

PHPUnit
Pocket Guide

Sebastian Bergmann

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,TITLE.16182 Page 3 Wednesday, July 5, 2006 9:34 AM

,TITLE.21695 Page 3 Sunday, June 18, 2006 8:42 PM

PHPUnit Pocket Guide
by Sebastian Bergmann

Copyright © 2006 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,
Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles
(safari.oreilly.com). For more information, contact our corporate/
institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Allison Randal

Production Editor: Marlowe Shaeffer
Cover Designer: Karen Montgomery

Interior Designer: David Futato

Printing History:
October 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are
registered trademarks of O’Reilly Media, Inc. The Pocket Guide series
designations, PHPUnit Pocket Guide, the image of a minivet, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this book, and O’Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omissions, or for
damages resulting from the use of the information contained herein.

0-596-10103-1
[C]

,COPYRIGHT.16303 Page iv Wednesday, July 5, 2006 9:34 AM

,TITLE.21695 Page 3 Sunday, June 18, 2006 8:42 PM

v

Contents

Introduction 1
Requirements 1
This Book Is Free 2
Conventions Used in This Book 2
How to Contact Us 3
Acknowledgments 4

Automating Tests 4

PHPUnit’s Goals 7

Installing PHPUnit 11

The Command-Line Test Runner 12

Fixtures 16
More setUp() than tearDown() 18
Variations 19
Suite-Level Setup 19

Testing Exceptions and Performance Regressions 20
Exceptions 21
Performance Regressions 23

vi | Contents

Incomplete Tests 24

Test-First Programming 25
BankAccount Example 27

Code-Coverage Analysis 32

Stubs 34
Self-Shunting 36

Other Uses for Tests 37
Agile Documentation 37
Cross-Team Tests 38
Debugging Tests 39
Refactoring 40

PHPUnit and Phing 40
Formatting Feedback 42

PHPUnit’s Implementation 48

PHPUnit API 50
Overview 50
PHPUnit2_Framework_Assert 51
PHPUnit2_Framework_Test 57
PHPUnit2_Framework_TestCase 57
PHPUnit2_Framework_TestSuite 58
PHPUnit2_Framework_TestResult 62
Package Structure 65

Extending PHPUnit 66
Subclass PHPUnit2_Framework_TestCase 66
Assert Classes 66
Subclass PHPUnit2_Extensions_TestDecorator 66

Contents | vii

Implement PHPUnit2_Framework_Test 68
Subclass PHPUnit2_Framework_TestResult 69
Implement PHPUnit2_Framework_TestListener 69
New Test Runner 72

PHPUnit for PHP 4 72

Bibliography 75

Index 77

| 1

Chapter 1

PHPUnit Pocket Guide

Introduction
For a very long time, my answer to the question, “When will
you write documentation for PHPUnit?” has been, “You do
not need documentation for PHPUnit. Just read the docu-
mentation for JUnit or buy a book on JUnit and adapt the
code examples from Java™ and JUnit to PHP and PHPUnit.”
When I mentioned this to Barbara Weiss and Alexandra Fol-
lenius from the O’Reilly Germany office, they encouraged me
to think it over and write a book that would serve as the doc-
umentation for PHPUnit.

Requirements
The topic of this book is PHPUnit, an open source frame-
work for test-driven development with the PHP program-
ming language. This book covers Version 2.3 of PHPUnit,
which requires PHP 5.1. However, most of the examples
should work with PHPUnit Versions 2.0–2.2, as well as PHP
5.0. The “PHPUnit for PHP 4” section, later in this book,
covers the older, no longer actively developed version of
PHPUnit for PHP 4.

2 | PHPUnit Pocket Guide

The reader should have a good understanding of object-
oriented programming with PHP 5. To German readers, I
recommend my book Professionelle Softwareentwicklung mit
PHP 5 as an introduction to object-oriented programming
with PHP 5. A good English book on the subject is PHP 5
Power Programming by Andi Gutmans, Stig Bakken, and
Derick Rethans (Prentice Hall PTR).

This Book Is Free
This book is available under the Creative Commons license.
You will always find the latest version of this book at its web
site: http://www.phpunit.de/pocket_guide/. You may distrib-
ute and make changes to this book however you wish. Of
course, rather than distribute your own private version of the
book, I would prefer you send feedback and patches to
sb@sebastian-bergmann.de.

Conventions Used in This Book
The following is a list of the typographical conventions used
in this book:

Italic
Indicates new terms, URLs, email addresses, filenames,
file extensions, pathnames, directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, func-
tions, classes, namespaces, methods, modules, parame-
ters, values, objects, the contents of files, or the output
from commands.

Constant width bold
Shows commands or other text that should be typed
literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied
values.

Introduction | 3

You should pay special attention to notes set apart from the
text with the following styles:

TIP

This is a tip, suggestion, or general note. It contains use-
ful supplementary information about the topic at hand.

WARNING

This is a warning or note of caution.

How to Contact Us
We have tested and verified the information in this book to
the best of our ability, but you may find that features have
changed (or even that we have made mistakes!).

As a reader of this book, you can help us to improve future
editions by sending us your feedback. Please let us know
about any errors, inaccuracies, bugs, misleading or confus-
ing statements, and typos that you find anywhere in this
book.

Please also let us know what we can do to make this book
more useful to you. We take your comments seriously and
will try to incorporate reasonable suggestions into future edi-
tions. You can write to us at:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

To ask technical questions or to comment on the book, send
email to:

bookquestions@oreilly.com

4 | PHPUnit Pocket Guide

The web site for PHPUnit Pocket Guide lists examples,
errata, and plans for future editions. You can find this page
at:

http://www.oreilly.com/catalog/phpunitpg

For more information about this book and others, see the
O’Reilly web site:

http://www.oreilly.com

Acknowledgments
I would like to thank Kent Beck and Erich Gamma for JUnit
and for the inspiration to write PHPUnit. I would also like to
thank Kent Beck for his JUnit Pocket Guide, which sparked
the idea for this book. I would like to thank Allison Randal,
Alexandra Follenius, and Barbara Weiss for sponsoring this
book at O’Reilly.

I would like to thank Andi Gutmans, Zeev Suraski, and Mar-
cus Börger for their work on the Zend Engine 2, the core of
PHP 5. I would like to thank Derick Rethans for Xdebug, the
PHP extension that makes PHPUnit’s code-coverage func-
tionality possible. Finally, I would like to thank Michiel
Rook, who wrote the PHPUnit tasks for Phing.

Automating Tests
Even good programmers make mistakes. The difference
between a good programmer and a bad programmer is that
the good programmer uses tests to detect his mistakes as
soon as possible. The sooner you test for a mistake, the
greater your chance of finding it, and the less it will cost to
find and fix. This explains why it is so problematic to leave
testing until just before releasing software. Most errors do
not get caught at all, and the cost of fixing the ones you do
catch is so high that you have to perform triage with the
errors because you just cannot afford to fix them all.

Automating Tests | 5

Testing with PHPUnit is not a totally different activity from
what you should already be doing. It is just a different way of
doing it. The difference is between testing—that is, checking
that your program behaves as expected—and performing a
battery of tests—runnable code-fragments that automatically
test the correctness of parts (units) of the software. These
runnable code-fragments are called unit tests.

In this section, we will go from simple print-based testing
code to a fully automated test. Imagine that we have been
asked to test PHP’s built-in Array. One bit of functionality to
test is the function sizeof(). For a newly created array, we
expect the sizeof() function to return 0. After we add an ele-
ment, sizeof() should return 1. Example 1 shows what we
want to test.

A really simple way to check whether we are getting the
results we expect is to print the result of sizeof() before and
after adding the element (see Example 2). If we get 0 and
then 1, Array and sizeof() are behaving as expected.

Example 1. Testing Array and sizeof()

<?php
$fixture = Array();
// $fixture is expected to be empty.

$fixture[] = "element";
// $fixture is expected to contain one element.
?>

Example 2. Using print to test Array and sizeof()

<?php
$fixture = Array();
print sizeof($fixture) . "\n";

$fixture[] = "element";
print sizeof($fixture) . "\n";
?>
0
1

6 | PHPUnit Pocket Guide

Now, we would like to move from tests that require manual
interpretation to tests that can run automatically. In
Example 3, we write the comparison of the expected and
actual values into the test code and print ok if the values are
equal. If we see a not ok message, we know something is
wrong.

We now factor out the comparison of expected and actual
values into a function that raises an exception when there is a
discrepancy (Example 4). Now our test output gets simpler.
Nothing gets printed if the test succeeds. If we see an unhan-
dled exception, we know something has gone wrong.

Example 3. Comparing expected and actual values to test Array and
sizeof()

<?php
$fixture = Array();
print sizeof($fixture) = = 0 ? "ok\n" : "not ok\n";

$fixture[] = "element";
print sizeof($fixture) = = 1 ? "ok\n" : "not ok\n";
?>
ok
ok

Example 4. Using an assertion function to test Array and sizeof()

<?php
$fixture = Array();
assertTrue(sizeof($fixture) = = 0);

$fixture[] = "element";
assertTrue(sizeof($fixture) = = 1);

function assertTrue($condition) {
 if (!$condition) {
 throw new Exception("Assertion failed.");
 }
}
?>

PHPUnit’s Goals | 7

The test is now completely automated. Instead of just testing
as we did with our first version, with this version, we have an
automated test.

The goal of using automated tests is to make fewer mistakes.
While your code will still not be perfect, even with excellent
tests, you will likely see a dramatic reduction in defects once
you start automating tests. Automated tests give you justi-
fied confidence in your code. You can use this confidence to
take more daring leaps in design (see “Refactoring,” later in
this book), get along better with your teammates (see “Cross-
Team Tests,” later in this book), improve relations with your
customers, and go home every night with proof that the sys-
tem is better now than it was that morning because of your
efforts.

PHPUnit’s Goals
So far, we only have two tests for the Array built-in and the
sizeof() function. When we start to test the numerous
array_*() functions PHP offers, we will need to write a test
for each of them. We could write all these tests from scratch.
However, it is much better to write a testing infrastructure
once and then write only the unique parts of each test.
PHPUnit is such an infrastructure.

Example 5 shows how we have to rewrite our two tests from
Example 4 so that we can use them with PHPUnit.

Example 5. Testing Array and sizeof() with PHPUnit

<?php
require_once 'PHPUnit2/Framework/TestCase.php';

class ArrayTest extends PHPUnit2_Framework_TestCase {
 public function testNewArrayIsEmpty() {
 // Create the Array fixture.
 $fixture = Array();

8 | PHPUnit Pocket Guide

Example 5 shows the basic steps for writing tests with
PHPUnit:

1. The tests for a class Class go into a class ClassTest.

2. ClassTest inherits (most of the time) from PHPUnit2_
Framework_TestCase.

3. The tests are public methods that expect no parameters
and are named test*.

4. Inside the test methods, assertion methods such as
assertEquals() (see Table 6) are used to assert that an
actual value matches an expected value.

A framework such as PHPUnit has to resolve a set of con-
straints, some of which seem to conflict with each other.
Simultaneously, tests should be:

Easy to learn to write. Tests should be easy to learn to
write; otherwise, developers will not learn to write them.

Easy to write. Tests should be easy to write; otherwise,
developers will not write them.

 // Assert that the size of the Array fixture is 0.
 $this->assertEquals(0, sizeof($fixture));
 }

 public function testArrayContainsAnElement() {
 // Create the Array fixture.
 $fixture = Array();

 // Add an element to the Array fixture.
 $fixture[] = 'Element';

 // Assert that the size of the Array fixture is 1.
 $this->assertEquals(1, sizeof($fixture));
 }
}
?>

Example 5. Testing Array and sizeof() with PHPUnit (continued)

PHPUnit’s Goals | 9

Easy to read. Test code should contain no extraneous over-
head so that the test itself does not get lost in the noise
that surrounds it.

Easy to execute. Tests should run at the touch of a button
and present their results in a clear and unambiguous
format.

Quick to execute. Tests should run fast so they can be run
hundreds or thousands of times a day.

Isolated. Tests should not affect each other. If the order in
which the tests are run changes, the results of the tests
should not change.

Composable. We should be able to run any number or com-
bination of tests together. This is a corollary of isolation.

There are two main clashes within this group of constraints:

Easy to learn to write versus easy to write. Tests do not gen-
erally require all the flexibility of a programming lan-
guage. Many testing tools provide their own scripting
language that includes only the minimum necessary fea-
tures for writing tests. The resulting tests are easy to read
and write because they have no noise to distract you
from the content of the tests. However, learning yet
another programming language and set of programming
tools is inconvenient and clutters the mind.

Isolated versus quick to execute. If you want the results of
one test not to affect the results of another test, each test
should create the full state of the testing before it begins
to execute, and return the world to its original state when
it finishes. However, setting it up can take a long time
(e.g., connecting to a database and initializing it to a
known state using realistic data).

PHPUnit attempts to resolve these conflicts by using PHP as
the testing language. Sometimes the full power of PHP is
overkill for writing short, straight-line tests, but by using

10 | PHPUnit Pocket Guide

PHP, we leverage all the experience and tools programmers
already have in place. Because we are trying to convince
reluctant testers, lowering the barrier to writing those initial
tests is particularly important.

PHPUnit errs on the side of isolation over quick execution.
Isolated tests are valuable because they provide high-quality
feedback. You do not get a report with a bunch of test fail-
ures that were really caused because one test at the begin-
ning of the suite failed and left the world messed up for the
rest of the tests. This orientation toward isolated tests
encourages designs with a large number of simple objects.
Each object can be tested quickly in isolation. The result is
better designs and faster tests.

PHPUnit assumes that most tests succeed, and it is not worth
reporting the details of successful tests. When a test fails,
that fact is worth noting and reporting. The vast majority of
tests should succeed and are not worth commenting on,
except to count the number of tests that run. This is an
assumption that is really built into the reporting classes and
not into the core of PHPUnit. When the results of a test run
are reported, you see how many tests were executed, but you
only see details for those that failed.

Tests are expected to be fine-grained, testing one aspect of
one object. Hence, the first time a test fails, execution of the
test halts, and PHPUnit reports the failure. It is an art to test
by running many small tests. Fine-grained tests improve the
overall design of the system.

When you test an object with PHPUnit, you do so only
through the object’s public interface. Testing based only on
publicly visible behavior encourages you to confront and
solve difficult design problems before the results of poor
design can affect large parts of the system.

Installing PHPUnit | 11

Installing PHPUnit
PHPUnit* is available from the PHP Extension and Applica-
tion Repository (PEAR),† which is a framework and distribu-
tion system for reusable PHP components. It can be installed
using the PEAR Installer:

$ pear install PHPUnit2

Due to PEAR’s version-naming standard, the PHPUnit pack-
age for PHP 5 is called PHPUnit2. PHPUnit is the name of the
PHPUnit package for PHP 4 that is the topic of “PHPUnit for
PHP 4,” later in this book.

After the installation, you can find the PHPUnit source files
inside your local PEAR directory; the path is usually /usr/lib/
php/PHPUnit2.

Although using the PEAR installer is the only supported way
to install PHPUnit, you can install PHPUnit manually. For
manual installation, do the following:

1. Download a release archive from http://pear.php.net/
package/PHPUnit2/download and extract it to a directory
that is listed in the include_path of your php.ini configu-
ration file.

2. Prepare the phpunit script:

a. Rename the pear-phpunit script to phpunit.

b. Replace the @php_bin@ string in it with the path to
your PHP command-line interpreter (usually /usr/bin/
php).

c. Copy it to a directory that is in your PATH and make
it executable (chmod +x phpunit).

3. Replace the @package_version@ string in the PHPUnit2/
Runner/Version.php script with the version number of the
PHPUnit release you are installing (2.3.0, for instance).

* http://www.phpunit.de/

† http://pear.php.net/

12 | PHPUnit Pocket Guide

The Command-Line Test Runner
The PHPUnit command-line test runner is invoked through
the phpunit command. The following code shows how to run
tests with the PHPUnit command-line test runner:

phpunit ArrayTest
PHPUnit 2.3.0 by Sebastian Bergmann.

..

Time: 0.067288

OK (2 tests)

For each test run, the PHPUnit command-line tool prints one
character to indicate progress:

. Printed when the test succeeds.

F Printed when an assertion fails while running the test
method.

E Printed when an error occurs while running the test
method.

I Printed when the test is marked as being incomplete or
not yet implemented (see “Incomplete Tests,” later in
this book).

PHPUnit distinguishes between failures and errors. A failure
is a violated PHPUnit assertion. An error is an unexpected
exception or a PHP error. Sometimes this distinction proves
useful because errors tend to be easier to fix than failures. If
you have a big list of problems, it’s best to tackle the errors
first and see if you have any failures left when the errors are
all fixed.

Let’s take a look at the command-line test runner’s switches
in the following code:

The Command-Line Test Runner | 13

phpunit --help
PHPUnit 2.3.0 by Sebastian Bergmann.

Usage: phpunit [switches] UnitTest [UnitTest.php]
 --coverage-data <file> Write code-coverage data in raw
 format to file.

 --coverage-html <file> Write code-coverage data in HTML
 format to file.

 --coverage-text <file> Write code-coverage data in text
 format to file.

 --testdox-html <file> Write agile documentation in HTML
 format to file.

 --testdox-text <file> Write agile documentation in Text
 format to file.

 --log-xml <file> Log test progress in XML format
 to file.

 --loader <loader> TestSuiteLoader implementation to
 use.

 --skeleton Generate skeleton UnitTest class
 for Unit in Unit.php.

 --wait Waits for a keystroke after each
 test.

 --help Prints this usage information.

 --version Prints the version and exits.

phpunit UnitTest
Runs the tests that are provided by the class UnitTest.
This class is expected to be declared in the UnitTest.php
source file.

UnitTest must be either a class that inherits from
PHPUnit2_Framework_TestCase or a class that provides a
public static suite() method that returns a PHPUnit2_
Framework_Test object (for example, an instance of the
PHPUnit2_Framework_TestSuite class).

14 | PHPUnit Pocket Guide

phpunit UnitTest UnitTest.php
Runs the tests that are provided by the class UnitTest.
This class is expected to be declared in the specified
source file.

--coverage-data, --coverage-html, and --coverage-text
Controls the collection and analysis of code-coverage
information for the tests that are run. (See the section
“Code-Coverage Analysis,” later in this book.)

--testdox-html and --testdox-text
Generates agile documentation in HTML or plain text
format for the tests that are run. (See “Other Uses for
Tests,” later in this book.)

--log-xml
Generates a logfile in XML format for the tests run.

The following example shows the XML logfile generated
for the tests in ArrayTest:

<?xml version="1.0" encoding="UTF-8"?>
<testsuites>
 <testsuite name="ArrayTest" tests="2" failures="0"
 errors="0" time="0.020026">
 <testcase name="testNewArrayIsEmpty"
 class="ArrayTest" time="0.014449"/>
 <testcase name="testArrayContainsAnElement"
 class="ArrayTest" time="0.005577"/>
 </testsuite>
</testsuites>

The following XML logfile was generated for two tests,
testFailure and testError, of a test-case class named
FailureErrorTest. It shows how failures and errors are
denoted.

<?xml version="1.0" encoding="UTF-8"?>
<testsuites>
 <testsuite name="FailureErrorTest" tests="2"
failures="1" errors="1" time="0.013603">
 <testcase name="testFailure"
class="FailureErrorTest" time="0.011872">

The Command-Line Test Runner | 15

 <failure message=""
 type="PHPUnit2_Framework_AssertionFailedError">
 </failure>
 </testcase>
 <testcase name="testError"
 class="FailureErrorTest" time="0.001731">
 <error message="" type="Exception"></error>
 </testcase>
 </testsuite>
</testsuites>

--loader
Specifies the PHPUnit2_Runner_TestSuiteLoader imple-
mentation to use.

The standard test-suite loader will look for the source file
in the current working directory and in each directory
that is specified in PHP’s include_path configuration
directive. Following the PEAR Naming Conventions, a
class name such as Project_Package_Class is mapped to
the source file name Project/Package/Class.php.

--skeleton
Generates a skeleton test-case class UnitTest (in UnitTest.
php) for a class Unit (in Unit.php). For each method in
the original class, there will be an incomplete test case
(see “Incomplete Tests,” later in this book) in the gener-
ated test-case class.

The following example shows how to generate a skele-
ton test class for a class named Sample:

phpunit --skeleton Sample
PHPUnit 2.3.0 by Sebastian Bergmann.

Wrote test class skeleton for Sample to
SampleTest.php.

phpunit SampleTest
PHPUnit 2.3.0 by Sebastian Bergmann.

I

16 | PHPUnit Pocket Guide

Time: 0.007268
There was 1 incomplete test case:
1) testSampleMethod(SampleTest)

OK, but incomplete test cases!!!
Tests run: 1, incomplete test cases: 1.

When you are writing tests for existing code, you have to
write the same code fragments over and over again, as in
the following example:

public function testSampleMethod() {
}

PHPUnit can help you by analyzing the existing code and
generating a skeleton test-case class for it.

--wait
Waits for a keystroke after each test. This is useful if you
are running the tests in a window that stays open only as
long as the test runner is active.

TIP

When the tested code contains PHP syntax errors, the
TextUI test runner might exit without printing error
information. The standard test-suite loader will check the
test-suite source file for PHP syntax errors, but it won’t
check source files included by the test-suite source file.
Future versions of PHPUnit will solve this issue by using
a sandboxed PHP interpreter.

Fixtures
One of the most time consuming parts of writing tests is
writing the code to set up the world in a known state and
then return it to its original state when the test is complete.
The known state is called the fixture of the test.

Fixtures | 17

In Example 5, the fixture was simply an array stored in the
$fixture variable. Most of the time, though, the fixture will
be more complex than a simple array, and the amount of
code needed to set it up will grow accordingly. The actual
content of the test gets lost in the noise of setting up the fix-
ture. This problem gets even worse when you write several
tests with similar fixtures. Without some help from the test-
ing framework, we would have to duplicate the code that sets
up the fixture for each test we write.

PHPUnit supports sharing the setup code. Before a test
method is run, a template method called setUp() is invoked.
setUp() is where you create the objects against which you
will test. Once the test method has finished running, whether
it succeeded or failed, another template method called
tearDown() is invoked. tearDown() is where you clean up the
objects against which you tested.

We can now refactor Example 5 and use setUp() to elimi-
nate the code duplication that we had before. First, we
declare the instance variable, $fixture, that we are going to
use instead of a method-local variable. Then, we put the cre-
ation of the Array fixture into the setUp() method. Finally,
we remove the redundant code from the test methods and
use the newly introduced instance variable, $this->fixture,
instead of the method-local variable $fixture with the
assertEquals() assertion method.

<?php
require_once 'PHPUnit2/Framework/TestCase.php';

class ArrayTest extends PHPUnit2_Framework_TestCase {
 protected $fixture;

 protected function setUp() {
 // Create the Array fixture.
 $this->fixture = Array();
 }

18 | PHPUnit Pocket Guide

 public function testNewArrayIsEmpty() {
 // Assert that the size of the Array fixture is 0.
 $this->assertEquals(0, sizeof($this->fixture));
 }

 public function testArrayContainsAnElement() {
 // Add an element to the Array fixture.
 $this->fixture[] = 'Element';

 // Assert that the size of the Array fixture is 1.
 $this->assertEquals(1, sizeof($this->fixture));
 }
}
?>

setUp() and tearDown() will be called once for each test
method run. Although it might seem frugal to run the set up
and tear down code only once for all the test methods in a
test-case class, doing so would make it hard to write tests
that are completely independent of each other.

Not only are setUp() and tearDown() run once for each test
method, but the test methods are run in fresh instances of
the test-case class (see “PHPUnit’s Implementation,” later in
this book).

More setUp() than tearDown()
setUp() and tearDown() are nicely symmetrical in theory but
not in practice. In practice, you only need to implement
tearDown() if you have allocated external resources such as
files or sockets in setUp(). If your setUp() just creates plain
PHP objects, you can generally ignore tearDown(). However,
if you create many objects in your setUp(), you might want
to unset() the variables pointing to those objects in your
tearDown() so they can be garbage collected. The garbage
collection of test-case objects is not predictable.

Fixtures | 19

Variations
What happens when you have two tests with slightly differ-
ent setups? There are two possibilities:

• If the setUp() code differs only slightly, move the code
that differs from the setUp() code to the test method.

• If you really have a different setUp(), you need a differ-
ent test-case class. Name the class after the difference in
the setup.

Suite-Level Setup
PHPUnit does not provide convenient support for suite-level
setup. There aren’t many good reasons to share fixtures
between tests, but, in most cases, the need to do so stems
from an unresolved design problem.

A good example of a fixture that makes sense to share across
several tests is a database connection: you log into the data-
base once and reuse the database connection instead of creat-
ing a new connection for each test. This makes your tests run
faster. To do this, write your database tests in a test-case
class named DatabaseTests, and wrap the test suite in a
TestSetup decorator object that overrides setUp() to open
the database connection and tearDown() to close the connec-
tion, as shown in Example 6. You can run the tests from
DatabaseTests through the DatabaseTestSetup decorator by
invoking, for instance, PHPUnit’s command-line test runner
with phpunit DatabaseTestSetup.

Example 6. Writing a suite-level setup decorator

<?php
require_once 'PHPUnit2/Framework/TestSuite.php';
require_once 'PHPUnit2/Extensions/TestSetup.php';

class DatabaseTestSetup extends PHPUnit2_Extensions_TestSetup
{
 protected $connection = NULL;

20 | PHPUnit Pocket Guide

It cannot be emphasized enough that sharing fixtures
between tests reduces the value of the tests. The underlying
design problem is that objects are too closely bound
together. You will achieve better results by solving the under-
lying design problem and then writing tests using stubs (see
the section “Stubs,” later in this book), than by creating
dependencies between tests at runtime and ignoring the
opportunity to improve your design.

Testing Exceptions and Performance
Regressions
PHPUnit provides two extensions that aid in the writing of
tests for exceptions and performance regressions to the stan-
dard base class for test classes, PHPUnit2_Framework_TestCase.

 protected function setUp() {
 $this->connection = new PDO(
 'mysql:host=wopr;dbname=test',
 'root',
 ''
);
 }

 protected function tearDown() {
 $this->connection = NULL;
 }

 public static function suite() {
 return new DatabaseTestSetup(
 new PHPUnit2_Framework_TestSuite('DatabaseTests')
);
 }
}
?>

Example 6. Writing a suite-level setup decorator (continued)

Testing Exceptions and Performance Regressions | 21

Exceptions
How do you test exceptions? You cannot assert directly that
they are raised. Instead, you have to use PHP’s exception-
handling facilities to write the test. The following example
demonstrates testing exceptions:

<?php
require_once 'PHPUnit2/Framework/TestCase.php';

class ExceptionTest extends PHPUnit2_Framework_TestCase {
 public function testException() {
 try {
 // ... Code that is expected to raise an
 // Exception ...
 $this->fail('No Exception has been raised.');
 }

 catch (Exception $expected) {
 }
 }
}
?>

If the code that is expected to raise an exception does not
raise an exception, the subsequent call to fail() (see
Table 7, later in this book) will halt the test and signal a
problem with the test. If the expected exception is raised, the
catch block will be executed, and the test will continue
executing.

Alternatively, you can extend your test class from PHPUnit2_
Extensions_ExceptionTestCase to test whether an exception
is thrown inside the tested code. Example 7 shows how to
subclass PHPUnit2_Extensions_ExceptionTestCase and use its
setExpectedException() method to set the expected excep-
tion. If this expected exception is not thrown, the test will be
counted as a failure.

22 | PHPUnit Pocket Guide

Table 1 shows the external protocol implemented by
PHPUnit2_Extensions_ExceptionTestCase.

Example 7. Using PHPUnit2_Extensions_ExceptionTestCase

<?php
require_once 'PHPUnit2/Extensions/ExceptionTestCase.php';

class ExceptionTest extends PHPUnit2_Extensions_
ExceptionTestCase {
 public function testException() {
 $this->setExpectedException('Exception');
 }
}
?>
phpunit ExceptionTest
PHPUnit 2.3.0 by Sebastian Bergmann.

F

Time: 0.006798
There was 1 failure:
1) testException(ExceptionTest)
Expected exception Exception

FAILURES!!!
Tests run: 1, Failures: 1, Errors: 0, Incomplete Tests: 0.

Table 1. Extension TestCase external protocols

Method Description

void
setExpectedException(String
$exceptionName)

Sets the name of the expected exception
to $exceptionName.

String getExpectedException() Returns the name of the expected
exception.

Testing Exceptions and Performance Regressions | 23

Performance Regressions
You can extend your test class from PHPUnit2_Extensions_
PerformanceTestCase to test whether the execution of a func-
tion or a method call, for instance, exceeds a specified time
limit.

Example 8 shows how to subclass PHPUnit2_Extensions_
PerformanceTestCase and use its setMaxRunningTime() method
to set the maximum running time for the test. If the test is
not executed within this time limit, it will be counted as a
failure.

Table 2 shows the external protocol implemented by
PHPUnit2_Extensions_PerformanceTestCase.

Example 8. Using PHPUnit2_Extensions_PerformanceTestCase

<?php
require_once 'PHPUnit2/Extensions/PerformanceTestCase.php';

class PerformanceTest extends PHPUnit2_Extensions_
PerformanceTestCase {
 public function testPerformance() {
 $this->setMaxRunningTime(2);
 sleep(1);
 }
}
?>

Table 2. Performance TestCase external protocols

Method Description

void
setMaxRunningTime(integer
$maxRunningTime)

Sets the maximum running time for the
test to $maxRunningTime (in
seconds).

integer getMaxRunningTime() Returns the maximum running time
allowed for the test.

24 | PHPUnit Pocket Guide

Incomplete Tests
When you are working on a new test-case class, you might
want to begin by writing empty test methods, such as:

public function testSomething() {
}

to keep track of the tests that you have to write. The prob-
lem with empty test methods is that they are interpreted as a
success by the PHPUnit framework. This misinterpretation
leads to the test reports being useless—you cannot see
whether a test is actually successful or just not yet imple-
mented. Calling $this->fail() in the unimplemented test
method does not help either because then the test will be
interpreted as a failure. This would be just as wrong as inter-
preting an unimplemented test as a success.

If we think of a successful test as a green light, and a test fail-
ure as a red light, we need an additional yellow light to mark
a test as being incomplete or not yet implemented. PHPUnit2_
Framework_IncompleteTest is a marker interface for marking
an exception that is raised by a test method as the result of
the test being incomplete or not currently implemented.
PHPUnit2_Framework_IncompleteTestError is the standard
implementation of this interface.

Example 9 shows a test-case class, SampleTest, that contains
one test method, testSomething(). By raising the PHPUnit2_
Framework_IncompleteTestError exception in the test method,
we mark the test as being incomplete.

Example 9. Marking a test as incomplete

<?php
require_once 'PHPUnit2/Framework/TestCase.php';
require_once 'PHPUnit2/Framework/IncompleteTestError.php';

class SampleTest extends PHPUnit2_Framework_TestCase {
 public function testSomething() {
 // Optional: Test anything here, if you want.
 $this->assertTrue(TRUE, 'This should already work.');

Test-First Programming | 25

An incomplete test is denoted by an I in the output of the
PHPUnit command-line test runner, as shown in the follow-
ing example:

phpunit SampleTest
PHPUnit 2.3.0 by Sebastian Bergmann.

I

Time: 0.006657
There was 1 incomplete test case:
1) testSomething(SampleTest)
This test has not been implemented yet.

OK, but incomplete test cases!!!
Tests run: 1, incomplete test cases: 1.

Test-First Programming
Unit tests are a vital part of several software development
practices and processes, such as test-first programming,
Extreme Programming,* and test-driven development.† They
also allow for design-by-contract‡ in programming lan-
guages that do not support this methodology with language
constructs.

 // Stop here and mark this test as incomplete.
 // You could use any Exception which implements the
 // PHPUnit2_Framework_IncompleteTest interface.
 throw new PHPUnit2_Framework_IncompleteTestError(
 'This test has not been implemented yet.'
);
 }
}
?>

* http://en.wikipedia.org/wiki/Extreme_Programming

† http://en.wikipedia.org/wiki/Test-driven_development

‡ http://en.wikipedia.org/wiki/Design_by_Contract

Example 9. Marking a test as incomplete (continued)

26 | PHPUnit Pocket Guide

You can use PHPUnit to write tests once you are done pro-
gramming. However, the sooner a test is written after an
error has been introduced, the more valuable the test is. So,
instead of writing tests months after the code is “complete,”
we can write tests days, hours, or minutes after the possible
introduction of a defect. Why stop there? Why not write the
tests a little before the possible introduction of a defect?

Test-first programming, which is part of Extreme Program-
ming and test-driven development, builds upon this idea and
takes it to the extreme. With today’s computational power,
we have the opportunity to run thousands of tests, thou-
sands of times per day. We can use the feedback from all of
these tests to program in small steps, each of which carries
with it the assurance of a new automated test, in addition to
all the tests that have come before. The tests are like pitons,
assuring you that no matter what happens, once you have
made progress, you can only fall so far.

When you first write the test, it cannot possibly run because
you are calling on objects and methods that have not been
programmed yet. This might feel strange at first, but, after a
while, you will get used to it. Think of test-first program-
ming as a pragmatic approach to following the object-ori-
ented programming principle of programming to an interface
instead of programming to an implementation: while you are
writing the test, you are thinking about the interface of the
object you are testing—what does this object look like from
the outside? When you go to make the test really work, you
are thinking about pure implementation. The interface is
fixed by the failing test.

What follows is a necessarily abbreviated introduction to
test-first programming. You can explore the topic further in
other books, such as Test-Driven Development: By Example
by Kent Beck (Addison Wesley) or Test-Driven Develop-
ment: A Practical Guide by Dave Astels (Prentice Hall).

Test-First Programming | 27

BankAccount Example
In this section, we will look at the example of a class that
represents a bank account. The contract for the BankAccount
class requires methods to get and set the bank account’s bal-
ance, as well as methods to deposit and withdraw money. It
also specifies that the following two conditions must be
ensured:

• The bank account’s initial balance must be zero.

• The bank account’s balance cannot become negative.

Following the test-first programming approach, we write the
tests for the BankAccount class before we write the code for
the class itself. We use the contract conditions as the basis
for the tests and name the test methods accordingly, as
shown in Example 10.

Example 10. Tests for the BankAccount class

<?php
require_once 'PHPUnit2/Framework/TestCase.php';
require_once 'BankAccount.php';

class BankAccountTest extends PHPUnit2_Framework_TestCase {
 private $ba;

 protected function setUp() {
 $this->ba = new BankAccount;
 }

 public function testBalanceIsInitiallyZero() {
 $this->assertEquals(0, $this->ba->getBalance());
 }

 public function testBalanceCannotBecomeNegative() {
 try {
 $this->ba->withdrawMoney(1);
 }

28 | PHPUnit Pocket Guide

We now write the minimal amount of code needed for the
first test, testBalanceIsInitiallyZero(), to pass. In our
example, this amounts to implementing the getBalance()
method of the BankAccount class, as shown in Example 11.

 catch (Exception $e) {
 return;
 }

 $this->fail();
 }

 public function testBalanceCannotBecomeNegative2() {
 try {
 $this->ba->depositMoney(-1);
 }

 catch (Exception $e) {
 return;
 }

 $this->fail();
 }

 public function testBalanceCannotBecomeNegative3() {
 try {
 $this->ba->setBalance(-1);
 }

 catch (Exception $e) {
 return;
 }

 $this->fail();
 }
}
?>

Example 10. Tests for the BankAccount class (continued)

Test-First Programming | 29

The test for the first contract condition now passes, but the
tests for the second contract condition fail because we have
yet to implement the methods that these tests call:

phpunit BankAccountTest
PHPUnit 2.3.0 by Sebastian Bergmann.

.
Fatal error: Call to undefined method BankAccount::
withdrawMoney()

For the tests that ensure the second contract condition to
pass, we now need to implement the withdrawMoney(),
depositMoney(), and setBalance() methods, as shown in
Example 12. These methods are written in such a way that
they raise an InvalidArgumentException when they are called
with illegal values that would violate the contract conditions.

Example 11. Code needed for the testBalanceIsInitiallyZero() test to
pass

<?php
class BankAccount {
 private $balance = 0;

 public function getBalance() {
 return $this->balance;
 }
}
?>

Example 12. The complete BankAccount class

<?php
class BankAccount {
 private $balance = 0;

 public function getBalance() {
 return $this->balance;
 }

30 | PHPUnit Pocket Guide

The tests that ensure the second contract condition now
pass, too:

phpunit BankAccountTest
PHPUnit 2.3.0 by Sebastian Bergmann.

....

Time: 0.057038

OK (4 tests)

Alternatively, you can use the static assertion methods pro-
vided by the PHPUnit2_Framework_Assert class to write the
contract conditions as design-by-contract style assertions

 public function setBalance($balance) {
 if ($balance >= 0) {
 $this->balance = $balance;
 } else {
 throw new InvalidArgumentException;
 }
 }

 public function depositMoney($amount) {
 if ($amount >= 0) {
 $this->balance += $amount;
 } else {
 throw new InvalidArgumentException;
 }
 }

 public function withdrawMoney($amount) {
 if ($amount >= 0 && $this->balance >= $amount) {
 $this->balance -= $amount;
 } else {
 throw new InvalidArgumentException;
 }
 }
}
?>

Example 12. The complete BankAccount class (continued)

Test-First Programming | 31

into your code, as shown in Example 13. When one of these
assertions fails, a PHPUnit2_Framework_AssertionFailedError
exception will be raised. With this approach, you write less
code for the contract condition checks, and the tests become
more readable. However, you add a runtime dependency on
PHPUnit to your project.

Example 13. The BankAccount class with design-by-contract
assertions

<?php
require_once 'PHPUnit2/Framework/Assert.php';

class BankAccount {
 private $balance = 0;

 public function getBalance() {
 return $this->balance;
 }

 public function setBalance($balance) {
 PHPUnit2_Framework_Assert::assertTrue($balance >= 0);

 $this->balance = $balance;
 }

 public function depositMoney($amount) {
 PHPUnit2_Framework_Assert::assertTrue($amount >= 0);

 $this->balance += $amount;
 }

 public function withdrawMoney($amount) {
 PHPUnit2_Framework_Assert::assertTrue($amount >= 0);
 PHPUnit2_Framework_Assert::assertTrue($this->balance
 >= $amount);

 $this->balance -= $amount;
 }
}
?>

32 | PHPUnit Pocket Guide

By writing the contract conditions into the tests, we have
used design-by-contract to program the BankAccount class.
We then wrote, following the test-first programming
approach, the code needed to make the tests pass. However,
we forgot to write tests that call setBalance(), depositMoney(),
and withdrawMoney() with legal values that do not violate the
contract conditions. We need a means to test our tests or, at
least, to measure their quality. Such a means is the analysis of
code-coverage information that we will discuss next.

Code-Coverage Analysis
You have learned how to use unit tests to test your code. But
how do you test your tests? How do you find code that is not
yet tested—or, in other words, not yet covered by a test?
How do you measure testing completeness? All these ques-
tions are answered by a practice called code-coverage analy-
sis. Code-coverage analysis gives you an insight into what
parts of the production code are executed when the tests are
run.

PHPUnit’s code-coverage analysis utilizes the statement cov-
erage functionality provided by the Xdebug* extension. An
example of what statement coverage means is that if there is
a method with 100 lines of code, and only 75 of these lines
are actually executed when tests are being run, then the
method is considered to have a code overage of 75 percent.

Figure 1 shows a code-coverage report for the BankAccount
class (from Example 12) in HTML format generated by the
PHPUnit command-line test runner’s --coverage-html
switch. Executable code lines are black; non-executable code
lines are gray. Code lines that are actually executed are high-
lighted.

* http://www.xdebug.org/

Code-Coverage Analysis | 33

The code-coverage report shows that we need to write tests
that call setBalance(), depositMoney(), and withdrawMoney()
with legal values in order to achieve complete code coverage.
Example 14 shows tests that need to be added to the
BankAccountTest test-case class to completely cover the
BankAccount class.

Figure 1. The BankAccount class, not completely covered by tests

Example 14. The BankAccount class, covered by tests

<?php
require_once 'PHPUnit2/Framework/TestCase.php';
require_once 'BankAccount.php';

class BankAccountTest extends PHPUnit2_Framework_TestCase {
 // ...

<?php
class BankAccount {
 private $balance=0;

 public function getBalance() {
 return $this->balance;
 }

 public function setBalance($balance) {
 if ($balance >=0) {

 $this->balance=$balance
 } else {

 throw new InvalidArgumentException;
 }

 }

 public function depositMoney($amount)
 if ($amount >=0) {

 $this->balance+=$amount;
 } else {

 throw new InvalidArgumentException;
 }
}

 public function withdrawMoney($amount) {
 if ($amount >=0 && $this->balance >= $amount) {
 $this->balance -=$amount;
 } else {
 throw new InvalidArgumentException;
 }

 }
}
?>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34 | PHPUnit Pocket Guide

In Figure 2, we see that the BankAccount class is now covered
completely by tests.

In the “PHPUnit and Phing” section, later in this book, you
will learn how to use Phing to generate more detailed code-
coverage reports.

Stubs
Tests that only test one thing are more informative than tests
in which failure can come from many sources. How can you
isolate your tests from external influences? Simply put, by
replacing the expensive, messy, unreliable, slow, compli-
cated resources with stubs made from plain PHP objects. For
example, you can implement what is in reality a complicated
computation by returning a constant, at least for the pur-
poses of a single test.

Stubs solve the problem of allocating expensive external
resources. For example, sharing a resource, such as a data-
base connection, between tests by using the PHPUnit2_
Extensions_TestSetup decorator helps, but not using the
database for the purposes of the tests at all is even better.

 public function testSetBalance() {
 $this->ba->setBalance(1);
 $this->assertEquals(1, $this->ba->getBalance());
 }

 public function testDepositAndWidthdrawMoney() {
 $this->ba->depositMoney(1);
 $this->assertEquals(1, $this->ba->getBalance());

 $this->ba->withdrawMoney(1);
 $this->assertEquals(0, $this->ba->getBalance());
 }
}
?>

Example 14. The BankAccount class, covered by tests (continued)

Stubs | 35

Design improvement is one effect of using stubs. Widely
used resources are accessed through a single façade, so you
can easily replace the resource with the stub. For example,
instead of having direct database calls scattered throughout
the code, you have a single Database object—an implemen-
tor of the IDatabase interface. Then, you can create a stub
implementation of IDatabase and use it for your tests. You
can even create an option for running the tests with the stub
database or the real database, so you can use your tests for
both local testing during development and integration test-
ing with the real database.

Figure 2. The BankAccount class is completely covered by tests

<?php
class BankAccount {
 private $balance=0;

 public function getBalance() {
 return $this->balance;
 }

 public function setBalance($balance) {
 if ($balance >=0) {

 $this->balance=$balance
 } else {

 throw new InvalidArgumentException;
 }

 }

 public function depositMoney($amount)
 if ($amount >=0) {

 $this->balance+=$amount;
 } else {

 throw new InvalidArgumentException;
 }
}

 public function withdrawMoney($amount) {
 if ($amount >=0 && $this->balance >= $amount) {
 $this->balance -=$amount;
 } else {
 throw new InvalidArgumentException;
 }

 }
}
?>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

36 | PHPUnit Pocket Guide

Functionality that needs to be stubbed out tends to cluster in
the same object, improving cohesion. By presenting the func-
tionality with a single, coherent interface, you reduce the
coupling with the rest of the system.

Self-Shunting
Sometimes you need to check that an object has been called
correctly. You can create a complete stub of the object to be
called, but that can make it inconvenient to check for correct
results. A simpler solution is to apply the self-shunt pattern
and use the test-case object itself as a stub. The term self-
shunting is taken from the medical practice of installing a
tube that takes blood from an artery and returns it to a vein
to provide a convenient place for injecting drugs.

Here is an example: suppose we want to test that the correct
method is called on an object that observes another object.
First, we make our test-case class an implementor of
Observer:

class ObserverTest extends PHPUnit2_Framework_TestCase
implements Observer{
}

Next, we implement the one Observer method, update(), to
check that it is called when the state of the observed Subject
object changes:

public $wasCalled = FALSE;

public function update(Subject $subject) {
 $this->wasCalled = TRUE;
}

Now, we can write our test. We create a new Subject object
and attach the test object to it as an observer. When the state
of the Subject changes—for instance, by calling its
doSomething() method—the Subject object has to call the
update() method on all objects that are registered as observ-
ers. We use the $wasCalled instance variable that is set by our

Other Uses for Tests | 37

implementation of update() to check whether the Subject
object does what it is supposed to do:

public function testUpdate() {
 $subject = new Subject;
 $subject->attach($this);
 $subject->doSomething();

 $this->assertTrue($this->wasCalled);
}

Notice that we create a new Subject object instead of relying
on a global instance. Stubbing encourages this style of
design. It reduces the coupling between objects and improves
reuse.

If you are not familiar with the self-shunt pattern, the tests
can be hard to read. What is going on here? Why is a test
case also an observer? But once you get used to the idiom,
the tests are easy to read. Everything you need to understand
a test is in one class.

Other Uses for Tests
Once you get used to writing automated tests, you will likely
discover more uses for tests. Here are some examples.

Agile Documentation
Typically, in a project that is developed using an agile pro-
cess, such as Extreme Programming, the documentation can-
not keep up with the frequent changes to the project’s design
and code. Extreme Programming demands collective code
ownership, so all developers need to know how the entire
system works. If you are disciplined enough to use “speak-
ing names” for your tests that describe what a class should
do, you can use PHPUnit’s TestDox functionality to gener-
ate automated documentation for your project based on its
tests. This documentation gives developers an overview of
what each class of the project is supposed to do.

38 | PHPUnit Pocket Guide

PHPUnit’s TestDox functionality looks at a test class and all
the test method names and converts them from camel case
PHP names to sentences: testBalanceIsInitiallyZero()
becomes “Balance is initially zero.” If there are several test
methods whose names differ only by a suffix of one or more
digits, such as testBalanceCannotBecomeNegative() and
testBalanceCannotBecomeNegative2(), the sentence “Balance
cannot become negative” will appear only once, assuming
that all of these tests succeed.

The following code shows the agile documentation for the
Bank Account class (in Example 10) generated by running
phpunit --testdox-text BankAccountTest.txt BankAccountTest:

BankAccount
 - Balance is initially zero
 - Balance cannot become negative

Alternatively, the agile documentation can be generated in
HTML format by using --testdox-html BankAccountTest.htm.

Agile documentation can be used to document the assump-
tions you make about the external packages in your project.
When you use an external package, you are exposed to the
risks that the package will not behave as you expect, and that
future versions of the package will change in subtle ways that
will break your code, without you knowing it. You can
address these risks by writing a test about how the external
package works every time you make an assumption. If your
test succeeds, your assumption is valid. If you document all
your assumptions with tests, future releases of the external
package will be no cause for concern: if the tests succeed,
your system should continue working.

Cross-Team Tests
When you document assumptions with tests, you own the
tests. The supplier of the package—who you make assump-
tions about—knows nothing about your tests. If you want a
closer relationship with the supplier of a package, you can
use the tests to communicate and coordinate your activities.

Other Uses for Tests | 39

When you agree on coordinating your activities with the sup-
plier of a package, you can write the tests together. Do this in
such a way that the tests reveal as many assumptions as
possible. Hidden assumptions are the death of cooperation.
With the tests, you document exactly what you expect from
the supplied package. The supplier will know the package is
complete when all the tests run.

By using stubs (see the section “Stubs,” earlier in this book),
you can further decouple yourself from the supplier. The job
of the supplier is to make the tests run with the real imple-
mentation of the package. Your job is to make the tests run
for your own code. Until such time as you have the real
implementation of the supplied package, you use stub
objects. Following this approach, the two teams can develop
independently.

Debugging Tests
When you get a defect report, your impulse might be to fix
the defect as quickly as possible. Experience shows that this
impulse will not serve you well; it is likely that the fix for the
defect will cause another defect.

You can hold your impulse in check by doing the following:

1. Verifying that you can reproduce the defect.

2. Finding the smallest-scale demonstration of the defect in
the code. For example, if a number appears incorrectly in
an output, find the object that is computing that number.

3. Writing an automated test that fails but will succeed
when the defect is fixed.

4. Fixing the defect.

Finding the smallest reliable reproduction of the defect gives
you the opportunity to really examine the cause of the defect.
The test you write will improve the chances that when you
fix the defect, you really fix it, because the new test reduces
the likelihood of undoing the fix with future code changes.

40 | PHPUnit Pocket Guide

All the tests you wrote before reduce the likelihood of inad-
vertently causing a different problem.

Refactoring
Refactoring, the controlled technique for improving the
design of an existing code base, can be applied safely only
when you have a test suite. Otherwise, you might not notice
the system breaking while you are carrying out the restruc-
turing. Refactoring can be broken down into a series of small
behavior-preserving transformations.

The following conditions will help you to improve the code
and design of your project, while using unit tests to verify
that the refactoring’s transformation steps are, indeed,
behavior- preserving and do not introduce errors:

1. All unit tests run correctly.

2. The code communicates its design principles.

3. The code contains no redundancies.

4. The code contains the minimal number of classes and
methods.

PHPUnit and Phing
Phing (PHing Is Not GNU make)* is a project-build system
based on Apache Ant.† In the context of PHP, you do not
need to build and compile your sources; the intention of
Phing is to ease the packaging, deployment, and testing of
applications. For these tasks, Phing provides numerous out-
of-the-box operation modules (“tasks”) and an easy-to-use,
object-oriented model for adding your own custom tasks.

Phing can be installed using the PEAR Installer, as shown in
the following command line:

pear install http://phing.info/pear/phing-2.1.0-pear.tgz

* http://www.phing.info/wiki/

† http://ant.apache.org/

PHPUnit and Phing | 41

Phing uses simple XML build files that specify a target tree
where various tasks are executed. One out-of-the-box task
that comes with Phing is the <phpunit2> task that runs test
cases using the PHPUnit framework. It is a functional port of
Apache Ant’s JUnit task.

Example 15 shows a Phing build.xml file that specifies a
<project> named BankAccount. The project’s default <target>
is called test. Using the <phpunit2> task, this target runs all
test cases that can be found in source files that match the
*Test.php condition. This is done by using a <batchtest> ele-
ment that collects the included files from any number of
nested <fileset> elements. In this example, the tests
declared in the class BankAccountTest in the source file
BankAccountTest.php will be run.

Invoking Phing in the directory that contains build.xml
(Example 15), BankAccount.php (Example 12), and
BankAccountTest.php (Example 10) will run the tests by exe-
cuting the project’s default target, tests:

phing
Buildfile: /home/sb/build.xml

BankAccount > test:
 [phpunit2] Tests run: 4, Failures: 0, Errors: 0, Time
elapsed: 0.00067 sec

Example 15. Phing build.xml file for the BankAccount tests

<?xml version="1.0"?>

<project name="BankAccount" basedir="." default="test">
 <target name="test">
 <phpunit2 haltonfailure="true" printsummary="true">
 <batchtest>
 <fileset dir=".">
 <include name="*Test.php"/>
 </fileset>
 </batchtest>
 </phpunit2>
 </target>
</project>

42 | PHPUnit Pocket Guide

BUILD FINISHED

Total time: 0.0960 seconds

Table 3 shows the parameters that can be used to configure
the <phpunit2> task.

The following example shows the <phpunit2> task’s output
when a test fails:

phing
Buildfile: /home/sb/build.xml

BankAccount > test:
 [phpunit2] Tests run: 4, Failures: 1, Errors: 0, Time
elapsed: 0.00067 sec
Execution of target "test" failed for the following
reason:
/home/sb/build.xml:5:37: One or more tests failed

BUILD FAILED
/home/sb/build.xml:5:37: One or more tests failed
Total time: 0.0968 seconds

Formatting Feedback
Besides the required <batchtest> element, the <phpunit2> ele-
ment allows for another nested element: <formatter> is used
to write test results in different formats. Output will always
be sent to a file, unless you set the usefile attribute to false.

Table 3. Attributes for the <phpunit2> element

Name Type Description Default

haltonerror Boolean Stops the build process if an
error occurs during the test run.

false

haltonfailure Boolean Stops the build process if a test
fails. Errors are considered
failures as well.

false

printsummary Boolean Prints one-line statistics for
each test case.

false

PHPUnit and Phing | 43

The name of the file is predetermined by the formatter and
can be changed by the outfile attribute. There are three pre-
defined formatters:

brief
Prints detailed information in plain text only for test
cases that failed.

plain
Prints one-line statistics in plain text for all test cases.

xml
Writes the test results in XML format.

Table 4 shows the parameters that can be used to configure
the <formatter> task.

To generate a test report in HTML format, you can use the
<phpunit2report> task, which applies an XSLT stylesheet to
the XML logfile created by the <formatter> task. Phing ships
with two XSLT stylesheets—phpunit2-frames.xsl and
phpunit2-noframes.xsl—that generate HTML reports with or
without frames, respectively.

Example 16 shows a build.xml file for Phing that runs the
tests from the BankAccountTest class and generates a test

Table 4. Attributes for the <formatter> element

Name Type Description Default

type String Name of a predefined
formatter (xml, plain, or brief).

classname String Name of a custom formatter
class.

usefile Boolean Flag marking whether output
should be sent to a file.

true

todir String Directory the file is written to.

outfile String Name of the file that is written
to.

Depends on the
formatter used.

44 | PHPUnit Pocket Guide

report in HTML format using the phpunit2-frames.xsl XSLT
stylesheet. The HTML files generated for the report will be
written to the report/ directory that is created by the “pre-
pare” <target> and deleted by the “clean” <target>.

The following example shows the output of the phing com-
mand as it runs:

phing
Buildfile: /home/sb/build.xml

Example 16. Applying an XSLT stylesheet to get a test report

<?xml version="1.0"?>

<project name="BankAccount" basedir="." default="report">
 <target name="prepare">
 <mkdir dir="report"/>
 </target>

 <target name="clean">
 <delete dir="report"/>
 </target>

 <target name="report" depends="prepare">
 <phpunit2>
 <batchtest>
 <fileset dir=".">
 <include name="*Test.php"/>
 </fileset>
 </batchtest>

 <formatter type="xml" todir="report"
 outfile="logfile.xml"/>
 </phpunit2>

 <phpunit2report infile="report/logfile.xml"
 format="frames" styledir="."
 todir="report"/>
 </target>
</project>

PHPUnit and Phing | 45

BankAccount > prepare:
 [mkdir] Created dir: /home/sb/report

BankAccount > report:

BUILD FINISHED

Total time: 0.1112 seconds

Figure 3 shows the title page of the generated test report.

Table 5 shows the parameters that can be used to configure
the <phpunit2report> task.

Figure 3. The generated test report

Table 5. Attributes for the <phpunit2report> element

Name Type Description Default

infile String The filename of the XML results
file to use.

testsuites.xml

format String The format of the generated
report. Must be frames or
noframes.

noframes

46 | PHPUnit Pocket Guide

In addition to the test report that we just generated, Phing
can generate a code-coverage report. For this, we need the
<coverage-setup> and <coverage-report> tasks. The former
prepares a database in which code-coverage information is
stored while the tests are run; the latter formats such a data-
base into a report in HTML format using XSLT stylesheets.

Example 17 shows a build.xml file for Phing that runs the
tests from the BankAccountTest class and generates a code-
coverage report in HTML format.

styledir String The directory in which the
stylesheets are located. The
stylesheets must conform to
the following conventions: the
stylesheet for the frames
format must be named
phpunit2-frames.xsl, the
stylesheet for the noframes
format must be named
phpunit2-noframes.xsl.

todir String The directory to which the files
resulting from the
transformation should be
written.

Example 17. Generating a code-coverage report

<?xml version="1.0"?>

<project name="BankAccount" basedir="."
 default="coverage-report">
 <target name="prepare">
 <mkdir dir="coverage-report"/>
 </target>

 <target name="clean">
 <delete dir="coverage-report"/>
 </target>

Table 5. Attributes for the <phpunit2report> element (continued)

Name Type Description Default

PHPUnit and Phing | 47

Figure 4 shows the title page of the generated code-coverage
report.

 <target name="coverage-report" depends="prepare">
 <coverage-setup database="./coverage-report/database">
 <fileset dir=".">
 <include name="*.php"/>
 <exclude name="*Test.php"/>
 </fileset>
 </coverage-setup>

 <phpunit2>
 <batchtest>
 <fileset dir=".">
 <include name="*Test.php"/>
 </fileset>
 </batchtest>
 </phpunit2>

 <coverage-report outfile="coverage-report/coverage.xml">
 <report todir="coverage-report" styledir="."/>
 </coverage-report>
 </target>
</project>

Figure 4. The generated code-coverage report

Example 17. Generating a code-coverage report (continued)

48 | PHPUnit Pocket Guide

PHPUnit’s Implementation
The implementation of PHPUnit is a bit unusual, using tech-
niques that are difficult to maintain in ordinary application
code. Understanding how PHPUnit runs your tests can help
you write them.

A single test is represented by a PHPUnit2_Framework_Test
object and requires a PHPUnit2_Framework_TestResult object to
be run. The PHPUnit2_Framework_TestResult object is passed
to the PHPUnit2_Framework_Test object’s run() method,
which runs the actual test method and reports any excep-
tions to the PHPUnit2_Framework_TestResult object. This is an
idiom from the Smalltalk world called Collecting Parameter.
It suggests that when you need to collect results from several
methods (in our case the results of the several invocations of
the run() method for the various tests), you should add a
parameter to the method and pass an object that will collect
the results for you. See the article “JUnit: A Cook’s Tour” by
Erich Gamma and Kent Beck (http://junit.sourceforge.net/doc/
cookstour/cookstour.htm) and Smalltalk Best Practice Patterns
by Kent Beck (Prentice Hall).

To further understand how PHPUnit runs your tests, con-
sider the test-case class in Example 18.

Example 18. The EmptyTest class

<?php
require_once 'PHPUnit2/Framework/TestCase.php';

class EmptyTest extends PHPUnit2_Framework_TestCase {
 private $emptyArray = array();

 public function testSize() {
 $this->assertEquals(0, sizeof($this->emptyArray));
 }

 public function testIsEmpty() {
 $this->assertTrue(empty($this->emptyArray));
 }

PHPUnit’s Implementation | 49

When the test is run, the first thing PHPUnit does is convert
the test class into a PHPUnit2_Framework_Test object—here, a
PHPUnit2_Framework_TestSuite containing two instances of
EmptyTest, as shown in Figure 5.

When the PHPUnit2_Framework_TestSuite is run, it runs each
of the EmptyTests in turn. Each runs its own setUp() method,
creating a fresh $emptyArray for each test, as shown in
Figure 6. This way, if one test modifies the list, the other test
will not be affected. Even changes to global and super-global
(such as $_ENV) variables do not affect other tests.

In short, one test-case class results in a two-level tree of
objects when the tests are run. Each test method works with
its own copy of the objects created by setUp(). The result is
tests that can run completely independently.

To run the test method itself, PHPUnit uses reflection to find
the method name in the instance variable $name and invokes
it. This is another idiom, called Pluggable Selector, that is
commonly used in the Smalltalk world. Using a Pluggable
Selector makes writing tests simpler, but there is a tradeoff:
you cannot look at the code to decide whether a method is
invoked, you have to look at the data values at runtime.

}
?>

Figure 5. Tests about to be run

Example 18. The EmptyTest class (continued)

PHPUnit_Framework_TestSuite

EmptyTest

-name: "testSize"

EmptyTest

-name: "testisEmpty"

50 | PHPUnit Pocket Guide

PHPUnit API
For most uses, PHPUnit has a simple API: subclass PHPUnit2_
Framework_TestCase for your test cases and call assertTrue()
or assertEquals(). However, for those of you who would
like to look deeper into PHPUnit, here are all of its pub-
lished methods and classes.

Overview
Most of the time, you will encounter five classes or inter-
faces when you are using PHPUnit:

PHPUnit2_Framework_Assert
A collection of static methods for checking actual values
against expected values

PHPUnit2_Framework_Test
The interface of all objects that act like tests

PHPUnit2_Framework_TestCase
A single test

PHPUnit2_Framework_TestSuite
A collection of tests

Figure 6. Tests after running, each with its own fixture

PHPUnit2_Framework_TestSuite

EmptyTest

-name: "testSize"

EmptyTest

-name: "testIsEmpty"
-emptyArray:Array -emptyArray:Array

Array Array

PHPUnit API | 51

PHPUnit2_Framework_TestResult
A summary of the results of running one or more tests

Figure 7 shows the relationship of the five basic classes and
interfaces in PHPUnit: PHPUnit2_Framework_Assert, PHPUnit2_
Framework_Test, PHPUnit2_Framework_TestCase, PHPUnit2_
Framework_TestSuite, and PHPUnit2_Framework_TestResult.

PHPUnit2_Framework_Assert
Most test cases written for PHPUnit are derived indirectly
from the class PHPUnit2_Framework_Assert, which contains
methods for automatically checking values and reporting dis-
crepancies. The methods are declared static, so you can write
design-by-contract style assertions in your methods and have
them reported through PHPUnit (Example 19).

Figure 7. The five basic classes and interfaces in PHPUnit

Example 19. Design-by-contract style assertions

<?php
require_once 'PHPUnit2/Framework/Assert.php';

class Sample {
 public function aSampleMethod($object) {
 PHPUnit2_Framework_Assert::assertNotNull($object);
 }
}

PHPUnit2_Framework_Assert

PHPUnit2_Framework_TestCase

<<interface>>
PHPUnit2_Framework_Test

PHPUnit2_Framework_TestSuite

PHPUnit2_Framework_TestResult

*

52 | PHPUnit Pocket Guide

Most of the time, though, you’ll be checking the assertions
inside of tests.

There are two variants of each of the assertion methods: one
takes a message to be displayed with the error as a parameter,
and one does not. Example 20 demonstrates an assertion
method with a message. The optional message is typically
displayed when a failure is displayed, which can make debug-
ging easier.

The following example shows the output you get when you
run the testMessage() test from Example 20, using assertions
with messages:

phpunit MessageTest.php
PHPUnit 2.3.0 by Sebastian Bergmann.

F

Time: 0.102507
There was 1 failure:
1) testMessage(MessageTest)
This is a custom message.

$sample = new Sample;
$sample->aSampleMethod(NULL);
?>
Fatal error: Uncaught exception
 'PHPUnit2_Framework_AssertionFailedError'
with message 'expected: <NOT NULL> but was: <NULL>'

Example 20. Using assertions with messages

<?php
require_once 'PHPUnit2/Framework/TestCase.php';

class MessageTest extends PHPUnit2_Framework_TestCase {
 public function testMessage() {
 $this->assertTrue(FALSE, 'This is a custom message.');
 }
}
?>

Example 19. Design-by-contract style assertions (continued)

PHPUnit API | 53

FAILURES!!!
Tests run: 1, Failures: 1, Errors: 0, Incomplete Tests: 0.

Table 6 shows all the varieties of assertions.

Table 6. Assertions

Assertion Description

void assertTrue(Boolean
$condition)

Reports an error if $condition is
FALSE.

void assertTrue(Boolean
$condition, String $message)

Reports an error identified by $message
if $condition is FALSE.

void assertFalse(Boolean
$condition)

Reports an error if $condition is
TRUE.

void assertFalse(Boolean
$condition, String $message)

Reports an error identified by $message
if $condition is TRUE.

void assertNull(Mixed
$variable)

Reports an error if $variable is not
NULL.

void assertNull(Mixed
$variable, String $message)

Reports an error identified by $message
if $variable is not NULL.

void assertNotNull(Mixed
$variable)

Reports an error if $variable is NULL.

void assertNotNull(Mixed
$variable, String $message)

Reports an error identified by $message
if $variable is NULL.

void assertSame(Object
$expected, Object $actual)

Reports an error if the two variables
$expected and $actual do not
reference the same object.

void assertSame(Object
$expected, Object $actual,
String $message)

Reports an error identified by $message
if the two variables $expected and
$actual do not reference the same
object.

void assertSame(Mixed
$expected, Mixed $actual)

Reports an error if the two variables
$expected and $actual do not have
the same type and value.

void assertSame(Mixed
$expected, Mixed $actual,
String $message)

Reports an error identified by $message
if the two variables $expected and
$actual do not have the same type and
value.

void assertNotSame(Object
$expected, Object $actual)

Reports an error if the two variables
$expected and $actual reference
the same object.

54 | PHPUnit Pocket Guide

void assertNotSame(Object
$expected, Object $actual,
String $message)

Reports an error identified by $message
if the two variables $expected and
$actual reference the same object.

void assertNotSame(Mixed
$expected, Mixed $actual)

Reports an error if the two variables
$expected and $actual have the
same type and value.

void assertNotSame(Mixed
$expected, Mixed $actual,
String $message)

Reports an error identified by $message
if the two variables $expected and
$actual have the same type and value.

void assertEquals(Array
$expected, Array $actual)

Reports an error if the two arrays
$expected and $actual are not
equal.

void assertEquals(Array
$expected, Array $actual,
String $message)

Reports an error identified by $message
if the two arrays $expected and
$actual are not equal.

void assertNotEquals(Array
$expected, Array $actual)

Reports an error if the two arrays
$expected and $actual are equal.

void assertNotEquals(Array
$expected, Array $actual,
String $message)

Reports an error identified by $message
if the two arrays $expected and
$actual are equal.

void assertEquals(Float
$expected, Float $actual,
Float $delta = 0)

Reports an error if the two floats
$expected and $actual are not
within $delta of each other.

void assertEquals(Float
$expected, Float $actual,
String $message, Float
$delta = 0)

Reports an error identified by $message
if the two floats $expected and
$actual are not within$delta of each
other.

void assertNotEquals(Float
$expected, Float $actual,
Float $delta = 0)

Reports an error if the two floats
$expected and $actual are within
$delta of each other.

void assertNotEquals(Float
$expected, Float $actual,
String $message, Float
$delta = 0)

Reports an error identified by $message
if the two floats $expected and
$actual are within $delta of each
other.

void assertEquals(String
$expected, String $actual)

Reports an error if the two strings
$expected and $actual are not
equal. The error is reported as the delta
between the two strings.

Table 6. Assertions (continued)

Assertion Description

PHPUnit API | 55

void assertEquals(String
$expected, String $actual,
String $message)

Reports an error identified by $message
if the two strings $expected and
$actual are not equal. The error is
reported as the delta between the two
strings.

void assertNotEquals(String
$expected, String $actual)

Reports an error if the two strings
$expected and $actual are equal.

void assertNotEquals(String
$expected, String $actual,
String $message)

Reports an error identified by $message
if the two strings $expected and
$actual are equal.

void assertEquals(Mixed
$expected, Mixed $actual)

Reports an error if the two variables
$expected and $actual are not
equal.

void assertEquals(Mixed
$expected, Mixed $actual,
String $message)

Reports an error identified by $message
if the two variables $expected and
$actual are not equal.

void assertNotEquals(Mixed
$expected, Mixed $actual)

Reports an error if the two variables
$expected and $actual are equal.

void assertNotEquals(Mixed
$expected, Mixed $actual,
String $message)

Reports an error identified by $message
if the two variables $expected and
$actual are equal.

void assertContains(Mixed
$needle, Array $haystack)

Reports an error if $needle is not an
element of $haystack.

void assertContains(Mixed
$needle, Array $haystack,
String $message)

Reports an error identified by $message
if $needle is not an element of
$haystack.

void assertNotContains(Mixed
$needle, Array $haystack)

Reports an error if $needle is an
element of $haystack.

void assertNotContains(Mixed
$needle, Array $haystack,
String $message)

Reports an error identified by $message
if $needle is an element of
$haystack.

void assertContains(Mixed
$needle, Iterator $haystack)

Reports an error if $needle is not an
element of $haystack.

void assertContains(Mixed
$needle, Iterator $haystack,
String $message)

Reports an error identified by $message
if $needle is not an element of
$haystack.

Table 6. Assertions (continued)

Assertion Description

56 | PHPUnit Pocket Guide

You may find that you need other assertions than these to
compare objects specific to your project. Create your own
Assert class to contain these assertions to simplify your tests.

Failing assertions all call a single bottleneck method,
fail(String $message), which throws a PHPUnit2_Framework_
AssertionFailedError. There is also a variant that takes no
parameters. Call fail() explicitly when your test encounters
an error. The test for an expected exception is an example.
Table 7 lists the bottleneck methods in PHPUnit.

void assertNotContains(Mixed
$needle, Iterator $haystack)

Reports an error if $needle is an
element of $haystack.

void assertNotContains(Mixed
$needle, Iterator $haystack,
String $message)

Reports an error identified by $message
if $needle is an element of
$haystack.

void assertRegExp(String
$pattern, String $string)

Reports an error if $string does not
match the regular expression $pattern.

void assertRegExp(String
$pattern, String $string,
String $message)

Reports an error identified by $message
if $string does not match the regular
expression $pattern.

void assertNotRegExp(String
$pattern, String $string)

Reports an error if $stringmatches the
regular expression $pattern.

void assertNotRegExp(String
$pattern, String $string,
String $message)

Reports an error identified by $message
if $string matches the regular
expression $pattern.

void assertType(String
$expected, Mixed $actual)

Reports an error if the variable $actual
is not of type $expected.

void assertType(String
$expected, Mixed $actual,
String $message)

Reports an error identified by $message
if the variable $actual is not of type
$expected.

void assertNotType(String
$expected, Mixed $actual)

Reports an error if the variable $actual
is of type $expected.

void assertNotType(String
$expected, Mixed $actual,
String $message)

Reports an error identified by $message
if the variable $actual is of type
$expected.

Table 6. Assertions (continued)

Assertion Description

PHPUnit API | 57

PHPUnit2_Framework_Test
PHPUnit2_Framework_Test is the generic interface used by all
objects that can act as tests. Implementors may represent one
or more tests. The two methods are shown in Table 8.

PHPUnit2_Framework_TestCase and PHPUnit2_Framework_
TestSuite are the two most prominent implementors of
PHPUnit2_Framework_Test. You can implement PHPUnit2_
Framework_Test yourself. The interface is kept small inten-
tionally so it will be easy to implement.

PHPUnit2_Framework_TestCase
Your test-case classes will inherit from PHPUnit2_Framework_
TestCase. Most of the time, you will run tests from automati-
cally created test suites. In this case, each of your tests should
be represented by a method named test* (by convention).

PHPUnit2_Framework_TestCase implements PHPUnit2_Framework_
Test::countTestCases() so that it always returns 1. The
implementation of PHPUnit2_Framework_Test::run(PHPUnit2_
Framework_TestResult $result) in this class runs setUp(),
runs the test method, and then runs tearDown(), reporting any
exceptions to the PHPUnit2_Framework_TestResult.

Table 7. Bottleneck methods

Method Description

void fail() Reports an error.

void fail(String $message) Reports an error identified by $message.

Table 8. Implementor methods

Method Description

int countTestCases() Returns the number of tests.

void run(PHPUnit2_Framework_
TestResult $result)

Runs the tests and report the results on
$result.

58 | PHPUnit Pocket Guide

Table 9 shows the external protocols implemented by
PHPUnit2_Framework_TestCase.

There are two template methods—setUp() and tearDown()—
you can override to create and dispose of the objects against
which you are going to test. Table 10 shows these methods.

PHPUnit2_Framework_TestSuite
A PHPUnit2_Framework_TestSuite is a composite of PHPUnit2_
Framework_Tests. At its simplest, it contains a group of test

Table 9. TestCase external protocols

Method Description

__construct() Creates a test case.

__construct(String $name) Creates a named test case. Names are
used to print the test case and often as
the name of the test method to be run by
reflection.

String getName() Returns the name of the test case.

void setName($name) Sets the name of the test case.

PHPUnit2_Framework_
TestResult run(PHPUnit2_
Framework_TestResult
$result)

Runs the test case and reports the result
in $result.

void runTest() Overrides with a testing method if you do
not want the testing method to be
invoked by reflection.

Table 10. Template methods

Method Meaning

void setUp() Overrides to create objects against which to test. Each test
that runs will be run in its own test case, and setUp()
will be called separately for each one.

void tearDown() Overrides to dispose of objects no longer needed once the
test has finished. In general, you only need to explicitly
dispose of external resources (files or sockets, for example)
in tearDown().

PHPUnit API | 59

cases, all of which are run when the suite is run. Since it is a
composite, however, a suite can contain suites that can con-
tain suites and so on, making it easy to combine tests from
various sources and run them together.

PHPUnit2_Framework_TestSuite contains protocols to create
named or unnamed instances, as well as the PHPUnit2_
Framework_Test protocols, run(PHPUnit2_Framework_TestResult
$result) and countTestCases(). Table 11 shows the instance
creation protocol for PHPUnit2_Framework_TestSuite.

PHPUnit2_Framework_TestSuite also contains protocols for
adding and retrieving PHPUnit2_Framework_Tests, as shown in
Table 12.

Table 11. Creating named or unnamed instances

Method Description

__construct() Returns an empty test suite.

__construct(String
$theClass)

Returns a test suite containing an
instance of the class named $theClass
for each method in the class named
test*. If no class of name $theClass
exists, an empty test suite named
$theClass is returned.

__construct(String
$theClass, String $name)

Returns a test suite named $name
containing an instance of the class named
$theClass for each method in the class
named test*.

__construct(ReflectionClass
$theClass)

Returns a test suite containing an
instance of the class represented by
$theClass for each method in the class
named test*.

__construct(ReflectionClass
$theClass, $name)

Returns a test suite named $name
containing an instance of the class
represented by $theClass for each
method in the class named test*.

String getName() Returns the name of the test suite.

void setName(String $name) Sets the name of the test suite.

60 | PHPUnit Pocket Guide

Example 21 shows how to create and run a test suite.

For an example of how to use PHPUnit2_Framework_TestSuite
to compose test cases hierarchically, let’s look at PHPUnit’s
own test suite.

Example 22 shows a cut-down version of Tests/AllTests.php;
Example 23 shows a cut-down version of Tests/Framework/
AllTests.php.

Table 12. Protocols for adding and retrieving tests

Method Description

void addTest(PHPUnit2_
Framework_Test $test)

Adds $test to the suite.

void addTestFile(String
$filename)

Adds the tests that are defined in the
class(es) of a given source file to the suite.

void addTestFiles(Array
$filenames)

Adds the tests that are defined in the
classes of the given source files to the
suite.

int testCount() Returns the number of tests directly (not
recursively) in this suite.

PHPUnit2_Framework_Test[]
tests()

Returns the tests directly in this suite.

PHPUnit2_Framework_Test
testAt(int $index)

Returns the test at the $index.

Example 21. Creating and running a test suite

<?php
require_once 'PHPUnit2/Framework/TestSuite.php';

require_once 'ArrayTest.php';

// Create a test suite that contains the tests
// from the ArrayTest class.
$suite = new PHPUnit2_Framework_TestSuite('ArrayTest');

// Run the tests.
$suite->run();
?>

PHPUnit API | 61

Example 22. The AllTests class

<?php
if (!defined('PHPUnit2_MAIN_METHOD')) {
 define('PHPUnit2_MAIN_METHOD', 'AllTests::main');
}

require_once 'PHPUnit2/Framework/TestSuite.php';
require_once 'PHPUnit2/TextUI/TestRunner.php';

require_once 'Framework/AllTests.php';
// ...

class AllTests {
 public static function main() {
 PHPUnit2_TextUI_TestRunner::run(self::suite());
 }

 public static function suite() {
 $suite = new PHPUnit2_Framework_TestSuite('PHPUnit');

 $suite->addTest(Framework_AllTests::suite());
 // ...

 return $suite;
 }
}

if (PHPUnit2_MAIN_METHOD = = 'AllTests::main') {
 AllTests::main();
}
?>

Example 23. The Framework_AllTests class

<?php
if (!defined('PHPUnit2_MAIN_METHOD')) {

define('PHPUnit2_MAIN_METHOD', 'Framework_AllTests::main');
}

require_once 'PHPUnit2/Framework/TestSuite.php';
require_once 'PHPUnit2/TextUI/TestRunner.php';

62 | PHPUnit Pocket Guide

The Framework_AssertTest class is a standard test case that
extends PHPUnit2_Framework_TestCase.

Running Tests/AllTests.php uses the TextUI test runner to
run all tests, whereas running Tests/Framework/AllTests.php
runs only the tests for the PHPUnit2_Framework_* classes.

PHPUnit2_Framework_TestResult
While you are running all these tests, you need somewhere
to store the results: how many tests ran, which failed, and
how long they took. PHPUnit2_Framework_TestResult collects
results. A single PHPUnit2_Framework_TestResult is passed
around the whole tree of tests; when a test runs or fails, the
fact is noted in the PHPUnit2_Framework_TestResult. At the
end of the run, PHPUnit2_Framework_TestResult contains a
summary of all the tests.

require_once 'Framework/AssertTest.php';
// ...

class Framework_AllTests {
 public static function main() {
 PHPUnit2_TextUI_TestRunner::run(self::suite());
 }

 public static function suite() {
 $suite = new PHPUnit2_Framework_TestSuite('PHPUnit
 Framework');

 $suite->addTestSuite('Framework_AssertTest');
 // ...

 return $suite;
 }
}

if (PHPUnit2_MAIN_METHOD = = 'Framework_AllTests::main') {
 Framework_AllTests::main();
}
?>

Example 23. The Framework_AllTests class (continued)

PHPUnit API | 63

This example shows the PHPUnit test suite running:

php AllTests.php
PHPUnit 2.3.0 by Sebastian Bergmann.

...

...

.......

Time: 4.642600

OK (89 tests)

PHPUnit2_Framework_TestResult is also a subject that can be
observed by other objects wanting to report test progress.
For example, a graphical test runner might observe the
PHPUnit2_Framework_TestResult and update a progress bar
every time a test starts.

Table 13 summarizes the external protocols of PHPUnit2_
Framework_TestResult.

Table 13. TestResult external protocols

Method Description

void addError(PHPUnit2_
Framework_Test $test, Exception
$e)

Records that running $test caused
$e to be thrown unexpectedly.

void addFailure(PHPUnit2_
Framework_Test $test, PHPUnit2_
Framework_AssertionFailedError
$e)

Records that running $test caused
$e to be thrown unexpectedly.

PHPUnit2_Framework_
TestFailure[] errors()

Returns the errors recorded.

PHPUnit2_Framework_
TestFailure[] failures()

Returns the failures recorded.

PHPUnit2_Framework_
TestFailure[] notImplemented()

Returns the incomplete test cases
recorded.

int errorCount() Returns the number of errors.

int failureCount() Returns the number of failures.

int notImplementedCount() Returns the number of incomplete test
cases.

64 | PHPUnit Pocket Guide

If you want to register as an observer of a PHPUnit2_
Framework_TestResult, you need to implement PHPUnit2_
Framework_TestListener. To register, call addListener(), as
shown in Table 14.

Table 15 shows the methods that test listeners implement;
also see Example 26.

int runCount() Returns the total number of test cases
run.

Boolean wasSuccessful() Returns whether or not all tests ran
successfully.

Boolean
allCompletlyImplemented()

Returns whether or not all tests were
completely implemented.

void
collectCodeCoverageInformation
(Boolean $flag)

Enables or disables the collection of
code-coverage information.

Array
getCodeCoverageInformation()

Returns the code-coverage
information collected.

Table 14. TestResult and TestListener

Method Description

void addListener(PHPUnit2_
Framework_TestListener
$listener)

Registers $listener to receive updates
as results are recorded in the test result.

void
removeListener(PHPUnit2_
Framework_TestListener
$listener)

Unregisters $listener from receiving
updates.

Table 15. TestListener callbacks

Method Meaning

void addError(PHPUnit2_
Framework_Test $test,
Exception $e)

$test has thrown $e.

Table 13. TestResult external protocols (continued)

Method Description

PHPUnit API | 65

Package Structure
Many of the classes mentioned so far in this book come from
PHPUnit2/Framework. Here are all the packages in PHPUnit:

PHPUnit2/Framework
The basic classes in PHPUnit

PHPUnit2/Extensions
Extensions to the PHPUnit framework

PHPUnit2/Runner
Abstract support for running tests

PHPUnit2/TextUI
The text-based test runner

PHPUnit2/Util
Utility classes used by the other packages

void addFailure(PHPUnit2_
Framework_Test $test,
PHPUnit2_Framework_
AssertionFailedError $e)

$test has failed an assertion, throwing
a kind of PHPUnit2_Framework_
AssertionFailedError.

void
addIncompleteTest(PHPUnit2_
Framework_Test $test,
Exception $e)

$test is an incomplete test.

void
startTestSuite(PHPUnit2_
Framework_TestSuite $suite)

$suite is about to be run.

void endTestSuite(PHPUnit2_
Framework_TestSuite $suite)

$suite has finished running.

void startTest(PHPUnit2_
Framework_Test $test)

$test is about to be run.

void endTest(PHPUnit2_
Framework_Test $test)

$test has finished running.

Table 15. TestListener callbacks (continued)

Method Meaning

66 | PHPUnit Pocket Guide

Extending PHPUnit
PHPUnit can be extended in various ways to make the writ-
ing of tests easier and to customize the feedback you get from
running them. Here are common starting points to extend
PHPUnit.

Subclass PHPUnit2_Framework_TestCase
Write utility methods in an abstract subclass of PHPUnit2_
Framework_TestCase and derive your test-case classes from
that class. This is one of the easiest ways to extend PHPUnit.

Assert Classes
Write your own class with assertions specific to your purpose.

Subclass PHPUnit2_Extensions_TestDecorator
You can wrap test cases or test suites in a subclass of
PHPUnit2_Extensions_TestDecorator, and use the Decorator
design pattern to perform some actions before and after the
test runs.

PHPUnit ships with two concrete test decorators. The first,
PHPUnit2_Extensions_RepeatedTest, is used to run a test
repeatedly and only count it as a success if all iterations are
successful. The second, PHPUnit2_Extensions_TestSetup, was
discussed in the section “Fixtures,” earlier in this book.

Example 24 shows a cut-down version of the PHPUnit2_
Extensions_RepeatedTest test decorator that illustrates how
to write your own test decorators.

Extending PHPUnit | 67

Example 24. The RepeatedTest Decorator

<?php
require_once 'PHPUnit2/Extensions/TestDecorator.php';

class PHPUnit2_Extensions_RepeatedTest extends
 PHPUnit2_Extensions_TestDecorator {
 private $timesRepeat = 1;

 public function __construct(PHPUnit2_Framework_Test $test,
 $timesRepeat = 1) {
 parent::__construct($test);

 if (is_integer($timesRepeat) &&
 $timesRepeat >= 0) {
 $this->timesRepeat = $timesRepeat;
 }
 }

 public function countTestCases() {
 return $this->timesRepeat * $this->test->
 countTestCases();
 }

 public function run($result = NULL) {
 if ($result = == NULL) {
 $result = $this->createResult();
 }

 for ($i = 0; $i < $this->timesRepeat && !$result->
 shouldStop(); $i++) {
 $this->test->run($result);
 }

 return $result;
 }
}
?>

68 | PHPUnit Pocket Guide

Implement PHPUnit2_Framework_Test
The PHPUnit2_Framework_Test interface is narrow and easy to
implement. You can write an implementation of PHPUnit2_
Framework_Test that is simpler than PHPUnit2_Framework_
TestCase and that runs data-driven tests, for instance.

Example 25 shows a data-driven test-case class that com-
pares values from a file with Comma-Separated Values
(CSV). Each line of such a file looks like foo;bar, where the
first value is the one we expect and the second value is the
actual one.

Example 25. A data-driven test

<?php
require_once 'PHPUnit2/Framework/Assert.php';
require_once 'PHPUnit2/Framework/Test.php';
require_once 'PHPUnit2/Framework/TestResult.php';

class DataDrivenTest implements PHPUnit2_Framework_Test {
 const DATA_FILE = 'data.csv';

 public function __construct() {
 $this->lines = file(self::DATA_FILE);
 }

 public function countTestCases() {
 return sizeof($this->lines);
 }

 public function run($result = NULL) {
 if ($result = == NULL) {
 $result = new PHPUnit2_Framework_TestResult;
 }

 $result->startTest($this);

 foreach ($this->lines as $line) {
 list($expected, $actual) = explode(';', $line);

 try {

Extending PHPUnit | 69

Subclass PHPUnit2_Framework_TestResult
By passing a special-purpose PHPUnit2_Framework_TestResult
object to the run() method, you can change the way tests are
run and what result data is collected.

Implement PHPUnit2_Framework_TestListener
You do not necessarily need to write a whole subclass of
PHPUnit2_Framework_TestResult to customize it. Most of the
time, it will suffice to implement a new PHPUnit2_Framework_
TestListener (see Table 15) and attach it to the PHPUnit2_
Framework_TestResult object, before running the tests.

 PHPUnit2_Framework_Assert::assertEquals(
 trim($expected), trim($actual));
 }

 catch (PHPUnit2_Framework_ComparisonFailure $e) {
 $result->addFailure($this, $e);
 }

 catch (Exception $e) {
 $result->addError($this, $e);
 }
 }

 $result->endTest($this);

 return $result;
 }
}

$test = new DataDrivenTest;
$result = $test->run();

$failures = $result->failures();
print $failures[0]->thrownException()->toString();
?>
expected: <foo> but was: <bar>

Example 25. A data-driven test (continued)

70 | PHPUnit Pocket Guide

Example 26 shows a simple implementation of the PHPUnit2_
Framework_TestListener interface.

Example 26. A simple test listener

<?php
require_once 'PHPUnit2/Framework/TestListener.php';

class SimpleTestListener
implements PHPUnit2_Framework_TestListener {
 public function
 addError(PHPUnit2_Framework_Test $test, Exception $e) {
 printf(
 "Error while running test '%s'.\n",
 $test->getName()
);
 }

 public function
 addFailure(PHPUnit2_Framework_Test $test,
 PHPUnit2_Framework_AssertionFailedError $e) {
 printf(
 "Test '%s' failed.\n",
 $test->getName()
);
 }

 public function
 addIncompleteTest(PHPUnit2_Framework_Test $test,
 Exception $e) {
 printf(
 "Test '%s' is incomplete.\n",
 $test->getName()
);
 }

 public function startTest(PHPUnit2_Framework_Test $test) {
 printf(
 "Test '%s' started.\n",
 $test->getName()
);
 }

Extending PHPUnit | 71

Example 27 shows how to run and observe a test suite.

 public function endTest(PHPUnit2_Framework_Test $test) {
 printf(
 "Test '%s' ended.\n",
 $test->getName()
);
 }

 public function
 startTestSuite(PHPUnit2_Framework_TestSuite $suite) {
 printf(
 "TestSuite '%s' started.\n",
 $suite->getName()
);
 }

 public function
 endTestSuite(PHPUnit2_Framework_TestSuite $suite) {
 printf(
 "TestSuite '%s' ended.\n",
 $suite->getName()
);
 }
}
?>

Example 27. Running and observing a test suite

<?php
require_once 'PHPUnit2/Framework/TestResult.php';
require_once 'PHPUnit2/Framework/TestSuite.php';

require_once 'ArrayTest.php';
require_once 'SimpleTestListener.php';

// Create a test suite that contains the tests
// from the ArrayTest class.
$suite = new PHPUnit2_Framework_TestSuite('ArrayTest');

Example 26. A simple test listener (continued)

72 | PHPUnit Pocket Guide

New Test Runner
If you need different feedback from the test execution, write
your own test runner, interactive or not. The abstract
PHPUnit2_Runner_BaseTestRunner class, which the PHPUnit2_
TextUI_TestRunner class (the PHPUnit command-line test
runner) inherits from, can be a starting point for this.

PHPUnit for PHP 4
There is a release series of PHPUnit that works with PHP 4
and does not require PHP 5. Due to PHP 4’s limited object
model, PHPUnit for PHP 4 is not a complete port of JUnit as
PHPUnit for PHP 5 is. It also lacks certain features of PHP-
Unit for PHP 5, such as code-coverage analysis.

The PHPUnit release series for PHP 4 has its own PEAR
package named PHPUnit (instead of PHPUnit2). This is
because incompatible branches of PEAR packages (such as
PHPUnit 1.X for PHP 4 and PHPUnit 2.X for PHP 5) have to
be maintained in separate packages.

// Create a test result and attach a SimpleTestListener
// object as an observer to it.
$result = new PHPUnit2_Framework_TestResult;
$result->addListener(new SimpleTestListener);

// Run the tests.
$suite->run($result);
?>

TestSuite 'ArrayTest' started.
Test 'testNewArrayIsEmpty' started.
Test 'testNewArrayIsEmpty' ended.
Test 'testArrayContainsAnElement' started.
Test 'testArrayContainsAnElement' ended.
TestSuite 'ArrayTest' ended.

Example 27. Running and observing a test suite (continued)

PHPUnit for PHP 4 | 73

The following command line shows how to install PHPUnit
for PHP 4 using the PEAR Installer:

$ pear install PHPUnit

A test-case class that is used with PHPUnit for PHP 4 is simi-
lar to one that is used with PHPUnit for PHP 5. The essen-
tial difference is that a PHP4 test class extends PHPUnit_
TestCase (which itself extends PHPUnit_Assert, the class that
provides the assertion methods).

Example 28 shows a version of the ArrayTest test case that
can be used with PHPUnit for PHP 4.

PHPUnit for PHP 4 does not provide a TextUI test runner.
The most commonly used way to run tests with PHPUnit for
PHP 4 is to write a test suite and run it manually, as shown
in Example 29.

Example 28. Writing a test case for PHPUnit 1.x

<?php
require_once 'PHPUnit/TestCase.php';

class ArrayTest extends PHPUnit_TestCase {
 var $_fixture;

 function setUp() {
 $this->_fixture = Array();
 }

 function testNewArrayIsEmpty() {
 $this->assertEquals(0, sizeof($this->_fixture));
 }

 function testArrayContainsAnElement() {
 $this->_fixture[] = 'Element';
 $this->assertEquals(1, sizeof($this->_fixture));
 }
}
?>

74 | PHPUnit Pocket Guide

Figure 8 shows the one feature that PHPUnit for PHP 4 has
that PHPUnit for PHP 5 does not yet have: a test runner with
a graphical user interface based on PHP-GTK.

Example 29. Running a test case with PHPUnit 1.x

<?php
require_once 'ArrayTest.php';
require_once 'PHPUnit.php';

$suite = new PHPUnit_TestSuite('ArrayTest');
$result = PHPUnit::run($suite);

print $result->toString();
?>

TestCase arraytest->testnewarrayisempty() passed
TestCase arraytest->testarraycontainsanelement() passed

Figure 8. The PHP-GTK Test Runner

Bibliography | 75

Bibliography
Astels, David. Test-Driven Development: A Practical Guide.

Prentice Hall, 2003.

Beck, Kent. JUnit Pocket Guide. O’Reilly, 2004.

Beck, Kent. Smalltalk Best Practice Patterns. Prentice Hall,
2003.

Beck, Kent. Test-Driven Development: By Example. Addison
Wesley, 2002.

Bergmann, Sebastian. Professionelle Softwareentwicklung mit
PHP 5. dpunkt.verlag, 2005.

Gutman, Andi, Stig Bakken, and Derick Rethans. PHP 5
Power Programming. Prentice Hall, 2005.

77

We’d like to hear your suggestions for improving our indexes. Send email to
index@oreilly.com.

Index

A
agile documentation, 37

HTML and, 38
Ant, 40
assertions

classes, 66
failing, 56
varieties, 53–56

assumptions, documentation
and, 38

automated tests, 4, 7

B
Bank Account example of Test-

First Programming, 27
brief formatting, 42

C
classes

assertions, 66
PHPUnit2/Framework

package, 65

subclasses
PHPUnit2_Extensions_

TestDecorator, 66
PHPUnit2_Framework_

TestCase, 66
PHPUnit2_Framework_

TestResult, 69
code coverage, 46
code-coverage analysis, 32–34
Collecting Parameter, 48

implementation and, 48
collective code ownership, 37
command-line test runner, 12
cross-team tests, 38

D
data-driven tests, 68
debugging tests, 39
design, stubs and, 35
design-by-contract, 51
documentation

agile, 37
assumptions, 38
cross-team tests, 38
TestDox and, 37

78 | Index

E
errors, failures and, 12
exceptions, 21–23
extensions, PHPUnit2/

Extensions, 65
Extreme Programming, 25

agile documentation, 37
collective code ownership, 37

F
failures, errors and, 12
fixtures, 16–20
formatting

brief, 42
plain, 42
xml, 42

functionality, stubs and, 36

G
goals of PHPUnit, 7–10

H
HTML, agile documentation

and, 38

I
IDatabase, stubs and, 35
implementation

Collecting Parameter and, 48
PHPUnit2_Framework_

Test, 68
PHPUnit2_Framework_

TestListener, 69
Pluggable Selector, 49
reflection, 49

incomplete tests, 24–25
installation, PHPUnit, 11
interfaces, PHPUnit2_

Framework_Test, 57

L
logfile generation, 14

O
Observer Pattern, 36, 64

P
packages, 65
PEAR (PHP Extension and

Application
Repository), 11

PHPUnit for PHP4, 72
performance regressions, 23
Phing, 40–47
PHP 4, 72
PHPUnit

goals of, 7–10
installation, 11
PHP 4 and, 72

phpunit command, 12
PHPUnit2/Extensions, 65
PHPUnit2/Framework, 65
PHPUnit2/Runner, 65
PHPUnit2/TextUI, 65
PHPUnit2/Util, 65
PHPUnit2_Extensions_

ExceptionTestCase, 21
PHPUnit2_Extensions_

PerformanceTestCase, 23
PHPUnit2_Extensions_

RepeatedTest, 66
PHPUnit2_Extensions_

TestDecorator, 66
PHPUnit2_Extensions_

TestSetup, 19, 34, 66
PHPUnit2_Framework_

Assert, 30, 51, 51–56, 66
PHPUnit2_Framework_

IncompleteTest, 24
PHPUnit2_Framework_

IncompleteTestError, 24

Index | 79

PHPUnit2_Framework_
Test, 48, 49, 57, 68

PHPUnit2_Framework_
TestCase, 8, 57, 66

PHPUnit2_Framework_TestCase
API, 50

PHPUnit2_Framework_
TestListener, 64, 69

PHPUnit2_Framework_
TestResult, 48, 62,
62–65, 69, 71

PHPUnit2_Framework_
TestSuite, 49, 58, 58–62,
71

PHPUnit2_Runner_
TestSuiteLoader, 15

plain formatting, 42
Pluggable Selector, 49
programming

Extreme Programming, 25
Test-First Programming, 25

R
Refactoring, 40
Reflection, 49
regressions, 23
requirements, 1
resource allocation, stubs

and, 34

S
self-shunt pattern, 36
setUp() method, 18
skeleton generator, 15
stubs, 34–37
subclasses

PHPUnit2_Extensions_
TestDecorator, 66

PHPUnit2_Framework_
TestCase, 66

PHPUnit2_Framework_
TestResult, 69

suite-level setup, 19
switches, command-line test

runner, 12
system requirements, 1

T
tearDown() method, 18
Test Report, 43
test runners, writing, 72
test suites, running, 71
TestDox, 37
test-driven development, 25
Test-First Programming, 25–32

Bank Account example, 27
tests

agile documentation, 37
automating, 4
command-line test runner, 12
cross-team, 38
debugging tests, 39
fixtures, 16–20
incomplete, 24–25
refactoring and, 40
writing, 8

U
Unit Test, 5
utilities

PHPUnit2/Util, 65
PHPUnit2_Framework_

TestCase subclass, 66

W
writing tests, 8

X
xml formatting, 42

	Contents
	PHPUnit Pocket Guide
	Introduction
	Requirements
	This Book Is Free
	Conventions Used in This Book
	How to Contact Us
	Acknowledgments

	Automating Tests
	PHPUnit’s Goals
	Installing PHPUnit
	The Command-Line Test Runner
	Fixtures
	More setUp(��) than tearDown(��)
	Variations
	Suite-Level Setup

	Testing Exceptions and Performance Regressions
	Exceptions
	Performance Regressions

	Incomplete Tests
	Test-First Programming
	BankAccount Example

	Code-Coverage Analysis
	Stubs
	Self-Shunting

	Other Uses for Tests
	Agile Documentation
	Cross-Team Tests
	Debugging Tests
	Refactoring

	PHPUnit and Phing
	Formatting Feedback

	PHPUnit’s Implementation
	PHPUnit API
	Overview
	PHPUnit2_Framework_Assert
	PHPUnit2_Framework_Test
	PHPUnit2_Framework_TestCase
	PHPUnit2_Framework_TestSuite
	PHPUnit2_Framework_TestResult
	Package Structure

	Extending PHPUnit
	Subclass PHPUnit2_Framework_TestCase
	Assert Classes
	Subclass PHPUnit2_Extensions_TestDecorator
	Implement PHPUnit2_Framework_Test
	Subclass PHPUnit2_Framework_TestResult
	Implement PHPUnit2_Framework_TestListener
	New Test Runner

	PHPUnit for PHP 4
	Bibliography

	Index

