O'REILLY"

\9 09//
‘1»

Powe rSheII
Cookbook

Your Complete Guide to Scripting
the Ubiquitous Object-Based Shell

Lee Holmes

O'REILLY"

PowerShell Cookbook

How do you use PowerShell to navigate the filesystem,
manage files and folders, or retrieve a web page? This
introduction to the PowerShell language and scripting
environment provides more than 400 task-oriented recipes
to help you solve all kinds of problems. Intermediate to
advanced system administrators will find more than 100
tried-and-tested scripts they can copy and use immediately.

Updated for PowerShell 5.1and Open Source PowerShell up
to 7.0 and beyond, this comprehensive cookbook includes
hands-on recipes for common tasks and administrative

jobs that you can apply whether you're on the client or
server version of Windows. You also get quick references to
technologies used in conjunction with PowerShell, including
regular expressions, the XPath language, format specifiers,
and frequently referenced .NET, COM, and WMI classes.

¢ Learn how to use PowerShell on Windows 10 and Windows
Server 2019

¢ Tour PowerShell’s core features, including the command
model, object-based pipeline, and ubiquitous scripting

¢ Master fundamentals such as the interactive shell, pipeline,
and object concepts

¢ Perform common tasks that involve working with files,
internet-connected scripts, user interaction, and more

¢ Solve tasks in systems and enterprise management, such as
working with Active Directory and the filesystem

Lee Holmes is a security architect in Azure security and an original
developer on the PowerShell team. His vast experience with both
world-scale security and operational management—and PowerShell
itself—give him the background to integrate both the "how" and the
"why" into discussions.

“Leeis one of the key
forces behind PowerShell
and a cornerstone of the
PowerShell community.
His pragmatic problem
solving approach resulted
in many of PowerShell's
most successful features.
It's this approach that
earns this book a place
on my desktop and why
it should be on every
PowerShell user's desktop

as well."
—Jeffrey Snover
Inventor, PowerShell

“This is the first book that
really focuses on applying
PowerShell, providing a
cookbook of practical
solutions for real-world
problems. This is definitely
one of the two books that
everyone should have on
their shelf."

—Bruce Payette
Codesigner of the PowerShell Language

and author of Windows PowerShell
in Action

WINDOWS PROGRAMMING

US $7999 CAN $10599
ISBN: 978-1-098-10160-2

JHCHERTCA

781098"101602

Twitter: @oreillymedia
facebook.com/oreilly

FOURTH EDITION

PowerShell Cookbook

Your Complete Guide to Scripting the
Ubiquitous Object-Based Shell

Lee Holmes

Beijing + Boston « Farnham -« Sebastopol + Tokyo [K@2a{=|HNE

PowerShell Cookbook
by Lee Holmes

Copyright © 2021 Lee Holmes. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade Indexer: Judith McConville
Development Editor: Angela Rufino Interior Designer: David Futato
Production Editor: Kate Galloway Cover Designer: Karen Montgomery
Copyeditor: Stephanie English lllustrator: Kate Dullea

Proofreader: James Fraleigh

October 2007: First Edition
August 2010: Second Edition
January 2013: Third Edition
June 2021: Fourth Edition

Revision History for the Fourth Edition
2021-06-16: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098101602 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. PowerShell Cookbook, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-098-10160-2
[LST]

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098101602

Table of Contents

310 =111} (o Xvii

o <] [XXi

Partl. Tour

A Guided Tour of PowerShell.ovnrininiii ittt eeee e, XXxi

Partll. Fundamentals

1. The PowerShell Interactive Shell. ..., 1
1.0 Introduction 1
1.1 Install PowerShell Core 1
1.2 Run Programs, Scripts, and Existing Tools 5
1.3 Run a PowerShell Command 8
1.4 Resolve Errors Calling Native Executables 9
1.5 Supply Default Values for Parameters 11
1.6 Invoke a Long-Running or Background Command 13
1.7 Program: Monitor a Command for Changes 16
1.8 Notify Yourself of Job Completion 20
1.9 Customize Your Shell, Profile, and Prompt 21
1.10 Customize PowerShell’s User Input Behavior 24
1.11 Customize PowerShell's Command Resolution Behavior 27
1.12 Find a Command to Accomplish a Task 30
1.13 Get Help on a Command 32
1.14 Update System Help Content 34

1.15 Program: Search Help for Text 36

1.16 Launch PowerShell at a Specific Location 37

1.17 Invoke a PowerShell Command or Script from Outside PowerShell 39
1.18 Understand and Customize PowerShell’s Tab Completion 42
1.19 Program: Learn Aliases for Common Commands 46
1.20 Program: Learn Aliases for Common Parameters 48
1.21 Access and Manage Your Console History 50
1.22 Program: Create Scripts from Your Session History 52
1.23 Invoke a Command from Your Session History 54
1.24 Program: Search Formatted Output for a Pattern 56
1.25 Interactively View and Process Command Output 57
1.26 Program: Interactively View and Explore Objects 59
1.27 Record a Transcript of Your Shell Session 67
1.28 Extend Your Shell with Additional Commands 68
1.29 Find and Install Additional PowerShell Scripts and Modules 70
1.30 Use Commands from Customized Shells 72
1.31 Save State Between Sessions 73
R o 11711 T 3 77
2.0 Introduction 77
2.1 Chain Commands Based on Their Success or Error 78
2.2 Filter Items in a List or Command Output 79
2.3 Group and Pivot Data by Name 81
2.4 Interactively Filter Lists of Objects 84
2.5 Work with Each Item in a List or Command Output 84
2.6 Automate Data-Intensive Tasks 88
2.7 Intercept Stages of the Pipeline 92
2.8 Automatically Capture Pipeline Output 93
2.9 Capture and Redirect Binary Process Output 95
3. Variablesand Objects..........coviiiiiiiii i 101
3.0 Introduction 101
3.1 Display the Properties of an Item as a List 102
3.2 Display the Properties of an Item as a Table 104
3.3 Store Information in Variables 106
3.4 Access Environment Variables 107
3.5 Program: Retain Changes to Environment Variables Set by a Batch File 110
3.6 Control Access and Scope of Variables and Other Items 112
3.7 Program: Create a Dynamic Variable 114
3.8 Work with .NET Objects 117
3.9 Create an Instance of a NET Object 121
3.10 Create Instances of Generic Objects 124
3.11 Use a COM Object 125

iv | Tableof Contents

3.12 Learn About Types and Objects 126

3.13 Get Detailed Documentation About Types and Objects 128
3.14 Add Custom Methods and Properties to Objects 130
3.15 Create and Initialize Custom Objects 132
3.16 Add Custom Methods and Properties to Types 136
3.17 Define Custom Formatting for a Type 141
. Loopingand Flow Control..........ccoiviiniiiiiiiiiiiiiiiiiiiiiiiennnennn, 145
4.0 Introduction 145
4.1 Make Decisions with Comparison and Logical Operators 145
4.2 Adjust Script Flow Using Conditional Statements 148
4.3 Manage Large Conditional Statements with Switches 149
4.4 Repeat Operations with Loops 152
4.5 Process Time-Consuming Action in Parallel 154
4.6 Add a Pause or Delay 157
. Stringsand Unstructured Text.ooovienieiii ittt iiie e iieennaas 159
5.0 Introduction 159
5.1 Create a String 159
5.2 Create a Multiline or Formatted String 161
5.3 Place Special Characters in a String 162
5.4 Insert Dynamic Information in a String 163
5.5 Prevent a String from Including Dynamic Information 164
5.6 Place Formatted Information in a String 165
5.7 Search a String for Text or a Pattern 167
5.8 Replace Text in a String 169
5.9 Split a String on Text or a Pattern 171
5.10 Combine Strings into a Larger String 173
5.11 Convert a String to Uppercase or Lowercase 175
5.12 Trim a String 177
5.13 Format a Date for Output 178
5.14 Convert a String Between One Format and Another 180
5.15 Convert Text Streams to Objects 181
5.16 Generate Large Reports and Text Streams 186
5.17 Generate Source Code and Other Repetitive Text 188
. GalculationsandMath...........coooiiiiiiiii i 193
6.0 Introduction 193
6.1 Perform Simple Arithmetic 193
6.2 Perform Complex Arithmetic 195
6.3 Measure Statistical Properties of a List 198
6.4 Work with Numbers as Binary 200

Table of Contents | v

6.5 Simplify Math with Administrative Constants 204
6.6 Convert Numbers Between Bases 205
7. Lists, Arrays, and Hashtables.............coooviiiiiiiiiiiiinnnnns, 209
7.0 Introduction 209
7.1 Create an Array or List of Items 209
7.2 Create a Jagged or Multidimensional Array 211
7.3 Access Elements of an Array 212
7.4 Visit Each Element of an Array 214
7.5 Sort an Array or List of Items 215
7.6 Determine Whether an Array Contains an Item 216
7.7 Combine Two Arrays 217
7.8 Find Items in an Array That Match a Value 218
7.9 Compare Two Lists 219
7.10 Remove Elements from an Array 220
7.11 Find Items in an Array Greater or Less Than a Value 221
7.12 Use the ArrayList Class for Advanced Array Tasks 222
7.13 Create a Hashtable or Associative Array 223
7.14 Sort a Hashtable by Key or Value 225
8. UtilityTasks.ooveerieiiiiiiii ittt i ciie s 229
8.0 Introduction 229
8.1 Get the System Date and Time 229
8.2 Measure the Duration of a Command 230
8.3 Read and Write from the Clipboard 232
8.4 Generate a Random Number or Object 233
8.5 Convert Time Between Time Zones 235
8.6 Program: Search the Windows Start Menu 236
8.7 Program: Show Colorized Script Content 237
Partlll. Common Tasks
9. SimpleFiles........oovvriiiriiiiiiii i i i i 245
9.0 Introduction 245
9.1 Get the Content of a File 245
9.2 Store the Output of a Command into a File 247
9.3 Add Information to the End of a File 248
9.4 Search a File for Text or a Pattern 249
9.5 Parse and Manage Text-Based Logfiles 252
9.6 Parse and Manage Binary Files 255
9.7 Create and Manage Temporary Files 257

vi

| Table of Contents

10.

1.

9.8 Search and Replace Text in a File
9.9 Program: Get the Encoding of a File
9.10 View the Hexadecimal Representation of Content

Structured Files.oooiiiiiiiii
10.0 Introduction

10.1 Access Information in an XML File

10.2 Perform an XPath Query Against XML

10.3 Convert Objects to XML

10.4 Modify Data in an XML File

10.5 Easily Import and Export Your Structured Data

10.6 Store the Output of a Command in a CSV or Delimited File
10.7 Import CSV and Delimited Data from a File

10.8 Manage JSON Data Streams

10.9 Use Excel to Manage Command Output

10.10 Parse and Interpret PowerShell Scripts

CodeReUse. ...
11.0 Introduction

11.1 Write a Script

11.2 Write a Function

11.3 Find a Verb Appropriate for a Command Name

11.4 Write a Script Block

11.5 Return Data from a Script, Function, or Script Block
11.6 Package Common Commands in a Module

11.7 Write Commands That Maintain State

11.8 Selectively Export Commands from a Module

11.9 Diagnose and Interact with Internal Module State

11.10 Handle Cleanup Tasks When a Module Is Removed
11.11 Access Arguments of a Script, Function, or Script Block
11.12 Add Validation to Parameters

11.13 Accept Script Block Parameters with Local Variables
11.14 Dynamically Compose Command Parameters

11.15 Provide -Whatlf, -Confirm, and Other Cmdlet Features
11.16 Add Help to Scripts or Functions

11.17 Add Custom Tags to a Function or Script Block

11.18 Access a Script’s Pipeline Input

11.19 Write Pipeline-Oriented Scripts with Cmdlet Keywords
11.20 Write a Pipeline-Oriented Function

11.21 Organize Scripts for Improved Readability

11.22 Invoke Dynamically Named Commands

11.23 Program: Enhance or Extend an Existing Cmdlet

259
262
265

267
267
268
270
272
273
275
277
278
280
281
283

287
287
287
290
292
293
295
297
301
303
305
307
308
314
318
320
322
325
327
329
331
335
336
338
340

Table of Contents

vii

12. Internet-Enabled Scripts.ooviiriiiiii i i 347

12.0 Introduction 347
12.1 Download a File from an FTP or Internet Site 347
12.2 Upload a File to an FTP Site 348
12.3 Program: Resolve the Destination of an Internet Redirect 350
12.4 Download a Web Page from the Internet 351
12.5 Parse and Analyze a Web Page from the Internet 357
12.6 Script a Web Application Session 359
12.7 Interact with REST-Based Web APIs 363
12.8 Connect to a Web Service 366
12.9 Interact with and Manage Remote SSL Certificates 367
12.10 Export Command Output as a Web Page 369
12.11 Send an Email 369
12.12 Program: Monitor Website Uptimes 370
12.13 Program: Interact with Internet Protocols 372
13, UserlInteraction............uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiii e 379
13.0 Introduction 379
13.1 Read a Line of User Input 379
13.2 Read a Key of User Input 380
13.3 Program: Display a Menu to the User 381
13.4 Display Messages and Output to the User 383
13.5 Provide Progress Updates on Long-Running Tasks 386
13.6 Write Culture-Aware Scripts 388
13.7 Support Other Languages in Script Output 391
13.8 Program: Invoke a Script Block with Alternate Culture Settings 394
13.9 Access Features of the Host’s UI 395
13.10 Add a Graphical User Interface to Your Script 397
13.11 Program: Add a Console UI to Your Script 400
13.12 Interact with MTA Objects 402
L T 11T T 1o 405
14.0 Introduction 405
14.1 Prevent Common Scripting Errors 407
14.2 Write Unit Tests for your Scripts 409
14.3 Trace Script Execution 411
14.4 Set a Script Breakpoint 414
14.5 Debug a Script When It Encounters an Error 417
14.6 Create a Conditional Breakpoint 419
14.7 Investigate System State While Debugging 421
14.8 Debug a Script on a Remote Machine 424
14.9 Program: Watch an Expression for Changes 426

vii | Table of Contents

15.

16.

17.

14.10 Debug a Script in Another Process
14.11 Program: Get Script Code Coverage

Tracing and Error Management.c..ooviiiiiiiiiniiniennieneennnnnnns
15.0 Introduction

15.1 Determine the Status of the Last Command

15.2 View the Errors Generated by a Command

15.3 Manage the Error Output of Commands

15.4 Program: Resolve an Error

15.5 Configure Debug, Verbose, and Progress Output

15.6 Handle Warnings, Errors, and Terminating Errors

15.7 Output Warnings, Errors, and Terminating Errors

15.8 Analyze a Script’s Performance Profile

Environmental Awareness.ccoiiiiiiiiiiiiiiiiii
16.0 Introduction

16.1 View and Modify Environment Variables

16.2 Modity the User or System Path

16.3 Access Information About Your Command’s Invocation
16.4 Program: Investigate the InvocationInfo Variable

16.5 Find Your Script’s Name

16.6 Find Your Script’s Location

16.7 Find the Location of Common System Paths

16.8 Get the Current Location

16.9 Safely Build File Paths Out of Their Components

16.10 Interact with PowerShell’s Global Environment

16.11 Determine PowerShell Version Information

16.12 Test for Administrative Privileges

Extend the Reach of PowerShell. ...,
17.0 Introduction

17.1 Automate Programs Using COM Scripting Interfaces
17.2 Program: Query a SQL Data Source

17.3 Access Windows Performance Counters

17.4 Access Windows API Functions

17.5 Program: Invoke Simple Windows API Calls

17.6 Define or Extend a .NET Class

17.7 Add Inline C# to Your PowerShell Script

17.8 Access a NET SDK Library

17.9 Create Your Own PowerShell Cmdlet

17.10 Add PowerShell Scripting to Your Own Program

428
430

433
433
434
435
437
439
440
442
445
446

449
449
449
451
452
454
457
457
458
461
462
463
464
465

467
467
467
469
472
474
481
484
487
489
491
494

Table of Contents

18. Security and ScriptSigning.oovviiiiiiiiiiiiiiiiiiiiiiiiiiiieaes 499

18.0 Introduction 499
18.1 Enable Scripting Through an Execution Policy 501
18.2 Enable PowerShell Security Logging 504
18.3 Disable Warnings for UNC Paths 509
18.4 Sign a PowerShell Script, Module, or Formatting File 510
18.5 Create a Self-Signed Certificate 512
18.6 Manage PowerShell Security in an Enterprise 513
18.7 Block Scripts by Publisher, Path, or Hash 515
18.8 Verity the Digital Signature of a PowerShell Script 518
18.9 Securely Handle Sensitive Information 519
18.10 Securely Request Usernames and Passwords 521
18.11 Start a Process as Another User 523
18.12 Program: Run a Temporarily Elevated Command 524
18.13 Securely Store Credentials on Disk 526
18.14 Access User and Machine Certificates 528
18.15 Program: Search the Certificate Store 529
18.16 Add and Remove Certificates 531
18.17 Manage Security Descriptors in SDDL Form 532
18.18 Create a Task-Specific Remoting Endpoint 534
18.19 Limit Interactive Use of PowerShell 537
18.20 Detect and Prevent Code Injection Vulnerabilities 539
18.21 Get the Cryptographic Hash of a File 543
18.22 Capture and Validate Integrity of File Sets 544
19. Visual StudioCode..........oovvvviiiiiiiiiiiii 547
19.0 Introduction 547
19.1 Debug a Script 549
19.2 Connect to a Remote Computer 551
19.3 Interact with Visual Studio Code Through Its Object Model 552
19.4 Quickly Insert Script Snippets 553

Part1V. Administrator Tasks

20. Filesand Directories.oovvveieeiiiiiiiiiiiiiii i 557
20.0 Introduction 557
20.1 Determine and Change the Current Location 558
20.2 Get the Files in a Directory 560
20.3 Find All Files Modified Before a Certain Date 562
20.4 Clear the Content of a File 563
20.5 Manage and Change the Attributes of a File 564

X | Tableof Contents

21.

22,

20.6 Find Files That Match a Pattern

20.7 Manage Files That Include Special Characters
20.8 Program: Get Disk Usage Information

20.9 Monitor a File for Changes

20.10 Get the Version of a DLL or Executable
20.11 Create a Directory

20.12 Remove a File or Directory

20.13 Rename a File or Directory

20.14 Move a File or Directory

20.15 Create and Map PowerShell Drives

20.16 Access Long File and Directory Names
20.17 Unblock a File

20.18 Interact with Alternate Data Streams

20.19 Program: Move or Remove a Locked File
20.20 Get the ACL of a File or Directory

20.21 Set the ACL of a File or Directory

20.22 Program: Add Extended File Properties to Files
20.23 Manage ZIP Archives

The Windows Registry.covvuiiiniiiiniiiiiiiiiiiiiiiiieiineenneennass
21.0 Introduction

21.1 Navigate the Registry

21.2 View a Registry Key

21.3 Modify or Remove a Registry Key Value

21.4 Create a Registry Key Value

21.5 Remove a Registry Key

21.6 Safely Combine Related Registry Modifications

21.7 Add a Site to an Internet Explorer Security Zone

21.8 Modify Internet Explorer Settings

21.9 Program: Search the Windows Registry

21.10 Get the ACL of a Registry Key

21.11 Set the ACL of a Registry Key

21.12 Work with the Registry of a Remote Computer

21.13 Program: Get Registry Items from Remote Machines
21.14 Program: Get Properties of Remote Registry Keys
21.15 Program: Set Properties of Remote Registry Keys
21.16 Discover Registry Settings for Programs

ComparingData.ovviiniiiiiiiiiiiiii ittt
22.0 Introduction

22.1 Compare the Output of Two Commands

22.2 Determine the Differences Between Two Files

565
568
569
571
572
573
573
574
576
576
578
579
581
582
584
586
587
590

593
593
593
594
595
596
597
598
600
602
603
605
606
608
610
612
613
615

619
619
619
621

Table of Contents

| xi

23.

24,

25.

26.

11 I

23.0 Introduction

23.1 List All Event Logs

23.2 Get the Oldest Entries from an Event Log
23.3 Find Event Log Entries with Specific Text
23.4 Retrieve and Filter Event Log Entries

23.5 Find Event Log Entries by Their Frequency
23.6 Back Up an Event Log

23.7 Create or Remove an Event Log

23.8 Write to an Event Log

23.9 Run a PowerShell Script for Windows Event Log Entries
23.10 Clear or Maintain an Event Log

23.11 Access Event Logs of a Remote Machine

0 (11T

24.0 Introduction

24.1 List Currently Running Processes

24.2 Launch the Application Associated with a Document
24.3 Launch a Process

24.4 Stop a Process

24.5 Get the Owner of a Process

24.6 Get the Parent Process of a Process

24.7 Debug a Process

Sy SO SOIVICES. + o v v ettt ttieteit et etierterenieenesnnesennsans

25.0 Introduction

25.1 List All Running Services
25.2 Manage a Running Service
25.3 Configure a Service

Active Directory. . ..ovvvini ittt i i e

26.0 Introduction

26.1 Test Active Directory Scripts on a Local Installation
26.2 Create an Organizational Unit

26.3 Get the Properties of an Organizational Unit

26.4 Modify Properties of an Organizational Unit

26.5 Delete an Organizational Unit

26.6 Get the Children of an Active Directory Container

26.7 Create a User Account

26.8 Program: Import Users in Bulk to Active Directory
26.9 Search for a User Account

26.10 Get and List the Properties of a User Account

623
623
624
625
627
630
632
633
635
636
637
639

641
641
642
643
644
646
647
648
649

651
651
651
653
654

655
655
656
658
659
660
661
662
662
663
666
667

Xii

| Table of Contents

27.

28.

26.11 Modity Properties of a User Account

26.12 Change a User Password

26.13 Create a Security or Distribution Group

26.14 Search for a Security or Distribution Group

26.15 Get the Properties of a Group

26.16 Find the Owner of a Group

26.17 Modity Properties of a Security or Distribution Group
26.18 Add a User to a Security or Distribution Group

26.19 Remove a User from a Security or Distribution Group
26.20 List a User’s Group Membership

26.21 List the Members of a Group

26.22 List the Users in an Organizational Unit

26.23 Search for a Computer Account

26.24 Get and List the Properties of a Computer Account

Enterprise Computer Management...........oooviiiiiiiiiiiinniennernnnnns

27.0 Introduction

27.1 Join a Computer to a Domain or Workgroup
27.2 Remove a Computer from a Domain

27.3 Rename a Computer

27.4 Program: List Logon or Logoff Scripts for a User
27.5 Program: List Startup or Shutdown Scripts for a Machine
27.6 Deploy PowerShell-Based Logon Scripts

27.7 Enable or Disable the Windows Firewall

27.8 Open or Close Ports in the Windows Firewall
27.9 Program: List All Installed Software

27.10 Uninstall an Application

27.11 Manage Computer Restore Points

27.12 Reboot or Shut Down a Computer

27.13 Determine Whether a Hotfix Is Installed
27.14 Manage Scheduled Tasks on a Computer
27.15 Retrieve Printer Information

27.16 Retrieve Printer Queue Statistics

27.17 Manage Printers and Print Queues

27.18 Program: Summarize System Information
27.19 Renew a DHCP Lease

27.20 Assign a Static IP Address

27.21 List All IP Addresses for a Computer

27.22 List Network Adapter Properties

(IM and Windows Management Instrumentation..................ccoveennne

28.0 Introduction

667
668
669
670
671
672
673
674
674
675
676
676
677
679

681
681
681
682
683
684
685
687
688
688
689
691
692
694
695
696
699
700
702
703
705
706
708
709

m
711

Table of Contents

| xiii

29.

30.

31.

28.1 Access Windows Management Instrumentation and CIM Data
28.2 Modify the Properties of a WMI or CIM Instance

28.3 Invoke a Method on a WMI Instance or Class

28.4 Program: Determine Properties Available to WMI and CIM Filters
28.5 Search for the WMI or CIM Class to Accomplish a Task

28.6 Use .NET to Perform Advanced WMI Tasks

28.7 Convert a VBScript WMI Script to PowerShell

0] 11 0]]

29.0 Introduction

29.1 Find Commands That Support Their Own Remoting
29.2 Enable PowerShell Remoting on a Computer

29.3 Enable SSH as a PowerShell Remoting Transport

29.4 Interactively Manage a Remote Computer

29.5 Invoke a Command on a Remote Computer

29.6 Disconnect and Reconnect PowerShell Sessions

29.7 Program: Remotely Enable PowerShell Remoting

29.8 Program: Invoke a PowerShell Expression on a Remote Machine
29.9 Test Connectivity Between Two Computers

29.10 Limit Networking Scripts to Hosts That Respond

29.11 Enable Remote Desktop on a Computer

29.12 Configure User Permissions for Remoting

29.13 Enable Remoting to Workgroup Computers

29.14 Implicitly Invoke Commands from a Remote Computer
29.15 Create Sessions with Full Network Access

29.16 Pass Variables to Remote Sessions

29.17 Manage and Edit Files on Remote Machines

29.18 Configure Advanced Remoting Quotas and Options
29.19 Invoke a Command on Many Computers

29.20 Run a Local Script on a Remote Computer

29.21 Determine Whether a Script Is Running on a Remote Computer

TrANSACHIONS. v v ov v ettt eeteeneeneeneeneeneeneeneensensennensennenns

30.0 Introduction
30.1 Safely Experiment with Transactions
30.2 Change Error Recovery Behavior in Transactions

EventHandling.........oovviiiiiiiiiiii i i i

31.0 Introduction

31.1 Respond to Automatically Generated Events
31.2 Create and Respond to Custom Events

31.3 Create a Temporary Event Subscription

713
716
718
719
720
725
726

731
731
732
733
735
737
740
744
746
747
750
753
754
754
756
758
760
763
765
767
769
771
772

773
773
775
777

781
781
782
785
788

Xiv

| Table of Contents

31.4 Forward Events from a Remote Computer 789
31.5 Investigate Internal Event Action State 790
31.6 Use a Script Block as a .NET Delegate or Event Handler 792

PartV. References

A. PowerShell Language and Environment.............cooviiiiiiiiennneennnnnn. 797
B. Regular Expression Reference.covvuiiiiiiiiiiiiiiiiiiniiieenneennnns 861
C. XPath QuickReference...........oovviiniiiiiiiiiiiiiiiiiiiii i 871
D. .NETString Formatting.........ccuviriiiiiiiiiiiiiiiiiiiiiiiiiieiiienaennss 875
E. .NET DateTime Formatting..........ccovuviuiiniiniiiiiiieinieieneennnnnnnns 879
F. Selected .NET Classesand Their Uses.ccovvviiiiiiiiiiiiinnnnennnn.. 885
OO)] 1T 893
H. Selected COM Objectsand Their Uses.oovvrereniienneeiiereneeenneennn. 899
I. Selected Eventsand TheirUses.coviiiiiiiiiiiiiiiiiiiiniininnnees 903
J. Standard PowerShell Verbs.coovviiiiiiiiiiiiiiiii i M
T 917

Table of Contents | xv

Foreword

Welcome to the fourth edition of the Windows PowerShell Cookbook!
Ooops. I got that wrong. Let me try again.
Welcome to the fourth edition of the Windews PowerShell Cookbook!

The name change says it all. Just as the Windows PowerShell Cookbook deserved a
place on the desk of every Windows admin, the PowerShell Cookbook deserves a place
on desk of every admin.

The PowerShell team always focused on giving admins the tools needed to become
the heroes of their company. But the team worked for Microsoft, and as former
Microsoft CEO Steve Ballmer used to say, “Windows is the air we breathe” That’s why
the first three editions of this book were titled the Windows PowerShell Cookbook.

From the very beginning, the team wanted to support Linux. We knew that fragmen-
ted technologies produced fragmented organizations. Instead of having an admin
team, companies organized into siloed Windows admin teams and Linux admin
teams. We wanted to deliver a single tool for all admins, regardless of platform (Win-
dows or Linux), regardless of skill level (simple interactive user, first-time scripter,
advanced systems developers), and regardless of what they managed (Azure, AWS,
Google, VMware, etc.). But our ambition was gated by our .NET dependency. Every-
thing changed when .NET started porting to Linux. The first version of NET Core
was cross-platform, and we ported to it as soon as possible. The result was PowerShell
Core v6, which ran on both Windows and Linux. The industry took notice. Our
launch partners included VMware, Google, and AWS: not your typical set of Micro-
soft partners.

PowerShell Core was great for Linux, but the small number of NET Core libraries
meant that it was less capable than Windows PowerShell v5 in several important
areas. Windows users were faced with a choice: Windows PowerShell or PowerShell
Core. All that changed in 2020 with the v7 release of PowerShell. That was built
upon .NET Core 3.1, which dramatically increased compatibility on Windows. That

Xvii

combined with substantial work on our part produced a no-compromise version. We
changed the name, dropping both “Windows” and “Core.” With version 7, there’s just
“PowerShell’—the single tool for all teams to manage anything that’s in their
environment.

And just as Windows PowerShell evolved to better meet the needs of admins who
want to manage anything, so too, this Cookbook has evolved to better meet the needs
of those same admins. This is a major edition of the book with more than 30,000
deletions and more than 35,000 additions. Lee starts the book with A Guided Tour of
PowerShell. In this, he introduces the reader to the key concepts of PowerShell and
lays the foundation for how to think about problems and how to think about using
PowerShell to solve those problems. This is followed up by Fundamentals, a drill-in
on eight key PowerShell concepts. With this foundation, youre ready to solve some
problems. The next 10 sections are focused on common tasks like code reuse, debug-
ging, tracing, and error management. I like to joke that there is “solving a problem”
and there is “solving a problem in a way you don’t regret a month later” These sec-
tions teach you the latter. These are the hard-earned lessons of how to write no-
regrets PowerShell for production environments. The next 12 sections cover specific
administrator tasks like dealing with files and directories, the Windows registry,
active directory, and remoting.

While many of these topics were covered in previous editions, this edition brings
them up-to-date with the latest and greatest tools in the PowerShell ecosystem
including the Windows Terminal, Visual Studio Code, and SSH, and the lessons and
perspective that can only be earned through a couple decades of in-the-trench experi-
ences. As the saying goes, “A wise man doesn't learn from his mistakes. A wise man
learns from the mistakes of others” So you can spend the next two decades learning
from your own mistakes, or you can read this book and learn from Lee, who has been
a superstar on the team since the day he joined the original v1 team.

The thing I love the most about the PowerShell Cookbook is that it teaches the reader
how to think about problems. Yes, there are hundreds of pages of solutions to specific
problems and that alone would make this book a must-have for every admin. But Lee
has a “teach a person to fish” mindset, and each of his solutions sets you up to solve
SETs of problems.

So how does one approach a book that has more than a thousand pages?

Certainly, many will get a lot from reading A Guided Tour of PowerShell and Funda-
mentals, and then hopping to a particular section when a problem arises.

I think a better approach for beginners is grounded in Lev Vygotsky’s activity theory.
Vygotsky identified the distinction between competence and performance. He pointed
out that our performance can exceed our competence when we are being directed by
an expert. Imagine the case where I want to find all the files modified before a certain

xviii | Foreword

date but don’t know any PowerShell—I am not (yet) competent to perform this task.
But because I was smart enough to buy this book, all I do is open to Recipe 20.3.
There I see the solution. I type the commands and I am performing a very sophistica-
ted task. Lee (expert) helps me solve a complex problem (perform) even though I
don’t know PowerShell (competence).

As awesome as that is, the magic occurs with the next step. Now that I'm able to suc-
cessfully perform a complex task, I can now experiment, and in experimenting, I
establish and grow my competence.

I run the commands. Then I intentionally make a mistake and see what the error
message is. Next time I see that error message, I now know what mistake I made.
From here, I look up the commands with Get-Help and explore what other parame-
ters I can use. Lee’s “solution” provides a beachhead of success. We then use our curi-
osity to explore—What about this? I wonder if...? Why not? Maybe...? This is the

way. And it’s fun as heck.

Our curiosity drives our learning, our understanding, and our competence. At vari-
ous points, our curiosity will encounter a problem that requires deeper exploration.
At that point, we can go back to A Guided Tour of PowerShell and Fundamentals.
Reading those sections because of a real issue makes them even more relevant, mem-
orable, and impactful.

—Jeffrey Snover
Coworker of Lee Holmes,
and Microsoft Technical Fellow

Foreword | xix

Preface

In late 2002, Slashdot posted a story about a “next-generation shell” rumored to be in
development at Microsoft. As a longtime fan of the power unlocked by shells and
their scripting languages, the post immediately captured my interest. Could this shell
provide the command-line power and productivity I'd long loved on Unix systems?

Since I had just joined Microsoft six months earlier, I jumped at the chance to finally
get to the bottom of a Slashdot-sourced “Microsoft Mystery”” The post talked about
strong integration with the NET Framework, so I posted a query to an internal C#
mailing list. I got a response that the project was called “Monad,” which I then used to
track down an internal prototype build.

Prototype was a generous term. In its early stages, the build was primarily a proof of
concept. Want to clear the screen? No problem! Just lean on the Enter key until your
previous commands and output scroll out of view! But even at these early stages, it
was immediately clear that Monad marked a revolution in command-line shells. As
with many things of this magnitude, its beauty was self-evident. Monad passed full-
fidelity .NET objects between its commands. For even the most complex commands,
Monad abolished the (until then, standard) need for fragile text-based parsing. Sim-
ple and powerful data manipulation tools supported this new model, creating a shell
both powerful and easy to use.

I joined the Monad development team shortly after that to help do my part to bring
this masterpiece of technology to the rest of the world. Since then, Monad has grown
to become a real, tangible product—now called PowerShell.

So why write a book about it? And why this book?

Many users have picked up PowerShell for the sake of learning PowerShell. Any tan-
gible benefits come by way of side effect. Others, though, might prefer to opportunis-
tically learn a new technology as it solves their needs. How do you use PowerShell to
navigate the filesystem? How can you manage files and folders? Retrieve a web page?

XXi

This book focuses squarely on helping you learn PowerShell through task-based solu-
tions to your most pressing problems. Read a recipe, read a chapter, or read the entire
book—regardless, youre bound to learn something.

Who This Book Is For

This book helps you use PowerShell to get things done. It contains hundreds of solu-
tions to specific, real-world problems. For systems management, you'll find plenty of
examples that show how to manage the filesystem, the Windows Registry, event logs,
processes, and more. For enterprise administration, you’ll find two entire chapters
devoted to Windows Management Instrumentation (WMI), Active Directory, and
other enterprise-focused tasks.

Along the way, you'll also learn an enormous amount about PowerShell: its features,
its commands, and its scripting language—but most importantly, you’ll solve
problems.

How This Book Is Organized

This book consists of five main sections: a guided tour of PowerShell, PowerShell fun-
damentals, common tasks, administrator tasks, and a detailed reference.

Part |

A Guided Tour of PowerShell breezes through PowerShell at a high level. It introdu-
ces PowerShell’s core features:

o An interactive shell
o A new command model
 An object-based pipeline
o A razor-sharp focus on administrators
o A consistent model for learning and discovery
 Ubiquitous scripting
o Integration with critical management technologies
o A consistent model for interacting with data stores
The tour helps you become familiar with PowerShell as a whole. This familiarity will

create a mental framework for you to understand the solutions from the rest of the
book.

xxii | Preface

Partll

Chapters 1 through 8 cover the fundamentals that underpin the solutions in this
book. This section introduces you to the PowerShell interactive shell, fundamental
pipeline and object concepts, and many features of the PowerShell scripting language.

Part Il

Chapters 9 through 19 cover the tasks you will run into most commonly when start-
ing to tackle more complex problems in PowerShell. This includes working with sim-
ple and structured files, internet-connected scripts, code reuse, user interaction, and
more.

PartIV

Chapters 20 through 31 focus on the most common tasks in systems and enterprise
management. Chapters 20 through 25 focus on individual systems: the filesystem, the
registry, event logs, processes, services, and more. Chapters 26 and 27 focus on Active
Directory, as well as the typical tasks most common in managing networked or
domain-joined systems. Chapters 28 and 29 focus on the two crucial facets of robust
multi-machine management: WMI and PowerShell Remoting.

PartV

Many books belch useless information into their appendixes simply to increase page
count. In this book, however, the detailed references underpin an integral and essen-
tial resource for learning and using PowerShell. The appendixes cover:

+ The PowerShell language and environment

o Regular expression syntax and PowerShell-focused examples

o XPath quick reference

o .NET string formatting syntax and PowerShell-focused examples

o .NET DateTime formatting syntax and PowerShell-focused examples
o Administrator-friendly .NET classes and their uses

+ Administrator-friendly WMI classes and their uses

o Administrator-friendly COM objects and their uses

o Selected events and their uses

o PowerShell’s standard verbs

Preface | xxiii

What You Need to Use This Book

The majority of this book requires only a working installation of PowerShell. All sup-
ported versions of Windows (Windows 7 and beyond, as well as Windows Server
2012 and beyond) include Windows PowerShell by default. A significant step up from
this default installation, however, is the open source PowerShell Core. You can learn
more about upgrading to PowerShell Core (or simply PowerShell) in Recipe 1.1.

The Active Directory scripts given in Chapter 26 are most useful when applied to an
enterprise environment, but Recipe 26.1 shows how to install additional software
(Active Directory Lightweight Directory Services, or Active Directory Application
Mode) that lets you run these scripts against a local installation.

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, path-
names, directories, and Unix utilities

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions,
types, classes, namespaces, methods, modules, properties, parameters, values,
objects, events, event handlers, tags, macros, or the output from commands

Constant width bold
Shows commands or other text that should be typed literally by the user

Constant width italic
Shows text that should be replaced with user-supplied values

This element signifies a tip or suggestion.

This element signifies a tip, suggestion, or general note.

xxiv | Preface

This element indicates a warning or caution.

\

Access This Book in Digital Format

This PowerShell Cookbook offers free access to an always-available, searchable,
online edition at https://www.powershellcookbook.com.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/LeeHolmes/PowerShell Cookbook.

If you have a technical question or a problem using the code examples, please send
email to bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you're reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O'Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “PowerShell Cookbook by
Lee Holmes (O’Reilly). Copyright 2021 Lee Holmes, 978-1-098-10160-2”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0'Reilly Online Learning

o » For more than 40 years, O’Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O'Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning

Preface | xxv

https://www.powershellcookbook.com
https://github.com/LeeHolmes/PowerShellCookbook
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
http://oreilly.com

paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/powershell-cookbook-4th.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit http://oreilly.com.
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Writing is the task of crafting icebergs. The heft of the book you hold in your hands is
just a hint of the multiyear, multirelease effort it took to get it there. And by a cast
much larger than me.

The groundwork started decades ago. My parents nurtured my interest in computers
and software, supported an evening-only bulletin board service, put up with “viruses”
that told them to buy a new computer for Christmas, and even listened to me blather

about batch files or how PowerShell compares to Excel. Without their support, who
knows where I'd be.

My family and friends have helped keep me sane for four editions of the book now.
Ariel: you are the light of my life. Robin: thinking of you reminds me each day that
serendipity is still alive and well in this busy world. Thank you to all of my friends
and family for being there for me. You can have me back now. :)

xxvi | Preface

http://oreilly.com
https://oreil.ly/powershell-cookbook-4th
mailto:bookquestions@oreilly.com
http://oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

I would not have written any edition of this book without the tremendous influence
of Guy Allen, visionary of the University of Toronto’s Professional Writing program.
Guy: your mentoring forever changed me, just as it molds thousands of others from
English hackers into writers.

Of course, members of the PowerShell team (both new and old) are the ones who
made this a book about PowerShell. Building this product with you has been a unique
challenge and experience—but most of all, a distinct pleasure. In addition to the Pow-
erShell team, the entire PowerShell community defined this book’s focus. From MVPs
to early adopters to newsgroup lurkers: your support, questions, and feedback have
been the inspiration behind each page.

Converting thoughts into print always involves a cast of unsung heroes, even though
each author tries his best to convince the world how important these heroes are.

Thank you to the many technical reviewers who participated in technical reviews,
especially Aleksandar Nikolic, Shay Levy, David Frazer, Neil Desai, and Robert Titus.
I truly appreciate you donating your nights and weekends to help craft something of
which we can all be proud.

To the awesome staff at O’Reilly—Rachel Roumeliotis, Kara Ebrahim, Mike Hen-
drickson, Genevieve d’Entremont, Teresa Elsey, Laurel Ruma, Angela Rufino, Zan
McQuade, Stephanie English, Kate Galloway, the O’Reilly Tools Monks, and the pro-
duction team—your patience and persistence helped craft a book that holds true to its
original vision. You also ensured that the book didn’t just knock around in my head
but actually got out the door.

This book would not have been possible without the support from each and every
one of you.

Preface | xxvii

PARTI

Tour

A Guided Tour of PowerShell

Introduction

PowerShell promises to revolutionize the world of system management and
command-line shells. From its object-based pipelines to its administrator focus to its
enormous reach into other Microsoft management technologies, PowerShell drasti-
cally improves the productivity of administrators and power users alike.

When you're learning a new technology, it's natural to feel bewildered at first by all
the unfamiliar features and functionality. This perhaps rings especially true for users
new to PowerShell because it may be their first experience with a fully featured
command-line shell. Or worse, they’ve heard stories of PowerShell’s fantastic integra-
ted scripting capabilities and fear being forced into a world of programming that
they’ve actively avoided until now.

Fortunately, these fears are entirely misguided; PowerShell is a shell that both grows
with you and grows on you. Let’s take a tour to see what it is capable of:

o PowerShell works with standard Windows commands and applications. You
don’t have to throw away what you already know and use.

 PowerShell introduces a powerful new type of command. PowerShell commands
(called cmdlets) share a common Verb-Noun syntax and offer many usability
improvements over standard commands.

o PowerShell understands objects. Working directly with richly structured objects
makes working with (and combining) PowerShell commands immensely easier
than working in the plain-text world of traditional shells.

 PowerShell caters to administrators. Even with all its advances, PowerShell focu-
ses strongly on its use as an interactive shell: the experience of entering com-
mands in a running PowerShell application.

XXXi

o PowerShell supports discovery. Using three simple commands, you can learn and
discover almost anything PowerShell has to offer.

« PowerShell enables ubiquitous scripting. With a fully fledged scripting language
that works directly from the command line, PowerShell lets you automate tasks
with ease.

o PowerShell bridges many technologies. By letting you work with .NET, COM,
WMI, XML, and Active Directory, PowerShell makes working with these previ-
ously isolated technologies easier than ever before.

« PowerShell simplifies management of data stores. Through its provider model,
PowerShell lets you manage data stores using the same techniques you already
use to manage files and folders.

We'll explore each of these pillars in this introductory tour of PowerShell. If you're
running any supported version of Windows (Windows 7 or later, or Windows 2012
R2 or later), Windows PowerShell is already installed. That said, a significant step up
from this default installation is the open source PowerShell Core. If you want to jump
ahead a little bit, you can learn more about upgrading to PowerShell Core (or simply
“PowerShell”) in Recipe 1.1.

An Interactive Shell

At its core, PowerShell is first and foremost an interactive shell. While it supports
scripting and other powerful features, its focus as a shell underpins everything.

Getting started in PowerShell is a simple matter of launching powerShell.exe rather
than cmd.exe—the shells begin to diverge as you explore the intermediate and
advanced functionality, but you can be productive in PowerShell immediately.

To launch PowerShell, click Start and then type PowerShell (or pwsh if you've jum-
ped ahead!).

A PowerShell prompt window opens that’s nearly identical to the traditional com-
mand prompt of its ancestors. The PS C:\Users\Lee> prompt indicates that Power-
Shell is ready for input, as shown in Figure P-1.

Once you've launched your PowerShell prompt, you can enter DOS-style and Unix-
style commands to navigate around the filesystem just as you would with any Win-
dows or Unix command prompt—as in the interactive session shown in Example P-1.
In this example, we use the pushd, cd, dir, pwd, and popd commands to store the cur-
rent location, navigate around the filesystem, list items in the current directory, and
then return to the original location. Try it!

xxxii | A Guided Tour of PowerShell

N C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell.exe - [m]

Windows PowerShel |
Copyright (C) Microsoft Corporation. All rights reserved.

Try the new cross-platform Powershell https://aka.ms/pscore6

PS C:\Users\lee>

Figure P-1. Windows PowerShell, ready for input

Example P-1. Entering many standard DOS- and Unix-style file manipulation
commands ﬁ)roduces the same results you get when you use them with any other
Windows shell

PS C:\Users\Lee> function prompt { "PS > " }
PS > pushd .
PS > cd \
PS > dir

Directory: C:\
Mode LastWriteTime Length Name
d---- 5/8/2007 8:37 PM Blurpark
d---- 5/15/2016 4:32 PM Chocolatey
d---- 3/8/2020 12:45 PM DXLab
d---- 4/30/2020 7:00 AM Go
d---- 4/2/2016 3:05 PM Intel
d-r-- 12/15/2020 1:41 PM Program Files
d-r-- 11/28/2020 5:06 PM Program Files (x86)
d---- 5/12/2019 6:37 PM Python27
d---- 3/25/2018 1:11 PM Strawberry
d---- 12/16/2020 8:13 AM temp
d-r-- 8/11/2020 5:02 PM Users
da--- 12/16/2020 10:51 AM Windows
PS > popd
PS > pwd
Path

C:\Users\Lee

A Guided Tour of PowerShell

XXXiii

In this example, our first command customizes the prompt. In cmd.exe, customizing
the prompt looks like prompt SPSC. In Bash, it looks like PS1="[\h] \w> ". In
PowerShell, you define a function that returns whatever you want displayed. Recipe
11.2 introduces functions and how to write them.

The pushd command is an alternative name (alias) to the much more descriptively
named PowerShell command Push-Location. Likewise, the cd, dir, popd, and pwd
commands all have more memorable counterparts.

Although navigating around the filesystem is helpful, so is running the tools you
know and love, such as ipconfig and notepad. Type the command name and you’ll
see results like those shown in Example P-2.

Example P-2. Windows tools and applications such as ipconfig run in PowerShell just as
they do in cmd.exe

PS > ipconfig
Windows IP Configuration

Ethernet adapter Wireless Network Connection 4:

Connection-specific DNS Suffix . : hsdl.wa.comcast.net.
IP Address. : 192.168.1.100
Subnet Masko : 255.255.255.0
Default Gateway : 192.168.1.1

PS > notepad
(notepad launches)

Entering ipconfig displays the IP addresses of your current network connections.
Entering notepad runs—as youd expect—the Notepad editor that ships with Win-
dows. Try them both on your own machine.

Structured Commands (Cmdlets)

In addition to supporting traditional Windows executables, PowerShell introduces a
powerful new type of command called a cmdlet (pronounced “command-let”). All
cmdlets are named in a Verb-Noun pattern, such as Get-Process, Get-Content, and
Stop-Process.

PS > Get-Process -Name lsass

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

668 13 6228 1660 46 932 lsass

In this example, you provide a value to the ProcessName parameter to get a specific
process by name.

xxxiv. | AGuided Tour of PowerShell

Once you know the handful of common verbs in PowerShell,
learning how to work with new nouns becomes much easier. While
you may never have worked with a certain object before (such as a
Service), the standard Get, Set, Start, and Stop actions still apply.
For a list of these common verbs, see Table J-1 in Appendix J.

You don’t always have to type these full cmdlet names, however. PowerShell lets you
use the Tab key to autocomplete cmdlet names and parameter names:

PS > Get-Pro<TAB> -N<TAB> lsass

For quick interactive use, even that may be too much typing. To help improve your
efficiency, PowerShell defines aliases for all common commands and lets you define
your own. In addition to alias names, PowerShell requires only that you type enough
of the parameter name to disambiguate it from the rest of the parameters in that
cmdlet. PowerShell is also case-insensitive. Using the built-in gps alias (which repre-
sents the Get-Process cmdlet) along with parameter shortening, you can instead

type:
PS > gps -n lsass

Going even further, PowerShell supports positional parameters on cmdlets. Positional
parameters let you provide parameter values in a certain position on the command
line, rather than having to specify them by name. The Get-Process cmdlet takes a
process name as its first positional parameter. This parameter even supports wild-
cards:

PS > gps l*s

Deep Integration of Objects

PowerShell begins to flex more of its muscle as you explore the way it handles struc-
tured data and richly functional objects. For example, the following command gener-
ates a simple text string. Since nothing captures that output, PowerShell displays it to
you:

PS > "Hello World"

Hello World
The string you just generated is, in fact, a fully functional object from the .NET
Framework. For example, you can access its Length property, which tells you how
many characters are in the string. To access a property, you place a dot between the
object and its property name:

PS > "Hello World".Length
11

A Guided Tour of PowerShell | xxxv

All PowerShell commands that produce output generate that output as objects as
well. For example, the Get-Process cmdlet generates a System.Diagnostics.
Process object, which you can store in a variable. In PowerShell, variable names start
with a $ character. If you have an instance of Notepad running, the following com-
mand stores a reference to it:

Sprocess = Get-Process notepad

Since this is a fully functional Process object from the NET Framework, you can call
methods on that object to perform actions on it. This command calls the Kill()
method, which stops a process. To access a method, you place a dot between the
object and its method name:

Sprocess.Kill()

PowerShell supports this functionality more directly through the Stop-Process
cmdlet, but this example demonstrates an important point about your ability to inter-
act with these rich objects.

Administrators as First-Class Users

While PowerShell’s support for objects from the NET Framework quickens the pulse
of most users, PowerShell continues to focus strongly on administrative tasks. For
example, PowerShell supports MB (for megabyte) and GB (for gigabyte) as some of its
standard administrative constants. For example, how many GIF memes will fit in a
800 GB hard drive?

PS > 800GB / 2.2MB

372363.636363636
Although the NET Framework is traditionally a development platform, it contains a
wealth of functionality useful for administrators too! In fact, it makes PowerShell a
great calendar. For example, is 2096 a leap year? PowerShell can tell you:

PS > [DateTime]::IsLeapYear(2096)

True
Going further, how might you determine how much time remains until the Y2038
Epochalypse? The following command converts "01/19/2038" (the date of the Year
2038 problem) to a date, and then subtracts the current date from that. It stores the
result in the $result variable, and then accesses the TotalDays property.

PS > Sresult = [DateTime] "01/19/2038" - [DateTime]::Now

PS > S$result.TotalDays
6242.49822756465

xxxvi | AGuided Tour of PowerShell

Composable Commands

Whenever a command generates output, you can use a pipeline character (|) to pass
that output directly to another command as input. If the second command under-
stands the objects produced by the first command, it can operate on the results. You
can chain together many commands this way, creating powerful compositions out of
a few simple operations. For example, the following command gets all items in the
Path1 directory and moves them to the Path2 directory:

Get-Item Path1l* | Move-Item -Destination Path2

You can create even more complex commands by adding additional cmdlets to the
pipeline. In Example P-3, the first command gets all processes running on the system.
It passes those to the Where-Object cmdlet, which runs a comparison against each
incoming item. In this case, the comparison is $_.Handles -ge 500, which checks
whether the Handles property of the current object (represented by the $_ variable) is
greater than or equal to 500. For each object in which this comparison holds true, you
pass the results to the Sort-Object cmdlet, asking it to sort items by their Handles
property. Finally, you pass the objects to the Format-Table cmdlet to generate a table
that contains the Handles, Name, and Description of the process.

Example P-3. You can build more complex PowerShell commands by using pipelines to
link cmdlets, as shown here with Get-Process, Where-Object, Sort-Object, and Format-
Table

PS > Get-Process |
Where-Object { $_.Handles -ge 500 } |
Sort-Object Handles |
Format-Table Handles,Name,Description -Auto

Handles Name Description

588 winlogon

592 svchost

667 lsass

725 csrss

742 System

964 WINWORD Microsoft Office Word
1112 OUTLOOK Microsoft Office Outlook
2063 svchost

Techniques to Protect You from Yourself

While aliases, wildcards, and composable pipelines are powerful, their use in com-
mands that modify system information can easily be nerve-racking. After all, what
does this command do? Think about it, but don’t try it just yet:

PS > gps [b-t]*[c-r] | Stop-Process

A Guided Tour of PowerShell | xxxvii

It appears to stop all processes that begin with the letters b through t and end with
the letters c through r. How can you be sure? Let PowerShell tell you. For commands
that modify data, PowerShell supports -WhatIf and -Confirm parameters that let you
see what a command would do:

PS > gps [b-t]*[c-r] | Stop-Process -whatif

What if: Performing operation "Stop-Process" on Target "ctfmon (812)".

What if: Performing operation "Stop-Process" on Target "Ditto (1916)".

What if: Performing operation "Stop-Process" on Target "dsamain (316)".

What if: Performing operation "Stop-Process" on Target "ehrecvr (1832)".

What if: Performing operation "Stop-Process" on Target "ehSched (1852)".

What if: Performing operation "Stop-Process" on Target "EXCEL (2092)".

What if: Performing operation "Stop-Process" on Target "explorer (1900)".

(...)
In this interaction, using the -WhatIf parameter with the Stop-Process pipelined
command lets you preview which processes on your system will be stopped before
you actually carry out the operation.

Note that this example is not a dare! In the words of one reviewer:

Not only did it stop everything, but on one of my old machines, it forced a shutdown
with only one minute warning!

It was very funny though... At least I had enough time to save everything first!

Common Discovery Commands

While reading through a guided tour is helpful, I find that most learning happens in
an ad hoc fashion. To find all commands that match a given wildcard, use the Get-
Command cmdlet. For example, by entering the following, you can find out which Pow-
erShell commands (and Windows applications) contain the word process:

PS > Get-Command *process*

CommandType Name Definition

Cmdlet Get-Process Get-Process [[-Name] <Str...
Application gprocess.exe c:\windows\system32\qgproc...
Cmdlet Stop-Process Stop-Process [-Id] <Int32...

To see what a command such as Get-Process does, use the Get-Help cmdlet, like
this:

PS > Get-Help Get-Process

Since PowerShell lets you work with objects from the .NET Framework, it provides
the Get-Member cmdlet to retrieve information about the properties and methods that
an object, such as a NET System.String, supports. Piping a string to the Get-Member
command displays its type name and its members:

xxxviii | A Guided Tour of PowerShell

PS > "Hello World" | Get-Member

TypeName: System.String

Name

(...)

PadLeft

PadRight

Remove

Replace

Split

StartsWith
Substring
ToCharArray
TolLower
ToLowerInvariant
ToString

ToUpper
ToUpperInvariant
Trim

TrimEnd
TrimStart

Chars

Length

MemberType

Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
Method
ParameterizedProperty
Property

Ubiquitous Scripting

PowerShell makes no distinction between the commands typed at the command line
and the commands written in a script. Your favorite cmdlets work in scripts and your
favorite scripting techniques (e.g., the foreach statement) work directly on the com-

mand line. For example, to add up the handle count for all running processes:

PS > ShandleCount = 0
PS > foreach(Sprocess in Get-Process) { ShandleCount += $process.Handles }

PS > $handleCount

19403

Definition

System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.
System.

String
String
String
String

PadLeft(Int32 tota...
PadRight(Int32 tot...
Remove(Int32 start...
Replace(Char oldcCh...

String[] Split(Params Cha...
Boolean StartsWith(String...

String
Char[]
String
String
String
String
String
String
String
String

Substring(Int32 st...
ToCharArray(), Sys...
ToLower(), System....
ToLowerInvariant()

ToString(), System...
ToUpper(), System....
ToUpperInvariant()

Trim(Params Char[]...
TrimEnd(Params Cha...
TrimStart(Params C...

Char Chars(Int32 index) {...
Int32 Length {get;}

While PowerShell provides a command (Measure-0Object) to measure statistics about
collections, this short example shows how PowerShell lets you apply techniques that
normally require a separate scripting or programming language.

In addition to using PowerShell scripting keywords, you can also create and work
directly with objects from the NET Framework that you may be familiar with. Pow-
erShell becomes almost like the C# immediate mode in Visual Studio. Example P-4
shows how PowerShell lets you easily interact with the NET Framework.

A Guided Tour of PowerShell

XXXIX

Example P-4. Using objects from the .NET Framework to retrieve a web page and
process its content

PS > S$SwebClient = New-Object System.Net.WebClient
PS > Scontent = $SwebClient.DownloadString(
"https://devblogs.microsoft.com/powershell/feed/")

PS > S$Scontent.Substring(0,1000)

<?xml version="1.0" encoding="UTF-8"?><rss version="2.0"
xmlns:content="http://purl.org/rss/1.0/modules/content/"
xmlns:wfw="http://wellformedweb.org/CommentAPI/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:atom="http://www.w3.0rg/2005/Atom"
xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"
xmlns:slash="http://purl.org/rss/1.0/modules/slash/" >

<channel>
<title>PowerShell</title>
<atom:1link href="https://devblogs.microsoft.com/powershell/feed/"
<link>https://devblogs.microsoft.com/powershell</link>
<description>Automating the world one-liner at a time...</description>

(...)

Ad Hoc Development

By blurring the lines between interactive administration and writing scripts, the his-
tory buffers of PowerShell sessions quickly become the basis for ad hoc script devel-
opment. In this example, you call the Get-History cmdlet to retrieve the history of
your session. For each item, you get its CommandLine property (the thing you typed)
and send the output to a new script file.

PS > Get-History | ForEach-Object { $_.CommandLine } > c:\temp\script.psi
PS > notepad c:\temp\script.psi

(save the content you want to keep)

PS > c:\temp\script.psi

If this is the first time you've run a script in PowerShell, you'll need
to configure your execution policy. For more information about
selecting an execution policy, see Recipe 18.1.

For more detail about saving your session history into a script, see Recipe 1.22.

Bridging Technologies

We've seen how PowerShell lets you fully leverage the NET Framework in your tasks,
but its support for common technologies stretches even farther. As Example P-5
(continued from Example P-4) shows, PowerShell supports XML.

xI | AGuided Tour of PowerShell

Example P-5. Working with XML content in PowerShell

PS > $xmlContent = [xml] Scontent
PS > $xmlContent

xml xml-stylesheet rss
version="1.0" encoding... type="text/xsl" href="... rss

PS > $xmlContent.rss

version : 2.0
content : http://purl.org/rss/1.0/modules/content/

wfw : http://wellformedweb.org/CommentAPI/

dc : http://purl.org/dc/elements/1.1/

atom : http://www.w3.0rg/2005/Atom

sy : http://purl.org/rss/1.0/modules/syndication/

slash : http://purl.org/rss/1.0/modules/slash/
channel : channel

PS > $xmlContent.rss.channel.item | select Title

PowerShell 7.2 Preview 2 release

Announcing PowerShell Crescendo Preview.1

You’ve got Help!

SecretManagement preview 6 and SecretStore preview 4
Announcing PowerShell 7.1

Announcing PSReadlLine 2.1+ with Predictive IntelliSense
Updating help for the PSReadlLine module

PowerShell Working Groups

...)

PowerShell also lets you work with Windows Management Instrumentation (WMI)
and Common Information Model (CIM):

PS > Get-CimInstance Win32_Bios

SMBIOSBIOSVersion : ASUS A7N8X Deluxe ACPI BIOS Rev 1009

Manufacturer : Phoenix Technologies, LTD
Name : Phoenix - AwardBIOS v6.00PG
SerialNumber TOXXXXXXXXXXX

Version : Nvidia - 42302e31

Or, as Example P-6 shows, you can work with Active Directory Service Interfaces
(ADSI).

A Guided Tour of PowerShell | i

Example P-6. Working with Active Directory in PowerShell

PS > [ADSI] "WinNT://./Administrator" | Format-List *

UserFlags
MaxStorage
PasswordAge
PasswordExpired
LoginHours

FullName
Description
BadPasswordAttempts
LastLogin
HomeDirectory
LoginScript

Profile
HomeDirDrive
Parameters
PrimaryGroupID

Name
MinPasswordLength
MaxPasswordAge
MinPasswordAge
PasswordHistoryLength
AutoUnlockInterval

LockoutObservationInterval

MaxBadPasswordsAllowed
RasPermissions
objectSid

Or, as Example P-7 shows, you can even use PowerShell for scripting traditional

COM objects.

: {66113}

: {-1}

: {19550795}

. {0}

: {255 255 255 255 255 255 255 255 255 255 255

255 255 255 255 255 255 255 255 255 255}

: {3

: {Built-in account for administering the computer/domain}
: {0}

: {5/21/2007 3:00:00 AM}

: {3

: {3

: {3

: {3

: {3

: {513}

: {Administrator}

: {0}

. {3710851}

: {0}

: {0}

: {1800}

: {1800}

: {0}

: {1}

:{1500000521000 121 227 252 83 122

130 50 34 67 23 10 50 244 1 0 0}

Example P-7. Working with COM objects in PowerShell

PS > S$firewall = New-Object -com HNetCfg.FwMgr
PS > S$firewall.LocalPolicy.CurrentProfile

Type

FirewallEnabled
ExceptionsNotAllowed
NotificationsDisabled

H

¢ True
: False
: False

UnicastResponsesToMulticastBroadcastDisabled : False

RemoteAdminSettings
IcmpSettings
GloballyOpenPorts

Services

: System.__ComObject

: System.__ComObject

: {Media Center Extender Service,
Remote Media Center Experience,
Adam Test Instance, QWAVE...}

: {File and Printer Sharing,
UPnP Framework, Remote Desktop}

xlii | AGuided Tour of PowerShell

AuthorizedApplications

: {Remote Assistance, Windows

Messenger, Media Center, Trillian...}

Namespace Navigation Through Providers

Another avenue PowerShell offers for working with the system is providers. Power-
Shell providers let you navigate and manage data stores using the same techniques
you already use to work with the filesystem, as illustrated in Example P-8.

Example P-8. Navigating the filesystem

PS > Set-Location c:\
PS > Get-ChildItem

Directory: C:\

Mode LastWriteTime Length Name

d---- 5/8/2007 8:37 PM Blurpark
d---- 5/15/2016 4:32 PM Chocolatey
d---- 3/8/2020 12:45 PM DXLab

d---- 4/30/2020 7:00 AM Go

d---- 4/2/2016 3:05 PM Intel

d-r-- 12/15/2020 1:41 PM Program Files
d-r-- 11/28/2020 5:06 PM Program Files (x86)
d---- 5/12/2019 6:37 PM Python27
d---- 3/25/2018 1:11 PM Strawberry
d---- 12/16/2020 8:13 AM temp

d-r-- 8/11/2020 5:02 PM Users

da--- 12/16/2020 10:51 AM Windows

This also works on the registry, as shown in Example P-9.

Example P-9. Navigating the registry

PS > Set-Location HKCU:\Software\Microsoft\Windows\

PS > Get-ChildItem

Hive: HKEY_CURRENT_USER\Software\Microsoft\Windows

Name Property

CurrentVersion

DWM Composition 1
ColorPrevalence : 0
ColorizationColor : 3290322719
EnableAeroPeek H
AccentColor : 4280243998
EnableWindowColorization : 1

Shell

TabletPC

Windows Error Reporting

A Guided Tour of PowerShell

| lii

PS > Set-Location CurrentVersion\Run
PS > Get-ItemProperty .

(...)

OneDrive : "C:\Users\lee\AppData\Local\Microsoft\OneDrive\OneDrive.exe"
/background

OpenDNS Updater : "C:\Program Files (x86)\0penDNS Updater\OpenDNSUpdater.exe"
/autostart

Ditto : C:\Program Files\Ditto\Ditto.exe

(...)

And it even works on the machine’s certificate store, as Example P-10 illustrates.

Example P-10. Navigating the certificate store

PS > Set-Location cert:\CurrentUser\Root
PS > Get-ChildItem

Directory: Microsoft.PowerShell.Security\Certificate::CurrentUser\Root

Thumbprint Subject

CDD4EEAE600OAC7F40C3802C171E30148030C072 CN=Microsoft Root Certificate...
BE36A4562FB2EEO5DBB3D32323ADF445084ED656 CN=Thawte Timestamping CA, OU...
A43489159A520F0D93D032CCAF37E7FE20A8B419 CN=Microsoft Root Authority, ...
9FE47B4D05D46E8066BAB1D1BFCOE48F1DBE6B26 CN=PowerShell Local Certifica...
7F88CD7223F3C813818C994614A89C99FA3B5247 CN=Microsoft Authenticode(tm)...
245C97DF7514E7CF2DF8BE72AE957B9EO4741E85 OU=Copyright (c) 1997 Microso...
(...)

Much, Much More

As exciting as this guided tour was, it barely scratches the surface of how you can use
PowerShell to improve your productivity and systems management skills. For more
information about getting started in PowerShell, see Chapter 1.

xliv | AGuided Tour of PowerShell

PART I

Fundamentals

Chapter 1, The PowerShell Interactive Shell
Chapter 2, Pipelines

Chapter 3, Variables and Objects

Chapter 4, Looping and Flow Control
Chapter 5, Strings and Unstructured Text
Chapter 6, Calculations and Math
Chapter 7, Lists, Arrays, and Hashtables
Chapter 8, Utility Tasks

CHAPTER 1
The PowerShell Interactive Shell

1.0 Introduction

Above all else, the design of PowerShell places priority on its use as an efficient and
powerful interactive shell. Even its scripting language plays a critical role in this
effort, as it too heavily favors interactive use.

What surprises most people when they first launch PowerShell is its similarity to the
command prompt that has long existed as part of Windows. Familiar tools continue
to run. Familiar commands continue to run. Even familiar hotkeys are the same. Sup-
porting this familiar UI, though, is a powerful engine that lets you accomplish once
cumbersome administrative and scripting tasks with ease.

This chapter introduces PowerShell from the perspective of its interactive shell.

1.1 Install PowerShell Core

Problem

You want to install the most recent version of PowerShell on your Windows, Mac, or
Linux system.

Solution

Visit the Microsoft website to find the installation instructions for the operating sys-
tem and platform you want to install on. For the most common:

https://microsoft.com/PowerShell

Windows

Install PowerShell from Microsoft through the Microsoft Store application in the
Start Menu. Then, install Windows Terminal from Microsoft through the Microsoft
Store application in the Start Menu.

Mac
Install PowerShell from Homebrew:

brew install --cask powershell

Linux

Installation instructions vary per Linux distribution, but the most common distribu-
tion among PowerShell Core users is Ubuntu:

Update the list of packages
sudo apt-get update

Install pre-requisite packages.
sudo apt-get install -y wget apt-transport-https software-properties-common

Download the Microsoft repository GPG keys
wget -q https://packages.microsoft.com/config/ubuntu/20.04/packages-microsoft-prod.deb

Register the Microsoft repository GPG keys
sudo dpkg -1 packages-microsoft-prod.deb

Update the list of packages after we added packages.microsoft.com
sudo apt-get update

Install PowerShell
sudo apt-get install -y powershell

Discussion

PowerShell has already led a long and exciting life. For the first 15 years of its exis-
tence, it was known as “Windows PowerShell”: a fantastic object-based management
shell and platform that made it easy and fun for administrators, developers, and
power users to get their jobs done.

In its earliest stages, this support came as part of the “Windows Management Frame-
work”: a standalone download that provided this much needed functionality on Win-
dows. Windows PowerShell eventually became part of Windows itself, and has been a
core part of the operating system since Windows 7.

In 2016, PowerShell made a tremendous shift by announcing that it would ship
PowerShell on multiple operating system platforms—and by the way—made the
entire project open source at the same time! Windows PowerShell got a new name
with its new future: simply PowerShell. This major change opened the doors for vastly

2 | Chapter 1: The PowerShell Interactive Shell

quicker innovation, community participation, and availability through avenues that
previously would never have been possible. While the classic Windows PowerShell is
still included in the operating system by default, it no longer receives updates and
should be avoided.

Installing and running PowerShell on Windows

As mentioned in the Solution, the best way to get PowerShell is to install it through
the Microsoft Store. This makes it easy to install and easy to update. Once you've
installed it, you can find PowerShell in the Start Menu like you would any other
application.

If you want to install a system-wide version of PowerShell for auto-
mation and other adminstration tasks, you will likely prefer the
MSI-based installation mechanism. For more information, see the
Microsoft website.

While you're installing PowerShell from the Microsoft Store, now is a good time to
install the Windows Terminal application from the Microsoft Store. The traditional
console interface (the window that PowerShell runs inside of) included in Windows
has so many tools and applications depending on its exact quirks that it’s nearly
impossible to meaningfully change. It has fallen woefully behind on what you would
expect of a terminal console interface, so the Windows Terminal application from the
Microsoft Store, as shown in Figure 1-1, is the solution. Like PowerShell, it is open
source, a focus of rapid innovation, and a vast improvement to what ships in Win-
dows by default.

EX PowerShell X D lee@desk: /mi X | # Azure X + v — O X
PowerShell 7.1.3
Copyright (c) Microsoft Corporation.

https://aka.ms/powershell
Type 'help' to get help.

PS:1 > |

Figure 1-1. Windows Terminal running PowerShell, Bash, and even Azure Cloud Shell!

1.1Install PowerShell Core | 3

https://microsoft.com/PowerShell

You can run many shells within tabs in Windows Terminal: PowerShell, Windows
PowerShell, cmd.exe, Bash (if you've enabled the Windows Subsystem for Linux), and
even a connection to Azure Cloud Shell. Windows Terminal defaults to PowerShell if
you have it installed.

Customizing PowerShell on Windows Terminal

There are two changes to a default Windows Terminal + PowerShell installation that
really improve the experience: taskbar pinning, and themes.

Taskbar pinning. When you launch Windows Terminal, right-click on its taskbar icon.
Select “Pin to Taskbar”, and then drag the icon to the far left of the taskbar. From now
on, whenever you press the Windows Key + 1 at the same time, you'll either launch
Windows Terminal and PowerShell (if it’s not already open), or activate it. This is an
incredible way to keep your favorite shell close at hand.

Themes. Windows PowerShell has a gorgeous Noble Blue theme. Its easy on the eyes,
quick to identify, and sets it apart from the dozens of other shells out there. Power-
Shell Core did not take this color scheme with it by default, but it’s still possible to
customize your installation. From Windows Terminal, press Ctrl+Comma or click
the downward arrow on the right-hand side of the tab strip to open the Settings dia-
log of Windows Terminal. The file that contains these settings will open in your
default text editor. Under Profiles, find the item with Windows.Terminal.
PowershellCore as its source, and add Campbell Powershell as a colorScheme. The
result should look like this:

{
"guid": ...
"hidden": false,
"name": "PowerShell",
"colorScheme": "Campbell Powershell",
"source": "Windows.Terminal.PowershellCore"
1,

Pay attention to capitalization, quotes, colons, and commas, and you should have
your PowerShell sessions looking noble again in no time!

Installing and running PowerShell on Mac and Linux

For the most part, installing PowerShell on Mac and Linux follows the patterns that
you're likely already familiar with.

On Mac, the recommended installation method is through the popular Homebrew
package manager. Homebrew is not installed by default on macOS, but installation is
quite easy. If you haven’t installed Homebrew yet, you can find instructions at Home-
brew’s official site.

4 | Chapter 1: The PowerShell Interactive Shell

https://brew.sh
https://brew.sh

On Linux, the installation methods vary depending on the distribution you're interes-
ted in. For the most part, installation is as simple as registering the Microsoft reposi-
tory for your distribution’s package manager, and then installing PowerShell. The Sol-
ution provides an example specific to Ubuntu 20.04, but you can get specific instruc-
tions for your distribution and specific version on the Microsoft website.

1.2 Run Programs, Scripts, and Existing Tools

Problem

You rely on a lot of effort invested in your current tools. You have traditional executa-
bles, Perl scripts, VBScript, and of course, a legacy build system that has organically
grown into a tangled mess of batch files. You want to use PowerShell, but you don't
want to give up everything you already have.

Solution

To run a program, script, batch file, or other executable command in the system’s
path, enter its filename. For these executable types, the extension is optional:

Program.exe arguments
ScriptName.psl arguments
BatchFile.cmd arguments

To run a command that contains a space in its name, enclose its filename in single
quotes (') and precede the command with an ampersand (&), known in PowerShell as
the invoke operator:

& 'C:\Program Files\Program\Program.exe' arguments
To run a command in the current directory, place .\ in front of its filename:
.\Program.exe arguments

To run a command with spaces in its name from the current directory, precede it with
both an ampersand and . \:

& '.\Program With Spaces.exe' arguments

Discussion

In this case, the solution is mainly to use your current tools as you always have. The
only difference is that you run them in the PowerShell interactive shell rather than
cmd.exe.

Specifying the command name

The final three tips in the Solution merit special attention. They are the features of
PowerShell that many new users stumble on when it comes to running programs. The

1.2 Run Programs, Scripts, and Existing Tools | 5

https://oreil.ly/VKXLZ

first is running commands that contain spaces. In cmd.exe, the way to run a com-
mand that contains spaces is to surround it with quotes:

"C:\Program Files\Program\Program.exe"

In PowerShell, though, placing text inside quotes is part of a feature that lets you eval-
uate complex expressions at the prompt, as shown in Example 1-1.

Example 1-1. Evaluating expressions at the PowerShell prompt

PS>1+1

2

PS > 26 * 1.15

29.9

PS > "Hello" + " World"

Hello World

PS > "Hello World"

Hello World

PS > "C:\Program Files\Program\Program.exe"
C:\Program Files\Program\Program.exe
PS >

So, a program name in quotes is no different from any other string in quotes. It’s just
an expression. As shown previously, the way to run a command in a string is to pre-
cede that string with the invoke operator (&). If the command you want to run is a
batch file that modifies its environment, see Recipe 3.5.

By default, PowerShell’s security policies prevent scripts from run-
ning. Once you begin writing or using scripts, though, you should
configure this policy to something less restrictive. For information
on how to configure your execution policy, see Recipe 18.1.

The second command that new users (and seasoned veterans before coffee!) some-
times stumble on is running commands from the current directory. In cmd.exe, the
current directory is considered part of the path: the list of directories that Windows
searches to find the program name you typed. If you are in the C:\Programs directory,
cmd.exe looks in C:\Programs (among other places) for applications to run.

PowerShell, like most Unix shells, requires that you explicitly state your desire to run
a program from the current directory. To do that, you use the .\Program.exe syntax,
as shown previously. This prevents malicious users on your system from littering
your hard drive with evil programs that have names similar to (or the same as) com-
mands you might run while visiting that directory.

To save themselves from having to type the location of commonly used scripts and
programs, many users put commonly used utilities along with their PowerShell
scripts in a “tools” directory, which they add to their system’s path. If PowerShell can

6 | Chapter 1: The PowerShell Interactive Shell

find a script or utility in your system’s path, you do not need to explicitly specify its
location.

If you want PowerShell to automatically look in your current working directory for
scripts, you can add a period (.) to your PATH environment variable.

For more information about updating your system path, see Recipe 16.2.

If you want to capture the output of a command, you can either save the results into a
variable, or save the results into a file. To save the results into a variable, see Recipe
3.3. To save the results into a file, see Recipe 9.2.

Specifying command arguments

To specify arguments to a command, you can type them just as you would in other
shells. For example, to make a specified file read-only (two arguments to attrib.exe),

simply type:
attrib +R c:\path\to\file.txt

Where many scripters get misled when it comes to command arguments is how to
change them within your scripts. For example, how do you get the filename from a
PowerShell variable? The answer is to define a variable to hold the argument value,
and just use that in the place you used to write the command argument:

$filename = "c:\path\to\other\file.txt"

attrib +R $filename
You can use the same technique when you call a PowerShell cmdlet, script, or
function:

$filename = "c:\path\to\other\file.txt"

Get-Acl -Path $filename
If you see a solution that uses the Invoke-Expression cmdlet to compose command
arguments, it is almost certainly incorrect. The Invoke-Expression cmdlet takes the
string that you give it and treats it like a full PowerShell script. As just one example of
the problems this can cause, consider the following: filenames are allowed to contain
the semicolon (;) character, but when Invoke-Expression sees a semicolon, it
assumes that it is a new line of PowerShell script. For example, try running this:

$filename = "c:\file.txt; Write-Warning 'This could be bad'"

Invoke-Expression "Get-Acl -Path $filename"
Given that these dynamic arguments often come from user input, using Invoke-
Expression to compose commands can (at best) cause unpredictable script results.
Worse, it could result in damage to your system or a security vulnerability.

In addition to letting you supply arguments through variables one at a time, Power-
Shell also lets you supply several of them at once through a technique known as splat-
ting. For more information about splatting, see Recipe 11.14.

1.2 Run Programs, Scripts, and Existing Tools | 7

See Also

Recipe 3.3, “Store Information in Variables”

Recipe 3.5, “Program: Retain Changes to Environment Variables Set by a Batch File”
Recipe 11.14, “Dynamically Compose Command Parameters”

Recipe 16.2, “Modify the User or System Path”

Recipe 18.1, “Enable Scripting Through an Execution Policy”

1.3 Run a PowerShell Command

Problem

You want to run a PowerShell command.

Solution

To run a PowerShell command, type its name at the command prompt. For example:

PS > Get-Process

NPM(K) PM(M) WS(M) CPU(s) Id SI ProcessName
14 3.47 10.55 0.00 6476 0 AGMService
14 3.16 10.57 0.00 3704 0 AGSService
37 40.12 40.51 2.06 17676 1 ApplicationFrameHost
Discussion

The Get-Process command is an example of a native PowerShell command, called a
cmdlet. As compared to traditional commands, cmdlets provide significant benefits to
both administrators and developers:

o They share a common and regular command-line syntax.

o They support rich pipeline scenarios (using the output of one command as the
input of another).

o They produce easily manageable object-based output, rather than error-prone
plain-text output.

Because the Get-Process cmdlet generates rich object-based output, you can use its
output for many process-related tasks.

Every PowerShell command lets you provide input to the command through its
parameters. For more information on providing input to commands, see “Running
Commands” on page 841.

8 | Chapter 1: The PowerShell Interactive Shell

The Get-Process cmdlet is just one of the many that PowerShell supports. See Recipe
1.12 to learn techniques for finding additional commands that PowerShell supports.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 1.12, “Find a Command to Accomplish a Task”

Recipe 3.8, “Work with .NET Objects”

“Running Commands” on page 841

1.4 Resolve Errors Calling Native Executables

Problem

You have a command line that works from cmd.exe, and want to resolve errors that
occur from running that command in PowerShell.

Solution

Enclose any affected command arguments in single quotes to prevent them from
being interpreted by PowerShell, and replace any single quotes in the command with
two single quotes:

PS > cmd /c echo '!"#$%&''()*+,-./09:;<=>2@AZ[\]"*_"az{|}~'

PHSHE () *+,-.[09:5<=>2Q@AZ[\]"_"az{|}~
For complicated commands where this does not work, use the verbatim argument
(--%) syntax:

PS > cmd /c echo 'quotes' "and" $variables @{ etc = $true }
quotes and System.Collections.Hashtable

PS > cmd --% /c echo 'quotes' "and" $variables @{ etc = $true }
'quotes' "and" Svariables @{ etc = $true }

Discussion

One of PowerShell’s primary goals has always been command consistency. Because of
this, cmdlets are very regular in the way that they accept parameters. Native executa-
bles write their own parameter parsing, so you never know what to expect when
working with them. In addition, PowerShell offers many features that make you more
efficient at the command line: command substitution, variable expansion, and more.
Since many native executables were written before PowerShell was developed, they
may use special characters that conflict with these features.

1.4 Resolve Errors Calling Native Executables | 9

As an example, the command given in the Solution uses all the special characters
available on a typical keyboard. Without the quotes, PowerShell treats some of them
as language features, as shown in Table 1-1.

Table 1-1. Sample of special characters
" The beginning (or end) of quoted text
The beginning of a comment

The beginning of a variable

& The background pipeline operator
() Parentheses used for subexpressions
; Statement separator

{1} Script block

| Pipeline separator

Escape character

When surrounded by single quotes, PowerShell accepts these characters as written,
without the special meaning.

Despite these precautions, you may still sometimes run into a command that doesn't
seem to work when called from PowerShell. For the most part, you can resolve these
with the verbatim argument marker (--%) that prevents PowerShell from interpreting
any of the remaining characters on the line. You can place this marker anywhere in
the command’s arguments, letting you benefit from PowerShell constructs where
appropriate. The following example uses a PowerShell variable for some of the com-
mand arguments, but then uses verbatim arguments for the rest:

PS > Susername = "Lee"
PS > cmd /c echo Hello Susername with 'quotes' "and" $variables @{ etc = $true }
Hello Lee with quotes and System.Collections.Hashtable
PS > cmd /c echo Hello Susername °
--% with 'quotes' "and" $variables @{ etc = $true }
Hello Lee with 'quotes' "and" S$Svariables @{ etc = $true }

While in this mode, PowerShell also accepts cmd.exe-style environment variables—as
these are frequently used in commands that “just used to work™:

PS > $env:host = "localhost"

PS > ping %host%

Ping request could not find host %host%. Please check the name and try again.
PS > ping --% %host%

Pinging localhost [127.0.1.1] with 32 bytes of data:
(...)

10 | Chapter1: The PowerShell Interactive Shell

See Also
Appendix A, PowerShell Language and Environment

1.5 Supply Default Values for Parameters

Problem

You want to define a default value for a parameter in a PowerShell command.

Solution

Add an entry to the PSDefaultParameterValues hashtable:

PS > Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
150 13 9692 9612 39 21.43 996 audiodg
1013 84 45572 42716 315 1.67 4596 WWAHost
(...)

PS > $PSDefaultParameterValues["Get-Process:ID"] = $pid
PS > Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

584 62 132776 157940 985 13.15 9104 powershell

PS > Get-Process -Id 0

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
0 0 0 20 0 0 Idle
Discussion

In PowerShell, many commands (cmdlets and advanced functions) have parameters
that let you configure their behavior. For a full description of how to provide input to
commands, see “Running Commands” on page 841. Sometimes, though, supplying
values for those parameters at each invocation becomes awkward or repetitive.

In early versions of PowerShell, it was the responsibility of each cmdlet author to rec-
ognize awkward or repetitive configuration properties and build support for “prefer-
ence variables” into the cmdlet itself. For example, the Send-MailMessage cmdlet
looks for the $PSEmailServer variable if you do not supply a value for its
-SmtpServer parameter.

1.5 Supply Default Values for Parameters | 11

To make this support more consistent and configurable, PowerShell supports the
PSDefaultParameterValues preference variable. This preference variable is a hashta-
ble. Like all other PowerShell hashtables, entries come in two parts: the key and the
value.

Keys in the PSDefaultParameterValues hashtable must match the pattern
cmdlet:parameter—that is, a cmdlet name and parameter name, separated by a
colon. Either (or both) may use wildcards, and spaces between the command name,
colon, and parameter are ignored.

Values for the cmdlet/parameter pairs can be either a simple parameter value (a
string, boolean value, integer, etc.) or a script block. Simple parameter values are what
you will use most often.

If you need the default value to dynamically change based on what parameter values
are provided so far, you can use a script block as the default. When you do so, Power-
Shell evaluates the script block and uses its result as the default value. If your script
block doesn’t return a result, PowerShell doesn’t apply a default value.

When PowerShell invokes your script block, $args[@] contains information about
any parameters bound so far: BoundDefaultParameters, BoundParameters, and
BoundPositionalParameters. As one example of this, consider providing default val-
ues to the -Credential parameter based on the computer being connected to. Here’s
a function that simply outputs the credential being used:

function RemoteConnector
{
param(
[Parameter()]
S$ComputerName,

[Parameter(Mandatory = $true)]
$Credential)

"

"Connecting as " + $Credential.UserName

}

Now, you can define a credential map:

PS > $credmap = @{}
PS > $credmap["RemoteComputer1"]
PS > $credmap["RemoteComputer2"]

Get-Credential
Get-Credential

Then, create a parameter default for all Credential parameters that looks at the
ComputerName bound parameter:

12 | Chapter 1: The PowerShell Interactive Shell

$PSDefaultParameterValues["*:Credential"] = {
1f(Sargs[0].BoundParameters -contains "ComputerName")

Scred = Scredmap[$PSBoundParameters["ComputerName"]]
if(Scred) { Scred }

}
Here is an example of this in use:

PS > RemoteConnector -ComputerName RemoteComputerl
Connecting as UserForRemoteComputeril
PS > RemoteConnector -ComputerName RemoteComputer2
Connecting as UserForRemoteComputer?2
PS > RemoteConnector -ComputerName RemoteComputer3

cmdlet RemoteConnector at command pipeline position 1
Supply values for the following parameters:
Credential: (...)

For more information about working with hashtables in PowerShell, see “Hashtables
(Associative Arrays)” on page 809.

See Also
“Hashtables (Associative Arrays)” on page 809

“Running Commands” on page 841

1.6 Invoke a Long-Running or Background Command

Problem

You want to invoke a long-running command on a local or remote computer.

Solution

Invoke the command as a Job to have PowerShell run it in the background:

PS > Start-Job { while(Strue) { Get-Random; Start-Sleep 5 } } -Name Sleeper

Id Name State HasMoreData Location

1 Sleeper Running True localhost

PS > Receive-Job Sleeper
671032665

1862308704

PS > Stop-Job Sleeper

Or, if your command is a single pipeline, place a & character at the end of the line to
run that pipeline in the background:

1.6 Invoke a Long-Running or Background Command | 13

PS > dir c:\windows\system32 -recurse &

Id Name PSJobTypeName State HasMore
Data

1 Job1 BackgroundJob Running True

PS > 1+1

2

PS > Receive-Job -id 1 | Select -First 5

Directory: C:\Windows\System32

Mode LastWriteTime Length Name

d---- 12/7/2019 1:50 AM 0409

d---- 11/5/2020 7:09 AM 1028

d---- 11/5/2020 7:09 AM 1029

d---- 11/5/2020 7:09 AM 1031

d---- 11/5/2020 7:09 AM 1033
Discussion

PowerShell’s job cmdlets provide a consistent way to create and interact with back-
ground tasks. In the Solution, we use the Start-Job cmdlet to launch a background
job on the local computer. We give it the name of Sleeper, but otherwise we don’t
customize much of its execution environment.

In addition to allowing you to customize the job name, the Start-Job cmdlet also
lets you launch the job under alternate user credentials or as a 32-bit process (if run
originally from a 64-bit process).

As an alternative to the Start-Job cmdlet, you can also use the Start-ThreadJob
cmdlet. The Start-ThreadJob cmdlet is a bit quicker at starting background jobs and
also lets you supply and interact with live objects in the jobs that you create. However,
it consumes resources of your current PowerShell process and does not let you run
your job under alternate user credentials.

Once you have launched a job, you can use the other Job cmdlets to interact with it:

Get-Job
Gets all jobs associated with the current session. In addition, the -Before,
-After, -Newest, and -State parameters let you filter jobs based on their state or
completion time.

Wait-Job
Waits for a job until it has output ready to be retrieved.

14 | Chapter 1: The PowerShell Interactive Shell

Receive-Job
Retrieves any output the job has generated since the last call to Receive-Job.

Stop-Job
Stops a job.

Remove-Job
Removes a job from the list of active jobs.

In addition to the Start-Job cmdlet, you can also use the -AsJob
parameter in many cmdlets to have them perform their tasks in the
background. Two of the most useful examples are the Invoke-
Command cmdlet (when operating against remote computers) and
the ForEach-0Object cmdlet.

If your job generates an error, the Receive-Job cmdlet will display it to you when you
receive the results, as shown in Example 1-2. If you want to investigate these errors
further, the object returned by Get-Job exposes them through the Error property.

Example 1-2. Retrieving errors from a Job
PS > Start-Job -Name ErrorJob { Write-Error Error! }
Id Name State HasMoreData Location

1 ErrorJob Running True localhost
PS > Receive-Job ErrorJob
Write-Error: Error!

PS > $job = Get-Job ErrorJob
PS > $job | Format-List *

State : Completed

HasMoreData : False

StatusMessage :

Location : localhost

Command : Write-Error Error!

JobStateInfo : Completed

Finished : System.Threading.ManualResetEvent
Instanceld : 801e932c-5580-4c8b-af06-ddd1024840b7
Id 1

Name : ErrorJob

ChildJobs : {Job2}

Output : {3

Error : {3

Progress : {3

Verbose : {3

Debug : {3

1.6 Invoke a Long-Running or Background Command | 15

Warning HE

PS > $job.ChildJobs[0] | Format-List *

State : Completed

StatusMessage :

HasMoreData : False

Location : localhost

Runspace : System.Management.Automation.RemoteRunspace

Command ¢ Write-Error Error!

JobStateInfo : Completed

Finished : System.Threading.ManualResetEvent

Instanceld : 60fa85da-448b-49ff-8116-6eae6c3f5006

Id HA

Name : Job2

ChildJobs : {3

Output HE

Error : {Microsoft.PowerShell.Commands.WriteErrorException,Microso
ft.PowerShell.Commands.WriteErrorCommand}

Progress HE

Verbose HE

Debug HE

Warning HE

PS > $job.ChildJobs[0].Error
Write-Error: Error!

PS >

As this example shows, jobs are sometimes containers for other jobs, called child jobs.
Jobs created through the Start-Job cmdlet will always be child jobs attached to a
generic container. To access the errors returned by these jobs, you instead access the
errors in its first child job (called child job number zero).

In addition to long-running jobs that execute under control of the current PowerShell
session, you might want to register and control jobs that run on a schedule, or inde-
pendently of the current PowerShell session. PowerShell has a handful of commands
to let you work with scheduled jobs like this; for more information, see Recipe 27.14.

See Also
Recipe 27.14, “Manage Scheduled Tasks on a Computer”

Recipe 29.5, “Invoke a Command on a Remote Computer”

1.7 Program: Monitor a Command for Changes

As thrilling as our lives are, some days are reduced to running a command over and
over and over. Did the files finish copying yet? Is the build finished? Is the site still
up?

16 | Chapter 1: The PowerShell Interactive Shell

Usually, the answer to these questions comes from running a command, looking at its
output, and then deciding whether it meets your criteria. And usually this means just
waiting for the output to change, waiting for some text to appear, or waiting for some
text to disappear.

Fortunately, Example 1-3 automates this tedious process for you.

Example 1-3. Watch-Command.ps1

##
Watch-Command

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www. leeholmes.com/guide)
##

<#
.SYNOPSIS

Watches the result of a command invocation, alerting you when the output
either matches a specified string, lacks a specified string, or has simply
changed.

. EXAMPLE

PS > Watch-Command { Get-Process -Name Notepad | Measure } -UntilChanged
Monitors Notepad processes until you start or stop one.

. EXAMPLE

PS > Watch-Command { Get-Process -Name Notepad | Measure } -Until "Count 21"
Monitors Notepad processes until there is exactly one open.

. EXAMPLE

PS > Watch-Command {

Get-Process -Name Notepad | Measure } -While 'Count s \dls*|n’
Monitors Notepad processes while there are between 0 and 9 open
(once number after the colon).

#>

[CmdletBinding(DefaultParameterSetName = "Forever")]
param(
The script block to invoke while monitoring
[Parameter(Mandatory = $true, Position = 0)]
[ScriptBlock] $ScriptBlock,

The delay, in seconds, between monitoring attempts
[Parameter()]
[Double] $DelaySeconds = 1,

1.7 Program: Monitor a Command for Changes | 17

Specifies that the alert sound should not be played
[Parameter()]
[Switch] $Quiet,

Monitoring continues only while the output of the

command remains the same.

[Parameter(ParameterSetName = "UntilChanged", Mandatory = $false)]
[Switch] $UntilChanged,

The regular expression to search for. Monitoring continues
until this expression is found.
[Parameter(ParameterSetName = "Until", Mandatory = $false)]
[String] $Suntil,

The regular expression to search for. Monitoring continues
until this expression is not found.
[Parameter(ParameterSetName = "While", Mandatory = $false)]
[String] $SWhile

)

Set-StrictMode -Version 3

SinitialOutput = ""
$lastCursorTop = 0
Clear-Host

Start a continuous loop
while(Strue)
{
Run the provided script block
$r = & $ScriptBlock

Clear the screen and display the results
Sbuffer = $ScriptBlock.ToString().Trim() + "'r'n"
Sbuffer += ""r’n"

StextOutput = $r | Out-String

Sbuffer += StextOutput

[Console]::SetCursorPosition(0, 0)
[Console]::Write(Sbuffer)

$currentCursorTop = [Console]::CursorTop
$linesToClear = $lastCursorTop - ScurrentCursorTop
if($linesToClear -gt 0)
{
[Console]::Write((" " * [Console]::WindowWidth * $linesToClear))
}

$lastCursorTop = [Console]::CursorTop
[Console]::SetCursorPosition(0, 0)

Remember the initial output, if we haven't
stored it yet

if(-not $initialOutput)

{

18 | Chapter 1: The PowerShell Interactive Shell

SinitialOutput = S$textOutput
}

If we are just looking for any change,
see if the text has changed.

if($UntilChanged)
{
if(SinitialOutput -ne StextOutput)
{
break
}

}

If we need to ensure some text is found,
break if we didn't find it.

if($While)
{
if(StextOutput -notmatch SWhile)
{
break
}

}

If we need to wait for some text to be found,
break if we find 1it.
if($Until)

if(StextOutput -match $SUntil)

{
break

}
}

Delay
Start-Sleep -Seconds $DelaySeconds
}

Notify the user
if(-not $Quiet)

{
[Console]: :Beep(1000, 1000)

}

For more information about running scripts, see Recipe 1.2.

See Also

Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

1.7 Program: Monitor a Command for Changes

19

1.8 Notify Yourself of Job Completion

Problem

You want to notify yourself when a long-running job completes.

Solution

Use the Register-TemporaryEvent command given in Recipe 31.3 to register for the
event’s StateChanged event:
PS > $job = Start-Job -Name TenSecondSleep { Start-Sleep 10 }
PS > Register-TemporaryEvent $job StateChanged -Action {
[Console]: :Beep(100,100)

Write-Host "Job #$($sender.Id) ($(Ssender.Name)) complete."
}

PS > Job #6 (TenSecondSleep) complete.
PS >

Discussion

When a job completes, it raises a StateChanged event to notify subscribers that its
state has changed. We can use PowerShell’s event handling cmdlets to register for
notifications about this event, but they’re not geared toward this type of one-time
event handling. To solve that, we use the Register-TemporaryEvent command given
in Recipe 31.3.

In our example action block in the Solution, we simply emit a beep and write a mes-
sage saying that the job is complete.

As another option, you can also update your prompt function to highlight jobs that
are complete but still have output you haven't processed:

$psJobs = @(Get-Job -State Completed | ? { $_.HasMoreData })
if($psJobs.Count -gt 0) {
($psJobs | Out-String).Trim() | Write-Host -Fore Yellow }

For more information about events and this type of automatic event handling, see
Chapter 31.

See Also

Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Chapter 31

20 | Chapter 1: The PowerShell Interactive Shell

1.9 Customize Your Shell, Profile, and Prompt

Problem

You want to customize PowerShell’s interactive experience with a personalized
prompt, aliases, and more.

Solution

When you want to customize aspects of PowerShell, place those customizations in
your personal profile script. PowerShell provides easy access to this profile script by
storing its location in the $profile variable.

By default, PowerShell’s security policies prevent scripts (including
your profile) from running. Once you begin writing scripts,
though, you should configure this policy to something less restric-
tive. For information on how to configure your execution policy,
see Recipe 18.1.

To create a new profile (and overwrite one if it already exists):
New-Item -type file -force S$profile

To edit your profile (in Visual Studio Code, if you have it installed):
code Sprofile

To see your profile file:
Get-ChildItem S$Sprofile

Once you create a profile script, you can add a function called prompt that returns a
string. PowerShell displays the output of this function as your command-line prompt:

function prompt

{
"PS [$env:COMPUTERNAME] >"

}
This example prompt displays your computer name, and looks like PS [LEE-DESK] >.

You may also find it helpful to add aliases to your profile. Aliases let you refer to com-
mon commands by a name that you choose. Personal profile scripts let you automati-
cally define aliases, functions, variables, or any other customizations that you might
set interactively from the PowerShell prompt. Aliases are among the most common
customizations, as they let you refer to PowerShell commands (and your own scripts)
by a name that is easier to type.

1.9 Customize Your Shell, Profile, and Prompt | 21

If you want to define an alias for a command but also need to mod-
ify the parameters to that command, then define a function
instead. For more information, see Recipe 11.14.

For example:

Set-Alias new New-Object
Set-Alias browse 'C:\Users\lee\AppData\Local\Microsoft*\MicrosoftEdge.exe'

Your changes will become effective once you save your profile and restart PowerShell.
Alternatively, you can reload your profile immediately by running this command:

. Sprofile

Functions are also very common customizations, with the most popular being the
prompt function.

Discussion

The Solution discusses three techniques to make useful customizations to your Pow-
erShell environment: aliases, functions, and a hand-tailored prompt. You can (and
will often) apply these techniques at any time during your PowerShell session, but
your profile script is the standard place to put customizations that you want to apply
to every session.

To remove an alias or function, use the Remove-Item cmdlet:

Remove-Item function:\MyCustomFunction
Remove-Item alias:\new

Although the prompt function returns a simple string, you can also use the function
for more complex tasks. For example, many users update their console window title
(by changing the $host.UI.RawUI.WindowTitle variable) or use the Write-Host
cmdlet to output the prompt in color. If your prompt function handles the screen
output itself, it still needs to return a string (for example, a single space) to prevent
PowerShell from using its default. If you don’t want this extra space to appear in your
prompt, add an extra space at the end of your Write-Host command and return the
backspace (" *b") character, as shown in Example 1-4.

22 | Chapter 1: The PowerShell Interactive Shell

Example 1-4. An example PowerShell prompt

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

Set-StrictMode -Version 3

function prompt

{
$id = 1
ShistoryItem = Get-History -Count 1
if(ShistoryItem)
{

$1d = ShistoryItem.Id + 1

}
Write-Host -ForegroundColor DarkGray "“n[$(Get-Location)]"
Write-Host -NoNewLine "PS:$id > "
Shost.UI.RawUI.WindowTitle = "$(Get-Location)"
nepn

}

In addition to showing the current location, this prompt also shows the ID for that
command in your history. This lets you locate and invoke past commands with rela-
tive ease:

[C:\]

PS:73 >5 * 5
25

[C:\]
PS:74 >1 + 1
2

[C:\]

PS:75 >Invoke-History 73
5%5

25

[C:\]

PS:76 >
Although the profile referenced by $profile is the one you will almost always want
to use, PowerShell actually supports four separate profile scripts. For further details
on these scripts (along with other shell customization options), see “Common Cus-
tomization Points” on page 855.

1.9 Customize Your Shell, Profile, and Prompt | 23

See Also
Recipe 18.1, “Enable Scripting Through an Execution Policy”

“Common Customization Points” on page 855

1.10 Customize PowerShell’s User Input Behavior

Problem

You want to override the way that PowerShell reads and handles input at the prompt.

Solution

Use the Set-PSReadLineOption cmdlet to configure properties such as EditMode
(Windows, VI, Emacs) and history management. For example, to make the continua-
tion line for incomplete input a bit more red than usual:

Set-PSReadLineOption -Colors @{ ContinuationPrompt = "#663333" }

Use the Set-PSReadLineKeyHandler command to configure how PSReadLine
responds to your actual keypresses. For example, to add forward and backward direc-
tory history navigation for Alt+Comma and Alt+Period:
Set-PSReadlLineKeyHandler -Chord 'Alt+,' -ScriptBlock {
Set-Location -
[Microsoft.PowerShell.PSConsoleReadLine]: :RevertLine()

[Microsoft.PowerShell.PSConsoleReadLine]: :AcceptLine()
}

Set-PSReadlLineKeyHandler -Chord 'Alt+.' -ScriptBlock {
Set-Location +
[Microsoft.PowerShell.PSConsoleReadLine]: :RevertLine()
[Microsoft.PowerShell.PSConsoleReadLine]: :AcceptLine()

}

Discussion

When PowerShell first came on the scene, Unix folks were among the first to notice.
Theyd enjoyed a powerful shell and a vigorous heritage of automation for years—and
“when I'm forced to use Windows, PowerShell rocks” is a phrase we've heard many
times.

This natural uptake was no mistake. There are many on the team who come from a
deep Unix background, and similarities to traditional Unix shells were intentional.
For folks coming from other shells, though, we still hear the occasional grumble that
some feature or another feels weird. Alt+P doesn’t launch the built-in paging utility?
Ctrl+XX doesn't move between the beginning of the line and current cursor position?
Abhorrent!

24 | Chapter 1: The PowerShell Interactive Shell

In early versions of PowerShell, there was nothing you could reasonably do to address
this. In those versions, PowerShell read its input from the console in what is known as
Cooked Mode—where the Windows console subsystem handles all the keypresses,
fancy F7 menus, and more. When you press Enter or Tab, PowerShell gets the text of
what you have typed so far, but that’s it. There is no way for it to know that you had
pressed the (Unix-like) Ctrl+R, Ctrl+A, Ctrl+E, or any other keys.

In later versions of PowerShell, most of these questions have gone away with the
introduction of the fantastic PSReadLine module that PowerShell uses for command-
line input. PSReadLine adds rich syntax highlighting, tab completion, history naviga-
tion, and more.

The PSReadLine module lets you configure it to an incredible degree. The
Set-PSReadLineOption cmdlet supports options for its UT, input handling mode, his-
tory processing, and much more:

EditMode BellStyle
ContinuationPrompt CompletionQueryItems
HistoryNoDuplicates WordDelimiters
AddToHistoryHandler HistorySearchCaseSensitive
CommandValidationHandler HistorySaveStyle
HistorySearchCursorMovesToEnd HistorySavePath
MaximumHistoryCount AnsiEscapeTimeout
MaximumKillRingCount PromptText
ShowToolTips ViModeIndicator
ExtraPromptLineCount ViModeChangeHandler
DingTone PredictionSource
DingDuration Colors

In addition to letting you configure its runtime behavior, you can also configure how
your keypresses cause it to react. To see all of the behaviors that you can map to key
presses, run Get-PSReadLineKeyHandler. PSReadLine offers pages of options—many
of them not currently assigned to any keypress:

PS > Get-PSReadLineKeyHandler

Basic editing functions

Key Function Description

Enter AcceptLine Accept the input or move to the next line if
input is missing a closing token.

Shift+Enter AddLine Move the cursor to the next line without
attempting to execute the input

Backspace BackwardDeleteChar Delete the character before the cursor

Ctrl+h BackwardDeleteChar Delete the character before the cursor

Ctrl+Home BackwardDeletelLine Delete text from the cursor to the start of
the line

Ctrl+Backspace BackwardKillWord Move the text from the start of the current
or previous word to the cursor to the kill
ring

1.10 Customize PowerShell’s User Input Behavior | 25

Ctri+w BackwardKillWord Move the text from the start of the current
or previous word to the cursor to...
(...)
To configure any of these functions, use the Set-PSReadLineKeyHandler command.
For example, to set Ctrl+Shift+C to capture colorized regions of the buffer into your
clipboard, run:

Set-PSReadLineKeyHandler -Chord Ctrl+Shift+C -Function CaptureScreen

If there isnmt a pre-defined function to do what you want, you can use the
-ScriptBlock parameter to have PSReadLine run any code of your choosing when
you press a key or key combination. The example given by the Solution demonstrates
this by adding forward and backward directory history navigation.

To make any of these changes persist, simply add these commands to your Power-
Shell Profile.

Although really only for extremely advanced scenarios now that PSReadLine covers
almost everything you would ever need, you can customize or augment this function-
ality even further through the PSConsoleHostReadLine function. When you define
this method in the PowerShell console host, PowerShell calls that function instead of
Windows’ default Cooked Mode input functionality. The default version of this func-
tion launches PSReadLine’s ReadLine input handler. But if you wish to redefine this
completely, that's it—the rest is up to you. If youd like to implement a custom input
method, the freedom (and responsibility) is all yours.

When you define this function, it must process the user input and return the result-
ing command. Example 1-5 implements a somewhat ridiculous Notepad-based user
input mechanism:

Example 1-5. A Notepad-based user input mechanism

function PSConsoleHostReadlLine

{
S$inputFile = Join-Path $env:TEMP PSConsoleHostReadlLine
Set-Content $inputFile "PS > "

Notepad opens. Enter your command in it, save the file,
and then exit.

notepad S$inputFile | Out-Null

SuserInput = Get-Content $inputFile

$resultingCommand = SuserInput.Replace("PS >", "")
$resultingCommand

}

For more information about handling keypresses and other forms of user input, see
Chapter 13.

26 | Chapter 1: The PowerShell Interactive Shell

See Also
Recipe 1.9, “Customize Your Shell, Profile, and Prompt”
Chapter 13

1.11 Customize PowerShell’s Command Resolution
Behavior

Problem

You want to override or customize the command that PowerShell invokes before it’s
invoked.

Solution

Assign a script block to one or all of the PreCommandLookupAction, PostCommand
LookupAction, or CommandNotFoundAction properties of $SexecutionContext.Ses
sionState.InvokeCommand. Example 1-6 enables easy parent directory navigation
when you type multiple dots.

Example 1-6. Enabling easy parent path navigation through CommandNotFoundAction

##

Add-RelativePathCapture

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

<#
.SYNOPSIS

Adds a new CommandNotFound handler that captures relative path
navigation without having to explicitly call 'Set-Location'

. EXAMPLE

PS C:\Users|Lee|\Documents>. .
PS C:\Users|Lee>...

PS C:|>

#>

Set-StrictMode -Version 3

SexecutionContext.SessionState.InvokeCommand.CommandNotFoundAction = {

1.11 Customize PowerShell’s Command Resolution Behavior | 27

param(S$CommandName, $CommandLookupEventArgs)

If the command is only dots
if($CommandName -match '~\.+$')
{

Associate a new command that should be invoked instead
$CommandLookupEventArgs.CommandScriptBlock = {

Count the number of dots, and run "Set-Location .." one
less time.
for(Scounter = 0; S$counter -1t $CommandName.Length - 1; Scounter++)

{

Set-Location ..

}

We call GetNewClosure() so that the reference to SCommandName can
be used in the new command.
}.GetNewClosure()

Stop going through the command resolution process. This isn't
strictly required in the CommandNotFoundAction.
S$CommandLookupEventArgs.StopSearch = S$true

}

Discussion

When you invoke a command in PowerShell, the engine goes through three distinct
phases:

1. Retrieve the text of the command.
2. Find the command for that text.

3. Invoke the command that was found.

In PowerShell the $executionContext.SessionState.InvokeCommand property lets
you override any of these stages with script blocks to intercept any or all of the
PreCommandLookupAction, PostCommandLookupAction, or CommandNotFoundAction
stages.

Each script block receives two parameters: the command name, and an object
(CommandLookupEventArgs) to control the command lookup behavior. If your han-
dler assigns a script block to the CommandScriptBlock property of the Command
LookupEventArgs or assigns a CommandInfo to the Command property of the Command
LookupEventArgs, PowerShell will use that script block or command, respectively. If
your script block sets the StopSearch property to true, PowerShell will do no further
command resolution.

PowerShell invokes the PreCommandLookupAction script block when it knows the
name of a command (i.e., Get-Process) but hasn't yet looked for the command itself.

28 | Chapter 1: The PowerShell Interactive Shell

You can override this action if you want to react primarily based on the text of the
command name or want to preempt PowerShell’s regular command or alias resolu-
tion. For example, Example 1-7 demonstrates a PreCommandLookupAction that looks
for commands with an asterisk before their name. When it sees one, it enables the
-Verbose parameter.

Example 1-7. Customizing the PreCommandLookupAction

SexecutionContext.SessionState.InvokeCommand.PreCommandLookupAction = {
param(S$CommandName, $CommandLookupEventArgs)

}

PS
PS
PS
PS

>
>
>

>

If the command name starts with an asterisk, then
enable its Verbose parameter
if($CommandName -match "*")

{

Remove the leading asterisk
SNewCommandName = $CommandName -replace '*',''
Create a new script block that invokes the actual command,
passes along all original arguments, and adds in the -Verbose
parameter
$CommandLookupEventArgs.CommandScriptBlock = {

& SNewCommandName @args -Verbose

We call GetNewClosure() so that the reference to $NewCommandName
can be used in the new command.
}.GetNewClosure()

dir > 1.txt
dir > 2.txt
del 1.txt

*del 2.txt
VERBOSE: Performing operation "Remove file" on Target "C:\temp\tempfolder\2.txt".

After PowerShell executes the PreCommandLookupAction (if one exists and doesn’t
return a command), it goes through its regular command resolution. If it finds a
command, it invokes the script block associated with the PostCommandLookupAction.
You can override this action if you want to react primarily to a command that is just
about to be invoked. Example 1-8 demonstrates a PostCommandLookupAction that tal-
lies the commands you use most frequently.

Example 1-8. Customizing the PostCommandLookupAction

SexecutionContext.SessionState.InvokeCommand.PostCommandLookupAction = {
param(S$CommandName, $CommandLookupEventArgs)

Stores a hashtable of the commands we use most frequently
if(-not (Test-Path variable:\CommandCount))

1.11 Customize PowerShell’'s Command Resolution Behavior

29

{
$global:CommandCount = @{}

}

If 1t was launched by us (rather than as an internal helper
command), record its invocation.
if($CommandLookupEventArgs.CommandOrigin -eq "Runspace")

{
ScommandCount[$CommandName] = 1 + $commandCount[$CommandName]
}
}
PS > Get-Variable commandCount
PS > Get-Process -id $pid
PS > Get-Process -id $pid
PS > $commandCount
Name Value

Out-Default 4
Get-Variable 1
prompt 4
Get-Process 2

If command resolution is unsuccessful, PowerShell invokes the CommandNotFound
Action script block if one exists. At its simplest, you can override this action if you
want to recover from or override PowerShell’s error behavior when it cannot find a
command.

As a more advanced application, the CommandNotFoundAction lets you write Power-
Shell extensions that alter their behavior based on the form of the name, rather than
the arguments passed to it. For example, you might want to automatically launch
URLs just by typing them or navigate around providers just by typing relative path
locations.

The Solution gives an example of implementing this type of handler. While dynamic
relative path navigation is not a built-in feature of PowerShell, it’s possible to get a
very reasonable alternative by intercepting the CommandNotFoundAction. If we see a
missing command that has a pattern we want to handle (a series of dots), we return a
script block that does the appropriate relative path navigation.

1.12 Find a Command to Accomplish a Task

Problem

You want to accomplish a task in PowerShell but don’t know the command or cmdlet
to accomplish that task.

30 | Chapter 1: The PowerShell Interactive Shell

Solution
Use the Get-Command cmdlet to search for and investigate commands.

To get the summary information about a specific command, specify the command
name as an argument:

Get-Command CommandName

To get the detailed information about a specific command, pipe the output of
Get-Command to the Format-List cmdlet:

Get-Command CommandName | Format-List

To search for all commands with a name that contains text, surround the text with
asterisk characters:

Get-Command *text*
To search for all commands that use the Get verb, supply Get to the -Verb parameter:
Get-Command -Verb Get

To search for all commands that act on a service, use Service as the value of the
-Noun parameter:

Get-Command -Noun Service

Discussion

One of the benefits that PowerShell provides administrators is the consistency of its
command names. All PowerShell commands (called cmadlets) follow a regular Verb-
Noun pattern—for example, Get-Process, Get-Service, and Set-Location. The
verbs come from a relatively small set of standard verbs (as listed in Appendix J) and
describe what action the cmdlet takes. The nouns are specific to the cmdlet and
describe what the cmdlet acts on.

Knowing this philosophy, you can easily learn to work with groups of cmdlets. If you
want to start a service on the local machine, the standard verb for that is Start. A
good guess would be to first try Start-Service (which in this case would be correct),
but typing Get-Command -Verb Start would also be an effective way to see what
things you can start. Going the other way, you can see what actions are supported on
services by typing Get-Command -Noun Service.

When you use the Get-Command cmdlet, PowerShell returns results from the list of all
commands available on your system. If youd instead like to search just commands
from modules that you've loaded either explicitly or through autoloading, use the
-ListImported parameter. For more information about PowerShell’s autoloading of
commands, see Recipe 1.28.

1.12 Find a Command to AccomplishaTask | 31

See Recipe 1.13 for a way to list all commands along with a brief description of what
they do.

The Get-Command cmdlet is one of the three commands you will use most commonly
as you explore PowerShell. The other two commands are Get-Help and Get-Member.

There is one important point to keep in mind when it comes to looking for a Power-
Shell command to accomplish a particular task. Many times, that PowerShell com-
mand does not exist, because the task is best accomplished the same way it always
was—for example, ipconfig.exe to get IP configuration information, netstat.exe
to list protocol statistics and current TCP/IP network connections, and many more.

For more information about the Get-Command cmdlet, type Get-Help Get-Command.

See Also
Recipe 1.13

1.13 Get Help on a Command

Problem

You want to learn how a specific command works and how to use it.

Solution

The command that provides help and usage information about a command is called
Get-Help. It supports several different views of the help information, depending on
your needs.

To get the summary of help information for a specific command, provide the com-
mand’s name as an argument to the Get-Help cmdlet. This primarily includes its syn-
opsis, syntax, and detailed description:

Get-Help CommandName
or:
CommandName -?

To get the detailed help information for a specific command, supply the -Detailed
flag to the Get-Help cmdlet. In addition to the summary view, this also includes its
parameter descriptions and examples:

Get-Help CommandName -Detailed

To get the full help information for a specific command, supply the -Full flag to the
Get-Help cmdlet. In addition to the detailed view, this also includes its full parameter
descriptions and additional notes:

32 | Chapter 1: The PowerShell Interactive Shell

Get-Help CommandName -Full

To get only the examples for a specific command, supply the -Examples flag to the
Get-Help cmdlet:

Get-Help CommandName -Examples

To retrieve the most up-to-date online version of a command’s help topic, supply the
-Online flag to the Get-Help cmdlet:

Get-Help CommandName -Online
To view a searchable, graphical view of a help topic, use the -ShowWindow parameter:
Get-Help CommandName -ShowWindow

To find all help topics that contain a given keyword, provide that keyword as an argu-
ment to the Get-Help cmdlet. If the keyword isn’t also the name of a specific help
topic, this returns all help topics that contain the keyword, including its name, cate-
gory, and synopsis:

Get-Help Keyword

Discussion

The Get-Help cmdlet is the primary way to interact with the help system in Power-
Shell. Like the Get-Command cmdlet, the Get-Help cmdlet supports wildcards. If you
want to list all commands that have help content that matches a certain pattern (for
example, process), you can simply type:

Get-Help *process*

If the pattern matches only a single command, PowerShell displays the help for that
command. Although command wildcarding and keyword searching is a helpful way
to search PowerShell help, see Recipe 1.15 for a script that lets you search the help
content for a specified pattern.

While there are thousands of pages of custom-written help content at your disposal,
PowerShell by default includes only information that it can automatically generate
from the information contained in the commands themselves: names, parameters,
syntax, and parameter defaults. You need to update your help content to retrieve the
rest. When you run Get-Help for a command that you haven’t downloaded help con-
tent for, you will see the following remarks as part of that help:

REMARKS

Get-Help cannot find the Help files for this cmdlet on this computer.
It is displaying only partial help.

-- To download and install Help files for the module that includes
this cmdlet, use Update-Help.

-- To view the Help topic for this cmdlet online, type: "Get-Help
Get-Process -Online" or

go to https://go.microsoft.com/fwlink/?LinkID=2096814.

1.13 GetHelponaCommand | 33

Run the Update-Help cmdlet, and PowerShell automatically downloads and installs
the most recent help content for all modules on your system. For more information
on updatable help, see Recipe 1.14.

If youd like to generate a list of all cmdlets and aliases (along with their brief synop-
ses), run the following command:

Get-Help * -Category Cmdlet | Select-Object Name,Synopsis | Format-Table -Auto

In addition to console-based help, PowerShell also offers online access to its help con-
tent. The Solution demonstrates how to quickly access online help content.

The Get-Help cmdlet is one of the three commands you will use most commonly as
you explore PowerShell. The other two commands are Get-Command and Get-Member.

For more information about the Get-Help cmdlet, type Get-Help Get-Help.

See Also
Recipe 1.15, “Program: Search Help for Text”

1.14 Update System Help Content

Problem

You want to update your system’s help content to the latest available.

Solution

Run the Update-Help command. To retrieve help from a local path, use the
-SourcePath cmdlet parameter:

Update-Help
or:

Update-Help -SourcePath ||helpserver|help

Discussion

One of PowerShell’s greatest strengths is the incredible detail of its help content.
Counting only the help content and about_* topics that describe core functionality,
PowerShell’s help includes approximately half a million words and would span 1,200
pages if printed.

The challenge that every version of PowerShell has been forced to deal with is that
this help content is written at the same time as PowerShell itself. Given that its goal is
to help the user, the content that’s ready by the time a version of PowerShell releases is
a best-effort estimate of what users will need help with.

34 | Chapter 1: The PowerShell Interactive Shell

As users get their hands on PowerShell, they start to have questions. Some of these
are addressed by the help topics, while some of them aren’t. Sometimes the help is
simply incorrect due to a product change during the release. To address this, Power-
Shell supports updatable help.

It’s not only possible to update help, but in fact the Update-Help command is the only
way to get help on your system. Out of the box, PowerShell provides an experience
derived solely from what is built into the commands themselves: name, syntax,
parameters, and default values.

When you run Get-Help for a command that you haven't downloaded help content
for, you'll see the following remarks as part of that help:
REMARKS
Get-Help cannot find the Help files for this cmdlet on this computer.
It is displaying only partial help.
-- To download and install Help files for the module that includes
this cmdlet, use Update-Help.
-- To view the Help topic for this cmdlet online, type: "Get-Help
Get-Process -Online" or
go to https://go.microsoft.com/fwlink/?LinkID=2096814.
Run the Update-Help cmdlet, and PowerShell automatically downloads and installs
the most recent help content for all modules on your system.

When you run Update-Help, PowerShell looks at each module on your system, com-
paring the help you have for that module with the latest version online. For in-box
modules, PowerShell uses download.microsoft.com to retrieve updated help content.
Other modules that you download from the internet can use the HelpInfoUri mod-
ule key to support their own updatable help.

PowerShell stores this content in the PowerShell\Help directory in your user docu-
ments or home directory.

By default, the Update-Help command retrieves its content from the internet. If you
want to update help on a machine not connected to the internet, you can use the
-SourcePath parameter of the Update-Help cmdlet. This path represents a directory
or UNC path where PowerShell should look for updated help content. To populate
this content, first use the Save-Help cmdlet to download the files, and then copy
them to the source location.

For more information about PowerShell help, see Recipe 1.13.

See Also
Recipe 1.13, “Get Help on a Command”

1.14 Update System Help Content | 35

1.15 Program: Search Help for Text

Both the Get-Command and Get-Help cmdlets let you search for command names that
match a given pattern. However, when you don't know exactly what portions of a
command name you are looking for, you will more often have success searching
through the help content for an answer. On Unix systems, this command is called
Apropos.

The Get-Help cmdlet automatically searches the help database for keyword refer-
ences when it can’t find a help topic for the argument you supply. In addition to that,
you might want to extend this even further to search for text patterns or even help
topics that talk about existing help topics. PowerShell’s help facilities support a ver-
sion of wildcarded content searches, but don’t support full regular expressions.

That doesn’t need to stop us, though, as we can write the functionality ourselves.

To run this program, supply a search string to the Search-Help script (given in
Example 1-9). The search string can be either simple text or a regular expression. The
script then displays the name and synopsis of all help topics that match. To see the
help content for that topic, use the Get-Help cmdlet.

Example 1-9. Search-Help.ps1

##

Search-Help

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

<#

.SYNOPSIS

Search the PowerShell help documentation for a given keyword or regular
expression. For simple keyword searches in PowerShell version two or three,
simply use "Get-Help <keyword>"

.EXAMPLE

PS > Search-Help hashtable
Searches help for the term 'hashtable'

. EXAMPLE
PS > Search-Help "(datetime|[ticks)"

Searches help for the term datetime or ticks, using the regular expression
syntax.

36 | Chapter 1: The PowerShell Interactive Shell

#>

param(
The pattern to search for
[Parameter(Mandatory = $true)]
S$Pattern

)

ShelpNames = $(Get-Help * | Where-Object { $_.Category -ne "Alias" })

Go through all of the help topics
foreach($helpTopic in ShelpNames)

{
Get their text content, and
Scontent = Get-Help -Full $helpTopic.Name | Out-String
if(Scontent -match "(.{0,30}$pattern.{0,30})")
ShelpTopic | Add-Member NoteProperty Match $matches[0].Trim()
ShelpTopic | Select-Object Name,Match
}
}

For more information about running scripts, see Recipe 1.2.

See Also

Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

1.16 Launch PowerShell at a Specific Location

Problem

You want to launch a PowerShell session in a specific location.

Solution

Both Windows and PowerShell offer several ways to launch PowerShell in a specific
location:

« Explorer’s address bar
o PowerShell's command-line arguments

o Windows Terminal “Open in Windows Terminal” shell extension

1.16 Launch PowerShell at a Specific Location | 37

Discussion

If you are browsing the filesystem with Windows Explorer, typing pwsh.exe or
powershell.exe into the address bar launches PowerShell in that location (as shown
in Figure 1-2).

| ¥ = | windows-powershell-cookbook-4e - o X
Home Share View A 0
* D » &Moveto~ X Delete ¥ B~ v =4L i Bﬂ
.. - J:
Pin to Quick Copy Paste El I Copyto~ =] Rename New Properties . Select
access folder = @ 4
Clipboard Organize New Open
<« v N powershell.exe‘ I Vo 2 Search windows-powershell-cookbo...
Cookbook A Name Date modified Type A
Cookbook - Submit git 5/8/2021 9:45 AM File -
Cookbook3 images 5/8/2021 9:45 AM File -
Cookbook4 scripts 5/8/2021 9:45 AM File -
admin theme 11/6/2020 7:38 AM File -
windows-powersh tools 4/3/2021 3:52 PM File -
XMI Fileg 12/9/2020 1-46 PM Fila - ¥

windows-powershe yy ¢

62 items

Figure 1-2. Launching PowerShell from Windows Explorer

Note that what you type must end with the .exe extension, otherwise Explorer will
generally open your PowerShell documents folder. Additionally, you can open Win-
dows PowerShell directly from the File menu, as shown in Figure 1-3.

For another way to launch PowerShell from Windows Explorer, Windows Terminal
(if you've installed it) adds an “Open in Windows Terminal” option when you right-
click on a folder from Windows Explorer.

If you aren't browsing the desired folder with Windows Explorer, you can use
Start—>Run (or any other means of launching an application) to launch PowerShell at
a specific location. For that, use PowerShell's -NoExit parameter, along with the
-Command parameter. In the -Command parameter, call the Set-Location cmdlet to ini-
tially move to your desired location.

pwsh -NoExit -Command Set-Location 'C:\Program Files'

38 | Chapter 1: The PowerShell Interactive Shell

% i windows-powershell-cookbook-4e -
Manage ind P hell kbook-4+ o X
| ~ @
Open new window » E Open Windows PowerShell v i/ Open - B selectall
[N > Ed 00 g,
A it - Select none
Properties .
E Open Windows PowerShell | g Open a window you can use to type |nistrator v ‘@ History 57 Invert selection
(commands at a Windows @ Sof
PowerShell pen et
S Optichs h windows-powershell-cookbook-4e
Hel nodified Type n
o ,)21 9:45 AM ASCIIDOC File
)21 9:45 AM ASCIIDOC File
X close)21 9:45 AM ASCIIDOC File
)21 9:45 AM ASCIIDOC File
)21 9:45 AM ASCIIDOC File
F/ZOZW 9:45 AM ASCIIDOC File
» Music | appg.asciidoc 5/8/2021 9:45 AM ASCIIDOC File
b 0 apph.asciidoc 5/8/2021 9:45 AM ASCIIDOC File
&= Pict N
osrictures B appiascidoc 5/8/2021 9:45 AM ASCIIDOC File
& Videos | appj.asciidoc 5/8/2021 9:45 AM ASCIIDOC File v
£33 Local Disk (C:) v
62items 1 item selected

Figure 1-3. Launching PowerShell from Explorer

1.17 Invoke a PowerShell Command or Script from
Outside PowerShell

Problem

You want to invoke a PowerShell command or script from a batch file, a logon script,
a scheduled task, or any other non-PowerShell application.

Solution

To invoke a PowerShell command, use the -Command parameter:
pwsh -Command Get-Process; Read-Host

To launch a PowerShell script, use the -File parameter:
pwsh -File 'full path to script' arguments

For example:

pwsh -File 'c:\shared scripts\Get-Report.ps1l' Hello World

Discussion

By default, any arguments to pwsh.exe get interpreted as a script to run. If you use the
-Command parameter, PowerShell runs the command as though you had typed it in the

1.17 Invoke a PowerShell Command or Script from Outside PowerShell | 39

interactive shell, and then exits. You can customize this behavior by supplying other
parameters to pwsh.exe, such as -NoExit, -NoProfile, and more.

If you are the author of a program that needs to run PowerShell
scripts or commands, PowerShell lets you call these scripts and
commands much more easily than calling its command-line inter-
face. For more information about this approach, see Recipe 17.10.

Since launching a script is so common, PowerShell provides the -File parameter to
eliminate the complexities that arise from having to invoke a script from the
-Command parameter. This technique lets you invoke a PowerShell script as the target
of a logon script, advanced file association, scheduled task, and more.

When PowerShell detects that its input or output streams have
been redirected, it suppresses any prompts that it might normally
display. If you want to host an interactive PowerShell prompt inside
another application (such as Emacs), use - as the argument for the
-File parameter. In PowerShell (as with traditional Unix shells),
this implies “taken from standard input”

pwsh -File -

If the script is for background automation or a scheduled task, these scripts can
sometimes interfere with (or become influenced by) the user’s environment. For these
situations, three parameters come in handy:

-NoProfile
Runs the command or script without loading user profile scripts. This makes the
script launch faster, but it primarily prevents user preferences (e.g., aliases and
preference variables) from interfering with the script’s working environment.

-WindowStyle
Runs the command or script with the specified window style—most commonly
Hidden. When run with a window style of Hidden, PowerShell hides its main win-
dow immediately. For more ways to control the window style from within Power-
Shell, see Recipe 24.3.

-ExecutionPolicy
Runs the command or script with a specified execution policy applied only to
this instance of PowerShell. This lets you write PowerShell scripts to manage a
system without having to change the system-wide execution policy. For more
information about scoped execution policies, see Recipe 18.1.

40 | Chapter 1: The PowerShell Interactive Shell

If the arguments to the -Command parameter become complex, special character han-
dling in the application calling PowerShell (such as c¢md.exe) might interfere with the
command you want to send to PowerShell. For this situation, PowerShell supports an
EncodedCommand parameter: a Base64-encoded representation of the Unicode string
you want to run. Example 1-10 demonstrates how to convert a string containing Pow-
erShell commands to a Base64-encoded form.

Example 1-10. Converting PowerShell commands into a Base64-encoded form

Scommands = '1..10 | % { "PowerShell Rocks" }'
Sbytes = [System.Text.Encoding]::Unicode.GetBytes($commands)
$encodedString = [Convert]::ToBase64String($bytes)

Once you have the encoded string, you can use it as the value of the EncodedCommand
parameter, as shown in Example 1-11.

Example 1-11. Launching PowerShell with an encoded command from cmd.exe

Microsoft Windows [Version 10.0.19041.685]
(c) 2020 Microsoft Corporation. All rights reserved.

C:\Users\Lee>PowerShell -EncodedCommand MQAUAC4AMQAWACAAfAAgACUAIAB7ACAAIGBQAGSA
dwB1lAHIAUWBOAGUAbABSACAAUgBVAGMAawBzACIAIABIAA==
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks
PowerShell Rocks

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 17.10, “Add PowerShell Scripting to Your Own Program”

1.17 Invoke a PowerShell Command or Script from Outside PowerShell | 41

1.18 Understand and Customize PowerShell’s Tab
Completion

Problem

You want to customize how PowerShell reacts to presses of the Tab key and Ctrl
+Space.

Solution

Create a custom function called TabExpansion2. PowerShell invokes this function
when you press Tab or Ctrl+Space in either the console or Visual Studio Code.

Discussion

When you press Tab, PowerShell invokes a facility known as tab expansion: replacing
what you've typed so far with an expanded version of that (if any apply.) For example,
if you type Set-Location C:\ and then press Tab, PowerShell starts cycling through
directories under C:\ for you to navigate into.

The features offered by PowerShell’s built-in tab expansion are quite rich, as shown in
Table 1-2.

Table 1-2. Tab expansion features in PowerShell

Description Example

Command completion. Completes command names when current text Get-Ch <Tab>
appears to represent a command invocation.

Parameter completion. Completes command parameters for the current Get-ChildItem -Pat<Tab>
command.

Argument completion. Completes command arguments for the current Set-ExecutionPolicy
command parameter. This applies to any command argument that takesa - ExecutionPolicy <Tab>
fixed set of values (enumerations or parameters that define a Validate

Set attribute). In addition, PowerShell contains extended argument

completion for module names, help topics, CIM / WMI classes, event log

names, job IDs and names, process IDs and names, provider names, drive

names, service names and display names, and trace source names.

History text completion. Replaces the current input with items from the #Process <Tab>
command history that match the text after the # character.

History ID completion. Replaces the current input with the command line #12 <Tab>
from item number IDin your command history.

Filename completion. Replaces the current parameter value with file Set-Location C:\Windows\S <Tab>
names that match what you've typed so far. When applied to the Set -
Location amdlet, PowerShell further filters results to only directories.

42 | Chapter 1: The PowerShell Interactive Shell

Description

Example

Operator completion. Replaces the current text with a matching operator.
This includes flags supplied to the switch statement.

Variable completion. Replaces the current text with available PowerShell
variables. PowerShell even incorporates variables from script content that
has never been invoked.

Member completion. Replaces member names for the currently referenced
variable or type. When PowerShell can infer the members from previous
commands in the pipeline, it even supports member completion within
script blocks.

Type completion. Replaces abbreviated type names with their namespace-
qualified name.

"Hello World" -rep<Tab>
switch - c<Tab>

$myGreeting = "Hello World";
SmyGr <Tab>

[Console]::Ba<Tab>
Get-Process | Where-Object
{ $_.Ha<Tab>

[PSSer <Tab>
$1 = New-Object List[Stri<Tab>

If you want to extend PowerShell’s tab expansion capabilities, define a function called
TabExpansion2. You can add this to your PowerShell profile directly, or dot-source it
from your profile. Example 1-12 demonstrates an example custom tab expansion
function that extends the functionality already built into PowerShell.

Example 1-12. A sample implementation of TabExpansion2

##

TabExpansion2

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

function TabExpansion2

{
[CmdletBinding(DefaultParameterSetName = 'ScriptInputSet')]
Param(
[Parameter(ParameterSetName = 'ScriptInputSet', Mandatory = $true, Position = 0)]
[string] S$inputScript,
[Parameter(ParameterSetName = 'ScriptInputSet', Mandatory = $true, Position = 1)]

[int] $cursorColumn,

[Parameter(ParameterSetName = 'AstInputSet', Mandatory

Strue, Position = 0)]

[System.Management.Automation.Language.Ast] $ast,

[Parameter(ParameterSetName = 'AstInputSet', Mandatory = S$true, Position = 1)]
[System.Management.Automation.Language.Token[]] $tokens,

[Parameter(ParameterSetName = 'AstInputSet', Mandatory = S$true, Position = 2)]
[System.Management.Automation.Language.IScriptPosition] $positionOfCursor,

[Parameter(ParameterSetName = 'ScriptInputSet', Position = 2)]
[Parameter (ParameterSetName = 'AstInputSet', Position = 3)]

1.18 Understand and Customize PowerShell’s Tah Completion | 43

[Hashtable] S$options = $null

End

Create a new 'Options' hashtable if one has not been supplied.

In this hashtable, you can add keys for the following options, using

Strue or Sfalse for their values:

##

IgnoreHiddenShares - Ignore hidden UNC shares (such as ||COMPUTER\ADMINS)
RelativePaths - When expanding filenames and paths, Strue forces PowerShell

to replace paths with relative paths. When Sfalse, forces PowerShell to

replace them with absolute paths. By default, PowerShell makes this

decision based on what you had typed so far before invoking tab completion.
LiteralPaths - Prevents PowerShell from replacing special file characters

(such as square brackets and back-ticks) with their escaped equivalent.

if(-not Soptions) { Soptions = @{} }

Demonstrate some custom tab expansion completers for parameters.
This is a hash table of parameter names (and optionally cmdlet names)
that we add to the Soptions hashtable.
##
When PowerShell evaluates the script block, Sargs gets the
following: command name, parameter, word being completed,
AST of the command being completed, and currently-bound arguments.
Soptions["CustomArgumentCompleters"] = @{
"Get-ChildItem:Filter" = { "*.ps1","*.txt","*.doc" }
"ComputerName" = { "ComputerNamel","ComputerName2","ComputerName3" }

}

Also define a completer for a native executable.
When PowerShell evaluates the script block, Sargs gets the
word being completed, and AST of the command being completed.
Soptions["NativeArgumentCompleters"] = @{

"attrib" = { "+R","+H","+S" }
}

Define a "quick completions" list that we'll cycle through
when the user types '!!' followed by TAB.
$quickCompletions = @(
'Get-Process -Name PowerShell | ? Id -ne $pid | Stop-Process',
'Set-Location $pshome',
('Serrors = Serror | % { $_.InvocationInfo.Line }; Get-History | ' +
' 2 { $_.CommandLine -notin S$errors }')

)

First, check the built-in tab completion results
Sresult = $null
if ($psCmdlet.ParameterSetName -eq 'ScriptInputSet')

{
Sresult = [System.Management.Automation.CommandCompletion]::CompleteInput(
<#inputScript#> S$inputScript,
<#cursorColumn#> ScursorColumn,
<#options#> Soptions)
}
else

44 | Chapter 1: The PowerShell Interactive Shell

$result = [System.Management.Automation.CommandCompletion]::CompleteInput(

<#ast#> Sast,

<#tokens#> Stokens,
<#positionOfCursor#> SpositionOfCursor,
<#options#> Soptions)

}

If we didn't get a result
if($result.CompletionMatches.Count -eq 0)

{

If this was done at the command-line or in a remote session,

create an AST out of the input

if ($psCmdlet.ParameterSetName -eq 'ScriptInputSet')

{
$ast = [System.Management.Automation.Language.Parser]::ParseInput(

SinputScript, [ref]$tokens, [ref]$null)

}

In this simple example, look at the text being supplied.

We could do advanced analysis of the AST here if we wanted,

but in this case just use its text. We use a regular expression

to check if the text started with two exclamations, and then

use a match group to retain the rest.

Stext = $ast.Extent.Text

if(Stext -match '~1I(.*)")

{
Extract the rest of the text from the regular expression
match group.
$currentCompletionText = Smatches[1].Trim()
Go through each of our quick completions and add them to
our completion results. The arguments to the completion results
are the text to be used in tab completion, a potentially shorter
version to use for display (i.e.: intellisense in the ISE),
the type of match, and a potentially more verbose description to
be used as a tool tip.
$quickCompletions | Where-Object { $_ -match $currentCompletionText } |

Foreach-Object { $result.CompletionMatches.Add(
(New-Object Management.Automation.CompletionResult $_,S$_,
"Text",$_))

}

}

}

return $result

}

See Also
Recipe 10.10, “Parse and Interpret PowerShell Scripts”

“Common Customization Points” on page 855

1.18 Understand and Customize PowerShell’s Tah Completion | 45

1.19 Program: Learn Aliases for Common Commands

In interactive use, full cmdlet names (such as Get-ChildItem) are cumbersome and
slow to type. Although aliases are much more efficient, it takes a while to discover
them. To learn aliases more easily, you can modify your prompt to remind you of the
shorter version of any aliased commands that you use.

This involves two steps:

1. Add the program, Get-AliasSuggestion.ps1, shown in Example 1-13, to your
tools directory or another directory.

Example 1-13. Get-AliasSuggestion.ps1

B o
##

Get-AliasSuggestion

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

##

B o

<#
.SYNOPSIS

Get an alias suggestion from the full text of the last command. Intended to
be added to your prompt function to help learn aliases for commands.

.EXAMPLE

PS > Get-AliasSuggestion Remove-ItemProperty
Suggestion: An alias for Remove-ItemProperty is rp

#>
param(
The full text of the last command

$LastCommand
)

Set-StrictMode -Version 3

ShelpMatches = @()

Find all of the commands in their last input

Stokens = [Management.Automation.PSParser]::Tokenize(
$lastCommand, [ref] $null)

$commands = S$tokens | Where-Object { $_.Type -eq "Command" }

Go through each command

46 | Chapter 1: The PowerShell Interactive Shell

foreach($command in $commands)

{
Get the alias suggestions
foreach($alias in Get-Alias -Definition $command.Content)
{
ShelpMatches += "Suggestion: An alias for " +
"$(Salias.Definition) is $($Salias.Name)"
}
}
ShelpMatches

2. Add the text from Example 1-14 to the Prompt function in your profile. If you

don’t yet have a Prompt function, see Recipe 1.9 to learn how to add one.

Example 1-14. A useful prompt to teach you aliases for common commands

function prompt

{
Get the last item from the history
ShistoryItem = Get-History -Count 1
If there were any history items
if(ShistoryItem)
{
Get the training suggestion for that item
$suggestions = @(Get-AliasSuggestion ShistoryItem.CommandLine)
If there were any suggestions
if(Ssuggestions)
{
For each suggestion, write it to the screen
foreach($aliasSuggestion in $suggestions)
{
Write-Host "S$aliasSuggestion"
}
Write-Host ""
}
}
Rest of prompt goes here
"PS [Senv:COMPUTERNAME] >"
}

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 1.9, “Customize Your Shell, Profile, and Prompt”

1.19 Program: Learn Aliases for Common Commands

47

1.20 Program: Learn Aliases for Common Parameters

Problem

You want to learn aliases defined for command parameters.

Solution

Use the Get-ParameterAlias script, as shown in Example 1-15, to return all aliases
for parameters used by the previous command in your session history.

Example 1-15. Get-ParameterAlias.ps1

##
Get-ParameterAlias

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www. leeholmes.com/guide)
##

<#
.SYNOPSIS

Looks in the session history, and returns any aliases that apply to
parameters of commands that were used.

.EXAMPLE

PS > dir -ErrorAction SilentlyContinue
PS > Get-ParameterAlias
An alias for the 'ErrorAction' parameter of 'dir' is ea

#>
Set-StrictMode -Version 3

Get the last item from their session history
Shistory = Get-History -Count 1
if(-not Shistory)
{
return

}

And extract the actual command line they typed
$lastCommand = $history.CommandLine

Use the Tokenizer API to determine which portions represent
commands and parameters to those commands
Stokens = [System.Management.Automation.PsParser]::Tokenize(

48 | Chapter 1: The PowerShell Interactive Shell

$las

tCommand, [ref] $null)
Command = $null

o through each resulting token
Stoken in $tokens)

If we've found a new command, store that.

token.Type -eq "Command")

ScurrentCommand = Stoken.Content

If we've found a command parameter, start looking for aliases

Scurrent
Now g
foreach(
{
if($
{
}
if((
{
}
}
Discus

Stoken.Type -eq "CommandParameter") -and ($currentCommand))

Remove the leading "-" from the parameter
ScurrentParameter = Stoken.Content.TrimStart("-")

Determine all of the parameters for the current command.
(Get-Command $currentCommand).Parameters.GetEnumerator() |

For parameters that start with the current parameter name,
Where-Object { $_.Key -like "ScurrentParameter*" } |

return all of the aliases that apply. We use "starts with"
because the user might have typed a shortened form of
the parameter name.
Foreach-Object {
$_.Value.Aliases | Foreach-Object {
"Suggestion: An alias for the 'ScurrentParameter'
"parameter of 'ScurrentCommand' is 'S_'"

+

sion

To make it easy to type command parameters, PowerShell lets you type only as much

of the command parameter as is required to disambiguate it from other parameters of

that command. In addition to shortening implicitly supported by the shell, cmdlet
authors can also define explicit aliases for their parameters—for example, CN as a
short form for ComputerName.

While helpful, these aliases are difficult to discover.

If you want to see the aliases for a specific command, you can access its Parameters
collection:

PS > (Get-Command New-TimeSpan).Parameters.Values | Select Name,Aliases

Name Aliases

Start {LastWriteTime}

1.20 Program: Learn Aliases for Common Parameters

49

End 3!

Days {3
Hours {3
Minutes {3
Seconds {3
Verbose {vb}
Debug {db}
ErrorAction {ea}
WarningAction {wa}
InformationAction {infa}
ErrorVariable {ev}
WarningVariable {wv}
InformationVariable {iv}
OutVariable {ov}
OutBuffer {ob}

PipelineVariable {pv}

If you want to learn any aliases for parameters in your previous command, simply
run Get-ParameterAlias.psl. To make PowerShell do this automatically, add a call
to Get-ParameterAlias.ps1in your prompt.

This script builds on two main features: PowerShell’s Tokenizer API, and the rich
information returned by the Get-Command cmdlet. PowerShell’s Tokenizer API exam-
ines its input and returns PowerShell’s interpretation of the input: commands, param-
eters, parameter values, operators, and more. Like the rich output produced by most
of PowerShell’s commands, Get-Command returns information about a command’s
parameters, parameter sets, output type (if specified), and more.

For more information about the Tokenizer API, see Recipe 10.10.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”
Recipe 10.10, “Parse and Interpret PowerShell Scripts”

“Structured Commands (Cmdlets)” on page xxxiv

1.21 Access and Manage Your Console History

Problem

After working in the shell for a while, you want to invoke commands from your his-
tory, view your command history, and save your command history.

Solution

The shortcuts given in Recipe 1.9 let you manage your history, but PowerShell offers
several features to help you work with your console in even more detail.

50 | Chapter 1: The PowerShell Interactive Shell

To get the most recent commands from your session, use the Get-History cmdlet (or
its alias of h):

Get-History

To rerun a specific command from your session history, provide its ID to the Invoke-
History cmdlet (or its alias of i1hy):

Invoke-History ID

To increase (or limit) the number of commands stored in your session history, assign
a new value to the $MaximumHistoryCount variable:

$MaximumHistoryCount = Count

To save your command history to a file, pipe the output of Get-History to the
Export-CliXml cmdlet:

Get-History | Export-CliXml Filename

To add a previously saved command history to your current session history, call the
Import-CliXml cmdlet and then pipe that output to the Add-History cmdlet:

Import-CliXml Filename | Add-History
To clear all commands from your session history, use the Clear -History cmdlet:

Clear-History

Discussion

Unlike the console history hotkeys discussed in Recipe 1.9, the Get-History cmdlet
produces rich objects that represent information about items in your history. Each
object contains that item’s ID, command line, start of execution time, and end of exe-
cution time.

Once you know the ID of a history item (as shown in the output of Get-History),
you can pass it to Invoke-History to execute that command again. The example
prompt function shown in Recipe 1.9 makes working with prior history items easy, as
the prompt for each command includes the history ID that will represent it.

You can easily see how long a series of commands took to invoke
by looking at the Duration property. This is a great way to get a
handle on exactly how little time it took to come up with the com-
mands that just saved you hours of manual work:

PS:29 > Get-History 27,28 | Format-Table *

Id CommandLine StartExecutionTime Duration

27 dir 2/15/2021 5:12:49 PM 00:00:00.0319401
28 Start-Sleep -Seconds 45 2/15/2021 5:12:53 PM 00:00:45.0073792

1.21 Access and Manage Your Console History | 51

IDs provided by the Get-History cmdlet differ from the IDs given by the Windows
console common history hotkeys (such as F7), because their history management
techniques differ.

By default, PowerShell stores the last 4,096 entries of your command history. If you
want to raise or lower this amount, set the $MaximumHistoryCount variable to the size
you desire. To make this change permanent, set the variable in your PowerShell pro-
file script.

By far, the most useful feature of PowerShell’s command history is for reviewing ad
hoc experimentation and capturing it in a script that you can then use over and over.
For an overview of that process (and a script that helps to automate it), see Recipe
1.22.

See Also
Recipe 1.9, “Customize Your Shell, Profile, and Prompt”
Recipe 1.22, “Program: Create Scripts from Your Session History”

Recipe 1.23, “Invoke a Command from Your Session History”

1.22 Program: Create Scripts from Your Session History

After interactively experimenting at the command line for a while to solve a multistep
task, you'll often want to keep or share the exact steps you used to eventually solve the
problem. The script smiles at you from your history buffer, but it’s unfortunately sur-
rounded by many more commands that you don’t want to keep.

For an example of using the Out-Gridview cmdlet to do this graph-
ically, see Recipe 2.4.

To solve this problem, use the Get-History cmdlet to view the recent commands that
you've typed. Then, call Copy-History with the IDs of the commands you want to
keep, as shown in Example 1-16.

52 | Chapter 1: The PowerShell Interactive Shell

Example 1-16. Copy-History.ps1

##

Copy-History

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

<#

.SYNOPSIS

Copy selected commands from the history buffer into the clipboard as a script.
.EXAMPLE

PS > Copy-History
Copies the entire contents of the history buffer into the clipboard.

.EXAMPLE

PS > Copy-History -5
Copies the last five commands into the clipboard.

.EXAMPLE

PS > Copy-History 2,5,8,4
Copies commands 2,5,8, and 4.

.EXAMPLE

PS > Copy-History (1..10+5+6)
Copies commands 1 through 10, then 5, then 6, using PowerShell's array
slicing syntax.

#>

[CmdletBinding()]

param(
The range of history IDs to copy
[Alias("Id")]
[int[]] SRange

)

Set-StrictMode -Version 3
Shistory = @()
If they haven't specified a range, assume it's everything

if((-not $range) -or (Srange.Count -eq 0))
{

1.22 Program: Create Scripts from Your Session History | 53

Shistory = @(Get-History -Count ([Int16]::MaxValue))

}

If it's a negative number, copy only that many
elseif(($range.Count -eq 1) -and (Srange[0] -1t 0))
{

Scount

= [Math]::Abs($range[0])
Shistory =

(Get-History -Count $count)

}
Otherwise, go through each history ID in the given range

and add it to our history list
else
foreach($commandId in $range)
{

if(ScommandId -eq -1) { S$history += Get-History -Count 1 }
else { Shistory += Get-History -Id $commandId }

}

Finally, export the history to the clipboard.
Shistory | Foreach-Object { $_.CommandLine } | clip.exe

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 2.4, “Interactively Filter Lists of Objects”

1.23 Invoke a Command from Your Session History

Problem

You want to run a command from the history of your current session.

Solution

Use the Invoke-History cmdlet (or its thy alias) to invoke a specific command by its
ID:

Invoke-History ID
To search through your history for a command containing text:
PS > #text<Tab>
To repopulate your command with the text of a previous command by its ID:

PS > #ID<Tab>

54 | Chapter 1: The PowerShell Interactive Shell

Discussion

Once you've had your shell open for a while, your history buffer quickly fills with
useful commands. The history management hotkeys described in Recipe 1.9 show
one way to navigate your history, but this type of history navigation works only for
command lines you've typed in that specific session. If you keep a persistent com-
mand history (as shown in Recipe 1.31), these shortcuts do not apply.

The Invoke-History cmdlet illustrates the simplest example of working with your
command history. Given a specific history ID (perhaps shown in your prompt func-
tion), calling Invoke-History with that ID will run that command again. For more
information about this technique, see Recipe 1.9.

As part of its tab-completion support, PowerShell gives you easy access to previous
commands as well. If you prefix your command with the # character, tab completion
takes one of two approaches:

ID completion
If you type a number, tab completion finds the entry in your command history
with that ID, and then replaces your command line with the text of that history
entry. This is especially useful when you want to slightly modify a previous his-
tory entry, since Invoke-History by itself doesn’t support that.

Pattern completion
If you type anything else, tab completion searches for entries in your command
history that contain that text. Under the hood, PowerShell uses the -1ike opera-
tor to match your command entries, so you can use all of the wildcard characters
supported by that operator. For more information on searching text for patterns,
see Recipe 5.7.

PowerShell’s tab completion is largely driven by the fully customizable Tab Expan
ston2 function. You can easily change this function to include more advanced func-
tionality, or even just customize specific behaviors to suit your personal preferences.
For more information, see Recipe 1.18.

See Also

Recipe 1.9, “Customize Your Shell, Profile, and Prompt”

Recipe 1.18, “Understand and Customize PowerShell’s Tab Completion®
Recipe 1.31, “Save State Between Sessions”

Recipe 5.7, “Search a String for Text or a Pattern”

1.23 Invoke a Command from Your Session History | 55

1.24 Program: Search Formatted Qutput for a Pattern

While PowerShell’s built-in filtering facilities are incredibly flexible (for example, the
Where-Object cmdlet), they generally operate against specific properties of the
incoming object. If you are searching for text in the object’s formatted output, or
don’t know which property contains the text you are looking for, simple text-based
filtering is sometimes helpful.

To solve this problem, you can pipe the output into the Out-String cmdlet before
passing it to the Select-String cmdlet:

Get-Service | Out-String -Stream | Select-String audio
Or, using built-in aliases:
Get-Service | oss | sls audio

In script form, Select-TextOutput (shown in Example 1-17) does exactly this, and it
lets you search for a pattern in the visual representation of command output.

Example 1-17. Select-TextOutput.psl

##

Select-TextOutput

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

<#

.SYNOPSIS

Searches the textual output of a command for a pattern.
.EXAMPLE

PS > Get-Service | Select-TextOutput audio
Finds all references to "Audio" in the output of Get-Service

#>

param(
The pattern to search for
$Pattern

)

Set-StrictMode -Version 3
Sinput | Out-String -Stream | Select-String $pattern

56 | Chapter 1: The PowerShell Interactive Shell

For more information about running scripts, see Recipe 1.2.

See Also

Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

1.25 Interactively View and Process Command Output

Problem

You want to graphically explore and analyze the output of a command.

Solution

Use the Out-GridView cmdlet to interactively explore the output of a command.

Discussion

The Out-Gridview cmdlet is one of the rare PowerShell cmdlets that displays a graph-
ical user interface. While the Where-0Object and Sort-Object cmdlets are the most
common way to sort and filter lists of items, the Out-Gridview cmdlet is very effec-
tive at the style of repeated refinement that sometimes helps you develop complex

queries. Figure 1-4 shows the Out-Gridview cmdlet in action.

Y dir | Out-Gridview - o

and LastWriteTime contains |46 X

|'Il Add criteria Vl lx Clear All I

[Name:a x| @

Mode ngthl Name

[] LastWriteTime N6.. aadtb.dll

Length B4.. aadWamExtensi...

: N1.. AboutSettingsHa...

| Add l I Cancel b5.. ACPBackground...

a 7 rzuz T oo v ooo /6 acppage.dll
-a--- 1/14/2021 6:46 AM 3220... ActionCenter.dll
-a--- 1/14/2021 6:46 AM 56320 ActivationClient.dll
-a--- 1/14/2021 6:46 AM 2744... activeds.dll
-a--- 1/14/2021 6:46 AM 53248 AdaptiveCards.dll
-a--- 1/14/2021 6:46 AM__ 1003... adhsvcdll

Figure 1-4. Out-GridView, ready to filter

1.25 Interactively View and Process Command Output

57

Out-Gridview lets you primarily filter your command output in two ways: a quick
filter expression and a criteria filter.

Quick filters are fairly simple. As you type text in the topmost “Filter” window, Out-
Gridview filters the list to contain only items that match that text. If you want to
restrict this text filtering to specific columns, simply provide a column name before
your search string and separate the two with a colon. You can provide multiple search
strings, in which case Out-GridView returns only rows that match all of the required
strings.

Unlike most filtering cmdlets in PowerShell, the quick filters in the
Out-Gridview cmdlet do not support wildcards or regular expres-

sions. For this type of advanced query, criteria-based filtering can
help.

Criteria filters give fine-grained control over the filtering used by the Out-Gridview
cmdlet. To apply a criteria filter, click the “Add criteria” button and select a property
to filter on. Out-Gridview adds a row below the quick filter field and lets you pick
one of several operations to apply to this property:

o Less than or equal to

o Greater than or equal to
» Between

» Equals

 Does not equal

« Contains

¢ Does not contain

In addition to these filtering options, Out-GridView also lets you click and rearrange
the header columns to sort by them.

Processing output

Once you've sliced and diced your command output, you can select any rows you
want to keep and press Ctrl+C to copy them to the clipboard. Out-GridView copies
the items to the clipboard as tab-separated data, so you can easily paste the informa-
tion into a spreadsheet or other file for further processing.

In addition to supporting clipboard output, the Out-Gridview cmdlet supports full-
fidelity object filtering if you use its -PassThru parameter. For an example of this full-
fidelity filtering, see Recipe 2.4.

58 | Chapter 1: The PowerShell Interactive Shell

See Also
Recipe 2.4, “Interactively Filter Lists of Objects”

1.26 Program: Interactively View and Explore Objects

When working with unfamiliar objects in PowerShell, much of your time is spent
with the Get-Member and Format-List commands—navigating through properties,
reviewing members, and more.

For ad hoc investigation, a graphical interface is often useful.

To solve this problem, Example 1-18 provides an interactive tree view that you can
use to explore and navigate objects. For example, to examine the structure of a script
as PowerShell sees it (its abstract syntax tree):

$ps = { Get-Process -ID $pid }.Ast
Show-Object $ps

For more information about parsing and analyzing the structure of PowerShell
scripts, see Recipe 10.10.

Example 1-18. Show-Object.psl

1ttt 1ttt A1ttt 1 15ttt 13 bttt 113ttt 1h 11
##

Show-0bject

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

##
U UL LU L L UL L LU LU L LB LR L LB LB L R LR LR LY L LR L LR LS LB L L LB LR R LRSS

<#
.SYNOPSIS

Provides a graphical interface to let you explore and navigate an object.

.EXAMPLE

PS > Sps = { Get-Process -ID $pid }.Ast
PS > Show-0Object $ps

#>

param(
The object to examine
[Parameter(ValueFromPipeline = $true)]
$InputObject

1.26 Program: Interactively View and Explore Objects | 59

Set-StrictMode -Version 3
Add-Type -Assembly System.Windows.Forms

Figure out the variable name to use when displaying the
object navigation syntax. To do this, we look through all
of the variables for the one with the same object identifier.
$rootVariableName = dir variable:* -Exclude InputObject,Args |
Where-Object {
$_.value -and
($_.Value.GetType() -eq SInputObject.GetType()) -and
($_.Value.GetHashCode() -eq $InputObject.GetHashCode())
}

If we got multiple, pick the first
$rootVariableName = S$SrootVariableName| % Name | Select -First 1

If we didn't find one, use a default name
if(-not $rootVariableName)
{
$rootVariableName = "InputObject"
}

A function to add an object to the display tree

function PopulateNode(Snode, $object)

{
If we've been asked to add a NULL object, just return
if(-not Sobject) { return }

If the object is a collection, then we need to add multiple
children to the node
if([System.Management.Automation.LanguagePrimitives]::GetEnumerator($object))
{
Some very rare collections don't support indexing (i.e.: Sfoo[0]).
In this situation, PowerShell returns the parent object back when you
try to access the [0] property.
$isOnlyEnumerable = Sobject.GetHashCode() -eq $object[0].GetHashCode()

Go through all the items

Scount = 0
foreach($childObjectValue in S$Sobject)
{

Create the new node to add, with the node text of the item and
value, along with its type

$newChildNode = New-Object Windows.Forms.TreeNode
$newChildNode.Text = "$(Snode.Name)[Scount] = $childObjectValue"
S$newChildNode.ToolTipText = SchildObjectValue.GetType()

Use the node name to keep track of the actual property name
and syntax to access that property.

If we can't use the index operator to access children, add
a special tag that we'll handle specially when displaying
the node names.

1f($isOnlyEnumerable)

{

60 | Chapter 1: The PowerShell Interactive Shell

$newChildNode.Name = "@"
}

SnewChildNode.Name += "[$count]"
S$null = Snode.Nodes.Add($newChildNode)

If this node has children or properties, add a placeholder
node underneath so that the node shows a '+' sign to be
expanded.

AddPlaceholderIfRequired $newChildNode $childObjectValue

'

Scount++

else

If the item was not a collection, then go through its
properties
foreach(Schild in $Sobject.PSObject.Properties)
{
Figure out the value of the property, along with
its type.
$childObject = $child.value
$childObjectType = $null
if($childObject)
{
$childObjectType = $childObject.GetType()
}

Create the new node to add, with the node text of the item and
value, along with its type

$childNode = New-Object Windows.Forms.TreeNode

$childNode.Text = $child.Name + " = $childObject"
$childNode.ToolTipText = $childObjectType

if([Management.Automation.LanguagePrimitives]::GetEnumerator(SchildObject))

$childNode.ToolTipText += "[]"
}

$childNode.Name = $child.Name
S$null = Snode.Nodes.Add($childNode)

If this node has children or properties, add a placeholder
node underneath so that the node shows a '+' sign to be
expanded.

AddPlaceholderIfRequired SchildNode $childObject

'

}

A function to add a placeholder if required to a node.

If there are any properties or children for this object, make a temporary
node with the text "..." so that the node shows a '+' sign to be

expanded.

function AddPlaceholderIfRequired($node, S$object)

{

1.26 Program: Interactively View and Explore Objects

61

if(-not $Sobject) { return }

if([System.Management.Automation.LanguagePrimitives]::GetEnumerator($Sobject) -or
@($object.PSObject.Properties))
{
$null = Snode.Nodes.Add((New-Object Windows.Forms.TreeNode "..."))
}
}

A function invoked when a node is selected.
function OnAfterSelect
{

param($Sender, $TreeViewEventArgs)

Determine the selected node
$nodeSelected = $Sender.SelectedNode

Walk through its parents, creating the virtual
PowerShell syntax to access this property.
$nodePath = GetPathForNode $nodeSelected

Now, invoke that PowerShell syntax to retrieve
the value of the property.

SresultObject = Invoke-Expression $nodePath
SoutputPane.Text = $nodePath

If we got some output, put the object's member

information in the text box.

if(SresultObject)

{
$members = Get-Member -InputObject $resultObject | Out-String
SoutputPane.Text += ""n" + S$members

}

A function invoked when the user is about to expand a node
function OnBeforeExpand

{

param($Sender, $TreeViewCancelEventArgs)

Determine the selected node
$selectedNode = $TreeViewCancelEventArgs.Node

If it has a child node that is the placeholder, clear
the placeholder node.
if($selectedNode.FirstNode -and

($selectedNode.FirstNode.Text -eq "..."))
{
$selectedNode.Nodes.Clear()
}
else
{
return
}

Walk through its parents, creating the virtual

62 | Chapter 1: The PowerShell Interactive Shell

}

PowerShell syntax to access this property.
$nodePath = GetPathForNode $selectedNode

Now, invoke that PowerShell syntax to retrieve
the value of the property.
Invoke-Expression "“$resultObject = $nodePath"

And populate the node with the result object.
PopulateNode S$selectedNode $resultObject

A function to handle key presses on the tree view.
In this case, we capture ~C to copy the path of
the object property that we're currently viewing.
function OnTreeViewKeyPress

{

}

param($Sender, $KeyPressEventArgs)

[Char] 3 = Control-C
i1f($KeyPressEventArgs.KeyChar -eq 3)

{

$KeyPressEventArgs.Handled = $true

Get the object path, and set it on the clipboard
$node = $Sender.SelectedNode

S$nodePath = GetPathForNode $node
[System.Windows.Forms.Clipboard]::SetText($nodePath)

Sform.Close()

elseif([System.Windows.Forms.Control]::ModifierKeys -eq "Control")

{

if($KeyPressEventArgs.KeyChar -eq '+')

{
SSCRIPT:currentFontSize++

UpdateFonts $SCRIPT:currentFontSize
$KeyPressEventArgs.Handled = $true

elseif(SKeyPressEventArgs.KeyChar -eq '-')

{
$SCRIPT:currentFontSize--
1f(SSCRIPT:currentFontSize -1t 1) { $SCRIPT:currentFontSize = 1 }
UpdateFonts $SCRIPT:currentFontSize
$KeyPressEventArgs.Handled = $true
}

A function to handle key presses on the form.

In this case, we handle Ctrl-Plus and Ctrl-Minus
to adjust font size.

function OnKeyUp

{

param($Sender, $KeyUpEventArgs)

1.26 Program: Interactively View and Explore Objects

63

if([System.Windows.Forms.Control]::ModifierKeys -eq "Control")

if(SKeyUpEventArgs.KeyCode -in 'Add','OemPlus')

{
S$SCRIPT:currentFontSize++
UpdateFonts $SCRIPT:currentFontSize
SKeyUpEventArgs.Handled = $true
}
elseif(SKeyUpEventArgs.KeyCode -in 'Subtract','OemMinus')
{

$SCRIPT:currentFontSize--

1f(SSCRIPT:currentFontSize -1t 1) { $SCRIPT:currentFontSize = 1 }
UpdateFonts $SCRIPT:currentFontSize

SKeyUpEventArgs.Handled = $true

elseif(SKeyUpEventArgs.KeyCode -eq 'DO'")

{
S$SCRIPT:currentFontSize = 12
UpdateFonts $SCRIPT:currentFontSize
SKeyUpEventArgs.Handled = $true

}

}

A function to handle mouse wheel scrolling.
In this case, we translate Ctrl-wheel to zoom.
function OnMouseWheel

{
param($Sender, $MouseEventArgs)
if(
([System.Windows.Forms.Control]::ModifierKeys -eq "Control") -and
($MouseEventArgs.Delta -ne 0))
{
SSCRIPT:currentFontSize += (SMouseEventArgs.Delta / 120)
if(SSCRIPT:currentFontSize -1t 1) { $SCRIPT:currentFontSize = 1 }
UpdateFonts $SCRIPT:currentFontSize
SMouseEventArgs.Handled = $true
}
}

A function to walk through the parents of a node,

creating virtual PowerShell syntax to access this property.
function GetPathForNode

{

param(SNode)
$nodeElements = @()

Go through all the parents, adding them so that
SnodeElements is in order.

64 | Chapter 1: The PowerShell Interactive Shell

while($Node)

{
SnodeElements = ,$Node + $nodeElements
SNode = SNode.Parent

}

Now go through the node elements
$nodePath = ""

foreach($Node in $nodeElements)

{

$nodeName = $Node.Name

If 1t was a node that PowerShell is able to enumerate
(but not index), wrap it in the array cast operator.
if($nodeName.StartsWith('@'))

{
S$nodeName = $nodeName.Substring(1)
$nodePath = "@(" + $nodePath + ")"

}

elseif(SnodeName.StartsWith('["))

{
If it's a child index, we don't need to
add the dot for property access

elseif(SnodePath)

{
Otherwise, we're accessing a property. Add a dot
SnodePath += "."

}

Append the node name to the path
StempNodePath = $nodePath + $nodeName
if($nodeName -notmatch '~[$\[\]a-zA-Z0-9]+$")

{
$nodePath += "'" + $nodeName + "'"
}
else
{
$nodePath = $tempNodePath
}

}

And return the result
$nodePath
}

function UpdateFonts
param(S$fontSize)
StreeView.Font = New-Object System.Drawing.Font "Consolas",$fontSize

SoutputPane.Font = New-Object System.Drawing.Font "Consolas",$fontSize

}

SSCRIPT:currentFontSize = 12

1.26 Program: Interactively View and Explore Objects

65

Create the TreeView, which will hold our object navigation
area.

StreeView = New-Object Windows.Forms.TreeView

StreeView.Dock = "Top"
StreeView.Height = 500
StreeView.PathSeparator =
StreeView.ShowNodeToolTips = $true
StreeView.Add_AfterSelect({ OnAfterSelect @args })
StreeView.Add_BeforeExpand({ OnBeforeExpand @args })
StreeView.Add_KeyPress({ OnTreeViewKeyPress @args })

won

Create the output pane, which will hold our object
member information.

SoutputPane = New-Object System.Windows.Forms.TextBox
SoutputPane.Multiline = $true

SoutputPane.WordWrap = $false

SoutputPane.ScrollBars = "Both"

SoutputPane.Dock = "Fill"

Create the root node, which represents the object
we are trying to show.

$root = New-Object Windows.Forms.TreeNode
Sroot.ToolTipText = $InputObject.GetType()
Sroot.Text = SInputObject

Sroot.Name = '$' + $rootVariableName

$root.Expand()

Snull = $StreeView.Nodes.Add($root)

UpdateFonts $currentFontSize

And populate the initial information into the tree
view.
PopulateNode Sroot $InputObject

Finally, create the main form and show it
$form = New-Object Windows.Forms.Form
Sform.Text = "Browsing " + $root.Text
$form.Width = 1000

S$form.Height = 800
S$form.Controls.Add($outputPane)
S$form.Controls.Add($treeView)
$form.Add_MouseWheel({ OnMouseWheel @args })
StreeView.Add_KeyUp({ OnKeyUp @args })
StreeView.Select()

S$null = S$form.ShowDialog()

S$form.Dispose()

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 10.10, “Parse and Interpret PowerShell Scripts”

66 | Chapter 1: The PowerShell Interactive Shell

1.27 Record a Transcript of Your Shell Session

Problem

You want to record a log or transcript of your shell session.

Solution

To record a transcript of your shell session, run the command Start-Transcript. It
has an optional -Path parameter that defaults to a filename based on the current sys-
tem time. By default, PowerShell places this file in the My Documents directory. To
stop recording the transcript of your shell system, run the command Stop-
Transcript.

Discussion

Although the Get-History cmdlet is helpful, it does not record the output produced
during your PowerShell session. To accomplish that, use the Start-Transcript
cmdlet. In addition to the Path parameter described previously, the Start-
Transcript cmdlet also supports parameters that let you control how PowerShell
interacts with the output file.

If you don’t specify a -Path parameter, PowerShell generates a random filename for
you. If you want to process this file after stopping the transcript, PowerShell adds this
as a property name to the output of either Start-Transcript or Stop-Transcript:

PS > $myTranscript = Start-Transcript

PS > Stop-Transcript

Transcript stopped, output file is D:\Lee\PowerShell_transcript...
PS > $myTranscript | fl * -force

Path : D:\Lee\PowerShell_transcript.LEE-DESKTOP.kg_Vsm_0.20201217195052.txt
Length : 104

PS > $myTranscript.Path
D:\Lee\PowerShell_transcript.LEE-DESKTOP.kg_Vsm_0.20201217195052. txt
PowerShell transcripts start with a standard file header that includes time, user, host
name, as well as several other wuseful items. If you specify the
-IncludeInvocationHeader parameter either interactively or through system-wide
policy, PowerShell also includes a separator between commands to assist in automatic
analysis.

*hkkkkkkkhkkkhkkkhkkhkkkx

PowerShell transcript start
Start time: 20201217190500
Username: ubuntu-20-04\lee
Machine: ubuntu-20-04 (Unix 4.19.128.0)

1.27 Record a Transcript of Your Shell Session | 67

Host Application: /opt/microsoft/powershell/7/pwsh.dll

Process ID: 1925

0S: Linux 4.19.128-microsoft-standard #1 SMP Tue Jun 23 12:58:10 UTC 2020
(...)

*hkhkkhhkkdhkdhrdhrdhrdhx

*hkhkkhhkkdhkdhrdhrdhrdhhx

Command start time: 20201217190502

*hkhkkdhkdhkdhrdhrdhrdhhx

PS /mnt/c/Users/lee> Get-Process

NPM(K) PM(M) WS(M) CPU(s) Id SI ProcessName
0 0.00 5.26 0.16 984 984 bash
0 0.00 0.53 0.02 1 0 init
0 0.00 0.07 0.00 982 982 1init
0 0.00 0.08 0.32 983 982 1init
0 0.00 96.52 0.64 1925 984 pwsh
0 0.00 3.25 0.00 1873 ..73 rsyslogd

*hkhkkdhkdhkdhxdhrdhrdhhx

Command start time: 20201217190504

*hkhkkhhkkdhkdhxdhrdhrdhhx

PS /mnt/c/Users/lee> cat /var/log/powershell.log
(...)

In addition to letting you record transcripts manually, PowerShell also lets you set a
system policy to record these automatically. For more information on how to set this
up, see Recipe 18.2.

See Also
Recipe 18.2, “Enable PowerShell Security Logging”

1.28 Extend Your Shell with Additional Commands

Problem

You want to use PowerShell cmdlets, providers, or script-based extensions written by
a third party.

Solution

If the module is part of the standard PowerShell module path, simply run the com-
mand you want:

Invoke-NewCommand

If it is not, use the Import-Module command to import third-party commands into
your PowerShell session.

68 | Chapter 1: The PowerShell Interactive Shell

To import a module from a specific directory:
Import-Module c:|path|to|module
To import a module from a specific file (module, script, or assembly):

Import-Module c:|path|to|\module|file.ext

Discussion

PowerShell supports two sets of commands that enable additional cmdlets and pro-
viders: *-Module and *-PsSnapin. Snapins were the packages for extensions in ver-
sion 1 of PowerShell, and are rarely used. Snapins supported only compiled exten-
sions and had onerous installation requirements.

Version 2 of PowerShell introduced modules that support everything that snapins
support (and more) without the associated installation pain. That said, PowerShell
version 2 also required that you remember which modules contained which com-
mands and manually load those modules before using them. Windows now includes
thousands of commands in hundreds of modules—quickly making reliance on one’s
memory an unsustainable approach.

Any recent version of PowerShell significantly improves the situation by autoloading
modules for you. Internally, PowerShell maintains a mapping of command names to
the module that contains them. Simply start using a command (which the Get-
Command cmdlet can help you discover), and PowerShell loads the appropriate module
automatically. If you wish to customize this autoloading behavior, you can use the
$PSModuleAutolLoadingPreference preference variable.

When PowerShell imports a module with a given name, it searches through every
directory listed in the PSModulePath environment variable, looking for the first mod-
ule that contains the subdirectories that match the name you specify. Inside those
directories, it looks for the module (*.psd1, *.psm1, and *.d11) with the same name
and loads it.

When you install a module on your own system, the most common place to put it is
in the PowerShell\Modules directory in your My Documents directory. In Windows
PowerShell, this location will be WindowsPowerShell\Modules. To have PowerShell
look in another directory for modules, add it to your personal PSModulePath envi-
ronment variable, just as you would add a Tools directory to your personal path.

For more information about managing system paths, see Recipe 16.2.

If you want to load a module from a directory not in PSModulePath, you can provide
the entire directory name and module name to the Import-Module command. For
example, for a module named Test, use Import-Module c:\path\to\Test. As with

1.28 Extend Your Shell with Additional Commands | 69

loading modules by name, PowerShell looks in c:|temp|path|to for a module
(*.psdl, *.psml, or *.dll) named Test and loads it.

If you know the specific module file you want to load, you can also specify the full
path to that module.

If you want to find additional commands, see Recipe 1.29.

See Also

Recipe 1.9, “Customize Your Shell, Profile, and Prompt”

Recipe 11.6, “Package Common Commands in a Module”

Recipe 16.2, “Modify the User or System Path”

Recipe 1.29, “Find and Install Additional PowerShell Scripts and Modules”

1.29 Find and Install Additional PowerShell Scripts and
Modules

Problem

You want to find additional modules to extend your shell’s functionality.

Solution

Use the Find-Module command to find interesting modules:

PS > Find-Module *Cookbook* | Format-List

Name : PowerShellCookbook

Version : 1.3.6

Type : Module

Description : Sample scripts from the PowerShell Cookbook
Author : Lee Holmes

(...)
Then use Install-Module to add them to your system.
Install-Module PowerShellCookbook -Scope CurrentUser

Similarly, use the Find-Script and Install-Script commands if the item has been
published as a standalone script. If you haven't already on your machine, make sure
to add My Documents\PowerShell\Scripts to your system path. For more informa-
tion about modifying your system path, see Recipe 16.2.

PS > Find-Script Get-WordCluster | Install-Script -Scope CurrentUser

PS > Get-WordCluster -Count 3 "Hello","World","Jello",
"Mellow","Jealous", "Wordy","Sword"

70 | Chapter 1: The PowerShell Interactive Shell

Representative Items

Wordd {World, Wordy, Sword}

Jealou {Jello, Jealous}

Hellow {Hello, Mellow}
Discussion

The PowerShell Gallery is the worldwide hub for publishing and sharing PowerShell
scripts and modules. It contains thousands of modules: official corporate releases by
Microsoft and many other companies, popular community projects like the DbaTools
module for SQL management, and fun whimsical ones like OutConsolePicture to dis-
play images as ANSI graphics.

The PowerShell Gallery’s web interface lets you search, browse, and explore, but of
course that’s not the way you use it through PowerShell.

In PowerShell, the Find-Module and Install-Module commands let you interact
with the PowerShell Gallery and install modules from it. You can find modules by
name, tags, and even Just Enough Administration role capabilities.

When you first try to install a module from the PowerShell Gallery, PowerShell will
provide a warning:

PS > Install-Module someModule -Scope CurrentUser

Untrusted repository

You are installing the modules from an untrusted repository. If you trust this

repository, change its InstallationPolicy value by running the Set-PSRepository

cmdlet. Are you sure you want to install the modules from 'PSGallery'?

[Y] Yes [A] Yes to ALl [N] No [L] No to ALl [S] Suspend [?] Help

(default is "N"):
Common to all other code-sharing repositories out there, there are no restrictions on
who can publish to the PowerShell Gallery or what they can publish. If a module is
reported through the abuse reporting mechanisms and found to be malicious or
against the gallery’s Terms of Service, it will of course be removed. But other than
that—you should not consider the gallery to be vetted, approved, or otherwise
implicitly trustworthy. To acknowledge this and remove the warning from future
module installations, you can can declare the PowerShell Gallery to be trusted on
your machine:

Set-PSRepository -Name PSGallery -InstallationPolicy Trusted

In addition to the public PowerShell Gallery, PowerShell can also talk to private gal-
leries (including file shares!) as well. PowerShell uses the NuGet protocol. For more
information about creating a private PowerShell Gallery, see the PowerShell Gallery
documentation.

1.29 Find and Install Additional PowerShell Scripts and Modules | 71

https://www.powershellgallery.com
https://oreil.ly/8sPaO
https://oreil.ly/8sPaO

See Also
Recipe 16.2, “Modify the User or System Path”

PowerShell Gallery documentation

1.30 Use Commands from Customized Shells

Problem

You want to use the commands from a PowerShell-based product that launches a cus-
tomized version of the PowerShell console, but in a regular PowerShell session.

Solution

Launch the customized version of the PowerShell console, and then use the Get-
Module and Get-PsSnapin commands to see what additional modules and/or snap
ins it loaded.

Discussion

As described in Recipe 1.28, PowerShell modules and snapins are the two ways that
third parties can distribute and add additional PowerShell commands. Products that
provide customized versions of the PowerShell console do this by launching Power-
Shell with one of three parameters:

o -PSConsoleFile, to load a console file that provides a list of snapins to load.

o -Command, to specify an initial startup command (that then loads a snapin or
module)

o -File, to specify an initial startup script (that then loads a snapin or module)

Regardless of which one is used, you can examine the resulting set of loaded exten-
sions to see which ones you can import into your other PowerShell sessions.

Detecting loaded snapins

The Get-PsSnapin command returns all snapins loaded in the current session. It
always returns the set of core PowerShell snapins, but it will also return any addi-
tional snapins loaded by the customized environment. For example, if the name of a
snapin you recognize is Product.Feature.Commands, you can load that into future
PowerShell sessions by typing Add-PsSnapin Product.Feature.Commands. To auto-
mate this, add the command into your PowerShell profile.

72 | Chapter 1: The PowerShell Interactive Shell

https://oreil.ly/8sPaO

If youre uncertain of which snapin to load, you can also use the Get-Command com-
mand to discover which snapin defines a specific command:

PS > Get-Command Get-Counter | Select PsSnapin

PSSnapIn

Microsoft.PowerShell.Diagnostics

Detecting loaded modules

Like the Get-PsSnapin command, the Get-Module command returns all modules
loaded in the current session. It returns any modules you've added so far into that ses-
sion, but it will also return any additional modules loaded by the customized environ-
ment. For example, if the name of a module you recognize is ProductModule, you can
load that into future PowerShell sessions by typing Import-Module ProductModule.
To automate this, add the command into your PowerShell profile.

If you are uncertain of which module to load, you can also use the Get-Command com-
mand to discover which module defines a specific command:

PS > Get-Command Start-BitsTransfer | Select Module

BitsTransfer

See Also
Recipe 1.28, “Extend Your Shell with Additional Commands”

1.31 Save State Between Sessions

Problem

You want to save state or history between PowerShell sessions.

Solution

Subscribe to the PowerShell.Exiting engine event to have PowerShell invoke a
script or script block that saves any state you need.

Discussion

PowerShell provides easy script-based access to a broad variety of system, engine, and
other events. You can register for notification of these events and even automatically
process any of those events. In the following example, we subscribe to the event called
PowerShell.Exiting. PowerShell generates this event when you close a session.

1.31 Save State Between Sessions | 73

You can use this event to save and restore state, variables, and anything else you need.
While the PSReadLine module already automatically saves your command history
between sessions, for demonstration purposes we can implement similar functional-
ity through the PowerShell.Exiting event. You would place a call to Enable-
HistoryPersistence in your profile (Example 1-19).

Example 1-19. Enable-HistoryPersistence.ps1

##

Enable-HistoryPersistence

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

<#
.SYNOPSIS

Reloads any previously saved command history, and registers for the
PowerShell.Exiting engine event to save new history when the shell
exits.

#>
Set-StrictMode -Version 3

Load our previous history
SGLOBAL :maximumHistoryCount = 32767
ShistoryFile = (Join-Path (Split-Path $profile) "commandHistory.clixml")
if(Test-Path $historyFile)
{
Import-CliXml ShistoryFile | Add-History
}

Register for the engine shutdown event
Snull = Register-EngineEvent -Sourceldentifier °
([System.Management.Automation.PsEngineEvent]::Exiting) -Action {

Save our history
ShistoryFile = (Join-Path (Split-Path $profile) "commandHistory.clixml")
$maximumHistoryCount = 1kb

Get the previous history items
SoldEntries = @()
if(Test-Path ShistoryFile)
{
SoldEntries = Import-CliXml $ShistoryFile -ErrorAction SilentlyContinue
}

And merge them with our changes

74 | Chapter 1: The PowerShell Interactive Shell

ScurrentEntries = Get-History -Count $maximumHistoryCount

$additions = Compare-Object $SoldEntries S$currentEntries °
-Property CommandLine | Where-Object { $_.SideIndicator -eq "=>" } |
Foreach-Object { $_.CommandLine }

S$newEntries = ScurrentEntries | ? { $additions -contains $_.CommandLine }

Keep only unique command lines. First sort by CommandLine in
descending order (so that we keep the newest entries,) and then
re-sort by StartExecutionTime.
Shistory = @(SoldEntries + $newEntries) |

Sort -Unique -Descending CommandLine | Sort StartExecutionTime

Finally, keep the last 100

Remove-Item $ShistoryFile

Shistory | Select -Last 100 | Export-CliXml $historyFile
}

This script could do anything, but in this example we have it save our command his-
tory and restore it when we launch PowerShell. Why would we want to do this? Well,
with a rich history buffer, we can more easily find and reuse commands we've previ-
ously run. For two examples of doing this, see Recipes 1.21 and 1.23.

Enable-HistoryPersistence takes two main actions. First, we load our stored com-
mand history (if any exists). Then, we register an automatic action to be processed
whenever the engine generates its PowerShell.Exiting event. The action itself is rel-
atively straightforward, although exporting our new history does take a little finesse.
If you have several sessions open at the same time, each will update the saved history
file when it exits. Since we don’t want to overwrite the history saved by the other
shells, we first reload the history from disk and combine it with the history from the
current shell.

Once we have the combined list of command lines, we sort them and pick out the
unique ones before storing them back in the file.

For more information about working with PowerShell engine events, see Recipe 31.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”
Recipe 1.21, “Access and Manage Your Console History”

Recipe 31.2, “Create and Respond to Custom Events”

1.31 Save State Between Sessions | 75

CHAPTER 2
Pipelines

2.0 Introduction

One of the fundamental concepts in a shell is called the pipeline. It also forms the
basis of one of PowerShell's most significant advances. A pipeline is a big name for a
simple concept—a series of commands where the output of one becomes the input of
the next. A pipeline in a shell is much like an assembly line in a factory: it successively
refines something as it passes between the stages, as shown in Example 2-1.

Example 2-1. A PowerShell pipeline

Get-Process | Where-Object WorkingSet -gt 500kb | Sort-Object -Descending Name

In PowerShell, you separate each stage in the pipeline with the pipe (|) character.

In Example 2-1, the Get-Process cmdlet generates objects that represent actual pro-
cesses on the system. These process objects contain information about the process’s
name, memory usage, process ID, and more. As the Get-Process cmdlet generates
output, it passes it along. Simultaneously, the Where-Object cmdlet gets to work
directly with those processes, testing easily for those that use more than 500 KB of
memory. It passes those along immediately as it processes them, allowing the Sort-
Object cmdlet to also work directly with those processes and sort them by name in
descending order.

This brief example illustrates a significant advancement in the power of pipelines:
PowerShell passes full-fidelity objects along the pipeline, not their text
representations.

77

In contrast, all other shells pass data as plain text between the stages. Extracting
meaningful information from plain-text output turns the authoring of pipelines into
a black art. Expressing the previous example in a traditional Unix-based shell is
exceedingly difficult, and it’s nearly impossible in cmd.exe.

Traditional text-based shells make writing pipelines so difficult because they require
you to deeply understand the peculiarities of output formatting for each command in
the pipeline, as shown in Example 2-2.

Example 2-2. A traditional text-based pipeline

lee@ubuntu-20-04:~$ ps -F | awk '{ if($5 > 500) print }' | sort -r -k 64,70

UID PID PPID C Sz RSS PSR STIME TTY TIME CMD
lee 8175 7967 © 965 1036 0 21:51 pts/0 00:00:00 ps -F
lee 7967 7966 0 1173 2104 0 21:38 pts/0 00:00:00 -bash

In this example, you have to know that, for every line, group number five represents
the memory usage. You have to know another language (that of the awk tool) to filter
by that column. Finally, you have to know the column range that contains the process
name (columns 64 to 70 on this system) and then provide that to the sort command.
And that’s just a simple example.

An object-based pipeline opens up enormous possibilities, making system adminis-
tration both immensely more simple and more powerful.

2.1 Chain Commands Based on Their Success or Error

Problem

You wish to chain together multiple commands based on the success of previous
commands in the pipeline.

Solution

Use the && and | | pipeline chain operators:

PS > Invoke-Command localhost { "Some output" } && "Connection successful!"
Some command output
Connection successful!

PS > Invoke-Command missing_computer { "Some output" } && "Connection successful!"
OpenError: [missing_computer] Connecting to remote server missing_computer failed...

PS > Invoke-Command missing_computer { "Some output" } || "Connection failed."
OpenError: [missing_computer] Connecting to remote server missing_computer failed...
Connection failed.

78 | Chapter2:Pipelines

Discussion

If you wish to chain together multiple commands based on the success of other com-
mands in the pipeline, you can use PowerShell’s pipeline chain operators. The &&
operator only executes the next command if the previous command was successful.
The | | operator only executes the next command if the previous command failed.

For the pipeline chain operators, success of a command is determined by the $?
(“dollar hook”) automatic variable. For more information about the $? automatic
variable, see Recipe 15.1.

See Also

Recipe 15.1, “Determine the Status of the Last Command”

2.2 Filter Items in a List or Command Output

Problem

You want to filter the items in a list or command output.

Solution

Use the Where-Object cmdlet to select items in a list (or command output) that
match a condition you provide. The Where-0Object cmdlet has the standard aliases
where and ?.

To list all running processes that have “search” in their name, use the - like operator
to compare against the process’s Name property:

Get-Process | Where-Object { $_.Name -like "*Search*" }

To list all stopped services, use the -eq operator to compare against the service’s
Status property:

Get-Service | Where-Object { $_.Status -eq "Stopped" }
To list all processes not responding, test the Responding property:
Get-Process | Where-Object { -not $_.Responding }

For simple comparisons on properties, you can omit the script block syntax and use
the comparison parameters of Where-0Object directly:

Get-Process | Where-Object Name -like "*Search*"

2.2Filter ltems in a List or Command Qutput | 79

Discussion

For each item in its input (which is the output of the previous command), the Where-
Object cmdlet evaluates that input against the script block that you specify. If the
script block returns True, then the Where-Object cmdlet passes the object along.
Otherwise, it does not. A script block is a series of PowerShell commands enclosed by
the { and } characters. You can write any PowerShell commands inside the script
block. In the script block, the $_ (or $PSItem) variable represents the current input
object. For each item in the incoming set of objects, PowerShell assigns that item to
the $_ (or $PSItem) variable and then runs your script block. In the preceding exam-
ples, this incoming object represents the process, file, or service that the previous
cmdlet generated.

This script block can contain a great deal of functionality, if desired. It can combine
multiple tests, comparisons, and much more. For more information about script
blocks, see Recipe 11.4. For more information about the type of comparisons avail-
able to you, see “Comparison Operators” on page 818.

For simple filtering, the syntax of using script blocks in the Where-0Object cmdlet may
sometimes seem overbearing. For these scenarios, Where-Object offers parameters
that directly support parameters to apply simple comparisons like -Eq, -Match, -In,
and more.

In addition to the script block syntax offered by the Where-0Object cmdlet, Powershell
also offers a version built into the language itself: the where() method. This is slightly
faster for very large data collections, although the time it takes to collect those items
(such as getting the list of files in a directory) normally dwarfs any time it takes to
filter them. The where() method does offer several additional useful modes, however,
through its second parameter.

Get the first part of a list

PS > (1..10).where({ $_ -eq 5 }, "Until")
1

2
3
4

Get the second part of a list

PS > (1..10).where({ $_ -eq 5 }, "Skipuntil")

= WO 00N O Wun

80 | Chapter2:Pipelines

Split a list
PS > $even,$odd = (1..10).where({ $_ % 2 -eq 0 }, "Split")
PS > $even -join ","
2,4,6,8,10
PS > $odd -join ","
1,3,5,7,9

For complex filtering (for example, the type you would normally rely on a mouse to
do with files in an Explorer window), writing the script block to express your intent
may be difficult or even infeasible. If this is the case, Recipe 2.4 shows a script that
can make manual filtering easier to accomplish.

For more information about the Where-Object cmdlet, type Get-Help Where-
Object. For more information about the where() method, type Get-Help
about_Arrays.

See Also
Recipe 2.4, “Interactively Filter Lists of Objects”

Recipe 11.4, “Write a Script Block”

“Comparison Operators” on page 818

2.3 Group and Pivot Data by Name

Problem

You want to easily access items in a list by a property name.

Solution

Use the Group-0bject cmdlet (which has the standard alias group) with the -AsHash
and -AsString parameters. This creates a hashtable with the selected property (or
expression) used as keys in that hashtable:

PS > $h = dir | group -AsHash -AsString Length

PS > $h

Name Value

746 {ReplaceTest.ps1}
499 {Format-String.ps1}
20494 {test.d11}

PS > $h["499"]

Directory: C:\temp

2.3 Group and Pivot Databy Name | 81

Mode LastWriteTime Length Name

-a--- 10/18/2009 9:57 PM 499 Format-String.psil

PS > $h["746"]

Directory: C:\temp

Mode LastWriteTime Length Name
-a--- 10/18/2009 9:51 PM 746 ReplaceTest.psl
Discussion

In some situations, you might find yourself repeatedly calling the Where-Object
cmdlet to interact with the same list or output:

PS > Sprocesses = Get-Process
PS > Sprocesses | Where-Object { $_.Id -eq 1216 }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

62 3 1012 3132 50 0.20 1216 dwm

PS > Sprocesses | Where-Object { $_.Id -eq 212 }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

614 10 28444 5484 117 1.27 212 SearchIndexer

In these situations, you can instead use the -AsHash parameter of the Group-Object
cmdlet. When you use this parameter, PowerShell creates a hashtable to hold your
results. This creates a map between the property you're interested in and the object it
represents:

PS > $processes = Get-Process | Group-Object -AsHash Id
PS > $processes[1216]

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

62 3 1012 3132 50 0.20 1216 dwm
PS > $processes[212]

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

610 10 28444 5488 117 1.27 212 SearchIndexer

For simple types of data, this approach works well. Depending on your data, though,
using the -AsHash parameter alone can create difficulties.

82 | (Chapter2:Pipelines

The first issue you might run into arises when the value of a property is $null. Hasht-
ables in PowerShell (and the .NET Framework that provides the underlying support)
don’t support $null as a value, so you get a misleading error message:

PS > "Hello",(Get-Process -id $pid) | Group-Object -AsHash Id

Group-Object : The objects grouped by this property cannot be expanded

since there is a duplication of the key. Please give a valid property and try
again.

A second issue crops up when more complex data gets stored within the hashtable.
This can unfortunately be true even of data that appears to be simple:

PS > $result = dir | Group-Object -AsHash Length
PS > S$result

Name Value

746 {ReplaceTest.ps1}
499 {Format-String.ps1}
20494 {test.d11}

PS > Sresult[746]

(Nothing appears)
This missing result is caused by an incompatibility between the information in the
hashtable and the information you typed. This is normally not an issue in hashtables
that you create yourself, because you provided all of the information to populate
them. In this case, though, the Length values stored in the hashtable come from the
directory listing and are of the type Int64. An explicit cast resolves the issue but takes
a great deal of trial and error to discover:

PS > Sresult[[int64] 746]
Directory: C:\temp

Mode LasthWriteTime Length Name

-a--- 10/18/2009 9:51 PM 746 ReplaceTest.psl

It’s difficult to avoid both of these issues, so the Group-Object cmdlet also offers an
-AsString parameter to convert all of the values to their string equivalents. With that
parameter, you can always assume that the values will be treated as (and accessible
by) strings:

PS > S$result = dir | Group-Object -AsHash -AsString Length
PS > Sresult["746"]

Directory: C:\temp
Mode LasthWriteTime Length Name

-a--- 10/18/2009 9:51 PM 746 ReplaceTest.psl

2.3 Group and Pivot Databy Name | 83

For more information about the Group-Object cmdlet, type Get-Help Group-
Object. For more information about PowerShell hashtables, see Recipe 7.13.

See Also
Recipe 7.13, “Create a Hashtable or Associative Array”

“Hashtables (Associative Arrays)” on page 809

2.4 Interactively Filter Lists of Objects

There are times when the scriptblock syntax of Where-0Object cmdlet is too powerful.
In those situations, the simplified property access parameters provides a much sim-
pler alternative. There are also times when the Where-0Object cmdlet is too simple—
when expressing your selection logic as code is more cumbersome than selecting it
manually. In those situations, an interactive filter can be much more effective.

PowerShell makes this interactive filtering incredibly easy through the -PassThru
parameter of the Out-Gridview cmdlet. For example, you can use this parameter after
experimenting with commands for a while to create a simple script. Simply highlight
the lines you want to keep, and press OK:

PS > $script = Get-History | ForEach-Object CommandLine | Out-GridView -PassThru
PS > $script | Set-Content c:\temp\script.psil

By default, the Out-Gridview cmdlet lets you select multiple items at once before
pressing OK. If youd rather constrain the selection to a single element, use Single as
the value of the -OutputMode parameter.

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 2.2, “Filter Items in a List or Command Output”

2.5 Work with Each Item in a List or Command Output

Problem

You have a list of items and want to work with each item in that list.

Solution

Usei the ForEach-0bject cmdlet (which has the standard aliases foreach and %) to
work with each item in a list.

84 | (Chapter2:Pipelines

To apply a calculation to each item in a list, use the $_ (or $PSItem) variable as part of
a calculation in the script block parameter:

PS > 1..10 | ForEach-Object { $_ * 2 }

2

4

6

8

10

12

14

16

18

20
To run a program on each file in a directory, use the $_ (or $PSItem) variable as a

parameter to the program in the script block parameter:
Get-ChildItem *.txt | ForEach-Object { attrib -r $_ }

To access a method or property for each object in a list, access that method or prop-
erty on the $_ (or $PSItem) variable in the script block parameter. In this example,
you get the list of running processes called notepad, and then wait for each of them to
exit:

SnotepadProcesses = Get-Process notepad
SnotepadProcesses | ForEach-Object { $_.WaitForExit() }

Discussion

Like the Where-0Object cmdlet, the ForEach-Object cmdlet runs the script block that
you specify for each item in the input. A script block is a series of PowerShell com-
mands enclosed by the { and } characters. For each item in the set of incoming
objects, PowerShell assigns that item to the $_ (or $PSItem) variable, one element at a
time. In the examples given by the Solution, the $_ (or $PSItem) variable represents
each file or process that the previous cmdlet generated.

The first example in the Solution demonstrates a neat way to gener-
ate ranges of numbers: 1. .10

This is PowerShell’s array range syntax, which you can learn more
about in Recipe 7.3.

This script block can contain a great deal of functionality, if desired. You can combine
multiple tests, comparisons, and much more. For more information about script
blocks, see Recipe 11.4. For more information about the type of comparisons avail-
able to you, see “Comparison Operators” on page 818.

2.5 Work with Each Item in a List or Command Output | 85

In addition to the script block supported by the ForEach-Object cmdlet to process
each element of the pipeline, it also supports script blocks to be executed at the begin-
ning and end of the pipeline. For example, consider the following code to measure
the sum of elements in an array:

SmyArray = 1,2,3,4,5

Ssum = 0
SmyArray | ForEach-Object { $sum += $_ }
Ssum

You can simplify this to:

SmyArray | ForEach-Object -Begin {
$sum = 0@ } -Process { $sum += $_ } -End { $sum }
Since you can also specify the -Begin, -Process, and -End parameters by position,
this can simplify even further to:

SmyArray | ForEach-Object { Ssum = 0 } { $Ssum += $_ } { $sum }

For simple scenarios (such as retrieving only a single property), the script-block-
based syntax can get a little ungainly:

Get-Process | ForEach-Object { $_.Name }

In PowerShell, the ForEach-0bject cmdlet (and by extension its % alias) also supports
parameters to simplify property and method access dramatically:

Get-Process | ForEach-Object Name
Get-Process | % Name | % ToUpper

As with the Where-0bject cmdlet, PowerShell offers a foreach() method on collec-
tions that let you perform many of these same tasks:

Property access
(Get-Process).foreach("Name")

Script block invocation
Ssum = 0
(1..5).foreach({ $sum += $_ 1})

Type conversion
Sbytes = (1..5).foreach([Byte])

In addition to using the ForEach-0Object cmdlet to support full member invocation,
the PowerShell language has a quick way to easily enumerate properties. Just as you
are able to access a property on a single element, PowerShell lets you use a similar
syntax to access that property on each item of a collection:

Start-Process PowerShell

Start-Process PowerShell

Sprocesses = Get-Process -Name PowerShell
Sprocesses[0].Id

PS
PS
PS
PS
7928

>
>
>
>

86 | Chapter2:Pipelines

PS > $processes.Id
7928
13120

While writing more advanced pipelines, you might sometimes find yourself writing a
Where-Object or ForEach-Object script block within another script block that is
already processing pipeline input. In this situation, you lose access to the outer $_ (or
$PSItem) variable within the inner script block:

Get all processes
Get-Process | ForEach-Object {
Get all of their modules (loaded DLLs)
$_.Modules | ForEach-Object {
If the DLL is loaded from AppData
if(S_.FileName -match 'AppData') {
Desired behavior: Output the process name
Actual behavior: Outputs the module name

$

}

To solve this problem, PowerShell supports the -PipelineVariable parameter. When
you add this parameter to a command, PowerShell saves the command’s current pipe-
line output into the variable name that you specify in addition to the $_ variable. At
this point you can use it from within other nested script blocks freely without it being
overwritten:

Get all processes
Get-Process -PipelinevVariable currentProcess | ForEach-Object {
Get all of their modules (loaded DLLs)
$_.Modules | ForEach-Object {
If the DLL is loaded from AppData
if($_.FileName -match 'AppData') {
Output the process name
ScurrentProcess

}
} | Select-Object -First 1

}
The ForEach-0Object cmdlet isn’t the only way to perform actions on items in a list.
The PowerShell scripting language supports several other keywords, such as for, (a

different) foreach, do, and while. For information on how to use those keywords, see
Recipe 4.4.

For more information about the ForEach-Object cmdlet, type Get-Help ForEach-
Object.

For more information about dealing with pipeline input in your own scripts, func-
tions, and script blocks, see Recipe 11.18.

2.5 Work with Each Item in a List or Command Output | 87

See Also

Recipe 4.4, “Repeat Operations with Loops”
Recipe 7.3, “Access Elements of an Array”
Recipe 11.4, “Write a Script Block”

Recipe 11.18, “Access a Script’s Pipeline Input”

“Comparison Operators” on page 818

2.6 Automate Data-Intensive Tasks

Problem

You want to invoke a simple task on large amounts of data.

Solution

If only one piece of data changes (such as a server name or username), store the data
in a text file. Use the Get-Content cmdlet to retrieve the items, and then use the
ForEach-Object cmdlet (which has the standard aliases foreach and %) to work with
each item in that list. Example 2-3 illustrates this technique.

Example 2-3. Using information from a text file to automate data-intensive tasks

PS > Get-Content servers.txt
SERVER1
SERVER?2
PS > S$Scomputers = Get-Content servers.txt
PS > Scomputers | ForEach-Object {
Get-CimInstance Win32_OperatingSystem -Computer $_ }

SystemDirectory : C:\WINDOWS\system32

Organization
BuildNumber : 19041
Version : 10.0.19041

SystemDirectory : C:\WINDOWS\system32

Organization
BuildNumber : 19041
Version : 10.0.19041

If it becomes cumbersome (or unclear) to include the actions in the ForEach-0Object
cmdlet, you can also use the foreach scripting keyword, as illustrated in Example 2-4.

88 | (Chapter2:Pipelines

Example 2-4. Using the foreach scripting keyword to make a looping statement easier to
read

Scomputers = Get-Content servers.txt

foreach($computer in S$Scomputers)

{
Get the information about the operating system from WMI
$system = Get-CimInstance Win32_OperatingSystem -Computer Scomputer

Determine if it i1s running Windows XP
if($system.Version -match "~10.")

{

"Scomputer is running Windows 10"
}
}

If several aspects of the data change per task (for example, both the CIM class and the
computer name for computers in a large report), create a CSV file with a row for each
task. Use the Import-Csv cmdlet to import that data into PowerShell, and then use
properties of the resulting objects as multiple sources of related data. Example 2-5
illustrates this technique.

Example 2-5. Using information from a CSV to automate data-intensive tasks
PS > Get-Content WmiReport.csv

ComputerName,Class

LEE-DESK,Win32_OperatingSystem

LEE-DESK,Win32_Bios

PS > $data = Import-Csv WmiReport.csv

PS > $data

ComputerName Class

Léé:éé;k---- &{;;é_OperatingSystem
LEE-DESK Win32_Bios

PS > S$data |

ForEach-Object { Get-CimInstance $_.Class -Computer $_.ComputerName }

SystemDirectory : C:\WINDOWS\system32

Organization
BuildNumber 1 2600
Version : 5.1.2600

SMBIOSBIOSVersion : ASUS A7N8X Deluxe ACPI BIOS Rev 1009

Manufacturer : Phoenix Technologies, LTD
Name : Phoenix - AwardBIOS v6.00PG
SerialNumber IOXXXXXXXXXXX

Version ¢ Nvidia - 42302e31

2.6 Automate Data-Intensive Tasks | 89

Discussion

One of the major benefits of PowerShell is its capability to automate repetitive tasks.
Sometimes these repetitive tasks are action-intensive (such as system maintenance
through registry and file cleanup) and consist of complex sequences of commands
that will always be invoked together. In those situations, you can write a script to
combine these operations to save time and reduce errors.

Other times, you need only to accomplish a single task (for example, retrieving the
results of a WMI query) but need to invoke that task repeatedly for a large amount of
data. In those situations, PowerShell’s scripting statements, pipeline support, and data
management cmdlets help automate those tasks.

One of the options given by the Solution is the Import-Csv cmdlet. The Import-Csv
cmdlet reads a CSV file and, for each row, automatically creates an object with prop-
erties that correspond to the names of the columns. Example 2-6 shows the results of
a CSV that contains a ComputerName and Class header.

Example 2-6. The Import-Csv cmdlet creating objects with ComputerName and Class
properties

PS > $data = Import-Csv WmiReport.csv

PS > S$data

ComputerName Class

LEE-DESK Win32_OperatingSystem
LEE-DESK Win32_Bios

PS > $data[0].ComputerName
LEE-DESK

As the Solution illustrates, you can use the ForEach-Object cmdlet to provide data
from these objects to repetitive cmdlet calls. It does this by specifying each parameter
name, followed by the data (taken from a property of the current CSV object) that
applies to it.

If you already have the comma-separated values in a variable
(rather than a file), you can use the ConvertFrom-Csv cmdlet to
convert these values to objects.

90 | Chapter2:Pipelines

While this is the most general solution, many cmdlet parameters can automatically
retrieve their value from incoming objects if any property of that object has the same
name. This enables you to omit the ForEach-Object and property mapping steps
altogether. Parameters that support this feature are said to support value from pipeline
by property name. The Move-Item cmdlet is one example of a cmdlet with parameters
that support this, as shown by the Accept pipeline input? rows in Example 2-7.

Example 2-7. Help content of the Move-Item cmdlet showing a parameter that accepts
value from pipeline by property name

PS > Get-Help Move-Item -Full
(...)
PARAMETERS

-path <string[]>
Specifies the path to the current location of the items. The default
is the current directory. Wildcards are permitted.

Required? true

Position? 1

Default value <current location>

Accept pipeline input? true (ByValue, ByPropertyName)

Accept wildcard characters? true

-destination <string>
Specifies the path to the location where the items are being moved.
The default is the current directory. Wildcards are permitted, but
the result must specify a single location.

To rename the item being moved, specify a new name in the value of

Destination.

Required? false

Position? 2

Default value <current location>
Accept pipeline input? true (ByPropertyName)
Accept wildcard characters? True

(...)

If you purposefully name the columns in the CSV to correspond to parameters that
take their value from pipeline by property name, PowerShell can do some (or all) of
the parameter mapping for you. Example 2-8 demonstrates a CSV file that moves
items in bulk.

Example 2-8. Using the Import-Csv cmdlet to automate a cmdlet that accepts value from
pipeline by property name

PS > Get-Content ItemMoves.csv
Path,Destination
test.txt,TestiDirectory
test2.txt,Test2Directory

2.6 Automate Data-Intensive Tasks | 91

PS > dir test.txt,test2.txt | Select Name
Name

test.txt
test2.txt

PS > Import-Csv ItemMoves.csv | Move-Item
PS > dir TestiDirectory | Select Name

Name

t;s;.txt

PS > dir Test2Directory | Select Name
Name

test2.txt

For more information about the ForEach-0Object cmdlet and foreach scripting key-
word, see Recipe 2.5. For more information about working with CSV files, see Recipe
10.7. For more information about working with WMI, see Chapter 28.

See Also

Recipe 2.5, “Work with Each Item in a List or Command Output”
Recipe 10.7, “Import CSV and Delimited Data from a File”
Chapter 28

2.7 Intercept Stages of the Pipeline

Problem

You want to intercept or take some action at different stages of the PowerShell
pipeline.
Solution

Use the New-CommandWrapper script given in Recipe 11.23 to wrap the Out-Default
command, and place your custom functionality in that.

92 | Chapter2:Pipelines

Discussion

For any pipeline, PowerShell adds an implicit call to the Out-Default cmdlet at the
end. By adding a command wrapper over this function we can heavily customize the
pipeline processing behavior.

When PowerShell creates a pipeline, it first calls the BeginProcessing() method of
each command in the pipeline. For advanced functions (the type created by the New-
CommandWrapper script), PowerShell invokes the Begin block. If you want to do any-
thing at the beginning of the pipeline, then put your customizations in that block.

For each object emitted by the pipeline, PowerShell sends that object to the Process
Record() method of the next command in the pipeline. For advanced functions (the
type created by the New-CommandWrapper script), PowerShell invokes the Process
block. If you want to do anything for each element in the pipeline, put your customi-
zations in that block.

Finally, when PowerShell has processed all items in the pipeline, it calls the End
Processing() method of each command in the pipeline. For advanced functions (the
type created by the New-CommandWrapper script), PowerShell invokes the End block. If
you want to do anything at the end of the pipeline, then put your customizations in
that block.

For two examples of this approach, see Recipe 2.8 and Recipe 11.22.

For more information about running scripts, see Recipe 1.2.

See Also

Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 2.8, “Automatically Capture Pipeline Output”

Recipe 11.22, “Invoke Dynamically Named Commands”

Recipe 11.23, “Program: Enhance or Extend an Existing Cmdlet”

2.8 Automatically Capture Pipeline Qutput

Problem

You want to automatically capture the output of the last command without explicitly
storing its output in a variable.

2.8 Automatically Capture Pipeline Output | 93

Solution

Use the PSDefaultParameterValues automatic variable to set the -OutVariable
parameter value of the Out-Default command to a variable name of your choice:

$PSDefaultParameterValues["Out-Default:OutVariable"] = "_"

Discussion

Once each object in a command has passed through the pipeline, it eventually rea-
ches the end. If your script does not capture this output, PowerShell provides it to the
Out-Default cmdlet, which is then responsible for figuring out how to format and
display the output.

Like all cmdlets, the Out-Default cmdlet supports an -OutVariable parameter that
lets you store its output into a variable:

PS > 1..3 | Out-Default -OutVariable myOutput
1
2
3

PS > $myOutput
1
2
3

Knowing this, we can use PowerShell’s $PSDefaultParameterValues infrastructure to
make Out-Default do this every time. The Solution uses two underscore characters

as the variable name to look like the single underscore that represents the current
pipeline input in PowerShell, but you can use any variable name you want:

PS > $PSDefaultParameterValues["Out-Default:OutVariable"] = "lastOutput"

PS > 1..3
1
2
3

PS > $lastOutput
1
2
3

For more information about providing default values to cmdlet parameters, see
Recipe 1.5.

94 | Chapter2:Pipelines

See Also
Recipe 1.5, “Supply Default Values for Parameters”
Recipe 2.7, “Intercept Stages of the Pipeline”

Recipe 11.23, “Program: Enhance or Extend an Existing Cmdlet”

2.9 Capture and Redirect Binary Process Output

Problem

You want to run programs that transfer complex binary data between themselves.

Solution

Use the Invoke-BinaryProcess script to invoke the program, as shown in
Example 2-9. If it’s the source of binary data, use the -RedirectOutput parameter. If

it consumes binary data, use the -RedirectInput parameter.

Example 2-9. Invoke-BinaryProcess.ps1

##
Invoke-BinaryProcess

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

<#

.SYNOPSIS

Invokes a process that emits or consumes binary data.
. EXAMPLE

PS > Invoke-BinaryProcess binaryProcess.exe -RedirectOutput -ArgumentList "-emit" |
Invoke-BinaryProcess binaryProcess.exe -RedirectInput -ArgumentlList "-consume'

4

#>

param(
The name of the process to invoke
[string] $ProcessName,

Specifies that input to the process should be treated as
binary
[Alias("Input")]

2.9 Capture and Redirect Binary Process Output

| 95

[switch] $RedirectInput,

Specifies that the output of the process should be treated
as binary

[Alias("Output")]

[switch] $RedirectOutput,

Specifies the arguments for the process
[string] $ArgumentList
)

Set-StrictMode -Version 3

Prepare to invoke the process

S$processStartInfo = New-Object System.Diagnostics.ProcessStartInfo
$processStartInfo.FileName = (Get-Command $processname).Definition
$processStartInfo.WorkingDirectory = (Get-Location).Path
if(SargumentList) { $processStartInfo.Arguments = $argumentlList }
$processStartInfo.UseShellExecute = $false

Always redirect the input and output of the process.

Sometimes we will capture it as binary, other times we will
just treat it as strings.
$processStartInfo.RedirectStandardOutput = $Strue
$processStartInfo.RedirectStandardInput = Strue

$process = [System.Diagnostics.Process]::Start($SprocessStartInfo)

If we've been asked to redirect the input, treat it as bytes.

Otherwise, write any input to the process as strings.

if(SredirectInput)

{
$inputBytes = @($input)
$process.StandardInput.BaseStream.Write(SinputBytes, 0, $inputBytes.Count)
$process.StandardInput.Close()

}

else

{
$input | % { Sprocess.StandardInput.WriteLine($_) }
$process.StandardInput.Close()

}

If we've been asked to redirect the output, treat it as bytes.
Otherwise, read any input from the process as strings.

if($redirectOutput)
{
$byteRead = -1
do
{

SbyteRead = S$process.StandardOutput.BaseStream.ReadByte()
if($byteRead -ge 0) { $byteRead }
} while($byteRead -ge 0)

else

96 | Chapter2:Pipelines

$process.StandardOutput.ReadToEnd()
}

Discussion

When PowerShell launches a native application, one of the benefits it provides is
allowing you to use PowerShell commands to work with the output. For example:

PS > (ipconfig)[7]

Link-local IPv6 Address : fe80::20f9:871:8365:f368%8
PS > (ipconfig)[8]
IPv4 Address. : 10.211.55.3

PowerShell enables this by splitting the output of the program on its newline charac-
ters, and then passing each line independently down the pipeline. This includes pro-
grams that use the Unix newline (\n) as well as the Windows newline (\r\n).

If the program outputs binary data, however, that reinterpretation can corrupt data as
it gets redirected to another process or file. For example, some programs communi-
cate between themselves through complicated binary data structures that cannot be
modified along the way. This is common in some image editing utilities and other
non-PowerShell tools designed for pipelined data manipulation.

We can see this through an example BinaryProcess.exe application that either emits
binary data or consumes it. Here is the C# source code to the BinaryProcess.exe
application:

using System;
using System.IO;

public class BinaryProcess

{

public static void Main(string[] args)

{

if(args[0] == "-consume")

using(Stream inputStream = Console.OpenStandardInput())

{
for(byte counter = 0; counter < 255; counter++)
{
byte received = (byte) inputStream.ReadByte();
if(received != counter)
{

Console.WriteLine(
"Got an invalid byte: {0}, expected {1}.",
received, counter);

return;
}
else
{
Console.WriteLine(
"Properly received byte: {0}.", received, counter);
}

2.9 Capture and Redirect Binary Process Output | 97

}
}
if(args[0] == "-emit")
{
using(Stream outputStream = Console.OpenStandardOutput())
{
for(byte counter = 0; counter < 255; counter++)
{
outputStream.WriteByte(counter);
}
}
}

}

When we run it with the -emit parameter, PowerShell breaks the output into three
objects:

PS > Soutput = .\binaryprocess.exe -emit
PS > Soutput.Count
3

We would expect this output to contain the numbers 0 through 254, but we see that it
does not:

PS > Soutput | ForEach-Object { "------------ "
$_.ToCharArray() | ForEach-Object { [int] $_ } }

214

98 | Chapter2:Pipelines

220

162

163

165

8359

402

225
At number 10, PowerShell interprets that byte as the end of the line, and uses that to
split the output into a new element. It does the same for number 13. Things appear to
get even stranger when we get to the higher numbers and PowerShell starts to inter-

pret combinations of bytes as Unicode characters from another language.

The Solution resolves this behavior by managing the output of the binary process
directly. If you supply the -RedirectInput parameter, the script assumes an incom-
ing stream of binary data and passes it to the program directly. If you supply the -
RedirectOutput parameter, the script assumes that the output is binary data, and
likewise reads it from the process directly.

See Also

Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

2.9 Capture and Redirect Binary Process Output | 99

CHAPTER 3
Variables and Objects

3.0 Introduction

As touched on in Chapter 2, PowerShell makes life immensely easier by keeping
information in its native form: objects. Users expend most of their effort in traditional
shells just trying to resuscitate information that the shell converted from its native
form to plain text. Tools have evolved that ease the burden of working with plain text,
but that job is still significantly more difficult than it needs to be.

Since PowerShell builds on Microsoft’s NET Framework, native information comes
in the form of .NET objects—packages of information and functionality closely
related to that information.

Lets say that you want to get a list of running processes on your system. In other
shells, your command (such as tlist.exe or /bin/ps) generates a plain-text report
of the running processes on your system. To work with that output, you send it
through a bevy of text processing tools—if youre lucky enough to have them
available.

PowerShell’s Get-Process cmdlet generates a list of the running processes on your
system. In contrast to other shells, though, these are full-fidelity System.
Diagnostics.Process objects straight out of the NET Framework. The .NET Frame-
work documentation describes them as objects that “[provide] access to local and
remote processes, and [enable] you to start and stop local system processes” With
those objects in hand, PowerShell makes it trivial for you to access properties of
objects (such as their process name or memory usage) and to access functionality on
these objects (such as stopping them, starting them, or waiting for them to exit).

101

3.1 Display the Properties of an Item as a List

Problem

You have an item (for example, an error record, directory item, or .NET object), and
you want to display detailed information about that object in a list format.

Solution

To display detailed information about an item, pass that item to the Format-List
cmdlet. For example, to display an error in list format, type the following commands:

ScurrentError = $error[0]
ScurrentError | Format-List -Force

Discussion

Many commands by default display a summarized view of their output in a table for-
mat, for example, the Get-Process cmdlet:

PS > Get-Process PowerShell

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
920 10 43808 48424 183 4.69 1928 powershell
149 6 18228 8660 146 0.48 1940 powershell
431 11 33308 19072 172 2816 powershell

In most cases, the output actually contains a great deal more information. You can
use the Format-List cmdlet to view it:

PS > Get-Process pwsh | Format-List *

Name : pwsh

Id : 14820

PriorityClass : Normal

FileVersion : 7.1.0.0

HandleCount 1 940

TotalProcessorTime : 00:00:25.7500000

VM 1 2204249919488

WS : 81596416

Path : C:\Program Files\WindowsApps\...\pwsh.exe
CommandLine : C:\Users\lee\AppData\Microsoft\WindowsApps\...\pwsh.exe
Parent : System.Diagnostics.Process (WindowsTerminal)
Company : Microsoft Corporation

CPU : 25.765625

ProductVersion : 7.1.0 SHA: cbb7d40f684fdeb56cc276340b3b7435ac649d8f
Description : pwsh

Product : PowerShell(...)

102 | Chapter3:Variables and Objects

The Format-List cmdlet is one of the four PowerShell formatting cmdlets. These
cmdlets are Format-Table, Format-List, Format-Wide, and Format-Custom. The
Format-List cmdlet takes input and displays information about that input as a list.

By default, PowerShell takes the list of properties to display from the *.format.psixml
files in PowerShell’s installation directory. In many situations, you'll only get a small
set of the properties:

PS > Get-Process pwsh | Format-List

Id : 2816
Handles : 431

CPU

Name : pwsh

Id : 5244
Handles : 665

CPU : 10.296875
Name : pwsh

To display all properties of the item, type Format-List *. If you type Format-List *
but still do not get a list of the item’s properties, then the item is defined in the
* format.psIxml files, but does not define anything to be displayed for the list com-
mand. In that case, type Format-List -Force.

One common stumbling block in PowerShell’s formatting cmdlets comes from
putting them in the middle of a script or pipeline:

PS > Get-Process PowerShell | Format-List | Sort-Object Name

out-lineoutput : The object of type "Microsoft.PowerShell.Commands.Internal.

Format.FormatEntryData" is not valid or not in the correct sequence. This {is

likely caused by a user-specified "format-*" command that is conflicting with

the default formatting.
Internally, PowerShell's formatting commands generate a new type of object:
Microsoft.PowerShell.Commands.Internal.Format.*. When these objects make it
to the end of the pipeline, PowerShell automatically sends them to an output cmdlet:
by default, Out-Default. These Out-* cmdlets assume that the objects arrive in a cer-
tain order, so doing anything with the output of the formatting commands causes an
error in the output system.

To resolve this problem, try to avoid calling the formatting cmdlets in the middle of a
script or pipeline. When you do this, the output of your script no longer lends itself
to the object-based manipulation so synonymous with PowerShell.

If you want to use the formatted output directly, send the output through the Out-
String cmdlet as described in Recipe 1.24.

For more information about the Format-List cmdlet, type Get-Help Format-List.

3.1 Display the Properties of an Itemasalist | 103

3.2 Display the Properties of an Item as a Table

Problem

You have a set of items (for example, error records, directory items, or .NET objects),
and you want to display summary information about them in a table format.

Solution

To display summary information about a set of items, pass those items to the Format-
Table cmdlet. This is the default type of formatting for sets of items in PowerShell
and provides several useful features.

To use PowerShell’s default formatting, pipe the output of a cmdlet (such as the Get-
Process cmdlet) to the Format-Table cmdlet:

Get-Process | Format-Table

To display specific properties (such as Name and WorkingSet) in the table formatting,
supply those property names as parameters to the Format-Table cmdlet:

Get-Process | Format-Table Name,WS

To instruct PowerShell to format the table in the most readable manner, supply the
-Auto flag to the Format-Table cmdlet. PowerShell defines WS as an alias of the
WorkingSet property for processes:

Get-Process | Format-Table Name,WS -Auto

To define a custom column definition (such as a process’s WorkingSet in megabytes),
supply a custom formatting expression to the Format-Table cmdlet:
$fields = "Name",@{

Label = "WS (MB)"; Expression = {$_.WS / 1mb}; Align = "Right"}
Get-Process | Format-Table $fields -Auto

Discussion

The Format-Table cmdlet is one of the four PowerShell formatting cmdlets. These
cmdlets are Format-Table, Format-List, Format-Wide, and Format-Custom. The
Format-Table cmdlet takes input and displays information about that input as a
table. By default, PowerShell takes the list of properties to display from the
* format.psIxml files in PowerShell’s installation directory. You can display all proper-
ties of the items if you type Format-Table *, although this is rarely a useful view.

The -Auto parameter to Format-Table is a helpful way to automatically format the
table in the most readable way possible. It does come at a cost, however. To figure out
the best table layout, PowerShell needs to examine each item in the incoming set of

104 | Chapter3:Variables and Objects

items. For small sets of items, this doesnt make much difference, but for large sets
(such as a recursive directory listing), it does. Without the -Auto parameter, the
Format-Table cmdlet can display items as soon as it receives them. With the -Auto
flag, the cmdlet displays results only after it receives all the input.

Perhaps the most interesting feature of the Format-Table cmdlet is illustrated by the
last example: the ability to define completely custom table columns. You define a cus-
tom table column similarly to the way that you define a custom column list. Rather
than specify an existing property of the items, you provide a hashtable. That hashta-
ble includes up to three keys: the column’s label, a formatting expression, and align-
ment. The Format-Table cmdlet shows the label as the column header and uses your
expression to generate data for that column. The label must be a string, the expres-
sion must be a script block, and the alignment must be either "Left", "Center", or
"Right". In the expression script block, the $_ (or $PSItem) variable represents the
current item being formatted.

The Select-0bject cmdlet supports a similar hashtable to add cal-
culated properties, but uses Name (rather than Label) as the key to
identify the property. After realizing how confusing this was, the
PowerShell team updated both cmdlets to accept both Name and
Label.

The expression shown in the last example takes the working set of the current item
and divides it by 1 megabyte (1 MB).

One common stumbling block in PowerShell's formatting cmdlets comes from
putting them in the middle of a script or pipeline:

PS > Get-Process | Format-Table | Sort-Object Name

out-lineoutput : The object of type "Microsoft.PowerShell.Commands.Internal.

Format.FormatEntryData" is not valid or not in the correct sequence. This {is

likely caused by a user-specified "format-*" command that is conflicting with

the default formatting.
Internally, PowerShell’s formatting commands generate a new type of object:
Microsoft.PowerShell.Commands.Internal.Format.*. When these objects make it
to the end of the pipeline, PowerShell then automatically sends them to an output
cmdlet: by default, Out-Default. These Out-* cmdlets assume that the objects arrive
in a certain order, so doing anything with the output of the formatting commands
causes an error in the output system.

To resolve this problem, try to avoid calling the formatting cmdlets in the middle of a
script or pipeline. When you do this, the output of your script no longer lends itself
to the object-based manipulation so synonymous with PowerShell.

3.2 Display the Properties of an ItemasaTable | 105

If you want to use the formatted output directly, send the output through the Out-
String cmdlet as described in Recipe 1.24.

For more information about the Format-Table cmdlet, type Get-Help Format-
Table. For more information about hashtables, see Recipe 7.13. For more informa-
tion about script blocks, see Recipe 11.4.

See Also

Recipe 1.24, “Program: Search Formatted Output for a Pattern”
Recipe 7.13, “Create a Hashtable or Associative Array”

Recipe 11.4, “Write a Script Block”

3.3 Store Information in Variables

Problem

You want to store the output of a pipeline or command for later use or to work with it
in more detail.

Solution

To store output for later use, store the output of the command in a variable. You can
access this information later, or even pass it down the pipeline as though it were the
output of the original command:

PS > $result = 2 + 2

PS > Sresult
4

PS > Soutput = ipconfig
PS > Soutput | Select-String "Default Gateway" | Select -First 1

Default Gateway : 192.168.11.1

PS > Sprocesses = Get-Process

PS > S$processes.Count

85

PS > $processes | Where-Object { $_.ID -eq 0 }

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

106 | Chapter3:Variables and Objects

Discussion

Variables in PowerShell (and all other scripting and programming languages) let you
store the output of something so that you can use it later. A variable name starts with
a dollar sign ($) and can be followed by nearly any character. A small set of characters
have special meaning to PowerShell, so PowerShell provides a way to make variable
names that include even these.

For more information about the syntax and types of PowerShell variables, see “Vari-
ables” on page 800.

You can store the result of any pipeline or command in a variable to use it later. If that
command generates simple data (such as a number or string), then the variable con-
tains simple data. If the command generates rich data (such as the objects that repre-
sent system processes from the Get-Process cmdlet), then the variable contains that
list of rich data. If the command generates plain text (such as the output of a tradi-
tional executable), then the variable contains plain text.

If you've stored a large amount of data into a variable but no longer
need that data, assign a new value (such as $null) to that variable.
That will allow PowerShell to release the memory it was using to
store that data.

In addition to variables that you create, PowerShell automatically defines several vari-
ables that represent things such as the location of your profile file, the process ID of
PowerShell, and more. For a full list of these automatic variables, type Get-Help
about_Automatic_Variables.

See Also
“Variables” on page 800

3.4 Access Environment Variables

Problem

You want to use an environment variable (such as the system path or the current
user’s name) in your script or interactive session.

Solution
PowerShell offers several ways to access environment variables.

To list all environment variables, list the children of the env drive:

3.4 Access Environment Variables | 107

Get-ChildItem env:

To get an environment variable using a more concise syntax, precede its name with
$env:

Senv:variablename

(For example, $env:username.)

To get an environment variable using its provider path, supply env: or
Environment:: to the Get-ChildItem cmdlet:

Get-ChildItem env:variablename
Get-ChildItem Environment::variablename

Discussion

PowerShell provides access to environment variables through its environment pro-
vider. Providers let you work with data stores (such as the registry, environment vari-
ables, and aliases) much as you would access the filesystem.

By default, PowerShell creates a drive (called env) that works with the environment
provider to let you access environment variables. The environment provider lets you
access items in the env: drive as you would any other drive: dir env: |variablename
or dir env:variablename. If you want to access the provider directly (rather than go
through its drive), you can also type dir Environment::variablename.

However, the most common (and easiest) way to work with environment variables is
by typing $env:variablename. This works with any provider but is most typically
used with environment variables.

This is because the environment provider shares something in common with several
other providers—namely, support for the *-Content set of core cmdlets (see
Example 3-1).

Example 3-1. Working with content on different providers

PS > "hello world" > test
PS > Get-Content test
hello world

PS > Get-Content c:test
hello world

PS > Get-Content variable:ErrorActionPreference
Continue

PS > Get-Content function:prompt

"PS $(SexecutionContext.SessionState.Path.CurrentlLocation)
$('>" * (SnestedPromptLevel + 1)) ";

(...)

108 | Chapter 3:Variables and Objects

PS > Get-Content env:systemroot
C:\WINDOWS

For providers that support the content cmdlets, PowerShell lets you interact with this
content through a special variable syntax (see Example 3-2).

Example 3-2. Using PowerShells special variable syntax to access content

PS > $function:prompt
"PS $($SexecutionContext.SessionState.Path.CurrentLocation)
$('>' * ($nestedPromptLevel + 1)) ";

PS > Svariable:ErrorActionPreference
Continue

PS > Sc:test

hello world

PS > Senv:systemroot

C: \WINDOWS

This variable syntax for content management lets you both get and set content:

PS > S$function:prompt = { "PS > " }
PS > $function:prompt
"pg o
Now, when it comes to accessing complex provider paths using this method, you'll
quickly run into naming issues (even if the underlying file exists):

PS > $c:\temp\test.txt

Unexpected token '\temp\test.txt' in expression or statement.
At line:1 char:17

+ Sc:\temp\test.txt <<<<

The solution to that lies in PowerShell’s escaping support for complex variable names.
To define a complex variable name, enclose it in braces:

PS > ${1234123!@#5!@#S125!@#5Q!} = "Crazy Variable!”

PS > ${1234123!@#S!1@H#S125!@#5Q!)

Crazy Variable!
PS > dir variable:\1*

Name Value

12341231 @#$! @#5125 ! @#5Q! Crazy Variable!
The following is the content equivalent (assuming that the file exists):

PS > ${c:\temp\test.txt}
hello world

Since environment variable names do not contain special characters, this Get-
Content variable syntax is the best (and easiest) way to access environment variables.

3.4 Access Environment Variables | 109

For more information about working with PowerShell variables, see “Variables” on
page 800. For more information about working with environment variables, type
Get-Help About_Environment_Variables.

See Also
“Variables” on page 800

3.5 Program: Retain Changes to Environment Variables
Set by a Batch File

When a batch file modifies an environment variable, cmd.exe retains this change even
after the script exits. This often causes problems, as one batch file can accidentally
pollute the environment of another. That said, batch file authors sometimes inten-
tionally change the global environment to customize the path and other aspects of the
environment to suit a specific task.

However, environment variables are private details of a process and disappear when
that process exits. This makes the environment customization scripts mentioned ear-
lier stop working when you run them from PowerShell—just as they fail to work
when you run them from another cmd.exe (for example, cmd.exe /c MyEnvironment
Customizer.cmd).

The script in Example 3-3 lets you run batch files that modify the environment and
retain their changes even after cmd.exe exits. It accomplishes this by storing the envi-
ronment variables in a text file once the batch file completes, and then setting all
those environment variables again in your PowerShell session.

To run this script, type Invoke-CmdScript Scriptname.cmd or Invoke-CmdScript
Scriptname.bat—whichever extension the batch files uses.

If this is the first time you’ve run a script in PowerShell, you’ll need
to configure your Execution Policy. For more information about
selecting an execution policy, see Recipe 18.1.

Notice that this script uses the full names for cmdlets: Get-Content, ForEach-0bject,
Set-Content, and Remove-Item. This makes the script readable and is ideal for scripts
that somebody else will read. It is by no means required, though. For quick scripts
and interactive use, shorter aliases (such as gc, %, sc, and ri) can make you more
productive.

110 | Chapter 3:Variables and Objects

Example 3-3. Invoke-CmdScript.ps1

B T R B T R A A A A AR R R R A A A A S
##

Invoke-CmdScript

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www. leeholmes.com/guide)

##

R T R R B T R A A A A AR R R R A A A A A

<#
.SYNOPSIS

Invoke the specified batch file (and parameters), but also propagate any
environment variable changes back to the PowerShell environment that
called 1it.

.EXAMPLE

PS > type foo-that-sets-the-F00-env-variable.cmd
@set FO0=%*
echo FOO set to %F00%.

PS > Senv:F00
PS > Invoke-CmdScript "foo-that-sets-the-F00-env-variable.cmd" Test

C:|Temp>echo FOO set to Test.
FOO set to Test.

PS > Senv:F00
Test

#>

param(
The path to the script to run
[Parameter(Mandatory = $true)]
[string] $Path,

The arguments to the script
[string] S$ArgumentList
)

Set-StrictMode -Version 3

StempFile = [I0.Path]::GetTempFileName()

Store the output of cmd.exe. We also ask cmd.exe to output
the environment table after the batch file completes

cmd /c " “"SPath™" SargumentList && set > “"StempFile ™" "

Go through the environment variables in the temp file.

For each of them, set the variable in our local environment.
Get-Content S$tempFile | Foreach-Object {

3.5 Program: Retain Changes to Environment Variables Set by a Batch File

m

if($_ -match "A(.*2)=(.*)$")
{
Set-Content "env:\$($matches[1])" $matches[2]

}
}

Remove-Item $tempFile

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 18.1, “Enable Scripting Through an Execution Policy”

3.6 Control Access and Scope of Variables and Other ltems

Problem

You want to control how you define (or interact with) the visibility of variables,
aliases, functions, and drives.

Solution

PowerShell offers several ways to access variables.

To create a variable with a specific scope, supply that scope before the variable name:
$SCOPE:variable = value

To access a variable at a specific scope, supply that scope before the variable name:
$SCOPE:variable

To create a variable that remains even after the script exits, create it in the GLOBAL
scope:

SGLOBAL:variable = value

To change a scriptwide variable from within a function, supply SCRIPT as its scope
name:

$SCRIPT:variable = value

Discussion

PowerShell controls access to variables, functions, aliases, and drives through a mech-
anism known as scoping. The scope of an item is another term for its visibility. Youre
always in a scope (called the current or local scope), but some actions change what
that means.

112 | Chapter3:Variables and Objects

When your code enters a nested prompt, script, function, or script block, PowerShell
creates a new scope. That scope then becomes the local scope. When it does this,
PowerShell remembers the relationship between your old scope and your new scope.
From the view of the new scope, the old scope is called the parent scope. From the
view of the old scope, the new scope is called a child scope. Child scopes get access to
all the variables in the parent scope, but changing those variables in the child scope
doesn’t change the version in the parent scope.

Trying to change a scriptwide variable from a function is often a
“gotcha” because a function is a new scope. As mentioned previ-
ously, changing something in a child scope (the function) doesn’t
affect the parent scope (the script). The rest of this discussion
describes ways to change the value for the entire script.

When your code exits a nested prompt, script, function, or script block, the opposite
happens. PowerShell removes the old scope, then changes the local scope to be the
scope that originally created it—the parent of that old scope.

Some scopes are so common that PowerShell gives them special names:

Global
The outermost scope. Items in the global scope are visible from all other scopes.

Script
The scope that represents the current script. Items in the script scope are visible
from all other scopes in the script.

Local
The current scope.

When you define the scope of an item, PowerShell supports two additional scope
names that act more like options: Private and Al1Scope. When you define an item to
have a Private scope, PowerShell doesn’t make that item directly available to child
scopes. PowerShell does not hide it from child scopes, though, as child scopes can still
use the -Scope parameter of the Get-Variable cmdlet to get variables from parent
scopes. When you specify the AllScope option for an item (through one of the
*-Variable, *-Alias, or *-Drive cmdlets), child scopes that change the item also
affect the value in parent scopes.

With this background, PowerShell provides several ways for you to control access and
scope of variables and other items.

Variables

To define a variable at a specific scope (or access a variable at a specific scope), use its
scope name in the variable reference. For example:

3.6 Control Access and Scope of Variables and Other Items | 113

SSCRIPT:myVariable = value

As illustrated in “Variables” on page 800, the *-Variable set of cmdlets also lets you
specify scope names through their -Scope parameter.

Functions

To define a function at a specific scope (or access a function at a specific scope), use
its scope name when creating the function. For example:

function GLOBAL:MyFunction { ... }
GLOBAL :MyFunction args

Aliases and drives

To define an alias or drive at a specific scope, use the Option parameter of the
*-Alias and *-Drive cmdlets. To access an alias or drive at a specific scope, use the
Scope parameter of the *-Alias and *-Drive cmdlets.

For more information about scopes, type Get-Help About_Scopes.

See Also
“Variables” on page 800

3.7 Program: Create a Dynamic Variable

When working with variables and commands, some concepts feel too minor to
deserve an entire new command or function, but the readability of your script suffers
without them.

A few examples where this becomes evident are date math (yesterday becomes
(Get-Date).AddDays(-1)) and deeply nested variables (windowTitle becomes
$host.UI.RawUI.WindowTitle).

There are innovative solutions on the internet that use PowerShell’s
debugging facilities to create a breakpoint that changes a variable’s
value whenever you attempt to read from it. While unique, this sol-
ution causes PowerShell to think that any scripts that rely on the
variable are in debugging mode. This, unfortunately, prevents Pow-
erShell from enabling some important performance optimizations
in those scripts.

Although we could write our own extensions to make these easier to access, Get-
Yesterday, Get-WindowTitle, and Set-WindowTitle feel too insignificant to deserve
their own commands.

114 | Chapter 3:Variables and Objects

PowerShell lets you define your own types of variables by extending its PSVariable
class, but that functionality is largely designed for developer scenarios, and not for
scripting scenarios. Example 3-4 resolves this quandary by using PowerShell classes
to create a new variable type (DynamicVariable) that supports dynamic script actions

when you get or set the variable’s value.

Example 3-4. New-DynamicVariable.ps1

##
New-DynamicVariable

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

<#

.SYNOPSIS

Creates a variable that supports scripted actions for its getter and setter
. EXAMPLE

PS > .|New-DynamicVariable GLOBAL:WindowTitle *
-Getter { Shost.UI.RawUI.WindowTitle } °
-Setter { Shost.UI.RawUI.WindowTitle = Sargs[0] }

PS > SwindowTitle
Administrator: pwsh.exe
PS > SwindowTitle = "Test"
PS > SwindowTitle

Test

#>

using namespace System
using namespace System.Collections.ObjectModel
using namespace System.Management.Automation

param(
The name for the dynamic variable
[Parameter(Mandatory = $true)]
S$Name,

The scriptblock to invoke when getting the value of the variable
[Parameter(Mandatory = $true)]
[ScriptBlock] $Getter,

The scriptblock to invoke when setting the value of the variable
[ScriptBlock] $Setter

3.7 Program: Create a Dynamic Variable

115

Set-StrictMode -Version Latest

class DynamicVariable : PSVariable

{
DynamicVariable(
[string] $Name,
[ScriptBlock] $ScriptGetter,
[ScriptBlock] $ScriptSetter)
. base($Name, $null, "AllScope")
{
Sthis.getter = S$scriptGetter
Sthis.setter = S$scriptSetter
}
hidden [ScriptBlock] S$getter;
hidden [ScriptBlock] $setter;
[Object] get_Value()
{
if(Sthis.getter -ne $null)
{
Sresults = $this.getter.Invoke()
if(Sresults.Count -eq 1)
{
return Sresults[0];
}
else
{
SreturnResults = New-Object 'PSObject[]' $results.Count
$Sresults.CopyTo($returnResults, 0)
return $returnResults;
}
}
else { return $null; }
}
[void] set_Value([Object] $Value)
{
if(Sthis.setter -ne $null) { S$this.setter.Invoke($Value); }
}
}

If we've already defined the variable, remove fit.
if(Test-Path variable:\$name)
{

Remove-Item variable:\$name -Force

}

Set the new variable, along with its getter and setter.
Sexecutioncontext.SessionState.PSVariable.Set(
([DynamicVariable]::New(Sname, S$Sgetter, $setter)))

116 | Chapter 3:Variables and Objects

3.8 Work with .NET Objects

Problem

You want to use and interact with one of the features that makes PowerShell so pow-
erful: its intrinsic support for NET objects.

Solution
PowerShell offers ways to access methods (both static and instance) and properties.

To call a static method on a class, place the type name in square brackets, and then
separate the class name from the method name with two colons:

[ClassName]: : MethodName(parameter list)

To call a method on an object, place a dot between the variable that represents that
object and the method name:

SobjectReference.MethodName(parameter list)

To access a static property on a class, place the type name in square brackets, and
then separate the class name from the property name with two colons:

[ClassName]: : PropertyName

To access a property on an object, place a dot between the variable that represents
that object and the property name:

SobjectReference.PropertyName

Discussion

One feature that gives PowerShell its incredible reach into both system administra-
tion and application development is its capability to leverage Microsoft’s enormous
and broad .NET Framework. The .NET Framework is a large collection of classes.
Each class embodies a specific concept and groups closely related functionality and
information. Working with the NET Framework is one aspect of PowerShell that
introduces a revolution to the world of management shells.

An example of a class from the NET Framework is System.Diagnostics.Process—
the grouping of functionality that “provides access to local and remote processes, and
enables you to start and stop local system processes.”

The terms type and class are often used interchangeably.

3.8 Work with .NET Objects | 117

Classes contain methods (which let you perform operations) and properties (which let
you access information).

For example, the Get-Process cmdlet generates System.Diagnostics.Process
objects, not a plain-text report like traditional shells. Managing these processes
becomes incredibly easy, as they contain a rich mix of information (properties) and
operations (methods). You no longer have to parse a stream of text for the ID of a
process; you can just ask the object directly!

PS > $process = Get-Process Notepad

PS > $process.Id
3872

Static methods
[ClassName] : :MethodName (parameter list)

Some methods apply only to the concept the class represents. For example, retrieving
all running processes on a system relates to the general concept of processes instead
of a specific process. Methods that apply to the class/type as a whole are called static
methods.

For example:
PS > [System.Diagnostics.Process]::GetProcessById(0)

This specific task is better handled by the Get-Process cmdlet, but it demonstrates
PowerShell’s capability to call methods on .NET classes. It calls the static GetProcess
ById method on the System.Diagnostics.Process class to get the process with the
ID of 0. This generates the following output:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

Instance methods
SobjectReference.MethodName(parameter list)

Some methods relate only to specific, tangible realizations (called instances) of a class.
An example of this would be stopping a process actually running on the system, as
opposed to the general concept of processes. If $objectReference refers to a specific
System.Diagnostics.Process (as output by the Get-Process cmdlet, for example),
you may call methods to start it, stop it, or wait for it to exit. Methods that act on
instances of a class are called instance methods.

118 | Chapter3:Variables and Objects

The term object is often used interchangeably with the term
instance.

For example:

PS > $process = Get-Process Notepad

PS > $process.WaltForExit()
stores the Notepad process into the $process variable. It then calls the WaitFor
Exit() instance method on that specific process to pause PowerShell until the pro-
cess exits. To learn about the different sets of parameters (overloads) that a given
method supports, type that method name without any parameters:

PS > S$now = Get-Date
PS > $now.ToString

OverloadDefinitions

string ToString()

string ToString(string format)

string ToString(System.IFormatProvider provider)

string ToString(string format, System.IFormatProvider provider)

string IFormattable.ToString(string format, System.IFormatProvider formatProvider)

string IConvertible.ToString(System.IFormatProvider provider)
If you are adapting a C# example from the internet and PowerShell can’t find a
method used in the example, the method may have been added through a relatively
rare technique called explicit interface implementation. If this is the case, you can cast
the object to that interface before calling the method:

$sourceObject = 123
Sresult = ([IConvertible] $sourceObject).ToUint16(Snull)

Static properties
[ClassName]: : PropertyName
or:

[ClassName]: : PropertyName = value

Like static methods, some properties relate only to information about the concept
that the class represents. For example, the System.DateTime class “represents an
instant in time, typically expressed as a date and time of day.” It provides a Now static
property that returns the current time:

PS > [System.DateTime]: :Now
Monday, February 15, 2021 9:35:13 PM

3.8 Work with .NET Objects | 119

This specific task is better handled by the Get-Date cmdlet, but it demonstrates Pow-
erShell’s capability to access properties on .NET objects.

Although they're relatively rare, some types let you set the value of some static prop-
erties as well: for example, the [System.Environment]::CurrentDirectory property.
This property represents the process’s current directory—which represents Power-
Shell’s startup directory, as opposed to the path you see in your prompt.

Instance properties
SobjectReference.PropertyName

or:
SobjectReference.PropertyName = value

Like instance methods, some properties relate only to specific, tangible realizations
(called instances) of a class. An example of this would be the day of an actual instant
in time, as opposed to the general concept of dates and times. If SobjectReference
refers to a specific System.DateTime (as output by the Get-Date cmdlet or
[System.DateTime]: :Now, for example), you may want to retrieve its day of week,
day, or month. Properties that return information about instances of a class are called
instance properties.

For example:

PS > S$today = Get-Date
PS > $today.DayOfWeek
Saturday

This example stores the current date in the $today variable. It then calls the
DayOflWeek instance property to retrieve the day of the week for that specific date.

Dynamically accessing methods and properties

When youre working with a .NET type, you might have some advanced scenarios
where you don't know a method or property name when youre writing your script,
but do know it at runtime. Even in these rare situations, PowerShell still lets you
access these members through dynamic member invocation. To access a property or
method with a dynamic name, simply store that name in a variable and access it as
you would any other method or property:

PS > S$propertyName = "Length"

PS > "Hello World".S$propertyName

11

PS > $methodName = "SubString"

PS > "Hello World".$methodName(6)
World

PS > $staticProperty = "OSVersion"
PS > [Environment]::S$staticProperty

120 | Chapter3:Variables and Objects

Platform ServicePack Version VersionString

Win32NT 10.0.19041.0 Microsoft Windows NT 10.0.19041.0

With this knowledge, the next questions are: “How do I learn about the functionality
available in the NET Framework?” and “How do I learn what an object does?”

For an answer to the first question, see Appendix F for a hand-picked list of the
classes in the .NET Framework most useful to system administrators. For an answer
to the second, see Recipes 3.12 and 3.13.

See Also

Recipe 3.12, “Learn About Types and Objects”

Recipe 3.13, “Get Detailed Documentation About Types and Objects”
Appendix E Selected .NET Classes and Their Uses

3.9 Create an Instance of a .NET Object

Problem

You want to create an instance of a NET object to interact with its methods and
properties.

Solution
Use the New-0Object cmdlet to create an instance of an object.

To create an instance of an object using its default constructor, use the New-Object
cmdlet with the class name as its only parameter:

PS > S$generator = New-Object System.Random

PS > $generator.NextDouble()

0.853699042859347
To create an instance of an object that takes parameters for its constructor, supply
those parameters to the New-Object cmdlet. In some instances, the class may exist
in a separate library not loaded in PowerShell by default, such as the
System.Windows.Forms assembly. In that case, you must first load the assembly that
contains the class:

Add-Type -Assembly System.Windows.Forms

$image = New-Object System.Drawing.Bitmap "S$Spwd\source.gif"

$image.Save("Spwd\source_converted.jpg", "JPEG")
As an alternative to the New-Object cmdlet, you can also use PowerShell’s new()
method:

3.9 Create an Instance of a .NET Object | 121

$image = [System.Drawing.Bitmap]::new("$pwd\source.gif")

To create an object and use it at the same time (without saving it for later), wrap the
call to New-0Object in parentheses:

(New-Object Net.WebClient).DownloadString("http://live.com")

If you plan to work with several classes from the same .NET namespace, the using
statement can make your code easier to read and type:

using namespace System.Collections

SarrayList = New-Object ArraylList
Squeue = [Queue]::new()

Discussion

Many cmdlets (such as Get-Process and Get-ChildItem) generate live NET objects
that represent tangible processes, files, and directories. However, PowerShell supports
much more of the NET Framework than just the objects that its cmdlets produce.
These additional areas of the NET Framework supply a huge amount of functionality
that you can use in your scripts and general system administration tasks.

To create an instance of a generic object, see Example 3-5.

When it comes to using most of these classes, the first step is often to create an
instance of the class, store that instance in a variable, and then work with the meth-
ods and properties on that instance. To create an instance of a class, you use the New-
Object cmdlet. The first parameter to the New-Object cmdlet is the type name, and
the second parameter is the list of arguments to the constructor, if it takes any. The
New-Object cmdlet supports PowerShell’s type shortcuts, so you never have to use the
fully qualified type name. For more information about type shortcuts, see “Type
Shortcuts” on page 835.

In addition to the New-Object cmdlet, you can also use the new() method that Power-
Shell supports as though it were a static method on that type: surround the type name
with square brackets, add two colons, and then invoke the method with any
parameters:

PS > [System.Drawing.Point]::new(10, 20)
IsEmpty X VY

False 10 20

122 | Chapter3:Variables and Objects

Most objects support several different constructors that let you create objects in dif-
ferent ways. The official documentation on MSDN is usually the best place to get
detailed information about these constructors, but PowerShell offers a handy shortcut
by calling its new() method without parenthesis (like you would examine overloads
of other methods):

PS > [System.Drawing.Point]::New

OverloadDefinitions

System.Drawing.Point new(int x, int y)

System.Drawing.Point new(System.Drawing.Size sz)

System.Drawing.Point new(int dw)
A common pattern when working with .NET objects is to create them, set a few prop-
erties, and then use them. The -Property parameter of the New-Object cmdlet lets
you combine these steps:

$startInfo = New-Object Diagnostics.ProcessStartInfo -Property @{

'Filename' = "pwsh.exe";
'WorkingDirectory' = $pshome;
'Verb' = "RunAs"

}

[Diagnostics.Process]::Start(SstartInfo)
Or even more simply through PowerShell’s built-in type conversion:

$startInfo = [Diagnostics.ProcessStartInfo] @{

'Filename' = "pwsh.exe";
'WorkingDirectory' = $pshome;
'Verb' = "RunAs"

}

When calling the New-Object cmdlet directly, you might encounter difficulty when
trying to specify a parameter that itself is a list. Assuming $byte is an array of bytes:

PS > [byte[]] $bytes = 1..10

PS > $memoryStream = New-Object System.IO.MemoryStream Sbytes

New-Object : Cannot find an overload for ".ctor" and the argument count: "10".
At line:1 char:27

+ SmemoryStream = New-Object <<<< System.IO.MemoryStream Sbytes

To solve this, create the object using the new() keyword:
[System.I0.MemoryStream]: :New(Sbytes)
The workarounds for New-0bject are more complicated, but also work:

PS > S$parameters = ,S$bytes
PS > $memoryStream = New-Object System.IO.MemoryStream Sparameters

or:

PS > $memoryStream = New-Object System.IO.MemoryStream @(,$bytes)

3.9 Create an Instance of a .NET Object | 123

Load types from another assembly

PowerShell makes most common types available by default. However, many are avail-
able only after you load the library (called the assembly) that defines them. The
Microsoft documentation for a class includes the assembly that defines it. For more
information about loading types from another assembly, please see Recipe 17.8.

For a hand-picked list of the classes in the .NET Framework most useful to system
administrators, see Appendix F. To learn more about the functionality that a class
supports, see Recipe 3.12.

For more information about the New-0Object cmdlet, type Get-Help New-Object. For
more information about the Add-Type cmdlet, type Get-Help Add-Type.

See Also

Recipe 3.8, “Work with .NET Objects”

Recipe 3.12, “Learn About Types and Objects”
Recipe 17.8, “Access a .NET SDK Library”
Appendix E Selected .NET Classes and Their Uses
Example 3-5

3.10 Create Instances of Generic Objects

When you work with the .NET Framework, you’ll often run across classes that have
the primary responsibility of managing other objects. For example, the
System.Collections.ArrayList class lets you manage a dynamic list of objects. You
can add objects to an ArrayList, remove objects from it, sort the objects inside, and
more. These objects can be any type of object: String objects, integers, DateTime
objects, and many others. However, working with classes that support arbitrary
objects can sometimes be a little awkward. One example is type safety. If you acciden-
tally add a String to a list of integers, you might not find out until your program
fails.

Although the issue becomes largely moot when youre working only inside Power-
Shell, a more common complaint in strongly typed languages (such as C#) is that you
have to remind the environment (through explicit casts) about the type of your object
when you work with it again:

// This is C# code

System.Collections.ArrayList list =

new System.Collections.ArrayList();
1ist.Add("Hello World");

string result = (String) list[0];

124 | Chapter3:Variables and Objects

To address these problems, the NET Framework includes a feature called generic
types: classes that support arbitrary types of objects but let you specify which type of
object. In this case, a collection of strings:

// This is C# code

System.Collections.ObjectModel.Collection<String> list =

new System.Collections.ObjectModel.Collection<String>();
1ist.Add("Hello World");

string result = list[0];

PowerShell supports generic parameters by placing them between square brackets, as
demonstrated in Example 3-5.

Example 3-5. Creating a generic object

PS > $coll = New-Object System.Collections.ObjectModel.Collection[Int]

PS > $coll.Add(15)

PS > $coll.Add("Test")

MethodException: Cannot convert argument "item", with value: "Test", for "Add" to
type "System.Int32": "Cannot convert value "Test" to type "System.Int32".

Error: "Input string was not in a correct format.""

For a generic type that takes two or more parameters, provide a comma-separated list
of types, enclosed in quotes (see Example 3-6).

Example 3-6. Creating a multiparameter generic object

PS > $map = New-Object "System.Collections.Generic.Dictionary[String,Int]"
PS > $map.Add("Test", 15)

PS > $map.Add("Test2", "Hello")

MethodException: Cannot convert argument "Hello", for "Add" to

type "System.Int32": "Cannot convert value "Test" to type "System.Int32".
Error: "Input string was not in a correct format.""

3.11 Use a COM Object

Problem

You want to create a COM object to interact with its methods and properties.

Solution

Use the New-0Object cmdlet (with the -ComObject parameter) to create a COM object
from its ProgID. You can then interact with the methods and properties of the COM
object as you would any other object in PowerShell.

Sobject = New-Object -ComObject ProgId

3.11Usea COM Object | 125

For example:

PS > $sapi = New-Object -Com Sapi.SpVoice
PS > $sapi.Speak("Hello World")

Discussion

Historically, many applications have exposed their scripting and administration inter-
faces as COM objects. While .NET APIs (and PowerShell cmdlets) are by far the most
common, interacting with COM objects is still a routine administrative task.

As with classes in the NET Framework, it’s difficult to know what COM objects you
can use to help you accomplish your system administration tasks. For a hand-picked
list of the COM objects most useful to system administrators, see Appendix H.

For more information about the New-0Object cmdlet, type Get-Help New-Object.

See Also
Appendix H, Selected COM Objects and Their Uses

3.12 Learn About Types and Objects

Problem

You have an instance of an object and want to know what methods and properties it
supports.

Solution

The most common way to explore the methods and properties supported by an
object is through the Get-Member cmdlet.

To get the instance members of an object you've stored in the $object variable, pipe
it to the Get-Member cmdlet:

Sobject | Get-Member
Get-Member -InputObject Sobject

To get the static members of an object you've stored in the $object variable, supply
the -Static flag to the Get-Member cmdlet:

Sobject | Get-Member -Static
Get-Member -Static -InputObject S$Sobject

To get the static members of a specific type, pipe that type to the Get-Member cmdlet,
and also specify the -Static flag:

[Type] | Get-Member -Static
Get-Member -Static -InputObject [Type]

126 | Chapter 3:Variables and Objects

To get members of the specified member type (for example, Method or Property)
from an object you have stored in the $Sobject variable, supply that member type to
the -MemberType parameter:

Sobject | Get-Member -MemberType MemberType
Get-Member -MemberType MemberType -InputObject Sobject

Discussion

The Get-Member cmdlet is one of the three commands you will use most commonly
as you explore PowerShell. The other two commands are Get-Command and Get-Help.

To interactively explore an objects methods and properties, see
Recipe 1.26.

If you pass the Get-Member cmdlet a collection of objects (such as an Array or Array
List) through the pipeline, PowerShell extracts each item from the collection and
then passes them to the Get-Member cmdlet one by one. The Get-Member cmdlet then
returns the members of each unique type that it receives. Although helpful the vast
majority of the time, this sometimes causes difficulty when you want to learn about
the members or properties of the collection class itself.

If you want to see the properties of a collection (as opposed to the elements it con-
tains), provide the collection to the -InputObject parameter instead. Alternatively,
you can wrap the collection in an array (using PowerShell’s unary comma operator) so
that the collection class remains when the Get-Member cmdlet unravels the outer
array:

PS > $files = Get-ChildItem
PS > ,$files | Get-Member

TypeName: System.Object[]

Name MemberType Definition
Count AliasProperty Count = Length
Address Method System.Object& Address(Int32)

(...)

For another way to learn detailed information about types and objects, see Recipe
3.13.

For more information about the Get-Member cmdlet, type Get-Help Get-Member.

3.12 Learn About Types and Objects | 127

See Also
Recipe 1.26, “Program: Interactively View and Explore Objects”

Recipe 3.13, “Get Detailed Documentation About Types and Objects”

3.13 Get Detailed Documentation About Types and
Objects

Problem

You have a type of object and want to know detailed information about the methods
and properties it supports.

Solution

The documentation for the NET Framework is the best way to get detailed documen-
tation about the methods and properties supported by an object. That exploration
generally comes in two stages:

1. Find the type of the object.

To determine the type of an object, you can either use the type name shown by
the Get-Member cmdlet (as described in Recipe 3.12) or call the GetType()

method of an object (if you have an instance of it):

PS > $date = Get-Date
PS > $date.GetType().ToString()
System.DateTime

2. Enter that type name into the search box.

Discussion

When the Get-Member cmdlet doesn’t provide the information you need, the Micro-
soft documentation for a type is a great alternative. It provides much more detailed
information than the help offered by the Get-Member cmdlet—usually including
detailed descriptions, related information, and even code samples. Microsoft docu-
mentation focuses on developers using these types through a language such as C#,
though, so you may find interpreting the information for use in PowerShell to be a
little difficult at first.

Typically, the documentation for a class first starts with a general overview, and then
provides a hyperlink to the members of the class—the list of methods and properties
it supports.

128 | Chapter3:Variables and Objects

https://docs.microsoft.com/dotnet

To get to the documentation for the members quickly, search for
them more explicitly by adding the term “members” to your search
term: “typename members.

Documentation for the members of a class lists the methods and properties, as does
the output of the Get-Member cmdlet. The S icon represents static methods and prop-
erties. Click the member name for more information about that method or property.

Public constructors

This section lists the constructors of the type. You use a constructor when you create
the type through the New-Object cmdlet. When you click on a constructor, the docu-
mentation provides all the different ways that you can create that object, including the
parameter list that you'll use with the New-0Object cmdlet.

Public fields/public properties

This section lists the names of the fields and properties of an object. The S icon repre-
sents a static field or property. When you click on a field or property, the documenta-
tion also provides the type returned by this field or property.

For example, you might see the following in the definition for System.DateTime.Now:
public static DateTime Now { get; }

Public means that the Now property is public—that you can access it from Power-
Shell. Static means that the property is static (as described in Recipe 3.8). DateTime
means that the property returns a DateTime object when you call it. get; means that
you can get information from this property but cannot set the information. Many
properties support a set; as well (such as the IsReadOnly property on
System.I0.FileInfo), which means that you can change its value.

Public methods

This section lists the names of the methods of an object. The S icon represents a static
method. When you click on a method, the documentation provides all the different
ways that you can call that method, including the parameter list that you will use to
call that method in PowerShell.

For example, you might see the following in the definition for System.DateTime.Add
Days():

C#
public DateTime AddDays (
double value

)

3.13 Get Detailed Documentation About Types and Objects | 129

Public means that the AddDays method is public—that you can access it from Power-
Shell. DateTime means that the method returns a DateTime object when you call it.
The text double value means that this method requires a parameter (of type
double). In this case, that parameter determines the number of days to add to the
DateTime object on which you call the method.

See Also
Recipe 3.8, “Work with .NET Objects”
Recipe 3.12, “Learn About Types and Objects”

3.14 Add Custom Methods and Properties to Objects

Problem

You have an object and want to add your own custom properties or methods (mem-
bers) to that object.

Solution

Use the Add-Member cmdlet to add custom members to an object.

Discussion

The Add-Member cmdlet is extremely useful in helping you add custom members to
individual objects. For example, imagine that you want to create a report from the
files in the current directory, and that report should include each file's owner. The
Owner property is not standard on the objects that Get-ChildItem produces, but you
could write a small script to add them, as shown in Example 3-7.

Example 3-7. A script that adds custom properties to its output of file objects

##

Get-OwnerReport

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

<#
.SYNOPSIS

Gets a list of files in the current directory, but with their owner added

130 | Chapter3:Variables and Objects

to the resulting objects.

. EXAMPLE

PS > Get-OwnerReport | Format-Table Name,LastWriteTime,Owner
Retrieves all files in the current directory, and displays the
Name, LastWriteTime, and Owner

#>

Set-StrictMode -Version 3

S$files = Get-ChildItem
foreach($file in $files)

{
Sowner = (Get-Acl $file).Owner
$file | Add-Member NoteProperty Owner Sowner
$file

}

For more information about running scripts, see Recipe 1.2.

The most common type of information to add to an object is static information in a
NoteProperty. Add-Member even uses this as the default if you omit it:

PS > S$item = Get-Item C:\

PS > $item | Add-Member VolumeName "Operating System"

PS > $item.VolumeName

Operating System
In addition to note properties, the Add-Member cmdlet supports several other prop-
erty and method types, including AliasProperty, ScriptProperty, CodeProperty,
CodeMethod, and ScriptMethod. For a more detailed description of these other prop-
erty types, see “Working with the NET Framework” on page 833, as well as the help
documentation for the Add-Member cmdlet.

To create entirely new objects (instead of adding information to
existing ones), see Recipe 3.15.

Although the Add-Member cmdlet lets you customize specific objects, it doesn’t let you
customize all objects of that type. For information on how to do that, see Recipe 3.16.

3.14 Add Custom Methods and Properties to Objects | 131

(alculated properties

Calculated properties are another useful way to add information to output objects. If
your script or command uses a Format-Table or Select-0Object command to gener-
ate its output, you can create additional properties by providing an expression that
generates their value. For example:

Get-ChildItem |
Select-Object Name,
@{Name="Size (MB)"; Expression={ "{0,8:0.00}" -f (S_.Length / 1MB) } }
In this command, we get the list of files in the directory. We use the Select-0Object
command to retrieve its name and a calculated property called Size (MB). This cal-
culated property returns the size of the file in megabytes, rather than the default

(bytes).

The Format-Table cmdlet supports a similar hashtable to add cal-
culated properties, but uses Label (rather than Name) as the key to
identify the property. To eliminate the confusion this produced, the
PowerShell team updated the two cmdlets to accept both Name and
Label.

For more information about the Add-Member cmdlet, type Get-Help Add-Member.

For more information about adding calculated properties, type Get-Help Select-
Object or Get-Help Format-Table.

See Also

Recipe 1.2, “Run Programs, Scripts, and Existing Tools”
Recipe 3.15, “Create and Initialize Custom Objects”

Recipe 3.16, “Add Custom Methods and Properties to Types”
“Working with the .NET Framework” on page 833

3.15 Create and Initialize Custom Objects

Problem

You want to return structured results from a command so that users can easily sort,
group, and filter them.

132 | Chapter3:Variables and Objects

Solution

Use the [PSCustomObject] type cast to a new PSCustomObject, supplying a hashtable
with the custom information as its value, as shown in Example 3-8.

Example 3-8. Creating a custom object

Soutput = [PSCustomObject] @{
'User' = 'DOMAIN\User';
'"Quota' = 100MB;
'ReportDate' = Get-Date;

}

If you want to create a custom object with associated functionality, write a PowerShell
class in a module, and create an instance of that class:

using module c:\modules\PlottingObject.psmi

Sobj = [PlottingObject]::new()

$obj.Move(10,10)

$Sobj.Points = SineWave

while($true) { $Sobj.Rotate(10); S$obj.Draw(); Sleep -m 20 }

Discussion

When your script outputs information to the user, always prefer richly structured
data over hand-formatted reports. By emitting custom objects, you give the end user
as much control over your script’s output as PowerShell gives you over the output of
its own commands.

Despite the power afforded by the output of custom objects, user-written scripts have
frequently continued to generate plain-text output. This can be partly blamed on
PowerShell’s previously cumbersome support for the creation and initialization of
custom objects, as shown in Example 3-9.

Example 3-9. Creating a custom object in PowerShell version 1

Soutput = New-Object PsObject

Add-Member -InputObject Soutput NoteProperty User 'DOMAIN\user'
Add-Member -InputObject Soutput NoteProperty Quota 100MB
Add-Member -InputObject Soutput NoteProperty ReportDate (Get-Date)

Soutput

In PowerShell version 1, creating a custom object required creating a new object (of
the type PsObject), and then calling the Add-Member cmdlet multiple times to add the
desired properties. PowerShell version 2 made this immensely easier by adding the
-Property parameter to the New-Object cmdlet, which applied to the PSObject type

3.15 Create and Initialize Custom Objects | 133

as well. PowerShell version 3 made this as simple as possible by directly supporting
the [PSCustomObject] type cast.

While creating a PSCustomObject makes it easy to create data-centric objects (often
called property bags), it doesn't let you add functionality to those objects. When you
need functionality as well, the next step is to create a PowerShell class (see
Example 3-10). Like many other languages, PowerShell classes support constructors,
public properties, and public methods, as well as internal helper variables and
methods.

Example 3-10. Creating a module that exports a custom class

##

PlottingObject.psmi

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

<#

.SYNOPSIS

Demonstrates a module that implements a custom class
.EXAMPLE

function SinewWave { -15..15 | % { ,(S_,(10 * [Math]::Sin(S_ / 3))) } }
function Box { -5..5 | % { ($_,-5),(5_,5),(-5,5_),(5,5_) } }

using module PlottingObject

Sobj = [PlottingObject]: :New(@())

Sobj.Points = Box

Sobj.Move(10,10)

while(Strue) { Sobj.Rotate(10); Sobj.Draw(); Start-Sleep -m 20 }

Sobj = [PlottingObject]: :New((SinelWave))
while(Strue) { Sobj.Rotate(10); Sobj.Draw(); Start-Sleep -m 20 }

#>

class PlottingObject
{
Constructors: one with no arguments and another that takes a
set of initial points.
PlottingObject()
{
Sthis.Points = @()
}

134 | Chapter 3: Variables and Objects

PlottingObject($initialPoints)
{
Sthis.Points = $initialPoints

}

An external property holding the points to plot
S$Points = @()

Internal variables

hidden $x = 0

hidden $y = 0

hidden $angle = 0

hidden $xScale = -50,50

hidden $yScale = -50,50

hidden $windowWidth = [Console]::WindowWidth
hidden $windowHeight = [Console]::WindowHeight

A public method to rotate the points by a certain amount
[void] Rotate([int] $angle)
{
Sthis.angle += S$Sangle
}

A public method to move the points by a certain amount
[void] Move([int] $xDelta, [int] $yDelta)
{
Sthis.x += $xDelta
Sthis.y += $yDelta
}

A public method to draw the given points
[void] Draw()

{
SdegToRad = 180 * [Math]::Pi

Go through each of the supplied points,
move them the amount specified, and then rotate them
by the angle specified
Sframe = foreach($point in S$this.Points)
{
SpointX,SpointY = Spoint
SpointX = $pointX + Sthis.x
SpointY = S$pointY + Sthis.y

SnewX = SpointX * [Math]::Cos($this.angle / $degToRad) -
S$pointY * [Math]::Sin($this.angle / $degToRad)

SnewY = SpointY * [Math]::Cos($Sthis.angle / $degToRad) +
S$pointX * [Math]::Sin(S$this.angle / $degToRad)

Sthis.PutPixel($newX, SnewY, '0')
}

Draw the origin
Sframe += $this.PutPixel(0, 0, '+')

Clear-Host

3.15 Create and Initialize Custom Objects

135

Write-Host "'e[?251" -NoNewline
Write-Host $frame -NoNewline

}

A helper function to draw a pixel on the screen
hidden [string] PutPixel([int] $x, [int] Sy, [char] S$Scharacter)

{
SscaledX = ($x - S$this.xScale[0]) / (Sthis.xScale[1] - $this.xScale[0])
$scaledX = [int] ($scaledX * $this.windowHeight * 2.38)
SscaledY = ((Sy * 4 / 3) - Sthis.yScale[0]) / (Sthis.yScale[1] - S$Sthis.yScale[0])
SscaledY = [int] ($scaledY * $this.windowHeight)
return "‘e[$scaledY;${scaledX}HScharacter"
}

}

For more information about creating modules, see Recipe 11.6. For more information
about the syntax of PowerShell classes, see “Classes” on page 829.

See Also
Recipe 7.13, “Create a Hashtable or Associative Array”
Recipe 11.6, “Package Common Commands in a Module”

“Classes” on page 829

3.16 Add Custom Methods and Properties to Types

Problem

You want to add your own custom properties or methods to all objects of a certain

type.

Solution
Use the Update-TypeData cmdlet to add custom members to all objects of a type.

Update-TypeData -TypeName AddressRecord °
-MemberType AliasProperty -Membername Cell -Value Phone

Alternatively, use custom type extension files.

Discussion

Although the Add-Member cmdlet is extremely useful in helping you add custom
members to individual objects, it requires that you add the members to each object
that you want to interact with. It does not let you automatically add them to all

136 | Chapter3:Variables and Objects

objects of that type. For that purpose, PowerShell supports another mechanism—cus-
tom type extensions.

The simplest and most common way to add members to all instances of a type is
through the Update-TypeData cmdlet. This cmdlet supports aliases, notes, script
methods, and more:
$r = [PSCustomObject] @{
Name = "Lee";

Phone = "555-1212";
SSN = "123-12-1212"

}
$r.PSTypeNames.Add("AddressRecord")

Update-TypeData -TypeName AddressRecord °
-MemberType AliasProperty -Membername Cell -Value Phone
Custom type extensions let you easily add your own features to any type exposed by
the system. If you write code (for example, a script or function) that primarily inter-
acts with a single type of object, then that code might be better suited as an extension
to the type instead.

For example, imagine a script that returns the free disk space on a given drive. That
might be helpful as a script, but instead you might find it easier to make PowerShell’s
PSDrive objects themselves tell you how much free space they have left.

In addition to the Update-TypeData approach, PowerShell supports type extensions
through XML-based type extension files. Since type extension files are XML files,
make sure that your customizations properly encode the characters that have special
meaning in XML files, such as <, >, and &.

For more information about the features supported by these formatting XML files,
type Get-Help about_format.psixml.

Getting started

If you haven't done so already, the first step in creating a type extension file is to cre-
ate an empty one. The best location for this is probably in the same directory as your
custom profile, with the filename Types.Custom.pslxml, as shown in Example 3-11.

Example 3-11. Sample Types.Custom.ps1xml file

<?xml version="1.0" encoding="utf-8" ?>
<Types>
</Types>

Next, add a few lines to your PowerShell profile so that PowerShell loads your type
extensions during startup:

StypeFile = (Join-Path (Split-Path $profile) "Types.Custom.psixml")
Update-TypeData -PrependPath $typeFile

3.16 Add Custom Methods and Properties to Types | 137

By default, PowerShell loads several type extensions from its internal configuration
stores. The Update-TypeData cmdlet tells PowerShell to also look in your
Types.Custom.ps1xml file for extensions. The -PrependPath parameter makes Power-
Shell favor your extensions over the built-in ones in case of conflict.

Once you have a custom types file to work with, adding functionality becomes rela-
tively straightforward. As a theme, these examples do exactly what we alluded to ear-
lier: add functionality to PowerShell’s PSDrive type.

PowerShell does this automatically. Type Get-PSDrive to see the
result.

To support this, you need to extend your custom types file so that it defines additions
to the System.Management.Automation.PSDriveInfo type, shown in Example 3-12.
System.Management.Automation.PSDriveInfo is the type that the Get-PSDrive
cmdlet generates.

Example 3-12. A template for changes to a custom types file

<?xml version="1.0" encoding="utf-8" ?>
<Types>
<Type>
<Name>System.Management.Automation.PSDriveInfo</Name>
<Members>
add members such as <ScriptProperty> here
<Members>
</Type>
</Types>

Add a ScriptProperty

A ScriptProperty lets you add properties (that get and set information) to types,
using PowerShell script as the extension language. It consists of three child elements:
the Name of the property, the getter of the property (via the GetScriptBlock child),
and the setter of the property (via the SetScriptBlock child).

In both the GetScriptBlock and SetScriptBlock sections, the $this variable refers
to the current object being extended. In the SetScriptBlock section, the $args[0]
variable represents the value that the user supplied as the righthand side of the
assignment.

Example 3-13 adds an AvailableFreeSpace ScriptProperty to PSDriveInfo, and
should be placed within the members section of the template given in Example 3-12.
When you access the property, it returns the amount of free space remaining on the

138 | Chapter3:Variables and Objects

drive. When you set the property, it outputs what changes you must make to obtain
that amount of free space.

Example 3-13. A ScriptProperty for the PSDrivelnfo type

<ScriptProperty>
<Name>AvailableFreeSpace</Name>
<GetScriptBlock>
Ensure that this is a FileSystem drive
1f($this.Provider.ImplementingType -eq
[Microsoft.PowerShell.Commands.FileSystemProvider])

{
Also ensure that it is a local drive
$driveRoot = S$this.Root
$fileZone = [System.Security.Policy.Zone]::CreateFromurl(
SdriveRoot).SecurityZone
if($fileZone -eq "MyComputer")
{
$drive = New-Object System.IO.DriveInfo $driveRoot
$drive.AvailableFreeSpace
}
}
</GetScriptBlock>
<SetScriptBlock>

Get the available free space
SavailableFreeSpace = $this.AvailableFreeSpace

Find out the difference between what is available, and what they
asked for.
$spaceDifference = (([long] $args[0]) - $SavailableFreeSpace) / 1MB

If they want more free space than they have, give that message
if($spaceDifference -gt 0)

{
S$message = "To obtain $args bytes of free space, " +
" free S$spaceDifference megabytes."
Write-Host $message
}
If they want less free space than they have, give that message
else
{
$spaceDifference = $spaceDifference * -1
S$message = "To obtain $args bytes of free space, " +
" use up $spaceDifference more megabytes."
Write-Host $message
}
</SetScriptBlock>
</ScriptProperty>

3.16 Add Custom Methods and Properties to Types | 139

Add an AliasProperty

An AliasProperty gives an alternative name (alias) for a property. The referenced
property doesn’t need to exist when PowerShell processes your type extension file,
since you (or another script) might later add the property through mechanisms such
as the Add-Member cmdlet.

Example 3-14 adds a Free AliasProperty to PSDriveInfo, and it should also be
placed within the members section of the template given in Example 3-12. When you
access the property, it returns the value of the AvailableFreeSpace property. When
you set the property, it sets the value of the AvailableFreeSpace property.

Example 3-14. An AliasProperty for the PSDrivelnfo type

<AliasProperty>
<Name>Free</Name>
<ReferencedMemberName>AvailableFreeSpace</ReferencedMemberName>
</AliasProperty>

Add a ScriptMethod

A ScriptMethod lets you define an action on an object, using PowerShell script as the
extension language. It consists of two child elements: the Name of the property and the
Script.

In the script element, the $this variable refers to the current object you are extend-
ing. Like a standalone script, the $args variable represents the arguments to the
method. Unlike standalone scripts, ScriptMethods do not support the param state-
ment for parameters.

Example 3-15 adds a Remove ScriptMethod to PSDriveInfo. Like the other additions,
place these customizations within the members section of the template given in
Example 3-12. When you call this method with no arguments, the method simulates
removing the drive (through the -WhatIf option to Remove-PSDrive). If you call this
method with $true as the first argument, it actually removes the drive from the Pow-
erShell session.

Example 3-15. A ScriptMethod for the PSDrivelnfo type

<ScriptMethod>

<Name>Remove</Name>

<Script>
$force = [bool] $Sargs[0]
Remove the drive if they use Strue as the first parameter
if($force)
{

$this | Remove-PSDrive

}

140 | Chapter 3:Variables and Objects

Otherwise, simulate the drive removal
else

S$this | Remove-PSDrive -WhatIf

}
</Script>
</ScriptMethod>

Add other extension points

PowerShell supports several additional features in the types extension file, including
CodeProperty, NoteProperty, CodeMethod, and MemberSet. Although not generally
useful to end users, developers of PowerShell providers and cmdlets will find these
features helpful. For more information about these additional features, see the Power-
Shell software developer’s kit (SDK) or the Microsoft documentation.

3.17 Define Custom Formatting for a Type

Problem

You want to emit custom objects from a script and have them formatted in a specific
way.

Solution

Use a custom format extension file to define the formatting for that type, followed by
a call to the Update-FormatData cmdlet to load them into your session:

S$formatFile = Join-Path (Split-Path $profile) "Format.Custom.PsiXml"

Update-FormatData -PrependPath $typesFile
If a file-based approach is not an option, use the Formats property of the

[Runspace]: :DefaultRunspace.InitialSessionState type to add new formatting
definitions for the custom type.

Discussion

When PowerShell commands produce output, this output comes in the form of richly
structured objects rather than basic streams of text. These richly structured objects
stop being of any use once they make it to the screen, though, so PowerShell guides
them through one last stage before showing them on screen: formatting and output.

The formatting and output system is based on the concept of views. Views can take
several forms: table views, list views, complex views, and more. The most common
view type is a table view. This is the form you see when you use Format-Table in a
command, or when an object has four or fewer properties.

3.17 Define Custom Formatting foraType | 141

As with the custom type extensions described in Recipe 3.16, PowerShell supports
both file-based and in-memory updates of type formatting definitions.

The simplest and most common way to define formatting for a type is through the
Update-FormatData cmdlet, as shown in the Solution. The Update-FormatData
cmdlet takes paths to Format.psIxml files as input. There are many examples of for-
matting definitions in the PowerShell installation directory that you can use. To cre-
ate your own formatting customizations, use these files as a source of examples, but
do not modify them directly. Instead, create a new file and use the Update-
FormatData cmdlet to load your customizations.

For more information about the features supported by these formatting XML files,
type Get-Help about_format.psixml.

In addition to file-based formatting, PowerShell makes it possible (although not easy)
to create formatting definitions from scratch. Example 3-16 provides a script to sim-
plify this process.

Example 3-16. Add-FormatData.ps1

##

Add-FormatData

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

<#

.SYNOPSIS

Adds a table formatting definition for the specified type name.
.EXAMPLE

PS > Sr = [PSCustomObject] @{
Name = "Lee";
Phone = "555-1212";
SSN = "123-12-1212"
}
PS > Sr.PSTypeNames.Add("AddressRecord")
PS > Add-FormatData -TypeName AddressRecord -TableColumns Name, Phone
PS > Sr

Name Phone

Lee 555-1212

#>

142 | Chapter 3: Variables and Objects

param(
The type name (or PSTypeName) that the table definition should
apply to.
$TypeName,

The columns to be displayed by default
[string[]] $TableColumns
)

Set-StrictMode -Version 3

Define the columns within a table control row
SrowDefinition = New-Object Management.Automation.TableControlRow

Create left-aligned columns for each provided column name
foreach($column in $TableColumns)

{
SrowDefinition.Columns.Add(
(New-Object Management.Automation.TableControlColumn "Left",
(New-Object Management.Automation.DisplayEntry $column,"Property")))
}

$tableControl = New-Object Management.Automation.TableControl
StableControl.Rows.Add(SrowDefinition)

And then assign the table control to a new format view,
which we then add to an extended type definition. Define this view for the
supplied custom type name.
S$formatViewDefinition =

New-Object Management.Automation.FormatViewDefinition "TableView",$tableControl
SextendedTypeDefinition =

New-Object Management.Automation.ExtendedTypeDefinition $TypeName
SextendedTypeDefinition.FormatViewDefinition.Add($formatViewDefinition)

Add the definition to the session, and refresh the format data
[Runspace]: :DefaultRunspace.InitialSessionState.Formats.Add($extendedTypeDefinition)
Update-FormatData

3.17 Define Custom Formatting for a Type

143

CHAPTER 4
Looping and Flow Control

4.0 Introduction

As you begin to write scripts or commands that interact with unknown data, the con-
cepts of looping and flow control become increasingly important.

PowerShell’s looping statements and commands let you perform an operation (or set
of operations) without having to repeat the commands themselves. This includes, for
example, doing something a specified number of times, processing each item in a col-
lection, or working until a certain condition comes to pass.

PowerShell’s flow control and comparison statements let you adapt your script or
command to unknown data. They let you execute commands based on the value of
that data, skip commands based on the value of that data, and more.

Together, looping and flow control statements add significant versatility to your
PowerShell toolbox.

4.1 Make Decisions with Comparison and Logical
Operators

Problem

You want to compare some data with other data and make a decision based on that
comparison.

Solution

Use PowerShell’s logical operators to compare pieces of data and make decisions
based on them:

145

Comparison operators
-eq, -ne, -ge, -gt, -in, -notin, -1t, -le, -like, -notlike, -match, -notmatch,
-contains, -notcontains, -1is, -isnot

Logical operators
-and, -or, -xor, -not

For a detailed description (and examples) of these operators, see “Comparison Opera-
tors” on page 818.

Discussion

PowerShell’s logical and comparison operators let you compare pieces of data or test
data for some condition. An operator either compares two pieces of data (a binary
operator) or tests one piece of data (a unary operator). All comparison operators are
binary operators (they compare two pieces of data), as are most of the logical opera-
tors. The only unary logical operator is the -not operator, which returns the true/
false opposite of the data that it tests.

Comparison operators compare two pieces of data and return a result that depends
on the specific comparison operator. For example, you might want to check whether a
collection has at least a certain number of elements:

PS > (dir).Count -ge 4
True

or check whether a string matches a given regular expression:

PS > "Hello World" -match "H.*World"
True

Most comparison operators also adapt to the type of their input. For example, when
you apply them to simple data such as a string, the -1ike and -match comparison
operators determine whether the string matches the specified pattern. When you

apply them to a collection of simple data, those same comparison operators return all
elements in that collection that match the pattern you provide.

The -match operator takes a regular expression as its argument.
One of the more common regular expression symbols is the $ char-
acter, which represents the end of line. The $ character also repre-
sents the start of a PowerShell variable, though! To prevent Power-
Shell from interpreting characters as language terms or escape
sequences, place the string in single quotes rather than double

quotes:
PS > "Hello World" -match "Hello"
True
PS > "Hello World" -match 'Hello$'
False

146 | Chapter4: Looping and Flow Control

By default, PowerShell’s comparison operators are case-insensitive. To use the case-
sensitive versions, prefix them with the character c:

-ceq, -cne, -cge, -cgt, -cin, -clt, -cle, -clike, -cnotlike,

-cmatch, -cnotmatch, -ccontains, -cnotcontains

For a detailed description of the comparison operators, their case-sensitive counter-
parts, and how they adapt to their input, see “Comparison Operators” on page 818.

Logical operators combine true or false statements and return a result that depends
on the specific logical operator. For example, you might want to check whether a
string matches the wildcard pattern you supply and that it is longer than a certain
number of characters:

PS > $data = "Hello World"

PS > (Sdata -like "*1lo W*") -and ($Sdata.Length -gt 10)

True

PS > (Sdata -like "*1lo W*") -and (Sdata.Length -gt 20)

False
Some of the comparison operators actually incorporate aspects of the logical opera-
tors. Since using the opposite of a comparison (such as -like) is so common, Power-
Shell provides comparison operators (such as -notlike) that save you from having to
use the -not operator explicitly.

For a detailed description of the individual logical operators, see “Comparison Opera-
tors” on page 818.

Comparison operators and logical operators (when combined with flow control state-
ments) form the core of how we write a script or command that adapts to its data and
input.

See also “Conditional Statements” on page 821 for detailed information about these
statements.

For more information about PowerShells operators, type Get-Help
about_Operators.

See Also

“Comparison Operators” on page 818

“Conditional Statements” on page 821

4.1 Make Decisions with Comparison and Logical Operators | 147

4.2 Adjust Script Flow Using Conditional Statements

Problem

You want to control the conditions under which PowerShell executes commands or
portions of your script.

Solution

Use PowerShell’s if, elseif, and else conditional statements to control the flow of
execution in your script.

For example:
Stemperature = 90
if(Stemperature -le 0)
{

"Balmy Canadian Summer"

elseif(Stemperature -le 32)

{
"Freezing"
}
elseif(Stemperature -le 50)
{
"Cold"
}
elseif(Stemperature -le 70)
{
"Warm"
}
else
{
"Hot"
}
Discussion

Conditional statements include the following:

if statement
Executes the script block that follows it if its condition evaluates to true

elseif statement
Executes the script block that follows it if its condition evaluates to true and none
of the conditions in the i1f or elseif statements before it evaluate to true

148 | Chapter4: Looping and Flow Control

else statement
Executes the script block that follows it if none of the conditions in the if or
elseif statements before it evaluate to true

In addition to being useful for script control flow, conditional statements are often a
useful way to assign data to a variable. PowerShell makes this very easy by letting you
assign the results of a conditional statement directly to a variable:

$result = if(Get-Process -Name notepad) { "Running" } else { "Not running" }

For very simple conditional statements such as this, you can also use PowerShell’s ter-
nary operator:

Sresult = (Get-Process -Name notepad*) ? "Running" : "Not running"

For more information about these flow control statements, type Get-Help about_If.

4.3 Manage Large Conditional Statements with Switches

Problem

You want to find an easier or more compact way to represent a large if ... elseif ...
else conditional statement.

Solution

Use PowerShell’s switch statement to more easily represent a large if ... elseif ...
else conditional statement.

For example:

Stemperature = 20

switch($Stemperature)

{
{$_ -1t 32} { "Below Freezing"; break }
32 { "Exactly Freezing"; break }
{$_-les50} { "Cold"; break }
{$_-le70} { "Warm"; break }
default { "Hot" }

}

Discussion

PowerShell’s switch statement lets you easily test its input against a large number of
comparisons. The switch statement supports several options that allow you to con-
figure how PowerShell compares the input against the conditions—such as with a
wildcard, regular expression, or even an arbitrary script block. Since scanning
through the text in a file is such a common task, PowerShell's switch statement

4.3 Manage Large Conditional Statements with Switches | 149

supports that directly. These additions make PowerShell switch statements a great
deal more powerful than those in C and C++.

As another example of the switch statement in action, consider how to determine the
SKU of the current operating system. For example, is the script running on Windows
7 Ultimate? Windows Server Cluster Edition? The Get-CimInstance cmdlet lets you
determine the operating system SKU, but unfortunately returns its result as a simple
number. A switch statement lets you map these numbers to their English equivalents
based on the official documentation:

##

Get-OperatingSystemSku

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

<#

.SYNOPSIS

Gets the sku information for the current operating system
.EXAMPLE

PS > Get-OperatingSystemSku
Professional with Media Center

#>

param($Sku =
(Get-CimInstance Win32_OperatingSystem).OperatingSystemSku)

Set-StrictMode -Version 3

switch ($Sku)

{

"An unknown product"; break; }

"Ultimate"; break; }

"Home Basic"; break; }

"Home Premium"; break; }

"Enterprise"; break; }

"Home Basic N"; break; }

"Business"; break; }

"Server Standard"; break; }

"Server Datacenter (full installation)"; break; }
"Windows Small Business Server"; break; }

"Server Enterprise (full installation)"; break; }
"Starter"; break; }

"Server Datacenter (core installation)"; break; }
"Server Standard (core installation)"; break; }
"Server Enterprise (core installation)"; break; }

W ooO~NOTULDAWNRLOO

o
[ENNSY

fury
N

i
w
Fe N e R W W W e W W W W W e

-
i

150 | Chapter4: Looping and Flow Control

https://oreil.ly/1fI6H

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
46
47
48
49
50
51
52
53
54
55
56
59
60
61
62
63
64
72
76
77
79
80
84
95

L R W W W e W W W e B e B e e e e e W e W e B R e e e e T W W W e W e B e e N e N e e W e R e W W N e e]

"Server Enterprise for Itanium-based Systems"; break; }

"Business N"; break; }

"Web Server (full installation)"; break; }

"HPC Edition"; break; }

"Windows Storage Server 2008 R2 Essentials"; break; }

"Storage Server Express"; break; }

"Storage Server Standard"; break; }

"Storage Server Workgroup"; break; }

"Storage Server Enterprise"; break; }

"Windows Server 2008 for Windows Essential Server Solutions"; break; }
"Small Business Server Premium"; break; }

"Home Premium N"; break; }

"Enterprise N"; break; }

"Ultimate N"; break; }

"Web Server (core installation)"; break; }

"Windows Essential Business Server Management Server"; break; }
"Windows Essential Business Server Security Server"; break; }
"Windows Essential Business Server Messaging Server"; break; }
"Server Foundation"; break; }

"Windows Home Server 2011"; break; }

"Windows Server 2008 without Hyper-V for Windows Essential Server"; break; }
"Server Standard without Hyper-V"; break; }

"Server Datacenter without Hyper-V (full installation)"; break; }
"Server Enterprise without Hyper-V (full installation)"; break; }
"Server Datacenter without Hyper-V (core installation)"; break; }
"Server Standard without Hyper-V (core installation)"; break; }
"Server Enterprise without Hyper-V (core installation)"; break; }
"Microsoft Hyper-V Server"; break; }

"Storage Server Express (core installation)"; break; }

"Storage Server Standard (core installation)"; break; }

"Storage Server Workgroup (core installation)"; break; }

"Storage Server Enterprise (core installation)"; break; }
"Storage Server Enterprise (core installation)"; break; }
"Starter N"; break; }

"Professional"; break; }

"Professional N"; break; }

"Windows Small Business Server 2011 Essentials"; break; }

"Server For SB Solutions"; break; }

"Server Solutions Premium"; break; }

"Server Solutions Premium (core installation)"; break; }

"Server For SB Solutions EM"; break; }

"Server For SB Solutions EM"; break; }

"Windows MultiPoint Server"; break; }

"Windows Essential Server Solution Management"; break; }

"Windows Essential Server Solution Additional"; break; }

"Windows Essential Server Solution Management SVC"; break; }
"Windows Essential Server Solution Additional SVC"; break; }
"Small Business Server Premium (core installation)"; break; }
"Server Hyper Core V"; break; }

"Server Enterprise (evaluation installation)"; break; }

"Windows MultiPoint Server Standard (full installation)"; break; }
"Windows MultiPoint Server Premium (full installation)"; break; }
"Server Standard (evaluation installation)"; break; }

"Server Datacenter (evaluation installation)"; break; }
"Enterprise N (evaluation installation)"; break; }

"Storage Server Workgroup (evaluation installation)"; break; }

4.3 Manage Large Conditional Statements with Switches | 151

96 { "Storage Server Standard (evaluation installation)"; break; }
98 { "Windows 8 N"; break; }

99 { "Windows 8 China"; break; }

100 { "Windows 8 Single Language"; break; }

101 { "Windows 8"; break; }

103 { "Professional with Media Center"; break; }

default {"UNKNOWN: " + $SKU }
}
Although used as a way to express large conditional statements more cleanly, a
switch statement operates much like a large sequence of 1f statements, as opposed to
a large sequence of if ... elseif ... elseif ... else statements. Given the input that
you provide, PowerShell evaluates that input against each of the comparisons in the
switch statement. If the comparison evaluates to true, PowerShell then executes the
script block that follows it. Unless that script block contains a break statement,
PowerShell continues to evaluate the following comparisons.

For more information about PowerShell’s switch statement, see “Conditional State-
ments” on page 821 or type Get-Help about_Switch.

See Also

“Conditional Statements” on page 821

4.4 Repeat Operations with Loops

Problem

You want to execute the same block of code more than once.

Solution

Use one of PowerShell’s looping statements (for, foreach, while, and do) or Power-
Shell’s ForEach-0Object cmdlet to run a command or script block more than once.
For a detailed description of these looping statements, see “Looping Statements” on
page 825. For example:

for loop
for($counter = 1; $counter -le 10; Scounter++)
{
"Loop number Scounter"
}

foreach loop
foreach($file in dir)

{
"File length: " + $file.Length

}

152 | Chapter4: Looping and Flow Control

ForEach-Object cmdlet
Get-ChildItem | ForEach-Object { "File length: " + $_.Length }

while loop
Sresponse =

while(Sresponse -ne "QUIT")
{

Sresponse = Read-Host "Type something"

}

do. .while loop
$response =
do
{

Sresponse = Read-Host "Type something"
} while(Sresponse -ne "QUIT")

do..until loop
Sresponse =
do
{
Sresponse = Read-Host "Type something"
} until(Sresponse -eq "QUIT")

nn

Discussion

Although any of the looping statements can be written to be functionally equivalent
to any of the others, each lends itself to certain problems.

You usually use a for loop when you need to perform an operation an exact number
of times. Because using it this way is so common, it is often called a counted for loop.

You usually use a foreach loop when you have a collection of objects and want to
visit each item in that collection. If you do not yet have that entire collection in mem-
ory (as in the dir collection from the foreach example shown earlier), the ForEach-
Object cmdlet is usually a more efficient alternative.

Unlike the foreach loop, the ForEach-Object cmdlet lets you process each element
in the collection as PowerShell generates it. This is an important distinction; asking
PowerShell to collect the entire output of a large command (such as Get-Content
hugefile. txt) in a foreach loop can easily drag down your system.

Like pipeline-oriented functions, the ForEach-Object cmdlet lets you define com-
mands to execute before the looping begins, during the looping, and after the looping
completes:
PS > "a","b","c" | ForEach-Object
-Begin { "Starting"; $counter = 0 } °

-Process { "Processing $_"; S$Scounter++ } °
-End { "Finishing: $counter" }

4.4 Repeat Operations with Loops | 153

Starting

Processing a
Processing b
Processing c
Finishing: 3

To invoke multiple operations in your loop at the same time, use
the -parallel switch of ForEach-0Object. For more information, see
Recipe 4.5.

The while and do. .while loops are similar, in that they continue to execute the loop
as long as its condition evaluates to true. A while loop checks for this before running
your script block, whereas a do. .while loop checks the condition after running your
script block. A do..until loop is exactly like a do..while loop, except that it exits
when its condition returns $true, rather than when its condition returns $false.

For a detailed description of these looping statements, see “Looping Statements” on
page 825 or type Get-Help about_For, Get-Help about_Foreach, Get-Help
about_While, or Get-Help about_Do.

See Also
Recipe 4.5, “Process Time-Consuming Action in Parallel”

“Looping Statements” on page 825

4.5 Process Time-Consuming Action in Parallel

Problem

You have a set of data or actions that you want to run at the same time.

Solution

Use the -parallel switch of the ForEach-Object cmdlet:

PS > Measure-Command { 1..5 | ForEach-Object { Start-Sleep -Seconds 5 } }

(...)
TotalSeconds 1 25.0247856
(...)

PS > Measure-Command { 1..5 | ForEach-Object -parallel { Start-Sleep -Seconds 5 } }

(...)
TotalSeconds : 5.1354752
(...)

154 | Chapter4: Looping and Flow Control

Discussion

There are times in PowerShell when you can significantly speed up a long-running
operation by running parts of it at the same time. Perfect opportunities for this are
scenarios where your script spends most of its time waiting on network resources
(such as downloading files or web pages) or slow operations (such as restarting a ser-
ies of slow services).

In these scenarios, you can use the -parallel parameter of ForEach-Object to per-
form these actions at the same time. Under the covers, PowerShell uses background
jobs to run each branch. It caps the number of branches running at the same time to
whatever you specify in the -ThrottleLimit parameter, with a default of 5.

If the reason you want multiple commands in parallel is to accom-
plish some task quickly across a large set of machines, you should
instead use Invoke-Command. For more information, see Recipe
29.5.

Since PowerShell runs these branches as background jobs, you need to use either the
$USING syntax to bring outside variables into this background job (PowerShell brings
$_ by default) or provide the variables in the -ArgumentList parameter. For example:

PS > $greeting = "World"

PS > 1..5 | ForEach-Object -parallel { "Hello $greeting" }
Hello

Hello

Hello

Hello

Hello

PS > 1..5 | ForEach-Object -parallel { "Hello $USING:greeting" }
Hello World
Hello World
Hello World
Hello World
Hello World
PowerShell runs these background jobs in your main PowerShell process, so you can

act on input as live instances:

Sprocesses = 1..10 | ForEach-Object { Start-Process notepad -PassThru }

Sprocesses | ForEach-Object -parallel { S_.Kill() }
If you need the branches of your parallel loop to communicate back to your main
shell, the recommended approach is to accomplish this through script block output
and then have your main shell process the results. It's tempting to do this with live
objects, but beware that the path is treacherous and difficult. Let’s take a simple exam-
ple—running a parallel operation to increment a counter.

4.5 Process Time-Consuming Action in Parallel | 155

It might initially seem like you should use:

Scounter = 0

1..10 | ForEach-Object -parallel {
SmyCounter = SUSING:counter
SmyCounter = $myCounter + 1

}

However, when you type $counter = S$counter + 1 in PowerShell, PowerShell
updates the $counter variable in the current scope. If you want to change an object
from a background job, you need to do so by setting a property on a live object rather
than trying to replace the object. Fortunately, PowerShell has a type called [ref] for
this kind of scenario:

Scounter = [ref] 0

1..10 | ForEach-Object -parallel {

$myCounter = SUSING:counter

SmyCounter.Value = $myCounter.Value + 1

}

Initially, this seems to work:

PS > $counter

Now that we're proud of ourselves, let’s really do this in parallel:

Scounter = [ref] 0

1..10000 | ForEach-Object -throttlelimit 100 -parallel {
SmyCounter = SUSING:counter
SmyCounter.Value = $myCounter.Value + 1

}

PS > S$counter

Oops! Because we've done this with massive parallelism, $myCounter.Value can
change at any time during the parts of the pipeline where PowerShell runs
$myCounter.Value = $myCounter.Value + 1. This is called a race condition, and is
common to any language that lets code from multiple simultaneous blocks of code
run at the same time. To get rid of the weird intermediate states, we have to use the
Interlocked Increment class from the .Net Framework:

Scounter = [ref] 0

1..10000 | ForEach-Object -throttlelimit 100 -parallel {

SmyCounter = SUSING:counter
Snull = [Threading.Interlocked]::Increment($myCounter)

156 | Chapter4: Looping and Flow Control

Which correctly gives us:

PS > S$counter

These problems are gnarly, and bite even professional programmers with regularity.
The best practice to handle this class of issue is to avoid the area altogether by not
processing or operating on shared state.

See Also
Recipe 4.4, “Repeat Operations with Loops”

Recipe 29.5, “Invoke a Command on a Remote Computer”

4.6 Add a Pause or Delay

Problem

You want to pause or delay your script or command.

Solution

To pause until the user presses the Enter key, use the pause command:

PS > pause
Press Enter to continue...:

To pause until the user presses any key, use the ReadKey() method on the $host
object:

PS > $host.UI.RawUI.ReadKey()
To pause a script for a given amount of time, use the Start-Sleep cmdlet:

PS > Start-Sleep 5
PS > Start-Sleep -Milliseconds 300

Discussion

When you want to pause your script until the user presses a key or for a set amount of
time, pause and Start-Sleep are the two cmdlets you're most likely to use.

If you want to retrieve user input rather than just pause, the Read-
Host cmdlet lets you read input from the user. For more informa-
tion, see Recipe 13.1.

4.6 Add a Pause orDelay | 157

In other situations, you may sometimes want to write a loop in your script that runs
at a constant speed—such as once per minute or 30 times per second. That is typically
a difficult task, as the commands in the loop might take up a significant amount of
time, or even an inconsistent amount of time.

In the past, many computer games suffered from solving this problem incorrectly. To
control their game speed, game developers added commands to slow down their
game. For example, after much tweaking and fiddling, the developers might realize
that the game plays correctly on a typical machine if they make the computer count
to 1 million every time it updates the screen. Unfortunately, the speed of these com-
mands (such as counting) depends heavily on the speed of the computer. Since a fast
computer can count to 1 million much more quickly than a slow computer, the game
ends up running much more quickly (often to the point of incomprehensibility) on
faster computers!

To make your loop run at a regular speed, you can measure how long the commands
in a loop take to complete, and then delay for whatever time is left, as shown in
Example 4-1.

Example 4-1. Running a loop at a constant speed

S$loopDelayMilliseconds = 650
while($true)

{
SstartTime = Get-Date

Do commands here
"Executing"

SendTime = Get-Date
S$loopLength = ($endTime - $startTime).TotalMilliseconds
StimeRemaining = $loopDelayMilliseconds - $loopLength

if($timeRemaining -gt 0)
{

Start-Sleep -Milliseconds $timeRemaining
}
}

For more information about the Start-Sleep cmdlet, type Get-Help Start-Sleep.

See Also
Recipe 13.1, “Read a Line of User Input”

158 | Chapter4: Looping and Flow Control

CHAPTER 5
Strings and Unstructured Text

5.0 Introduction

Creating and manipulating text has long been one of the primary tasks of scripting
languages and traditional shells. In fact, Perl (the language) started as a simple (but
useful) tool designed for text processing. It has grown well beyond those humble
roots, but its popularity provides strong evidence of the need it fills.

In text-based shells, this strong focus continues. When most of your interaction with
the system happens by manipulating the text-based output of programs, powerful
text processing utilities become crucial. These text parsing tools, such as awk, sed, and
grep, form the keystones of text-based systems management.

In PowerShell’s object-based environment, this traditional tool chain plays a less criti-
cal role. You can accomplish most of the tasks that previously required these tools
much more effectively through other PowerShell commands. However, being an
object-based shell does not mean that PowerShell drops all support for text process-
ing. Dealing with strings and unstructured text continues to play an important part in
a system administrator’s life. Since PowerShell lets you manage the majority of your
system in its full fidelity (using cmdlets and objects), the text processing tools can
once again focus primarily on actual text processing tasks.

5.1 Create a String

Problem

You want to create a variable that holds text.

159

Solution
Use PowerShell string variables as a way to store and work with text.

To define a string that supports variable expansion and escape characters in its defini-
tion, surround it with double quotes:

SmyString = "Hello World"

To define a literal string (one that doesn’t interpret variable expansion or escape char-
acters), surround it with single quotes:

SmyString = 'Hello World'

Discussion

String literals come in two varieties: literal (nonexpanding) and expanding strings. To
create a literal string, place single quotes ($myString = 'Hello World') around the
text. To create an expanding string, place double quotes ($myString = "Hello
World") around the text.

In a literal string, all the text between the single quotes becomes part of your string.
In an expanding string, PowerShell expands variable names (such as $replacement
String) and escape sequences (such as "n) with their values (such as the content of
$replacementString and the newline character, respectively).

For a detailed explanation of the escape sequences and replacement rules inside
PowerShell strings, see “Strings” on page 802.

One exception to the “all text in a literal string is literal” rule comes from the quote
characters themselves. In either type of string, PowerShell lets you place two of that
string’s quote characters together to add the quote character itself:

SmyString = "This string includes ""double quotes"" because it combined quote
characters."
SmyString = 'This string includes ''single quotes'' because it combined quote

characters.'

This helps prevent escaping atrocities that would arise when you try to include a sin-
gle quote in a single-quoted string. For example:

' win win

SmyString = 'This string includes ' + + 'single quotes' +
This example shows how easy PowerShell makes it to create new
strings by adding other strings together. This is an attractive way to
build a formatted report in a script but should be used with cau-
tion. Because of the way that the NET Framework (and therefore
PowerShell) manages strings, adding information to the end of a
large string this way causes noticeable performance problems. If
you intend to create large reports, see Recipe 5.16.

160 | Chapter5: Strings and Unstructured Text

See Also
Recipe 5.16, “Generate Large Reports and Text Streams”

“Strings” on page 802
5.2 Create a Multiline or Formatted String

Problem

You want to create a variable that holds text with newlines or other explicit
formatting.

Solution

Use a PowerShell here string to store and work with text that includes newlines and
other formatting information.

SmyString = @"

This is the first line

of a very long string. A "here string"
lets you create blocks of text

that span several lines.

"@

Discussion

PowerShell begins a here string when it sees the characters @" followed by a newline.
It ends the string when it sees the characters "@ on their own line. These seemingly
odd restrictions let you create strings that include quote characters, newlines, and
other symbols that you commonly use when you create large blocks of preformatted
text.

These restrictions, while useful, can sometimes cause problems
when you copy and paste PowerShell examples from the internet.
Web pages often add spaces at the end of lines, which can interfere
with the strict requirements of the beginning of a here string. If
PowerShell produces an error when your script defines a here
string, check that the here string doesn’t include an errant space
after its first quote character.

Like string literals, here strings may be literal (and use single quotes) or expanding
(and use double quotes).

5.2 Create a Multiline or Formatted String | 161

5.3 Place Special Characters in a String

Problem

You want to place special characters (such as tab and newline) in a string variable.

Solution

In an expanding string, use PowerShell’s escape sequences to include special charac-
ters such as tab and newline.
PS > $myString = "Report for Today ' n----------------
PS > $myString
Report for Today

Discussion

As discussed in Recipe 5.1, PowerShell strings come in two varieties: literal (or non-
expanding) and expanding strings. A literal string uses single quotes around its text,
whereas an expanding string uses double quotes around its text.

In a literal string, all the text between the single quotes becomes part of your string.
In an expanding string, PowerShell expands variable names (such as $SENV:System
Root) and escape sequences (such as “n) with their values (such as the SystemRoot
environment variable and the newline character).

Unlike many languages that use a backslash character (\) for escape
sequences, PowerShell uses a backtick () character. This stems
from its focus on system administration, where backslashes are
ubiquitous in pathnames.

For a detailed explanation of the escape sequences and replacement rules inside
PowerShell strings, see “Strings” on page 802.

See Also
Recipe 5.1, “Create a String”

“Strings” on page 802

162 | Chapter5: Strings and Unstructured Text

5.4 Insert Dynamic Information in a String

Problem

You want to place dynamic information (such as the value of another variable) in a
string.

Solution

In an expanding string, include the name of a variable in the string to insert the value
of that variable:

PS > Sheader = "Report for Today"

PS > $myString = "Sheader'n----------------

PS > $myString

Report for Today
To include information more complex than just the value of a variable, enclose it in a
subexpression:

PS > Sheader = "Report for Today"

PS > $myString = "Sheader 'n$('-' * Sheader.Length)"

PS > $myString

Report for Today

Discussion

Variable substitution in an expanding string is a simple enough concept, but subex-
pressions deserve a little clarification.

A subexpression is the dollar sign character, followed by a PowerShell command (or
set of commands) contained in parentheses:

S$(subexpression)

When PowerShell sees a subexpression in an expanding string, it evaluates the subex-
pression and places the result in the expanding string. In the Solution, the expression
'-' * Sheader.Length tells PowerShell to make a line of dashes $header.Length
long.

Another way to place dynamic information inside a string is to use PowerShell’s
string formatting operator, which uses the same rules that .NET string formatting
does:

PS > Sheader = "Report for Today"

PS > $myString = "{0} n{1}" -f Sheader,('-' * $header.Length)
PS > $myString

Report for Today

5.4 Insert Dynamic InformationinaString | 163

For an explanation of PowerShell’s formatting operator, see Recipe 5.6. For more
information about PowerShells escape characters, type Get-Help
about_Special_Characters.

See Also

Recipe 5.6, “Place Formatted Information in a String”

5.5 Prevent a String from Including Dynamic Information

Problem

You want to prevent PowerShell from interpreting special characters or variable
names inside a string.

Solution

Use a nonexpanding string to have PowerShell interpret your string exactly as
entered. A nonexpanding string uses the single quote character around its text.

PS > $myString = 'Useful PowerShell characters include: $, *, " and { }'

PS > $myString

Useful PowerShell characters include: $, *, " and { }
If you want to include newline characters as well, use a nonexpanding here string, as
in Example 5-1.

Example 5-1. A nonexpanding here string that includes newline characters

PS > $myString = @'
Tip of the Day

Useful PowerShell characters include: $, *, ', " and { }
'@

PS > $myString
Tip of the Day
Useful PowerShell characters include: $, *, ', " and { }

Discussion

In a literal string, all the text between the single quotes becomes part of your string.
This is in contrast to an expanding string, where PowerShell expands variable names
(such as $myString) and escape sequences (such as "n) with their values (such as the
content of $myString and the newline character).

164 | Chapter5: Strings and Unstructured Text

Nonexpanding strings are a useful way to manage files and folders
containing special characters that might otherwise be interpreted as
escape sequences. For more information about managing files with
special characters in their name, see Recipe 20.7.

As discussed in Recipe 5.1, one exception to the “all text in a literal string is literal”
rule comes from the quote characters themselves. In either type of string, PowerShell
lets you place two of that string’s quote characters together to include the quote char-
acter itself:

$myString = "This string includes ""double quotes"" because it combined quote
characters."
$myString = 'This string includes ''single quotes'' because it combined quote
characters.'

See Also

Recipe 5.1, “Create a String”

>

Recipe 20.7, “Manage Files That Include Special Characters’

5.6 Place Formatted Information in a String

Problem

You want to place formatted information (such as right-aligned text or numbers
rounded to a specific number of decimal places) in a string.

Solution

Use PowerShell’s formatting operator to place formatted information inside a string:

PS > $formatString = "{0,8:D4} {1:C}'n"

PS > $report = "Quantity Price'n"

PS > Sreport += "---------oo---- n"

PS > $report += $formatString -f 50,2.5677
PS > $report += $formatString -f 3,9

PS > $report
Quantity Price

0050 $2.57
0003 $9.00

Discussion

PowerShell’s string formatting operator (-f) uses the same string formatting rules as
the String.Format() method in the NET Framework. It takes a format string on its
left side and the items you want to format on its right side.

5.6 Place Formatted InformationinaString | 165

In the Solution, you format two numbers: a quantity and a price. The first number
({0}) represents the quantity and is right-aligned in a box of eight characters (,8). It’s
formatted as a decimal number with four digits (:04). The second number ({1}) rep-
resents the price, which you format as currency (:C).

If you find yourself hand-crafting text-based reports, STOP! Let
PowerShell’s built-in commands do all the work for you. Instead,
emit custom objects so that your users can work with your script as
easily as they work with regular PowerShell commands. For more
information, see Recipe 3.15.

For a detailed explanation of PowerShell’s formatting operator, see “Simple Opera-
tors” on page 811. For a detailed list of the formatting rules, see Appendix D.

Although primarily used to control the layout of information, the string-formatting
operator is also a readable replacement for what is normally accomplished with string
concatenation:

PS > $numberl = 10

PS > S$number2 = 32

PS > "Snumber2 divided by $numberil is
32 divided by 10 is 3.2

+ Snumber2 / $numberi

The string formatting operator makes this much easier to read:

PS > "{0} divided by {1} is {2}" -f Snumber2, $numberl, ($number2 / $numberi)
32 divided by 10 is 3.2

If you want to support named replacements (rather than index-based replacements),
you can use the Format-String script given in Recipe 5.17.

In addition to the string formatting operator, PowerShell provides three formatting
commands (Format-Table, Format-Wide, and Format-List) that let you easily gener-
ate formatted reports. For detailed information about those cmdlets, see “Custom
Formatting Files” on page 854.

See Also

Recipe 3.15, “Create and Initialize Custom Objects”
“Simple Operators” on page 811

“Custom Formatting Files” on page 854

Appendix D, .NET String Formatting

166 | Chapter5: Strings and Unstructured Text

5.7 Search a String for Text or a Pattern

Problem

You want to determine whether a string contains another string, or you want to find
the position of a string within another string.

Solution
PowerShell provides several options to help you search a string for text.

Use the -like operator to determine whether a string matches a given DOS-like
wildcard:

PS > "Hello World" -like "*1lo W*"
True

Use the -match operator to determine whether a string matches a given regular
expression:

PS > "Hello World" -match '.*1[1-z]o W.*$'
True

Use the Contains() method to determine whether a string contains a specific string:

PS > "Hello World".Contains("World")
True

Use the Index0f() method to determine the location of one string within another:
PS > "Hello World".IndexOf("World")
6

Discussion

Since PowerShell strings are fully featured .NET objects, they support many string-
oriented operations directly. The Contains() and Index0f() methods are two exam-
ples of the many features that the String class supports. To learn what other func-
tionality the String class supports, see Recipe 3.12.

To search entire files for text or a pattern, see Recipe 9.4.

Although they use similar characters, simple wildcards and regular expressions serve
significantly different purposes. Wildcards are much simpler than regular expres-
sions, and because of that, more constrained. While you can summarize the rules for

5.7 Search a String for Text or a Pattern | 167

wildcards in just four bullet points, entire books have been written to help teach and
illuminate the use of regular expressions.

A common use of regular expressions is to search for a string that
spans multiple lines. By default, regular expressions do not search
across lines, but you can use the singleline (?s) option to instruct
them to do so:

PS > "Hello 'n World" -match "Hello.*World"
False

PS > "Hello 'n World" -match "(?s)Hello.*World"
True

Wildcards lend themselves to simple text searches, whereas regular expressions lend
themselves to more complex text searches.

For a detailed description of the - 1ike operator, see “Comparison Operators” on page
818. For a detailed description of the -match operator, see “Simple Operators” on
page 811. For a detailed list of the regular expression rules and syntax, see
Appendix B.

One difficulty sometimes arises when you try to store the result of a PowerShell com-
mand in a string, as shown in Example 5-2.

Example 5-2. Attempting to store output of a PowerShell command in a string
PS > Get-Help Get-ChildItem

NAME
Get-ChildItem

SYNOPSIS
Gets the items and child items in one or more specified locations.

DESCRIPTION
The “Get-ChildItem® cmdlet gets the items in one or more specified locations. If
the item is a container, it gets the items inside the container, known as child
items. You can use the Recurse parameter to get items in all child containers
and use the Depth parameter to limit the number of levels to recurse.

‘Get-ChildItem" doesn't display empty directories. When a ‘Get-ChildItem®
command includes the Depth or Recurse parameters, empty directories aren't
included in the output.

(...)

PS > $helpContent = Get-Help Get-ChildItem
PS > $helpContent -match "empty directories"
False

168 | Chapter5: Strings and Unstructured Text

The -match operator searches a string for the pattern you specify but seems to fail in
this case. This is because all PowerShell commands generate objects. If you don’t store
that output in another variable or pass it to another command, PowerShell converts
the output to a text representation before it displays it to you. In Example 5-2, $Shelp
Content is a fully featured object, not just its string representation:

PS > $helpContent.Name
Get-ChildItem

To work with the text-based representation of a PowerShell command, you can
explicitly send it through the Out-String cmdlet. The Out-String cmdlet converts its
input into the text-based form you’re used to seeing on the screen:

PS > ShelpContent = Get-Help Get-ChildItem | Out-String -Stream
PS > [bool] (ShelpContent -match "empty directories")
True

For a script that makes searching textual command output easier, see Recipe 1.24.

See Also

Recipe 1.24, “Program: Search Formatted Output for a Pattern”
Recipe 3.12, “Learn About Types and Objects”

“Simple Operators” on page 811

“Comparison Operators” on page 818

Appendix B, Regular Expression Reference

5.8 Replace Text in a String

Problem

You want to replace a portion of a string with another string.

Solution

PowerShell provides several options to help you replace text in a string with other
text.

Use the Replace() method on the string itself to perform simple replacements:

PS > "Hello World".Replace("World", "PowerShell")
Hello PowerShell

Use PowerShell’s regular expression -replace operator to perform more advanced
regular expression replacements:

5.8 Replace TextinaString | 169

PS > "Hello World" -replace '(.*) (.*)','$2 $1'
World Hello

Discussion

The Replace() method and the -replace operator both provide useful ways to
replace text in a string. The Replace() method is the quickest but also the most con-
strained. It replaces every occurrence of the exact string you specify with the exact
replacement string that you provide. The -replace operator provides much more
flexibility because its arguments are regular expressions that can match and replace
complex patterns.

For an approach that uses input and output examples to learn auto-
matically how to replace text in a string, see Recipe 5.14.

Given the power of the regular expressions it uses, the - replace operator carries with
it some pitfalls of regular expressions as well.

First, the regular expressions that you use with the -replace operator often contain
characters (such as the dollar sign, which represents a group number) that PowerShell
normally interprets as variable names or escape characters. To prevent PowerShell
from interpreting these characters, use a nonexpanding string (single quotes) as
shown in the Solution.

Another, less common pitfall is wanting to use characters that have special meaning
to regular expressions as part of your replacement text. For example:

PS > "Power[Shell]" -replace "[Shell]","ful"

Powfulr[fulfulfulfulful]
That’s clearly not what we intended. In regular expressions, square brackets around a
set of characters means “match any of the characters inside of the square brackets” In
our example, this translates to “Replace the characters S, h, e, and | with ‘ful”

To avoid this, we can use the regular expression escape character to escape the square
brackets:

PS > "Power[Shell]" -replace "\[Shell\]","ful"

Powerful
However, this means knowing all of the regular expression special characters and
modifying the input string. Sometimes we dont control the input string, so the
[Regex]: :Escape() method comes in handy:

PS > "Power[Shell]" -replace ([Regex]::Escape("[Shell]")),"ful"
Powerful

170 | Chapter5: Strings and Unstructured Text

For extremely advanced regular expression replacement needs, you can use a script
block to accomplish your replacement tasks, as described in Recipe 31.6. For example,
to capitalize the first character (\w) after a word boundary (\b):

PS > "hello world" -replace '\b(\w)',{ $_.Value.ToUpper() }
Hello World

For more information about the -replace operator, see “Simple Operators” on page
811 and Appendix B.

See Also

Recipe 5.14, “Convert a String Between One Format and Another”
“Simple Operators” on page 811

Appendix B, Regular Expression Reference

5.9 Split a String on Text or a Pattern

Problem

You want to split a string based on some literal text or a regular expression pattern.

Solution

Use PowerShell's -split operator to split on a sequence of characters or specific
string:
PS > "a-b-c-d-e-f" -split "-c-"

a-b
d-e-f

To split on a pattern, supply a regular expression as the first argument:

PS > "a-b-c-d-e-f" -split "b|[d-e]"
a-
—c-

g
Discussion
To split a string, many beginning scripters already comfortable with C# use the
String.Split() and [Regex]::Split() methods from the .NET Framework. While
still available in PowerShell, PowerShell’s -split operator provides a more natural

way to split a string into smaller strings. When used with no arguments (the unary
split operator), it splits a string on whitespace characters, as in Example 5-3.

5.9Splita String on Textora Pattern | 171

Example 5-3. PowerShell’s unary split operator

PS > -split "Hello World 't How 'n are you?"
Hello

World

How

are

you?

When used with an argument, it treats the argument as a regular expression and then
splits based on that pattern.

PS > "a-b-c-d-e-f" -split 'b|[d-e]'

If the replacement pattern avoids characters that have special meaning in a regular
expression, you can use it to split a string based on another string.

PS > "a-b-c-d-e-f" -split '-c-'

a-b

d-e-f
If the replacement pattern has characters that have special meaning in a regular
expression (such as the . character, which represents “any character”), use the -split
operator’s SimpleMatch option, as in Example 5-4.

Example 5-4. PowerShell's SimpleMatch split option

PS > "a.b.c" -split '.'
(A bunch of newlines. Something went wrong!)

PS > "a.b.c" -split '.',0,"SimpleMatch"
a
b
c

For more information about the -split operator’s options, type Get-Help
about_split.

While regular expressions offer an enormous amount of flexibility, the -split opera-
tor gives you ultimate flexibility by letting you supply a script block for a split opera-
tion. For each character, it invokes the script block and splits the string based on the
result. In the script block, $_ (or $PSItem) represents the current character. For exam-
ple, Example 5-5 splits a string on even numbers.

172 | Chapter5: Strings and Unstructured Text

Example 5-5. Using a script block to split a string

S > "1234567890" -split { ($_ % 2) -eq 0 }

p
1
3
5
7
9

When you're using a script block to split a string, $_ represents the current character.
For arguments, $args[0] represents the entire string, and $args[1] represents the
index of the string currently being examined.

To split an entire file by a pattern, use the -Delimiter parameter of the Get-Content
cmdlet:

PS > Get-Content test.txt

Hello

World

PS > (Get-Content test.txt)[0]

Hello

PS > Get-Content test.txt -Delimiter 1
He

o
Wor
d

PS > (Get-Content test.txt -Delimiter 1)[0]
He

PS > (Get-Content test.txt -Delimiter 1)[2]
o

Wor

PS > (Get-Content test.txt -Delimiter 1)[3]
d

For more information about the -split operator, see “Simple Operators” on page 811
or type Get-Help about_split.

See Also
“Simple Operators” on page 811
Appendix B, Regular Expression Reference

5.10 Combine Strings into a Larger String

Problem

You want to combine several separate strings into a single string.

5.10 Combine Strings into a Larger String | 173

Solution

Use PowerShell’s unary - join operator to combine separate strings into a larger string
using the default empty separator:

PS > -join ("A","B","C")

ABC
If you want to define the operator that PowerShell uses to combine the strings, use
PowerShell’s binary - join operator:

PS > ("A","B","C") -join "r’n"

A

B
C

To use a cmdlet for features not supported by the -join operator, use the Join-
String cmdlet:

PS > 1..5 | Join-String -DoubleQuote -Separator ','
ngn mgn w3n wgw wgn

Discussion

The -join operator provides a natural way to combine strings. When used with no
arguments (the unary join operator), it joins the list using the default empty separa-
tor. When used between a list and a separator (the binary join operator), it joins the
strings using the provided separator.

Aside from its performance benefit, the - join operator solves an extremely common
difficulty that arises from trying to combine strings by hand.

When first writing the code to join a list with a separator (for example, a comma and
a space), you usually end up leaving a lonely separator at the beginning or end of the
output:

PS > $list = "Hello","World"
PS > Soutput = ""

PS >

PS > foreach($item in $list)
{

Soutput += S$item + ",

}

PS > Soutput
Hello, World,

You can resolve this by adding some extra logic to the foreach loop:

PS > $list = "Hello","World"
PS > Soutput = ""

PS >

PS > foreach($item in $list)

174 | Chapter5: Strings and Unstructured Text

if(Soutput -ne "") { Soutput +=
Soutput += Sitem

-

}

PS > Soutput
Hello, World

Or, save yourself the trouble and use the - join operator directly:
PS > $list = "Hello","World"
PS > $list -join ", "
Hello, World

If you have advanced needs not covered by the -join operator, the .NET methods
such as [String]::Join() are of course available in PowerShell.

For a more structured way to join strings into larger strings or reports, see Recipe 5.6.

See Also

Recipe 5.6, “Place Formatted Information in a String”

5.11 Convert a String to Uppercase or Lowercase

Problem

You want to convert a string to uppercase or lowercase.

Solution

Use the ToUpper () or ToLower () methods of the string to convert it to uppercase or
lowercase, respectively.

To convert a string to uppercase, use the ToUpper () method:

PS > "Hello World".ToUpper()
HELLO WORLD

To convert a string to lowercase, use the ToLower () method:

PS > "Hello World".ToLower()
hello world

Discussion

Since PowerShell strings are fully featured .NET objects, they support many string-
oriented operations directly. The ToUpper() and ToLower () methods are two exam-
ples of the many features that the String class supports. To learn what other func-
tionality the String class supports, see Recipe 3.12.

5.11 Convert a String to Uppercase or Lowercase | 175

Neither PowerShell nor the methods of the NET String class directly support capi-
talizing only the first letter of a word. If you want to capitalize only the first character
of a word or sentence, try the following commands:

PS > $text = "hello"

PS > S$newText = $text.Substring(0,1).ToUpper() + S$text.Substring(1)
PS > $newText

Hello

You can also use an advanced regular expression replacement, as described in Recipe
31.6:

"hello world" -replace '\b(\w)',{ $_.vValue.ToUpper() }

One thing to keep in mind as you convert a string to uppercase or lowercase is your
motivation for doing it. One of the most common reasons is for comparing strings, as
shown in Example 5-6.

Example 5-6. Using the ToUpper() method to normalize strings

Stext comes from the user, and contains the value "quit"
if(Stext.ToUpper() -eq "QUIT") { ... }

Unfortunately, explicitly changing the capitalization of strings fails in subtle ways
when your script runs in different cultures. Many cultures follow different capitaliza-
tion and comparison rules than you may be used to. For example, the Turkish lan-
guage includes two types of the letter I: one with a dot and one without. The upper-
case version of the lowercase letter i corresponds to the version of the capital I with a
dot, not the capital I used in QUIT. Those capitalization rules cause the string compar-
ison code in Example 5-6 to fail in the Turkish culture.

Recipe 13.8 shows us this quite clearly:

PS > Use-Culture tr-TR { "quit".ToUpper() -eq "QUIT" }

False

PS > Use-Culture tr-TR { "quIt".ToUpper() -eq "QUIT" }

True

PS > Use-Culture tr-TR { "quit".ToUpper() }

QuUIiT
For comparing some input against a hardcoded string in a case-insensitive manner,
the better solution is to use PowerShell’s -eq operator without changing any of the
casing yourself. The -eq operator is case-insensitive and culture-neutral by default:

PS > $textl = "Hello"

PS > $text2 = "HELLO"

PS > $textl -eq Stext2
True

PS > Use-Culture tr-TR { "quit" -eq "QUIT" }
True

176 | Chapter5: Strings and Unstructured Text

For more information about writing culture-aware scripts, see Recipe 13.6.

See Also

Recipe 3.12, “Learn About Types and Objects”

Recipe 13.6, “Write Culture- Aware Scripts”

Recipe 31.6, “Use a Script Block as a NET Delegate or Event Handler”

5.12 Trim a String

Problem

You want to remove leading or trailing spaces from a string or user input.

Solution

Use the Trim() method of the string to remove all leading and trailing whitespace
characters from that string.
PS > S$text = " "t Test String't "t"

PS > "|" + Stext.Trim() + "|"
|Test String]|

Discussion

The Trim() method cleans all whitespace from the beginning and end of a string. If
you want just one or the other, you can call the TrimStart() or TrimEnd() method to
remove whitespace from the beginning or the end of the string, respectively. If you
want to remove specific characters from the beginning or end of a string, the Trim(),
TrimStart(), and TrimEnd() methods provide options to support that. To trim a list
of specific characters from the end of a string, provide that list to the method, as
shown in Example 5-7.

Example 5-7. Trimming a list of characters from the end of a string

PS > "Hello World".TrimEnd('d','l','r','o','W'," ")
He

If you want to replace text anywhere in a string (and not just from the beginning or
end), see Recipe 5.8.

512TrimaString | 177

At first blush, the following command that attempts to trim the text
"World" from the end of a string appears to work incorrectly:

PS > "Hello World".TrimEnd(" World")
He

This happens because the TrimEnd() method takes a list of charac-
ters to remove from the end of a string. PowerShell automatically
converts a string to a list of characters if required, and in this case
converts your string to the characters W, o, r, 1, d, and a space.
These are in fact the same characters as were used in Example 5-7,
so it has the same effect.

See Also
Recipe 5.8, “Replace Text in a String”

5.13 Format a Date for Qutput

Problem

You want to control the way that PowerShell displays or formats a date.

Solution

To control the format of a date, use one of the following options:

o The Get-Date cmdlets -Format parameter:

PS > Get-Date -Date "05/09/1998 1:23 PM" -Format FileDateTime
19980509T71323000000

PS > Get-Date -Date "05/09/1998 1:23 PM" -Format "dd-MM-yyyy @ hh:mm:ss"
09-05-1998 @ 01:23:00

» PowerShell’s string formatting (-f) operator:
PS > $date = [DateTime] "05/09/1998 1:23 PM"
PS > "{0:dd-MM-yyyy @ hh:mm:ss}" -f Sdate
09-05-1998 @ 01:23:00

o The object’s ToString() method:
PS > $date = [DateTime] "05/09/1998 1:23 PM"
PS > S$date.ToString("dd-MM-yyyy @ hh:mm:ss")
09-05-1998 @ 01:23:00

o The Get-Date cmdlet’s -UFormat parameter, which supports Unix date format
strings:

PS > Get-Date -Date "05/09/1998 1:23 PM" -UFormat "%d-%m-%Y @ %I:%M:%S"
09-05-1998 @ 01:23:00

178 | Chapter5: Strings and Unstructured Text

Discussion

One of the common needs for converting a date into a string is for use in filenames,
directory names, and similar situations. For these incredibly common scenarios, the
Get-Date cmdlet offers four easy options for its -Format parameter: FileDate, File
DateUniversal, FileDateTime, and FileDateTimeUniversal. These return represen-
tations of the date (“19980509”) or date and time (“19980509T1323000000”) in either
local or universal time zones.

In addition to these standard format strings, the -Format parameter also supports
standard .NET DateTime format strings. These format strings let you display dates in
one of many standard formats (such as your system’s short or long date patterns), or
in a completely custom manner. For more information on how to specify stan-
dard NET DateTime format strings, see Appendix E.

If you're already used to the Unix-style date formatting strings (or are converting an
existing script that uses a complex one), the -UFormat parameter of the Get-Date
cmdlet may be helpful. It accepts the format strings accepted by the Unix date com-
mand, but doesn’t provide any functionality that standard .NET date formatting
strings can’t.

When working with the string version of dates and times, be aware that they are the
most common source of internationalization issues—problems that arise from run-
ning a script on a machine with a different culture than the one it was written on. In
North America, “05/09/1998” means “May 9, 1998” In many other cultures, though,
it means “September 5, 1998” Whenever possible, use and compare DateTime objects
(rather than strings) to other DateTime objects, as that avoids these cultural differ-
ences. Example 5-8 demonstrates this approach.

Example 5-8. Comparing DateTime objects with the -gt operator

PS > $dueDate = [DateTime] "01/01/2006"
PS > if([DateTime]::Now -gt SdueDate)
{

"Account is now due"

}

Account is now due

PowerShell always assumes the North American date format
when it interprets a DateTime constant such as [DateTime]
"05/09/1998". This is for the same reason that all languages inter-
pret numeric constants (such as 12.34) in the North American for-
mat. If it did otherwise, nearly every script that dealt with dates and
times would fail on international systems.

5.13 Format a Date for Output | 179

For more information about the Get-Date cmdlet, type Get-Help Get-Date. For
more information about dealing with dates and times in a culture-aware manner, see
Recipe 13.6.

See Also

Recipe 13.6, “Write Culture-Aware Scripts”
Appendix E, .NET DateTime Formatting

5.14 Convert a String Between One Format and Another

Problem

You have a series of text strings, and you want to convert them into another format.

Solution

Use the Convert-String cmdlet:

PS > $phoneNumbers = "5551212","4524587","2112132","8752113"

PS > S$SreplacementExamples = "5551212=(425) 555-1212","4524587=(425) 452-4587"
PS > $phoneNumbers | Convert-String -Example SreplacementExamples

(425) 555-1212

(425) 452-4587

(425) 211-2132

(425) 875-2113

Discussion

The Convert-String cmdlet takes input text in one format and converts it to an out-
put format. Unlike features in PowerShell that do this through regular expressions
and capture groups and other complicated topics, the Convert-String cmdlet
requires only that you provide it examples of data as it started, along with how it
should look after the conversion is complete.

The Convert-String cmdlet, along with the ConvertFrom-String cmdlet, are based
on the Flash Fill technology that you can find in Excel. They are two of the things that
are likely as close to magic as you'll ever find in a shell. Rather than ask you to specify
the exact series of steps you want to take to transform the text input, Convert-String
instead learns these operations on your behalf.

In addition to the “Original=Replacement” format of examples, you can supply
objects (such as hashtables or PSCustomObjects) that have Before and After
properties:

180 | Chapter5: Strings and Unstructured Text

Sexamples =
@{ Before = "Get-AclMisconfiguration.ps1"
After = "Gets the AclMisconfiguration from the system" },
@{ Before = "Get-AliasSuggestion.ps1"”
After = "Gets the AliasSuggestion from the system" }

PS > dir scripts\Get-* | ForEach-Object Name

Get-AclMisconfiguration.ps1
Get-AliasSuggestion.psil
Get-Answer.psl

Get-Arguments.psl
Get-Characteristics.psl
Get-Clipboard.ps1
Get-DetailedSystemInformation.psi
(...)

PS > dir scripts\Get-* | ForEach-Object Name | Convert-String -Example $examples

Gets the AclMisconfiguration from the system

Gets the AliasSuggestion from the system

Gets the Answer from the system

Gets the Arguments from the system

Gets the Characteristics from the system

Gets the Clipboard from the system

Gets the DetailedSystemInformation from the system

(...)
As with hand-written regular expressions or String.Replace() calls, ConvertFrom-
String can sometimes make mistakes in understanding your intention. You can nor-
mally resolve these by providing more examples. Once you have a set of examples
that you know express your intention, these examples will continue to work for simi-
lar text in the future.

For more information about using the String.Replace() method or regular expres-
sions to modify strings, see Recipe 5.8.

See Also
Recipe 5.8, “Replace Text in a String”
Recipe 5.15, “Convert Text Streams to Objects”

5.15 Convert Text Streams to Objects

Problem

You have raw, unstructured text, and want to parse it into PowerShell objects.

5.15 Convert Text Streams to Objects | 181

Solution

Use the -Delimiter parameter of the ConvertFrom-String cmdlet to parse data in
simple column formats. PowerShell automatically generates property names if you
don’t specify them, and automatically converts the strings into more appropriate data
types if possible:

Sdelimiter = "[]+(?=\d|Services|Console)"
Soutput = tasklist.exe | Select -Skip 3 | ConvertFrom-String -Delimiter S$delimiter

PS > Soutput | Where-Object P2 -1t 1000 | Format-Table

P1 P2 P3 P4 P5
System Idle Process 0 Services 0 8 K
System 4 Services 0 2,072 K
Secure System 72 Services 0 39,256 K
Registry 132 Services 0 99,088 K
Smss.exe 524 Services 0 1,076 K
(...)

You can also use the -Delimiter parameter to parse entire strings. Any text matched
by your capture groups will be present as the second property and beyond, which you
can name as you like:

PS > $expression = 'FirstName=(.*);LastName=(.*)'
PS > $parsed = "FirstName=Lee;LastName=Holmes" |
ConvertFrom-String -Delimiter $expression -Property Ignored,FName,LName
PS > $parsed.FName
Lee
PS > $parsed.LName
Holmes

Use the -Template parameter to parse data automatically based on the tagging that
you've added to example text in the template:

Stemplate = @"

{FName*:Lee} {LName:Holmes}

{FName*:John} {LName:Smith}

"@

"Lee Holmes","Adam Smith","Some Body","Another Person"
ConvertFrom-String -TemplateContent S$template

FName LName

Lee Holmes
Adam Smith
Some Body

Another Person

182 | Chapter5: Strings and Unstructured Text

Discussion

One of the strongest features of PowerShell is its object-based pipeline. You don’t
waste your energy creating, destroying, and recreating the object representation of
your data. In other shells, you lose the full-fidelity representation of data when the
pipeline converts it to pure text. You can regain some of it through excessive text
parsing, but not all of it.

However, you still often have to interact with low-fidelity input that originates from
outside PowerShell. Text-based data files and legacy programs are two examples.

PowerShell offers great support for all of the three text-parsing staples you might be
aware of from other shells:

Sed
Replaces text. For that functionality, PowerShell offers the -replace operator and
Convert-String cmdlet.

Grep
Searches text. For that functionality, PowerShell offers the Select-String
cmdlet, among others.

The third traditional text-parsing tool, Awk, lets you chop a line of text into more
intuitive groupings. For this, PowerShell offers the incredibly powerful ConvertFrom-
String cmdlet.

In its simplest form, you can use the ConvertFrom-String cmdlet to parse column-
oriented output based on a delimiter that you provide. The delimiter defaults to runs
of whitespace, but you can also provide strings of your choosing or much more
detailed regular expressions. PowerShell will also convert the text into more appropri-
ate data types (such as integers and dates), if possible.

For more complicated needs, the ConvertFrom-String cmdlet supports example-
driven parsing. As with the Convert-String cmdlet, this is about as close to magic as
you'll ever experience in a shell. Rather than forcing you to write complicated parsers
by hand, the ConvertFrom-String cmdlet automatically learns how to extract data
based on how you've tagged data in your example template.

Let’s consider trying to parse an address book:

Record

FName: Lee
LName: Holmes

Record

5.15 Convert Text Streams to Objects | 183

FName: Adam
LName: Smith

Record

FName: Some
LName: Body

Last updated: 05/09/2021

To have ConvertFrom-String parse it, we need to give it a template. A good way to
think about templates is to imagine taking some sample output, highlighting regions
of the sample output with a mouse, and then naming those regions.

In a template, the left curly brace { represents the start of your selection, and the right
curly brace } represents the end of your selection. To name your selection, you pro-
vide a property name and a colon right after the opening brace. So, PowerShell
Rocks becomes {FName:PowerShell} {LName:Rocks}.

Let’s start creating a template. In a new file, start with this as an example, and save it
as addressbook. template. txt (the name is up to you):

{Record:Record

FName: Some
LName: Body}

Last updated: {LastUpdated:05/09/2021}
When you run ConvertFrom-String on this input and template, we get:

PS > $book = Get-Content addressbook.txt |

ConvertFrom-String -TemplateFile addressbook.template.txt
PS > $book.LastUpdated
05/09/2021

PS > S$book.Record

Record

FName: Lee
LName: Holmes

There were several records, though. To tell ConvertFrom-String that the input con-
tained multiple of a certain pattern, use an asterisk after the property name:

{Record*:Record

FName: Some
LName: Body}

184 | Chapter5: Strings and Unstructured Text

Last updated: {LastUpdated:05/09/2021}

If we run this, we see that ConvertFrom-String hasn't quite figured out the record
format. So let’s give it another example:

{Record*:Record

FName: Some
LName: Body}

{Record*:Record

FName: Adam
LName: Smith}

Last updated: {LastUpdated:05/09/2021}
And now, ConvertFrom-String understands records and a footer:

PS > (Get-Content addressbook.txt |
ConvertFrom-String -TemplateFile addressbook.template.txt)

Record...
Record...
Record...

PS > (Get-Content addressbook.txt |
ConvertFrom-String -TemplateFile addressbook.template.txt).LastUpdated

05/09/2021

To tell ConvertFrom-String about the inner structure of a record, we simply tag it
and name it as well. Update the first record in your template:

(...)
FName: {FName:Some}
LName: {LName:Body}}

(...)
And now ConvertFrom-String fully understands our database format.

PS > (Get-Content addressbook.txt |
ConvertFrom-String -TemplateFile addressbook.template.txt)

{@{FName=Lee; LName=Holmes}}
{@{FName=Adam; LName=Smith}}
{@{FName=Some; LName=Body}}

PS > (Get-Content addressbook.txt |

5.15 Convert Text Streams to Objects | 185

ConvertFrom-String -TemplateFile addressbook.template.txt).Record[0].FName
Lee

As our final magic trick, let’s tell PowerShell that LastUpdate is a [DateTime]. Update
your template to include:
(...)
Last updated: {[DateTime] LastUpdated:05/09/2021}
(...)
Which gives an amazing result:

PS > (Get-Content addressbook.txt |
ConvertFrom-String -TemplateFile addressbook.template.txt).LastUpdated

Sunday, May 9, 2021 12:00:00 AM

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 5.14, “Convert a String Between One Format and Another”

5.16 Generate Large Reports and Text Streams

Problem

You want to write a script that generates a large report or large amount of data.

Solution

The best approach to generating a large amount of data is to take advantage of Power-
Shell’s streaming behavior whenever possible. Opt for solutions that pipeline data
between commands:

Get-ChildItem C:*.txt -Recurse | Out-File c:\temp\AllTextFiles.txt
rather than collect the output at each stage:

S$files = Get-ChildItem C:*.txt -Recurse

S$files | Out-File c:\temp\AllTextFiles.txt
If your script generates a large text report (and streaming is not an option), use the
StringBuilder class:

Soutput = New-Object System.Text.StringBuilder

Get-ChildItem C:*.txt -Recurse |

ForEach-Object { [void] $output.AppendLine($_.FullName) }
Soutput.ToString()

rather than simple text concatenation:

186 | Chapter5: Strings and Unstructured Text

nn

Soutput =
Get-ChildItem C:*.txt -Recurse | ForEach-Object { Soutput += $_.FullName }
Soutput

Discussion

In PowerShell, combining commands in a pipeline is a fundamental concept. As
scripts and cmdlets generate output, PowerShell passes that output to the next com-
mand in the pipeline as soon as it can. In the Solution, the Get-ChildItem commands
that retrieve all text files on the C: drive take a very long time to complete. However,
since they begin to generate data almost immediately, PowerShell can pass that data
on to the next command as soon as the Get-ChildItem cmdlet produces it. This is
true of any commands that generate or consume data and is called streaming. The
pipeline completes almost as soon as the Get-ChildItem cmdlet finishes producing
its data and uses memory very efficiently as it does so.

The second Get-ChildItem example (which collects its data) prevents PowerShell
from taking advantage of this streaming opportunity. It first stores all the files in an
array, which, because of the amount of data, takes a long time and an enormous
amount of memory. Then, it sends all those objects into the output file, which takes a
long time as well.

However, most commands can consume data produced by the pipeline directly, as
illustrated by the Out-File cmdlet. For those commands, PowerShell provides
streaming behavior as long as you combine the commands into a pipeline. For com-
mands that do not support data coming from the pipeline directly, the ForEach-
Object cmdlet (with the aliases of foreach and %) lets you work with each piece of
data as the previous command produces it, as shown in the StringBuilder example.

Creating large text reports

When you generate large reports, it's common to store the entire report into a string,
and then write that string out to a file once the script completes. You can usually
accomplish this most effectively by streaming the text directly to its destination (a file
or the screen), but sometimes this isn’t possible.

Since PowerShell makes it so easy to add more text to the end of a string (as in
$output += $_.FullName), many initially opt for that approach. This works great for
small-to-medium strings, but it causes significant performance problems for large
strings.

5.16 Generate Large Reports and Text Streams | 187

As an example of this performance difference, compare the
following:

PS > Measure-Command {
Soutput = New-Object Text.StringBuilder
1..10000 |
ForEach-Object { $output.Append("Hello World") }

}

(...)
TotalSeconds : 2.3471592

PS > Measure-Command {

Soutput = ""

1..10000 | ForEach-Object { Soutput += "Hello World" }
}

(...)
TotalSeconds : 4.9884882

In the .NET Framework (and therefore PowerShell), strings never change after you
create them. When you add more text to the end of a string, PowerShell has to build a
new string by combining the two smaller strings. This operation takes a long time for
large strings, which is why the .NET Framework includes the System.Text.String
Builder class. Unlike normal strings, the StringBuilder class assumes that you will
modify its data—an assumption that allows it to adapt to change much more
efficiently.

5.17 Generate Source Code and Other Repetitive Text

Problem

You want to simplify the creation of large amounts of repetitive source code or other
text.

Solution

Use PowerShell’s string formatting operator (-f) to place dynamic information inside
of a preformatted string, and then repeat that replacement for each piece of dynamic
information.

Discussion

Code generation is a useful technique in nearly any technology that produces output
from some text-based input. For example, imagine having to create an HTML report
to show all of the processes running on your system at that time. In this case, “code” is
the HTML code understood by a web browser.

188 | Chapter5: Strings and Unstructured Text

HTML pages start with some standard text (<html>, <head>, <body>), and then you
would likely include the processes in an HTML <table>. Each row would include
columns for each of the properties in the process youre working with.

Generating this by hand would be mind-numbing and error-prone. Instead, you can
write a function to generate the code for the row:

function Get-HtmlRow(Sprocess)

{
Stemplate = "<TR> <TD>{0}</TD> <TD>{1}</TD> </TR>"
Stemplate -f $process.Name,S$Sprocess.ID

}
and then generate the report in milliseconds, rather than hours:

"<HTML><BODY><TABLE>" > report.html

Get-Process | ForEach-Object { Get-HtmlRow $_ } >> report.html
"</TABLE></BODY></HTML>" >> report.html

Invoke-Item .\report.html

In addition to the formatting operator, you can sometimes use the String.Replace
method:

$string = @'

Name is __NAME__

Id is __ID__

e

$string = $string.Replace("__NAME__", $process.Name)

$string = $string.Replace("__ID__ ", S$process.Id)

This works well (and is very readable) if you have tight control over the data you'll be
using as replacement text. If it is at all possible for the replacement text to contain one
of the special tags (__NAME__ or __ID__, for example), then they will also get replaced
by further replacements and corrupt your final output.

To avoid this issue, you can use the Format-String script shown in Example 5-9.

Example 5-9. Format-String.ps1

##

Format-String

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

<#
.SYNOPSIS

Replaces text in a string based on named replacement tags

5.17 Generate Source Code and Other Repetitive Text | 189

.EXAMPLE

PS > Format-String "Hello {NAME}" @{ NAME = 'PowerShell' }
Hello PowerShell

.EXAMPLE

PS > Format-String "Your score is {SCORE:P}" @{ SCORE = 0.85 }
Your score is 85.00 %

#>

param(
The string to format. Any portions in the form of {NAME}
will be automatically replaced by the corresponding value
from the supplied hashtable.
$String,

The named replacements to use in the string
[hashtable] $Replacements
)

Set-StrictMode -Version 3

ScurrentIndex = 0
SreplacementList = @()

if($String -match "{{|}}")
{

throw "Escaping of replacement terms are not supported.”

}

Go through each key in the hashtable

foreach(Skey in $replacements.Keys)

{
Convert the key into a number, so that it can be used by
String.Format
SinputPattern = '{(.*)' + Skey + '(.*)}'
SreplacementPattern = '{${1}' + ScurrentIndex + '${2}}'
$string = $string -replace $inputPattern,$replacementPattern
SreplacementList += S$replacements[$key]

ScurrentIndex++

}

Now use String.Format to replace the numbers in the
format string.
Sstring -f $replacementList

PowerShell includes several commands for code generation that you've probably used
without recognizing their “code generation” aspect. The ConvertTo-Html cmdlet
applies code generation of incoming objects to HTML reports. The ConvertTo-Csv

190 | Chapter5: Strings and Unstructured Text

cmdlet applies code generation to CSV files. The ConvertTo-Xml cmdlet applies code
generation to XML files.

Code generation techniques seem to come up naturally when you realize youre writ-
ing a report, but they’re often missed when writing source code of another program-
ming or scripting language. For example, imagine you need to write a C# function
that outputs all of the details of a process. The System.Diagnostics.Process class
has a lot of properties, so that’s going to be a long function. Writing it by hand is
going to be difficult, so you can have PowerShell do most of it for you.

For any object (for example, a process that you've retrieved from the Get-Process
command), you can access its PsObject.Properties property to get a list of all of its
properties. Each of those has a Name property, so you can use that to generate the C#
code:

$process.PsObject.Properties |
ForEach-Object {
'Console.WriteLine("{0}: " + process.{0});' -f $_.Name }

This generates more than 60 lines of C# source code, rather than having you do it by
hand:

Console.WriteLine("Name: " + process.Name);
Console.WriteLine("Handles: " + process.Handles);
Console.WriteLine("VM: " + process.VM);
Console.WriteLine("WS: " + process.WS);
Console.WriteLine("PM: " + process.PM);
Console.WriteLine("NPM: " + process.NPM);
Console.WriteLine("Path: " + process.Path);
Console.WriteLine("Company: " + process.Company);
Console.WriteLine("CPU: " + process.CPU);
Console.WriteLine("FileVersion: " + process.FileVersion);
Console.WriteLine("ProductVersion: " + process.ProductVersion);

(...)

Similar benefits come from generating bulk SQL statements, repetitive data struc-
tures, and more.

PowerShell code generation can still help you with large-scale administration tasks,
even when PowerShell is not available. Given a large list of input (for example, a com-
plex list of files to copy), you can easily generate a cmd.exe batch file or Unix shell
script to automate the task. Generate the script in PowerShell, and then invoke it on
the system of your choice!

5.17 Generate Source Code and Other Repetitive Text | 191

CHAPTER 6
Calculations and Math

6.0 Introduction

Math is an important feature in any scripting language. Math support in a language
includes addition, subtraction, multiplication, and division, of course, but extends
into more advanced mathematical operations. So it shouldn't surprise you that
PowerShell provides a strong suite of mathematical and calculation-oriented features.

Since PowerShell provides full access to its scripting language from the command
line, this keeps a powerful and useful command-line calculator always at your finger-
tips! In addition to its support for traditional mathematical operations, PowerShell
also caters to system administrators by working natively with concepts such as mega-
bytes and gigabytes, simple statistics (such as sum and average), and conversions
between bases.

6.1 Perform Simple Arithmetic

Problem

You want to use PowerShell to calculate simple mathematical results.

Solution

Use PowerShell’s arithmetic operators:

+ Addition
Subtraction

* Multiplication

/ Division

193

% Modulus
+=,-=,*=,/=and %= Assignment variations of the previously listed operators

1} Precedence/order of operations

For a detailed description of these mathematical operators, see “Simple Operators” on
page 811.

Discussion

One difficulty in many programming languages comes from the way that they handle
data in variables. For example, this C# snippet stores the value of 1 in the result vari-
able, when the user probably wanted the result to hold the floating-point value of 1.5:

double result = 0;

result = 3/2;
This is because C# (along with many other languages) determines the result of the
division from the type of data being used in the division. In the previous example, it
decides that you want the answer to be an integer because you used two integers in
the division.

PowerShell, on the other hand, avoids this problem. Even if you use two integers in a
division, PowerShell returns the result as a floating-point number if required. This is
called widening.

0
3/2

PS > $result
PS > $result
PS > $result
1.5

One exception to this automatic widening is when you explicitly tell PowerShell the
type of result you want. For example, you might use an integer cast ([int]) to say that
you want the result to be an integer after all:

PS > S$result = [int] (3/2)

PS > $result

2
Many programming languages drop the portion after the decimal point when they
convert them from floating-point numbers to integers. This is called truncation. Pow-
erShell, on the other hand, uses bankers rounding for this conversion. It converts
floating-point numbers to their nearest integer, rounding to the nearest even number
in case of a tie.

Several programming techniques use truncation, though, so it’s still important that a
scripting language somehow support it. PowerShell doesn’t have a built-in operator
that performs truncation-style division, but it does support it through the
[Math]::Truncate() method in the NET Framework:

194 | Chapter 6: Calculations and Math

PS > S$result = 3/2
PS > [Math]::Truncate($result)
1

If that syntax seems burdensome, the following example defines a trunc function that
truncates its input:

PS > function trunc($number) { [Math]::Truncate($number) }

PS > S$result = 3/2

PS > trunc $result
1

See Also
“Simple Operators” on page 811

6.2 Perform Complex Arithmetic

Problem

You want to use PowerShell to calculate more complex or advanced mathematical
results.

Solution

PowerShell supports more advanced mathematical tasks primarily through its sup-
port for the System.Math class in the NET Framework.
To find the absolute value of a number, use the [Math]: :Abs() method:

PS > [Math]::Abs(-10.6)
10.6

To find the power (such as the square or the cube) of a number, use the
[Math]: :Pow() method. In this case, the method is finding 123 squared:

PS > [Math]::Pow(123, 2)
15129

To find the square root of a number, use the [Math]: :Sqrt() method:

PS > [Math]::Sqrt(100)
10

To find the sine, cosine, or tangent of an angle (given in radians), use the
[Math]::Sin(), [Math]::Cos(), or [Math]::Tan() method:

PS > [Math]::Sin([Math]::PI / 2)
1

To find the angle (given in radians) of a sine, cosine, or tangent value, use the
[Math]::ASin(), [Math]::ACos(), or [Math]::ATan() method:

6.2 Perform Complex Arithmetic | 195

PS > [Math]::ASin(1)

1.5707963267949
See Recipe 3.12 to learn how to find out what other features the System.Math class
provides.

Discussion

Once you start working with the System.Math class, it may seem as though its design-
ers left out significant pieces of functionality. The class supports the square root of a
number, but doesn’t support other roots (such as the cube root). It supports sine,
cosine, and tangent (and their inverses) in radians, but not in the more commonly
used measure of degrees.

Working with any root

To determine any root (such as the cube root) of a number, you can use the function
given in Example 6-1.

Example 6-1. A root function and some example calculations

PS > function root($number, Sroot) { [Math]::Pow($number, 1 / $root) }
PS > root 64 3

4

PS > root 25 5

1.90365393871588

PS > [Math]::Pow(1.90365393871588, 5)

25.0000000000001

PS > [Math]::Pow($(root 25 5), 5)

25

This function applies the mathematical fact that the square root of a number is the
same as raising that number to the power of 1/2, the cube of a number is the same as
raising it to the power of 1/3, etc.

The example also illustrates a very important point about math on computers. When
you use this function (or anything else that manipulates floating-point numbers),
always be aware that the results of floating-point answers are only ever approxima-
tions of the actual result. If you combine multiple calculations in the same statement
(or store intermediate results into variables), programming and scripting languages
can sometimes keep an accurate answer (such as in the second [Math]::Pow()
attempt), but that exception is rare.

Some mathematical systems avoid this problem by working with equations and calcu-
lations as symbols (and not numbers). Like humans, these systems know that taking
the square of a number that you just took the square root of gives you the original
number right back—so they don’t actually have to do either of those operations.
These systems, however, are extremely specialized and usually very expensive.

196 | Chapter 6: Calculations and Math

Working with degrees instead of radians

Converting radians (the way that mathematicians commonly measure angles) to
degrees (the way that most people commonly measure angles) is much more straight-
forward than the root function. A circle has 2 * P1i radians if you measure in radi-
ans, and 360 degrees if you measure in degrees. That gives the following two
functions:

function Convert-RadiansToDegrees($angle) { Sangle / (2 * [Math]::Pi) * 360 }
function Convert-DegreesToRadians($angle) { Sangle / 360 * (2 * [Math]::Pi) }

and their usage:

PS > Convert-RadiansToDegrees ([Math]::Pi)

180

PS > Convert-RadiansToDegrees ([Math]::Pi / 2)

90

PS > Convert-DegreesToRadians 360
6.28318530717959

PS > Convert-DegreesToRadians 45
0.785398163397448

PS > [Math]::Tan((Convert-DegreesToRadians 45))
1

Working with large numbers

In addition to its support for all of the standard .NET data types (bytes, integers,
floats, and decimals), PowerShell also lets you work with extremely large numbers
that these standard data types can’t handle:

PS > [Math]::Pow(12345, 123)
Infinity

PS > [BigInt]::Pow(12345, 123)
17922747853679707527695216231943419712992696443062340535140391466684
40953031931423861053031289352606613314821666096691426463815891552569
61299625923906846736377224598990446854741893321648522851663303862851
16587975372427272838604280411617304001701448802369380754772495091658
80584554994292720483269340987503673640044881128194397555564034430275
23561951313385041616743787240003466700321402142800004483416756392021
35945746171990585436418152506177298295938033884123488041067995268917
9117442108690738677978515625

In addition to the static methods offered by the BigInt class, you can do standard
mathematical operations (addition, subtraction, multiplication, division) with big
integers directly using the n numeric literal suffix:

PS > $numl = 962822088399213984108510902933777372323n

PS > $num2 = 986516486816816168176871687167106806788n

PS > $numl * Snum2

949839864077222593647087206583370147511597229917261205272142276616785899728524
As an important note, when working with BigInt numbers be sure to always use the
n numeric literal suffix (or enclose BigInt numbers in strings, and then cast them to

6.2 Perform Complex Arithmetic | 197

the BigInt type). If you don’t, PowerShell thinks that youre trying to provide a num-
ber of type Double (which loses data for extremely large numbers), and then converts
that number to the big integer.

PS > $r = 962822088399213984108510902933777372323

PS > S$r
9.62822088399214E+38

PS > [BigInt] $r
962822088399213912109618944997163270144

PS > [BigInt] 962822088399213984108510902933777372323
962822088399213912109618944997163270144

PS > [BigInt] "962822088399213984108510902933777372323"
962822088399213984108510902933777372323

Working with imaginary and complex numbers

When you need to work with calculations that involve the square root of -1, the
System.Numerics.Complex class provides a great deal of support:

PS > [System.Numerics.Complex]::ImaginaryOne | Format-List

Real
Imaginary :
Magnitude :
Phase

[o)

.5707963267949

In addition to the static methods offered by the Complex class, you can do standard
mathematical operations (addition, subtraction, multiplication, division) with com-
plex numbers directly:

PS > [System.Numerics.Complex]::ImaginaryOne *
[System.Numerics.Complex]::ImaginaryOne | Format-List

Real -1
Imaginary : 0

Magnitude : 1
Phase : 3.14159265358979

See Also
Recipe 3.12, “Learn About Types and Objects”

6.3 Measure Statistical Properties of a List

Problem

You want to measure the numeric (minimum, maximum, sum, average) or textual
(characters, words, lines) features of a list of objects.

198 | Chapter 6: Calculations and Math

Solution
Use the Measure-0Object cmdlet to measure these statistical properties of a list.

To measure the numeric features of a stream of objects, pipe those objects to the
Measure-Object cmdlet:

PS > 1..10 | Measure-Object -Average -Sum

Count : 10
Average : 5.5
Sum : 55
Maximum :
Minimum :
StandardDeviation :
Property

To measure the numeric features of a specific property in a stream of objects, supply
that property name to the -Property parameter of the Measure-0Object cmdlet. For
example, in a directory with files:

PS > Get-ChildItem |
Measure-Object -Property Length -Max -Min -Average -Sum -StandardDeviation

Count : 57

Average 1 29769.0526315789
Sum : 1696836

Maximum : 135519

Minimum 1 26
StandardDeviation : 30753.5324436891
Property : Length

To measure the textual features of a stream of objects, use the -Character, -Word, and
-Line parameters of the Measure-Object cmdlet:

PS > Get-ChildItem > output.txt
PS > Get-Content output.txt | Measure-Object -Character -Word -Line

Lines Words Characters Property

Discussion

By default, the Measure-0Object cmdlet counts only the number of objects it receives.
If you want to measure additional properties (such as the maximum, minimum, aver-
age, sum, characters, words, or lines) of those objects, then you need to specify them
as options to the cmdlet.

For the numeric properties, though, you usually don’t want to measure the objects
themselves. Instead, you probably want to measure a specific property from the list—
such as the Length property of a file. For that purpose, the Measure-Object cmdlet

6.3 Measure Statistical Properties ofaList | 199

supports the -Property parameter to which you provide the property you want to
measure.

Sometimes you might want to measure a property that isn’t a simple number—such
as the LastWriteTime property of a file. Since the LastWriteTime property is a Date
Time, you can't determine its average immediately. However, if any property allows
you to convert it to a number and back in a meaningful way (such as the Ticks prop-
erty of a DateTime), then you can still compute its statistical properties. Example 6-2
shows how to get the average LastWriteTime from a list of files.

Example 6-2. Using the Ticks property of the DateTime class to determine the average
LastWriteTime of a list of files

PS > #i# Get the LastWriteTime from each file
PS > S$times = dir | ForEach-Object { $_.LastWriteTime }

PS > #i# Measure the average Ticks property of those LastWriteTime
PS > S$results = $times | Measure-Object Ticks -Average

PS > ## Create a new DateTime out of the average Ticks
PS > New-Object DateTime S$results.Average

Sunday, June 11, 2006 6:45:01 AM

For more information about the Measure-Object cmdlet, type Get-Help Measure-
Object.

6.4 Work with Numbers as Binary

Problem

You want to work with the individual bits of a number or work with a number built
by combining a series of flags.

Solution
To directly enter a hexadecimal number, use the 0x prefix:

PS > ShexNumber = 0x1234
PS > ShexNumber
4660

To convert a number to its binary representation, supply a base of 2 to the
[Convert]::ToString() method:

PS > [Convert]::ToString(1234, 2)
10011010010

200 | Chapter6: Calculations and Math

To convert a binary number into its decimal representation, use the binary prefix 0b:
$myBinary = 0b10011010010

If you have the value as a string, supply a base of 2 to the [Convert]::ToInt32()
method:

PS > [Convert]::ToInt32("10011010010", 2)
1234

To manage the individual bits of a number, use PowerShell’s binary operators. In this
case, the Archive flag is just one of the many possible attributes that may be true of a
given file:

PS > Sarchive = [System.IO.FileAttributes] "Archive"
PS > attrib +a test.txt
PS > Get-ChildItem | Where { $_.Attributes -band $archive } | Select Name

Name

test.txt

PS > attrib -a test.txt

PS > Get-ChildItem | Where { $_.Attributes -band $archive } | Select Name
PS >

Discussion

In some system administration tasks, it's common to come across numbers that seem
to mean nothing by themselves. The attributes of a file are a perfect example:

PS > (Get-Item test.txt).Encrypt()

PS > (Get-Item test.txt).IsReadOnly = $true

PS > [int] (Get-Item test.txt -force).Attributes
16417

PS > (Get-Item test.txt -force).IsReadOnly = S$false
PS > (Get-Item test.txt).Decrypt()

PS > [int] (Get-Item test.txt).Attributes

32

What can the numbers 16417 and 32 possibly tell us about the file?

The answer to this comes from looking at the attributes in another light—as a set of
features that can be either true or false. Take, for example, the possible attributes for
an item in a directory shown by Example 6-3.

Example 6-3. Possible attributes of a file

PS > [Enum]::GetNames([System.IO.FileAttributes])
ReadOnly

Hidden

System

Directory

Archive

6.4 Work with Numbers as Binary | 201

Device

Normal
Temporary
SparseFile
ReparsePoint
Compressed
offline
NotContentIndexed
Encrypted
IntegrityStream
NoScrubData

If a file is ReadOnly, Archive, and Encrypted, then you might consider the following
as a succinct description of the attributes on that file:

ReadOnly = True
Archive = True
Encrypted = True

It just so happens that computers have an extremely concise way of representing sets
of true and false values—a representation known as binary. To represent the
attributes of a directory item as binary, you simply put them in a table. We give the
item a 1 if the attribute applies to the item and a 0 otherwise (see Table 6-1).

Table 6-1. Attributes of a directory item
Attribute True (1) or false (0)
Encrypted
NotContentIndexed
offline
Compressed
ReparsePoint
SparseFile
Temporary
Normal
Device
Archive
Directory
<Unused>
System
Hidden

_ O O O O = O O O O O o o o =

ReadOnly

202 | Chapter6: Calculations and Math

If we treat those features as the individual binary digits in a number, that gives us the
number 100000000100001. If we convert that number to its decimal form, it becomes
clear where the number 16417 came from:

PS > 0b100000000100001
16417

This technique sits at the core of many properties that you can express as a combina-
tion of features or flags. Rather than list the features in a table, though, the documen-
tation usually describes the number that would result from that feature being the only
one active—such as FILE_ATTRIBUTE_REPARSEPOINT = 0x400. Example 6-4 shows
the various representations of these file attributes.

Example 6-4. Integer, hexadecimal, and binary representations of possible file attributes

PS > S$attributes = [Enum]::GetValues([System.IO.FileAttributes])
PS > S$attributes | Select-Object °
@{"Name"="Property";
"Expression"= { $_ } },
@{"Name"="Integer";
"Expression"= { [int] $_ } },
@{"Name"="Hexadecimal";
"Expression"= { [Convert]::ToString([int] $_, 16) } },
@{"Name"="Binary";
"Expression"= { [Convert]::ToString([int] $_, 2) } } |
Format-Table -auto

Property Integer Hexadecimal Binary

ReadOnly 11 1
Hidden 22 10
System 4 4 100
Directory 16 10 10000
Archive 32 20 100000
Device 64 40 1000000
Normal 128 80 10000000
Temporary 256 100 100000000
SparseFile 512 200 1000000000
ReparsePoint 1024 400 10000000000
Compressed 2048 800 100000000000
offline 4096 1000 1000000000000
NotContentIndexed 8192 2000 10000000000000
Encrypted 16384 4000 100000000000000
IntegrityStream 32768 8000 1000000000000000
NoScrubData 131072 20000 100000000000000000

Knowing how that 16417 number was formed, you can now use the properties in
meaningful ways. For example, PowerShell’s -band operator allows you to check
whether a certain bit has been set (assuming that you've set test. txt to be encrypted
through either the Explorer Ul or other means):

6.4 Work with Numbers as Binary | 203

PS > Sencrypted = 16384

PS > Sattributes = (Get-Item test.txt -force).Attributes
PS > (Sattributes -band $encrypted) -eq S$Sencrypted

True

PS > Scompressed = 2048
PS > (Sattributes -band $compressed) -eq $compressed
False

Although that example uses the numeric values explicitly, it would be more common
to enter the number by its name:

PS > Sarchive = [System.IO.FileAttributes] "Archive"
PS > (Sattributes -band $archive) -eq $Sarchive
True

For more information about PowerShell’s binary operators, see “Simple Operators”
on page 811.

See Also
“Simple Operators” on page 811

6.5 Simplify Math with Administrative Constants

Problem

You want to work with common administrative numbers (that is, kilobytes, mega-
bytes, gigabytes, terabytes, and petabytes) without having to remember or calculate
those numbers.

Solution

Use PowerShell’s administrative constants (KB, MB, GB, TB, and PB) to help work with
these common numbers.

For example, we can calculate the download time (in seconds) of a 10.18 megabyte
file over a connection that gets 215 kilobytes per second:

PS > 10.18mb / 215kb

48.4852093023256

Discussion

PowerShell’s administrative constants are based on powers of two, since they are the
type most commonly used when working with computers. Each is 1,024 times bigger
than the one before it:

1kb = 1024
imb = 1024 * 1 kb

204 | Chapter6: Calculations and Math

1gb = 1024 * 1 mb
1tb = 1024 * 1 gb
1pb = 1024 * 1 tb

Some people (such as hard drive manufacturers) prefer to call numbers based on
powers of two “kibibytes,” “mebibytes;,” and “gibibytes” They use the terms “kilo-
bytes,” “megabytes,” and “gigabytes” to mean numbers that are 1,000 times bigger

than the ones before them—numbers based on powers of 10.

Although not represented by administrative constants, PowerShell still makes it easy
to work with these numbers in powers of 10—for example, to figure out how big a
“300 GB” hard drive is when reported by Windows. To do this, use scientific (expo-
nential) notation:

PS > S$kilobyte = 1e3

PS > Skilobyte
1000

PS > $megabyte = 1le6
PS > $megabyte
1000000

PS > $gigabyte = 1e9
PS > $gigabyte
1000000000

PS > (300 * $gigabyte) / 1GB
279.396772384644

See Also

“Simple Assignment” on page 804

6.6 Convert Numbers Between Bases

Problem

You want to convert a number to a different base.

Solution

The PowerShell scripting language allows you to enter both decimal and hexadecimal
numbers directly. It doesn’t natively support other number bases, but its support for
interaction with the .NET Framework enables conversion both to and from binary,
octal, decimal, and hexadecimal.

6.6 Convert Numbers Between Bases | 205

To convert a hexadecimal number into its decimal representation, prefix the number
with 0x:
PS > $myErrorCode = OXFE4A

PS > $myErrorCode
65098

To convert a binary number into its decimal representation, prefix it with 0b:

PS > ©b10011010010

1234
If you have the value as a string, you can supply a base of 2 to the
[Convert]::ToInt32() method:

PS > [Convert]::ToInt32("10011010010", 2)

1234
To convert an octal number into its decimal representation, supply a base of 8 to the
[Convert]::ToInt32() method:

PS > [Convert]::ToInt32("1234", 8)

668
To convert a number into its hexadecimal representation, use either the [Convert]
class or PowerShell’s format operator:

PS > ## Use the [Convert] class

PS > [Convert]::ToString(1234, 16)
4d2

PS > ## Use the formatting operator

PS > "{0:X4}" -f 1234

04D2
If you have a large array of bytes that you want to convert into its hexadecimal repre-
sentation, you can use the BitConverter class:

PS > S$bytes = Get-Content hello_world.txt -AsByteStream

PS > [System.BitConverter]::ToString($bytes).Replace("-","")

FFFE480065006C006C006F00200057006F0072006C006400200031000D000A00
To convert a number into its binary representation, supply a base of 2 to the
[Convert]::ToString() method:

PS > [Convert]::ToString(1234, 2)

10011010010
To convert a number into its octal representation, supply a base of 8 to the
[Convert]::ToString() method:

PS > [Convert]::ToString(1234, 8)
2322

206 | Chapter6: Calculations and Math

Discussion

Its most common to want to convert numbers between bases when youre dealing
with numbers that represent binary combinations of data, such as the attributes of a
file. For more information on how to work with binary data like this, see Recipe 6.4.

See Also
Recipe 6.4, “Work with Numbers as Binary”

6.6 Convert Numbers Between Bases | 207

CHAPTER 7
Lists, Arrays, and Hashtables

7.0 Introduction

Most scripts deal with more than one thing—lists of servers, lists of files, lookup
codes, and more. To enable this, PowerShell supports many features to help you
through both its language features and utility cmdlets.

PowerShell makes working with arrays and lists much like working with other data
types: you can easily create an array or list and then add or remove elements from it.
You can just as easily sort it, search it, or combine it with another array. When you
want to store a mapping between one piece of data and another, a hashtable fulfills
that need perfectly.

7.1 Create an Array or List of Items

Problem

You want to create an array or list of items.

Solution

To create an array that holds a given set of items, separate those items with commas:

PS > $myArray = 1,2,"Hello World"
PS > $myArray

1

2

Hello World

To create an array of a specific size, use the New-Object cmdlet:

209

PS > $SmyArray = New-Object string[] 10
PS > $myArray[5] = "Hello"

PS > S$myArray[5]

Hello

To create an array of a specific type, use a strongly typed collection:

PS > $list = New-Object Collections.Generic.List[Int]

PS > S$list.Add(10)

PS > S$list.Add("Hello")

Cannot convert argument "0", with value: "Hello", for "Add" to type "System
.Int32": "Cannot convert value "Hello" to type "System.Int32". Error:
"Input string was not in a correct format.""

To store the output of a command that generates a list, use variable assignment:

PS > $myArray = Get-Process
PS > S$myArray

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
274 6 1316 3908 33 3164 alg
983 7 3636 7472 30 688 csrss
69 4 924 3332 30 0.69 2232 ctfmon
180 5 2220 6116 37 2816 dllhost
(...)

To create an array that you plan to modify frequently, use an ArrayList, as shown by
Example 7-1.

Example 7-1. Using an ArrayList to manage a dynamic collection of items

PS > $myArray = New-Object System.Collections.ArraylList
PS > [void] $myArray.Add("Hello")

PS > [void] $myArray.AddRange(("World",'"How","Are","You"))
PS > S$myArray

Hello

World

How

Are

You

PS > SmyArray.RemoveAt(1)

PS > S$myArray

Hello

How

Are

You

Discussion

Aside from the primitive data types (such as strings, integers, and decimals), lists of
items are a common concept in the scripts and commands that you write. Most com-
mands generate lists of data: the Get-Content cmdlet generates a list of strings in a

210 | Chapter7:Lists, Arrays, and Hashtables

file, the Get-Process cmdlet generates a list of processes running on the system, and
the Get-Command cmadlet generates a list of commands, just to name a few.

The Solution shows how to store the output of a command that
generates a list. If a command outputs only one item (such as a sin-
gle line from a file, a single process, or a single command), then
that output is no longer a list. If you want to treat that output as a
list even when it’s not, use the list evaluation syntax, @(), to force
PowerShell to interpret it as an array:

SmyArray = @(Get-Process Explorer)

When you want to create a list of a specific type, the Solution demonstrates how to
use the System.Collections.Generic.List collection to do that. After the type
name, you define the type of the list in square brackets, such as [Int], [String], or
whichever type you want to restrict your collection to. These types of specialized
objects are called generic objects. For more information about creating generic
objects, see “Creating Instances of Types” on page 836.

For more information on lists and arrays in PowerShell, see “Arrays and Lists” on
page 807.

See Also
“Arrays and Lists” on page 807
“Creating Instances of Types” on page 836

7.2 Create a Jagged or Multidimensional Array

Problem

You want to create an array of arrays or an array of multiple dimensions.

Solution
To create an array of arrays (a jagged array), use the @() array syntax:

PS > $jagged = @(
(1,2,3,4),
(5,6,7,8)

)

PS > $jagged[0][1]
2
PS > $jagged[1][3]
8

7.2 Create a Jagged or Multidimensional Array | 211

To create a (nonjagged) multidimensional array, use the New-0Object cmdlet:

PS > $multidimensional = New-Object "int32[,]" 2,4
PS > $multidimensional[0,1] = 2
PS > $multidimensional[1,3] = 8
PS >
PS > $multidimensional[0,1]
2
PS > $multidimensional[1,3]
8
Discussion

Jagged and multidimensional arrays are useful for holding lists of lists and arrays of
arrays. Jagged arrays are arrays of arrays, where each array has only as many elements
as it needs. A nonjagged array is more like a grid or matrix, where every array needs
to be the same size. Jagged arrays are much easier to work with (and use less mem-
ory), but nonjagged multidimensional arrays are sometimes useful for dealing with
large grids of data.

Since a jagged array is an array of arrays, creating an item in a jagged array follows
the same rules as creating an item in a regular array. If any of the arrays are single-
element arrays, use the unary comma operator. For example, to create a jagged array
with one nested array of one element:
PS > $SoneByOneJagged = @(
»(,1)
)

PS > $oneByOneJagged[0][0]
1

For more information on lists and arrays in PowerShell, see “Arrays and Lists” on
page 807.

See Also
“Arrays and Lists” on page 807

7.3 Access Elements of an Array

Problem

You want to access the elements of an array.

Solution

To access a specific element of an array, use PowerShell’s array access mechanism:

212 | Chapter7:Lists, Arrays, and Hashtables

PS > $myArray = 1,2,"Hello World"
PS > S$myArray[1]
2

To access a range of array elements, use array ranges and array slicing:

PS > $myArray = 1,2,"Hello World"
PS > S$myArray[1..2 + 0]

2

Hello World

1

Discussion

PowerShell’s array access mechanisms provide a convenient way to access either spe-
cific elements of an array or more complex combinations of elements in that array. In
PowerShell (as with most other scripting and programming languages), the item at
index 0 represents the first item in the array.

For long lists of items, knowing the index of an element can sometimes pose a prob-
lem. For a solution to this, see the Add-FormatTableIndexParameter script included
with this booK’s code examples. This script adds a new -IncludeIndex parameter to
the Format-Table cmdlet:

PS > $items = Get-Process outlook,powershell,emacs,notepad

PS > S$items
Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
163 6 17660 24136 576 7.63 7136 emacs
74 4 1252 6184 56 0.19 11820 notepad
3262 48 46664 88280 376 20.98 8572 OUTLOOK
285 11 31328 21952 171 613.71 4716 powershell
767 14 56568 66032 227 104.10 11368 powershell

PS > $items | Format-Table -IncludeIndex

PSIndex Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
0 163 6 17660 24136 576 7.63 7136 emacs

1 74 4 1252 6184 56 0.19 11820 notepad

2 3262 48 46664 88280 376 20.98 8572 OUTLOOK

3 285 11 31328 21952 171 613.71 4716 powershell
4 767 14 56568 66032 227 104.15 11368 powershell

PS > S$items[2]

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

3262 48 46664 88280 376 20.98 8572 OUTLOOK

7.3 Access Elements ofan Array | 213

Although working with the elements of an array by their numerical index is helpful,
you may find it useful to refer to them by something else—such as their name, or
even a custom label. This type of array is known as an associative array (or hashtable).
For more information about working with hashtables and associative arrays, see
Recipe 7.13.

For more information on lists and arrays in PowerShell (including the array ranges
and slicing syntax), see “Arrays and Lists” on page 807. For more information about
obtaining the code examples for this book, see “Using Code Examples” on page xxv.

See Also
Recipe 7.13, “Create a Hashtable or Associative Array”

“Arrays and Lists” on page 807

7.4 Visit Each Element of an Array

Problem

You want to work with each element of an array.

Solution

To access each item in an array one by one, use the ForEach-0bject cmdlet:

PS > SmyArray = 1,2,3

PS > Ssum = 0

PS > $myArray | ForEach-Object { $sum += $_ }
PS > $sum

6

To access each item in an array in a more script-like fashion, use the foreach script-
ing keyword:

PS > $myArray = 1,2,3

PS > $sum = 0

PS > foreach(Selement in $myArray) { $sum += Selement }
PS > $sum

6
To access items in an array by position, use a for loop:

PS > $myArray = 1,2,3

PS > $sum = 0

PS > for($counter = 0; Scounter -1t $myArray.Count; Scounter++) {
$sum += $myArray[$counter]

}

PS > $sum
6

214 | Chapter7:Lists, Arrays, and Hashtables

Discussion

PowerShell provides three main alternatives to working with elements in an array.
The ForEach-Object cmdlet and foreach scripting keyword techniques visit the
items in an array one element at a time, whereas the for loop (and related looping
constructs) lets you work with the items in an array in a less structured way.

For more information about the ForEach-0Object cmdlet, see Recipe 2.5.

For more information about the foreach scripting keyword, the for keyword, and
other looping constructs, see Recipe 4.4.

See Also
Recipe 2.5, “Work with Each Item in a List or Command Output”

Recipe 4.4, “Repeat Operations with Loops”

7.5 Sort an Array or List of Items

Problem

You want to sort the elements of an array or list.

Solution

To sort a list of items, use the Sort-0bject cmdlet:

PS > Get-ChildItem | Sort-Object -Descending Length | Select Name,Length

Name Length
Convert-TextObject.ps1 6868
Select-FilteredObject.ps1 3252
Get-PageUrls.ps1 2878
Get-Characteristics.psl 2515
Get-Answer.psl 1890
New-GenericObject.psl 1490
Invoke-CmdScript.psil 1313
Discussion

The Sort-0bject cmdlet provides a convenient way for you to sort items by a prop-
erty that you specify. If you don't specify a property, the Sort-0bject cmdlet follows
the sorting rules of those items if they define any.

The Sort-0Object cmdlet also supports custom sort expressions, rather than just sort-
ing on existing properties. To sort by your own logic, use a script block as the sort
expression. This example sorts by the second character:

7.5Sortan Array or List of ltems | 215

PS > "Hello","World","And","PowerShell" | Sort-Object { $_.Substring(1,1) }
Hello

And

PowerShell

World

If you want to sort a list that you've saved in a variable, you can either store the results
back in that variable or use the [Array]::Sort() method from the NET Framework:

PS > Slist
PS > Slist
PS > Slist
And

Hello
PowerShell
World

PS > $list = "Hello","World","And","PowerShell"
PS > [Array]::Sort($list)

PS > Slist

And

Hello

PowerShell

World

"Hello","World","And","PowerShell"
Slist | Sort-Object

In addition to sorting by a property or expression in ascending or descending order,
the Sort-Object cmdlet’s -Unique switch also allows you to remove duplicates from
the sorted collection.

For more information about the Sort-0Object cmdlet, type Get-Help Sort-Object.

7.6 Determine Whether an Array Contains an Item

Problem

You want to determine whether an array or list contains a specific item.

Solution

To determine whether a list contains a specific item, use the -contains operator:

PS > "Hello","World" -contains "Hello"
True
PS > "Hello","World" -contains "There"
False

Alternatively, use the -in operator, which acts like the -contains operator with its
operands reversed:

PS > "Hello" -in "Hello","World"

True

PS > "There" -in "Hello","World"
False

216 | Chapter7:Lists, Arrays, and Hashtables

Discussion

The -contains and -1in operators are useful ways to quickly determine whether a list
contains a specific element. To search a list for items that instead match a pattern, use
the -match or -like operators.

For more information about the -contains, -in, -match, and -like operators, see
“Comparison Operators” on page 818.

See Also

“Comparison Operators” on page 818

7.7 Combine Two Arrays

Problem

You have two arrays and want to combine them into one.

Solution
To combine PowerShell arrays, use the addition operator (+):

PS
PS
PS
PS > S$result = $firstArray + $secondArray
PS > Sresult

Element 1

Element 2

Element 3

Element 4

1

SfirstArray = "Element 1","Element 2","Element 3","Element 4"

>
> $secondArray = 1,2,3,4
>
>

2
3
4

Discussion

One common reason to combine two arrays is when you want to add data to the end
of one of the arrays. For example:

PS > Sarray = 1,2

PS > $Sarray = $Sarray + 3,4

PS > $Sarray
1

2
3
4

7.7 Combine Two Arrays | 217

You can write this more clearly as:

PS > Sarray = 1,2
PS > Sarray += 3,4
PS > Sarray

1

2
3
4

When this is written in the second form, however, you might think that PowerShell
simply adds the items to the end of the array while keeping the array itself intact. This
is not true, since arrays in PowerShell (like most other languages) stay the same
length once you create them. To combine two arrays, PowerShell creates a new array
large enough to hold the contents of both arrays and then copies both arrays into the
destination array.

If your plan is to add and remove data from an array frequently, the
System.Collections.ArrayList class provides a more dynamic alternative. For
more information about using the ArrayList class, see Recipe 7.12.

See Also
Recipe 7.12, “Use the ArrayList Class for Advanced Array Tasks”

7.8 Find Items in an Array That Match a Value

Problem

You have an array and want to find all elements that match a given item or term—
either exactly, by pattern, or by regular expression.

Solution

To find all elements that match an item, use the -eq, -1ike, and -match comparison
operators:

PS > Sarray = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS > $Sarray -eq "Item 1"
Item 1

Item 1

PS > Sarray -like "*1*"
Item 1

Item 1

Item 12

PS > $array -match "Item ..
Item 12

218 | (Chapter7:Lists, Arrays, and Hashtables

Discussion

The -eq, -like, and -match operators are useful ways to find elements in a collection
that match your given term. The -eq operator returns all elements that are equal to
your term, the -1like operator returns all elements that match the wildcard given in
your pattern, and the -match operator returns all elements that match the regular
expression given in your pattern.

For more complex comparison conditions, the Where-0Object cmdlet lets you find
elements in a list that satisfy much more complex conditions:

PS > Sarray = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS > Sarray | Where-Object { $_.Length -gt 6 }
Item 12

For more information about filtering items in a list, see Recipe 2.2.

For more information about the -eq, -1like, and -match operators, see “Comparison
Operators” on page 818.

See Also
Recipe 2.2, “Filter Items in a List or Command Output”

“Comparison Operators” on page 818

7.9 Compare Two Lists

Problem

You have two lists and want to find items that exist in only one or the other list.

Solution

To compare two lists, use the Compare-0bject cmdlet:

PS > Sarrayl = "Item 1","Item 2","Item 3","Item 12"
PS > Sarray2 = "Item 1","Item 8","Item 3","Item 9","Item 12"
PS > Compare-Object S$Sarrayl Sarray2 -IncludeEqual

InputObject SideIndicator
Item 1
Item 3
Item 1
Item 8 =>
Item 9
Item 2

7.9 Compare Two Lists | 219

Discussion

The Compare-0Object cmdlet lets you compare two lists. By default, it shows only the
items that exist exclusively in one of the lists, although its -IncludeEqual parameter
lets you include items that exist in both. If it returns no results, the two lists are equal.

For more information on comparing data, see Chapter 22.

See Also
Chapter 22

7.10 Remove Elements from an Array

Problem

You want to remove all elements from an array that match a given item or term—
either exactly, by pattern, or by regular expression.

Solution

To remove all elements from an array that match a pattern, use the -ne, -notlike,
and -notmatch comparison operators, as shown in Example 7-2.

Example 7-2. Removing elements from an array using the -ne, -notlike, and -notmatch
operators

PS > Sarray = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS > Sarray -ne "Item 1"

Item 2

Item 3

Item 12

PS > Sarray -notlike "*1*"
Item 2

Item 3

PS > S$array -notmatch "Item ..
Item 1

Item
Item
Item

= wN

To actually remove the items from the array, store the results back in the array:

PS > Sarray
PS > Sarray
PS > Sarray
Item 2
Item 3
Item 12

"Item 1","Item 2","Item 3","Item 1","Item 12"
Sarray -ne "Item 1"

220 | Chapter7:Lists, Arrays, and Hashtables

Discussion

The -eq, -like, and -match operators are useful ways to find elements in a collection
that match your given term. Their opposites, the -ne, -notlike, and -notmatch oper-
ators, return all elements that do not match that given term.

To remove all elements from an array that match a given pattern, you can then save
all elements that do not match that pattern.

For more information about the -ne, -notlike, and -notmatch operators, see “Com-
parison Operators” on page 818.

See Also

“Comparison Operators” on page 818

7.11 Find Items in an Array Greater or Less Than a Value

Problem

You have an array and want to find all elements greater or less than a given item or
value.

Solution

To find all elements greater or less than a given value, use the -gt, -ge, -1t, and -le
comparison operators:

PS > Sarray = "Item 1","Item 2","Item 3","Item 1","Item 12"
PS > Sarray -ge "Item 3"

Item 3

PS > Sarray -1t "Item 3"

Item 1

Item 2

Item 1

Item 12

Discussion

The -gt, -ge, -1t, and - le operators are useful ways to find elements in a collection
that are greater or less than a given value. Like all other PowerShell comparison oper-
ators, these use the comparison rules of the items in the collection. Since the array in
the Solution is an array of strings, this result can easily surprise you:

PS > Sarray -1t "Item 2"

Item 1

Item 1
Item 12

7.11 Find Items in an Array Greater or Less Thana Value | 221

The reason for this becomes clear when you look at the sorted array—Item 12 comes
before Item 2 alphabetically, which is the way that PowerShell compares arrays of
strings:

PS > Sarray | Sort-Object
Item 1
Item 1
Item 12
Item 2
Item 3

For more information about the -gt, -ge, -1t, and -le operators, see “Comparison
Operators” on page 818.

See Also

“Comparison Operators” on page 818

7.12 Use the ArrayList Class for Advanced Array Tasks

Problem

You have an array that you want to frequently add elements to, remove elements
from, search, and modify.

Solution

To work with an array frequently after you define it, wuse the
System.Collections.ArraylList class:

PS > $myArray = New-Object System.Collections.ArrayList
PS > [void] $myArray.Add("Hello")

PS > [void] $myArray.AddRange(("World",'"How","Are","You"))
PS > $myArray

Hello

World

How

Are

You

PS > $myArray.RemoveAt(1)

PS > $myArray

Hello

How

Are

You

222 | Chapter7:Lists, Arrays, and Hashtables

Discussion

Like in most other languages, arrays in PowerShell stay the same length once you cre-
ate them. PowerShell allows you to add items, remove items, and search for items in
an array, but these operations may be time-consuming when you're dealing with large
amounts of data. For example, to combine two arrays, PowerShell creates a new array
large enough to hold the contents of both arrays and then copies both arrays into the
destination array.

In comparison, the ArrayList class is designed to let you easily add, remove, and
search for items in a collection.

PowerShell passes along any data that your script generates, unless
you capture it or cast it to [void]. Since it is designed primarily to
be used from programming languages, the System.Collec
tions.ArraylList class produces output, even though you may not
expect it to. To prevent it from sending data to the output pipeline,
either capture the data or cast it to [void]:

PS > S$collection = New-Object System.Collections.ArraylList
PS > $collection.Add("Hello")

0

PS > [void] $collection.Add("World")

If you plan to add and remove data to and from an array frequently, the
System.Collections.ArrayList class provides a more dynamic alternative.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

7.13 Create a Hashtable or Associative Array

Problem

You have a collection of items that you want to access through a label that you
provide.

Solution

To define a mapping between labels and items, use a hashtable (associative array):

7.13 Create a Hashtable or Associative Array | 223

PS > $myHashtable = @{ Keyl = "Valuel"; "Key 2" = 1,2,3 }
PS > $myHashtable["New Item"] = 5
PS >
PS > $myHashTable
Name Value
Key 2 {1, 2, 3}
New Item 5
Key1 Valuel
Discussion

Hashtables are much like arrays that let you access items by whatever label you want
—not just through their index in the array. Because of that freedom, they form the
keystone of a huge number of scripting techniques. Because they let you map names
to values, they form the natural basis for lookup tables such as those for zip codes and
area codes. Because they let you map names to fully featured objects and script
blocks, they can often take the place of custom objects. And because you can map
rich objects to other rich objects, they can even form the basis of more advanced data
structures such as caches and object graphs.

The Solution demonstrates how to create and initialize a hashtable at the same time,
but you can also create one and work with it incrementally:

PS > $myHashtable = @{}

PS > $myHashtable["Hello"] = "World"

PS > $myHashtable.AnotherHello = "AnotherWorld"
PS > $myHashtable

Name Value
AnotherHello AnotherWorld
Hello World

When working with hashtables, you might notice that they usually list their elements
out of order—or at least, in a different order than how you inserted them. To create a
hashtable that retains its insertion order, use the [ordered] type cast as described in
Recipe 7.14.

This ability to map labels to structured values also proves helpful in interacting with
cmdlets that support advanced configuration parameters, such as the calculated prop-
erty parameters available on the Format-Table and Select-Object cmdlets. For an
example of this use, see Recipe 3.2.

For more information about working with hashtables, see “Hashtables (Associative
Arrays)” on page 809.

224 | Chapter7:Lists, Arrays, and Hashtables

See Also
Recipe 3.2, “Display the Properties of an Item as a Table”

Recipe 7.14, “Sort a Hashtable by Key or Value”
“Hashtables (Associative Arrays)” on page 809

7.14 Sort a Hashtable by Key or Value

Problem

You have a hashtable of keys and values, and you want to get the list of values that
result from sorting the keys in order.

Solution

To sort a hashtable, use the GetEnumerator() method on the hashtable to access its
individual elements. Then use the Sort-0bject cmdlet to sort by Name or Value:

foreach($item in SmyHashtable.GetEnumerator() | Sort-Object Name)
{

$item.Value

}

If you control the definition of the hashtable, use the [Ordered] type cast while defin-
ing the hashtable to have it retain the order supplied in the definition.

SorderedHashtable = [Ordered] @{ Iteml = "Hello"; Item2 = "World" }

Discussion

Since the primary focus of a hashtable is to simply map keys to values, it doesn’t usu-
ally retain any ordering whatsoever—such as the order you added the items, the sor-
ted order of the keys, or the sorted order of the values. This becomes clear in
Example 7-3.

Example 7-3. A demonstration of hashtable items not retaining their order

PS > $myHashtable = @{}

PS > SmyHashtable["Hello"] = 3

PS > $myHashtable["Ali"] = 2

PS > SmyHashtable["Alien"] = 4

PS > SmyHashtable["Duck"] = 1

PS > SmyHashtable["Hectic"] = 11

PS > SmyHashtable

Name Value
Hectic 11

7.14 Sort a Hashtable by Key or Value | 225

Duck 1
Alien 4
Hello 3
Ali 2

However, the hashtable object supports a GetEnumerator() method that lets you deal
with the individual hashtable entries—all of which have a Name and Value property.
Once you have those, we can sort by them as easily as we can sort any other Power-
Shell data. Example 7-4 demonstrates this technique.

Example 7-4. Sorting a hashtable by name and value

PS > $myHashtable.GetEnumerator() | Sort-Object Name

Name Value
Ali 2
Alien 4
Duck 1
Hectic 11
Hello 3

PS > S$myHashtable.GetEnumerator() | Sort-Object Value

Name Value
Duck 1
Ali 2
Hello 3
Alien 4
Hectic 11

By using the [Ordered] type cast, you can create a hashtable that retains the order in
which you define and add items:

PS > $myHashtable = [Ordered] @{
Duck = 1;
Ali = 2;
Hectic = 11;
Alien = 4;
}

PS > $myHashtable["Hello"] = 3
PS > $myHashtable

Name Value
Duck 1

Al

Hectic 11
Alien 4
Hello 3

226 | Chapter7:Lists, Arrays, and Hashtables

For more information about working with hashtables, see “Hashtables (Associative
Arrays)” on page 809.

See Also
“Hashtables (Associative Arrays)” on page 809

7.14 Sort a Hashtable by Key or Value | 227

CHAPTER 8
Utility Tasks

8.0 Introduction

When you're scripting or just using the interactive shell, a handful of needs arise that
are simple but useful: measuring commands, getting random numbers, and more.

8.1 Get the System Date and Time

Problem

You want to get the system date.

Solution

To get the system date, run the command Get-Date.

Discussion
The Get-Date command generates rich object-based output, so you can use its result

for many date-related tasks. For example, to determine the current day of the week:

PS > $date = Get-Date
PS > $date.DayOfWeek
Sunday

If you want to format the date for output (for example, as a logfile stamp), see Recipe
5.13.

For more information about the Get-Date cmdlet, type Get-Help Get-Date.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

229

See Also
Recipe 3.8, “Work with .NET Objects”
Recipe 5.13, “Format a Date for Output”

8.2 Measure the Duration of a Command

Problem

You want to know how long a command takes to execute.

Solution

To measure the duration of a command, use the Measure-Command cmdlet:

PS > Measure-Command { Start-Sleep -Milliseconds 337 }

Days : 0

Hours : 0

Minutes HC)

Seconds : 0

Milliseconds ¢ 339

Ticks 1 3392297

TotalDays : 3.92626967592593E-06
TotalHours 1 9.42304722222222E-05
TotalMinutes : 0.00565382833333333
TotalSeconds : 0.3392297

TotalMilliseconds : 339.2297

Discussion

In interactive use, it's common to want to measure the duration of a command. An
example of this might be running a performance benchmark on an application you've
developed. The Measure-Command cmdlet makes this easy to do. Because the com-
mand generates rich object-based output, you can use its output for many date-
related tasks. See Recipe 3.8 for more information.

If the accuracy of a command measurement is important, general system activity can
easily influence the timing of the result. A common technique for improving accu-
racy is to repeat the measurement many times, ignore the outliers (the top and bot-
tom 10 percent), and then average the remaining results. Example 8-1 implements
this technique.

230 | Chapter8: Utility Tasks

Example 8-1. Measure-CommandPerformance.ps1

##

Measure-CommandPer formance

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

<#
.SYNOPSIS

Measures the average time of a command, accounting for natural variability by
automatically ignoring the top and bottom 10%.

.EXAMPLE

PS > Measure-CommandPerformance.ps1 { Start-Sleep -m 300 }

Count : 30
Average : 312.10155
(...)

#>

param(

The command to measure
[Scriptblock] $Scriptblock,

The number of times to measure the command's performance
[int] $Iterations = 30
)

Set-StrictMode -Version 3

Figure out how many extra iterations we need to account for the outliers
Sbuffer = [int] ($iterations * 0.1)
Stotallterations = $iterations + (2 * Sbuffer)

Get the results
Sresults = 1..$totallterations
Foreach-Object { Measure-Command $scriptblock }

Sort the results, and skip the outliers
$middleResults = Sresults | Sort TotalMilliseconds |
Select -Skip $buffer -First $iterations

Show the average
$middleResults | Measure-Object -Average TotalMilliseconds

8.2 Measure the Duration ofaCommand | 231

For more information about the Measure-Command cmdlet, type Get-Help Measure-
Command.

See Also
Recipe 3.8, “Work with .NET Objects”

8.3 Read and Write from the Clipboard

Problem

You want to interact with the PowerShell clipboard.

Solution
Use PowerShell’s Get-Clipboard and Set-Clipboard cmdlets:

PS > 1..5 | Set-Clipboard

PS > Get-Clipboard | Where-Object { ([int] $_) -1t 3 }

1

2
If you want to retrieve the entire contents of the clipboard at once (without Power-
Shell’s default per-line behavior), use the -Raw parameter:

PS > $allContent = Get-Clipboard -Raw

PS > S$allContent.Replace(""r'n", ".")
1.2.3.4.5

Discussion

While Windows includes a command-line utility (clip.exe) to place text in the Win-
dows clipboard, it doesn’t support direct input (e.g., clip.exe "Hello World"), and
it doesn’t have a corresponding utility to retrieve the contents from the Windows
clipboard.

The Set-Clipboard and Get-Clipboard cmdlets resolve both of these issues.

One benefit to the Get-Clipboard and Set-Clipboard commands is that they auto-
matically adapt their behavior to integrate with the operating system platform you are
running PowerShell on. On Linux, PowerShell uses xclip if available. On macOS,
PowerShell uses pbcopy. A great way to use the Get-Clipboard and Set-Clipboard
cmdlets is to help with repetitive ad hoc content manipulation. For example, you can
copy some content from a document into the clipboard, and then run a bit of Power-
Shell to get the content, change it, and replace the clipboard content with the new
value. Then, you just paste the modified content back into the document. For more
information about replacing text in strings, see Recipe 5.8.

232 | Chapter8: Utility Tasks

See Also
Recipe 5.8, “Replace Text in a String”

8.4 Generate a Random Number or Object

Problem

You want to generate a random number or pick a random element from a set of
objects.

Solution

Call the Get-Random cmdlet to generate a random positive integer:
Get-Random

Use the -Minimum and -Maximum parameters to generate a number between Minimum
and up to (but not including) Maximum:

Get-Random -Minimum 1 -Maximum 21
Use simple pipeline input to pick a random element from a list:

PS > $suits = "Hearts","Clubs","Spades","Diamonds"

PS > $faces = (2..10)+"A","3","Q","K"

PS > $cards = foreach($suit in $suits) {
foreach($face in $faces) { "$face of S$suit" } }

PS > $cards | Get-Random

A of Spades

PS > $cards | Get-Random

2 of Clubs

Discussion

The Get-Random cmdlet solves the problems usually associated with picking random
numbers or random elements from a collection: scaling and seeding.

Most random number generators only generate numbers between 0 and 1. If you
need a number from a different range, you have to go through a separate scaling step
to map those numbers to the appropriate range. Although not terribly difficult, it’s a
usability hurdle that requires more than trivial knowledge to do properly.

Ensuring that the random number generator picks good random numbers is a differ-
ent problem entirely. Most general-purpose random number generators use a mathe-
matical equation to generate their values. These are called pseudo-random number
generators, or PRNGs. They make new values by incorporating the number they gen-
erated just before that—a feedback process that guarantees evenly distributed

8.4 Generate a Random Number or Object | 233

sequences of numbers. Maintaining this internal state is critical, as restarting from a
specific point will always generate the same number, which is not very random at all!

To create their first value, these generators need a random number seed that they usu-
ally derive from the system time.

So unless you reuse the same random number generator, this last point usually leads
to the downfall of realistically random numbers. When you generate them quickly,
you create new random number generators that are likely to have the same seed. This
tends to create runs of duplicate random numbers:

PS > 1..10 | ForEach-Object { (New-Object System.Random).Next(1, 21) }
20
7
7
15
15
11
11
18
18
18

The Get-Random cmdlet saves you from this issue in two ways. Early versions of Pow-
erShell’s Get-Random cmdlet implemented a PRNG. The first way that it saved you
from this issue was by internally maintaining a random number generator and its
state to vastly improve randomness:

PS > 1..10 | ForEach-Object { Get-Random -Min 1 -Max 21 }

20

18

7

12

16

10

9

13

16

14
However, even as good as this pseudo-randomness was, administrators who didn’t
realize it wasn't truly random also used this cmdlet to generate passwords and other
sensitive things. That is dangerous: if the only two things that went into the genera-
tion of a password were the time it was generated and the well-known formula that
the random number generator used, that password isn't very secure.

Despite that, assuming that you could use the Get-Random cmdlet to generate random
passwords is realistically an assumption that anybody should be allowed to make. So,
the second way that PowerShell saves you from this issue is by using a cryptographic
random number generator. Numbers that Get-Random generates are suitable for use
in passwords, cryptographic keys, and more.

234 | Chapter8: Utility Tasks

For scenarios where you want reproducible results, you can use the -SetSeed param-
eter of the Get-Random cmdlet to supply a seed directly for testing purposes.

For more information about working with classes from the .NET Framework, see
Recipe 3.8.

See Also
Recipe 3.8, “Work with .NET Objects”

8.5 Convert Time Between Time Zones

Problem

You want to determine what a specific time in one time zone is when represented in
another.

Solution

Use the TimeZoneInfo class from the .NET Framework:

StargetTime = [DateTime] "11/05/2022 9:00 AM"

StargetTimeZone = [TimeZoneInfo]::GetSystemTimeZones() |
Where-Object Id -match Israel

[TimeZoneInfo]::ConvertTime(StargetTime, $targetTimeZone)

Saturday, November 5, 2022 6:00:00 PM
If the time you specify is not your own time zone:

StargetTime = [DateTime] "11/05/2022 9:00 AM"

$sourceTimeZone = [TimeZoneInfo]::GetSystemTimeZones() |
Where-Object Id -match India
StargetTimeZone = [TimeZoneInfo]::GetSystemTimeZones() |
Where-Object Id -match Israel
[TimeZoneInfo]::ConvertTime($targetTime, $sourceTimeZone, StargetTimeZone)

Saturday, November 5, 2022 5:30:00 AM

Discussion

When working with people from around the world, keeping track of time zone differ-
ences can be overwhelming. The observation of daylight saving time is inconsistent
around the world, and mental math when the international date line is involved is
enough to make your head hurt in the best of times.

Fortunately, the TimeZoneInfo class from the .NET Framework can help with these
challenges. It understands 140 different representations of time zones, their Coordi-
nated Universal Time (UTC) offset, calendar changes, time adjustments, and more.

8.5 Convert Time Between Time Zones | 235

See Also
Recipe 3.8, “Work with .NET Objects”

8.6 Program: Search the Windows Start Menu

When working at the command line, you might want to launch a program that’s nor-
mally found only on your Start menu. While you could certainly click through the
Start menu to find it, you could also search the Start menu with a script, as shown in
Example 8-2.

Example 8-2. Search-StartMenu.ps1

11ttt 13ttt 1 bt 113ttt A1ttt 113ttt A1ttt 1113145
##

Search-StartMenu

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/blog)

##

<#
.SYNOPSIS

Search the Start Menu for items that match the provided text. This script
searches both the name (as displayed on the Start Menu itself,) and the
destination of the link.

.EXAMPLE

PS > Search-StartMenu "Character Map" | Invoke-Item
Searches for the "Character Map" application, and then runs it

PS > Search-StartMenu PowerShell | Select-FilteredObject | Invoke-Item
Searches for anything with "PowerShell" in the application name, lets you
pick which one to launch, and then launches it

#>

param(
The pattern to match
[Parameter(Mandatory = $true)]
$Pattern

)

Set-StrictMode -Version 3
Get the locations of the start menu paths

SmyStartMenu = [Environment]::GetFolderPath("StartMenu")
$shell = New-Object -Com WScript.Shell

236 | Chapter8: Utility Tasks

SallStartMenu = $shell.SpecialFolders.Item("AllUsersStartMenu™)

Escape their search term, so that any regular expression
characters don't affect the search
SescapedMatch = [Regex]::Escape($pattern)

Search in "my start menu" for text in the link name or link destination
dir $myStartMenu *.lnk -rec | Where-Object {

($_.Name -match "$escapedMatch") -or

($_ | Select-String "\\[”\\]*SescapedMatch\." -Quiet)
}

Search in "all start menu" for text in the link name or link destination
dir $allStartMenu *.1lnk -rec | Where-Object {

($_.Name -match "$escapedMatch") -or

($_ | Select-String "\\[”\\]*SescapedMatch\." -Quiet)
}

For more information about running scripts, see Recipe 1.2.

See Also

Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

8.7 Program: Show Colorized Script Content

Discussion

When viewing or demonstrating scripts, syntax highlighting makes the information
immensely easier to read. Viewing the scripts in Visual Studio Code is the most natu-
ral (and powerful) option, but you might want to view them in the console as well.

In addition to basic syntax highlighting, other useful features during script review are
line numbers and highlighting ranges of lines. Range highlighting is especially useful
when discussing portions of a script in a larger context.

Example 8-3 enables all of these scenarios by providing syntax highlighting of scripts
in a console session. Figure 8-1 shows a sample of the colorized content.

8.7 Program: Show Colorized Script Content | 237

EX PowerShell X + v — O X

Function to write a greeting
function Write-Greeting

param($greeting)

Write-Host "$greeting World"
}

Write-Greeting "Hello"

Figure 8-1. Sample colorized content

In addition to having utility all on its own, Show-ColorizedContent.ps1 demon-
strates how to use PowerShell’s Tokenizer API, as introduced in Recipe 10.10. While
many of the techniques in this example are specific to syntax highlighting in a Power-
Shell console, many more apply to all forms of script manipulation.

Example 8-3. Show-ColorizedContent.ps1

I
##
Show-ColorizedContent
##
From PowerShell Cookbook (0'Reilly)
by Lee Holmes (http://www.leeholmes.com/guide)
##

e

<#
.SYNOPSIS

Displays syntax highlighting, line numbering, and range highlighting for
PowerShell scripts.

. EXAMPLE
PS > Show-ColorizedContent Invoke-MyScript.psi

001 | function Write-Greeting

002 | {

003 | param(Sgreeting)

004 | Write-Host "Sgreeting World"
005 | }

006 |

007 | Write-Greeting "Hello"

. EXAMPLE

238 | Chapter8: Utility Tasks

PS > Show-ColorizedContent Invoke-MyScript.ps1 -highlightRange (1..3+7)

001 > function Write-Greeting

002 > {
003 > param(sgreeting)

004 | Write-Host "Sgreeting World"
005 | }

006 |

007 > Write-Greeting "Hello"
#>

param(
The path to colorize
[Parameter(Mandatory = S$true)]
$Path,

The range of lines to highlight
$HighlightRange = @(),

Switch to exclude line numbers
[Switch] $ExcludelLineNumbers

)
Set-StrictMode -Version 3

Colors to use for the different script tokens.

To pick your own colors:

[Enum]::GetValues(Shost.UI.RawUI.ForegroundColor.GetType()) |
Foreach-Object { Write-Host -Fore S_ "S_" }
$replacementColors = @{

'"Attribute' = 'DarkCyan'
'Command' = 'Blue’
'CommandArgument' = 'Magenta’
'CommandParameter' = 'DarkBlue'
'Comment' = 'DarkGreen'
'GroupEnd' = 'Black'
'GroupStart' = 'Black’
'Keyword' = 'DarkBlue'
'LineContinuation' = 'Black'
'LoopLabel' = 'DarkBlue'
'Member' = 'Black'

'NewLine' = 'Black'

'"Number' = 'Magenta'
'Operator' = 'DarkGray'
'Position' = 'Black'
'StatementSeparator' = 'Black'
'String' = 'DarkRed'

'Type' = 'DarkCyan'

'Unknown' = 'Black'

'Variable' = 'Red'

}

$highlightColor = "Red"
$highlightCharacter = ">"
ShighlightWidth = 6

8.7 Program: Show Colorized Script Content

239

if(SexcludeLineNumbers) { $highlightWidth = 0 }

Read the text of the file, and tokenize it

Scontent = Get-Content $Path -Raw

$parsed = [System.Management.Automation.PsParser]::Tokenize(
$content, [ref] $null) | Sort StartLine,StartColumn

Write a formatted line -- in the format of:
<Line Number> <Separator Character> <Text>
function WriteFormattedLine($formatString, [int] $line)

{

if(SexcludeLineNumbers) { return }

By default, write the line number in gray, and use
a simple pipe as the separator

$hColor = "DarkGray"

$separator = "|"

If we need to highlight the line, use the highlight
color and highlight separator as the separator
if(ShighlightRange -contains $line)
{

ShColor = ShighlightColor

$separator = ShighlightCharacter
}

Write the formatted line

Stext = $formatString -f $line,$Sseparator

Write-Host -NoNewLine -Fore $hColor -Back White $text
}

Complete the current line with filler cells
function CompleteLine($column)
{
Figure how much space is remaining
$lineRemaining = Shost.UI.RawUI.WindowSize.Width -
Scolumn - ShighlightWidth + 1

If we have less than 0 remaining, we've wrapped onto the
next line. Add another buffer width worth of filler
if($lineRemaining -1t 0)
{

$lineRemaining += $host.UI.RawUI.WindowSize.Width
}

Write-Host -NoNewLine -Back White (" " * $lineRemaining)

Write the first line of context information (line number,
highlight character.)

Write-Host

WriteFormattedLine "{0:D3} {1} " 1

Now, go through each of the tokens in the input
script

240 | Chapter8: Utility Tasks

Scolumn = 1
foreach($token in $parsed)

{

$color = "Gray"

Determine the highlighting color for that token by looking
in the hashtable that maps token types to their color
$color = SreplacementColors[[string]$token.Type]

if(-not $color) { $color = "Gray" }

If it's a newline token, write the next line of context
information
if((Stoken.Type -eq "NewLine") -or ($token.Type -eq "LineContinuation"))
{
CompleteLine $column
WriteFormattedLine "{0:D3} {1} " (Stoken.StartLine + 1)
Scolumn = 1
}
else
{
Do any indenting
if(Scolumn -1t Stoken.StartColumn)

{
Stext = " " * (Stoken.StartColumn - $column)
Write-Host -Back White -NoNewLine S$text
Scolumn = S$Stoken.StartColumn

}

See where the token ends
StokenEnd = Stoken.Start + Stoken.Length - 1

Handle the line numbering for multi-line strings and comments
if(

(($token.Type -eq "String") -or

($token.Type -eq "Comment")) -and

($token.EndLine -gt $token.StartLine))

Store which line we've started at
$lineCounter = S$token.StartLine

Split the content of this token into its lines
We use the start and end of the tokens to determine
the position of the content, but use the content
itself (rather than the token values) for manipulation.
Sstringlines = $(
-join $content[$token.Start..$tokenEnd] -split "'n")

Go through each of the lines in the content
foreach($stringlLine in $stringlLines)

{

$stringline = $stringLine.Trim()

If we're on a new line, fill the right hand

side of the line with spaces, and write the header
for the new line.

if($lineCounter -gt Stoken.StartLine)

8.7 Program: Show Colorized Script Content

24

CompleteLine $column
WriteFormattedLine "{0:D3} {1} " $lineCounter
Scolumn = 1

}

Now write the text of the current line
Write-Host -NoNewLine -Fore $color -Back White $stringlLine
$column += SstringlLine.Length

$lineCounter++

}

}

Write out a regular token

else

{
We use the start and end of the tokens to determine
the position of the content, but use the content
itself (rather than the token values) for manipulation.
Stext = (-join Scontent[$token.Start..$tokenEnd])
Write-Host -NoNewLine -Fore $color -Back White Stext

}

Update our position in the column
Scolumn = Stoken.EndColumn

}

CompleteLine $column
Write-Host

For more information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 10.10, “Parse and Interpret PowerShell Scripts”

242 | Chapter8: Utility Tasks

PART I

Common Tasks

Chapter 9, Simple Files

Chapter 10, Structured Files

Chapter 11, Code Reuse

Chapter 12, Internet-Enabled Scripts
Chapter 13, User Interaction

Chapter 14, Debugging

Chapter 15, Tracing and Error Management
Chapter 16, Environmental Awareness
Chapter 17, Extend the Reach of PowerShell
Chapter 18, Security and Script Signing
Chapter 19, Visual Studio Code

CHAPTER9
Simple Files

9.0 Introduction

When administering a system, you naturally spend a significant amount of time
working with the files on that system. Many of the things you want to do with these
files are simple: get their content, search them for a pattern, or replace text inside
them.

For even these simple operations, PowerShell’s object-oriented flavor adds several
unique and powerful twists.

9.1 Get the Content of a File

Problem

You want to get the content of a file.

Solution

Provide the filename as an argument to the Get-Content cmdlet:
PS > S$content = Get-Content c:\temp\file.txt

Place the filename in a ${} section to use the cmdlet Get-Content variable syntax:
PS > Scontent = ${c:\temp\file.txt}

Provide the filename as an argument to the ReadAllLines() or ReadAllText() meth-
ods to use the System.I0.File class from the .NET Framework:

PS > S$content = Get-Content c:\temp\file.txt -Raw
PS > ScontentLines = [System.IO.File]::ReadAllLines("c:\temp\file.txt")

245

Discussion

PowerShell offers three primary ways to get the content of a file. The first is the Get-
Content cmdlet—the cmdlet designed for this purpose. In fact, the Get-Content
cmdlet works on any PowerShell drive that supports the concept of items with con-
tent. This includes Alias:, Function:, and more. The second and third ways are the
Get-Content variable syntax and the ReadAllText() method.

When working against files, the Get-Content cmdlet returns the content of the file
line by line. When it does this, PowerShell supplies additional information about that
output line. This information, which PowerShell attaches as properties to each output
line, includes the drive and path from where that line originated, among other things.

If you want PowerShell to split the file content based on a string
that you choose (rather than the default of newlines), the Get-
Content cmdlets -Delimiter parameter lets you provide one.

While useful, having PowerShell attach this extra information when you’re not using
it can sometimes slow down scripts that operate on large files. If you need to process
a large file more quickly, the Get-Content cmdlet’s ReadCount parameter lets you
control how many lines PowerShell reads from the file at once. With a ReadCount of 1
(which is the default), PowerShell returns each line one by one. With a ReadCount of
2, PowerShell returns two lines at a time. With a ReadCount of less than 1, PowerShell
returns all lines from the file at once.

Beware of using a ReadCount of less than 1 for extremely large files.
One of the benefits of the Get-Content cmdlet is its streaming
behavior. No matter how large the file, you'll still be able to process
\ each line of the file without using up all your system’s memory.
Since a ReadCount of less than 1 reads the entire file before return-
ing any results, large files have the potential to use up your system’s
memory. For more information about how to effectively take
advantage of PowerShell’s streaming capabilities, see Recipe 5.16.

If performance is a primary concern, the [System.IO.File]::ReadAllLines()
method from the NET Framework returns all of the lines of a file, but doesn’t attach
the additional (sometimes useful) properties to each line. This method also loads the
entire file into memory before giving you access to it, so may be unsuitable for
extremely large files.

246 | Chapter9: Simple Files

When you want to deal with the entire content of a file at once (and not split it into
lines), use the -Raw parameter of the Get-Content cmdlet:

S$rawContent = Get-Content c:\temp\file.txt -Raw

For more information about the Get-Content cmdlet, type Get-Help Get-Content.
For information on how to work with more structured files (such as XML and CSV),
see Chapter 10. For more information on how to work with binary files, see Recipe
9.6.

See Also

Recipe 5.16, “Generate Large Reports and Text Streams”
Recipe 9.6, “Parse and Manage Binary Files”

Chapter 10

9.2 Store the Output of a Command into a File

Problem

You want to redirect the output of a command or pipeline into a file.

Solution

To redirect the output of a command into a file, use either the Out-File cmdlet or
one of the redirection operators.

Out-File:

Get-ChildItem | Out-File unicodeFile.txt
Get-Content filename.cs | Out-File -Encoding ASCII file.txt
Get-ChildItem | Out-File -Width 120 unicodeFile.cs

Redirection operators:

Get-ChildItem > files. txt
Get-ChildItem 2> errors. txt
Get-ChildItem n> otherStreams. txt

Discussion

The Out-File cmdlet and redirection operators share a lot in common. For the most
part, you can use either. The redirection operators are unique because they give the
greatest amount of control over redirecting individual streams. The Out-File cmdlet
is unique primarily because it lets you easily configure the formatting width and
encoding.

9.2 Store the Output ofa Command intoa File | 247

If you want to save the objects from a command into a file (rather
than the text-based representation that you see on screen), see
Recipe 10.5.

The default formatting width and the default output encoding are two aspects of out-
put redirection that can sometimes cause difficulty.

The default formatting width sometimes causes problems because redirecting
PowerShell-formatted output into a file is designed to mimic what you see on the
screen. If your screen is 80 characters wide, the file will be 80 characters wide as well.
Examples of PowerShell-formatted output include directory listings (that are implic-
itly formatted as a table) as well as any commands that you explicitly format using
one of the Format-* set of cmdlets. If this causes problems, you can customize the
width of the file with the -Width parameter on the Out-File cmdlet.

The default output encoding sometimes causes unexpected results because Power-
Shell creates all files using the UTF-16 Unicode encoding by default. This allows
PowerShell to fully support the entire range of international characters, cmdlets, and
output. Although this is a great improvement on traditional shells, it may cause an
unwanted surprise when running large search-and-replace operations on ASCII
source code files, for example. To force PowerShell to send its output to a file in the
ASCII encoding, use the -Encoding parameter on the Out-File cmdlet.

For more information about the Out-File cmdlet, type Get-Help Out-File. For a
full list of supported redirection operators, see “Capturing Output” on page 854.

See Also
Recipe 10.5, “Easily Import and Export Your Structured Data”
“Capturing Output” on page 854

9.3 Add Information to the End of a File

Problem

You want to redirect the output of a pipeline into a file but add the information to the
end of that file.

Solution

To redirect the output of a command into a file, use either the -Append parameter of
the Out-File cmdlet or one of the appending redirection operators described in

248 | Chapter9: Simple Files

“Capturing Output” on page 854. Both support options to append text to the end of a
file.

Out-File:
Get-ChildItem | Out-File -Append files.txt
Redirection operators:

Get-ChildItem >> files.txt

Discussion

The Out-File cmdlet and redirection operators share a lot in common. For the most
part, you can use either. See the discussion in Recipe 9.2 for a more detailed compari-
son of the two approaches, including reasons that you would pick one over the other.

See Also
Recipe 9.2, “Store the Output of a Command into a File”

“Capturing Output” on page 854
9.4 Search a File for Text or a Pattern

Problem

You want to find a string or regular expression in a file.

Solution

To search a file for an exact (but case-insensitive) match, use the -Simple parameter
of the Select-String cmdlet:

Select-String -Simple SearchText file.txt

To search a file for a regular expression, provide that pattern to the Select-String
cmdlet:

Select-String "\(...\) ...-...." phone.txt

To recursively search all *.txt files for a regular expression, pipe the results of Get-
ChildItenm to the Select-String cmdlet:

Get-ChildItem *.txt -Recurse | Select-String pattern
Or, using built-in aliases:

dir *.txt -rec | sls pattern

9.4 Search a File for Text ora Pattern | 249

Discussion

The Select-String cmdlet is the easiest way to search files for a pattern or specific
string. In contrast to the traditional text-matching utilities (such as grep) that sup-
port the same type of functionality, the matches returned by the Select-String
cmdlet include detailed information about the match itself:

PS > $matches = Select-String "output file" transcript.txt
PS > $matches | Select LineNumber,Line

LineNumber Line

7 Transcript started, output file...

With a regular expression match, you’ll often want to find out exactly what text was
matched by the regular expression. PowerShell captures this in the Matches property
of the result. For each match, the Value property represents the text matched by your
pattern:

PS > Select-String "\(...\) ...-...." phone.txt | Select -Expand Matches
Value : (425) 555-1212
Value : (416) 556-1213

If your regular expression defines groups (portions of the pattern enclosed in paren-
theses), you can access the text matched by those groups through the Groups prop-
erty. The first group (Group[0]) represents all of the text matched by your pattern.
Additional groups (1 and on) represent the groups you defined. In this case, we add
additional parentheses around the area code to capture it:

PS > Select-String "\((...)\) ...-...." phone.txt |
Select -Expand Matches | Foreach { $_.Groups[1] }

Success : True
Captures : {425}

Index H
Length : 3
Value 1 425

Success : True
Captures : {416}

Index 1
Length : 3
Value 1 416

If your regular expression defines a named capture (with the text ?<Name> at the
beginning of a group), the Groups collection lets you access those by name. In this
example, we capture the area code using AreaCode as the capture name:

250 | Chapter9: Simple Files

PS > Select-String "\((?<AreaCode>...)\) ...-...." phone.txt |
Select -Expand Matches | Foreach { $_.Groups["AreaCode"] }

Success : True
Captures : {425}
Index 1
Length : 3
Value : 425
Success : True
Captures : {416}
Index 1
Length : 3
Value . 416

By default, the Select-String cmdlet captures only the first match per line of input.
If the input can have multiple matches per line, use the -AllMatches parameter:

PS > Get-Content phone.txt
(425) 555-1212
(416) 556-1213 (416) 557-1214

PS > Select-String "\((...)\) ...-...." phone.txt |
Select -Expand Matches | Select -Expand Value

(425) 555-1212
(416) 556-1213

PS > Select-String "\((...)\) ...-...." phone.txt -AllMatches |
Select -Expand Matches | Select -Expand Value

(425) 555-1212
(416) 556-1213
(416) 557-1214

For more information about captures, named captures, and other aspects of regular
expressions, see Appendix B.

If the information you need is on a different line than the line that
has the match, use the -Context parameter to have that line
included in Select-String’s output. PowerShell places the result in
the Context.PreContext and Context.PostContext properties of
Select-String’s output.

If you want to search multiple files of a specific extension, the Select-String cmdlet
lets you use wildcards (such as *. txt) on the filename. For more complicated lists of
files (which includes searching all files in the directory), it is usually better to use the
Get-ChildItem cmdlet to generate the list of files as shown previously in the Solution.

9.4 Search a File for Text ora Pattern | 251

Since the Select-String cmdlet outputs the filename, line number, and matching
line for every match it finds, this output may sometimes include too much detail. A
perfect example is when you are searching for a binary file that contains a specific
string. A binary file (such as a DLL or EXE) rarely makes sense when displayed as
text, so your screen quickly fills with apparent garbage.

The solution to this problem comes from Select-String’s -Quiet switch. It simply
returns true or false, depending on whether the file contains the string. So, to find
the DLL or EXE in the current directory that contains the text “Debug”:

Get-ChildItem | Where { $_ | Select-String "Debug" -Quiet }

Two other common tools used to search files for text are the -match operator and the
switch statement with the -file option. For more information about those, see
Recipe 5.7 and Recipe 4.3. For more information about the Select-String cmdlet,
type Get-Help Select-String.

See Also
Recipe 4.3, “Manage Large Conditional Statements with Switches”
Recipe 5.7, “Search a String for Text or a Pattern”

Appendix B, Regular Expression Reference

9.5 Parse and Manage Text-Based Logfiles

Problem

You want to parse and analyze a text-based logfile using PowerShell’s standard object-
based commands.

Solution

Use the ConvertFrom-String cmdlet described in Recipe 5.15 to work with text-
based logfiles. With your assistance, it converts streams of text into streams of objects,
which you can then easily work with using PowerShell’s standard commands.

Discussion

The ConvertFrom-String script primarily takes two arguments when you're parsing
logfiles:

o A regular expression that describes how to break the incoming text into groups

o A list of property names that the script then assigns to those text groups

252 | Chapter9: Simple Files

As Example 9-1 demonstrates, you can use firewall logs from the Windows directory.
If enabled, these logs track inbound and outbound network connections on a
machine.

Example 9-1. Examining the Windows firewall log

PS C:\WINDOWS\system32> Get-Content .\Logfiles\Firewall\pfirewall.log -Head 10
#Version: 1.5

#Software: Microsoft Windows Firewall

#Time Format: Local

#Fields: date time action protocol src-ip dst-ip src-port dst-port size tcpflags tcpsyn

2020-12-22 15:49:56 ALLOW UDP 192.168.1.132 208.67.222.222 51411 53 0 - - - - SEND
2020-12-22 15:49:57 ALLOW TCP 192.168.1.251 192.168.1.132 43223 32400 0 - 0 0 RECEIVE
2020-12-22 15:50:00 ALLOW TCP 192.168.1.251 192.168.1.132 43231 32400 0 - 0 0 RECEIVE
2020-12-22 15:50:01 ALLOW UDP 192.168.1.132 208.67.222.222 49998 53 0 - - - - SEND
2020-12-22 15:50:02 ALLOW TCP 192.168.1.132 168.62.58.130 58406 443 0 - 0 0 0 SEND

(...

Like most logfiles, the format of the text is very regular but hard to manage. In this
example, you have 10 fields that seem to be filled out, and some that aren’t.

Fortunately, this logfile documents its fields, so we can store those into an array:

$fields = -split ("date time action protocol src-ip dst-ip src-port dst-port size
"tcpflags tcpsyn tcpack tcpwin icmptype icmpcode info path")

+

We don't care about the first four lines because they’re just headers, so we can use
Select-0bject to skip those:

PS C:\WINDOWS\system32> Get-Content .\Logfiles\Firewall\pfirewall.log -Head 10 |
>> Select-Object -Skip 4

2020-12-22 15:49:56 ALLOW UDP 192.168.1.132 208.67.222.222 51411 53 0 - - - - - SEND
2020-12-22 15:49:57 ALLOW TCP 192.168.1.251 192.168.1.132 43223 32400 0 - 0 0 0 RECEIVE
2020-12-22 15:50:00 ALLOW TCP 192.168.1.251 192.168.1.132 43231 32400 0 - 0 0 0 RECEIVE
2020-12-22 15:50:01 ALLOW UDP 192.168.1.132 208.67.222.222 49998 53 0 - - - - - SEND
2020-12-22 15:50:02 ALLOW TCP 192.168.1.132 168.62.58.130 58406 443 0 - 0 © @ - SEND

And then finally let ConvertFrom-String parse the results based on whitespace:

PS C:\WINDOWS\system32> Get-Content .\Logfiles\Firewall\pfirewall.log -Head 10 |

>> Select-Object -Skip 4 | ConvertFrom-String -PropertyNames $fields
date
2020-12-22
time : 15:49:56
action : ALLOW
protocol : UDP
src-ip : 192.168.1.132
dst-ip 1 208.67.222.222

src-port : 51411

9.5 Parse and Manage Text-Based Logfiles | 253

dst-port : 53
size : 0
tcpflags : -
tcpsyn

tcpack

tcpwin

icmptype : -
icmpcode : -
info

path : SEND

Once were happy with the results, we can remove the -Head 10 parameter to Get-
Content to have PowerShell parse the whole logfile.

If this input wasn’t so regular, we could also use a custom parsing expression on these
records. For example, if we wanted to capture only the protocol (TCP or UDP) and
whether it was a SEND or RECEIVE, we could do the following:

PS C:\WINDOWS\system32> $parseExpression = '.*(UDP|TCP).*(SEND|RECEIVE)'
>> Get-Content .\Logfiles\Firewall\pfirewall.log -Head 10 |

>> Select-Object -Skip 4 |

>> ConvertFrom-String -Delimiter S$parseExpression -Property Ignored,
>> Protocol,Direction

Ignored Protocol Direction P4

ubp SEND
TCP RECEIVE
TCP RECEIVE
ubp SEND
TCP SEND

We can now easily query those objects using PowerShell’s built-in commands. For
example, you can find the IP addresses your system is communicating with the most:

$allConnections = Get-Content .\Logfiles\Firewall\pfirewall.log |
Select-Object -Skip 4 | ConvertFrom-String -PropertyNames $fields
$allConnections | Group-Object dst-ip

Using this technique, you can work with most text-based logfiles.

For extremely large logfiles, handwritten parsing tools may not meet your needs. In
those situations, specialized log management tools can prove helpful. One example is
Microsoft’s free Log Parser. Another common alternative is to import the log entries
to a SQL database, and then perform ad hoc queries on database tables instead.

See Also
Recipe 5.15, “Convert Text Streams to Objects”

Appendix B, Regular Expression Reference

254 | Chapter9: Simple Files

https://aka.ms/logparser

9.6 Parse and Manage Binary Files

Problem

You want to work with binary data in a file.

Solution

There are two main techniques when working with binary data in a file. The first is to
read the file using the Byte encoding, so that PowerShell doesn’t treat the content as
text. The second is to use the BitConverter class to translate these bytes back and
forth into numbers that you more commonly care about.

Example 9-2 displays the “characteristics” of a Windows executable. The beginning
section of any executable (a .dll, .exe, or any of several others) starts with a binary
section known as the Portable Executable (PE) header—which contains a Common
Object File Format (COFF) header. Part of this header includes characteristics about
that file, such as whether the file is a DLL.

For more information about the PE header format, see the PE header format specifi-
cation.

Example 9-2. Get-Characteristics.ps1

B o
##

Get-Characteristics

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

##

B

<#

.SYNOPSIS

Get the file characteristics of a file in the PE Executable File Format.
. EXAMPLE

PS > Get-Characteristics Senv:WINDIR|notepad.exe
IMAGE_FILE_LOCAL_SYMS_STRIPPED

IMAGE_FILE_RELOCS_STRIPPED

IMAGE_FILE_EXECUTABLE_IMAGE

IMAGE_FILE_32BIT_MACHINE

IMAGE_FILE_LINE_NUMS_STRIPPED

#>

9.6 Parse and Manage Binary Files | 255

https://oreil.ly/u833N
https://oreil.ly/u833N

param(
The path to the file to check
[Parameter(Mandatory = $true)]
[string] $Path

)

Set-StrictMode -Version 3

Define the characteristics used in the PE file header.

Taken from:

http://www.microsoft.com/whdc/system/platform/firmware/PECOFF.mspx
Scharacteristics = @}
Scharacteristics["IMAGE_FILE_RELOCS_STRIPPED"] = 0x0001
Scharacteristics["IMAGE_FILE_EXECUTABLE_IMAGE"] = 0x0002
Scharacteristics["IMAGE_FILE_LINE_NUMS_STRIPPED"] = 0x0004
Scharacteristics["IMAGE_FILE_LOCAL_SYMS_STRIPPED"] = 0x0008
Scharacteristics["IMAGE_FILE_AGGRESSIVE_WS_TRIM"] = 0x0010
Scharacteristics["IMAGE_FILE_LARGE_ADDRESS_AWARE"] = 0x0020
$characteristics["RESERVED"] = 0x0040
Scharacteristics["IMAGE_FILE_BYTES_REVERSED_LO"] = 0x0080
Scharacteristics["IMAGE_FILE_32BIT_MACHINE"] = 0x0100
Scharacteristics["IMAGE_FILE_DEBUG_STRIPPED"] = 0x0200
Scharacteristics["IMAGE_FILE_REMOVABLE_RUN_FROM_SWAP"] = 0x0400
Scharacteristics["IMAGE_FILE_NET_RUN_FROM_SWAP"] = 0x0800
$characteristics["IMAGE_FILE_SYSTEM"] = 0x1000
$characteristics["IMAGE_FILE_DLL"] = 0x2000
Scharacteristics["IMAGE_FILE_UP_SYSTEM_ONLY"] = 0x4000
Scharacteristics["IMAGE_FILE_BYTES_REVERSED_HI"] = 0x8000

Get the content of the file, as an array of bytes
$fileBytes = Get-Content $path -ReadCount 0 -AsByteStream

The offset of the signature in the file is stored at location 0x3c.
$signatureOffset = [BitConverter]::ToUint32($fileBytes, 0x3c)

Ensure it is a PE file
$signature = [char[]] $fileBytes[$signatureOffset..($signature0ffset + 3)]
if(($signature -join '') -ne "PET0°0")
{
throw "This file does not conform to the PE specification."

}

The location of the COFF header is 4 bytes into the signature
ScoffHeader = $signatureOffset + 4

The characteristics data are 18 bytes into the COFF header. The
BitConverter class manages the conversion of the 4 bytes into an integer.
$characteristicsData = [BitConverter]::ToInt32($fileBytes, $coffHeader + 18)

Go through each of the characteristics. If the data from the file has that
flag set, then output that characteristic.
foreach(Skey in Scharacteristics.Keys)
{
$flag = Scharacteristics[$key]
if(($characteristicsData -band $flag) -eq S$flag)
{

256 | Chapter9: Simple Files

Skey

}

Discussion

For most files, this technique is the easiest way to work with binary data. If you
actually modify the binary data, then you will also want to use the Byte encoding
when you send it back to disk:

$fileBytes | Set-Content modified.exe -AsByteStream

For extremely large files, though, it may be unacceptably slow to load the entire file
into memory when you work with it. If you begin to run against this limit, the solu-
tion is to use file management classes from the NET Framework. These classes
include BinaryReader, StreamReader, and others. For more information about work-
ing with classes from the .NET Framework, see Recipe 3.8. For more information
about running scripts, see Recipe 1.2.

See Also

Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 3.8, “Work with .NET Objects”

9.7 Create and Manage Temporary Files

Problem

You want to create a file for temporary purposes or manage temporary files that
already exist.

Solution
Use the New-TemporaryFile cmdlet to create a temporary file:

$file = New-TemporaryFile
$file | Set-Content "Some temporary content"
(... use the file ...)
$file | Remove-Item
Use the temp: PowerShell drive to manage temporary files that already exist. To find
all temporary files older than 30 days:

dir temp: | Where-Object LastWriteTime -1t ((Get-Date).AddDays(-30))

9.7 Create and Manage Temporary Files | 257

Discussion

It's common to want to create a file for temporary purposes. For example, you might
want to search and replace text inside a file. Doing this to a large file requires a tem-
porary file (see Recipe 9.8). Another example is the temporary file used by Recipe 2.4.

Often, people create this temporary file wherever they can think of: in C:\, the script’s
current location, or any number of other places. Although this may work on the
author’s system, it rarely works well elsewhere. For example, if the user doesn’t use
their Administrator account for day-to-day tasks, your script will not have access to
C:\ and will fail.

Another difficulty comes from trying to create a unique name for the temporary file.
If your script just hardcodes a name (no matter how many random characters it has),
it will fail if you run two copies at the same time. You might even craft a script smart
enough to search for a filename that doesn’t exist, create it, and then use it. Unfortu-
nately, this could still break if another copy of your script creates that file after you see
that it’s missing but before you actually create the file.

Finally, there are several security vulnerabilities that your script might introduce
should it write its temporary files to a location that other users can read or write.

Luckily, the New-TemporaryFile cmdlet resolves these problems for you. It creates a
unique filename in a reliable location and in a secure manner. The method returns a
file object, which you can then use as you want.

Remember to delete this file when your script no longer needs it;
otherwise, your script will waste disk space and cause needless clut-
ter on your users systems. Remember: your scripts should solve
the administrator’s problems, not cause them!

By default, the New-TemporaryFile cmdlet returns a file with a .tmp extension. For
most purposes, the file extension doesn’t matter, and this works well. In the rare
instances when you need to create a file with a specific extension, use the Rename-
Item cmdlet to rename your temporary file. The following example creates a new
temporary file that uses the .cs file extension:

$file = New-TemporaryFile
$file = S$file | Rename-Item -NewName { $_.Name + ".cs" } -PassThru

(... use the file ...)

$file | Remove-Item

When you want to manage temporary files in the system-wide common temporary
files location, you can use the temp: PowerShell drive. On Windows, this is the same

258 | Chapter9: Simple Files

as the $env:TEMP location. On Linux machines, this is /tmp. For more information on
working with files in custom PowerShell drives, see Recipe 20.15.

See Also

Recipe 2.4, “Interactively Filter Lists of Objects”
Recipe 9.8, “Search and Replace Text in a File”
Recipe 20.15, “Create and Map PowerShell Drives”

9.8 Search and Replace Text in a File

Problem

You want to search for text in a file and replace that text with something new.

Solution

To search and replace text in a file, first store the content of the file in a variable, and
then store the replaced text back in that file, as shown in Example 9-3.

Example 9-3. Replacing text in a file

PS > $filename = "file.txt"

PS > $match = "source text"

PS > S$replacement = "replacement text"
PS >

PS > Scontent = Get-Content $filename

PS > Scontent

This is some source text that we want

to replace. One of the things you may need
to be careful about with Source

Text is when it spans multiple lines,

and may have different Source Text
capitalization.

PS >

PS > Scontent = $content -creplace $match,$replacement
PS > Scontent

This is some replacement text that we want
to replace. One of the things you may need
to be careful about with Source

Text is when it spans multiple lines,

and may have different Source Text
capitalization.

PS > Scontent | Set-Content $filename

9.8 Search and Replace TextinaFile | 259

Discussion

Using PowerShell to search and replace text in a file (or many files!) is one of the best
examples of using a tool to automate a repetitive task. What could literally take
months by hand can be shortened to a few minutes (or hours, at most).

Notice that the Solution uses the -creplace operator to replace text
in a case-sensitive manner. This is almost always what you will
want to do, as the replacement text uses the exact capitalization that
you provide. If the text you want to replace is capitalized in several
different ways (as in the term Source Text from the Solution),
then search and replace several times with the different possible
capitalizations.

Example 9-3 illustrates what is perhaps the simplest (but actually most common)
scenario:

 You work with an ASCII text file.
 You replace some literal text with a literal text replacement.
» You don’t worry that the text match might span multiple lines.

o Your text file is relatively small.

If some of those assumptions don't hold true, then this discussion shows you how to
tailor the way you search and replace within this file.

Work with files encoded in Unicode or another (OEM) code page

By default, the Set-Content cmdlet assumes that you want the output file to contain
plain ASCII text. If you work with a file in another encoding (for example, Unicode
or an OEM code page such as Cyrillic), use the -Encoding parameter of the Out-File
cmdlet to specify that:

Scontent | Out-File -Encoding Unicode $filename
Scontent | Out-File -Encoding OEM S$filename

Replace text using a pattern instead of plain text

Although it’s most common to replace one literal string with another literal string,
you might want to replace text according to a pattern in some advanced scenarios.
One example might be swapping first name and last name. PowerShell supports this
type of replacement through its support of regular expressions in its replacement
operator:

PS > $content = Get-Content names.txt

PS > S$content
John Doe

260 | Chapter9: Simple Files

Mary Smith

PS > Scontent -replace '(.*) (.*)','$2, $1'
Doe, John

Smith, Mary

Replace text that spans multiple lines

The Get-Content cmdlet used in the Solution retrieves a list of lines from the file.
When you use the -replace operator against this array, it replaces your text in each
of those lines individually. If your match spans multiple lines, as shown between lines
3 and 4 in Example 9-3, the -replace operator will be unaware of the match and will
not perform the replacement.

If you want to replace text that spans multiple lines, then it becomes necessary to stop
treating the input text as a collection of lines. Once you stop treating the input as a
collection of lines, it’s also important to use a replacement expression that can ignore
line breaks, as shown in Example 9-4.

Example 9-4. Replacing text across multiple lines in a file

$singleLine = Get-Content file.txt -Raw
Scontent = $singleLine -creplace "(?s)Source(\s*)Text",'Replacement$iText'

The first and second lines of Example 9-4 read the entire content of the file as a single
string. They do this by using the -Raw parameter of the Get-Content cmdlet, since the
Get-Content cmdlet by default splits the content of the file into individual lines.

The third line of this solution replaces the text by using a regular expression pattern.
The section Source(\s*)Text scans for the word Source, followed optionally by
some whitespace, followed by the word Text. Since the whitespace portion of the reg-
ular expression has parentheses around it, we want to remember exactly what that
whitespace was. By default, regular expressions don't let newline characters count as
whitespace, so the first portion of the regular expression uses the single-line option
(?s) to allow newline characters to count as whitespace. The replacement portion of
the -replace operator replaces that match with Replacement, followed by the exact
whitespace from the match that we captured ($1), followed by Text. For more infor-
mation, see “Simple Operators” on page 811.

Replace text in large files

The approaches used so far store the entire contents of the file in memory as they
replace the text in them. Once we've made the replacements in memory, we write the
updated content back to disk. This works well when replacing text in small, medium,
and even moderately large files. For extremely large files (for example, more than sev-
eral hundred megabytes), using this much memory may burden your system and

9.8 Search and Replace TextinaFile | 261

slow down your script. To solve that problem, you can work on the files line by line,
rather than with the entire file at once.

Since youre working with the file line by line, it will still be in use when you try to
write replacement text back into it. You can avoid this problem if you write the
replacement text into a temporary file until you've finished working with the main
file. Once you've finished scanning through your file, you can delete it and replace it
with the temporary file.

$filename = "file.txt"
StemporaryFile = [System.IO.Path]::GetTempFileName()

$match = "source text"
Sreplacement = "replacement text"

Get-Content $filename |
ForEach-Object { $_ -creplace $match,$replacement } |
Add-Content StemporaryFile

Remove-Item $filename
Move-Item StemporaryFile $filename

See Also
“Simple Operators” on page 811

9.9 Program: Get the Encoding of a File

Both PowerShell and the .NET Framework do a lot of work to hide from you the
complexities of file encodings. The Get-Content cmdlet automatically detects the
encoding of a file, and then handles all encoding issues before returning the content
to you. When you do need to know the encoding of a file, though, the solution
requires a bit of work.

Example 9-5 resolves this by doing the hard work for you. Files with unusual encod-
ings are supposed to (and almost always do) have a byte order mark to identify the
encoding. After the byte order mark, they have the actual content. If a file lacks the
byte order mark (no matter how the content is encoded), Get-FileEncoding assumes
the .NET Framework’s default encoding of UTF-7. If the content isn't actually enco-
ded as defined by the byte order mark, Get-FileEncoding still outputs the declared
encoding.

262 | Chapter9: Simple Files

Example 9-5. Get-FileEncoding.ps1

#i#t

Get-FileEncoding
##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

#i#t

<#

.SYNOPSIS

Gets the encoding of a file

.EXAMPLE

Get-FileEncoding.ps1 .\UnicodeScript.ps1

BodyName
EncodingName
HeaderName
WebName
WindowsCodePage
IsBrowserDisplay
IsBrowserSave
IsMailNewsDisplay :
IsMatilNewsSave
IsSingleByte
EncoderFallback
DecoderFallback
IsReadOnly
CodePage

#>

param(

The path of the file to get the encoding of.

$Path
)

: unicodeFFFE

: Unicode (Big-Endian)
: unicodeFFFE

: unicodeFFFE

: 1200

: False

: False

False

: False
: False
: System.Text.EncoderReplacementFallback
: System.Text.DecoderReplacementFallback
: True
: 1201

Set-StrictMode -Version 3

First, check if the file is binary. That is, if the first

5 lines contain any non-printable characters.

$nonPrintable = [char[]] (0..8 + 10..31 + 127 + 129 + 141 + 143 + 144 + 157)
$lines = Get-Content $Path -ErrorAction Ignore -TotalCount 5

$result = @($lines | Where-Object { $_.IndexOfAny($nonPrintable) -ge 0 })
if(Sresult.Count -gt 0)

{
"Binary"
return

9.9 Program: Get the Encoding of a File

263

}
Next, check if it matches a well-known encoding.

The hashtable used to store our mapping of encoding bytes to their
name. For example, "255-254 = Unicode"
Sencodings = @{}

Find all of the encodings understood by the .NET Framework. For each,

determine the bytes at the start of the file (the preamble) that the .NET
Framework uses to identify that encoding.

foreach($encoding in [System.Text.Encoding]::GetEncodings())

{
Spreamble = $encoding.GetEncoding().GetPreamble()
if(Spreamble)
{
SencodingBytes = $preamble -join '-'
$Sencodings[$encodingBytes] = $encoding.GetEncoding()
}
}

Find out the lengths of all of the preambles.
$encodingLengths = $encodings.Keys | Where-Object { $_ } |
Foreach-Object { ($_ -split "-").Count }

Assume the encoding is UTF7 by default
$result = [System.Text.Encoding]::UTF7

Go through each of the possible preamble lengths, read that many

bytes from the file, and then see if it matches one of the encodings

we know about.

foreach($encodinglLength in $encodinglLengths | Sort -Descending)

{
$bytes = Get-Content -AsByteStream -readcount $encodingLength $path | Select -First 1
$encoding = $encodings[$bytes -join '-']

If we found an encoding that had the same preamble bytes,
save that output and break.

if(Sencoding)
{

Sresult = S$Sencoding
break

}

Finally, output the encoding.
Sresult

For more information about running scripts, see Recipe 1.2.

See Also

Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

264 | Chapter9: Simple Files

9.10 View the Hexadecimal Representation of Content

Problem

You want to see the bytes and special characters in file content.

Solution

Use the Format-Hex cmdlet to display a file’s content:

PS > "Hello World" | Out-File unicode.txt -Encoding unicode
PS > Format-Hex unicode.txt

Label: C:\scripts\unicode.txt

Offset Bytes Asciti
00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF

0000000000000000 FF FE 48 00 65 00 6C 00 6C 00 6F 00 20 00 57 00 ypH e L. L o W
0000000000000010 6F 00 72 00 6C 00 64 00 D 00 OA 00 orld

PS > "Hello World" | Out-File ascii.txt -Encoding ASCII
PS > Format-Hex ascii.txt

Label: C:\scripts\asciti.txt

Offset Bytes Ascii
00 01 02 03 04 05 06 07 08 09 OA 0B OC OD OE OF

0000000000000000 48 65 6C 6C 6F 20 57 6F 72 6C 64 OD OA Hello World

Discussion

When dealing with binary data, it is often useful to see the value of the actual bytes
being used in that binary data. In addition to the value of the data, finding its offset in
the file or content is usually important as well.

PowerShell's Format-Hex cmdlet enables both scenarios by displaying content in a
report that shows all of this information. The leftmost column displays the offset into
the content, increasing by 16 bytes at a time. The middle 16 columns display the hex-
adecimal representation of the byte at that position in the content. The header of each
column shows how far into the 16-byte chunk that character is. The far-right column
displays the ASCII representation of the characters in that row.

To determine the position of a byte within the input, add the number at the far left of
the row to the number at the top of the column for that character. For example,
0000000000000010 (shown at the far left) + 0A (shown at the top of the column) =
000000000000001A. Therefore, the byte in this example is at offset 1A in the content.

9.10 View the Hexadecimal Representation of Content | 265

In addition to this text-based view, PowerShell’s Format-Hex cmdlet returns richly
structured objects. For example, to see what the hexadecimal representation of the
bytes were in the second line of output (index 1 in the collection), you can type:

PS > Soutput = Format-Hex unicode.txt

PS > Soutput[1].HexBytes

6F 00 72 00 6C 00 64 00 OD 00 OA 00

For more information about interacting with binary data, see Recipe 9.6.

See Also
Recipe 9.6, “Parse and Manage Binary Files”

266 | Chapter9: Simple Files

CHAPTER 10
Structured Files

10.0 Introduction

In the world of text-only system administration, managing structured files is often a
pain. For example, working with (or editing) an XML file means either loading it into
an editor to modify by hand or writing a custom tool that can do that for you. Even
worse, it may mean modifying the file as though it were plain text while hoping to
not break the structure of the XML itself.

In that same world, working with a file in comma-separated values (CSV) format
means going through the file yourself, splitting each line by the commas in it. Its a
seemingly great approach, until you find yourself faced with anything but the sim-
plest of data.

Structure and structured files don't come only from other programs, either. When
you’re writing scripts, one common goal is to save structured data so that you can use
it later. In most scripting (and programming) languages, this requires that you design
a data structure to hold that data, design a way to store and retrieve it from disk, and
bring it back to a usable form when you want to work with it again.

Fortunately, working with XML, CSV, and even your own structured files becomes
much easier with PowerShell at your side.

267

10.1 Access Information in an XML File

Problem

You want to work with and access information in an XML file.

Solution

Use PowerShell's XML cast to convert the plain-text XML into a form that you can
more easily work with. In this case, we use the RSS feed downloaded from the Power-
Shell blog:

PS > $xml = [xml] (Get-Content powershell_blog.xml)

See Recipe 12.1 for more detail about how to use PowerShell to
download this file:

Invoke-WebRequest https://devblogs.microsoft.com/powershell/feed/ °
-OutFile powershell_blog.xml

Like other rich objects, PowerShell displays the properties of the XML as you explore.
These properties are child nodes and attributes in the XML, as shown by
Example 10-1.

Example 10-1. Accessing properties of an XML document

PS > $xml
xml xml-stylesheet rss

rss

PS > $xml.rss

version : 2.0

dc : http://purl.org/dc/elements/1.1/
slash : http://purl.org/rss/1.0/modules/slash/
wfw : http://wellformedweb.org/CommentAPI/

channel : channel
If more than one node shares the same name (as in the item nodes of an RSS feed),
then the property name represents a collection of nodes:

PS > (Sxml.rss.channel.item).Count
15

You can access those items individually, like you would normally work with an array,
as shown in Example 10-2.

268 | Chapter 10: Structured Files

Example 10-2. Accessing individual items in an XML document

PS > ($xml.rss.channel.item)[0]

title : Windows Management Framework is here!

1ink : http://blogs.msdn.com/powershell/archive/2009/10/27/windows-
management- framework-1is-here.aspx

pubDate : Tue, 27 Oct 2009 18:25:13 GMT

quid : guid

creator : PowerShellTeam

comments : {15, http://blogs.msdn.com/powershell/comments/9913618.aspx}

commentRss : http://blogs.msdn.com/powershell/commentrss.aspx?PostID=9913
618

comment : http://blogs.msdn.com/powershell/rsscomments.aspx?PostID=991
3618

description : <p>Windows Management Framework, which includes Windows Power
Shell 2.0, WinRM 2.0, and BITS 4.0, was officially released
to the world this morning.

(...)

You can access properties of those elements the same way you would normally work

with an object:

PS > (Sxml.rss.channel.item)[0].title
Windows Management Framework is here!

Since these are rich PowerShell objects, Example 10-3 demonstrates how you can use
PowerShell’s advanced object-based cmdlets for further work, such as sorting and

filtering.

Example 10-3. Sorting and filtering items in an XML document

PS > $xml.rss.channel.item | Sort-Object title | Select-Object title

Analyzing Weblog Data Using the Admin Development Model
Announcing: Open Source PowerShell Cmdlet and Help Designer
Help Us Improve Microsoft Windows Management Framework
Introducing the Windows 7 Resource Kit PowerShell Pack

New and Improved PowerShell Connect Site

PowerShell V2 Virtual Launch Party

Remoting for non-Admins

Select -ExpandProperty <PropertyName>

The Glory of Quick and Dirty Scripting

Tonight Is the Virtual Launch Party @ PowerScripting Podcast
Understanding the Feedback Process

What's New in PowerShell V2 - By Joel "Jaykul" Bennett
What's Up With Command Prefixes?

Windows Management Framework is here!

XP and W2K3 Release Candidate Versions of PowerShell Are Now Available ...

10.1 Access Information in an XML File

269

Discussion

PowerShell’s native XML support provides an excellent way to easily navigate and
access XML files. By exposing the XML hierarchy as properties, you can perform
most tasks without having to resort to text-only processing or custom tools.

In fact, PowerShell’s support for interaction with XML goes beyond just presenting
your data in an object-friendly way. The objects created by the [xml] cast in fact rep-
resent fully featured System.Xml.XmlDocument objects from the .NET Framework.
Each property of the resulting objects represents a System.Xml.XmlElement object
from the NET Framework as well. The underlying objects provide a great deal of
additional functionality that you can use to perform both common and complex tasks
on XML files.

The underlying System.Xml.XmlDocument and System.Xml.XmlElement objects that
support your XML also provide useful properties in their own right: Attributes,
Name, OuterXml, and more.

PS > $xml.rss.Attributes

2.0

http://purl.org/dc/elements/1.1/
http://purl.org/rss/1.0/modules/slash/
http://wellformedweb.org/CommentAPI/

For more information about using the underlying .NET objects for more advanced
tasks, see Recipe 10.2 and Recipe 10.4.

For more information about working with XML in PowerShell, see Table F-11 in
Appendix F.

See Also

Recipe 10.2, “Perform an XPath Query Against XML”

Recipe 10.4, “Modify Data in an XML File”

Recipe 12.1, “Download a File from an FTP or Internet Site”

Table F-11

10.2 Perform an XPath Query Against XML

Problem

You want to perform an advanced query against an XML file using XMUDs standard
XPath syntax.

270 | Chapter 10: Structured Files

Solution
Use PowerShell’s Select-Xml cmdlet to perform an XPath query against a file.
For example, to find all post titles shorter than 30 characters in an RSS feed:

PS > S$Squery = "/rss/channel/item[string-length(title) < 30]/title"
PS > Select-Xml -XPath Squery -Path .\powershell_blog.xml | Select -Expand Node

Remoting for non-Admins

Discussion

Although a language all of its own, the XPath query syntax provides a powerful,
XML-centric way to write advanced queries for XML files. The Select-Xml cmdlet
lets you apply these concepts to files, XML nodes, or simply plain text.

The XPath queries supported by the Select-Xml cmdlet are a pop-
ular industry standard. Beware, though. Unlike those in the rest of
PowerShell, these queries are case-sensitive!

The Select-Xml cmdlet generates a SelectXmlInfo object. This lets you chain sepa-
rate XPath queries together. To retrieve the actual result of the selection, access the
Node property:

PS > Get-Content page.html
<HTML>
<HEAD>
<TITLE>Welcome to my Website</TITLE>
</HEAD>
<BODY>
<P>...</P>
</BODY>
</HTML>
PS > Scontent = [xml] (Get-Content page.html)
PS > S$result = Scontent | Select-Xml "/HTML/HEAD" | Select-Xml "TITLE"
PS > S$result

Node Path Pattern

TITLE InputStream TITLE

PS > S$result.Node

Welcome to my Website

10.2 Perform an XPath Query Against XML | 271

This works even for content accessed through PowerShells XML support, as in this
case, which uses the RSS feed downloaded from the PowerShell blog:

PS > $xml = [xml] (Get-Content powershell_blog.xml)
PS > $xml | Select-Xml Squery | Select -Expand Node

Remoting for non-Admins

For simpler queries, you may find PowerShell’s object-based XML navigation con-
cepts easier to work with. For more information about working with XML through
PowerShell's XML type, see Table F-11 in Appendix F. For more information about
XPath syntax, see Appendix C.

See Also
Appendix C, XPath Quick Reference
Table F-11

10.3 Convert Objects to XML

Problem

You want to convert command output to XML for further processing or viewing.

Solution

Use PowerShell's ConvertTo-Xml cmdlet to save the output of a command as XML:
$xml = Get-Process | ConvertTo-Xml

You can then use PowerShell's XML support (XML navigation, Select-Xml, and
more) to work with the content.

Discussion

Although it’s usually easiest to work with objects in their full fidelity, you may some-
times want to convert them to XML for further processing by other programs. The
solution is the ConvertTo-Xml cmdlet.

PowerShell includes another similar-sounding cmdlet called
Export-CliXml. Unlike the ConvertTo-Xml cmdlet, which is
intended to produce useful output for humans and programs alike,
the Export-CliXml cmdlet is designed for PowerShell-centric data
interchange. For more information, see Recipe 10.5.

272 | Chapter 10: Structured Files

The ConvertTo-Xml cmdlet gives you two main targets for this conversion. The
default is an XML document, which is the same type of object created by the [xml]
cast in PowerShell. This is also the format supported by the Select-Xml cmdlet, so
you can pipe the output of ConvertTo-Xml directly into it.

PS > $xml = Get-Process | ConvertTo-Xml
PS > $xml | Select-Xml '//Property[@Name = "Name"]' | Select -Expand Node

Name Type #text
Name System.String audiodg
Name System.String csrss
Name System.String dwm
(...)

The second format is a simple string, and it’s suitable for redirection into a file. To
save the XML into a file, use the -As parameter with String as the argument, and
then use the file redirection operator:

Get-Process | ConvertTo-Xml -As String > c:\temp\processes.xml

If you already have an XML document that you obtained from ConvertTo-Xml or
PowerShell’s [xml] cast, you can still save it into a file by calling its Save() method:

$xml = Get-Process | ConvertTo-Xml
$xml.Save("c: | temp|output.xml")

For more information on how to work with XML data in PowerShell, see Recipe 10.1.

See Also
Recipe 10.1, “Access Information in an XML File”

Recipe 10.5, “Easily Import and Export Your Structured Data”

10.4 Modify Data in an XML File

Problem

You want to use PowerShell to modify the data in an XML file.

Solution

To modify data in an XML file, load the file into PowerShell's XML data type, change
the content you want, and then save the file back to disk. Example 10-4 demonstrates
this approach.

10.4 Modify DatainanXMLFile | 273

Example 10-4. Modifying an XML file from PowerShell

PS
PS

> ## Store the filename
>

PS >
>
>

Sfilename = (Get-Item phone.xml).FullName

PS > ## Get the content of the file, and load it
PS > ## as XML
PS > Get-Content $filename
<AddressBook>
<Person contactType="Personal">
<Name>Lee</Name>
<Phone type="home">555-1212</Phone>
<Phone type="work">555-1213</Phone>
</Person>
<Person contactType="Business">
<Name>Ariel</Name>
<Phone>555-1234</Phone>
</Person>
</AddressBook>
PS > SphoneBook = [xml] (Get-Content $filename)
PS >

PS > ## Get the part with data we want to change
PS > Sperson = $phoneBook.AddressBook.Person[0]
PS >
PS > ## Change the text part of the information,
PS > ## and the type (which was an attribute)
PS > S$person.Phone[0]."#text" = "555-1214"
PS > $person.Phone[0].type = "mobile"
PS >
PS > ## Add a new phone entry
PS > SnewNumber = [xml] '<Phone type="home">555-1215</Phone>"'
PS > $newNode = $phoneBook.ImportNode($newNumber.Phone, $true)
PS > [void] $person.AppendChild($newNode)
PS >
PS > ## Save the file to disk
PS > $phoneBook.Save($filename)
PS > Get-Content $filename
<AddressBook>

<Person contactType="Personal">

<Name>Lee</Name>

<Phone type="mobile">555-1214</Phone>
<Phone type="work">555-1213</Phone>
<Phone type="home">555-1215</Phone>

</Person>

<Person contactType="Business">
<Name>Ariel</Name>
<Phone>555-1234</Phone>

</Person>

</AddressBook>

274 | Chapter 10: Structured Files

Discussion

In the preceding Solution, you change Lee’s phone number (which was the “text” por-
tion of the XMLs original first Phone node) from 555-1212 to 555-1214. You also
change the type of the phone number (which was an attribute of the Phone node)
from "home" to "mobile".

Adding new information to the XML is nearly as easy. To add information to an XML
file, you need to add it as a child node to another node in the file. The easiest way to
get that child node is to write the string that represents the XML and then create a
temporary PowerShell XML document from that. From that temporary document,
you use the main XML documents ImportNode() function to import the node you
care about—specifically, the Phone node in this example.

Once we have the child node, you need to decide where to put it. Since we want this
Phone node to be a child of the Person node for Lee, well place it there. To add a
child node ($newNode in Example 10-4) to a destination node ($person in the exam-
ple), use the AppendChild() method from the destination node.

The Save() method on the XML document allows you to save to
more than just files. For a quick way to convert XML into a “beauti-
fied” form, save it to the console:

$phoneBook.Save([Console]::0ut)

Finally, we save the XML back to the file from which it came.

10.5 Easily Import and Export Your Structured Data

Problem

You have a set of data (such as a hashtable or array) and want to save it to disk so that
you can use it later. Conversely, you have saved structured data to a file and want to
import it so that you can use it.

Solution

Use PowerShell’s Export-CliXml cmdlet to save structured data to disk, and the
Import-CliXml cmdlet to import it again from disk.

For example, imagine storing a list of your favorite directories in a hashtable, so that
you can easily navigate your system with a “Favorite CD” function. Example 10-5
shows this function.

10.5 Easily Import and Export Your Structured Data | 275

Example 10-5. A function that requires persistent structured data

PS > S$favorites = @{}
PS > S$favorites["temp"] = "c:\temp"
PS > S$favorites["music"] = "h:\lee\my music"
PS > function fcd {
param([string] $location) Set-Location $favorites[$location]

}
PS > Get-Location

Path

HKLM: \software

PS > fcd temp
PS > Get-Location

Path

C:\temp
Unfortunately, the $favorites variable vanishes whenever you close PowerShell.

To get around this, you could recreate the $favorites variable in your profile, but
another approach is to export it directly to a file. This command assumes that you
have already created a profile, and it places the file in the same location as that profile:

PS > $filename = Join-Path (Split-Path $profile) favorites.clixml

PS > $favorites | Export-CliXml $filename

PS > $favorites = $null

PS > $favorites

PS >
Once the file is on disk, you can reload it using the Import-CliXml cmdlet, as shown
in Example 10-6.

Example 10-6. Restoring structured data from disk

PS > S$favorites = Import-CliXml $filename
PS > S$favorites

Name Value
music h:\lee\my music
temp c:\temp

PS > fcd music
PS > Get-Location

Path

H:\lee\My Music

276 | Chapter 10: Structured Files

Discussion

PowerShell provides the Export-CliXml and Import-CliXml cmdlets to let you easily
move structured data into and out of files. These cmdlets accomplish this in a very
data-centric and future-proof way—by storing only the names, values, and basic data
types for the properties of that data.

By default, PowerShell stores one level of data: all directly accessi-
ble simple properties (such as the WorkingSet of a process) but a
plain-text representation for anything deeper (such as a process’s
Threads collection). For information on how to control the depth
of this export, type Get-Help Export-CliXml and see the explana-
tion of the -Depth parameter.

After you import data saved by Export-CliXml, you again have access to the proper-
ties and values from the original data. PowerShell converts some objects back to their
fully featured objects (such as System.DateTime objects), but for the most part
doesn’t retain functionality (for example, methods) from the original objects.

10.6 Store the Output of a Command in a (SV or
Delimited File

Problem

You want to store the output of a command in a CSV file for later processing. This is
helpful when you want to export the data for later processing outside PowerShell.

Solution

Use PowerShell’s Export-Csv cmdlet to save the output of a command into a CSV file.
For example, to create an inventory of the processes running on a system:

Get-Process | Export-Csv c:\temp\processes.csv

You can then review this output in a tool such as Excel, mail it to others, or do what-
ever else you might want to do with a CSV file.

Discussion

The CSV file format is one of the most common formats for exchanging semistruc-
tured data between programs and systems.

10.6 Store the Output of a Command in a CSV or Delimited File | 277

PowerShell’s Export-Csv cmdlet provides an easy way to export data from the Power-
Shell environment while still allowing you to keep a fair amount of your data’s struc-
ture. When PowerShell exports your data to the CSV; it creates a row for each object
that you provide. For each row, PowerShell creates columns in the CSV that represent
the values of your object’s properties.

If you want to use the CSV-structured data as input to another tool
that supports direct CSV pipeline input, you can use the
ConvertTo-Csv cmdlet to bypass the step of storing it in a file.

If you want to separate the data with a character other than a comma, use the
-Delimiter parameter. If you want to append to a CSV file rather than create a new
one, use the -Append parameter.

One thing to keep in mind is that the CSV file format supports only plain strings for
property values. If a property on your object isn’'t actually a string, PowerShell con-
verts it to a string for you. Having PowerShell convert rich property values (such as
integers) to strings, however, does mean that a certain amount of information is not
preserved. If your ultimate goal is to load this unmodified data again in PowerShell,
the Export-CliXml cmdlet provides a much better alternative. For more information
about the Export-CliXml cmdlet, see Recipe 10.5.

For more information on how to import data from a CSV file into PowerShell, see
Recipe 10.7.

See Also

Recipe 10.5, “Easily Import and Export Your Structured Data”
Recipe 10.7, “Import CSV and Delimited Data from a File”

10.7 Import CSV and Delimited Data from a File

Problem

You want to import structured data that has been stored in a CSV file or a file that
uses some other character as its delimiter.

Solution

Use PowerShell’s Import-Csv cmdlet to import structured data from a CSV file. Use
the -Delimiter parameter if fields are separated by a character other than a comma.

278 | Chapter 10: Structured Files

For example, to load a (space-separated) IIS web server log:

Sheader = "date","time","s-ip","cs-method","cs-uri-stem","cs-uri-query"
$log = Get-Content u_*.log | Select-String -Notmatch '~(#|\-)' |
ConvertFrom-Csv -Delimiter " " -Header Sheader

Then, manage the log as you manage other rich PowerShell output:

$log | Group-Object cs-uri-stem

Discussion

As mentioned in Recipe 10.6, the CSV file format is one of the most common formats
for exchanging semi-structured data between programs and systems.

PowerShell’s Import-Csv cmdlet provides an easy way to import this data into the
PowerShell environment from other programs. When PowerShell imports your data
from the CSV, it creates a new object for each row in the CSV. For each object, Power-
Shell creates properties on the object from the values of the columns in the CSV.

If the names of the CSV columns match parameter names, many
commands let you pipe this output to automatically set the values
of parameters.

For more information about this feature, see Recipe 2.6.

If you're dealing with data in a CSV format that is the output of another tool or com-
mand, the Import-Csv cmdlet’s file-based behavior won't be of much help. In this
case, use the ConvertFrom-Csv cmdlet.

One thing to keep in mind is that the CSV file format supports only plain strings for
property values. When you import data from a CSV, properties that look like dates
will still only be strings. Properties that look like numbers will only be strings. Prop-
erties that look like any sort of rich data type will only be strings. This means that
sorting on any property will always be an alphabetical sort, which is usually not the
same as the sorting rules for the rich data types that the property might look like.

If your ultimate goal is to load rich unmodified data from something that you've pre-
viously exported from PowerShell, the Import-CliXml cmdlet provides a much better
alternative. For more information about the Import-CliXml cmdlet, see Recipe 10.5.

For more information on how to export data from PowerShell to a CSV file, see
Recipe 10.6.

10.7 Import CSV and Delimited DatafromaFile | 279

See Also

Recipe 2.6, “Automate Data-Intensive Tasks”

Recipe 10.5, “Easily Import and Export Your Structured Data”

Recipe 10.6, “Store the Output of a Command in a CSV or Delimited File”

10.8 Manage JSON Data Streams

Problem

You want to work with sources that produce or consume JSON-formatted data.

Solution

Use PowerShell’s ConvertTo-Json and ConvertFrom-Json commands to convert data
to and from JSON formatting, respectively:
PS > Sobject = [PSCustomObject] @{

Name = "Lee";
Phone = "555-1212"

}
PS > $json = ConvertTo-Json Sobject
PS > $json
{
"Name": "Lee",
"Phone": "555-1212"
}

PS > $newObject = ConvertFrom-Json $json
PS > S$newObject

Name Phone
Lee 555-1212
Discussion

When you're writing scripts to interact with web APIs and web services, the JSON
data format is one of the most common that you’ll find. JSON stands for JavaScript
Object Notation, and gained prominence with JavaScript-heavy websites and web
APIs as an easy way to transfer structured data.

If you use PowerShell’s Invoke-RestMethod cmdlet to interact with these web APIs,
PowerShell automatically converts objects to and from JSON if required. If you use
the Invoke-WebRequest cmdlet to retrieve data from a web page (or simply need
JSON in another scenario), these cmdlets can prove extremely useful.

280 | Chapter 10: Structured Files

Because the JSON encoding format uses very little markup, it’s an
excellent way to visualize complex objects—especially properties
and nested properties:

$s = Get-Service -Name winrm
$s | ConvertTo-Json -Depth 2

One common reason for encoding JSON is to use it in a web application. In that case,
it's common to compress the resulting JSON to remove any spaces and newlines that
are not required. The ConvertTo-Json cmdlet supports this through its -Compress
parameter:

PS > ConvertTo-Json $object -Compress
{"Name":"Lee","Phone":"555-1212"}

For more information about working with JSON-based web APIs, see Recipe 12.7.

See Also
Recipe 12.7, “Interact with REST-Based Web APIs”

10.9 Use Excel to Manage Command Output

Problem

You want to use Excel to manipulate or visualize the output of a command.

Solution

Use PowerShell’s Export-Csv cmdlet to save the output of a command in a CSV file,
and then load that CSV in Excel. If you have Excel associated with .csv files, the
Invoke-Item cmdlet launches Excel when you provide it with a .csv file as an
argument.

Example 10-7 demonstrates how to generate a CSV file containing the disk usage for
subdirectories of the current directory.

Example 10-7. Using Excel to visualize disk usage on the system

PS > $filename = "c:\temp\diskusage.csv"
PS >
PS > Soutput = Get-ChildItem -Attributes Directory |
Select-Object Name,
@{ Name="Size";
Expression={ ($_ | Get-ChildItem -Recurse |
Measure-Object -Sum Length).Sum + 0 } }

PS > Soutput | Export-Csv $filename

10.9 Use Excel to Manage Command Output | 281

PS >
PS > Invoke-Item $filename

In Excel, you can manipulate or format the data as you wish. As Figure 10-1 shows,
we can manually create a pie chart.

Jtosave 9 sl O leeHomes @M m — O X
File Home Insert Draw Page Layout Formulas Data Review View Help Team Chart Design Format [Z3n=]
flil X o . ab, % [EH Conditional Formatting v = 0 E} @
@ | B I U [AA Nurper | 74 Format as Table - Cells | Editing | Anayze | Money
. HelavA- v [iZ Cell styles v v v Data in Excel
Clipboard R Font & Alignment ~ Styles Analysis | Money in Excell A
Chart 1 v v fe
A A | B | © | D | E | [P | G | H | | | J K z
1 [Name Size
2 |Alternative 2692052254 ~
3 |Audiobook asaronzics| T g I)
udiobooks .
4 _|Christmas 1114126533 Chart Title
5 |Classical 3463171901 ‘
6 |Comedy 73769682 ;
7_|Country 307731476
8 |Electronic 2169048169 o) o
9 |Jazz 894712741
10 |New Age 1002926415 = Alternative = Audiobooks = Christmas Classical = Comedy
11/0ld 2034182584 = Country = Electronic = Jazz = New Age = 0ld L |
12 |Other 878977719 = Other = Popular = Reason = Rock = Sounditracks
11 Popular 5371290660 Various Artists = World
14 |Reason 16777636 O O 7o)
Ll O
15 |Rock 2381251448
16 |Soundtracks 1070429641
= o 21222002 -]
diskusage ©) : [« I D]
Average: 1114126533 Count:2 Sum: 1114126533 [l Display Settings izi] m -8+ 100%

Figure 10-1. Visualizing data in Excel

Discussion

Although used only as a demonstration, Example 10-7 packs quite a bit into just a few
lines.

The first Get-ChildItenm line uses the -Directory parameter to list all of the directo-
ries in the current directory. For each of those directories, you use the Select-0Object
cmdlet to pick out its Name and Size.

Directories don't have a Size property, though. To get that, we use Select-Object’s
hashtable syntax to generate a calculated property. This calculated property (as
defined by the Expression script block) uses the Get-ChildItem and Measure-
Object cmdlets to add up the Length of all files in the given directory.

For more information about creating and working with calculated properties, see
Recipe 3.14.

282 | Chapter 10: Structured Files

See Also
Recipe 3.14, “Add Custom Methods and Properties to Objects”

10.10 Parse and Interpret PowerShell Scripts

Problem

You want to access detailed structural and language-specific information about the
content of a PowerShell script.

Solution

For simple analysis of the scripts textual representation, use PowerShell’s Tokenizer
API to convert the script into the same internal representation that PowerShell uses
to understand the script’s elements.

PS > $script = 'SmyVariable = 10'

PS > Serrors = [System.Management.Automation.PSParseError[]] @()

PS > [Management.Automation.PsParser]::Tokenize(S$script, [ref] Serrors) |
Format-Table -Auto

Content Type Start Length StartLine StartColumn EndLine EndColumn
myVariable Variable 0 11 1 1 1 12
= Operator 12 1 1 13 1 14
10 Number 14 2 1 15 1 17

For detailed analysis of the script’s structure, use PowerShell’s Abstract Syntax Tree
(AST) API to convert the script into the same internal representation that PowerShell
uses to understand the script’s structure.

PS > S$script = { $myVariable = 10 }

PS > Sscript.Ast.EndBlock.Statements[0].GetType()
IsPublic IsSerial Name

True False AssignmentStatementAst

PS > $script.Ast.EndBlock.Statements[0]

Left : $myVariable

Operator : Equals

Right : 10

ErrorPosition : =

Extent : $myVariable = 10

Parent : $myVariable = 10
Discussion

When PowerShell loads a script, it goes through two primary steps to interpret it:
tokenization and AST generation.

10.10 Parse and Interpret PowerShell Scripts | 283

Tokenization

When PowerShell loads a script, the first step is to tokenize that script. Tokenization is
based on the textual representation of a script, and determines which portions of the
script represent variables, numbers, operators, commands, parameters, aliases, and
more.

While this is a fairly advanced concept, the Tokenizer API exposes the results of this
step. This lets you work with the rich visual structure of PowerShell scripts the same
way that the PowerShell engine does.

Without the support of a Tokenizer API, tool authors are usually required to build
complicated regular expressions that attempt to emulate the PowerShell engine.
Although these regular expressions are helpful for many situations, they tend to fall
apart on more complex scripts.

As an example of this problem, consider the first line of Figure 10-2. "Write-Host" is
an argument to the Write-Host cmdlet, but gets parsed as a string. The second line,
while still providing an argument to the Write-Host cmdlet, doesn’t treat the argu-
ment the same way. In fact, since it matches a cmdlet name, the argument gets col-
ored like another call to the Write-Host cmdlet. In the here string that follows, the
Write-Host cmdlet name gets highlighted again, even though it’s really just part of a
string.

Your highlighted code:

Write-Host "Write-Host"
Write-Host Write-Host

"Write-Host Write-Host"
$testContent = @"
Write-Host Hello World
II@

Figure 10-2. Tokenization errors from a simple online highlighter on a complex script

Because the Tokenizer API follows the same rules as the PowerShell engine, it avoids
the pitfalls of the regular-expression-based approach while producing output that is
much easier to consume. When run on the same input, it produces the output shown
in Example 10-8.

284 | Chapter 10: Structured Files

Example 10-8. Successfully tokenizing a complex script

PS > [Management.Automation.PsParser]::Tokenize(Scontent, [ref] Serrors) | ft -auto

Content Type StartLine StartColumn EndLine EndColumn
Write-Host Command 1 1 1 11
Write-Host String 1 12 1 24
cee NewLine 1 24 2 1
Write-Host Command 2 1 2 11
Write-Host CommandArgument 2 12 2 22
NewLine 2 22 3 1
cee NewLine 3 1 4 1
Write-Host Write-Host String 4 1 4 24
NewLine 4 24 5 1
NewLine 5 1 6 1
testContent Variable 6 1 6 13
= Operator 6 14 6 15
Write-Host Hello World String 6 16 8 3
NewLine 8 3 9 1

This adds a whole new dimension to the way you can interact with PowerShell
scripts. Some natural outcomes are:

o Syntax highlighting
o Automated script editing (for example, replacing aliased commands with their
expanded equivalents)

o Script style and form verification

If the script contains any errors, PowerShell captures those in the $errors collection
you're required to supply. If you don’t want to keep track of errors, you can supply
[ref] $null as the value for that parameter.

For an example of the Tokenizer API in action, see Recipe 8.7.

AST generation

After PowerShell parses the textual tokens from your script, it generates a tree struc-
ture to represent the actual structure of your script. For example, scripts don’t just
have loose collections of tokens—they have Begin, Process, and End blocks. Those
blocks may have Statements, which themselves can contain PipelineElements with
Commands. For example:

PS > Sast = { Get-Process -Id $pid }.Ast

PS > S$ast.EndBlock.Statements[0].PipelineElements[0].CommandElements[0].Value

Get-Process
As the Solution demonstrates, the easiest way to retrieve the AST for a command is to
access the AST property on its script block. For example:

10.10 Parse and Interpret PowerShell Scripts | 285

PS C:\Users\Lee> function prompt { "PS > " }
PS > S$ast = (Get-Command prompt).ScriptBlock.Ast

PS > Sast

IsFilter : False

IsWorkflow : False

Name ¢ prompt

Parameters :

Body c{"PS>"1}

Extent : function prompt { "PS > " }
Parent : function prompt { "PS > " }

If you want to create an AST from text content, use the [ScriptBlock]::Create()
method:

PS > $scriptBlock = [ScriptBlock]::Create('Get-Process -ID $pid')
PS > $scriptBlock.Ast

ParamBlock

BeginBlock

ProcessBlock

EndBlock : Get-Process -ID $pid
DynamicParamBlock

ScriptRequirements :

Extent : Get-Process -ID $pid
Parent :

With the PowerShell AST at your disposal, advanced script analysis is easier than its
ever been. Here’s a simple example of using the [Ast]: :FindAl1() method to find the
nodes in a script that have the exact text, $pid:
S$scriptBlock.Ast.FindAll({
param(S$Ast)

if($SAst.Extent.Text -eq 'Spid')
{

return $true

}
}, Strue)

To learn more about the methods and properties exposed by the PowerShell AST, see
Recipe 3.12.

See Also
Recipe 3.12, “Learn About Types and Objects”

Recipe 8.7, “Program: Show Colorized Script Content”

286 | Chapter 10: Structured Files

CHAPTER 11
Code Reuse

11.0 Introduction

One thing that surprises many people is how much you can accomplish in PowerShell
from the interactive prompt alone. Since PowerShell makes it so easy to join its pow-
erful commands together into even more powerful combinations, enthusiasts grow to
relish this brevity. In fact, there’s a special place in the heart of most scripting enthusi-
asts set aside entirely for the most compact expressions of power: the one-liner.

Despite its interactive efficiency, you probably don’t want to retype all your brilliant
ideas anew each time you need them. When you want to save or reuse the commands
that you've written, PowerShell provides many avenues to support you: scripts, mod-
ules, functions, script blocks, and more.

11.1 Write a Script

Problem

You want to store your commands in a script so that you can share them or reuse
them later.

Solution

To write a PowerShell script, create a plain-text file with your editor of choice. Add
your PowerShell commands to that script (the same PowerShell commands you use
from the interactive shell), and then save it with a .psI extension.

287

Discussion

One of the most important things to remember about PowerShell is that running
scripts and working at the command line are essentially equivalent operations. If you
see it in a script, you can type it or paste it at the command line. If you typed it on the
command line, you can paste it into a text file and call it a script.

Once you write your script, PowerShell lets you call it in the same way that you call
other programs and existing tools. Running a script does the same thing as running
all the commands in that script.

PowerShell introduces a few features related to running scripts and
tools that may at first confuse you if you aren’t aware of them. For
more information about how to call scripts and existing tools, see
Recipe 1.2.

The first time you try to run a script in PowerShell, you’'ll likely see the following
error message:

File c:\tools\myFirstScript.psl cannot be loaded because the execution of

scripts is disabled on this system. Please see "get-help about_signing" for

more details.

At line:1 char:12

+ myFirstScript <<<<
Since relatively few computer users write scripts, PowerShell’s default security policies
prevent scripts from running. Once you begin writing scripts, though, you should
configure this policy to something less restrictive. For information on how to config-
ure your execution policy, see Recipe 18.1.

When it comes to the filename of your script, picking a descriptive name is the best
way to guarantee that you’ll always remember what that script does—or at least have a
good idea. This is an issue that PowerShell tackles elegantly, by naming every cmdlet
in the Verb-Noun pattern: a command that performs an action (verb) on an item
(noun). As a demonstration of the usefulness of this philosophy, consider the names
of typical Windows commands given in Example 11-1.

Example 11-1. The names of some standard Windows commands
PS > dir $env:WINDIR\System32*.exe | Select-Object Name

Name
accwiz.exe
actmovie.exe
ahui.exe
alg.exe
append.exe

288 | (Chapter 11: Code Reuse

arp.exe
asr_fmt.exe
asr_ldm.exe
asr_pfu.exe
at.exe
atmadm.exe
attrib.exe

(...)

Compare this to the names of some standard PowerShell cmdlets, given in
Example 11-2.

Example 11-2. The names of some standard PowerShell cmdlets
PS > Get-Command | Select-Object Name

Name

Add-Content
Add-History
Add-Member
Add-PSSnapin
Clear-Content
Clear-Item
Clear-ItemProperty
Clear-Variable
Compare-0Object
ConvertFrom-SecureString
Convert-Path
ConvertTo-Html
(...)

As an additional way to improve discovery, PowerShell takes this even further with
the philosophy (and explicit goal) that “you can manage 80% of your system with
fewer than 50 verbs” As you learn the standard verbs for a concept, such as Get
(which represents the standard concepts of read, open, and so on), you can often
guess the verb of a command as the first step in discovering it.

When you name your script (especially if you intend to share it), make every effort to
pick a name that follows these conventions. Recipe 11.3 shows a useful cmdlet to help
you find a verb to name your scripts properly. As evidence of its utility for scripts,
consider some of the scripts included in this book:

PS > dir | select Name

Name
Compare-Property.psi
Convert-TextObject.ps1
Get-AliasSuggestion.psil
Get-Answer.psl
Get-Characteristics.psl

11.1 Writea Script | 289

Get-OwnerReport.psi
Get-PageUrls.ps1l
Invoke-CmdScript.psil
New-GenericObject.ps1
Select-FilteredObject.ps1
(...)

Like the PowerShell cmdlets, the names of these scripts are clear, easy to understand,
and use verbs from PowerShell’s standard verb list.

See Also

Recipe 1.2, “Run Programs, Scripts, and Existing Tools”
Recipe 11.3, “Find a Verb Appropriate for a Command Name”
Appendix J, Standard PowerShell Verbs

11.2 Write a Function

Problem

You have commands in your script that you want to call multiple times or a section of
your script that you consider to be a “helper” for the main purpose of your script.

Solution

Place this common code in a function, and then call that function instead. For exam-
ple, this Celsius conversion code in a script:

param([double] S$fahrenheit)

Convert it to Celsius
Scelsius = $fahrenheit - 32
Scelsius = Scelsius / 1.8

Output the answer
"$fahrenheit degrees Fahrenheit is $celsius degrees Celsius."

could be placed in a function (itself placed in a script):

param([double] $fahrenheit)

Convert Fahrenheit to Celsius
function ConvertFahrenheitToCelsius([double] $fahrenheit)

{
Scelsius = $fahrenheit - 32
Scelsius = $celsius / 1.8
Scelsius

}

Scelsius = ConvertFahrenheitToCelsius $fahrenheit

290 | Chapter 11: Code Reuse

Output the answer

"$fahrenheit degrees Fahrenheit is $celsius degrees Celsius."
Although using a function arguably makes this specific script longer and more diffi-
cult to understand, the technique is extremely valuable (and used) in almost all non-
trivial scripts.

Discussion

Once you define a function, any command after that definition can use it. This means
that you must define your function before any part of your script that uses it. You
might find this unwieldy if your script defines many functions, as the function defini-
tions obscure the main logic portion of your script. If this is the case, you can put
your main logic in a Main function, as described in Recipe 11.21.

A common question that comes from those accustomed to batch
scripting in cmd.exe is, “What is the PowerShell equivalent of a
GOTO?” In situations where the GOTO is used to call subroutines or
other isolated helper parts of the batch file, use a PowerShell func-
tion to accomplish that task. If the GOTO is used as a way to loop
over something, PowerShell's looping mechanisms are more
appropriate.

In PowerShell, calling a function is designed to feel just like calling a cmdlet or a
script. As a user, you shouldn't have to know whether a little helper routine was writ-
ten as a cmdlet, script, or function. When you call a function, simply add the parame-
ters after the function name, with spaces separating each one (as shown in the Solu-
tion). This is in contrast to the way that you call functions in many programming lan-
guages (such as C#), where you use parentheses after the function name and commas
between each parameter:

Correct
ConvertFahrenheitToCelsius $fahrenheit

Incorrect

ConvertFahrenheitToCelsius($fahrenheit)
Also, notice that the return value from a function is anything that the function writes
to the output pipeline (such as $celsius in the Solution). You can write return
$celsius if you want, but it’s unnecessary.

For more information about writing functions, see “Writing Scripts, Reusing Func-
tionality” on page 839. For more information about PowerShell’s looping statements,
see Recipe 4.4.

11.2Writea Function | 291

See Also
Recipe 4.4, “Repeat Operations with Loops”
“Writing Scripts, Reusing Functionality” on page 839

11.3 Find a Verb Appropriate for a Command Name

Problem

You are writing a new script or function and want to select an appropriate verb for
that command.

Solution

Review the output of the Get-Verb command to find a verb appropriate for your
command:

PS > Get-Verb In* | Format-Table -Auto

Verb Group

Initialize Data
Install Lifecycle
Invoke Lifecycle

Discussion

Consistency of command names is one of PowerShell's most beneficial features,
largely due to its standard set of verbs. While descriptive command names (such as
Stop-Process) make it clear what a command does, standard verbs make commands
easier to discover.

For example, many technologies have their own words for creating something: new,
create, instantiate, build, and more. When a user looks for a command (without the
benefit of standard verbs), the user has to know the domain-specific terminology for
that action. If the user doesn’t know the domain-specific verb, they are forced to page
through long lists of commands in the hope that something rings a bell.

When commands use PowerShell’s standard verbs, however, discovery becomes
much easier. Once users learn the standard verb for an action, they don’t need to
search for its domain-specific alternatives. Most importantly, the time they invest
(actively or otherwise) learning the standard PowerShell verbs improves their effi-
ciency with all commands, not just commands from a specific domain.

292 | Chapter 11: Code Reuse

This discoverability issue is so important that PowerShell generates
a warning message when a module defines a command with a non-
standard verb. To support domain-specific names for your com-
mands in addition to the standard names, simply define an alias.
For more information, see Recipe 11.8.

To make it easier to select a standard verb while writing a script or function, Power-
Shell provides a Get-Verb function. You can review the output of that function to
find a verb suitable for your command. For an even more detailed description of the
standard verbs, see Appendix J.

See Also

Recipe 11.8, “Selectively Export Commands from a Module”
Appendix J, Standard PowerShell Verbs

11.4 Write a Script Block

Problem

You have a section of your script that works nearly the same for all input, aside from a
minor change in logic.

Solution

As shown in Example 11-3, place the minor logic differences in a script block, and
then pass that script block as a parameter to the code that requires it. Use the invoke
operator (&) to execute the script block.

Example 11-3. A script that applies a script block to each element in the pipeline

##
Invoke-ScriptBlock

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

<#
.SYNOPSIS

Apply the given mapping command to each element of the input. (Note that
PowerShell includes this command natively, and calls it Foreach-0Object)

11.4 Writea Script Block | 293

.EXAMPLE

PS > 1,2,3 | Invoke-ScriptBlock { S_ * 2 }
#>

param(

The script block to apply to each incoming element
[ScriptBlock] $MapCommand

)
begin
{
Set-StrictMode -Version 3
}
process
{
& SmapCommand
}
Discussion

Imagine a script that needs to multiply all the elements in a list by two:

function MultiplyInputByTwo

{
process
{
$_*2
}
}

but it also needs to perform a more complex calculation:

function MultiplyInputComplex

{
process
{
(S_+2) *3
}
}

These two functions are strikingly similar, except for the single line that actually per-
forms the calculation. As we add more calculations, this quickly becomes more evi-
dent. Adding each new seven-line function gives us only one unique line of value!

PS > 1,2,3 | MultiplyInputByTwo

2

4

6

PS > 1,2,3 | MultiplyInputComplex
9

12

15

294 | Chapter 11: Code Reuse

If we instead use a script block to hold this “unknown” calculation, we don’t need to
keep on adding new functions:

PS > 1,2,3 | Invoke-ScriptBlock { $_ * 2 }

2

4

6

PS > 1,2,3 | Invoke-ScriptBlock { ($_ + 2) * 3 }

9

12

15

PS > 1,2,3 | Invoke-ScriptBlock { (S_ + 3) * S_ }

4

10

18

In fact, the functionality provided by Invoke-ScriptBlock is so helpful that it’s a
standard PowerShell cmdlet—called ForEach-Object. For more information about
script blocks, see “Writing Scripts, Reusing Functionality” on page 839. For more
information about running scripts, see Recipe 1.2.

See Also
Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

“Writing Scripts, Reusing Functionality” on page 839

11.5 Return Data from a Script, Function, or Script Block

Problem

You want your script or function to return data to whatever called it.

Solution

To return data from a script or function, write that data to the output pipeline:

Get-Tomorrow

##

Get the date that represents tomorrow

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

Set-StrictMode -Version 3

function GetDate

{

11.5 Return Data from a Script, Function, or Script Block | 295

Get-Date
}

Stomorrow = (GetDate).AddDays(1)
Stomorrow

Discussion

In PowerShell, any data that your function or script generates gets sent to the output
pipeline, unless something captures that output. The GetDate function generates data
(a date) and doesn’t capture it, so that becomes the output of the function. The por-
tion of the script that calls the GetDate function captures that output and then
manipulates it.

Finally, the script writes the $tomorrow variable to the pipeline without capturing it,
so that becomes the return value of the script itself.

Some .NET methods—such as the System.Collections.Array
List class—produce output, even though you may not expect them
to. To prevent these methods from sending data to the output pipe-
line, either capture the data or cast it to [void]:

PS > $collection = New-Object System.Collections.ArraylList
PS > $collection.Add("Hello")

0

PS > [void] $collection.Add("Hello")

Even with this “pipeline output becomes the return value” philosophy, PowerShell
continues to support the traditional return keyword as a way to return from a func-
tion or script. If you specify anything after the keyword (such as return "Hello"),
PowerShell treats that as a "Hello" statement followed by a return statement.

If you want to make your intention clear to other readers of your
script, you can use the Write-Output cmdlet to explicitly send data
down the pipeline. Both produce the same result, so this is only a
matter of preference.

If you write a collection (such as an array or ArrayList) to the output pipeline, Pow-
erShell in fact writes each element of that collection to the pipeline. To keep the col-
lection intact as it travels down the pipeline, prefix it with a comma when you return
it. This returns a collection (that will be unraveled) with one element: the collection
you wanted to keep intact.

function WritesObjects

{
SarrayList = New-Object System.Collections.ArraylList
[void] S$arrayList.Add("Hello")

296 | Chapter 11: Code Reuse

[void] S$arrayList.Add("World")

SarraylList
}
function WritesArrayList
{
SarrayList = New-Object System.Collections.ArraylList
[void] S$arrayList.Add("Hello")
[void] S$arrayList.Add("World")
,SarraylList
}

SobjectOutput = WritesObjects

The following command would generate an error
SobjectOutput.Add("Extra")

SarrayListOutput = WritesArraylList
SarrayListOutput.Add("Extra")

Although relatively uncommon in PowerShell's world of fully structured data, you
may sometimes want to use an exit code to indicate the success or failure of your
script. For this, PowerShell offers the exit keyword.

For more information about the return and exit statements, please see “Writing
Scripts, Reusing Functionality” on page 839 and Recipe 15.1.

See Also
Recipe 15.1, “Determine the Status of the Last Command”

“Writing Scripts, Reusing Functionality” on page 839

11.6 Package Common Commands in a Module

Problem

You've developed a useful set of commands or functions. You want to offer them to
the user or share them between multiple scripts.

Solution

First, place these common function definitions by themselves in a file with the exten-
sion .psm1I, as shown in Example 11-4.

11.6 Package Common Commands ina Module | 297

Example 11-4. A module of temperature commands

##
Temperature.psml

Commands that manipulate and convert temperatures
##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www. leeholmes.com/guide)

##

Convert Fahrenheit to Celsius
function Convert-FahrenheitToCelsius([double] $fahrenheit)

{
$celsius = $fahrenheit - 32
Scelsius = Scelsius / 1.8
Scelsius

}

Convert Celsius to Fahrenheit
function Convert-CelsiusToFahrenheit([double] $celsius)

{
$fahrenheit = $celsius * 1.8
$fahrenheit = $fahrenheit + 32
$fahrenheit

}

Next, place that file in your Modules directory (as defined in the PSModulePath envi-
ronment variable), in a subdirectory with the same name. For example, place
Temperature.psml in <My Documents>\PowerShell\Modules\Temperature. Call the
Import-Module command to import the module (and its commands) into your ses-
sion, as shown by Example 11-5.

Example 11-5. Importing a module

PS > Import-Module Temperature
PS > Convert-FahrenheitToCelsius 81
27.2222222222222

Discussion

PowerShell modules give you an easy way to package related commands and func-
tionality. As the Solution demonstrates, writing a module is as simple as adding func-
tions to a file.

As with the naming of core commands, the naming of commands packaged in a
module plays a critical role in giving users a consistent and discoverable PowerShell
experience. When you name the commands in your module, ensure that they follow
a Verb-Noun syntax and that you select verbs from PowerShell’s standard set of verbs.

298 | Chapter 11: Code Reuse

If your module doesn’t follow these standards, your users will receive a warning mes-
sage when they load your module. For information about how to make your module
commands discoverable (and as domain-specific as required), see Recipe 11.8.

In addition to creating the .psm1 file that contains your module’s commands, you
should also create a module manifest to describe its contents and system require-
ments. Module manifests let you define the module’s author, company, copyright
information, and more. For more information, see the New-ModuleManifest cmdlet.

After writing a module, the last step is making it available to the system. When you
call Import-Module <module name> to load a module, PowerShell looks through each
directory listed in the PSModulePath environment variable.

The PSModulePath variable is an environment variable, just like the
system’s PATH environment variable. For more information on how
to view and modify environment variables, see Recipe 16.1.

If PowerShell finds a directory named <module name>, it looks in that directory for a
psml file with that name as well. Once it finds the psm1 file, it loads that module into
your session. In addition to psml files, PowerShell also supports module manifest
(psd1) files that let you define a great deal of information about the module: its
author, description, nested modules, version requirements, and much more. For
more information, type Get-Help New-ModuleManifest.

If you want to make your module available to just yourself (or the “current user” if
you're installing your module as part of a setup process), place it in the per-user mod-
ules folder: <My Documents>\PowerShell\Modules\<module name>. If you want to
make the module available to all users of the system, place your module in its own
directory under the Program Files directory, and then add that directory to the
system-wide PSModulePath environment variable.

If you don't want to permanently install your module, you can instead specify the
complete path to the psm1 file when you load the module. For example:

Import-Module c:\tools\Temperature.psmi

If you want to load a module from the same directory that your script is in, see Recipe
16.6.

When you load a module from a script, PowerShell makes the commands from that
module available to the entire session. If your script loads the Temperature module,
for example, the functions in that module will still be available after your script exits.
To ensure that your script doesn’t accidentally influence the user’s session after it
exits, you should remove any modules that you load:

11.6 Package Common Commands ina Module | 299

$moduleToRemove = Snull
if(-not (Get-Module <Module Name>))

SmoduleToRemove = Import-Module <Module Name> -Passthru

#i#
script goes here
#i#

if($moduleToRemove)

{

SmoduleToRemove | Remove-Module
}
If you have a module that loads a helper module (as opposed to a script that loads a
helper module), this step is not required. Modules loaded by a module impact only
the module that loads them.

If you want to let users configure your module when they load it, you can define a
parameter block at the beginning of your module. These parameters then get filled
through the -ArgumentList parameter of the Import-Module command. For exam-
ple, a module that takes a “retry count” and website as parameters:
param(
[int] $RetryCount,

[URI] $Website
)

function Get-Page

{

}
The user would load the module with the following command line:

Import-Module <module name> -ArgumentList 10,"http://www.example.com"

Get-Page "/index.html"
One important point when it comes to the -ArgumentList parameter is that its sup-
port for user input is much more limited than support offered for most scripts, func-
tions, and script blocks. PowerShell lets you access the parameters in most param()
statements by name, by alias, and in or out of order. Arguments supplied to the
Import-Module command, on the other hand, must be supplied as values only, and in
the exact order the module defines them.

For more information about accessing arguments of a command, see Recipe 11.11.
For more information about importing a module (and the different types of modules
available), see Recipe 1.28. For more information about modules, type Get-Help
about_Modules.

300 | Chapter11: Code Reuse

See Also

Recipe 1.28, “Extend Your Shell with Additional Commands”

Recipe 11.8, “Selectively Export Commands from a Module”

Recipe 11.11, “Access Arguments of a Script, Function, or Script Block”

Recipe 16.1, “View and Modify Environment Variables”

11.7 Write Commands That Maintain State

Problem

You have a function or script that needs to maintain state between invocations.

Solution

Place those commands in a module. Store any information you want to retain in a
variable, and give that variable a SCRIPT scope. See Example 11-6.

Example 11-6. A module that maintains state

##
PersistentState.psml

Demonstrates persistent state through module-scoped variables
##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

##

SSCRIPT:memory = $null

function Set-Memory

{
param(
[Parameter(ValueFromPipeline = $true)]
Sitem
)
begin { $SCRIPT:memory = New-Object System.Collections.ArraylList }
process { $null = Smemory.Add(Sitem) }
}
function Get-Memory
{
Smemory.ToArray()
}

Set-Alias remember Set-Memory

11.7 Write Commands That Maintain State | 301

Set-Alias recall Get-Memory

Export-ModuleMember -Function Set-Memory,Get-Memory
Export-ModuleMember -Alias remember,recall

Discussion

When writing scripts or commands, you'll frequently need to maintain state between
the invocation of those commands. For example, your commands might remember
user preferences, cache configuration data, or store other types of module state. See
Example 11-7.

Example 11-7. Working with commands that maintain state

PS > Import-Module PersistentState
PS > Get-Process -Name PowerShell | remember

PS > recall

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName
527 6 32704 44140 172 2.13 2644 powershell
517 7 23080 33328 154 1.81 2812 powershell
357 6 31848 33760 165 1.42 3576 powershell

In basic scripts, the only way to maintain state across invocations is to store the infor-
mation in a global variable. This introduces two problems, though.

The first problem is that global variables impact much more than just the script that
defines them. Once your script stores information in a global variable, it pollutes the
user’s session. If the user has a variable with the same name, your script overwrites its
contents. The second problem is the natural counterpart to this pollution. When your
script stores information in a global variable, both the user and other scripts have
access to it. Due to accident or curiosity, it’s quite easy for these “internal” global vari-
ables to be damaged or corrupted.

You can resolve this issue through the use of modules. By placing your commands in
a module, PowerShell makes variables with a script scope available to all commands
in that module. In addition to making script-scoped variables available to all of your
commands, PowerShell maintains their value between invocations of those
commands.

Like variables, PowerShell drives obey the concept of scope. When
you use the New-PSDrive cmdlet from within a module, that drive
stays private to that module. To create a new drive that’s visible
from outside your module as well, create it with a global scope:

New-PSDrive -Name Temp FileSystem -Root C:\Temp -Scope Global

302 | Chapter 11: Code Reuse

For more information about variables and their scopes, see Recipe 3.6. For more

information about defining a module, see Recipe 11.6.

See Also
Recipe 3.6, “Control Access and Scope of Variables and Other Items”

Recipe 11.6, “Package Common Commands in a Module”

11.8 Selectively Export Commands from a Module

Problem

You have a module and want to export only certain commands from that module.

Solution

Use the Export-ModuleMember cmdlet to declare the specific commands you want
exported. All other commands then remain internal to your module. See

Example 11-8.

Example 11-8. Exporting specific commands from a module

##
SelectiveCommands.psmi

Demonstrates the selective export of module commands
##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www. leeholmes.com/guide)

##

An internal helper function
function MyInternalHelperFunction
{
"Result from my internal helper function"

}

A command exported from the module

function Get-SelectiveCommandInfo

{
"Getting information from the SelectiveCommands module"
MyInternalHelperFunction

}

Alternate names for our standard command
Set-Alias gsci Get-SelectiveCommandInfo
Set-Alias DomainSpecificVerb-Info Get-SelectiveCommandInfo

11.8 Selectively Export Commands from a Module

303

Export specific commands
Export-ModuleMember -Function Get-SelectiveCommandInfo
Export-ModuleMember -Alias gsci,DomainSpecificVerb-Info

Discussion

When PowerShell imports a module, it imports all functions defined in that module
by default. This makes it incredibly simple (for you as a module author) to create a
library of related commands.

Once your module commands get more complex, you’ll often write helper functions
and support routines. Since these commands aren’t intended to be exposed directly to
users, you'll instead need to selectively export commands from your module. The
Export-ModuleMember command allows exactly that.

Once your module includes a call to Export-ModuleMember, PowerShell no longer
exports all functions in your module. Instead, it exports only the commands that you
define. The first call to Export-ModuleMember in Example 11-8 demonstrates how to
selectively export a function from a module.

Since consistency of command names is one of PowerShell’s most beneficial features,
PowerShell generates a warning message if your module exports functions (either
explicitly or by default) that use nonstandard verbs. For example, imagine that you
have a technology that uses regenerate configuration as a highly specific phrase for a
task. In addition, it already has a regen command to accomplish this task.

You might naturally consider Regenerate-Configuration and regen as function
names to export from your module, but doing that would alienate users who don’t
have a strong background in your technology. Without your same technical expertise,
they wouldn’t know the name of the command, and instead would instinctively look
for Reset-Configuration, Restore-Configuration, or Initialize-Configuration
based on their existing PowerShell knowledge. In this situation, the solution is to
name your functions with a standard verb and also use command aliases to support
your domain-specific experts.

The Export-ModuleMember cmdlet supports this situation as well. In addition to let-
ting you selectively export commands from your module, it also lets you export alter-
native names (aliases) for your module commands. The second call to Export-
ModuleMember in Example 11-8 (along with the alias definitions that precede it) dem-
onstrates how to export aliases from a module.

For more information about command naming, see Recipe 11.3. For more informa-
tion about writing a module, see Recipe 11.6.

304 | Chapter11: Code Reuse

See Also
Recipe 3.6, “Control Access and Scope of Variables and Other Items”
Recipe 11.3, “Find a Verb Appropriate for a Command Name”

Recipe 11.6, “Package Common Commands in a Module”

11.9 Diagnose and Interact with Internal Module State

Problem

You have a module and want to examine its internal variables and functions.

Solution

Use the Enter-Module script (Example 11-9) to temporarily enter the module and
invoke commands within its scope.

Example 11-9. Invoking commands from within the scope of a module

##

Enter-Module

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

<#
.SYNOPSIS

Lets you examine internal module state and functions by executing user
input in the scope of the supplied module.

.EXAMPLE

PS > Import-Module PersistentState
PS > Get-Module PersistentState

ModuleType Name ExportedCommands

Script PersistentState {Set-Memory, Get-Memory}

PS > "Hello World" | Set-Memory

PS > Sm = Get-Module PersistentState
PS > Enter-Module $m
PersistentState: dir variable:|mem*

11.9 Diagnose and Interact with Internal Module State | 305

Name Value

memory {Hello World}

PersistentState: exit
PS >

#>
param(
The module to examine

[System.Management.Automation.PSModuleInfo] $Module
)

Set-StrictMode -Version 3

SuserInput = Read-Host $(Smodule.Name)
while($userInput -ne "exit")

{
$scriptblock = [ScriptBlock]::Create($SuserInput)
& $module Sscriptblock
SuserInput = Read-Host $($module.Name)

}

Discussion

PowerShell modules are an effective way to create sets of related commands that
share private state. While commands in a module can share private state between
themselves, PowerShell prevents that state from accidentally impacting the rest of
your PowerShell session.

When you're developing a module, though, you might sometimes need to interact
with this internal state for diagnostic purposes. To support this, PowerShell lets you
target a specific module with the invocation (&) operator:

PS > $m = Get-Module PersistentState
PS > & $m { dir variable:\mem* }

Name Value

memory {Hello World}

This syntax gets cumbersome for more detailed investigation tasks, so Enter-Module
automates the prompting and invocation for you.

For more information about writing a module, see Recipe 11.6.

See Also

Recipe 11.6, “Package Common Commands in a Module”

306 | Chapter11: Code Reuse

11.10 Handle Cleanup Tasks When a Module Is Removed

Problem

You have a module and want to perform some action (such as cleanup tasks) when
that module is removed.

Solution

Assign a script block to the S$MyInvocation.MyCommand.ScriptBlock.Module.
OnRemove event. Place any cleanup commands in that script block. See
Example 11-10.

Example 11-10. Handling cleanup tasks from within a module

A A A A1 A A A A1 A A1 A A1 A A A A A A A A A A A A A A4

##

TidyModule.psm1

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)

##
U UL LLL L LY L LY LU L LB L L LR L LR LR LR LY L LR L YRR DL LB LR L LB LR LRSS

<#

.SYNOPSIS
Demonstrates how to handle cleanup tasks when a module is removed

.EXAMPLE

PS > Import-Module TidyModule
PS > STidyModuleStatus
Initialized

PS > Remove-Module TidyModule
PS > STidyModuleStatus
Cleaned Up

#>

Perform some initialization tasks
SGLOBAL : TidyModuleStatus = "Initialized"

Register for cleanup

$MyInvocation.MyCommand.ScriptBlock.Module.OnRemove = {
SGLOBAL : TidyModuleStatus = "Cleaned Up"

}

11.10 Handle Cleanup Tasks When a Module Is Removed | 307

Discussion

PowerShell modules have a natural way to define initialization requirements (any
script written in the body of the module), but cleanup requirements aren'’t as simple.

During module creation, you can access your module using the $MyInvocation.
MyCommand.ScriptBlock.Module property. Each module has an OnRemove event,
which you can then subscribe to by assigning it a script block. When PowerShell
unloads your module, it invokes that script block.

Beware of using this technique for extremely sensitive cleanup requirements. If the
user simply exits the PowerShell window, the OnRemove event isn’t processed. If this is
a concern, register for the PowerShell.Exiting engine event and remove your mod-
ule from there:

Register-EngineEvent PowerShell.Exiting { Remove-Module TidyModule }
This saves the user from having to remember to call Remove-Module.

For more information about writing a module, see Recipe 11.6. For more information
about PowerShell events, see Recipe 31.2.

See Also
Recipe 11.6, “Package Common Commands in a Module”

Recipe 31.2, “Create and Respond to Custom Events”

11.11 Access Arguments of a Script, Function, or Script
Block

Problem

You want to access the arguments provided to a script, function, or script block.

Solution

To access arguments by name, use a param statement:

param(S$firstNamedArgument, [int] $secondNamedArgument = 0)

"First named argument is: $firstNamedArgument"
"Second named argument is: $secondNamedArgument"

To access unnamed arguments by position, use the $args array:

"First positional argument is: " + $args[0]
"Second positional argument is: " + $args[1]

308 | Chapter 11: Code Reuse

You can use these techniques in exactly the same way with scripts, functions, and
script blocks, as illustrated by Example 11-11.

Example 11-11. Working with arguments in scripts, functions, and script blocks

##

Get-Arguments

##

From PowerShell Cookbook (0'Reilly)

by Lee Holmes (http://www.leeholmes.com/guide)
##

<#
.SYNOPSIS
Uses command-line arguments
#>
param(
The first named argument
S$FirstNamedArgument,
The second named argument
[int] $SecondNamedArgument = 0
)
Set-StrictMode -Version 3
Display the arguments by name
"First named argument is: $firstNamedArgument"

"Second named argument is: $secondNamedArgument"

function GetArgumentsFunction

{
We could use a param statement here, as well
param(SfirstNamedArgument, [int] $secondNamedArgument = @)
Display the arguments by position
"First positional function argument is: " + $args[0]
"Second positional function argument is: " + S$Sargs[1]
}

GetArgumentsFunction One Two

$scriptBlock =
{

param($firstNamedArgument, [int] $secondNamedArgument = 0)

We could use Sargs here, as well
"First named scriptblock argument is: $firstNamedArgument"

11.11 Access Arguments of a Script, Function, or Script Block | 309

"Second named scriptblock argument is: $secondNamedArgument"

}

& S$scriptBlock -First One -Second 4.5

Example 11-11 produces the following output:

PS > Get-Arguments First 2

First named argument is: First

Second named argument is: 2

First positional function argument is: One
Second positional function argument is: Two
First named scriptblock argument is: One
Second named scriptblock argument is: 4

Discussion

Although PowerShell supports both the param keyword and the $args array, you will
most commonly want to use the param keyword to define and access script, function,
and script block parameters.

In most languages, the most common reason to access parameters
through an $args array is to determine the name of the currently
running script. For information about how to do this in Power-
Shell, see Recipe 16.3.

When you use the param keyword to define your parameters, PowerShell provides
your script or function with many useful features that allow users to work with your
script much as they work with cmdlets:

Users need to specify only enough of the parameter name to disambiguate it
from other parameters.

o Users can understand the meaning of your parameters much more clearly.

 You can specify the type of your parameters, which PowerShell uses to convert
input if required.

« You can specify default values for your parameters.

Supporting PowerShell’'s common parameters

In addition to the parameters you define, you might also want to support Power-
Shell's standard parameters: -Verbose, -Debug, -ErrorAction, -WarningAction,
-InformationAction, -ErrorVariable, -WarningVariable, -InformationVariable,
-OutVariable, -OutBuffer, and -PipelineVariable.

310 | Chapter 11: Code Reuse

To get these additional parameters, add the [CmdletBinding()] attribute inside your
function, or declare it at the top of your script. The param() statement is required,
even if your function or script declares no parameters. These (and other associated)
additional features now make your function an advanced function. See
Example 11-12.

Example 11-12. Declaring an advanced function

function Invoke-MyAdvancedFunction

{

[CmdletBinding()]

param()

Write-Verbose "Verbose Message"
}

If your function defines a parameter with advanced validation, you don’t need to
explicitly add the [CmdletBinding()] attribute. In that case, PowerShell already
knows to treat your command as an advanced function.

During PowerShell’s beta phases, advanced functions were known
as script cmdlets. We decided to change the name because the term
script cmdlets caused a sense of fear of the great unknown. Users
would be comfortable writing functions, but “didn’t have the time
to learn those new script cmdlet things” Because script cmdlets
were just regular functions with additional power, the new name
made a lot more sense.

Although PowerShell adds all of its common parameters to your function, you don’t
actually need to implement the code to support them. For example, calls to Write-
Verbose usually generate no output. When the user specifies the -Verbose parameter
to your function, PowerShell then automatically displays the output of the Write-
Verbose cmdlet.

PS > Invoke-MyAdvancedFunction

PS > Invoke-MyAdvancedFunction -Verbose

VERBOSE: Verbose Message
If your cmdlet modifies system state, it's extremely helpful to support the standard
-WhatIf and -Confirm parameters. For information on how to accomplish this, see
Recipe 11.15.

11.11 Access Arguments of a Script, Function, or Script Block | 311

Using the Sargs array

Despite all of the power exposed by named parameters, common parameters, and
advanced functions, the $args array is still sometimes helpful. For example, it pro-
vides a clean way to deal with all arguments at once:

function Reverse

{
Sargsknd = $args.Length - 1
Sargs[$argsEnd..0]

}

This produces:

PS > Reverse 1 2 3 4

4

3

2

1

If you have defined parameters in your script, the $args array represents any argu-
ments not captured by those parameters:

function MyParamsAndArgs {
param(SMyArgument)

"Got MyArgument: $MyArgument"
"Got Args: $args"
}

PS > MyParamsAndArgs -MyArgument One Two Three

Got MyArgument: One

Got Args: Two Three
Until this point, all examples in this recipe have shown how to access command
parameters from within the command itself. In some situations, you might need to
know how some other command would process input if it were supplied. For this sce-
nario, you can use the PowerShell static parameter binder class. For example, this
advanced function allows positional parameters, but whether the first one gets coun-
ted as the Id or Name depends on exactly what you pass in:

function Invoke-ComplexFunction
{
param(
[Parameter(ParameterSetName = "ById", Position = 0)]
[int] $Id,

[Parameter(ParameterSetName = "ByName", Position = 0)]
[string] $Name,

[Parameter(Position = 1)]
[string] $Extra

312 | Chapter 11: Code Reuse

If we use the static parameter binder, we can see how PowerShell would have
treated that input:

S$script = { Invoke-ComplexFunction 1234 Hello }
$command = $script.Ast.Find(
{ param($Ast) $Ast -is [Management.Automation.lLanguage.CommandAst] }, S$false)
Sresults = [Management.Automation.lLanguage.StaticParameterBinder]::BindCommand(
Scommand)

When we peek into $results, we can see that PowerShell would have picked the Id
and Extra parameters:

PS > S$results.BoundParameters

Id System.Management.Automation.Language.ParameterBindingResult
Extra System.Management.Automation.Language.ParameterBindingResult

And even what values they would have been given:

PS > S$results.BoundParameters.Id
ConstantValue Value

1234 1234

PS > S$results.BoundParameters.Extra
ConstantValue Value

For more information about the param statement, see “Writing Scripts, Reusing Func-
tionality” on page 839. For more information about running scripts, see Recipe 1.2.
For more information about functionality (such as -Whatif and -Confirm) exposed
by the PowerShell engine, see Recipe 11.15.

For information about how to declare parameters with rich validation and behavior,
see Recipe 11.12.

See Also

Recipe 1.2, “Run Programs, Scripts, and Existing Tools”

Recipe 11.12, “Add Validation to Parameters”

Recipe 11.15, “Provide -Whatlf, -Confirm, and Other Cmdlet Features”
Recipe 16.3, “Access Information About Your Command’s Invocation”

“Writing Scripts, Reusing Functionality” on page 839

11.11 Access Arguments of a Script, Function, or Script Block | 313

11.12 Add Validation to Parameters

Problem

You want to ensure that user input to a parameter satisfies certain restrictions or
constraints.

Solution

Use the [Parameter()] attribute to declare the parameter as mandatory, positional,
part of a mutually exclusive set of parameters, or able to receive its input from the
pipeline.
param(
[Parameter(
Mandatory = Strue,
Position = 0,
ValueFromPipeline = S$true,
ValueFromPipelineByPropertyName = S$true)]
[string[]] $Name

Use additional validation attributes to define aliases, support for null or empty values,
count restrictions (for collections), length restrictions (for strings), regular expression
requirements, range requirements (for numbers), permissible value requirements, or
even arbitrary script requirements.
param(
[validateLength(5,10)]

[string] $Name
)

"Hello SName"

Discussion

Traditional shells require extensions (scripts and commands) to write their parameter
support by hand, resulting in a wide range of behavior. Some implement a bare, con-
fusing minimum of support. Others implement more complex features, but differ-
ently than any other command. The bare, confusing minimum is by far the most
common, as writing fully featured parameter support is a complex endeavor.

Luckily, the PowerShell engine already wrote all of the complex parameter handling
support and manages all of this detail for you. Rather than write the code to enforce
it, you can simply mark parameters as mandatory or positional or state their valida-
tion requirements. This built-in support for parameter behavior and validation forms
a centerpiece of PowerShell’s unique consistency.

314 | Chapter 11: Code Reuse

Parameter validation is one of the main distinctions between scripts that are well
behaved and those that are not. When running a new script (or one you wrote dis-
tantly in the past), reviewing the parameter definitions and validation requirements is
one of the quickest ways to familiarize yourself with how that script behaves.

From the script author’s perspective, validation requirements save you from writing
verification code that you'll need to write anyway.

Defining parameter behavior

The elements of the [Parameter()] attribute mainly define how your parameter
behaves in relation to other parameters. All elements are optional.

You can omit the = $true assignment for any element that simply takes a $true or
$false value:

Mandatory = $true
Defines the parameter as mandatory. If the user doesn’t supply a value to this
parameter, PowerShell automatically prompts the user for it. When not specified,
the parameter is optional.

Position = position
Defines the position of this parameter. This applies when the user provides
parameter values without specifying the parameter they apply to (for example,
Argument? in Invoke-MyFunction -Paraml Argumentl Argument?2). PowerShell
supplies these values to parameters that have defined a Position, from lowest to
highest. When not specified, the name of this parameter must be supplied by the
user.

ParameterSetName = name

Defines this parameter as a member of a set of other related parameters. Parame-
ter behavior for this parameter is then specific to this related set of parameters,
and the parameter exists only in parameter sets in which it’s defined. This feature
is used, for example, when the user may supply only a Name or ID. To include a
parameter in two or more specific parameter sets, use two or more
[Parameter ()] attributes. When not specified, this parameter is a member of all
parameter sets. To define the default parameter set name of your cmdlet, supply
it in the CmdletBinding attribute: [CmdletBinding(DefaultParameterSetName
= "Name")].

ValueFromPipeline = $true
Declares this parameter as one that directly accepts pipeline input. If the user
pipes data into your script or function, PowerShell assigns this input to your
parameter in your command’s process {} block. For more information about
accepting pipeline input, see Recipe 11.18. Beware of applying this parameter to

11.12 Add Validation to Parameters | 315

String parameters, as almost all input can be converted to strings—often pro-
ducing a result that doesn’t make much sense. When not specified, this parameter
doesn't accept pipeline input directly.

ValueFromPipelineByPropertyName = $true
Declares this parameter as one that accepts pipeline input if a property of an
incoming object matches its name. If this is true, PowerShell assigns the value of
that property to your parameter in your command’s process {} block. For more
information about accepting pipeline input, see Recipe 11.18. When not speci-
fied, this parameter doesn’t accept pipeline input by property name.

ValueFromRemainingArguments = $true
Declares this parameter as one that accepts all remaining input that hasn’'t other-
wise been assigned to positional or named parameters. Only one parameter can
have this element. If no parameter declares support for this capability, PowerShell
generates an error for arguments that cannot be assigned.

Defining parameter validation

In addition to the [Parameter ()] attribute, PowerShell lets you apply other attributes
that add further behavior or validation constraints to your parameters. All validation
attributes are optional:

[Alias("name")]
Defines an alternate name for this parameter. This is especially helpful for long
parameter names that are descriptive but have a more common colloquial term.
When not specified, the parameter can be referred to only by the name you origi-
nally declared. You can supply many aliases to a parameter. To learn about aliases
for command parameters, see Recipe 1.20.

[