PrinterDriverDll class, 700
Win32_PrinterSetting class, 700
Win32_PrinterShare class, 700
Win32_PrintJob class, 896
Win32_Process class, 718, 746, 896
Win32_Process WMI class, 735
Win32_Processor class, 896
Win32_Product class, 896
Win32_Product WMI class, 691
Win32_QuickFixEngineering class, 897
Win32_QuotaSetting class, 897
Win32_Registry class, 897
Win32_Scheduled Job class, 897
Win32_SCSIController class, 897
Win32_Service class, 897
Win32_Share class, 897
Win32_SoftwareElement class, 897
Win32_SoftwareFeature class, 898
WIN32_SoundDeviceclass, 898
Win32_StartupCommand class, 898
Win32_SystemAccount class, 898
Win32_SystemDriver class, 898
Win32_SystemEnclosure class, 898
Win32_SystemSlot class, 898
Win32_TapeDrive class, 898
Win32_TCPIPPrinterPort class, 700
Win32_TemperatureProbe class, 898
Win32_TimeZone class, 898
Win32_UserAccount class, 898
Win32_VoltageProbe class, 898
Win32_VolumeQuotaSetting class, 898
Win32_WMISetting class, 898
Windows API

accessing functions from, 474
invoking simple Windows API calls, 481

Windows Data Protection API (DPAPI), 520
Windows Defender Application Control policy,

515
Windows Explorer, 38

950 | Index

Windows Firewall
enabling or disabling, 688
open or closing ports in, 688

Windows Management Instrumentation
(WMI)
accessing WMI data, 713
bridging technologies, xli
converting VBScript to PowerShell, 726
determining properties available to WMI

filters, 719
invoking methods on WMI instances or

classes, 718
modifying properties of WMI instances, 716
overview of, 711
reference documentation

class categories and subcategories, 893
most useful classes, 893-898
select events and their uses, 907-909

remote command execution, 735
searching for WMI classes to accomplish

tasks, 720
using .NET to perform advanced tasks, 725

Windows PowerShell (see PowerShell)
Windows Presentation Foundation (WPF)

framework, 400
Windows Registry (see Registry)
Windows Start menu, 236
Windows Terminal application, 3, 38, 856
-WindowStyle parameter, 40
WMI (see Windows Management Instrumenta‐

tion)
wmic.exe command-line tool, 711
[WmiClass] type shortcut, 714, 719
[WmiSearcher] type shortcut, 714
[Wmi] type shortcut, 714
workflow-specific statements, 832
-WorkGroupName parameter, 681
workgroups

CredSSP authentication, 762
enabling remoting to, 756
joining computers to, 681
renaming computers in, 683

-WorkingDirectory, 524
WorkingSet property, 104

WPF (Windows Presentation Foundation)
framework, 400

WQL statements, 714
wrapped commands, 340
Write-Debug cmdlet, 384, 440
Write-Error cmdlet, 445, 851
Write-EventLog cmdlet, 635
Write-Host cmdlet, 22, 384
Write-Output cmdlet, 296, 383
Write-Progress cmdlet, 386, 441
Write-Verbose cmdlet, 311, 384, 441
Write-Warning cmdlet, 445
Write-WinEvent cmdlet, 635
WriteDebug() method, 440
WriteProgress() method, 441
WriteVerbose() method, 441
WS-Management endpoint, 755
WScript.Shell COM object, 458
WSMAN (Web Services for Management), 733
WSManagement service, 735

X
xclip, 232
XML cast, 268
XML files

accessing information in, 268
converting objects to XML, 272
modifying data in XML files, 273
performing XPath queries against XML, 270
support for, xl, 810

XML navigation, 272
XML REST-based web APIs, 363
-xor operator, 145
XPath queries

performing against XML, 270
performing on event logs, 629
reference documentation, 871-873

Z
ZIP archives, 590
zone mapping, 600
Zone.Identifier alternate data stream, 580

Index | 951

About the Author
Lee Holmes is a security architect in Azure Security, an original developer on the
PowerShell team, and has been an authoritative source of information about Power‐
Shell since its earliest betas. His vast experience with both world-scale security and
operational management—and PowerShell itself—give him the background to inte‐
grate both the “how” and the “why” into discussions.

You can find him on Twitter (@Lee_Holmes), as well as his personal site.

Colophon
The animal on the cover of PowerShell Cookbook is an eastern box turtle (Terrapene
carolina carolina). This box turtle is native to North America, specifically northern
parts of the United States and Mexico. The male turtle averages about six inches long
and has red eyes; the female is a bit smaller and has yellow eyes. This turtle is omniv‐
orous as a youth but largely herbivorous as an adult. It has a domed shell that is
hinged on the bottom and which snaps tightly shut if the turtle is in danger. Box tur‐
tles usually stay within the area in which they were born, rarely leaving a 750-foot
radius. When mating, male turtles sometimes shove and push one another to win a
female’s attention. During copulation, it is possible for the male turtle to fall back‐
ward, be unable to right himself, and starve to death.

Although box turtles can live for more than 100 years, their habitats are seriously
threatened by land development and roads. Turtles need loose, moist soil in which to
lay eggs and burrow during their long hibernation season. Experts strongly discour‐
age taking turtles from their native habitats—not only will it disrupt the community’s
breeding opportunities, but turtles become extremely stressed outside of their known
habitats and may perish quickly.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

Color illustration by Karen Montgomery, based on a black and white engraving from
Dover’s Animals. The cover fonts are Gilroy Semibold and Guardian Sans. The text
font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

http://twitter.com/Lee_Holmes
https://www.leeholmes.com

There’s much more
where this came from.
Experience books, videos, live online
training courses, and more from O’Reilly
and our 200+ partners—all in one place.

Learn more at oreilly.com/online-learning

©
20

19
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Foreword
	Preface
	Who This Book Is For
	How This Book Is Organized
	Part I
	Part II
	Part III
	Part IV
	Part V

	What You Need to Use This Book
	Conventions Used in This Book
	Access This Book in Digital Format
	Using Code Examples

	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Tour
	A Guided Tour of PowerShell
	Introduction
	An Interactive Shell
	Structured Commands (Cmdlets)
	Deep Integration of Objects
	Administrators as First-Class Users
	Composable Commands
	Techniques to Protect You from Yourself
	Common Discovery Commands
	Ubiquitous Scripting
	Ad Hoc Development
	Bridging Technologies
	Namespace Navigation Through Providers
	Much, Much More

	Part II. Fundamentals
	Chapter 1. The PowerShell Interactive Shell
	1.0 Introduction
	1.1 Install PowerShell Core
	Problem
	Solution
	Discussion

	1.2 Run Programs, Scripts, and Existing Tools
	Problem
	Solution
	Discussion
	See Also

	1.3 Run a PowerShell Command
	Problem
	Solution
	Discussion
	See Also

	1.4 Resolve Errors Calling Native Executables
	Problem
	Solution
	Discussion
	See Also

	1.5 Supply Default Values for Parameters
	Problem
	Solution
	Discussion
	See Also

	1.6 Invoke a Long-Running or Background Command
	Problem
	Solution
	Discussion
	See Also

	1.7 Program: Monitor a Command for Changes
	See Also

	1.8 Notify Yourself of Job Completion
	Problem
	Solution
	Discussion
	See Also

	1.9 Customize Your Shell, Profile, and Prompt
	Problem
	Solution
	Discussion
	See Also

	1.10 Customize PowerShell’s User Input Behavior
	Problem
	Solution
	Discussion
	See Also

	1.11 Customize PowerShell’s Command Resolution Behavior
	Problem
	Solution
	Discussion

	1.12 Find a Command to Accomplish a Task
	Problem
	Solution
	Discussion
	See Also

	1.13 Get Help on a Command
	Problem
	Solution
	Discussion
	See Also

	1.14 Update System Help Content
	Problem
	Solution
	Discussion
	See Also

	1.15 Program: Search Help for Text
	See Also

	1.16 Launch PowerShell at a Specific Location
	Problem
	Solution
	Discussion

	1.17 Invoke a PowerShell Command or Script from Outside PowerShell
	Problem
	Solution
	Discussion
	See Also

	1.18 Understand and Customize PowerShell’s Tab Completion
	Problem
	Solution
	Discussion
	See Also

	1.19 Program: Learn Aliases for Common Commands
	See Also

	1.20 Program: Learn Aliases for Common Parameters
	Problem
	Solution
	Discussion
	See Also

	1.21 Access and Manage Your Console History
	Problem
	Solution
	Discussion
	See Also

	1.22 Program: Create Scripts from Your Session History
	See Also

	1.23 Invoke a Command from Your Session History
	Problem
	Solution
	Discussion
	See Also

	1.24 Program: Search Formatted Output for a Pattern
	See Also

	1.25 Interactively View and Process Command Output
	Problem
	Solution
	Discussion
	See Also

	1.26 Program: Interactively View and Explore Objects
	See Also

	1.27 Record a Transcript of Your Shell Session
	Problem
	Solution
	Discussion
	See Also

	1.28 Extend Your Shell with Additional Commands
	Problem
	Solution
	Discussion
	See Also

	1.29 Find and Install Additional PowerShell Scripts and Modules
	Problem
	Solution
	Discussion
	See Also

	1.30 Use Commands from Customized Shells
	Problem
	Solution
	Discussion
	See Also

	1.31 Save State Between Sessions
	Problem
	Solution
	Discussion
	See Also

	Chapter 2. Pipelines
	2.0 Introduction
	2.1 Chain Commands Based on Their Success or Error
	Problem
	Solution
	Discussion
	See Also

	2.2 Filter Items in a List or Command Output
	Problem
	Solution
	Discussion
	See Also

	2.3 Group and Pivot Data by Name
	Problem
	Solution
	Discussion
	See Also

	2.4 Interactively Filter Lists of Objects
	See Also

	2.5 Work with Each Item in a List or Command Output
	Problem
	Solution
	Discussion
	See Also

	2.6 Automate Data-Intensive Tasks
	Problem
	Solution
	Discussion
	See Also

	2.7 Intercept Stages of the Pipeline
	Problem
	Solution
	Discussion
	See Also

	2.8 Automatically Capture Pipeline Output
	Problem
	Solution
	Discussion
	See Also

	2.9 Capture and Redirect Binary Process Output
	Problem
	Solution
	Discussion
	See Also

	Chapter 3. Variables and Objects
	3.0 Introduction
	3.1 Display the Properties of an Item as a List
	Problem
	Solution
	Discussion

	3.2 Display the Properties of an Item as a Table
	Problem
	Solution
	Discussion
	See Also

	3.3 Store Information in Variables
	Problem
	Solution
	Discussion
	See Also

	3.4 Access Environment Variables
	Problem
	Solution
	Discussion
	See Also

	3.5 Program: Retain Changes to Environment Variables Set by a Batch File
	See Also

	3.6 Control Access and Scope of Variables and Other Items
	Problem
	Solution
	Discussion
	See Also

	3.7 Program: Create a Dynamic Variable
	3.8 Work with .NET Objects
	Problem
	Solution
	Discussion
	See Also

	3.9 Create an Instance of a .NET Object
	Problem
	Solution
	Discussion
	See Also

	3.10 Create Instances of Generic Objects
	3.11 Use a COM Object
	Problem
	Solution
	Discussion
	See Also

	3.12 Learn About Types and Objects
	Problem
	Solution
	Discussion
	See Also

	3.13 Get Detailed Documentation About Types and Objects
	Problem
	Solution
	Discussion
	See Also

	3.14 Add Custom Methods and Properties to Objects
	Problem
	Solution
	Discussion
	See Also

	3.15 Create and Initialize Custom Objects
	Problem
	Solution
	Discussion
	See Also

	3.16 Add Custom Methods and Properties to Types
	Problem
	Solution
	Discussion

	3.17 Define Custom Formatting for a Type
	Problem
	Solution
	Discussion

	Chapter 4. Looping and Flow Control
	4.0 Introduction
	4.1 Make Decisions with Comparison and Logical Operators
	Problem
	Solution
	Discussion
	See Also

	4.2 Adjust Script Flow Using Conditional Statements
	Problem
	Solution
	Discussion

	4.3 Manage Large Conditional Statements with Switches
	Problem
	Solution
	Discussion
	See Also

	4.4 Repeat Operations with Loops
	Problem
	Solution
	Discussion
	See Also

	4.5 Process Time-Consuming Action in Parallel
	Problem
	Solution
	Discussion
	See Also

	4.6 Add a Pause or Delay
	Problem
	Solution
	Discussion
	See Also

	Chapter 5. Strings and Unstructured Text
	5.0 Introduction
	5.1 Create a String
	Problem
	Solution
	Discussion
	See Also

	5.2 Create a Multiline or Formatted String
	Problem
	Solution
	Discussion

	5.3 Place Special Characters in a String
	Problem
	Solution
	Discussion
	See Also

	5.4 Insert Dynamic Information in a String
	Problem
	Solution
	Discussion
	See Also

	5.5 Prevent a String from Including Dynamic Information
	Problem
	Solution
	Discussion
	See Also

	5.6 Place Formatted Information in a String
	Problem
	Solution
	Discussion
	See Also

	5.7 Search a String for Text or a Pattern
	Problem
	Solution
	Discussion
	See Also

	5.8 Replace Text in a String
	Problem
	Solution
	Discussion
	See Also

	5.9 Split a String on Text or a Pattern
	Problem
	Solution
	Discussion
	See Also

	5.10 Combine Strings into a Larger String
	Problem
	Solution
	Discussion
	See Also

	5.11 Convert a String to Uppercase or Lowercase
	Problem
	Solution
	Discussion
	See Also

	5.12 Trim a String
	Problem
	Solution
	Discussion
	See Also

	5.13 Format a Date for Output
	Problem
	Solution
	Discussion
	See Also

	5.14 Convert a String Between One Format and Another
	Problem
	Solution
	Discussion
	See Also

	5.15 Convert Text Streams to Objects
	Problem
	Solution
	Discussion
	See Also

	5.16 Generate Large Reports and Text Streams
	Problem
	Solution
	Discussion

	5.17 Generate Source Code and Other Repetitive Text
	Problem
	Solution
	Discussion

	Chapter 6. Calculations and Math
	6.0 Introduction
	6.1 Perform Simple Arithmetic
	Problem
	Solution
	Discussion
	See Also

	6.2 Perform Complex Arithmetic
	Problem
	Solution
	Discussion
	See Also

	6.3 Measure Statistical Properties of a List
	Problem
	Solution
	Discussion

	6.4 Work with Numbers as Binary
	Problem
	Solution
	Discussion
	See Also

	6.5 Simplify Math with Administrative Constants
	Problem
	Solution
	Discussion
	See Also

	6.6 Convert Numbers Between Bases
	Problem
	Solution
	Discussion
	See Also

	Chapter 7. Lists, Arrays, and Hashtables
	7.0 Introduction
	7.1 Create an Array or List of Items
	Problem
	Solution
	Discussion
	See Also

	7.2 Create a Jagged or Multidimensional Array
	Problem
	Solution
	Discussion
	See Also

	7.3 Access Elements of an Array
	Problem
	Solution
	Discussion
	See Also

	7.4 Visit Each Element of an Array
	Problem
	Solution
	Discussion
	See Also

	7.5 Sort an Array or List of Items
	Problem
	Solution
	Discussion

	7.6 Determine Whether an Array Contains an Item
	Problem
	Solution
	Discussion
	See Also

	7.7 Combine Two Arrays
	Problem
	Solution
	Discussion
	See Also

	7.8 Find Items in an Array That Match a Value
	Problem
	Solution
	Discussion
	See Also

	7.9 Compare Two Lists
	Problem
	Solution
	Discussion
	See Also

	7.10 Remove Elements from an Array
	Problem
	Solution
	Discussion
	See Also

	7.11 Find Items in an Array Greater or Less Than a Value
	Problem
	Solution
	Discussion
	See Also

	7.12 Use the ArrayList Class for Advanced Array Tasks
	Problem
	Solution
	Discussion
	See Also

	7.13 Create a Hashtable or Associative Array
	Problem
	Solution
	Discussion
	See Also

	7.14 Sort a Hashtable by Key or Value
	Problem
	Solution
	Discussion
	See Also

	Chapter 8. Utility Tasks
	8.0 Introduction
	8.1 Get the System Date and Time
	Problem
	Solution
	Discussion
	See Also

	8.2 Measure the Duration of a Command
	Problem
	Solution
	Discussion
	See Also

	8.3 Read and Write from the Clipboard
	Problem
	Solution
	Discussion
	See Also

	8.4 Generate a Random Number or Object
	Problem
	Solution
	Discussion
	See Also

	8.5 Convert Time Between Time Zones
	Problem
	Solution
	Discussion
	See Also

	8.6 Program: Search the Windows Start Menu
	See Also

	8.7 Program: Show Colorized Script Content
	Discussion
	See Also

	Part III. Common Tasks
	Chapter 9. Simple Files
	9.0 Introduction
	9.1 Get the Content of a File
	Problem
	Solution
	Discussion
	See Also

	9.2 Store the Output of a Command into a File
	Problem
	Solution
	Discussion
	See Also

	9.3 Add Information to the End of a File
	Problem
	Solution
	Discussion
	See Also

	9.4 Search a File for Text or a Pattern
	Problem
	Solution
	Discussion
	See Also

	9.5 Parse and Manage Text-Based Logfiles
	Problem
	Solution
	Discussion
	See Also

	9.6 Parse and Manage Binary Files
	Problem
	Solution
	Discussion
	See Also

	9.7 Create and Manage Temporary Files
	Problem
	Solution
	Discussion
	See Also

	9.8 Search and Replace Text in a File
	Problem
	Solution
	Discussion
	See Also

	9.9 Program: Get the Encoding of a File
	See Also

	9.10 View the Hexadecimal Representation of Content
	Problem
	Solution
	Discussion
	See Also

	Chapter 10. Structured Files
	10.0 Introduction
	10.1 Access Information in an XML File
	Problem
	Solution
	Discussion
	See Also

	10.2 Perform an XPath Query Against XML
	Problem
	Solution
	Discussion
	See Also

	10.3 Convert Objects to XML
	Problem
	Solution
	Discussion
	See Also

	10.4 Modify Data in an XML File
	Problem
	Solution
	Discussion

	10.5 Easily Import and Export Your Structured Data
	Problem
	Solution
	Discussion

	10.6 Store the Output of a Command in a CSV or
Delimited File
	Problem
	Solution
	Discussion
	See Also

	10.7 Import CSV and Delimited Data from a File
	Problem
	Solution
	Discussion
	See Also

	10.8 Manage JSON Data Streams
	Problem
	Solution
	Discussion
	See Also

	10.9 Use Excel to Manage Command Output
	Problem
	Solution
	Discussion
	See Also

	10.10 Parse and Interpret PowerShell Scripts
	Problem
	Solution
	Discussion
	See Also

	Chapter 11. Code Reuse
	11.0 Introduction
	11.1 Write a Script
	Problem
	Solution
	Discussion
	See Also

	11.2 Write a Function
	Problem
	Solution
	Discussion
	See Also

	11.3 Find a Verb Appropriate for a Command Name
	Problem
	Solution
	Discussion
	See Also

	11.4 Write a Script Block
	Problem
	Solution
	Discussion
	See Also

	11.5 Return Data from a Script, Function, or Script Block
	Problem
	Solution
	Discussion
	See Also

	11.6 Package Common Commands in a Module
	Problem
	Solution
	Discussion
	See Also

	11.7 Write Commands That Maintain State
	Problem
	Solution
	Discussion
	See Also

	11.8 Selectively Export Commands from a Module
	Problem
	Solution
	Discussion
	See Also

	11.9 Diagnose and Interact with Internal Module State
	Problem
	Solution
	Discussion
	See Also

	11.10 Handle Cleanup Tasks When a Module Is Removed
	Problem
	Solution
	Discussion
	See Also

	11.11 Access Arguments of a Script, Function, or Script Block
	Problem
	Solution
	Discussion
	See Also

	11.12 Add Validation to Parameters
	Problem
	Solution
	Discussion
	See Also

	11.13 Accept Script Block Parameters with Local Variables
	Problem
	Solution
	Discussion
	See Also

	11.14 Dynamically Compose Command Parameters
	Problem
	Solution
	Discussion
	See Also

	11.15 Provide -WhatIf, -Confirm, and Other Cmdlet Features
	Problem
	Solution
	Discussion
	See Also

	11.16 Add Help to Scripts or Functions
	Problem
	Solution
	Discussion
	See Also

	11.17 Add Custom Tags to a Function or Script Block
	Problem
	Solution
	Discussion
	See Also

	11.18 Access a Script’s Pipeline Input
	Problem
	Solution
	Discussion
	See Also

	11.19 Write Pipeline-Oriented Scripts with Cmdlet Keywords
	Problem
	Solution
	Discussion
	See Also

	11.20 Write a Pipeline-Oriented Function
	Problem
	Solution
	Discussion
	See Also

	11.21 Organize Scripts for Improved Readability
	Problem
	Solution
	Discussion
	See Also

	11.22 Invoke Dynamically Named Commands
	Problem
	Solution
	Discussion
	See Also

	11.23 Program: Enhance or Extend an Existing Cmdlet
	See Also

	Chapter 12. Internet-Enabled Scripts
	12.0 Introduction
	12.1 Download a File from an FTP or Internet Site
	Problem
	Solution
	Discussion
	See Also

	12.2 Upload a File to an FTP Site
	Problem
	Solution
	Discussion
	See Also

	12.3 Program: Resolve the Destination of an Internet Redirect
	See Also

	12.4 Download a Web Page from the Internet
	Problem
	Solution
	Discussion
	See Also

	12.5 Parse and Analyze a Web Page from the Internet
	Problem
	Solution
	Discussion
	See Also

	12.6 Script a Web Application Session
	Problem
	Solution
	Discussion
	See Also

	12.7 Interact with REST-Based Web APIs
	Problem
	Solution
	Discussion
	See Also

	12.8 Connect to a Web Service
	Problem
	Solution
	Discussion
	See Also

	12.9 Interact with and Manage Remote SSL Certificates
	Problem
	Solution
	Discussion
	See Also

	12.10 Export Command Output as a Web Page
	Problem
	Solution
	Discussion

	12.11 Send an Email
	Problem
	Solution
	Discussion

	12.12 Program: Monitor Website Uptimes
	See Also

	12.13 Program: Interact with Internet Protocols
	See Also

	Chapter 13. User Interaction
	13.0 Introduction
	13.1 Read a Line of User Input
	Problem
	Solution
	Discussion
	See Also

	13.2 Read a Key of User Input
	Problem
	Solution
	Discussion

	13.3 Program: Display a Menu to the User
	See Also

	13.4 Display Messages and Output to the User
	Problem
	Solution
	Discussion
	See Also

	13.5 Provide Progress Updates on Long-Running Tasks
	Problem
	Solution
	Discussion

	13.6 Write Culture-Aware Scripts
	Problem
	Solution
	Discussion
	See Also

	13.7 Support Other Languages in Script Output
	Problem
	Solution
	Discussion
	See Also

	13.8 Program: Invoke a Script Block with Alternate Culture Settings
	See Also

	13.9 Access Features of the Host’s UI
	Problem
	Solution
	Discussion

	13.10 Add a Graphical User Interface to Your Script
	Problem
	Solution
	Discussion
	See Also

	13.11 Program: Add a Console UI to Your Script
	See Also

	13.12 Interact with MTA Objects
	Problem
	Solution
	Discussion
	See Also

	Chapter 14. Debugging
	14.0 Introduction
	14.1 Prevent Common Scripting Errors
	Problem
	Solution
	Discussion
	See Also

	14.2 Write Unit Tests for your Scripts
	Problem
	Solution
	Discussion
	See Also

	14.3 Trace Script Execution
	Problem
	Solution
	Discussion
	See Also

	14.4 Set a Script Breakpoint
	Problem
	Solution
	Discussion
	See Also

	14.5 Debug a Script When It Encounters an Error
	Problem
	Solution
	Discussion
	See Also

	14.6 Create a Conditional Breakpoint
	Problem
	Solution
	Discussion
	See Also

	14.7 Investigate System State While Debugging
	Problem
	Solution
	Discussion
	See Also

	14.8 Debug a Script on a Remote Machine
	Problem
	Solution
	Discussion
	See Also

	14.9 Program: Watch an Expression for Changes
	See Also

	14.10 Debug a Script in Another Process
	Problem
	Solution
	Discussion
	See Also

	14.11 Program: Get Script Code Coverage
	See Also

	Chapter 15. Tracing and Error Management
	15.0 Introduction
	15.1 Determine the Status of the Last Command
	Problem
	Solution
	Discussion
	See Also

	15.2 View the Errors Generated by a Command
	Problem
	Solution
	Discussion
	See Also

	15.3 Manage the Error Output of Commands
	Problem
	Solution
	Discussion
	See Also

	15.4 Program: Resolve an Error
	See Also

	15.5 Configure Debug, Verbose, and Progress Output
	Problem
	Solution
	Discussion
	See Also

	15.6 Handle Warnings, Errors, and Terminating Errors
	Problem
	Solution
	Discussion
	See Also

	15.7 Output Warnings, Errors, and Terminating Errors
	Problem
	Solution
	Discussion
	See Also

	15.8 Analyze a Script’s Performance Profile
	Problem
	Solution
	Discussion
	See Also

	Chapter 16. Environmental Awareness
	16.0 Introduction
	16.1 View and Modify Environment Variables
	Problem
	Solution
	Discussion
	See Also

	16.2 Modify the User or System Path
	Problem
	Solution
	Discussion
	See Also

	16.3 Access Information About Your Command’s Invocation
	Problem
	Solution
	Discussion

	16.4 Program: Investigate the InvocationInfo Variable
	See Also

	16.5 Find Your Script’s Name
	Problem
	Solution
	Discussion
	See Also

	16.6 Find Your Script’s Location
	Problem
	Solution
	Discussion
	See Also

	16.7 Find the Location of Common System Paths
	Problem
	Solution
	Discussion
	See Also

	16.8 Get the Current Location
	Problem
	Solution
	Discussion
	See Also

	16.9 Safely Build File Paths Out of Their Components
	Problem
	Solution
	Discussion

	16.10 Interact with PowerShell’s Global Environment
	Problem
	Solution
	Discussion
	See Also

	16.11 Determine PowerShell Version Information
	Problem
	Solution
	Discussion

	16.12 Test for Administrative Privileges
	Problem
	Solution
	Discussion
	See Also

	Chapter 17. Extend the Reach of PowerShell
	17.0 Introduction
	17.1 Automate Programs Using COM Scripting Interfaces
	Problem
	Solution
	Discussion
	See Also

	17.2 Program: Query a SQL Data Source
	See Also

	17.3 Access Windows Performance Counters
	Problem
	Solution
	Discussion

	17.4 Access Windows API Functions
	Problem
	Solution
	Discussion
	See Also

	17.5 Program: Invoke Simple Windows API Calls
	See Also

	17.6 Define or Extend a .NET Class
	Problem
	Solution
	Discussion
	See Also

	17.7 Add Inline C# to Your PowerShell Script
	Problem
	Solution
	Discussion
	See Also

	17.8 Access a .NET SDK Library
	Problem
	Solution
	Discussion
	See Also

	17.9 Create Your Own PowerShell Cmdlet
	Problem
	Solution
	Discussion
	See Also

	17.10 Add PowerShell Scripting to Your Own Program
	Problem
	Solution
	Discussion
	See Also

	Chapter 18. Security and Script Signing
	18.0 Introduction
	Defending Against PowerShell Attacks

	18.1 Enable Scripting Through an Execution Policy
	Problem
	Solution
	Discussion
	See Also

	18.2 Enable PowerShell Security Logging
	Problem
	Solution
	Discussion
	Protecting Against Information Disclosure
	See Also

	18.3 Disable Warnings for UNC Paths
	Problem
	Solution
	Discussion
	See Also

	18.4 Sign a PowerShell Script, Module, or Formatting File
	Problem
	Solution
	Discussion
	See Also

	18.5 Create a Self-Signed Certificate
	Problem
	Solution
	Discussion
	See Also

	18.6 Manage PowerShell Security in an Enterprise
	Problem
	Solution
	Discussion
	See Also

	18.7 Block Scripts by Publisher, Path, or Hash
	Problem
	Solution
	Discussion
	See Also

	18.8 Verify the Digital Signature of a PowerShell Script
	Problem
	Solution
	Discussion

	18.9 Securely Handle Sensitive Information
	Problem
	Solution
	Discussion
	See Also

	18.10 Securely Request Usernames and Passwords
	Problem
	Solution
	Discussion
	See Also

	18.11 Start a Process as Another User
	Problem
	Solution
	Discussion
	See Also

	18.12 Program: Run a Temporarily Elevated Command
	See Also

	18.13 Securely Store Credentials on Disk
	Problem
	Solution
	Discussion
	See Also

	18.14 Access User and Machine Certificates
	Problem
	Solution
	Discussion
	See Also

	18.15 Program: Search the Certificate Store
	See Also

	18.16 Add and Remove Certificates
	Problem
	Solution
	Discussion
	See Also

	18.17 Manage Security Descriptors in SDDL Form
	Problem
	Solution
	Discussion
	See Also

	18.18 Create a Task-Specific Remoting Endpoint
	Problem
	Solution
	Discussion
	See Also

	18.19 Limit Interactive Use of PowerShell
	Problem
	Solution
	Discussion
	See Also

	18.20 Detect and Prevent Code Injection Vulnerabilities
	Problem
	Solution
	Discussion
	See Also

	18.21 Get the Cryptographic Hash of a File
	Problem
	Solution
	Discussion
	See Also

	18.22 Capture and Validate Integrity of File Sets
	Problem
	Solution
	Discussion
	See Also

	Chapter 19. Visual Studio Code
	19.0 Introduction
	19.1 Debug a Script
	Problem
	Solution
	Discussion
	See Also

	19.2 Connect to a Remote Computer
	Problem
	Solution
	Discussion
	See Also

	19.3 Interact with Visual Studio Code Through Its Object Model
	Problem
	Solution
	Discussion
	See Also

	19.4 Quickly Insert Script Snippets
	Problem
	Solution
	Discussion

	Part IV. Administrator Tasks
	Chapter 20. Files and Directories
	20.0 Introduction
	20.1 Determine and Change the Current Location
	Problem
	Solution
	Discussion
	See Also

	20.2 Get the Files in a Directory
	Problem
	Solution
	Discussion
	See Also

	20.3 Find All Files Modified Before a Certain Date
	Problem
	Solution
	Discussion
	See Also

	20.4 Clear the Content of a File
	Problem
	Solution
	Discussion
	See Also

	20.5 Manage and Change the Attributes of a File
	Problem
	Solution
	Discussion
	See Also

	20.6 Find Files That Match a Pattern
	Problem
	Solution
	Discussion
	See Also

	20.7 Manage Files That Include Special Characters
	Problem
	Solution
	Discussion

	20.8 Program: Get Disk Usage Information
	See Also

	20.9 Monitor a File for Changes
	Problem
	Solution
	Discussion

	20.10 Get the Version of a DLL or Executable
	Problem
	Solution
	Discussion
	See Also

	20.11 Create a Directory
	Problem
	Solution
	Discussion

	20.12 Remove a File or Directory
	Problem
	Solution
	Discussion
	See Also

	20.13 Rename a File or Directory
	Problem
	Solution
	Discussion
	See Also

	20.14 Move a File or Directory
	Problem
	Solution
	Discussion
	See Also

	20.15 Create and Map PowerShell Drives
	Problem
	Solution
	Discussion

	20.16 Access Long File and Directory Names
	Problem
	Solution
	Discussion
	See Also

	20.17 Unblock a File
	Problem
	Solution
	Discussion
	See Also

	20.18 Interact with Alternate Data Streams
	Problem
	Solution
	Discussion
	See Also

	20.19 Program: Move or Remove a Locked File
	See Also

	20.20 Get the ACL of a File or Directory
	Problem
	Solution
	Discussion
	See Also

	20.21 Set the ACL of a File or Directory
	Problem
	Solution
	Discussion
	See Also

	20.22 Program: Add Extended File Properties to Files
	See Also

	20.23 Manage ZIP Archives
	Problem
	Solution
	Discussion
	See Also

	Chapter 21. The Windows Registry
	21.0 Introduction
	21.1 Navigate the Registry
	Problem
	Solution
	Discussion
	See Also

	21.2 View a Registry Key
	Problem
	Solution
	Discussion

	21.3 Modify or Remove a Registry Key Value
	Problem
	Solution
	Discussion

	21.4 Create a Registry Key Value
	Problem
	Solution
	Discussion

	21.5 Remove a Registry Key
	Problem
	Solution
	Discussion
	See Also

	21.6 Safely Combine Related Registry Modifications
	Problem
	Solution
	Discussion
	See Also

	21.7 Add a Site to an Internet Explorer Security Zone
	Problem
	Solution
	Discussion
	See Also

	21.8 Modify Internet Explorer Settings
	Problem
	Solution
	Discussion
	See Also

	21.9 Program: Search the Windows Registry
	See Also

	21.10 Get the ACL of a Registry Key
	Problem
	Solution
	Discussion
	See Also

	21.11 Set the ACL of a Registry Key
	Problem
	Solution
	Discussion
	See Also

	21.12 Work with the Registry of a Remote Computer
	Problem
	Solution
	Discussion
	See Also

	21.13 Program: Get Registry Items from Remote Machines
	See Also

	21.14 Program: Get Properties of Remote Registry Keys
	See Also

	21.15 Program: Set Properties of Remote Registry Keys
	See Also

	21.16 Discover Registry Settings for Programs
	Problem
	Solution
	Discussion
	See Also

	Chapter 22. Comparing Data
	22.0 Introduction
	22.1 Compare the Output of Two Commands
	Problem
	Solution
	Discussion

	22.2 Determine the Differences Between Two Files
	Problem
	Solution
	Discussion

	Chapter 23. Event Logs
	23.0 Introduction
	23.1 List All Event Logs
	Problem
	Solution
	Discussion
	See Also

	23.2 Get the Oldest Entries from an Event Log
	Problem
	Solution
	Discussion
	See Also

	23.3 Find Event Log Entries with Specific Text
	Problem
	Solution
	Discussion
	See Also

	23.4 Retrieve and Filter Event
Log Entries
	Problem
	Solution
	Discussion
	See Also

	23.5 Find Event Log Entries by Their Frequency
	Problem
	Solution
	Discussion
	See Also

	23.6 Back Up an Event Log
	Problem
	Solution
	Discussion

	23.7 Create or Remove an Event Log
	Problem
	Solution
	Discussion
	See Also

	23.8 Write to an Event Log
	Problem
	Solution
	Discussion
	See Also

	23.9 Run a PowerShell Script for Windows Event Log Entries
	Problem
	Solution
	Discussion
	See Also

	23.10 Clear or Maintain an Event Log
	Problem
	Solution
	Discussion
	See Also

	23.11 Access Event Logs of a Remote Machine
	Problem
	Solution
	Discussion
	See Also

	Chapter 24. Processes
	24.0 Introduction
	24.1 List Currently Running Processes
	Problem
	Solution
	Discussion
	See Also

	24.2 Launch the Application Associated with a Document
	Problem
	Solution
	Discussion
	See Also

	24.3 Launch a Process
	Problem
	Solution
	Discussion
	See Also

	24.4 Stop a Process
	Problem
	Solution
	Discussion

	24.5 Get the Owner of a Process
	Problem
	Solution
	Discussion
	See Also

	24.6 Get the Parent Process of a Process
	Problem
	Solution
	Discussion
	See Also

	24.7 Debug a Process
	Problem
	Solution
	Discussion
	See Also

	Chapter 25. System Services
	25.0 Introduction
	25.1 List All Running Services
	Problem
	Solution
	Discussion
	See Also

	25.2 Manage a Running Service
	Problem
	Solution
	Discussion
	See Also

	25.3 Configure a Service
	Problem
	Solution
	Discussion
	See Also

	Chapter 26. Active Directory
	26.0 Introduction
	26.1 Test Active Directory Scripts on a Local Installation
	Problem
	Solution
	Discussion
	See Also

	26.2 Create an Organizational Unit
	Problem
	Solution
	Discussion
	See Also

	26.3 Get the Properties of an Organizational Unit
	Problem
	Solution
	Discussion

	26.4 Modify Properties of an Organizational Unit
	Problem
	Solution
	Discussion

	26.5 Delete an Organizational Unit
	Problem
	Solution
	Discussion

	26.6 Get the Children of an Active Directory Container
	Problem
	Solution
	Discussion
	See Also

	26.7 Create a User Account
	Problem
	Solution
	Discussion
	See Also

	26.8 Program: Import Users in Bulk to Active Directory
	See Also

	26.9 Search for a User Account
	Problem
	Solution
	Discussion

	26.10 Get and List the Properties of a User Account
	Problem
	Solution
	Discussion

	26.11 Modify Properties of a User Account
	Problem
	Solution
	Discussion

	26.12 Change a User Password
	Problem
	Solution
	Discussion
	See Also

	26.13 Create a Security or Distribution Group
	Problem
	Solution
	Discussion
	See Also

	26.14 Search for a Security or Distribution Group
	Problem
	Solution
	Discussion

	26.15 Get the Properties of a Group
	Problem
	Solution
	Discussion

	26.16 Find the Owner of a Group
	Problem
	Solution
	Discussion

	26.17 Modify Properties of a Security or Distribution Group
	Problem
	Solution
	Discussion

	26.18 Add a User to a Security or Distribution Group
	Problem
	Solution
	Discussion
	See Also

	26.19 Remove a User from a Security or Distribution Group
	Problem
	Solution
	Discussion
	See Also

	26.20 List a User’s Group Membership
	Problem
	Solution
	Discussion
	See Also

	26.21 List the Members of a Group
	Problem
	Solution
	Discussion
	See Also

	26.22 List the Users in an Organizational Unit
	Problem
	Solution
	Discussion
	See Also

	26.23 Search for a Computer Account
	Problem
	Solution
	Discussion

	26.24 Get and List the Properties of a Computer Account
	Problem
	Solution
	Discussion

	Chapter 27. Enterprise Computer Management
	27.0 Introduction
	27.1 Join a Computer to a Domain or Workgroup
	Problem
	Solution
	Discussion
	See Also

	27.2 Remove a Computer from a Domain
	Problem
	Solution
	Discussion
	See Also

	27.3 Rename a Computer
	Problem
	Solution
	Discussion

	27.4 Program: List Logon or Logoff Scripts for a User
	See Also

	27.5 Program: List Startup or Shutdown Scripts for a Machine
	See Also

	27.6 Deploy PowerShell-Based Logon Scripts
	Problem
	Solution
	Discussion
	See Also

	27.7 Enable or Disable the Windows Firewall
	Problem
	Solution
	Discussion
	See Also

	27.8 Open or Close Ports in the Windows Firewall
	Problem
	Solution
	Discussion
	See Also

	27.9 Program: List All Installed Software
	See Also

	27.10 Uninstall an Application
	Problem
	Solution
	Discussion
	See Also

	27.11 Manage Computer Restore Points
	Problem
	Solution
	Discussion

	27.12 Reboot or Shut Down a Computer
	Problem
	Solution
	Discussion
	See Also

	27.13 Determine Whether a Hotfix Is Installed
	Problem
	Solution
	Discussion

	27.14 Manage Scheduled Tasks on a Computer
	Problem
	Solution
	Discussion
	See Also

	27.15 Retrieve Printer Information
	Problem
	Solution
	Discussion
	See Also

	27.16 Retrieve Printer Queue Statistics
	Problem
	Solution
	Discussion
	See Also

	27.17 Manage Printers and Print Queues
	Problem
	Solution
	Discussion
	See Also

	27.18 Program: Summarize System Information
	See Also

	27.19 Renew a DHCP Lease
	Problem
	Solution
	Discussion
	See Also

	27.20 Assign a Static IP Address
	Problem
	Solution
	Discussion
	See Also

	27.21 List All IP Addresses for a Computer
	Problem
	Solution
	Discussion
	See Also

	27.22 List Network Adapter Properties
	Problem
	Solution
	Discussion
	See Also

	Chapter 28. CIM and Windows Management Instrumentation
	28.0 Introduction
	The Shift to CIM

	28.1 Access Windows Management Instrumentation and CIM Data
	Problem
	Solution
	Discussion
	See Also

	28.2 Modify the Properties of a WMI or CIM Instance
	Problem
	Solution
	Discussion
	See Also

	28.3 Invoke a Method on a WMI Instance or Class
	Problem
	Solution
	Discussion
	See Also

	28.4 Program: Determine Properties Available to WMI and CIM Filters
	See Also

	28.5 Search for the WMI or CIM Class to Accomplish a Task
	Problem
	Solution
	Discussion
	See Also

	28.6 Use .NET to Perform Advanced WMI Tasks
	Problem
	Solution
	Discussion
	See Also

	28.7 Convert a VBScript WMI Script to PowerShell
	Problem
	Solution
	Discussion
	See Also

	Chapter 29. Remoting
	29.0 Introduction
	29.1 Find Commands That Support Their Own Remoting
	Problem
	Solution
	Discussion
	See Also

	29.2 Enable PowerShell Remoting on a Computer
	Problem
	Solution
	Discussion
	See Also

	29.3 Enable SSH as a PowerShell Remoting Transport
	Problem
	Solution
	Discussion
	See Also

	29.4 Interactively Manage a Remote Computer
	Problem
	Solution
	Discussion
	See Also

	29.5 Invoke a Command on a Remote Computer
	Problem
	Solution
	Discussion
	See Also

	29.6 Disconnect and Reconnect PowerShell Sessions
	Problem
	Solution
	Discussion
	See Also

	29.7 Program: Remotely Enable PowerShell Remoting
	See Also

	29.8 Program: Invoke a PowerShell Expression on a Remote Machine
	See Also

	29.9 Test Connectivity Between Two Computers
	Problem
	Solution
	Discussion
	See Also

	29.10 Limit Networking Scripts to Hosts That Respond
	Problem
	Solution
	Discussion
	See Also

	29.11 Enable Remote Desktop on a Computer
	Problem
	Solution
	Discussion
	See Also

	29.12 Configure User Permissions for Remoting
	Problem
	Solution
	Discussion
	See Also

	29.13 Enable Remoting to Workgroup Computers
	Problem
	Solution
	Discussion

	29.14 Implicitly Invoke Commands from a Remote Computer
	Problem
	Solution
	Discussion
	See Also

	29.15 Create Sessions with Full Network Access
	Problem
	Solution
	Discussion
	See Also

	29.16 Pass Variables to Remote Sessions
	Problem
	Solution
	Discussion
	See Also

	29.17 Manage and Edit Files on Remote Machines
	Problem
	Solution
	Discussion
	See Also

	29.18 Configure Advanced Remoting Quotas and Options
	Problem
	Solution
	Discussion
	See Also

	29.19 Invoke a Command on Many Computers
	Problem
	Solution
	Discussion
	See Also

	29.20 Run a Local Script on a Remote Computer
	Problem
	Solution
	Discussion
	See Also

	29.21 Determine Whether a Script Is Running on a Remote Computer
	Problem
	Solution
	Discussion
	See Also

	Chapter 30. Transactions
	30.0 Introduction
	30.1 Safely Experiment with Transactions
	Problem
	Solution
	Discussion
	See Also

	30.2 Change Error Recovery Behavior in Transactions
	Problem
	Solution
	Discussion
	See Also

	Chapter 31. Event Handling
	31.0 Introduction
	31.1 Respond to Automatically Generated Events
	Problem
	Solution
	Discussion
	See Also

	31.2 Create and Respond to Custom Events
	Problem
	Solution
	Discussion
	See Also

	31.3 Create a Temporary Event Subscription
	Problem
	Solution
	Discussion
	See Also

	31.4 Forward Events from a Remote Computer
	Problem
	Solution
	Discussion
	See Also

	31.5 Investigate Internal Event Action State
	Problem
	Solution
	Discussion
	See Also

	31.6 Use a Script Block as a .NET Delegate or Event Handler
	Problem
	Solution
	Discussion
	See Also

	Part V. References
	Appendix A. PowerShell Language and Environment
	Commands and Expressions
	Comments
	Help Comments
	Variables
	Booleans
	Strings
	Literal and Expanding Strings
	Here Strings
	Escape Sequences

	Numbers
	Simple Assignment
	Administrative Numeric Constants
	Hexadecimal and Other Number Bases
	Large Numbers
	Imaginary and Complex Numbers

	Arrays and Lists
	Array Definitions
	Array Access
	Array Slicing

	Hashtables (Associative Arrays)
	Hashtable Definitions
	Hashtable Access

	XML
	Simple Operators
	Arithmetic Operators
	Logical Operators
	Binary Operators
	Other Operators

	Comparison Operators
	Conditional Statements
	if, elseif, and else Statements
	Ternary Operators
	Null Coalescing and Assignment Operators
	switch Statements

	Looping Statements
	for Statement
	foreach Statement
	while Statement
	do … while Statement/do … until Statement
	Flow Control Statements
	Classes
	Custom Enumerations
	Workflow-Specific Statements

	Working with the .NET Framework
	Static Methods
	Instance Methods
	Explicitly Implemented Interface Methods
	Static Properties
	Instance Properties
	Learning About Types
	Type Shortcuts
	Creating Instances of Types
	Interacting with COM Objects
	Extending Types

	Writing Scripts, Reusing Functionality
	Writing Commands
	Running Commands
	Providing Input to Commands
	Retrieving Output from Commands

	Managing Errors
	Nonterminating Errors
	Terminating Errors

	Formatting Output
	Custom Formatting Files

	Capturing Output
	Common Customization Points
	Console Settings
	Profiles
	Prompts
	Tab Completion
	User Input
	Command Resolution

	Appendix B. Regular Expression Reference
	Appendix C. XPath Quick Reference
	Appendix D. .NET String Formatting
	String Formatting Syntax
	Standard Numeric Format Strings
	Custom Numeric Format Strings

	Appendix E. .NET DateTime Formatting
	Custom DateTime Format Strings

	Appendix F. Selected .NET Classes and Their Uses
	Appendix G. WMI Reference
	Appendix H. Selected COM Objects and Their Uses
	Appendix I. Selected Events and Their Uses
	Appendix J. Standard PowerShell Verbs

	Index
	About the Author

