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To the Reader

E
VEN though the literature about Lisp is abundant and already accessible
to the reading public, nevertheless, this book still fills a need. The logical
substratum where Lisp and Scheme are founded demand that modern
users must read programs that use (and even abuse) advanced technology,

that is, higher-order functions, objects, continuations, and so forth. Tomorrow's
concepts will be built on these bases, so not knowing them blocks your path to the
future.

To explain these entities, their origin, their variations, this book will go into
great detail. Folklore tells us that even if a Lisp user knows the value of every
construction in use, he or she generally does not know its cost. This work also
intends to fill that mythical hole with an in-depth study of the semantics and
implementation of various features of Lisp, made more solid by more than thirty
years of history.

Lisp is an enjoyable language in which numerous fundamental and non-trivial
problems can be studied simply. Along with ML, which is strongly typed and suf
fers few side effects, Lisp is the most representative of the applicative languages.
The concepts that illustrate this class of languages absolutely must be mastered
by students and computer scientists of today and tomorrow. Based on the idea
of "function," an idea that has matured over several centuries of mathematical re
search, applicative languages are omnipresent in computing; they appear in various
forms, such as the composition of UN*X byte streams, the extension language for
the EMACS editor, as well as other scripting languages. If you fail to recognize
these models, you will misunderstand how to combine their primitive elements and
thus limit yourself to writing programs painfully, word by word, without a real
architecture.

Audience

This book is for a wide, if specialized audience:

• to graduate students and advanced undergraduates who are studying the im
plementation of languages, whether applicative or not, whether interpreted,
compiled, or both.

• to programmers in Lisp or Scheme who want to understand more clearly the
costs and nuances of constructions they're using so they can enlarge their
expertise and produce more efficient, more portable programs.



XIV TO THE READER

• to the lovers of applicative languages everywhere; in this book, they'll find
many reasons for satisfying reflection on their favorite language.

Philosophy

This book was developed in courses offered in two areas: in the graduate research
program (DEA ITCP: Diplome d'Etudes Approfondies en Informatique Theorique,
Calcul et Programmation) at the University of Pierre and Marie Curie of Paris VI;
some chapters are also taught at the Ecole Polytechnique.

A book like this would normally follow an introductory course about an ap
plicative language, such as Lisp, Scheme, or ML, since such a course typically ends
with a description of the language itself. The aim of this book is to cover, in
the widest possible scope, the semantics and implementation of interpreters and
compilers for applicative languages. In practical terms, it presents no less than
twelve interpreters and two compilers (one into byte-code and the other into the C
programming language) without neglecting an object-oriented system (one derived
from the popular MEROON). In contrast to many books that omit some of the
essential phenomena in the family of Lisp dialects, this one treats such important
topics as reflection, introspection, dynamic evaluation, and, of course; macros.

This book was inspired partly by two earlier works: Anatomy of Lisp [AIl78],
which surveyed the implementation of Lisp in the seventies, and Operating System
Design: the Xinu Approach [Com84], which gave all the necessary code without hid
ing any details on how an operating system works and thereby gained the reader's
complete confidence.

In the same spirit, we want to produce a precise (rather than concise) book
where the central theme is the semantics of applicative languages generally and
of Scheme in particular. By surveying many implementations that explore widely
divergent aspects, we'll explain in complete detail how any such system is built.
Most of the schisms that split the community of applicative languages will be ana
lyzed, taken apart, implemented, and compared, revealing all the implementation
details. We'll "tell all" so that you, the reader, will never be stumped for lack of
information, and standing on such solid ground, you'll be able to experiment with
these concepts yourself.

Incidentally, all the programs in this book can be picked up, intact, electroni
cally (details on page xix).

Structure

This book is organized into two parts. The first takes off from the implementation
of a naive Lisp interpreter and progresses toward the semantics of Scheme. The
line of development in this part is motivated by our need to be more specific, so we
successively refine and redefine a series of name spaces (Lisp!, Lisp2, and so forth),
the idea of continuations (and multiple associated control forms), assignment, and
writing in data structures. As we slowly augment the language that we're defining,
we'll see that we inevitably pare back its defining language so that it is reduced to
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Chapter Signature
1 (eval exp env)
2 (eval exp env fenv)

(eval exp env fenv denv)
(eval exp env denv)

3 (eval exp env cont)
4 (eval e r s k)
5 «meaning e) r s k)
6 «meaning e sr) r k)

«meaning e sr tail?) k)
«meaning e sr tail?»

7 (run (meaning e sr tail?»
10 (->C (meaning e sr»

Figure 1 Approximate signatures of interpreters and compilers

a kind of A-calculus. We then convert the description we've gotten this way into
its denotational equivalent.

More than six years of teaching experience convinced us that this approach of
making the language more and more precise not only initiates the reader gradually
into authentic language-research, but it is also a good introduction to denotational
semantics, a topic that we really can't afford to leap over.

The second part of the book goes in the other direction. Starting from denota
tional semantics and searching for efficiency, we'll broach the topic of fast interpre
tation (by pretreating static parts), and then we'll implement that preconditioning
(by precompilation) for a byte-code compiler. This part clearly separates program
preparation from program execution and thus handles a number of topics: dynamic
evaluation (eval); reflective aspects (first class environments, auto-interpretable in
terpretation, reflective tower of interpreters); and the semantics of macros. Then
we introduce a second compiler, one compiling to the C programming language.

We'll close the book with the implementation of an object-oriented system,
where objects make it possible to define the implementation of certain interpreters
and compilers more precisely.

Good teaching demands a certain amount of repetition. In that context, the
number of interpreters that we examine, all deliberately written in different styles
naive, object-oriented, closure-based, denotational, etc.-cover the essential tech
niques used to implement applicative languages. They should also make you think
about the differences among them. Recognizing these differences, as they are
sketched in Figure 1, will give you an intimate knowledge of a language and its
implementation. Lisp is not just one of these implementations; it is, in fact, a
family of dialects, each one made up of its own particular mix of the characteristics
we'll be looking at.

In general, the chapters are more or less independent units of about forty pages
or so; each is accompanied by exercises, and the solutions to those exercises are
found at the end of the book. The bibliography contains not only historically
important references, so you can see the evolution of Lisp since 1960, but also
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references to current, on-going research.

Prerequisites

TO THE READER

Though we hope this book is both entertaining and informative, it may not nec
essarily be easy to read. There are subjects treated here that can be appreciated
only if you make an effort proportional to their innate difficulty. To harken back
to something like the language of courtly love in medieval France, there are certain
objects of our affection that reveal their beauty and charm only when we make a
chivalrous but determined assault on their defences; they remain impregnable if we
don't lay seige to the fortress of their inherent complexity.

In that respect, the study of programming languages is a discipline that de
mands the mastery of tools, such as the A-calculus and denotational semantics.
While the design of this book will gradually take you from one topic to another in
an orderly and logical way, it can't eliminate all effort on your part.

You'll need certain prerequisite knowledge about Lisp or Scheme; in particular,
you'll need to know roughly thirty basic functions to get started and to understand
recursive programs without undue labor. This book has adopted Scheme as the
presentation language; (there's a summary of it, beginning on page xviii) and it's
been extended with an object layer, known as MEROON. That extension will come
into play when we want to consider problems of representation and implementation.

All the programs have been tested and actually run successfully in Scheme.
For readers that have assimilated this book, those programs will pose no problem
whatsoever to port!
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TO THE READER

Notation

XVll

Extracts from programs appear in this type face, no doubt making you think
unavoidably of an old-fashioned typewriter. At the same time, certain parts will
appear in italic to draw attention to variations within this context.

The sign ~ indicates the relation "has this for its value" while the sign ==
indicates equivalence, that is, "has the same value as." When we evaluate a form
in detail, we'll use a vertical bar to indicate the environment in which the expression
must be considered. Here's an example illustrating these conventions in notation:

(let «a (+ b 1»)
(let «f (lambda () a»)

(foo (f) a) ) )1 ; the value of foo is the function for creating dotted
b--+ 3 ; pairs that is, the value of the global variable cons.
foo=: cons

_ (let «f (lambda () a») (foo (f) a»
a--+ 4
b--+ 3

foo=: cons
f=: (lambda () a)1

a--+ 4
_ (foo (f) a)

a--+ 4
b--+ 3

foo=: cons
f=: (lambda () a)1

a--+ 4

--+ (4 . 4)

We'll use a few functions that are non-standard in Scheme, such as gensym
that creates symbols guaranteed to be new, that is, different from any symbol seen
before. In Chapter 10, we'll also use format and pp to display or "pretty-print."
These functions exist in most implementations of Lisp or Scheme.

Certain expressions make sense only in the context of a particular dialect, such
as COMMON LISP, Dylan, EuLISP, IS-Lisp, Le-Lispl, Scheme, etc. In such a case,
the name of the dialect appears next to the example, like this:

(defdynamic fooncall
(lambda (one :rest others)

(funcall one others) ) )

IS-Lisp

To make it easier for you to get around in this book, we'll use this sign [see
p. ] to indicate a cross-reference to another page. When we suggest variations
detailed in the exercises, we'll also use that sign, like this [see Ex. ]. You'll also
find a complete index of the function definitions that we mention. [see p. 495]

1. Le-Lisp is a trademark of INRIA.
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Short SUllllllary of Schellle

TO THE READER

There are excellent books for learning Scheme, such as [AS85, Dyb87, SF89]. For
reference, the standard document is the Revised revised revised revised Report on
Scheme, informally known as R4RS.

This summary merely outlines the important characteristics of that dialect,
that is, the characteristics that we'll be using later to dissect the dialect as we lead
you to a better understanding of it.

Scheme lets you handle symbols, characters, character strings, lists, numbers,
Boolean values, vectors, ports, and functions (or procedures in Scheme parlance).

Each of those data types has its own associated predicate: symbol?, char?,
string?, pair?, number?, boolean?, vector?, and procedure?

There are also the corresponding selectors and modifiers, where appropriate,
such as: string-ref, string-set! , vector-ref, and vector-set! .

For lists, there are: car, cdr, set-car! , and set-cdr!.
The selectors, car and cdr, can be composed (and pronounced), so, for example,

to designate the second term in a list, we use cadr and pronounce it something
like kadder.

These values can be implicitly named and created simply by mentioning them,
as we do with symbols and identifiers. For characters, we prefix them by #\ as
in #\Z or #\space. We enclose character strings within quotation marks (that is,
") and lists within parentheses (that is, ()). We use numbers are they are. We
can also make use of Boolean values, namely, #t and #f. For vectors, we use this
syntax: #(do re mi), for example. Such values can be constructed dynamically
with cons, list, string, make-string, vector, and make-vector. They can also
be converted from one to another, by using string->symbol and int->char.

We manage input and output by means of these functions: read, of course,
reads an expression; display shows an expression; newline goes to the next line.

Programs are represented by Scheme values known as forms.
The form begin lets you group forms to evaluate them sequentially; for example,

(begin (display 1) (display 2) (newline)).
There are many conditional forms. The simplest is the form if-then-else

conventionally written in Scheme this way: (if condition then otherwise). To
handle choices that entail more than two options, Scheme offers cond and case. The
form cond contains a group of clauses beginning with a Boolean form and ending
by a series of forms; one by one the Boolean forms of the clauses are evaluated until
one returns true (or more precisely, not false, that is, not #f); the forms that follow
the Boolean form that succeeded will then be evaluated, and their result becomes
the value of the entire cond form. Here's an example of the form cond where you
can see the default behavior of the keyword else.

(cond «eq? x 'flip) 'flop)
«eq? x 'flop) 'flip)
(else (list x "neither flip nor flop"» )

The form case has a form as its first parameter, and that parameter provides a
key that we'll look for in all the clauses that follow; each of those clauses specifies
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which key or keys will set it off. Once an appropriate key is found, the associated
forms will be evaluated and their result will become the result of the entire case
form. Here's how we would convert the preceding example using cond into one
using case.

(case x
«flip) 'flop)
«flop) 'flip)
(else (list x "neither flip nor flop"»

Functions are defined by a lambda form. Just after the keyword lambda, you'll
find the variables of the function, followed by the expressions that indicate how to
calculate the function. These variables can be modified by assignment, indicated
by set!. Literal constants are introduced by quote. The forms let, let*, and
letrec introduce local variables; the initial value of such a local variable may be
calculated in various ways.

With the form define, you can define named values of any kind. We'll exploit
the internal writing facilities that def ine forms provide, as well as the non-essential
syntax where the name of the function to define is indicated by the way it's called.
Here is an example of what we mean.

(define (rev 1)
(define nil '(»
(define (reverse 1 r)

(if (pair? 1) (reverse (cdr 1) (cons (car 1) r» r) )
(reverse 1 nil) )

That example could also be rewritten without inessential syntax, like this:

(define rev
(lambda (1)

(letrec «reverse (lambda (1 r)
(if (pair? 1) (reverse (cdr 1)

(cons (car 1) r»
r ) »)

(reverse 1 '(» ) ) )

That example completes our brief summary of Scheme.

Programs and More Information

The programs (both interpreted and compiled) that appear in this book, the object
system, and the associated tests are all available on-line by anonymous ftp at:

(IP 128.93.2.54) ftp.inria.fr:INRIA/Projects/icsla/Books/LiSP.tar.gz

At the same site, you'll also find articles about Scheme and other implementa
tions of Scheme.

The electronic mail address of the author of this book is:

Christian.QueinnecGpolytechnique.fr
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Recommended Reading

TO THE READER

Since we assume that you already know Scheme, we'll refer to the standard reference
[AS85, SF89].

To gain even greater advantage from this book, you might also want to pre
pare yourself with other reference manuals, such as COMMON LISP [Ste90], Dy
lan [App92b], EuLISP[PE92], IS-Lisp [IS094], Le-Lisp [CDD+91], OakLisp [LP88],
Scheme [CR91b], T [RAM84] and, Talk [IL094].

Then, for a wider perspective about programming languages in general, you
might want to consult [BG94].



1
The Basics of Interpretation

T
HIS chapter introduces a basic interpreter that will serve as the foundation
for most of this book. Deliberately simple, it's more closely related to
Scheme than to Lisp, so we'll be able to explain Lisp in terms of Scheme
that way. In this preliminary chapter, we'll broach a number of topics in

succession: the articulations of this interpreter; the well known pair of functions,
eval and apply; the qualities expected in environments and in functions. In short,
we'll start various explorations here to pursue in later chapters, hoping that the
intrepid reader will not be frightened away by the gaping abyss on either side of
the trail.

The interpreter and its variations are written in native Scheme without any
particular linguistic restrictions.

Literature about Lisp rarely resists that narcissistic pleasure of describing Lisp
in Lisp. This habit began with the first reference manual for Lisp 1.5 [MAE+62] and
has been widely imitated ever since. We'll mention only the following examples
of that practice: (There are many others.) [Rib69], [Gre77], [Que82], [Cay83],
[Cha80], [SJ93], [Rey72], [Gor75], [SS75], [A1l78], [McC78b], [Lak80], [Hen80],
[BM82], [Cli84], [FW84], [dRS84], [AS85], [R3R86], [Mas86], [Dyb87], [WH88],
[Kes88], [LF88], [DiI88], [Kam90].

Those evaluators are quite varied, both in the languages that they define and
in what they use to do so, but most of all in the goals they pursue. The evaluator
defined in [Lak80], for example, shows how graphic objects and concepts can emerge
naturally from Lisp, while the evaluator in [BM82] focuses on the size of evaluation.

The language used for the definition is important as well. If assignment and
surgical tools (such as set-car!, set-cdr! , and so forth) are allowed in the defi
nition language, they enrich it and thus minimize the size (in number of lines) of
descriptions; indeed, with them, we can precisely simulate the language being de
fined in terms that remind us of the lowest level machine instructions. Conversely,
the description uses more concepts. Restricting the definition language in that way
complicates our task, but lowers the risk of semantic divergence. Even if the size
of the description grows, the language being defined will be more precise and, to
that degree, better understood.

Figure 1.1 shows a few representative interpreters in terms of the complexity
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Richness of the language being defined

• [Kes88]

• [LF88]

• [Dyb87]

• [SJ93]
• [McC78b]

• [Gor75]

• [Sto77]

• [MP80]

• [R3R86]Scheme

pure Lisp

A-calculus

Lisp + Objects

A-calculus

pure Lisp

Richness of the defining language

Figure 1.1

of their definition language (along the x-axis) and the complexity of the language
being defined (along the y-axis). The knowledge progression shows up very well
in that graph: more and more complicated problems are attacked by more and
more restricted means. This book corresponds to the vector taking off from a
very rich version of Lisp to implement Scheme in order to arrive at the A-calculus
implementing a very rich Lisp.

1.1 Evaluation

The most essential part of a Lisp interpreter is concentrated in a single function
around which more useful functions are organized. That function, known as eval,
takes a program as its argument and returns the value as output. The presence of
an explicit evaluator is a characteristic trait of Lisp, not an accident, but actually
the result of deliberate design.

We say that a language is universal if it is as powerful as a Turing machine.
Since a Turing machine is fairly rudimentary (with its mobile read-write head and
its memory composed of binary cells), it's not too difficult to design a language
that powerful; indeed, it's probably more difficult to design a useful language that
is not universal.

Church's thesis says that any function that can be computed can be written
in any universal language. A Lisp system can be compared to a function taking
programs as input and returning their value as output. The very existence of such
systems proves that they are computable: thus a Lisp system can be written in a
universal language. Consequently, the function eval itself can be written in Lisp,
and more generally, the behavior of Fortran can be described in Fortran, and so
forth.

What makes Lisp unique-and thus what makes an explication of eval non
trivial-is its reasonable size, normally from one to twenty pages, depending on the
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level of detail.! This property is the result of a significant effort in design to make
the language more regular, to suppress special cases, and above all to establish a
syntax that's both simple and abstract.

Many interesting properties result from the existence of eval and from the fact
that it can be defined in Lisp itself.

• You can learn Lisp by reading a reference manual (one that explains functions
thematically) or by studying the eval function itself. The difficulty with that
second approach is that you have to know Lisp in order to read the definition
of eval-though knowing Lisp, of course, is the result we're hoping for, rather
than the prerequisite. In fact, it's sufficient for you to know only the subset
of Lisp used by eval. The language that defines eval is a pared-down one in
the sense that it procures only the essence of the language, reduced to special
forms and primitive functions.

It's an undeniable advantage of Lisp that it brings you these two intertwined
approaches for learning it.

• The fact that the definition of eval is available in Lisp means that the pro
gramming environment is part of the language, too, and costs little. By
programming environment, we mean such things as a tracer, a debugger, or
even a reversible evaluator [Lie87]. In practice, writing these tools to control
evaluation is just a matter of elaborating the code for eval, for example, to
print function calls, to store intermediate results, to ask the end-user whether
he or she wants to go on with the evaluation, and so forth.

For a long time, these qualities have insured that Lisp offers a superior pro
gramming environment. Even today, the fact that eval can be defined in
Lisp means that it's easy to experiment with new models of implementation
and debugging.

• Finally, eval itself is a programming tool. This tool is controversial since
it implies that an application written in Lisp and using eval must include
an entire interpreter or compiler, but more seriously, it must give up the
possibility of many optimizations. In other words, using eval is not without
consequences. In certain cases, its use is justified, notably when Lisp serves
as the definition and the implementation of an incremental programming
language.

Even apart from that important cost, the semantics of eval is not clear, a
fact that justifies its being separated from the official definition of Scheme in
[CR91b]. [see p. 271]

1.2 Basic Evaluator

Within a program, we distinguish free variables from bound variables. A variable
is free as long as no binding form (such as lambda, let, and so forth) qualifies it;
otherwise, we say that a variable is bound. As the term indicates, a free variable
is unbound by any constraint; its value could be anything. Consequently, in order

1. In this chapter, we define a Lisp of about 150 lines.
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to know the value of a fragment of a program containing free variables, we must
know the values of those free variables themselves. The data structure associating
variables and values is known as an environment. The function evaluate2 is thus
binary; it takes a program accompanied by an environment and returns a value.

(define (evaluate exp env) ... )

1.3 Evaluating Atoms

An important characteristic of Lisp is that programs are represented by expressions
of the language. However, since any representation assumes a degree of encoding,
we have to explain more about how programs are represented. The principal con
ventions of representation are that a variable is represented by a symbol (its name)
and that a functional application is represented by a list where the first term of
the list represents the function to apply and the other terms represent arguments
submitted to that function.

Like any other compiler, evaluate begins its work by syntactically analyzing the
expression to evaluate in order to deduce what it represents. In that sense, the title
of this section is inappropriate since this section does not literally involve evaluating
atoms but rather evaluating 'programs where the representation is atomic. It's
important, in this context, to distinguish the program from its representation (or,
the message from its medium, if you will). The function evaluate works on the
representation; from the representation, it deduces the expected intention; finally,
it executes what's requested.

(define (evaluate exp env)
(if (atom? exp) ; (atom? exp) _ (not (pair? exp))

(case (car exp)

(else ... ) ) )

If an expression is not a list, perhaps it's a symbol or actual data, such as a
number or a character string. When the expression is a symbol, the expression
represents a variable and its value is the one attributed by the environment.

(define (evaluate exp env)
(if (atom? exp)

(if (symbol? exp) (lookup exp env) exp)
(case (car exp)

(else ... ) ) )

The function lookup (which we'll explain later on page 13) knows how to find
the value of a variable in an environment. Here's the signature of lookup:

(lookup variable environment) --+ value

2. There is a possibility of confusion here. We've already mentioned the evaluator defined by the
function eval; it's widely present in any implementation of Scheme, even if not standardized; it's
often unary-accepting only one argument. To avoid confusion, we'll call the function eval that
we are defining by the name evaluate and the associated function apply by the name invoke.
These new names will also make your life easier if you want to experiment with these programs.
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In consequence, an implicit conversion takes place between a symbol and a
variable. If we were more meticulous about how we write, then in place of (lookup
exp env), we should have written:

... (lookup (symbol->variable exp) env) ...
That more scrupulous way of writing emphasizes that the symbol-the value

of exp-must be changed into a variable. It also underscores the fact that the
function symbol->variable3 is not at all an identity; rather, it converts a synt~c

tic entity (the symbol) into a semantic entity (the variable). In practice, then, a
variable is nothing other than an imaginary object to which the language and the
programmer attach a certain sense but which, for practical reasons, is handled only
by means of its representation. The representation was chosen for its convenience:
symbol->variable works like the identity because Lisp exploits the idea of a sym
bol as one of its basic types. In fact, other representations could have been adopted;
for example, a variable could have appeared in the form of a group of characters,
prefixed by a dollar sign. In that case, the conversion function symbol->variable
would have been less simple.

If a variable were an imaginary concept, the function lookup would not know
how to accept it as a first argument, since lookup knows how to work only on
tangible objects. For that reason, once again, we have to encode the variable
in a representation, this time, a key, to enable lookup to find its value in the
environment. A precise way of writing it would thus be:

... (lookup (variable->key (symbol->variable exp)) env) ...
But the natural laziness of Lisp-users inclines them to use the symbol of the

same name as the key associated with a variable. In that context, then, variable
>key is merely the inverse of symbol->variable and the composition of those two
functions is simply the identity.

When an expression is atomic (that is, when it does not involve a dotted pair)
and when that expression is not a symbol, we have the habit of considering it as
the representation of a constant that is its own value. This idempotence is known
as the autoquote facility. An autoquoted object does not need to be quoted, and it
is its own value. See [Cha94] for an example.

Here again, this choice is not obvious for several reasons. Not all atomic objects
naturally denote themselves. The value of the character string "a?b:c" might be
to call the C compiler for this string, then to execute the resulting program, and
to insert the results back in Lisp.

Other types of objects (functions, for example) seem stubbornly resistant to the
idea of evaluation. Consider the variable car, one that we all know the utility of;
its value is the function that extracts the left child from a pair; but that function
car itself-what is its value? Evaluating a function usually proves to be an error
that should have been detected and prevented earlier.

Another example of a problematic value is the empty list (). From the way it
is written, it might suggest that it is an empty application, that is, a functional
application without any arguments where we've even forgotten to mention the

3. Personally, I don't like names formed like this x->y to indicate a conversion because this order
makes it difficult to understand compositions; for example, (y->z(x->y.. . » is less straightforward
than (z<-y( y<-x.. . ». In contrast, x->y is much easier to read than y<-x. You can see here one
of the many difficulties that language designers come up against.
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function. That syntax is forbidden in Scheme and consequently is not defined as
having a value.

For those kinds of reasons, we have to analyze expressions very carefully, and
we should autoquote only those data that deserve it, namely, numbers, characters,
and strings of characters. [see p. 7] We could thus write:

(define (evaluate e env)
(if (atom? e)

(cond «symbol? e) (lookup e env»
«or (number? e) (string? e) (char? e) (boolean? e) (vector? e»
e )

(else (wrong "Cannot evaluate" e» )
. .. ) )

In that fragment of code, you can see the first case of possible errors. Most
Lisp systems have their own exception mechanism; it, too, is difficult to write
in portable code. In an error situation, we could call wrong4 with a character
string as its first argument. That character string would describe the kind of error,
and the following arguments could be the objects explaining the reason for the
anomaly. We should mention, however, that more rudimentary systems send out
cryptic messages, like Bus error: core dump when errors occur. Others stop the
current computation and return to the basic interaction loop. Still others associate
an exception handler with a computation, and that exception handler catches the
object representing the error or exception and decides how to behave from there.
[see p. 255] Some systems even offer exception handlers that are quasi-expert
systems themselves, analyzing the error and the corresponding code to offer the
end-user choices about appropriate corrections. In short, there is wide variation in
this area.

1.4 Evaluating Forms

Every language has a number of syntactic forms that are "untouchable": they
cannot be redefined adequately, and they must not be tampered with. In Lisp,
such a form is known as a special form. It is represented by a list where the first
term is a particular symbol belonging to the set of special operators. 5

A dialect of Lisp is characterized by its set of special forms and by its library
of primitive functions (those functions that cannot be written in the language
itself and that have profound semantic repercussions, as, for example, callicc in
Scheme).

In some respects, Lisp is simply an ordinary version of applied A-calculus, aug
mented by a set of special forms. However, the special genius of a given Lisp is
expressed in just this set. Scheme has chosen to minimize the number of special
operators (quote, if, set!, and lambda). In contrast, COMMON LISP (CLtL2

4. Notice that we did not say "the function wrong." We'll see more about error recovery on
page 255.
5. We will follow the usual lax habit of considering a special operator, say if, as being a "special
form" although if is not even a form. Scheme treats them as "syntactic keywords" whereas
COMMON LISP recognizes them with the special-form-p predicate.
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[Ste90]) has more than thirty or so, thus circumscribing the number of cases where
it's possible to generate highly efficient code.

Because special forms are coded as they are, their syntactic analysis is simple: it
is based on the first term of each such form, so one case statement suffices. When
a special form does not begin with a keyword, we say that is it is a functional
application or more simply an application. For the moment, we're looking at only
a small subset of the general special forms: quot e, if, begin, set!, and lambda.
(Later chapters introduce new, more specialized forms.)

(define (evaluate e env)
(if (atom? e)

(cond «symbol? e) (lookup e env»
«or (number? e) (string? e) (char? e) (boolean? e) (vector? e»
e )

(else (wrong "Cannot evaluate" e» )
(case (car e)

«quote) (cadr e»
«if) (if (evaluate (cadr e) env)

(evaluate (caddr e) env)
(evaluate (cadddr e) env) »

«begin) (eprogn (cdr e) env»
«set!) (update! (cadr e) env (evaluate (caddr e) env»)
«lambda) (make-function (cadr e) (cddr e) env»
(else (invoke (evaluate (car e) env)

(evlis (cdr e) env) » ) )

In order to lighten that definition, we've reduced the syntactic analysis to
its minimum, and we haven't bothered to verify whether the quotations are well
formed, whether if is really ternary6 (accepting three parameters) each time, and
so forth. We'll assume that the programs that we're analyzing are syntactically
correct.

1.4.1 Quoting

The special form quote makes it possible to introduce a value that, without its
quotation, would have been confused with a legal expression. The decision to rep
resent a program as a value of the language makes it necessary, when we want to
speak about a particular value, to find a means for discriminating between data
and programs that usurp the same space. A different syntactic choice could have
avoided that problem. For example, M-expressions, originally planned in [McC60]
as the normal syntax for programs written in Lisp, would have eliminated this par
ticular problem, but they would have forbidden macros-a marvelously useful tool
for extending syntax; however, M-expressions disappeared rapidly [McC78a]. The
special form quote is consequently the principal discriminator between program
and data.

6. As a form, if is not necessarily ternary. That is, it does not have to have three parameters.
Scheme and COMMON LISP, for example, support both binary and ternary if, whereas EuLISP
and IS-Lisp accept only ternary if; Le-Lisp supports at least binary if with a progn implicit in
the alternative. (progn corresponds to Scheme begin.)
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Quotation consists of returning, as a value, that term following the keyword.
That practice is clearly articulated in this fragment of code:

... (case (car e)
«quote) (cadr e» ... ) ...

You might well ask whether there is a difference between implicit and explicit
quotation, for example, between 33 and '33 or even between #(fa do sol) and
'#(fa do sol).7 The first comparison-between 33 and , 33-impinges on im
mediate objects although the second one-between #(fa do sol) and '#(fa do
sOl)-impinges on composite objects (though they are atomic objects in Lisp ter
minology). It is possible to imagine divergent meanings for those two fragments.
Explicit quotation simply returns its quotation as its value whereas #(fa do sol)
could return a new instance of the vector for every evaluation-a new instance of a
vector of three components initialized by three particular symbols. In other words,
#(fa do sol) may be nothing other than the abbreviation of (vector 'fa 'do
, sol) (that's one of the possibilities in Scheme, though not the right one), and its
behavior is quite different from '#(fa do sol) and from (vector fa do sol),
for that matter. We'll be returning later [see p. 140] to the question of what
meaning to give to quotation, since, as you can see, the subject is far from simple.

1.4.2 Alternatives

As we look at alternatives, we'll consider the special form if as ternary, a control
structure that evaluates its first argument (the condition), then according to the
value it gets from that evaluation, chooses to return the value of its second argument
(the consequence) or its third argument (the alternate). That idea is expressed in
this fragment of code:

(case (car e) ...
«if) (if (evaluate (cadr e) env)

(evaluate (caddr e) env)
(evaluate (cadddr e) env) » ... ) ...

This program does not do full j'ustice to the representation of Booleans. As
you have no doubt noticed, we're mixing two languages here: the first is Scheme
(or at least, a close enough approximation that it's indistinguishable from Scheme)
whereas the second is also Scheme (or at least something quite close). The first
language implements the second. As a consequence, there is the same relation
between them as, for example, between Pascal (the language of the first implemen
tation of 'lEX) and 'lEX itself [Knu84]. Consequently, there is no reason to identify
the representation of Booleans of these two languages.

The function evaluate returns a value belonging to the language that is being
defined. That value maintains no a priori relation to the Boolean values of the
defining language. Since we follow the convention that any object different from
the Boolean false must be considered as Boolean true, a more carefully written
program would look like this:

. .. (case (car e) ...

7. In Scheme, the notation #( ... ) represents a quoted vector.
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«if) (if (not (eq? (evaluate (cadr e) env) the-false-value))
(evaluate (caddr e) env)
(evaluate (cadddr e) env) )) ... ) ...

Of course, we assume that the variable the-false-value has as its value the
representation in the defining language of the Boolean false in the language being
defined. There's a wide choice available to us for this value; for example,

(define the-false-value (cons "false" "boolean"))

The comparison of any value to the Boolean false is carried out by the physical
comparer eq?, so a dotted pair handles the issue very well and can't be confused
with any other possible value in the language being defined.

This discussion is not really trivial. In fact, Lisp chronicles are full of disputes
about the differences between the Boolean value false, the empty list (), and the
symbol NIL. The cleanest position to take in this controversy, quite independent
of whether or not to preserve existing practice, is that false is different from ()
which is, after all, simply an empty list-and that those two have nothing to do
with the symbol spelled N, I, L.

That is, in fact, the position that Scheme takes; the position was adopted several
weeks before being standardized by IEEE (the Institute of Electrical and Electronic
Engineers) [IEE91].

Where things get worse is that () is pronounced nil! In "traditional" Lisp,
false, (), and NIL are all one and same symbol. In Le-Lisp, NIL is a variable, its
value is (), and the empty list has been assimilated with the Boolean false and
with the empty symbol I I .

1.4.3 Sequence

A sequence makes it possible to use a single syntactic form for a group of forms to
evaluate sequentially. Like the well known begin ... end of the family of languages
related to Algol, Scheme prefixes this special form by begin whereas other Lisps
use progn, a generalization of progi, prog2, etc. The sequential evaluation of a
group of forms is "subcontracted" to a particular function: eprogn.

(case (car e) ...
«begin) (eprogn (cdr e) env)) ... ) ...

(define (eprogn exps env)
(if (pair? exps)

(if (pair? (cdr exps))
(begin (evaluate (car exps) env)

(eprogn (cdr exps) env)
(evaluate (car exps) env) )

,() ) )

With that definition, the meaning of the sequence is now canonical. Neverthe
less, we should note that in the middle of the definition of eprogn, there is a tail
recursive call to evaluate to handle the final term of the sequence. That com
putation of the final term of a sequence is carried out as though it, and it alone,
replaced the entire sequence. (We'll talk more about tail recursion later. [see p.
104])
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We should also note the meaning we have to attribute to (begin). Here, we've
defined (begin) to return the empty list (), but why should we choose the empty
list? Why not something else, anything else, like bruce or brian8 ? This choice
is part of our heritage from Lisp, where the prevailing custom returns nil when
nothing better seems to be obligatory. However, in a world where false, (), and
nil are distinct, what should we return? We're going to specialize our language as
it's defined in this chapter so that (begin) returns the value empty-begin, which
will be the (almost) arbitrary number 8139 [Leb05].

(define (eprogn exps env)
(if (pair? exps)

(if (pair? (cdr exps»
(begin (evaluate (car exps) env)

(eprogn (cdr exps) env)
(evaluate (car exps) env) )

empty-begin ) )
(define empty-begin 813)

Our problem comes from the fact that the implementation that we are defin
ing must necessarily return a value. Like Scheme, the language could attribute
no particular meaning to (begin); that choice could be interpreted in at least two
different ways: either this way of writing is permitted within a particular implemen
tation, in which case it is an extension that must return a value freely chosen by the
implementation in question; or this way of writing is not allowed and thus an error.
In light of the consequences, it's better to avoid using this form when no guarantee
exists about its value. Some implementations have an object, #<unspecified>,
that lends itself to this use, as well as more generally to any situation where we
don't know what we should return because nothing seems appropriate. That ob
ject is usually printable; it should not be confused with the undefined pseudo-value.
[see p. 60]

Sequences are of no particular interest if a language is purely functional (that is,
if it has no side effects). What is the point of evaluating a program if we don't care
about the results? Well, in fact there are situations in which we use a computation
simply for its side effects. Consider, for example, a video game programmed in a
purely functional language; computations take time, whether we are interested in
their results or not; it may be just this very side effect-slowing things down
rather than the result that interests us. Provided that the compiler is not smart
enough to notice and remove any useless computation, we can use such side effects
to slow the program down sufficiently to accomodate a player's reflexes, say.

In the presence of conventional read or write operations, which have side effects
on data flow, sequencing becomes very interesting because it is obviously clearer
to pose a question (by means of display), then wait for the response (by means
of read) than to do the reverse. Sequencing is, in that sense, the explicit form for
putting a series of evaluations in order. Other special forms could also introduce a
certain kind of order. For example, alternatives could do so, like this:

(if a p P) =(begin a P)

8. For the Monty Python fans in the audience
9. Fans of the gentleman thief Arsene Lupin will recognize the appropriateness of this choice.
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That rule,10 however, could also be simulated by this:

(begin Q' (3) == «lambda (void) (3) Q')

That last rule shows-in case you weren't convinced yet-that begin is not
really a necessary special form in Scheme since it can be simulated by the functional
application that forces arguments to be computed before the body of the invoked
function (the call by value evaluation rule).

1.4.4 Assignment

As in many other languages, the value of a variable can be modified; we say then
that we assign the variable. Since this assignment involves modifying the value in
the environment of the variable, we leave this problem to the function update! .11
We'll explain that function later, on page 129.

... (case (car e)
«set!) (update! (cadr e) env (evaluate (caddr e) env))) ... ) ...

Assignment is carried out in two steps: first, the new value is calculated; then
it becomes the value of the variable. Notice that the variable is not the result of a
calculation. Many semantic variations exist for assignment, and we'll discuss them
later. [see p. 11] For the moment, it's important to bear in mind that the value
of an assignment is not specified in Scheme.

1.4.5 Abstraction

Functions (also known as procedures in the jargon of Scheme) are the result of
evaluating the special form, lambda, a name that refers to A-calculus and indi
cates an abstraction. We delegate the chore of actually creating the function to
make-function, and we furnish all the available parameters that make-function
might need, namely, the list of variables, the body of the function, and the current
environment.

(case (car e) ...
«lambda) (make-function (cadr e) (cddr e) env)) ... ) ...

1.4.6 Functional Application

When a list has no special operator as its first term, it's known as a functional
application, or, referring to A-calculus again, a combination. The function we get
by evaluating the first term is applied to its arguments, which we get by evaluating
the following terms. The following code reflects that very idea.

(case (car e) ...
(else (invoke (evaluate (car e) env)

(evlis (cdr e) env) )) )

10. The variable void must not be free in (3. That condition is trivially satisfied if void does not
appear in (3. For that reason, we usually use gensym to create new variables that are certain to
have not yet been used. See Exercise 1.11.
11. According to current practice in Scheme, functions with side effects have a name suffixed by
an exclamation point.
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The utility function evlis takes a list of expressions and returns the corre
sponding list of values of those expressions. It is defined like this:

(define (evlis exps env)
(if (pair? exps)

(cons (evaluate (car exps) env)
(evlis (cdr exps) env) )

'C) ) )

The function invoke is in charge of applying its first argument (a function,
unless an error occurs) to its second argument (the list of arguments of the function
indicated by the first argument); it then returns the value of that application as its
result. In order to clarify the various uses of the word "argument" in that sentence,
notice that invoke is similar to the more conventional apply, outside the explicit
eruption of the environment. (We'll return later in Section 1.6 [see p. 15] to the
exact representation of functions and environments.)

More about evaluate

The explanation we just walked through is more or less precise. A few utility func
tions, such as lookup and update! (that handle environments) or make-function
and invoke (that handle functions) have not yet been fully explained. Even so,
we can already answer many questions about evaluate. For example, it is already
apparent that the dialect we are defining has only one unique name-space; that it is
mono-valued (like LisPl) [see p. 31]; and that there are functional objects present
in the dialect. However, we don't yet know the order of evaluation of arguments.

The order in which arguments are evaluated in the Lisp that we are defining
is similar to the order of evaluation of arguments to cons as it appears in evlis.
We could, however, impose any order that we want (for example, left to right) by
using an explicit sequence, like this:

(define (evlis exps env)
(if (pair? exps)

(let ((argument1 (evaluate (car exps) env»)
(cons argument1 (evlis (cdr exps) env» )

'C) ) )

Without enlarging the arsenal12 that we're using in the defining language, we
have increased the precision of the description of the Lisp we've defined. This first
part of this book tends to define a certain dialect more and more precisely, all the
while restricting more and more the dialect serving for the definition.

1.5 Representing the Environment

The environment associates values with variables. The conventional data structure
in Lisp for representing such associations is the association list, also known as the
A-list. We're going to represent the environment as an A-list associating values

12. As you know, let is a macro that expands into a functional application: (let «x 1rl) )1r2) ==
«lambda (x) 1r2) 1rl)'
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and variables. To simplify, we'll represent the variables by symbols of the same
name.

In this way, we can define the functions lookup and update! very easily, like
this:

(define (lookup id env)
(if (pair? env)

(if (eq? (caar env) id)
(cdar env)
(lookup id (cdr env»

(wrong "No such binding" id) ) )

We see a second13 kind of error appear when we want to know the value of an
unknown variable. Here again, we'll just use a call to wrong to express the problem
that the interpreter confronts.

Back in the dark ages, when interpreters had very little memory14 to work with,
implementors often favored a generalized mode of autoquote. A variable without
a value still had one, and that value was the symbol of the same name. It's
disheartening to see things that we attached so much importance to separating
like symbol and variable-already getting back together and re-introducing so much
confusion.

Even if it were practical for implementers never to provoke an error and thus
to provide an idyllic world from which error had been banished, that design would
still have a major drawback because the goal of a program is not so much to avoid
committing errors but rather to fulfil its duty. In that sense, an error is a kind of
crude guard rail: when we encounter it, it shows us that the program is not going
as we intended. Errors and erroneous contexts need to be pointed out as early as
possible so that their source can be corrected as soon as possible. The autoquote
mode is consequently a poor design-choice because it lets certain situations worsen
without our being able to see them in time to repair them.

The function update! modifies the environment and is thus likely to provoke
the same error: the value of an unknown variable can't be modified. We'll come
back to this point when we talk about the global environment.

(define (update! id env value)
(if (pair? env)

(if (eq? (caar env) id)
(begin (set-cdr! (car env) value)

value)
(update! id (cdr env) value)

(wrong "No such binding" id) ) )

The contract that the function update! abides by foresees that the function
returns a value which will become that final special form of assignment. The
value of an assignment is not defined in Scheme. That fact means that a portable
program cannot expect a precise value, so there are many possible return values.
For example,

13. The first kind of error appeared on page 6.
14. Memory, along with input/output facilities, still remains the most expensive part of a com
puter, even though the price keeps falling.
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1. the value that has just been assigned; (That's what we saw earlier with
update! .)

2. the former contents of the variable; (This possibility poses a slight problem
with respect to initialization when we give the first value to a variable.)

3. an object representing whatever has not been specified, with which we can
do very little-something like #<UFO>;

4. the value of a form with a non-specified value, such as the form set-cdr! In
Scheme.

The environment can be seen as a composite abstract type. We can then extract
or modify subparts of the environment with selection and modification functions.
We then still have to define how to construct and enrich an environment.

Let's start with an empty initial environment. We can represent that idea
simply, like this:

(define env.init '(»

(Later, in Section 1.6, we'll make the effort to produce a standard environment
a little richer than that.)

When a function is applied, a new environment is built, and that new environ
ment binds variables of that function to their values. The function extend extends
an environment env with a list of variables and a list of values.

(define (extend env variables values)
(cond «pair? variables)

(if (pair? values)
(cons (cons (car variables) (car values»

(extend env (cdr variables) (cdr values»
(wrong "Too less values") ) )

«null? variables)
(if (null? values)

env
(wrong "Too much values") ) )

«symbol? variables) (cons (cons variables values) env» ) )

The main difficulty is that we have to analyze syntactically all the possible
forms that a < list-oj-variables> can have within an abstraction in Scheme. 1S A
list oj variables is represented by a list of symbols, possibly a dotted list, that
is, terminated not by () but by a symbol, which we call a dotted variable. More
formally, a list of variables corresponds to the following pseudo-grammar:

<list-oj-variables> ()
I <variable>
I « variable>. < list-oj-variables> )

< variable> E Symbol

When we extend an environment, there must be agreement between the names
and values. Usually, there must be as many values as there are variables, unless

15. Certain Lisp sytems, such as COMMON LISP, have succombed to the temptation to enrich the
list of variables with various keywords, such as taux, tkey, trest, and so forth. This practice
greatly complicates the binding mechanism. Other systems generalize the binding of variables
with pattern matching [SJ93].



1.6. REPRESENTING FUNCTIONS 15

the list of variables ends with a dotted variable or an n-ary variable that can take
all the superfluous values in a list. Two errors can thus be raised, depending on
whether there are too many or too few values.

1.6 Representing Functions

Perhaps the easiest way to represent functions is to use functions. Of course,
the two instances of the word "function" in that sentence refer to different entities.
More precisely, we should say, "The way to represent functions in the language that
is being defined is to use functions of the defining language, that is, functions of the
implementation language." The representation that we've chosen here minimizes
the calling protocol in this way: the function invoke will have to verify only that
its first argument really is a function, that is, an object that can be applied.

(define (invoke fn args)
(if (procedure? fn)

(fn args)
(wrong "Not a function" fn) ) )

We really can't get any simpler than that. You might ask why we have spe
cialized the function invoke, already a simple definition and merely called once
from evaluate. The reason is that here we're setting the general structure of the
interpreters that we're going to stuff you with later, and we will see other ways
of coding that are simpler but more efficient and that require a more complicated
form of invoke. You could also tackle Exercises 1.7 and 1.8 now.

A new kind of error appears here when we try to apply an object that is not a
function. This kind of error can be detected at the moment of application, that is,
after the evaluation of all the arguments. Other strategies would also be possible;
for example, to attempt to warn the user as early as possible. In that case, we
could impose an order in the evaluation of function applications, like this:

1. evaluate the term in the functional position;

2. if that value is not applicable, then raise an error;

3. evaluate the arguments from left to right;

4. compare the number of arguments to the arity of the function to apply and
raise an error if they do not agree.

Evaluating arguments in order from left to right is useful for those who read
left to right. It is also easy to implement since the order of evaluation is then
obvious, but it complicates the task of the compiler. If the compiler tries to evaluate
the arguments in a different order (for example, to improve register allocations),
the compiler must prove that the new order of expressions does not change the
semantics of the program.

Of course, we could attempt to do even better, by checking the arity sooner,
like this:

1. evaluate the term in the functional position;

2. if that value is not applicable, then raise an error; otherwise, check its arity;
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3. evaluate the arguments from left to right as long as their number still agrees
with the arity; otherwise, raise an error;

4. apply the function to its arguments. 16

COMMON LISP insists that arguments must be evaluated from left to right, but
for reasons of efficiency, it allows the term in the function position to be evaluated
either before or after the others.

Scheme, in contrast, does not impose an order of evaluation for the terms of
a functional application, and Scheme does not distinguish the function position in
any particular way. Since there is no imposed order, the evaluator is free to choose
whatever order it prefers; the compiler can then re-order terms without worrying.
[see p. 164] The user no longer knows which order will be chosen, and so must
use begin when certain effects must be kept in sequence.

As a matter of style, it's not very elegant to use a functional application to put
side effects in sequence. For that reason, you should avoid writing such things as
(f (set ! f 1r) (set ! f 1r') ) where the function that will actually be applied
can't be seen. Errors arising from that kind of practice, that is, errors due to the
fact that the order of evaluation cannot be known, are extremely hard to detect.

The Execution Environment of the Body of a Function

Applying a function comes down to evaluating its body in an environment where
its variables are bound to values that they have assumed during the application.
Remember that during the call to make-function, we provided it with the param
eters that were made available by evaluate. Throughout the rest of this section,
we'll highlight the various environments that come into play by mentioning them
in italic.

Minimal Environment

Let's first try a definition of a stripped down, minimal environment.

(define (make-function variables body env)
(lambda (values)

(eprogn body (extend env. init variables values» ) )

In conformity with the contract that we explained earlier, the body of the func
tion is evaluated in an environment where the variables are bound to their values.
For example, the combinator K defined as (lambda (a b) a) can be applied like
this:

(K 1 2) -+ 1

The nuisance here is that the means available to a function are rather minimal.
The body of a function can utilize nothing other than its own variables since the
initial environment, env. init, is empty. It does not even have access to the global
environment where the usual functions, such as car, cons, and so forth, are defined.

16. The function could then examine the types of its arguments, but that task does not have to
do with the function call protocol.
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Patched Environment

17

«lambda (a)
«lambda (b)

(list a b)
(+ 2 a) ) )

1 )

Let's try again with an enriched environment patched like this:

(define (make-function variables body env)
(lambda (values)

(eprogn body (extend env.global variables values» ) )

This new version lets the body of the function use the global environment and all
its usual functions. Now how do we globally define two functions that are mutually
recursive? Also, what is the value of the expression on the left (macroexpanded on
the right)?

(let «a 1»
(let «b (+ 2 a»)

(list a b) ) )

Let's look in detail at how that expression is evaluated:

«lambda (a) «lambda (b) (list a b» (+ 2 a») 1)1

«lambda (b) (list a b» (+ 2 a»1
a--+ 1

env.global

env.global

= (list a b)1
b--+ 3

env.global

The body of the internal function (lambda (b) (list a b)) is evaluated in
an environment that we get by extending the global environment with the variable
b. That environment lacks the variable a because it is not visible, so this try fails,
too!

Improving the Patch

Since we need to see the variable a within the internal function, it suffices to provide
the current environment to invoke, which in turn will transmit that environment
to the functions that are called. In consequence, we now have an idea of a current
environment kept up to date by evaluate and invoke, so let's modify these func
tions. However, let's modify them in such a way that we don't confuse these new
definitions with the previous ones; we'll use a prefix, d. to avoid confusion, like
this:

(define (d. evaluate e env)
(if (atom? e) ...

(case (car e)

«lambda) (d.make-function (cadr e) (cddr e) env»
(else (d. invoke (d.evaluate (car e) env)

(evlis (cdr e) env)
env » ) ) )

(define (d. invoke fn args env)
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(if (procedure? fn)
(fn args env)
(wrong "Not a function" fn) ) )

(define (d.make-function variables body defenv)
(lambda (values current.env)

(eprogn body (extend current.env variables values)) ) )

Here we notice that in the definition of d. invoke, it is no longer really useful
to provide the definition environment env to the def. env variable since only the
current environment, current. env, is being used.

Now if we look at the same expression, highlighted with the name of the envi
ronment being used, we see that our example works like this:

«lambda (a) «lambda (b) (list a b)) (+ 2 a))) 1)1
env.global

«lambda (b) (list a b)) (+ 2 a))1
a-+ 1

env.global
(list a b)

b-+ 3

a-+ 1

env.global

Of course, in this example, we clearly see the stack discipline that the bind
ings are following. Every binding form pushes its new bindings onto the current
environment and pops them off after execution.

Fixing the Problem

There is still a problem, though. To see it, look at this variation:

«(lambda (a)
(lambda (b) (list a b)) )

1 )

2 )

The function (lambda (b) (list a b» is created in an environment where
a is bound to 1, but at the time the function is applied, the current environment
is extended by the sole binding to b, and once again, a is absent from that envi
ronment. As a consequence, the function (lambda (b) (list a b» once again
forgets or loses its variable a.

No doubt you noticed in the previous definition of d. make-funct ion that two
environments were present: the definition environment for the function, def.env,
and the calling environment of the function, current. env. Two moments are im
portant in the life of a function: its creation and its application(s). Granted, there
is only one moment when the function is created, but there can very well be many
times when the function is applied; or indeed, there may be no moment when it is
applied! As a consequence, the only17 environment that we can associate with a
function with any certainty is the environment when it was created. Let's go back

17. True, we could leave it up to the program to choose explicitly which environment the function
should end up in. See the form closure on page 113.
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to the original definitions of the functions evaluate and invoke, and this time,
let's write make-function this way:

(define (make-function variables body env)
(lambda (values)

(eprogn body (extend env variables values» ) )

All the examples now behave well, and in particular, the preceding example
now has the following evaluation trace:

«(lambda (a) (lambda (b) (list a b») 1) 2)1
env.global

= ( (lambda (b) (list a b»1
a--+ 1
env.global

2 )1
env.global

(list a b)
b--+ 2
a--+ 1

env.global

The form (lambda (b) (list a b» is created in the global environment ex
tended by the variable a. When the function is applied in the global environment,
it extends its own environment of definition by b, and thus permits the body of the
function to be evaluated in an environment where both a and b are known. When
the function returns its result, the evaluation continues in the global environment.
We often refer to the value of an abstraction as its closure because the value closes
its definition environment.

Notice that the present definition of make-function itself uses closure within
the definition language. That use is not obligatory, as we'll see later in Chapter 3.
[see p. 92] The function make-function has a closure for its value, and that fact
is a distinctive trait of higher-order functional languages.

1.6.1 Dynamic and Lexical Binding

There are at least two important points in that discussion about environments.
First, it demonstrates clearly how complicated the issues about environments are.
Any evaluation is always carried out within a certain environment, and the manage
ment of the environment is a major point that evaluators must resolve efficiently.
In Chapter 3, we will see more complicated structures, such as escapes and the
form unwind-protect, that oblige us to define very precisely which environments
are under consideration.

The second point concerns the last two variations in the previous section which
are characteristic of dynamic18 and lexical binding. In a lexical Lisp, a function
evaluates its body in its own definition environment extended by its variables,
whereas in a dynamic Lisp, a function extends the current environment, that is,
the environment of the application.

18. In the context of object-oriented languages, the term dynamic binding usually refers to the
fact that the method associated with a message is determined by the dynamic type of the object
to which the message is sent, rather than by its static type.
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Current fashion favors lexical Lisps, but you mustn't conclude from that fact
that dynamic languages have no future. For one thing, very useful dynamic lan
guages are still widely in use, such languages as 'lEX [Knu84], GNU EMACS LISP

[LLSt93], or Perl [WS90].
For another, the idea of dynamic binding is an important concept in program

ming. It corresponds to establishing a valid binding when beginning a computation
and that binding is undone automatically in a guaranteed way as soon as that com
putation is complete.

This programming strategy can be employed effectively in forward-looking com
putations, such as, for example, those in artificial intelligence. In those situations,
we pose a hypothesis, and we develop consequences from it. When we discover an
incoherence or inconsistency, we must abandon that hypothesis in order to explore
another; this technique is known as backtracking. If the consequences have been
carried out with no side-effects, for example in such structures as A-lists, then
abandoning the hypothesis will automatically recycle the consequences, but if, in
contrast, we had used physical modifications such as global assignments of vari
ables, modifications of arrays, and so forth, then abandoning a hypothesis would
entail restoring the entire environment where the hypothesis was first formulated.
One oversight in such a situation would be fatal! Dynamic binding makes it pos
sible to insure that a dynamic variable is present and correctly assigned during a
computation and only during that computation regardless of the outcome. This
property is heavily used for exception handling.

Variables are programming entities that have their own scope. The scope of a
variable is essentially a geographic idea corresponding to the region in the program
ming text where the variable is visible and thus is accessible. In pure Scheme (that
is, unburdened with superfluous but useful syntax, such as let), only one binding
form exists: lambda. It is the only form that introduces variables and confers on
them a scope limited strictly to the body of the function. In contrast, the scope
of a variable in a dynamic Lisp has no such limitation a priori. Consider this, for
example:

(define (foo x) (list x y))

(define (bar y) (foo 1991))

In a lexical Lisp, the variable y in fo0 19 is a reference to the global variable y,
which in no way can be confused with the variable y in bar. In dynamic Lisp, the
variable y in bar is visible (indeed, it is seen) from the body of the function foo
because when foo is invoked, the current environment contains that variable y.
Consequently, if we give the value 0 to the global variable y, we get these results:

(define y 0)
(list (bar 100) (foo 3)) ~ «1991 0) (3 0)) in lexical Lisp
(list (bar 100) (foo 3)) ~ «1991 100) (3 0)) in dynamic Lisp

Notice that in dynamic Lisp, bar has no means of knowing that the function foo
that bar calls references its own variable y. Conversely, the function foo doesn't
know where to find the variable y that it references. For this reason, bar must
put y into the current environment so that foo can find it there. Just before bar
returns, y has to be removed from the current environment.

19. For the etymology of foo, see [Ray91].
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Of course, in the absence of free variables, there is no noticeable difference
between dynamically scoped and lexically scoped Lisp.

Lexical binding is known by that name because we can always start simply
from the text of the function and, for any variable, either find the form that bound
the variable or know with certainty that it is a global variable. The method is so
simple that we can point with a pencil (or a mouse) at the variable and go right
along from right to left, from bottom to top, until we find the first binding form
around this variable. The name dynamic binding plays on another concept, that
of the dynamic extent, which we'll get to later. [see p. 77]

Scheme supports only lexical variables. COMMON LISP supports both kinds
of binding with the same syntax. EuLISP and IS-Lisp clearly distinguish the two
kinds syntactically in two separate name spaces. [see p. 43]

Scope may be obscured locally by shadowing. Shadowing occurs when one
variable hides another because they both have the same name. Lexical binding
forms are nested or disjoint from one another. This well known "block" discipline
is inherited from Algol 60.

Under the inspiration of A-calculus, which loaned its name to the special form
lambda [Per79], Lisp 1.0 was defined as a dynamic Lisp, but early on, John Mc
Carthy recognized that he expected the following expression to return (2 3) rather
than (1 3).

(let «a 1»
«let «a 2» (lambda (b) (list a b»)
3 ) )

That anomaly (dare we call it a bug?) was corrected by introducing a new
special form, known as function. Its argument was a lambda form, and it created
a closure, that is, a function associated with its definition environment. When that
closure was applied, instead of extending the current environment, it extended its
own definition environment that it had closed (in the sense of preserved) within
itself. In programming terms, the special form function20 is defined accordingly
with d.evaluate and d.invoke, like this:

(define (d. evaluate e env)
(if (atom? e) ...

(case (car e)

«function) ; Syntax: (function (lambda variables body»

(let* «f (cadr e»
(fun (d.make-function (cadr f) (cddr f) env»

(d.make-closure fun env) ) )
«lambda) (d.make-function (cadr e) (cddr e) env»
(else (d. invoke (d.evaluate (car e) env)

(evlis (cdr e) env)
env » ) ) )

20. This simulation is not exactly correct in the sense that there are many dialects (such as CLtLl
in [Ste84]) where lambda is not a special operator, but a keyword, a kind of syntactic marker similar
to else that can appear in Scheme in a cond or a case. lambda does not require d. evaluate for
it to be handled correctly. lambda forms may also be restricted to appear exclusively in the first
term of functional applications, accompanied by funct ion, or in function definitions.



22 CHAPTER 1. THE BASICS OF INTERPRETATION

(define (d. invoke fn args env)
(if (procedure? fn)

(fn args env)
(wrong "Not a function" fn) ) )

(define (d.make-function variables body env)
(lambda (values current.env)

(eprogn body (extend current.env variables values» ) )
(define (d.make-closure fun env)

(lambda (values current.env)
(fun values env) ) )

That's not the end of the story, however. That function was regarded as a
convenience that the end-user had to rely on because of an inadequate implemen
tation. The early compilers very quickly caught on to the fact that, in terms of
performance, lexical environments have a great advantage-as one might expect in
compilation-and that in any case, wherever the variables were during execution,
the compiler could generate a more or less direct access rather than searching dy
namically for the value. By default, then, all the variables of compiled functions
were treated as lexical, except those that were explicitly declared as dynamic, or
in the jargon of the time, special. The declaration (declare (special x» solely
for the use of the compiler in Lisp 1.5, MacLisp, COMMON LISP, and so forth,
designated the variable x as having special behavior.

Efficiency was not the only reason for this turn of events. There was also a loss of
referential transparency. Referential transparency is the property that a language
has when substituting an expression in a program for an equivalent expression does
not change the behavior of the program; that is, they both calculate the same thing;
either they return the same value, or neither of the two terminates. For example,
consider this:

(let «x (lambda () 1») (x» =«let «x (lambda () 1») x» =1

Referential transparency is lost once a language has side effects. In such a case,
we need new, more precise definitions for equivalence as a relation in order to talk
about referential transparency. Scheme-without assignment, without side effects,
without continuations-is referentially transparent. [see Ex. 3.10] This property
is also a goal that we work toward when we are trying to write programs that are
genuinely re-usable, in the sense of depending as little as possible on the context
where they are used.

The variables of a function such as (lambda (u) (+ u u» are what we con
ventionally call silent. Their names have no particular importance and can be
replaced by any other name. The function (lambda (n347) (+ n347 n347» is
nothing more nor less21 than the function (lambda (u) (+ u u».

We're still waiting for the language that respects this invariant. There's nothing
like that in dynamic Lisp. Just consider this:

(define (map fn 1) ; mapcar in Lisp
(if (pair? 1)

(cons (fn (car 1» (map fn (cdr 1»)

21. In the technical terms of A-calculus, this change of names for variables is known as an a

conversion.
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, () ) )

(let «1 '(a be»)
(map (lambda (x) (list-ref 1 x»

'(2 1 0) ) )

(The function list-ref extracts the element at index n from a list.)
In Scheme, the result would be (c b a), but in a dynamic Lisp, the result

would be (0 0 0). The reason: the variable 1 is free in the body of (lambda (x)

(list-ref 1 x)) but that variable is captured by the variable 1 in map.
We could resolve that problem simply by changing the names that are in conflict.

For example, it suffices to rename one of those two variables, 1. We might perhaps
choose to rename the variable in map since it is probably the more useful, but
what name could we choose that would guarantee that the problem would not
crop up again? If we prefix the names of variables by the social security number
of the programmer and suffix them by the standardized time (indicated, say, by
the number of hundredths of seconds elapsed since noon, 1 January 1901), we
obviously lower the risk of name-collisions, but we lose something in readability in
our programs.

The situation at the beginning of the eighties was particularly sensitive. We
taught Lisp to students by observing its interpreter, which differed from its compiler
in this fundamental point about the value of a variable. From 1975 on, Scheme
[SS75] had shown that we could reconcile an interpreter and compiler and then live
in a completely lexical world. COMMON LISP buried the problem by postulating
that good semantics were compiler semantics, so everything should be lexical by
default. An interpreter just had to conform to these new canonical laws. The
increasing success of Scheme, of functional languages such as ML, and of their
spin-offs first spread and then imposed this new view.

1.6.2 Deep or Shallow Implementation

Things are not so simple, however, and implementers have found ways of increasing
how fast the value of a dynamic variable is determined. When the environment is
represented as an association-list, the cost of searching22 for the value of a variable
(that is, the cost of the function lookup) is linear with respect to the length of the
list. This mechanism is known as deep binding.

Another technique, known as shallow binding, also exists. Shallow binding
occurs when each variable is associated with a place where its value is always
stored independently of the current environment. The simplest implementation of
this idea is that the location should be a field in the symbol associated with the
variable; it's known as eval, or the value cell. The cost of lookup is constant in that
case since the cost is based on an indirection, possibly followed by an additional
offset. Since there's rarely a gain without a loss, we have to admit here that a
function call is more costly in this model since it has to save the values of variables
that are going to be bound and modify the symbols associated with those variables

22. Fortunately, statistics show that we search more often for the first variables than for those
that are buried more deeply. Besides, it's worth noting that lexical environments are smaller than
dynamic environments, since dynamic environments have to carry around all the bindings that
are being computed [Bak92a].
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so that the symbols contain the new values. When the function returns, moreover,
it must restore the old values in the symbols that they came from-a practice that
can compromise tail recursion. (But see [SJ93] for alternatives.)

We can partially simulate23 shallow binding by changing the representation of
the environment. In what follows, we'll assume that lists of variables are not dotted.
This assumption will make it easier to decode lists of variables. We'll also assume
that we don't need to verify the arity of functions. These new functions will be
prefixed by s. to make them easier to recognize.

(define (s.make-function variables body env)
(lambda (values current.env)

(let «old-bindings
(map (lambda (var val)

(let «old-value (getprop var 'apval»)
(putprop var 'apval val)
(cons var old-value) ) )

variables
values) »

(let «result (eprogn body current.env»)
(for-each (lambda (b) (putprop (car b) 'apval (cdr b»)

old-bindings )
result) ) ) )

(define (s.lookup id env)
(getprop id 'apval) )

(define (s.update! id env value)
(putprop id 'apval value) )

In Scheme, the functions putprop and getprop are not standard because they
cause highly inefficient global side effects, but they resemble the functions put and
get in [AS85]. [see Ex. 2.6]

Here, the functions putprop and getprop simulate that field24 where a symbol
stores the value of a variable of the same name. Independently25 of their actual
implementation, these functions should be regarded as though they have constant
cost.

Notice that in the preceding simulation, the environment env has completely
disappeared because it no longer serves any purpose. This disappearance means
that we have to modify the implementation of closures since they can no longer
close the environment (since it doesn't exist any longer). The technique for doing
so (which we'll see later) consists of analyzing the body of the function to identify
free variables and then treating them in the appropriate way.

Deep binding favors changing the environment and programming by multi
tasking, to the detriment of searching for values of variables. Shallow binding favors
searching for the values of variables to the detriment of function calls. Henry Baker

23. However, we are not treating the assignment of a closed variable here. For that topic, see
[BCSJ86].
24. The name of the property being used, apval [see p. 31], was chosen in honor of the name
used in [MAE+62] when these values really were stored in P-lists.
25. The functions sweep down a symbol's list of properties (its P-list) until they find the right
property. The cost of this search is linear with respect to the length of the P-list, unless the
implementation associates symbols with properties by means of a hash table.
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[Bak78] combined the two in the technique of rerooting.
Remember, finally, that deep binding and shallow binding are merely imple

mentation techniques that have nothing to do with the semantics of binding.

1.7 G 10hal Environment

An empty global environment is a poor thing, so most Lisp systems supply libraries
to fill it up. There are, for example, more than 700 functions in the global environ
ment of COMMON LISP (CLtL1); more than 1,500 in Le-Lisp; more than 10,000 in
ZetaLisp, etc. Without its library, Lisp would be only a kind of A-calculus in which
we couldn't even print the results of calculations. The idea of a library is important
for the end-user. Whereas the special forms are the essence of the language from
the point of view of anyone producing the evaluator, it's the libraries that make
a real difference for the end-user. Lisp folk history insists that it was the lack of
such banalities as a library of trigonometric functions that made number crunchers
drop Lisp early on. Their feeling, according to [Sla61], was that it might be a good
thing to know how to integrate or differentiate symbolically but without sine or
tangent, what could anyone really do with the language?

We expect to find all the usual functions, such as car, cons, etc., in the global
environment. We may also find simple variables whose values are well known data,
such as Boolean values and the empty list.

Now we are going to define two macros-just for convenience at this point, since
we haven't even talked about macros yet,26 important as they are. In fact, macros
are such a significant and complicated phenomenon that we will devote an entire
chapter to them later. [see p. 311]

The two macros that we'll define here will make it easier to elaborate the global
environment. We'll define the global environment as an extension of the empty
initial environment, env. init.

(define env.global env.init)

(define-syntax definitial
(syntax-rules ()

«definitial name)
(begin (set! env.global (cons (cons 'name 'void) env.global»

'name ) )
«definitial name value)
(begin (set! env.global (cons (cons 'name value) env.global»

'name ) ) ) )

(define-syntax defprimitive
(syntax-rules ()

«defprimitive name value arity)
(definitial name

(lambda (values)
(if (= arity (length values»

(apply value values) ; The real apply of Scheme
(wrong "Incorrect arity"

26. It is not our intention to put the whole book in its first chapter.



26 CHAPTER 1. THE BASICS OF INTERPRETATION

(list 'name values) ) ) ) ) ) ) )

Now we'll define a few very useful constants, though none of these three appears
in standard Scheme. We note here that t is a variable in the Lisp that is being
defined, while #t is a value in the Lisp that we are using as the definition language.
Any value other than that of the-false-value is true.

(definitial t It)
(definitial f the-false-value)
(definitial nil '())

Though it's useful to have a few global variables that let us get the real objects
that represent Booleans or the empty list, another solution is to develop a syntax
appropriate for doing that. Scheme uses the syntax #t and #f, and the values of
those are the Booleans true and false. The point of those two is that they are
always visible and that they cannot be corrupted.

1. They are always visible because we can write #t for true in any context, even
if a local variable is named t.

2. They are incorruptible, an important fact, since many evaluators authorize
alterations in the value of the variable t.

Such alterations lead to puzzles like this one: (if t 1 2) will have the value
2in (let «t #f)) (if t 12)).

Many solutions to that problem are possible. The simplest is to lock the im
mutability of these constants into the evaluator, like this:

(define (evaluate e env)
(if (atom? e)

(cond «eq? e 't) It)
«eq? e 'f) If)

«symbol? e) (lookup e env))

(else (wrong "Cannot evaluate" e))
. .. ) )

We could also introduce the idea of mutable and immutable binding. An im
mutable binding could not be the object of an assignment. Nothing could ever
change the value of a variable that has been immutably bound. That concept ex
ists, even if it is somewhat obscured, in many systems. The idea of inline functions
designates those functions (also known as integrable or open coded) [see p. 199]
where the body, appropriately instantiated, can replace the call.

To replace (car x) by the code that extracts the contents of the car field
from the value of the dotted pair x implies the important hypothesis that nothing
ever alters, has never altered, will never alter the value of the global variable car.
Imagine the misfortune that the following fragment of a session illustrates.

(set! my-global (cons 'c 'd))
---+ (c . d)

(set! my-test (lambda () (car my-global)))
---+ #<MY-TEST procedure>

(begin (set! car cdr)
(set! my-global (cons 'a 'b))
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(my-test) )
?????

27

Fortunately again, the response can only be a or b. If my-test uses the value of
car current at the time my-test was defined, the response would be a. If my-test
uses the current value of car, the response would be b. It's helpful to compare the
behavior of my-test and my-global, knowing that we'll usually see the first kind
of behavior for my-test when the evaluator is a compiler, and usually the second
kind of behavior for my-global. [see p. 54]

We'll also add a few working variables27 to the global environment that we've
been building because there is no dynamic creation of global variables in the present
evaluator. The names that we suggest here cover roughly 96.037% of the names of
functions that Lispers testing a new evaluator usually come up with spontaneously.

(definitial foo)

(definitial bar)

(definitial fib)
(definitial fact)

Finally, we'll define a few functions, but not all of them, because listing all of
them would put you to sleep. Our main difficulty now is to adapt the primitives
of Lisp to the calling protocol of the Lisp that is being defined. Knowing that the
arguments are all brought together into one list by the interpreter, we simply have
to use apply.28 Note that the arity of the primitive will be respected because of
the way defprimitive expands it.

(defprimitive cons cons 2)

(defprimitive car car 1)
(defprimitive set-cdr! set-cdr! 2)
(defprimitive + + 2)
(defprimitive eq? eq? 2)
(defprimitive < < 2)

1.8 Starting the Interpreter

The only thing left to tell you is how to get into this new world that we've defined.

(define (chapter1-scheme)
(define (toplevel)

(display (evaluate (read) env.global»
(toplevel) )

(toplevel) )

Since our interpreter is still open to innovation, we suggest an exercise in which
you implement a function for exiting.

27. These variables are, unfortunately, initialized here. This fault will be corrected later.
28. Once again, we congratulate ourselves that we did not call invoke "apply."
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1.9 Conclusions

Have we really defined a language at this point?
No one could doubt that the function evaluate can be started, that we can

submit expressions to it, and that it will return their values, once its computations
are complete. However, the function evaluate itself makes no sense apart from its
definition language, and, in the absence of a definition of the definition language,
nothing is sure. Since every true Lisper has an in-born reflex for bootstrapping, it's
probably sufficient to identify the definition language as the language that we've
defined. In consequence, we now have a language L defined by a function evaluate,
written in the language L. The language defined that way is thus a solution to this
equation in L:

V1r E Program,L(evaluate (quote 1r) env.global) == L1r

For any program 1r, the evaluation of 1r in L (denoted L1r) must behave the
same way (and thus have the same value if 1r terminates) as the evaluation of
the expression (evaluate (quote 7r) env.global) , all still in L. One amusing
consequence of this equation is that the function evaluate29 is capable of auto
interpretation. The following expressions are thus equivalent:

(evaluate (quote ~) env.global) =
(evaluate (quote (evaluate (quote ~) env.global)) env.global)

Are there any solutions to that equation? The answer is yes; in fact, there are
many solutions. As we saw earlier, the order of evaluation is not necessarily appar
ent from the definition of evaluate, and many other properties of the definition
language are unconsciously inherited by the language being defined. We can say
next to nothing about them, in fact, because there are also a great· many trivial
solutions to the equation. Take, for example, the language L 2001 ; its semantics is
that every program written in it has, as its value, the number 2001. That language
trivially satisfies our equation. We have to depend on other methods, then, if we
want to define a real language, and those other methods will be the subject of later
chapters.

1.10 Exercises

Exercise 1.1 : Modify the function evaluate so that it becomes a tracer. All func
tion calls should display their arguments and their results. You can well imagine
extending such a rudimentary tracer to make a step-by-step debugger that could
modify the execution path of the program under its control.

Exercise 1.2 : When evlis evaluates a list containing only one expression, it has
to carry out a useless recursion. Find a way to eliminate that recursion.

29. It is necessary to clean all syntactic abbreviations and macros out of evaluate-such things
as define, case, and so forth. Then we still have to provide a global environment containing the
variables evaluate, evlis, etc.
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Exercise 1.3 : Suppose we now define the function extend like this:

(define (extend env names values)
(cons (cons names values) env) )

Define the associated functions, lookup and update!. Compare them with their
earlier definitions.

Exercise 1.4 : Another way of implementing shallow binding was suggested by
the idea of a rack in [SS80]. Instead of each symbol being associated with a field
to contain the value of the variable of the same name, there is a stack for that
purpose. At any given time, the value of the variable is the value found on top of
that stack of associated values. Rewrite the functions s. make-function, s . lookup,
and s. update! to take advantage of this new representation.

Exercise 1.5 : The definition of the primitive < is false! In practice, it returns
a Boolean value of the implementation language instead of a Boolean value of the
language being defined. Correct this fault.

Exercise 1.6 : Define the function list.

Exercise 1.7 : For those who are fond of continuations, define callicc.

Exercise 1.8 : Define apply.

Exercise 1.9 : Define a function end so that you can exit cleanly from the inter
preter we developed in this chapter.

Exercise 1.10 : Compare the speed of Scheme and evaluate. Then compare the
speed of evaluate and evaluate interpreted by evaluate.

Exercise 1.11 : The sequence begin was defined by means of lambda [see p. 9]
but it used gensym to avoid any possible captures. Redefine begin in the same
spirit but do not use gensym to do so.

ReCOllllllended Reading

All the references to interpreters mentioned at the beginning of this chapter make
interesting reading, but if you can read only a little, the most rewarding are prob
ably these:

• among the ,x-papers, [SS78a];

• the shortest article ever written that still presents an evaluator, [McC78b];
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• to get a taste of non-pedantic formalism, [Rey72];

• to get to know the origins and beginnings, [MAE+62].
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S INCE functions occupy a central place in Lisp, and because their effi
ciency is so crucial, there have been many experiments and a great deal
of research about functions. Indeed, some of those experiments continue
today. This chapter explains various ways of thinking about functions

and functional applications. It will carry us up to what we'll' call LisPl or Lisp2,
their differences depending on the concept of separate name spaces. The chapter
closes with a look at recursion and its implementation in these various contexts.

Among all the objects that an evaluator can handle, a function represents a very
special case. This basic type has a special creator, lambda, and at least one legal
operation: application. We could hardly constrain a type less without stripping
away all its utility. Incidentally, this fact-that it has few qualities-makes a
function particularly attractive for specifications or encapsulations because it is
opaque and thus allows only what it is programmed for. We can, for example, use
functions to represent objects that have fields and methods (that is, data members
and member functions) as in [AR88]. Scheme-users are particularly appreciative of
functions.

Attempts to increase the efficiency of functions have motivated many, often
incompatible, variations. Historically, Lisp 1.5 [MAE+62] did not recognize the
idea of a functional object. Its internals were such, by the way, that a variable, a
function, a macro-all three-could co-exist with the same name, and at the same
time, the three were represented with different properties (APVAL, EXPR, or MACROl )
on the P-list of the associated symbol.

MacLisp privileged named functions, and only recently, its descendant, COM
MON LISP(CLtL2) [Ste90] introduced first class functional objects. In COMMON
LISP, lambda is a syntactic keyword declaring something like, "Warning: we are
defining an anonymous function." lambda forms have no value and can appear
only in syntactically special places: in the first term of an application or as the
first parameter- of the special form function.

In contrast, Scheme, since its inception in 1975, has spread the ideas of a func
tional object and of a unique space of values by conferring the status of first class

1. APVAL, A Permanent VALue, stores the global value of a variable; EXPR, an EXPRession, stores
a global definition of a function; MACRO stores a macro.
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on practically everything. A first class object can be an argument or the value of
a function; it can be stored in a variable, a list, an array, etc. The philosophy of
Scheme is compatible with functional languages in the same class as ML, and we'll
adopt the same philosophy here.

2.1 Lisp1

The main activity in the previous chapter was to conform to that philosophy:
the idea of a functional object prevailed there (make-function creates functional
objects); and the process of evaluating terms in an application did not distinguish
the function from its arguments; that is, the expression in the function position
was not treated differently from the expressions in the following positions, those
in the parametric positions. Let's look again at the most interesting fragments of
that preceding interpreter.

(define (evaluate e env)
(if (atom? e) ...

(case (car e)

«lambda) (make-function (cadr e) (cddr e) env))
(else (invoke (evaluate (car e) env)

(evlis (cdr e) env) )) ) ) )

The salient points in it are these:

1. lambda is a special form creating first class objects; closures capture their
definition environment.

2. All the terms in an application are evaluated by the same evaluator, namely,
evaluate; evlis is simply evaluate mapped over a list of expressions.

That second characteristic makes Scheme into LisPl.

2.2 Lisp2

Programs in Lisp are generally such that most functional applications have the
name of a global function in their function position. That's certainly the case of
all the programs in the preceding chapter. We could restrict the grammar of Lisp
to impose a symbol in the car of every form. Doing so would not noticeably alter
the look of the language, but it would imply that the evaluation that occurs for
the term in the function position no longer needs all the complexity of evaluate
and could get along with a mini-evaluator for those expressions-a mini-evaluator
that knows how to handle only names of functions. Implementing this idea entails
modifying the last clause in the preceding interpreter, like this:

(else (invoke (lookup (car e) env)
(evlis (cdr e) env) ))

We now have two different evaluators, one for each of the two positions where a
variable may occur (that is, in functional or parametric position). Many different
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kinds of behavior can correspond to one identifier, depending on its position; in this
case, its position could be the position of a function or a parameter. If we specialize
the function position, that specialization may be accompanied by the presence of
a supplementary environment uniquely dedicated to functions. As a result, a
priori it will be easier to look for the function associated with a name since this
dedicated environment won't contain normal variables. The basic interpreter can
then be rewritten to take into account these details. A function environment, fenv,
and "an evaluator specific to forms, evaluate-application, are clearly identified.
We'll have two environments and two evaluators then, and so we'll adopt the name
Lisp2 [SG93].

(define (f.evaluate e env fenv)
(if (atom? e)

(cond «symbol? e) (lookup e env))
«or (number? e) (string? e) (char? e) (boolean? e) (vector? e))
e )

(else (wrong "Cannot evaluate" e)) )
(case (car e)

«quote) (cadr e))
«if) (if (f.evaluate (cadr e) env fenv)

(f.evaluate (caddr e) env fenv)
(f.evaluate (cadddr e) env fenv) ))

«begin) (f.eprogn (cdr e) env fenv))
«set!) (update! (cadr e)

env
(f.evaluate (caddr e) env fenv) ))

«lambda) (f.make-function (cadr e) (cddr e) env fenv))
(else (evaluate-application (car e)

(f.evlis (cdr e) env fenv)
env
fenv )) ) ) )

The evaluator dedicated to forms is evaluate-application; it receives the
unevaluated function term, the evaluated arguments, and the two current envi
ronments. Notice that creating the function (by means of lambda) closes the two
environments, both end and fenv, in a way that sets the values of free variables
that occur in the body of functions, whether they appear in the position of a func
tion or parameter. In other respects, this new version differs from the preceding
one only by the fact that fenv accompanies env, the environment for variables,
like a shadow. The functions eprogn and evlis, of course, have to be updated to
propagate fenv, so they become this:

(define (f.evlis exps env fenv)
(if (pair? exps)

(cons (f.evaluate (car exps) env fenv)
(f.evlis (cdr exps) env fenv)

'() ) )

(define (f.eprogn exps env fenv)
(if (pair? exps)

(if (pair? (cdr exps))
(begin (f.evaluate (car exps) env fenv)

(f.eprogn (cdr exps) env fenv) )
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(f.evaluate (car exps) env fenv) )
empty-begin ) )

When those functions are invoked, they bind their variables in the environment
for variables, but only the way functions are created has been modified; the way
they are invoked (by means of invoke) has not changed.

(define (f.make-function variables body env fenv)
(lambda (values)

(f.eprogn body (extend env variables values) fenv) ) )

The task of the function evaluator is to analyze the function term in order to
prepare the final invocation. If we keep the grammar of COMMON LISP, then only
a symbol or a lambda form can appear in the function position.

(define (evaluate-application fn args env fenv)
(cond «symbol? fn)

(invoke (lookup fn fenv) args) )
«and (pair? fn) (eq? (car fn) 'lambda»
(f.eprogn (cddr fn)

(extend env (cadr fn) args)
fenv ) )

(else (wrong "Incorrect functional term" fn» ) )

What have we gained and lost by doing this? The first advantage is that
searching for a function associated with a name is much easier than before because
the search requires only a simple call to lookup now, and we thus eliminate a
call to f . evaluate followed by determining syntactically that this is a reference.
Moreover, since the function environment has been freed from all variables, it is
certainly more compact, so searches can proceed more quickly there. A second
advantage is that handling forms where there is a lambda form in the function
position is greatly improved. Consider this example:

(let «state-tax 1.186»
«lambda (x) (* state-tax x» (read» )

In that example, you can see that the closure corresponding to (lambda (x)
(* state-tax x)) will not be created; its body will be evaluated directly in the
right environment.

The problem, though, is that the two advantages are not real gains since a
simple analysis could produce the same effects in LisPl. The only real difference
is in the implementation. Lisp2 is a little bit more efficient because in it we can
be sure that any name present in fenv is bound to a function. Each time that a
binding enriches the function environment, we simply have to verify that the value
present in the binding is really a function. Then we never again have to verify
during use that it is really a function. Since every name has to belong to the initial
function environment, we will bind it to a function calling wrong if it is invoked by
accident.

Moreover, since every name is bound in fenv to a function, we can simplify
the call to invoke to avoid the test in (procedure? fn). We do that by keeping
in mind that our implementation language is really Scheme (since what we are
about to do is not legal in COMMON LISP because of the presence of a function
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calculated in the form ((lookup fn fenv) args)). We will define the function
evaluate-application more precisely, like this:

(define (evaluate-application fn args env fenv)
(cond «symbol? fn) «lookup fn fenv) args))

. .. ) )

In Lisp, the number of function calls is such that any sort of improvement in
function calls is always for the good and can greatly influence overall performance.
However, this particular gain is not particularly great since it comes into play only
on calculated functional applications, that is, those that are not known statically,
of which there are very few.

In contrast, on the down side, we have just lost the possibility of calculating
the function to apply. The expression (if condition (+ 3 4) (* 3 4)) can be
factored in Scheme because of its common arguments 3 and 4, and thus we can
rewrite the expression as (( if condition + *) 3 4). The rule for doing that is
simple and highly algebraic. In fact, it is practically an identity, but in Lisp2, that
program is not even legal since the first term is neither a symbol nor a lambda
form.

2.2.1 Evaluating a Function Term

; ** Modified **
args env fenv )) ) )

Now we can solve our problem and write this:

(if condition (+ 3 4) (* 3 4)) == «if condition '+ '*) 3 4)

That transformation is far from elegant since we have to add those disgraceful
quotation marks to it, but at least it works. Yes, it works, but perhaps it works
too well since the evaluator can now get into a loop.

The function environment introduced thus far is a long way from offering us the
facilities of the environment for variables (the parametric environment). Particu
larly, as you saw in the preceding example, it does not let us calculate the function
to apply. The traditional trick, prevailing at least as far back as MacLisp, was to
enrich the function evaluator in order to send off any expressions that it did not
understand to f . evaluate, so we have this:

(define (evaluate-application2 fn args env fenv)
(cond «symbol? fn)

«lookup fn fenv) args) )
«and (pair? fn) (eq? (car fn) 'lambda))
(f.eprogn (cddr fn)

(extend env (cadr fn) args)
fenv ) )

(else (evaluate-application2
(f.evaluate fn env fenv)

("'" '" 1789 arguments)

The expression ' , , , , , , , 1789 is evaluated as many times as there are quotation
marks; then it loops on the number 1789, with the number always equal to itself,
never to a function. In short, the subcontracting we get from f. evaluate is a bit
too well done and demands a bit more control. A variation on this problem exists
as well when evaluate-application looks like this:
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(define (evaluate-application3 fn args env fenv)
(cond

( (symbol? fn)
(let «fun (lookup fn fenv»)

(if fun (fun args)
(evaluate-application3 (lookup fn env) args env fenv» ) )

. .. ) )

In that variation, not all the symbols have been predefined in the initial function
environment, fenv. global, and when a symbol has not been defined in the function
environment, we search for its value in the environment for variables. Oops! Even
if we assume that no such function foo exists, then we still get programs that can
loop on the value of a variable, like this:

(let «foo 'foo»
(foo arguments) )

And it's a good idea to add a feature to evaluate-application to detect
variables that have, as their value, the symbol that bears their name. Then we
can again trick the function evaluator into looping even more viciously on lines like
these:

(let «flip 'flop)
(flop 'flip)

(flip) )

The only clean solution is that first definition that we gave for the function
evaluator, evaluate-application [see p. 34], and we have to search for a new
method that will accept the calculation of the function term.

2.2.2 Duality of the Two Worlds

To summarize these problems, we should say that there are calculations belonging
to the parametric world that we want to carry out in the function world, and vice
versa. More precisely, we may want to pass a function as an argument or as a
result, or we may even want the function that will be applied to be the result of a
lengthy calculation.

If it is necessary to indicate a function in the function term, and if we want to
calculate the function to apply, then it is sufficient to have a predefined function
that knows how to apply functions, so let's introduce the function funcall (that
is, function call). It applies its first argument (which ought to be a function) to its
other arguments. Let's try to write our first program using funcall, like this:

(if condition (+ 3 4) (* 3 4» == (funcall (if condition + *) 3 4) WRONG

The arguments, especially the first one, are evaluated by the normal evaluator
f . evaluate. The function funcall takes everything and carries out the applica
tion. We could easily define funcall like this:

(lambda (args)
(if (> (length args) 1)

(invoke (car args) (cdr args»
(wrong "Incorrect arity" 'funcall) ) )
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In Lisp2, the function funcall represents the calculated call. In all other cases,
the function is known, and the verification of the fact that it is a function is no
longer necessary.

In the definition of funcall, notice the call to invoke. It carries out that ver
ification, in contrast to evaluate-application, where the verification has been
suppressed. The function funcall resembles apply somewhat. Both take a func
tion as the first argument and other arguments follow. The difference between
them is that in a funcall form, we statically know the number of arguments that
will be provided to the final function that is being invoked.

Unfortunately, there is still one more problem. When we write (if condition
+ *), we want to get the addition or multiplication function as the result. But
what we get right now is the value of the variable + or *! In COMMON LISP these
variables have nothing to do with any arithmetic operations whatsoever, but they
are bound by the interaction mechanism to the last expression read and to the last
result returned by the basic interaction loop (that is, toplevel)!

We introduced funcall because we wanted normal evaluation to lead to a
result before behaving like a function. The reverse exists (which is really what
we would like to have available) in a normal interpreter, of a result coming from
the function evaluator. We want the value of the function variable +, such as
evaluate-application would get, so we will introduce once again a new linguistic
device: function. As a special form, function takes the name of a function and
returns its functional value. In that way, we can jump between the two spaces and
safely write the following:

(if condition (+ 3 4) (* 3 4» ==
(funcall (if condition (function +) (function *» 3 4)

To define function, we will add a supplementary clause to our interpreter,
f . evaluate. The definition of function that follows has nothing to do with the
similarly named one [see p. 21] that defined the syntax (function (lambda
variable body)) to mark the creation of a closure. Here, we'll define (function
name-oj-Junction) to convert the name of a function into a functional value.

«function)
(cond «symbol? (cadr e»

(lookup (cadr e) fenv)

(else (wrong "Incorrect function 'l (cadr e») ) ) ...

The definition of function could be extended, as it is in COMMON LISP, to
handle forms like (function (lambda... )), similar to what we say on page 21,
but that is superfluous in the language that we've just defined because we have
lambda available directly to do that. In COMMON LISP, that tactic is indispensable
because there lambda is not really a special form, but rather a marker or syntactic
keyword announcing that the definition of a function will follow. A special form
prefixed by lambda can appear only in the function position or as an argument of
the special form function.

The function funcall lets us take the result of a calculation coming from the
parametric world and put it into the function world as a value. Conversely, the
special form function lets us get the value of a variable from the function world.
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There is a striking parallel between the functional application and funcall (a
function) and between the reference to a variable and function (a special form). In
short, the simultaneous existence of the two worlds and the necessity of interacting
between them demand these bridges.

Notice that now it is no longer possible to modify the function environment;
there is no assignment form to do so. This property makes it possible for compilers
to inline function calls in a way that is semantically clean. One of the attractions
of multiple name spaces is to be able to give them specific virtues.

2.2.3 Using Lisp2

To make our definition of Lisp2 autonomous, we have to indicate what is the global
function environment, and how to start the interpreter, f. evaluate. The global
function environment is coded in a similar way to the environment for variables.
We'll change only the macro defprimitive to extend one environment but not the
other.

(define fenv.global '(»
(define-syntax definitial-function

(syntax-rules ()
«definitial-function name)
(begin (set! fenv.global (cons (cons 'name 'void) fenv.global»

'name ) )
«definitial-function name value)
(begin (set! fenv.global (cons (cons 'name value) fenv.global»

'name ) ) ) )

(define-syntax defprimitive
(syntax-rules ()
«defprimitive name value arity)
(definitial-function name

(lambda (values)
(if (= arity (length values»

(apply value values)
(wrong "Incorrect arity" (list 'name values» ) ) ) ) ) )

(defprimitive car car 1)
(defprimitive cons cons 2)

Now we actually get into that world by this means:

(define ( Ia certain Lisp2 I)
(define (toplevel)

(display (f.evaluate (read) env.global fenv.global»
(toplevel) )

(toplevel) )

2.2.4 Enriching the Function Environment

Environments of any kind are instances of an abstract type. What do we expect
from an environment? We expect that it will contain bindings, that we can look
there for the binding associated with a name, and that we can also extend it. We
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want to have local functions available, and to do so, we want to be able to extend
the function environment locally. just as a functional application or the form let
can extend the environment of variables, At this point, the function environment
is frozen, so we would gain a lot by extending it. A new special form, flet for
Junctional let, will be useful to this purpose. Here's its syntax:

(flet ( (name! list-oJ-variables! body! )
(name2 list-oJ-variables2 bodY2 )

(namen list-oJ-variablesn bodYn )
expressions . .. )

Since the form flet knows how to create only local functions, there is no need to
indicate the keyword lambda which is implicit. The special form flet evaluates the
various forms (lambda list-oJ-variablesi bodYi) corresponding to the local functions
indicated. Then it binds them to the namei in the function environment. The
expressions forming the body of the flet are evaluated in this enriched function
environment. All those namei can be used in the function position and can be
subjected to function if the associated closure is needed in some calculation.

Adding flet to f . evaluate is straightforward:

«flet)
(f.eprogn
(cddr e)
env
(extend fenv

(map car (cadr e)
(map (lambda (def)

(f.make-function (cadr def) (cddr def) env fenv) )
(cadr e) ) ) ) ...

Because of flet, the possibilities in the function environment increase greatly,
and the closure offenv and env by the lambda form can be explained. For example,
consider this:

(flet «square (x) (* x x»)
(lambda (x) (square (square x»))

The value of that expression is an anonymous function raising a number to the
fourth power. The closure that is created there closes the local function, square,
and that local function is useful to the closure in its calculations.

2.3 Other Extensions

Once the evaluator has been specialized to handle function terms, new variations
come immediately to mind. For example, integers could have a function value
assimilating them with list accessors, like this:

(2 '(foo bar hux wok») ~ hux
(-2 '(foo bar hux wok») ~ (hux wok)

The integer n is assimilated with the cadnr if it is positive and with cdnr if it
is negative. The basic accessors, car and cdr, are 1 and -1. Then we can imagine
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algebraically rewriting (-1 (-2 7r» as (-3 7r) and (2 (-3 7r» as (5 7r).

Another variation could confer a meaning on lists in the function position with
the stipulation that they must be lists of functions, like this:

«list + - *) 5 3) -+ (8 2 15)

Applying a list of functions comes down to returning the list of values that
each of those functions returns for its arguments. The preceding extract is thus
equivalent to this:

(map (lambda (f) (f 5 3))

(list + - *) )

Finally, we could even allow the function to be in the second position in order to
simulate infix notation. In that case, (1 + 2) should return 3. DWIM (that is, Do
What I Mean) in [Tei74, Tei76] knows how to recover from that kind of situation.

All these innovations are dangerous because they reduce the number of erro
neous forms and thus hide the occurrence of errors that would otherwise be easily
detected. Furthermore, they do not lead to any appreciable savings in code, and
when everything is taken into account, these innovations are actually rarely used.
They also remove that affinity between functions and applicable functional objects,
that is, the objects that could appear in the function position. With these inno
vations, a list or a number would be applicable without so much as becoming a
function itself. As a consequence, we could add applicable objects without raising
an error, like this:

(apply (list 2 (list 0 (+ 1 2)))

'(foo bar hux wok) )
-+ (hux (foo wok))

For all those reasons, then, we do not recommend incorporating these innova
tions into a language such as Lisp. [see Ex. 2.3]

2.4 Comparing LisPl and Lisp2

Now that we are coming to the end of our explorations of Lisp! and Lisp2, what
exactly can we say about these two philosophies?

Scheme is a kind of Lisp!, nice to program and pleasant to teach because the
evaluation process is simple and consistent. By comparison, Lisp2 is more diffi
cult because the existence of the two worlds obliges us to exploit forms that cross
over from one world to the other. COMMON LISP is not exactly a Lisp2 because
other binding spaces exist, such as the environment of lexical escapes, the labels
of tagbody forms, etc. For that reason, we sometimes speak of LisPn because
we can associate many kinds of behavior with the same name depending on its
syntactic position. Languages with strong syntax (indeed, some people would say
overwhelming syntax) often have multiple name spaces or multiple environments
(environments for variables, for functions, for types, etc.). These multiple envi
ronments have specialized properties. If, for example, there are no modifications
possible (that is, no assignments) in the local function environment, then it is easy
to optimize the call to local functions.
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A program written in Lisp2 clearly separates the world of functions from the
rest of its computations. This is a profitable distinction that all good Scheme
compilers exploit, according to [SenS9]. Internally, these compilers rewrite Scheme
programs into a kind of Lisp2 that they can then compile better. They make clear
every place where funcall has to be inserted, that is, all the calculated calls. A
user of Lisp2 has to do much of the work of the compiler in that way and thus
understands better what it's worth.

Since we've walked through so many possible variations in the preceding pages,
we think it may be useful to give a definition here-the simplest possible-of an
other instance of Lisp2 inspired by COMMON LISP. The only modification that
we're going to include here is to introduce the function f . lookup to search for a
name in the function environment. If the name cannot be found, a function calling
wrong will be returned. This device makes it possible to insure that f . lookup
always returns a function in finite time. Of course, this device also introduces a
kind of deferred error since such an error does not occur in the reference to the
non-existing function, but rather it occurs in the application of the function, which
could occur later or perhaps not at all.

(define (f.evaluate e env fenv)
(if (atom? e)

(cond «symbol? e) (lookup e env»
«or (number? e) (string? e) (char? e) (boolean? e) (vector? e»
e )

(else (wrong "Cannot evaluate" e» )
(case (car e)

«quote) (cadr e»
«if) (if (f.evaluate (cadr e) env fenv)

(f.evaluate (caddr e) env fenv)
(f.evaluate (cadddr e) env fenv) »

«begin) (f.eprogn (cdr e) env fenv»
«set!) (update! (cadr e)

env
(f.evaluate (caddr e) env fenv) »

«lambda) (f.make-function (cadr e) (cddr e) env fenv»
«function)

(cond «symbol? (cadr e»
(f.lookup (cadr e) fenv) )

«and (pair? (cadr e» (eq? (car (cadr e» 'lambda»
(f.make-function
(cadr (cadr e» (cddr (cadr e» env fenv ) )

(else (wrong "Incorrect function" (cadr e») ) )
«flet)
(f.eprogn (cddr e)

env
(extend fenv

(map car (cadr e»
(map (lambda (def)

(f.make-function (cadr def) (cddr def)
env fenv ) )

(cadr e) ) ) ) )
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«labels)
(let «new-fenv (extend fenv

(map car (cadr e»
(map (lambda (def) 'void) (cadr e» »)

(for-each (lambda (def)
(update! (car def)

new-fenv
(f.make-function (cadr def) (cddr def)

env new-fenv ) ) )
(cadr e) )

(f.eprogn (cddr e) env new-fenv ) ) )
(else (f.evaluate-application (car e)

(f.evlis (cdr e) env fenv)
env
fenv » ) ) )

(define (f.evaluate-application fn args env fenv)
(cond «symbol? fn)

«f.lookup fn fenv) args) )
«and (pair? fn) (eq? (car fn) 'lambda»
(f.eprogn (cddr fn)

(extend env (cadr fn) args)
fenv ) )

(else (wrong "Incorrect functional term" fn» ) )

(define (f.lookup id fenv)
(if (pair? fenv)

(if (eq? (caar fenv) id)
(cdar fenv)
(f.lookup id (cdr fenv»

(lambda (values)
(wrong "No such functional binding" id) ) ) )

Other more pragmatic considerations comparing LisPl and Lisp2 are connected
to readability, according to [GP88]. Surely experienced Lisp programmers avoid
writing this kind of code:

(defun foo (list)
(list list) )

From the point of view of Lispl, (list list) is a legal auto-application2 and its
meaning is very different in Lisp2. In COMMON LISP those two names are evaluated
in two different environments, and thus there is no conflict between them. Even so,
it is still good programming style to avoid naming local variables with the names
of well known global functions; macro-writers will thank you, and your programs
will be less dependent on which Lisp or Scheme you happen to use.

Another difference between LisPl and Lisp2 concerns macros themselves. A
macro that expands into a lambda form, for example, to implement a system of
objects, is highly problematic in COMMON LISP because of the grammatical re
strictions that COMMON LISP imposes on the places where lambda can appear. A
lambda form can appear only in the function position, so an expression like this

2. Other auto-applications that make sense do exist, though they are not numerous. Here's
another (number? number?) .
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( ... (lambda... ) ... ) is erroneous. A lambda form can also appear in the
special form function, but that form itself can appear only in the position of
a parameter, so this expression «function (lambda... » ... ) is erroneous,
too. A macro that is going to be expanded never knows where-in which function
context or parametric context-it will be inserted; consequently, a macro cannot
be written without inducing a transformation of a program into something more
complicated and more global. For that system of objects that we mentioned, we
could adopt an expansion toward (function (lambda... » and add funcall to
the head of all the forms likely to contain an object in the function position.

Finally, we should mention a means that many languages adopt. We can limit
the risk of confusion, even with multiple value spaces, by forbidding the same name
to appear in more than one space at a time. In the example we looked at earlier,
list could not be used as a variable because it already appears in the global
function environment. Almost all Lisp or Scheme systems also forbid a name to
serve simultaneously as the name of a function and of a macro. This kind of rule
certainly makes some aspects of life easier.

2.5 N arne Spaces

An environment associates entities with names. We've already seen two kinds of
environments: env, the normal environment, and fenv, the function environment
associating names with functions. The reason we separated those two spaces of
values was to improve the way function calls were handled and to distinguish the
function world clearly from the variable world. That distinction, however, obliged
us to introduce two different evaluators as well as some way of getting from one
world to the other-changes that complicate the semantics of the language. When
we discussed dynamic variables, we mentioned that recent dialects of Lisp (such as
ILOG TALK, EuLISP, IS-Lisp) put dynamic variables in a separate name space as
well. We're going to look more closely at that variation here. In doing so, we'll
illustrate the idea of a name space.

An environment is a kind of abstract type. An environment contains bindings
between names and the entities referenced by these names. These entities can be
either values (that is, objects that the user can manipulate like any other first
class object) or real entities (that is, second class objects that can be handled only
by means of their name and generally only across an appropriate set of syntactic
elements and special forms). For the moment, the only entities that we recognize
are bindings. For us, these entities exist because they can be captured within
closures. We'll have more to say about the qualities of these bindings when we
study side effects later.

There are many things that we might search for in an environment. We might
search to see whether a given name appears in a given environment; we might
search for the entity associated with a name; we might search in order to modify
that association. We can also extend an environment with new associations (or
new bindings) whether that environment is current, local, or global. Of course, not
all these operations are necessarily relevant to every environment. In fact, many
environments are useful only because they limit such operations. The following
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chart, for example, lists the qualities of the environment for variables in Scheme.

Reference
Value
Modification
Extension
Definition

x
x
(set! x )
(lambda ( x ... ) ... )
(define x )

We'll be using the ideas in that chart quite frequently to discuss properties of
environments, so we'll say a bit more about it now. That first line indicates the
syntax we use to reference a variable in a closure. The second line corresponds
to the syntax that lets us get the value of a variable. In the case of variables,
the syntax for both the value and the closure is the same, but that is not always
the case. The third line shows how the binding associated with the variable can
be modified. The fourth line shows a way to extend the environment of lexical
variables: by a lambda form, or of course, by macros such as let or let* since
they expand into lambda forms. Finally, the last line of the chart shows how to
define a global binding. In case these distinctions seem obscure or feel like overkill
to you, we should point out here that the next charts in this chapter will clarify
the various intentions behind the ways that variables are used.

In Lisp2, examined at the beginning of this chapter, the space for functions
could be characterized by this chart.

Reference
Value
Modification
Extension
Definition

(f ... )
(function j)
that's not possible here
(flet ( ... (f ... ) ... ) ... )
not treated before (cf. defun)

2.5.1 Dynamic Variables

Dynamic variables, as a concept, are so different from lexical variables that we're
going to treat them separately. The following chart shows the qualities that we
want to have in our new environment, the environment for dynamic variables.

Reference
Value
Modification
Extension
Definition

can not be captured
(dynamic d)
(dynamic-set! d . .. )
(dynamic-let ( ... (d ... ) ... ) ... )

not treated here.

This new name space takes into account many facts: that dynamic variables3

can be bound locally by dynamic-let with syntax comparable to that of let or
flet; that we can get the value of a dynamic variable by dynamic; that we can
modify one with dynamic-set! .

Those three are special forms that we'll see again later in another implemen
tation. For now, we're going to take the interpreter f. evaluate and add a new

3. In this context, "dynamic variable" is a poor choice of name since, in some ways, this is not a
specialization of (lexical) variables.
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environment to it: denv. That new environment will contain only dynamic vari
ables. This new interpreter, which we'll call Lisp3, will use functions that prefix
their names by df. to minimize confusion. Here's the new evaluator. (We've
removed flet to avoid overloading it.)

(define (df.evaluate e env fenv deny)
(if (atom? e)

(cond «symbol? e) (lookup e env»
«or (number? e) (string? e) (char? e) (boolean? e) (vector? e»
e )

(else (wrong "Cannot evaluate" e» )
(case (car e)

«quote) (cadr e»
«if) (if (df.evaluate (cadr e) env fenv deny)

(df.evaluate (caddr e) env fenv deny)
(df.evaluate (cadddr e) env fenv deny) »

«begin) (df.eprogn (cdr e) env fenv deny»~

«set!) (update! (cadr e)
env
(df.evaluate (caddr e) env fenv deny) »

«function)
(cond «symbol? (cadr e»

(f.lookup (cadr e) fenv) )
«and (pair? (cadr e» (eq? (car (cadr e» 'lambda»
(df.make-function
(cadr (cadr e» (cddr (cadr e» env fenv ) )

(else (wrong "Incorrect function" (cadr e») )
«dynamic) (lookup (cadr e) deny»~

«dynamic-set!)
(update! (cadr e)

deny
(df.evaluate (caddr e) env fenv deny) ) )

«dynamic-let)
(df.eprogn (cddr e)

env
fenv
(extend deny

(map car (cadr e»
(map (lambda (e)

(df.evaluate e env fenv deny)
(map cadr (cadr e» ) ) ) )

(else (df.evaluate-application (car e)
(df.evlis (cdr e) env fenv deny)
env
fenv
deny » ) ) )

(define (df.evaluate-application fn args env fenv deny)
(cond «symbol? fn) «f.lookup fn fenv) args deny) )

«and (pair? fn) (eq? (car fn) 'lambda»
(df.eprogn (cddr fn)

(extend env (cadr fn) args)
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fenv
deny ) )

(else (wrong "Incorrect functional term" fn» ) )
(define (df.make-function variables body env fenv)

(lambda (values deny)
(df.eprogn body (extend env variables values) fenv deny) ) )

(define (df.eprogn e* env fenv deny)
(if (pair? e*)

(if (pair? (cdr e*»
(begin (df.evaluate (car e*) env fenv deny)

(df.eprogn (cdr e*) env fenv deny)
(df.evaluate (care*) env fenv deny) )

empty-begin) )

Since we introduced the new environment denv, we have to augment the sig
natures of df . evaluate and df . eprogn to convey that information. In addition,
df. evaluate introduces three new special forms to handle denv, the dynamic envi
ronment. There's a more subtle modification in df . evaluate-application: now
a function is applied not only to its arguments but also to the current dynamic
environment. You've already seen this situation [see p. 19] when we had to pass
the current environment to the invoked function.

With respect to a functional application, there are several environments in play
at once. There's the environment for variables and functions that have been cap
tured by the definition of the function. There's also the environment for dynamic
variables current at the time of the application. That environment for dynamic
variables cannot be captured, and every reference to a dynamic variable involves
a search for its value in the current dynamic environment. This search may prove
unfruitful; in such a case, we raise an error. Other choices could be possible: for
example, to have a unique dynamic global environment, as provided by IS-Lisp; or
to have many global dynamic environments, in fact, one per module, as in EuLISP;
or even to have the global environment of lexical variables, as in COMMON LISP.
[see p. 48]

One of the advantages of this new space is that it shows clearly what is dynamic
and what isn't. Any time we intervene in the dynamic environment, we do so by
means of a special form prefixed by dynamic. This eye-catching notation lets us
see the interface to a function right away. In practice in this version of Lisp3, the
behavior of a function is stipulated not only by the value of its variables but also
by the dynamic environment.

Among the conventional ways of using a dynamic environment, the most impor
tant concerns error handling. When an error or some other exceptional situation
occurs during a computation, an object defining the exception is formed, and to
that object, we apply the current function for handling exceptions (and possibly
for recovering from errors). That exception handler could be a global function,
but in that case it would require undesirable assignments in order to specify which
handler monitors which computation. The "airtightness" of lexical environments
hardly lends itself to specifying functions to handle errors. In contrast, a com
putation has an extent perfectly enclosed by a form like let or dynamic-let.
dynamic-let even has several advantages:
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1. the bindings that it introduces cannot be captured;

2. those bindings are accessible only during the extent of the computation of its
body;

3. those bindings are automatically undone at the end of the computation.

For those reasons, dynamic-let is ideal for temporarily establishing a function
to handle errors.

Here's another example of how we use dynamic variables. The print functions in
COMMON LISP are governed by various dynamic variables such as *print-base*,
*print-circle*, etc. Those dynamic variables specify such things as the numeric
base for printing numbers, whether the data to print entails cycles, and so forth.
Of course, it would be possible for every print function to take all this information
as arguments. In that case, instead of simply writing (print expression), we
would have to write (print expression print-escape print-radix print-base print
circle print-pretty print-level print-length print-case print-gensym print-array) each
time. That is, dynamic variables are a way of setting parameters for a computation
and avoiding exhaustive enumeration of parameters that usually have an acceptable
default value.

Scheme, uses a similar mechanism for specifying input and output ports. We
can write (display expression) or4 (display expression port). That first form,
with only one argument, prints the value of expression to the current output port.
The second form, with two arguments, specifies explicitly which output port to
use. The function with-output-to-file lets you specify the current output port
during the duration of a computation. You can find out the current output port
by means of the function current-output-port. We could write a functionS to
print cyclic lists, independent of the print port, in this way:

(define (display-cyclic-spine list)
(define (scan 11 12 flip)

(cond «atom? 11) (unless (null? 11) (display II • ")

(display 11)
(display 11)11) )

«eq? 11 12) (display " ... )11) )

(else (display (car 11»
(when (pair? (cdr 11» (display II "»
(scan (cdr 11)

(if (and flip (pair? 12» (cdr 12) 12)
(not flip) ) ) ) )

(display "(")
(scan list (cons 123 list) If) )

(display-cyclic-spine
(let «1 (list 1 2 3 4»)

(set-cdr! (cdddr 1) 1)
1 ) )

;p rints (1 2 3 4 1 ...)

4. One of the democratic principles of Lisp is "Let others do what you allow yourself to do." Notice
that the function display can take either one or two arguments, but no linguistic mechanism would
allow that in Scheme. Lisp, in contrast to Scheme, supports the idea of optional arguments.
5. See also the function list-length in COMMON LISP.
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If we go back to our chart, we can adapt it to the space for output ports in
Scheme, like this:

Reference

Value
Modification
Extension
Definition

referenced every time that it's not mentioned
in a print function
(current-output-port)
not modifiable
(with-output-to-file file-name thunk)
-not applicable-

In COMMON LISP, this mechanism explicitly uses dynamic variables. By de
fault, the functions print, write, etc., use the output port with the value of the
dynamic variable *standard-output*.6 We could thus simulate7 with-output
to-file by:

(define (with-output-to-file filename thunk)
(dynamic-let «*standard-output* (open-input-file filename»)

(thunk) ) )

2.5.2 Dynamic Variables in COMMON LISP

Even though COMMON LISP keeps the concepts of lexical and dynamic variables
quite separate, it still tries to unify them syntactically. The form dynamic-let
doesn't really exist but it could be simulated like this:

(dynamic-let «x a» (let «x a»
fi ) (declare (special x»

(3 )

However, the innovation is that to get the value of the dynamic variable x into
(3, we won't pass by the dynamic form, but we'll simply write x. The reason:
the declaration (declare (special x)) stipulates two things at once: that the
binding that let establishes must be dynamic, and that any reference to the name
x in the body of let must be considered equivalent to what we've named (dynamic
x) .

That strategy is inconvenient because it no longer lets us refer to the lexical
variable named x inside (3; we can only refer to its homonym, the dynamic variable.
Going the other direction, we can refer to the dynamic variable x in any context by
writing (locally (declare (special x)) x). That corresponds to our special
form, dynamic.

The strategy of COMMON LISP thus lexically specifies the nature of a reference.
We can make that mechanism explicit by modifying our interpreter, like this:

(define (df.evaluate e env fenv deny)
(if (atom? e)

(cond «symbol? e) (cl.lookup e env deny»~

«or (number? e) (string? e) (char? e) (boolean? e) (vector? e»
e )

(else (wrong "Cannot evaluate" e» )
(case (car e)

6. It's conventional to put stars around the names of dynamic variables to highlight them.
7. That's not COMMON LISP nor IS-Lisp; it's Lisp3, as we defined it a little earlier.
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«quote) (cadr e»
«if) (if (df.evaluate (cadr e) env fenv deny)

(df.evaluate (caddr e) env fenv deny)
(df.evaluate (cadddr e) env fenv deny) »

«begin) (df.eprogn (cdr e) env fenv deny»~

«set!) (cl.update! (cadr e)
env
deny
(df.evaluate (caddr e) env fenv deny) »

( (function)
(cond «symbol? (cadr e»

(f.lookup (cadr e) fenv) )
«and (pair? (cadr e» (eq? (car (cadr e» 'lambda»
(df.make-function
(cadr (cadr e» (cddr (cadr e» env fenv ) )

(else (wrong "Incorrect function" (cadr e») )
«dynamic) (lookup (cadr e) deny»~

«dynamic-let)
(df.eprogn (cddr e)

(special-extend env ; ** Modified **
(map car (cadr e» )
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fenv
(extend deny

(map car (cadr e»
(map (lambda (e)

(df.evaluate e env fenv deny)
(map cadr (cadr e» ) ) ) )

(else (df.evaluate-application (car e)
(df.evlis (cdr e) env fenv deny)
env
fenv
deny » ) ) )

(define (special-extend env variables)
(append variables env) )

(define (cl.lookup var env deny)
(let look «env env»

(if (pair? env)
(if (pair? (car env»

(if (eq? (caar env) var)
(cdar env)
(look (cdr env» )

(if (eq? (car env) var)
; ; lookup in the current dynamic environment
(let lookup-in-denv «denv deny»~

(if (pair? deny)
(if (eq? (caar deny) var)

(cdar deny)
(lookup-in-denv (cdr deny»~ )

; ; default to the global lexical environment
(lookup var env.global) ) )

(look (cdr env» ) )
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(wrong "No such binding" var) ) ) )

Here's how that mechanism works: when we bind dynamic variables by dyna
mic-let, we bind them normally in the dynamic environment, but we also mark
them as being dynamic in the lexical environment. We code that information by
pushing their name into the lexical environment. The process that associates a
reference with its value (see functioncl.lookup) is thus modified, first of all, to
achieve the syntactic analysis in order to determine the nature of the reference
(whether it is lexical or dynamic); then we search for the associated value in the
right environment. In addition, if we do not find the dynamic value, then we go
back to the global lexical environment, since it also serves as the global dynamic
environment in COMMON LISP.

To give a quick example of how Lisp3 imitates COMMON LISP in this respect,
we could evaluate this:

; dynamic
;lexical

x x ») ; dynamic
(+ x ; lexical

(dynamic x) ) ) ) ) ; dynamic

(dynamic-let «x 2»
(+ x

(let «x (+

--+8

2.5.3 Dynamic Variables without a Special Form

The way of dealing with dynamic variables that we've presented so far uses three
special forms. Since Scheme makes an effort to limit the number of special forms,
we might want to consider some other mechanism. Without looking at every con
ceivable variation that has ever been studied for Scheme, we propose the following
because it uses only two functions. The first function associates two values; the
second function finds the second of those two values when we hand it the first one.
We'll use symbols to name dynamic variables. Finally, if we want to modify those
associations, we have to use mutable data, such as a dotted pair. In these ways,
we can respect the austerity of Scheme.

As we study this variation, we'll introduce a new interpreter with two environ
ments, env and deny. This new interpreter is like the previous one except that
we have removed a few things from it: all superfluous special forms, the space for
functions, and the references to variables, as in COMMON LISP. As a consequence,
only the essence of the dynamic environment remains, and that hardly seems use
ful anymore since it is not modified anywhere. It is, however, always provided to
functions, and that provision will enable us to do what we intend. To distinguish
this variation from the others, we'll prefix the functions by dd.

(define (dd.evaluate e env deny)
(if (atom? e)

(cond «symbol? e) (lookup e env»
«or (number? e) (string? e) (char? e) (boolean? e) (vector? e»
e )

(else (wrong "Cannot evaluate" e» )
(case (car e)
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«quote) (cadr e»
«if) (if (dd.evaluate (cadr e) env deny)

(dd.evaluate (caddr e) env deny)
(dd.evaluate (cadddr e) env deny) »

«begin) (dd.eprogn (cdr e) env deny»~

«set!) (update! (cadr e)
env
(dd.evaluate (caddr e) env deny»~)

«lambda) (dd.make-function (cadr e) (cddr e) env»
(else (invoke (dd.evaluate (car e) env deny)

(dd.evlis (cdr e) env deny)
deny » ) ) )

(define (dd.make-function variables body env)
(lambda (values deny)

(dd.eprogn body (extend env variables values) deny) ) )

(define (dd.evlis e* env deny)
(if (pair? e*)

(if (pair? (cdr e*»
(cons (dd.evaluate (car e*) env deny)

(dd.evlis (cdr e*) env deny) )
(list (dd.evaluate (car e*) env deny»~

'() ) )

(define (dd.eprogn e* env deny)
(if (pair? e*)

(if (pair? (cdr e*»
(begin (dd.evaluate (car e*) env deny)

(dd.eprogn (cdr e*) env deny)
(dd.evaluate (car e*) env deny) )

empty-begin ) )

As we promised, we're going to introduce two functions. We'll name the first
of the two bind-with-dynamic-extent, and we'll abbreviate that as bind/de.
As its first parameter, it takes a key, tag; as its second, it takes value which
will be associated with that key; and finally, it takes a thunk, that is, a calculation
represented by a O-ary function (that is, a function without variables). The function
bind/de invokes the thunk after it has enriched the dynamic environment.

(definitial bind/de
(lambda (values deny)

(if (= 3 (length values»
(let «tag (car values»

(value (cadr values»
(thunk (caddr values» )

(invoke thunk '() (extend deny (list tag) (list value») )
(wrong "Incorrect aritytl 'bind/de) ) ) )

The second function that we'll introduce exploits the dynamic environment.
Since we have to make provisions for the case where we do not find what we're
looking for in the dynamic environment, the function assoc/de takes a key as its
first argument, and a function as its second. It will invoke that function on the key
if the key is not present in the dynamic environment.

(definitial assoc/de
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(lambda (values current.denv)
(if (= 2 (length values))

(let «tag (car values))
(default (cadr values)) )

(let look «denv current.denv))
(if (pair? deny)

(if (eqv? tag (caar deny))
(cdar deny)
(look (cdr deny)) )

(invoke default (list tag) current.denv) ) ) )
(wrong "Incorrect arity" 'assoc/de) ) ) )

Many variations on this are possible, depending on whether we use eqv? or
equal? for the comparison. [see Ex. 2.4]

To take an earlier example again, we will evaluate this:

(bind/de 'x 2
(lambda () (+ (assoc/de 'x error)

(let «x (+

(assoc/de 'x error) (assoc/de 'x error) )))
(+ x (assoc/de 'x error)) ) )) )

In that way, we've shown that there is really no need for special forms to get the
equivalent of dynamic variables. In doing so, we have actually gained something
since we can now associate anything with anything else. Of course, that advantage
can be offset by inconvenience since there are efficient implementations of dynamic
variables (even without parallelism). For example, shallow binding demands that
the value of the key8 must be a symbol. On the positive side, for this variation, we
can count on transparence. Accessing a dynamic variable will surely be expensive
because it entails calls to specialized functions. We're rather far from the fusion
that COMMON LISP introduced.

Along with all the other inconveniences, we have to mention the syntax that
using bind/de requires: a thunk and assoc/de to handle those associations. Of
course, judicious use of macros can hide that problem. Another inconvenience
comes when we try to compile calls to these functions correctly. The compiler
must know them intimately; it has to know their exact behavior and all their
properties. True, the fact that we rarely access this kind of variable and the fact
that we have a functional interface to do so both simplify naive compilers.

2.5.4 Conclusions about Name Spaces

At the end of this digression about dynamic variables, it is important to keep in
mind the idea of a name space that corresponds to a specialized environment to
manipulate certain types of objects. We've seen Lisp3 at work, and we've looked
closely at the method that COMMON LISP uses for dynamic variables.

Nevertheless, that last variation-the one that used only two functions rather
than three special forms for the same effects-raises a new problem. If this is a
Lispn, which n is it? We started off from Scheme, and in the implementation that

8. Many implementations of Lisp forbid the use of keys like nil or if as the names of variables.
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we've given, there are clearly two environments, env and denv. However, there is
only one rule for all evaluations, and that's always consistent with Scheme, and
thus it must be a LisPl. Yet things are not so clear-cut because we had to modify
the definition (just compare the definition of evaluate and dd. evaluate) in order
to implement the functions bind/de and assoc/de. At that point, we're facing
primitive functions that we cannot recreate in pure Scheme if they don't already
exist, and moreover the very existence of those two functions in the library of
available functions profoundly changes the semantics of the language. In the next
chapter, we'll see a similar case with call/cc.

In short, we seem to have made a LisPl if we count the number of evaluation
rules, but we appear to have a Lisp2 if we focus on the number of name spaces. A
generalization of this observation is that some authorities claim that the existence
of a property list is the sign of a Lispn, where n is unbounded. Since our definition
involves a global name space implemented by non-primitive functions, [see Ex.
2.6], we'll settle for that name: Lisp2.

We can draw another lesson from this study of lexical and dynamic variables.
COMMON LISP tries to unify the access to two different spaces by using a uniform
syntax, and as a consequence, it has to promulgate rules to determine which name
space to use. In COMMON LISP, the dynamic global space is confused with the
lexical global space. In Lisp 1.5, there was a concept of constant defined by the
special form csetq where c indicated constant.

Reference
Value
Modification
Extension
Definition

x
x
(csetq x form)

not possible
(csetq x form)

The introduction of constants makes the syntax ambiguous. When we write
foo, it could be a constant or a variable. The rule in Lisp 1.5 was this: if foo
is a constant, then return its value; otherwise, search for the value of the lexical
variable of the same name. However, constants can be modified (yes! imagine that)
by the form that creates them, csetq. In that sense, constants belong to the world
of global variables in Scheme where the order is the reverse since in Scheme the
lexical value is considered first, and the global value is considered only in default
of it.

This problem is fairly general. When several different spaces can be referred to
by an ambiguous syntax, the rules have to be spelled out in order to eliminate the
ambiguity.

2.6 Recursion

Recursion is essential to Lisp, though nothing we've seen yet explains how it is im
plemented. Now we're going to analyze various kinds of recursion and the different
problems that each of them poses.
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2.6.1 Simple Recursion

The most widely known simply recursive function is probably the factorial, defined
like this:

(define (fact n)
(if (= n 0) 1

(* n (fact (- n 1») ) )

The language that we defined in the previous chapter does not know the meaning
of define, so let's assume for the moment that this macro expands like this:

(set! fact (lambda (n)"
(if (= n 1) 1

(* n (fact (- n 1») ) »

This prompts us to consider an assignment, that is, a modification impinging
on the variable fact. Such a modification would make no sense unless the variable
exists already. We can characterize the global environment as the place where
all variables already exist. That's certainly a kind of virtual reality where the
effective implementation (and more precisely, the mechanism for reading programs)
has to hurry, once a variable is named, in order to create the binding associated
with that named variable in the global environment and to pretend that it had
always been there. Every variable is thus reputed to be pre-existing: defining
a variable is merely a question of modifying its value. This position, however,
poses a problem about what can be the value of a variable that has not yet been
assigned. The implementation has to make arrangements to trap this new kind
of error corresponding to a binding that exists but has not been initialized. Here
you can see that the idea of a binding is complicated, so we'll analyze it in greater
detail in Chapter 4. [see p. 111]

We can get rid of this problem connected to the troublesome existence of a
binding that exists but has not been initialized, if we adopt another point of view.
Either assignment can modify only existing bindings, or bindings do not "pre
exist." In that case, it would be necessary to create bindings when we want them,
and for that task, define could therefore be considered as a new special form with
this role. Thus we could not refer to a variable nor modify its value unless it had
already been created. Consider the other side of the coin for a moment in the
following example.

(define (display-pi)
(display pi) )

(define pi 2.7182818285) ; AfISTAl\E
(define (print-pi)

(display pi) )
(define pi 3.1415926536)

Is that definition of display-pi legal? Its body refers to the variable pi even
though that variable does not yet exist. The fourth definition modifies the second
one (to correct it) but even if the meaning of define is to create a new binding,
does it still have the right to create a new one with the same name?

There is more than one possible response to that rhetorical question. In fact,
at least two different positions confront each other here: the first extends the
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principle of lexicality to global definitions (ML takes this one); the second, used by
Lisp, takes a more dynamic stance.

In a global world that is purely lexical-which we'll call hyperstatic-we cannot
talk about a variable (that is, we can't refer to it, nor evaluate it, nor modify it)
unless it already exists. In that context, the function display-pi is erroneous since
it refers to the variable pi even though that variable does not yet exist. Any call
to the function display-pi should surely raise the error "unknown variable: pi"
if even the system allowed the definition of the display-pi function. Such would
not be the case of the function print-pi; it would display the value that was valid
at the time of its ~efinition (in our example, 2. 7182818285), and it would do so
indefinitely. In this world, "redefinition" of pi is entirely legal, and doing so creates
a new variable of the same name having the rest of these interactions as its scope.
An imaginative way of seeing this mechanism is to consider the preceding sequence
as equivalent to this:

(let «display-pi (lambda () (display pi»»
(let «pi 2.7182818285»

(let «print-pi (lambda () (display pi»»
(let «pi 3.1415926536»

The three dots mark the rest of the interactions or the remaining global defini
tions.

Lisp, as we said, takes a more dynamic view. It assumes that at most only
one global variable can exist with a given name, and that this global variable is
visible everywhere, and, in particular, Lisp supports forward references to such
a variable without the forward reference being highlighted in any syntactic way.
(By syntactically highlighted, we mean such conventions as we see in Pascal with
forward or in ISO C with prototypes as in [IS090].)

That discussion is non-trivial. When we choose the environment in which the
function is evaluated, we have to ask ourselves, "What will be the value of fact?"
If the evaluation occurs in the global environment, before the binding of fact is
created, then fact cannot be recursive. The reason for that is simple: the reference
to fact in the body of the function must be looked for in the environment captured
by the closure (the one enriched by the closure that has been created), but that
environment does not contain the variable fact. As a consequence, it is necessary
that the environment which will be closed contain not only the global environment
but also the variable fact. This observation tends to favor a global environment
where all the variables pre-exist because then we would not even have to ask that
question we began with. However, if we adhere to the second possibility-the
hyperstatic vision of a global environment-then we have to be sure that define
binds f act before evaluating the closure that will become the value of this binding.
In short, simple recursion demands a global environment.

2.6.2 Mutual Recursion

Now let's suppose that we want to define two mutually recursive functions. Let's
say odd? and even? test (very inefficiently, by the way) the parity of a natural
number. Those two are simply defined like this:
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(define (even? n)
(if (= n 0) #t (odd? (- n 1») )

(define (odd? n)
(if (= n 0) #f (even? (- n 1») )

Regardless of the order in which we put these two definitions, the first one
cannot be aware of the second; in this case, for example, even? knows nothing
about odd? Here again, the global environment, where all variables pre-exist,
seems a winner because then the two closures capture the global environment, and
thus capture all variables, and thus, in particular, capture odd? and even? Of
course, we're leaving the details of how to represent a global environment that
contains an enumerable number of variables to the implementor.

It is more difficult to adopt the point of view of purely lexical global definitions
because the first definition necessarily knows nothing about the second. One solu
tion would be to introduce the two definitions together, at the same time. Doing
so would insure their mutual acquaintance with each other. (We'll come back to
this point once we have studied local recursion.) For example, if we dig out that
old version of define from Lisp 1.5, we would write this:

(define «even? (lambda (n) (if (= n 0) #t (odd? (- n 1»»)
(odd? (lambda (n) (if (= n 0) #f (even? (- n 1»»)

) )

Mutual recursion can in that way be expressed by the global environment on
condition that it's blessed with ad hoc qualities.

What happens now if we want functions that are locally recursive?

2.6.3 Local Recursion in Lisp2

Some of the problems we encountered when we were defining fact in a global
environment come up again when we want to define fact locally. We have to do
something so that the call to fact in the body of fact will be recursive. That
is, we need for the function associated with this name to be the factorial value of
fact in the function environment. However, a major difference exists here: when
a binding does not exist in a local environment, an error occurs. Consider what
happens if we write this in Lisp2:

(flet «fact (n) (if (= n 0) 1
(* n (fact (- n 1») »)

(fact 6) )

The function fact is bound in the current function environment. This closure
captures both the function environment and the parametric environment current
in the locality where the form flet is evaluated. In consequence, the function
fact that appears in the body of fact refers to the function fact valid outside of
the form flet. There's no reason for that function to be the factorial, and as a
consequence, we don't really get recursion here.

That problem had already been recognized in Lisp 1.5 where a special form
named label made it possible to define a locally recursive function. In that case,
we would have written this:

(label fact (lambda (n) (if (= n 0) 1
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(* n (fact (- n 1») ) »

That form returns an anonymous function that computes the factorial. More
over, this anonymous function is the value of the function fact that appears in its
body.

We cannot guarantee, however, that Lisp 1.5 was an authentic Lisp2, and as
interesting as it is, the form label, unfortunately, is not able to handle the case
of mutual recursion simply. For that reason, an n-ary version was invented much
later, according to [HS75]: the special form labels. This later form has the same
syntax as the form flet, but it insures that the closures that are created will be
in a function environment where all the local functions are aware of each other.
Thus we can also locally define the recursive function fact as well as the mutually
recursive functions even? and odd?, as we show in this:

(labels «fact (n) (if (= n 0) 1

(* n (fact (- n 1») ) »
(fact 6» ~ 720

(funcall (labels «even? (n) (if (= n 0) #t (odd? (- n 1»»
(odd? (n) (if (= n 0) #f (even? (- n 1»»

(function even?) )
4 ~ #t

In Lisp2, then we have two forms available, flet and labels, to enrich the
local function environment.

2.6.4 Local Recursion In LiSPl

The problem of defining locally recursive functions occurs in LisPl as well, and we
solve that problem in a similar way. A particular form, known as letrec for "let
recursive," has much the same effect as labels.

In Scheme, let has the following syntax:

(let « variablel expressionl)
(variable2 expression2)

(variablen expressionn )

expressions. .. )

Its effect is equivalent to this expression:

«lambda (variablel variable2 ... variablen ) expressions... )
expressionl expression2 ... expressionn )

Here's a more discursive explanation of what's going on. First, the expres
sions, expressionl, expression2, ... expressionn , are evaluated; then the variables,
variablel, variable2, . .. variablen , are bound to the values that have already been
gotten; finally, in the extended environment, the body of let is evaluated (within
an implicit begin), and its value becomes the value of the entire let form.

A priori, the form let does not seem useful since it can be simulated by lambda
and thus can be only a simple macro. (By the way, this is not a special form in
Scheme, but primitive syntax.) Nevertheless, the form let becomes very useful on
the stylistic level because it allows us to put a variable just next to its initial value,
like a block in Algol. This idea leads us to remark that the variables in a let form
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are initialized by values computed in the current environment; only the body of
let is evaluated in the enriched environment.

For the same reasons that we encountered in Lisp2, this way of doing things
means that we cannot write mutually recursive functions in a simple way, so we'll
use letrec again here for the same purpose.

The syntax of the form letrec is similar to that of the form let. For example,
we would write:

(letrec «even? (lambda (n) (if (= n 0) #t (odd? (- n 1»»)
(odd? (lambda (n) (if (= n 0) #f (even? (- n 1»») )

(even? 4) )

The difference between letrec and let is that the expressions initializing the
variables are evaluated in the same environment where the body of the letrec
form is evaluated. The operations carried out by letrec are comparable to those
of let, but they are not done in the same order. First, the current environment
is extended by the variables of letrec. Then, in that extended environment, the
initializing expressions of those same variables are evaluated. Finally, the body is
evaluated, still in that enriched environment. This description of what's going on
suggests clearly how to implement letrec. To get the same effect, we simply have
to write this:

(let «even? 'void)
(odd? 'void) )

(set! even? (lambda (n) (or (= n 0) (odd? (- n 1»»)
(set! odd? (lambda (n) (or (= n 1) (even? (- n 1»»)
(even? 4) )

The bindings for even? and odd? are created. (By the way, the variables
are bound to values of no particular importance because let or lambda do not
allow uninitialized bindings to be created.) Then those two variables are initialized
with values computed in an environment that is aware of the variables even? and
odd? We've used the phrase "aware of" because, even though the bindings of the
variables even? and odd? exist, their values have no relation to what we expect
from them inasmuch as they have not been initialized. The bindings of even? and
odd? exist enough to be captured but not enough to be evaluated validly.

However, the transformation is not quite correct because of the issue of order:
a let form is equivalent to a functional application, and its initialization forms
become the arguments of the functional application that's being generated; ifindeed
a let form is equivalent to a functional application, then the order of evaluating
the initialization forms should not be specified. Unfortunately, the expansion we
just used forces a particular order: left to right. [see Ex. 2.9]

Equations and letrec

A major problem of letrec is that its syntax is not very strict; in fact, it allows
anything as initialization forms, and not solely functions. In contrast, the syntax of
labels in COMMON LISP forbids the definition of anything other than functions.
In Scheme, it's possible to write this:

(letrec «x (/ (+ x 1) 2») x)
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Notice that the variable x is defined in terms of itself according to the semantics
of letrec. That's a veritable equation written like this:

x+l
x=--

2
It seems logical to bind x to the solution of this equation, so the final value of that
letrec form would be 1.

But what happens according to this interpretation when an equation has no
solution or has multiple solutions?

(letrec «x (+ x 1») x)
(letrec «x (+ 1 (power x 37»» x)

;x = x + 1
;x = x

37 + 1

There are many other domains (all familiar in Lisp) like S-expressions, where
we can sometimes insure that there will always be a unique solution, according to
[MS80]. For example, we can build an infinite list without apparent side effects,
rather like a language with lazy evaluation, by writing this:

(letrec «foo (cons 'bar faa») faa)

The value of that form would then be either the infinite list (bar bar bar

. .. ) calculated the lazy way, as in [FW76, PJ87], or the circular structure (less
expensive) that we get from this:

(let «foo (cons 'bar 'wait»)
(set-cdr! faa faa)
foo )

For that reason, we have to adopt a more pragmatic rule for letrec to forbid
the use of the value of a variable of letrec during the initialization of the same
variable. Accordingly, the two preceding examples demand that the value of x must
already be known in order to initialize x. That situation raises an error and will be
punished. However, we should note that the order of initialization is not specified
in Scheme, so certain programs can be error-prone in certain implementations and
not so in others. That's the case, for example, with this:

(letrec «x (+ y 1»
(y 2) ) )

x )

If the initialization form of y is evaluated before the one for x, then everything
turns out fine. In the opposite case, there will be an error because we have to try
to increment y which is bound but which does not yet have a value. Some Scheme
or ML compilers analyze initialization expressions and sort them topologically to
determine the order in which to evaluate them. This kind of sorting is not always
feasible when we introduce mutual dependence9 like this:

(letrec «x y)(y x» (list x y»

That example reminds us strongly about that discussion of the global environ
ment and the semantics of define. There we had a problem of the same kind: how
to know about the existence of an uninitialized binding.

9. Again, returning the list (42 42) does not violate the statement of this form.
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2.6.5 Creating Uninitialized Bindings

The official semantics of Scheme makes letrec derived syntax, that is, a useful
abbreviation but not really necessary. Accordingly, every letrec form is equivalent
to a form that could have been written directly in Scheme. We tried that approach
earlier when we bound the variables of letrec temporarily to void. Unfortunately,
doing so initialized the bindings and made it impossible to detect the error we
mentioned before. Our misfortune is actually even worse than that because none
of the four special forms in Scheme allows the creation of uninitialized bindings.

A first attempt at a solution might use the object #<UFO> [see p. 14] in place
of void. Of course, we can't do much with #<UFO>: we can't add it, nor take its
car, but since it is a first class object, we can make it appear in a cons, so the
following program would not be false and would return #<UFO>:

(letrec «foo (cons 'foo foo») (cdr foo»

The underlying reason for that is that the lack of initialization of a binding is a
property of the binding itself, not of its contents. Consequently, using a first class
value, #<UFO>, is not a solution to our problem.

If we think about implementations, then we notice that often a binding is
uninitialized if it has a very particular value. Let's call that very special value
#<uninitialized>, and let's suppose for the moment that this value is first class.
When it appears as the value of a variable, then the variable has to be regarded as
uninitialized. We will thus replace void by #<uninitialized> and get the error
detection that we wanted. However, this mechanism is too powerful because any
body can provide #<uninitialized> as an argument to any function, and we thus
lose an important property that every variable of a function has a value. According
to those terms, our old reliable factorial function cannot even assume any longer
that its variable n is bound and thus it must test explicitly whether n has a value,
like this:

(define (fact n)
(if (eq? n '#<uninitialized»

(wrong "Uninitialized nil)
(if (= n 0) 1

(* n (fact (- n 1») ) ) )

This surcharge is too costly and, consequently, #<uninitialized> can't be a
first class value; it can be only an internal flag reserved to the implementor, one
that the end-user can't touch. This second path is consequently closed to us, as
far as a solution to our problem goes.

A third solution is to introduce a new special form, capable of creating unini
tialized bindings. Let's take advantage of a syntactic variation of let, one that
exists in COMMON LISP but not in Scheme, to do that, like this:

(let ( variable ... )
. ... )

When a variable appears alone, without an initialization form, in the list of
local variables in a let form, then the binding will be created uninitialized. Any
evaluation, or even any attempt at evaluation, of this variable must verify whether
it is really initialized. The expansion of a letrec now no longer calls anything
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foreign to it. In what follows, the variables tempi are hygienic; that is, they cannot
provoke conflicts with the variablesi nor with those that are free in 1r.

(let ( variablel ... variablen )
(let « templ expressionl )

(letrec « variablel expressionl)

(variablen expressionn )
body )

( tempn expressionn
(set! variablel templ)

(set! variablen tempn)
body ) )

In that way, we've resolved the problem in a satisfactory way because only the
uninitialized variables pay the surcharge due to uninitialization. However, the form
let is no longer just syntax; rather, it is a primitive special form that must thus
appear in the basic interpreter. For that reason, we'll add the following clause to
evaluate.

«let)
(eprogn (cddr e)

(extend env
(map (lambda (binding)

(if (symbol? binding) binding
(car binding) ) )

(cadr e) )
(map (lambda (binding)

(if (symbol? binding) the-uninitialized-marker
(evaluate (cadr binding) env) ) )

(cadr e) ) ) ) ) ...

The variable the-uninitialized-marker belongs to the definition language.
It could be defined like this:

(define the-non-initialized-marker (cons 'non 'initialized»

Of course, the internal flag is exploited by the function lookup which must be
adapted for it. The function update! is not affected by this change. In the follow
ing function, the two different calls to wrong characterize two different situations:
non-existing binding and uninitialized binding.

(define (lookup id env)
(if (pair? env)

(if (eq? (caar env) id)
(let «value (cdar env»)

(if (eq? value the-non-initialized-marker)
(wrong "Uninitialized binding" id)
value ) )

(lookup id (cdr env» )
(wrong "No such binding" id) ) )

After these syntactic-semantic ramblings, we have a form of letrec that allows
us to co-define local functions that are mutually recursive.
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2.6.6 Recursion without Assignment

The form letrec that we've been analyzing uses assignments to insure that initial
ization forms are evaluated. Languages that are known as purely functional don't
have this resource available to them; side effects are unknown among them, and
what is assignment if not a side effect on the value of a variable?

As a philosophy, forbidding assignment offers great advantages: it preserves
the referential integrity of the language and thus leaves an open field for many
transformations of programs, such as moving code, using parallel evaluation, using
lazy evaluation, etc. However, if side effects are not available, certain algorithms
are no longer so clear, and the introspection of a real machine is impeded, since
real machines work only because of the side effects of their instructions.

The first solution that comes to mind is to make letrec another special form,
as it is in most languages in the same class as ML. We would enrich evaluate so
that it could handle the case of letrec, like this:

«letrec)
(let «new-env (extend env

(map car (cadr e))
(map (lambda (binding) the-uninitialized-marker)

(cadr e) ) )))
(map (lambda (binding) ;map to preserve chaos!

(update! (car binding)
new-env

(evaluate (cadr binding) new-env) ) )
(cadr e) )

(eprogn (cddr e) new-env) ) ) ...

In that way, we regain side effects, formerly attributed to assignments, now
carried out by update!. We also note that the order of evaluation is still not
significant because map (in contrast to for-each) does not guarantee anything
about the order in which it handles terms in a list. Io

letrec and the Purely Lexical Global Environment

A purely lexical global environment allows the use of a variable only if the variable
has already been defined. The problem with that rule is that we cannot define sim
ply recursive functions nor groups of mutually recursive functions. With letrec,
we can suggest how to resolve that problem by making it possible to define more
than one function at a time by indicating whether the definition is recursive or not.
We would thus write this:

(letrec «fact (lambda (n)
(if (= n 0) 1 (* n (fact (- n 1)) )))

(letrec «odd? (lambda (n) (if (= n 0) #f (even? (- n 1»»)
(even? (lambda (n) (if (= n 0) #t (odd? (- n 1»»)

Those dots represent the rest of the interactions or definitions.

10. The cost here is that we have to build a useless list-useless since it is forgotten as soon as it
is built.
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Paradoxical Combinator
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If you have experience with ,\-calculus, then you probably remember how to write
fixed-point combinators and among them, the famous paradoxical combinator, Y.
A function f has a fixed point if there exists an element x in its domain such that
x = f( x ). The combinator Y can take any function of '\-calculus and return a
fixed point for it. This idea is expressed in one of the loveliest and most profound
theorems of '\-calculus:

Fixed Point Theorem: 3Y, VF, Y F =F(YF)

In Lisp terminology, Y is the value of this:

(let «W (lambda (w)
(lambda (f)

(f «w w) f» ) »)
(W W) )

Our demonstration of that assertion is quite short. If we assume that Y is
equal to (WW), then how should we choose W so that (WW)F will be equal
to F«WW)F)? Obviously, W is no other than '\W.'\F.F((WW)F). That Lisp
expression is nothing other than a transcription of these ideas.

The problem here is that the strategy of call by value in Scheme is not com
patible with this kind of programming. We are obliged to add a superfluous 1]
conversion (superfluous from the point of view of pure '\-calculus) to block any
premature evaluation of the term ((w w) f). We'll cut across then to the following
fixed-point combinator in which lambda (x) ( ... x)) marks the 1]-conversion.

(define fix
(let «d (lambda (w)

(lambda (f)
(f (lambda (x) «(w w) f) x») ) »)

(d d) ) )

The most troubling aspect of that definition is how it works. (We're going to
show you that right away.) Let's define the function meta-fact like this:

(define (meta-fact f)
(lambda (n)

(if (= n 0) 1
(* n (f (- n 1») ) ) )

That function has a disconcerting relation to factorial. We will verify by exam
ple that the expression (meta-fact fact) calculates the factorial of a number just
as well as fact, though more slowly. More precisely, let's suppose that we know a
fixed point f of meta-fact; in other words, f =(meta-fact f). That fixed point
has, by definition, the property of being a solution to the functional equation in f:

/ = (lambda (n)
(if (= n 1) 1

(* n (/ (- n 1») ) )

So what is f? It can't be anything other than our well known factorial.
Actually, nothing guarantees that the preceding functional equation has a so

lution, nor that it is unique. (All those terms, of course, must be mathematically
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well defined, though that is beyond the purpose of this book.) Indeed, the equation
has many solutions, for example:

(define (another-fact n)
(cond «< n 1) (- n»

«= n 1) 1)

(else (* n (another-fact (- n 1»» ) )

We urge you to verify that the function another-fact is yet another fixed
point of meta-fact. Analyzing all these fixed points shows us that there is a
set of answers on which they all agree: they all compute the factorial of natural
numbers. They diverge from one another only where fact diverges in infinite
calculations. For negative integers, another-fact returns one result where many
might be possible since the functional equation says nothing!! about those cases.
Therefore, there must exist a least fixed point which is the least determined of the
solution functions of the functional equation.

The meaning to attribute to a definition like the one for fact in the global envi
ronment is that it defines a function equal to the least fixed point of the associated
functional equation, so when we write this:

(define (fact n)
(if (= n 0) 1

(* n (fact (- n 1») ) )

we should realize that we have just written an equation where the variable is named
fact. As for the form define, it resolves the equation and binds the variable fact
to that solution of the functional equation. This way of looking at things takes us
far from discussions about initialization of global variables [see p. 54] and turns
define into an equation-solver. Actually, define is implemented as we suggested
before. Recursion across the global environment coupled with normal evaluation
rules does, indeed, compute the least fixed point.

Now let's get back to fix, our fixed-point combinator, and trace the execution
of «fix meta-fact) 3). In the following trace, remember that no side effects
occur, so we'll substitute their values for certain variables directly from time to
time.

«fix meta-fact) 3)

= «(d d)1 d--_
(lambda (w)

(lambda (f)
(f (lambda (x)

«(w w) f) x) » ) )
meta-fact)

3 )

( «lambda (f)
(f (lambda (x)

«(w w) f) x) » )1

; (i)

w= (lambda (w)

(lambda (f)
(f (lambda (x)

«(w w) f) x) » ) )

11. See [Man74] for more thorough explanations.
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meta-fact
3 )

«meta-fact (lambda (x)

«(w w) meta-fact) x) »1 ~_=
.. (lambda (w)

(lambda (f)
(f (lambda (x)

«(w w) f) x) » ) )
3 )

=( (lambda (n)

(if (= n 0) 1

(* n (f (- n 1») ) )1 f-=
(lambda (x)

«(v w) meta-fact) X»I w=

(lambda (w)

(lambda (f)

(f (lambda (x)
«(w w) f) x) » )

3 )

= (* 3 (f 2»1 f-=
(lambda (x)

« (w v) meta-fact) X»I w=

(lambda (w)
(lambda (f)

(f (lambda (x)
«(w w) f) x) » )

(* 3 « (w w) meta-fact) 2»1 ~_
.. (lambda (w)

(lambda (f)
(f (lambda (x)

«(w w) f) x) » ) )

(* 3 «(lambda (f)
(f (lambda (x)

«(w v) f) x) » )1

; (ii)

w= (lambda (w)
(lambda (f)

(f (lambda (x)
«(w w) f) x) » ) )

meta-fact)
2 ) )

We'll pause there to note that, in gross terms, the expression at step i occurs
again at step ii, and, like the thread in a needle, it leads to this:

(* 3 (* 2 «(lambda (f)
(f (lambda (x)

( ( (w w) f ) x) » )1 ~ _

.. (lambda (w)
(lambda (f)
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(f (lambda (x)
«(w w) f) x) » ) )

meta-fact)
1 »)

(* 3 (* 2 «meta-fact (lambda (x)
«(w w) meta-fact) x) »1

(lambda (w)
(lambda (f)

(f (lambda (x)
«(w w) f) x) » ) )

1 »)
(* 3 (* 2 «lambda (n)

(if (= n 0) 1
(* n (f (- n 1»)

1 »)

(* 3 (* 2 (if (= n 0) 1 (* n (f (- n 1»»»1

= (* 3 (* 2 1»
= 6

n-+ 1
f-+

f= meta-fact
w-+ (lambda (w)

(lambda (f)
(f (lambda (x)

«(w w) f) x) » ) )

Notice that as the computation winds its way along, an object corresponding
to the factorial has, indeed, been constructed. It's this value:

(lambda (x)
«(w w) f) x) )1

The cleverness lies in the way we recompose a new instance of this factorial
every time a recursive call needs it.

That's the way that we could get simple recursion, without side effects, by
means of fix, a fixed-point combinator. Thanks to Y (or to fix in Lisp), it is
possible to define define as a solver of recursive equations; it takes an equation as
its argument, and it binds the solution to a name. Thus the equation defining the
factorial leads to binding the variable fact to this value:

(fix (lambda (fact)
(lambda (n)

(if (= n 0) 1
(* n (fact (- n 1») ) ) »

We can extend this technique to the case of multiple functions that are mutually
recursive by regrouping them. The functions odd? and even? can be fused, like
this:

(define odd-and-even
(fix (lambda (f)
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(lambda (which)
(case which

«odd) (lambda (n) (if (= n 0) #f
«f 'even) (- n 1» »)

«even) (lambda (n) (if (= n 0) #t
«f 'odd) (- n 1» ») ) ) » )

(define odd? (odd-and-even 'odd»
(define even? (odd-and-even 'even»
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The problem with this method, however, is that it is not very efficient in terms
of performance, compared to even an imperfect compilation of a letrec form. (Yet
see [Roz92, Ser93].) Nevertheless, this method has its own practitioners, especially
when it's time to write books. Functional languages do not adopt this method
either, according to [PJ87], because of its inefficiency and because the definition of
fix is not susceptible to typing. In effect, its nature is to take a functional l2 that
takes, as its argument, the function typed Q' -+ (3 and that returns a fixed point
of that functional. The type is consequently this:

fix: «a-+{3) -+ (a-+{3» -+ (a-+{3)

But in the definition of fix, we have the auto-application Cd d) that has I for
its type, like this:

1 = 1 -+ (a-+{3)

We need a system of non-trivial types to contain this recursive type, or we have
to consider fix a primitive function that (fortunately) already exists because we
don't know how to define it within the language, if it's missing.

2.7 Conclusions

This chapter has crossed several of the great chasms that split the Lisp world in
the past thirty years. When we examine the points where these divergences begin,
though, we see that they are not so grand. They generally have to do with the
meaning of lambda and the way that a functional application is calculated. Even
though the idea of a function seems like a well founded mathematical concept, its
incarnation within a functional language (that is, a language that actually uses
functions) like Lisp is quite often the source of many controversies. Being aware
of and appreciating these points of divergence is part of Lisp culture. When we
analyze the traces of our elders in this culture, we not only build up a basis for
mutual understanding, but we also improve our programming style.

Paradoxically, this chapter has shown the importance of the idea of binding. In
Lispl, a variable (that is, a name) is associated with a unique binding (possibly
global) and thus with a unique value. For that reason, we talk about the value of
a variable rather than the value associated with the binding of that variable. If
we look at a binding as an abstract type, we can say that a binding is created by
a binding form, and that it is read or written by evaluation of the variable or by

12. McCarthy in [MAE+ 62] defines a functional as a function that can have functions as
arguments.
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assignment, and finally, that it can be captured when a closure is created in which
the body refers to the variable associated with that binding.

Bindings are not first class objects. They are handled only indirectly by the
variables with which they are associated. Nevertheless, they have an indefinite
extent; in fact, they are so useful because they endure.

A binding form introduces the idea of scope. The scope of a variable or of a
binding is the textual space where that variable is visible. The scope of a variable
bound by lambda is restricted to the body of that lambda form. For that reason,
we talk about its textual or lexical scope.

The idea of binding is complicated by the fact of assignment, and we'll study
it in greater detail in the next chapter.

2.8 Exercises

Exercise 2.1 : The following expression is written in COMMON LISP. How would
you translate it into Scheme?

(funcall (function funcall) (function funcall) (function cons) 1 2)

Exercise 2.2 : In the pseudo-CoMMON LISP you saw in this chapter, what is the
value of this program? What does it make you think of?

(defun test (p)
(function bar) )

(let «f (test If»)
(defun bar (x) (cdr x»
(funcall f '(1 . 2» )

Exercise 2.3 : Incorporate the first two innovations presented in Section 2.3 [see
p. 39] into the Scheme interpreter. Those innovations concern numbers and lists
in the function position.

Exercise 2.4 : The function assoc/de could be improved to take a comparer (such
as eq?, equal?, or others) as an argument. Write this new version.

Exercise 2.5 : With the aid of bind/de and assoc/de, write macros that simulate
the special forms dynamic-let, dynamic, and dynamic-set!.

Exercise 2.6 : Write the functions getprop and putprop to simulate lists of
properties. We could associate a value with the key in the list of properties of a
symbol with putprop; we could search the list of properties for the value associated
with a key with getprop. Of course, we have the following property:

(begin (putprop 'symbol 'key 'value)
(getprop 'symbol 'key) ) ~ value



2.8. EXERCISES

Exercise 2.7 : Define the special form label in LisPl.

Exercise 2.8 : Define the special form labels in Lisp2.
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Exercise 2.9 : Think of a way to expand letrec in terms of let and set! so
that the order does not matter when initializations of expressions are evaluated.

Exercise 2.10 : The fixed-point combinator in Scheme has a weakness: it works
only for unary functions. Give a new version, fix2, that works correctly for binary
functions. Then write a version, fixN, that works correctly for functions of any
arity.

Exercise 2.11 : Now write a function, NfixN, that returns a fixed point from a
list of functionals of any arity. We would use such a thing, for example, to define
this:

(let «odd-and-even
(NfixN (list (lambda (odd? even?) ; odd?

(lambda (n)
(if (= n 0) #f (even? (- n 1») ) )

(lambda (odd? even?) ;even?
(lambda (n)

(if (= n 0) #t (odd? (- n 1») ) ) » »
(set! odd? (car odd-and-even»
(set! even? (cadr odd-and-even» )

Exercise 2.12 : Here's the function klop. Is it a fixed-point combinator? Try to
show whether or not (klop f) returns a fixed-point of f, the way fix would do.

(define klop
(let «r (lambda (s c hem)

(lambda (f)
(f (lambda (n)

«(m e c h e s) f) n) » ) »)
(r r r r r r) ) )

Exercise 2.13 : If the function hyper-fact is defined like this:

(define (hyper-fact f)
(lambda (n)

(if (= n 0) 1

(* n «f f) (- n 1») ) ) )

then what is the value of ((hyper-fact hyper-fact) 5)?
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Recommended Reading

CHAPTER 2. LISP, 1,2, ... w

In addition to the paper about A-calculus [SS78a] that we mentioned earlier, you
could also consider the analysis of functions in [Mos70] and the comparative study
of LisPl and Lisp2 in [GP88].

There is an interesting introduction to A-calculus in [Gor88].
The combinator Y is also discussed in [Gab88].



3
Escape & Return:

Continuations

E
VERY computation has the goal of returning a value to a certain en
tity that we call a continuation. This chapter explains that idea and its
historic roots. We'll also define a new interpreter, one that makes con
tinuations explicit. In doing so, we'll present various implementations

in Lisp and Scheme and we'll go into greater depth about the programming style
known as "Continuation Passing Style." Lisp is distinctive among programming
languages because of its elaborate forms for manipulating execution control. In
some respects, that richness in Lisp will make this chapter seem like an enormous
catalogue [Moz87] where you'll probably feel like you've seen a thousand and three
control forms one by one. In other respects, however, we'll keep a veil over con
tinuations, at least over how they are physically carried out. Our new interpreter
will use objects to show the relatives of continuations and its control blocks in the
evaluation stack.

The interpreters that we built in earlier chapters took an expression and an
environment in order to determine the value of the expression. However, those
interpreters were not capable of defining computations that included escapes, use
ful control structures that involve getting out of one context in order to get into
another, more preferable one. In conventional programming, we use escapes prin
cipally to master the behavior of programs in case of unexpected errors, or to
program by exceptions when we define a general behavior where the occurrence
of a particular event interrupts the current calculation and sends it back to an
appropriate place.

The historic roots of escapes go all the way back to Lisp 1.5 to the form prog.
Though that form is now obsolete, it was originally introduced in the vain hope
of attracting Algol users to Lisp since it was widely believed that they knew how
to program only with goto. Instead, it seems that the form distracted otherwise
healthy Lisp programmers away from the precepts! of tail-recursive functional pro
gramming. Nevertheless, as a form, prog merits attention because it embodies
several interesting traits. Here, for example, is factorial written with prog.

1. As an example, consider the stylistic differences between the first and third editions of [WH88].
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(defun fact (n) COMMON LISP
(prog (r)

(setq r 1)
loop (cond «= n 1) (return r)))

(setq r (* n r))
(setq n (- n 1))
(go loop) ) )

The special form prog first declares the local variables that it uses (here, only
the variable r). The expressions that follow are instructions (represented as lists) or
labels (represented by symbols). The instructions are evaluated sequentially like in
progn; and normally the value of a prog form is nil. Multiple special instructions
can be used in one prog. Unconditional jumps are specified by go (with a label
which is not computed) whereas return imposes the final value of the prog form.
There was one restriction in Lisp 1.5: go forms and return forms could appear
only in the first level of a prog or in a cond at the first level.

The form return made it possible to get out of the prog form by imposing its
result. The restriction in Lisp 1.5 allowed only an escape from a simple context;
successive versions improved this point by allowing return to be used with no
restrictions. Escapes then became the normal way of taking care of errors. When
an error occurred, the calculation tried to escape from the error context in order
to regain a safer context. With that point in mind, we could rewrite the previous
example in the following equivalent code, where the form return no longer occurs
on the first level.

(defun fact2 (n)
(prog (r)

(setq r 1)
loop (setq r (* (cond «= n 1) (return r))

(' else n) )

COMMON LISP

r ))

(setq n (- n 1))
(go loop) ) )

If we reduce the forms return and prog to nothing more than their control
effects, we see clearly that they handle the calling point (and the return point) of
the form prog exactly like in the case of a functional application where the invoked
function returns its value precisely to the place where it was called. In some sense,
then, we can say that prog binds return to the precise point that it must come back
to with a value. Escape, then, consists of not knowing the place from which we take
off while specifying the place where we want to arrive. Additionally, we hope that
such a jump will be implemented efficiently: escape then becomes a programming
method with its own disciples. You can see it in the following example of searching
for a symbol in a binary tree. A naive programming style for this algorithm in
Scheme would look like this:

(define (find-symbol id tree)
(if (pair? tree)

(or (find-symbol id (car tree))
(find-symbol id (cdr tree))

(eq? tree id) ) )
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Let's assume that we're looking for the symbol foo in the expression (( (a .
b). (f00. c)). (d. e) ). Since the search takes place from left to right
and depth-first, once the symbol has been found, then the value #t must be passed
across several embedded or forms before it becomes the final value (the whole point
of the search, after all). The following shows the details of the preceding calculation
in equivalent forms.

(find-symbol 'foo '«(a. b) . (foo . c» . (d . e»)
(or (find-symbol 'foo '«a. b) . (foo . c»)

(find-symbol 'foo '(d. e» )
(or (or (find-symbol 'foo '(a. b»

(find-symbol 'foo '(foo . c»
(find-symbol 'foo '(d. e» )

(or (or (or (find-symbol 'foo 'a)
(find-symbol 'foo 'b) )

(find-symbol 'foo '(foo . c»
(find-symbol 'foo '(d. e»

(or (or (find-symbol 'foo 'b)
(find-symbol 'foo '(foo . c» )

(find-symbol 'foo '(d. e» )
(or (find-symbol 'foo '(foo . c»

(find-symbol 'foo '(d. e» )
(or (or (find-symbol 'foo 'foo)

(find-symbol 'foo 'c) )
(find-symbol 'foo '(d. e»

(or (or #t
(find-symbol 'foo 'c) )

(find-symbol 'foo '(d. e»
(or #t

(find-symbol 'foo '(d. e»
--+ #t

An efficient escape seems appropriate there. As soon as the symbol that is
being searched for has been found, an efficient escape has' to support the return
of the very same value without considering any remaining branches of the search
tree.

Another example comes from programming by exception where repetitive treat
ment is applied over and over again until an exceptional situation is detected in
which case an escape is carried out in order to escape from the repetitive treatment
that would otherwise continue more or less perpetually. We'll see an example of
this later with the function better-map. [see p. 80]

If we want to characterize the entity corresponding to a calling point better,
we note that a calculation specifies not only the expression to compute and the
environment of variables in which to compute it, but also where we must return
the value obtained. This "where" is known as a continuation. It represents all that
remains to compute.

Every computation has a continuation. For example, in the expression (+ 3
(* 2 4)), the continuation of the subexpression (* 2 4) is the computation of
an addition where the first argument is 3 and the second is expeeted. At this
point, theory comes to our rescue: this continuation can be represented in a form
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that's easier to see-as a function. A continuation represents a computation, and it
doesn't take place unless we get a value for it. This protocol strongly resembles the
one for a function and is thus in that guise that continuations will be represented.
For the preceding example, the continuation of the subexpression (* 2 4) will thus
be equivalent to (lambda (x) (+ 3 x)), thus faithfully underlining the fact that
the calculation waits for the second argument in the addition.

Another representation also exists; it specifies continuations by contexts in
spired from A-calculus. In that representation, we would denote the preceding
continuation as (+ 3 []), where [] stands for the place where the value is ex
pected.

Truly everything has a continuation. The evaluation of the condition of an
alternative is carried out by means of a continuation that exploits the value that
will be returned in order to decide whether to take the true or false branch of the
alternative. In the expression (if (foo) 1 2), the continuation of the functional
application (foo) is thus (lambda (x) (if x 1 2)) or (if [] 1 2).

Escapes, programming by exception, and so forth are merely particular forms
for manipulating continuations. With that idea in mind, now we'll detail the diverse
forms and great variety of continuations observed over the past twenty years or so.

3.1 Forms for Handling Continuations

Capturing a continuation makes it possible to handle the control thread in a pro
gram. The form prog already makes it possible to do that, but carries with it
other effects, like those of a let for its local variables. Paring down prog so that
it concerns only control was the first goal of the forms catch and throw.

3.1.1 The Pair catch/throw

The special form catch has the following syntax:

(catch label forms . .. )

The first argument, label, is evaluated, and its value is associated with the current
continuation. This facts makes us suppose that there must be a new space, the
dynamic escape space, binding values and continuations. If we can't think of labels
which are not identifiers, we actually can't talk anymore about a name space; this,
however, really is one, if we accept the fact that every value can be a valid label
for that space. Yet that condition poses the problem of equality within this space:
how can we recognize that one value names what another has associated with a
continuation?

The other forms make up the body of the form catch and are themselves
evaluated sequentially, like in a progn or in a begin. If nothing happens, the value
of the form catch is that of the last of the forms in its body. However, what can
intervene is the evaluation of a throw.

The form throw has the following syntax.

(throw label form)

The first argument is evaluated and must lead to a value that a dynamically em
bedding catch has associated with a continuation. If such is the case, then the
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evaluation of the body of this catch form will be interrupted, and the value of the
form will become the value of the entire catch form.

Let's go back to our example of searching for a symbol in a binary tree, and
let's put into it the forms catch and throw. The variation that you are about to
see has factored out the search process in order not to transmit the variable id
pointlessly, since it is lexically visible in the entire search. We will thus use a local
function to do that.

(define (find-symbol id tree)
(define (find tree)

(if (pair? tree)
(or (find (car tree»

(find (cdr tree» )
(if (eq? tree id) (throw 'find It) If) ) )

(catch 'find (find tree» )

As its name indicates, catch traps the value that throw sends it. An escape
is consequently a direct transmission of the value associated with a control ma
nipulation. In other words, the form catch is a binding form that associates the
current continuation with a label. The form throw actually makes the reference to
this binding. That form also changes the thread of control as well; throw does not
really have a value because it returns no result by itself, but it organizes things in
such a way that catch can return a value. Here, the form catch captures the con
tinuation of the call to find-symbol, while throw accomplishes the direct return
to the caller of find-symbol.

The dynamic escape space can be characterized by a chart listing its various
properties.

Reference
Value
Modification
Extension
Definition

(throw label ... )
no because it's a second class continuation
no
(catch label ... )
no

As we said earlier, catch is not really a function, but a special form that
successively evaluates its first argument (the label), binds its own continuation to
this latter value in the dynamic escape environment, and then begins the evaluation
of its other arguments. Not all of them will necessarily be evaluated. When catch
returns a value or when we escape from it, catch dissociates the label from the
continuation.

The effect of throw can be accomplished either by a function or by a special
form. When it is a special form, as it is in COMMON LISP, it calculates the label, it
verifies the existence of an associated catch, then it evaluates the value to transmit,
and finally it jumps. When throw is a function, it does things in a different order:
it first calculates the two arguments, then verifies the existence of an associated
catch, and then it jumps.

These semantic differences clearly show how unreliably a text might describe
the behavior of these control forms. A lot of questions remain unanswered. What
happens, for example, when there is no associated catch? Which equality is used
to compare labels? What does this expression do (throw a (throw f3 1r»? We'll
find answers to those kinds of questions a little later.
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3.1.2 The Pair block/return-from

The escapes that catch and throw perform are dynamic. When throw requests an
escape, it must verify during execution whether an associated catch exists, and it
must also determine which continuation it refers to. In terms of implementation,
there is a non-negligible cost here that we might hope to reduce by means of lexical
escapes, as they are known in the terminology of COMMON LISP. The special forms
block and return-from superficially resemble catch and throw.

Here's the syntax of the special form block:

(block label forms . .. )

The first argument is not evaluated and must be a name suitable for the escape: an
identifier. The form block binds the current continuation to the name label within
the lexical escape environment. The body of block is evaluated then in an implicit
progn with the value of this progn becoming the value of block. This sequential
evaluation can be interrupted by return-from.

Here's the syntax of the special form return-from:

(return-from label form)

That first argument is not evaluated and must mention the name of an escape that
is lexically visible; that is, a return-from form can appear only in the body of an
associated block, just as a variable can appear only in the body of an associated
lambda form. When a return-from form is evaluated, it makes the associated
block return the value of form.

Lexical escapes generate a new name space, and we'll summarize its properties
in the following chart.

Reference
Value
Modification
Extension
Definition

(return-from label ... )
no because it's a second class continuation
no
(block label ... )
no

Let's look again at the preceding example, this time, writing2 it like this:

(define (find-symbol id tree)
(block find

(letrec «find (lambda (tree)
(if (pair? tree)

(or (find (car tree»
(find (cdr tree» )

(if (eq? id tree) (return-from find #t)
#f ) ) »)

(find tree) ) ) )

Notice that this is not an ordinary translation of the previous example where
"catch 'find" simply turns into "block find" nor likewise for throw. With
out the migration of "block find," the form return-from would not have been
bound to the appropriate block.

2. Warning to Scheme-users: define is translated internally into a letrec because (let ()
(define ... ) ... ) is not valid in Scheme because of the ().
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; compute once
; compare with eqv?

The generated code corresponding to that form is highly efficient. In gross,
general terms, block stores the height of the execution stack under the name of
the escape find. The form return-from consists solely of putting #t where a value
is expected (for example, in a register) and re-adjusting the stack pointer to the
height that block associated with find. This represents only a few instructions, in
contrast to the dynamic behavior of catch. catch would work through the entire
list of valid escapes, little by little, until it found one with the right label. You can
see that difference clearly if you consider this simulation of catch3 by block.

(define *active-catchers* '(»
(define-syntax throw

(syntax-rules ()
«throw tag value)
(let* «label tag)

(escape (assv label *active-catchers*» )
(if (pair? escape)

«cdr escape) value)
(wrong "No associated catch to" label) ) ) ) ) )

(define-syntax catch
(syntax-rules ()

«catch tag. body)
(let* «saved-catchers *active-catchers*)

(result (block label
(set! *active-catchers*

(cons (cons tag
(lambda (x)

(return-from label x) ) )
*active-catchers* ) )

. body» )
(set! *active-catchers* saved-catchers)
result) ) »

In that simulation, the cost of the pair catch/throw is practically entirely con
centrated in the call to assv4 in the expansion of throw. But first, let's explain
how the simulation works. A global variable (here, named *active-catchers*)
keeps track of all the active catch forms, that is, those whose execution has not yet
been completed. That variable is updated at the exit from catch and consequently
at the exit from throw. The value of *active-catchers* is an A-list, where the
keys are the labels of catch and the values are the associated continuations. This
A-list embodies the dynamic escape environment for which catch was the binding
form and for which throw was the referencing form, as you can easily see in that
simulation code.

3.1.3 Escapes with a Dynamic Extent

That simulation, however, is imperfect in the sense that it prohibits simultaneous
uses ofblock; doing so would perturb the value of the variable *active-catchers*.

3. The definition of catch uses a block with the name label. The rules for hygienic naming of
variables, of course, should be extended to the name space.
4. In passing, you see that the labels are compared by eqv?
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The art of simulation or syntactic extension of a dialect is a difficult one, as
[FeI90, Bak92c] observe, because frequently adding new traits requires a compli
cated architecture that prohibits direct access to resources mobilized for the sim
ulation or extension. Later, we'll show· you an authentic simulation of catch by
block, but it will require yet another linguistic means: unwind-protect.5

Like all entities in Lisp, continuations have a certain extent. In the simulation
of catch by block, you saw that the extent of a continuation caught by catch is
limited to the duration of the calculation in the body of the catch in question. We
refer to this extent as dynamic. When we use that term, we are also thinking of
dynamic binding since it insures only that the value of a dynamic variable lasts as
long as the evaluation of the body of the corresponding binding form. We could take
advantage of this property to offer a new definition of catch and throw in terms
of block and return-from; this time, the list of catchers that can be activated
is easily maintained in the dynamic variable *active-catchers*. This program
reconciles block and catch so that they can be used simultaneously now.

(define-syntax throw
(syntax-rules()

«throw tag value)
(let* «label tag) ; compute once

(escape (assv label (dynamic *active-catchers*») )
(if (pair? escape)

«cdr escape) value)
(wrong "No associated catch to" label) ) ) ) ) )

(define-syntax catch
(syntax-rules ()

«catch tag. body)
(block label

(dynamic-let «*active-catchers*
(cons (cons tag (lambda (x)

(return-from label x) »
(dynamic *active-catchers*) ) »

. body ) ) ) ) )

The extent of an escape caught by block is dynamic in COMMON LISP, so the
escape can be used only during the calculation of the body of the block. Likewise,
the extent of an escape caught by catch is also dynamic in COMMON LISP, so again,
the escape can be used only during the calculation of the body of the catch. This
fact poses an interesting problem with block, a problem that does not occur with
catch: if throw and return-from make it possible to abbreviate computations,
then some computation must exist to be escaped from. Consider the following
program.

«block foo (lambda (x) (return-from foo x»)
33 )

The value of the first term is an escape to foo, but this escape is obsolete when
it is applied, and in consequence, we get an execution error. When the closure

5. Another solution would be to redefine the new forms block and return-from, with the help of
the old ones, so that they would be compatible with catch and throve That solution is difficult
to implement directly, but it can be done by adding a new level of interpretation.
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is created, it closes the lexical escape environment, especially the binding of foo.
That closure is then returned as the value of the form block, but that return occurs
when we exit from block, and consequently, it is out of the question to exit yet
again, since that has already happened. When that closure is applied, we verify
whether the continuation associated with foo is still valid, and we jump if that is
the case. The following example shows that closures around lexical escapes do not
mix bindings.

(block foo
(let «f1 (lambda (x) (return-from foo x»»

(* 2 (block foo
(f 1 1) » ) ) -+- 1

Compare those results with what we would get by replacing "block foo" by
"catch )foo" like this:

(catch 'foo
(let «f1 (lambda (x) (throw 'foo x»»

(* 2 (catch 'foo
(f 1 1) » ) ) -+- 2

The catcher invoked by the function f1 is the more recent one, having bound
the label foo; the result of catch is consequently multiplied by 2 and returns 2
finally.

3.1.4 Comparing catch and block

The forms catch and block have many points of comparison. The continuations
that they capture have a dynamic extent: they last only as long as an evaluation. In
contrast, return-from can refer an indefinitely long time to a continuation, whereas
throw is more limited. In terms of efficiency, block is better in most cases because
it never has to verify during a return-from whether the corresponding block
exists, since that existence is guaranteed by the syntax. However, it is necessary
to verify that the escape is not obsolete, though that fact is often syntactically
visible. You can see a parallel between dynamic and lexical escapes, on one side,
and dynamic and lexical variables, on the other: many problems are common to
both groups.

Dynamic escapes allow conflicts that are completely unknown to lexical escapes.
For one thing, dynamic escapes can be used anywhere, so one function can put an
escape in place, and another function may unwittingly intercept it. For example,

(define (foo)
(catch 'foo (* 2 (bar»)

(define (bar)
(+ 1 (throw 'foo 5» )

(foo) -+- 5

Independently of the extent of the escape, block limits its reference to its body
whereas catch authorizes that as long as it lives. As a consequence, it is possible
to use the escape bound to foo all the time that (* 2 (bar» is being evaluated.
In the preceding example, you cannot replace "catch 'foo" by "block foo" and
expect the same results. An even more dangerous collision would be this:
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(catch 'not-a-pair
(better-map (lambda (x)

(or (pair? x)
(throw 'not-a-pair x) ) )

(hack-and-return-list) ) )

Let's assume that we heard, next to the coffee-machine, that the function
better-map is much better than map; and let's also suppose that we'll risk us
ing it to test whether the result of (hack-and-return-list) is really a list made
up of pairs; and furthermore, we'll assume that we don't know the definition of
better-map, which happens to be this:

(define (better-map f 1)
(define (loop 11 12 flag)

(if (pair? 11)
(if (eq? 11 12)

(throw 'not-a-pair 1)
(cons (f (car 11»

(loop (cdr 11)
(if flag (cdr 12) 12)
(not flag) ) ) ) ) )

(loop 1 (cons 'ignore 1) It) )

In fact, the function better-map is quite interesting because it halts even if
the list in the second argument is cyclic. Yet if (hack-and-return-list) returns
the infinite list #1=(( foo. hack) . #1#)6 then better-map would try to
escape. If that fact is not specified in its user interface, there might be a name
conflict and a collision of escapes comparable to a twenty-car pile-up at rush hour.
Here again we could change the names to limit such conflicts; doing so is simple
with catch because it allows its label to be any possible Lisp value; in particular,
the value could be a dotted pair that we construct ourselves. We could rewrite it
more certainly this way then:

(let «tag (list 'not-a-pair»)
(catch tag

(better-map (lambda (x)
(or (pair? x)

(throw tag x) ) )
(foo-hack) ) )

It is possible to simulate block by catch but there is no gain in efficiency in
doing so. It suffices to convert the lexical escapes into dynamic ones, like this:

(define-syntax block
(syntax-rules ()

«block label. body)
(let «label (list 'label»)

(catch label . body) ) ) ) )

(define-syntax return-from
(syntax-rules ()

«return-from label value)

6. Here, we've used COMMON LISP notation for cyclic data. We could also have built such a list
by (let «p (list (cons 'faa hack»» (set-cdr! p p) p).
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(throw label value) ) ) )

The macro block creates a unique label and binds it lexically to the variable of
the same name. Doing so insures that only the return-from(s) present in its
body will see that label. Of course, by doing that, we pollute the variable space
with the name label. To offset that fault, we can try to use a name that doesn't
conflict or even a name created by gensym, but once we do that, we have to make
arrangements for the same name to appear in both catch and throw.

3.1.5 Escapes with Indefinite Extent

As part of its massive overhaul of Lisp around 1975, Scheme proposed that contin
uations caught by catch or block should have an indefinite extent. This property
gave them new and very interesting characteristics. Later, in an attempt to reduce
the number of special forms in Scheme, there was an effort to capture continuations
by means of a function as well as to represent a continuation as a function, that
is, as a first class citizen. In [Lan65], Landin suggested the operator J to capture
continuations, and the function call/cc in Scheme is its direct descendant.

We'll try to explain its syntax as simply as possible at this first encounter. First
of all, it involves the capture of a continuation, so we need a form that captures
the continuation of its caller, k, like this:

k ( ... )

Now since we want it to be a function, we'll name it call/cc, like this:

k (call/cc ... )

Once we have captured k, we have to furnish it to the user, but how do we do
that? We really can't return it as the value of the form call/cc because then we
would render k to k. If the user is waiting for this value in order to use it in a
calculation, it's so that he or she can turn this calculation into a unary function7

since it is only an object that is waiting for a value to be used in a calculation.
Accordingly, we could furnish this function as an argument to call/cc, like this:

k(call/cc (lambda (k) ... ) )

In that way, the continuation k is turned into a first class value, and the function
argument of call/cc is invoked on it. The last choice due to Scheme is to not
create a new type of object and thus to represent continuations by unary functions,
indistinguishable from functions created by lambda. The continuation k is thus
reified, that is, turned into an object that becomes the value of k, and it then
suffices to invoke the function k to transmit its argument to the caller of call/cc,
like this:

k(call/cc (lambda (k) (+ 1 (k 2»» ~ 2

Another solution would be to create another type of object, namely, continua
tions themselves. This type would be distinct from functions, and would necessitate
a special invoker, namely, continue. The preceding example would then be rewrit
ten like this:

k(call/cc (lambda (k) (+ 1 (continue k 2»» ~ 2

7. Warning to Scheme users: it is sufficient that the argument of call/cc should accept being
called with only one argument. Then we could also write (call/cc list).
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It is still possible to transform a continuation into a function by enclosing
it in an abstraction (lambda (v) (continue k v)). Some people like calls to
continuations that are syntactically eye-opening because they make alteration of
the thread of control more evident.

The ultimate difficulty with callicc is that its real name is call-with-cur
rent-continuation, a fact that does not improve the situation, so let's rewrite
our example to use callicc, like this:

(define (find-symbol id tree)
(call/cc
(lambda (exit)

(define (find tree)
(if (pair? tree)

(or (find (car tree»
(find (cdr tree» )

(if (eq? tree id) (exit #t) #f) ) )
(find tree) ) ) )

The call continuation of the function find-symbol is captured by callicc, reified
as a unary function bound to the variable exit. When the symbol is found, the
escape is triggered by a call to the function exit (which never returns).

The indefinite extent of continuations is not obvious in that example since the
continuation is used only during the invocation of the argument of callicc, that
is, during its dynamic extent. The following program illustrates indefinite extent.

(define (fact n)
(let «r 1)(k 'void»

(call/cc (lambda (c) (set! k c) 'void»
(set! r (* r n»
(set! n ( - n 1»
(if (= n 1) r (k 'recurse» ) )

The continuation reified in c and stored in k corresponds to this:

k = (lambda (u)
(set! r (* r n»
(set! n (- n 1»
(if (= n 1) r (k 'recurse» )

r--+ 1

k= k
n

This continuation k appears as the value of the variable k that it encloses.
Recursion, as we know, always implies something cyclic somewhere, and in this
case, it is assured by the call to k, re-invoked until n reaches the threshold that we
want. That whole effort, of course, computes the factorial.

In that example, you see that the continuation k is used outside it dynamic
extent, which is equal to the time during which the body of the argument of
callicc is being evaluated. On that basis, you can imagine many other variations,
for example, to submit the identity to callicc, like this:

(define (fact n)
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(let «r 1»
(let «k (call/cc (lambda (c) c»»

(set! r (* r n»
(set! n ( - n 1»
(if (= n 1) r (k k» ) ) )

Now it's necessary for the recursive call to be the auto-application (k k) because,
at every call of the continuation, the variable k is bound again to the argument
provided to it. The continuation can be represented by this:

(lambda (u)
(let «k u»

(set! r (* r n»
(set! n ( - n 1»
(if (= n 1) r (k k» ) )1

:- 1

When we confer an indefinite extent on continuations, we make their imple
mentation more problematic and generally more expensive. (Nevertheless, see
[CH088, HDB90, Mat92].) Why? Because we must abandon the model of eval
uation as a stack and adopt a tree instead. In effect, when continuations have a
dynamic extent, we can qualify them as escapes since their only goal is to escape
from a computation. Escaping is the same as getting away from any remaining
computations in order to impose a final value on a form that is still being eval
uated. A computation begins when the evaluation of a form starts, and it seems
simple enough to determine when it ends. In the presence of continuations with a
dynamic extent, a computation always has a detectable end.

However, with continuations of indefinite extent, things are not so simple. Con
sider, for example, the expression (callicc ... ) in the preceding factorial. That
expression returns a result many times. That fact (that a form can return val
ues many8 times) implies that the ultimate boundary of its computation is not
necessarily the moment when it returns a result.

The function callicc is very powerful and makes it possible in some ways to
handle time. Escaping is like speeding up time until we provoke an event that we
can foresee but that we foresee a long way off. Once it has escaped, a continuation
with indefinite extent makes it possible to come back to that state. It's not just a
means of convoluted looping because the values of the variables will generally have
changed in the meantime, so coming back to a point already seen in the program
forces the computation to take a new path.

We might compare callicc to the "harmful" goto instruction of imperative
languages. However, callicc is more restricted since it is only possible to jump to
places where we once passed through (after capture of that continuation) but not
to places where we never went.

In the beginning, the function callicc is sufficiently subtle to handle because
the continuation is unary like the argument of callicc. The following rewrite rule
shows the effect of callicc from another angle.

k(call/cc ¢) ~ k(¢ k)

8. Returning values multiple times is not the same as returning multiple values, as in COMMON

LISP.
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In that rule, k represents the call continuation of callicc and ¢ is some unary
function. callicc proceeds to reify the continuation k, an implementation entity,
turning it into a value in the language that can appear as the second term of an
application. Notice that the current continuation when ¢ is invoked is still k. Thus
we are not compelled to use the continuation provided as an argument, and we
implicitly depend on the same continuation, as you see in the following extract:

(call/cc (lambda (k) 1515)) ~ 1515

Some people might regret this fact, and like a strict authority figure, they might
impose the rule that when we take the continuation, we remove it then from the
underlying evaluator. In consequence, we would have to use that continuation to
return a value, like this:

(call/cc (lambda (k) (k 1615))) ~ 1615

In that hypothetical world, (k 1615) would be evaluated with a continuation
something like a black hole, say, (Au.e). That continuation would absorb the value
which would be rendered to it without further dissemination of information. Then
there would be no posterior computation; your keyboard would dissolve into thin
air; you would no longer exist, and neither would this book. In such a world, you
certainly must not forget to invoke your continuation!

3.1.6 Protection

We need to look at one last effect linked to continuations. It has to do with
the special form unwind-protect. That name comes from the period when the
implementation of a trait determined its name9 and indicated how to use it. Here's
the syntax of the special form unwind-protect.

(unwind-protect form
cleanup-forms )

The term form is evaluated first; its value becomes the value of the entire
form unwind-protect. Once this value has been obtained, the cleanup-forms are
evaluated for their effect before this value is finally returned. The effect is almost
that of prog1 in COMMON LISP or of beginO in some versions of Scheme, that
is, evaluating a series of forms (like progn or begin) but returning the value of
the first of those forms. The special form unwind-protect guarantees that the
cleanup forms will always be evaluated regardless of the way that computation of
form occurs, even if it is by an escape. Thus:

(let «a 'on))
(cons (unwind-protect (list a)

(setq a 'off) )
a )) ~ « on) . off)

(block foo
(unwind-protect (return-from foo 1)

(print 2) )) ~ 1 ; and prints 2

COMMON LISP

9. The names car and cdr come from that same period; they are closely connected to the imple
mentation of Lisp 1.5. They are acronyms for "contents of the address register" and "contents of
the decrement register."



3.1. FORMS FOR HANDLING CONTINUATIONS 85

?

That form is interesting in the case of a subsystem where we want to insure that a
certain property will be restored, regardless of the outcome in the subsystem. The
conventional example is that of handling a file: we want to be sure that it will be
closed even if an error occurs. Another more interesting example concerns a sim
ulation of catch by block. Using block simultaneously would de-synchronize the
variable *active-catchers*. We could correct that fault by means of a judicious,
well placed unwind-protect, like this:

(define-syntax catch
(syntax-rules

«catch tag. body)
(let «saved-catchers *active-catchers*»

(unwind-protect
(block label

(set! *active-catchers*
(cons (cons tag (lambda (x) (return-from label x»)

*active-catchers* ) )
. body )

(set! *active-catchers* saved-catchers) ) ) ) ) )

Whatever the outcome of the computation carried out in the body, the list of
active catch forms will always be up to date at the end of the computation. The
block forms can thus be used freely along with the catch forms. The simulation is
still not perfect because the variable *active-catchers* must be private to catch
and throw (or, more accurately, private to their expansions). In the current state,
we might alter it, either accidentally or intentionally, and thus destroy the order
among these macros.

The form unwind-protect protects the computation of a form by insuring that
a certain treatment will happen once the computation has been completed. Thus
the form unwind-protect is inevitably tied to detecting when a computation is
complete, and from there, to continuations with dynamic extent. For the reasons
that we discussed earlier, unwind-protect 10 does not get along well with call/cc
nor with continuations that have an indefinite extent.

As we have often emphasized before, the meaning of these constructions is not
at all precise. Let's just consider a few questions about the values of the following
forms:

(block foo
(unwind-protect (return-from foo 1)

(return-from foo 2) ) )

(catch 'bar
(block foo

(unwind-protect (return-from foo (throw 'bar 1»
(throw 'no-associated-catch (return-from foo 2» ) ) ) ~ ?

This kind of vagueness tends to make us want more careful and precise formality
in these concepts. Nevertheless, we have to observe the equivocal status of cleanup
forms and especially their continuations. We qualify the continuation as floating

10. An operational. description of unwind-protect for Scheme, known as dynamic-wind, appears
in [FWH92]; see also [Que93c].
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because it cannot be known statically and may correspond to an escape that is
already underway. Consider this, for example:

(block bar
(unwind-protect (return-from bar 1)

(block foo ~2 ) ) )

The cleanup form captures the continuation corresponding to the lexical escape
to bar. If the cleanup form returns a value, then this escape to bar will be taken
back. If the cleanup form itself escapes, then its own continuation will be aban
doned. (We'll discuss these phenomena later when we explain the implementation
in greater detail.)

Other control forms also exist, and notably in COMMON LISP, where the old
fashioned form ofprog metamorphoses into tagbody and go; they can be simulated
by labels and block. [see Ex. 3.3] We'll come back to the fact that in a world
of continuations with dynamic extent, block, return-from, and unwind-protect
together provide the base of special forms that we usually find there. Similarly, in
the world of Scheme, callicc is all we need. It's clear that we cannot simulate
callicc directly with continuations with a dynamic extent. The inverse is feasible,
but to do so, we have to tone down callicc, which proves a little too powerful in
that situation. The method for doing so will be clearer once we've explicated the
interpreter with explicit continuations.

Protection and Dynamic Variables

Certain implementations of Scheme get their dynamic variables a little differently
from the variations that we've looked at so far. They depend on the presence of
the form unwind-protect or something similar. The idea involves a sort of lexical
borrow and something of a theft. These dynamic variables are introduced by the
form fluid-let, like this:

(fluid-let «x a»
(3 ... )

_ (let «tmp x»
(set! x a)

(unwind-protect
(begin (3 ... )
(set! x tmp) )

During the calculation of (3, the variable x has the value a as its value; the pre
ceding value of x is saved in a local variable, tmp, and it's restored at the end of the
calculation. This form implies the existence of a lexical binding to borrow, usually
a global binding, thus making the variable visible everywhere. If, in contrast, a
local binding is borrowed, then (differing greatly from dynamic variables in COM

MON LISP) this will be accessible in the body of the form fluid-let and only in
it, with possibly pernicious effects on the co-owners of this variable. Moreover, the
form unwind-protect and indefinite extent continuations don't get along together
very well. Indeed, this form is even more subtle to use than dynamic variables in
COMMON LISP.
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Now, from our current point of view, a computation is made up of three elements:
an expression, an environment, and a continuation. While the immediate goal is to
evaluate the expression in the environment, the long term goal is to return a value
to the continuation.

Here we're going to define a new interpreter to highlight all the continuations
needed at every level. Since continuations are usually represented as blocks or
activation records in a stack or heap, we will use objects to represent them within
the interpreter that we're undertaking.

3.2.1 A Brief Review about Objects

This section will not present an entire system of objects in all its glory; that task
remains for Chapter 11. Here our goal is simply to present a set of three macros
associated with a few naming rules. This set is merely the essence of a system of
objects, and it's independent of any implementation of such a system. We chose
to use objects in this chapter in order to suggest how to implement continuations.
Objects with their fields conveniently evoke activation records that implement lan
guages. The idea of inheritance, put to work here in a very elementary way, will
let us factor out certain common effects and thus reduce the size of the interpreter
that we're presenting.

We'll assume that you're familiar with the philosophy, terminology, and cus
tomary practice about objects, and we'll simply go over a few linguistic conventions
that we'll be exploiting.

Objects are grouped into classes; objects in the same class respond to the same
methods; messages are sent by means of generic functions, popularized by Common
Loops [BKK+86], CLOS [BDG+88], and TEAOE[PNB93]. For our purposes, the
interesting aspect of object-oriented programming is that we can organize various
special forms or primitive functions for control around a kernel evaluator. The
drawback of this style for us is that the dissemination of methods makes it harder
to see the big picture.

Defining a Class

A class is defined by define-class, like this:

(def ine-class class superclass
( fields. .. ) )

This form defines a class with the name class, inheriting the fields and methods of
its superclass, plus its own fields, indicated by fields. Once a class has been created,
we can use a multitude of associated functions. The function known as make-class
creates objects belonging to class; that function has as many arguments as the
class has fields, and those arguments occur in the same order as the fields. The
read-accessors for fields in these objects have a name prefixed by the name of the
class, suffixed by the name of the field, separated by a hyphen. The write-accessors
prefix the name of the read-accessor by set- and suffix it by an exclamation point.



88 CHAPTER 3. ESCAPE & RETURN: CONTINUATIONS

Write-accessors do not have a specific return value. The predicate class? tests
whether or not an object belongs to class.

The root of the inheritance hierarchy is the class Obj ect having no fields.
The following definition:

(define-class continuation Object (k»

makes the following functions available:

; example

(make-continuation k)
(continuation-k c)
(set-continuation-k! c k)
(continuation? 0)

Defining a Generic Function

; creator
; read-accessor
; write-accessor
; membership predicate

Here's how we define a generic function:

(define-generic (function variables)
[ default-treatment . .. 1 )

That form defines a generic function named function; default-treatment specifies
what it does when no other appropriate method can be found. The list of variables
is a normal list of variables except that it specifies as well the variable that serves
as the discriminator; the discriminator is enclosed in parentheses.

(define-generic (invoke (f) v* r k)
(wrong "not a function" f r k) )

That form defines the generic function invoke, which could be enriched with
methods eventually. The function has four variables; the first is the discriminator:
f. If there is a call to invoke and no appropriate method is defined for the class
of the discriminator, then the default treatment, wrong, will be invoked.

Defining a Method

We use define-method to stuff a generic function with specific methods.

(define-method (function variables)
treatment. .. )

Just like the form define-generic, this form uses the list of variables to specify
the class for which the method is defined. This class appears with the discriminator
between parentheses. For example, the following form defines a method for the class
primitive:

(define-method (invoke (ff primitive) vv* rr kk)
«primitive-address ff) vv* rr kk) )

That completes the set of characteristics that we'll be using. Chapter 11 will
show you an implementation of this system of objects, but regardless of the imple
mentation, for now, we'll only use the most widely known characteristics of objects
and those least subject to hazards.
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Now the function evaluate has three arguments: the expression, the environment,
and the continuation. The function evaluate begins by syntactically analyzing
the expression to determine appropriate treatment for it. Each of these treatments
is individualized in a particular function. Before we get into the new interpreter,
we should indicate the rules that we'll follow in naming our variables. The first
convention is that a variable suffixed by a star represents a list of whatever the
same variable without the star would represent.

e, et, ec, ef .
r .

k, kk .
v .
f .

n ...

expression, form
environment
continuation
value (integer, pair, closure, etc.)
function
identifier

Now here's the interpreter. It assumes that anything that is atomic and un
known to it as a variable must be an implicit quotation.

(define (evaluate e r k)
(if (atom? e)

(cond «symbol? e) (evaluate-variable e r k))
(else (evaluate-quote e r k))

(case (car e)
«quote) (evaluate-quote (cadr e) r k))
«if) (evaluate-if (cadr e) (caddr e) (cadddr e) r k))
«begin) (evaluate-begin (cdr e) r k))
«set!) (evaluate-set! (cadr e) (caddr e) r k))
«lambda) (evaluate-lambda (cadr e) (cddr e) r k))
(else (evaluate-application (car e) (cdr e) r k)) ) ) )

That interpreter is actually built from three functions: evaluate, invoke, and
resume. Only those last two are generic and know how to invoke applicable objects
or handle continuations, whatever their nature. The entire interpreter will be little
more than a series of hand-offs among these three functions. Nevertheless, two
other generic functions will prove useful to determine or to modify the value of a
variable; they are lookup and update! .

(define-generic (invoke (f) v* r k)
(wrong "not a function" f r k) )

(define-generic (resume (k continuation) v)
(wrong "Unknown continuation" k) )

(define-generic (lookup (r environment) n k)
(wrong "not an environment" r n k) )

(define-generic (update! (r environment) n k v)
(wrong "not an environment" r n k) )

All the entities that we'll manipulate will derive from three virtual classes:

(define-class value Object ())

(define-class environment Object ())
(define-class continuation Object (k))
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The classes of values manipulated by the language that we are defining will
inherit from value; the environments inherit from environment; and of course,
the continuations inherit from continuation.

3.2.3 Quoting

The special form for quoting is still the simplest and consists of rendering the
quoted term to the current continuation, like this:

(define (evaluate-quote v r k)
(resume k v) )

3.2.4 Alternatives

An alternative brings two continuations into play: the current one and the one that
consists of waiting for the value of the condition in order to determine which branch
of the alternative to choose. To represent that continuation, we will define an
appropriate class. When the condition of an alternative is evaluated, the alternative
will choose between the true and false branch; consequently, those two branches
must be stored along with the environment needed for their evaluation. The result
of one or the other of those branches must be returned to the original continuation
of the alternative, which must then be stored as well. Thus we get this:

(define-class if-cont continuation (et ef r»

(define (evaluate-if ec et ef r k)
(evaluate ec r (make-if-cont k

et
ef
r » )

(define-method (resume (k if-cont) v)
(evaluate (if v (if-cont-et k) (if-cont-ef k»

(if-cont-r k)
(if-cont-k k) ) )

Then the alternative decides to evaluate its condition ec in the current envi
ronment r, but with a new continuation, made from all the ingredients needed for
the computation. Once the computation of the condition has been completed by
a call to resume, the computation of the alternative will get underway again and
ask for the value of the condition v to determine which branch to choose, but in
any case, it will evaluate it in the environment that was saved and with the initial
continuation of the alternative. I I

3.2.5 Sequence

A sequence also calls two continuations into play, like this:
(define-class begin-cont continuation (e* r»

(define (evaluate-begin e* r k)

11. Those who are implementation buffs should note that make-if-cont can be seen as a form
pushing et and then ef and finally r onto the execution stack, the lower part of which is repre
sented by k. Reciprocally, (if-cont-et k) and the others pop those same values.
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(if (pair? e*)
(if (pair? (cdr e*»

(evaluate (car e*) r (make-begin-cont k e* r»
(evaluate (car e*) r k) )

(resume k empty-begin-value) ) )

(define-method (resume (k begin-cont) v)
(evaluate-begin (cdr (begin-cont-e* k»

(begin-cont-r k)
(begin-cont-k k) ) )

The cases of (begin) and (begin 7r) are simple. When the form begin involves
several terms, the first one must be evaluated by providing it a new continuation,
(make-begin-cont k e* r). When that new continuation receives a value by
resume, it will trigger the method for begin-cont. That continuation will discard
the value returned, v, and will restart the computation of the other forms present
in begin.12

3.2.6 Variable Environment

The values of variables are recorded in an environment. That, too, will be repre
sented as an object, like this:

(define-class null-env environment (»

(define-class full-env environment (others name»
(define-class variable-env full-env (value»

Two kinds of environments are needed: an empty environment to initialize
computations, and instances of variable-env corresponding to non-empty envi
ronments. Those non-empty environments store a binding, that is, a name and a
value; the rest of the environment is linked via the field others. Even though this
way of organizing things uses objects, it is functionally similar to the A-list except
that it consumes only an object of three fields rather than two dotted pairs.

Thus to search for the value of a variable, we do this:

(define (evaluate-variable n r k)
(lookup r n k) )

(define-method (lookup (r null-env) n k)
(wrong "Unknown variable" n r k) )

(define-method (lookup (r full-env) n k)
(lookup (full-env-others r) n k) )

(define-method (lookup (r variable-env) n k)
(if (eqv? n (variable-env-name r»

(resume k (variable-env-value r»
(lookup (variable-env-others r) n k) ) )

The generic function lookup scrutinizes the environment until it finds the right
binding. The value determined that way is sent to the continuation by means of
the generic function resume.

12. As an attentive reader, you will have noticed the form (cdr (begin-cant-e. k» presented
in the method resume. Equivalently, we could have directly built it in evaluate-begin, like this:
(make-begin-cant k (cdr e.) r). The reason is that in case of error, analyzing the continuation
will make it possible to know which expression was underway.
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Modifying a variable entails the same process:

(define-class set!-cont continuation (n r»

(define (evaluate-set! n e r k)
(evaluate e r (make-set!-cont k n r» )

(define-method (resume (k set!-cont) v)
(update! (set!-cont-r k) (set!-cont-n k) (set!-cont-k k) v) )

(define-method (update! (r null-env) n k v)
(wrong "Unknown variable" n r k) )

(define-method (update! (r full-env) n k v)
(update! (full-env-others r) n k v) )

(define-method (update! (r variable-env) n k v)
(if (eqv? n (variable-env-name r»

(begin (set-variable-env-value! r v)
(resume k v) )

(update! (variable-env-others r) n k v) ) )

It's necessary to introduce a particular continuation because the evaluation of
an assignment is carried out in two phases: computing the value to assign and then
modifying the variable involved. The class set-cont! implements this new kind
of continuation; the adapted method resume merely calls the environment in order
to update it.

3.2.7 Functions

Creating a function is a simple process, left to make-function.

(define-class function value (variables body env»

(define (evaluate-lambda n* e* r k)
(resume k (make-function n* e* r» )

What's a little more complicated is how to invoke functions. Notice the implicit
progn or begin in the function bodies.

(define-method (invoke (f function) v* r k)
(let «env (extend-env (function-env f)

(function-variables f)
v* »)

(evaluate-begin (function-body f) env k) ) )

It might seem unusual to you that the functions take the current environment
r as an argument, even though they don't apparently use it. We've left it there
for two reasons. One, there is often a register dedicated to the environment in
implementations, and like any register, it's available. Two, certain functions (we'll
see more of them later when we discuss reflexivity) can influence the current lexical
environment, such as, for example, debugging functions.

The following function extends an environment. There is no need to test
whether there are enough values or names because the functions have already ver
ified that.

(define (extend-env env names values)
(cond «and (pair? names) (pair? values»

(make-variable-env
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(extend-envenv (cdr names) (cdr values»
(car names)
(car values) ) )

«and (null? names) (null? values» env)
«symbol? names) (make-variable-env env names values»
(else (wrong "Arity mismatch"» ) )

All that remains is to indicate how to define a functional application. In doing
so, we should keep in mind that functions are invoked on arguments organized into
a list.

(define-class evfun-cont continuation (e* r»

(define-class apply-cont continuation (f r»

(define-class argument-cont continuation (e* r»

(define-class gather-cont continuation (v»

(define (evaluate-application e e* r k)
(evaluate e r (make-evfun-cont k e* r»

(define-method (resume (k evfun-cont) f)
(evaluate-arguments (evfun-cont-e* k)

(evfun-cont-r k)
(make-apply-cont (evfun-cont-k k)

f
(evfun-cont-r k) ) ) )

(define (evaluate-arguments e* r k)
(if (pair? e*)

(evaluate (car e*) r (make-argument-cont k e* r»
(resume k no-more-arguments) ) )

(define no-more-arguments '(»
(define-method (resume (k argument-cont) v)

(evaluate-arguments (cdr (argument-cont-e* k»
(argument-cont-r k)
(make-gather-cont (argument-cont-k k) v» )

(define-method (resume (k gather-cont) v*)
(resume (gather-cont-k k) (cons (gather-cont-v k) v*» )

(define-method (resume (k apply-cont) v)
(invoke (apply-cont-f k)

v
(apply-cont-r k)
(apply-cont-k k) ) )

The technique is a little disconcerting at first glance. Evaluation takes place
from left to right; the function term is thus evaluated first with a continuation of
the class evfun-cont. When that continuation takes control, it proceeds to the
evaluation of the arguments, leaving a continuation which will apply the function to
them, once they have all been computed. During the evaluation of the arguments,
continuations of the class gather-cont are left; their role is to gather the arguments
into a list.

Let's take an example to see the various continuations that appear during the
computation of (cons foo bar). We'll assume that foo has the value 33 and bar,
-77. To illustrate this computation, we'll draw the continuations as horizontal
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k
evfun-cant (foo bar) r k
evfun-cant (foo bar) r k

apply-cant cons k
apply-cant cons k
apply-cant cons k

apply-cant cons k
apply-cant cons k
apply-cant cons k
apply-cant cons k
apply-cant cons k
apply-cant cons k
apply-cant cons k

k

argument-cant (foo bar) r

argument-cant (foo bar) r

gather-cant 33

gather-cant 33

gather-cant 33

gather-cant 33

gather-cant 33

gather-cant 33

(bar) r
argument-cant () r

argument-cant () r

() r gathe~cant -77

gather-cant -77

resume cons
evaluate-arguments (foo bar) r

evaluate foo r

resume 33
evaluate- arguments
evaluate bar r

resume -77
evaluate- arguments
resume ()
resume (-77)
resume (33 -77)
invoke cons (33 -77)

stacks; k will be the continuation; r will be the current environment. We'll use
cons to denote the global value of cons, that is, the allocation function for dotted
paIrs.

evaluate (cons foo bar) r

evaluate cons r

3.3 Initializing the Interpreter

Before we plunge into the arcane mysteries of control forms, let's sketch a few
details about how to authorize execution of this interpreter. This section greatly
resembles Section 1.7. [see p. 25] We first have to deck out the interpreter with
a few well chosen variables, and to do so, we'll define some macros to enrich the
global environment.

(define-syntax definitial
(syntax-rules ()

«definitial name)
(definitial name 'void)

«definitial name value)
(begin (set! r.init (make-variable-env r.init 'name value»

'name ) ) ) )

(define-class primitive value (name address»

(define-syntax defprimitive
(syntax-rules ()

«defprimitive name value arity)
(definitial name

(make-primitive
'name (lambda (v* r k)

(if (= arity (length v*»
(resume k (apply value v*»
(wrong "Incorrect arity" 'name v*) ) ) ) ) ) ) )

(define r.init (make-null-env»
(defprimitive cons cons 2)
(defprimitive car car 1)

The primitives created have to be able to be invoked, like any other user
function, by invoke. These primitives each have two fields. The first makes de-
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bugging easier because it indicates the original name of the primitive. Of course,
that's only a hint because you can bind the primitive to other global names if you
want. 13 The second field in any of those primitives contains the "address" of the
primitive, that is, something executable by the underlying machine. A primitive is
thus triggered like this:

(define-method (invoke (f primitive) v* r k)
«primitive-address f) v* r k) )

Then to start the interpreter, and begin to enjoy its facilities, we will define an
initial continuation in a way similar to null-env. That initial continuation will
print the results that we provide it.

(define-class bottom-cont continuation (f»

(define-method (resume (k bottom-cont) v)
«bottom-cont-f k) v) )

(define (chapter3-interpreter)
(define (toplevel)

(evaluate (read)
r.init
(make-bottom-cont 'void display) )

(toplevel) )
(toplevel) )

Notice that the entire interpreter could easily be written in a real object
language, like Smalltalk [GR83], so we could take advantage of its famous browser
and debugger. The only thing left to do is to add whatever is needed to open a lot
of little windows everywhere.

3.4 Illlplelllenting Control ForlllS

Let's begin with the most powerful control form, callicc. Paradoxically, it is the
simplest to implement if we measure simplicity by the number of lines. The style
of programming we've been following-by objects-and the fact that we've made
continuations explicit will almost make this implementation a trivial task.

3.4.1 Implementation of call/cc

The function callicc takes the current continuation k, transforms it into an ob
ject that we can submit to invoke, and then applies the first argument, a unary
function, to it. The lines that follow here express that idea equally strongly.

(definitial call/cc
(make-primitive
'call/cc
(lambda (v* r k)

(if (= 1 (length v*»
(invoke (car v*) (list k) r k)

13. This same hint makes it possible in many systems to get the following effect: (begin (set!
£00 car) (set! car 3) £00) has a result that is printed as '<car> where the name of the prim
itive follows the functional object and not the binding through which it was found.
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(wrong "Incorrect arity" 'call/cc v*) ) ) ) )

Even though there are few lines there, we should explain them a little. Although
it is a function, call/cc is defined by definitial because it needs access to its
continuation so badly. The variable call/cc (now here we are in a LisPl) is thus
bound to an object of the class primitivee The call protocol for these objects
associates them with an "address" represented in the defining Lisp by a function
with the signature (lambda (v* r k) ... ). Eventually, the first argument is
applied to the continuation. That continuation has been delivered just as it is.
Since the continuation might possibly be submitted to invoke, we remind ourselves
that way to confer the ad hoc method on invoke.

(define-method (invoke (f continuation) v* r k)
(if (= 1 (length v*»

(resume f (car v*»
(wrong "Continuations expect one argument" v* r k) ) )

3.4.2 Implementation of catch

The form catch is interesting to implement because the mechanisms that it brings
into play are quite different from those in block, which we will get to later. As
usual, we'll add the necessary clauses to evaluate to analyze the forms catch and
throw, like this:

«catch) (evaluate-catch (cadr e) (cddr e) r k»
«throw) (evaluate-throw (cadr e) (caddr e) r k»

Here we've taken the option of making throw a special form, not a function
taking a thunk. We did so to simulate COMMON LISP. As a special form, catch is
defined like this:

(define-class catch-cont continuation (body r»

(define-class labeled-cont continuation (tag»

(define (evaluate-catch tag body r k)
(evaluate tag r (make-catch-cont k body r»

(define-method (resume (k catch-cont) v)
(evaluate-begin (catch-cant-body k)

(catch-cont-r k)
(make-labeled-cont (catch-cont-k k) v) ) )

Now it is apparent that catch evaluates its first argument, binds that argument
to its continuation by creating a tagged block, and then goes on with its work of
sequentially evaluating its body. When a value is returned to the tagged block,
that block is removed and simply transmits the value. The form throw will make
better use of that tagged block.

(define-class throw-cant continuation (form r»

(define-class throwing-cont continuation (tag cont»

(define (evaluate-throw tag form r k)
(evaluate tag r (make-throw-cont k form r»

(define-method (resume (k throw-cont) tag)
(catch-lookup k tag k) )
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(define-method (resume (k throw-cont) tag)
(catch-lookup k tag k) )

(define-generic (catch-lookup (k) tag kk)
(wrong "Not a continuation" k tag kk) )

(define-method (catch-lookup (k continuation) tag kk)
(catch-lookup (continuation-k k) tag kk) )

(define-method (catch-lookup (k bottom-cont) tag kk)
(wrong "No associated catch" k tag kk) )

(define-method (catch-lookup (k labeled-cont) tag kk)
(if (eqv? tag (labeled-cont-tag k» ;comparator

(evaluate (throw-cont-form kk)
(throw-cont-r kk)
(make-throwing-cont kk tag k) )

(catch-lookup (labeled-cont-k k) tag kk)

(define-method (resume (k throwing-cont) v)
(resume (throwing-cont-cont k) v) )

The form throw first evaluates its first argument and then checks whether a
continuation tagged that way exists. If not, it raises an error; otherwise, the-value
to transmit is then computed, and it will be transmitted to the continuation that's
already been located. That continuation can not have changed. The evaluation
of the value to transmit has a continuation that's a little special: an instance of
throwing-cont. The reason: if by accident an error or control effect occurs in the
computation of this value, the right context will be the current context, not the
one that would have been adopted if everything had gone well. Thus we can write
this:

(catch 2
(* 7 (catch 1

(* 3 (catch 2
(throw 1 (throw 2 5» » » )

The result is (* 7 3 5) and not 5. This definition of throw makes it possible to
detect errors that could not have been caught if throw were a function.

(catch 2 (* 7 (throw 1 (throw 2 3»»

That form, for example, does not lead to 3 but to the error message, "No assoc
iated catch" since there is no catch form with tag 1.

3.4.3 Implementation of block

There are two problems to resolve in implementing lexical escapes. The first is to
confer a dynamic extent on continuations. The second problem is to give lexical
scope to the tags on lexical escapes. To do that, we'll use the lexical environment
to confer the right scope. We'll define a new kind of environment to associate tags
with continuations.

We'll add a clause to evaluate-a clause recognizing special block forms-and
we'll define everything that follows.

(define-class block-cont continuation (label»

(define-class block-env full-env (cont»
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(define (evaluate-block label body r k)
(let «k (make-block-cont k label»)

(evaluate-begin body
(make-block-env r label k)
k ) ) )

(define-method (resume (k block-cont) v)
(resume (block-cont-]{ k).~v) ",~" \ ","v.uu· I

Now everything is in place for return-from, so we will add a clause to analyze
return-from forms inside evaluate.

«block) (evaluate-block (cadr e) (cddr e) r k»
«return-from) (evaluate-return-from (cadr e) (caddr e) r k» ...

And we will also define this:

(define-class return-from-cont continuation (r label»
(define (evaluate-return-from label form r k)

(evaluate form r (make-return-from-cont k r label»
(define-method (resume (k return-from-cont) v)

(block-lookup (return-from-cont-r k)
(return-from-cont-label k)
(return-from-cont-k k)
v ) )

(define-generic (block-lookup (r) n k v)
(wrong "not an environment" r n k v) )

(define-method (block-lookup (r block-env) n k v)
(if (eq? n (block-env-name r»

(unwind k v (block-env-cont r»
(block-lookup (block-env-others r) n k v) )

(define-method (block-lookup (r full-env) n k v)
(block-lookup (variable-env-others r) n k v) )

(define-method (block-lookup (r null-env) n k v)
(wrong "Unknown block label" n r k v) )

(define-method (resume (k return-from-cont) v)
(block-lookup (return-from-cont-r k)

(return-from-cont-label k)
(return-from-cont-k k)
v ) )

(define-generic (unwind (k) v ktarget»
(define-method (unwind (k continuation) v ktarget)

(if (eq? k ktarget) (resume k v)
(unwind (continuation-k k) v ktarget) ) )

(define-method (unwind (k bottom-cont) v ktarget)
(wrong "Obsolete continuation" v) )

Once we've got the value to transmit, block-lookup searches for the continua
tion associated with the tag of the return-from in the lexical environment. If
block-lookup finds it, then we verify whether the associated continuation is still
valid by looking for it in the current continuation by means of the new function,
unwind.
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The search for an ad hoc block in the lexical environment is carried out by
the generic function, block-lookup. We've defined the necessary methods for it
so that it can skip environments for variables that don't really interest it in order
to look only at instances of block-cont. Reciprocally, we've extended the generic
function, lookup so that it ignores instances of block-cont. These methods have
been defined for the virtual class full-env so that they can be shared in case other
classes of environments are created.

The generic function unwind tries to transmit a value to a certain continuation
which must still be alive, that is, it can be found in the the current continuation.

3.4.4 Implementation of unwind-protect

The form unwind-protect is the most complicated to handle; it implies modifica
tions in the preceding definitions of the forms catch and block because they must
be adapted to the presence of unwind-protect. It's a good example of a feature
whose introduction alters the definition of everything that exists up to this point.
However, not making use of unwind-protect implies a certain cost, too. The lines
that follow here define unwind-protect, apparently only slightly different from
prog1.

(define-class unwind-protect-cont continuation (cleanup r»

(define-class protect-return-cont continuation (value»

(define (evaluate-unwind-protect form cleanup r k)
(evaluate form

r
(make-unwind-protect-cont k cleanup r) ) )

(define-method (resume (k unwind-protect-cont) v)
(evaluate-begin (unwind-protect-cont-cleanup k)

(unwind-protect-cont-r k)
(make-protect-return-cont
(unwind-protect-cont-k k) v ) ) )

(define-method (resume (k protect-return-cont) v)
(resume (protect-return-cont-k k) (protect-return-cont-value k»

Now, as we said, we have to modify catch and block to take into acount
programmed cleanups when an unwind-protect form is breached by an escape.
For catch, we'll modify the definition of throwing-cont, like this:

(define-method (resume (k throwing-cont) v) ; ** Modified **
(unwind (throwing-cont-k k) v (throwing-cont-cont k» )

(define-class unwind-cont continuation (value target»

(define-method (unwind (k unwind-protect-cont) v target)
(evaluate-begin (unwind-protect-cont-cleanup k)

(unwind-protect-cont-r k)
(make-unwind-cont
(unwind-protect-cont-k k) v target ) ) )

(define-method (resume (k unwind-cont) v)
(unwind (unwind-cont-k k)

(unwind-cont-value k)
(unwind-cont-target k) ) )
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To transmit the escape value, we have to run back through the continuation
a second time until we find the target continuation. During that rerun, if any
unwind-protects are breached, the associated cleanup forms will be evaluated.
The continuation of these cleanup forms is from the class unwind-cont so it is
possible to capture any of them. They correspond to pursuing the examination of
the continuation-the floating continuations that we mentioned earlier on page 86.

With respect to block, the modification is the same kind but involves only
block-lookup.

(define-method (block-lookup (r block-env) n k v) ; ** Modified **
(if (eq? n (block-env-name r»

(unwind k v (block-env-cont r»
(block-lookup (block-env-others r) n k v) ) )

We look for the continuation of the associated block in the lexical environment,
and then we unwind the continuation as far as this target block.

You might think that in the presence of unwind-protect, the form block is
no faster than catch since they both share the heavy cost of unwind. Actually,
since unwind-protect is a special form and thus its use can't be hidden, there
are savings for all the return-froms that are not separated from their associated
block by any unwind-protect or lambda.

Curiously enough, COMMON LISP (CLtL2 [Ste90]) introduced a restriction on
escapes in cleanup forms. Those cleanup forms can't go less far than the escape
currently underway. The intention of the restriction was to prevent any program
being stuck in a situation where no escape could pull it out. [see Ex. 3.9]
Consequently, the following program produces an error because the cleanup form
wants to do less than the escape targeted toward 1.

(catch 1 COMMON LISP
(catch 2

(unwind-protect (throw 1 'foo)
(throw 2 'bar) ) ) ) ~ error!

3.5 Comparing callicc to catch

Thanks to objects, continuations look like linked lists of blocks. Some of these
blocks are accessible from the lexical environment; others can be found only by
running through the continuation, block by block. Still others give rise to various
treatments when they are breached.

In a language such as Lisp, since it is blessed with continuations that have
a dynamic extent, the idea of a stack is synonymous with the idea of continua
tion. When we write (evaluate ec r (make-if-cont k et ef r)) we signify
that we are pushing another block onto the stack indicating what to do on the
return of the value of the condition of an alternative. Reciprocally, the expres
sion (evaluate-begin (cdr (begin-cont-e* k)) (begin-cont-r k) (begin
cont-k k)) says explicitly that the current block has been abandoned, popped
in favor of the block just below: (begin-cont-k k). We could verify that in such
a language, no data structure keeps obsolete parts of continuations, that is, those
parts that have disappeared from the stack. For that reason, when we leave a
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block, the associated continuation (possibly captured elsewhere) is invalidated. In
terms of implementation, continuations can be kept in a stack or even in several
synchronized stacks and compiled into C primitives: setjmp/longjmp. [see p.
402]

In the dialect EuLISP[PE92], there is a special form named let/cc with the
following syntax:

(let/cc variable forms . .. ) EuLISP

In Dylan [App92b], we write the same thing like this:

(bind-exit (variable) forms ... ) Dylan

This special form binds the current continuation to the variable with a scope equal
to the body of the form let/cc in EuLISP or bind-exit in Dylan. That continua
tion is consequently a first class entity with a unary functional interface. However,
its useful extent is dynamic, so its use is limited to the evaluation time of the body
of the form binding let/cc or bind-exit. More precisely, the object value of vari
able has an indefinite extent but a limited interest for the duration of the dynamic
extent. This characteristic is typical of EuLISP and Dylan, but it does not show up
at all in Scheme (where continuations have an indefinite extent) nor in COMMON

LISP (where continuations are not first class objects). However, we can simulate
that behavior by writing this:

(define-syntax let/cc
(syntax-rules ()

«let/cc variable. body)
(block variable

(let «variable (lambda (x) (return-from variable x))))
. body ) ) ) ) )

In the world of Scheme, continuations can no longer be put on the stack because
they can be kept in external data structures. Thus we have to adopt another model:
a hierarchic model, sometimes called a cactus stack. The most naive approach is
to leave the stack and allocate blocks for continuations directly in the heap.

This technique makes allocations uniform, and it makes porting easier, accord
ing to [AS94]. However, it decreases the locality of references in memory, and
it means that we have to maintain the links between blocks explicitly. ([MB93],
nevertheless, proposes solutions to those problems.) Generally, implementers work
very hard to keep as many things as possible on the stack, so in this case, the
canonical implementation of callicc copies the stack into the heap; the continu
ation is thus this very copy of the stack. Other techniques have been studied, of
course, as in [CH088, HDB90], for sharing copies, delaying copies, making partial
copies, etc. Each one of them, however, introduces certain costs.

The forms block and callicc are more similar than are catch and callicc.
They share the same lexical discipline; they are distinguished only by the extent
of their continuation. There's a restricted variation of callicc in certain dialects,
as in [IM89]; the restriction is known as calliep for call with exit procedure; it
is quite apparent in block/return-from as well as in the preceding let/cc. The
function calliep has the same interface as callicc, like this:

(call/ep (lambda (exit) ... ))
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The variable exit in the unary function (the argument of calliep) is bound
to the continuation of the form calliep limited to its dynamic extent. The re
semblance to block is quite clear here except that instead of using a disjoint name
space (the lexical escape environment), we borrow the name space for variables.
The main difference that calliep brings in is that the continuation of an escape
becomes first class and can thus be handled like any other first class object. How
ever, if we have to use block, then we must explicitly construct that first-class value
if we need it. To do so, we write (lambda (x) (return-from label x». The ex
pression is equally powerful, but all the calling sites (that is, the return-from
forms) are known statically in a block form. That's not always the case during a
call to calliep: for example, (calliep foo) doesn't say anything about the use
of an escape except after more refined analysis, an analysis not local to foo. Con
sequently, the function calliep complicates the work of the compiler as compared
to what a special form like block requires.

When we compare block and calliep, we thus see some differences. For one,
an efficient execution must not create the argument closure of calliep if it is
an explicit lambda form. Thus at compilation, we must distinguish the case of
(calliep (lambda ... » since it can be compiled better. This particular case
is comparable to the way a special form is handled since both of them lead to
treatment that is distinct within the compiler. Functions are the favorite vehicles
for adepts of Scheme whereas special forms correspond more nearly to a kind of
declaration that makes life easier for the compiler. Both are often equally powerful,
though their complexity is different for both the user and the implementer.

In summary, if you're looking for power at low volume, then callicc is for you
since in practice it lets you code every known control structure, namely, escape,
coroutine, partial continuation, and so forth. If you need only "normal" things
(and Lisp has already demonstrated that you can write many interesting applica
tions without call1cc), then choose instead the forms of COMMON LISP where
compilation is simple and the generated code is efficient.

3.6 Programming by Continuations

There's a style of programming based on continuations. It entails explicitly telling a
computation where to send the result of that computation. Once the computation
has been achieved, the executor applies the receiver to the result, rather than
returning it as a normal value. What that boils down to is this: if we have the
computation (foo (bar», we modify the function bar into new-bar in order to
take an argument; that argument will be exactly what we will call the continuation.
In the present case, that's foo. The modified computation will thus appear as
(new-bar fOo). Let's look at an example with our familiar friend, the factorial;
let's assume that we want to compute n(n!):

{define (fact n k)
(if (= n 0) (k 1)

(fact (- n 1) (lambda (r) (k (* n r»» ) )
(fact n (lambda (r) (* n r») ~ n(n!)
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The factorial thus takes a new argument k, the receiver of the final result.
When the result is 1, it is simple to apply k to it. However, when the result is
not immediate, we recall recursively as expected. Now the problem is to do two
things at once: to transmit the receiver and to multiply the factorial of n-1 by n.
And furthermore, since we want multiplication to remain a commutative operation,
we have to do these things in order! First, we'll multiply by n and then call the
receiver. Since that receiver will be applied to 1 in the end, there's nothing left to
do but compose the receiver and the supplementary handling and thus get (lambda
(r) (k (* n r»).

The advantage this new factorial offers us is that the same definition makes
it possible to calculate many results, namely, the factorial (fact n (lambda (x)
x», the double factorial (fact n (lambda (x) (* 2 x»), etc.

3.6.1 Multiple Values

Using continuations is also the key to multiple values. When a computation has
to return multiple results, continuations become an interesting technique for doing
so. In COMMON LISP, division (i.e., truncate) returns a multiple value composed
of the divisor and the remainder. We could get a similar operator-one that we'll
call divide-to take two numbers and a continuation, compute the quotient and
the Euclidean remainder of those two numbers, and apply the continuation of the
third argument to them. Then, to verify whether a division is correct, we could
just do this:

(let* «p (read» (q (read»)
(divide p q (lambda (quotient remainder)

(= p (+ (* quotient q) remainder» » )

An example with more depth involves calculating Bezout numbers. 14 The Be
zout identity stipulates that if p and q are relatively prime, then there must exist
numbers u and v such that up + vq = 1. To compute Bezout numbers, we first
have to compute the gcd (greatest common divisor) verifying as we do so that p
and q are relatively prime.

(define (bezout n p k) ; assume n > p
(divide
n p (lambda (q r)

(if (= r 0)

(if (= p 1)

(k 0 1) ; since 0 x 1 - 1 x 0 = 1
(error "not relatively prime" n p)

(bezout
p r (lambda (u v)

(k v (- u (* v q») ) ) ) ) ) )

The bezout function uses divide to fill in q and r as the quotient and remainder
of the division of n by p. If the numbers are really relatively prime, there's a trivial
solution of 0 and 1. Otherwise, we keep increasing those values until we hit the
initial nand p. We could verify the underlying mathematics; to do so, it suffices to
know enough number theory to understand gcd or (proof by fire!) to verify that

14. Dof! I finally eventually succeed in publishing that function, first written in 1981!
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(bezout 1991 1960 list) ~ (-569 578)

3.6.2 Tail Recursion

In the example of the factorial with continuations, a call to fact generally turned
out to be nothing other than a call to fact. If we trace the computation of (fact
3 list), but skip the obvious steps, we get this:

(fact 3 list)

== (fact 2 (lambda (r) (k (* n r»»1
n~ 3

k== list

(fact 1 (lambda (r) (k (* n r»»1
n~ 2

k~ (lambda (r) (k (* n r»)1
n~ 3

k== list

(k (* n 1»1 n~ 2

k-- (lambda (r) (k (* n r»)1

== (k (* n 2»1
n~ 3

k== list

n~ 3

k== list

~ (6)

When the call to f act is translated directly into a call to fact, the new call is
carried out with the same continuation as the old call. This property is known as
tail recursion-recursion because it is recursive and tail because it's the last thing
remaining to do. Tail recursion is a special case of a tail call. A tail call occurs
when a computation is resolved by another one without the necessity of going back
to the computation that's been abandoned. A call in tail position is carried out by
a constant continuation.

In the example of the bezout function, bezout calls the function divide in tail
position. The function divide itself calls its continuation in tail position. That
continuation recursively calls bezout in tail position again.

In the "classic" factorial, the recursive call to fact within (* n (fact (- n
1») is said to be wrapped since the value of (fact (- n 1» is taken again in the
current environment to be multiplied by n.

A tail call makes it possible to abandon the current environment completely
when that environment is no longer necessary. That environment thus no longer
deserves to be saved, and as a consequence, it won't be restored, and thus we gain
considerable savings. These techniques have been studied in great detail by the
French Lisp community, as in [Gre77, Cha80, 8J87], who have thus produced some
of the fastest interpreters in the world; see also [HangO].

Tail recursion is a very desirable quality; the interpreter itself can make use of
it quite happily. Optimizations linked to tail recursion are based on a simple point:
on the definition of a sequence, of course. Up to now, we have written this:
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(define (evaluate-begin e* r k)
(if (pair? e*)

(if (pair? (cdr e*»
(evaluate (car e*) r (make-begin-cont k e* r»
(evaluate (car e*) r k) )

(resume k empty-begin-value) ) )

(define-method (resume (k begin-cont) v)
(evaluate-begin (cdr (begin-cont-e* k»

(begin-cont-r k)
(begin-cont-k k) ) )

We could have also written it more simply like this:

(define (evaluate-begin e* r k)
(if (pair? e*)

(evaluate (car e*) r (make-begin-cont k e* r»
(resume k empty-begin-value) ) )

(define-method (resume (k begin-cont) v)
(let «e* (cdr (begin-cont-e* k»»
(if (pair? e*)

(evaluate-begin e* (begin-cont-r k) (begin-cont-k k»
(resume (begin-cont-k k) v) ) ) )

105

That first way of writing it is preferable because when we evaluate the last
term of a sequence, with the first way, we don't have to build the continuation
(make-begin-cont k e* r) to find out finally that it's equivalent to k, and build
ing that continuation, of course, is costly in time and memory. In keeping with our
usual operating principle of good economy in not keeping around useless objects
unduly (notably the environment r in (make-begin-cont k e* r)), it's better
to get rid of that superfluous continuation as soon as possible. This case is very
important because every sequence has a last term!

The same effect can be applied to the evaluation of arguments, so we will write
the following for all the same reasons we gave before about sequences:

(define-class no-more-argument-cont continuation (»

(define (evaluate-arguments e* r k)
(if (pair? e*)

(if (pair? (cdr e*»
(evaluate (car e*) r (make-argument-cont k e* r»
(evaluate (car e*) r (make-no-more-argument-cont k»

(resume k no-more-arguments) ) )

(define-method (resume (k no-more-argument-cont) v)
(resume (no-more-argument-cont-k k) (list v» )

Here, we've written a new kind of continuation that lets us make a list out
of the value of the last term of a list of arguments without having to keep the
environment r. Friedman and Wise in [Wan80b] are credited with discovering this
effect.
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3.7 Partial Continuations

Among the questions that continuations raise, there's one about the following con
tinuation: during an escape, what becomes of the part that disappears? In other
words, the portion of the continuation (or "execution stack") which is located be
tween the place from which we escape and the place where we jump represents
a continuation slice. This slice takes an input value, and since it has an end, it
also provides a result on exit. Thus it is equivalent to a unary function. Many
researchers, such as [FFDM87, FF87, Fel88 , DF90, HD90, QS91, MQ94], have
elaborated control forms to reify these slices, or partial continuations, as they are
known.

Consider for a moment the following simplified actions:

(+ 1 (call/cc (lambda (k) (set! foo k) 2») ~ 3
(foo 3) ~ 4

In conformity with what we've already said, the continuation k, assigned to
foo, is Au.1 + u. But then what is the value of (foo (foo 4))?

(foo (foo 4» ~ 5

The result is 5, not 6 as composing the continuations might lead you to think.
In effect, calling a continuation corresponds to abandoning a computation that is
underway and thus at most only one call can be carried out. Thus the call inside
foo forces the computation of the continuation Au.1+u for 4; its mission is to return
the value that's gotten as the final value of the entire computation. Consequently,
we never get back from a continuation! More specifically, the continuation k has to
wait for a value, add 1 to it, and return the result as the final and definitive result.

The same example is even more vivid with contexts. The continuation of the
example was (+ 1 []). Since we are in a call by value, (foo (foo 4)) corresponds
to eliminating the context (foo []) around (foo 4) so that we rewrite it as (+ 1
4), and its final value is 5.

Partial continuations represent the followup of computations that remain to be
carried out up to a certain well identified point. In [FWFD88, DF90, HD90, QS91],
there are proposals about how to make continuations partial and thus composable.
Let's assume that the continuation bound to foo is now [( + 1 [])], where the
external square brackets indicate that it must return a value. Then (foo (foo 4))
is really (foo [( + 1 [4])]) since (+ 1 5) eventually results in 6. The captured
continuation [(+ 1 [])] does not define all the rest of the computation but only
what remains up to but not including the return to the toplevel loop. Thus the
continuation has an end, and it's thus a function and composable.

Another way of looking at this effect is to take the example again that we saw
earlier-the one that has the side effect on the global variable foo-as well as an
interaction with the toplevelloop. Let's condense the two expressions into one and
write this:

(begin (+ 1 (call/cc (lambda (k) (set! foo k) 2»)
(foo 3) )

Kaboom! That loops indefinitely because foo is now bound to the context (begin
(+ 1 []) (foo 3)) which calls itself recursively. From this experiment, we can
conclude that gathering together the forms that we've just created is not a neutral
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activity with respect to continuations nor with respect to the toplevel loop. If we
really want to simulate the effect of the toplevel loop better, then we could write
this:

(let (foo sequel print?)
(define-syntax toplevel

(syntax-rules ()
«toplevel e) (toplevel-eval (lambda () e») ) )

(define (toplevel-eval thunk)
(call/cc (lambda (k)

(set! print? It)
(set! sequel k)
(let «v (thunk»)

(when print? (display v)(set! print? If»
(sequel v) ) » )

(toplevel (+ 1 (call/cc (lambda (k) (set! foo k) 2»»
(toplevel (foo 3»
(toplevel (foo (foo 4») )

Every time that toplevel gets a form to evaluate, we store a continuation in
the variable sequel-the continuation leading to the next form to evaluate. Every
continuation gotten during evaluation is thus by this fact limited to the current
form. As you've observed, when callicc is used outside its dynamic extent, there
must be either one of two things: either a side effect, or an analysis of the received
value to avoid looping.

Partial continuations specify up to what point to take a continuation. That
specification insures that we don't go too far and that we get interesting effects.
We can thus rewrite the preceding example to redefine callicc so that it captures
continuations only up to toplevel and no further. The idea of escape is also
necessary here to eliminate a slice of the continuation. Even so, for us, partial
continuations are still not really attractive because we're not aware of any programs
using them in a truly profitable way and yet being any simpler than if rewritten
more directly. In contrast, what's essential is that all the operators suggested for
partial continuations can be simulated in Scheme with callicc and assignments.

3.8 Conclusions

Continuations are omnipresent. If you understand them, then you've simultane
ously gained a new programming style, mastered the intricacies of control forms,
and learned how to estimate the cost of using them. Continuations are closely
bound to execution control because at any given moment, they dynamically rep
resent the work that remains to do. For that reason, they are highly useful for
handling exceptions.

The interpreter presented in this chapter is quite precise yet still locally read
able. In the usual style of object programming, there are a great many small pieces
of code that make understanding of the big picture more subtle and more chal
lenging. This interpreter is quite modular and easily supports experiments with
new linguistic features. It's not particularly fast because it uses up a great many
objects, usually only to abandon them right away. Of course, one of the roles of a
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compiler is to determine just which entities would be useful to build anyway.

3.9 Exercises

Exercise 3.1 : What is the value of (callicc callicc)? Does the evaluation
order influence your answer?

Exercise 3.2 : What's the value of ((call/cc call1cc) (call/cc call1cc))?

Exercise 3.3: Write the pair tagbody/go with block, catch, labels. Remember
the syntax of tagbody, as defined in COMMON LISP:

(tagbody
expresszonsQ .

labeh expressionsl .

labeli expresszonsi···
. .. )

All the expressions expressionsi but only the expressions expressionsi may con
tain unconditional branching forms (go label) or escapes (return value). If no
return is encountered, then the final value of tagbody is nil.

Exercise 3.4 : You might have noticed that, during the invocation of functions,
they verify their actual arity, that is, the number of arguments submitted to them.
Modify the way functions are created to precompute their arity so that we can
speed up this verification process. You only have to handle functions with fixed
arity for this exercise.

Exercise 3.5 : Define the function apply so that it is appropriate for the inter
preter in this chapter.

Exercise 3.6 : Extend the functions recognized by the interpreter in this chapter
so that the interpreter accepts functions with variable arity.

Exercise 3.7 : Modify the way the interpreter is started so that it calls the function
evaluate only once.

Exercise 3.8 : The way continuations are presented in Section 3.4.1 means that the
code mixes continuations and values. Since instances of the class continuation
may appear as values, we were obliged there to define a method of invoke for
continuation. Redefine callicc to create a new subclass of value corresponding
to reified continuations.
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Exercise 3.9 : In COMMON LISP, write a function eternal-return to take a
thunk as its argument, to call it without stopping, and to make sure that no escape
attempted by the thunk will succeed in getting out of the function eternal-return.

Exercise 3.10 : Consider the following function, due to Alan Bawden:

(define (make-box value)
(let «box

(call/cc
(lambda (exit)

(letrec
«behavior

(call/cc
(lambda (store)

(exit (lambda (msg . new)
(call/cc

(lambda (caller)
(case msg

«get) (store (cons (car behavior)
caller »)

«set)
(store

(cons (car new)
caller) ) ) ) » ) ) »

«cdr behavior) (car behavior» ) ) )
(box 'set value)
box ) )

If we assume that box1 has, as its value, the result of (make-box 33), then
what is the value of the following expressions?

(box! 'get)
(begin (box1 'set 44) (box1 'get»

Exercise 3.11 : The function evaluate is the only one that is not generic. If we
want to create a class of programs with as many subclasses as there are different
syntactic forms, then the reader would no longer have recourse to an S-expression
but to an object corresponding to a program. The function evaluate would thus
be generic, and we could add new special forms easily and even incrementally.
Redesign the interpreter to make that possible.

Exercise 3.12 : Define throw as a function instead of a special form.

Exercise 3.13 : Compare the execution speed of normal code and that translated
into CPS.

Exercise 3.14 : Program call/cc by means ofthe-current-continuation. As
sume that the-current-cont inuat ion is defined like this:
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(define (the-current-continuation)
(call/cc (lambda (k) k» )

Recommended Reading

A good, non-trivial example of the use of continuations appears in [Wan80a]. You
should also read [HFW84] about the simulation of messy control structures. In
the historical perspective in [dR87], the rise of reflection in control forms is clearly
stressed.
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4
Assignment and Side Effects

N the previous chapters, with their spiraling build-up of repetition and
variations, you may have felt like you were being subjected to the Lisp
equivalent of Ravel's Bolero. Even so, no doubt you noticed two motifs
were missing: assignment and side effects. Some languages abhor both

because of their nasty characteristics, but since Lisp dialects procure them, we
really have to study them here. This chapter examines assignment in detail, along
with other side effects that can be perpetrated. During these discussions, we'll nec
essarily digress to other topics, notably, equality and the semantics of quotations.

Coming from conventional algorithmic languages, assignment makes it more or
less possible to modify the value associated with a variable. It induces a modifica
tion of the state of the program that must record, in one way or another, that such
and such a variable has a value other than its preceding one. For those who have
a taste for imperative languages, the meaning we could attribute to assignment
seems simple enough. Nevertheless, this chapter will show that the presence of
closures as well as the heritage of A-calculus complicates the ideas of binding and
variables.

The major problem in defining assignment (and side effects, too) is choosing
a formalism independent of the traits that we want to define. As a consequence,
neither assignment nor side effects can appear in the definition. Not that we have
used them excessively before; the only side effects that appeared in our earlier
interpreters were localized in the function update! (when it involved defining
assignment, of course) and in the definition of "surgical tools" like set-car! (in
the Lisp being defined) which was only an encapsulation of set-car! (in the
defining Lisp).

4.1 AssignIIlent

Assignment, as we mentioned, makes it possible to modify the value of a variable.
We can, for example, program the search for the minimum and maximum of a
binary tree of natural integers by maintaining two variables containing the largest
and smallest values seen so far. We could write that this way:

{define (min-max tree)
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(define (first-number tree)
(if (pair? tree)

(first-number (car tree»
tree ) )

(let* «min (first-number tree»
(max min) )

(define (scan! tree)
(cond «pair? tree)

(scan! (car tree»
(scan! (cdr tree» )

(else (if (> tree max) (set! max tree)
(if « tree min) (set! min tree» » ) )

(scan! tree)
(list min max) ) )

The function min-max is easy to understand and has the advantage that it uses
only two dotted pairs to return the result we want. The algorithm is very much like
one we could write in Pascal, and it's no less representative of the conventional use
for variables. Notice, too, that the side effects it perpetrates on these local variables
are completely invisible from outside the function min-max and thus do no damage
to the general quality of the surrounding program. This is an example of a healthy
side effect; it's clear and efficient, compared to purely functional versions of the
same program. [see Ex. 4.1]

The assignment of an unshared local variable poses hardly any problems. For
example, the following function enumerates the natural numbers, starting from
zero. It's obvious there that asking for the value of the variable n immediately
after assigning it is sure to return the new value that it's taken.

(define enumerate
(let «n -1»

(lambda () (set! n (+ n 1»
n ) ) )

Every call to enumerate returns a number. The function enumerate has an
internal state, represented by the number n, which is modified progressively each
time enumerate is called. Altering a closed variable is a problem in itself. A-calculus
is silent about this effect that exists only because we want to offer assignment within
the language. To apply a function in mathematics, like in A-calculus, we substitute
for its variables the values or expressions that they take during the application.
Assignment forces us to abandon this semantics, and it makes programs that use
it lose their referential transparency.

If, for example, we replace all the occurrences of the variable n by its initial
value in enumerate, then there would be no question of that function generating
all the natural numbers, and enumerate would return the value -1 eternally. Thus
assignment forces us to abandon instantaneous substitution of variables by their
values as a mode of computation. Substitution is now deferred in time, and it's car
ried out only when we want a specific value for a variable. Consequently, there are
ways of interpolating assignments to modify substitutions that have not occurred
yet.

Another example will highlight that problem more clearly. Consider this pro
gram:
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(let «name "Hemo"))
(set! winner (lambda () name))
(set! set-winner! (lambda (new-name) (set! name new-name)

name ))
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(set-winner! "Me")
(winner) )

Will the call to (winner) return "Hemo" or "Me"? In other words, are the
modifications belonging to set-winner! perceived by winner?

Once more, A-calculus is silent about this subject, and there's a good reason for
its reticence: the idea of assignment is completely foreign to A-calculus. Even so, we
have said that the creation of a function should capture its definition environment;
that is, the functions winner and set-winner! should store the fact that the
variable name has the value "Hemo" at the time of their creation. It seems obvious
that the form (set-winner! "Me") is going to return "Me" since the text of the
function declares that we assign the variable name and then we return its value.
The problem is to determine whether (winner) sees this new value, since it sees
the same variable name.

A literal way of looking at the fact that a closure is defined in the environment
where the free variables in its body have values that they had when it was created
works in favor of isolation. In consequence, we could not distinguish the preceding
program from the following one:

(let «name "Nemo"))
(set! winner (lambda () name))
(winner) )

[Sam79] proposed that assignment should be visible only to the one who makes
the assignment. In that case, the function set-winner! would return the modified
value while winner always continued to return only "Hemo". In that world, the
idea of binding doesn't even exist. There is a connection between a variable and
a value, but that connection is direct. The reference to a variable thus consults
the current environment and returns the associated value. Assignment creates a
new environment equivalent to the old one except that the assigned variable now
has the assigned value; this new environment is provided as the current one to the
continuation.

This way of looking at things recalls the traditional way of implementing closure
in old dynamic Lisps. A closure was created explicitly by the special form closure;
it took a list of variables to close as its first term, and as its second term, it took a
function. For example, the form (closure (x) (lambda (y) (+ x y») leads to
(lambda (y) (let «x 'value-oJ-x» (+ x y»). There's capture of the value
associated with the variable x, and that seems like it conforms to the philosophy
inherited from A-calculus.

However, that model does not support assignment very well. It also makes the
idea of a shared variable problematic. Other solutions have also been suggested;
[SJ87] recommends a form of closure that analyzes the body of the function to
close so that it automatically extracts the free variables to capture. We could also
modify assignments found in the body of the function to close in such a way as to
fix the difficult problem of updating close variables, as suggested in [BCSJ86, SJ93].

Scheme tackles the problem differently by introducing the idea of binding and



114 CHAPTER 4. ASSIGNMENT AND SIDE EFFECTS

achieves a number of interesting programming effects that way. The form let in
troduces a new binding between the variable name and the value "Iemo". Functions
created in the body of let capture, not the value of the variable, but its binding.
The reference to the variable name is thus interpreted as a search for the binding
associated with the variable name and then the extraction of the value associated
with the binding that has already been discovered.

Assignment proceeds in the same way: assignment searches for the binding
associated with the variable name and then alters the associated value inside this
binding. The binding is thus a second class entity; a variable references a binding;
a binding designates a value. Assigning a variable does not change the binding
associated with it but modifies the contents of this binding to designate a new
value.

4.1.1 Boxes

To flesh out the idea of binding, let's look again at A-lists. In the preceding
interpreters, an A-list served us as the environment for variables, simply acting
like a backbone to organize the set of variable-value pairs. A variable-value pair
is represented by a dotted pair there. We search for that dotted pair when the
variable is read- or write-referenced. That dotted pair (or, more precisely, its
cdr) is modified by assignment. For this representation, then, we can identify the
binding with this dotted pair. Other kinds of encoding are also possible; in fact,
bindings can be represented by boxes. This transformation is significant because it
lets us free ourselves entirely from assignments strictly in favor of side effects.

A box is created by the function make-box, conferring its initial value. A box
can be read and written by the functions box-ref and box-set!. If we try a first
draft of the function in message passing style, it would look like this:

(define (make-box value)
(lambda (msg)

(case msg
«get) value)
«set!) (lambda (new-value) (set! value new-value») ) ) )

(define (box-ref box)
(box 'get) )

(define (box-set! box new-value)
«box 'set!) new-value) )

A way of implementing it without closure would use dotted pairs directly, like
this:

(define (other-make-box value)
(cons 'box value) )

(define (other-box-ref box)
(cdr box) )

(define (other-box-set! box new-value)
(set-cdr! box new-value) )

More briefly, we could simply use define-class and just write this:

(define-class box Object (content»
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In those three ways (and you can see a fourth way in Exercise 3.10), we highlight
the indeterminism of the value that box-set! returns. Every variable that submits
to one or more assignments can be transcribed in a box which can be implemented
conveniently. It is easy then to determine whether a variable is mutable; we do so
by looking at the body of the form which binds it to see whether the variable is
the object of an assignment. (One of the attractive features of lexical languages is
that all the places where a local variable might be used are visible.)

We will specify how to box a variable by rewrite rules, where 1r will be trans
formed into 1F and v is the name of the variable to box.

XU if x = v then (box-ref v) else x
~(-qu-o-t-e-£~)v (quote £)

(if 1rc 1rt 1rf ) v (if -;;r;u n:;u 1fj)
(begin 1rl ... 1rn ) v (begin ~ ...~ )

(set! x 1r) v if x = v then (box-set! v 1fU)
else (set! x 1fU)

(lambda ( ... x . .. ) 1r) v if v E { ... x . ..} then (lambda ( ... x . .. ) 1r)

else (lambda ( ... x . .. ) WV)

( 1ro 1rl ... 1rn ) v ( ~ ~ ...~ )

As usual, we must be careful in correctly handling local variables that have the
same name as the variable that we want to rewrite in a box. By re-iterating the
process on all the variables that are the object of an assignment that is all mutable
variables, we completely suppress assignments in preference to boxes where the
contents can be revised by side effects. We'll thus add the following rule:

(lambda ( ... x ) 1r) 1\ (set! x ... ) E 1r

~ (lambda ( x ... ) (let «x (make-box x») ~)

Let's look at the preceding example again and rewrite it in terms of boxes to
get this:

(let «name (make-box "Remo"»)
(set! winner (lambda () (box-ref name»)
(set! set-winner! (lambda (new-name) (box-set! name new-name)

(box-ref name) »
(set-winner! "Me")
(winner) )

Using boxes in place of mutable variables (that is, assignable ones) is conven
tional and corresponds to "references" in dialects of ML. Boxes offer the advantage
of (apparently) suppressing assignments and the problems connected with them.
They also make it possible to avoid introducing special cases in the search for the
value of a variable since no variables can be modified under those circumstances.
Since they are pure side effects, they make us lose referential transparency, but
they lend themselves to typing. On the other hand, boxes introduce two problems.

The first is that a binding, now represented by a box, becomes a first class
object and can be manipulated as such. In other words, box-ref and box-set!
are not the only operations that can be applied to boxes. Two people aware of the
same box create an alias effect that can be used to implement modules.

The second problem is that the future of a box is usually indeterminate. Like
a dotted pair that can be subjected to a disastrous set-car! by just about any-
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body, the places where boxes are used are generally unknown. In contrast, lexical
assignment has this going for it that all the sites where a binding can be altered
are statically known. Compilations can take advantage of such knowledge when,
for example, an assigned variable is neither closed nor shared; such is the case for
the variables min and max in the function min-max.

Each assignable variable is associated with a place in memory (that is, its
address) containing the value of the binding. That location in memory will be
modified when the variable is assigned.

4.1.2 Assignment of Free Variables

Another problem involving assignment is the meaning to impute to it for a free
variable. Consider this example:

(let «passwd "timhukiTrolrk")) ; That's a real password!

(set! can-access? (lambda (pw) (string=? passwd (crypt pw))))

The variable can-access? is free in the body of let. Moreover, it is also
assigned. When we follow the rules of Scheme, the variable can-access? must be
global since it is not claimed locally. But the fact that the environment should be
global does not necessarily signify that it contains the variable can-access?! We
debated a similar topic earlier [see p. 54] where we saw several different possible
solutions.

What can we do with a global variable, other than assign it? Like any other
variable, we can reference it, close it, get its value, and in general define it before
any other operation. The global environment itself is a name space, and we're
going to see many different ways of producing it.

Universal Global Environment

The global environment can be defined as the place where all variables pre-exist.
In fact, every time a new variable name appears, the implementation manages to
make sure that the variable by that name is present in the global environment as
though it had always been there, according to [Que95]. In that world, for every
name, there exists one and only one variable with that name. The idea of defining
a global variable makes no sense since all variables pre-exist there. Modifying a
variable poses no problem since its existence cannot be in doubt. Consequently,
we can reduce the operator define to a mere set! and, as a corollary, multiple
definitions of the same variable are possible.

Only one problem crops up when we want to get the value of a variable which
has not yet been assigned. That variable exists, but does not yet have a value.
This type of error often goes under the name of an unbound variable message, even
though in the strictest sense, the variable does indeed have a binding: its associated
box. In other words, the variable exists but is uninitialized.

We can summarize the properties of this environment in the following chart.
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Reference
Value
Modification
Extension
Definition

x
x
(set! x . .. )

no
no, define=set!

117

This definition environment is more interesting than it might appear at first
glance. For one thing, it does not need many concepts because everything in it
pre-exists. That makes it easy to write mutually recursive functions. In case
of error, it lets us redefine global functions. That characteristic means that any
reference to a global variable has to be handled with care since (i) it might not be
initialized yet (but once initialized, it's permanent); (ii) it can change value-a fact
that prohibits any hypothesis based on its current value. In particular, we must
not even inline the primitive functions car and cons, but we can automatically
recompile anything that depends on a hypothesis which has just been trashed.

To illustrate this environment, consider the following fragment, showing various
properties.

g ; error: g uninitialized
(define (P m) (* m g»
(define g 10)
(define g 9.81) ;= (set! g 9.81)
(P 10) ~ 98.1
(set! e 2. 78) ; definition of e

In summary, you can think of the global environment as one giant let form,
defining all variables, something like this:

(let (, .. a aa '" ab , .. ac ... )
. .. )

Frozen Global Environment

Now imagine that for every name there is at most one global variable by that
name and that the set of defined names is immutable. This is the situation of a
compiled, autonomous application without dynamically created code (that is, no
calls to eval). That was also the situation of the preceding interpreters that did not
authorize the creation of new global variables. They had to be created explicitly
by the form definitial in the implementation language.

In such an environment, a global variable exists only after having been created
by define. We can get or modify its value only if it has been defined beforehand.
Yet, since there can be only one variable by any given name, we can reference
such a variable even before it is defined. (That's the feature that allows mutual
recursion.) However, we cannot define a global variable more than once. We'll
summarize those properties in our familiar chart.

Reference
Value
Modification
Extension
Definition

x
x but x must exist
(set! x ... ) but x must exist
def ine (only one time)
no
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Now for this environment, let's look again at the preceding fragment to see
where it leads this time.

; error: no variable e

; error: no variable g
;forward reference to g

; error: redefinition of g
; modification of g

---+ 98. 1

g
(define (P m) (* m g»
(define g 10)
(define g 9.81)
(set! g 9.81)
(P 10)
(set! e 2.78)

This environment is beginning to suggest the idea of a program. A program is
defined by a set of expressions 1rl . . . 1rn that we can organize into a single expression
built like this: we put the forms 1rl ... 1rn into a unique let form introducing all
the free variables present in 1rl ... 1rn as non-initialized local variables; and then
we modify all the define forms by changing them into the equivalent set! forms.

To clarify those ideas, here's a little application written in Scheme:

(define (crypt pw) ... )
(let «passwd ItimhukiTrolrk"»

(set! can-access? (lambda (pw) (string=? passwd (crypt pw»» )

(define (gatekeeper)
(until (can-access? (read» (gatekeeper» )

That little application asks the user for a password and won't let the user
through unless he or she supplies the right one. That computerized version of
Cerberus is equivalent to this:

(let (crypt make-can-access? can-access? gatekeeper)
(set! crypt (lambda (pw) ... »
(set! make-can-access?

(lambda (passwd)
(lambda (pw) (string=? passwd (crypt pw») ) )

(set! can-access? (make-can-access? ItimhukiTrolrk"»
(set! gatekeeper

(lambda () (until (can-access? (read» (gatekeeper»)
(gatekeeper) )

car=: car
cons=: cons

Global definitions are transformed into local definitions assigning the free vari
ables of the application, re-organized and still non-initialized, in an all-encompas
sing let. 1 Of course, the usual functions, like read, string=?, string-reverse,
or string-append, are visible. In this world, the global environment is finite and
restricted to predefined variables (like car and cons) and to free variables of the
program. However, it is not possible to assign a free variable not present in the
global environment since that very environment was designed to avoid such a pos
sibility. The only way to provoke that error would be to have a form of eval that
allowed dynamic evaluation of code.

1. That definition of a program inadvertently makes multiple definitions of the same variable
meaningful; for that reason, we have to add a few syntactic constraints.
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Automatically Extendable Global Environment

If a toplevel loop is present, then we need to be able to augment the global envi
ronment dynamically. We just saw that the form define could help augment the
set of global variables. You might also think that assignment would suffice for the
same task; that is, that assigning a free variable would be equivalent to defining
that variable in the global environment if it had not appeared there before. Thus
we could directly write this:

(let «name "Hemo"»
(set! winner (lambda () name»
(set! set-winner! (lambda (new-name) (set! name new-name)

name » )

With the preceding variation, we would have had to prefix this expression by
two absurd definitions, like these:

(define winner 'without-tail)
(define set-winner! 'nor-head)

Those expressions would have created the two variables, initialized them in any
old way, then would have modified them immediately so that they would take on
their real value. That technique is annoying because it explicitly makes the defined
variables mutable since they have been the object of at least one assignment. For
that reason, quite a long time ago, in Scheme [SS78b] there was a static form
enabling us to write something2 like this:

(let «name "Hemo"»
(define (static winner) (lambda () name»
(define (static set-winner!)

(lambda (new-name) (set! name new-name)
name) ) )

That way, the two global variables would have been co-defined together in a
local lexical context without the intervention of assignment.

While assignment makes it possible to create global variables, we risk polluting
the global environment by doing so. You might also think that it would be more
clever to create the variable only locally; perhaps lexically at the level of the last
let or, as in [Nor72], at the last dynamically enveloping3 prog. Unfortunately,
these ideas spoil referential transparency and forbid the preceding co-definitions.

Hyperstatic Global Environment

There is one more kind of global environment: one where several global variables
can be associated with a name but where only forms located after a definition can
see it. Let's look again at our favorite example:

g
(define (P m) (* m g»

; error: no variable g
; error: no variable g

2. Nevertheless, we have to change the syntax of internal define fonns so that they recognize
the local presence of global definitions. That is, (static variable) is the reference to a global
variable, rather than a call to the unary static function.
3. 'lEX does this: a definition made by \def disappears when we exit from the current group
with \endgroup.
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no

x but x must exist
x but x must exist
(set! x . .. ) but x must exist
define

(define g 10)
(define (P m) (* m g»
(P 10) -+ 100
(define g 9.81)
(P 10) -+ 100 ; P sees the old g
(define (P m) (* m g»
(P 10) -+ 98.1
(set! e 2. 78) ; error: no variable e

Here, faithful to the spirit that prefers to close functions in the environment
where they are created, the first definition of P is statically an error since it refer
ences g which does not exist at that moment. Another solution would be to allow
the definition of P but to make any call to P an error since g had no value a the
moment when P was created. However, this solution should not be adopted since
it delays warning the user and the sooner errors are caught, the better.

The second definition of P encloses the fact that g has the value 10, and that
fact lasts as long as the function P. If we want a better approximation of g for some
reason, we must redefine the function P to take account of that new value. The
global environment here is managed in a completely lexical way; we call that mode
hyperstatic, and it's the mode that ML chose. We'll summarize its characteristics
in our usual chart.

Reference
Value
Modification
Extension
Definition

However, that mode causes problems for recursive definitions. We have to be
able to define both functions that are simply recursive and groups of functions that
are mutually recursive. ML has a keyword-ree-to indicate that first kind, and
another keyword-and-to indicate co-definitions. Those keywords correspond to
letree and let in Scheme, where those forms already authorize multiple defini
tions. To TYlake that idea visible, consider the preceding example rewritten this
time as a ....eries of nested instances of let or letree:

g ; error: no variable g
(let «P (lambda (m) (* m g»» ; error: no variable g

(let «g 10»
(let «P (lambda (m) (* m g»»

(P 10)
(let «g 9.81»

. .. ) ) ) )

And here's another example, this time in ML, of mutually recursive functions:

let rec odd n = if n = 0 then false else even (n - 1)
and even n = if n = 0 then true else odd (n - 1)

That example obviously corresponds to this:

(letrec «odd? (lambda (n) (if (= n 0) #f (even? (- n 1»»)
(even? (lambda (n) (if (= n 0) #t (odd? (- n 1»») )

. .. )
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Hyperstatic global environments have the obvious advantage of being able to
detect undefined variables statically. Furthermore, if bindings are known to be
immutable, these environments also compile very efficiently because they may take
advantage of the fact that they know the value. When an error occurs, however,
they have the disadvantage that they require a redefinition of everything that
follows the erroneous definition.

4.1.3 Assignment of a Predefined Variable

Among the free variables appearing in a program, there are the predefined ones
like car or read. Assigning them is thus our inalienable right, but just what
does it mean to assign one? The speed of an implementation frequently depends
on hypotheses that are rarely made explicit. In Lisp, we often talk about inline
functions, that is, compiled and integrated functions; accessors such as car or cdr
are usually inline. Redefining any of them thus causes problems because, once an
assignment impinging on car is perceived, then all the calls to car have to use the
current value of car rather than its primitive value.

In a hyperstatic interaction loop, that's not a real problem because only future
expressions will see this modified car function. However, if the interaction loop
is dynamic, then to be accurate, we have to recompile every inline call to car.
That would lead us logically to redefining the function cadr since it's probably
defined as the composition of car and cdr. This work would never actually get
done since it introduces too much disorder and probably does not correspond to
the real intentions of the users.

By the way, Scheme forbids the modification of a global binding from changing
the values or the behavior of other predefined functions. In that context, modifying
car would not be allowed, but defining a new car variable would be permitted,
though it would probably not change the meaning of cadr. Since map (comparable
to mapcar in Lisp) appears in the standard definition of Scheme, a modification
of car would not perturb it, but since mapc is not part of the standard definition,
modifying car would probably disturb it.

Modifying a global variable often looks like a way to trace or analyze calls to
the function that is the value of that global variable. It also seems like a means
to correct erroneous or aberrant behavior. However, we advise the impetuous and
inexperienced to resist such temptations. Our advice is "Don't touch predefined
variables!"

In summary, a hyperstatic global environment behaves logically but it is not as
practical as a dynamic global environment for debugging.

4.2 Side Effects

So far, we've seen how a computation in Lisp is represented by an ordered triple
of expression, environment, and continuation. As attractive as that triple is, it
does not express the meaning of assignment nor of physical modification of data
in memory. Side effects correspond to alterations in the state of the world and in
particular to changes in memory.
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The most familiar changes come from physically modifying data in memory, as
set-car! and input/output functions do. Reading or writing in a stream makes
a mark move along to show where the most recent read or write occurred. (That's
a side effect!) Writing to a screen leaves an irreparable mark on it-a long lasting
side effect-and writing to paper is even more indelible-yet another long term side
effect. Requiring a user to type on a keyboard is likewise irreversible. In short,
side effects are unfortunately omnipresent in computing. They correspond to sets of
instructions for computers operating on registers, to file systems saving information
(for example, the marvelous texts and programs that we concoct ourselves) between
sessions. Of course, it is possible to imagine living in an ideal world with no side
effects, but we would suffer from a kind of computer-autism there since we would
not be able to communicate the results of computations. This nightmare won't
keep us awake, however, since there is no computer in the world that actually
works with no side effects.

We've already seen that assignments can be simulated by boxes. Inversely, can
we simulate dotted pairs without dotted pairs? The response is yes, but we do so
by using assignment! A dotted pair can be simulated by a function responding to
the messages car, cdr, set-car!, and set-cdr!4 like this:

(define (kons a d)
(lambda (msg)

(case msg
«car) a)
«cdr) d)
«set-car!) (lambda (new) (set! a new»)
«set-cdr!) (lambda (new) (set! d new») ) ) )

(define (kar pair)
(pair 'car) )

(define (set-kdr! pair value)
«pair 'set-cdr!) value) )

Once again, the simulation is not quite perfect, as [FelgO] points out, because
we can no longer distinguish the dotted pairs from normal functions. With that
programming practice, we can no longer write the predicate pair? Except for this
slight reduction in means (in fact, equivalent to being able to write new types of
data), we see clearly that side effects and assignment maintain uneasy relations
and that one is easily simulated by the other. Consequently, we have to ban both
of them or accept them and their more or less uncontrollable fallout. Whether we
choose assignment or physical modification then depends on the context and the
properties that we are trying to preserve.

4.2.1 Equality

One inconvenience of physical modifiers is that they induce an alteration in equality.
When can we say that two objects are equal? In the sense that Leibnitz used it,
two objects are equal if we can substitute one for the other without damage. In
programming terms, we say that two objects are equal if we have no means of
distinguishing one from the other. The equality tautology says that an object is

4. To avoid confusion with the usual primitives, we'll spell their names with k.
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equal to itself since we can always replace it by itself without changing anything.
This is a weak notion of equality if we take it literally, but it's the same idea that
we apply to integers. Things get more complicated when we consider two objects
between which we don't know any relation (for example, when they derive from
two different computations, like (* 2 2) and (+ 2 2») and when we ask whether
they can substitute for each other or whether they resemble each other.

In the presence of physical modifiers, two objects are different if an alteration
of one does not provoke any change in the other. Admittedly, we're talking about
difference here, not equality, but in this context, we'll classify objects in two groups:
those that can change and those that are unchanging.

Kronecker said that the integers were a gift from God, so on that logical basis,
we'll consider them unchanging: 3 will be 3 in all contexts. Also it's simple for us
to decide that a non-composite object (that is, one without constituent parts) will
be unchanging, so in addition to integers, we also have characters, Booleans, and
the empty list. There aren't any other unchanging, non-composite objects.

For composite objects, such as lists, vectors, and character strings, it seems
logical to consider two of them equal if they have the same constituents. That's
the idea we generally find underlying the name equal? with different variations5

whether recursive or not. Unfortunately, in the presence of physical modifiers,
equality of components at a given moment hardly insures the persistence of equality
in the future. For that reason, we'll introduce a new predicate for physical equality,
eq?, and we'll say that two objects are eq? when it is, in fact, the same.6 This
predicate is often implemented in an extremely efficient way by comparing pointers;
in that way, it tests whether two pointers designate the same location in memory.

In fact, we have two predicates available: eq?, testing the physical identity, and
equal?, testing the structural equivalence. However, these two extreme predicates
overlook the changeability of objects. Two immutable objects are equal if their
components are equal. To be sure that two immutable objects are equal at some
moment in time insures that they will always be so because they don't vary. In
versely, two mutable objects are eternally equal only if they are one and the same
object. In practice, a single idea is emerging here as the definition of equality:
whether one object can be substituted for the other. Two objects are equal if no
program can distinguish between" them.

The predicate eq? compares only entities comparable with respect to the im
plementation: addresses in memory7 or immediate constants. The conventional
techniques of representing objects in the dialects that we're considering do not
insure8 that two equal objects have comparable representations for eq? It follows
that eq? does not even implement tautology.

A new predicate, known as eqv? in Scheme and as eql in COMMON LISP,

improves eq? in this respect. In general terms, it behaves like eq? but a little
more slowly to insure that two equal immutable objects are recognized as such. The
predicate eqv? insures that two equal numbers, even gigantic ones represented by

5. See, for example, the functions equalp or tree-equal in COMMON LISP.

6. This grammatical weirdness expresses the idea that there are not two objects, but only one.
7. For a distributed Scheme on a network of computers, eq? has to be able to compare objects
located at different sites. In such a case, eq? is not necessarily immediate.
8. For example, (eq? 33 33) is not guaranteed to return It in Scheme, hence the need for eqv?
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bignums, will be compared successfully regardless of their representation in memory.
If we look back at the interpreters that we've given so far, we notice how little

mutable data are found in them. With the exception of bindings, everything there
was unchanging. In fact, mutable structures are few, and the majority of allocated
dotted pairs never submit to physical modifiers such as set-car! and set-cdr! .
In some implementationsofML, but also in COMMON LISP, it's possible to indicate
the mutability of fields in an object. We can thus create a constant dotted pair,
like this:

(defstruct immutable-pair COMMON LISP
(car '() :read-only t)
(cdr '() :read-only t) )

Physically, constant dotted pairs could be allocated in a zone apart, and con
stants cited in programs could use this type of dotted pair.

In [Bak93], Henry Baker suggested unifying all the equality predicates in a sole
egal defined like this: if the objects to compare are mutable, then egal behaves
like eq?; otherwise, it behaves like equal? This new predicate insures that two
objects can be substituted for each other when they are recognized as equal by
egal. It's easy to see the utility of this predicate in a parallel world involving the
migration of data, as in [QD93, Que94].

Cyclic data present another problem. Comparing them is possible but expen
sive. If we don't know that the data being compared may be cyclic, then we may
fall into a looping equal? And if that problem were not bad enough, how to
compare these structures is not obvious either. Consider this case, for example:

(define 01 (let «pair (cons 1 2») ~ 01 ~
(set-car! pair pair)
(set-cdr! pair pair)

pair» ~
(define 02 (let «pair (cons (cons 1 2) 3») 02

(set-car! (car pair) pair)
(set-cdr! (car pair) pair)
(set-cdr! pair pair)
pair) )

Let's suppose first of all that we have to evaluate (equal? 01 01). If the imple
mentation of equal? begins by testing whether the objects are eq? before it begins
the structural comparison of their respective fields, then the answer is immediate
and positive. In the opposite case, equal? will loop forever. 9

Granted that (equal? 01 01) is a suspicious case, what do you think of
(equal? 01 02)? The reply depends once again on knowing whether the dot
ted pairs composing 01 and 02 are mutable or not. If no one can modify them,
then in the absence of eq?, no one can write a program that distinguishes them.
This observation brings us back to the idea that it's better not to compare cyclic
structures with equal?

The preceding predicates cover the various kinds of data usually present, with
the exception of symbols and functions. Symbols are complex data structures since
they are often used by implementations to store information about global variables

9. As I wrote that, I checked four different implementations of Scheme, and two looped. I won't
reveal their names since they are fully justified in doing so. [CR91b]
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of the same name. Basically, a symbol is a data structure that we can retrieve by
name and that is guaranteed unique for a given name.

Symbols often contain a property list-a dangerous addition because a property
list is managed by side effects that are perceived globally. Moreover, a property
list is usually burdensome, both in storage (since it takes two dotted pairs per
property) and in use (since it requires a linear search). For those reasons, hash
tables10 are preferable.

4.2.2 Equality between Functions

For functions, our situation may seem desperate. We can say that two functions
are equal if their results are equal whenever their arguments are equal, that is, they
are undistinguishable. More formally, we can put it this way:

f = 9 ¢:} \Ix, f(x) = g(x)

Unfortunately, comparing two functions that way is an undecidable problem.
For that reason, we could refuse to compare functions at all, or we could adopt
a more flexible attitude but restrict the problem. Large classes of functions are
comparable, and in many cases, we can easily discover that two functions cannot
be equal (for example, when they don't even have the same number of arguments).

With those thoughts in mind, we can get an approximate equality predicate
for functions by admitting that sometimes its response may be imprecise or even
erroneous. Of course, we can rely on such an approximate predicate only if we
understand clearly where and how it is imprecise.

Scheme, for example, defines eqv? for functions in the following way: if we
must compare the functions f and g, and if there exists an application of f and g
to the same arguments (where "the same arguments" is determined by eqv?) such
that the results are different, then the functions f and g are not eqv? Once again,
we find ourselves considering difference rather than defining equality.

Let's look at a few examples now. The comparison (eqv? car cdr) should
return false since their results are manifestly different, especially on an example
like (a. b).

It should also be obvious that (eqv? car car) returns true since equality
must surely handle tautology correctly. However, it's false in certain dialects
where that form is equivalent to (eqv? (lambda (x) (car x)) (lambda (x)
(car x))) because the function car can be inline. In fact, R4 RS does not specify
what eqv? should return when it is used to compare predefined functions like car.

How can we compare cons and cons without invoking tautology? The function
cons is an allocator of mutable data, and thus, even if the arguments seem com
parable, the results are not necessarily equal since they are allocated in different
places. Thus we're right to demand that cons should not be equal to cons and
thus (eqv? cons cons) should return false since it is false that (eqv? (cons 1
2) ( cons 1 2))!

Now is it really true that car should be equal to car as we argued in the
previous paragraphs? In a language without types, (car 'foo) raises an error and
signals an exception, but then it's left up to the care of the local error handler, a

10. In my humble opinion, their invention was one of the greatest discoveries of computer science.
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mechanism with unpredictable behavior that may vary wildly. For that reason, we
cannot be sure that that call always returns favorably comparable results. The same
observations hold for any partial function used outside its domain of definition.

How do we get out of this situation? Different languages try different means.
Because of their typing which lets them detect all the places where comparisons be
tween functions might be made, some dialects of ML forbid such situations purely
and simply since we cannot and should not compare functions. In its semantics,
Scheme makes lambda a closure constructor. Thus each lambda form allocates a
new closure somewhere in memory. That closure has a certain address, so func
tions can be compared by a comparison of addresses, and the only case where two
functions are the same (in the sense of eqv?) is when they are one and the same
closure.

This behavior prevents certain improvements known in A-calculus. Let's con
sider the function cleverly named make-named-box. It takes only one argument (a
message), analyzes it, and responds in an appropriate way. This is one possible
way of producing objects, and it's the one that we adopt for coding the interpreter
in this chapter.

(define (make-named-box name value)
(lambda (msg)

(case msg
«type) (lambda () 'named-box»
«name) (lambda () name»
«ref) (lambda () value»
«set!) (lambda (new-value) (set! value new-value») ) ) )

That function creates an anonymous box and then gives it a name. The closure
gotten by means of the message type does not depend on any of the local variables.
Consequently, we could rewrite the entire function like this:

(define other-make-named-box
(let «type-closure (lambda () 'named-box»)

(lambda (name value)
(let «name-closure (lambda () name»

(value-closure (lambda () value»
(set-closure (lambda (new-value)

(set! value new-value) » )
(lambda (msg)

(case msg
«type) type-closure)
«name) name-closure)
«ref) value-closure)
«set!) set-closure) ) ) ) ) )

This one differs from the preceding version because the closure (lambda ()
'named-box), for example, is allocated only once whereas earlier, it was allocated
every time it was needed.

But then what's the value of the following comparison?

(let «nb (make-named-box 'foo 33»)
(compare? (nb 'type) (nb 'type» )
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Actually the question is badly phrased because it has meaning only if we specify
the predicate for comparison. If we use eq?, then the exact number of allocations
of (lambda () 'named-box) will playa role, whereas if we use egal, then the
question is meaningless, and the final value is always true. From this, you can see
that if a language includes a physical comparer, that comparer will make it possible
to discern whether objects might possibly be equal.

When lambda is an allocator, we associate an address in memory with all the
closures that it creates. Two closures having the same address are merely one and
the same object and thus equal. Accordingly, in Scheme, we have this:

(let «f (lambda (x y) (cons x y»»
(eqv? f f» ~ #t

Since it compares the same object in memory, the predicate eqv? will return
true even if it is false that (eqv? (f 1 2) (f 1 2».

As you see, comparing functions is an activity beset by obstacles for which
multiple points of view might be adopted, depending on the properties that we
want to preserve. Keeping the mathematical aspect of equality of functions is
practically out of the question. Depending on the implementation, many ways of
using comparisons may be proscribed. Even though this very book contains such
a comparison in the implementation of MEROONET, [see p. 447] we still offer the
advice that, as far as possible, it is better to avoid comparing functions at all.

4.3 Implementation

For once, the interpreter that we'll explain in this chapter uses closures only for
its data structures. Everything will be coded by lambda forms and by sending
messages. All the objects are thus closures based on code functions similar to
(lambda (msg) (case msg ... » like we saw in a few of the preceding examples.
Some messages will be standard, like boolify or type. boolify associates a value
with its equivalent truth value (that is, #t or #f for the purposes of conditionals).
type, of course, returns its type.

Our chief problem is to find a method to define side effects. Formally, we
say that a variable references a binding which is associated with a value. More
prosaically, we say that a variable points to a box (an address) that contains a
value. Memory is merely a function associating addresses with the values contained
in those addresses. The environment is another function associating these addresses
with variables. Those conventions all seem natural until you try to simulate their
implementation.

Memory must be visible everywhere. We could make it a global variable, but
that is not a very elegant solution, and we have already seen all the problems that
a global environment entails. Another solution is to make all the functions see the
memory. It would then suffice for all the functions to receive the memory as an
argument and pass it along to others, possibly after modifying it. We'll actually
adopt this way of doing it, and that choice forces us to consider a computation now
as a quadruple: expression, environment, continuation, and memory. Those four
components are named e, r, k, and s. To make sure that memory circulates freely,
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continuations will receive not only the value to transmit but also the resulting
memory state.

As usual, the function evaluate will syntactically analyze its argument and call
the appropriate function. We'll keep the conventions for naming variables from the
previous chapters, and we'll add the following:

e, et, ec, ef .
r .

k, kk .
v, void .

f .

n ...

expression, form
environment
continuation
value (integer, pair, closure etc.)
function
identifier

s, SS, SSS . . . memory
a, aa address (box)

Since the number of variables has increased, we'll adopt the discipline of always
mentioning them in the same order: e, r, s, and then k.

Here's the interpreter:

(define (evaluate e r s k)
(if (atom? e)

(if (symbol? e) (evaluate-variable e r s k)
(evaluate-quote e r s k) )

(case (car e)
«quote) (evaluate-quote (cadr e) r s k))
«if) (evaluate-if (cadr e) (caddr e) (cadddr e) r s k))
«begin) (evaluate-begin (cdr e) r s k))
«set!) (evaluate-set! (cadr e) (caddr e) r s k))
«lambda) (evaluate-lambda (cadr e) (cddr e) r s k))
(else (evaluate-application (car e) (cdr e) r s k)) ) ) )

4.3.1 Conditional

A conditional introduces an auxiliary continuation that waits for the value of the
condition.

(define (evaluate-if ec et ef r s k)
(evaluate ec r s

(lambda (v ss)
(evaluate «v 'boolify) et ef) r ss k) ) ) )

The auxiliary continuation takes into consideration not only the Boolean value
v but also the memory state ss resulting from the evaluation of the condition. In
effect, it is legal to have side effects in the condition, as the following expression
shows:

(if (begin (set-car! pair 'foo)
(cdr pair) )

(car pair) 2 )

Any modification that occurs in the condition has to be visible in the two
branches of the conditional. The situation would be quite different if we defined
the conditional like this:
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(define (evaluate-amnesic-if ec et ef r s k)
(evaluate ec r s

(lambda (v ss)
(evaluate «v 'boolify) et ef) r s ;s # ss!

k ) ) ) )

In that latter case, the memory state present at the beginning of the evaluation
of the condition would be restored. That would be characteristic of a language
that supports backtracking in the style of Prolog. [see Ex. 4.4]

To take into account the fact that every object is coded by a function, True
and False must not be the #t and #f of the implementation language. Since every
object can also be considered as a truth value, we will assume that every object
can receive the message boolify and will then return one of the A-calculus style
combinators, (lambda (x y) x) or (lambda (x y) y).

4.3.2 Sequence

Though it's not essential to us, the definition of a sequence shows clearly just how
sequencing is treated in the language. It also highlights an intermediate contin
uation. For simplicity, we'll assume that sequences include at least one term.

(define (evaluate-begin e* r s k)
(if (pair? (cdr e*))

(evaluate (car e*) r s
(lambda (void ss)

(evaluate-begin (cdr e*) r ss k) ) )
(evaluate (car e*) r s k) ) )

In such a bare form, you can see how little regard there is for the value of void
and the final call to evaluate when there is only one form in a sequence.

4.3.3 Environment

The environment has to be coded as a function and must transform variables
into addresses. Similarly, the memory is represented as a function, but one that
transforms addresses into values. Initially, the environment contains nothing at all:

(define (r.init id)
(wrong "No binding for" id) )

Now how do we modify an environment or even memory without a physical
modifier and without assignment? To modify a memory state is to change the
value associated with an address. We could thus define the function update so
that it modifies memory when we offer it an address and a value, like this:

(define (update s a v)
(lambda (aa)

(if (eqv? a aa) v (s aa)) ) )

The meaning is apparent if we remember that a memory state is represented,
as we said, by a function that transforms addresses into values. The form (update
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s a v) returns a new memory state that faithfully resembles the s except that
at the address a the associated value is now v; for everything else, we see s. We
generalize update to take multiple addresses and multiple values, like this:

(define (update* s a* v*)
; ; (assume (= (length a *) (length v*)))
(if (pair? a*)

(update* (update s (car a*) (car v*» (cdr a*) (cdr v*»
s ) )

The function update can also be applied to extending environments. In ML,
that would be a polymorphic function. Keeping in mind the kind of comparison that
update carries out, we'll code addresses as objects that are eminently comparable:
integers. To compare variables, we'll compare their names. In Scheme, the function
eqv? will thus be convenient in both cases.

4.3.4 Reference to a Variable

Consequently, the value of a variable is expressed simply, like this:

(define (evaluate-variable n r s k)

(k (s (r n» s) )

The form (r n) returns the address where the value of the variable is located
(that is, the value of n). The contents of this address is searched for in memory
and given to the continuation. Since searching for the value of a variable is a non
destructive process, memory will not be modified that way and will be transmitted
as such to the continuation.

4.3.5 Assignment

Assignment requires an intermediate continuation.

(define (evaluate-set! n e r 5 k)
(evaluate e r 5

(lambda (v 55)

(k v (update S5 (r n) v» ) ) )

After the evaluation of the second term, its value and the resulting memory
are provided to the continuation to update the contents of the address associated
with the variable. That is, a new memory state is constructed, and that new state
will be provided to the original continuation of the assignment. By the way, this
assignment returns the assigned value.

Here you can see why making memory a function was a good idea. Doing so
lets us represent modifications without any side effects. In more Lispian terms,
this way of representing memory turns it into the list of all modifications that
it has undergone. Compared to real memory, this representation is manifestly
superfluous, but it enables us to handle various instances of memory simultaneously.
[see Ex. 4.5]
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4.3.6 Functional Application
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A functional application consists of evaluating all terms. Here we'll choose left to
right order.

(define (evaluate-application e e* r s k)
(define (evaluate-arguments e* r s k)

(if (pair? e*)
(evaluate (car e*) r s

(lambda (v ss)
(evaluate-arguments (cdr e*) r ss

(lambda (v* sss)
(k (cons v v*) sss) ) ) ) )

(k '() s) ) )

(evaluate e r s
(lambda (f ss)

(evaluate-arguments e* r ss
(lambda (v* sss)

(if (eq? (f 'type) 'function)
«f 'behavior) v* sss k)
(wrong "Not a function" (car v*» ) ) ) ) ) )

Here, the function usually named evlis becomes local, known under the name
evaluate-arguments. It evaluates its arguments in order and organizes their val
ues into a list. The function (the value of the first term of the functional application)
is then applied to its arguments accompanied by the memory and the continuation
of the call. There again, you can see how concise the program is.

Since the function is represented by a closure that responds at least to the
message boolify, a new message-behavior-will extract its functional behavior,
that is, the way it calculates.

4.3.7 Abstraction

To simplify things, let's assume for the moment that the special form lambda creates
only functions with fixed arity. Two effects come together here-an allocation
in memory and the construction of a first class value-as a closure. Creating
a function involves constructing an object that, as you might expect, has to be
allocated somewhere in memory. In other words, it is necessary for memory to be
modified when a function is created. To that end, we furnish two things to the
utility create-function: an address and the behavior of the function to create.
The behavior we furnish is the same that the message behavior extracted before,
during the functional application.

(define (evaluate-lambda n* e* r s k)
(allocate 1 s

(lambda (a* ss)
(k (create-function

(car a*)
(lambda (v* s k)

(if (= (length n*) (length v*»
(allocate (length n*) s

(lambda (a* ss)
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(evaluate-begin e*
(update* r n* a*)
(update* ss a* v*)
k ) ) )

(wrong "Incorrect arity") ) ) )
ss ) ) ) )

When a function constructed by the special form lambda is called on one of
its arguments, its behavior stipulates that, in current memory at the moment of
the call, it must allocate as many new addresses as it has variables to bind; then
it must initialize these addresses with the associated values and finally pursue the
rest of its computations.

(define (evaluate-ftn-lambda n* e* r s k)

(allocate (+ 1 (length n*)) s
(lambda (a* ss)

(k (create-function
(car a*)
(lambda (v* s k)

(if (= (length n*) (length v*))
(evaluate-begin e*

(update* r n* (cdr a*))
(update* s (cdr a*) v*)
k )

(wrong "Incorrect arity") ) )
ss ) ) ) )

If the addresses were allocated at another time, for example, at the time the
function was created, we would get behavior more like that of Fortran, forbidding
recursion. In effect, every recursive call to the function uses those same addresses
to store the values of variables, thus making only the last such values accessible.
The purpose for this variation is that there is no dynamic creation of functions
in Fortran, anJ consequently these addresses can be allocated during compilation,
thus making function calls faster but thereby forbidding recursion, the real strength
of functional languages.

4.3.8 Memory

Memory is represented by a function that takes addresses and returns values. It
must also be possible to allocate new addresses there, new addresses that are guar
anteed free; that's the purpose of the function allocate. As arguments, it takes
a memory and the number of addresses that it must reserve there; it also takes a
third argument: a function (a continuation) to which it will give the list of addresses
that it has selected in memory plus the new memory where these addresses have
been initialized to the "uninitialized" state. The function allocate handles all the
details of memory management and notably the recovery of cells that is, garbage
collection. Fortunately, it's simple to characterize this function if we assume that
memory is infinitely large; that is, if we assume that it's always possible to allocate
new objects.

(define (allocate n s q)

(if (> n 0)
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(let «a (new-location s»)
(allocate (- n 1)

(expand-store a s)
(lambda (a* ss)

(q (cons a a*) ss) ) ) )
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(q ,() s) )

The form new-location searches for a free address in memory. This is a real
function in the sense that the form (eqv? (new-location s) (new-location
s)) always returns True. We associate the highest address used so far with each
memory; that address will be used when we search for a free address by means of
new-location. To mark that an address has been reserved, we extend memory by
expand-store.

(define (expand-store high-location s)
(update s 0 high-location) )

(define (new-location s)
(+ 1 (s 0» )

Initial memory doesn't contain anything, but it defines the first free address.
Memory is thus a closure responding to a certain message when it involves determin
ing a free address or responding to messages coded as integers (that is, addresses)
when we want to know the contents of memory. We'll unify these two kinds of
messages by assuming that the address 0 contains the address most recently used.

(define s.init
(expand-store 0 (lambda (a) (wrong "No such address" a») )

4.3.9 Representing Values

We've decided to represent all values that the interpreter handles by functions
that send messages. These values are the empty list, Booleans, symbols, numbers,
dotted pairs, and functions. We'll look at each of these kinds of data in turn.

All values will thus be created on a skeleton function that responds to at least
two messages: (i) type for requesting its type; (ii) boolify for converting it to
a truth value. Other messages exist for specific types of data. The skeleton that
serves as the backbone of all these values will thus be this:

(lambda (msg)
(case msg

«type) )
( (boolify) )
. .. ) )

There is only one unique empty list, and according to R4 RS, it is a legal repre
sentation of True, so we use this:

(define the-empty-list
(lambda (msg)

(case msg
«type) 'null)
«boolify) (lambda (x y) x» ) ) )
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The two Boolean values are created by create-boolean, like this:

(define (create-boolean value)
(let «combinator (if value (lambda (x y) x) (lambda (x y) y»»

(lambda (meg)
(case msg

«type) 'boolean)
«boolify) combinator) ) ) ) )

Symbols should respond to the specific message name that extracts their name
represented as a symbol in the defining Scheme.

(define (create-symbol v)
(lambda (msg)

(case msg
«type) 'symbol)
«name) v)
«boolify) (lambda (x y) x» ) ) )

Numbers will have value as their specific message, like this:

(define (create-number v)
(lambda (msg)

(case msg
«type) 'number)
«value) v)
«boolify) (lambda (x y) x» ) ) )

Functions will respond to the messages behavior and tag. Of course, behavior
extracts their behavior; tag indicates the address to which they have been allocated.

(define (create-function tag behavior)
(lambda (msg)

(case msg
«type) 'function)
«boolify) (lambda (x y) x»
«tag) tag)
«behavior) behavior) ) )

The last case we have to cover is that of dotted pairs. A dotted pair indicates
two values that are both susceptible to modification by physical modifiers. For
that reason, we're going to represent dotted pairs by a pair of addresses: one will
contain the car of the dotted pair while the other will contain its cdr. This choice
of representation may seem strange since a dotted pair is conventionally represented
by a box of two contiguous values. 11 Thus only one address is needed to indicate
the pair. This way of coding does not do justice to that implementation technique
consisting of storing the car and cdr in two different arrays but at the same index
in each array; a dotted pair is thus represented by such an index. According to
that way of coding, two different addresses are thus associated with each dotted
paIr.

11. Very serious studies, such as [Cla79, CG77], have shown that it's better for cdr (rather than
car) to be directly accessible without a supplementary displacement. Another reason to place cdr
first is that pairs implement lists and thus inherit from the class of linked objects which define
only one field: cdr.
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'pair)
(lambda (x y) x»
(lambda (s v) (update s a v»)
(lambda (s v) (update s d v»)
a)

d) ) ) )

(lambda (v ss)
(allocate-pair (car v*) v S8 q) »

(q the-empty-list s) ) )
(consify v* q) )

(define (allocate-pair ads q)
(allocate 2 s

(lambda (a* ss)
(q (create-pair (car a*) (cadr a*»

(update (update ss (car a*) a) (cadr a*) d) ) ) ) )
(define (create-pair a d)

(lambda (msg)
(case msg

«type)
«boolify)
«set-car)
«set-cdr)
«car)
«cdr)

To simplify the allocation of lists, we'll use the following two functions that take
a list and memory, and then allocate the list in that memory. Since that allocation
modifies the memory, a third argument (a continuation) will be called finally with
the resulting memory and the allocated list.

(define (allocate-list v* s q)
(define (consify v* q)

(if (pair? v*)
(consify (cdr v*)

4.3.10 A Comparison to Object Programming

The skeleton closure that we chose to represent values for this interpreter enables
those values to respond to multiple messages, and in that sense, those values re
semble the objects we used in the preceding chapter. Nevertheless there are several
important differences between these objects coded by closures and those of ME
ROONET. The objects coded by closures contain their methods inside themselves; it
is not possible to add new methods to them. The ideas of class and subclass remain
virtual concepts since they are not implemented by these values. However, generic
functions make it possible to add behavior to objects from the exterior without even
requiring their cooperation; generic functions support not only methods, but also
multimethods. Finally, the idea of a subclass makes it possible to share the struc
ture of objects without useless repetition of their common characteristics. These
various qualities shouldn't make you think of objects as poor man's closures, like
some Scheme users suggest. In fact, the objects of the previous chapter have many
more qualities than those of this chapter, but you can see an interesting defense of
these latter in [AR88].

4.3.11 Initial Environment

As usual, we'll introduce two different kinds of syntax to put predefined variables
into the initial environment (here, into the initial memory). With every global
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variable, we'll associate an address containing its value. The syntax of definitial
will thus allocate a new address and fill it with the appropriate value.

(define s.global s.init)
(define r.global r.init)

(define-syntax definitial
(syntax-rules ()
«definitial name value)
(allocate 1 s.global

(lambda (a* ss)
(set! r.global (update r.global 'name (car a*»)
(set! s.global (update ss (car a*) value» ) ) ) ) )

The syntax of defprimitivewill be built on top of definitial; it will define
a function of which the arity will be checked.

(define-syntax defprimitive
(syntax-rules ()
«defprimitive name value arity)
(definitial name

(allocate 1 s.global
(lambda (a* ss)

(set! s.global (expand-store (car a*) ss»
(create-function
(car a*)
(lambda (v* s k)

(if (= arity (length v*»
(value v* s k)
(wrong "Incorrect arity" 'name) ) ) ) ) ) ) ) ) )

As we've become accustomed to doing, we will enrich the initial environment
with the Boolean variables t and f and with the empty list nil, like this:

(definitial t (create-boolean It»

(definitial f (create-boolean If»
(definitial nil the-empty-list)

We'll give two examples of predefined functions, one a predicate and the other
arithmetic. Their arguments are extracted from their representation, and then the
final result is repackaged as it should be, like this:

(defprimitive <=
(lambda (v* s k)

(if (and (eq? «car v*) 'type) 'number)
(eq? «cadr v*) 'type) 'number) )

(k (create-boolean «= «car v*) 'value) «cadr v*) 'value») s)
(wrong ,,<= require numbers") ) )

2 )

(defprimitive *
(lambda (v* s k)

(if (and (eq? «car v*) 'type) 'number)
(eq? «cadr v*) 'type) 'number) )

(k (create-number (* «car v*) 'value) «cadr v~) 'value») s)
(wrong "* require numbers") ) )

2 )
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4.3.12 Dotted Pairs
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For the first time among all the interpreters that we've shown so far, the dotted
pairs of the Scheme we are defining will not be represented by the dotted pairs of
the definition Scheme.

Because of the function allocate-pair, constructing a dotted pair is simple
enough.

(defprimitive cons
(lambda (v* s k)

(allocate-pair (car v*) (cadr v*) s k) )
2 )

Reading or modifying fields is also simple, like this:

(defprimitive car
(lambda (v* s k)

(if (eq? «car v*) 'type) 'pair)
(k (s «car v*) 'car» s)
(wrong "Not a pair" (car v*» ) )

1 )

(defprimitive set-cdr!
(lambda (v* s k)

(if (eq? «car v*) 'type) 'pair)
(let «pair (car v*»)

(k pair «pair 'set-cdr) s (cadr v*»)
(wrong "Not a pair" (car v*» ) )

2 )

All values that can be manipulated are coded so that their type can be inspected.
Since all objects know how to answer the message type, it is simple to write
the predicate pair? We'll use create-boolean to convert a Boolean from the
definition Scheme into a Boolean of the Scheme being defined, like this:

(defprimitive pair?
(lambda (v* s k)

(k (create-boolean (eq? «car v*) 'type) 'pair» s) )
1 )

4.3.13 Comparisons

One of the goals of this interpreter is to specify the predicate for physical compar
isons: eqv? That predicate physically compares two objects as well as numbers.
That predicate first compares the types of the two objects, then, if they agree,
it specifically compares the two objects. Symbols must have the same name to
pass the comparison. Booleans and numbers must be the same. Dotted pairs or
functions must be allocated to the same address(es).

(defprimitive eqv?
(lambda (v* s k)

(k (create-boolean
(if (eq? «car v*) 'type) «cadr v*) 'type»

(case «car v*) 'type)
«null) It)
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«boolean)
«(car v*) 'boolify)
«(cadr v*) 'boolify) It If)
«(cadr v*) 'boolify) If It) ) )

«symbol)
(eq? «car v*) 'name) «cadr v*) 'name»

«number)
(= «car v*) 'value) «cadr v*) 'value»

«pair)
(and (= «car v*) 'car) «cadr v*) 'car»

(= «car v*) 'cdr) «cadr v*) 'cdr» ) )
«function)
(= «car v*) 'tag) «cadr v*) 'tag» )

(else If) )
If ) )

s ) )

2 )

In fact, the only reason for giving a function an address (other than the one we
just mentioned that functions-or more precisely, their closures-are data struc
tures allocated in memory) is that we can then compare functions by means of
eqv? Functions are projected onto their addresses, which are entities that are
easy to compare since they are merely integers. Notice that comparing dotted
pairs does not necessitate any inspection of their contents but only the addresses
associated with them. In consequence, comparison is a function with constant cost
compared to equal?

The definition of eqv? might seem generic since we have defined it as a set of
methods for disparate classes. In fact, a clever representation of data let's us cut
through type-testing and go directly to comparing the implementation address of
objects; we can often reduce that activity to a simple instruction, except possibly
for bignums.

4.3.14 Starting the Interpreter

Now we'll get right to the interpreter. The toplevelloop is re-invoked in the con
tinuation that it gives to evaluate, still insuring the diffusion of the memory state
acquired during the most recent interaction.

(define (chapter4-interpreter)
(define (toplevel s)

(evaluate (read)
r.global
8

(lambda (v 88)
(display (tran8code-back v ss»
(toplevel ss) ) ) )

(toplevel s.global) )

The basic problem with this interpreter is that for the first time in this book,
the data of the Scheme being interpreted are quite different from the underlying
Scheme. This difference is particularly noticeable for dotted pairs, that is, for lists
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(q the-empty-list s»
(q (create-boolean c) s»
(q (create-symbol c) s»
(q (create-string c) s»
(q (create-number c) s»

that serve internally, for example, to organize arguments submitted to a function.
Since the dotted pairs of the two levels (defining and defined languages) are no
longer equivalent, we resort to transcode-back for decoding the final value that we
get. That function runs the value through certain memory state and transforms it
into a value of the definition Scheme so that we can then print it. We could equally
well have chosen to print it directly without passing by the display function of
the underlying Scheme.

(define (transcode-back v s)
(case (v 'type)

«null) ,(»
«boolean) «v 'boolify) #t If»~

«symbol) (v 'name»
«string) (v 'chars»
«number) (v 'value»
«pair) (cons (transcode-back (s (v 'car» s)

(transcode-back (s (v 'cdr» s) ) )
«function) v) ; why not?
(else (wrong "Unknown type" (v 'type») ) )

4.4 Input / Output and Memory

We haven't yet talked about input/output functions. If we limit ourselves to a
single input stream and a single output stream (that is, to the two functions read
and display), then the problem·could be treated precisely by adding two supple
mentary arguments to the interpreter to represent these two streams. The input
stream would contain all that would be read, while the output stream would be
made up of all that would be written there. We could even assume that the output
stream would be the only observable response from the interpreter.

The output stream could be represented by a list of pairs (memory, value)
the ones that we provided one-by-one to the function transcode-back. But then
what would the input stream be? The question is a subtle one because the values
that will be read might contain dotted pairs that could be modified physically
themselves. We could, indeed, write (set-car! (read) 'foo) and then read
(bar hux). That observation indicates that the expression read must be installed
in the memory current at the moment that read is called. The function transcode
will thus take a value of the underlying Scheme, a memory, and a continuation,
and then will call this continuation on the transcoded value and the new memory
state in which it has been installed.

(define (transcode v s q)
(cond
«null? c)
«boolean? c)
«symbol? c)
«string? c)
«number? c)
«pair? c)
(transcode (car c)
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s
(lambda (a ss)

(transcode (cdr c)
ss
(lambda (d sss)

(allocate-pair a d sss q) ) ) ) ) ) ) )

We won't go any further with this variation because it necessitates two more
arguments (to indicate the input and output streams) in all the functions we've
presented in this chapter.

4.5 Semantics of Quotations

Perhaps you've noticed the omission of quotations from the current interpreter.
The form quote was always "biblically" simple in the preceding chapters because
the values of the definition Scheme and the Scheme being defined were identical.
Since that identity no longer holds, we can no longer write things like this:

(define (evaluate-quote v r s k) WRONG
(k v s) )

We would commit an error there by confusing v as an element of the program
(the element which defines the value to quote) with the value of the form. In other
words, v is not the value to return but rather the definition of it. That distinction
was not apparent in the previous interpreters because of their transparent coding.
We must thus make use of transcode to transform v into a value in the Scheme
being defined, like this:

(define (evaluate-quote c r s k)
(transcode c s k) )

This definition is compositional because computing the value returned by the
quotation depends only on the arguments provided to evaluate-quote. At the
same time, it introduces a breach between the current program in Lisp or Scheme.
Consider only the expression (quote (a. b)). By definition, as we have given
it, it is exactly equivalent to (cons 'a 'b).12 When we quote a composite object,
like the dotted pair here (a. b), we induce the construction of such an object
in current memory. Thus quotation is a shortcut conveniently expressing the idea
that a value is being constructed. That fact excludes the possibility of the following
expression returning True:

(let «foo (lambda () '(f 0 0»»
(eq? (foo) (foo» )

In that example, the local function foo synthesizes new values at each call; the
futures of those values are independent of one another; those values are different in
the sense of eq? If we always want True from that computation, then we need to
hack evaluate-quote so that it always returns the same value once such a value
has been chosen; that is, we need to make a memo-function. One reason for wanting
such a device is that, in the absence of side effects, (that is, in absence of eq?), it is

12. In more concise terms, ,(a. b) == (( , 'a. , 'b) .
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not necessary to construct the same value over and over again, and besides, doing
so would be quite costly. Indeed, we can do without that completely.

Of course, in the presence of side effects, the situation is completely different,
as you can see from the following:

(define *shared-memo-quotations* ,())

(define evaluate-memo-quote
(lambda (c r s k)

(let «couple (assoc c *shared-memo-quotations*)))
(if (pair? couple)

(k (cdr couple) s)
(transcode c s (lambda (v ss)

(set! *shared-memo-quotations*
(cons (cons c v)

*shared-memo-quotations* ) )
(k v ss) )) ) ) ) )

However, the preceding memo-function has re-introduced an assignment, start
ing from a side effect, something for which we would like to reduce the need.
Another solution is to transform the initial program in such a way to regroup all
the quotations into one place where they will be evaluated only once: in the header
of the program. Then every time that a quotation appears, it will be replaced by
a reference to a variable which has already been correctly initialized. Accordingly,
we'll transform the program like this:

(let «foo (lambda () '(f 0 0))))

(eq? (foo) (foo)) )
(define quote35 '(f 0 0))

(let «foo (lambda () quote35)))
(eq? (foo) (foo)) )

The program transformed that way will regain the usual semantics of Lisp
without our necessarily touching the definition of evaluate-quote.

If we want to get rid of quoting composite objects totally, we could follow up the
transformation we explained earlier and make explicit all the successive allocations
for constructing quoted values. In that way, we get this:

(define quote36 (cons '0 '()))

(define quote37 (cons '0 quote36))
(define quote38 (cons 'f quote37))
(let «foo (lambda () quote38)))

(eq? (foo) (foo)) )

However, that's not the end of this issue since we must also insure that quoted
symbols of the same name still correspond to the same value. For that reason, we'll
continue the transformation like this:

(define symbo140 (string->symbol "f"))
(define symbo139 (string->symbol "0"))

(define quote36 (cons symbo139 '()))
(define quote37 (cons symbo139 quote36))
(define quote38 (cons symbo140 quote37))
(let «foo (lambda () quote38)))

(eq? (foo) (foo)) )

We'll stop there since we can consider strings as primitive objects. We can
translate them as such in assembly language or in C, and it would be too costly to
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translate them into their ultimate components: characters!
In the end, we can accept a compositional definition of quoting since, by trans

forming the program, we can revert to our usual habits. However, we might scru
tinize these bad habits that depend on the fact that programs are often read with
the function read and that thus the expression that appears in a quote and that
specifies the immediate data to return is coded with the same conventions: same
dotted pairs, same symbols, etc. Natural laziness thus impinges on the interpreter
to use this same value and thus to return it every time it's needed. In doing so, we
share it with all the receivers of the quotation which leads to the misunderstandings
that have long been the delight of Lispers of the old school. Consider, for example,
the following expressions:

(define vowel<=
(let «vowels '(#\a #\e #\i #\0 #\u»)

(lambda (c1 c2)
(memq c2 (memq c1 vowels» ) ) )

(set-cdr! (vowel<= #\a #\e) '(»
(vowel<= #\0 #\u) ~?

When those expressions are interpreted, there's a strong possibility that the
return value will not be #t, and they will provoke an error. Besides, if we print the
definition of the function (or if we had made the closed variable vowels a global
variable instead) then we would see that it changes into this:

(define vowel1<=
(let «vowels '(#\a #\e»)

(lambda (c1 c2)
(memq c2 (memq c1 vowels» ) ) )

By doing so, we make part of the program disappear! The same technique could
inversely make the value of the variable vowels grow instead of diminishing it.
This "memo-visceral" effect happens only with the interpreter; it has no meaning
if we compile the preceding program. In effect, if the global variable vowel<= is
immutable, a call to (vowel<= #\0 #\u) where the function and all its arguments
are known, can be replaced by It. That phenomenon is known as constant folding,
a technique generalized by partial evaluation, as in [JGS93].

The compiler might also decide to transform the preceding definition after an
alyzing the possible cases for c1, like this:

(define vowel2<=
(lambda (c1 c2)

(case c1
«#\a) (memq c2 '(#\a #\e #\i #\0 #\u»)
«#\e) (memq c2 '(#\e #\i #\0 #\u»)
«#\i) (memq c2 '(#\i #\0 #\u»)
«#\0) (memq c2 '(#\0 #\u»)
«#\u) (eq? c2 #\u»
(else If) ) ) )

This new equivalent form does not guarantee that (eq? (cdr (vowel<= #\a
#\e)) (vowel<= #\e #\i)) since the results do not come from the same quota
tion. In Lisp, it is not even guaranteed that the value of (eq? (cdr (vowel<=
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#\a #\e)) (vowel<= #\e #\i)) will always be False because compilers usually
retain the right to coalesce constants (that is, to fuse quotations) in order to make
them take less space. Compilers might thus transform the preceding definition into
this:

(define quote82 (cons #\u '(»)

(define quote81 (cons #\0 quote82»

(define quote80 (cons #\i quote81»

(define quote79 (cons #\e quote80»

(define quote78 (cons #\a quote79»

(define vowe13<=
(lambda (c1 c2)

(case c1
«#\a) (memq c2 quote78»
«#\e) (memq c2 quote79»
«#\i) (memq c2 quote80»
«#\0) (memq c2 quote81»
«#\u) (eq? c2 #\u»
(else If) ) ) )

This kind of transformation has an impact on shared quotations, and you can
see the impact when you use eq? One simple solution to all these problems is to
forbid the modification of the values of quotations. Scheme and COMMON LISP

take that approach. To modify the value of a quotation has unknown consequences
there.

We could also insist that the value of a quotation must really be immutable,
and to do so, we would define quotation like this:

(define (evaluate-immutable-quote c r s k)
(immutable-transcode c s k) )

(define (immutable-transcode c s q)
(cond
«null? c) (q the-empty-list s»
«pair? c)
(immutable-transcode
(car c) s (lambda (a ss)

(immutable-transcode
(cdr c) ss (lambda (d sss)

(allocate-immutable-pair
a d sss q ) ) ) ) ) )

«boolean? c) (q (create-boolean c) s»
«symbol? c) (q (create-symbol c) s»
«string? c) (q (create-string c) s»
«number? c) (q (create~number c) s» ) )

(define (allocate-immutable-pair ads q)
(allocate 2 s

(lambda (a* ss)
(q (create-immutable-pair (car a*) (cadr a*»

(update (update ss (car a*) a) (cadr a*) d) ) ) ) )

(define (create-immutable-pair a d)
(lambda (msg)
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(case msg
«type)
«boolify)
«set-car)
«set-cdr)
«car)
«cdr)
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'pair)
(lambda (x y) x»
(lambda (s v) (wrong "Immutable pair"»)
(lambda (s v) (wrong "Immutable pair"»)
a)

d) ) ) )

With that definition, any attempt to corrupt a quotation will be detected. This
way of distinguishing mutable from immutable dotted pairs can be extended to
character strings, and (as in Mesa) we could distinguish modifiable strings from
unmodifiable ropes.

In partial conclusion, it would be better not to attempt to modify values re
turned by quotations. Both Scheme and COMMON LISP make that recommenda
tion. Even so, we're not yet at the end of the problems posed by quoting. We've
already mentioned the technique of coalescing quotations and indicated how that
technique can insure equal quotations constructing values that are physically equal
according to eq? Conversely, it could happen that we have physical equalities in
quotations that we would like to sustain in their values. There are at least two
ways to specify such physical equalities: macros and special handling in the reader.

In COMMON LISP, macro-characters carry out special programmable treatments
when certain characters are read. For example, #. expression "reads" the value of
expression. In other words, expression is read and evaluated13 on the fly, and its
value is reputed to be whatever was read. Accordingly, we can write this:

(define bar (quote #. (let «list '(0 1») COMMON LISP
(set-cdr! (cdr list) list)
list »)

That expression initializes the variable bar with a circular list of 0 and 1,
alternately. The quotation created that way defines a value that is physically equal
to its cddr. CLtL2 [Ste90] insures that it will be equal to its cddr at execution. You
can imagine that this practice makes the transformation of quotations we explained
earlier somewhat more complicated because we now have to take into account the
cycles for reconstructing them.

The preceding cycle cannot be constructed in Scheme because there we do
not have character-macros. Nevertheless, we have macros that serve the same
purpose. The following macros cannot be written with define-syntax so we use
define-abbreviation, a macro for defining macros that we'll analyze in Chapter 9.
[see p. 311]

(define-abbreviation (cycle n)
(let «c (iota 0 n»)

(set-cdr! (last-pair c) c)
'(quote ,c) ) )

(define bar (cycle 2»

In that way, we construct a circular list by means of a number that is known
during macro-expansion and that appears in a quotation. We could not have
written that quotation by hand because it is not possible to make Scheme read

13. We can't say how. That is, we don't know in which environment nor with which continuation.
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cyclic data. That's possible in COMMON LISP with the aid of the character-macros
#n= and #n#14:

(define bar #1=(0 1 . #1#»

The current semantics of Scheme seem to exclude such cycles because they
correspond to definitions of values that we could not have written by hand. The
only legal quotations are, in fact, those that we can write.

In Chapter 9, we'll go more deeply into the many problems posed by macros.
[see p. 311]

4.6 Conclusions

Following this chapter, we could give a prodigious amount of advice to Schemers
and other Lispers. The precise nature of global variables is complicated, even more
so if we consider the problems of modules. Various ideas of equality are subtle and
far from widely shared. Finally, quotation is not as simple as it first appears; we
should abstain from convoluted quotations.

4. 7 Exercises

Exercise 4.1 : Give a functional definition (without side effects) of the function
min-max.

Exercise 4.2 : The dotted pairs that we simulated with closures use symbols
as messages. Disallow the operations set-car! and set-cdr!, and rewrite the
simulation by using only A-forms.

Exercise 4.3 : Write a definition of eq? comparing dotted pairs with the help of
set-car! or set-cdr!.

Exercise 4.4 : Define a new special form of syntax (or a {3) to return the value
of a if it's True; otherwise, undo all the side effects of the evaluation of a and
return what {3 returns.

Exercise 4.5 : Assignment as we defined it in this chapter returns the value that
has just been assigned. Redefine assignment so that its value is the value of the
variable before assignment.

Exercise 4.6 : Define the functions apply and callicc for the interpreter in this
chapter.

14. In the example, it's necessary to read an object that is part of itself. Consequently, the
function read must be intelligent enough to allocate a dotted pair and then fill it. You see there
the usual paradoxes involving self-referential objects, like #1=#1#.
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Exercise 4.7 : Modify the interpreter of this chapter to introduce n-ary functions
(that is, functions with a dotted variable).



5
Denotational Semantics

A FTER a brief review of A-calculus, this chapter unveils denotational se
mantics in much of its glory. It introduces a new definition of Lisp-this
time a denotational one-differing little from that of the preceding in
terpreter but this time associating each program with its meaning in the

form of a respectable mathematical object: a term from A-calculus.

What exactly is a program? A program is the description of a computing
procedure that aims at a particular result or effect.

We often confuse a program with its executable incarnations on this or that
machine; likewise, we sometimes treat the file containing the physical form of a
program as its definition, though strictly speaking, we should keep these distinct.

A program is expressed in a language; the definition of a language gives a
meaning to every program that can be expressed by means of that language. The
meaning of a program is not merely the value that the program produces during
execution since execution may entail reading or interacting with the exterior world
in ways that we cannot know in advance. In fact, the meaning of a program is a
much more fundamental property, its very essence.

The meaning of a program should be a mathematical object that can be ma
nipulated. We'll judge as sound any transformation of a program, such as, for
example, the transformation by boxes that we looked at earlier [see p. 115], if
such a transformation is based on a demonstration that it preserves the meaning
of every program to which it is applied. The meaning of a program must be a re
spectable mathematical object in that the meaning must not be ambiguous and it
must be susceptible to the tools that have developed over centuries, even millenia,
of mathematical practice. To give a meaning to a program is to associate it with
an object from another space, a space more obviously mathematical. For example,
it would be judicious, even clever, for the the program defining factorial [see p.
27] to be exactly the usual mathematical factorial because then we would know
that this definition does, indeed, compute the factorial, and we would also know
whether it variants like meta-fact [see p. 63] were really equivalent.

If we want to associate meaning with a program, then we have to search for
a mathematical equivalent, but this search forces us to know the properties of
the programming language that we're using. The problem is thus to associate a
programming language with a method that gives meaning to every program written
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in that language. In that sense, we speak of the semantics of a programming
language. The semantics of a programming language has more than one use: the
semantics enables us to understand a language so that we can implement it, so
that we can prove the validity of transformations in it, so that we can compare its
characteristics with other languages, and so forth. Indeed, the uses of semantics
are numerous, but semantics are not unique, and diverse methods exist.

The most venerable method of defining a language is surely to choose a reference
implementation. Then when we have a question about the language, such questions
as, for example, the value or the effects of such and such a program, then we submit
the issue to the reference implementation, and we accept its answer as if it were
an oracle. The difficulty here, though, is that we can hardly build a theory on
the reference implementation, certainly not if we have to treat it like a black box.
In contrast, if we're really interested in the implementation and consequently try
to open the black box, as it were, we'll find ourselves face to face with a program
written in a certain language, and our ignorance of that language or any ambiguities
in it put us squarely back in the problem of meaning again.

Another approach exploits the idea of a virtual machine. With it, we don't
escape entirely from the problem we just mentioned, but we divide it into two
distinct parts. In one part, the language is defined in terms of a virtual machine
having a certain architecture and instruction set. All instructions of the language
are defined by a certain group of instructions in the virtual machine. If we know
how the virtual machine works, then we understand the language. In the other
part, the virtual machine itself is written in an ad hoc formalism making it possible
to implement the virtual machine on any reasonable computer.

Many languages have been defined in that way, from PLI (with VDM) to Le-Lisp
(and LLM3 [Cha80]), PSL [GBM82] or even Gambit above PVM [FM90].

The main difficulty is how to elaborate the virtual machine since it has to be
simultaneously clear in its intention, easy to use, and trivial to implement. To do
all that, we have the choice of machines with stack(s), register(s), driven by trees or
graphs, etc. (This scenario corresponds to an idealized version of programming in
assembly language where the designer would have the freedom to define his or her
own machine.) This technique makes it possible to compare programs by looking
at their translations into the virtual assembler or by examining the trace of their
execution. Since we have recourse here to a machine, even if it is virtual, we call
this technique operational semantics.

That strategy has a defect: it requires a non-standard machine, or more pre
cisely, it requires a computing formalism. If, for that formalism, we used a theory
already known to everybody, then we could spare ourselves that machine. A pro
gram is above all a function that transforms its input into output. "To execute"
such a function does not require a complicated machine: only a few centuries of
mathematical practice and culture are sufficient "to apply" it. The idea is thus to
transform a program into a function (from an appropriate space of functions). We
call that function its denotation. The remaining problem is then to understand the
space of denotations.

For this purpose, A-calculus is a good choice. Its basis is so simple that every
body agrees about how it works. The semantics of a language then becomes the
process by which we associate a program with its denotation. That process is, in
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fact, a function, too. The denotation of a program is the A-term representing its
meaning. Provided by these denotations, the theory of standard A-calculus makes
it possible to determine what a given program computes, whether two programs
are equal, and so forth. There are, of course, many variations depending on the na
ture of the denotations, the type of A-calculus chosen, the way of constructing the
semantic function to associate programs and their denotations, but the structure
that we've just explained is what we conventionally call denotational semantics.

We should also mention another approach based on the proof of programs by
Floyd and Hoare. This approach is known as axiomatic semantics. The idea
is to define each elementary form of a language by a logical formula, like this:
{P}form{Q}. That formula indicates that if P is true before the execution of
form, and if the execution of form terminates, then Q will be true. We can thus
specify all the elementary forms of a language and define it axiomatically. You
can clearly see the advantage of such a description for the techniques to prove
correctness in that language. In contrast, this is a non-constructive procedure so it
reveals nothing about the implementation of a language. It doesn't even indicate
whether an implementation exists.

Even so, we have not yet exhausted the arsenal of semantics currently in use. We
should also mention natural semantics as in [Kah87]. It favors the idea of relations
(over functions) in a context derived from denotational semantics. There is also
algebraic semantics, as in [FF89], which reasons in terms of equivalent programs
by means of rewrite rules.

5.1 A Brief Review of A-Calculus

Denotational semantics consists of defining (for a given language) a function, called
the valuation, that associates each valid program of the language with a term in
the denotation space. As the denotation space, we'll choose A-calculus because
of its structural simplicity and its proximity to Scheme, described as an efficient
interpreter of A-calculus in [SS75, Wan84].

Here we'll very briefly cover A-calculus.! Its syntax is simple: the terms of
A-calculus are variables, abstractions, or applications (or combinations since in
Lispian terms, functions in A-calculus are monadic). We'll use Variable to indicate
the set of possible, usable variables and A for the set of terms of A-calculus. A can
be defined recursively like this:

variable:
abstraction:
combination

\::Ix E Variable,
\::Ix E Variable, \::1M E A,
\::IM,NEA,

x EA
Ax.M E A
(MN) E A

As usual in Lisp, the syntax is not terribly important, and we could equally well
write the terms of A-calculus in parenthesized form. 2 The set of terms of A-calculus
is thus syntactically a subset of the terms of Scheme reduced to the sole special
form lambda, like this:

1. There's a good introduction to A-calculus in [Sto77, Gor88]. The "bible" of A-calculus begins
with [Bar84].
2. By the way, that's what McCarthy did in 1960 at MIT.
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x (lambda (x) M) (M N)

With A-calculus, we can write functions. There is even a rule for applying them:
the f3-reduction. It simply stipulates that when we apply a function with body M
and variable x to a term N, we get a new term which is the body M of the function
with the variable x replaced by the term N. We indicate that by this notation:
M[x ---+ N]. That's the usual model for substitution, always used in mathematics
without ever being formalized. It's also the rule used in the preceding subset of
Scheme (without side effects, with lambda as the sole special form) when we apply
a function to its argument.

f3-reduction: (Ax.M N) ~ M[x ---+ N]
The substitution M[x --+ N] is a subtle operation defined by taking care not to

capture unrelated variables. Such captures occur only when we make substitutions
in the body of abstractions: there we again encounter the problem linked to free
variables in the body of functions. The free variables of N must not be captured
by the surrounding variables in M as was the case for dynamic binding. In Lispian
terms, we should rather say that A-calculus involves lexical binding. In the following
definition of a substitution, we've added a few superfluous parentheses to isolate
terms that are substituted.

x[x --+ N] = N
y[x ---+ N] = y with x :I y
(Ax.M)[x --+ N] = Ax.M
(Ay.M)[x ---+ N] = Az.(M[y --+ z][x --+ N]) with x :I y and z not free in (M N)
(M! M2 )[x ---+ N] = (M! [x ---+ N] M2 [x --+ N])

A redex is a reducible expression, or more precisely, an application in which
the first term (that is, the term in the function position) is an abstraction. A
f3-reduction suppresses a redex. When a term contains no redex (in other words,
it cannot be reduced further), we say that the term is in normal form. Terms in
A-calculus do not necessarily have a normal form, but when they have one, it is
unique because of the Church-Rosser property.

When a term has a normal form, there exists a finite series of f3-reductions that
convert the original term into the normal form. An evaluation rule is a procedure
that indicates which redex (if there is more than one) ought to be f3-reduced.
Unfortunately, there are both good and bad evaluation rules. One good evaluation
rule is always to evaluate the redex for which the opening parenthesis is the leftmost.
That rule does not necessarily minimize the computation, but it always terminates
at the normal form if such a normal form exists. For that reason, we call it normal
order or call by name. A bad evaluation rule-the one that Scheme follows, in
fact-is known as call by value. In call by value, we apply the function only after
having evaluated its arguments. Let's look at a few examples. Here's an example
of a term without a normal form:

(w w) with w = AX.(X x) since (w w) L (w w) L (w w) L ...
In Scheme, that program loops and consequently leads to no term at all, thus

certainly not to a normal form.
Here's a term that has a normal form, but the evaluation rule in Scheme prevents

us from finding it:

«AX.Ay.y (ww)) z) ~ (Ay.y z) ~ z
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In Scheme, that first argument (w w) would be computed and loop infinitely,
so the normal form would never be found.

Conversely, and also unfortunately, in Scheme we can evaluate a term without
a normal form. The reason is that in Scheme we do not reduce terms in the body
of lambda forms even if there is a redex. For example,

Ax.(w w)
So why do we cling to that evaluation rule in Scheme if it's not a good one?

One reason is that computing by means of call by value is much more efficient than
the "good rule," call by name, even if that one can be improved to call by need.
Another reason is that every time Scheme achieves a value in normal form, it's the
same value that would have been achieved by the "good rule" anyway since the
normal form is after all unique. There is thus a frequent and fortunate coincidence
between values produced by both good and bad evaluation rules.

A practical convention in A-calculus syntactically supports functions with multi
ple variables by positing that Axy.M is the same as Ax.Ay.M. Reciprocally, to make
it easier to apply these functions, we posit that (MN1 N2 ) is in fact ((MN1 )N2 ).

That next to last example then becomes even easier to write and to understand as
this simply: (Axy.y (w w) z)

There you can see why it's pointless to compute the value bound to the variable
x which will not even appear in the final answer.

There's great deal more we could say about the pleasures of A-calculus, but for
them, we'll direct you to fine works on the subject by [Bar84, Gor88, DiI88]. Among
other things, we could enrich A-calculus by supplementary terms, such as integers.
When enlarged in that way, it's known as applied A-calculus. We could also add
new rules among such terms; for example, 2+2 = 4 is known as a 8-rule. However,
this kind of elaboration is not logically necessary since integers and Booleans can
be encoded as A-terms, and their arithmetic and logical operations can be as well.
Even the structure of a list, with cons, car, cdr, can be built up that way, as in
[Gor88]. [see Ex. 4.2]

In conclusion, we should say that A-calculus is a highly refined theory that
provides us simultaneously a simple but powerful framework for computing. In
fact, fi-reduction is as powerful though not so complicated as a Turing machine.
Equally important, A-calculus furnishes a basis for equality (two terms are equal
if they reduce to the same third term) so we can compare terms. For all those
reasons, A-calculus is an excellent denotation space for our purposes.

5.2 Semantics of Scheme

As we've argued, then, A-calculus is a great candidate to represent denotation. The
preceding interpreter was written in a Scheme without side effects. It defined an
evaluation function, evaluate, with the following signature:

evaluate: Program x Environment x Continuation x Memory ---+ Value

With a slight effort, we can imagine modifying that signature by currying the
first argument (the program) and thus getting this:

Program ---+ (Environment x Continuation x Memory ---+ Value)
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Environment
Address
Value
Function

We could associate each fragment of a program with a function that expects
us to provide only an environment, a continuation, and memory to indicate which
value it should return. We'll stop there, that is, with the semantics of Scheme as
well as the exact nature of our denotations.

valuation: Program -+ Denotation
Denotation: Environment x Continuation x Memory -+ Value

However, the people who practice denotational semantics don't really like paren
theses, and they even have strong preferences about the style for elaborating deno
tations. First of all, they use (and abuse) Greek letters and notation shortened to
the point of being elliptic and even cryptic. The reason for such habits is that after
much practice, they can keep the semantics of an entire language short enough to
fit on one page where anyone can see the whole of it at a glance. This advantage3

is incompatible, of course, with long identifiers or verbose keywords. The choice
of Greek letters is also motivated by the fact that denotations are written in a
language that must not be confused with the language that is being defined. Since
most of the languages that denotational semanticists are defining are computing
languages and thus use only that limited set of characters known as ASCII, Greek
letters keep things short and limit confusion. Finally, for greater security, denota
tions are typed, and the names of variables indicate their type.

We, too, will follow those tenacious conventions. By long and customary usage,
functions are indicated by cpo Other entities are usually indicated by the Greek
initial of their English name, for example, 1"lJ for continuation, a for address, v for
identifier (that is, name), 1r for program, a for memory (that is, store). But who
knows why environments are indicated by p?

1r Program p
v Identifier a
a Memory €

1"lJ Continuation cp

Each word in boldface in that chart names a domain representing objects han
dled by denotations. You see there all the objects that the preceding chapters
introduced. The following chart defines those domains.

Environment ~ Identifier --+- Address
Memory ~ Address --+- Value

Value ~ Function + Boolean + Integer + Pair + ...
Continuation ~ Value x Memory --+- Value

Function ~ Value* x Continuation x Memory --+- Value

As usual, the asterisk indicates repetition. The domain Value* is the domain
of sequences of Value. The sign x indicates a Cartesian product. The sign +
represents the disjoint sum of domains; that is, an element of Value is an element
of Function or of Boolean or of Integer, etc. All types of values are represented
by a domain appearing in that sum. The disjoint sum of domains has the property
that, when we take an element of Value, we know the exact domain that it comes
from. Since we've accepted the rule that entities must be typed, we have to declare

3. This advantage is even more conspicuous if you recall that the average length of a typical
scientific communication is about ten pages.
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how and where these changes of domain occur. The expression € inValue means
that we inject the term t in the domain Value while € IInteger projects the value t

in the domain from which it comes (assuming, of course, that t is an integer).
These domains are defined recursively (a mathematically sensitive issue). More

over, they are known as domains, rather than sets. Without going into detail, we
should say that A-calculus was developed by Alonzo Church in the thirties, but that
this construction did not have a mathematical model until after work by Dana Scott
around 1970. In short, A-calculus had proved its usefulness already, but once it had
a mathematical model, it was around for good. Since then, properties have been
extended in several different ways, producing several different models: DOC or Pw

in [Sc076, St077].
Extensionality is the property that (\fx,/(x) =g(x)) => (I =g). It is linked to

the 'T]-conversion that we often take as a supplementary rule of A-calculus.

'T]-converslon: Ax.(M x) ~ M with x not free in M

Strangely enough, Pw is extensional because two functions that compute the
same thing at every point are equal, whereas DOC is not extensional. Is Mother
Nature extensional?

Scott has shown that any system of domains recursively defined by means of
only ~, x, +, *, has a unique solution. In that sense, domains really exist.

An important principle of denotational semantics is compositionality: that the
meaning of a fragment of a program depends only on the meaning of its components.
This principle is the basis of inductive proof that we can carry out within the
framework of a language defined in that way. It's also a useful principle from the
point of view of the language itself: we can understand a fragment of a program
independently of whatever surrounds it.

The valuation function associated with a language usually is indicated by £.
To re-enforce the distinction between a program and its semantics, we will enclose
fragments of programs within semantic brackets, [ and]. Finally, we'll present
valuation case by case, that is, elementary form by elementary form.

5.2.1 References to a Variable

The simplest denotation concerns the value of a variable.

£[v] = ApKu.(K (u (p v)) u)

The denotation of a reference to a variable (here, v) is a A-term that, given an
environment p, a continuation K, a memory u, will determine the address associated
with the variable in the environment (p v), will submit this address to memory to
get the associated value (u (p v)), will finally return this value to the continuation
accompanied by the unmodified memory (since reading memory is non-destructive).

We've used a syntactic convention to write functions with multiple arguments.
Nevertheless, if we want, we can write something more exact but less legible, like
this:

£[v] = Ap.AK.Au.(K (u (p v)) u)

No need to show off our formalism, so we will abandon this painful and obscure
way of writing. In passing, to simplify things even further, we'll adopt the following
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writing convention, similar to the style of define in Scheme. It will remove a fe\v
more layers of A.

£[V]pKU = (K (u (p v)) u)

There's a possible error in the denotation of references where the variable does
not appear in the environment. That erroneous situation is handled by the initial
environment, Po, which is:

(Po v) = wrong "No such variable"

When a variable is not defined in the environment, the searcher will invoke the
function wrong which, in turn, produces a value generally indicated by -1.. This
value is absorbent; that is, \ff, f -1. = -1.. Consequently, when an erroneous situation
occurs, the entire computation results in -1., a clear indication that an error has
occurred. In fact, it is not so much -1. that has this quality of absorbency; it's more
the functions that we manipulate that we call strict. Specifically, f is strict if and
only if f -1. = -1.. This convention relieves us to a degree from handling errors and
leaves only the most significant part of the denotation.

5.2.2 Sequence

The denotation of a sequence will use an auxiliary valuation that will be the equiv
alent of the function eprogn that you saw in earlier interpreters. We will indicate
it by £+. We chose that name because there is necessarily at least one term in the
sequence of forms that it denotes. Still conforming to that tradition, we'll indicate
a succession of non-empty forms as 7r+. The valuation £+ will convert a succession
of non-empty forms 7T'+ into a denotation evaluating all the terms in left to right
order and returning the value of the last of these forms. Its purpose is that two
cases define the sequence, depending on whether it contains only one or more than
one form. In Scheme, the meaning of the empty sequence (begin) is not specified,
a point highlighted by its absence from the following cases:

£[(begin 7r+)]pKU = (£+[7r+] P K u)

£+[7r]pKU = (£[7T'] P K u)

£+[7r 7r+]pKU = (£[7r] P A€U1.(£+[7r+] P K U1) u)

When the sequence contains only one unique term, then the sequence is equiv
alent to that term. We may indicate that idea more directly, simply saying this:

£+[7r] = £[7T']

In terms of A-calculus, what we just wrote is an 1]-simplification. We'll avoid
such ruffles and flourishes because they make code (or denotations) harder to read
by completely masking the natural arity of functions; according to [WL93], they're
often there only to look more intelligent anyway.

When the sequence contains more than one term, the denotation calculates the
value of the first of these terms and forgets it in order to calculate the other terms.
That's the usual definition that we see popping up once more with all the details
that you've now become accustomed to. You see clearly here, in just one line, that
the memory state resulting from the evaluation of the first term is the one that
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serves for the evaluation of the following terms. Continuations put the evaluations
in sequence, each of them passing the memory they received and used to the next
one.

5.2.3 Conditional

The denotation of a conditional is highly conventional and poses hardly any diffi
culties if we know how to get Booleans into A-calculus. In fact, Booleans are easy
to simulate in A-calculus. We will define the values True and False as combinators
(that is, functions without free variables), like this:

T = Axy.x et F = Axy.y

Intuitively, these definitions both take two values as arguments and return the
first or the second. This strategy resembles that of the logical connector If which
corresponds to the equations:

If(true, p, q) = p and If(false, p, q) = q

Careful: this logical connector has nothing to do with the special form if in
Scheme. Here, we're not talking about the order of evaluation, but only about
the fact that If is a function which could be defined by a truth table but which is
written more simply like this:

If(c, p, q) = (IC V p) 1\ (c V q)

If we take into account the code we choose for Booleans, there is a simple way
to simulate If in A-calculus: we write this new combinator IF, like this:

IF c p q = (c p q)

Just as in ordinary logic, this definition says nothing about the order of the
computation but states only a relation among three values. Seen as a function, If
returns its second argument if the first value is True; it returns the third argument
otherwise. Like [FW84], we'll call this function ef. In more Lispian terms, we can
approximate this function like this:

(define (ef v vi v2)
(v vi v2) )

To make the notation for a conditional more legible, for the moment, we'll adopt
the following syntax from [Sch86]:

co ---+ c1D c2

As for R4RS, it uses this:
£1 ---+ £2, £3·

With these ideas in mind, we articulate the denotation of a conditional like this:

£[ (if 1r 1r1 1r2) ]pKO" =
(£[1r] P A£0"1. (boolify £)

---+ (£[1r1] P K 0"1)
o(£[1r2] p K 0"1) 0")
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The function boolify converts a value into a Boolean since every value in Scheme
is implicitly a truth value. A conditional thus starts by evaluating its condition
with a new continuation that decides which branch of the conditional to follow
according to the value of the condition. Careful: the conditional in A-calculus
looks as though it behaves like our old friend if-then-else, but they differ in a
significant respect: nothing, absolutely nothing, indicates the order of evaluation.
Inside A-calculus, we could very well evaluate the condition and two branches of a
conditional in parallel in order to choose among them once all the computations
are complete.

The consequences of that fact are important because we cannot look at A
calculus (in some ways, the language in which we are defining a new interpreter) as
we used to look at Scheme: there is no idea in A-calculus of any order in evaluation.
To articulate the denotation defining a conditional, we could say that the value of
a conditional is (among the two possible values) the one indicated by the value of
the condition.

There is no unfair competition nor hidden side effects if we evaluate the two
branches of a conditional in parallel since each has its own set of parameters defining
the computation, and besides, we're in a pure language completely stripped of side
effects. For example, there's no problem with the following expression, even though
you might think that if we don't evaluate the components in the "right" order, we're
courting disaster:

(if (= 0 q) 1 (/ p q»

That expression tests whether the divisor is null before the division, and in that
case, it returns the value 1. Its denotation simply states that the choice between
the value 1 and the quotient of p divided by q will be made according to whether
or not q is null.

The difficulty of this operator comes from the habit we might have acquired
from Scheme and from the fact that we see A-calculus through the evaluation rule
for Scheme. To a degree, we diminish the distance between Scheme and A-calculus
by rewriting the denotation of a conditional like this:

We've introduced a little sequentiality here since the redices have been ordered.
The value of the conditional serves only to choose the denotation of the elected
branch, the one invoked independently.

The problem with this new definition is knowing whether it is still equivalent
to the preceding one. It entails proving whether the two denotations are the same
for a given program. To do so, it suffices to show this:

( booIify €) --+ (£ [7r1] p K 0") 0 (£[7r2] p K 0") == (( booIify €) --+ £ [7r1]0£ [7r2] p K 0")

That equivalence is obviously false in Scheme because of the fact that evaluation
is ordered. To convince ourselves, all we have to do is make 7r2 an expression
that loops. However, denotations are terms from A-calculus and thus have to be
compared according to the laws of A-calculus. Consequently, we simply distribute
the application of a conditional.

When we see how cryptic that syntax is, we're prompted to adopt a more
eloquent notation for denotational if-then-else:
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E[(if 1f' 1f'1 1f'2)]pKlT =
(E[1f'] P AelT1.( if (boolify e)

then E[1f'l]
else E[1f'2]
endif P K lT1) IT)

5.2.4 Assignment

157

The denotation for assignment is simple. The version we present here has the newly
assigned value for its value.

E[(set! 1/ 1f')]pKlT = (E[Jr] P AelT1.(K e lT1[(p 1/) ~ e]) IT)

f[y ~ z] = Ax. if y = x then z else (f x) endif

Memory is extended to reflect the assignment that's carried out, so the value
e is associated with the address of the variable 1/. We produce this extension by
using suggestive ad hoc notation: IT[a ~ e]. There is other, similar notation, like
[a ~ e]lT in [Sch86] or [e/a]lT in [St077] or even IT[e/a] in [Gor88, CR91b].

Let's enrich our A-calculus with a few supplementary functions. We'll write
sequences between these delimiters: ( and ). We'll indicate the concatenation of
sequences by this sign: §. To extract terms from a sequence, we'll indicate the
extraction of the ith term of a sequence by (e1' e2, ... ,en) 1 i. To indicate the
truncation of the first i terms from a sequence, (that is, to get this: (ei+1, ... ,en)),
we'll write: (e1, ... ,en) t i. The notation #e* indicates the length of the sequence
e*. All this notation can be defined in pure A-calculus, but doing so obscures the
presentation a bit, so without sacrilege, we'll use 11, t1, #, and § as the denotational
equivalent of car, cdr, length, and append.

We'll extend the extension of the environment itself to a group of points and
images. In what follows, we'll assume that the two sequences, x* and y* , have the
same length.

f[y* ~ z*] = if #y* > 0 then f[y* t 1~ z* t l][y* 11~ z* 11] else f endif

5.2.5 Abstraction

As a first effort, we'll denote only functions with fixed arity, that is, those lacking
a dotted variable.

E[(lambda (1/*) Jr+)]pKlT=
(K inValue(A e* K1lT1.

if #e* =#1/*
then allocate lT1 #1/*

A lT2a*.
(E+ [1f'+] p[1/* ~ a*] K1 lT2[a* ~ e*])

else wrong "Incorrect arity"
endif ) IT)

The injection inValue takes a .A-term representing a function and converts it to
a value. The inverse operation will appear in the functional application.
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When a function is invoked and after its arity has been verified, new addresses
are allocated to be associated with variables of the function and to contain the
values that they take for this invocation. Allocation of addresses in memory is
carried out by the function allocate; it takes memory, the addresses to allocate,
and a kind of "continuation" that it will invoke on the allocated addresses and the
new memory where these addresses have been allocated. allocate is a real function,
so when its arguments are equal, it makes corresponding equal results, but its exact
definition is generally left vague in order not to overburden denotations. Besides,
its definition is so low-level technically that it is not very interesting.

The function allocate is polymorphic; a can represent any type. Here's it sig
nature:

Memory x NaturalInteger x (Memory x Address* -+ a) -+ a

(A precise definition of allocate appeared in the previous chapter. [see p. 132])

5.2.6 Functional Application

Functions are meant to be applied, so here's the denotation of application. Once
again, we'll use a new auxiliary valuation: £*, a kind of denotational evlis.

£[ (7r 7r*) ]pKlT = (£[7r] P A)OlT1'(£* [7r*] P AC:* lT2.()O IFunction c:* K lT2) lT1) IT)

£* [ ]pKlT = (K () IT)

£*[7r 1r*]pKlT = (£[1r] P AC:lT1.(£*[1r*] P AC:* lT2.(K (c:)§c:* lT2) lT1) IT)

Continuations that use £* don't wait for a value but for a sequence of values.
That was not the case for the valuation £+. The values of K in these definitions
thus have the following type:

Value* x Memory -+ Value

5.2.7 callIcc

Our fast trip through denotations would not be complete without a definition of a
function essential to the semantics of Scheme: callicc. We define it like this:

(lTo (po [callicc])) =
inValue(A C:*KlT.

if 1 = #£*
then ( £* !llFunction

(inValue( A £* 1 K1 lT1.
if 1 = #£*1
then (K £*1!1 lT1)
else wrong "Incorrect arity"
endif )) K IT)

else wrong "Incorrect arity"
endif )

Notice that there are the successive injections and projections between the
various domains of Value and Function. The denotation itself is not really any
more complicated than the other ways of programming callicc that you've already
seen in Chapter 3. [see p. 95]
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5.2.8 Tentative Conclusions

159

We've just managed, case by case, to define a function that associates a A-term
with every program. There's no doubt about the existence of this function because
we have used the principle of composition to construct it. If we allow syntactically
recursive programs as in [Que92a], then we need a little more theory to prove that
we have a well defined function.

For now, we can show that the semantics of primitive special forms in Scheme
can be seen at a glance: Table 5.1.

Of course, the special form quote is missing (quotation poses problems, as you
remember [see p. 140]), and we won't see functions with variable arity until
later. We're also missing eq? for comparing functions and a number of other
predefined functions. We have, however, gotten callicc, appearing in its simplest
guise. Other functions of the predefined library, like cons, car, set-cdr! can be
simulated in this subset by closures without adding any hidden features. On that
basis, we can talk about the essentials independently of any additional functions
that we might add. The basis of the language, that is, its special forms and
primitive functions like callicc, are enough to anchor our understanding.

Still, we insist that being able to see the essentials of Scheme in a single table
with this degree of detail is well worth such austere coding practices. In this way,
we're bringing to an end our progress since taking off from using an entire Scheme
to define an approximate Scheme in the first chapter. Now we've arrived at using
A-calculus to define an entire Scheme.

5.3 Semantics of A-calcul

Defining the essentials of a language in so few signs is one of the attractions of
Scheme. Indeed, for just that reason, functional languages generally become veri
table experimental linguistic laboratories for introducing new constructions and for
studying them in terms of basic, fundamental, and common traits. Depending on
the characteristics that we want to analyze, we could, of course, start from a more
restricted linguistic basis, such as A-calculus itself. That assertion is not really
tautologic; it provides a second example of the denotation of a language that is
different but related: the semantics of A-calculus itself.

Let's focus first on the syntax. Since syntax has no importance for us here other
than clarifying our ideas, we'll deliberately choose a Scheme-like syntax:

x (lambda (x) M) (M N)

Now let's determine the domains to manipulate. A-calculus has no idea of
assignment nor continuation, and we'll take advantage of those facts. While we're
at it, we'll limit ourselves to a non-applied A-calculus with closures as the only
values. Here, then, are the domains. You can see that they are a restricted set of
the domains of Scheme.
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E[v] = ApK;U.(K; (u (p v)) u)

E[(set! v 1r)]pK;U = (E[1r] P A€Ul.(K; € Ul[(p v) ~ €]) u)

E[ (if 1r 1rl 1r2) ]pK;U =
(E[1r] P A€Ul. if (boolify €)

then (E[1rl] p K; Ul)
else (E[1r2] p K; Ul)
endif u)

E[(lambda (v*) 1r+)]pK;U =
(K; inValue(A €* K;1 Ul.

if #€* = #v*
then allocate Ul #v*

A U2a*.
(E+[1r+] p[v* ~ a*] K;1 u2[a* ~ €*])

else wrong "Incorrect arity"
endif ) u)

E[ (1r 1r*) ]pK;U = (E[1r] P A<pUl.(E* [1r*] P A€* U2.(<p IFunction €* K; (2) Ul) u)

E*[1r 1r*]pK;U = (E[1r] P A€Ul.(E*[1r*] P A€*U2.(K; (€)§€* (2) Ul) u)

E*[ ]pK;U = (K; () u)

E[ (begin 1r+) ]pK;U = (E+ [1r+] P K; u)

E+[1r]pK;U = (E[1r] P K; u)

E+[1r 1r+]pK;U = (E[1r] P A€Ul.(E+[1r+] P K; Ul) u)

(uo(po[call/cc])) =
inValue(A €* K;U.

if 1 = #€*

then ( €* 111 Fu net ion

(inValue (A €* 1 K; 1U 1 .

if 1 = #€*1

then (K; €*111 Ul)
else wrong "Incorrect arity"
endif )) K; u)

else wrong "Incorrect arity"
endif )

Table 5.1 Essential Scheme
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7r Program
v Identifier
p Environment
£ Value
<.p Function

Identifier -+ Value
Function
Value -+ Value

We'll call the valuation function £. It will associate a A-term with a denotation,
that is, another A-term. Consequently, the valuation has this signature:

£ : Program -+ (Environment -+ Value)

The only task left to do is to define that function, case by case, by analyzing
the various syntactic possibilities, as in Table 5.2.

£[v]p = (p v)

£[(lambda (v) 7r)]p = A£.(£[7r] p[v -+ £])

£ [ (7r 7r')]p =((£ [7r] p) (£ [7r'] p))

Table 5.2 Semantics of A-calculus

This denotation is scrupulous with respect to the order of evaluation of terms in
a functional application (or combination). In effect, the combination is transformed
into a combination and nothing is said about the order.

The valuation £ is defined recursively. There's no problem in doing that here
because of compositionality: all the recursive calls are carried out in smaller pro
grams, and the terminal case is provided by reference to the variables.

A-calculus is a special case for us because we already have a very clear idea of
the semantics of its terms. We can prove (see [Sto77, page 158]) that the change
to denotations preserves all its necessary properties and, notably, ,8-reduction.

Denotation from A-calculus is the basis of denotation in functional languages
with no side effects nor continuations. When side effects and continuations are
introduced, it's generally necessary to introduce an explicit order of evaluation to
handle them correctly. If we also want to add assignment, then we have to split the
environment by introducing addresses, the famous boxes of Chapter 4 or references
as in ML. [see p. 114]

5.4 Functions with Variable Arity

In this section, we'll show how to incorporate functions with variable arity into
Scheme. These functions are special in that they handle excess arguments that they
receive as a list. Consequently, at every invocation, there is an allocation disguised
as dotted pairs, which, by the way, can be very expensive if these functions are
used frequently. In a certain way, the antidote to functions with a list of dotted
variables is the primitive function apply; it converts a list of values into the 111issing
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arguments. Functions of variable arity are thus inevitably associated in Scheme
with lists, so we must define the denotations of the usual functions (like cons, car,
set-cdr!) on lists.

Dotted pairs are represented by the domain Pair. It appears as one of the
components of the disjoint sum defining Value. The domain Pair itself will be
defined as in the preceding chapter, by the Cartesian product of two addresses.

Value = Function + Boolean + Integer + Pair + ...
Pair = Address x Address

The denotations of cons, car, and set-cdr! (we need to show at least one
side effect on dotted pairs) are highly conventional; they hardly differ at all from
the programming style we used in the preceding chapter. The only difficulties now
are in notation because, for example, we have to interpret £* 111Pair12 in this way:
£* 11 is the first argulnent of the function, a value, which is then projected on the
domain of dotted pairs, IPair; if it is not a dotted pair, we get 1..; finally, we extract
the address of its cdr from this dotted pair, that is, its second component, 12.

(0"0 (Po [cons])) =
inValue(A£* KO". if 2 = #£*

then allocate 0" 2 AO"l a*.(K inValue((a* 11,a* 12)) O"l[a* ~ £*])
else wrong "incorrect arity"
endif )

(0"0 (Po [car])) =
inValue(A£* KO". if 1 = #£*

then (K (0" £* 111Pair11) 0")
else wrong "incorrect arity"
endif )

(0"0 (Po [set-cdr !])) =
inValue(A£* KO". if 2 = #£*

then (K £* 11 0"[£* 111PaiJ2--+ £* 12])
else wrong "incorrect arity"
endif )

Once the structure of lists is known, apply is simple to specify. We gather the
arguments from the second (since the first argument is the function to invoke) to
the last, excluded. This gathering must be a list that we flatten. We then gather
the successive terms into a sequence of arguments to which we apply the specified
function.

(0"0 (Po [apply])) =
inValue(A£* KO". if #£* ~ 2

then (£* 111Function (collect £* t 1) K 0")
whererec collect = A£* 1. if £* 1 t 1 = ()

then (flat £* 111)
else (£* 111)§( collect £* 1 t 1)
endif

and flat = A£. if £ E Pair
then ((0" £ IpaiJ1))§(flat (0" £ IPaiJ2))
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else ()
endif

else wrong "Incorrect arity"
endif )

Now we can actually get to functions with variable arity. For them, we'll change
the denotation of the special form lambda and introduce a particular valuation
function. Its only role will be to create bindings between variables and values.
We'll call this new valuation B for binding. Its signature is related to the signature
of denotations, the signature of [. More precisely, we'll use an abbreviation T as a
shortcut and write this:

T Value* x Environment x Continuation x Memory
[: Program ---+ T ---+ Value
B: ListofVariables ---+ (T ---+ Value) x T ---+ Value

B, the binding valuation, binds a variable to the address that contains its value
only after the arity has been verified by lambda. When that succeeds, it runs
through the list of variables, and the corresponding locations are allocated one
by one. The lexical environment where the function was defined is progressively
enlarged. Finally, the body of the function is evaluated. Here, then, is the new
way of presenting functions of fixed arity:

[[(lambda (v*) ~+)]pKU~

(K inValue(A€* K1U1. if #€* ~ #v*
then ((B[v*] A€*lP1K2U2.([+[~+]P1 K2 U2))€* P K1 U1)
else wrong "Incorrect arity"
endif ) u)

B[v v*]J-t ~ (B[v] (B[v*] J-t))

B[]J-t ~ J-t

B[v]J-t ~
A€*pKu.allocate U 1 AU1a*. leta ~ a* 11

in (J-t €* t 1 p[v ---+ a] K u1[a ---+ €* 11])

To handle functions of variable arity, we will introduce a new case in the deno
tation of lambda with a dotted list of variables as well as the appropriate binding
clause. That clause takes a sequence of values, converts it into a list of values (a
real list made up of real dotted pairs) and binds it to the dotted variable. The
co-existence of functions with multiple arity, of the function apply, and of side
effects (as specified in Scheme) means that fresh dotted pairs have to be allocated.
So the following expression should return False:

(let «arguments (list 1 2 3»)
(apply (lambda args (eq? args arguments» arguments) )

An evaluator that wants to share dotted pairs has to prove beforehand that
doing so does not alter the semantics of the program.

Here, finally, are the denotations of functions with multiple arity:

[[(lambda (v* . v) ~+)]pKU ~

(K inValue(A €*K1U1.



164 CHAPTER 5. DENOTATIONAL SEMANTICS

if #£* 2:: #v*
then ( (B[v*] (B[. v] A £* 1P1K2U2.

(£+[7r+] P1 1"2 (2) ))

£* P 1"1 (1)
else wrong "Incorrect arity"
endif ) u)

B[. v]Jl =
A £* PK,U.

(listify £* U A £U1.

allocate U1 1
A U2a*.

let a =a* 11

in (Jl () p[v ---+ a] I" u2[a ---+ £])
whererec listify =A £*lU1K1.

if #£*1 > 0
then allocate U1 2

A U2a*.

let 1"2 = A £ua.
(1"1 inValue(a*) ua[a* 12---+ £])

in (listify £* 1 t 1 u2[a* 11---+ £* 111] 1"2)

else (1"1 inValue( ()) (1)

endif

Here you can see that the denotation of non-trivial characteristics of Scheme,
such as functions of variable arity, necessitates a non-negligible denotational pro
gramming effort. In fact, we've written a veritable interpreter. When you compare
the elegance of the description of the kernel with the preceding lines, you see that
adding an interesting but minor trait nearly doubles the size of the definition; we
won't mention how cryptic the addition makes the definition.

5.5 Evaluation Order for Applications

Occasionally in electronic news groups, there are violent, almost religious flames
about this characteristic in the various standards for Scheme. Up to now, this point
has been unchanging: that the order for evaluating terms of a functional application
is not specified. Not specifying the evaluation order discourages everyone from
writing programs that depend on evaluation order, but it also makes searching
for errors in this area particularly difficult. A great many programs, even some
written by recognized authorities, depend obscurely on the order of evaluation,
especially when continuations are mixed in. For our part, we favor left to right
order; it corresponds to the conventional direction for reading many languages,
and it makes searching for errors at least more systematic.

Two objections from the opposing party are interesting in this context. The first
is that many languages do not impose this order. Among them, the C programming
language does not. Thus if we directly compile (foo (f x) (g x y)) in C as
foo(f(x) ,g(x,y)), then nothing is sure about the order produced, and it can be
expensive to impose order here.
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The second argument is more subtle. In a world without order, we can impose
one by using begin to impose a sequence explicitly. In contrast, if an order is
imposed, then there is no longer a way to write a program where the order is
left unspecified. We're reduced in such a case to something like using a random
order generator that prescribes a particular order to follow at execution time-an
expensive solution at best. [see Ex. 5.4]

Order is not imposed in C so that the compiler can consider the terms of an
application in whatever order it needs or finds most efficient, notably with respect
to allocating registers.

Explicit order simplifies program debugging by eliminating one source of inde
terminism. If the order is not prescribed, two executions of the same program can
turn out differently, not leading to the same result. Consider this example4 :

(define (dynamically-changing-evaluation-order?)
(define (amb)

(call/cc (lambda (k) «k #t) (k #f)))) )
(if (eq? (amb) (amb))

(dynamically-changing-evaluation-order?)
#t ) )

The internal function amb returns True or False according to the evaluation
order. If the order changes dynamically, then the function dynamically-chan
ging-evaluation-order? halts; otherwise, it loops indefinitely. R4RS does not
stipulate anything that would necessarily make this program loop or halt. If order
were imposed, then obviously this program loops forever.

In this discussion, we have to distinguish the implementation language clearly.
An implementation absolutely must choose an evaluation order when it evaluates
an application. It might decide to adopt left to right order for all applications, or
right to left, like MacScheme, or some other order, depending on its whim of the
moment. I know of no implementation that, having chosen an order for a particular
application, changes that order dynamically. In practice, order is usually chosen at
compile time and it's not questioned afterwards. The language may not impose an
order, but the implementation is free to choose one and publish the choice; that's
legal.

The problem that interests us now is how to specify that no order is prescribed.
The solution we propose is to change the structure of denotation subtly. A deno
tation has been a A-term waiting for an environment, a continuation, and memory
to return a value. Our choice about returning a value has been somewhat limiting
because in fact the result of an evaluation is twofold: it includes a value and, in
addition, the resulting state of memory. For that reason, we could equally well take
the pair (value, memory) as the image of a denotation. We'll actually transcend
this question altogether by naming a codomain of denotations, Result, and we'll
leave its definition a little vague for the moment.

Since more than one evaluation order is possible, then rather than returning
a unique response, a denotation could return a set of possible responses among
which one would be chosen according to obscure criteria left to the discretion of
the implementation. We'll modify the preceding valuation £ to return the set of all

4. This program was implemented in collaboration with Matthias Felleisen.
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possible responses now, and we'll introduce N to choose one among them. We'll
indicate the set of parts of Q as P(Q). The signatures then become these:

£ : Program --+- Value· x Environment x Continuation x Memory
--+- P(Result)

N: Program --+- Value· x Environment x Continuation x Memory
--+- Result

The valuation N is defined straightforwardly as calling the function oneof, the
definition of oneofis left to the implementation; it chooses the one it wants among
all the possible results.

N[1r]pKO" = (oneof (£[1r] p K 0"))

Now we have to modify the denotation of a functional application to return all
possible values. Semantics inspires the technique we'll use. To say that there is no
evaluation order is to say that when confronted with an application, the evaluator
chooses one of the terms, say, 1ria, evaluates it to get its value, Cia' then chooses
a second term, say, 1ri1, evaluates it in turn and gets ci1 , and continues that way
to the last term. The values Cia' ci 1 , . .. are then re-ordered into co, C1 ... , and
the first among them is applied to the others. Notice the order of choices as it's
been described. It would be quite different to fix the order of evaluation of all
terms before the evaluation of the first one, as was done in R[3,4]RS. Let's take an
example. Not only will this function print an undetermined digit when called, but
the returned continuation when invoked will also print another undetermined digit.

(define (one-twa-three)
(call/cc (lambda (k)

«begin (display 1) (call/cc k»
(begin (display 2) (call/cc k»
(begin (display 3) (call/cc k» ) » )

The denotation of the application without order will "implement" exactly what
we articulated earlier. It will consider all the possible choices of terms, aided
by the function forall which applies its first argument (a ternary function) to all
the possible cuts of its second argument (a list). The function cut chops a list
into two segments; the first contains the first i terms of the list; all the other
terms occur in the second. The continuation (the third argument of cut) is finally
applied to these two segments. The programming is quite subtle, a good example
of the continuation passing style. Sophie Anglade and Jean-Jacques Lacrampe, in
[ALQ95], collaborated on the following definitions.

£[( 1ro 1r1 ... 1rn )]pKU =
((possible-paths (£[1rO],£[1r1],' .. £[1rn ]))p AC*O"l'(c* !llFunction c* t 1 '" 0"1) 0")

(possible-paths J-t+) =
A pKO".

if #J-t+ t 1 > 0
then (forall A J-t+ 1J-tJ-t+ 2·

(J-t P A CU1·

( (possible-paths J-t+ 1§J-t+ 2)
p A c*0"2.

let '"1 = A c* 1c* 2.
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(K c*1§(c)§c*2 a2)
in(Cut#p,+lC*K1) a1) a) p,+)

else ( p,+ 11
P A cal.

(K (c) a1) a)
endif

(forall cp I) =
(loop () 111 1t 1)
whererec loop = A11c/2.(cp 11 c 12) u if #/2 > 0

then (100P /1§(c) 12 11 12 t 1)
else 0
endif
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(cut l c* K) =
(accumulate () l c*)
whererec accumulate = AIl1/1. if II >0

then (accumulate (/111)§1 £1- 1/1 t 1)
else (K (reverse I) 11)
endif

For all these variations about the order of evaluation, all were sequential-a
point imposed by Scheme. The terms might not be evaluated in a particular order
(they are "disordered," as it were), but they still have to be evaluated one after
another. In that light, the only possible responses to the following program are (3
5) or (4 3), but in no case is (3 3) possible.

(let «x 1)(y 2»
(list (begin (set! x (+ x y» x)

(begin (set! y (+ x y» y) ) )

In contrast, the new valuation £ applied to the following program allows two
possible responses: 1 or 2. A given implementation will compute only one, but it
will be one of those foreseen.

(call/cc (lambda (k) «k 1) (k 2»» ~ 1 or 2

5.6 Dynamic Binding

The idea of dynamic binding is not only important but also useful, and it has
prevailed so long in Lisp interpreters that we really have to give it one of its possible
denotations. To do so, we'll extend the denotation of the Scheme we've already
explained so far, and we'll add to that a few special forms for handling this new
type of binding. There are, in fact, many kinds of dynamic binding using special
forms or specialized functions. [see p. 50] Traditionally, Scheme exploits this
latter solution to avoid tampering with the denotation of its kernel. Unfortunately,
certain functions, though they respect the function calling protocol, perturb this
ideal. Just think about callicc: it requires continuations. The denotation of
dynamic binding implies the existence of an environment for storing these bindings.
For that reason, we'll introduce a new environment wherever needed. The kernel
of a Scheme without embellishments appears in Table 5.3.
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£ [v] p6I\:U = (I\: (u (p v)) u)

£[(if 1r 1r1 1r2) ]p6l\:u =
(£[1r] P 8 A€U1.( if (boolify €)

then £[1r1]
else £[1r2]
endif p 8 I\: (1) u)

£[(set! v 1r)]p8I\:u = (£[1r] P 8 A€U1.(1\: € U1[(P v) ~ €]) u)

£[(lambda (v*) 1r+)]p8I\:u=
(I\: inValue(A €*811\:1U1'

if #€* =#v*
then allocate U1 #v*

A U2O'*.
(£+[1r+] p[v* ~ 0'*] 81 1\:1 U2[O'* ~ €*])

else wrong "Incorrect arity"
endif ) u)

£[ (1r 1r*) ]p8l\:u =
(£[1r] P 8 A 'PU1·

(£*[1r*] P 8 A €*U2.
( 'P IFunction

€* 8 I\: (2) (1) u)

£*[1r 1r*]p6I\:u = (£[1r] P 8 A€U1.(£*[1r*] P 8 A€*U2.(1\: (€)§€* (2) (1) u)

£*[ ] p8 I\:U = (I\: () u)

£[(begin 1r+)] =£+ [1r+]

£+ [1r]p8I\:U = (£[1r] P 8 I\: u)

£+ [1r 1r+]p6I\:u = (£[1r] P 8 A€U1.(£+ [1r+] P 6 I\: (1) u)

(uo(po [callicc])) =
inValue(A €*8I\:u.

if 1 =#€*

then ( €* 111Function

(inValue(A €* 1811\:1 u1.
if 1 = #€*1

then (I\: €* 111 (1)
else wrong "Incorrect arity"
endif )) 8 I\: u)

else wrong "Incorrect arity"
endif )

Table 5.3 Scheme and dynamic binding
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The dynamic environment, identified by 8, follows a very different path from
the lexical environment p because it is passed as an argument to functions that
can exploit the current dynamic environment that way. It is also different from
memory, indicated by (1', which is single-threaded: every step of a computation takes
the current memory as input, consults it or modifies it, and passes it to the next
step. Memory is thus unique since we never need the preceding version of it. The
dynamic environment is not like memory because, for example, it is common to all
the terms of a functional application that share it.

The dynamic environment is defined by the domain DynEnv like this:

8 DynEnv = Identifier ~ Value

There are two special forms for handling dynamic bindings: dynamic-let and
dynamic. dynamic-let establishes a dynamic binding between a variable and a
value while its body is being computed. dynamic-let knows how to handle only
one unique variable, but that fact does not lessen the power of the language, nor
even its ease of use. dynamic returns the value of a dynamic variable; it raises an
error if the variable has not yet been defined. Since we have not defined any way of
modifying such a binding, the dynamic environment directly associates the name
of variables with their values without any intermediate addresses. You can see the
semantics of these two special forms in Table 5.4. Here's their syntax:

(dynamic-let (variable value) body ... )
(dynamic variable)

(80 v) = wrong "No such dynamic variable"

£[(dynamic V)]p8K(1' = (K (8 v) (1')

£[(dynamic-let (v 11") 1I"+)]p8K(1' =
(£[7r] P 8 A€(1'1.(£+[1I"+] P 8[v·~ €] K (1'1) (1')

Table 5.4 Special forms of dynamic binding

Those two denotations are straightforward. They enlarge or search the dynamic
environment and thus provide a new name space, one for dynamic variables-those
that must not be confused with truly lexical variables. Once again, you can see
from a short example using only a few Greek letters how powerful denotations are.
They lend their aptitude to anyone who can decypher them.

The idea of a dynamic environment is very important. Not only does it serve
dynamic variables; it also works for functions that handle errors, for escapes with
dynamic extent, or for concepts that control computations, as in [HD90, QD93].
Here, for example, is a simplistic (and not very good) protocol for trapping errors:
every time an anomaly occurs, the implementation constructs an object describ
ing the anomaly and applies the value of the dynamic variable *error* to it.
In that way, we protect ourselves from any possible error by means of the form
dynamic-let binding *error* to an ad hoc function. As an example of this pro
tocol, Scheme specifies that an attempt to open a non-existing file raises an error
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but provides no function to know whether the file exists. We could then progran1
a predicate indicating whether a file exists at the exact moment that the predicate
is called, like this:

(define (probe-file filename)
(dynamic-let (*error* (lambda (anomaly) If))

(call-with-input-file filename
(lambda (port) It) ) ) )

That's just an approximate definition because, in fact, we have to test whether
the anomaly really has to do with the error "absent file" and not, for example,
with the error "no more input ports available." To handle such errors correctly, an
evaluation must cooperate by constructing the right objects to represent anomalies.

5.7 Global Environlllent

In this section, we'll study the global environment, denoting it in several different
ways. Just as we did when we introduced dynamic bindings, we'll denote the
essence of Scheme by adding a global environment. Like the local environment p,
this global environment, transforms identifiers (names) into addresses. The global
environment will faithfully accompany memory: every step of a computation will
return memory and a global environment, possibly one that has been modified.
Table 5.5 defines an essential Scheme with an explicit global environment. However,
we've removed denotations involved with reference to a variable and to assignment
from this definition.

5.7.1 Global Environment in Scheme

On this basis, we'll be able to construct many possible definitions of the global
environment. Scheme stipulates that (i) we can get the value of a variable only
if it exists and is initialized; (ii) we can modify a variable only if it exists; (iii)
redefining a variable is comparable to assignment.

To express those first two rules denotationally, we have to be able to test whether
or not a variable appears in an environment. Thus instead of the codomain of
environments being the address space, we'll enlarge this codomain with a point
that differs from addresses. That point will denote the absence of a variable. In
denotational terms, we'll do this:

LocalEnvironment :
GlobalEnvironment:

Identifier ~ Address + {no-such-binding}
Identifier ~ Address + {no-s'Uch-global-binding}

As a consequence now, the denotations for referring to a variable and for as
signing a variable are straightforward: first, we check whether the variable is local,
then whether it is global. This check produces an address which we then use to
read the value of the variable. Of course, the initial environments have to match
this coding.

(Po v) = no-such-binding

(,0 v) = no-such-global-binding
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£[(if 1r 1r1 1r2) ]PIKO" =
(£[1r] P I '\£/10"1. if (boolify £)

then (£[1r1] P 11 K 0"1)
else (£[1r2] P 11 K 0"1)
endif 0")

£[(lambda (v*) 1r+)]PIKU=
(K inValue('\ £*/1K10"1'

if #£* = #v*
then allocate 0"1 #v*

,\ 0"2 a *.

(£+[1r+] p[v* ~ a*] 11 K1 0"2[a* ~ £*])

else wrong "Incorrect arity"
endif ) I 0")

£[(1r 1r* )]PIKO" =
(£[1r] P, '\<P/10"1.(£*[1r*] P 11 ,\£*/20"2.(<P IFunction £* 12 K 0"2) 0"1) 0")

£*[1r 1r*]PIKO" =
(£[1r] P I '\£/10"1'(£* [1r*] P I ,\£* 120"2.(K (£) §£* 12 0"2) 0"1) 0")

£*[ ]PIKO" = (K () I 0")

£[(begin 1r+)]PIKO" = (£+[1r+] P I K 0")

£+[1r]PI KO" = (£[1r] P I K 0")

£+[1r 1r+]PI KO" = (£[1r] P I '\£'10"1.(£+[1r+] P 11 K 0"1) 0")

(O"O(po [callicc])) =
inValue('\ £*'KO".

if 1 = #£*

then ( £* 111 Fu nction

(inValue('\ £* 1,1 K1 0"1·
if 1 = #£*1

then (K £*111 ,1 0"1)
else wrong "Incorrect arity"
endif )), K 0")

else wrong "Incorrect arity"
endif )

Table 5.5 Scheme and a global environment
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&[v] =
Ap,KG'. let a = (p v)

In if a = no-such-binding
then let a1 = (, v)

In if a1 = no-such-global-binding
then wrong "No such variable"
else (I\: (G' (1) , G')
endif

else (K (G' a) , G')
endif

&[(set! v 1I")]p,l\:G' =

(&[11"] P , Ae'lG'l. let a = (p v)
In if a = no-such-binding

then let a1 = ('1 v)
In if a1 = no-such-global-binding

then wrong "No such variable"
else (I\: e ,1 G'1[a1 ~ e])
endif

else (I\: e ,1 G'l[a ~ e])
endif G')

We assume that the definition of global variables is carried out by the special
operator define; also we assume that the special form (define v 11") defines (or
redefines) the global variable v. For the moment, we'll ignore internal definitions
(introduced by the internal forms (define ... )); they are purely syntactic; for
that reason, we'll appoint define-global for external definitions. Here, then, is
the denotation of a definition, whether the effect of introducing a new variable or
the effect of modifying an existing one.

&[(define-global v 1I")]p,l\:u=

(& [11"] P , Ae,l G'1. let a = (, v)
In if a = no-such-global-binding

then allocate U1 1 AU2a* .(K e /1 [v ~ a* 11] u2[a* 11~ e])
else (I\: e /1 U1[a ~ e])
endif u)

These definitions characterize the behavior specified in Scheme except for the
definition of the initial global environment /0, which we've left a little vague; it
could contain only standard variables, or it could add a few additional ones, or
it might even contain every imaginable variable that we might ever need. In that
latter case, it would not know about non-existing variables, but we might encounter
uninitialized variables.

5.7.2 Automatically Extendable Environment

Certain Lisp systems let the first assignment of a free variable be equivalent to its
definition. It's easy to modify the semantics of assignment to incorporate the effect
of a definition if the variable does not yet exist.
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£[(set! V 1r)]p/KO" =
(£[1r] p,A £/10"1·

let 0: = (p v)
In if 0: = no-such-binding

then let 0:1 = (/1 v)
In if 0:1 = no-such-global-binding

then allocate 0"1 1
A 0"20:*.

(K £ 11 [v ~ 0:* 11] 0"2[0:* 11~ £])
else (K £ 11 0"1[0:1 ~ £])
endif

else (K £ 11 0"1[0: ~ £])
endif 0")

173

Such a variation is useful because the form define is no longer necessary and
can be conflated with set!. The disadvantage is that a misspelling of the name of
a variable can be hard to find since it does not automatically lead to an error at
its first use.

5.7.3 Hyperstatic Environment

Inside a hyperstatic global environment, functions enclose not only the local def
inition environment but also the current global environment. We express that
idea straightforwardly by a simple change in the denotation of an abstraction as it
appeared in Table 5.5.

£[(lambda (v*)1r+)]P1 KO" =
(K inValue(A £*/1K10"1'

if #£* =#v*
then allocate 0"1 #v*

A 0"20:*.

(£+[1r+] p[v* ~ 0:*] 1 K1 0"2[0:* ~ £*])
else wrong "Incorrect arity"
endif ) I 0")

That semantics is compatible with assignment in Scheme, where assignment
can modify only existing variables. However, defining new variables on the fly by
assignment leads to confusion. Just consider this:

(define (weird v)
(set! a-new-variable v) )

The assignment inside the function weird extends the global environment that
it closes, and it does so at every invocation since that extended global environment
is not stored by weird.

As we've already mentioned, the problem with hyperstatic global environments
is that non-local mutually recursive functions cannot be defined there straightfor
wardly. We could introduce a new form for codefinitions, authorizing the cojoint
definition of a multitude of bindings, but we would rather introduce the possibility
of referencing the global environment by means of a new special form (global v).



174 CHAPTER 5. DENOTATIONAL SEMANTICS

That will make it possible to reference the global variable v in any context, even
if a local variable v exists. As a consequence, we can write the codefinition of the
functions odd? and even? like this:

(letrec «odd? (lambda (n) (if (= n 0) #f (even? (- n 1»»)
(even? (lambda (n) (if (= n 0) #t (odd? (- n 1»») )

(define-global odd? odd?)
(define-global even? even?)

£[(global V)]PIKU=
let a = (, v)
in if a = no-such-global-binding

then wrong "No such variable"
else (K (u a) I u)
endif

£[(define-global v ~)]PIKU=

(£[~] P I AC/IUI. let a =(, v)
In if a = no-such-global-binding

then allocate Ul 1 AU2a* .(1\: CII [v -+ a* !1] U2[a* !1-+ c])
else (K C II Ul[a -+ c])
endif u)

There we see again that denotational semantics enables us to specify many
diverse environments of a language very elegantly. Of course, we can combine the
various environments explicated here so that we could offer multiple name spaces
in all their specificity, like COMMON LISP does.

5.8 Beneath This Chapter

The main purpose of this chapter was to demystify denotational semantics. We've
gone about this in an informal way (some might say in a sacrilegious way) because
that seemed to us the likeliest means of stimulating wider use of denotational se
mantics. As we have progressively enriched the linguistic characteristics specified
by our various interpreters and no less progressively reduced the definition lan
guage, we've been able gradually to move toward the denotations in this chapter,
or perhaps we should say toward a denotational interpreter. Even though Scheme
and A-calculus hardly seem alike, they are not so very dissimilar. In fact, it is
generally possible to get an executable denotation to correct errors that infiltrate
these semantic equations. The fact that it's executable is highly important: that's
what makes it possible for the defined language to behave like the designer wants it
to. The designer can exercise the language, experiment with it, test it to insure its
conformity with the equations of his or her dreams. Since the denotation is imme
diately executable as it appears in the equations, we can skip the implementation
phase where we would ordinarily have to prove rigorously that no distortions have
crept into the implementation.

Having to write a denotational interpreter is thus a gratifying and reassuring
activity. It doesn't cost us any advantages of A-calculus, but it adds a supplemen
tary constraint: a denotational interpreter has to be executable for a call by value
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(that "bad" evaluation method that Scheme uses). This constraint can often be
satisfied; to witness: all the denotations in this chapter correspond to code written
in Scheme and in fact they have passed through a little converter (LiSP21EX) to
print them in Greek [Que93d]. Just imagine what it would be like to write the
denotation of the application preserving the quality that evaluation order makes
no difference if we were not using an applicative language in which we can test such
functions!

Here's an example of the denotation of a simple abstraction (without variable
arity) so you can compare its "Greek" portrait on page 160.

(define «meaning-abstraction n* e+) r k s)
(k (inValue (lambda (v* k1 s1)

(if (= (length v*) (length n*»
(allocate s1 (length n*)

(lambda (s2 a*)
«meaning*-sequence e+)
(extend* r n* a*)
k1
(extend* s2 a* v*) ) ) )

(wrong "Incorrect arity") ) »
s ) )

Here we've used the outmoded form define that allowed a first argument in the
call position. The form (define (v. variables) 7r*) is recursively equivalent
to (define v (lambda variables 7r*» where v can still be a form of calling.

We've articulated denotations case by case, automatically carried out by an
appropriate function which produces the syntactic analysis. By now you're familiar
with its structure:

(define (meaning e)
(if (atom? e)

(if (symbol? e) (meaning-reference e)
(meaning-quotation e)

(case (car e)
«quote) (meaning-quotation (cadr e»)
«lambda) (meaning-abstraction (cadr e) (cddr e»)
«if) (meaning-alternative (cadr e) (caddr e) (cadddr e»)
«begin) (meaning-sequence (cdr e»)
«set!) (meaning-assignment (cadr e) (caddr e»)
(else (meaning-application (car e) (cdr e») ) ) )

5.9 ,\-calculus and Scheme

Since we are concerned about whether denotations can be executed, we have a
problem about the difference between Scheme and A-calculus. (Of course, we're
considering only that subset of "pure" Scheme with no assignment, no side effects.)
The difference rests mainly in the evaluation strategy. There is no fixed strategy
for A-calculus, so we have to be careful not to take a bad one. In contrast, there
is an evaluation strategy for Scheme, and it's different. Scheme uses call by value.
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That is, the arguments of an application are evaluated before they are submitted
to the function. Moreover, Scheme does not evaluate bodies of lambda forms.

We can simulate call by name in Scheme by using thunks. A thunk is a function
without variables that we also call a "promise" according to some terminologies.
In Scheme, there is the syntax delay to construct a promise, that is, an object
representing a certain computation to start (or force) once the time for it arrives.
We define delay and force like this:

(define-syntax delay
(syntax-rules ()

«delay expression) (lambda () expression)) ) )
(define (force promise) (promise))

The form delay closes an expression in its lexical context in a thunk that we
invoke on demand by force. We simulate a call by value with this mechanism
if we transform the program like this: every application (I a ... z) is rewritten
as (I (delay a) ... (delay z)), and every variable in the body of a function
is unfrozen by means of force. Here's an example. This calculation used to be
problematic in Scheme:

« (lambda (x) (lambda (y) y)) ; ((,Ax.,Ay.y (ww)) z)
«lambda (x) (x x)) (lambda (x) (x x))) )

z )

We rewrite that computation in the following way to suspend the computation
indefinitely without changing it and to return the value of the free variable z, like
this:

«(lambda (x) (lambda (y) (force y)))
(delay «lambda (x) «force x) (delay (force x))))

(lambda (x) «force x) (delay (force x)))) )) )
(delay z) )

Although it's correct according to [DH92], this rewrite introduces some inef
ficiency. Putting aside the double promise in (delay (force x)) (which is, in
fact, equivalent to x which is already a promise) every time we need the value of
a variable, we are obliged to force the computation even though it would suffice to
do it only once and store the result. This technique is known as call by need. It
corresponds to modifying delay to store the value that it leads to. Fortunately,
Scheme is an excellent language for implementing languages, so we can program
this technique by calling an assignment to the rescue, like this:

(define-syntax memo-delay
(syntax-rules ()

«memo-delay expression)
(let «already-computed? If)

(value 'wait) )
(lambda ()

(if (not already-computed?)
(begin

(set! value expression)
(set! already-computed? It) ) )

value ) ) ) ) )
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Of course, we could refrain from carrying out these transformations by hand
and design macros to do them, as in [DFH86]. If we really wanted to be efficient,
we could go on with a strictness analysis to determine the cases where variables
are always forced. That analysis would let us avoid constructing promises for those
variables, as in [BHY87]. Finally, we could adopt clever code for the promises to
eliminate the cost at execution time of the test (if (not already-computed?)
... ) . In Scheme, promises let us behave as if we were working in a lazy lan
guage where transformations announced earlier will be carried out automatically.
However, this programming style poses problems during debugging because the
computation is distributed. Moreover, this style does not go well with assignments
and continuations. Just compare these two programs from [KW90, Mor92]. They
differ only by one sole delay but they compute very different results.

(pair? (call/cc (lambda (k) (list (k 33)))))
(pair? (call/cc (lambda (k) (list (delay (k 33))))))

5.9.1 Passing Continuations

Even a quick look at denotations makes us realize that they are written in the
programming style known as programming by continuations or CPS for Continuation
Passing Style. Realizing that all of Scheme, including callicc can be denoted by A
calculus, which can itself be seen as a certain subset of Scheme excluding callicc,
we might validly ask about the possibility of transforming programs automatically
from Scheme to Scheme, just to get rid of callicc.

The chief interest of this style is thus to make continuations appear explicitly.
Realizing that these same continuations can be represented by lambda forms, we
ask, "Can we get along without the primitive callicc?" The answer is yes, and
we can thus develop a transformation that converts a program with callicc into
another equivalent program without it. Some compilers even use this latter form as
a quasi-intermediate language, as in [App92a], because it contains only the simplest
syntactic constructions. Others don't like it because this form in CPS is no longer
readable, and it fixes the order of evaluation too soon. Nevertheless, it is equivalent,
as [SF92] shows. The version of this transformation that we'll show soon is strongly
inspired by [DF90]. We'll use yet another version in Section 10.11.2. [see p. 404]

Let's look at the technique. We'll assume that every function will be called
with a supplementary argument,5 the continuation. Thus k (foo bar ... hux)
will be transformed into (foo k bar ... hux). Consequently, we must have a
representation of the continuation, we must also know how to handle special forms,
so we'll go directly to an analysis of the text to translate, just as all the preceding
interpreters have done. Like its denotational equivalent, the continuation waits for
a value and returns the final result of the computation. The continuation thus
closes the rest of the computations to carry out.

(define (cps e)
(if (atom? e)

(lambda (k) (k ',e))
(case (car e)

5. We'll put it first to simplify the management of functions with variable arity.
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«quote) (cps-quote (cadr e»)
«if) (cps-if (cadr e) (caddr e) (cadddr e»)
«begin) (cps-begin (cdr e»)
«set!) (cps-set! (cadr e) (caddr e»)
«lambda) (cps-abstraction (cadr e) (caddr e»)
(else (cps-application e» ) ) )

By passing a continuation, the transformation takes a program and returns a
closure that converts one program into another. In other words, the type of the
cps function is this:

Program -+ « Program -+ Program ) -+ Program )

Quoting is now easy to handle, too:
(define (cps-quote data)

(lambda (k)
(k '(quote ,data» )

Assignment becomes this:
(define (cps-set! variable form)

(lambda (k)
«cps form)

(lambda (a)
(k '(set! ,variable ,a» ) ) ) )

It converts the form for which the value will serve as the assignment to the
variable and inserts it in its place in the assignment which must be generated.

Conditional is handled similarly:
(define (cps-if bool formi form2)

(lambda (k)
«cps bool)
(lambda (b)

'(if ,b ,«cps formi) k)
,«cps form2) k) ) ) ) ) )

Sequence is comparable:
(define (cps-begin e)

(if (pair? e)
(if (pair? (cdr e»

(let «void (gensym "void"»)
(lambda (k)

«cps-begin (cdr e»
(lambda (b)

«cps (car e»
(lambda (a)

(k '( (lambda (, void) ,b) ,a» ) ) ) ) ) )
(cps (car e» )

(cps '(» ) )

Notice that begin forms have been suppressed in favor of closures.
The complicated part is how to handle the form lambda. It must be converted

into a new function that takes a supplementary variable, and the functional appli
cation must provide the continuation as a supplementary argument to the invoked
function. A slight improvement has been introduced here when the called function
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is trivial; that is, when it carries out a simple computation, a short one that always
terminates. These functions have been organized into lists6 of primitives.

(define (cps-application e)
(lambda (k)

(if (memq (car e) primitives)
«cps-terms (cdr e»

(lambda (t*)
(k '(, (car e) , (Qt*» ) )

«cps-terms e)
(lambda (t*)

(let «d (gensym»)
'(,(car t*) (lambda (,d) ,(k d»

. ,(cdr t*) ) ) ) ) ) ) )

(define primitives '( cons car cdr list * + - = pair? eq? »

(define (cps-terms e*)
(if (pair? e*)

(lambda (k)

«cps (car e*»
(lambda (a)

«cps-terms (cdr e*»
(lambda (a*)

(k (cons a a*» ) ) ) ) )
(lambda (k) (k '(») ) )

(define (cps-abstraction variables body)
(lambda (k)

(k (let «c (gensym "cont"»)
'(lambda (,c. ,variables)

,«cps body)
(lambda (a) '(, c , a» ) ) » ) )

That transformation is complete now, and we can use it to experiment with the
factorial, like this:

(set! fact (lambda (n)
(if (= n 1) 1

(* n (fact (- n 1») ) »
~ (set! fact

(lambda (cont112 n)
(if (= n 1)

(cont112 1)
(fact (lambda (g113) (cont112 (* n g113»)

(- n 1) ) ) ) )

Here we automatically get what we had to write by hand earlier. Notice that
there are no complicated calculations after the transformation, only trivial ap
plications like comparisons or simple arithmetic operations or applications with
continuations. The rest is made up of only variables or closures.

In this world, a form k (callicc f) becomes (callicc k f). The function
callicc is no more than (lambda (k f) (f k k)) and can be simplified directly
so it does not show up anymore. Nevertheless, we must bind the global variable

6. Correct treatment of these calls to predefined primitive functions will be covered in Section 6.1.8.
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call/cc to (lambda (k f) (f k k» in such a way that we can write, for example,
(procedure? (apply call/cc (list call/cc»).

One virtue of a program written in CPS is that since we have put everything
totally in sequence by explicitly indicating when terms should be evaluated and to
whom their values should be returned, it is completely insensitive to the evaluation
strategy. We could evaluate with call by value or call by name; we would get the
same results. Thus by combining promises and CPS we can patch up the differences
between Scheme and A-calculus as in [DH92].

5.9.2 Dynamic Environment

The preceding section showed how the denotation of call/cc enables us to invent
a program transformation that eliminates this very call/cc. With the denotation
of the dynamic environment, we can imagine applying the same technique to get
rid of the special forms dynamic and dynamic-let. To do so, we simply have to
introduce the dynamic environment explicitly everywhere it's needed.

Let's assume we have an identifier that shows up nowhere else. Let's call it
D. The dynamic environment will be the value of {) everywhere, and it will be
represented by a function transforming symbols that name dynamic variables into
values. Let's also assume that the function update extends an environment func
tionally [see p. 129], that it's available everywhere, and that it cannot be hidden.
The transformation known as 1) and the utility 1)* appear in Table 5.6.

V*[]
V* [7r 7r*]
V[ (if 7ro 7r1 7(2)]
V[ (begin 7r*)]
V[(7r 7r*)]
V[ (lambda (v*) 7r*)]
V[(dynamic v)]
V[(dynamic-let (v 7r) 7r+)]

~ V[7r] V*[7r*]
~ (if V[7ro] V[7r1] V[7r2])
~ (begin V*[7r*])
~ (V[7r] 6 V*[7r*])
~ (lambda (6 v*) V*[7r*])

(6 (quote v»
~ (let «6 (update 6 (quote v) 7r») V*[7r+])

Table 5.6 Transformation suppressing the dynamic environment

That transformation simply simulates dynamic bindings if we have no other
means. The ultimate detail is to specify the initial dynamic environment. The
program 1r to transform it will thus be:

(let «D (lambda (n) (error "No such dynamic variable" n»» 1)[1r])

We can sum up our efforts this way: many denotations lead to program trans
formations that eliminate the forms that they define.

5.10 Conclusions

This chapter culminates a series of interpreters that more and more precisely define
a language in the same class as Scheme; they do so with more and more restricted
means. Denotational semantics, at least as we have explored it in this chapter, is
a remarkably concise way of defining the kernel of a functional language. It often
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seems maladapted and unduly complicated to define an entire language in all its
least details. The way we have presented Scheme here rules out the comparison of
functions, the denotation of constants, and all sorts of characteristics that strain a
definition with minutiae that are useful only rarely. Denotational semantics appears
at its best when it outlines the general shape of a language, but it is quite boring
for describing every single detail.

The range of things that we can define denotationally is quite vast. We can
introduce parallelism with the technique of step calculations as in [Que90c]. We
can define the effects of distributed data as in [Que92b]. There are also limitations,
as indicated in [McD93]. For example, there is no easy way to define type inference
denotationally, and that is one of the reasons for natural semantics [Kah87].

5.11 Exercises

Exercise 5.1 : Here is another way of writing the denotation of a functional
application. Show that it is still equivalent to the one in Section 5.2.6.

£[ (71" 71"*) ]pKO" = (£[71"] p A<PO"l.(£[ 71"*] () p A£* 0"2.(<P !Function £* K 0"2) 0"1) 0")

E[ ]£* pKO" = (K (reverse £*) u)

£[71" 71"*]£* pKU = (£[71"] p A£U1.(£[ 1r*] (£)§£* p K (1) u)

Exercise 5.2 : It is not very efficient to define recursive functions within A-calculus
the way we did in Section 5.3. Instead, we could enrich the language with the special
form label, like in Lisp 1.5. In terms of Scheme, the form (label v (lambda ...
» is equivalent to (letrec «v (lambda ... ») l/). Define the semantics of this
label operator.

Exercise 5.3 : Modify the denotation of the special form dynamic so that if the
dynamic variable is not found, its value in the global environment will be returned.

Exercise 5.4 : Write a macro to simulate a non-prescribed evaluation order in an
implementation of Scheme that evaluates from left to right. You may assume that
there is a unary function random-permutation that takes an integer n and returns
a random permutation of 1, ... , n.

ReCOllllllended Reading

The readings that you mustn't miss are [St077] and [Sch86]. Both are mines of
information about denotational semantics and present examples of denotations of
the language.

Serious fans of A-calculus should also read [Bar84].
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6
Fast Interpretation

N the preceding chapter, there was a denotational interpreter that worked
with extreme precision but remarkably slowly. This chapter analyzes the
reasons for that slowness and offers a few new interpreters to correct that
fault by pretreating programs. In short, we'll see a rudimentary compiler

in this chapter. We'll successively analyze: the representation of lexical environ
ments, the protocol for calling functions, and the reification of continuations. The
pretreatment will identify and then eliminate computations that it judges static; it
will produce a result that includes only those operations that it thinks necessary
for execution. Specialized combinators are introduced for that purpose. They play
the role of an intermediate language like a set of instructions for a hypothetical
virtual machine.

The denotational interpreter of the preceding chapter culminated a series of
interpreters leading to inexorably increasing precision. Now we'll have to correct
that unbearable slowness. Still adhering to our technique of incremental modifica
tions, particularly because the preceding denotational interpreter is the linguistic
standard we have to conform to, we will present three successive interpreters, grad
ually relaxing some of the preliminary descriptive concerns for the benefit of the
habits and customs of implementers.

6.1 A Fast Interpreter

To produce an efficient interpreter now, we'll assume that the implementation
language contains a minimal number of concepts, notably, memory. We'll get rid
of the one we added in Chapter 4 [see p. 111] since we added it just to explain the
idea of memory. The only part we will keep has to do with binding variables. That
activity delegates the management of dotted pairs to cons, the management of
vectors to vector, the management of closures to lambda, and so on down the line.
Memory will no longer be a huge mixture of function arguments, data structures,
and even labels on closures. In fact, memory will now contain only bindings or
activation records.
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6.1.1 Migration of Denotations

The main source of inefficiency in our denotational interpreter is that programs
are ceaselessly denoted, denoted again, and again and again. The repair is simple:
we need to move the computations into positions where they will be calculated as
soon as possible, as in [Deu89]. Moving this way is known as migrating code and
as A-hoisting in [Tak88] or as A-drifting in [Roz92]. We must be careful in applying
it to Scheme because of side effects that might occur at an inappropriate time or
even the wrong number of times. A related problem is that migrating code can also
change the termination of an entire program if the computation being migrated is
one that loops indefinitely. Indeed, the expression (lambda (x) (w w)) where (w

w) is a non-terminating computation, is not equivalent to (let (( tmp (w w)))
(lambda (x) tmp)). However, these reasons don't hold for denotations because
denotations are exempt from side effects. Moreover, the denotations that migrate
always terminate because denotations are compositional, and the programs being
treated are always finite trees.

As an example of migration, here's a new version of abstraction. Here you can
see that the denotation of the body of the abstraction (meaning*-sequence e+) is
calculated only once, as is (length n*), the number of variables in the abstraction.

(define (meaning-abstraction n* e+)
(let «m (meaning*-sequence e+»

(arity (length n*» )
(lambda (r k s)

(k (inValue (lambda (v* k1 s1)
(if (= (length v*) arity)

(allocate s1 arity
(lambda (s2 a*)

(m (extend* r n* a*)
k1
(extend* s2 a* v*) ) ) )

(wrong "Incorrect arity") ) »
s ) ) ) )

6.1.2 Activation Record

If we decrease memory consumption, then in large measure we will also improve in
terpretation speed, too. One major reason for memory consumption is the function
calling protocol as expressed in the denotational interpreter. Invoking a function
there means providing it values that will become its arguments, that is, the values
of its variables. The denotational interpreter provided these values as a list; these
same values were then concatenated to the environment, which was also repre
sented as a list. Since it is easy to write this way, the fact that we were specifying
and prototyping could justify our use of so many lists, but any serious pursuit of
speed rules out this way of working.

While some of these allocations are superfluous, others cannot be avoided. It's
a natural reflex of every implementer to exploit these latter to produce the effects of
the former as well. Since providing values to a function is the same act as invoking
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TEMPORARY

it, we can't really eliminate it, and besides, those values have to appear somewhere:
in registers, in a stack, or even in an activation record. An activation record will
be represented by an object that contains the values provided to a function, so
temporarily, we can do this:

(define-class activation-frame Object
( (* argument) ) )

That definition exploits a new characteristic of our object system that we haven't
mentioned before: the star '*' specifies that a field is indexed; that is, it is not
reduced to a single value but instead contains an ordered sequence of a size deter
mined at creation time. (See Section 11.2 for more details about that idea.)

That representation is more advantageous than representation as a list once the
number of arguments is greater than two. Moreover, it supports direct access to
arguments, rather than sequential, linear access as in lists. An activation record
must allow a lexical environment to be extended. Of course, we could even do
something so that an environment would be a list of activation records, as in
Figure 6.1

sr:

value 0.0

value 0.1

value 1.0

value 1.1

Figure 6.1 Environment and lists of activation records

Even more happily, we could reserve a supplementary field in activation records
to link them together. Since the time needed to allocate activation records hardly
depends on their size (as long as we overlook the memory management problems of
initializing fields), we exchange two allocations for one enlarged only by a pointer.
For those reasons, we'll adopt the following definition for activation records where
we insert the field for linking in first position so we can follow it or modify it by an
offset without disturbing any of the arguments that follow it, as in Figure 6.2.

(define-class environment Object
( next ) )

(define-class activation-frame environment
( (* argument) ) )

The values present in lexical environments are thus linked together in a chain
of activation records. The function sr-extend* does this linking, like this:

(define (sr-extend* sr v*)
(set-environment-next! v* sr)
v* )
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Activation records are physically modified. For that reason, they cannot be
re-used since the functional invocation must allocate fresh bindings.

If we think again about the presentation of lexical environments in the denota
tional interpreter, we recall that they were composed of two distinct parts, p and
(f. The environment p associates the name of a variable with an address so we can
determine its value in the memory (f. But here we've saved little from memory
except management of activation records. Any value can be retrieved from the
chain of activation records by an "address" made up of two numbers: the first
indicates in which activation record to look; the second then tells the index of the
argument to look for. Figure 6.2 and the following two functions for reading and
writing illustrate that idea.

(define (deep-fetch sr i j)
(if (= i 0)

(activation-frame-argument sr j)
(deep-fetch (environment-next sr) (- i 1) j) ) )

(define (deep-update! sr i j v)
(if (= i 0)

(set-activation-frame-argument! sr j v)
(deep-update! (environment-next sr) (- i 1) j v) ) )

sr:

value 0.0

value 0.1

value 1.0

value 1.1

Figure 6.2 Environment and linked activation records

Thus the environment associating an identifier with an address enables us to
retrieve the associated value. Memory (which we are trying to get out of our
new interpreter) now exists for the sole purpose of representing activation records.
Consequently, we'll still use r as the name for lexical environments, but we'll adopt
sr for the store associated with the environment r, that is, the representation at
execution of values in this environment. Although this latter should be represented
by a linked list of activation records, we'll adopt a "ribcage" representation for the
environment. That is, we'll use the list of lists of variables from abstractions. [see
Ex. 1.3] We'll extend the environment by r-extend* (not to be confused with
sr-extend*), and we'll use a semi-predicate local-variable? to search for the
lexical indices of a value.

(define (r-extend* r n*)
(cons n* r) )

(define (local-variable? r i n)
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(and (pair? r)
(let scan «names (car r»

(j 0) )

(cond «pair? names)
(if (eq? n (car names»

, (l0 cal ,i . , j )
(scan (cdr names) (+ 1 j» ) )

«null? names)
(local-variable? (cdr r) (+ i 1) n)

«eq? n names) '(local ,i . ,j» ) )

The purpose of doing things this way is to get a strong block structure from
activation records. The strong block structure means that the address associated
with an identifier is no longer an absolute address, but rather a pair of numbers in
terpreted relative to the linked activation records. As a consequence, computations
with addresses become static calculations that can migrate during pretreatment of
expressions to evaluate.

Cutting the lexical environment this way into static and dynamic parts does
not depend on the representation that we have just chosen. It's actually a deeper
property that only now becomes apparent. With the representation we chose for the
denotational interpreter, it was already possible to predict the "position" (where
position is counted in number of comparisons by eq?) of any variable inside the
environment since the environment itself was merely a chain of the closures of
bodies (lambda (u) (if (eq? u x) y (I u»).

6.1.3 The Interpreter: the Beginning

We know enough now to show the skeleton of the interpreter and a few of its special
forms. As you might expect, we begin with the function meaning. It will now have
the following signature:

meaning: Program x Environment --+, ~

y

static
(Activation-Record x Continuation --+ Value)

V'

dynamic

This signature clearly shows how the environment is cut into its static and
dynamic components, Environment and Activation-Record. When a program
is pretreated, the result is a binary function waiting for a list of linked activation
records (that is, memory) and a continuation to calculate a value. This is a non
standard way of representing programs, far removed from the original S-expression,
but fundamentally the same structurally.

To simplify syntactic analysis, we'll assume as usual that the expressions sub
mitted are syntactically legitimate programs. Here are the rules we'll use to name
variables when we define the functions for syntactic analysis:
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e .
r .

sr, ... , v* .
v .
k .
f .

n ...
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expression, form
environment
activation record
value (integer, pair, closure, etc.)
continuation
function
identifier

Here, then, are the functions for analyzing syntax:

(define (meaning e r)
(if (atom? e)

(if (symbol? e) (meaning-reference e r)
(meaning-quotation e r)

(case (car e)
«quote) (meaning-quotation (cadr e) r»
«lambda) (meaning-abstraction (cadr e) (cddr e) r»
«if) (meaning-alternative (cadr e) (caddr e) (cadddr e) r»
«begin) (meaning-sequence (cdr e) r»
«set!) (meaning-assignment (cadr e) (caddr e) r»
(else (meaning-application (car e) (cdr e) r» ) ) )

Once again, quoting becomes trivial, like this:

(define (meaning-quotation v r)
(lambda (sr k)

(k v) ) )

Here's the conditional, a good example of code migration. We pretreat the two
branches of the conditional, regardless of which of them will be the choice that
might be made.

(define (meaning-alternative e1 e2 e3 r)
(let «m1 (meaning e1 r»

(m2 (meaning e2 r»
(m3 (meaning e3 r»

(lambda (sr k)
(m1 sr (lambda (v)

«if v m2 m3) sr k) » ) ) )
We decompose a sequence into two conventional subcases, like this:

(define (meaning-sequence e+ r)
(if (pair? e+)

(if (pair? (cdr e+»
(meaning*-multiple-sequence (car e+) (cdr e+) r)
(meaning*-single-sequence (car e+) r) )

(stat ie-wrong "Illegal syntax: (begin)") ) )

(define (meaning*-single-sequence e r)
(meaning e r) )

(define (meaning*-multiple-sequence e e+ r)
(let «m1 (meaning e r»

(m+ (meaning-sequence e+ r» )
(lambda (sr k)

(m1 sr (lambda (v)
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(m+ sr k) » ) ) )

Things get a little stickier with an application. For an application, we have to
define the invocation protocol more precisely.

Application

To pretreat an application, we must make several things explicit: how it's created,
how it's filled in, the way it's passed-in short, how activation records handle
it. While the pretreatment of the function term is conventional enough, how the
arguments are handled is less so. For that purpose, we'll use the function meaning*.
For simplicity, functions will be represented by their closures.

(define (meaning-regular-application e e* r)
(let* «m (meaning e r»

(m* (meaning* e* r (length e*») )
(lambda (sr k)

(m sr (lambda (f)
(if (procedure? f)

(m* sr (lambda (v*)
(f v* k) »

(wrong "Not a function" f) ) » ) ) )

Since we've been looking for computations that we can do statically, l we've
seen that the size of an activation record to allocate is easily predicted since it
can be deduced directly from the number of terms in the application. In contrast,
it's much harder to know when to allocate the record. There are two potential
moments: [see Ex. 6.4]

1. We could allocate the record before evaluating its arguments. In that case,
each argument calculated there is immediately put into place.

2. We could allocate the record after evaluating its arguments. In that case,
however, we consume twice as much memory since we have to store the values
in the continuation-the same values that will all be organized into the newly
allocated record.

The first of those two strategies seems more efficient since it consumes less
memory. Unfortunately, the presence of callicc in Scheme totally ruins that
possibility. It's feasible only for Lisp. The reason: in Scheme it's possible to
call a continuation more than once. [see p. 82] If the record is allocated first,
before the arguments are computed, then, if one of those computations captures
its continuation, it will also capture the record that appears in the continuation.
The record will thus be shared by all the invocations of the function term-a
sharing that is contrary to the abstraction which must allocate new addresses for
its local variables at every invocation. The following program should return (2 1).
Sharing activation records would incorrectly force a return of (2 2).2 In effect, the

1. By the way, that's a major activity among language designers; they actually favor characteristics
that are static.
2. Manuel Serrano discovered that a previous version of this example was depending subtly on
the order of evaluation. The form cons should be evaluated from left to right. The form (let
«g ... »... ) does that.
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form callicc captures the application «lambda (a) ... ) ... ) and notably
the activation record if it has been pre-allocated. Since that continuation is used
twice, the two thunks created by (lambda () a) share the closed variable a by
conferring on it the last of the values that k received.

(let «k 'wait)
(f '(» )

(set! f (let «g «lambda (a) (lambda () a»
(call/cc (lambda (nk) (set! k nk) (nk 1») »)

(cons g f) »
;; f ~(list (lambda () 1))
(if (null? (cdr f» (k 2»
;; f ~(list (lambda () 2) (lambda () 1))
(list «car f» «cadr f») )

But in fact, all is not lost in Scheme. It suffices in the implementation of
callicc to duplicate the activation records captured when the continuations were
invoked. We can't program that here because continuations are represented by
closures, from which we cannot extract the enclosed activation records. In that
example, you can clearly see the impact of callicc.

The function meaning* will thus take a supplementary argument corresponding
to the size of the activation record that must be allocated afer the evaluation of all
arguments. For reasons that will be clear when we discuss the implementation of
functions with variable arity in Section 6.1.6, [see p. 196], activation records will
contain one more field than necessary, .but we will not initialize this excess field, so
it won't penalize these functions.

(define (meaning* e* r size)
(if (pair? e*)

(meaning-some-arguments (car e*) (cdr e*) r size)
(meaning-no-argument r size) )

(define (meaning-no-argument r size)
(let «size+1 (+ size 1»)

(lambda (sr k)
(let «v* (allocate-activation-frame size+1»)

(k v*) ) ) ) )

Notice that size+1 is precalculated since it would be too bad to leave that
computation until execution! Also notice the "non-migration" of the allocation
form that has to allocate a new activation record at every invocation.

Each term of the application is put into the right place, just after allocation of
the activation record. The right place is easily calculated in terms of the variables
size and e*.

(define (meaning-some-arguments e e* r size)
(let «m (meaning e r»

(m* (meaning* e* r size»
(rank (- size (+ (length e*) 1») )

(lambda (sr k)
(m sr (lambda (v)

(m* sr (lambda (v*)
(set-activation-frame-argument! v* rank v)
(k v*) » » ) ) )



6.1. A FAST INTERPRETER 191

We can finally define abstractions since they appear so clear now. Verification
of the arity is carried out by inspection of the size of the activation record. There
again, we've precalculated everything we can so we leave as little as possible until
execution.

(define (meaning-fix-abstraction n* e+ r)
(let* «arity (length n*»

(arity+1 (+ arity 1»
(r2 (r-extend* r n*»
(m+ (meaning-sequence e+ r2»

(lambda (sr k)
(k (lambda (v* k1)

(if (= (activation-frame-argument-length v*) arity+1)
(m+ (sr-extend* sr v*) k1)
(wrong "Incorrect arity") ) » ) ) )

6.1.4 Classifying Variables

Those preceding definitions handle only the case of local variables, that is, only
variables in lambda forms. There are, of course, global variables, and among them,
predefined variables and/or immutable ones, like cons or car. In our current state,
the only way of accessing them would be to follow the links between activation
records, but that technique makes access to global variables particularly slow since
they are located in the ultimate activation record. For that reason, we'll treat these
statically classified variables differently.

We'll assume that the global variable g. current contains the list of mutable
global variables, while g. init contains the list of predefined, immutable ones, such
as cons, car, etc. The function compute-kind classifies variables and returns a
descriptor characterizing variables.

(define (compute-kind r n)
(or (local-variable? rOn)

(global-variable? g.current n)
(global-variable? g.init n) ) )

(define (global-variable? g n)
(let «var (assq n g»)

(and (pair? var) (cdr var» ) )

We test g. current before g. init so that we can mask predefined variables, if
need be. Considering primitives as values of immutable global variables is a safe
practice. However, certain implementations of Scheme allow a program to redefine
such a global variable (car for example) on condition that the redefinition modifies
only this variable and not any other predefined function (not even those, like map,
for example, that seem to use car). Only the functions explicitly in the program
will see the new value of car. You can get this effect simply by compute-kind, but
there is still a problem of knowing how to insert such a variable in the mutable
environment. We could also invent a new special form, redefine, say, for this
purpose. [see Ex. 6.5]

We'll add global variables to these environments by means of two functions,
g.current-extend! and g.init-extend!. .
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(define (g. current-extend! n)
(let «level (length g.current»)

(set! g.current (cons (cons n '(global. ,level» g.current»
level ) )

(define (g.init-extend! n)
(let «level (length g.init»)

(set! g.init (cons (cons n '(predefined. ,level» g.init»
level ) )

The environments g. current and g. init return only addresses of variables, so
we have to search for their values in the appropriate place. The containers where we
search are simple vectors, values of the variables sg. current and sg. init. There's
an initial s because these vectors represent memory, conventionally prefixed by s for
store. Here3 are the containers and the associated access functions. (However, we're
not giving predefined-update! since it makes no sense for immutable variables.)

(define sg.current (make-vector 100»

(define sg.init (make-vector 100»

(define (global-fetch i)
(vector-ref sg.current i) )

(define (global-update! i v)
(vector-set! sg.current i v)

(define (predefined-fetch i)
(vector-ref sg.init i) )

To help define global environments, we'll provide two functions, g. current
initialize! and g.init-initialize!, to enrich (or modify) the static and dy
namic environments synchronously.

(define (g.current-initialize! name)
(let «kind (compute-kind r.init name»)

(if kind
(case (car kind)

«global)
(vector-set! sg.current (cdr kind) undefined-value)

(else (static-wrong "Wrong redefinition" name» )
(let «index (g. current-extend! name»)

(vector-set! sg.current index undefined-value) ) )
name

(define (g.init-initialize! name value)
(let «kind (compute-kind r.init name»)

(if kind
(case (car kind)

«predefined)
(vector-set! sg.init (cdr kind) value) )

(else (static-wrong "Wrong redefinition" name»
(let «index (g.init-extend! name»)

(vector-set! sg.init index value) ) ) )
name

3. For simplicity, we've limited the number of mutable global variables to 100, but that limitation
will be lifted in Section 6.1.9.
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Now we have an adequate arsenal to handle the pretreatment of variables and
assignments. Those two have a similar structure: they analyze the classification
returned by compute-kind and associate it with the correct access function. Notice
that we don't use the functions deep-fetch nor deep-update! but the equivalent
direct accessors when the variable we are searching for appears in the first activation
record. Another clever trick (but one that some people would argue against) is
that for predefined variables, we search for their value to be read right away (like
a quotation) rather than at execution. In that way, we gain an access indexed to
the vector of constant global variables.

(define (meaning-reference n r)
(let «kind (compute-kind r n»)

(if kind
(case (car kind)

«local)
(let «i (cadr kind»

(j (cddr kind»
(if (= i 0)

(lambda (sr k)
(k (activation-frame-argument sr j» )

(lambda (sr k)
(k (deep-fetch sr i j» ) ) ) )

«global)
(let «i (cdr kind»)

(if (eq? (global-fetch i) undefined-value)
(lambda (sr k)

(let «v (global-fetch i»)
(if (eq? v undefined-value)

(wrong "Uninitialized variable" n)
(k v) »)

(lambda (sr k)
(k (global-fetch i» ) ) ) )

«predefined)
(let* «i (cdr kind»

(value (predefined-fetch i»
(lambda (sr k)

(k value) ) ) ) )
(static-wrong "No such variable" n) ) ) )

Assignment is similar in every way:
(define (meaning-assignment n e r)

(let «m (meaning e r»
(kind (compute-kind r n»

(if kind
(case (car kind)

«local)
(let «i (cadr kind»

(j (cddr kind»
(if (= i 0)

(lambda (sr k)
(m sr (lambda (v)

(k (set-activation-frame-argument!



194 CHAPTER 6. FAST INTERPRETATION

sr j v » » )
(lambda (sr k)

(m sr (lambda (v)
(k (deep-update! sr i j v» » ) ) ) )

«global)
(let «i (cdr kind»)

(lambda (sr k)
(m sr (lambda (v)

(k (global-update! i v» » ) ) )
«predefined)
(static-wrong "Immutable predefined variable" n) ) )

(static-wrong "No such variable" n) ) ) )

Static Errors

The purpose of this pretreatment is so that such errors as an attempt to modify
an immutable variable or to read a non-existing variable will be noticed during
pretreatment rather than during execution. Those kinds of errors may even remain
unnoticed if the erroneous forms are not evaluated. Such errors are signaled by the
function static-wrong rather than by wrong, which we reserve for unforeseeable
situations that occur during execution. The idea of a static error is useful but it
clearly marks the difference between a free-handed language like Lisp and most
others. If a program is valid in ML, then all its possible executions are exempt
from type errors. Conversely, if we do not know how to prove that all evaluations
of a program lead to errors, then we would have the tendency to think that the
program is legal in Lisp. For example, consider the following definition:

(define (statically-strange n)
(if (integer? n)

(if (= n 0) 1 (* n (statically-strange (- n 1»»
(cons) ) )

Even though it is statically wrong, this function provides a real service when
applied to (positive!) integers. Whether we allow such a function or not depends
on the spirit of the language; there's a compromise between the security we're
looking for and the freedom we're ready to sacrifice for it. It is very important to
be warned about errors as soon as possible-that's the position of ML-but, if we
want no limits on our programming arsenal, if we want a little ease and a little
taste of danger, then we'll prefer Lisp.

The function static-wrong should thus be understood as delivering a message
about an anomaly but generating a result, valid for pretreatment; the pretreatment
itself will raise the error if by chance its evaluation is needed. That is, the warning
is tied to pretreatment; the error to execution. We make these ideas explicit in the
way we define static-wrong.

(set! static-wrong
(lambda (message . culprits)

(display '(*static-error* ,message. ,culprits»(newline)
(lambda (sr k)

(apply wrong message culprits) ) )
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In that way, we ascend to a nirvana for implementers where we can have our
cake and eat it, too.

Remember that for mutable global variables, we have to verify that they've
been initialized when we access them, in contrast both to local variables and to
immutable global variables. Thus there is a cost for accessing mutable global vari
ables. In the case of incremental compilation (as, for example, in a compiling
interaction loop like (display (compile-then-run (read»»), we could slightly
improve the pretreatment of mutable global variables that have already been ini
tialized. In fact, that's what we did4 earlier in meaning-reference. [see Ex.
7.6]

6.1.5 Starting the Interpreter

The interpreter reads an expression, pretreats it, and then evaluates it. In that
way, it produces a compiling interaction loop.

(define r.init '(»
(define sr.init '(»
(define (chapter61-interpreter)

(define (compile e) (meaning e r.init»
(define (run c) (c sr.init display»
(define (toplevel)

(run (compile (read»)
(toplevel) )

(toplevel) )

However, before we start this interpreter, we must enrich its initial environment
a little. We'll assume again that we have some macros available to hide the imple
mentation details so that the following definitions will resemble what they've always
been. Here are a few of them, to which we've added, of course, the indispensible
call/cc:

(definitial t It)
(definitial f If)
(definitial nil '(»
(defprimitive cons cons 2)

(defprimitive car car 1)

(definitial call/cc
(let* «arity 1)

(arity+1 (+ arity 1» )
(lambda (v* k)

(if (= arity+1 (activation-frame-argument-length v*»
«activation-frame-argument v* 0)
(let «frame (allocate-activation-frame (+ 1 1»»

(set-activation-frame-argument!
frame 0
(lambda (values kk)

4. If it were possible to modify code in place, we could also imagine patching the instruction that
verifies the initialization of a global variable so that it no longer does so if that's really the case.
Bigloo interpreter [Ser94] adopted that solution.



196 CHAPTER 6. FAST INTERPRETATION

(if (= (activation-frame-argument-length values)
arity+1 )

(k (activation-frame-argument values 0»
(wrong "Incorrect arity" 'continuation) ) ) )

frame)
k )

(wrong "Incorrect arity" 'call/cc) ) ) ) )

6.1.6 Functions with Variable Arity

Our interpreter still lacks functions with variable arity. As always, those functions
pose a few difficulties for us. As we have used them, activation records contain
the values of arguments, but they also serve as the receptacles for bindings that
will be created. In the case of functions with variable arity, the correspondence
between these two effects is not reliable because there is no inevitable relation
between the number of arguments passed to a function and its arity. For example,
a function having (a b. c) as the list of variables could accept two, three, or
more arguments without error, but it would bind only those three variables. For
that reason, an activation record must always contain at least three fields. Simply
put, for an application (f a b), the activation record that's allocated must have a
superfluous field (and that makes three fields in all) to authorize the invocation of
any function capable of accepting at least two values, that is, those functions with
a list of variables congruent to (x y) or (x y. z) or (x. y) or even x.

Functions with variable arity thus handle the activation record they receive in
such a way as to put "excess" arguments into a list. The function listify! will
be used for that purpose and indeed only for that purpose. Programming it is not
complicated, but doing so obliges us to juggle various indices numbering the terms
of the application, the vari~bles to bind, and the fields of the activation record. The
value of the variable arity represents the minimal number of arguments expected.

(define (meaning-dotted-abstraction n* n e+ r)
(let* «arity (length n*»

(arity+1 (+ arity 1»
(r2 (r-extend* r (append n* (list n»»
(m+ (meaning-sequence e+ r2»

(lambda (sr k)
(k (lambda (v* k1)

(if (>= (activation-frame-argument-length v*) arity+1)
(begin (listify! v* arity)

(m+ (sr-extend* sr v*) k1) )
(wrong "Incorrect arity") ) » ) ) )

(define (listify! v* arity)
(let loop «index (- (activation-frame-argument-length v*) 1»

(result '(» )
(if (= arity index)

(set-activation-frame-argument! v* arity result)
(loop (- index 1)

(cons (activation-frame-argument v* (- index 1»
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result ) ) ) ) )

Now we can pretreat all possible lambda forms by means of the following static
analysis:

(define (meaning-abstraction nn* e+ r)
(let parse «n* nn*)

(regular '(» )
(cond
«pair? n*) (parse (cdr n*) (cons (car n*) regular»)
«null? n*) (meaning-fix-abstraction nn* e+ r»
(else (meaning-dotted-abstraction (reverse regular) n* e+ r» ) ) )

6.1.7 Reducible Forms

Our interpreter could take advantage of a conventional way of improving compilers
with respect to reducible forms, that is, applications where the function term is a
lambda form. In such a case, there's no point in creating a closure to apply later;
it's sufficient to assimilate the form to a block with local variables, in the style of
Algol. By the way, ((lambda ... ... ) ... ) is nothing other than a disguised
let; it opens a block furnished with local variables. The case of functions with
fixed arity is thus simplicity itself, but once again5 that's not so for functions with
variable arity. Not providing the right number of arguments to a function is now
a static error that can be raised in pretreatment.

(define (meaning-closed-application e ee* r)
(let «nn* (cadr e»)

(let parse «n* nn*)
(e* ee*)
(regular '(» )

(cond «pair? n*)
(if (pair? e*)

(parse (cdr n*) (cdr e*) (cons (car n*) regular»
(static-wrong "Too less arguments" e ee*) ) )

«null? n*)
(if (null? e*)

(meaning-f ix-closed-applicat ion
nn* (cddr e) ee* r )

(static-wrong "Too much arguments" e ee*) ) )
(else (meaning-dotted-closed-application

(reverse regular) n* (cddr e) ee* r » ) ) )

(define (meaning-fix-closed-application n* body e* r)
(let* «m* (meaning* e* r (length e*»)

(r2 (r-extend* r n*»
(m+ (meaning-sequence body r2»

(lambda (sr k)
(m* sr (lambda (v*)

(m+ (sr-extend* sr v*) k) » ) ) )

5. You can see by now why so many languages do not support functions with variable arity in
spite of their usefulness.
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For functions with variable arity, we can avoid using listify! since here
the arity of the function and the number of arguments are both known stati
cally. The solution uses a variation on meaning*. Here we call that variation
meaning-dotted*. It behaves like meaning* for obligatory arguments, but it builds
a list of "excess" arguments on the fly by inserting the necessary calls to cons.
Doing that entails a lot of code for a case that's fairly rare. However, we must
explicitly use () to initialize the superfluous field in the activation records; the
function meaning-no-dotted-argument does that. All that comes down to mak
ing a change on the fly, like this:

«lambda (a b . c) ... )
a f3 / fJ .•• )

So here are those functions:

«lambda (a b c) ... )
a {3 (cons / (cons fJ ..• » )

(define (meaning-dotted-closed-application n* n body e* r)
(let* «m* (meaning-dotted* e* r (length e*) (length n*»)

(r2 (r-extend* r (append n* (list n»»
(m+ (meaning-sequence body r2» )

(lambda (sr k)
(m* sr (lambda (v*)

(m+ (sr-extend* sr v*) k) » ) ) )

(define (meaning-dotted* e* r size arity)
(if (pair? e*)

(meaning-some-dotted-arguments (car e*) (cdr e*) r size arity)
(meaning-no-dotted-argument r size arity) ) )

(define (meaning-some-dotted-arguments e e* r size arity)
(let «m (meaning e r»

(m* (meaning-dotted* e* r size arity»
(rank (- size (+ (length e*) 1») )

(if « rank arity)
(lambda (sr k)

(m sr (lambda (v)
(m* sr (lambda (v*)

(set-activation-frame-argument! v* rank v)
(k v*) » » )

(lambda (sr k)
(m sr (lambda (v)

(m* sr (lambda (v*)
(set-activation-frame-argument!
v* arity
(cons v (activation-frame-argument

v* arity » )
(k v*) » » ) ) ) )

(define (meaning-no-dotted-argument r size arity)
(let «arity+1 (+ arity 1»)

(lambda (sr k)
(let «v* (allocate-activation-frame arity+1»)

(set-activation-frame-argument! v* arity '(»
(k v*) ) ) ) )
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6.1.8 Integrating Primitives
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We can gain efficiency from another important source by cleverly pretreating calls
to the predefined functions of the immutable global environment. An application,
such as (car a), currently imposes the following incredible and painful sequence
of steps:

1. Dereference the global variable car.

2. Evaluate a.

3. Allocate an activation record with two fields.

4. Fill that first field with the value of a.

5. Verify that the value of car really is a function.

6. Verify whether the value of car actually accepts one argument.

7. Apply the value of car to the argument. This step leads additionally to
testing whether the argument really is a dotted pair for which it is legal to
take the car.

We eliminate several of those steps if we're working in a strongly typed lan
guage, and that's what makes such languages so fast. In contrast, some of these
verifications can be eliminated in a language like Lisp by pretreatments if such
things can be verified statically. Since car is a global variable that cannot be
modified, we can verify beforehand that it's a function that accepts one argument.
In that way, we save step 5 (verify whether it's a function) and step 6 (verifying
its arity). We can save even more by not allocating the activation record (steps 3
and 4), but inserting the code itself into the primitive being called (step 1).

This kind of integration-calling the primitive directly without going through
a complete and consequently burdensome protocol-is known as inlining. In such
circumstances, the only remaining steps are 2 and 7. A good compiler could still
save a little in step 7 by factoring type tests so they would never be duplicated.
For example, in the program (if (pair? e) (car e) ... ) there is no point
in car verifying whether its argument is a dotted pair because that is obviously
and surely true. One method for doing so anyway is to consider (car x) as a
macro equivalent to (let «v x» (if (pair? v) (unsafe-car v) (error ...
») where unsafe-car6 extracts the car of its argument if that argument is a pair
but leads to unforeseeable side effects when that is not the case. All we have to do is
to transform the code in order to migrate type-checks as far upstream as possible
and to eliminate redundant tests. Here again, there is no problem in migrating
computations because type-checks are immediate computations without possible
errors.

A real compiler does not access values of immutable global variables since such
variables belong to the realm of execution rather than to pretreatment. Besides,
we don't have much need of these values; we only need to know whether they
are functions and whether their arity is compatible with the function that we are

6. Primitives analogous to unsafe-car exist in most implementations in order to serve as targets
for transformations of programs. These transformations should guarantee that unsafe-car is
always used in safe contexts. In contrast, it is essential for an efficient compiler to be able to
resort to these shortcut primitives and thus get rid of useless type-checking.
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(wrong
(description-extend!

'name '(function ,value a b c»
behavior ) ) ) ) )

The functions to manage this environment look like this:

(define desc.init '(»
(define (description-extend! name description)

(set! desc.init (cons (cons name description) desc.init»
name )

(define (get-description name)
(let «p (assq name desc.init»)

(and (pair? p) (cdr p» ) )

We can explicate completely how applications are pretreated; that is, how they
are analyzed so that they can be handed off to the right pretreatment. Notice that
if a primitive appears in an application with the wrong arity, that anomaly will be
indicated statically.

trying to pretreat. We'll add a new environment. Its role will be to describe the
value of immutable global variables. That environment will be named desc. init,
and it will associate a descriptor with a variable whose value is a function. The
descriptor of a function will be a list; the first term of that list will be the symbol
function; the second term will be the "address" of the primitive (which must really
be invoked); the succeeding terms indicate the arity. We'll put the management of
these descriptions inside the macro defprimitive, accompanied here by only one
of its submacros, defprimitive3, to give you an idea of its siblings.

(define-syntax defprimitive
(syntax-rules ()

«defprimitive name value 0) (defprimitiveO name value»
«defprimitive name value 1) (defprimitive1 name value»
«defprimitive name value 2) (defprimitive2 name value»
«defprimitive name value 3) (defprimitive3 name value» ) )

(define-syntax defprimitive3
(syntax-rules ()

«defprimitive3 name value)
(definitial name

(letrec «arity+1 (+ 3 1»
(behavior

(lambda (v* k)
(if (= (activation-frame-argument-length v*)

arity+1 )
(k (value (activation-frame-argument v* 0)

(activation-frame-argument v* 1)
(activation-frame-argument v* 2) »

"Incorrect aritytl 'name) ) ) ) )
; ** Modified **

(define (meaning-application e e* r)
(cond
«and (symbol? e)

(let «kind (compute-kind r e»)
(and (pair? kind)

(eq? 'predefined (car kind»
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(let «desc (get-description e»)
(and desc

(eq? 'function (car desc»
(if (= (length (cddr desc» (length e*»

(meaning-primitive-application e e* r)
(static-wrong "Incorrect arity for" e) ) )

) ) ) »
( (and (pair? e)

(eq? 'lambda (car e» )
(meaning-closed-application e e* r)

(else (meaning-regular-application e e* r» ) )

Applications implicating known primitive functions are handled like this:
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(define (meaning-primitive-application e e* r)
(let* «desc (get-description e» ; desc := (junction address. variables-list)

(address (cadr desc»
(size (length e*» )

(case size
«0) (lambda (sr k) (k (address»»
«i)
(let «mi (meaning (car e*) r»)

(lambda (sr k)

(mi sr (lambda (v)
(k (address v» » ) ) )

«2)
(let «mi (meaning (car e*) r»

(m2 (meaning (cadr e*) r»
(lambda (sr k)

(mi sr (lambda (vi)
(m2 sr (lambda (v2)

(k (address vi v2» » » ) ) )
«3)
(let «mi (meaning (car e*) r»

(m2 (meaning (cadr e*) r»
(m3 (meaning (caddr e*) r»

(lambda (sr k)
(mi sr (lambda (vi)

(m2 sr (lambda (v2)
(m3 sr (lambda (v3)

(k (address vi v2 v3»
» » » ) ) )

(else (meaning-regular-application e e* r» ) ) )

The preceding integration involves only primitives with fixed arity. Primitives
with variable arity, like append, for-each, list, map, *, +, and several others
(except apply) in general can be considered as macros for which the expansion
reduces to cases we've already studied. For example, (append 7rl 7r2 7r3) can be
rewritten as (append 7rl (append 7r2 7r3». That transformation lets us integrate
forms with variable arity but does not imply that these functions have fixed arity.
(apply append 7r) is an example where append will be called with a variable arity.
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We have integrated only calls with three or fewer arguments. The reason for
this limitation is simple: in Scheme, there are no essential functions of fixed arity
that have more than three arguments anyway!

6.1.9 Variations on Environments

Accessing deep local variables (that is, those that do not belong to the first acti
vation record) have a linearly increasing cost because we have to run through the
linked records to find them. There is a simple technique-known as display-to
access such variables in constant time. To do so, every deep activation record has
to be accessible from the first one, as in Figure 6.3. In that way, every deep vari
able can be read or written by one indirection (to determine which record) and one
offset (inside that record). However, even if accessing deep variables is faster in
this way, the cost of allocating linked records is greater than before because every
activation record must refer to all the deep records. Of course, it's possible to
set up only the links really used, but doing so requires analyzing which variables
are consulted. Additionally, this technique ruins our interpreter since with it, we
will no longer know how large an activation record to create before the function
to invoke checks the depth of its closed environment. For those reasons, we have
to allocate the display somewhere else or even limit the maximal authorized depth
(though such a limit is not very Lispian).

lue 3.0

lue 3.1

~+I t
--

-- va

:-
value 2.0

value 1.0 va
value 2.1

value 0.0

value 0.1

Figure 6.3 Display technique

Flat Environment

Another technique would be to adopt flat environments. When a closure is created,
instead of closing the entire environment, we could build a new environment con
taining only the variables that are really closed. The cost of building the closures
is thus higher, but in contrast the environment has at most only two activation
records: the one that contains arguments and the one that contains closed vari
ables. Then in order to make sure we can still share variables if need be, it's a
good idea to transform things by a box. [see p. 115]
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Finally, it's feasible to mix all these possibilities in order to adapt them to the
cases where they excello To carry out this adaptation, we must analyze programs
more precisely. In short, we need a real compiler, not just an interpreter with
pretreatments like ours.

Defining Global Variables

When it encounters a global variable, the current interpreter recognizes it by the
fact that it belongs to the global predefined or mutable environment. Consequently,
we must declare all the global variables that we're going to use. We do so in the
definition of the interpreter by means of the macro defvariable:

(define-syntax defvariable
(syntax-rules ()

«defvariable name) (g.current-initialize! 'name» ) )

Regardless of the practices for declaring variables in other languages, this way
of doing things is considered quite out of place in Lisp dialects. Consequently, when
an identifier is used as a global variable, we want it to be created automatically.
One easy solution is to improve the function compute-kind so that it detects such
cases, like this:

(define (compute-kind r n)
(or (local-variable? rOn)

(global-variable? g.current n)
(global-variable? g.init n)
(adjoin-global-variable! n) ) )

(define (adjoin-global-variable! name)
(let «index (g. current-extend! name»)

(vector-set! sg.current index undefined-value)
(cdr (car g.current» ) )

The problem is that in doing so, we've slightly violated the pretreatment disci
pline that we've adopted. In effect, the global variable is created during pretreat
ment rather than during execution. Let's analyze what goes on before the process
of creating a variable. When a new variable is taken into account, two different
results occur:

1. Its name is added to the environment of mutable global variables (known as
g. current) and in passing, a number is assigned to it.

2. An address is allocated to the variable; the address contains its value, con
forming to the number assigned to it.

In that light, consider the following program:
(begin (define foo (lambda () (bar»)

(define bar (lambda () (if #t 33 hux»)

Pretreating that program turns up three new variables: foo, bar, and hux. As
soon as they are encountered, these variables are added by pretreatment to the
global environment and receive a number. So after pretreatment, would you say
that they have been created or merely exist potentially? Would you say that the
variable foo appearing in the define form was only semi-created, or that hux is
only semi-semi-created?
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To execute a pretreated program, we assume that the mutable global execution
environment contains the values of these new variables. Consequently, we must
extend it at just the right moment: the beginning of the execution phase is, in fact,
the only possible instant. Before the execution of a pretreated program, the size
of the global execution environment is adapted to the number of mutable global
variables present. The function stand-alone-producer illustrates that idea. It
pretreats a program in a closure (lambda (sr k) ... ), and the first act of that
closure is to allocate the ad hoc global environment.

(define (stand-alone-producer e)
(set! g.current (original.g.current»
(let* «m (meaning e r.init»

(size (length g.current» )
(lambda (sr k)

(set! sg.current (make-vector size undefined-value»
(m sr k) ) ) )

There may be predefined variables in the mutable global environment so that
environment can serve as the communication point between the system and a
program, as for example the base used to read or write numbers. For that rea
son, we'll assume that these variables appear in the environment returned by
(original.g.current).

With this style of programming, all variables exist as soon as they are men
tioned. In a way closer to Scheme, we can also allow variables to be introduced
only by the form define. In this latter case, and for the previous example, pre
treatment must indicate a static error. There, hux is an undefined variable even
it it is neither read nor written. That's not the case of bar: it isn't defined at its
first use, but it is defined later.

To show the details of how define works, we'll add it as a new special form to
the meaning pretreater:

... «define) (meaning-define (cadr e) (caddr e) r» ...

When definitions are analyzed, there is a test to see whether the variable exists
already; if it does, the definition behaves like an assignment.

(define (meaning-define n e r)
(let «b (memq n *defined*»)

(if (pair? b)
(static-wrong "Already defined variable" n)
(set! *defined* (cons n *defined*» ) )

(meaning-assignment n e r) )

Now the program pretreater has the responsibility of verifying whether any
global variables have suddenly appeared without yet being explicitly defined. The
list of defined global variables is thus put together at the beginning of pretreatment.

(define (stand-alone-producer e)
(set! g.current (original.g.current»
(let «originally-defined (append (map car g.current)

(map car g.init) »)
(set! *defined* originally-defined)
(let* «m (meaning e r.init»

(size (length g.current»
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(anormals (set-difference (map car g.current) *defined*»
(if (null? anormals)

(lambda (sr k)
(set! sg.current (make-vector size undefined-value»
(m sr k) )

(static-wrong "Not explicitely defined variables"
anormals ) ) ) ) )

(define (set-difference set1 set2)
(if (pair? set1)

(if (memq (car set1) set2)
(set-difference (cdr set1) set2)
(cons (car set1) (set-difference (cdr set1) set2» )

,() ) )

In summary, we must distinguish what's within the jurisdiction of pretreatment
and what belongs to execution. A definition at execution is rigorously like assign
ment. In contrast, its pretreatment induces verifications, either instantaneous or
deferred until the end of pretreatment. The usual special forms (other than def ine)
have an effect only at execution. They have dynamic semantics. Definition belongs
to static semantics (implemented by pretreatment) since it will not be aware of
any global variable that is not accompanied by a definition. Moreover, it's a static
error to violate this rule.

As we said before about local variables of letrec [see p. 60], for variables, we
must distinguish the idea of existence from initialization. The fact that a variable
exists does not mean that it has been initialized. Here's an example to clarify that
point:

(begin (define foo bar)
(define bar (lambda () 33» )

In the case of a compiling interaction loop (a kind of incremental compiler im
mediately evaluating whatever it just compiled), all these problems are simplified
because the end of pretreatment coincides with the beginning of execution of pre
treated code, and these two phases occur in the same memory space. Thus we
can adopt the first variation of adjoin-global-variable! as well as the present
improvement in meaning-reference which consisted of suppressing the test about
initialization for variables that have already been initialized.

6.1.10 Conclusions: Interpreter with Migrated Computa
tions

It's hard to measure the improvements of this interpreter, but the gain is on the
order of 10 to 50. Pretreatment is fast enough even if still improvable (mainly that
compute-kind may use hashtables rather than lists for environments). In addi
tion to these non-negligible gains, we've also taken advantage of the ideas of static
computations (what is pretreated) and dynamic computation (what is left until ex
ecution). In a certain way, then, the role of a good compiler is to leave the minimal
amount of work to do at execution. To invent the best pretreatments, there have
been many analyses carried out to identify which properties are valid at execution.
We'll mention only a few: abstract interpretation in [CC77], partial evaluation in
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[JGS93], and flow control analysis in [Shi91]. Another area for improvement is how
to choose good data structures, as you can see from the discussion about activation
records.

Pretreatment reveals certain errors sooner and independently of their possible
execution. It paves the way for a safer and more efficient programming style since
fewer verifications are left until execution. The kind of pretreatment we looked at
here is quite rudimentary, but it could certainly be extended to check types, as in
ML.

The interpreter we finally got strongly resembles the one from Chapter 3 except
that we've replaced closures by objects. Even though closures and objects have very
similar internal representations, closures are poor man's objects: they are opaque;
they can only be invoked; and we don't even know how to confer new behavior on
them, for example, to introduce a little reflection.

6.2 Rejecting the Environment

Every expression is evaluated in a unique residual environment; its value is sr.
Since that environment changes only during the invocation of functions that re
install and then extend their definition environment, you might ask whether it
would be more useful to introduce the idea of the current environment, the value of
which is the global variable (or even the register) *env*. Making that environment
global lets us avoid explicitly passing environments as arguments to all the closures
resulting from pretreatment. In other words, the result of pretreatment will no
longer be an abstraction like (lambda (sr k) ... ) but rather simply (lambda
(k) ... ).

To carry out this transformation, which will suppress local variables sr in favor
of one global variable *env*, all we have to modify is the function meaning to
introduce management of this variable there. A priori the modification seems
simple:

1. We search for local variables in *env* now, not in sr anymore.

2. When a function is invoked, it assigns its own definition environment, conve
niently extended already, to *env*.

However, on closer examination, we see that those steps are not sufficient be
cause if *env* is assigned, then from time to time it will be necessary to restore
its earlier value, if only to return to a computation that was interrupted during
an invocation. Here's a trivial solution: when a function assigns an environment
to *env*, the function stores the preceding value and restores that value at the
moment that the function returns its final value. The problem with this solution
is that it does not conform to Scheme, which demands that tail calls must be
evaluated with a constant continuation.

This problem resembles the well known problem of defining a function-calling
protocol in terms of machine registers. The registers have to be saved during the
computation of the invoked function, but who should do it?

• The one being called knows exactly which registers it uses and as a conse
quence, it can limit its efforts to preserving only those that concern it. The
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difficulty here is that the one being called then begins by saving registers,
evaluating its body, saving the value produced, restoring the registers, and
then returning the final value. The body of the called function is thus eval
uated with a continuation which is that of the caller plus that fact that the
registers must be restored .

• The caller knows exactly which registers it will need after the invocation
and can thus save just those itself. Then the one being called has only to
evaluate its body and return the value produced. If the caller does not have
to restore the registers itself, you see that the one being called does not add
any constraints. However, this technique is obviously too punctilious since
the one being called may need only a few registers and could get along with
registers not used by the caller without requiring the caller to save anything
at all.

[SS80] proposed the caller should mark registers in one of two ways: "must be
saved if used" or "can be overwritten without harm." The one being called can
then save only what is really needed and change the mark to "must be restored"
or "has not changed." This technique boils down to making each register a stack
where only the top is accessible and the depths store values that must be restored.
During a return, a special machine instruction restores the registers according to
their marks.

It is very important for tail calls to be executed with a constant continuation
(that is, without increasing the size of the recursion stack) so that iterations can
be efficient and not hampered by the size of the recursion stack. For those reasons,
we'll adopt the second strategy, so the caller will be responsible for preserving the
environment.

Fortunately, whether or not an evaluation is in tail position is a static property,
so we will add a supplementary argument to the function meaning. That supple
mentary argument is a Boolean, tail?, indicating whether or not the expression
is in the tail position. If the expression is in the tail position, it is not necessary to
restore the environment. (It's superfluous to save that environment, but it is not
forbidden to do so.)

How do we determine the expressions in tail position? It's sufficient to look at
the denotations of Scheme: every subform evaluated with a continuation different
from the continuation of the form containing it is not in tail position. In an
assignment (set! x 7r), the subform 7r has a continuation different from that
of the assignment since its value must be written in the variable x. Therefore, it is
not in tail position. Likewise, in a conditional (if 7ro 1rl 1r2), the condition 7ro is
not in tail position. In a sequence (begin 1ro ... 1rn -l 1rn ), the forms 1ro ... 1rn -l

are not in tail position so we must save the environment between the computation
of various terms of the sequence. In an application (1ro .•. 7rn ), none of the terms
are in tail position since the invocation still remains to be done. In contrast, the
body of a function is in tail position as well as the evaluation of the entire program
since neither the one nor the other will need to restore the previous environment.

Here is a new version of the function meaning followed by the function that
starts this new interpreter.

(define (meaning e r tail?)
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(if (atom? e)
(if (symbol? e) (meaning-reference e r tail?)

(meaning-quotation e r tail?)
(case (car e)

«quote) (meaning-quotation (cadr e) r tail?»
«lambda) (meaning-abstraction (cadr e) (cddr e) r tail?»
«if) (meaning-alternative (cadr e) (caddr e) (cadddr e)

r tail? »
«begin) (meaning-sequence (cdr e) r tail?»
«set!) (meaning-assignment (cadr e) (caddr e) r tail?»
(else (meaning-application (car e) (cdr e) r tail?» ) ) )

(define *env* sr.init)
(define (chapter62-interpreter)

(define (toplevel)
(set! *env* sr.init)
«meaning (read) r.init It) display)
(toplevel) )

(toplevel) )

6.2.1 References to Variables

A reference to a variable now uses the register *env*. We won't give a new version
of meaning-assignment since you can deduce it easily enough.

(define (meaning-reference n r tail?)
(let «kind (compute-kind r n»)

(if kind
(case (car kind)

«local)
(let «i (cadr kind»

(j (cddr kind»
(if (= i 0)

(lambda (k)
(k (activation-frame-argument *env* j» )

(lambda (k)
(k (deep-fetch *env* i j» ) ) ) )

«global)
(let «i (cdr kind»)

(if (eq? (global-fetch i) undefined-value)
(lambda (k)

(let «v (global-fetch i»)
(if (eq? v undefined-value)

(wrong "Uninitialized variable" n)
(k v) »)

(lambda (k)
(k (global-fetch i» ) ) ) )

«predefined)
(let* «i (cdr kind»

(value (predefined-fetch i»
(lambda (k)

(k value) ) ) ) )
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(static-wrong "No such variable" n) ) ) )

6.2.2 Alternatives
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We'll skip over quoting; it only has to be (or not be) in tail position. We'll go on
to the conditional. Since the condition is not in tail position, you see this:

(define (meaning-alternative e1 e2 e3 r tail?)
(let «m1 (meaning e1 r #f» ; restore environment!

(m2 (meaning e2 r tail?»
(m3 (meaning e3 r tail?»

(lambda (k)
(m1 (lambda (v)

«if v m2 m3) k) » ) ) )

6.2.3 Sequence

The last expression of a sequence saves the environment if the sequence must do so.
Notice that the current environment is restored only if there have been applications
that might have modified it. In particular, a sequence like (begin a (car x) ...
) does not require that the environment be preserved during the computation of a
nor (car x) because it won't be modified.

(define (meaning-sequence e+ r tail?)
(if (pair? e+)

(if (pair? (cdr e+»
(meaning*-multiple-sequence (car e+) (cdr e+) r tail?)
(meaning*-single-sequence (car e+) r tail?)

(static-wrong "Illegal syntax: (begin) II) ) )

(define (meaning*-single-sequence e r tail?)
(meaning e r tail?) )

(define (meaning*-multiple-sequence e e+ r tail?)
(let «m1 (meaning e r If»~

(m+ (meaning-sequence e+ r tail?»
(lambda (k)

(m1 (lambda (v)
(m+ k) » ) ) )

6.2.4 Abstraction

An abstraction must capture the current environment, which is the "birth" environ
ment of the closure being created. The abstraction must restore the environment
to extend it to other invocation instances. The case of functions with variable arity
is similar to that of functions with fixed arity.

(define (meaning-fix-abstraction n* e+ r tail?)
(let* «arity (length n*»

(arity+1 (+ arity 1»
(r2 (r-extend* r n*»
(m+ (meaning-sequence e+ r2 It»~ )

(lambda (k)
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(let «sr *env*»
(k (lambda (v* k1)

(if (= (activation-frame-argument-length v*) arity+1)
(begin (set! *env* (sr-extend* sr v*»

(m+ k1) )
(wrong "Incorrect arity") ) » ) ) ) )

6.2.5 Applications

The only really complicated case is that of an application since an application has
to manage whether or not the environment must be restored after the invocation.

(define (meaning-regular-application e e* r tail?)
(let* «m (meaning e r If»~

(m* (meaning* e* r (length e*) If»~ )
(if tail?

(lambda (k)
(m (lambda (f)

(if (procedure? f)
(m* (lambda (v*)

(f v* k) »
(wrong "Not a function" f) ) » )

(lambda (k)
(m (lambda (f)

(if (procedure? f)
(m* (lambda (v*)

(let «sr *env*» ; save environment
(f v* (lambda (v)

(set! *env* sr) ; restore environment
(k v) » ) »

(wrong "Not a function" f) ) » ) ) ) )
(define (meaning* e* r size tail?)

(if (pair? e*)
(meaning-some-arguments (car e*) (cdr e*) r size tail?)
(meaning-no-argument r size tail?) ) )

(define (meaning-some-arguments e e* r size tail?)
(let «m (meaning e r If»~

(m* (meaning* e* r size tail?»
(rank (- size (+ (length e*) 1»)

(lambda (k)
(m (lambda (v)

(m* (lambda (v*)
(set-activation-frame-argument! v* rank v)
(k v*) ) » » ) )

(define (meaning-no-argument r size tail?)
(let «size+1 (+ size 1»)

(lambda (k)
(let «v* (allocate-activation-frame size+1»)

(k v*) ) ) ) )

In this way, we've produced a new interpreter with the environment put into a
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register. The initial global environments are the same as before.
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6.2.6 Conclusions: Interpreter with Environment In a Reg
ister

This transformation is not always helpful. If we want to add parallelism to the
language, the global variable *env* would be a unique resource shared by all tasks.
Moreover it would have to be saved in the context of every task. However, the
fact that the environment is always available is advantageous if we want to add
reflection to the language because we can then imagine primitives accessing it.

This new interpreter is no faster than the preceding one. Of course invocations
now have only one variable instead of two, but they do so at the expense of a
reference to a global variable that can change every time the environment has to
be checked. On the positive side, the idea of tail position is clearer now, and we
are gently getting closer to the next interpreter.

6.3 Diluting Continuations

It is not rare for the implementation language to provide sorts of continuations
that we can use directly (rather than handle them explicitly as in the preceding
interpreter). That situation is not as crazy as it sounds. If we have a compiler
available for Scheme, we usually get an interpreter for it by writing one in Scheme
and compiling it. The interpreter we get that way then uses the execution library,
especially the callicc it finds there. However, if we compile only Lisp, the only
continuations we'll ever need are equivalent to setjmp/longjmp from the C lan
guage library. In these two cases, callicc can be considered as a magic operator,
and it is therefore totally pointless to reify continuations everywhere. Always hav
ing them on hand requires an extraordinary rate of allocation, allocations that we
give up if we are trying to increase the interpretation speed.

The next interpreter will thus return to a direct style without explicit continu
ations. We'll take advantage of it to make two new modifications:

1. functions will now be represented explicitly as ad hoc objects;

2. the results of pretreatment will appear as combinators (written as capital
letters) reminding us of the instructions of a hypothetical virtual machine.

We'll take up all the improvements in the first interpreter (calls to primitives,
reducible forms, etc.) again and then give them all definitions again.

6.3.1 Closures

As usual, closures will be represented by objects with two fields, one for their
code and another for their definition environment. The invocation protocol will be
adapted to this representation by the function invoke, like this:

(define-class closure Object
( code

closed-environment
) )
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(define (invoke f v*)
(if (closure? f)

«closure-code f) v* (closure-closed-environment f»
(wrong "Not a function" f) ) )

The code of interpreted closures will thus be represented by a closure with two
variables, one for the activation record, and the other for the definition environ
ment. In that way, the definition environment will be available for extensions.
Every invocation of a closure must thus pass by the invocation function, named
(reasonably enough) invoke.

6.3.2 The Pretreater

Pretreatment of programs is handled by the function meaning. Instead of returning
a closure (lambda (k) ... ), now it returns (lambda () ... ), an object that we
can interpret as a address to which we simply jump to execute it. (This practice
descends directly from Forth.) By suppressing all variables, we get thunks. More
over, it won't be hard to have an invocation protocol slightly more elaborate than
the current one to produce a simple but effective GOTO [see Ex. 6.6] to invoke
thunks.

You can see the function meaning on page 207.

6.3.3 Quoting

Quoting is still quoting, but it appears even easier to read because of the combinator
CONSTANT, like this:

(define (meaning-quotation v r tail?)
(CONSTANT v) )

(define (CONSTANT value)
(lambda () value) )

6.3.4 References

Pretreating variables always involves categorizing them and then associating them
with the right reader. These readers will be generated by appropriate combinators.
Since we use combinators, this definition is lighter and consequently easier to read.

(define (meaning-reference n r tail?)
(let «kind (compute-kind r n»)

(if kind
(case (car kind)

«local)
(let «i (cadr kind»

(j (cddr kind»
(if (= i 0)

(SHALLOW-ARGUMENT-REF j)
(DEEP-ARGUMENT-REF i j) ) ) )

«global)
(let «i (cdr kind»)

(CHECKED-GLOBAL-REF i) ) )
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«predefined)
(let «i (cdr kind»)

(PREDEFINED i) ) ) )
(static-wrong "No such variable" n) ) ) )

(define (SHALLOW-ARGUMENT-REF j)
(lambda () (activation-frame-argument *env* j» )

(define (PREDEFINED i)
(lambda () (predefined-fetch i» )

(define (DEEP-ARGUMENT-REF i j)
(lambda () (deep-fetch *env* i j»

(define (GLOBAL-REF i)
(lambda () (global-fetch i»

(define (CHECKED-GLOBAL-REF i)
(lambda ()

(let «v (global-fetch i»)
(if (eq? v undefined-value)

(wrong "Uninitialized variable")
v ) ) ) )

Nevertheless, notice that in the combinator CHECKED-GLOBAL-REF, when the
variable is not initialized, since we have available only the index of the variable
in the vector sg. current, it is no longer possible simply to indicate the name of
the erroneous variable. To do that, we have to keep what we conventionally call
a "symbol table" (here, the list g. current) indicating the names of variables and
the locations where they are stored. [see Ex. 6.1] With that device, if we know
the index of a faulty variable, then we can retrieve its name.

6.3.5 Conditional

Conditionals are clearer here, too, because of the combinator ALTERNATIVE, which
takes as arguments the results of the pretreatment of its three subforms.

(define (meaning-alternative el e2 e3 r tail?)
(let «ml (meaning el r #f»

(m2 (meaning e2 r tail?»
(m3 (meaning e3 r tail?»

(ALTERNATIVE ml m2 m3) ) )

(define (ALTERNATIVE ml m2 m3)
(lambda () (if (ml) (m2) (m3»)

6.3.6 Assignment

The structure of assignment resembles the structure of referencing except that
there is a subform to evaluate, a subform provided as an argument to all the write
combinators.

(define (meaning-assignment n e r tail?)
(let «m (meaning e r #f»

(kind (compute-kind r n»
(if kind

(case (car kind)
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«local)
(let «i (cadr kind»

(j (cddr kind»
(if (= i 0)

(SHALLOW-ARGUMENT-SET! j m)
(DEEP-ARGUMENT-SET! i j m) ) ) )

«global)
(let «i (cdr kind»)

(GLOBAL-SET! i m) )
«predefined)
(static-wrong "Immutable predefined variable" n) ) )

(static-wrong "No such variable" n) ) ) )
(define (SHALLOW-ARGUMENT-SET! j m)

(lambda () (set-activation-frame-argument! *env* j (m») )
(define (DEEP-ARGUMENT-SET! i j m)

(lambda () (deep-update! *env* i j (m»)
(define (GLOBAL-SET! i m)

(lambda () (global-update! i (m»)

6.3.7 Sequence

We express a sequence clearly in terms of the combinator SEQUENCE corresponding
to a binary begin.

(define (meaning-sequence e+ r tail?)
(if (pair? e+)

(if (pair? (cdr e+»
(meaning*-multiple-sequence (car e+) (cdr e+) r tail?)
(meaning*-single-sequence (car e+) r tail?)

(static-wrong "Illegal syntax: (begin) ") ) )
(define (meaning*-single-sequence e r tail?)

(meaning e r tail?) )
(define (meaning*-multiple-sequence e e+ r tail?)

(let «m1 (meaning e r If»
(m+ (meaning-sequence e+ r tail?»

(SEQUENCE m1 m+) ) )
(define (SEQUENCE m m+)

(lambda () (m) (m+» )

6.3.8 Abstraction

Closures are created by the combinators FIX-CLOSURE or NARY-CLOSURE. Their
differences involve verifying the arity and putting the excess arguments into a list.

(define (meaning-abstraction nn* e+ r tail?)
(let parse «n* nn*)

(regular '(» )
(cond
«pair? n*) (parse (cdr n*) (cons (car n*) regular»)
«null? n*) (meaning-fix-abstraction nn* e+ r tail?»
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(else (meaning-dotted-abstraction
(reverse regular) n* e+ r tail? » ) ) )

(define (meaning-fix-abstraction n* e+ r tail?)
(let* «arity (length n*»

(r2 (r-extend* r n*»
(m+ (meaning-sequence e+ r2 It» )

(FIX-CLOSURE m+ arity) ) )
(define (meaning-dotted-abstraction n* n e+ r tail?)

(let* «arity (length n*»
(r2 (r-extend* r (append n* (list n»»
(m+ (meaning-sequence e+ r2 It» )

(NARY-CLOSURE m+ arity) ) )
(define (FIX-CLOSURE m+ arity)

(let «arity+1 (+ arity 1»)
(lambda ()

(define (the-function v* sr)
(if (= (activation-frame-argument-length v*) arity+1)

(begin (set! *env* (sr-extend* sr v*»
(m+) )

(wrong "Incorrect arity") )
(make-closure the-function *env*) »

(define (NARY-CLOSURE m+ arity)
(let «arity+1 (+ arity 1»)

(lambda ()
(define (the-function v* sr)

(if (>= (activation-frame-argument-length v*) arity+1)
(begin

(listify! v* arity)
(set! *env* (sr-extend* sr v*»
(m+) )

(wrong "Incorrect arity") ) )
(make-closure the-function *env*) ) ) )

6.3.9 Application
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The only thing left to handle is applications. meaning-application analyzes their
nature. It recognizes reducible forms, calls to primitives, and any applications.

(define (meaning-application e e* r tail?)
(cond «and (symbol? e)

(let «kind (compute-kind r e»)
(and (pair? kind)

(eq? 'predefined (car kind»
(let «desc (get-description e»)

(and desc
(eq? 'function (car desc»
(or (= (length (cddr desc» (length e*»

(static-wrong
"Incorrect arity for primitive" e )

) ) ) ) ) )

(meaning-primitive-application e e* r tail?) )



216 CHAPTER 6. FAST INTERPRETATION

«and (pair? e)
(eq? 'lambda (car e» )

(meaning-closed-application e e* r tail?) )
(else (meaning-regular-application e e* r tail?» ) )

All applications are subject to only four combinators. In the combinator TR

REGULAR-CALL, the computations of the function term and the arguments are put
into sequence. As usual, the evaluation order is left to right.

(define (meaning-regular-application e e* r tail?)
(let* «m (meaning e r If»~

(m* (meaning* e* r (length e*) If»~ )
(if tail? (TR-REGULAR-CALL m m*) (REGULAR-CALL m m*» ) )

(define (meaning* e* r size tail?)
(if (pair? e*)

(meaning-some-arguments (car e*) (cdr e*) r size tail?)
(meaning-no-argument r size tail?) ) )

(define (meaning-some-arguments e e* r size tail?)
(let «m (meaning e r If»~

(m* (meaning* e* r size tail?»
(rank (- size (+ (length e*) 1»)

(STORE-ARGUMENT m m* rank) ) )

(define (meaning-no-argument r size tail?)
(ALLOCATE-FRAME size) )

(define (TR-REGULAR-CALL m m*)
(lambda ()

(let «f (m»)
(invoke f (m*» ) ) )

(define (REGULAR-CALL m m*)
(lambda ()

(let* «f (m»
(v* (m*»
(sr *env*)
(result (invoke f v*» )

(set! *env* sr)
result) ) )

(define (STORE-ARGUMENT m m* rank)
(lambda ()

(let* «v (m»
(v* (m*» )

(set-activation-frame-argument! v* rank v)
v* ) ) )

(define (ALLOCATE-FRAME size)
(let «size+1 (+ size 1»)

(lambda ()
(allocate-activation-frame size+1) ) ) )

6.3.10 Reducible Forms

Since reducible forms include an explicit lambda form in the function position, their
pretreatment adds four new combinators. CONS-ARGUMENT creates the list of excess
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arguments. ALLOCATE-DOTTED-FRAME creates an activation record, very much like
ALLOCATE-FRAME except that the supplementary field is explicitly initialized by ()
(an initialization we avoided in ALLOCATE-FRAME for performance reasons).

(define (meaning-dotted-closed-application n* n body e* r tail?)
(let* «m* (meaning-dotted* e* r (length e*) (length n*) If»~

(r2 (r-extend* r (append n* (list n»»
(m+ (meaning-sequence body r2 tail?» )

(if tail? (TR-FIX-LET m* m+)
(FIX-LET m* m+) ) ) )

(define (meaning-dotted* e* r size arity tail?)
(if (pair? e*)

(meaning-some-dotted-arguments (car e*) (cdr e*)
r size arity tail?

(meaning-no-dotted-argument r size arity tail?) )

(define (meaning-some-dotted-arguments e e* r size arity tail?)
(let «m (meaning e r If»~

(m* (meaning-dotted* e* r size arity tail?»
(rank (- size (+ (length e*) 1») )

(if « rank arity) (STORE-ARGUMENT m m* rank)
(CONS-ARGUMENT m m* arity) ) ) )

(define (meaning-no-dotted-argument r size arity tail?)
(ALLOCATE-DOTTED-FRAME arity) )

(define (FIX-LET m* m+)
(lambda ()

(set! *env* (sr-extend* *env* (m*»)
(let «result (m+»)

(set! *env* (environment-next *env*»
result) ) )

(define (TR-FIX-LET m* m+)
(lambda ()

(set! *env* (sr-extend* *env* (m*»)
(m+) ) )

(define (CONS-ARGUMENT m m* arity)
(lambda ()

(let* «v (m»
(v* (m*» )

(set-activation-frame-argument!
v* arity (cons v (activation-frame-argument v* arity» )

v* ) ) )
(define (ALLOCATE-DOTTED-FRAME arity)

(let «arity+1 (+ arity 1»)
(lambda ()

(let «v* (allocate-activation-frame arity+1»)
(set-activation-frame-argument! v* arity '(»
v* ) ) ) )

The combinator FIX-LET must restore the current environment-implying that
it must have been stored somewhere earlier so that it could be restored eventually.
There is an elegant solution here: since it appears in the linked activation records,
we simply have to go look for it there.
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6.3.11 Calling Primitives

The last type (and not the least important in number) is the case of forms where
we have an immutable global variable in the function position. In that case, we
will call the right invoker, using the arity as a parameter, so that we no longer need
to re-verify the arity.

(define (meaning-primitive-application e e* r tail?)
(let* «desc (get-description e»

; ; desc = (function address. variables-list)
(address (cadr desc»
(size (length e*» )

(case size
«0) (CALLO address»
«1)
(let «m1 (meaning (car e*) r If»)

(CALL1 address m1) ) )
«2)
(let «m1 (meaning (car e*) r If»

(m2 (meaning (cadr e*) r If»
(CALL2 address m1 m2) ) )

«3)
(let «m1 (meaning (car e*) r If»

(m2 (meaning (cadr e*) r If»
(m3 (meaning (caddr e*) r If»

(CALL3 address m1 m2 m3) ) )
(else (meaning-regular-application e e* r tail?» ) ) )

(define (CALLO address)
(lambda () (address» )

(define (CALL3 address m1 m2 m3)
(lambda () (let* «v1 (m1»

(v2 (m2» )
(address v1 v2 (m3» » )

CALL3 explicitly puts the arguments in sequence to respect the left to right
order.

6.3.12 Starting the Interpreter

Since continuations are no longer explicit in this interpreter, we must look again at
the macros that enrich the global environment. Their structure has changed little,
so we'll show you only defprimitive2 by way of example:

(define-syntax defprimitive2
(syntax-rules ()

«defprimitive2 name value)
(definitial name

(letrec «arity+1 (+ 2 1»
(behavior

(lambda (v* sr)
(if (= arity+1 (activation-frame-argument-length v*»

(value (activation-frame-argument v* 0)



6.3. DILUTING CONTINUATIONS

(activation-frame-argument v* 1)
(wrong "Incorrect arity" 'name) ) ) )

(description-extend! 'name '(function ,value a b»
(make-closure behavior sr.init) ) ) ) ) )

We start the interpreter by this:

(define (chapter63-interpreter)
(define (toplevel)

(set! *env* sr.init)
(display «meaning (read) r.init It»)
(toplevel) )

(toplevel) )

6.3.13 The Function call/cc
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Now since the function callicc is magic, for its own definition, it needs the function
callicc from the library on which the interpreter is built, so here we have the
tautologic definitions of the first interpreters.

(definitial call/cc
(let* «arity 1)

(arity+1 (+ arity 1» )
(make-closure

(lambda (v* sr)
(if (= arity+1 (activation-frame-argument-length v*»

(call/cc
(lambda (k)

(invoke
(activation-frame-argument v* 0)
(let «frame (allocate-activation-frame (+ 1 1»»

(set-activation-frame-argument!
frame 0
(make-closure

(lambda (values r)
(if (= (activation-frame-argument-length values)

arity+1 )
(k (activation-frame-argument values 0»
(wrong "Incorrect arity" 'continuation) ) )

sr.init ) )
frame ) ) ) )

(wrong "Incorrect arity" 'call/cc) ) )
sr.init ) ) )

6.3.14 The Function apply

To look beyond our usual horizon, here's the function apply. It is always difficult
to write because it strongly depends on how functions themselves are coded and on
which calling protocol has been chosen, but here it is in all its detail and complexity.

(definitial apply
(let* «arity 2)
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(arity+1 (+ arity 1»
(make-closure

(lambda (v* sr)
(if (>= (activation-frame-argument-length v*) arity+1)

(let* «proc (activation-frame-argument v* 0»
(last-arg-index
(- (activation-frame-argument-length v*) 2) )

(last-arg
(activation-frame-argument v* last-arg-index)

(size (+ last-arg-index (length last-arg»)
(frame (allocate-activation-frame size» )

(do «i 1 (+ i 1»)
«= i last-arg-index»

(set-activation-frame-argument!
frame (- i 1) (activation-frame-argument v* i) ) )

(do «i (- last-arg-index 1) (+ i 1»
(last-arg last-arg (cdr last-arg»

«null? last-arg»
(set-activation-frame-argument! frame i (car last-arg» )

(invoke proc frame) )
(wrong "Incorrect arity" 'apply) ) )

sr.init ) ) )

That primitive verifies that it has at least two arguments and then runs through
the activation record to find the exact number of arguments to which the function
in the first argument applies. To do so, it must compute the length of the list in the
last argument. Once it has this number, we can then allocate an activation record
of the correct size. We copy into that record all the arguments in their correct
position; the first ones we copy directly from the activation record furnished to
apply; the following ones, by exploring the list of "superfluous" arguments. That
exploration stops when that list is empty, as determined by the test null? It
might seem more robust to use atom? but that would make the program (apply
list '(a b. c)) correct-contrary to the norms of Scheme.

As you can see, apply is not an inexpensive operation because it allocates a
new activation record, and it must run through the list in the last argument.

6.3.15 Conclusions: Interpreter without Continuations

This new interpreter is two to four times faster than the previous one, mainly
because we don't reify continuations in it. In effect, representing continuations by
closures mixes them up with other, more ordinary values. Doing that disregards
an important property of continuations: that they habitually have a very short
extent. For that reason, allocating continuations on a stack is usually a winner
because it is a low-cost strategy. That's also the case for de-allocations, usually
just one instruction popping the pointer from the top of the stack. Just so we don't
make a mistake here, we should repeat that the mass of data allocated to represent
a continuation is the same order of magnitude whether on a stack or in a heap, but
managing it on a stack is less costly than managing it in a heap. (See also [App87]
for a different opinion that does not take locality into account.) This observation
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holds even if we imagine specializing the heap in several zones with one adapted
to continuations, as described in [MB93].

The thunks that this most recent interpreter uses belong to the technique of
threaded code as in [BeI73] and common in Forth [Hon93]. This interpreter is also
strongly inspired by that of Marc Feeley and Guy Lapalme in [FL87].

Combinators actually play the role of code generators. We introduced them in
this interpreter because they offer a simple interface that makes it easy to change
the representation of pretreated programs. With them, we can easily imagine
building objects rather than closures. In fact, there's an exercise [see Ex. 6.3] in
preparation for the next chapter, where we'll see their use in compilation.

6.4 Conclusions

At first glance, this chapter and its three interpreters might seem like a giant
step backward, wiping out all the progress we had made in the first four chapters.
Indeed, we have practically suppressed memory (except for managing activation
records), and continuations have disappeared. On the positive side, we've presented
the idea of pretreatment as a preliminary to compilation. We've also separated
static from dynamic and made various improvements to increase execution speed.
We actually achieved that last goal: we've improved speed by roughly two orders
of magnitude in comparison with the denotational interpreter.

The third interpreter of this chapter actually implements all the special forms
of Scheme and represents the essence of any language. All that's left to do is
endow the interpreter with a memory manager and ad hoc libraries specialized for
editing text, industrial drafting and design, Scheme as a language, materials testing,
virtual reality, etc. Of course, when we say "all that's left," we're glossing over the
incredible complexity of choosing representation schema for primitive objects in
memory where the chief goals are rapid type checking as in [Gud93] and no less
efficient garbage collection.

Of course, we could improve these interpreters or even extend them to handle
new special forms, but remember that our real purpose is to produce a set of
interpreters modified incrementally to reduce the mass of detail composing them
and to highlight new goals that they illustrate.

6.5 Exercises

Exercise 6.1 : [see p. 213] Modify the combinator CHECKED-GLOBAL-REFso that
the error message about an uninitialized variable is more meaningful.

Exercise 6.2 : Define the primitive list for the third interpreter of this chapter.
You will, of course, do so elegantly and with little effort.

Exercise 6.3 : Instead of pretreating a program, we could display the way it would
be pretreated. Here's what we mean for factorial:

? (disassemble '(lambda (n) (if (= n 0) 1 (* n (fact (- n 1»»»
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(FIX-CLOSURE
(ALTERNATIVE

(CALL2 #<=> (SHALLOW-ARGUMENT-REF 0) (CONSTANT 0»
(CONSTANT 1)
(CALL2 #<*> (SHALLOW-ARGUMENT-REF 0)

(REGULAR-CALL
(CHECKED-GLOBAL-REF 10) ;~ fact
(STORE-ARGUMENT

(CALL2 #<-> (SHALLOW-ARGUMENT-REF 0) (CONSTANT 1»
(ALLOCATE-FRAME 1)
o ) ) ) )

1 )

Write such a disassembler to display pretreatment.

Exercise 6.4: Modify the last interpreter of this chapter so that activation
records are allocated before arguments are computed. Then arguments could be
put directly into the right place. [see p. 189]

Exercise 6.5 : Define a special form, redefine, to take a variable in the immutable
global environment and insert it in the mutable global environment, as we discussed
on page 191. The initial value of this new global variable is the value that it had
before.

Exercise 6.6 : Improve the pretreatment of functions without variables. [see p.
212]

Recommended Reading

The last interpreter in this chapter is inspired by [FL87]. The method of getting
from the denotational interpreter to combinators comes from [Cli84]. If you really
like fast interpretation, you'll enjoy meditating on [Cha80] and [SJ93].



7
Compilation

T HE preceding chapter explicated a pretreatment procedure that tran
scribed a program written in Scheme into a tree-like language of about
twenty-five instructions. This chapter exploits the results of that pre
treatment to transform it into a set of bytes, an ad hoc machine language.

We'll look at each of the following ideas in turn: defining a virtual machine, com
piling into its own language, and implementing various extensions of Scheme, such
as escapes, dynamic variables, and exceptions.

(SHALLOW-ARGUMENT-REF j)
(DEEP-ARGUMENT-REF i j)
(DEEP-ARGUMENT-SET! i j m)

( CHECKED-GLOBAL-REF i)
(CONSTANT v)
(SEQUENCE m m+)
(FIX-LET m* m+)
(CALLi address ml)
(CALL3 address ml m2 m3)
(NARY-CLOSURE m+ arity)
(REGULAR-CALL m m*)
(CONS-ARGUMENT m m* arity)
(ALLOCATE-DOTTED-FRAME arity)

(PREDEFINED i)
(SHALLOW-ARGUMENT-SET! j m)
(GLOBAL-REF i)
( GLOBAL-SET! i m)

(ALTERNATIVE ml m2 m3)
(TR-FIX-LET m* m+)
(CALLO address)
(CALL2 address ml m2)
(FIX-CLOSURE m+ arity)
(TR-REGULAR-CALL m m*)
(STORE-ARGUMENT m m* rank)
(ALLOCATE-FRAME size)

Table 7.1 The intermediate language with 25 instructions: m, ml, m2, m3, m+,
and v are values; m* returns an activation record; rank, arity, size, i, and j
are natural numbers (positive integers); address represents a predefined function
(subr) that takes values and returns one of them.

Compilation often produces a set of fairly low-level instructions. That was
not the case in the pretreatment from the previous chapter. In fact, it built the
equivalent of a structured tree. For a more eloque~t example, consider the following
program:

«lambda (fact) (fact 5 fact (lambda (x) x»)
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(lambda (n f k) (if (= n 0) (k 1)
(f (- n 1) f (lambda (r) (k (* n r)))) )) )

After transcription, its pretreatment looks like this:

(TR-FIX-LET
(STORE-ARGUMENT

(FIX-CLOSURE
(ALTERNATIVE

(CALL2 #<=> (SHALLOW-ARGUMENT-REF 0) (CONSTANT 0))
(TR-REGULAR-CALL (SHALLOW-ARGUMENT-REF 2)

(STORE-ARGUMENT (CONSTANT 1)
(ALLOCATE-FRAME 1) 0) )

(TR-REGULAR-CALL (SHALLOW-ARGUMENT-REF 1)
(STORE-ARGUMENT (CALL2 #<-> (SHALLOW-ARGUMENT-REF 0) (CONSTANT 1))

(STORE-ARGUMENT (SHALLOW-ARGUMENT-REF 1)
(STORE-ARGUMENT (FIX-CLOSURE

(TR-REGULAR-CALL (DEEP-ARGUMENT-REF 1 2)
(STORE-ARGUMENT (CALL2 #<*>

(DEEP-ARGUMENT-REF 1 0)
(SHALLOW-ARGUMENT-REF 0)

(ALLOCATE-FRAME 1)
o ) )

1 )

(ALLOCATE-FRAME 3)
2 )

1 )
o ) )

3 )
(ALLOCATE-FRAME 1)
0)

(TR-REGULAR-CALL (SHALLOW-ARGUMENT-REF 0)
(STORE-ARGUMENT (CONSTANT 5)

(STORE-ARGUMENT (SHALLOW-ARGUMENT-REF 0)
(STORE-ARGUMENT (FIX-CLOSURE (SHALLOW-ARGUMENT-REF 0) 1)

(ALLOCATE-FRAME 3)
2 )

1 )

o ) )

It's not easy to read, but it's accurate. The purpose of this chapter is to show
that this form is far from final. Indeed, certain transformations, such as linearizing
and byte-coding, can even transmute it into other languages. The language of
the twenty-five instructions/generators in Table 7.1 will serve as our intermediate
language, a kind of springboard for leaping into other realms.

We'll regard the pretreatment phase (that last interpreter in the preceding
chapter, the one that produced the famous intermediate language) as the first
pass of a compiler. Consequently, we'll be interested only in the twenty-five func
tions/generators. In fact, we'll adapt them to the characteristics of our final target
language. By dividing the work in this way, we take advantage of the fact that
the intermediate language is executable. We've already used that fact to test the
pretreater. Now it will let us concentrate solely on the second pass.
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First, we'll study compilation toward a virtual machine. It will be a simple
one, but one that presents all the characteristics of any machine programmable
in machine language. Its instruction set will be represented by bytes, in particu
lar, integers from 0 to 255. This technique is known as byte-coding. It appeared
sometime before 1980, according to [Deu80, Row90]. Since then, it has often been
used to highlight the rudiments of compilation, as in [Hen80]. The code we get
this way is particularly compact, a quality that justifies its use on machines with
little memory or limited caching. It's the technique used by PC-Scheme [BJ86] and
Caml Light [LW93].

There are several aspects to the entire technique. After pretreatment, a program
is compiled into byte-code vectors. These byte-codes are then evaluated by an
interpreter. That is, compilation and interpretation are both involved, but only
interpreting byte-code is necessary for execution.

7.1 COlllpiling into Bytes

Our goal is little by little to bring up a machine specialized to interpret byte-code.
We define this machine by defining the twenty-five instructions of the intermediate
language. Some of these definitions are obvious, but others will require a little
inventiveness on our part. To our advantage, we'll be designing both the machine
and its instruction set at the same time. This flexibility will be indispensible when
we want, say, to add new registers or introduce a stack.

To get the ultimate byte-code vector, we'll have to linearize the program ex
pressed in intermediate language. For that reason, we must be sure that commu
nication between instructions is limited to the common resources of the machine,
that is, the registers and the stack. For the moment, our machine has only one
register; it contains the current lexical environment, *env*, but we'll soon fatten
up this somewhat Spartan architecture.

7.1.1 Introducing the Register *val*

Among the twenty-five instructions in the intermediate language, some of them pro
duce values, for example, like the instructions SHALLOW-ARGUMENT-REF or CONSTANT,
whereas others, like FIX-LET or ALTERNATIVE, coordinate computations. In that
light, let's look more closely at GLOBAL-SET!. It was defined like this:

(define (GLOBAL-SET! i m)
(lambda () (global-update! i (m») )

To break communication, we have to have another register. We'll call it *val*.
Instructions that produce values will put them there so that consumers can find
them. Consequently, an instruction like CONSTANT-one that produces values-will
be written like this:

(define (CONSTANT value)
(lambda ()

(set! *val* value) )

In contrast, a consumer of values, like GLOBAL-SET! , will become:

(define (GLOBAL-SET! i m)
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(lambda ()
(m)
(global-update! i *val*) ) )

The form (m) will eventually produce a value in the register *val*, which
will then be transferred by global-update! to the right address. Notice that
global-update! does not disturb the register *val*. To disturb it would cost at
least one instruction. As a consequence, the value of a form that assigns something
to a global variable is the value found in the register *val*, that is, the assigned
value.

It's easy enough to deduce the rest of the transformation of the two examples
we gave earlier. For example, we linearize SEQUENCE automatically, like this:

(define (SEQUENCE m m+)
(lambda () (m) (m+» )

while FIX-LET becomes this:

(define (FIX-LET m* m+)
(lambda ()

(m*)
(set! *env* (sr-extend* *env* *val*»
(m+)
(set! *env* (activation-frame-next *env*» ) )

7.1.2 Inventing the Stack

We've already achieved part of the linearizing that we wanted to do, but for some
instructions, the issues are more subtle. For example, STORE-ARGUMENT has become:

(define (STORE-ARGUMENT m m* rank)
(lambda ()

(m)

(let «v *val*»
(m*)
(set-activation-frame-argument! *val* rank v) ) ) )

That instruction uses the form let to save values and restore them later if
needed. Here, the form let saves a value in an "anonymous register" v while (m*)
is being calculated. We can't associate a real machine register with v because we
might need more than one such v simultaneously, especially in the case of multiple
forms of STORE-ARGUMENT nested inside the computation of (m*). Consequently,
we need a place where we can save any number of values. A stack would be useful
here, the more so because the pushes and pops seem equally balanced. We'll assume
then that we have a well defined stack managed by the following functions:

(define *stack* (make-vector 1000»
(define *stack-index* 0)
(define (stack-push v)

(vector-set! *stack* *stack-index* v)
(set! *stack-index* (+ *stack-index* 1»

(define (stack-pop)
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(set! *stack-index* (- *stack-index* 1»
(vector-ref *stack* *stack-index*) )

Endowed with this new technology, we can adapt the instruction STORE-ARGU
MENT to indulge immoderately in pushing and popping the stack. Instead of saving
values in a register, we'll keep them on a stack, and we'll get them back from the
stack when needed as well. This plan works only if we insure that the stack that
(m*) takes is the same one that (m*) returns. Consequently, there is an invariant
to respect as we write the instruction.

(define (STORE-ARGUMENT m m* rank)
(lambda ()

(m)

(stack-push *val*)
(m*)
(let «v (stack-pop»)

(set-activation-frame-argument! *val* rank v) ) ) )

The case of REGULAR-CALL is clear except that we must simultaneously keep
the function to invoke during the computation of its arguments and the current
environment during the invocation itself. We had this:

(define (REGULAR-CALL m m*)
(lambda ()

(m)

(let «f *val*»
(m*)
(let «sr *env*»

(invoke f *val*)
(set! *env* sr) ) ) ) )

After we invent a new register-*fun*-we can transform that definition into
this one:

(define (REGULAR-CALL m m*)
(lambda ()

(m)
(stack-push *val*)
(m*)
(set! *fun* (stack-pop»
(stack-push *env*)
(invoke *fun*)
(set! *env* (stack-pop» ) )

In passing, we notice that we have also redefined the calling protocol for func
tions. It no longer takes the activation record as an argument since that record is al
ready in the register *val*. You can see this in the current version of FIX-CLOSURE:

(define (FIX-CLOSURE m+ arity)
(let «arity+1 (+ arity 1»)

(lambda ()
(define (the-function sr)

(if (= (activation-frame-argument-length *val*) arity+1)
(begin (set! *env* (sr-extend* sr *val*»
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(m+) )

(wrong "Incorrect arity") ) )
(set! *val* (make-closure the-function *env*» ) ) )

By adding registers, we can also linearize calls to primitives as well. We'll
introduce the registers *arg1* and *arg2*. One of them is not necessarily different
from *fun*, which is never used at the same time anyway. Consequently, we'll write
CALL3 like this:

(define (CALL3 address m1 m2 m3)
(lambda ()

(m1)
(stack-push *val*)
(m2)
(stack-push *val*)
(m3)
(set! *arg2* (stack-pop»
(set! *arg1* (stack-pop»
(set! *val* (address *arg1* *arg2* *val*» ) )

7.1.3 Customizing Instructions

Currently the twenty-five instructions that we're redefining generate thunks where
the body of a thunk is a sequence of register effects. To get the instructions we
want, we need to transform these twenty-five instructions so that they generate
sequences of thunks that have only one unique effect: to modify one register, to
push one value onto the stack, etc. By inverting our point of view in this way, we'll
introduce the idea of a program counter, that is, a specialized register designating
the next instruction to execute. If we have a program counter, we will also be able
to define the function calling protocol more precisely, and thus eventually we'll be
able to describe the mysteries of implementing callicc, too.

Linearizing Assignments

Let's take the case of SHALLOW-ARGUMENT-SET!. That instruction was defined like
this:

(define (SHALLOW-ARGUMENT-SET! j m)
(lambda ()

(m)

(set-activation-frame-argument! *env* j *val*) ) )

To transform it into a sequence of instructions, we'll rewrite it as the following
two functions:

(define (SHALLOW-ARGUMENT-SET! j m)
(append m (SET-SHALLOW-ARGUMENT! j»

(define (SET-SHALLOW-ARGUMENT! j)
(list (lambda () (set-activation-frame-argument! *env* j *val*») )

That first one, with the same name as before, composes various effects and
returns the list of final instructions. The second function SET-SHALLOW-ARGUMENT!

is specialized to write in an activation record.
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Linearizing Invocations

REGULAR-CALL provides a good example of linearization. To customize all its com
ponents, we add the following instructions to the final machine: PUSH-VALUE,
POP-FUNCTION,PRESERVE-ENV, FUICTION-INVOKE, and RESTORE-EIV.

Here are those new definitions:

(define (REGULAR-CALL m m*)
(append m (PUSH-VALUE)

m* (POP-FUNCTION) (PRESERVE-ENV)
(FUNCTION-INVOKE) (RESTORE-ENV)

) )

(define (PUSH-VALUE)
(list (lambda () (stack-push *val*»)

(define (POP-FUNCTION)
(list (lambda () (set! *fun* (stack-pop»»

(define (PRESERVE-ENV)
(list (lambda () (stack-push *env*»)

(define (FUNCTION-INVOKE)
(list (lambda () (invoke *fun*») )

(define (RESTORE-ENV)
(list (lambda () (set! *env* (stack-pop»»

Just as we wanted, now the result of compiling is a list of elementary instruc
tions. However, this list is not directly executable, so we must provide an engine
to evaluate this list of instructions. For that purpose, we define run like this:

(define (run)
(let «instruction (car *pc*»)

(set! *pc* (cdr *pc*»
(instruction)
(run) ) )

Compiling now results in a list of instructions stored in the variable *pc* which
plays the role of the program counter. The function run simulates a processor that
reads an instruction, increments the program counter, executes the instruction, and
then begins all over again. Incidentally, all the instructions here are represented
by closures with the same signature (lambda () ... ).

Linearizing the Conditional

Linearizing a conditional is always problematic because of the two possible exits.
How should we linearize a fork like that? To handle that, we'll (re)invent two new
jump instructions that affect the program counter: JUMP-FALSE and GOTO. GOTO,
familiar from other languages, represents an unconditional jump. JUMP-FALSE tests
the contents of the register *val* and jumps only if it contains False. Both these
instructions affect only the register *pc* to the exclusion of any other.

(define (JUMP-FALSE i)
(list (lambda () (if (not *val*) (set! *pc* (list-tail *pc* i»»)

(define (GOTO i)
(list (lambda () (set! *pc* (list-tail *pc* i»» )
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m1 •.. (JUMP-FALSE -) m2 ... (GOTO -) m3 ...

Figure 7.1 Linearizing the conditional

With those two new instructions, here's how we linearize the conditional. You
can see it better in Figure 7.1.

(define (ALTERNATIVE m1 m2 m3)
(append m1 (JUMP-FALSE (+ 1 (length m2») m2 (GOTO (length m3» m3) )

The condition is calculated and then tested by JUMP-FALSE. If the condition
is true, we execute the instructions that follow it, and at the end of those com
putations, we jump over the corresponding instructions in the alternate. If the
condition is false, we jump to the alternate that will be executed. Here you can see
that we've just arrived at the level of an assembly language. Notice, however, that
these jumps are relative to our current position, that is, they are program-counter
relative.

Linearizing Abstractions

The last instruction that's hard to linearize is the one to create a closure. It's
difficult because we have to splice together the code for the function with the code
which creates it. Again, we'll use a jump to do this, as in Figure 7.2. Here's how
we create a closure with variable arity:

(define (NARY-CLOSURE m+ arity)
(define the-function

(append (ARITY>=? (+ arity 1» (PACK-FRAME! arity) (EXTEND-ENV)
m+ (RETURN) ) )

(append (CREATE-CLOSURE 1) (GOTO (length the-function»
the-function) )

(define (CREATE-CLOSURE offset)
(list (lambda () (set! *val* (make-closure (list-tail *pc* offset)

*env* »» )
(define (PACK-FRAME! arity)

(list (lambda () (listify! *val* arity»)

The new instruction CREATE-CLOSURE builds a closure for which the code is
found right after the following GOTO instruction. Once the closure has been created
and put into the register *val*, its creator jumps over the code corresponding to
its body in order to continue in sequence.

7.1.4 Calling Protocol for Functions

Functions are invoked by the instructions TR-REGULAR-CALL or REGULAR-CALL,

which we covered a little earlier. [see p. 229] The function invoke condenses



7.2. LANGUAGE AND TARGET MACHINE

(CREATE-CLOSURE -) (GOTO -) body ...

Figure 7.2 Linearizing an abstraction
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that function calling protocol, like this:

(define (invoke f)
(cond «closure? f)

(stack-push *pc*)
(set! *env* (closure-closed-environment f»
(set! *pc* (closure-code f» )

. .. ) )

To invoke a function, we save the program counter that indicates the next
instruction that follows the instruction (FUNCTION-INVOKE) in the caller. Then
we take apart the closure to put its definition environment into the environment
register *env*. Eventually, we assign the address of the first instruction in its
body to the program counter. We don't save the current environment because it
has already been handled elsewhere according to whether the function was invoked
by TR-REGULAR-CALL or REGULAR-CALL.

Then the function run takes over and executes the first instruction from the
body of the invoked function to verify its arity, then, in case of successful verifica
tion, to extend the environment with its activation record. The activation record
is in the register *val*. By now, everything is in place for the function to evaluate
its own body. A value is then computed and put into *val*. Then that value has
to be transmitted to the caller; that's the role of the RETURN instruction. It pops
the program counter from the top of the stack and returns to the caller, like this:

(define (RETURN)
(list (lambda () (set! *pc* (stack-pop»» )

About Jumps

Assembly language programmers have probably noticed that we've been using only
forward jumps. Moreover, the jumps as well as the construction of closures are all
relative to the program counter. This relativity means that the code is independent
of its actual place in memory. We call this phenomenon pc-independent code in the
sense of independent of the program counter.

7.2 Language and Target Machine

Now we're going to define our target machine as well as the language for program
ming it. The machine will have five registers (*env*, *val*, *fun*, *arg1*, and
*arg2*), a program counter (*pc*), and a stack, as you see in Figure 7.3.
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There are now thirty-four instructions. They appear in Table 7.2. In addition to
the instructions you've already seen, we've added FINISH to complete calculations
(or, more precisely, to get out of the function run) and to return control to the
operating system or to its simulation in Lisp. [see p. 223]

The twenty-five instructions/generators of the intermediate language can be
organized into two groups: leaf instructions and composite instructions. The nine
leaf instructions are identified- as such by the same name; they are marked by a
star as a suffix in Table 7.2. In contrast, the sixteen composite instructions are
defined explicitly in terms of the twenty-five new elementary instructions. We could
have customized them more, for example, by decomposing CHECKED-GLOBAL-REF
into a sequence of two instructions that carried out GLOBAL-REF and then verified
that *val* actually contains an initialized value, but that would have slowed the
interpreter. Conversely, we could have grouped some instructions together, as for
CALL3: (POP-ARG2) is always followed by (POP-ARG1) so that particular sequence
could be combined into one instruction.

(SHALLOW-ARGUMENT-REF j).
(DEEP-ARGUMENT-REF i j).
(SET-DEEP-ARGUMENT! i j)
(CHECKED-GLOBAL-REF i).
(CONSTANT v).
(GOTO offset)
(UNLINK-ENV)
(INVOKE1 address)
(POP-ARG1)
(POP-ARG2)
(CREATE-CLOSURE offset)
(RETURN)
(ARITY>=? arity + 1)
(FUNCTION-INVOKE)
(RESTORE-ENV)
(POP-CONS-FRAME! arity)
(ALLOCATE-DOTTED-FRAME arity).

(PREDEFINED i).
(SET-SHALLOW-ARGUMENT! j)
(GLOBAL-REF i).
(SET-GLOBAL! i)

(JUMP-FALSE offset)
(EXTEND-ENV)
(CALLO address).
(PUSH-VALUE)
(INVOKE2 address)
(INVOKE3 address)
(ARITY=? arity + 1)
(PACK-FRAME! arity)
(POP-FUNCTION)
(PRESERVE-ENV)
(POP-FRAME! rank)
(ALLOCATE-FRAME size).
(FINISH)

Table 7.2 Symbolic instructions

A few of the sixteen composite instructions of the intermediate language haven't
appeared before, so here are their unadorned definitions with no explanation. Later
we'll get to the definition of the missing machine instructions that appeared in
Table 7.2.

(define (DEEP-ARGUMENT-SET! i j m)
(append m (SET-DEEP-ARGUMENT! i j»

(define (GLOBAL-SET! i m)
(append m (SET-GLOBAL! i» )

(define (SEQUENCE m m+)
(append m m+) )

(define (TR-FIX-LET m* m+)
(append m* (EXTEND-EIV) m+)
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(define (FIX-LET m* m+)
(append m* (EXTEND-EIV) m+ (UNLINK-ENV»

(define (CALLi address m1)
(append m1 (INVOKE1 address) ) )

(define (CALL2 address m1 m2)
(append m1 (PUSH-VALUE) m2 (POP-ARG1) (INVOKE2 address» )

(define (CALL3 address m1 m2 m3)
(append m1 (PUSH-VALUE)

m2 (PUSH-VALUE)
m3 (POP-ARG2) (POP-ARG1) (INVOKE3 address) ) )

(define (FIX-CLOSURE m+ arity)
(define the-function

(append (ARITY=? (+ arity 1» (EXTEND-ENV) m+ (RETURN»
(append (CREATE-CLOSURE 1) (GOTO (length the-function»

the-funct ion) )
(define (TR-REGULAR-CALL m m*)

(append m (PUSH-VALUE) m* (POP-FUNCTION) (FUNCTION-INVOKE»
(define (STORE-ARGUMENT m m* rank)

(append m (PUSH-VALUE) m* (POP-FRAME! rank» )
(define (CONS-ARGUMENT m m* arity)

(append m (PUSH-VALUE) m* (POP-CONS-FRAME! arity»

The many appends that break up these definitions make pretreatment particu
larly costly and inefficient. A good solution is to build the final code in one pass.
That's what we would do to compile into C. [see p. 379] To do that, we must
linearize the code production; that's an activity that is independent of linearizing
the code as we have done it in this chapter. To take just one example: for CALL2,
we would do the following:

1. generate the code for m1;

2. produce the code for (PUSH-VALUE);

3. generate the code for m2;

4. produce the code for (POP-ARG1);

5. produce the code for (INVOKE2 address).

Carrying out those modifications is trivial everywhere except in the GOTOs and
JUMP-FALSEs. We can no longer precompute them in ALTERNATIVE, FIX-CLOSURE,
nor NARY-CLOSURE. To handle that chore, we must implement backpatching. For
example, in FIX-CLOSURE, we must do the following:

1. produce the instruction CREATE-CLOSURE;

2. produce a GOTO instruction without specifying the offset but noting the cur
rent value of the program counter;

3. generate the code for the body of the function;

4. note the current value of the program counter to deduce the offset of the GOTO
we generated earlier;

5. write that offset in the place! reserved for it in the GOTO.

1. Things get a little complicated on a byte machine, depending on whether we reserve one or
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The result will be a cleaner, more efficient process for producing code than the
one we've come up with, but we kept ours around for its simplicity.

7.3 Disassembly

At the beginning of this chapter, [see p. 223] we showed the intermediate form
of the following little program:

«lambda (fact) (fact 5 fact (lambda (x) x»)
(lambda (n f k) (if (= n 0) (k 1)

(f (- n 1) f (lambda (r) (k (* n r»» » )

Now we can show the symbolic form that it elaborates in our machine language.
The 78 instructions of Figure 7.4 are really beginning to look like machine language.

7.4 Coding Instructions

For pages and pages, we've talking about bytes, but we've not yet actually seen
one. To bring them out of hiding, we simply have to look at the instructions in
Table 7.2 differently: instead of seeing them as instructions, we should regard them
as byte generators executed by a new, more highly adapted run. This change in
our point of view will highlight important improvements in the generated code,
namely its speed and compactness.

Coding instructions as bytes has to be done very carefully. We must simulta
neously choose a byte and associate it with its behavior inside the run function as
well as with various other information, such as the length of the instruction (for
example, for a disassembly function). For all those reasons, instructions will be de
fined by means of special syntax: define-instruction. We'll assume that all the
definitions of instructions appearing here and there in the text have actually been
organized inside the macro define-instruction-set along with a few utilities,
like this:

(define-syntax define-instruction-set
(syntax-rules (define-instruction)

«define-instruction-set
(define-instruction (name. args) n . body) ... )

(begin
(define (run)

(let «instruction (fetch-byte»)
(case instruction

«n) (run-clause args body» ) )
(run) )

(define (instruction-size code pc)
(let «instruction (vector-ref code pc»)

(case instruction
«n) (size-clause args» ... ) ) )

(define (instruction-decode code pc)

two bytes for the offset, since it might be more or less than 256, once it's determined. There is
some risk here of suboptimality.



236

(CREATE-CLOSURE 2)
(GOTO 59)
(ARITY=? 4)
(EXTEND-ENV)
(SHALLOW-ARGUMENT-REF 0)
(PUSH-VALUE)
(CONSTANT 0)
(POP-ARG1)
(INVOKE2 =)
(JUMP-FALSE 10)
(SHALLOW-ARGUMENT-REF 2)
(PUSH-VALUE)
(CONSTANT 1)
(PUSH-VALUE)
(ALLOCATE-FRAME 2)
(POP-FRAME! 0)
(POP-FUNCTION)
(FUNCTION-GOTO)
(GOTO 39)
(SHALLOW-ARGUMENT-REF 1)
(PUSH-VALUE)
(SHALLOW-ARGUMENT-REF 0)
(PUSH-VALUE)
(CONSTANT 1)
(POP-ARG1)
(INVOKE2 -)
(PUSH-VALUE)
(SHALLOW-ARGUMENT-REF 1)
(PUSH-VALUE)
(CREATE-CLOSURE 2)
(GOTO 19)
(ARITY=? 2)
(EXTEND-ENV)
(DEEP-ARGUMENT-REF 1 2)
(PUSH-VALUE)
(DEEP-ARGUMENT-REF 1 0)
(PUSH-VALUE)
(SHALLOW-ARGUMENT-REF 0)
(POP-ARG1)

CHAPTER 7. COMPUATION

(INVOKE2 *)
(PUSH-VALUE)
(ALLOCATE-FRAME 2)
(POP-FRAME! 0)
(POP-FUNCTION)
(FUNCTION-GOTO)
(RETURN)
(PUSH-VALUE)
(ALLOCATE-FRAME 4)
(POP-FRAME! 2)
(POP-FRAME! 1)
(POP-FRAME! 0)
(POP-FUNCTION)
(FUNCTION-GOTO)
(RETURN)
(PUSH-VALUE)
(ALLOCATE-FRAME 2)
(POP-FRAME! 0)
(EXTEND-EIV)
(SHALLOW-ARGUMENT-REF 0)
(PUSH-VALUE)
(CONSTANT 5)
(PUSH-VALUE)
(SHALLOW-ARGUMENT-REF 0)
(PUSH-VALUE)
(CREATE-CLOSURE 2)
(GOTO 4)
(ARITY=? 2)
(EXTEND-ENV)
(SHALLOW-ARGUMENT-REF 0)
(RETURN)
(PUSH-VALUE)
(ALLOCATE-FRAME 4)
(POP-FRAME! 2)
(POP-FRAME! 1)
(POP-FRAME! 0)
(POP-FUNCTION)
(FUNCTION-GOTO)
(RETURN)

Figure 7.4 Compilation
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(define (fetch-byte)
(let «byte (vector-ref code pc»)

(set! pc (+ pc 1»
byte ) )

(let-syntax
«decode-clause

(syntax-rules ()
«decode-clause iname (» '(iname»
«decode-clause iname (a»
(let «a (fetch-byte») (list 'iname a»

«decode-clause iname (a b»
(let* «a (fetch-byte»(b (fetch-byte»)

(list 'iname a b) ) ) »)
(let «instruction (fetch-byte»)

(case instruction
«n) (decode-clause name args» ... ) ) ) ) ) ) ) )

(define-syntax run-clause
(syntax-rules ()

«run-clause () body) (begin. body»
«run-clause (a) body)
(let «a (fetch-byte») . body) )

«run-clause (a b) body)
(let* «a (fetch-byte»(b (fetch-byte») . body) ) ) )

(define-syntax size-clause
(syntax-rules ()

«size-clause (» 1)
«size-clause (a» 2)
«size-clause (a b» 3) ) )

With define-instruction, we can generate three functions at once: the func
tion run to interpret bytes; the function instruction-size to compute the size of
an instruction; the function instruction-decode to disassemble bytes composing
a given instruction. instruction-decode is particularly useful during debugging.
Let's consider one of those functions:

(define-instruction (SHALLOW-ARGUMENT-REF j) 5
(set! *val* (activation-frame-argument *env* j»

That definition participates in the definition of run by adding a clause triggered
by byte 5, like this:

(define (run)
(let «instruction (fetch-byte»)

(case instruction

«5) (let «j (fetch-byte»)
(set! *val* (activation-frame-argument *env* j» »

. .. ) )

(run) )

The function fetch-byte reads the necessary argument or arguments. Simply
defined, it has a secondary effect of incrementing the program counter, like this:

(define (fetch-byte)
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(let «byte (vector-ref *code* *pc*»)
(set! *pc* (+ *pc* 1»
byte) )

The program counter itself is handled by the function run, which also uses
fetch-byte to read the next instruction. By the way, that's also the case with cer
tain other processors: during the execution of one instruction, the program counter
indicates the next instruction to execute, not the one currently being executed.

If we want to increase the speed at which bytes are interpreted (in other words,
if we want a fast run), we have to keep an eye on the execution speed of the form
case appearing there. Since an instruction can be only one byte, that is, a number
between 0 and 255, the best compilation of case uses a jump table indexed by bytes
because in that way choosing a clause to carry out takes constant time. If instead
we expanded case into a set of (if (eq? ... ) ... ), then we would be obliged
to use a linear search, a tactic that would be lethal in terms of execution speed.
Few compilers for Lisp (but among them are Sqil [Sen9I] and Bigloo [Ser93]) are
capable of the performance we've designed here.

define-instruction also participates in the function instruction-size; it
adds the clause so that an instruction SHALLOW-ARGUMENT-REF has two-byte length.
The instruction is indicated by its address (pc) in the byte-code vector where it
appears. The case form here is equivalent to the vector of instruction sizes.

(define (instruction-size code pc)
(let «instruction (vector-ref code pc»)

(case instruction

«5) 2)
... ) ) )

define-instruction also participates in the function instruction-decode by
adding to it a specialized clause to recognize SHALLOW-ARGUMENT-REF. The function
instruction-decode uses its own definition of fetch-byte so that it does not
disturb the program counter but it still resembles run, like this:

(define (instruction-decode code pc)
(define (fetch-byte)

(let «byte (vector-ref. code pc»)
(set! pc (+ pc 1»
byte) )

(let «instruction (fetch-byte»)
(case instruction

«5) (let «j (fetch-byte») (list 'SHALLOW-ARGUMENT-REF j»)
... ) ) )

7.5 Instructions

There are 256 possibilities in our instruction set, leaving us plenty of room since
we need only 34 instructions. We'll take advantage of this bounty to set aside a
few bytes for coding the most useful combinations. For example, it's already clear
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that most of the functions have few variables, as [Cha80] observed. At the time
I wrote these lines, I analyzed the arity of functions appearing in the programs
associated with this book, and got the following results. Only 16 functions have
variable arity; the 1,988 others are distributed as you see in Table 7.3.

arity 0 1 2 3 4 5 6 7 8
frequence (in %) 35 30 18 9 4 1 0 0 0
accumulation (in %) 35 66 84 93 97 99 99 99 100

Table 7.3 Distribution of functions by arity

A look at this table indicates that most functions have fewer than four variables.
If we generalize these results, we have to admit that zero arity is over-represented
here because of Chapter 6. With these observations in mind, we'll start looking for
ways to improve the execution speed of functions having fewer than four variables.
In consequence, all instructions involving arity will be specialized for arities less
than four.

7.5.1 Local Variables

Among all the possibilities, let's first take the case of SHALLOW-ARGUMENT-REF. This
instruction needs an argument, j, and it loads the register *val* with the argument
j of the first activation record contained in the environment register *env*. We
can specialize it by dedicating five bytes to represent the cases j = 0,1,2,3. We
can also restrict our machine so that it does not accept functions of more than
2562 variables. That limit will let us code the index of the argument to search
for in only one byte. The function check-byte3 verifies that. Here then is the
function SHALLOW-ARGUMENT-REF as a generator of byte-code. It returns the list4

of generated bytes. That list contains one or two bytes, depending on the case.

(define (SHALLOW-ARGUMENT-REF j)
(check-byte j)
(case j

«0 1 2 3) (list (+ 1 j»)
(else (list 5 j» ) )

(define (check-byte j)
(unless (and «= 0 j) «= j 255»

(static-wrong "Cannot pack this number within a byte" j) ) )

2. COMMON LISP has the constant lambda-parameters-limit; its value is the maximal number
of variables that a function can have; this number cannot be less than 50. Scheme says nothing
about this issue, and that silence can be interpreted in various ways. How to represent an integer
is an interesting problem anyway. Most systems with bignums limit them to integers less than

(256)2
32

, rather short of infinity. One solution is to prefix the representation of such a number
by the length of its representation. This eminently recursive strategy stops short, of course, at
the representation of a small integer.
3. We won't mention check-byte again in the explanations that follow, simply to shorten the
presentation.
4. Once again, we're using up our capital by a profusion of lists and appends.
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Here are the five5 associated physical instructions:

(define-instruction (SHALLOW-ARGUMENT-REFO) 1
(set! *val* (activation-frame-argument *env* 0))

(define-instruction (SHALLOW-ARGUMENT-REF1) 2
(set! *val* (activation-frame-argument *env* 1))

(define-instruction (SHALLOW-ARGUMENT-REF2) 3
(set! *val* (activation-frame-argument *env* 2))

(define-instruction (SHALLOW-ARGUMENT-REF3) 4
(set! *val* (activation-frame-argument *env* 3))

(define-instruction (SHALLOW-ARGUMENT-REF j) 5
(set! *val* (activation-frame-argument *env* j))

SET-SHALLOW-ARGUMENT! operates on local variables. Modifying local variables
involves the same treatment and leads to what follows. (You can easily deduce the
missing definitions.)

(define (SET-SHALLOW-ARGUMENT! j)
(case j

«0 1 2 3) (list (+ 21 j)))
(else (list 25 j)) ) )

(define-instruction (SET-SHALLOW-ARGUMENT!2) 23
(set-activation-frame-argument! *env* 2 *val*)

(define-instruction (SET-SHALLOW-ARGUMENT! j) 25
(set-activation-frame-argument! *env* j *val*)

As for deep variables, we'll assume that all cases6 are equally probable, so we'll
code them like this:

(define (DEEP-ARGUMENT-REF i j) (list 6 i j))
(define (SET-DEEP-ARGUMENT! i j) (list 26 i j))

(define-instruction (DEEP-ARGUMENT-REF i j) 6
(set! *val* (deep-fetch *env* i j)) )

(define-instruction (SET-DEEP-ARGUMENT! i j) 26
(deep-update! *env* i j *val*) )

7.5.2 Global Variables

We'll assume that all mutable global variables are equally probable and they can
thus be coded directly. To simplify, we'll also assume that we can't have more than
256 such variables so that we can code each one in a unique byte. Thus we'll have
this:

(define (GLOBAL-REF i) (list 7 i))

(define (CHECKED-GLOBAL-REF i) (list 8 i))
(define (SET-GLOBAL! i) (list 27 i))

5. There's no instruction for the code 0 because there are already too many zeroes at large in the
world.
6. Well, in fact, that is a false assumption since the explanations we just offered at least show
that the parameter j is generally less than four. However, deep variables are rare, and that fact
justifies our not trying to improve access to them.
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(define-instruction (GLOBAL-REF i) 7
(set! *val* (global-fetch i» )

(define-instruction (CHECKED-GLOBAL-REF i) 8

(set! *val* (global-fetch i»
(when (eq? *val* undefined-value)

(signal-exception #t (list "Uninitialized global variable" i» ) )
(define-instruction (SET-GLOBAL! i) 27

(global-update! i *val*) )

The case of predefined variables that cannot be modified is more interesting
because we can dedicate a few bytes to the statistically most significant cases.
Here, we'll deliberately accelerate the evaluation of the variables T, F, NIL, CONS,
CAR, and a few others, like this:

(define (PREDEFINED i)
(check-byte i)
(case i

; ; O==#t, 1==#/, 2==(), 3==cons, 4==car, 5==cdr, 6==pair?, 7==symbol?, 8==eq?
«0 1 2 3 4 5 6 7 8) (list (+ 10 i»)
(else (list 19 i» ) )

(define-instruction (PREDEFINEDO) 10 ; #T
(set! *val* It) )

(define-instruction (PREDEFINED i) 19
(set! *val* (predefined-fetch i» )

Since we've begun by special treatment for a few constants, we'll treat quoting
in the same way. Let's assume that the machine has a register, *constants*,
containing a vector that itself contains all the quotations in the program. Then
the function quotation-fetch can search for a quotation there.

(define (quotation-fetch i)
(vector-ref *constants* i) )

10»
11»
12»
80»
81»
82»
83»
84»

(list
(list
(list
(list
(list
(list
(list
(list

Quotations are collected inside the variable *quotations* by the combinator
CONSTANT during the compilation phase. Those quotations will be saved during
compilation and put into the register *constants* at execution. Once more, all
quoted values are not equal; some are quoted more often than others, so we'll ded
icate a few bytes to those. We'll reuse a few of the bytes we've already predefined,
namely, PREDEFINEDO and those that follow it. Finally, we'll assume that we can
quote as immediate integers only those between 0 and 255. Other integers will be
quoted7 like normal constants.

(define (CONSTANT value)
(cond «eq? value It)

«eq? value If)
«eq? value '(»
«equal? value -1)
«equal? value 0)
«equal? value 1)
«equal? value 2)

«equal? value 4)

7. That's annoying, but it still lets us implement bignums as lists.



242 CHAPTER 7. COMPILATION

«and (integer? value) ; immediate value
«= 0 value)
« value 255) )

(list 79 value) )
(else (EXPLICIT-CONSTANT value» ) )

(define (EXPLICIT-CONSTANT value)
(set! *quotations* (append *quotations* (list value»)
(list 9 (- (length *quotations*) 1» )

(define-instruction (CONSTANT-1) 80
(set! *val* -1) )

(define-instruction (CONSTANTO) 81
(set! *val* 0) )

(define-instruction (SHORT-NUMBER value) 79
(set! *val* value) )

7.5.3 Jumps

If you think the restrictions we've imposed so far are too limiting, wait until you
see what we do about jumps. We must not limit GOTO and JUMP-FALSE to 256-byte
jumps8 since the size of a jump depends on the size of the compiled code. We'll
distinguish two cases: whether the jump takes one byte or two. We'll thus have
tw09 physically different instructions: SHORT-GOTO and LONG-GOTO. This will, of
course, be a handicap for our compiler that it won't know how to leap further than
65,535 bytes.

(define (GOTO offset)
(cond «< offset 255) (list 30 offset»

«< offset (+ 255 (* 255 256»)
(let «offset1 (modulo offset 256»

(offset2 (quotient offset 256»
(list 28 offset1 offset2) ) )

(else (static-wrong "too long jump" offset» ) )

(define (JUMP-FALSE offset)
(cond «< offset 255) (list 31 offset»

«< offset (+ 255 (* 255 256»)
(let «offset1 (modulo offset 256»

(offset2 (quotient offset 256»
(list 29 offset1 offset2) ) )

(else (static-wrong "too long jump" offset» ) )

(define-instruction (SHORT-GOTO offset) 30
(set! *pc* (+ *pc* offset» )

(define-instruction (SHORT-JUMP-FALSE offset) 31
(if (not *val*) (set! *pc* (+ *pc* offset») )

(define-instruction (LONG-GOTO offset1 offset2) 28

8. Old machines like those based on the 8086 had that kind of limitation.
9. The same technique of doubling an instruction in SHORT- and LOIG- could be applied to
GLOBAL-REF and its companions so that the number of mutable global variables would no longer
be limited to 256.
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(let «offset (+ offset1 (* 256 offset2»)
(set! *pc* (+ *pc* offset» ) )

7.5.4 Invocations
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We need to analyze first general invocations and then inline calls. The reason we
favored functions with low arity is still valid here. For a few bytes more, we can
specialize the allocation of activation records for arities up to four variables.

(define (ALLOCATE-FRAME size)
(case size

«0 1 2 3 4) (list (+ 50 size»)
(else (list 55 (+ size 1») ) )

(define-instruction (ALLOCATE-FRAME1) 50
(set! *val* (allocate-activation-frame 1»

(define-instruction (ALLOCATE-FRAME size+1) 55
(set! *val* (allocate-activation-frame size+1»

How we put the values of arguments into activation records can also be improved
for low arities, like this:

(define (POP-FRAME! rank)
(case rank

«0 1 2 3) (list (+ 60 rank»)
(else (list 64 rank» ) )

(define-instruction (POP-FRAME!O) 60
(set-activation-frame-argument! *val* 0 (stack-pop» )

(define-instruction (POP-FRAME! rank) 64
(set-activation-frame-argument! *val* rank (stack-pop»

Inline calls are very frequent, so they warrant a few dedicated bytes themselves.
For example, INVOKE1, the special invoker for predefined unary functions, is written
like this:

(define (INVOKE1 address)
(case address

«car) (list 90»
«cdr) (list 91»
«pair?) (list 92»
«symbol?) (list 93»
«display) (list 94»
(else (static-wrong "Cannot integrate" address» ) )

(define-instruction (CALL1-car) 90
(set! *val* (car *val*» )

(define-instruction (CALL1-cdr) 91
(set! *val* (cdr *val*» )

Of course, we'll do the same thing for predefined functions of arity 0, 2, and
3. The reason that display appears in INVOKE1 is connected with debugging;
it's actually a function that belongs in a library of non-primitives because of its
size and the amount of time it requires when it's applied. It would be better to
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dedicate a few bytes to cddr, then to cdddr, and finally to cadr (in the order of
their usefulness).

Verifying arity itself can be specialized for low arity, so we'll distinguish these
cases:

(define (ARITY=? arity+1)
(case arity+1

«1 2 3 4) (list (+ 70 arity+1»)
(else (list 75 arity+1» )

(define-instruction (ARITY=?2) 72
(unless (= (activation-frame-argument-length *val*) 2)

(signal-exception
#f (list "Incorrect arity for unary function") ) ) )

(define-instruction (ARITY=? arity+1) 75
(unless (= (activation-frame-argument-length *val*) arity+1)

(signal-exception #f (list "Incorrect aritytl» ) )

Taking into account the low proportion of functions with variable arity, we'll
reserve the previous treatments for functions of fixed arity. So far, the inline
functions we've distinguished are very simple and their computation is quick. Since
we still have some free bytes, we could inline more complicated functions, such as,
for example, memq or equal. The risk in doing so is that the invocation of memq
might never terminate (or just take a really long time) if the list to which it applies
is cyclic. MacScheme [85M85] limits the length of lists that memq can search to a
few thousand.

7.5.5 Miscellaneous

There's still a number of minor instructions that we will simply code as one byte
because they have no arguments. Byte generators are all cut from the same cloth,
so to speak, so here's one example:

(define (RESTORE-ENV) (list 38»

And here are their definitions in terms of instructions:

(define-instruction (EXTEND-ENV) 32
(set! *env* (sr-extend* *env* *val*» )

(define-instruction (UNLINK-ENV) 33
(set! *env* (activation-frame-next *env*»

(define-instruction (PUSH-VALUE) 34
(stack-push *val*) )

(define-instruction (POP-ARG1) 35
(set! *arg1* (stack-pop» )

(define-instruction (POP-ARG2) 36
(set! *arg2* (stack-pop» )

(define-instruction (CREATE-CLOSURE offset) 40
(set! *val* (make-closure (+ *pc* offset) *env*»

(define-instruction (RETURN) 43
(set! *pc* (stack-pop» )

(define-instruction (FUNCTION-GOTO) 46
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(invoke *fun* It)
(define-instruction (FUNCTION-INVOKE) 45

(invoke *fun* If) )
(define-instruction (POP-FUNCTION) 39

(set! *fun* (stack-pop» )
(define-instruction (PRESERVE-ENV) 37

(preserve-environment) )

(define-instruction (RESTORE-ENV) 38
(restore-environment) )

The following functions define how to save and restore the environment:

(define (preserve-environment)
(stack-push *env*) )

(define (restore-environment)
(set! *env* (stack-pop» )

There are two methods to invoke functions: FUNCTION-GOTO in tail position and
FUNCTION-INVOKE for everything else. For tail position, the stack holds the return
address on top. For a non-tail position and after a function has been called, the
machine must get back to the instruction that follows (FUNCTION-INVOKE) to carry
on with its work. For that reason, FUNCTION-INVOKE must save the return program
counter. When the call is in tail position, the instruction FUNCTION-GOTO should
have already been compiled into FUNCTION-INVOKE followed by RETURN, but there's
no point in pushing the address of RETURN onto the stack; it's sufficient not to put
it there in the first place. Accordingly, FUNCTION-GOTO invokes a function without
saving the caller since the caller has finished its work and has nothing left to do.
Here's the generic definition of invoke. We hope it clarifies this explanation.

(define-generic (invoke (f) tail?)
(signal-exception #f (list "Not a function" f» )

(define-method (invoke (f closure) tail?)
(unless tail? (stack-push *pc*»
(set! *env* (closure-closed-environment f»
(set! *pc* (closure-code f» )

The function invoke is generic so that it can be extended to new types of
objects and, for example, to primitives that we represent as thunks.

(define-method (invoke (f primitive) tail?)
(unless tail? (stack-push *pc*»
«primitive-address f» )

There again, the value of the variable tail? determines whether or not we save
the return address.

7.5.6 Starting the Compiler-Interpreter

To produce an interpretation loop (as we've done in all the preceding chapters) we
need finely tuned cooperation between a compiler and an execution machine. The
function stand-alone-producer7d takes a program and initializes the compiler.
By "initializes the compiler," we mean in particular its environment of predefined
mutable global variables and the list of quotations. The result of the function
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meaning is now a list of bytes that we put into a vector preceded by the code for
FINISH and followed by the code corresponding to RETURN. The initial program
counter is computed to indicate the first byte that follows the prologue. (Here,
that's the second byte, that is, the one with the address 1.) For reasons that you'll
see later [see Ex. 6.1] but that have already been explained, we'll prepare the list
of mutable global variables and the list of quotations. Eventually, the final product
of the compilation is represented by a function waiting to evaluate what we provide
as the size of the stack.

(define (chapter7d-interpreter)
(define (toplevel)

(display «stand-alone-producer7d (read» 100»
(toplevel) )

(toplevel) )

(define (stand-alone-producer7d e)
(set! g.current (original.g.current»
(set! *quotations* '(»
(let* «code (make-code-segment (meaning e r.init #t»)

(start-pc (length (code-prologue»)
(global-names (map car (reverse g.current»)
(constants (apply vector *quotations*» )

(lambda (stack-size)
(run-machine stack-size start-pc code

constants global-names) ) ) )

(define (make-code-segment m)
(apply vector (append (code-prologue) m (RETURN») )

(define (code-prologue)
(set! finish-pc 0)
(FINISH) )

The function run-machine initializes the machine and then starts it. It allocates
a vector to store values of mutable global variables; it organizes the names of these
same variables; it allocates a working stack, and it initializes all the registers. Now
our only problem is stopping the machine! The program is compiled as if it were
in tail position, that is, it will end by executing a RETURN. To get back, the stack
must initially contain an address to which RETURN will jump. For that reason, the
stack initially contains the address of the instruction FINISH. It's defined like this:

(define-instruction (FINISH) 20
(*exit* *val*) )

When that instruction is executed, it stops the machine and returns the contents
of its *val* register by means of a judicious escape set by run-machine.

(define (run-machine stack-size pc code constants global-names)
(set! sg.current (make-vector (length global-names) undefined-value»
(set! sg.current.names global-names)
(set! *constants* constants)
(set! *code* code)
(set! *env* sr.init)
(set! *stack* (make-vector stack-size»
(set! *stack-index* 0)
(set! *val* 'anything)
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(set! *fun* 'anything)
(set! *arg1* 'anything)
(set! *arg2* 'anything)
(stack-push finish-pc)
(set! *pc* pc)
(call/cc (lambda (exit)

(set! *exit* exit)
(run) »

7.5.7 Catching Our Breath

;pc for FINISH
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To finish off this long section about instructions, we'll look at the final form of the
program we saw at the beginning of the chapter, as byte code, once it has been
disassembled to be more readable. See Figure 7.5.

7.6 Continuations

We've already shown that callicc is a kind of magic operator that reifies the
evaluation context, turning the context into an object that can be invoked. Now
we'll demystify its implementation. The following implementation is canonical.
You'll find more efficient but more complicated ones in [CH088, HDB90, MB93].

The evaluation context is made up of the stack and nothing but the stack. In
effect, the registers *fun*, *arg1*, and *arg2* play only temporary roles; in no
case can they be captured. (You can't calllo call/cc nor anything else while they
are active.)

The register *val* transmits values submitted to continuations and thus is not
anything to save. The register *env* need not be saved either because callicc is
not a function that we integrate there; in fact, the environment has already been
saved because of the call to callicc. Consequently, there is only the stack to save,
and to do so, we'll use these functions:

(define (save-stack)
(let «copy (make-vector *stack-index*»)

(vector-copy! *stack* copy 0 *stack-index*)
copy ) )

(define (restore-stack copy)
(set! *stack-index* (vector-length copy»
(vector-copy! copy *stack* 0 *stack-index*)

(define (vector-copy! old new start end)
(let copy «i start»

(when « i end)
(vector-set! new i (vector-ref old i»
(copy (+ i 1» ) ) )

Continuations will have their own class and their own special calling protocol.
When a continuation is invoked, it restores the stack, puts the value received into
the register *val*, and then branches (by a RETURN) to the address contained on

10. That statement may be false if we have to respond to asynchronous calls, such as UN*X signals.
In that case, it's better to set a flag that we test regularly from time to time as in [Dev85].
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(CREATE-CLOSURE 2)
(SHORT-GOTO 59)
(ARITY=?4)
(EXTEND-ENV)
(SHALLOW-ARGUMENT-REFO)
(PUSH-VALUE)
(CONSTANTO)
(POP-ARG1)
(CALL2-=)
(SHORT-JUMP-FALSE 10)
(SHALLOW-ARGUMENT-REF2)
(PUSH-VALUE)
(CONSTANT1)
(PUSH-VALUE)
(ALLOCATE-FRAME2)
(POP-FRAME! 0)
(POP-FUNCTION)
(FUNCTION-GOTO)
(SHORT-GOTO 39)
(SHALLOW-ARGUMENT-REF1)
(PUSH-VALUE)
(SHALLOW-ARGUMENT-REFO)
(PUSH-VALUE)
(CONSTANT1)
(POP-ARG1)
(CALL2--)
(PUSH-VALUE)
(SHALLOW-ARGUMENT-REF1)
(PUSH-VALUE)
(CREATE-CLOSURE 2)
(SHORT-GOTO 19)
(ARITY=?2)
(EXTEND-ENV)
(DEEP-ARGUMENT-REF 1 2)
(PUSH-VALUE)
(DEEP-ARGUMENT-REF 1 0)
(PUSH-VALUE)
(SHALLOW-ARGUMENT-REFO)
(POP-ARG1)
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(CALL2-*)
(PUSH-VALUE)
(ALLOCATE-FRAME2)
(POP-FRAME! 0)
(POP-FUNCTION)
(FUNCTION-GOTO)
(RETURN)
(PUSH-VALUE)
(ALLOCATE-FRAME4)
(POP-FRAME! 2)
(POP-FRAME! 1)
(POP-FRAME! 0)
(POP-FUNCTION)
(FUNCTION-GOTO)
(RETURN)
(PUSH-VALUE)
(ALLOCATE-FRAME2)
(POP-FRAME! 0)
(EXTEND-ENV)
(SHALLOW-ARGUMENT-REFO)
(PUSH-VALUE)
(SHORT-NUMBER 5)
(PUSH-VALUE)
(SHALLOW-ARGUMENT-REFO)
(PUSH-VALUE)
(CREATE-CLOSURE 2)
(SHORT-GOTO 4)
(ARITY=?2)
(EXTEND-ENV)
(SHALLOW-ARGUMENT-REFO)
(RETURN)
(PUSH-VALUE)
(ALLOCATE-FRAME4)
(POP-FRAME! 2)
(POP-FRAME! 1)
(POP-FRAME! 0)
(POP-FUNCTION)
(FUNCTION-GOTO)
(RETURN)

Figure 7.5 Compilation result
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top of the stack. Since call/cc can be called only by (FUNCTION-INVOKE), the
following instruction will necessarily be a (RESTORE-ENV). (You can verify that in
the definition of REGULAR-CALL). [see p. 229]

(define-class continuation Object
( stack) )

(define-method (invoke (f continuation) tail?)
(if (= (+ 1 1) (activation-frame-argument-length *val*»

(begin
(restore-stack (continuation-stack f»
(set! *val* (activation-frame-argument *val* 0»
(set! *pc* (stack-pop» )

(signal-exception #f (list "Incorrect arity" 'continuation» ) )

For the invocation of a continuation to succeed, the stack must have a special
structure built by callicc. Building that structure is a subtle task because the
capture of the continuation must not consume the stack. That is, in the form
(call/cc f), the function f must be called in tail!! position. The following
definition accomplishes that. It allocates an activation record, fills in the reified
continuation, and calls its argument f with it.

(definitial call/cc
(let* «arity 1)

(arity+1 (+ arity 1» )
(make-primitive

(lambda ()
(if (= arity+1 (activation-frame-argument-length *val*»

(let «f (activation-frame-argument *val* 0»
(frame (allocate-activation-frame (+ 1 1»)

(set-activation-frame-argument!
frame 0 (make-continuation (save-stack» )

(set! *val* frame)
(set! *fun* f) ; useful for debug
(invoke f It) )

(signal-exception #t (list "Incorrect arity"
'call/cc » ) ) ) )

In conclusion, the canonical implementation of callicc costs one copy of the
stack for each reification and another copy at every invocation of a continuation.
Better strategies exist, but they are more complicated to implement. The main
idea of most of these strategies is that when a continuation is reified, it stands a
good chance of happening again, either in whole or in part, according to [Dan87],
so strategies that allow captures to be shared should be favored.

7.7 Escapes

Even if the cost of callicc can be reduced, it wouldn't be fair not to show
how to implement simple escapes. We've decided to implement the special form
bind-exit. [see p. 101] It's present in Dylan and analogous to let/cc in Eu
LISP, to block/return-from in COMMON LISP, and to escape in Vlisp [Cha80].

11. That's not necessary in Scheme.
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In contrast to the spirit of Scheme, we've opted for a new special form rather than
a function for two main reasons: first, introducing a new special form is slightly
more simple because in doing so, we don't have to conform to the structure of the
stack as dictated by the function calling protocol; second, we can thus show the
entire compiler in cross-section. If you need yet another reason, remember that a
function and a special form are equally powerful here since we can write one in
terms of the other.

The form bind-exit has the following syntax:

(bind-exit (variable) forms ... ) Dylan

The variable is bound to the continuation of the form bind-exit; then the body
of the form is evaluated. The captured continuation can be used only during that
evaluation. If bind-exit is available to us, we can define the function call/ep
(for call-with-exit-procedure) and conversely.

(define (call/ep f)
(bind-exit (k) (f k» )

(bind-exit (k) body) =(call/ep (lambda (k) body»

Escapes are represented by objects of the class escape. They have a unique field
to designate the height of the stack where the evaluation of the form bind-exit
begins.

(define-class escape Object
( stack-index ) )

To define a new special form, we must first add a clause to the function meaning,
the lexical analyzer of forms to compile. That additional clause will recognize these
new forms, so we'll add the following clause to meaning:

... «bind-exit) (meaning-bind-exit (caadr e) (cddr e) r tail?»

Then we'll define the pretreatment function for those forms, like this:

(define (meaning-bind-exit n e+ r tail?)
(let* «r2 (r-extend* r (list n»)

(m+ (meaning-sequence e+ r2 It»~

(ESCAPER m+) ) )

The pretreatment consists of making a sequence from the body of the form
bind-exit; that sequence will be pretreated in a lexical environment extended by
the local variable that introduces bind-exit. The function ESCAPER (all in upper
case letters) takes care of generating the code. For that function, we invent two
new instructions: PUSH-ESCAPER and POP-ESCAPER.

(define (ESCAPER m+)
(append (PUSH-ESCAPER (+ 1 (length m+») m+ (RETURN) (POP-ESCAPER» )

(define (POP-ESCAPER) (list 250»

(define escape-tag (list '*ESCAPE*»
(define (PUSH-ESCAPER offset) (list 251 offset»

(define-instruction (POP-ESCAPER) 250
(let* «tag (stack-pop»

(escape (stack-pop»
(restore-environment) ) )
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(define-instruction (PUSH-ESCAPER offset) 251
(preserve-environment)
(let* «escape (make-escape (+ *stack-index* 3»)

(frame (allocate-activation-frame 1» )
(set-activation-frame-argument! frame 0 escape)
(set! *env* (sr-extend* *env* frame»
(stack-push escape)
(stack-push escape-tag)
(stack-push (+ *pc* offset» ) )

You can see how the instruction PUSH-ESCAPER works in Figure 7.6. Here's
what it does:

1. it saves the current environment on the stack;

2. it allocates a valid escape indicating the third word above the current top of
the stack;

3. it allocates an activation record to enrich the current lexical environment;
(its unique field contains the escape);

4. pushes this escape on the stack finally and then puts on that strange flag
(*ESCAPE*), followed by an address indicating the (POP-ESCAPER) instruc
tion that follows.

*stack-index* r----.....,
*stack-index*

pc

(*ESCAPE*)

environment

*env*

... (PUSH-ESCAPER offset)

*pc*

~
*pc*

~
(RETURN) (POP-ESCAPER) ...

escape

Figure 7.6 The stack before and after PUSH-ESCAPER

The method for invoking escapes is complicated by the fact that we have to
check whether or not the escape is valid. An escape is valid if the height of the
stack is greater than the height saved in the escape; if there really is an escape at
that place in the stack; and if that escape really is the one we're interested in. All
those conditions are verified in constant time by the function escape-valid?, like
this:

(define-method (invoke (f escape) tail?)
(if (= (+ 1 1) (activation-frame-argument-length *val*»

(if (escape-valid? f)
(begin (set! *stack-index* (escape-stack-index f»

(set! *val* (activation-frame-argument *val* 0»
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(set! *pc* (stack-pop» )
(signal-exception #f (list "Escape out of extent" f» )

(signal-exception #f (list "Incorrect arity" 'escape» ) )
(define (escape-valid? f)

(let «index (escape-stack-index f»)
(and (>= *stack-index* index)

(eq? f (vector-ref *stack* (- index 3»)
(eq? escape-tag (vector-ref *stack* (- index 2») ) ) )

When an escape is invoked, it first verifies whether it is valid; then it takes the
level of the stack back to the level prevailing at the beginning of the evaluation of
the body of the form bind-exit; it puts the value provided into the register *val*;
then it carries out the equivalent of a (RETURN) resetting the program counter. The
following instruction will thus be (POP-ESCAPER), which pops the stack, restores
the saved environment, and exits from the form bind-exit.

If no escape is called during the body of the form bind-exit, the same scenario
applies: the (RETURN) that precedes (POP-ESCAPER) removes the address from the
stack makes it possible to branch to the same instruction in the same configuration
of the stack as during the call to the escape.

Getting into the form bind-exit costs two object allocations and four places
on the stack. Invoking an escape costs one validity test and a few register moves.
We explicitly allocated the escape because it may happen that the variable bound
by the form bind-exit might be captured by a closure, and being captured by a
closure confers an indefinite extent on the bound variable. In the opposite case,
we can avoid allocating the escape and simply keep the pointer to the stack in a
register. The implementation that we just explained is quite conservative, we'll
admit, and not very efficient as compared with the results of a good compilation.
Nevertheless, it's more efficient than the canonical implementation of callicc.

The special form bind-exit (along with the dynamic variables of the next
section) makes it easier to program analogues of catch/throw. [see p. 77] In
contrast, if the language provides an unwind-protect form, then we would have to
look again at the speed of bind-exit because every escape would have to evaluate
the cleaners associated with embedding unwind-protect. Those cleaners would
be determined by inspecting the stack between the points of departure and arrival.

7.8 Dynamic Variables

We've already often written that dynamic variables correspond to a significant idea.
We implemented them using deep binding. Like before [see p. 167], we'll assume
that we have two new special forms to create and refer to dynamic variables. Here's
the syntax of those forms:

(dynamic-let (variable value) body... )
(dynamic variable)

The form dynamic-let binds a variable and value during the evaluation of its
body. We can get the value of the variable by means of the form dynamic. Of
course, it would be an error to ask for the value of a variable that has not been
bound.
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For those reasons, we'll add two new clauses to meaning, our syntactic analyzer:

«dynamic) (meaning-dynamic-reference (cadr e) r tail?»
«dynamic-let) (meaning-dynamic-let (car (cadr e»

(cadr (cadr e»
(cddr e) r tail? » ...

We'll also associate the necessary pretreatments with them, like this:

(define (meaning-dynamic-let n e e+ r tail?)
(let «index (get-dynamic-variable-index n»

(m (meaning e r If»~

(m+ (meaning-sequence e+ r If»~ )
(append m (DYNAMIC-PUSH index) m+ (DYNAMIC-POP» ) )

(define (meaning-dynamic-reference n r tail?)
(let «index (get-dynamic-variable-index n»)

(DYNAMIC-REF index) ) )

Those pretreatments use these three new generators:

(define (DYNAMIC-PUSH index) (list 242 index»
(define (DYNAMIC-POP) (list 241»
(define (DYNAMIC-REF index) (list 240 index»

Those three generators correspond to three new instructions in our virtual ma
chine, namely:

(define-instruction (DYNAMIC-PUSH index) 242
(push-dynamic-binding index *val*) )

(define-instruction (DYNAMIC-POP) 241
(pop-dynamic-binding) )

(define-instruction (DYNAMIC-REF index) 240
(set! *val* (find-dynamic-value index» )

Now how do we represent the environment for dynamic variables? The first idea
that comes to mind is to invent a new register, say, *dynenv*, that permanently
points to an association list pairing dynamic variables with their values. Well,
actually, this "list" is not a real list, but rather a few frames, that is, regions
chained together in the stack. Unfortunately, with this idea we've augmented the
machine state since the contents of the register *dynenv* now have to be saved, too,
by PRESERVE-EIV, and of course they have to be restored by RESTORE-EIV. Since
those two instructions occur quite frequently already, adding the register *dynenv*
will be costly even if we never use it. An important rule for us is that only users
should pay for services; as a corollary, those who never use a service shouldn't have
to pay for it. From that point of view, adding another register looks like a bad
idea.

Rather than maintain a register, we give the means of establishing information
about dynamic variables only to those who use them and only if they need them.
The cost will thus be greater, but at least this way of doing things will not penalize
those who don't need it. The environment will be implemented as frames in the
stack, but each of those frames will be preceded by a special label identifying it, as
in Figure 7.7. The function search-dynenv-index provides information that we
would have been able to find in that register we decided not to add.

(define dynenv-tag (list '*dynenv*»



254 CHAPTER 7. COMPILATION

(define (search-dynenv-index)
(let search «i (- *stack~index* 1)))

(if « i 0) i
(if (eq? (vector-ref *stack* i) dynenv-tag)

(- i 1)

(search (- i 1)) ) ) ) )

(define (pop-dynamic-binding)
(stack-pop)
(stack-pop)
(stack-pop)
(stack-pop)

(define (push-dynamic-binding index value)
(stack-push (search-dynenv-index))
(stack-push value)
(stack-push index)
(stack-push dynenv-tag)

------------,
( *dynenv*) •

•
•

variable •
•I

value I
I
I

•-----------_.

-------------
I •(*dynenv* ) I
• ••
• variable0 :...
•
•

I

• valueO •
•• •I

I
• !------------

*stack-index*

I ------------~

I ( *dynenv* ) I
I •
I •
I variable0 •
I •

: valueO :: .
I I~ !

*stack-index*

Figure 7.7 Stack before and after DYNAMIC-PUSH

The one obscure point that we still have to clear up is this: how do we refer to
dynamic variables? A reference like (dynamic foo) must be compiled into bytes,
so that rules out referring directly to the symbol foo. We've already numbered mu
table global variables as they appeared, so in the same way, we'll number dynamic
variables by means of get-dynamic-variable-index, like this:

(define *dynamic-variables* ,())

(define (get-dynamic-variable-index n)
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(let «where (memq n *dynamic-variables*»)
(if where (length where)

(begin
(set! *dynamic-variables* (cons n *dynamic-variables*»
(length *dynamic-variables*) ) ) ) )

Every dynamic variable is given an index so we can retrieve it from the dynamic
environment present in the stack. The variable *dynamic-variables* belongs to
the realm of compilation so it is not essential to the virtual machine. Even so, it
might be useful to establish error messages that report the name of a variable in
case of anomalies.

We mentioned that we introduced dynamic variables by means of two special
forms. To get them by means of functions would have been more faithful to the
spirit of Scheme, but it would not have been equivalent. Since functions are in
voked with computed arguments, the names of dynamic variables would have been
computed, too, but that is not the case with special forms. Obviously, it would not
have been possible to number dynamic variables if we had relied on functions to
introduce them since any conceivable symbol (not to mention their values) would
have been available. [see p. 50] In that case, we would then have had to arrange
for another compilation, for example, by explicitly referring to symbols, which
are afterall structures of considerable size that may pose problems in comparisons
especially if we add packages or interning.

7.9 Exceptions

Every real language defines some way of handling errors. Error handling makes it
possible to build robust, autonomous applications. There are, however, no speci
fications for error handling in Scheme, so we'll introduce error handling ourselves
just to show what it is without much ado.

The idea of errors actually covers several different kinds in reality. First under
this heading, we find unforeseen situations-situations we did not want but for
which we can test. The underlying system may stumble, either because of problems
with the type, (car 33), or with the domain, (quotient 111 0), or with arity
(cons). With appropriate predicates, we can test explicitly for those situations.
However, other events can occur, such as an attempt to open a non-existing file.
Handling that kind of error necessitates the following:

1. a way of reifying the error in a data structure that a user's programs can
understand;

2. a call to the function that the user designates as the error handler.

Once this mechanism has been built into a language, users themselves want to
exploit it. For that reason, errors take on the name exceptions, and thus is born
programming by exception where the user programs only the right case and leaves
the exiting (possibly even multiple exits) to the exception handler.

There are several models for exceptions. These models base practically all
research about exception handlers on the idea of dynamic extent. When we want
to protect a computation from the effects of exceptions, we associate a function for
catching errors with the computation throughout its extent. If the computation
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is completed without exception, then the error handler no longer has a purpose
and becomes inactive. In contrast, if an error occurs, the error handler must be
invoked. If the user invokes the exception system, it will provide the exception
object. In contrast, if the system discovers the situation, then it will be up to the
system to build the exception.

Among the models for exceptions, there are those with and without resumption.
When certain exceptions are signaled (in particular, those that the programmer
can signal, like cerror in COMMON LISP) it is sometimes possible to take up the
computation again in the same place where it was interrupted. In many other
cases, however, that's not feasible, and the only possible control operation is to
escape to a safe context.

The exception model in COMMON LISP is more than complete, but its size is
contrary to the design of this book, which is to show only the essentials. The
model of ML does not support recovery; when an exception is signaled, the stack is
unwound to the level it had when the exception handler was specified. It's possible
to restart the exception to take advantage of the preceding handler. That model is
not convenient for us because it loses the environment for dynamic variables that
was present when the exception occurred. So here's the model we propose. (It's
strongly inspired by the model of EuLISP.) We'll first describe it informally and
then implement it, hoping all the while that the two coincide!

The special form monitor associates a function for handling exceptions with
the computation corresponding to its body. Its syntax is thus:

(monitor handler forms ... )

So we'll add the special form monitor to the syntactic analyzer meaning, like
this:

... «monitor) (meaning-monitor (cadr e) (cddr e) r tail?» ...

The handler is evaluated and becomes the current exception handler. The forms
in the body of monitor are consequently evaluated as if they were in a begin form.
If no exception is signaled during the computation, the form monitor returns the
value of the last form in its body and then reactivates the exception handler, which
was hidden by the form monitor.

If an exception is signaled, then we search for the current handler, that is, the
one associated by the dynamically closest monitor. (In implementation terms, we
search for the handler highest in the evaluation stack.) Changing neither the stack
nor its height nor its contents, we invoke the handler with two arguments: a Boolean
indicating whether the exception can be continued and the object representing
the exception. Since we have to foresee the possibility that the error handlers
themselves may be erroneous, the current handler is executed under the control
of the handler that it hides. The computation undertaken by the handler can
either escape or return a value. If the exception could be continued, that value
becomes the value expected in the place where the exception was signaled. If the
exception could not be continued, then an exception is signaled-one that cannot
be continued. When we exit from the handler by escaping, the computation is once
again controlled by the nearest handler. Finally, there is a basic handler at the
bottom of the stack. If it is ever invoked, it stops the program that is running and
returns to the operating system (or to whatever takes the place of an operating
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system), as in Figure 7.8.

*stack-index*

*stack-index* Oor 2

!
(handler2 ... )

(*dynenv* )

o

environment

pc

continuable?

exception

activation record

o
( *dynenv*)

----------

o
(*dynenv*)

---------- 1

I
1

t------~I

I'-
t------~I

...-------4 - (handlerl handler2 ...) ~--'+-- :

I

I ~

Figure 7.8 Signaling an exception

The pretreatment associated with the form monitor uses two new generators
to manage the hierarchy of handlers.

(define (meaning-monitor e e+ r tail?)
(let «m (meaning e r If))

(m+ (meaning-sequence e+ r If)) )
(append m (PUSH-HANDLER) m+ (POP-HANDLER)) ) )

(define (PUSH-HANDLER) (list 246))
(define (POP-HANDLER) (list 247))

To treat the case of exceptions that cannot be continued yet are continued
anyway, we'll add the generator NON-CaNT-ERR.

(define (NON-CONT-ERR) (list 245))

The instructions PUSH-HANDLER and POP-HANDLERjust call the appropriate func
tions.

(define-instruction (PUSH-HANDLER) 246
(push-except ion-handler) )

(define-instruction (POP-HANDLER) 247
(pop-exception-handler) )

Now we're ready to get to work. To determine which handler is closest to the
top of the stack is easy. That's a task for dynamic binding, so we'll use dynamic
binding. As a consequence, among other things, we won't have to create a new
register containing the list of active handlers. For that reason, we will use the
index 0 to store handlers because we realize that the index 0 can not have been
attributed by the function get-dynamic-variable-index. The subtle point here
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is that a handler should be invoked under the control of the preceding handler.
We'll resolve that problem by associating the index 0 not with the handler itself
but rather with the list of handlers, and make it responsible for putting the right
list of handlers on the stack when an exception is signaled.

(define (search-exception-handlers)
(find-dynamic-value 0) )

(define (push-except ion-handler)
(let «handlers (search-exception-handlers»)

(push-dynamic-binding 0 (cons *val* handlers» ) )
(define (pop-exception-handler)

(pop-dynamic-binding) )

When no exception is signaled, the handlers are pushed and popped with
out upsetting the evaluation discipline. Exceptions are signaled by the function
signal-exception, which replaces the old wrong that we used to use.

(define (signal-exception continuable? exception)
(let «handlers (search-exception-handlers»

(v* (allocate-activation-frame (+ 2 1») )
(set-activation-frame-argument! v* 0 continuable?)
(set-activation-frame-argument! v* 1 exception)
(set! *val* v*)
(stack-push *pc*)
(preserve-environment)
(push-dynamic-binding 0 (if (null? (cdr handlers» handlers

(cdr handlers) »
(if continuable?

(stack-push 2) ;pc for (POP-HANDLER) (RESTORE-ENV) (RETURN)
(stack-push 0) ) ;pc for (NON-CaNT-ERR)

(invoke (car handlers) It) ) )

The function signal-exception is called with two arguments: a Boolean that
indicates whether or not the function must call the handler in a way that can
be continued; and a value representing the exception. Any value is acceptable
here, and predefined exceptions are encoded here as lists where the first term
is a character string describing the anomaly. COMMON LISP and EuLISP reify
exceptions as real objects whose class is significant. First, we search for the list of
active handlers; then we allocate an activation record and fill it in for the call to the
first among those active handlers. The subtle part here is that we must prepare the
stack, which is, after all, in an unknown state because we don't know yet where the
exception occurred. We begin by saving the program counter and the environment
(in case we need to return and restart there); then we save the list of handlers,
shortened by the first one. Since there must be at least one handler in the list,
we'll make sure that the program begins with a first (and last) handler, one that
we never remove. Of course, that handler must never commit an error; we're sure
of that since it sends an error message and returns control to the operating system.
Now how do we distinguish an error that can be continued from one that cannot?
One easy way is to assume that code in memory contains adequate instructions at
fixed addresses. We've already put the instruction (FINISH) in a well known place.
We can add others there, too.
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(define (code-prologue)
(set! finish-pc 1)
(append (NON-CONT-ERR) (FINISH) (POP-HANDLER) (RESTORE-ENV) (RETURN» )

Thus it's simple to make it possible to continue or not continue exception han
dling: that's represented by the address to return to, an address that was put onto
the stack and that will be retrieved by (RETURN) which closes the handler. The
address 0 leads to (NON-CONT-ERR) which indicates a new exception; the address 2

pops whatever signal-exception pushed onto the stack and returns to the place
from which we left.

(define-instruction (NON-CONT-ERR) 245
(signal-exception #f (list "Non continuable exception continued"» )

There's nothing left to do except show how to start the machine in spite of
these additional constraints. We'll enrich the function run-machine so that it puts
the ultimate handler in place. That ultimate handler could be programmed, for
example, to print its final state and then stop. With no more ado, that gives us
this:

(define (run-machine pc code constants global-names dynamics)
(define base-error-handler-primitive

(make-primitive base-error-handler) )
(set! sg.current (make-vector (length global-names) undefined-value»
(set! sg.current.names global-names)
(set! *constants* constants)
(set! *dynamic-variables* dynamics)
(set! *code* code)
(set! *env* sr.init)
(set! *stack-index* 0)
(set! *val* 'anything)
(set! *fun* 'anything)
(set! *arg1* 'anything)
(set! *arg2* 'anything)
(push-dynamic-binding 0 (list base-error-handler-primitive»
(stack-push finish-pc) ;pc for FINISH
(set! *pc* pc)
(call/cc (lambda (exit)

(set! *exit* exit)
(run) » )

(define (base-error-handler)
(show-registers "Panic error: content of registers:")
(wrong "Abort") )

The function signal-exception could be made available to programs. That
function (like error/ cerror in COMMON LISP or EuLISP) signals and traps its
own exceptions. However, its cost should limit it to exceptional situations.

In this section, we've defined an exception handler. This model makes it possible
to return and restart after an exception. It also invokes the handler in the dynamic
environment where the exception occurred, thus providing more possibilities as far
as precisely detecting the context of the anomaly without affecting it. For example,
with this model, we can write an unusual version of the factorial, like this:

(monitor (lambda (c e) «dynamic foo) 1)
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(let fact «n 5»
(if (= n 0) (/ 11 0)

(* n (bind-exit (k)
(dynamic-let (foo k)

(fact (- n 1» ) » ) ) )

To avoid losing too much information about the context of the anomaly, it's a
good idea not to escape too soon.

Since we're using a virtual machine where the code is represented by bytes, we've
simplified the implementation of exception handling since exceptions can occur only
during the treatment of instructions, and instructions are highly individualized, so
the resources of the machine are always consistent between two instructions. That's
not the case for a real implementation, which might receive asynchronous signals
in unforeseen states.

You might ask why some predefined exceptions can be continued whereas others
cannot. A byte machine is so regular that all exceptions could be made to continue
because they can always be associated with a well defined program counter. Once
again, that's not the case for a real implementation where either the idea of a
program counter is a little vague or an anomaly, such as division by zero, cannot
be detected until after the faulty operation. It is likely that only exceptions signaled
by the user can be continued in a way that's portable.

Along these lines, it is pertinent to ask whether it's necessary to signal pre
treatment errors by signal-exception and to ask among other things whether
these errors can be continued or not. Since the handler is consequently the respon
sibility of the compiler, we can envisage the compiler using exceptions that can be
continued to correct certain anomalies on the fly.

7.10 COlllpiling Separately

As it is practiced in languages like C or Pascal, compilation happens through files.
This section takes up that theme and presents such a compiler with an autonomous
executable launcher. We'll also look at linking in this section.

7.10.1 Compiling a File

Compiling files poses hardly any problems. The function compile-file which
follows here easily meets the challenge. It initializes the compilation variables
g. current to represent the mutable global environment, *quotation* to collect
quotations, and *dynamic-variables* to gather dynamic variables, of course. It
also compiles the contents of the file, considering that like a huge begin, and saves
the outcome (that is, the new values of those three variables along with the code)
in the resulting file.

(define (read-file filename)
(call-with-input-file filename

(lambda (in)
(let gather «e (read in»

(content '(» )
(if (eof-object? e)
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(reverse content)
(gather (read in) (cons e content)) ) ) ) ) )

(define (compile-file filename)
(set! g.current '())
(set! *quotations* '())
(set! *dynamic-variables* '())
(let* «complete-filename (string-append filename ". scm"))

(e '(begin. ,(read-file complete-filename)))
(code (make-code-segment (meaning e r.init It)))
(global-names (map car (reverse g.current)))
(constants (apply vector *quotations*))
(dynamics *dynamic-variables*)
(ofilename (string-append filename ". SO "))

(write-result-file ofilename
(list ";;; Bytecode object file for II

complete-filename )
dynamics global-names constants code
(length (code-prologue)) ) ) )

(define (write-result-file ofilename comments
dynamics global-names constants code entry)

(call-with-output-file ofilename
(lambda (out)

(for-each (lambda (comment) (display comment out))
comments ) (newline out) (newline out)

(display ";;; Dynamic variables" out) (newline out)
(write dynamics out) (newline out) (newline out)
(display ";;; Global modifiable variables" out) (newline out)
(write global-names out) (newline out) (newline out)
(display ";;; Quotations" out) (newline out)
(write constants out) (newline out) (newline out)
(display ";;; Bytecode" out) (newline out)
(write code out) (newline out) (newline out)
(display ";;; Entry point" out) (newline out)
(write entry out) (newline out) ) ) )

In order not to burden ourselves with problems tied to the file system and to
the struture of file names, we'll assume (like in Scheme) that file names can be
indicated by character strings. The compiler accepts such a string corresponding
to the root of the file name. (By "root," we mean the name stripped of its usual
suffix, here, ". scm".) The result of compilation will be stored in a file named by
the same root suffixed by ". so" . That result is made up of the code produced,
the list of names of mutable global variables, the list of dynamic variables, the list
of quotations, and the program counter for the first instruction to execute in the
code. Always trying to simplify, we'll build the output file by means of write in
its simplest style. We'll also add a few comments there to help a human read the
result.

If the file to compile is this:
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file si/example.scm

(set! fact
«lambda (fact) (lambda (n)

(if « n 0)
rtToctoc la tete! rt
(fact n fact (lambda (x) x» ) »

(lambda (n f k)

(if (= n 0)
(k 1)

(f (- n 1) f (lambda (r) (k (* n r»» ) ) ) )

Then the result of compiling will be this:

file si/example.so

; ; ; Bytecode object file for si/example.scm

; ; ; Dynamic variables
()

; ; ; Global modifiable variables
(FACT)

; ; ; Quotations
# (rtTpctoc la tete! rt)

; ; ; Bytecode
#(245 20 247 38 43 40 30 59 74 32 1 34 81 35 106 31 10 3 34 82 34 51 60

39 46 30 39 2 34 1 34 82 35 105 34 2 34 40 30 19 72 32 6 1 2 34 6 1 0
34 1 35 109 34 51 60 39 46 43 34 53 62 61 60 39 46 43 34 51 60 32 40
30 38 72 32 1 34 81 35 107 31 4 9 0 30 24 6 1 0 34 1 34 6 1 0 34 40
30 4 72 32 1 43 34 53 62 61 60 39 46 43 33 27 0 43)

; ; ; Entry point
5

7.10.2 Building an Application

Compiling files is all well and good, but eventually we want to execute them!
The second utility we'll add corresponds to what we often call a linker (the ld
of UN*X). It organizes compiled files into a unique executable file. The function
build-application takes the name of a file to generate and then the nan1es of
files to link.

(define (build-application application-name ofilename . ofilenames)
(set! sg.current.names '(»
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(set! *dynamic-variables* ,(»
(set! sg.current (vector»
(set! *constants* (vector»
(set! *code* (vector»
(let install «filenames (cons ofilename ofilenames»

(entry-points '(» )
(if (pair? filenames)

(let «ep (install-object-file! (car filenames»»
(install (cdr filenames) (cons ep entry-points»

(vrite-result-file application-name
(cons ";;; Bytecode application containing"

(cons ofilename ofilenames) )
*dynamic-variables*
sg.current.names
*constants*
*code*
entry-points ) ) ) )

Most of the work is carried out by install-obj ect-f ile !, which installs a
compiled file inside the five variables governing the machine:

• sg. current. names indicates the mutable global variables;

• *dynamic-variables* indicates the dynamic variables;

• sg. current contains the values of mutable global variables;

• *constants* contains the quotations;

• *code* is the byte vector of instructions.

After installing all these files, we only have to write the resulting executable file in
a form that resembles the compiled files except for the entry point; it becomes a
list of entry points.

The function install-obj ect-file! installs a compiled file and returns the
address of its first instruction. Putting the code of the file to install into the *code*
vector is easy. What's harder is to make the files share what they have in common
and to protect what each file has for its own use. That will be the purpose of the
functions whose names begin with relocate in the following definition:

(define (install-object-file! filename)
(let «ofilename (string-append filename". so"»)

(if (probe-file ofilename)
(call-with-input-file ofilename

(lambda (in)
(let* «dynamics (read in»

(global-names (read in»
(constants (read in»
(code (read in»
(entry (read in»

(close-input-port in)
(relocate-globals! code global-names)
(relocate-constants! code constants)
(relocate-dynamics! code dynamics)
(+ entry (install-code! code» ) ) )

(signal #f (list "No such file" ofilename» ) ) )
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(define (install-code! code)
(let «start (vector-length *code*»)

(set! *code* (vector-append *code* code»
start ) )

Quotations, for example, belong privately to each file where they appear, and
one should not be confused with another. In each file, then, they are numbered
starting from zero and thus share the same numbers. Quotations will be concate
nated in the variable *constants*, and numbers referring to them will be updated.
Those numbers appear in the vector of instructions as arguments to the instruc
tion CONSTANT, so it is there that we must update them. To do so, we examine the
vector of code part by part sequentially, like this:

(define CONSTANT-code 9)

(define (relocate-constants! code constants)
(define n (vector-length *constants*»
(let «code-size (vector-length code»)

(let scan «pc 0»
(when « pc code-size)

(let «instr (vector-ref code pc»)
(when (= instr CONSTANT-code)

(let* «i (vector-ref code (+ pc 1»)
(quotation (vector-ref constants i»

(vector-set! code (+ pc 1) (+ n i» ) )
(scan (+ pc (instruction-size code pc») ) ) ) )

(set! *constants* (vector-append *constants* constants»

For global variables, in contrast, we must make sure they are shared. Any
two files that both use foo must share that variable. Variables are numbered
with respect to a local list of names. The only places where these numbers ap
pear are as arguments to the instructions GLOBAL-REF, CHECKED-GLOBAL-REF, and
SET-GLOBAL!. Each number we find will be associated with its external name; that
name is associated with a number belonging to the variable in the executable; the
executable number will eventually replace the other number.

(define CHECKED-GLOBAL-REF-code 8)
(define GLOBAL-REF-code 7)

(define SET-GLOBAL!-code 27)
(define (relocate-globals! code global-names)

(define (get-index name)
(let «where (memq name sg.current.names»)

(if where (- (length where) 1)
(begin (set! sg.current.names (cons name sg.current.names»

(get-index name) ) ) ) )
(let «code-size (vector-length code»)

(let scan «pc 0»
(when « pc code-size)

(let «instr (vector-ref code pc»)
(when (or (= instr CHECKED-GLOBAL-REF-code)

(= instr GLOBAL-REF-code)
(= instr SET-GLOBAL!-code) )

(let* «i (vector-ref code (+ pc 1»)
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(name (list-ref global-names i» )
(vector-set! code (+ pc 1) (get-index name» ) )

(scan (+ pc (instruction-size code pc») ) ) ) )
(let «v (make-vector (length sg.current.names) undefined-value»)

(vector-copy! sg.current v 0 (vector-length sg.current»
(set! sg.current v) ) )

The process is similar for dynamic variables.
(define DYNAMIC-REF-code 240)
(define DYNAMIC-PUSH-code 242)

(define (relocate-dynamics! code dynamics)
(for-each get-dynamic-variable-index dynamics)
(let «dynamics (reverse! dynamics»

(code-size (vector-length code»
(let scan «pc 0»

(when « pc code-size)
(let «instr (vector-ref code pc»)

(when (or (= instr DYNAMIC-REF-code)
(= instr DYNAMIC-PUSH-code) )

(let* «i (vector-ref code (+ pc 1»)
(name (list-ref dynamics (- i 1»)

(vector-set! code (+ pc 1)
(get-dynamic-variable-index name) ) ) )

(scan (+ pc (instruction-size code pc») ) ) ) ) )

Notice that these functions use the function instruction-size. We should
also note that examining the vector of code three times is a waste of effort; we
should factor that work into a single pass.

The form we adopted for compiled files makes it easy to imagine new modes for
combining files. The list of mutable global variables serves as a sort of interface
to a file considered as a module. That module then exports all its mutable global
variables under the name they had within the file. We could simply rename these
variables or restrict them. We could even invent a language for linking that specifies
how to group modules and manage the names of variables that they use. Let's
explain a bit more about that language, inspired by the language proposed for
modules of EuLISP in [QP91a]. As an example, the following directive defines
what the module mod imports:

(ordered-union
(only (fact) (expose "fact"»
(union (except-pattern ("fib*") (expose "fib"»

(rename «call/cc call-with-current-continuation»
(expose "scheme") )

(expose "numeric") ) )

Let's assume that the notation foo<Omod designates the variable named foo in
the module mod. Let's also suppose that that the module fact defines the variables
fact and fact 100 (containing the precalculated value of (fact 100), a value often
in demand); that the module fib defines the variables fib, fib20, and Fibonacci.
The module numeric procures functions like fact and fib, while scheme procures
all the functions of R4RS. The module produced by that directive is thus formed
this way: it contains the variable fact<Ofact; (the variable fact20<Ofact, although
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exposed by the directive (expose "fact"), is excluded by the restrictive directive
only;) the sole variable Fibonacci<Ofib; (the other variables from the same module
are excluded by the clause except-pattern;). The variable callicc<Oscheme re
names the variable call-with-current-continuation<Oscheme. Since the union
creating mod is specified as ordered, the module fact will be evaluated before the
others (fib, numeric, and scheme) whose order is not specified but must be com
patible with their definition. Since the module numeric very probably uses the
module scheme, it should be evaluated afterwards.

7.10.3 Executing an Application

sr.init)
(make-vector stack-size))
0)

'anything)
'anything)
'anything)
'anything)

(lambda ()
(show-exception)
(*exit* 'aborted) ))) )

;pc for FINISH

(set! *constants*
(set! *code*
(install-code! code)
(set! *env*
(set! *stack*
(set! *stack-index*
(set! *val*
(set! *fun*
(set! *arg1*
(set! *arg2*
(push-dynamic-binding
o (list (make-primitive

(stack-push 1)
(if (pair? entry-points)

(for-each stack-push entry-points)
(stack-push entry-points) ) )

(set! *pc* (stack-pop))
(call/cc (lambda (exit)

(set! *exit* exit)
(run) )) ) )

The purpose of an executable is, of course, to be executed. Since we've prepared
everything in advance, the execution becomes simple even if it is long and tedious
as far as initializing all the registers.

(define (run-application stack-size filename)
(if (probe-file filename)

(call-with-input-file filename
(lambda (in)

(let* «dynamics (read in))
(global-names (read in))
(constants (read in))
(code (read in))
(entry-points (read in))

(close-input-port in)
(set! sg.current.names global-names)
(set! *dynamic-variables* dynamics)
(set! sg.current (make-vector (length sg.current.names)

undefined-value ))
constants)
(vector))
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(static-wrong "No such file" filename) ) )

We begin by reading the file containing the executable, and we close the input
port as soon as it become useless. We initialize the global variables of the machine,
like the function run-machine used to do. After reserving a place for the base
exception handler, we push all the entry points for the compiled files participating
in the executable. To be more general, we also consider a simple compiled file as an
executable on its own. The default handler terminates execution if it is invoked; to
do so, it captures the call continuation of run-application (the operating system)
and then places it in the variable *exit*. The function (show-exception) is
responsible for printing a meaningful error message12 on the basis of the exception
present in the register *val*. The only remaining task is to simulate a (RETURN)
to evaluate the first file of the executable; that file will return to the second file,
and so on down the line.

The function run-application takes the size of the evaluation stack to use as
an argument. To keep the size of the stack within limits is a subtle but very impor
tant implementation point. It would be too costly to test whether we have overrun
the stack at every stack-push. Sometimes, we could use the operating system or
the properties of segmented memory to eliminate that test and increase the size of
the stack in case of overrunning it. Here our simulation is particularly inefficient
because we can never say often enough how expensive the form (vector-ref v i)
is since it must verify that v is a vector and i is an positive integer less than the
size of the vector.

The function run-application doesn't need much to execute a compiled file.
It really needs only run and functions related to vectors, lists, and other classes
like primitive, continuation, etc. It also needs a read function for quotations.
Thus it's quite independent of the compiler that produced the application, (but it
doesn't help us much with debugging the program) and that, of course, was the
goal!

7.11 Conclusions

To get a real implementation of Scheme, we would have to add many missing func
tions as well as the corresponding data types. That presents hardly any problems
except detecting errors in data types or domain.

The implementation we wrote earlier is general enough and certainly can be im
proved. It's interesting because it derives from the preceding efficient interpreter,
the one that we reconfigured as a compiler. There is, in fact, a profound connection
between an interpreter and compiler (explored in [Nei84]). An interpreter executes
a program whereas a compiler transcribes a program as something that will be exe
cuted. Thus there is a simple difference in library-execution library or generation
library-in question here. We've. exploited that connection to derive the compiler
from the interpreter.

However, we've inherited only the information that appears in the intermediate
language, and that information is insufficient to insure a good compilation. We
know nothing, for example, about the use of local variables; indeed that is the

12. For example, "bus error; core not dumped."
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principal analysis that we lack. We don't know whether these variables can be
modified, whether they are closed, multiply closed, modified while closed, etc.
In many cases, all those static properties make it possible to get rid of activation
records and to use only the stack-thus improving allocation and speed. Activation
records are useful only to save the values of closed variables, so it's not necessary to
allocate such records when variables are not closed. Since their values are already
on the stack, as long as we leave them there and search for them there, we'll speed
things up a lot.

7.12 Exercises

Exercise 7.1 : Modify the compiler defined in this chapter to use a register
*dynenv* to indicate the dynamic environment. [see p. 252]

Exercise 7.2 : Define a function load to load a compiled program at execution
and execute the program. For example, if fact. scm is a file compiled as fact. so,
we should be able to compile and execute the following file:

(begin (load "fact")
(fact 5) )

Exercise 7.3 : Write a function global-value to take the name ofa global variable
and return its value.

Exercise 7.4 : Modify the instructions involved with dynamic variables to imple
ment them by shallow binding. [see p. 23]

Exercise 7.5 : [see p. 265] Write a function to rename exported variables. If
fact. so is a compiled file, then the following lines should create a new module,
nfact. so where the variable fact has been renamed as factorial.

(build-application-renaming-variables
"nfact. so" "fact. so" '( (fact factorial» )

Exercise 7.6 : [see p. 195] Modify the instruction CHECKED-GLOBAL-REF so it
can modify itself into GLOBAL-REF once the variable being read has been initialized.

Project 7.7: Gnu Emacs Lisp in [LLSt93] and xscheme in [Bet91], among other
implementations of Lisp or Scheme, have byte-code compilers. Adapt the compiler
from this chapter to interpret byte-code implemented by those virtual machines.

ReCOllllllended Reading

There are few works that explain the rudiments of compilation. In fact, that's
one reason for this book. Nevertheless, you might consult [A1l78] and [Hen80].
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For higher order compilation, see [DiI88]. These sources also contain interesting
compilers with comments: [Ste78, AS85, FWH92].





8
Evaluation & Reflection

NIQUELY characteristic of Lisp is its evaluation mechanism: eval. AI-

(J though this book talks relentlessly about evaluation, we haven't said a
word yet about the problem of making evaluation available to program
mers. Evaluation poses a number of problems with respect to specifi

cation, integrity, and linguistics. Some people are thinking of all these problems
when they say concisely, "eval is evil." Catching its genius in a useful form is the
first step toward programming reflection, a topic this chapter also covers.

For 271 pages now, we've been presenting various interpreters detailing the core
of the evaluation mechanism. For most of them, making the evaluation mechanism
accessible to programmers is trivial, a task requiring very little code. That's what
implementers have been doing for ages. The existence of such a mechanism [see
p. 2] was surely one of the goals in creating Lisp. From the very beginning of the
sixties, in fact, making the eval function explicit showed up in the writings of the
founders, such as [McC60, MAE+62].

Explicit evaluation is fundamental, supporting as it does so many effects, no
tably, a powerful system of macros, immersion of the programming environment
within the language, and pronounced reflection. Of course, explicit evaluation also
has some defects such as macros, a programming environment right inside the lan
guage, and invasive reflection. Like a magic djinn, explicit evaluation can be both
useful and dangerous.

What sort of contract should explicit evaluation satisfy? Clearly, we would like
to say that:

(eval )7r)

But right now we're going to show you the ambiguity of that formula.

8.1 Programs and Values

(1)

Let's actually try to put eval inside the first interpreter in this book. [see p. 3]
That interpreter was written in pure Scheme, without any particular restrictions.
Let's assume first that eval should be a special form. In consequence, it will appear
in evaluate which then becomes this:

(define (evaluate e env)
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«begin)
«set!)
«lambda)
«eval)
(else

(if (atom? e)
(cond «symbol? e) (lookup e env»

«or (number? e) (string? e) (char? e) (boolean? e» e)
(else (wrong "Cannot evaluate" e» )

(case (car e)
«quote) (cadr e»
«if) (if (not (eq? (evaluate (cadr e) env)

the-false-value »
(evaluate (caddr e) env)
(evaluate (cadddr e) env) »

(eprogn (cdr e) env»
(update! (cadr e) env (evaluate (caddr e) env»)
(make-function (cadr e) (cddr e) env»
(evaluate (evaluate (cadr e) env) env» ; ** Modified **
(invoke (evaluate (car e) env)

(evlis (cdr e) env) » ) ) )

As a special form, eval begins by evaluating the form that corresponds to its
first argument (just like a function does); then it evaluates the resulting value in
the current environment. This patently trivial description of what it does hides
some gaping questions.

As we've emphasized time and again, the function evaluate entails a first
stage of syntactic analysis and a second stage of evaluation. We separated those
stages into meaning and run in the most recent interpreters. The first argument
of evaluate corresponds to a program, whereas its result belongs to the domain
of values. There's a problem, then, (let's call it a type-checking problem) with the
form {evaluate (evaluate ... ) ... ) where the outermost evaluate is applied
to a value and not to a program. Are programs values? Are values programs?

Programming languages are usually defined by a grammar specifying their syn
tactic form. The grammar of Scheme appears in [CR91b]. It specifies that certain
arrangements of parentheses and letters are syntactically legal programs. The
grammar also specifies the syntax of data, and we can check that any program
conforms to that syntax for data. The read function, in fact, is universal in the
sense that it can read both programs and data. However, nothing makes it oblig
atory for programs to be read by read in order to be evaluated, even if doing so is
simpler. A Smalltalk evaluator, as in [GR83], for example, reads its programs in
windows with a special reader that stores positions in terms of rows and columns in
order to highlight portions of these programs that are syntactically incorrect. Since
this usage prevails, of course, it is clear that any program respecting the grammar
of Scheme is or can be associated with a legitimate value according to this same
grammar.

Conversely and no less clear, there are many values that correspond to programs
but even more that don't, for example, (quote. 1). Unfortunately, there remain
values whose status is not so clear .

• Take a value more or less resembling a program apart from a few clinkers, for
example, {if #t 1 (quote. 2». Is it a program? That expression poses
no problem for the operational definition we just gave for eval since (quote

2) is not evaluated, but this expression hardly conforms to the grammar
of Scheme programs.
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• Take a value such as the one constructed by the expression (, , car ,(a b»
and having in its function position a form quoting the value of the function
car. Is it a program? That value is not a program according to the syntax
of R4RS because it has no external representation: it cannot be typed with
a normal keyboard. Yet once again, it poses no problem for eval as we
described it before.

• Let's consider the syntactic conventions of COMMON LISP where #1= is a
name for the expression that follows it, and #1# represents the expression of
name 1. With that in mind, let's consider the following expression, whose
graphic representation is shown in Figure 8.1.

(let «n 4))
#1=(if (= n 1) 1

(* n «lambda (n) #1#) (- n 1))) ) )

This value has a cycle. In fact, we would say that the program involved is
syntactically recursive, so it is not syntactically legal in Scheme. Once again,
it poses no problem, however, for the eval form that we described earlier.

#1= EG- L+G- EEl-
(= n 1)

lambda

(- n 1)

Figure 8.1 Syntactically recursive factorial

From the grammatical point of view, those expressions all look like they come
from a careful study in how to produce monstrosities, but they clearly show that
the idea of a program is subtle with respect to eval. The same problem arises
about macros that carry out computations on representations of programs. Here
again we find the distinction between static and dynamic errors that we discussed
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earlier. [see p. 194] Drawing the line is difficult, but we'll risk doing so! The most
permissive hypothesis is to allow everything, so a syntactic anomaly like (quote

3) is not detected until we're obliged to evaluate the program. The strictest
hypothesis is to accept only those programs represented by finite acyclic graphs
where all nodes are syntactically correct. That rule eliminates the syntactically
recursive factorial-the one we offered as an example just before-even though
it is syntactically correct. This hard line-the one taken by Scheme-is the one
we'll take since it has been shown in [Que92a] that syntactically recursive programs
can be rewritten purely as trees with no cycles. As for quotations, we'll authorize
any finite value for which the atoms (the leaves of the tree) have an external
representation. This rule excludes quotations that entail closures, continuations,
or streams, as well as cyclic! structures.

Operationally, we'll use the following predicates to characterize the values that
we allow as legitimate programs. These predicates test syntax and detect2 cycles.

(define (program? e)
(define (program? e m)

(if (atom? e)
(or (symbol? e) (number? e) (string? e) (char? e) (boolean? e»
(if (memq e m) #f

(let «m (cons em»)
(define (all-programs? e+ m+)

(if (memq e+ m+) #f
(let «m+ (cons e+ m+»)

(and (pair? e+)
(program? (car e+) m)
(or (null? (cdr e+»

(all-programs? (cdr e+) m+) ) ) ) ) )
(case (car e)

«quote) (and (pair? (cdr e»
(quotation? (cadr e»
(null? (cddr e» »

«if) (and (pair? (cdr e»
(program? (cadr e) m)
(pair? (cddr e»
(program? (caddr e) m)
(pair? (cdddr e»
(program? (cadddr e) m)
(null? (cddddr e» »

«begin) (all-programs? (cdr e) '(»)
«set!) (and (pair? (cdr e»

(symbol? (cadr e»
(pair? (cddr e»
(program? (caddr e) m)
(null? (cdddr e» »

«lambda) (and (pair? (cdr e»

1. AllOWIng them is not too costly, and they may be useful, for example, in the implementation
of MEROONET.
2. Note that the value (let «e ,(x») '(lambda ,e ,e»is a legitimate program.
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(variables-list? (cadr e»
(all-programs? (cddr e) '(» »

(else (all-programs? e '(») ) ) ) ) )
(program? e '(» )

(define (variables-list? v*)
(define (variables-list? v* already-seen)

(or (null? v*)
(and (symbol? v*) (not (memq v* already-seen»)
(and (pair? v*)

(symbol? (car v*»
(not (memq (car v*) already-seen»
(variables-list? (cdr v*)

(cons (car v*) already-seen) ) ) ) )
(variables-list? v* '(»

(define (quotation? e)
(define (quotation? e m)

(if (memq e m) #f
(let «m (cons em»)

(or (null? e) (symbol? e) (number? e)
(string? e) (char? e) (boolean? e)
(and (vector? e)

(let loop «i 0»
(or (>= i (vector-length e»

(and (quotation? (vector-ref e i) m)
(loop (+ i 1» ) ) ) )
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(and (pair? e)
(quotation? (car e) m)
(quotation? (cdr e) m) ) ) ) ) )

(quotation? e '(» )

Armed with the predicate program?, we can improve our formulation of the
special form eva! in this way:

... «eval) (let «v (evaluate (cadr e) env»)
(if (program? v)

(evaluate v env)
(wrong "Illegal program" v) ) »

Alas, that form is still clumsy because the preceding predicates do not test
whether a value is a program and a quotation is correct; they only test whether a
value is a legitimate representation of a program or quotation. That's a pledge of the
intelligibility of a value in a particular role. The value is neither the program itself
nor the quotation. Indeed, a program and a quotation are whatever the interpreter
needs for them to be. To refine these ideas, let's look now at the pre-denotational
interpreter of Chapter 4. [see p. 111] There memory and continuations were ex
plicit, and inside them the data of interpreted Scheme were represented by closures
simulating objects. Here's that interpreter, but we've added the special form eva!:

(define (evaluate e r s k)
(if (atom? e)

(if (symbol? e) (evaluate-variable e r s k)
(evaluate-quote e r s k) )

(case (car e)
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«quote) (evaluate-quote (cadr e) r s k»
«if) (evaluate-if (cadr e) (caddr e) (cadddr e) r s k»
«begin) (evaluate-begin (cdr e) r s k»
«set!) (evaluate-set! (cadr e) (caddr e) r s k»
«lambda) (evaluate-lambda (cadr e) (cddr e) r s k»
«eval) (evaluate-eval (cadr e) r s k» ; ** Modified **
(else (evaluate-application (car e) (cdr e) r s k» ) ) )

(define (evaluate-eva! e r s k)
(evaluate e r s

(lambda (v ss)
(let «ee (transcode-back v ss»)

(if (program? ee)
(evaluate ee r ss k)
(wrong "Illegal program" ee) ) ) ) ) )

In this interpreter, the value we get by evaluating the first argument of the eval
form is first decoded as its external form (by transcode-back). Then the nature
of the program is checked so that it is eventually evaluated. The variables e and ee
have as their domain the descriptions of programs, while the variable v indicates
the values. The role of transcode-back is to take a value and put it into such a
form that it can be considered as a description of the program. This is just what
gets the effect of eval in a Scheme, where there is no load function available: write
the value to evaluate into a file; use display for transcode-back; then evaluate
that file by load instead of evaluate. In that case, the program is "compiled"a in
the name of the file.

Let's take a last example, this time, the fast compiling interpreter from Chap
ter 6. [see p. 183] It reveals a few more interesting points. There, values and
descriptions of programs share the same support; thus it will not be necessary to
introduce a conversion between them. In contrast, the goal of the fast interpreter
was to suppress evaluation for any static calculation that could be carried out
before hand.

(define (meaning e r tail?)
(if (atom? e)

(if (symbol? e) (meaning-reference e r tail?)
(meaning-quotation e r tail?)

(case (car e)
«quote) (meaning-quotation (cadr e) r tail?»
«lambda) (meaning-abstraction (cadr e) (cddr e) r tail?»
«if) (meaning-alternative (cadr e) (caddr e) (cadddr e)

r tail? »
«begin) (meaning-sequence (cdr e) r tail?»
«set!) (meaning-assignment (cadr e) (caddr e) r tail?»
«eval) (meaning-eval (cadr e) r tail?» ; ** Modified **
(else (meaning-application (car e) (cdr e) r tail?» ) ) )

(define (meaning-eval e r tail?)
(let «m (meaning e r If»)

(lambda ()
(let «v (m»)

3. In fact, coding eval by load provides an eval only at toplevel. We'll get to that idea later.
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(if (program? v)
(let «mm (meaning v r tail?»)

(mm) )
(wrong "Illegal program" v) ) ) ) ) )

Now it becomes clear that for this fast compiling interpreter, which converts a
description of a program into a tree of thunks, that compiling the value v cannot be
done statically. For the first time, a thunk will be generated which does not contain
only simple calculations like allocations, conditionals, sequences, or read-access or
write-access inside various data structures. Instead, (oh, horrors!) it entails a call
to meaning. This call thus implies that we must keep the code for meaning and its
affiliates at execution: not a slight cost!

We've tried here to eliminate the confusion between values and programs. This
confusion is on the same order as that between quotations and values. There's a
reason that eval and quote are often said to play reverse roles: for its argument,
quote takes a description of a value to synthesize whereas eval starts from a value
and converts it into a program to evaluate. Both perform conversions between
signified and signifier, so it is important not to confuse them.

8.2 eval as a Special Form

When eval is a special form, we get close to the ideal that we advocated in equa
tion (1); that is, we make (eval (quote 7r)) equivalent to 7r. That's just what
we want if we adopt equational thinking, as in [FH89, MuI92]. In a well built
theory, we can substitute two things that are mutually equal in any context. More
precisely, that implies that (1) is an attenuated form of (2), where C[] represents
a context.

'VC[], C[ (eval '7r)] == C[7r] (2)
Accordingly, the evaluation of a closed form (without free variables) like (eval

'«lambda (x y) x) 1 2)) returns 1. Moreover, ·we can also take advantage of
the current lexical environment, like this:

«lambda (x) (eval 'x»
3 ) -+ 3

«lambda (x y) (eval y»
4 'x ) -+ 4

«lambda (x y z) (eval y»
5 (list 'eval 'z) 'x ) -+ 5

This effect is made possible only because the current lexical environment is
available. About the fast compiling interpreter, we can even observe that it is not
only necessary to have the compiler meaning in a working state at execution time,
but it is also necessary to capture the current lexical environment in order to take
up the compilation again in the same environment. For that reason the generated
thunk encloses not only meaning but also r (and as an accessory, tail?): all of
them must be present at execution.

This effect is even more pertinent if we show what has become of the byte-code
compiler from Chapter 7. [see p. 223] The analyzing function meaning-eval
calls the byte-code generator EVAL/CE (for eval in the current environment). This
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generator receives the argument to evaluate as well as the lexical environment for
compilation, like this:

(define (meaning-eval e r tail?)
(let «m (meaning e r If»~)

(EVAL/CE m r) ) )
(define (EVAL/CE m r)

(append (PRESERVE-ENV) (CONSTANT r) (PUSH-VALUE)
m (COMPILE-RUN) (RESTORE-ElV) ) )

The byte-code generator EVAL/CE systematically preserves the execution envi
ronment because we don't take account of the parameter tail? A new intruction
(COMPILE-RUN) condenses the whole compiler-evaluator. That instruction takes
the expression to evaluate in the register *val* and the compilation environment
on the top of the stack and delegates to compile-on-the-fly the task of compiling
the program and installing its code in memory to execute as if it were the body of
a function.

(define (COMPILE-RUN) (list 255»

(define-instruction (COMPILE-RUN) 255
(let «v *val*)

(r (stack-pop» )
(if (program? v)

(compile-and-run v r If)
(signal-exception #t (list "Illegal program" v» ) ) )

(define (compile-and-run v r tail?)
(unless tail? (stack-push *pc*»
(set! *pc* (compile-on-the-fly v r»

(define (compile-on-the-fly v r)
(set! g.current '(»
(for-each g.current-extend! sg.current.names)
(set! *quotations* (vector->list *constants*»
(set! *dynamic-variables* *dynamic-variables*)
(let «code (apply vector (append (meaning v r If) (RETURN»»)

(set! sg.current.names (map car (reverse g.current»)
(let «v (make-vector (length sg.current.names) undefined-value»)

(vector-copy! sg.current v 0 (vector-length sg.current»
(set! sg.current v) )

(set! *constants* (apply vector *quotations*»
(set! *dynamic-variables* *dynamic-variables*)
(install-code! code) ) )

Compiling on the fly means that we have to update the global variables for
compilation: g. current (the environment of mutable global variables), *quota
tions*, and *dynamic-variables*.4 The compiled code is followed by a (RETURN)
so that it can return to its caller. After the compilation, we enrich the execution
environment in order to add new quotations, mutable global variables, or dynamic

4. An contrast to other variables, *dynamic-variables* is shared between the compiler and
the executing machine. Also idempotent assignments to it are pointless, but those assignments
indicate what must change if they were not shared.
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variables created at that time. There's nothing left to do but to install the new
code segment and then execute it.

This installation is analogous to dynamic linking. It shows that for a language
like C, eval comes down to writing a character string in a file, then compiling that
file by a call to cc, then loading that file by dynamic linking, and finally executing
it. Code installed that way can't be eliminated in the current state of the machine
and thus in the long term it will obstruct memory. Recuperating memory consumed
by compiled code is always a touchy issue.

The cost of introducing this new special form is thus

• a new instruction (COMPILE-RUN) accompanied by the function meaning and
a few other utilities, representing a great increase in size for small applica
tions;

• and, at every call to eval, supplementary quotations to store the necessary
compilation environments.

Fortunately, we have to save these compilation environments only in these places.
The marginal cost is thus proportional to the number of eval forms.

As far as implementation and debugging, inserting an eval form makes it pos
sible to program a local interaction loop to check or modify local variables by their
own name. If a debugger were available and could be activated by a simple in
terruption (by an interruption from the keyboard, for example) at any stage of
the program where we wanted, it would require us to keep the entire text of the
program as well as saving all the compilation environments.

8.3 Creating Global Variables

Because of the explicit contract in equation (2), the expression (eval J (set! foo
33)) should be equivalent to (set! foo 33). We've already seen its various
semantics [see p. 111] in Chapter 4. They were analyzed in Section 6.1.9 [see p.
203]. If simply mentioning the name of a variable makes it exist, then eval should
behave likewise. In contrast, if variables must be declared before they are used, then
eval should conform to that practice instead. The function compile-on-the-fly
extends the global evaluation environment on its return in order to take into account
new mutable global variables that have just appeared.

This point of that remark is to make you realize that equations (1) or (2)
stipulate that not only the values of 1r and (eval J 1r) but also their induced effects
(such as any global variables created, any modifications of the global environment
or the evaluation context) should be the same. This idea of "same" is taken into
account by equation (2) which must remain valid regardless of the context. That
means that 1r and (eval J 1r) must be indistinguishable. In other words, there can
be no program5 that we can write that can tell them apart.

5. This statement is somewhat theoretical since we might let the program check the clock to
measure its own execution time and by that means, a program could deduce whether it had
encountered an eva! or not.
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8.4 eval as a Function

The special form eval evaluates its argument as a function would do, so we might
as well ask ourselves whether we could achieve the same evaluation as a function
rather than a special form. To that end, let's take each of the various interpreters
again and show how to introduce such a function in each one.

With the naive interpreter at the beginning of this book [see p. 3], we would
write this:

(defprimitive eval
(lambda (v)

{if (program? v)
(evaluate v env.global)
(wrong "Illegal program" v) »

1 )

Right away, the major difference is apparent: we've lost the current lexical
environment. Since we still have to give one to the evaluator, evaluate, we'll
provide the only one that's visible: the global environment! As a consequence, we
have here a function playing the role of a global evaluator equivalent to the one
used by the toplevelloop. We'll name it eval/at for eval at top-level while we'll
name the preceding special form evallce to distinguish it when we feel the need
to do so. Using eval/at is not a complete loss because we save some effort with
it: we no longer have to store the lexical environments present when evallce is
called. We save a few quotations that way.

To clarify these ideas, we'll take up the preceding examples again: assuming
that eval/at as a function leads to this:

(set! x 2){set! z 1)
«lambda (x) (eval/at 'x»
3 ) ~ 2

({lambda (x y) (eval/at y»
4 'x ) ~ 2

({lambda (x y z) (eval/at y»
5 (list 'eval/at 'z) 'x ) ~ 1

Even if eval/at seems like a step backward from eval/ce, we can still (almost)
simulate one with the other by doing this:

(define (eval/at x) (eval/ce x»

Unfortunately, there is one variable too many in the environment that's been
captured: the local variable named x hides the global variable of the same name.
[see Ex. 8.3] This problem might make you think that a more refined way of
handling the environment could solve the difficulty, so this definition suggests to
us how we should define evallat in the interpreter that compiles byte-code. The
new definition again uses the function compile-and-run but without asking it to
push the return address because the caller of eval/at has already done it. The
compilation, however, is done here with r. init since we no longer have access to
the current lexical environment.

{definitial eval
{let* ({arity 1)

{arity+1 (+ arity 1» )
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(make-primitive
(lambda ()

(if (= arity+l (activation-frame-argument-length *val*»
(let «v (activation-frame-argument *val* 0»)

(if (program? v)
(compile-and-run v r.init It)
(signal-exception #t (list "Illegal program" v» ) )

(signal-exception #t (list "Incorrect arity" 'eval» ) ) ) ) )

Evaluating as if we were at the toplevel loop should not be taken too literally
because of the dynamic environment. For example, whether eval is a special form
or a function, we should still observe this:

(dynamic-let (a 22)
(eval '(dynamic a») ~ 22

As far as the initial contract of eval with respect to equation (1), it begins in
the empty context, that is, right at the fundamental level. In contrast, eval/at
does not satisfy equation (2), as those earlier examples prove. To be more specific
about the behavior of eval/at, we'll turn to equation (3) where v is a variable that
cannot be captured:

C[(eval/at '71")] (let «v (lambda () 71"») C[(v)]) (3)

The variation of eval that you'll encounter most commonly among Lisp systems
is eval/at.

8.5 The Cost of eval

The overall cost of using eval is hard to grasp. Suppose first of all that the
autonomous application that we are about to construct is none other than the
famous (display "Hello world"). If the special form evallce does not occur in
the application (and that's something we can simply check statically) then there's
no cost! If it occurs, then we must at least add the compiler to the application, so
its size changes by an order of magnitude; let's say roughly 50 to 500 kilobytes. If
we get dynamic evaluation in the form of a function, and if it is not proved that the
function will not be useless (in short, if we need the function) then we're back to
the same case. To prove that eval/at is not needed, we must verify that it is never
used. The language is helpful for this proof: in Scheme, for example, it suffices
to prove that the global variable evallat is not mentioned. In COMMON LISP,
that's generally not possible since we must prove in addition (and among other
things) that nobody has generated the character string "eval/at", converted it to
a symbol by means of find-symbol, and (by means of symbol-function) extracted
the function of the same name from that symbol. It's costly to detect even just
the mention of symbol-function with an argument that we cannot foresee.

If by chance a call to eval occurs, can we limit the set of values to which
eval is applied? In most cases, this analysis is hardly possible, and you might
even think that any value is possible. Consequently, we can no longer remove a
single function from the global environment since anything and everything might
be called. The generation of an application thus must contain everything that the
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language defines, with no exceptions, and the size of the executable, especially in
a language as rich as COMMON LISP, grows another order of magnitude.

We're not past the worst yet. Even if we are in the ideal case with a system of
modules that limit where the global environment can be seen and whether it can
be modified, as in [QP91b], the very presence of eval kills off the possibility of
many ways of improving compilation. Look at the following definition:

(define (fib n)
(if « n 2) (eval (read»

(+ (fib (- n 1» (fib (- n 2») ) )

Independently of the effects that eval might have on other global variables,
eval can also modify the global variable fib. That fact obliges us, during the
second recursive call, to search for the value of fib by the address associated with
the global variable, rather than using a blind GOTO. Since eval can modify anything,
we don't even have the usual advantages of global variables being invariable. In
short, the presence of even one single eval in a module makes it possible to modify
practically anything in that module.

For all those reasons, eval is considered an expensive characteristic. However,
inside a large application (something like a few megabytes) and in development
where everything is in a more or less unstable state, eval is a low-level, useful
addition. True: if we have only a minor little calculation to program, it is simpler
(in terms of how long it takes to program and how costly a programmer's time
is) to call eval to compute arithmetic expressions, rather than to implement an
interpreter in an ad hoc language. Lisp is a remarkable extension language, and
making eval available in a library is a major advantage.

8.6 Interpreted eval

This book uses an immoderate number of interpreters. In case there were no eval
in a system, you might ask whether a user couldn't supply one by his or her own
means. After all, given the number of interpreters you've already seen, you would
only have to choose one from the many available, pick up the code by FTP (or just
type it in yourself), and put it into your application. Well, yes and no.

In pure Scheme, if you want to write an evaluator, it can only be a function
since you can't define your own special forms there. Two problems then arise.

8.6.1 Can Representations Be Interchanged?

The first problem we alluded to is how to organize interactions between the un
derlying system and the interpreter that you want to write. This problem means
that you can't impose new data types and that in fact you must conform to exist
ing types. The pairs that the interpreter manages must be the same pairs as the
implementation; Booleans must be the same; functions have to respect a similar
calling protocol. Explicit evaluation, which appears in the following example, must
necessarily return a function that can be invoked by the underlying system.

«eval '(lambda (x) (cons x x»)
33) --+ (33 . 33)
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Conversely, the interpreter must also know how to invoke functions from the
underlying system, like this:

«(eval '(lambda (f)
(lambda (x) (f x» »

list )
44 ) --+- ( 44)

One possible common representation for functions is to use functions with mul
tiple arity (lambda values ... ) in a way that adapts to the two possible invo
cation modes. The modifications that this entails for the first interpreter in this
book (the naive interpreter of the first chapter [see p. 3]) for example, are simple.
You can easily deduce the others from this:

(define (invoke fn args)
(if (procedure? fn)

(apply fn args)
(wrong "Not a function" fn) ) )

(define (make-function variables body env)
(lambda values

(eprogn body (extend env variables values» ) )

A subtle point is to make sure that error handling (for example, errors about
arity) is the same in eval and in the underlying system, but we'll skip that detail.

8.6.2 Global Environment

The second problem we alluded to concerns how to handle the global environment.
The evaluators in this book all have their own definition of their global environment;
they build it by means of such macros as definitial, defprimitive, and others.
Here, the problem is to cooperate with the underlying system to insure that the
global environment whether seen from the interpreter or from the system is the
same. In other words, the following expression has to be evaluated without error:

(begin (set! foo 128)
(eval '(set! bar (+ foo foo»)
bar) --+- 256

Compiler for Autonomous Applications

In a compiler that works on files, like Scheme---+C in [Bar89] or Bigloo in [Ser94],
the program is known in advance and by construction it does not know how to
access variables that it does not mention. Thus the variables that eval creates can
be handled only by eval. Consequently, all we have to do is connect the underlying
global environment to the interpreter, and to do so, we define two functions known
as global-value and set-global-value!. Their body is systematically formed
after all the global variables of the program, and they are known statically. We can
even imagine that these functions6 are synthesized automatically. [see Ex. 7.3]

(define (global-value name)

6. In the function set-global-value!, the variable car does not occur in order to preserve its
immutability.



284 CHAPTER 8. EVALUATION & REFLECTION

(case name
«car) car)

«foo) foo)
(else (wrong "No such global variable" name» ) )

(define (set-global-value! name value)
(case name

«foo) (set! foo value»

(else (wrong "No such mutable global variable" name» ) )

The interpreter can create as many global variables as it wants; none of them can
be reached directly by the underlying system; only the interpreter can manipulate
them. This is not a problem since the underlying system does not mention them
so it may safely continue to ignore them.

Interactive System

In contrast, if we're in a system that has an interactive loop, then the system and
the interpreter can both create new variables. The example we gave earlier can
explode into a sequence of interactions where we see that we can ask the underlying
system the value of a variable created by the interpreter and vice-versa, like this:

? (begin (set! foo 128)
(eval '(set! bar (+ foo foo»)

2001 )
2001

? bar
= 256

There are several solutions to this problem of cooperation.

U sing Symbols

The most conventional of these solutions uses symbols, a practice that has for years
undermined the semantic basis of Lisp because it regrettably confuses symbols with
variables, a confusion made worse by the fact that variables are represented by
symbols and that (as you will see) symbols can implement variables.

Symbols are data structures that need a unique field to associate the symbol
with its name, a character string. Symbols are created explicitly in Scheme by
the function string->symbol. Two symbols of the same name cannot exist simul
taneously and still be different. We usually insure that point with a hash table
associating character strings with their symbol. The function string->symbol be
gins by searching in the hash table to see whether a symbol by that name already
exists and if so, the function returns it; otherwise, the function builds the symbol.
To make searching for symbols by name faster, supplementary (hidden) fields are
often added to connect symbols to each other.

We often add a property list to symbols. It is usually managed as a P-list, but
you'll also encounter A-lists and hash tables in this role as well. How large they
are and how fast you can access them depends on the implementation of property
lists. Some Lisp systems, such as Le-Lisp have even added fields to symbols to
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serve as caches for properties that are widely used, such as, for example, how to
pretty-print forms beginning with that symbol.

Since the structure of a symbol is nothing more than a few fields, why don't
we add another field there to store the global value of the variable of the same
name? In the case of Lisp2, why don't we store the value of the global function
of the same name as well? In fact, since time immemorial, that is exactly what is
done under the names of Cval and Fval, as in [Cha80, GP88]. Functions exist to
read and write these fields. In COMMON LISP, they are symbol-value and (setf
symbol-value) as well as symbol-function and (setf symbol-function).

This technique is particularly attractive because it is exceedingly sure. Every
symbol that might serve as the representation of a global variable necessarily has
been built beforehand by symbol->string (generally by read) so an address to
contain its global value exists already as a field in the symbol. Of course, this
arrangement is wasteful since not every symbol necessarily supports the represen
tation of a global variable of the same name; on the other hand, no global variable
exists without being associated with an address to contain its global value.

Thus it suffices to provide two functions, global-value and set-global-val
ue ! , to get and assign the value of global variables, starting from their names. The
explicit interpreter will handle the global environment through these functions, and
the problem of extending this environment never comes up since it is resolved by
the magical underlying mechanism connected to the idea of a symbol.

Let's indicate how to enrich the interpreter from the first chapter to take into
account these magic functions. The environment, the value of the variable env,
will contain only local variables to the exclusion of global variables which will be
managed directly. Since we have adopted a common representation of functions
between the interpreter and the system, we can drop the definition of the global
environment entirely from the interpreter because the interpreter can now use the
global environment of the system directly. Thus we have this:

(define (lookup id env)
(if (pair? env)

(if (eq? (caar env) id)
(cdar env)
(lookup id (cdr env))

(global-value id) ) )

(define (update! id env value)
(if (pair? env)

(if (eq? (caar env) id)
(begin (set-cdr! (car env) value)

value)
(update! id (cdr env) value) )

(set-global-value! id value) ) )

This solution seems elegant, but at an impressive cost since every global vari
able is thus accessible by name. An autonomous application containing a call to
global-value cannot eliminate anything from the library of initial functions since
a priori every name can be computed and thus everything is necessary. That's
not too annoying in a programming environment since one of its properties is to
make everything available to the programmer. However, it is a real problem for a
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small autonomous application. Even worse, the function set-global-value! can
change the value of any global variable and thus break any optimization of the
compilation since nothing is any longer a priori immutable.

The two functions, global-value and set-global-value!, can be considered
as one specialized version of eval. By the way, we found it in old Lisp systems under
the name symeval. You can also see those two functions as reflective functions
that reify access to the global environment. Writing "foo" in order to know the
value of the global variable foo is the same as writing and explicitly evaluating
(global-value 'foo).

First Class Environment

Another technique is to define an eval function with two variables: the expression
to compute and the environment in which to compute it. The binary eval of the
naive evaluator in the first chapter has a signature like that, but the shortcoming
in adopting that solution is that we must be able to provide values as the second
argument and environments too, although no operation is available for getting
them. Consequently, we must allow reification of environments as well as possibly
other operations, such as extraction or modification of the value of variables. By
means of these operations, we can connect the environments handled by the explicit
evaluator with the environments of the implementation. This technique raises many
problems that we'll address now.

8.7 Reifying Environlllents

The denotational interpreter clearly demonstrated that in Scheme, evaluation de
pends on a triple: environment, continuation, memory. Once again rejecting mem
ory, we see that continuations can be handled via callicc or bind-exit (which
reifies them). That was not the case for lexical environments, which could not be
accessed directly. The next section covers how to reify them in data structures that
can be manipulated.

The implementations of first class environments are characterized and differen
tiated, according to [RA82, MR91], by their properties and their operations. The
three fundamental operations of a first class environment are: searching for the
value of a variable; modifying the value of a variable extending the environment.
To reify the environment is to provide a means of capturing bindings but without
the abstractions that capture them only in an opaque way or in a way that cannot
be manipulated.

8.7.1 Special Form export

We'll introduce a special form, named export; we'll mention to it the names of
variables to capture, and it will return an environment enclosing their bindings
with the specified variables. The reified environment can be used as the second
argument of the binary evaluation function; we'll distinguish that function from
earlier ones by naming it eval/b. Let's take a few examples.

(let «r (let «x 3) (export x»»)
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(eval/b 'x r) ) ~ 3
(let «f+r (let «x 3»

(cons (lambda () x) (export x» »)
(eval/b '(set! x (+ 1 x» (cdr f+r»
«car f+r» ) ~ 4

(let «r (export car cons»)
(let «car cdr»

(eval/b '(car (cons 1 2» r) » ~ 1

In the first example, the first class environment that's being created captures
the variable x which can thus be used at leisure by eval/b. The second example
shows that we can also modify the variable x, and that it really is the binding being
captured since the modification is perceived from what encloses it by the normal
means of abstraction. The third example shows that we can also capture global
bindings.

The special form export lets us juggle environments, so to speak, by capturing
the purposes of environments and using them elsewhere. Its implementation is not
trivial, so we'll describe it. As we do for all special forms, we'll add a clause for it
to meaning, the function that analyzes syntax, like this:

... «export) (meaning-export (cdr e) r tail?» ...

A reified environment must not only capture the list of activation records but
also save the names and addresses of variables that are supposed to be captured.
That aspect recalls the implementation of evallce which required us to save the
same information. We'll represent a reified environment by an object with two
fields: the list of activation records and a list of name-address pairs that serve as
the "roadmap" to the activation records. You can see what we mean in Figure 8.2.

(define-class reified-environment Object
( sr r ) )

reified environment

-

~-

I., I
I

activation frame

o

23

global environment

~-

((foo (local 0 1))
(bar (global 23))
... )

I
-_..I

--------------,,
I
I
I
I,L _

Figure 8.2 Reified environment

Without going into the details right away, we will compile an export form like
this:
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(define (meaning-export n* r tail?)
(unless (every? symbol? n*)

(static-wrong "Incorrect variables" n*) )
(append (CONSTANT (extract-addresses n* r» (CREATE-1ST-CLASS-ENV»

(define (CREATE-1ST-CLASS-ENV) (list 254»

(define-instruction (CREATE-1ST-CLASS-ENV) 254
(create-first-class-environment *val* *env*)

(define (create-first-class-environment r sr)
(set! *val* (make-reified-environment sr r»

The list of name-address pairs will be represented by a quotation; the new
instruction CREATE-1ST-CLASS-ENV will take that quotation in the register *val*
to build the object that we want.

To simplify the evaluation, we will change the representation of static environ
ments for compilation (the values of variables r). In place of the representation as a
rib cage, we'll adopt a more explicit representation as an association list of names
addresses like the one in Figure 8.2. There is little to change, but by simplifying
compute-kind, we complicate r-extend*: every time we extend the environment,
it must bury the deep variables a little deeper.

(define (compute-kind r n)
(or (let «var (assq n r»)

(and (pair? var) (cadr var»
(global-variable? g.current n)
(global-variable? g.init n)
(adjoin-global-variable! n) ) )

(define r.init '(»

(define (r-extend* r n*)
(let «old-r (bury-r r 1»)

(let scan «n* n*)(i 0»
(cond «pair? n*) (cons (list (car n*) '(local 0 . ,i»

(scan (cdr n*) (+ i 1» »
«null? n*) old-r)
(else (cons (list n* '(local 0 . ,i» old-r» ) ) ) )

(define (bury-r r offset)
(map (lambda (d)

(let «name (car d»
(type (car (cadr d»)

(case type
«local checked-local)
(let* «addr (cadr d»

(i (cadr addr»
(j (cddr addr» )

'(,name (,type, (+ i offset) . ,j) . , (cddr d» ) )
(else d) ) ) )

r ) )

Rather than reify an environment with only those variables that are mentioned,
we will make (export) equivalent to the form (export variables . .. ) where we
will already have specified all the variables of the ambient abstractions. With the
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form (export) , which is often called (the-environment), eval/b can be simulated
entirely by evallce since:

(eval/ce '1r) (eval/b '1r (export»

To achieve that improvement, all we have to do is capture every available envi
ronment (which now has the right structure) and write this:

(define (extract-addresses n* r)
(if (null? n*) r

(let scan «n* n*»
(if (pair? n*)

(cons (list (car n*) (compute-kind r (car n*»)
(scan (cdr n*» )

,() ) ) ) )

8.7.2 The Function eval/b

There are still traces of evallce inside eval/b. Those two are similar as far
as how they get evaluation parameters and with respect to the return protocol for
evaluation. Indeed, it's useful to compare what follows with what went before. The
function eval/b verifies the nature of its arguments, then delegates the function
compile-on-the-fly (which you've already seen) to take care of first compiling the
expression in the environment that's provided, then installing the code somewhere
in memory, and executing it. The current environment doesn't need to be saved
since that save has already been taken care of by the calling protocol for functions.

(definitial eval/b
(let* «arity 2)

(arity+1 (+ arity 1» )
(make-primitive

(lambda ()
(if (= arity+1 (activation-frame-argument-length *val*»

(let «exp (activation-frame-argument *val* 0»
(env (activation-frame-argument *val* 1» )

(if (program? exp)
(if (reified-environment? env)

(compile-and-evaluate exp env)
(signal-exception
#t (list "Not an environment" env) ) )

(signal-exception #t (list "Illegal program" exp» ) )
(signal-exception
#t (list "Incorrect arity" 'eval/b) ) ) ) ) ) )

(define (compile-and-evaluate v env)
(let «r (reified-environment-r env»

(sr (reified-environment-sr env»
(set! *env* sr)
(set! *pc* (compile-on-the-fly v r» ) )
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8.7.3 Enriching Environments

Since environments are extended so often, it makes sense to get this operation for
ourselves, too. We will thus furnish a function, enrich, which takes an environment
and the names of variables to add to it. The return value will be a new enriched
environment. In fact, enrich is a functional modifier that does not disturb its
arguments. Let's look at an example of how it is used. We'll simulate letrec by
explicitly enriching the environment. A global binding7 will be captured; two local
variables, odd? and even? will enrich it; two mutually recursive definitions will be
evaluated there; a computation will be carried out eventually.

«lambda (e)
(set! e (enrich (export *) 'even? 'odd?»
(eval/b '(set! even? (lambda (n) (if (= n 0) #t (odd? (- n 1»») e)
(eval/b '(set! odd? (lambda (n) (if (= n 0) #f (even? (- n 1»») e)
(eval/b '(even? 4) e) )

'ee ) -+ #t

Figure 8.3 shows the results of this construction in detail. A new activation
record is allocated to contain the new variables. The reified environment associates
these new names with the appropriate addresses. The only difficulty is that these
new variables have no values, even though the variables exist. Here we find ourselves
back in the discussion about letrec or about non-initialized variables. [see p. 60]

We'll thus introduce a new type of local address, checked-local, which is
almost analogous to checked-global. Our definition of enrich brings us the pos
sibility of non-initialized local variables-a situation that was not possible with
lambda. One fix would be to force environments to be enriched by variables ac
companied by their values.

Programming enrich is simple now, if not short:

(definitial enrich
(let* «arity 1)

(arity+1 (+ arity 1» )
(make-primitive

(lambda ()
(if (>= (activation-frame-argument-length *val*) arity+1)

(let «env (activation-frame-argument *val* 0»)
(listify! *val* 1)
(if (reified-environment? env)

(let* «names (activation-frame-argument *val* 1»
(len (- (activation-frame-argument-length *val*)

2 »
(r (reified-environment-r env»
(sr (reified-environment-sr env»
(frame (allocate-activation-frame

(length names) » )
(set-activation-frame-next! frame sr)
(do «i (- len 1) (- i 1»)

«< i 0»

7. Ahem, there is a design error here: there is no means to create an empty environment with
export, so we capture just any old thing-in this case, multiplication-to create a little environ
ment, as in (QD96].
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(bar (local 2 1))

... )

Figure 8.3 Enriched environment (enrich env 'x 'y)

(set-activation-frame-argument! frame i
undefined-value ) )

(unless (every? symbol? names)
(signal-exception
#f (list "Incorrect variable names" names ) ) )

(set! *val* (make-reified-environment
frame
(checked-r-extend* r names) »

(set! *pc* (stack-pop» )
(signal-exception
#t (list "Not an environment" env) ) ) )

(signal-exception
#t (list "Incorrect arity" 'enrich) ) ) ) ) ) )

(define (checked-r-extend* r n*)
(let «old-r (bury-r r 1»)

(let scan «n* n*)(i 0»
(cond «pair? n*) (cons (list (car n*) '(checked-local 0 . ,i»

(scan (cdr n*) (+ i 1» »
«null? n*) old-r) ) ) ) )

However, we must upate the two generators, meaning-reference and meaning
assignment, to take into account this new type of address (checked-local).

(define (meaning-reference n r tail?)
(let «kind (compute-kind r n»)

(if kind
(case (car kind)
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«checked-local)
(let «i (cadr kind»

(j (cddr kind» )
(CHECKED-DEEP-REF i j) ) )

«local)
(let «i (cadr kind»

(j (cddr kind»
(if (= i 0)

(SHALLOW-ARGUMENT-REF j)
(DEEP-ARGUMENT-REF i j) ) ) )

«global)
(let «i (cdr kind»)

(CHECKED-GLOBAL-REF i) ) )
«predefined)
(let «i (cdr kind»)

(PREDEFINED i) ) ) )
(static-wrong "No such variable" n) ) ) )

(define (meaning-assignment n e r tail?)
(let «m (meaning e r If»~

(kind (compute-kind r n»
(if kind

(case (car kind)
«local checked-local)
(let «i (cadr kind»

(j (cddr kind»
(if (= i 0)

(SHALLOW-ARGUMENT-SET! j m)
(DEEP-ARGUMENT-SET! i j m) ) ) )

«global)
(let «i (cdr kind»)

(GLOBAL-SET! i m) )
«predefined)
(static-wrong "Immutable predefined variable" n) ) )

(static-wrong "No such variable" n) ) ) )

We must not forget to add the instruction CHECKED-DEEP-REF to our byte-code
machine, like this:

(define-instruction (CHECKED-DEEP-REF i j) 253
(set! *val* (deep-fetch *env* i j»
(when (eq? *val* undefined-value)

(signal-exception #t (list "Uninitialized local variable"» ) )

8.7.4 Reifying a Closed Environment

Some interpreters make primitives available to extract an environment from a clo
sure that contains it. Next to the function procedure->environment, these inter
preters often add the function procedure->definition, which extracts the defini
tion from a closure. These two functions are simple to implement in an interpreter,
but in a compiler, they become more complicated and consume more memory. In
effect, we have to do two things at once: one, store definitions (which adds to quota-
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tions) and two, reify closed environments (which necessitates saving their structure
and adding new quotations). Moreover, the function procedure->environment is
very indiscrete since we might modify a closed environment when we reify it-a
change that prohibits any optimization of local variables because under these con
ditions even local things can be reached. In that sense, procedure->environment
is much more costly than export because it strips the evaluator without putting
any limitations on what can be done with it, whereas export restricts what can be
(un)done to only those variables that are mentioned.

The function procedure->definition is useful for introspection. With it, we
can provide a debugger that can dissect functions to apply. Here is an example of
how to use those two functions. The function trace-procedure1 takes a unary
function, examines it, and rebuilds a new unary function, comparable to the first
one but printing its argument on input and its result on output.

(define (trace-procedure1 f)
(let* «env (procedure->environment f»

(definition (procedure->definition f»
(variable (car (cadr definition»)
(body (cddr definition» )

(lambda (value)
(display (list 'entering f 'with value»
(eval/b (begin (set! ,variable ',value)

(let «result (begin. ,body»)
(display (list 'result 'is result»
result) )

(enrich env variable) ) ) ) )

In fact, that program cheats a little. A unary function like car will upset
trace-procedure1. The synthesized program for eval/b is not even a legal pro
gram because it quotes the value of value, which is not always a value that can
be legitimately quoted. However, the function trace-procedure1 produces an
important effect for debugging. That effect results from combining introspection
functions for closures, first class environments, and explicit evaluation.

If we suggest a way of implementing these functions, you can judge their cost
for yourself. The function procedure->definition is the simpler: all it has to
do is associate any closure with the expression that defines that closure, that is,
a quotation. The problem: where to put that quotation since there may be many
closures associated with the same definition. The salient characteristic of a closure
is the address of its code. All the closures of a given abstraction share that same
address, so we'll associate that address with the appropriate quotation. To do
so, we'll use a technique well known to programmers in asssembly language: we'll
insert data in the instructions. Since our machine forbids that, we'll actually insert
quotations as in Figure 8.4.

Programming it is trivial. Once again we must change the code generators
since now we must provide the definition and the static compilation environment
to them because the functions procedure->environment and procedure->def
inition need that information. The version for an n-ary function is easy8 to
deduce:

8. Using EXPLICIT-COISTAIT means we do not get a (PREDEFIIEDO) in place of a (COISTAIT ,(».
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( (z (local 0 . 0))
(foo (local 0 . 1))
(bar (local 1 . 0))
... )

(lambda (x y) ... )
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(GOTO -)

Figure 8.4 Abstraction that can be dissected

(define (meaning-fix-abstraction n* e+ r tail?)
(let* «arity (length n*»

(r2 (r-extend* r n*»
(m+ (meaning-sequence e+ r2 It» )

(REFLECTIVE-FIX-CLOSURE m+ arity '(lambda ,n* . ,e+) r) ) )
(define (REFLECTIVE-FIX-CLOSURE m+ arity definition r)

(let* «the-function (append (ARITY=? (+ arity 1» (EXTEND-ENV)
m+ (RETURN»)

(the-env (append (EXPLICIT-CONSTANT definition)
(EXPLICIT-CONSTANT r) »

(the-goto (GOTO (+ (length the-env) (length the-function»»
(append (CREATE-CLOSURE (+ (length the-goto) (length the-env»)

the-goto the-env the-function ) ) )

The function procedure->definition finds the definition of a closure by the
quotation located two instructions before the code of its body.

(definitial procedure->definition
(let* «arity 1)

(arity+1 (+ arity 1» )
(make-primitive

(lambda ()
(if (>= (activation-frame-argument-length *val*) arity+1)

(let «proc (activation-frame-argument *val* 0»)
(if (closure? proc)

(let «pc (closure-code proc»)
(set! *val* (vector-ref
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*constants*
(vector-ref *code* (- pc 3» »

(set! *pc* (stack-pop» )
(signal-exception #f (list "Not a procedure" proc» ) )

(signal-exception
#t (list "Incorrect arity" 'enrich) ) ) ) ) ) )

The function procedure->environment extracts the closed environment from
the closure and reifies it by adding the name-address mapping to it, making it
intelligible. This mapping is found one instruction before the code for its body.

(definitial procedure->environment
(let* «arity 1)

(arity+1 (+ arity 1» )
(make-primitive
(lambda ()

(if (>= (activation-frame-argument-length *val*) arity+1)
(let «proc (activation-frame-argument *val* 0»)

(if (closure? proc)
(let* «pc (closure-code proc»

(r (vector-ref
*constants*
(vector-ref *code* (- pc 1» » )

(set! *val* (make-reified-environment
(closure-closed-environment proc)
r »

(set! *pc* (stack-pop» )
(signal-exception #f (list "Not a procedure" proc» ) )

(signal-exception
#t (list "Incorrect arity" 'enrich) ) ) ) ) ) )

In short, adding the functions procedure->definition and procedure->en
vironment makes it possible for programs to understand their own code. They
also make it possible to write introspective debugging tools. However, they both
have a non-negligible cost because of the amount of information to save. Above
all, they are both totally indiscrete since if all things can be reified, then nothing
can be definitively hidden. You can no longer sell code that you want to keep
secret, nor can you hide the implementation of certain types of data, nor even hope
that certain local optimizations can take place since nothing can any longer be
guaranteed constant.

Nevertheless, we can offset some of these faults by creating a new special form,
say, reflective-lambda, with the following syntax:

(reflective-lambda (variables) (exportations)
body )

Like the abstractions that they generalize, their variables are specified in the
first parameter and their body in the last ones. Between those two, the expor
tation clause sets the only free variables in the body which will be available for
inspection from the outside in the environment that this abstraction encloses.
Accordingly, a normal abstraction (lambda (variables) body) is none other than
(reflective-lambda (variables) () body); that is, it doesn't export anything.
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By making only a few bindings visible, we can conceal others and thus protect
ourselves from possible indiscretions.

There is yet another problem with the inquisitive function procedure->en
vironment. Exactly which environment does the abstraction in the following ex
ample enclose anyway?

(let ((x 1)(y 2»
(lambda (z) x) )

The enclosed environment certainly contains x, which is free in the body of the
abstraction. Does it capture y, which is present in the surrounding lexical environ
ment? The way of programming that we looked at earlier also captures y because
we can assume that the contract from procedure->environment lets us evaluate
any expression (even one containing x and y) as if it were found in the lexical en
vironment where the closure was created. It's not so much the closed environment
that procedure->environment returns as the entire lexical environment from the
creation of the closure.

8.7.5 Special Form import

Quite often the form on which to call the evaluator has a static structure. That was
the case, for example, in the procedure trace-procedure1. Rather than recompile
on the fly, we might imagine a kind of precompilation that makes it possible to
branch on an environment which would not be available until execution. The new
special form import meets that contract. It looks like this:

(import (variables) environment forms )

The special form import evaluates the forms that make up its body in a rather
special lexical environment. The names of free variables of the body appearing in
the list9 variables are the ones to take in the environment; the others are to take
in the lexical environment of the call to import. The list of variables is static, not
computed; environment is evaluated first, then the forms.

Here is an example, inspired by MEROONET where we had the problem of rep
resenting generic functions which are simultaneously objects and functions. If we
allow access to enclosed variables, then a closure can be handled like an object
where the fields are its free variables. This idea is the basis10 for identifying clo
sures with objects. In the implementation of MEROONET, to add a method to a
generic function, we write this method in the right place in the vector of methods.
Assuming that a generic function encloses this vector under the name methods, we
can write it directly like this:

(define (add-method! generic class method)
(import (methods) (procedure->environment generic)

(vector-set! methods (Class-number class) method) ) )

In that example, you can see the usefulness of the special form import with
respect to the function eval/b. The references to the variables class and method
are static while only the variable methods still floats; it can be resolved only when
the second parameter of import is known. Thus we've gained compilation on the

9. No variables could mean that all of them are captured as in [QD96].
10. Other facilities, like specializing the class of functions, are still missing.
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fly like eval/b executed, and we see that we no longer synthesize programs to
compile: import is a kind of eval with its fat removed; it's more static since we
know statically the only references that still have to be resolved. In that sense,
import belongs to the kind of quasi-static binding proposed in [LF93] or in [NQ89].
Its very name suggests its close relation to its "cousin" export: one produces
the environments that the other branches to. We're getting nearer here to the
rudiments of first class modules.

How should we implement import as a special form? First, we'll add a line to
the syntactic analyzer, meaning, to recognize this new special form .

... «import) (meaning-import (cadr e) (caddr e) (cdddr e) r tail?» ...

The associated byte-code generator stores the list of floating variables on top
of the stack, evaluates the environment which will end up in the register *val*,
executes the new instruction CREATE-PSEUDO-ENV, and procedes to the evaluation
of the body of the import form, whether in tail position or not.

(define (meaning-import n* e e+ r tail?)
(let* «m (meaning e r If»

(r2 (shadow-extend* r n*»
(m+ (meaning-sequence e+ r2 If» )

(append (CONSTANT n*) (PUSH-VALUE) m (CREATE-PSEUDO-ENV)
(if tail? m+ (append m+ (UNLINK-ENV») ) ) )

The body of the special form import is evaluated by constructing of a pseudo
activation record (an instance of the class pseudo-activation-frame); its size
is the number of floating variables mentioned in the form. It behaves like an
environment in the sense that we can connect them just like activation records,
but in fact it contains real addresses where to look for the floating variables as well
as the environment from which to extract them. During the creation of this pseudo
activation-frame, we use compute-kind to compute where the floating variables are,
and we put its address (not its value) into the pseudo-frame.

(define-instruction (CREATE-PSEUDO-ENV) 252
(create-pseudo-environment (stack-pop) *val* *env*)

(define-class pseudo-activation-frame environment
( sr (* address) ) )

(define (create-pseudo-environment n* env sr)
(unless (reified-environment? env)

(signal-exception If (list "not an environment" env»
(let* «len (length n*»

(frame (allocate-pseudo-activation-frame len»
(let setup «n* n*)(i 0»

(when (pair? n*)
(set-pseudo-activation-frame-address!
frame i (compute-kind (reified-environment-r env) (car n*» )

(setup (cdr n*) (+ i 1» ) )
(set-pseudo-activation-frame-sr! frame (reified-environment-sr env»
(set-pseudo-activation-frame-next! frame sr)
(set! *env* frame) ) )

The body of the special form import has to be specially compiled with respect
to floating variables. Those variables are scattered through the compilation envi-
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Figure 8.5 Environments in import

ronment r by the special extension function, shadow-extend*. As the old saying
goes, there's no computing problem that a well placed indirection can't solve: the
address of the floating variables will be found by means of one indirection. We
have to search for the value of a floating variable, we will find its address in the
pseudo-activation record, and we'll use that address to extract the value from the
environment provided explicitly for that. You can see those ideas in Figure 8.5 for
the following program:

(let «x 11»
(let «z 22)

(env (let «z 33» (export»)
(import (x y) env

(list (set! x y) z) ) ) )

Floating variables will be compiled in a special way, so they are specially marked
by shadow-extend* in the compilation environment.

(define (shadow-extend* r n*)
(let enum «n* n*)(j 0»

(if (pair? n*)
(cons (list (car n*) '(shadowable 0 . ,j»

(enum (cdr n*) (+ j 1» )
(bury-r r 1) ) ) )
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We'll modify meaning-reference as well as meaning-assignment to accept
these new types of variables, and we'll invent two new instructions, SHADOW-REF
and SHADOW-SET! , to manage access to them.

(define (meaning-reference n r tail?)
(let «kind (compute-kind r n»)

(if kind
(case (car kind)

«checked-local)
(let «i (cadr kind»

(j (cddr kind» )
(CHECKED-DEEP-REF i j) ) )

«local)
(let «i (cadr kind»

(j (cddr kind»
(if (= i 0)

(SHALLOW-ARGUMENT-REF j)
(DEEP-ARGUMENT-REF i j) ) ) )

«shadowable)
(let «i (cadr kind»

(j (cddr kind» )
(SHADOWABLE-REF i j) ) )

«global)
(let «i (cdr kind»)

(CHECKED-GLOBAL-REF i) ) )
«predefined)
(let «i (cdr kind»)

(PREDEFINED i) ) ) )
(static-wrong "No such variable" n) ) ) )

(define-instruction (SHADOW-REF i j) 231
(shadowable-fetch *env* i j) )

(define (shadowable-fetch sr i j)
(if (= i 0)

(let «kind (pseudo-activation-frame-address sr j»
(sr (pseudo-activation-frame-sr sr» )

(variable-value-lookup kind sr) )
(shadowable-fetch (environment-next sr) (- i 1) j) ) )

(define (variable-value-lookup kind sr)
(if (pair? kind)

(case (car kind)
«checked-local)
(let «i (cadr kind»

(j (cddr kind» )
(set! *val* (deep-fetch sr i j»
(when (eq? *val* undefined-value)

(signal-exception
#t (list "Uninitialized local variable") ) ) ) )

«local)
(let «i (cadr kind»

(j (cddr kind»
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(set! *val* (if (= i 0)
(activation-frame-argument sr j)
(deep-fetch sr i j) » ) )

«shadowable)
(let «i (cadr kind»

(j (cddr kind» )
(shadowable-fetch sr i j) ) )

«global)
(let «i (cdr kind»)

(set! *val* (global-fetch i»
(when (eq? *val* undefined-value)

(signal-exception #t
(list "Uninitialized global variable") ) ) ) )

«predefined)
(let «i (cdr kind»)

(set! *val* (predefined-fetch i» ) ) )
(signal-exception #f (list "No such variable"» ) )

The function shadowable-fetch will use a statically known address to search
for a dynamic address indicating where the variable is actually located. For that
reason, we have to be able to decode all types of addresses, namely, local and
checked-local, global and predefined, and even shadowable, as it can occur
also. The function variable-value-lookup does that decoding. In a way, the
form import corresponds to a kind of syntax transforming references to floating
variables into calls to eval/b. Let's look again at our earlier example: the form ll

(import (x y) env (list (set! x y) z» is none other than this:

(list «eval/b '(lambda (v) (set! x v» env)
(eval/b 'y env) )

z )

Let's summarize all the types of bindings we've seen.
Lexical binding-the type implemented by lambda-allocates boxes to put val

ues into them. The bound names make it possible to retrieve these boxes. Their
extent is indefinite; that is, they go away only when they are no longer needed.
The scope of these bindings is restricted to the body of the lambda form.

Dynamic binding-the type implemented by dynamic-let-associates a name
with a value12 throughout the duration of a given computation. The scope is
unlimited during that computation. The association disappears afterward.

Quasi-static binding puts names on bindings that already exist. Moreover,
since these are names of bindings that must be used again, introducing this kind of
binding upsets a-conversion. Why? Because even in the absence of procedure-en
vironment, reifying13 an environment captures the names of bindings and prohibits
us from knowing all the places where they might be used.

11. To avoid generating a program that includes a quotation that might not be legal, here we've
generated a closure taking the value to assign.
12. As we implemented it, dynamic-let won't let you modify this association; there is no
dynamic-set!. It's easy to get around this limitation by binding mutable data to this name.
13. We could improve reflective-lambda as explained earlier so that in addition it specified the
kind of operations allowed on exported bindings by limiting them, for example, to read-only. Like
[LF93], we could also allow free variables to be renamed for exportation.



8.7. REIFYING ENVIRONMENTS

8.7.6 Simplified Access to Environments
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The preceding sections have shown that most ways of evaluation can be pro
grammed explicitly except those that involve access to the global environment.
The preceding digressions have given us an appreciation for first class environ
ments and also lead us to generalize the functions global-value and set-glo
bal-value! into their counterparts variable-value, set-variable-value!, and
variable-defined?

The function variable-value takes a first class environment and looks for the
value of a variable; set-variable-value! modifies it; variable-defined? tests
whether it is present. They use the same functions to decode an address as the
function shadowable-fetch: all take care not to use compute-kind directly as
it "accepts" variables passed to it and creates them on the fly. We've left out
set-variable-value! , but you can guess its definition easily enough.

(definitial variable-value
(let* «arity 2)

(arity+1 (+ arity 1» )
(make-primitive

(lambda ()
(if (= (activation-frame-argument-length *val*) arity+1)

(let «name (activation-frame-argument *val* 0»
(env (activation-frame-argument *val* 1» )

(if (reified-environment? env)
(if (symbol? name)

(let* «r (reified-environment-r env»
(sr (reified-environment-sr env»
(kind
(or (let «var (assq name r»)

(~d (pair? var) (cadr var» )
(global-variable? g.current name)
(global-variable? g.init name) ) )

(variable-value-lookup kind sr)
(set! *pc* (stack-pop» )

(signal-exception
#f (list "Not a variable name" name) ) )

(signal-exception
#t (list "Not an environment" env) ) ) )

(signal-exception #t (list "Incorrect arity"
'variable-value » ) ) ) ) )

(definitial variable-defined?
(let* «arity 2)

(arity+1 (+ arity 1»
(make-primitive
(lambda ()

(if (= (activation-frame-argument-length *val*) arity+1)
(let «name (activation-frame-argument *val* 0»

(env (activation-frame-argument *val* 1» )
(if (reified-environment? env)

(if (symbol? name)
(let* «r (reified-environment-r env»
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(sr (reified-environment-sr env)) )
(set! *val*

(if (or (let «var (assq name r)))
(and (pair? var) (cadr var)) )

(global-variable? g.current name)
(global-variable? g.init name) )

#t #f ) )
(set! *pc* (stack-pop» )

(signal-exception
#f (list "Not a variable name" name) ) )

(signal-exception
#t (list "Not an environment" env) ) ) )

(signal-exception #t (list "Incorrect arity"
'variable-defined? )) ) ) ) ) )

The function variable-def ined? is a function for inspecting first class environ
ments. It determines whether or not a given variable occurs in a given environment.
That question interests us since we can enrich such environments, but the question
itself depends on the nature of the global environment: is it mutable or not? If
the global environment is immutable, then variable-defined? is a function with
a constant response: if a variable does not appear now in an immutable global
environment, then it will never occur there. However, if the global environment
can change, then it can be extended even while remaining equal to itself (as if we
had an enrich! function) and thus variable-defined? might respond True at
some point even after having responded False.

8.8 Reflective Interpreter

In the mid-eighties, there was a fashion for reflective interpreters, a fad that gave
rise to a remarkable term: "reflective towers." Just imagine a marsh shrouded
in mist and a rising tower with its summit lost in gray and cloudy skies-pure
Rackham! In fact, the foundations of this mystical image are anchored in the
experiments carried on around continuations, first class environments, and FEXPR
of InterLisp (put to death by Kent Pitman in [Pit80]).

Well, who hasn't dreamed about inventing (or at least having available) a lan
guage where anything could be redefined, where our imagination could gallop un
bridled, where we could play around in complete programming liberty without
trammel nor hindrance? However, we pay for this dream with exasperatingly slow
systems that are almost incompilable and plunge us into a world with few laws,
hardly even any gravity.

At any rate, this section presents a small reflective interpreter in which few as
pects are hidden or intangible. Many proposals for such an interpreter exist already,
for example in [dRS84], [FW84], [Wan86], [DM88], [Baw88], [Que89], [IMY92],
[JF92], and others. They are distinguished from each other by their particular
aspects of reflection and by their implementations.

Reflective interpreters should support introspection, so they must offer the pro
grammer a means of grabbing the computational context at any time. By "compu
tational context," we mean the lexical environment and the continuation. To get
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the right continuation, we already have callicc. To get the right lexical environ
ment, we'll take the form (export), also known as (the-environment), to reify
the current lexical environment. Reification is one of the imperatives of reflection,
but there are many ways of reifying, and how we choose to do it will affect the
operations that we can carry out later.

As [Chr95] once said, "Puisqu'une fois la borne franchie, il n'est plus de limite."
That is, once we've crossed the boundary, there are no more limits, so we must
also authorize programs to define new special forms. InterLisp experimented with
a mechanism already present in Lisp 1.5 under the name FEXPR. When such an
object is invoked, instead of passing arguments to it, we give it the text of its
parameters as well as the current lexical environment. Then it can evaluate them
whatever way it wants to, or even more generally, it can manipulate them at will.
For that purpose, we'll introduce the new special form flambda with the following
syntax:

(flambda (variables... ) forms ... )

The first variable receives the lexical environment at invocation, while the fol
lowing variables receive the text of the call parameters. With such a mechanism,
we can trivially write quotation like this:

(set! quote (flambda (r quotation) quotation»

A reflective interpreter must also provide means to modify itself (a real thrill,
no doubt), so we'll make sure that functions implementing the interpreter are
accessible to interpreted programs. The form (the-environment) insures this
effect since it gives us access to the variables of the implementation as if they
belonged to interpreted programs.

So here's a reflective interpreter, one weighing in at only14 1362 bytes. Thus
you can see that it is not costly in terms of memory to get such an interpreter for
ourselves in a library. It is written in the language that the byte-code compiler
compiles.

(apply
(lambda (make-toplevel make-flambda flambda? flambda-apply)

(set! make-toplevel
(lambda (prompt-in prompt-out)

(call/cc
(lambda (exit)

(monitor (lambda (c b) (exit b»
«lambda (it extend error global-env

toplevel eval evlis eprogn reference
(set! extend

(lambda (env names values)
(if (pair? names)

(if (pair? values)
«lambda (newenv)

(begin
(set-variable-value!
(car names) newenv (car values)

14. Once it's compiled, that is, because its text is only about 120 lines, 6000 characters, and 583
pairs.
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(extend newenv (cdr names)
(cdr values) ) ) )

(enrich env (car names)) )
(error "Too few arguments" names)

(if (symbol? names)
«lambda (newenv)

(begin
(set-variable-value!
names newenv values

newenv ) )
(enrich env names) )

(if (null? names)
(if (null? values)

env
(error "Too much arguments"

values ) )
env ) ) ) ) )

(set! error (lambda (msg hint)
(exit (list msg hint)) ))

(set! toplevel
(lambda (genv)

(set! global-env genv)
(display prompt-in)
«lambda (result)

(set! it result)
(display prompt-out)
(display result)
(newline) )

«lambda (e)
(if (eof-object? e)

(exit e)
(eval e global-env) ) )

(read) ) )
(toplevel global-env) ) )

(set! eval
(lambda (e r)

(if (pair? e)
«lambda (f)

(if (flambda? f)
(flambda-apply f r (cdr e))
(apply f (evlis (cdr e) r))

(eval (car e) r) )
(if (symbol? e) (reference e r) e)

(set! evlis
(lambda (e* r)

(if (pair? e*)
( (lambda (v)

(cons v (evlis (cdr e*) r)) )
(eval (car e*) r) )

'() ) ) )
(set! eprogn
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(lambda (e+ r)
(if (pair? (cdr e+))

(begin (eval (car e+) r)
(eprogn (cdr e+) r)

(eval (car e+) r) ) ) )
(set! reference

(lambda (name r)
(if (variable-defined? name r)

(variable-value name r)
(if (variable-defined? name global-env)

(variable-value name global-env)
(error "No such variable" name) ) ) )

«lambda (quote if set! lambda flambda monitor)
(toplevel (the-environment)) )

(make-flambda
(lambda (r quotation) quotation)

(make-flambda
(lambda (r condition then else)

(eval (if (eval condition r) then else) r) ) )
(make-flambda

(lambda (r name form)
«lambda (v)

(if (variable-defined? name r)
(set-variable-value! name r v)
(if (variable-defined? name global-env)

(set-variable-value! name global-env v)
(error "No such variable" name) ) ))

(eval form r) ) ) )
(make-flambda

(lambda (r variables . body)
(lambda values

(eprogn body (extend r variables values)) ) ) )
(make-flambda

(lambda (r variables . body)
(make-flambda

(lambda (rr . parameters)
(eprogn body

(extend r variables
(cons rr parameters) ) ) ) ) ) )

(make-flambda
(lambda (r handler . body)

(monitor (eval handler r)
(eprogn body r) ) ) ) ) )

'it 'extend 'error 'global-env
'toplevel 'eval 'evlis 'eprogn 'reference) ) ) ) ) )

(make-toplevel "?? " "== ") )

'make-toplevel
«lambda (flambda-tag)

(list (lambda (behavior) (cons flambda-tag behavior))
(lambda (0) (if (pair? 0) (= (car 0) flambda-tag) If))
(lambda (f r parms) (apply (cdr f) r parms)) ) )
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98127634 ) )

As Julia Kristeva would say, 15 that definition is saturated with subtlety at least
with respect to signs. You'll probably have to use this interpreter before you'll be
able to believe in it.

The initial form (apply ... ) creates four local variables. The last three all
work on reflective abstractions or flambda forms; specifically, make-flambda en
codes them; flambda? recognizes them; flambda-apply applies them. These
objects have a very special call protocol, and for that reason, we must get ac
quainted with them. The first variable of the four, make-toplevel is initialized
in the body so that it can make these four variables available to programmers.
It starts an interaction loop with customizable prompts. In the beginning, these
prompts are ?? and ==.

This interaction loop captures its call continuation-the one where it will return
in case· of error or in case of a call to the function exit .16 That continuation will
also be accessible from programs. The interaction loop itself is protected by a form,
monitor. [see p. 256] The loop then introduces and initializes an entire group of
variables that will also be available for interpreted programs to share. The variable
it is bound to the last value computed by the interaction loop. The function
extend, of course, extends an environment with a list of variables and values; it
also checks arity. The function error prints an error message and then terminates
with a call to exit.

The function toplevel implements interaction in the usual way. The functions
that accompany eval (namely, evlis, eprogn, and reference) are standard, too,
except for the fact that they are accessible to programs. The function eval is
simplicity itself. Either the expression to compute is a variable or an implicit
quotation, or it's a form, in which case we evaluate the term in the function position.
If that term is a reflective function, then we invoke it by passing it the current
environment and the call parameters; if it's a normal function, we simply invoke it
normally.

This flexibility is the characteristic that makes the language defined by this
interpreter non-compilable. Let's assume that we've defined the following normal
function:

(set! stammer (lambda (f x) (f f x»)

Now we can write two programs:

(stammer (lambda (ff yy) yy) 33) ~ 33
(stammer (flambda (ff yy) yy) 33) ~ x

According to their definitions, one executes its body; the other reifies one part
of its body to provide that to its argument f. Consequently, we must compile every
functional application twice to satisfy normal and reflective abstractions. However,
since every program represented by a list is also possibly a functional application,
we must also doubly compile forms beginning with the usual special forms, like
quote, if, and others because they, too, could be redefined to do something else.

15. Well, she said something like that one Sunday morning on radio France Musique, 19 September
1993, while I was writing this.
16. Finally we have a Lisp from which we can exit! You can check for yourself that there is no
such convenience in the definitions of COMMON LISP, Scheme, or even Dylan.
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In short, there are practically no more invariants for the compiler to exploit to
produce efficient code-thus leaving an open field for the joys of interpretation.

We define a few reflective functions just before starting the interaction loop
because it is simpler to do so there than to program them. In that way, we define
quote, if, set!, lambda, flambda, and monitor. Any others that are missing can
be added explicitly, like this:

(set! global-env
(enrich global-env 'begin 'the-environment) )

(set! the-environment
(flambda (r) r) )

(set! begin
(flambda (r . forms)

(eprogn forms r) )

The variable global-env is bound to the reified environment containing all
preceding functions and variables, including itself, and that's the strength of this
procedure. Not only is the global environment provided to programers. but also
they can modify it retroactively through the interpreter. The interpreter and the
program share the same global-env. Assignment by either means leads to the
same effect, to the same thrills and dangers. Because of this two-way binding, we
can better express the earlier example, or even the following one, where we define
a new special form: when.

(set! global-env (enrich global-env 'when»

(set! when
(flambda (r condition . body)

(if (eval condition r) (eprogn body r) If) ) )

First of all, we extend the global environment with a new global variable, one
that has not yet been initialized, of course. Immediately afterwards, we initialize it
with an appropriate reflective function. Interestingly enough, this extension of the
global environment is visible to the interpreter: assigning when with a reflective
abstraction actually adds a new special form to the interpreter.

At this point, you're probably asking, "Just where is that mystical tower poking
through the fog that was alluded to some time ago?" Programs can create new
levels of interpretation with the function make-toplevel. They can also evaluate
their own definition and thus achieve a truly astounding slowdown that way, speed
that makes this possibility purely theoretical in fact. Auto-interpretation is a little
different from reflection. We need to follow two hard rules to make this interpreter
auto-interpretive. First, we must avoid using special forms when they have been
redefined in order to avoid instability. That's why the body of the abstraction
which binds set! and the others is reduced to (toplevel (the-environment)).
Second, instances of flambda must be recognized by the two levels of interpretation.
That's why we have used the label flambda-tag: it's unique, though it might be
falsified.

A final possibility is that we can reify whatever we have just been doing (in
cluding the continuation and the environment), think about whatever we have just
been doing, imagine what we should have done instead, and do it. According to
the way of programming that we've adopted for reification, there may be new and
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exciting possibilities for introspection, like scutinizing the environment or control
blocks in the continuation, as in (Que93a]. In fact, these kinds of introspection are
the reason this type of interpreter is known as "reflective."

The Form def ine

Interestingly enough, the preceding reflective interpreter supports an operational
definition of a highly complex form, define in Scheme. As we've already explained,
define is a special, special form: it behaves like a declaration doubled by an
assignment. It's like assignment because after execution, the variable will have a
well defined value. It's like a declaration because it introduces a new variable as
soon as the text mentioning define is prepared for execution. This declaration
changes the global environment. All these aspects are highlighted in the following
definition of the special form, define, but we've excluded syntactic aspects that
def ine also has; those syntactic aspects let def ine accept variations like (def ine
(foo x) (define (bar) ... ) ... ) and participate in various situations known
as internal defines. (You can measure how complex a special form define is.)

(set! global-env (enrich global-env 'define»
(set! define (flambda (r name form)

(if (variable-defined? name r)
(set-variable-value! name r (eval form r»
«lambda (rr)

(set! global-env rr)
(set-variable-value! name rr (eval form rr» )

(enrich r name) ) ) ))

First of all, define tests whether the variable to define already belongs to the
global environment. In that case, the definition is merely an assignment, according
to R4RS §5.2.1. In the opposite case, a new binding is created inside the global
environment, the global environment is updated to include this new binding, and
the value to assign is computed in this new environment, in order to support
recurSIons.

8.9 Conclusions

This chapter presented various aspects of explicit evaluation, aspects that appear
as special forms or as functions. According to the qualities that we want to keep in
a language, we might prefer forms stripped of all the "fat" of evaluation like first
class environments or like quasi-static scope. You can clearly see here that the art
of designing languages is quite subtle and offers an immense range of solutions.

This chapter also clearly shows how fortunate a choice Lisp made (or, more
precisely, the choice its inspired designer, John McCarthy, made) by reducing how
much coding and decoding would be needed and by mixing the usual levels of
language and metalanguage to increase the field for experiment so greatly.
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8.10 Exercises

Exercise 8.1 : Why doesn't the function variables-list? test whether the list
of variables is non-cyclic?

Exercise 8.2 : The special form evallce compiles on the fly the expression given
to it. That's too bad if you want to evaluate the same expression several times in
succession. Think up a way to correct this problem.

Exercise 8.3 : Improve the definition of evallat in terms of evallce in order to
get rid of the inadvertantly captured variable. Hint: use gensym if you want.

Exercise 8.4 : Can a user define variable-defined? him- or herself? Why or
why not?

Exercise 8.5 : Make the reflective interpreter run in pure Scheme.

Recommended Reading

The article [dR87] remarkably reveals just how reflective Lisp is. [MuI92] offers
algebraic semantics for the reflective aspects of Lisp. For reflection in general, you
should look at recent work by [JF92] and [IMY92].
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9
Macros: Their Use & Abuse

NORED, abused, unjustly criticized, insufficiently justified (theoretically),
macros are no less than one of the fundamental bases of Lisp and have
contributed significantly to the longevity of the language itself. While
functions abstract computations and objects abstract data, macros ab

stract the structure of programs. This chapter presents macros and explores the
problems they pose. By far one of the least studied topics in Lisp, there is enor
mous variation in macros in the implementation of Lisp or Scheme. Though this
chapter contains few programs, it tries to sweep through the domain where these
little known beings-macros-have evolved.

Invented by Timothy P. Hart [SG93] in 1963 shortly after the publication of the
Lisp 1.5 reference manual, macros turned out to be one of the essential ingredients
of Lisp. Macros authorize programmers to imagine and implement the language
appropriate to their own problem. Like mathematics, where we continually invent
new abbreviations appropriate for expressing new concepts, dialects of Lisp extend
the language by means of new syntactic constructions. Don't get me wrong: I'm not
talking about augmenting the language by means of a library of functions covering
a particular domain. A Lisp with a library of graphic functions for drawing is still
Lisp and no more than Lisp. The kind of extensions I'm talking about introduce
new syntactic forms that actually increase the programmer's power.

Extending a language means introducing new notation that announces that we
can write X when we want to signify Y. Then every time programmers write
X, they could have written Y directly, if they were less lazy. However, they are
intelligently lazy and thus use a simple form to eliminate senseless details so that
those details no longer encumber their thoughts. Many mathematical concepts
become usable only after someone invents a suitable notation to express them. To
insure greater flexibility, the rule about abbreviations usually exploits parameters.
In fact, when we write X(t 1 , . .. ,tn ), we intend Y(tl,'.' ,tn ). Macros are not just
a hack, but a highly useful abstraction technique, working on programs by means
of their representation.

Most imperative languages have only a fixed number of special forms. You can
usually find a while loop in one, and perhaps an until loop, but if you need a new
kind of loop, for example, it's generally not possible to add one. In Lisp, in contrast,
all you have to do is introduce the new notation. Here's an example of what we
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mean: every time we write (repeat : while p :unless q : do body ... ), in fact
we mean this:

(let loop ()
(if p (begin (if (not q) (begin body . .. ))

(loop) )) )

This example is deliberately extravagant: it takes extra keywords (recognizable
by the colon prefixing each one) although customary use in Scheme is rather to
suppress such syntactic noise. [see Ex. 9.1] Also, the example introduces a local
variable, loop, that might hide a variable of the same name that p or q or body
might want to refer to. Real loop-lovers should also look at the Mount Everest of
loops (the macro loop for which the popular implementation takes tens of pages)
defined in [Ste90, Chapter 26].

Unfortunately, like many other concepts, especially the most advanced or the
most subtle, macros can run amuck. The goal of this chapter is to unravel their
problems and show off their beauties. To do so, we'll logically reconstruct macros
so that we can survey their problems and the roots of their variations.

9.1 Preparation for Macros

The evaluators that evolved in the immediately preceding chapters distinguish two
phases as they handle programs: preparation (the term used in IS-Lisp) followed by
execution. Evaluation, as in fast interpretation, [see p. 183], can thus be seen as
(run (prepare expression)). That way of looking at things was quite apparent
not only in the fast interpreter but also in the byte-code compiler where prepared
expressions were successively a tree of thunks [see p. 223] or a byte vector. At
worst, in all the early interpreters we developed, we could assimilate preparation
with the identity.

Preparation itself can be divided into many phases. For example, realizing that
the expressions to evaluate are initially character strings, many Lisps offer the idea
of macro-characters that influence the syntactic analysis of a string during its trans
formation into an S-expression. The outstanding example of a macro-character is
the quote: when it is read, it reads the expression that follows and inserts that
expression into a form prefixed by the symbol quote. We could reproduce that
process as (list (quote quote) (read)).

So that the Lisp reader can be influenced, the read function to a certain degree
makes it possible to adapt the language to special needs. That's the case for
Bigloo [SW94]. When it compiles a program written in Caml Light, it chooses the
appropriate read function; the only constraint is that a compilable S-expression
will be returned. In fact, this read function is the front-end of the Caml Light
compiler [LW93].

We won't dwell any longer, though, on the subject of macro-characters as they
are highly dependent on the algorithm for reading S-expressions.

The preparation phase is often assimilated to a compilation phase of varying
complexity. The important point is to maintain a strict separation between this
phase and the following one (that is, execution) to clarify their relation, to minimize
their common interface, and above all to insure that experiments can be repeated.
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This imperative gives rise to two different ways of thinking about preparation: In
terms of multiple worlds or in terms of a unique world.

9.1.1 Multiple Worlds

run

prepared-expressiono

prepared- expressi 0 n1
prepare

prepare

expresszono

expresszonl

With multiple worlds, an expression is prepared by producing a result often stored
in a file (conventionally, a .0 or . fasl file). Such a file is executed by a distinct
process which sometimes has a facility for gathering expressions prepared separately
(that is, linking). Most conventional languages work in this mode, based on the
idea of independent or separate compilation. In this way, it's possible to factor
preparation and to manage name spaces better by means of import and export
directives. We speak of this way of doing things as "multiple worlds" because the
expression that is being prepared is the only means of communication between
the expression-preparer and the ultimate evaluator. Those two processes live in
distinct worlds. No effects in the first world is perceptible in the second.

prepare

prepare
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9.1.2 Unique World

In contrast to multiple worlds, the hypothesis of a unique world stipulates that the
center of the universe is the toplevel loop and that thus all computations started
from there cohabit in the same memory where we can neither limit nor control com
munication by altering globally visible resources (such as global variables, property
lists, etc.). In the unique world, the interaction loop ties together the reading
of an expression, its preparation, and then its evaluation. This interaction loop
plays the role of a command interpreter (a veritable shell) but nevertheless makes
it possible to prepare expressions without evaluating them immediately after. In
many systems, that's exactly what the function compile-file does: it takes the
name of a file containing a sequence of expressions, prepares them, and produces a
file of prepared expressions. The evaluation of a prepared file can also occur from
the interaction loop by means of the function load or one of its derivatives. You
see then that you could factor the preparation of an expression and thus interlace
preparation and evaluation.

The idea of a unique world is not so bad. In fact, it's only a reflection of the
one-world mentality of an operating system like UN*X, where the user counts on a
certain internal state depending simultaneously on the file system, local variables,
global variables, aliases, and so forth that his or her favorite command interpreter
(sh, tcsh, etc.) provides. But again, the point is to insure, as simply as possible,
that experiments can be repeated.

When we build software, it's a good idea to have a reliable method for getting an
executable from it. We want any two reconstructions starting from the same source
to end up in the same result. That's just a basic intellectual premise. Without too
much difficulty, it is insured by the idea of multiple worlds because there we can



314 CHAPTER 9. MACROS: THEIR USE & ABUSE

easily control the information submitted as input. It's a bit harder with the unique
world hypothesis because we have difficulty mastering its internal state l and its
hidden communications. Instead of being re-initialized for every preparation, the
preparer (that is, the compiler) stays the same and is modified little by little since
it works in a memory image that is constantly being enriched and always less under
our control.

In short, the preparation of a program has to be a process that we control
completely.

9.2 Macro Expansion

We need a way of abbreviating, but one that belongs strictly to preparation. For
that reason, we might split preparation into two parts: first, macro expansion,
followed by preparation itself. On this new ground, there are two warring factions:
exogenous macro expansion and endogenous macro expansion. We can prepare
an expression by this succession: (really-prepare (macroexpand expression)).
We're interested only in the macro expander, that is, the function that implements
the process of macro expansion: macroexpand. Where does it come from?

9.2.1 Exogenous Mode

The exogenous school of macro expansion, as defined in [QP91b, DPS94bJ, stipu
lates that the function macroexpand is provided independently of the expression to
prepare, for example, by preparation directives. 2 Thus the function prepare looks
something like this:

(define (prepare expression directives)
(let «macroexpand (generate-macroexpand directives»)

(really-prepare (macroexpand expression» ) )

Several implementations exist. We'll illustrate them with the byte-code com
piler we presented earlier, [see p. 262]. We'll assume that the main functionalities
of this compilation chain are: run to run an application and build-application
to construct an application. We'll also assume that compile. so is the executable
corresponding to the entire compiler. In the examples that follow, the macro ex
pansion directive simply mentions the name of the executable in charge of the
macro expanSIon.

A macro expansion might occur as a cascade, like the top of Figure 9.1. In that
case, a command like "compile file. scm expand. so" (where the file to compile
is specified in the first position and the macro expander in the second position)
corresponds in pseudo- UN*X to this:

run expand.so < file.scm I run compile.so > file.so

A macro expansion might also occur through the synthesis of a new compiler
(here, tmp.so), like the bottom of Figure 9.1. Then the command "compile
file. scm expand. so" is analogous to this:

1. Who knows, for example, all the environment variables that printenv reveals or all the. *rc
files on which our comfort depends?
2. These directives may, for instance, be found in the first S-expression of a file.
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build-application compile.so expand.so -0 tmp.so
run tmp.so ) < file.scm > file.so
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Sexpl

file. scm

in:
Sexp2

Sexpl

file.scm

Figure 9".1 Two examples of exogenous mode (with the byte-code compiler); pen
tagons represent compiled modules.

Among the hidden problems, we still have to define a protocol for exchanging
information between the preparer and the macro expander. The macro expander
must receive the expression to expand; it might receive the expression as a value
or as the name of a file to read; it must then return the result to its caller; at that
point, it might return an S-expression or the name of a file in which the result has
been written. Passing information by files is not absurd. In fact, it's the technique
used by the C compiler (cc and cpp). As a technique, it prevents hidden commu
nication; that is, every communication is evident. In contrast, passing information
by S-expressions means that the preparer must know how to call the macro ex
pander dynamically, either to evaluate or to load, by load, since they are both in
the same memory space.

Rather than impose a monolithic macro expander, we might build it from
smaller elements. We might thus want to compose it of various abbreviations.
That comes down to extending the directive language so that we can specify all the
abbreviations. Of course, doing that means that the macros must be composable,
and that point in turn implies that we must define protocols to insure such things
as the associativity and commutativity of macro definitions.

In consequence, the idea of exogeny associates an independently built macro
expander with a program. If we organize things in this way, we can be sure that
experiments can be repeated; we can also be sure that remains from macro expan
sions do not stay around in the prepared programs. Besides achieving the perfect
separation we wanted between macro expansion and evaluation, this solution puts
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no limits on our imagination since any macro expander is legal as long as it leads
to an S-expression. We can even use cpp, m4, or perl for the job! However, we're
sure that to specify an algorithm for transforming S-expressions, Lisp is the most
adequate choice. You see from these observations that inside the exogenous vision,
there is no connection between the language of the macro expander and the lan
guage that is being prepared. The macro expander only has to search for the sites
to expand since the definitions of macros are not in the text to prepare.

9.2.2 Endogenous Mode

The endogenous mode depends on directives. It insists that all information neces
sary for the expansion must be found in the expression to prepare. In other words,
the preparation function is defined like this:

(define (prepare expression)
(really-prepare (macroexpand expression))

The fundamental difference between exogeny and endogeny is that with en
dogeny, the algorithm for macro expansion pre-exists, so we can only parameterize
it and that only within limits. The predefined macro expansion algorithm thus
now has the double duty of finding the definitions of macros as well as the sites
where they are used-not so simple as before. The definitions of abbreviations are
thus passed as S-expressions that often begin with a keyword like define-macro or
define-syntax. That has to be converted into an expander, that is, a function
whose role is to transform an abbreviation into the text that it represents. Thus
the macro expander contains the equivalent of a function for converting a text into
a program! There's the stroke of genius: rather than invent a special language for
macros, we simply use the function eval. In other words, the definition language
for macros is Lisp!

Of course, that stroke of genius is also the source of problems. Macros bring up
again an old and subtle technique that was long ago assimilated as part of black
magic: macrology. In fact, it's precisely this identification between the languages
that fogs up our perception of what macros really are. For a long time, they were
seen as real functions except that their calling protocol was a little strange because
their arguments were not evaluated but their results were. That model, while it
was convenient in an interpreted unique world, has been abandoned since we've
made such progress in compiler design and for reasons cited in the article by Kent
Pitman [Pit80]. Now we think of a macro as a process whose social role is to
convert texts filled with abbreviations into new texts stripped of abbreviations.

Our choice of Lisp as the language for defining macros is resisted by those who
restrict this language to filtering. Such are the macros proposed in the appendix
of R4 RS. By doing that, they lose expressiveness since certain transformations
can no longer be expressed, but they gain clarity in the simpler macros that are
nevertheless the most common ones that we write. As an example, programs
associated with this book at the time of publication contain 63 macro definitions
using define-syntax as opposed to only 5 using the more liberal define-ab
breviation.3 The last three of those five uses define fundamental macros of ME-

3. We chose this exotic name to avoid conflict with various semantics conferred on define-macro
by the different Lisp and Scheme evaluators.
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ROONET (define-class, define-generic, and define-method); they couldn't be
programmed with define-syntax.

In short, whether we impose a procedure for macro expansion or whether we
decide to exploit parameters for an existing mechanism (at the price of incorporat
ing a local evaluator for macro expansion), both models favor Lisp as the definition
language for macros. In contrast to the exogenous mode, the endogenous mode
requires an evaluator inside the macro expander; that's its characteristic trait.
However, you must not confuse the language for writing macros with the language
that is being prepared: they are related but not the same. When old fashioned
manuals describe macros as things that work by double evaluation, they sin by
omission since they don't mention that the two evaluations involve two different
evaluators.

directives •___.. racroexpandel_
expression - --

r~
expression vi EXPAND 1-

Figure 9.2 Exogenous (left) and endogenous (right) macroexpansions

9.3 Calling Macros

The macro expander has to find the places where the abbreviations to replace are
located. Some languages, for example [Car93], already have elaborate syntactic
analyzers that we can extend with new grammar productions for the syntactic
extensions we want. That can be as simple as syntactic declarations indicating
whether an operator is unary or binary, or prefix, postfix, infix. Sometimes we can
also add an indication of precedence.

In Lisp, the representation of S-expressions favors the extraction of car from
forms, so the following scheme is widely distributed: a list where the car is a
keyword is a call to the macro of the same name. This scheme has many virtues: it
is extendable, simple, and uniform. An abbreviation (that is, a macro) has a name
associated with a function (an expander). The algorithm for macro expansion is
thus quite simple: it runs recursively through the expression to handle, and when
it identifies a call to a macro, it invokes the associated expander, providing the
expander the S-expression that set things off. In the cdr of the S-expression, the
expander can find whatever parameters for the expansion have been delivered to
it.

The idea of a macro symbol comes in here, too, as in COMMON LISP, where
we can connect the activation of an abbreviation with the ocurrence of a symbol.
This offers us a lighter form, stripped of superfluous parentheses, when we want to
associate some treatment with something that superficially resembles a variable.

A macro in that sense is thus just an association between an expansion function
and a name matching a condition of activation. It's a kind of binding in what looks
like a new name space reserved for macros. The macro is not exactly a binding, nor
the expander, nor the activation condition, but everything all three imply inside
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the macro expander. As we do in any conveniently managed name space, we want
to be able to define both global and local macros there: define-abbreviation
and let-abbreviation introduce such macros.

The purpose of the function for macro expansion is to convert an S-expression
into a program that can be assimilated. The consequence is that the search for sites
where macros are called occurs in an S-expression, not in a program. Of course,
this S-expression has some parts that are already programs. Equally certain, too,
a site of a call resembles a functional application but basically this is only an S
expression, and nothing prevents a macro from showing bad taste. Accordingly,
the S-expression (foo. 5) could be defined in an ugly way as an abbreviation
for (vector-ref foo 5)!

The problem of the macro expander is thus to survey an S-expression, a gram
matically soft structure with respect to the grammar of programs. That poses
certain problems of precedence between macros and lexical behavior. So if bar
is a macro and lambda is not one, then is the expression (bar 34) appearing in
«lambda (bar) (bar 34» ... ) a site where the macro bar is being used? The
problem arises because of the presence of the local variable, also named bar. Is it
hiding the macro bar? R4 RS takes a position favoring the respect for lexicality.
The same confusion also exists for quotations. Does (quote (bar 34» contain a
site where the macro bar is being used?

It is unfortunately also necessary to look into the algorithm for expansion so
that we can see, when it scans an S-expression, how it finds the positions in which it
might find the sites where macros are called. For example, can we write (let (foo)
. .. ) in a context where (foo) is a macro call generating a set of bindings? A great
many other examples exist, like (cond (foo) ... ) or (case key (foo) ... ).
In Lisp, good taste demands that we respect as much as possible the grammar of
forms in a way that confuses the difference between functions and macros. Without
more information, (bar ... ) might be a call to the function bar or the site of a
call to the macro of the same name.

9.4 Expanders

What contract does an expander offer? At least two solutions co-exist.
In classic mode, the result delivered by the expander is considered as an S

expression which can yet again include abbreviations. For that reason, the result
is re-expanded until it no longer contains any abbreviations. If find-expander
is the function which associates an expander with the name of a macro, then the
expansion of a macro call such as (foo. expr) can be defined like this:

(macroexpand '(foo . expr» ~

(macroexpand «find-expander 'foo) '(foo . expr»)

Another, more complicated, mode also exists. It's known as Expansion Passing
Style or EPS in [DFH88]. There the contract is that the expander must return the
expression completely stripped of abbreviations. Thus there is no macroexpand
waiting on the return of the call to the expander. The difficulty is that the expander
must recursively expand the subterms making up the expression that it generates.
It can do that only if it, too, knows the way of invoking macro expansion. One
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solution is make sure that macro expanders have access to the global variable
macroexpand, whose value is the function for macro expansion. Another, more
clever solution, takes into account the need for local macros and modifies the calling
protocol for expanders so that they take as a second argument the current function
for macro expansion. In Lisp-like terms, we thus have this:

(macroexpand '(foo . expr» ~

«find-expander 'foo) '(foo . expr) macroexpand)

Those two systems-classic versus EPS-are not equivalent. Indeed, EPS is
clearly superior in that it can program the former. A major difference in their
behavior concerns the need for local macros. Let's assume that we want to in
troduce an abbreviation locally. In EPS, we can extend the function macroexpand
to handle this abbreviation locally on subterms. In classic mode, for example in
COMMON LISP, the same request is treated this way: a special macro macrolet
modifies the internal state of the macro expander to add local macros there; then
it expands its body; then it remodifies the internal state to remove those macros
that it previously introduced there. The macro macrolet is primitive in the sense
that we cannot create it if by chance we don't have it. Likewise, in classic mode, it
is not possible to de-activate a macro external to macrolet (it is necessarily visible
or shadowed by a local macro) although in EPS, we can locally introduce syntax
arbitrarily different locally from the surrounding syntax. All we have to do is recur
sively use another function on the subterms-a function other than macroexpand.
In [DFH88], there are many examples of tracing and currying in this way.

Most abbreviations have local effects, that is, they lead only to a substitu
tion of one particular text for another. It's important that EPS lets us access the
current expansion function as it does because then we can simply program more
complex transformations than those supported by the classic mode without having
to program a code walker. For example, think of the program transformation that
introduces boxes [see p. 114]. In EPS, it's possible to handle them by carrying out
a preliminary inspection of the expression to find local mutable variables and then
a second walk through to transform all the references to these variables, whether
read- or write-references.

However, EPS is not all powerful; there are transformations beyond its scope.
[see p. 141] Extracting quotations is not a local transformation beause, when
we encounter a quotation, extraction obliges us to transform the quotation into a
reference to a global variable. Up to that point, there's no problem, but we must
also create that global variable (we do by inserting a def ine form in the right
place) and that is hardly a local text effect! One solution would be to enclose the
entire program in a macro (let's say, with-quotations-extracted) which would
return a sequence of definitions of quotations followed by the transformed program.

Other macros might need to create global variables, too, like the macro define
class in MEROONET. Syntactically, it can appear inside a let form. Its contract
is to create a global variable containing the object representing the class. This
problem is not generally handled by macro systems, so it obliges define-class to
be a special form or a macro exploiting magic functions, that is, known only by
implementations.

Since EPS is so interesting, you might ask why it's not used more often. First,
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because of the complexity of the model, but the main reason (as we've already
mentioned) is that, on the whole, macros are simple so making them all-powerful
only slows down their expansion. In effect, one interesting property of the classic
mode is that we never get back to the previously expanded expressions: when the
macro being expanded does not begin by a macro keyword, then it's a functional
application which we'll never see again. Macro expansion occurs in one sole linear
pass, although the result of an expansion in EPS can always be taken up again by
an embedding expander, and thus it tends to cause superfluous re-expansions.

9.5 Acceptability of an Expanded Macro

By contract, the result of a macro expansion must be a program ready to be
prepared. It shouldn't contain any more abbreviations; that is, it should appear
exactly like it would have been written directly. There are a few pitfalls to avoid
in getting there. First, since the macro expansion is a computation, there is a
possibility that it might not terminate, and as a consequence, the preparation
phase would not terminate either. It doesn't happen often that a compiler loops,
but when it does, it's the price we pay to have a powerful macro system that does
not limit the kind of computations we can do with it.

An easy way to cause looping is to re-introduce the expression to the macro
expander in the expanded macro. That could easily happen if we defined the macro
while like this:

(define-abbreviation (while condition. body) LOOP
'(if ,condition (begin (begin. ,body) (while ,condition. ,body))) )

Re-introducing the same text that we are in the process of expanding and
putting it into the result of the macro expansion provokes an endless expansion in
every sense of the phrase, especially if we are in the classic mode of expansion.

The same error can occur in a way that is even more surreptitious in COMMON

LISP because of the keyword "whole. That keyword lets the macro recover the
whole calling form. In the following definition, the result of the macro expansion
contains the original expression.

(defmacro while (&whole call) COMMON LISP
(let «condition (cadr call))

(body (cddr call))

'(if ,condition (begin (begin. ,body) ,call)) ) )

Many interpreters macro-expand S-expressions on the fly as they are received.
To avoid expanding the same thing again and again, they could adopt a technique
of memo-izing or displacing macros. That strategy consists of physically replacing
the S-expression that set off the macro expansion-replacing it by the expansion
that yields the macro. In that case, the preceding while macro would have built a
cyclic structure, posing no problem for interpretation but making the compiler loop
because the compiler expects to handle only DAGs (directed acyclic graphs, that is
trees possibly with shared branches) [Que92a]. We can show you that variation by
rewriting the while macro like this:

(defmacro while (&whole call) COMMON LISP
(let «condition (cadr call))
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(body (cddr call»
(setf (car call) 'if)
(setf (cdr call) '(,condition (begin (begin. ,body) ,call»)
call ) )
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BAD TASTE

What we've just shown you about programs can also occur with quotations;
they, too, can be cyclic and thus make certain compilers loop. [see p. 140]

The second pitfall, even nastier than the first, is that the expanded macro can
contain values intruding from the macro expansion. The moral contract of the
programmer is that the result of the macro expansion should be a program that he
or she could have written directly. That implies that the program necessarily has
a writable form. Scheme thus insists that quotations must be formulated with an
external syntax in order to prevent the quotation of just any values.

Let's look at a particularly torturous example of a quotation with a non-writable
value. The following macro builds just that by inserting a continuation into the
quoted value, like this:

(define-abbreviation (incredible x)
(call/cc (lambda (k) '(quote (,k ,x»»

What meaning should we give that gibberish? Let's reconsider a few of the
hypotheses we've already mentioned. Writing the expanded macro in a file is
impossible since we don't have a standard way of transcribing continuations. What
does the invocation of a continuation taken from a different process mean anyway?
Or, in C terms, what does it mean during the execution of a. out to invoke a
continuation captured by cpp? In the absence of any agreement about what that
means, we should just say, "No!"

That example used a continuation to highlight the strangeness of the situation.
All the same, we will avoid including any value that has no written representation;
likewise, we won't include primitives, closures, nor the input and output ports.
Consequently, we will no longer write (', (lambda (y) car) x) nor C (' ,car x)
nor (f ',( current-output-port)), even if in an interpreted world that would
not be an error.

In short, we'll repeat the golden rule of macros: never generate a program that
you could not write directly.

9.6 Defining Macros

Various forms declare global macros (with a scope that we'll analyze in the next sec
tion) and local macros. They are define-syntax, letrec-syntax, and let-syntax
in Scheme; defmacro and macrolet in COMMON LISP; define-abbreviation and
let-abbreviation in this book.

To define a macro, we build a function (the expander), and then register that
expander with an appropriate name. The expander is written in the language of
macros, an instance of Lisp. Now we'll analyze its consequences in the various
worlds and modes that we mentioned earlier.
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9.6.1 Multiple Worlds

Remember that with multiple worlds, macro expansion is a process that occurs in
a memory space separated from the final evaluation.

Endogenous Mode

According to the endogenous school, the text defining a macro (in our case, the
form define-abbreviation) synthesizes an expander on the fly by means of the
evaluator implementing the macro language. In that case, the keyword def ine-ab
breviation can be none other than the syntactic marker that the macro expander
is searching for. The following definition presents a very naive macro expander
that implements this endogenous strategy.

(define *macros* ,())

(define (install-macro! name expander)
(set! *macros* (cons (cons name expander) *macros*))

(define (naive-endogeneous-macroexpander exps)
(define (macro-definition? exp)

(and (pair? exp)
(eq? (car exp) 'define-abbreviation) ) )

(if (pair? exps)
(if (macro-definition? (car exps))

(let* «def (car exps))
(name (car (cadr def)))
(variables (cdr (cadr def)))
(body (cddr def)) )

(install-macro! name (macro-eval
'(lambda ,variables. ,body) ))

(naive-endogeneous-macroexpander (cdr exps)) )
(let «exp (expand-expression (car exps) *macros*)))

(cons exp (naive-endogeneous-macroexpander (cdr exps))) ) )
, () ) )

That macro expander takes a sequence of expressions (the set of expressions
from a file to compile) and consults the global variable *macros*, which contains
the current macros in the form of an association-list. One by one, the expressions
are expanded by the subfunction expand-expression with the current macros.
When the definition of a macro is encountered, it is handled specially, on the fly,
like an evaluation inside the macro expansion. The evaluation function is repre
sented by macro-eval; it might be different from native eval. Indeed, macro-eval
implements the macro language, whereas eval implements the language into which
we're expanding macros. This looks a little like cross-compilation. Once the ex
pander has been built, it is inserted by install-macro! in the list of current
macros. You can imagine the world of difference between the definitions of macros
and the other expressions which are only expanded. The following correct example
illustrates that idea.

si/chap9b.scm
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(define (fact1 n) (if (= n 0) 1 (* n (fact1 (- n 1»»)

(define-abbreviation (factorial n)
(define (fact2 n) (if (= n 1) 1 (* n (fact2 (- n 1»»)
(if (and (integer? n) (> nO» (fact2 n) '(fact1 ,n» )

(define (some-facts)
(list (factorial 5) (factorial (+ 3 2»)
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It wouldn't be healthy to confuse facti and fact2 in endogenous mode because
the definition of fact 1 is merely expanded and not evaluated; it doesn't even exist
yet when the macro factorial is defined. For that reason, the macro uses its own
version-fact2-for its own needs. Thus expanding those three expressions leads
to this:

si/chap9b. escm

(define (fact1 n) (if (= n 0) 1 (* n (fact1 (- n 1»»)
(define (some-facts) (list 120 (fact1 (+ 3 2»»

We could make that example more complicated by renaming facti and fact2
simply as fact. Then mentally we would have to keep track of which occurrence
of the word fact inside the definition of factorial refers to which. We would also
have to determine that the first occurrence refers to the value of the variable fact
local to the macro at the time of expansion, while the second refers to the global
variable fact at the time of execution.

There are other variations within endogenous mode. Some macro expanders
make a first pass to extract the macro definitions from the set of expressions to
expand. Those are then defined and serve to expand the rest of the module. This
submode poses problems when macro calls define new macros because the macro
expander risks not seeing them. Moreover, the fact that macros can be applied
even before they are defined is disorienting enough. There again, left to right order
seems mentally well adapted.

Another important variation-one that we'll see again later-is to make def
ine-abbreviation a predefined macro.

Exogenous Mode

In exogenous mode, macros are no longer defined in expressions to prepare, but
rather in expressions that define the macro expander. We will assume that the
macro expander is modular; that is, that we can define independent macros in a
separate way. The best way to define such macros is, of course, to have a macro to
do so. We'll use the keyword define-abbreviation, and here's its metacircular
definition:

(define-abbreviation (define-abbreviation call . body)
, (install-macro! ',(car call) (lambda ,(cdr call) . ,body» )'

When the macro expander is specified by an appropriate directive, its role is to
add to itself the macro just defined. We'll thus assume that the macro expansion
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directives specify an expansion engine that is enriched by calls to install-macro!.
Now mastery of macro expansion is completely different since macros are defined in
some modules and used in others. Let's assume that we have a preliminary module
with the following contents:

si/chap9c. scm

(define (fact n) (if (= n 0) 1 (* n (fact (- n 1»»)

(define-abbreviation (factorial n)
(if (and (integer? n) (> nO» (fact n) '(fact ,n»

The expansion of that module would look like this:

si/chap9c. escm

(define (fact n) (if (= n 0) 1 (* n (fact (- n 1»»)
(install-macro! 'factorial

(lambda (n) (if (and (integer? n) (> nO» (fact n) '(fact ,n») )

Now let's suppose we want to use the macro factorial for macro expansion of
a module containing the definition of the function some-facts, like this:

si/chap9d. scm

(define (some-facts)
(list (factorial 5) (factorial (+ 3 2») )

We would get these results:

si/chap9d. escm

(define (some-facts)
(list 120 (fact (+ 3 2») )

The first occurrence of fact in the macro factorial poses no problem; it's
just a reference to the global variable in the same module silchap9c. scm. That's
obvious if we look at its macro expansion in silchap9c. escm. In contrast, the
second occurrence of f act refers to the variable f act as it will exist at execution
time in the module silchap9d. escm. That reference is still free (in the sense of
unbound) in the expanded macro, and it might very well happen that there will be
no variable fact at execution time!

An easy solution to that problem is to add (by linking or by cutting and past
ing) a module to si/chap9d. scm-a module from among those we have on hand:
silchap9c. scm defines a global variable that meets our needs. But in doing so, we
will also have imported the definition of a macro, factorial, found in the same
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module, there only for the evaluation of some-facts, and which may introduce
new errors since it invokes the function install-macro! which has no purpose in
the generated application.

The second solution is to refine our understanding of the dependences that
exist between the macros and their execution libraries, especially, especially the
various moments of computation. The art of macros is complex because it re
quires a mastery of time. Let's look again at the example of facti, fact2, and
factorial. When we discover a site where factorial is used, the macro needs
the function fact2 for expansion. In contrast, its result (the macro expanded ex
pression) needs the function facti for execution. We'll say that facti belongs
to the execution library of the macro factorial, whereas fact2 belongs to the
expansion library of factorial. The extents of these two libraries are completely
unrelated to each other. Indeed, the expansion library is needed only during macro
expansion, whereas the execution library is useful only for the evaluation of the
expanded macro.

Thus in exogenous mode, one solution is to define macros and their expansion
library in one module, si/libexp, and then define their execution library in a
separate module, si/librun. [see Ex. 9.5] Still working on the factorial, here's
what we would write in one module:

si/libexp.scm

(define (fact2 n) (if (= n 0) 1 (* n (fact2 (- n 1»»)

(define-abbreviation (factorial n)
(if (and (integer? n) (> nO» (fact2 n) '(fact1 ,n»

and in the other module:

si/librun. scm

(define (fact1 n) (if (= n 0) 1 (* n (fact1 (- n 1»»)

When a directive mentions the use of the macro factorial, the macro expander
will load the module si/libexp. scm, and the directive language will register the
fact that at execution time the library si/librun. scm must be linked to the ap
plication. In that way, we will be able to keep only the necessary resources at
execution time, as in [DPS94b]. Figure 9.3 recapitulates these operations. It shows
how we first construct the compiler adapted to compilation of the program, and
then how we get the little autonomous executable that we are entitled to expect.

9.6.2 Unique World

After the preceding section, you might think that hypothesizing a unique world
(rather than multiple worlds) would resolve all problems. Not so at all!

In a unique world, the evaluator reads expressions, expands the macros in them,
prepares the expanded macros, and evaluates the result of the preparation. The
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siAibexp.scm

(define (fact2 ... ) ... )

(define-abbreviation (factorial ... ) ... )

sVlibrun.scm

final executable

](factl ... ) ... )

si/chap9d.scm

(define (some-facts) ... )

[ (define

Figure 9.3 Multiple worlds: building an application

state of the macro expander is thus included in the interaction loop. According
to this hypothesis, it is logical for the evaluator connected to endogenous macro
expansion (the one we've called macro-eval) to be simply the eval function of the
evaluator (but with all the possible variations that we saw in Chapter 8). [see p.
271] Since the world is unique, macro expansion has both read- and write-access
to everything present in this world. It might seem easy then not to distinguish
between the expansion library and the execution library since it suffices to submit
this to the interaction loop:

(define (fact n) (if (= n 0) 1 (* n (fact (- n 1»»)

(define-abbreviation (factorial n)
(if (and (integer? n) (> nO» (fact n) '(fact ,n»

The problem is that now we make sharing (or selling) software very difficult
because it is hard and often even impossible to extract just what's needed to
execute or regenerate the program that we want to share. To be sure that we've
forgotten nothing, we can deliver an entire memory image, but doing so is costly.
We might try a tree-shaker to sift out anything that's useless. (A tree-shaker is a
kind of inefficient garbage collector.) Actually, as you can see in many Lisp and
Scheme programs available on Internet, we should abstain from delivering programs
containing macros: either we deliver everything expanded (as macroless programs),
or we deliver only programs with local macros. And at that point, we've negated
all the expressive power that macros offered us!

If you don't believe in tools for automatic extraction, there's nothing left but
to do it ourselves. To do so, we must distinguish three cases: the resources useful
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only for macro expansion, those useful only for execution, and finally (the most
problematic) those that are useful in both phases.

In order to prepare programs asynchronously, there's the function compile
file. Two variations oppose each other in the unique world. One might be called
the uniquely unique world. The difference between the two concerns the macros
available to prepare the module submitted to compile-file. Here are the three
solutions that we find in nature.

1. In the uniquely unique world, there is only one macro space, and it is valid
everywhere. Current macros are thus those that can use the expressions of
the module being prepared. That's the case in Figure 9.4 where the macro
factorial defined in the interaction loop is quite visible to the compiled
module. Here's a subquestion then: what happens if the module being pre
pared defines macros itself?

Toplevelloop

(define (fact ... ) ... )

(define-abbreviation (factorial ... ) ... )

(compile-file ... )

(define (some-facts) ... )

(factorial 5) ~ 120

Figure 9.4 Uniquely unique world

(a) In the uniquely unique world, these new macros are added to the current
macros so the macro space continues to grow. (At least it does so unless
we suppress macros altogether.) That's the case in Figure 9.5 if the
expression (factorial 5) submitted to the interaction loop returns
120.

(b) Another response would be that macros defined in the module are visible
only to the preparation of that module. Thus we distinguish super global
macros from macros only global to the modules. In Figure 9.5, that
would be the case if the expression (factorial 5) were submitted to
the interaction loop and yielded an error.

2. Finally, if the world is not uniquely unique, then the only macros visible to
the module are those that the module defines endogenously. In that case,
there is a space for macros for the interaction loop, and there are initially
empty spaces for macros specific to each prepared module. However, even
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Toplevelloop

(define (fact ... ) ... )

(compile-file ... )

(define-abbreviation (factorial ... ) ... )

(define (some-facts) ... )

(factorial 5) ~ 120 or error

Figure 9.5 Unique world with endogenous compilation

though these macro spaces are separate, macro expansion still takes place in
a unique world and thus can take advantage of all the global resources. For
example, see Figure 9.5, where the macro factorial local to the compiled
module can use the function fact from the interaction loop.

By looking closely at Figures 9.4 and 9.5, you see that in every case, the function
fact belonging to the expansion library of factorial has been defined at the level
of the interaction loop. This being so, it is globally visible even though it is probably
useful only to the macro factorial. We could put it inside the macro, making it
an internal function, as in silchap9b. scm). [see p. 323]

What would happen if fact were useful to more than one macro? The prob
lem is that the macro expander knows how to recognize only definitions of macros
although we would often like to define global variables, utility functions, or vari
ous other data for the exclusive use of a set of several macros. Even though the
hypothesis of multiple worlds in exogenous mode naturally insures that, that's not
the case for endogenous mode nor for the unique world. Moreover, the principles of
this hypothesis introduce the possibility of forcing an evaluation inside the macro
expander. In COMMON LISP and other versions of Scheme, that practice is known
as eval-when. To avoid interference, we'll name the practice eval-in-abbrevia
tion-world for ourselves.

The purpose of the form eval-in-abbreviation-world is to make it possible
to define constants, to define utility functions, to carryon any sort of computation
inside and for the sole use of the macro expander. In fact, that form explicitly
recognizes the need to separate that world from the exterior world of evaluation. In
Figure 9.6, the function fact is defined in the evaluator of the macro expander, and
factorial can thus use it to expand some-facts. On returning to the interaction
loop, and depending on whether the worlds have "leaks" or not, factorial and/or
fact can be visible and invokable again.

To program that behavior, all we have to do is ask the macro expander to
recognize forms beginning with the keyword eval-in-abbreviation-world and
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Toplevelloop

(compile-file ... )

(eval-in-abbreviation-world
(define (fact ... ) ... )

(define-abbreviation (factorial ... ) ... )

(define (some-facts) ... )
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(factorial 5) ~ 120 or error

Figure 9.6 Endogenous evaluation

to evaluate them on the fly with the appropriate evaluator, that is, the one that
we called macro-eval in the function naive-endogeneous-macroexpander.

(define (expand-expression exp macroenv)
(define (evaluation? exp)

(and (pair? exp)
(eq? (car exp) 'eval-in-abbreviation-world) ) )

(define (macro-call? exp)
(and (pair? exp) (find-expander (car exp) macroenv))

(define (expand exp)
(cond «evaluation? exp) (macro-eval '(begin. ,(cdr exp))))

«macro-call? exp) (expand-macro-call exp macroenv))
«pair? exp)
(let «newcar (expand (car exp))))

(cons newcar (expand (cdr exp))) ) )
(else exp) ) )

(expand exp) )

The function macro-eval is the evaluator hidden behind macro expansion. It
can be seen as an instance of the usual eval function, but provided with a clean
global environment, not shared with the evaluator that the interaction loop uses.
In that case, and for Figure 9.6, (factorial 5) and (fact 5) would both be in
error.

Forms appearing in eval-in-abbreviation-world must be considered as ex
ecutable directives included in the S-expression that is being expanded. In partic
ular, these forms can use only what will later be the current lexical environment.
We cannot write this:

(let «x 33)) WRONG
(eval-in-abbreviation-world (display x)) )

Again, if we want to introduce a variable locally for the sole benefit of the macro
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expander-something that eval-in-abbreviation-world does not know how to
do since it is fundamentally just an eval at toplevel-we can exploit compiler-let
in COMMON LISP I [Ste84] but not in COMMON LISP II [Ste90]. All we have to do
is make the function expand-expression recognize it.

Expansion cannot reach the final execution environment. Reciprocally, the final
execution environment cannot reach the expansion environment. Fortunately, then,
we cannot write this either:

(define-abbreviation (foo ... ) ... )
(apply foo ... ) WRONG

Once we have eval-in-abbreviation-world, it's simple to explain define-
abbreviation again: it's just a macro itself.

(define-abbreviation (define-abbreviation call . body)
'(eval-in-abbreviation-world

(install-macro! ',(car call) (lambda ,(cdr call) . ,body))
#t ) )

Now the main point is that we can place definitions of macros everywhere and
not just in toplevel position. Accordingly, if we want to organize several expressions
into one unique sequence, we can write this:

(begin (define-abbreviation (foo x) ... )
(bar (foo 34)) )

However, as a question of good taste, that should not be based on a too precise
expansion order, nor should it lead to such slack writing as this:

(if (bar) (begin (define-abbreviation (foo x) ... ) BAD TASTE
(hux) )

(foo 35) )

Most macro expanders distinguish macros at toplevel from others. For exam
ple, that's what distinguishes internal from global instances of define. Macro
expanders also insure that toplevel expressions are treated sequentially from left to
right. For that reason, we can define a class and then its subclasses in order.

In fact, the preceding examples have hidden a few implementation details due
to the fact that several evaluators co-exist so not all the preceding definitions aim
at the same evaluator. In the same way as with reflective interpreters, there's a
problem of accessing the data structure that defines the current macros. [see p.
271] The form install-macro! in the definition of define-abbreviation will be
evaluated by macro-eval, but it must modify the set of current macros as scanned
by the function find-expander. However, find-expression is not evaluated by
macro-eval but by eval! Well, these problems are not important for the moment.

One aim of eval-in-abbreviation-world is to introduce definitions of global
variables in the macro expander because often macros behave in a way that depends
on the underlying implementation. For example, a macro that constructs a call to
the function apply in its macro expansion can inspect its environment to know
whether the function apply found there is binary (which is sufficient for R 2RS or
n-ary (as in R4 RS). However, checking its own environment means that the macro
being expanded has the same environment as its target. In the case of complicated
software (and we'll look into this case in MEROON later), it is sometimes useful to
expand something for another implementation, in which case it is necessary for the
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target implementation to be defined by features that can be inspected. You might
see macros like this one:

(define-abbreviation (apply-foo x y z)
(if (memq 'binary-apply *features*)

'(apply foo (cons x (cons y z»)
'(apply foo x y z) ) )

The variable *features* must be visible from the macro expander. That fact
means that it must have been defined beforehand by means of eval-in-abbrevia
tion-world. We can thus characterize an implementation by defining the variable
*features* to be able to consult the macros under consideration. In the expression
that follows-even though its appearance is tricky-the form define is at toplevel
with respect to the macro language, so it is a definition of the global variable
*features*.

(eval-in-abbreviation-world
(define *features* '(31bit-fixnum binary-apply»

9.6.3 Simultaneous Evaluation

An important variation often present in any hypothesis about the unique world is
evaluation occurring simultaneously with preparation. As expressions are gradually
expanded, they are evaluated by the interaction loop. That's what the following
definition suggests:

(define (simultaneous-eval-macroexpander exps)
(define (macro-definition? exp)

(and (pair? exp)
(eq? (car exp) 'define-abbreviation) ) )

(if (pair? exps)
(if (macro-definition? (car exps»

(let* «def (car exps»
(name (car (cadr def»)
(variables (cdr (cadr def»)
(body (cddr def» )

(install-macro!
name (macro-eval '(lambda ,variables. ,body» )

(simultaneous-eval-macroexpander (cdr exps» )
(let «e (expand-expression (car exps) *macros*»)

(eval e)
(cons e (simultaneous-eval-macroexpander (cdr exps») ) )

'() ) )

Notice that two evaluators appear in that definition: eval, the evaluator in
the interaction loop; and macro-eval, the evaluator in the macro expander. We
have distinguished them from each other because they represent distinct processes
occurring at distinct times.

9.6.4 Redefining Macros

The function install-macro! implied that macros could be redefined: if we rede
fine a macro, we modify the state of the macro expander thus altering the treat-
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ments that remain for it to do. When we are using an interpreter and debugging a
macro, it's fine that we can redefine that macro and test it through some function
that we define to contain a site where this macro is called. That means that the
interpreter delays the expansion of macros as long as possible. However, most of
the time, expressions are expanded only once, and certainly to insure repeatable
experiments, expressions should be expanded only once. As a consequence, those
expressions become independent of any possible redefinitions of macros. In that
sense, macros behave in a way that we could call hyperstatic. [see p. 55]

9.6.5 Comparisons

One of the main problems with macros is that it is difficult to change them if
we're not satisfied with the system that an implementation provides. In fact, that
difficulty has probably vetoed the unbridled experimentation that other parts of
Lisp and Scheme have taken advantage of.

The system of multiple worlds in exogenous mode seems more precise but less
widely distributed. The system of multiple worlds in endogenous mode is only an
instance of the exogenous mode with an expansion engine that predefines certain
macros like define-abbreviation and others. Finally, the unique world is the
most widespread, but the least easy to master in terms of delivering software. This
comparison among them is a little sketchy simply because it does not take into
account two new facets that we'll discuss now: compiling macros and using macros
to define other macros.

Compiling Macros

In what we've covered up to now, the macro expansion of a call to a macro is most
often the work of an interpreter. For that reason, its efficiency seems compromised
especially if the transformation of the programs produced by the macro is long and
complicated (though that is rare). In the multiple world in exogenous mode [see
p. 315], we build an ad hoc compiler by assembling prepared (that is, compiled)
modules so we get efficiency. In endogenous mode, one solution is to use a compiling
function, macro-eval. In the unique world, we can use compile-file and load.
The problem is how to compile a definition of a macro?

The question is not trivial! The macro expanders that we've presented checked
the expressions to expand and did so in order to find the forms define-abbrev
iation and to define those same macros on the fly. We must thus distinguish
compilation of the macro from its installation. If define-abbreviation is a macro
that expands into the form install-macro!, then we're home free. In contrast, if
define-abbreviation is a syntactic keyword, then we merely have to insure that
the body of a macro is only an interpreted call to a compiled function. Once it
has been compiled, we must again load the prepared program, and at that point,
several problems arise: what, for example, does (eval-in-abbreviation-world
(load file)) mean? The function load is just a wrapper around eval, but
in the macro expansion world, we must use macro-eval, not eval! We won't
even talk about an explicit call to eval, as in (eval-in-abbreviation-world
(eval ) (define-abbreviation. .. ))), where, once again, eval must refer to
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macro-eval, rather than the evaluator in the interaction loop. This (non-)dis
cussion clearly shows that the two global environments belonging to eval and
macro-eval really are separate and provide very different entities under the same
name.

We come back to the point that the macro definer has to be a macro itself; it
cannot be just a syntactic marker that the macro expander searches for. Accord
ingly, we separate the preparation of a macro from its installation. We'll take up
this point again later. [see p. 336]

Macros Defining Macros

From time to time, it's useful to define macros that generate other macros them
selves. [see p. 339] This is not just some weird habit but a logical application of
the principles of abstraction and freedom of expression. For example, in an object
system, we might want to define the class Point where the accessors Point-x and
Point-y should be macros instead of functions. [see p. 424] In that case, the
macro define-class must generate those new macros.

Let's take the example of another macro, define-alias, which defines its first
argument to be equal to its second. We'll give you two variations of it, one of them
enclosing backquotes in backquotes.

(define-abbreviation (define-alias newname oldname)
(define-abbreviation (,nevname . parameters)

(,',oldname. ,parameters) ) )

(define-abbreviation (define-alias newname oldname)
(define-abbreviation (,nevname . parameters)

(cons ',oldname parameters) ) )

Conventionally, where the result of a macro expansion is expanded again, if
define-abbreviation is a macro, then there is no problem. In contrast, if def
ine-abbreviation is merely a syntactic marker, then it's quite likely that the
macro expander will not perceive this definition if it does not analyze the result of
macro expansions. Consequently, we'll abandon the idea of a syntactic marker in
favor of predefined and even primitives macros because we wouldn't know how to
create them if they were missing.

9.7 Scope of Macros

The scope of local macros, introduced by let-syntax or letrec-syntax in Scheme,
poses no problems. That's not the case, however, for macros defined by define
syntax because we can distinguish several cases for using macros. In this section,
we'll take MEROON for discussion. It is an object system built on top of Scheme; it
has already been ported to many implementations of Scheme, both interpreted and
compiled. The essence of the system MEROON is in MEROONET. (See Chapter 11.)
Three kinds of macros exist in that system:

1. Type 1-occasional macros: An occasional macro is defined in one place
and used immediately afterwards. We can thus transform it into a local
macro defined by a form, let-syntax or macrolet, if we have that available,
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though of course that's not the case everywhere. For example, the function
make-fix-maker in MEROONET builds a "triangle" of closures (lambda (a b
c ... ) (vector cn abc ... », but it does so "by hand." [see p. 434]
The following macro does that automatically.

(define-abbreviation (generate-vector-of-fix-makers n)
(let* «numbers (iota 0 n»

(variables (map (lambda (i) (gensym» numbers»
(case size

,G(map (lambda (i)
(let «vars (list-tail variables (- n i»»

((,i) (lambda ,vars (vector cn . ,vars») ) )
numbers)

(else If) ) ) )

An occasional macro can be abandonned, once it's been used. Its scope is
greatly restricted: it does not go beyond the module where it appears.

2. Type 2-macros local to a system: The definition of MEROON is orga
nized into about 25 small files. A number of abbreviations appear throughout
those files, for example, the macro when. The scope of that macro is thus the
set of files making up the source of MEROON, but no more than that, because
we have no right to pollute the world exterior to MEROON.

3. Type 3-exported macros: MEROON exports three macros: define
class, define-generic, and define-method. These macros are for MER

OON users but they also bootstrap MEROON. The macro when cannot appear
in the expansion of macros of type 3 because allowing that would confer a
greater scope on when than we planned for. The language of the macro expan
sion of exported macros is the user's language, not the language of MEROON

itself.

Not only are there three kinds of macros; there are also three ways of using
them, as illustrated in Figure 9.7. Those three ways are:

1. To prepare MEROON sources: This use involves expanding the source of
MEROON and thus getting rid of all uses of type 1, 2, and 3. In contrast,
something from the definition of macros of type 3 necessarily has to live
somewhere since they are exported.

2. To prepare a module that uses MEROON: Preparing a module that uses
MEROON means expanding MEROON macros of type 3 that this module uses.

Consequently, in the thing that prepares this module, we have to install type 3
MEROON macros. In other words, we have to graft the expansion library of
type 3 macros onto the preparer. Notice, though, that we don't actually need
the expansion library of MEROON type 1 or 2.

3. To generate an interpreter providing the user with MEROON: In this
case, we want to construct an interaction loop that provides type 3 MEROON

macros. Consequently, those macros have to be installed, along with their
expansion library in the macro expander connected to the interaction loop.
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Figure 9.8 shows one way of getting MEROON modules by bootstrapping. The
expansion library of type 2 macros are only for preparing the rest of the MER
OON source. You see that the construction of a complicated piece of software
resembles a T-diagram, as in [ES70], where we handle various languages and their
implementations.

When you consider th~ types of macros and their various uses that we've just
explained, you observe that multiple worlds are well adapted for this, whereas the
unique world generally does not support limiting the scope of a macro to the place
where it is used. The idea of a package would let us organize the names we use
more precisely (as in COMMON LISP or ILOG TALK) where all we have to do is give
macros names that are restricted to internal use so we avoid any future collisions.
In contrast, in a unique world, those three different uses of macros that we carefully
distinguished are all mixed up. To use MEROON, you just load it and that's all!

Chapter 11 defines MEROONET. Even though it provides three macros, it does
not use them for its own purposes (to avoid unpleasant questions). It defines macros
(type 3, according to our terminology) with the macro define-meroonet-macro;
we'll get into the details of its implementation later. Our first task, when con
fronted with a system of predefined macros, is to determine what type it is. Then
we must set it in motion, and (since we generally cannot access functions like
install-macro!) we have to do everything with the only macro definer in the
implementation. By "everything," we mean from the simple equivalence between
define-meroonet-macro and define-abbreviation up to the following convo
luted definition that insures that the macro is simultaneously useful right away
and will eventually be useful in the prepared file where it appears when that file is
loaded dynamically.

(define-abbreviation (define-meroonet-macro call . body)
'(begin (define-abbreviation ,call. ,body)

(eval '(define-abbreviation ,call. ,body)) ) )

9.8 Evaluation and Expansion

Macro expansion and evaluation are intimately connected in the interaction loop
since they are immediately linked to each other. This section looks more closely at
that couple.

Macro expansion is the first phase of preparation. Evaluation is the phase that
follows preparation. The function eval represents only evaluation, while the lan
guage that eval accepts is merely the pure language, stripped of all macros. If
we want to take advantage of macros, then, we ourselves must expand the ex
pressions that we provide to eval. Accordingly, in a multi-windowed evaluation
system, we could see two different macro expanders working simultaneously in dif
ferent windows. However, that is not really a practical arrangement; it doesn't
really conform to current practice, and moreover, we would probably lose the usual
macros, like cond, let, or case, in doing that. For all those reasons, the evalua
tion function eval is usually provided as (lambda (e) (pure-eval (macroexpand
e *macros*))), where pure-eval is the evaluator for the pure language while
macro-expand is the public function for macro expansion and *macros* contains
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the macros known to the interaction loop.
What we've just said about eval is also true about macro-eval which has its

own *macros* variable containing only the macros known by the preparation. A
great many questions arise here about this pair, macro expansion and evaluation.
We've already mentioned [see p. 277] the existence of evallce for evaluate in the
current environment. That special form captured the entire visible lexical context.
Since evallce knows how to expand the expressions it receives, does it capture the
macro expansion context? In other words, if we write this:

(let-syntax «foo ... »
(eval/ce (read» )

then will an expression read and containing a call to foo be expanded correctly by
eval/ce? If yes, then not only must eval/ce keep a trace of the lexical context,
but it must also save the memory state of the entire macro expander in order to
keep its ability to expand foo. Since that seriously undermines the independence
of macro expansion, we regard that practice as in seriously bad taste. However,
the right solution is that evaluation should be pure and not force macro expansion
right away, but then that's not practical, so etc. etc.

When we define a macro, the macro is visible for the rest of the macro expansion.
Let's assume that we've defined the useful macro when. Then can we write this?

(define-abbreviation (whenever condition . corps)
(when condition (display '(whenever is called»)
'(when ,condition. ,corps) )

That macro uses the word when twice. The second occurrence is located in the
expanded macro so it poses no problem. In contrast, the first one appears in the
computation of the macro expansion and is thus evaluated by the evaluator for
macro expansion, which a priori does not know about when: the macro language is
not the one that we are expanding! For the macro when to be available for use by
the definition language for macros, we should have already provided the following
definition:

(eval-in-abbreviation-world
(define-abbreviation (when condition. body)

'(if ,condition (begin. ,body» ) )

The problem is similar in this expression:

(define-abbreviation (foo)
(define-abbreviation (bar)

(when ... )
(wrek) )

(hux) )

The internal definition of bar is a priori destined to enrich the macro language,
not the current language. The preceding expression defines the macro bar as the
macro possible to use to write the macro. Even if the semantics seems clean, the
pragmatics are a little off because we now have a problem of infinite regression.
The language for defining macros and the language for defining the definition lan
guage for macros are not necessarily the same. In other words, as in the preceding
example, we can't be sure that the form when present in the definition of bar is
included and understood. If we had truly different languages, the problem would
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be even more apparent. For example, you can imagine that macros are handled
by cpp and that for cpp macros themselves come from a perl program. Then it
becomes obvious that the definition of a macro on one level has implications only
on that level.

How do we resolve such a problem? One possibility is to stick to the semantics
and have multiple levels of language, but (fortunately!) we rarely need to get higher
than the second level. There we would again find the problems of levels of language
that we saw with reflective interpreters. [see p. 302]

Another possibility would be to fuse all language levels used by the macro
expander. This boils down to adopting the hypothesis of the unique world for the
evaluator in macro expansion. The circle closes in on us again, and everything that
we carefully separated is all mixed up once more.

A third possibility-the one adopted by R4RS-is to restrain the language to
express macros to only filtering and reconstructing capabilities. Macros can no
longer be defined in that language!

In short, once again it's very important to distinguish the languages that come
into play. In an implementation of Scheme that supports distribution and paral
lelism, it's probably not a good idea to make the expansion of macros distributed
and parallel as well. We might even forbid the writing of macros that use non-local
continuations, like this:

(define-abbreviation (foo x) BAD TASTE
(call/cc (lambda (k)

(set! the-k k)
x » )

(define-abbreviation (bar y)

(the-k y) )

But how would we enforce that rule?

9.9 Using Macros

This section goes into the details of how macros are typically used. While we agree
that their purpose is to transform programs, we might have many different reasons
for transforming programs. Among them, we distinguish these:

• Shortcuts limit the number of characters a user must type (especially at
toplevel or during debugging). If we want to write (trace foo) to make
visible all the calls to the function foo, then we need a macro that does not
evaluate foo.

• Beautification lets us mask disharmonious syntax. For example, we might
use bind-exit rather than call/ep to avoid an extra lambda.

• Masks let us hide the underlying implementation-a primordial goal. We need
to hide the implementation details when they are likely to change or when
it's not a good idea to make them accessible for general use. As examples,
consider define-class in MEROONET or syntax-rules in Scheme.

Among the masks, we also find macros whose aim is to abstract porting prob
lems. Using a macro, like apply-foo [see p. 331] to hide the fact that there are
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two kinds of apply, a binary and an n-ary, is a current practice. Another porting
problem crops up with the Boolean value of () in Scheme, which is True in R4RS
but not necessarily so in R3 RS. We can get around this problem by using a macro
everywhere; we'll call it maroon-if and define it like this:

(define-abbreviation (meroon-if condition consequent . alternant)
'(if (let «tmp ,condition»

(or tmp (null? tmp» )
,consequent . ,alternant ) )

Of course, we can avoid that problem if our program is robust, but the fact
is, some very interesting software has been written in a style that is not entirely
robust, alas. Prefixing it with such a macro is one way of porting it toward another
implementation.

Among the masks, we also find macros whose role is to insure that certain opti
mizations will be carried out independently of the target compiler. One important
improvement-known as inlining--is to integrate functions. Some compilers offer
such a directive, but inasmuch as that directive is not uniformly distributed, and
its application is problematic beyond the frontiers of a given module, the simplest
approach is to handle this integration ourselves. To make the calls to a function
"inlinable," we associate the function with a macro of the same name. We would
thus define something like this:

(define-abbreviation (define-inline call . body)
(let «name (car call»

(variables (cdr call» )
'(begin

(define-abbreviation (,name. arguments)
(cons (cons 'lambda (cons ',variables ',body»

arguments ) )
(define ,call (,name. ,variables» ) )

That macro suffers from portability problems itself because in some dialects, it
is not possible to have a macro and a function of the same name simultaneously.
In other dialects, that practice is allowed, and the second definition (the function)
will completely replace the first (the macro) and in consequence, the macro will
no longer be accessible. Anyway, it is nearly impossible for the function to be
recursive without making the macro loop (though see [Bak92b] for more detail).
Finally, when a function is inlined, it's best to avoid using it as a first class value
(for example, as the first argument to apply) since that allows you not to define
the associated function.

The preceding macro is easily inlined in multiple worlds since the definition of
the function is merely expanded and in fact, expanded by means of the macro that
precedes it. In the resulting expanded code, only the function appears in all its
uses, while all the places where the macro of the same name is called will have been
expanded-just the effect we were counting on.

9.9.1 Other Characteristics

The macros in Scheme R4RS have four outstanding characteristics:

1. they are hygienic; (we'll get to that idea in Section 9.10);
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2. they are defined by filtering;

3. they build the expanded macro by substitution;

4. they have no internal state.

The advantage of defining macros by filtering is that we can then very finely
control the form that the call to the macro has to respect. Moreover, in writing
the definition, we do not have to write the code for checking that conformity. For
example, most macros where the last argument forms an implicit begin don't test
whether the ultimate cdr is really (). That's automatically verified by a filter, and
an error message is sent if need be. There are efficient compilers for filters, well
described in the literature, such as [Que90b, QG92, WC94].

Construction by substitution is part of backquoting notation but it restricts com
putations to only those operations that can be carried out on lists. In particular,
it does not support arithmetic operations. [see Ex. 9.2]

The fact that macros have no internal state is a little more inconvenient. Be
cause of this lack, we cannot have contextual macros, like define-class, which
should be able to keep the hierarchy of known classes updated so that we could
find necessary information there when subclasses are introduced. We would like to
know the names and number of inherited fields, for example.

Even so, you can imagine a macro, like date, that returns a character string
indicating the current date at the time it is expanded. That macro could work like
Walter Tichy's RCS or Eric Allman's SCCS to maintain versions of software.

9.9.2 Code Walking

Most macros that we write take one expression and return another that they build
from the subterms of the first expression. Those are rather superficial macros that
don't need to frisk the input expression. However, a macro that translates an
infix arithmetic expression into a Lisp expression in prefix notation, for example,
needs to analyze its argument more deeply. Let's take the case, for example, of the
macro with-slots from CLOS; we'll adapt it to a MEROONET context. The fields
of an object-let's say the fields of an instance of Point-are handled by read- and
write-functions like Point-x or set-Point-y !. It would be simpler to handle them
directly by the name of their fields, x or y, for example, in the context of defining
a method. Similar to Smalltalk in [GR83], we could thus write this:

(define-handy-method (double (0 Point»
(set! x (* 2 x»
(set! y (* 2 y»
o )

in place of this:

(define-method (double (0 Point»
(set-Point-x! 0 (* 2 (Point-x 0»)
(set-Point-y! 0 (* 2 (Point-y 0»)
o )

The new macro, define-handy-method, thus must now check its own body to
convert the references and assignments there to variables with the name of fields
of the class being discriminated upon. To access these fields, we can use accessors
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that do not test whether their argument belongs to the class, since the fact that
the argument belongs to the class is guaranteed by discrimination. In consequence,
access is simpler and increasingly more efficient.

To produce these effects, we must first recall that the body of the method is
not a program but rather an S-expression before macro expansion before analysis.
For that reason, we must have access to the mechanism for macro expansion. Since
macro expansion can give rise to local macros, we must also have access to the
expander itself, the one that takes care of the original form. Without getting
tangled up in the details, we'll assume that the expander is the value of the variable
(whether local or global) named macroexpand and that it is always visible from
the body of macros.

Once the body of define-handy-method has been expanded, then it's a real
program, and at that point it has to be analyzed. Well, we've been analyzing
programs since the beginning of this book; we do it by recognizing the special forms
of the language that is being analyzed. We do not go off searching for references to
fields in quotations; however, we must take into account binding forms that can hide
fields. It's not too complicated a task to write a code walker, as in [Cur89, Wat93]
[see p. 340]; what's hard is to recognize precisely the set of special forms in the
language-or rather the implementation-that we're using.

Special forms are points of reference in an implementation, but an implemen
tation sometimes has private features, such as:

• supplementary special forms (as with let or letrec) or hidden special forms
belonging to the implementation (as with define-class);

• special forms implemented as macros (for example, with begin).

In the absence of reflective information about the language, it is difficult to
get out of this dilemna because we have to ask, "How do we handle begin forms if
they've disappeared? How do we find conditionals when if is a macro that expands
into the special form typecase? How do we inspect an unknown special form like
define-class when it involves substructures (such as definitions of fields) that
systematically resemble functional applications? How do we guess that bind-exit
is a special form establishing a binding that can hide a variable of the same name?"

A good compromise would be to freeze the set of special forms and forbid
any more or fewer of them. Doing that means that the implementations that
use special macros would not be able to do so in any phase later than macro
expansion. However, lacking reflective information about the language and its
implementations, we cannot write a portable code walker in Scheme, so we have to
give up writing define-handy-method.

9.10 Unexpected Captures

In recent years, the idea of hygiene with respect to macros has been carefully
studied in [KFFD86, BR88, CR91a]. An expanded macro contains symbols that
are in some respects "free"; that is, they are unattached and thus susceptible to
interference, either capturing or being captured with the context where the macro
is used. Here's an example with both effects:
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(define-abbreviation (aeons key value alist)
'(let «f cons» (f (f ,key ,value) ,alist»

(let «cons list)
(f If»

(aeons 'false f '(» )

The reference to cons appearing in the expanded macro aeons referring to our
familiar cons is going to be captured by the local variable cons present in the let
form surrounding the place where aeons is called. Conversely, the expanded macro
establishes a binding for the variable f which will prevent the second argument of
the call to aeons from taking the value #f would normally have taken. In short,
the macro has intercepted the variable f. What a mess!

When we make macros hygienic, we automatically escape from such problems.
Let's look at how those problems are conventionally handled.

For more than thirty years, users have been solving that second problem in
Lisp simply by renaming. Specifically, the variable f which the expanded macro
introduces must not interfere at all with the lexical environment where the macro
is used~ For that reason, we'll carry out an a-conversion and generate a new and
inimitable gensym in order to protect that variable. Thus, quite serenely we'll write
this:

(define-abbreviation (aeons key value alist)
(let «f (gensym»)

'(let «,f cons» (,f (,f ,key ,value) ,alist» ) )

The first problem we mentioned-producing a free reference to cons in the
expanded macro-is more complicated to handle. In the case of the present macro,
what we want is for the writer of the macro to be able to specify that the reference
to cons is the reference to the global variable cons and nothing else. In fact, the
global variable cons was the one visible from the definition of the macro aeons.
From that observation we derive the first rule of macro hygiene: the free references
in the expanded macro are those that were visible from the place where the macro
was defined.

In the case of cons and in certain Lisp or Scheme systems, there is often a
method to reference a global variable independently of the context; the method is
equivalent to a form like (global cons) or lisp:eons. However, the following
example will show you that we may also want to associate a local binding with a
variable of an expanded macro.

(let «results '(»
(compose cons) )

(let-syntax «push (syntax-rules ()
«push e) (set! results (compose e results») »)

1r

results) )

In the entire body 1r of this expression, we want the local macro push to compose
its argument with the contents of the variable results and assign results with
that result. To be hygienic, we must insure that no other internal binding to 7r can
modify the sense of push. Basically, then, there are two solutions:

1. rename all the internal variables in 1r so that results and compose are always
visible and unambiguous there;
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2. rename results and compose in a consistent way; that is, in let bindings,
in the definition of push, and of course in the last expression of the body of
let.

Even though we've talked about the "capture" of bindings, there is no such
thing in hygienic macros. They don't capture bindings because bindings don't yet
exist in hygienic macros since there we're still in the macro expansion phase! Even
more strongly, R4RS does not reserve keywords so it's possible to define a macro
with the name of a special form. As a consequence, even the word set! apparently
free in the expanded macro of push could be captured by a macro local to 7r. Thus
we don't capture bindings, we capture meanings!

Macro hygiene is a remarkable and attractive property, but we can't adopt it
whole-heartedly because there are important macros that are not in fact hygienic.
The most popular example is the macro loop. We generally get out of it by means
of the function exit. If we were to write this:

(define-syntax loop WRONG
(syntax-rules () ; should be (exit) instead

«loop e1 e2 ... )
(call/cc (lambda (exit)

(let loop () e1 e2 ... (loop» » ) ) )

then we would never get out of the loop because the variable exit introduced in
the expanded macro cannot be captured (because of hygiene!) by a reference to
exit in any of the forms ei, e2, .... If exit appeared among those expressions, its
intention would be to mention what exit indicates at its calling site. The solution
is to mention that the symbol exit must remain free in the expanded result. To do
that, we must put it into the parentheses that follow the word syntax-rules. By
default, it's good for everything to be hygienic. This is precisely what we wanted
for the loop variable: to be free of any captures. However, from time to time, we
have to break our own rule about hygiene.

Many competitive implementations of hygienic macros are available on the net,
and they are well worth reading. Our solution will won't use filtering; it will not
limit the kind of computations that can be carried out within macros; but it corre
sponds to a low-level implementation that we find simpler than those appearing in
the literature, such as [CR91b, DHB93]. Our implementation offers a new variation
where we explicitly mention the words whose meaning we want to freeze. Here's
an example: the form with-aliases will take a set of pairs, each made up of a
variable and a word, as its first argument; for the duration of the macro expansion,
it will bind these variables to the meaning that those words have in the current
context. The preserved meaning of those words is accessible from those variables,
and it can be inserted in the expanded macro. The following parameters make up
the body of the form with-aliases; their role is to compute the expanded result.
Thus we would rewrite the preceding example like this:

(let «results '(»
(compose cons) )

(with-aliases «setq set!) (r results) (c compose»
(let-abbreviation ( ( (push e)

'(,setq ,r (,c ,e ,r» ) )
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results) ) )

In contrast, the preceding loop macro would be defined like this:

(with-aliases «cc call/cc) (lam lambda) (11 let»
(define-abbreviation (loop . body)

(let «loop (gensym»)
(,cc (,lam (exit) (,11 ,loop () ,Gbody (,loop»» ) ) )

In those two examples, all the terms that we want to freeze are mentioned
in a with-aliases which captures their meaning. They are then inserted in the
expanded results and are thus independent of the context where these macros are
used.

B ackquote notation is not really appropriate here because the proportion of
variant elements is very high. This system of macros is rather low-level because it
is not automatically hygienic; rather, it merely offers the tools for being hygienic.
In the next section, we'll develop this system of macros further.

9.11 A Macro System

This section describes the implementation of a system of macros with the following
functions:

• define-abbreviation to define a global macro;

• let-abbreviation to define a local macro;

• eval-in-abbreviation-world to evaluate something in the macro world;

• with-aliases to preserve a given meaning.

In order to show the difference between preparation and execution more clearly,
we will expand programs and then transform them into objects on the fly. The
resulting objects can be handled in either of two ways: they can be evaluated by a
fast interpreter, as before in Chapter 6 [see p. 183]; or they can be compiled into
C by the compiler in Chapter 10, [see p. 359]. Consequently, we expand them in
only one pass, and the forms are frozen into objects as soon as they are expanded.

9.11.1 Objectification-Making Objects

Reification-which we've already used in another context-is not exactly the same
thing as objectification. First of all, the program being compiled is converted into
an object. During its conversion, its syntax will be checked and normalized so
that syntax will not be a source of any other eventual errors. This transformation
resembles rapid interpretation (the two have the same goal), but this time, we're
working ad hoc. Instead of closures without arguments to contain all the necessary
ingredients for their evaluation, this time, we will make objects that can be eval
uated, thus showing how robust this transformation is; additionally, these objects
can be handled more generally as well.

Here is the list of classes that we need for these objects:

(define-class Program Object (»

(define-class Reference Program (variable»
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(define-class Local-Reference Reference (»

(define-class Global-Reference Reference (»

(define-class Predefined-Reference Reference (»

(define-class Global-Assignment Program (variable form»

(define-class Local-Assignment Program (reference form»

(define-class Function Program (variables body»

(define-class Alternative Program (condition consequent alternant»

(define-class Sequence Program (first last»

(define-class Constant Program (value) )

(define-class Application Program (»

(define-class Regular-Application Application (function arguments»

(define-class Predefined-Application Application (variable arguments»
(define-class Fix-Let Program (variables arguments body»

(define-class Arguments Program (first others»

(define-class No-Argument Program (»

(define-class Variable Object (name»

(define-class Global-Variable Variable (»

(define-class Predefined-Variable Variable (description»
(define-class Local-Variable Variable (mutable? dotted?»

In that list, you can see several points that we've already covered. For example,
closed applications are treated specially. Calls to functions are identified. The
class Program contains only elements that can be evaluated: references and assign
ments are there. In contrast, instances of variables representing bindings are not
programs. They are instances of the class Variable. There are few idiosyncracies
in these definitions of classes. Generally, they have as many fields as there are
syntactic components. However, the class of local variables has two Booleans: one
indicating whether or not the local variable is assigned, and another indicating how
it is bound. In particular, dotted? variables receive special treatment before they
receive a list of arguments.

We assume that read (or some other equivalent returning the S-expression that
was read) reads the expression to compile. In fact, it would be smart to read
an expression by means of cons with five fields to store in which file, which line,
and which column the expression was read so that we could get excellent warning
messages in case of errors. Moreover, symbols should have a supplementary field
containing any possible associated macro; then searching for such a macro would
be really fast. Augmenting symbols and dotted pairs with extra arguments during
macro expansion is not too costly nor cumbersome since there won't be anything
left around after expansion.

Thus we walk through this S-expression, as it's being read, to convert it into
an object of the class Program. In passing, its macros are identified and expanded.
The principal function, objectify, takes the lexical preparation environment as its
second argument. Basically, given a form, it analyzes the term in function position
and starts the appropriate treatment. Treatments are not tangled up with one
another any more; rather, the right ones are located in the handler field of objects
of the class Magic-Keyword (according to the terminology of [SS75]). The function
objectify itself paves the way for handling macros; we'll explain it later.
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(define-class Magic-Keyword Object (name handler»

(define (objectify e r)
(if (atom? e)

(cond «Magic-Keyword? e) e)
«Program? e) e)
«symbol? e) (objectify-symbol e r»
(else (objectify-quotation e r»

(let «m (objectify (car e) r»)
(if (Magic-Keyword? m)

«Magic-Keyword-handler m) e r)
(objectify-application m (cdr e) r» ) ) )

There's nothing left to explain except the various specialized subfunctions for
conversion. Most of them simply build an object where the fields are initial
ized with the results of the recursive inspection of the subterms of the corre
sponding S-expression. That's certainly the case of objectify-alternative and
obj ectify-sequence; obj ectify-sequence analyzes the initial forms in order to
normalize it in binary sequences.

(define (objectify-quotation value r)
(make-Constant value) )

(define (objectify-alternative ec et ef r)
(make-Alternative (objectify ec r)

(objectify et r)
(objectify ef r) ) )

(define (objectify-sequence e* r)
(if (pair? e*)

(if (pair? (cdr e*»
(let «a (objectify (car e*) r»)

(make-Sequence a (objectify-sequence (cdr e*) r» )
(objectify (car e*) r) )

(make-Constant 42) ) )

The application is a little more complex since it must analyze the initial ex
pression and categorize it as a closed application, a call to a predefined function,
or a normal application. It categorizes on the basis of its analysis of the object
corresponding to the term in the function position. The only obscure point here is
one we've already mentioned, [see p. 200]: whether there is a description letting
us know the arity of predefined functions and how to use it to compile them better.
Later, we'll cover the class Functional-Description when we look at how to put
in the predefined environment.

(define (objectify-application ff e* r)
(let «ee* (convert2arguments (map (lambda (e) (objectifye r» e*») )

(cond «Function? ff)
(process-closed-application ff ee*) )

«Predefined-Reference? ff)
(let* «fvf (Predefined-Reference-variable ff»

(desc (Predefined-Variable-description fvf»
(if (Functional-Description? desc)

(if «Functional-Description-comparator desc)
(length e*) (Functional-Description-arity desc)
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(make-Predefined-Application fvf ee*)
(objectify-error
"Incorrect predefined arity" ff e* ) )

(make-Regular-Application ff ee*) ) ) )
(else (make-Regular-Application ff ee*» ) ) )

(define (process-closed-application f e*)
(let «v* (Function-variables f»

(b (Function-body f» )
(if (and (pair? v*) (Local-Variable-dotted? (car (last-pair v*»»

(process-nary-closed-application f e*)
(if (= (number-of e*) (length (Function-variables f»)

(make-Fix-Let (Function-variables f) e* (Function-body f»
(objectify-error "Incorrect regular arity" f e*) ) ) ) )

The list of arguments is translated into a unique object (an instance of the class
Arguments); the list ends with an object from the class No-Argument. The number
of arguments can be determined by the generic function number-of.

(define (convert2arguments e*)
(if (pair? e*)

(make-Arguments (car e*) (convert2arguments (cdr e*»)
(make-No~Argument) ) )

(define-generic (number-of (0»)
(define-method (number-of (0 Arguments»

(+ 1 (number-of (Arguments-others 0») )
(define-method (number-of (0 No-Argument» 0)

As usual, inside closed applications, we will distinguish the particular rare and
cumbersome case of applied n-ary functions. Supplementary arguments are orga
nized into a list; thus we modify the associated dotted variable so that it becomes
normal again. [see p. 197]

(define (process-nary-closed-application f e*)
(let* «v* (Function-variables f»

(b (Function-body f»
(0 (make-Fix-Let

v*
(let gather «e* e*) (v* v*»

(if (Local-Variable-dotted? (car v*»
(make-Arguments
(let pack «e* e*»

(if (Arguments? e*)
(make-Predefined-Application
(find-variable? 'cons g.predef)
(make-Arguments
(Arguments-first e*)
(make-Arguments

(pack (Arguments-others e*»
(make-No-Argument) ) ) )

(make-Constant '(» ) )
(make-No-Argument) )

(if (Arguments? e*)
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(make-Arguments (Arguments-first e*)
(gather (Arguments-others e*)

(cdr v*) ) )
(objectify-error

II Incorrect dotted arityll f e* ) )
b » )

(set-Local-Variable-dotted?! (car (last-pair v*» If)
o ) )

Then we analyze abstractions and transform them by means of objectify
function. It uses objectify-variables-list to handle the list of variables and
thus enrich the lexical environment in which the body of the function will be
treated.

(define (objectify-function names body r)
(let* «vars (objectify-variables-list names»

(b (objectify-sequence body (r-extend* r vars»)
(make-Function vars b) ) )

(define (objectify-variables-list names)
(if (pair? names)

(cons (make-Local-Variable (car names) #f If)
(objectify-variables-list (cdr names»

(if (symbol? names)
(list (make-Local-Variable names #f It»~

'() ) ) )

Finally, obj ectify-symbol carefully handles variables. It searches for them in
the unique, static, current, lexical environment: r. If the variable is not found
there, the variable is added to the mutable global environment by the function
objectify-free-global-reference. That is, we've adopted here a way of auto
matically defining new variables.

(define (objectify-symbol variable r)
(let «v (find-variable? variable r»)

(cond «Magic-Keyword? v) v)
«Local-Variable? v) (make-Local-Reference v»
«Global-Variable? v) (make-Global-Reference v»
«Predefined-Variable? v) (make-Predefined-Reference v»
(else (objectify-free-global-reference variable r» ) ) )

(define (objectify-free-global-reference name r)
(let «v (make-Global-Variable name»)

(insert-global! v r)
(make-Global-Reference v) ) )

The environment r is more or less a list of local variables followed by global vari
ables and then the predefined variables. The static environment does not contain
the values of these variables, since the values result from subsequent evaluation.
This environment is represented by a list of instances of Environment. It's possi
ble to extend this environment by local variables or by new global variables. New
global variables are appended physically to the global part of the environment; we
know how to find it again with the function find-global-environment.

(define-class Environment Object (next»
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(define-class Full-Environment Environment (variable»

(define (r-extend* r vars)
(if (pair? vars)

(r-extend (r-extend* r (cdr vars» (car vars»
r ) )

(define (r-extend r var)
(make-Full-Environment r var)

(define (find-variable? name r)
(if (Full-Environment? r)

(let «var (Full-Environment-variable r»)
(if (eq? name

(cond «Variable? var) (Variable-name var»
«Magic-Keyword? var)

(Magic-Keyword-name var) ) ) )

349

var
(find-variable? name (Full-Environment-next r» ) )

(if (Environment? r)
(find-variable? name (Environment-next r»
#f ) ) )

(define (insert-global! variable r)
(let «r (find-global-environment r»)

(set-Environment-next!
r (make-Full-Environment (Environment-next r) variable) ) ) )

(define (mark-global-preparation-environment g)
(make-Environment g) )

(define (find-global-environment r)
(if (Full-Environment? r)

(find-global-environment (Full-Environment-next r»
r ) )

The way assignment is handled takes the opportunity to annotate all the local
variables that will be assigned later; it sets their mutable? field to True. That
field will be used eventually in Chapter 10. [see p. 359]

(define (objectify-assignment variable e r)
(let «ov (objectify variable r»

(of (objectifye r» )
(cond «Local-Reference? ov)

(set-Local-Variable-mutable?!
(Local-Reference-variable ov) #t

(make-Local-Assignment ov of) )
«Global-Reference? ov)

(make-Global-Assignment (Global-Reference-variable ov) of) )
(else (objectify-error

"Illegal mutated reference" variable » ) ) )

When the initial expression is transformed into an object, it is simple to write
an evaluator to interpret this object in a way that verifies the translation proce
dure. The evaluator resembles those presented in the preceding chapters, especially
the one for objects in Chapter 3 crossed with the one for rapid interpretation in
Chapter 6 [see p. 183].
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Let's take a look at the general outline of this evaluator so that it will be more
or less transparent in what follows. Evaluation is managed by the generic function
evaluate. It takes two arguments: the first is an instance of Program and the
second .an instance of Environment (a kind of A-list of pairs made up of variables
and values). The initial environment contains only predefined variables. Its static
part is the value of g. predef while its dynamic part is the value of sg. predef.
That dynamic part associates instances of RunTime-Primitive with predefined
functional variables. The execution environment can be extended by sr-extend.

9.11.2 Special Forms

The preceding translator doesn't recognize special forms, so for each one of them,
we have to indicate how to transform it into an instance of Program. We'll associate
an appropriate code walker with each keyword. That inspector will simply call one
of the preceding functions, all built on the same model.

(define special-if
(make-Magie-Keyword
'if (lambda (e r)

(objectify-alternative (cadr e) (caddr e) (cadddr e) r) ) ) )

(define special-begin
(make-Magie-Keyword
'begin (lambda (e r)

(objectify-sequence (cdr e) r) ) ) )

(define special-quote
(make-Magie-Keyword

'quote (lambda (e r)
(objectify-quotation (cadr e) r) ) ) )

(define special-set!
(make-Magie-Keyword
'set! (lambda (e r)

(objectify-assignment (cadr e) (caddr e) r) ) ) )

(define special-lambda
(make-Magie-Keyword

'lambda (lambda (e r)
(objectify-function (cadr e) (cddr e) r) ) ) )

Of course, we could define other special forms that we would add to the pre
ceding magic keywords to form the list *special-form-keyvords*.

(define *special-form-keywords*
(list special-quote

special-if
special-begin
special-set!
special-lambda
; ; cond, letrec, etc.
special-let
) )
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9.11.3 Evaluation Levels
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We've already seen that endogenous macro expansion hides an evaluator inside.
Here we need to remember that the result of objectification is not necessarily eval
uated afterwards in the same memory space. In fact, Chapter 10 [see p. 359],
about compiling into C, will show just that. Since we don't want to confuse these
various evaluators, we'll introduce a tower of evaluators and assume the purest hy
pothesis, where all the evaluators are distinct: the language, the macro language,
the macro language of the macro language, and so forth, will all have different
global environments. These evaluators will be represented by instances of the class
Evaluator which defines their principal characteristics.

(define-class Evaluator Object
( mother

Preparation-Environment
RunTime-Environment
eval
expand
) )

What follows is quite complex. Figure 9.9 illustrates the distinct environments
that come into play. The expansion function at one level uses the evaluation func
tion of the next level, but that one itself begins by analyzing the expressions it
receives and thus by expanding them. We'll avoid infinite regression that might
result from one level expanding an expansion already stripped of macros; in that
case, there would be no need of the next level. Generally, two or three levels
suffice. Each level has a preparation environment (for expand) and an execution
environment (for eval)-except perhaps the "ground floor" where we use only the
expander.

expand

!

~lO

expand

compile

Figure 9.9 Tower of evaluators

expand

!

The function create-evaluator builds the levels of the tower one by one on
demand. It builds a new level above the one it receives as an argument. It creates
a pair of functions, expand and eval, along with two environments: preparation
and execution. The function eval systematically expands its argument before eval
uating it; eval does that by means of an evaluation engine named evaluate. The
only thing we have to say about evaluate is that it needs only the execution envi
ronment, the one saved in the field RunTime-Environment of the current instance
of Evaluator, one that it modifies physically if need be. The expansion func-
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tion uses the objectification engine of obj ectify with a preparation environment;
that preparation environment is stored in the field Preparation-Environment of
the current instance of Evaluator. To simplify our lives, the global variables
discovered during expansion are ipso facto created in the associated execution en
vironment by means of the function enrich-with-new-global-variables!. The
function eval is installed reflectively in its own execution environment like a pre
defined primitive, so there is a different eval at each level. The preparation
environment is extended by all the special forms accumulated in the variable
*special-form-keywords*. That variable must be visible at every level. The
preparation environment is also extended by predefined macros that result from
the call to (make-macro-environment level), which we'll document later.

(define (create-evaluator old-level)
(let «level 'wait)

(g g.predef)
(sg sg.predef)

(define (expand e)
(let «prg (objectify

e (Evaluator-Preparation-Environment level) »)
(enrich-with-new-global-variables! level)
prg ) )

(define (eval e)
(let «prg (expand e»)

(evaluate prg (Evaluator-RunTime-Environment level» ) )
; ; Create resulting evaluator instance
(set! level (make-Evaluator old-level 'wait 'wait eval expand»
; ; Enrich environment with eval
(set! g (r-extend* g *special-form-keywords*»
(set! g (r-extend* g (make-macro-environment level»)
(let «eval-var (make-Predefined-Variable

'eval (make-Functional-Description = 1 1111) »
(eval-fn (make-RunTime-Primitive eval 1»)

(set! g (r-extend g eval-var»
(set! sg (sr-extend sg eval-var eval-fn»

; ; Mark the beginning of the global environment
(set-Evaluator-Preparation-Environment!
level (mark-global-preparation-environment g)

(set-Evaluator-RunTime-Environment!
level (mark-global-runtime-environment sg) )

level ) )

If we need an expander or an evaluator, all we have to do is invoke the func
tion create-evaluator and retrieve the expand or eval function we want simply
by reading the fields. Careful: in contrast to a conventional expander, the func
tion expand returns an instance of Program, not a Scheme expression. A simple
conversion function will get us such an expression, if we want it. [see Ex. 9.4]

9.11.4 The Macros

According to our plan, predefined macros have already been added to the prepara
tion environment. They were synthesized by the function make-macro-environ-



9.11. A MACRO SYSTEM 353

ment. The four predefined macros are eval-in-abbreviation-world, define
abbreviation, let-abbreviation, and with-aliases. They all assume the exis
tence of an evaluator belonging to the level above that the function make-macro
environment has to create. However, to avoid infinite regression, creating a level
above is just a promise that won't be carried out unless the associated evaluator is
actually invoked. [see Ex. 9.3] Once a supplementary level has been created, it
will not be recreated; instead, it endures and accumulates all the definitions that
it receives.

(define (make-macro-environment current-level)
(let «metalevel (delay (create-evaluator current-level))))

(list (make-Magie-Keyword 'eval-in-abbreviation-world
(special-eval-in-abbreviation-world metalevel)

(make-Magie-Keyword 'define-abbreviation
(special-define-abbreviation metalevel))

(make-Magie-Keyword 'let-abbreviation
(special-Iet-abbreviation metalevel))

(make-Magie-Keyword 'with-aliases
(special-with-aliases metalevel) ) ) )

The macro eval-in-abbreviation-world is the simplest because it merely
evaluates its body with the evaluator from the level above. It demands that the
level above be constructed only if need be. Like any macro, the result submitted
anew to the objectification function of the current level.

(define (special-eval-in-abbreviation-world level)
(lambda (e r)

(let «body (cdr e))
(objectify «Evaluator-eval (force level»

'(,special-begin. ,body) )
r ) ) ) )

(cadr e))
(cddr e))
(car call))
(cdr call)) )
«Evaluator-eval (force level))
'(,special-lambda ,variables. ,body) )))

(define (handler e r)
(objectify (invoke expander (cdr e)) r) )

(insert-global! (make-Magie-Keyword name handler) r)

The macro define-abbreviation creates and modifies global macros. The as
sociated expander is created and then evaluated at the level above; a new magic
keyword is created in the global preparation environment of the current level. The
function invoke is a different means from evaluate for starting the evaluation
engine. When a macro is invoked by invoke, it begins its calculations in the exe
cution environment of the level above, wrapped up in the closure of the expander.
The result of such a macro is, here, #t. We could have returned the name of the
macro being defined, but that would have meant a few bytes of extra garbage (that
is, a symbol).

(define (special-define-abbreviation level)
(lambda (e r)

(let* «call
(body
(name
(variables

(let «expander
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(objectify #t r) ) ) ) )

We can create local macros in a similar way. The difference is that these magic
keywords are inserted in front of the preparation environment at the current level
in order to maintain local scope.

(define (special-Iet-abbreviation level)
(lambda (e r)

(let «level (force level»
(macros (cadr e»
(body (cddr e» )

(define (make-macro def)
(let* «call (car def»

(body (cdr def»
(name (car call»
(variables (cdr call» )

(let «expander «Evaluator-eval level)
(,special-lambda ,variables. ,body) »)

(define (handler e r)
(objectify (invoke expander (cdr e» r)

(make-Magie-Keyword name handler) ) ) )
(objectify (,special-begin. ,body)

(r-extend* r (map make-macro macros» ) ) ) )

The most complex of the four predefined macros is with-aliases because it
has multiple effects. It must capture the meaning of a number of words in the
current expander. It must bind those meanings to variables for the evaluator at
the level above during the expansion of its body. This interaction among the scope,
the duration, and the levels makes this one so complex.

(define (special-with-aliases level)
(lambda (e current-r)

(let* «level (force level»
(oldr (Evaluator-Preparation-Environment level»
(oldsr (Evaluator-RunTime-Environment level»
(aliases (cadr e»
(body (cddr e» )

(let bind «aliases aliases)
(r oldr)
(sr oldsr) )

(if (pair? aliases)
(let* «variable (car (car aliases»)

(word (cadr (car aliases»)
(var (make-Local-Variable variable #f If»~ )

(bind (cdr aliases)
(r-extend r var)
(sr-extend sr var (objectify word current-r» ) )

(let «result 'wait»
(set-Evaluator-Preparation-Environment! level r)
(set-Evaluator-RunTime-Environment! level sr)
(set! result (objectify (,special-begin. ,body)

current-r »
(set-Evaluator-Preparation-Environment! level oldr)
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(set-Evaluator-RunTime-Environment! level oldsr)
result ) ) ) ) ) )

Modifying the execution environment of the level above would be better accom
modated by a dynamic binding in order to be sure that the right execution environ
ment will be restored after the expansion of the body of the form with-aliases.

The variables bound by with-aliases have as their values the results of the
function objectify, that is, instances of Program or Magic-Keyword. Since these
instances can appear in the result of a macro expansion, the function obj ectify
must be able to recognize these cases in the expressions that it handles. For that
reason, the function obj ectify begins by testing whether the expression it received
is a magic keyword or a program already objectified. [see p. 345]

9.11.5 Limits

Following the rules of macro hygiene lets us play around statically with words and
bindings, to capture a meaning and use it in contexts where it would not be visible
otherwise, even in places where it should not be usable otherwise. For example, we
can write this:

(let «count 0»
(with-aliases «c count»

(define-abbreviation (tick) c) )
(tick) )

(let «count l)(c 2»
(tick) )

The global macro tick refers to the local variable count which is no longer
visible from the second calling site of the macro tick. Indeed, we get a new kind
of error that way: a reference to a non-existing variable, even if a variable of the
same name (like count) appears in the calling environment of tick! You can see
the same thing again more clearly in the equivalent "de-objectified" form:

«LAMBDA (COUNT501)
(BEGIN #T ;; (tick) ~ cou.nt501

COUNT501 »
o )

«LAMBDA (COUNT502 C503) COUNT501) 1 2)

We have to choose the position of with-aliases carefully because it is a kind
of let for the evaluator at the level above. If we wrote this:

(define-abbreviation (loop . body)
(with-aliases «cc call/cc) (lam lambda) (11 let»

(let «loop (gensym»)
'(,cc (,lam (exit) (,11 ,loop () ,Ibody (,loop»» ) ) )

then the meanings captured here are caught at the level of the macro defini
tion, and thus they are valid only in the world of macros of macros. In practice,
with-aliases appears in define-abbreviation and is thus evaluated in the world
of macros when the abbreviation loop gets into the normal world. The variable cc
is bound in the macro world to the meaning that the word callicc has there. A
call to the macro loop will lead to an error of the type "cc: unknown variable."
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With the exception of keywords for special forms or other keywords like else or
=>, the meaning of local or global variables could have been captured by first class
environments and the special forms import and export. [see p. 296] However,
here the mechanism we used is more powerful since it can also capture the essence of
keywords for special forms and especially because it is static rather than dynamic.

The macro mechanism we've defined here allows predefined macros to be writ
ten, ones that the end user could not write, like, for example, macros creating
global variables by direct use of the function insert-global!.

Nevertheless, this system has its imperfections. If the user wants to run through
the macro expanded expressions, he or she will encounter at least two problems.
First, the function expand has not been made visible. One way of making it visible
is for expand at one level to be the value of a variable at the next higher level
so that (eval-in-abbreviation-world (expand '€)) would be identical to €.

Second, we have to know the structure of subclasses of Program if we want to walk
through these objects.

One of the goals of this system of macros was to show that hygienic macro
expansion and compilation are tightly linked since they take advantage of an im
portant common basis. In the preceding code, if we take out those parts connected
with evaluation and with objectification strictly speaking, there is nothing left
that depends specifically on macro expansion except the function obj ectify, the
function obj ectify-symbol, and the functions connected to the four predefined
macros. That's only about a hundred lines-very little, in fact.

A real macro system would have many other details to pin down:

1. how to program essential syntax, like or, and, letrec, internal define, etc.;

2. how to program the notation for backquote, intertwined as it is with expansion
and objectification;

3. how to allow macro-symbols in order to resolve the problem we saw earlier
in define-handy-method. [see p. 340]

However, we did attain the goal we first set: to introduce the idea of capturing
a meaning.

9.12 Conclusions

We can summarize the problems connected to macros in two points: they are
indispensible, but there are no two compatible systems. They exist in practice in
many possible and divergent implementations. We've tried to survey the entire
range. Few reference manuals for Lisp or Scheme indicate precisely which model
for macros they provide, but in their defense we have to admit that this chapter is
probably the first document to attempt to describe the immense variety of possible
macro behavior.

9.13 Exercises

Exercise 9.1 : Define the macro repeat given at the beginning of this chapter.
Make it hygienic.
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Exercise 9.2 : Use define-syntax to define a macro taking a sequence of ex
pressions as its argument and printing their numeric order between them. For
example, (enumerate 7rl 7r2 ... 7rn ) should expand into something that when
evaluated will print 0, then calculate 7rl, print 1, calculate 7r2, etc.

Exercise 9.3 : Modify the macro system to implement the variation corresponding
to a uniquely unique world.

Exercise 9.4 : Write a function to convert an instance of Program into an equiv
alent S-expression.

Exercise 9.5 : Study the programs that define MEROONET [see p. 417] to see
what belongs to the expansion library, what to the execution library, what to both.

Recommended Reading

In [Gra93], you will find a very interesting apology for macros. There are more
theoretical articles like [QP90]. Others, like [KFFD86, DFH88, CR91a, QP91b],
focus more on the problems of hygienic expansion. There is a new and promising
model of expansion in [dM95].





10
Compiling into C

O NeE again, here's a chapter about compilation, but this time, we'll look
at new techniques, notably, flat environments, and we have a new target
language: C. This chapter takes up a few of the problems of this odd
couple. This strange marriage has certain advantages, like free optimiza

tions of the compilation at a very low level or freely and widely available libraries
of immense size. However, there are some thorns among the roses, such as the
fact that we can no longer guarantee tail recursion, and we have a hard time with
garbage collection.

Compiling into a high-level language like C is interesting in more ways than
one. Since the target language is so rich, we can hope for a translation that is
closer to the original than would be some shapeless, linear salmagundi. Since C is
available on practically any machine, the code we produce has a good chance of
being portable. Moreover, any optimizations that such a compiler can achieve are
automatically and implicitly available to us. This fact is particularly important in
the case of C, where there are compilers that carry out a great many optimizations
with respect to allocating registers, laying out code, or choosing modes of address
all things that we could ignore when we focused on only one source language.

On the other hand, choosing a high-level language as the target imposes cer
tain philosophic and pragmatic constraints as well. Such a language is typically
designed for a particular style of program without supposing that such programs
might be generated by other programs. In consequence, certain limits, like at most
32 arguments in function calls, or less than 16 levels of lexical blocks, and so forth,
may be almost tolerable for normal users, but they are quite problematic for auto
matically generated programs. It is not unusual for a problem blessed with a few
macros to multiple its size by 5, 10, or 20 times when it is translated into C. Such
an increase can pose problems for a compiler unaccustomed to such monsters.

Moreover, the execution model of the target language may have little to do with
the execution model of the source language, and that, too, can limit or complicate
the translation from one to the other. C was designed as a language for writing
an operating system (namely, UN*X), so by deliberate policy, it explicitly manages
memory. That fact can lead to all sorts of excesses, such as pointers running amuck
in the sense that the programmer loses all control over them-a situation that does
not arise with Lisp, which is a safe language in that respect.
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In addition, C is not particularly adapted to writing functional programs nor
recursive programs either because calling a function there is notoriously expensive.
Programmers generally dislike its slowness for that and consequently use it as little
as possible, a practice that justifies the implementers in not trying to improve it
since they know that programmers seldom use it because it's slow, etc.

Be that as it may, compiling into C is in fashion now, as witnessed by Kyoto
COMMON LISP in [YH85], and refined somewhat in AKCL by William Schelter, or
WCL in [Hen92b], or CLICC in [Hof93], or EcoLisp in [Att95], or Scheme~C in
[Bar89], or Sqil in [Sen91], or ILOG TALK in [IL094], or Bigloo in [Ser94].

What we'll present is no rival to those. It's just a skeleton of a compiler, but
it will suffice to show you a great number of interesting points. A simple solution
(some would even say a trivial one) would be to change the byte-code generator we
saw in Chapter 7 [see p. 223] just enough to make it generate C. Each instruction
byte could be expanded into a few appropriate C instructions. However, we're going
to take a completely different path, using the technique of flat environments that
we alluded to earlier. [see p. 202] This new compiler will be partitioned into
passes, most of which will be produced by specialized code walkers. This technique
is based on a systematic use of objects to represent and transform the code to
compile. In fact, we think this systematic use of objects will make this chapter
particularly elegant and easy to extend.

10.1 Objectification

We've already presented a converter from programs into objects in Section 9.11.1,
[see p. 344]. It takes care of any possible macro expansions that might be found
and it returns an instance of the class Program. To fill out that curt description,
we offer the illustration in Figure 10.1 of one result of that phase of objectification.
In that illustration, we'll use the following expression, which contains at least one
example of every aspect we studied. For the sake of brevity, the names of classes
have been abbreviated; only one part of the example appears in the figure; lists
have been put into giant parentheses. We'll come back to this example in what
follows.

(begin
(set! index 1)
«lambda (enter. tmp)

(set! tmp (enter (lambda (i) (lambda x (cons i x»»)
(if enter (enter tmp) index) )

(lambda (f)
(set! index (+ 1 index»
(f index) )

'foo » ~ (2 3)

10.2 Code Walking

Code walking, as in [Cur89, Wat93], is an important technique. It consists of
traversing a tree that represents a program to compile and enriching it with various
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annotations to prepare the ultimate phase, that is, code generation. Depending on
what we want to establish, we may favor various schemes for traversing the tree and
various ways of collecting information. In short, there is no universal code walker!
The evaluators in this book are rather special code walkers; so are precompilation
functions like meaning in the chapter about fast interpretation [see p. 207].
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Figure 10.1 Objectified code

We're going to define only one code walker; it systematically modifies the tree
that we provide it. To begin, it will be an excellent example of a metamethod. The
function update-walk! takes these arguments: a generic function, an object of
the class Program, and possibly supplementary arguments. It replaces each field
of the object containing an instance of the class Program by the result of applying
that generic function to the value of that field. Its return value is the initial object.
To do all that, each object is inspected; the fields of its class are extracted one
by one, verified, and recursively analyzed to see whether they belong to the class
Program. You can see now why the class Arguments (which of course represents
the arguments of an instance of Application) inherit from the class Program: they
have to be available for inspection by a code walker.

(define (update-walk! go. args)
(for-each (lambda (field)
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(let «vf (field-value 0 field»)
(when (Program? vf)

(let «v (if (null? args) (g vf)
(apply g vf args) »)

(set-field-value! 0 v field) ) ) ) )
(Class-fields (object->class 0» )

o )

Programming like that may seem simplistic to you, but it's highly convenient,
as we'll prove in the following sections, where our program will metamorphose very
efficiently. It's obvious that some of the passes for various transformations could
be combined and thus speeded up. We'll avoid that temptation so that we can
clearly separate the effects of these transformations.

10.3 Introducing Boxes

We'll suppress all local assignments in favor of functions operating on boxes. You've
already seen this transformation earlier in this book [see p. 114]. This transfor
mation will also be useful as our first example of code walking.

What we want is to replace all the assignments of local variables by writing in
boxes. We also have to be sure that reading variables is transformed into reading
in boxes. If we take into account the interface to the code walker, we must provide
it with a generic function carrying out this work. By default, this generic function
recursively invokes the code walker for the discriminating object. The interaction
between the generic function and the code walker is the chief strength of this union.

(define-generic (insert-box! (0 Program»
(update-walk! insert-box! 0) )

We'll introduce three new types of syntactic nodes to represent programs trans
formed in this way. We'll document them as part of the transformations that need
them.

(define-class Box-Read Program (reference»

(define-class Box-Write Program (reference form»
(define-class Box-Creation Program (variable»

Quite fortunately for us, during objectification, we've taken care to mark all
the mutable local variables by their field mutable? Consequently, transforming a
read of a mutable variable into an instance of Box-Read is easy.

(define-method (insert-box! (0 Local-Reference»
(if (Local-Variable-mutable? (Local-Reference-variable 0»

(make-Box-Read 0)
o ) )

Transforming assignments is equally easy. A local assignment is transformed
into an instance of Box-Write. However, we must take into account the structure
of the algorithm for code walking, so we must not forget to call the code walker
recursively on the form providing the new value of the assigned variable.

(define-method (insert-box! (0 Local-Assignment»
(make-Box-Write (Local-Assignment-reference 0)
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(insert-box! (Local-Assignment-form 0» ) )

Once every access (whether read or write) to mutable variables has been trans
formed to occur within boxes, the only thing left to do is to create those boxes.
Local mutable variables can be created only by lambda or let forms, that is, by
Function or Fix-Let! nodes. The technique is to insert an appropriate way to
"put it in a box" in front of the body of such forms. [see p. 114] So here is
how to specialize the function insert-box! for the two types of nodes that might
introduce mutable local variables. They both depend on a subfunction to insert as
many instances of Box-Creation in front of their body as there are mutable local
variables for which boxes must be allocated.

(define-method (insert-box! (0 Function»
(set-Function-body!
o (insert-box!

(boxify-mutable-variables (Function-body 0)
(Function-variables 0) ) ) )

o )

(define-method (insert-box! (0 Fix-Let»
(set-Fix-Let-arguments! 0 (insert-box! (Fix-Let-arguments 0»)
(set-Fix-Let-body!
o (insert-box!

(boxify-mutable-variables (Fix-Let-body 0)
(Fix-Let-variables 0) ) ) )

o )

(define (boxify-mutable-variables form variables)
(if (pair? variables)

(if (Local-Variable-mutable? (car variables»
(make-Sequence
(make-Box-Creation (car variables»
(boxify-mutable-variables form (cdr variables» )

(boxify-mutable-variables form (cdr variables» )
form ) )

With that, the transformation is complete and has been specified in only four
methods, focused solely on the forms that are important for transformations. You
can see the result in Figure 10.2, representing only the subparts of the previous
figure that have changed.

10.4 Elirninat.ing Nested Functions

As a language, C does not support functions inside other functions. In other words,
a lambda inside another lambda cannot be translated directly. Consequently, we
must eliminate these cases in a way that turns the program to compile into a simple
set of closed functions, that is, functions without free variables. Once again, we're
lucky to find such a natural transformation. We'll call it lambda-lifting because it
makes lambda forms migrate toward the exterior in such a way that there are no
remaining lambda forms in the interior. Many variations on this transformation

1. Even though we have not identified reducible applications, we could at least have a method to
handle them.
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are possible, depending on the qualities we want to preserve or promote, as In
[WS94, KH89, CH94].

Evaluating a lambda form leads to synthesizing a closure, a kind of record that
encloses its definition environment. When a closure is invoked, a special function
(that we have named invoke) knows how to evaluate the body of this closure by
providing it the means to retrieve the values of free variables present in the body.
In fact, only the invoker knows how to invoke closures, so we can replace these
closures by records without disturbing the rest of the program on condition that
every functional application passes by the generic invoker, invoke, the one that
knows how to do this.

Let's look at an example illustrating the variation known as OO-lifting in
[Que94]. As usual, we'll use our familiar guinea pig, the factorial function, like
this:

(define (fact n k)
(if (= n 0) (k 1)

(fact (- n 1) (lambda (r) (k (* n r»» ) )

We can translate it to eliminate the internal lambda form enclosing the variables
nand k, like this:

(define-class Fact-Closure Object (n k»
(define-method (invoke (f Fact-Closure) r)

(invoke (Fact-Closure-k f) (* (Fact-Closure-n f) r» )
(define (fact n k)

(if (= n 0) (invoke k 1)
(fact (- n 1) (make-Fact-Closure n k» ) )

The essence of the transformation is to replace the way the closure is built by
an allocation of an object (make-Fact-Closure) containing the free variables of
the body of the closure (here, nand k). A particular class is associated with this
object (here, Fact-Closure) so that invoke can determine which method to use
when this object is invoked.

The basis of the transformation is, for each abstraction (Function), to calcu
late the set of free variables present in its body. A new class-FIat-Function,
refining Function-will store that information. The collection of free variables will
be represented by instances of the class Free-Environment and will be ended by
No-Free. These two classes are similar to the classes Arguments and No-Argument:
they also derive from Program, since they also represent terms that can be evalu
ated. We'll also identify references to these free variables by a particular class of
reference: Free-Reference.

(define-class Flat-Function Function (free»

(define-class Free-Environment Program (first others»
(define-class No-Free Program (»
(define-class Free-Reference Reference (»

To make this transformation work, the code walker will help out again. The
function lift! is the interface for the entire treatment. The generic function
lift-procedures! serves as the argument to the code walker. It takes two sup
plementary arguments itself: the abstraction flatfun in which the free variables
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are stored and the list of current bound variables in the variable vars. By default,
the code walker is called recursively for all the instances of Program.

(define (lift! 0)
(lift-procedures! 0 #f '(» )

(define-generic (lift-procedures! (0 Program) flatfun vars)
(update-walk! lift-procedures! 0 flatfun vars) )

Only three methods are needed for the transformation. The first identifies
the references to free variables, transforms them, and collects them in the current
abstraction. The function adjoin-free-variable adds any free variable that is
not yet one of the free variables already identified in the current abstraction.

(define-method (lift-procedures! (0 Local-Reference) flatfun vars)
(let «v (Local-Reference-variable 0»)

(if (memq v vars)
o (begin (adjoin-free-variable! flatfun 0)

(make-Free-Reference v) ) ) ) )

(define (adjoin-free-variable! flatfun ref)
(when (Flat-Function? flatfun)

(let check «free* (Flat-Function-free flatfun»)
(if (No-Free? free*)

(set-Flat-Function-free!
flatfun (make-Free-Environment

ref (Flat-Function-free flatfun) ) )
(unless (eq? (Reference-variable ref)

(Reference-variable
(Free-Environment-first free*) ) )

(check (Free-Environment-others free*» ) ) ) )

The form Fix-Let creates new bindings that might hide others. Consequently,
we must add the variables of Fix-Let to the current bound variables before we
analyze its body. At that point, it is very useful to save the reducible applications
as such because it would be very costly to build these closures at execution time.

(define-method (lift-procedures! (0 Fix-Let) flatfun vars)
(set-Fix-Let-arguments!
o (lift-procedures! (Fix-Let-arguments 0) flatfun vars)

(let «newvars (append (Fix-Let-variables 0) vars»)
(set-Fix-Let-body!
o (lift-procedures! (Fix-Let-body 0) flatfun nevvars)

o ) )

Finally, the most complicated case is how to treat an abstraction. The body
of the abstraction will be analyzed, and an instance of Flat-Function will be
allocated to serve as the receptacle for any free variables discovered there. Since the
free variables found there can also be free variables in the surrounding abstraction,
the code walker is started again on this list of free variables which have been cleverly
coded as a subclass of Program.

(define-method (lift-procedures! (0 Function) flatfun vars)
(let* «localvars (Function-variables 0»

(body (Function-body 0»
(newfun (make-Flat-Function localvars body (make-No-Free») )
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(set-Flat-Function-body!
newfun (lift-procedures! body newfun localvars)

(let «free* (Flat-Function-free newfun»)
(set-Flat-Function-free!
newfun (lift-procedures! free* flatfun vars) ) )

newfun ) )

As usual, we'll show you the partial effect of this transformation on the current
example in Figure 10.3.
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(FlatFun LocVar
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Figure 10.3 (lambda (i) (lambda x ... »

Collecting Quotations and Functions

The preceding transformation left functions in place since syntactically there were
still closed lambda forms (that is, ones with no more free variables) inside other
lambda forms. In doing that, however, we were merely temporizing to get a jump
on the problem! The next code walker will extract quotations and definitions of
functions from a program in order to put them at a higher level. We'll need only
two special methods to do that.

The function extract-things! will transform a program into an instance
of Flattened-Program, a specialization of the class Program, one provided with
three supplementary fields: form containing the program to evaluate; quotations,
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the list of quotations, of course; and def init ions, the list of function defini
tions. Quotations will be handled by references to global variables of a new class:
Quotation-Variable. Functions will be organized by their order number, an inte
ger, index. Finally, the creation of a closure will be translated by a new syntactic
node: Closure-Creation. (Very soon a lot of details will all become clearer at the
same time.)

(define-class Flattened-Program Program (form quotations definitions»

(define-class Quotation-Variable Variable (value»

(define-class Function-Definition Flat-Function (index»
(define-class Closure-Creation Program (index variables free»

Strictly speaking, we have to say that the code walker is the result of inter
action between extract-things! and the generic function extract!. In order
to eliminate every recourse to a global variable, (for example, so we can compile
programs in parallel), the results of the code walker will be inserted in the final
object that is passed as a supplementary argument to the generic function.

(define (extract-things! 0)
(let «result (make-Flattened-Program 0 ,() '(»»

(set-Flattened-Program-form! result (extract! 0 result»
result ) )

(define-generic (extract! (0 Program) result)
(update-walk! extract! 0 result) )

Quotations are simply accumulated in the field for quotations of the final pro
gram; they are replaced by references to global variables initialized with these
quotations.

(define-method (extract! (0 Constant) result)
(let* «qv* (Flattened-Program-quotations result»

(qv (make-Quotation-Variable (length qv*)
(Constant-value 0) » )

(set-Flattened-Program-quotations! result (cons qv qv*»
(make-Global-Reference qv) ) )

We search for abstractions in the nodes of the class Flat-Function; at the same
time, these nodes are transformed into instances of Closure-Creation. You might
also imagine sharing those same abstractions; that is, we could make adjoin-def
inition! a memo-function. One point that might seem strange is that when we
build the closure, we save the list of variables from the original abstraction. We
will save it to make the computation of the arity of the closure easier when we
generate C.

(define-method (extract! (0 Flat-Function) result)
(let* «newbody (extract! (Flat-Function-body 0) result»

(variables (Flat-Function-variables 0»
(freevars (let extract «free (Flat-Function-free 0»)

(if (Free-Environment? free)
(cons (Reference-variable

(Free-Environment-first free)
(extract
(Free-Environment-others free)

'() ) »
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(index (adjoin-definition!
result variables newbody freevars » )

(make-Closure-Creation index variables (Flat-Function-free 0» ) )

(define (adjoin-definition! result variables body free)
(let* «definitions (Flattened-Program-definitions result»

(newindex (length definitions» )
(set-Flattened-Program-definitions!
result (cons (make-Function-Definition

variables body free newindex
def init ions ) )

newindex ) )

Again, to illustrate the results of this transformation, you can see a few choice
extracts from the example in Figure 10.4.
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Figure 10.4 (begin (set! . .. ) ((lambda... ) ... »

Finally, we are going to convert the entire program into the application of a
closure. That is, 1r will be transformed into ((lambda () 1r».

(define (closurize-main! 0)
(let «index (length (Flattened-Program-definitions 0»»

(set-Flattened-Program-definitions!
o (cons (make-Function-Definition

'() (Flattened-Program-form 0) ,() index
(Flattened-Program-definitions 0) ) )

(set-Flattened-Program-form!
o (make-Regular-Application

(make-Closure-Creation index '() (make-No-Free»
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(make-No-Argument) ) )
o ) )

Collecting Temporary Variables

We have a decisive advantage over you, the reader, because we know already what
we want to generate. Hoping to be original, we have chosen to convert Scheme
expressions into C expressions. Deciding to do that might seem eccentric since C
is a language that involves instructions, but our choice lets us respect the structure
of Scheme. One problem then is that nodes of type Fix-Let cannot be translated
into C because C does not have expressions that let us introduce local2 variables.
Our solution is to collect all the local variables from the Fix-Let forms that are
introduced, C function by C function. (This point will be clearer soon.) [see p.
370]

For that reason, we'll introduce a new code walker. Its goal is to take a census
of all the local variables from internal nodes of type Fix-Let and then rename
them. This a-conversion will eliminate any potential name conflicts. The tempo
rary variables are accumulated in a new specialization of Function-Definition,
namely, the class With-Temp-Function-Definition.

(define-class With-Temp-Function-Definition Function-Definition
(temporaries) )

The function gather-temporaries! implements that transformation. It will
use the generic function collect-temporaries! in concert with the code walker.
The second argument of that generic function will be the place where temporary
local variables are stored. The third argument stores the list associating old names
of variables with their new names so that the renaming can be carried out.

(define (gather-temporaries! 0)

(set-Flattened-Program-definitions!
o (map (lambda (def)

(let «flatfun (make-With-Temp-Function-Definition
(Function-Definition-variables def)
(Function-Definition-body def)
(Function-Definition-free def)
(Function-Definition-index def)
'() »)

(collect-temporaries! flatfun flatfun '(» ) )
(Flattened-Program-definitions 0) ) )

o )

(define-generic (collect-temporaries! (0 Program) flatfun r)
(update-walk! collect-temporaries! 0 flatfun r) )

To achieve all our wishes, we need only three more methods. Local references
are renamed, if need be, and we must not forget to rename any variables that we
put into boxes.

(define-method (collect-temporaries! (0 Local-Reference) flatfun r)
(let* «variable (Local-Reference-variable 0»

2. However, gee offers such an expression in the syntactic form ({ ... }).
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(v (assq variable r» )
(if (pair? v) (make-Local-Reference (cdr v» 0) )

(define-method (collect-temporaries! (0 Box-Creation) flatfun r)
(let* «variable (Box-Creation-variable 0»

(v (assq variable r» )
(if (pair? v) (make-Box-Creation (cdr v» 0) ) )

The most complicated method, of course, is the one involved with Fix-let. It
is recursively invoked on its arguments, and then it renames its local variables by
means of the function new-renamed-variable. It also adds those new variables to
the current function definition and is finally recursively invoked on its body in the
appropriate new substitution environment.

(define-method (collect-temporaries! (0 Fix-Let) flatfun r)
(set-Fix-Let-arguments!
o (collect-temporaries! (Fix-Let-arguments 0) flatfun r)

(let* «newvars (map new-renamed-variable
(Fix-Let-variables 0) »

(newr (append (map cons (Fix-Let-variables 0) newvars) r» )
(adjoin-temporary-variables! flatfun newvars)
(set-Fix-Let-variables! 0 newvars)
(set-Fix-Let-body!
o (collect-temporaries! (Fix-Let-body 0) flatfun newr)

o ) )

(define (adjoin-temporary-variables! flatfun newvars)
(let adjoin «temps (With-Temp-Function-Definition-temporaries

flatfun »
(vars newvars) )

(if (pair? vars)
(if (memq (car vars) temps)

(adjoin temps (cdr vars»
(adjoin (cons (car vars) temps) (cdr vars»

(set-With-Temp-Function-Definition-temporaries!
flatfun temps ) ) ) )

When variables are renamed, a new class of variables comes into play along
with a counter to number them sequentially.

(define-class Renamed-Local-Variable Variable (index»

(define renaming-variables-counter 0)

(define-generic (new-renamed-variable (variable»)

(define-method (new-renamed-variable (variable Local-Variable»
(set! renaming-variables-counter (+ renaming-variables-counter 1»
(make-Renamed-Local-Variable
(Variable-name variable) renaming-variables-counter ) )

10.7 Taking a Pause

The following Scheme expression textually suggests the final result of the meta
morphoses that our example has submitted to so far. That is,

1. We introduced boxes.
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2. We eliminated nested functions.

3. We collected quotations and function definitions.

4. We gathered up the temporary variables.

; initializing a temporary variable

;putting it into a box
; mutable variable

(make-Closure_2» )
(box-read tmp_2» index) ) ) )

; invocation of main program

(define quote_5 'foo) ; collected quotation
(define-class Closure_O Object (» ; abstraction (lambda (f) ... )
(define-method (invoke (self Closure_O) f)

(begin
(set! index (+ 1 index»
(invoke f index) ) ) ; calculated call

(define-class Closure_1 Object (i» ; abstraction (lambda x ... )
(define-method (invoke (self Closure_1) . x)

(cons (Closure_1- i self) ; closed variable i
x ) )

(def ine-class Closure_2 Object (» ; abstraction (lambda (i) ... )

(define-method (invoke (self Closure_2) i)
(make-Closure_1 i) ) ; allocation of a closure

(define-class Closure_3 Object (» ; abstraction (lambda () program)
(define-method (invoke (self Closure_3»

«lambda (enter_1 tmp_2) ; renaming local variables
(set! index 1)
(set! cnter_1 (make-Closure_O»
(set! tmp_2 (cons quote_5 '(»)
(set! tmp_2 (make-box tmp_2»
(box-write! tmp_2

(invoke cnter_1
(if cnter_1 (invoke cnter_1

(invoke (make-Closure_3»

10.8 Generating C

Now we've actually arrived on the enchanted shores of code generation, and as
it happens, generating C. We're actually ready. There are still just a few more
explanations needed. Your author does not pretend to be an expert in C, and
in fact, he owes what he knows about C to careful reading in such sources as
[IS090, HS91, CEK+89]. He assumes that you've at least heard of C, but you're
not encumbered by any preconceived notion of what it is exactly.

The abstract syntactic tree is complete and just waiting to be compiled, like
by a pretty-printer, into the C language. Code generation is simple since it is
so high-level. The function compile->C takes an S-expression, applies the set of
transformations we just described to it in the right order, and eventually generates
the equivalent program on the output port, out.

(define (compile->C e out)
(set! g.current '(»
(let «prg (extract-things! (lift! (Sexp->object e»»)

(gather-temporaries! (closurize-main! prg»
(generate-C-program out e prg) ) )
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(define (generate-C-program out e prg)
(generate-header out e)
(generate-global-environment out g.current)
(generate-quotations out (Flattened-Program-quotations prg»
(generate-functions out (Flattened-Program-definitions prg»
(generate-main out (Flattened-Program-form prg»
(generate-trailer out)
prg )

Like any other C program, and more generally like some animated creature,
this one has a beginning, middle, and end. So that we can have a trace, the
compiled expression is printed nicely as a comment (by the function pp which is
not standard in Scheme) A directive to the C preprocessor includes a standard
header file, scheme. h, to define all we need for the rest of the compilation. From
now on, we will also use the usual non-standard function format to print C code.

(define (generate-header out e)
(format out "1* Compiler to C $Revision: 4.1 $ -hIt)

(pp e out) ; DEBUG
(format out" *I-%-%#include \"scheme.h\"-%")

(define (generate-trailer out)
(format out "-%1* End of generated code. */-%") )

Now things get complicated. The compiled result of our current example ap
pears on page 388. You might want to look at it before you read further.

10.8.1 Global Environment

The global variables of the program to compile fall into two categories: predefined
variables, like car or +, and mutable global variables. We assume that predefined
global variables cannot be changed and belong to a library of functions that will
be linked to the program to make an executable. In contrast, we have to generate
the global environment of variables that can be modified. In other words, we
will exploit the contents of g. current where we accumulated the mutable global
variables that appeared as free variables in the program submitted to the compiler.

The generation that we're tending towards depends on the fact that we compile
an entire program, not just a fragment expecting separate compilation. (Separate
compilation raises problems that we simply did not have space to cover here.) [see
p. 260]

In order to simplify the C code that we generate, we will use C macros to make
the code more readable. For example, we will declare a global variable in C by
means of the macro SCM..DefineGlobalVariable. The second argument of that
macro is the character string corresponding to the original name3 in Scheme. It
can be used during debugging.

(define (generate-global-environment out gv*)
(when (pair? gv*)

3. The read function used to read the examples to compile in this chapter converts all the names
of symbols in upper case.
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(format out "-'/.1* Global environment: *1-'/.")
(for-each (lambda (gv) (generate-global-variable out gv»

gv* » )
(define (generate-global-variable out gv)

(let «name (Global-Variable-name gv»)
(format out "SCM_DefineGlobalVariable(-A,\I-A\I);-'/."

(IdScheme->IdC name) name ) ) )

There you can see the first problem, which is that the identifiers in Scheme
are not always legal identifiers in C. The function IdScheme->IdC mangles legal
Scheme identifiers into legal C identifiers. In doing so, the main problem is to
eliminate illegal characters while still insuring a translation plan that keeps the
name more or less reversible so that when we encounter an identifier in C we can
reconstruct the original name of the variable in Scheme. There are many solutions
to this problem, but ours is to translate problematic characters into normal ones
and then to verify whether the name we get that way has already been used so
that we avoid name conflicts. The code for that is not particularly interesting
but, just so we hide nothing, here are the details of those functions. The variable
Scheme->C-names-mapping stores all the translations of names. It is predefined
with a few translations already imposed on it. Others can be added there, though
we've omitted them here.

(define Scheme->C-names-mapping
,( (* . "TIMES")

« . "LESSP")
(pair? . "CONSP")
(set-cdr! . "RPLACD")
) )

(define (IdScheme->IdC name)
(let «v (assq name Scheme->C-names-mapping»)

(if (pair? v) (cdr v)
(let «str (symbol->string name»)

(let retry «Cname (compute-Cname str»)
(if (Cname-clash? Cname Scheme->C-names-mapping)

(retry (compute-another-Cname str»
(begin (set! Scheme->C-names-mapping

(cons (cons name Cname)
Scheme->C-names-mapping ) )

Cname ) ) ) ) ) ) )

When there is a conflict, we synthesize a new name by suffixing the original
name by an increasing index.

(define (Cname-clash? Cname mapping)
(let check «mapping mapping»

(and (pair? mapping)
(or (string=? Cname (cdr (car mapping»)

(check (cdr mapping» ) ) ) )

(define compute-another-Cname
(let «counter 1»

(lambda (str)
(set! counter (+ 1 counter»
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(compute-Cname (format #f "-A_-A" str counter» ) ) )

(define (compute-Cname str)
(define (mapcan f 1)

(if (pair? 1)
(append (f (car 1» (mapcan f (cdr 1»)
,() ) )

(define (convert-char char)
(case char

«#\_) ,(#\- #\_»
«#\?) '(#\p»
«#\!) '(#\i»
«#\<) '(#\1»
«#\» '(#\g»
«#\=) '(#\e»
«#\- #\1 #\* #\:) ,(»
(else (list char» ) )

(let «cname (mapcan convert-char (string->list str»»
(if (pair? cname) (list->string cname) "weird") ) )

An isolated underscore cannot appear in the generated names. We'll use that
character, for example, in the names of temporary variables, with no risk of confu
sion. This translation plan cannot translate the name 1+, but since that one is not
obligatorily a legal identifier in Scheme, we're not going to worry too long about
it.

10.8.2 Quotations

Quotations have to be translated into a fragment of C that can be retrieved at
execution time. We'll introduce an innovation here by presenting a translation plan
where they will be translated only by declarations of data, excluding all executable
code. We also guarantee that quotations will take the least possible space. That
is, subexpressions will be identified so they can be shared.

The function generate-quotations globally insures the translation of quota
tions. To simplify what follows, we'll ignore the case of vectors, large integers,
rationals, floating-point numbers, and any characters that can be handled without
additional considerations.

(define (generate-quotations out qv*)
(when (pair? qv*)

(format out "-i.I* Quotations: *I-i.")
(scan-quotations out qv* (length qv*) '(» ) )

What's actually happening is that scan-quotations analyzes the quoted values
as they appear in the instances of Quotation-Variable. Whenever possible, these
values are shared. The predicate already-seen-value? detects that possibility.

(define (scan-quotations out qv* i results)
(when (pair? qv*)

(let* «qv (car qv*»
(value (Quotation-Variable-value qv»
(other-qv (already-seen-value? value results»

(cond (other-qv
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(generate-quotation-alias out qv other-qv)
(scan-quotations out (cdr qv*) i (cons qv results»

«C-value? value)
(generate-C-value out qv)
(scan-quotations out (cdr qv*) i (cons qv results»

«symbol? value)
(scan-symbol out value qv* i results)

«pair? value)
(scan-pair out value qv* i results) )

(else (generate-error "Unhandled constant" qv» ) ) ) )

(define (already-seen-value? value qv*)
(and (pair? qv*)

(if (equal? value (Quotation-Variable-value (car qv*»)
(car qv*)
(already-seen-value? value (cdr qv*» ) ) )

All the quotations are identified in C by lexemes prefixed by thing. Detecting
something that can be shared is a matter of simply identifying two lexemes them
selves. We do that with a C macro that implements generate-quotation-alias.
To make it easier to read the generated program, we comment the shared value.

(define (generate-quotation-alias out qv1 qv2)
(format out "#define thing-A thing-A 1* -S *1-'1."

(Quotation-Variable-name qv1)
(Quotation-Variable-name qv2)
(Quotation-Variable-value qv2) ) )

The predicate C-value? tests whether values are immediate. When they are,
we translate them into C with no further ado. The function generate-C-value
actually does that. Immediate values are the empty list, Booleans, short integers,
and character strings. All those values are translated into appropriate C objects,
and we'll assume for the moment that there are appropriate C macros to define
character strings, integers, both Booleans, and the empty list. All these C entities
are prefixed by SCM_. No doubt C gurus will notice that the values restricting small
numbers limit them to 16-bits in one's complement.

(define *maximal-fixnum* 16384)

(define *minimal-fixnum* (- *maximal-fixnum*»
(define (C-value? value)

(or (null? value)
(boolean? value)
(and (integer? value)

« *minimal-fixnum* value)
« value *maximal-fixnum*)

(string? value) ) )

(define (generate-C-value out qv)
(let «value (Quotation-Variable-value qv»

(index (Quotation-Variable-name qv» )
(cond «null? value)

(format out "#define thing-A SCM_nil 1* () *1-'1."
index) )

«boolean? value)
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(format out "#define thing-A -A 1* -S *I-i."
index (if value "SCM_true" "SCM_false") value) )

«integer? value)
(format out "#define thing-A SCM_Int2fixnum(-A)-i."

index value ) )
«string? value)
(format out "SCM_DefineString(thing-A_object,\"-A\");-i."

index value )
(format out "#define thing-A SCM_Wrap(8cthing-A_object)-i."

index index ) ) ) ) )

When values are composites (that is, dotted pairs or symbols), we decompose
them to determine whether sharing is possible so that we can rebuild them later
from their components. A symbol is reconstructed only from the characters in its
name. Strings are created prior to symbols.

(define (scan-symbol out value qv* i results)
(let* «qv (car qv*»

(str (symbol->string value»
(strqv (already-seen-value? str results» )

(cond (strqv (generate-symbol out qv strqv)
(scan-quotations out (cdr qv*) i (cons qv results» )

(else
(let «newqv (make-Quotation-Variable

i (symbol->string value) »)
(scan-quotations out (cons newqv qv*)

(+ i 1) results) ) ) ) ) )

(define (generate-symbol out qv strqv)
(format out "SCM_DefineSymbol(thing-A_object,thing-A); 1* -S *I-i."

(Quotation-Variable-name qv)
(Quotation-Variable-name strqv)
(Quotation-Variable-value qv) )

(format out "#define thing-A SCM_Wrap(8cthing-A_object)-i."
(Quotation-Variable-name qv) (Quotation-Variable-name qv) ) )

For dotted pairs, we begin by generating their car and then their cdr, searching
for any possible shared things. Sharing might even occur between the car and cdr.
The programming style by continuations inspires the function scan-pair, as you
can see.

(define (scan-pair out value qv* i results)
(let* «qv (car qv*»

(d (cdr value»
(dqv (already-seen-value? d results»

(if dqv
(let* «a (car value»

(aqv (already-seen-value? a results» )
(if aqv

(begin
(generate-pair out qv aqv dqv)
(scan-quotations out (cdr qv*) i (cons qv results»

(let «newaqv (make-Quotation-Variable i a»)
(scan-quotations out (cons newaqv qv*)



378 CHAPTER 10. COMPILING INTO C

(+ i 1) results) ) )
(let «newdqv (make-Quotation-Variable i d»)

(scan-quotations
out (cons newdqv qv*) (+ i 1) results) ) ) )

(define (generate-pair out qv aqv dqv)
(format out

"SCM_DefinePair(thing-A_object,thing-A,thing-A); 1* -S *1-'1."
(Quotation-Variable-name qv)
(Quotation-Variable-name aqv)
(Quotation-Variable-name dqv)
(Quotation-Variable-value qv) )

(format out "#define thing-A SCM_Wrap(8t:thing-A_object)-'I."
(Quotation-Variable-name qv) (Quotation-Variable-name qv) ) )

Now we're going to look at an example and get into the details of data repre
sentation.

10.8.3 Declaring Data

Let's take a simple program made of a single quotation: (quote «#F #T) (FOO .
"FOO") 33 FOO . "FOO")). The sort of compilation that we have just described
leads to what follows here. There are a few comments to elucidate it. Enjoy!

1* Source expression:
'«#F #T) (FOa . "FOa") 33 FOO . "Faa") *1

#include "scheme.h"

1* Quotations *1
SCM_DefineString(thing4_object,"FOO");
#define thing4 SCM_Wrap(8t:thing4_object)
SCM_DefineSymbol(thing5_object,thing4); 1* Faa *1
#define thing5 SCM_Wrap(8t:thing5_object)
SCM_DefinePair(thing3_object,thing5,thing4); 1* (Faa. "Faa") *1
#define thing3 SCM_Wrap(8t:thing3_object)
#define thing6 SCM_Int2fixnum(33)
SCM_DefinePair(thing2_object,thing6,thing3); 1* (33 Faa. "FOO") *1
#define thing2 SCM_Wrap(8t:thing2_object)
SCM_DefinePair(thing1_object,thing3,thing2);

1* «Faa. "FOO") 33 FOO . "FaO") *1
#define thing1 SCM_Wrap(lthing1_object)
#define thing9 SCM_nil 1* () *1
#define thing10 SCM_true 1* #T *1
SCM_DefinePair(thing8_object,thing10,thing9); 1* (#T) *1
#define thing8 SCM_Wrap(tthing8_object)
#define thing11 SCM_false 1* #F *1
SCM_DefinePair(thing7_object,thing11,thing8); 1* (#F #T) *1
#define thing7 SCM_Wrap(lthing7_object)
SCM_DefinePair(thingO_object,thing7,thing1);

1* «#F #T) (FOa . "FOO") 33 FaD. "Faa") *1
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#define thingO SCM_Wrap(tthingO_object)
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The first thing we create is the character string "FOO". To do that, we use
the macro SCM_DefineString. As its first argument, it takes the name the object
will have in C. As its second argument, it takes the character string. Similarly, a
symbol is created by the macro SCM_DefineSymbol. As its first argument, it also
takes the name that the object will have in C, and as its second argument, it takes
the character string that names this symbol. Likewise, a dotted pair is created by
the macro SCM_DefinePair. As its first argument, it, too, takes the name the object
will have in C, and its second and third arguments are the contents of the car and
cdr.

Predefined objects like Booleans or the empty list, of course, are not created
anew. Rather, they are referred to by the names SCM_true, SCM_false, and SCM_nil.

Later, [see p. 390], we'll indicate the exact representations of values in Scheme.
Compilation is largely independent of the particular representation that we adopt.
For the time being, it suffices to know that the creation directives like SCM_Define...

allocate only objects and that we get the legal values referring to them by con
verting their address with SCM_Wrap. As for short integers, they are converted by
SCM_Int2fixnum. For that reason, after any object is allocated, we define the C value
representing it under a name beginning with thing. For example, thing4 indicates
the character string "FOO" while thing6 is the short integer 33. More precisely,
thing4 is the pointer to the object thing4_obj ect, which (strictly speaking) is the
character string.

The character string "FOO" is shared, as is the S-expression (FOO . "FOO"),
between the objects thing4 and thing3.

10.8.4 Compiling Expressions

Compiling expressions from Scheme into C is, of course, the main task of our
compiler. Here again we are innovating because we translate expressions into ex
pressions. That way, we gain a certain clarity in the result, which respects the
structure of the source program. In spite of its obvious wisdom, this choice nev
ertheless poses a delicate problem since it deviates slightly from the philosophy
of C. C prefers instructions to expressions. This deviation is not too troublesome
except when we are debugging, say, with gdb, the symbolic debugger from the
Free Software Foundation. In single-step mode, execution occurs instruction by
instruction-too gross a granularity for our choice. If we had wanted to compile
into instructions (rather than into expressions), we would have adopted a technique
similar to that the byte-code compiler. [see p. 223]

The actual compilation of expressions is carried out by a generic function, ->C.
Its first argument is the expression to compile, of course, and its second argument
is the output port on which to write the resulting C. Since we are writing to a
file, we have to pay close attention to producing the code sequentially, without
backtracking, in a single pass. [see p. 234]

(define-generic (->C (e Program) out»
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In contrast to the preceding transformations, we're not going to use our generic
code walker (because there is no default treatment here), but rather a method of
generating code for each type of syntactic node. Thus there is nothing left for
us to do except to enumerate the methods. They are simple enough since they
systematically copy the equivalent C constructions.

As a language, C embodies very strong ideas of syntax with its precedence,
variable meanings for associativity, and so forth. Since the practice is widely rec
ommended, we are going to use parentheses throughout. For Lisp fans, this practice
will add a Lisp-like flavor, though it may be distasteful for habitual C users. The
parentheses will be specified by the macro between-parentheses.

(define-syntax between-parentheses
(syntax-rules ()

«between-parentheses out . body)
(let «out out»

(format out "(")
(begin . body)
(format out ")") ) ) ) )

Compiling References to Variables

There's more than one type of variable that we have to handle, but in general, we
assimilate a Scheme variable with a C variable. The appropriate method will be
subcontracted to the function reference->C, which will generally subcontract it
immediately to the function variable->C. These indirections enable us to specialize
their behavior more easily.

(define-method (->C (e Reference) out)
(reference->C (Reference-variable e) out) )

(define-generic (reference->C (v Variable) out»

(define-method (reference->C (v Variable) out)
(variable->C v out) )

(define-generic (variable->C (variable) out»

In a general way, a variable is translated by name into C, except when it has
been renamed or when it indicates a quotation.

(define-method (variable->C (variable Variable) out)
(format out (IdScheme-)IdC (Variable-name variable»)

(define-method (variable->C (variable Renamed-Local-Variable) out)
(format out "-A_-A"

(IdScheme->IdC (Variable-name variable»
(Renamed-Local-Variable-index variable) )

(define-method (variable->C (variable Quotation-Variable) out)
(format out "thing-A" (Quotation-Variable-name variable» )

However, there's a particular case for non-predefined global variables-the free
variables in the compiled program-because no analysis has told us whether or not
they have been initialized. We thus must verify that fact explicitly by means of
the macro SCM_CheckedGlobal. [see Ex. 10.2]

(define-method (reference->C (v Global-Variable) out)
(format out "SCM_CheckedGlobal")
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(between-parentheses out
(variable->C v out) ) )

The remaining case is that of free variables for which we will once more call the
appropriate macro: SCM_Free.

(define-method (->C (e Free-Reference) out)
(format out ISCM_Free")
(between-parentheses out

(variable->C (Free-Reference-variable e) out) ) )

Compiling Assignments

Assignments are handled even more simply because there are only two kinds: as
signments of global variables and assignments written in boxes. The assignment of
a global variable is translated by the assignment in C of the corresponding global
variable.

(define-method (->C (e Global-Assignment) out)
(between-parentheses out

(variable->C (Global-Assignment-variable e) out)
(format out "=")
(->C (Global-Assignment-form e) out) ) )

Compiling Boxes

As for boxes, there are only three operations involved. A C macro read- or write
accesses the contents of a box: SCM_Content. A function of the predefined library,
SCM_allocate_box, allocates a box when needed.

(define-method (->C (e Box-Read) out)
(format out ISCM_Content")
(between-parentheses out

(->C (Box-Read-reference e) out) ) )
(define-method (->C (e Box-Write) out)

(between-parentheses out
(format out ISCM_Content")
(between-parentheses out

(->C (Box-Write-reference e) out)
(format out "=")
(->C (Box-Write-form e) out) )

(define-method (->C (e Box-Creation) out)
(variable->C (Box-Creation-variable e) out)
(format out "= SCM_allocate_box")
(between-parentheses out

(variable->C (Box-Creation-variable e) out) ) )

Compiling Alternatives

The Scheme alternative is translated into the alternative expression in C, that is,
the ternary construction 7ro ?7rl : 7r2. Since every value different from False is con-
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sidered True in Scheme, we explicitly test this case. Of course, we put parentheses
in everywhere!

(define-method (->C (e Alternative) out)
(between-parentheses out

(boolean->C (Alternative-condition e) out)
(format out II-%? ")

(->C (Alternative-consequent e) out)
(format out 11-%: ")
(->C (Alternative-alternant e) out)

(define-generic (boolean->C (e) out)
(between-parentheses out

(->C e out)
(format out " != SCM_false") ) )

There you see one of the first sources of inefficiency in comparison to a real
compiler. In the case of a predicate like (if (pair? x)... ), it is inefficient for
the call to pair? to return a Scheme Boolean that we compare to SCM_false. It
would be a better idea for pair? to return a C Boolean directly. We could thus
specialize the function boolean->C to recognize and handle calls to predefined
predicates. We could also unify the Booleans of C and Scheme by adopting the
convention that False is represented by NULL. Then we could carry out type recovery
in order to suppress these cumbersome comparisons, as in [Shi91, Ser93, WC94].

Compiling Sequences

Sequences are translated into C sequences in this notation (7rl, ... ,7rn ) .

(define-method (->C (e Sequence) out)
(between-parentheses out

(->C (Sequence-first e) out)
(format out ",-%")
(->C (Sequence-last e) out) )

10.8.5 Compiling Functional Applications

We've organized functional applications into several categories: normal functional
applications, closed functional applications (where the function term is an abstrac
tion), functional applications where the invoked function is a function value of a pre
defined variable. These three types of applications are produced by three classes of
syntactic nodes: Regular-Application, Fix-Let, and Predefined-Application.

A normal functional application (/ Xl ... x n ) will be compiled into a C ex
pression SCM_invoke (/ ,n, Xl, . .. ,Xn ) , where n is the number of arguments passed
to the function and SCM_invoke is the specialized invocation function. To make the
result more legible, we'll use C macros for arity of less than four, like this:

#define SCM_invokeO(f) SCM_invoke(f,O)
#define SCM_invoke1(f,x) SCM_invoke(f,1,x)
#define SCM_invoke2(f,x,y) SCM_invoke(f,2,x,y)
#define SCM_invoke3(f,x,y,z) SCM_invoke(f,3,x,y,z)

For greater arity, we'll use this protocol directly:
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(define-method (->C (e Regular-Application) out)
(let «n (number-of (Regular-Application-arguments e»»

(cond «< n 4)
(format out "SCM_invoke-A" n)
(between-parentheses out

(->C (Regular-Application-function e) out)
(->C (Regular-Application-arguments e) out) ) )

(else (format out "SCM_invoke")
(between-parentheses out

(->C (Regular-Application-function e) out)
(format out ", - A" n)
(->C (Regular-Application-arguments e) out) ) ) ) ) )

Closed applications will be translated into a C sequence corresponding to their
body. A posteriori, they will justify our effort in collecting temporary variables
beforehand. By the way, that collecting is equivalent to frame coalescing, or fusing
temporary blocks, a compilation technique where we attempt to limit the number
of allocations by allocating larger blocks, as in [AS94, PJ87]. If we assume
that all temporary variables in the let forms have already been allocated, then
binding these variables to their values is just an assignment. We could translate
that assignment, in Lispian terms, by a rewrite rule like the following4 where we
coalesce the internal lets into a unique let surrounding all of them and associated
with the local renamings. That transformation is not really legal in the general case
because of this possibility: if ...1 returns more than once, and if 7r2 captures the
variable x, then this x renamed as xi will be shared. [see p. 189] Nevertheless,
the transformation is correct here because xi will not be modified; the variable
is immutable, even if set! is present since it has been boxed; and we're using a
technique of a flat environment where values are recopied.

(begin ...1 (let (xl x2) ...1
(let «x 7r1» (set! xl 7r1)

7r2 ) 7r2 [x~x 1]

···2 =>···2
(let «x 7r3» (set! x2 7r3)

7r4 ) ) 7r4[x~x2] )

We only have to assign each local variable its initialization value. Since all the
local variables have been identified and renamed, there's no possible confusion, nor
any scope problems. A particular generic function, bindings->C, translates those
bindings.

(define-method (->C (e Fix-Let) out)
(between-parentheses out

(bindings->C (Fix-Let-variables e) (Fix-Let-arguments e) out)
(->C (Fix-Let-body e) out) ) )

(define-generic (bindings->C variables (arguments) out»
(define-method (bindings->C variables (e Arguments) out)

(variable->C (car variables) out)

4. Of course, we could try to share even more of the places reserved for variables. That's the case
for the variables xi and x2 if there is no risk of confusion.
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(format out "=")
(->C (Arguments-first e) out)
(format out ", -%")
(bindings->C (cdr variables) (Arguments-others e) out) )

(define-method (bindings->C variables (e No-Argument) out)
(format out 1111) )

Finally, the case of functional applications where the function is the value of a
predefined variable and thus well known: they will be inlined. The function will
be called directly without the intercession of SCM_invoke. Predefined functions are
written in C and appear in the library that must be linked to the compiled program.
Calling them directly is equivalent but of course more efficient than passing through
SCM_invoke.

Since generating the direct call depends on how the primitive is implemented,
we assume that the functional description associated with the predefined variable
has a field-generator-that indicates the right generator to call. That generation
function will receive the node corresponding to the application and will be respon
sible for calling ->C recursively on the arguments. It uses the generic function
arguments->C to make those recursive calls.

(define-method (->C (e Predefined-Application) out)
«Functional-Description-generator

(Predefined-Variable-description
(Predefined-Application-variable e) ) ) e out ) )

(define-generic (arguments->C (e) out»

(define-method (arguments->C (e Arguments) out)
(->C (Arguments-first e) out)
(->C (Arguments-others e) out) )

(define-method (arguments->C (e No-Argument) out)
#t )

10.8.6 Predefined Environment

When we compile applications into predefined functions, the compiler must already
know those functions, so we will define a macro, defprimitive, for that purpose.

(define-class Functional-Description Object (comparator arity generator»

(define-syntax defprimitive
(syntax-rules ()

«defprimitive name Cname arity)
(let «v (make-Predefined-Variable

'name (make-Functional-Description
= arity
(make-predefined-application-generator 'Cname) ) »)

(set! g.init (cons v g.init»
'name ) ) ) )

Thus the definition of a primitive function is based on its name in Scheme, its
name in C, and its arity. The generated calls all take the form of a function call in
C, that is, a name followed by a mass of arguments within parentheses separated
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by commas. The function make-predefined-application-generator creates just
such generators.

(define (make-predefined-application-generator Cname)
(lambda (e out)

(format out "-A" Cname)
(between-parentheses out

(arguments->C (Predefined-Application-arguments e) out) ) ) )

Let's look at a few examples, like the usual cons, car, +, or =.

(defprimitive cons "SCM_cons" 2)

(defprimitive car "SCM_car" 1)

(defprimitive + "SCM_Plus" 2)
(defprimitive = "SCM_EqnP" 2)

You see that cons is compiled into a call to the C function SCM_cons whereas +

is compiled into a call to the C macro SCM_Plus. [see p. 394] Macros are distin
guished from functions by capital letters in the names of the macros. Distinguishing
them this way changes the speed at execution and the size of the resulting C code.

10.8.7 Compiling Functions

The preceding transformations have replaced abstractions by allocations of closures
that is, nodes from the class Closure-Creation. These closures are all allocated
by the function SCM_close, part of the predefined execution library. As its first
argument, this function takes the address of the C function (conveniently typed by
the C macro SCM_CfunctionAddress) corresponding to the body of the abstraction;
the arity of the closure being created is its second argument; those two arguments
are followed by the number of closed values, prefixing these same values. We get
all those closed values simply by translating them into C from the free field of
the description of the closure. The arity of functions that take a fixed number of
arguments will be coded by that same number. In contrast, when a function has a
dotted variable, it must take at least a certain number of arguments, say, i, so its
arity will thus be represented by -i - 1. That is, the function list has an arity of
-1.

(define-method (->C (e Closure-Creation) out)
(format out "SCM_close")
(between-parentheses out

(format out t1SCM_CfunctionAddress(function_-A),-A,-AtI
(Closure-Creation-index e)
(generate-arity (Closure-Creation-variables e»
(number-of (Closure-Creation-free e» )

(->C (Closure-Creation-free e) out) ) )

~define (generate-arity variables)
(let count «variables variables) (arity 0»

(if (pair? variables)
(if (Local-Variable-dotted? (car variables»

(- (+ arity 1»
(count (cdr variables) (+ 1 arity» )

arity ) ) )
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(define-method (->C (e No-Free) out)
#t )

(define-method (->C (e Free-Environment) out)
(format out ",")
(->C (Free-environment-first e) out)
(->C (Free-environment-others e) out)

Abstractions themselves have been organized into the object representing the
entire program, an instance of Flattened-Program, as a list of functions without
free variables defined by the instances of With-Temp-Function-Definition. Each
of those functions leads to generating an equivalent function in C.

(define (generate-functions out definitions)
(format out II-'!.I* Functions: *I-'!.")
(for-each (lambda (def)

(generate-closure-structure out def)
(generate-possibly-dotted-definition out def) )

(reverse definitions) ) )

To make the generated code more legible, we will again use C macros to hide
the finer details of representation. A function will be generated for each closure,
along with a data structure defining where the enclosed variables are located in the
object of type closure. All the names generated to represent these objects will be
formed from the root function_ and an index that already appears in the index
field of the object Function-Definition.5

The representation of the closure is defined by the macro SCM_DefineClosure.
Its first argument is the name of the associated C function; its second argument is
the list of names of captured variables, separated by semi-colons.

(define (generate-closure-structure out definition)
(format out "SCM_DefineClosure(function_-A, II

(Function-Definition-index definition) )
(generate-local-temporaries (Function-Definition-free definition) out)
(format out ");-'!."»

The function generate-possibly-dotted-definition generates the defini
tion of the C function by taking into account its arity. The function is defined by
the macro SCM_DeclareFunction. It takes the name of the generated function as
an argument. Its variables are defined by the macros SCM_DeclareLocalVariable or
SCM...DeclareLocalDottedVariable. They take the name of the variable and its
rank in the list of variables. The rank is important only for computing the list
bound to a dotted variable. The body of the function does not pose a problem.
We get it simply by applying the function ->C, but that is preceded by a return,
necessary to the C functions.

(define (generate-possibly-dotted-definition out definition)
(format out II-'!.SCM_DeclareFunction(fWlction_-A) {-'!."

(Function-Definition-index definition) )
(let «vars (Function-Definition-variables definition»

(rank -1) )

5. Since the functions are named like this: function..i, you can see that they are independent of
the variables in which they are stored. Of course, it would be better if the functions associated
with these non-mutable global variables were named after them, too.
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(for-each (lambda (v)
(set! rank (+ rank 1»
(cond «Local-Variable-dotted? v)

(format out ISCM_DeclareLocalDottedVariable(")
«Variable? v)
(format out ISCM_DeclareLocalVariable(") ) )

(variable->C v out)
(format out ", - A) ; -%" rank) )

vars )
(let «temps (With-Temp-Function-Definition-temporaries

definition »)
(when (pair? temps)

(generate-local-temporaries temps out)
(format out "-%") ) )

(format out "return ")
(->C (Function-Definition-body definition) out)
(format out "; -%}-%-%") ) )

Lists of variables are converted into C by means of the utility function gene
rate-local-temporaries.

(define (generate-local-temporaries temps out)
(when (pair? temps)

(format out "SCM ")
(variable->C (car temps) out)
(format out "; ")
(generate-local-temporaries (cdr temps) out) ) )

10.8.8 Initializing the Program

We have an entire Scheme program to compile now, so the only thing left for us to
indicate is how to form an entire C program. For that reason, we put the initial
expression into a closure during the phase of flattening out the functions. [see
p. 369] The only major and arguable decision is that we generate a call to the
function SCM_print, which will print the value of the compiled expression. It's not
strictly necessary, and there are many interesting programs that do useful things
without polluting the world with their output (cc, for example). For us, though, it
is more convenient for the little programs that we compile to have printed output.

(define (generate-main out form)
(format out 11-%1* Expression: *I-%void main(void) {-%")
(format out II SCM_print")
(between-parentheses out

(->C form out) )
(format out ";-% exit(O);-%}-%")

Of course, we haven't yet said anything about the representation of data, nor
have we defined the initial execution library. However, the compiler is complete
and operational anyway, so we are going to translate our current example into C.
(We manually indented the generated output to make it more legible.) Here, then,
is the complete translation of our example, which by the way appears as a comment
from lines 2 to 9.



388

[see p. 360]
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o/chapl0ex.c

2 1* Compiler to C $Revision: 4.0 $
3 (BEGIN
4 (SET! INDEX 1)
5 «LAMBDA
6 (CNTER . TMP)
7 (SET! TMP (CNTER (LAMBDA (I) (LAMBDA X (CONS I X»»)
8 (IF CNTER (CNTER TMP) INDEX»
9 (LAMBDA (F) (SET! INDEX (+ 1 INDEX» (F INDEX»

10 'FOD» *1
11
12 #include "scheme.h"
13
14 1* Global environment: *1
15 SCM_DefineGlobalVariable(INDEX,"INDEX");
16
17 1* Quotations: *1
18 #define thing3 SCM_nil 1* () *1
19 SCM_DefineString(thing4_object,"FOO");
20 #define thing4 SCM_Wrap(lthing4_object)
21 SCM_DefineSymbol(thing2_object,thing4); 1* FOO *1
22 #define thing2 SCM_Wrap(lthing2_object)
23 #define thing1 SCM_Int2fixnum(1)
24 #define thingO thing1 1* 1 *1
25
26 1* Functions: *1
27 SCM_DefineClosure(function_O, );
28
29 SCM_DeclareFunction(function_O) {
30 SCM_DeclareLocalVariable(F,O);
31 return «INDEX=SCM_Plus(thing1,
32 SCM_CheckedGlobal(INDEX»),
33 SCM_invoke1(F,
34 SCM_CheckedGlobal(INDEX»);
35 }
36
37 SCM_DefineClosure(function_1, SCM I; );
38
39 SCM_DeclareFunction(function_1) {
40 SCM_DeclareLocalDottedVariable(X,O);
41 return SCM_cons (SCM_Free (I) ,
42 X);

43 }
44
45 SCM_DefineClosure(function_2, );
46
47 SCM_DeclareFunction(function_2) {
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48 SCM_DeclareLocalVariable(I,O);
49 return SCM_close(SCM_CfunctionAddress(function_1),-1,1,I);
50 }
51
52 SCM_DefineClosure(function_3, );
53
54 SCM_DeclareFunction(function_3) {
55 SCM TMP_2; SCM CNTER_1;
56 return «INDEX=thingO),
57 (CNTER_1=SCM_close(SCM_CfunctionAddress(function_0),1,0),
58 TMP_2=SCM_cons(thing2,
59 thing3),
60 (TMP_2= SCM_allocate_box(TMP_2),
61 «SCM_Content(TMP_2)=
62 SCM_invoke1(CNTER_1,SCM_close(SCM_CfunctionAddress
63 (function_2),1,0))),
64 «CNTER_1 != SCM_false)
65 ? SCM_invoke1(CNTER_1,
66 SCM_Content(TMP_2))
67 SCM_CheckedGlobal(INDEX))))));
68 }
69
70
71 1* Expression: *1
72 void main(void) {
73 SCM_print (SCM_invokeO(SCM_close(SCM_CfunctionAddress(function_3),
74 0,0)));
75 exit(O);
76 }
77
78 1* End of generated code. *1
79
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We'll also give its expanded form, that is, one stripped of the C macros (except
for va~ist), for the functions function_1 and function..2. The other expansions
are from the same tap.

struct function_1 {
SCM(*behavior) (void);
long arity;
SCM I;

};

SCM function_1(struct function_1 * self_,
unsigned long size_,
va_list arguments_)

{

SCM X = SCM_list(size_ - 0, arguments_);
return SCM_cons«(*self_).I), X);

}
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struct function_2 {
SCM(*behavior) (void);
long arity;

};

SCM function_2(struct function_2 * self_,
unsigned long size_,
va_list arguments_)

{

SCM I = va_arg(arguments_, SCM);
return SCM_close«(SCM(*) (void» function_1), -1, 1, I);

}

If we compile it with a compiler conforming to ISO-C (one like gee for example)
with appropriate execution libraries like we've already described, then we get (a
little tiny) executable that (very rapidly6) produces the value7 we want.

% gec -ansi -pedantic chap10ex.c scheme.o schemelib.o
% time a.out
(2 3)

0.010u O.OOOs 0:00.00 0.0% 3+5k O+Oio Opf+Ov
% size a.out
text data bss dec hex
28672 4096 32 32800 8020

10.9 Representing Data

Now we're going to clarify the set of C macros in the file scheme. h. No need to
repeat that the point of this exercise is not to deliver the most high-performance
compiler possible, but rather to outline, explain, and demonstrate various tech
niques! We won't burden ourselves with problems like memory management; there
is no garbage collector, and all allocations use the function malloe, making the
adaptation of a conservative garbage collector-like the one developed by Hans
Boehm in [BW88]-particularly simple.

Values in Lisp and Scheme are such that we can always inquire about their type.
Consequently, it is necessary for that information about types to be associated
with each value. Making the cost of this association as low as possible is the
source of much torment for implementers. Values are also of variable size since
they can contain an arbitrary number of values themselves. The work-around is to
manipulate these values by their address, since an address has a fixed size. Objects
will be allocated in memory, and their type will be encoded as the word preceding
them. The inconvenience (in comparison to a statically typed language where types
no longer even exist by execution time) is that simple values (like short integers
might be) can no longer be handled directly since we have to follow a pointer to
get one of them. There are many solutions to this problem. On many machines,

6. The time that appears here corresponds mostly to the time for loading the program; the part
corresponding to execution is negligible. Later, you'll see how iterating the computation 10000
times gives a time of about 1 second.
7. The benchmarks were measured on a Sony News 3200 with a Mips R3000 processor.
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addresses are multiples of four, leaving the two least significant bits free in an
address. We can appropriate those bits, for example, to encode the kind of object
being pointed to. And if the referenced value is an integer, then why not put it in
place of the address? That's what we'll do for integers, making them more efficient
but stripping off a bit and thus limiting their range. Other schemes have also been
invented, and they are catalogued in [Gud93].

To get back to the task at hand, look at Figure 10.5. A value in Scheme will
be represented by a value of C such that if its least significant bit is 1, then it is
an integer coded in the remaining bits. We'll be talking about 31-bit integers for
a machine of 32-bit words. If the least significant bit is 0, then we're dealing with
the address of the first field of an allocated value. The type of that value appears
in the word that precedes this address8 as in [DPS94a]. Such a value appears as
a real pointer in C, referring directly to the interesting values of the object. The
type of Scheme values in C-what we'll be handling all the time-will be called
SCM:

typedef union SCM_object *SCM;

allocated value

integer n

_____I~

___n QJ

type I
field 1

field 2

field 3

Figure 10.5 Representation of Scheme values in C

The macro SCM_FixnumP distinguishes a short integer from a pointer. Small
integers and values can be converted back and forth by means of SCM_Fixnum2int
and SCM_Int2fixnum. The integer 37 in Scheme is thus represented by the integer
75 in C.

#define SCM_FixnumP(x) «unsigned long) (x) l (unsigned long) 1)
#define SCM_Fixnum2int(x) «long)(x»>1)
#define SCM_Int2fixnum(i) «SCM)«(i)«1) I 1))

When a value of SCM is not a short integer, it's a pointer to an object defined by
SCM_object. That's a union of various possible types. Some types are missing, like
floating-point numbers, vectors, input and output ports. However, you will find
the essential types there: dotted pairs (with cdr in the lead to remind you that
you're dealing with a list and also because cdr is accessed more frequently than
car, according to [Cla79]).

8. The null pointer for C, lULL, is generally implemented as OLe It is not a legal pointer for our
compiler because there is seldom a word at the address -1.
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union SCM_object {
struct SCM_pair {

SCM cdr;
SCM car;

} pair;
struct SCM_string {

char Cstring[8];
} string;
struct SCM_symbol {

SCM pname;
} symbol;
struct SCM_box {

SCM content;
} box;

};
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struct SCM_subr {
SCM (*behavior)();
long arity;

} subr;
struct SCM_closure {

SCM (*behavior)();
long arity;
SCM environment[l];

} closure;
struct SCM_escape {

struct SCM_jmp_buf *stack_address;
} escape;

=OxaaaO,
=Oxaaal,
=Oxaaa2,
=Oxaaa3,
=Oxaaa4,
=Oxaaa5,
=Oxaaa6,
=Oxaaa7,
=Oxaaa8

First class objects among the variations of SCM_object are prefixed by their type.
You can't see the type until after a little C magic. The type will be represented
by an explicitly enumerated type: SCM_tag. That leaves the number of bits free for
other purposes, like for use by the garbage collector. The type will be stored in a
field of type SCM_header, which will be the same size as an SCM, justifying the data
member SCM ignored in the union defining SCM.lleader. Finally, objects prefixed
by their type will be defined by the structure SCM_unwrapped-Obj ect.

enum SCM_tag {
SCM_NULL_TAG
SCM_PAIR_TAG
SCM_BOOLEAN_TAG
SCM_UNDEFINED_TAG
SCM_SYMBOL_TAG
SCM_STRING_TAG
SCM_SUBR_TAG
SCM_CLOSURE_TAG
SCM_ESCAPE_TAG

};

union SCM_header {
enum SCM_tag tag;
SCM ignored;

};

union SCM_unwrapped_object {
struct SCM_unwrapped_immediate_object {

union SCM_header header;
} object;
struct SCM_unwrapped_pair {

union SCM_header header;
SCM cdr;
SCM car;

} pair;
struct SCM_unwrapped_string {

union SCM_header header;
char Cstring[8];

} string;
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struct SCM_unwrapped_symbol {
union SCM_header header;
SCM pname;

} symbol;
struct SCM_unwrapped_subr {

union SCM_header header;
SCM (*behavior)(void);
long arity;

} subr;
struct SCM_unwrapped_closure {

union SCM_header header;
SCM (*behavior)(void);
long arity;
SCM environment[1];

} closure;
struct SCM_unwrapped_escape {

union SCM_header header;
struct SCM_jmp_buf

*stack_address;
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} escape;
};

The following macros convert references back and forth as well as extract its
type from an object. In fact, only the execution library needs to distinguish SCM

from SCMref.

typedef union SCM_unwrapped_object *SCMref;

#define SCM_Wrap(x) «SCM) «(union SCM_header *) x) + 1))
#define SCM_Unwrap(x) «SCMref) «(union SCM_header *) x) - 1))
#define SCM_2tag(x) «SCM_Unwrap«SCM) x))->object.header.tag)

Finally, the addresses of functions written in C (except when applied) are typed
as returning an SCM and accepting no arguments. The macro SCM_CfunctionAd
dress gets this conversion for us.

#define SCM_CfunctionAddress(Cfunction) «SCM (*)(void)) Cfunction)

10.9.1 Declaring Values

There is a set of macros to allocate Scheme values statically. Their names are
prefixed by SCM_Define. To define a dotted pair, we allocate a structure defined by
SCM_unwrapped_pair. Defining a symbol is similar. Each time, the object is first
created; then a pointer to that object is also created and converted by SCM_Wrap

into a valid reference.

#define SCM_DefinePair(pair,car,cdr) \
static struct SCM_unwrapped_pair pair = {{SCM_PAIR_TAG}, cdr, car}

#define SCM_DefineSymbol(symbol,pname) \
static struct SCM_unwrapped_symbol symbol = {{SCM_SYMBOL_TAG}, pname }

Defining strings is a little more complicated because C does not know how to
initialize data structures of variable size. We also have to be careful in C when
we handle strings not to confuse their contents with their address, and we must
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not neglect the null character that completes a string. Our solution is to build a
definition of an appropriate structure by the defined string. Strings in Scheme will
be represented by strings in C without further ado.

#define SCM_DefineString(Cname,string) \
struct Cname##_struct { \

union SCM_header header; \
char Cstring[1+sizeof(string)];}; \

static struct Cname##_struct Cname = \
{{SCM_STRING_TAG}, string}

A number of predefined values have to exist. Actually, only their existence
and their type (not their contents) are important to us, so they are defined by
immediate objects. We call SCM_Wrap to convert an address into an SCM.

#define SCM_DefineImmediateObject(name,tag) \
struct SCM_unwrapped_immediate_object name = {{tag}}

SCM_DefineImmediateObject(SCM_true_object,SCM_BOOLEAN_TAG);
SCM_DefineImmediateObject(SCM_false_object,SCM_BOOLEAN_TAG);
SCM_DefineImmediateObject(SCM_nil_object,SCM_NULL_TAG);
#define SCM_true SCM_Wrap(tSCM_true_object)
#define SCM_false SCM_Wrap (tSCM_false_object)
#define SCM_nil SCM_Wrap (tSCM_nil_object)

Scheme Booleans are not the same as C Booleans, so we must sometimes convert
a C Boolean into a Scheme Boolean. SCM_2bool does that.

#define SCM_2bool(i) «i) ? SCM_true: SCM_false)

We'll also introduce a few supplementary macros to recognize values and and
take them apart. The following predicates have names ending with p to indicate
that they return a C Boolean.

#define SCM_Car(x) (SCM_Unwrap(x)->pair.car)
#define SCM_Cdr(x) (SCM_Unwrap(x)->pair.cdr)
#define SCM_NullP(x) «x)==SCM_nil)
#define SCM_PairP(x) \

«!SCM_FixnumP(x» tt (SCM_2tag(x)==SCM_PAIR_TAG»
#define SCM_SymbolP(x) \

«!SCM_FixnumP(x» tt (SCM_2tag(x)==SCM_SYMBOL_TAG»
#define SCM_StringP(x) \

«!SCM_FixnumP(x» tt (SCM_2tag(x)==SCM_STRING_TAG»
#define SCM_EqP(x,y) «x)==(y»

Of course, macros like SCM_Car or SCM_Cdr will be used in safe situations when
we know that the value is a pair. That's not the case for the following arith
metic macros, so they explicitly test whether their arguments are short integers.
This style of progamming prevents removing that part of the context where we
would know that the arguments are the right type since they always carry out type
checking. 9 We're more interested right now in showing all variations for pedagogi
cal reasons. Again, if we were really trying to be efficient, we would organize things
quite differently.

9. Or then the C compiler itself takes out these superfluous tests-though that is generally not
the case.
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#define SCM_Plus(x,y)
( ( SCM_FixnumP(x) II SCM_FixnumP(y) )

? SCM_Int2fixnum( SCM_Fixnum2int(x) + SCM_Fixnum2int(y) )
: SCM_error(SCM_ERR_PLUS) )

#define SCM_GtP(x,y)
( ( SCM_FixnumP(x) II SCM_FixnumP(y) )

? SCM_2bool( SCM_Fixnum2int(x) > SCM_Fixnum2int(y)
SCM_error (SCM_ERR_GTP) )

10.9.2 Global Variables

\
\
\

\
\
\
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To get the value of a mutable global variable, we use the macro SCM_CheckedGlobal
to verify whether the variable has been initialized or not. Consequently, we use
a C value to indicate that something has not been initialized in Scheme, namely,
SCM_undefined. Mutable global variables are thus simply initialized (for C) with
this value indicating that (for Scheme) they haven't yet been initialized.

#define SCM_CheckedGlobal(Cname) \
«Cname != SCM_undefined) ? Cname : SCM_error(SCM_ERR_UNINITIALIZED»

#define SCM_DefinelnitializedGlobalVariable(Cname,string,value) \
SCM Cname = SCM_Wrap(value)

#define SCM_DefineGlobalVariable(Cname,string) \
SCM_DefinelnitializedGlobalVariable(Cname,string, \

lSCM_undefined_object)
#define SCM_undefined SCM_Wrap(lSCM_undefined_object)
SCM_DefinelmmediateObject(SCM_undefined_object,SCM_UNDEFINED_TAG);

One very important job is to bind predefined values to the global variables by
which programs can access them. For example, if we assume that the value of
the global variable NIL is the empty list, (), then we must bind the C variable
NIL to the C value SCM_nil_object. That's the purpose of the file schemelib. c
containing these definitions among others:

SCM_DefinelnitializedGlobalVariable(NIL,"NIL",lSCM_nil_object);
SCM_DefinelnitializedGlobalVariable(F,"F",lSCM_false_object);
SCM_DefinelnitializedGlobalVariable(T,"T",lSCM_true_object);

While there is a great deal of folklore surrounding those three variables, CAR,
CONS, and others also have to be available. We get them from the macro SCM...Def
inePredefinedFunctionVariable. Here is its definition, along with a few exam
ples.

#define SCM_DefinePredefinedFunctionVariable(subr,string,\
arity,Cfunction) \

static struct SCM_unwrapped_subr subr##_object = \
{{SCM_SUBR_TAG}, Cfunction, arity}; \

SCM_DefinelnitializedGlobalVariable(subr,string,l(subr#I_object»~

SCM_DefinePredefinedFunctionVariable(CAR,"CAR",l,SCM_car);
SCM_DefinePredefinedFunctionVariable(CONS,"CONS",2,SCM_cons);
SCM_DefinePredefinedFunctionVariable(EQN,"=",2,SCM_eqnp);
SCM_DefinePredefinedFunctionVariable(EQ,"EQ?",2,SCM_eqp);
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Mutable global variables are put into boxes. Reads and writes go through the
macro SCM_Content, defined like this:

#define SCM_Content(e) «e)-)box.content)

10.9.3 Defining Functions

The only thing left to explain is how functions of the program are represented. We
have to study the representation of functions very carefully because the greater
part of the cooperation between Scheme and C depends on it.

Primitive functions with fixed arity are represented by objects referring to C
functions of the same arity. Consequently, the function cons could be invoked from
C in the form of the simple and mnemonic SCM_cons (x , y) .

First class functions in Scheme pose more serious problems. They can take any
number of arguments. They can be computed. They may take their arguments
in some special way if invoked by apply. Coming up with a way that is efficient
and yet satisfies all these constraints is far from a trivial job. We'll allow ourselves
a little more latitude here in showing several approaches, and for non-primitive
functions, we'll adopt a way that is original and systematic (even if it's not very
fast). [see Ex. 10.1]

Closures are represented by objects where the first field is a pointer to a C
function. The second field indicates the arity of the function. The other supple
mentary fields contain closed variables. The macro SCM_DefineClosure defines an
appropriate C structure for each type of closure.

#define SCM_DefineClosure(struct_name,fields) \
struct struct_name { \

SCM (*behavior)(void); \
long arity; \
fields}

When a closure is invoked by SCM_invoke, the closure receives itself as the first
argument in order to extract its closed variables. When a function is called with
an incorrect number of arguments, an error must be raised. We will assume that
the function SCM_invoke takes care of this verification so that it doesn't encumber
the one being called. However, when a function receives a variable number of
arguments, we have to indicate to it how many to look for because there is no
linguistic means of determining that in C. Thus we will assume that C functions
associated with Scheme closures take the number of arguments to expect as their
second argument. Those arguments come next, as varargs in traditional C or now
renamed as stdarg. As we've already mentioned, this arrangement is not the best
you could imagine; the one adopted for primitives is more efficient.

The names of C variables implemented afterwards (such as self_, size_, and
arguments_) are for internal use and simply communicate with macros defining
local variables. The only interesting case is that of a dotted variable which must
package its arguments as a list. The function SCM_list offers the right interface for
that purpose.

#define SCM_DeclareFunction(Cname) \
SCM Cname (struct Cname *self_, unsigned long size_, \
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va_list arguments_)
#define SCM_DeclareLocaIVariable(Cname,rank) \

SCM Cname = va_arg(arguments_,SCM)
#define SCM_DeclareLocaIDottedVariable(Cname,rank) \

SCM Cname = SCM_Iist(size_-rank,arguments_)
#define SCM_Free(Cname) «*self_).Cname)

One of the beauties of this approach is that access to closed variables is expressed
very simply since they name the data members of the structure associated with the
closure.

10.10 Execution Library

The execution library is a set of functions written in C. Those functions must
be linked to a program so that the program can get resources that it still lacks.
This library is skeletal in that it doesn't contain a lot of basic utility functions
like string-ref or close-output-port. We're going to describe only the major
representative functions and ignore the others (notably, SCM_print which appears
in the generated main).

10.10.1 Allocation

There's no memory management, so there's no garbage collector either because
building one would take too long. For more about that topic, you should consult
[Spi90, Wi192]. We'll leave it as an exercise to adapt Boehm's garbage collector in
[BW88] to what follows.

The most obvious allocation function is cons. With it, we allocate an object
prefixed by its type. We fill in its type the same way that we fill in its car and
cdr. Finally, we convert its address into an SCM for the return value.

SCM SCM_cons (SCM x, SCM y) {
SCMref cell = (SCMref) malloc(sizeof(struct SCM_unwrapped_pair));
if (cell == (SCMref) NULL) SCM_error(SCM_ERR_CANT_ALLOC);
cell->pair.header.tag = SCM_PAIR_TAG;
cell->pair.car = x;
cell->pair.cdr = y;
return SCM_Wrap(cell);

}

Closures are allocated by the function SCM_close. It takes a variable number of
arguments, so a posteriori that justifies our choice about using multiple arguments
in C. Thus we need to allocate an object of type SCM_CLOSURE_TAG and to fill in the
other fields in terms of the number of arguments received.

SCM
SCM_close (SCM (*Cfunction) (void) , long arity, unsigned long size, ... ) {

SCMref result = (SCMref) malloc(sizeof(struct SCM_unwrapped_closure)
+ (size-1)*sizeof(SCM) );

unsigned long i;
va_list args;
if (result == (SCMref) NULL) SCM_error(SCM_ERR_CANT_ALLOC);
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}
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result->closure.header.tag = SCM_CLOSURE_TAG;
result->closure.behavior = Cfunction;
result->closure.arity = arity;
va_start(args,size);
for ( i=O ; i<size ; i++ ) {

result->closure. environment [i] va_arg(args,SCM);
}

va_end(args);
return SCM_Wrap(result);

10.10.2 Functions on Pairs

The functions car and set-car! are simple, but they must not be confused with
macros bearing similar names. These functions are safe in the sense that they
test the types of their arguments before applying them. In general, there is a safe
function and an unsafe function, and the latter should not be substituted for the
former except when the compiler can be sure that the substitution is legitimate.
Even though Lisp is not typed, its programs are such that almost two times out of
three, type testing can be suppressed, according to [Hen92a, WC94, Ser94]. The
attitude is that programmers are type-checking in their head, so a clever compiler
can take advantage of that "preprocessing."

SCM SCM_car (SCM x) {
if ( SCM_PairP(x) ) {

return SCM_Car(x);
} else return SCM_error(SCM_ERR_CAR);

}

SCM SCM_set_cdr (SCM x, SCM y) {
if ( SCM_PairP(x) ) {

SCM_Unwrap(x)->pair.cdr= y;
return x;

} else return SCM_error(SCM_ERR_SET_CDR);
}

It's also a good idea to understand the function list. It takes a variable
number of arguments and thus receives them prefixed by that number. We have to
admit that for its internal programming, we have once again sinned by resorting
to recursion rather than iteration.

SCM SCM_list (unsigned long count, va_list arguments) {
if ( count == 0 ) {

return SCM_nil;
} else {

SCM arg = va_arg(arguments,SCM);
return SCM_cons(arg,SCM_list(count-1,arguments);

}

}

There is no error-trapping mechanism. We'll simply indicate errors by means
of the C macro SCM_error. It conveys a representative error code (customary in C),
the line number, and the file where the error occurred.
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#define SCM_error(code) SCM_signal_error(code, __LINE__ , __FILE__ )
SCM SCM_signal_error (unsigned long code,

unsigned long line,
char *file ) {

fflush(stdout);
fprintf(stderr,"Error hU, Line hU, File hs.\n",code,line,file);
exit(code);

}

10.10.3 Invocation
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The two really important and subtle functions in the domain of invocations are
SCM_invoke and apply. That's not surprising about apply since it has to know
the calling protocol for functions in order to conform to it.

All the function calls other than those that are integrated (that is, transformed
into a direct call to a macro or to the C function involved) pass through SCM_invoke.
It takes the function to call as its first argument. As its second argument, it takes
the number of arguments provided, and those arguments come next. As in the
preceding interpreters, the function SCM_invoke is more or less generic. It analyzes
its first argument to see that it is an invocable object: a primitive function or not
(or an escape). It then extracts the object to apply and the arity of that object.
Having extracted the arity, it compares the number of arguments it actually re
ceived. Finally, it passes these arguments to the function, following the appropriate
protocol. Here we have three different protocols. There are others, such as suffixing
the arguments by some constant such as NULL rather than prefixing them by their
number. (That's what Bigloo does.)

• Primitives with fixed arity (like SCM_cons) are called directly with their argu
ments. The function call can be categorized as being of the type /(x, y).

• Primitives with variable arity (like SCM_list) must necessarily know the num
ber of arguments provided. That number will be passed as the first argument.
The function call is thus of the type /(n,xI,x2, ... ,xn ).

• Closures must not only know the number of arguments received (when they
have variable arity) but also they have to get their closed variables, stored,
in fact, in the closure itself. The type of function call they produce will thus
be of the type /(/, n, Xl, X2, .. · ,xn ).

Of course, we could refine, unify, or even eliminate some of these protocols, so
here is the function SCM_invoke. In spite of its massive size, it is actually quite
regular in structure. (We have withheld the part about continuations. We'll get to
them in the next section.)

SCM SCM_invoke(SCM function, unsigned long number, ... ) {
if ( SCM_FixnumP(function) ) {

return SCM_error(SCM_ERR_CANNOT_APPLY); /* Cannot apply a number! */
} else {

switch SCM_2tag(function) {
case SCM_SUBR_TAG: {

SCM (*behavior)(void) = (SCM_Unwrap(function)->subr).behavior;
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long arity = (SCM_Unwrap(function)->subr).arity;
SCM result;
if ( arity >= °) { 1* Fixed arity subr *1

if ( arity != number) {
return SCM_error(SCM_ERR_WRONG_ARITY); 1* Wrong arity! *1

} else {
if ( arity == 0) {

result = behavior();
} else {

va_list args;
va_start(args,number);
{ SCM aO ;

aO = va_arg(args,SCM);
if ( arity == 1 ) {

result = «SCM (*)(SCM)) *behavior) (aO);
} else {

SCM a1 ;
a1 = va_arg(args,SCM);
if ( arity == 2 ) {

result «SCM (*)(SCM,SCM)) *behavior)(aO,a1);
} else {

SCM a2
a2 = va_arg(args,SCM);
if ( arity == 3 ) {

result = «SCM (*)(SCM,SCM,SCM))
*behavior)(aO,a1,a2);

} else {
1* No fixed arity subr with more than 3 variables *1
return SCM_error(SCM_ERR_INTERNAL);

}

}

}

}

return result;
}

} else { 1* Nary subr *1
long min_arity = SCM_MinimalArity(arity)
if ( number < min_arity ) {

return SCM_error(SCM_ERR_MISSING_ARGS);
} else {

va_list args;
SCM result;
va_start(args,number);
result = «SCM (*)(unsigned long,va_list))

*behavior)(number,args);
va_end(args);
return result;

}

}
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}

case SCM_CLOSURE_TAG: {
SCM (*behavior)(void) = (SCM_Unwrap(function)->closure).behavior
long arity = (SCM_Unwrap(function)->closure).arity
SCM result;
va_list args;
va_start(args,number);
if ( arity >= 0 ) {

if ( arity != number) { 1* Wrong arity! *1
return SCM_error(SCM_ERR_WRONG_ARITY);

} else {
result = «SCM (*)(SCM,unsigned long,va_list» *behavior)

(function,number,args);
}

} else {
long min_arity = SCM_MinimalArity(arity) ;
if ( number < min_arity ) {

return SCM_error(SCM_ERR_MISSING_ARGS);
} else {

result = «SCM (*)(SCM,unsigned long,va_list» *behavior)
(function,number,args);

}

}

va_end(args);
return result;

}

}

default: {
SCM_error(SCM_ERR_CANNOT_APPLY);

}

}

1* Cannot apply! *1

}

The function apply is equally imposing in size. What's interesting about it
is that since it is a primitive function of fixed arity, it gets its arguments as an
instance of va_list where the last position contains a list that it must explore.
The problem of interfacing multiple variables in C is that we can't construct new
instances of va_list because it is a type that is private to the implementation
of the C compiler. The only thing we can do is patiently accept this glitch and
distinguish all the arities to generate all plausible calls. The boring part is that we
can't enumerate all of them, so we must constrain apply to transmit only a limited
number of arguments. That case was foreseen for COMMON LISP since there we
have a constant-call-arguments-limit-to indicate the maximum number of
arguments allowed. Its value should be at least 50. We'll restrict10 ourselves to 14,
of which only the first four possibilities are shown here.

SCM SCM_apply (unsigned long number, va_list arguments) {
SCM args[31];
SCM last_arg;
SCM fun = va_arg(arguments,SCM);

10. If this limitation seems absurd to you, then test its value in your favorite Lisp.
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unsigned long i;
for ( i=O ; i<number-1 ; i++ ) {

args[i] = va_arg(arguments,SCM);
}

last_arg = args[--i];
while ( SCM_PairP(last_arg) ) {

args[i++] = SCM_Car(last_arg);
last_arg = SCM_Cdr(last_arg);

}

if ( ! SCM_NullP(last_arg) ) {
SCM_error(SCM_ERR_APPLY_ARG);

}

switch ( i ) {
case 0: return SCM_invoke(fun,O);
case 1: return SCM_invoke(fun,1,args[O]);
case 2: return SCM_invoke(fun,2,args[0],args[1]);
case 3: return SCM_invoke(fun,3,args[0],args[1],args[2]);
case 4: return SCM_invoke(fun,4,args[0],args[1],args[2],args[3]);

default: return SCM_error(SCM_ERR_APPLY_SIZE);
}

Since C doesn't support more than 32 arguments anyway, there is no need for as
many as 50. Purists will notice the (unnecessary?) test verifying whether the last
cdr of the list containing the final arguments submitted to apply is really empty.

The essential problem of invocation in C is that it doesn't preserve the prop
erty imposed by Scheme that a tail call should make a constant continuation. In
consequence, a program translated into C can be interrupted because of stack
overflow-a situation that could not occur with any standard implementation of
Scheme. Some compilers from Scheme to C (such as Scheme~C or Bigloo) use
a great deal of energy to avoid such problems. They look for recursive functions,
loops, and so forth, but they cannot find every case and are thus vulnerable to
certain programming styles. Another solution is not to use the C stack and instead
to handle Scheme continuations explicitly.

10.11 call/cc: To Have and Have Not

We've just finished the compilation of a significant part of Scheme into C. In spite
of the fact that we still lack many functions, the essentials are present (even if
not very efficient). Continuations, in contrast, are still missing. As we did for the
byte-code compiler, we'll first define the function calliep to provide continuations
with a dynamic extent, as in Lisp, and we'll translate that by setjmpjlongjmp.

Then in the second part of this section, we'll tackle the remaining issues about
providing real continuations like in Scheme.
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10.11.1 The Function call/ep
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We described the function calliep already in the same interface as the function
callicc, but the first class continuation that it synthesizes cannot legitimately
be used except during its dynamic extent. [see p. 102] Here, we'll use the same
implementation as in Chapter 7 to know that we've allocated an object on the heap
to represent the continuation. That object will point to the jrnp_buf in the stack,
and that jump itself will refer to the continuation. Here are the functions involved:

SCM SCM_allocate_continuation (struct SCM_jmp_buf *address) {
SCMref continuation =

(SCMref) malloc(sizeof(struct SCM_unwrapped_escape));
if (continuation == (SCMref) NULL) SCM_error(SCM_ERR_CANT_ALLOC);
continuation->escape.header.tag = SCM_ESCAPE_TAG;
continuation->escape.stack_address = address;
return SCM_Wrap(continuation);

}

struct SCM_jmp~buf {
SCM back_pointer;
jmp_buf jb;

};

SCM SCM_callep (SCM f) {
struct SCM_jmp_buf scmjb;
SCM continuation = SCM_allocate_continuation(&scmjb);
scmjb.back_pointer = continuation;
if ( setjmp(scmjb.jb) != 0 ) {

return jumpvalue;
} else {

return SCM_invoke1(f,continuation);
}

}

When a continuation is invoked, the function SCM_invoke perceives it and verifies
the arity of this call before going on to the call itself. The following fragment should
be inserted in the function SCM_invoke as we've already defined it. To verify that
the continuation is valid (and because we have no unwind-protect to invalidate
it), we test whether it matches the jrnp_buf in the stack and whether we really
are above that jrnp_buf. Unfortunately, that second verification requires us to
know the direction of the C stack. That information is packaged in the macro
SCM_STACK_HIGHER. The definition of that macro depends on the implementation,
of course, but we can get information about it from a simple little program in
portable C. Generally, with UN*X, the stack grows with decreasing addresses, so
SCM_STACK_HIGHER is none other than <=.

case SCM_ESCAPE_TAG: {
if ( number == 1) {

va_list args;
va_start(args,number);
jumpvalue = va_arg(args,SCM);
va_end(args);
{ struct SCM_jmp_buf *address =

SCM_Unwrap(function)->escape.stack_address;
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if ( SCM_EqP(address->back_pointer,function)
&& ( (void *) &address

SCM_STACK_HIGHER (void *) address ) ) {
longjmp(address->jb,l);

} else { 1* surely out of dynamic extent! *1
return SCM_error(SCM_ERR_OUT_OF_EXTENT);

}

}

} else {
1* Not enough arguments! *1
return SCM_error(SCM_ERR_MISSING_ARGS);

}

}

What we said about the efficiency of calliep in the context of the byte-code
compiler no longer holds true here because in C longjmp is notoriously slow and
thus enormously delays programs that use it too much. The point for us, however,
is to show how well we can integrate Lisp and C, so we'll live with it.

10.11.2 The Function ealllee

Alas! if you're nostalgic for real continuations, then you are probably still longing
for them at this point. We know that we can get callicc as a magic function,
mysterious and obscure, but unfortunately in order to write it, we need to know
at least a little about the C stack because that stack contains what we want to
capture. Unfortunately, C doesn't really offer a portable means of inspecting the
stack so it is extremely hard to implement this type of continuation in portable
C without loading ourselves down with conditional definitions. Our only choice,
then, is to use CPS to transform a program so that continuations appear and then
compile it all with the preceding compiler.

Making Continuations Explicit

The transformation we'll offer is equivalent to the one we presented earlier and
once again uses our favorite code walker. [see p. 177] This transformation works
on the initial expression, once it has been objectified. However, since the let forms
(that is, nodes of the class Fix-Let) will have disappeared in this affair, we will
re-introduce them by means of a second code walk to retrieve and convert closed
forms. In passing, it will suppress the infamous administrative redexes. (Just
after CPS, we'll explain the transformation letify.) Here's the new version of the
compiler:

(define (compile->C e out)
(set! g.current ,(»
(let* «ee (letify (cpsify (Sexp->object e» '(»)

(prg (extract-things! (lift! ee») )
(gather-temporaries! (closurize-main! prg»
(generate-C-program out e prg) ) )

The code walker that makes continuations explicit is called cpsify. It results
from the interaction between the function update-walk! and the generic function
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->CPS. Two new classes of objects are introduced: the class of continuations (serv
ing only to mark abstractions that play the role of continuations) and the class of
pseudo-variables (serving as variables for continuations).

(define-class Continuation Function (»

(define-class Pseudo-Variable Local-Variable (»

(define (cpsify e)
(let «v (new-Variable»)

(->CPS e (make-Continuation (list v) (make-Local-Reference v») ) )

(define new-Variable
(let «counter 0»

(lambda ()
(set! counter (+ 1 counter»
(make-Pseudo-Variable counter #f If) ) ) )

The function ->CPS takes the object to convert as its first argument and the
current continuation as its second. By default, it applies the continuation to the
object. The initial continuation appearing in cpsify is the objectified identity,
Ax.x.

(define-generic (->CPS (e Program) k)
(convert2Regular-Application k e) )

(define (convert2Regular-Application k . args)
(make-Regular-Application k (convert2arguments args»

Now all we have to do is to articulate the appropriate methods. For sequences,
that's simple: we convert the first form and relegate the second one to the contin
uation, like this:

(define-method (->CPS (e Sequence) k)
(->CPS (Sequence-first e)

(let «v (new-Variable»)
(make-Continuation
(list v) (->CPS (Sequence-last e) k) ) ) ) )

For alternatives, the method is also simple, but the continuation should be
duplicated in both branches of an alternative, like this:

(define-method (->CPS (e Alternative) k)
(->CPS (Alternative-condition e)

(let «v (new-Variable»)
(make-Continuation
(list v) (make-Alternative

(make-Local-Reference v)
(->CPS (Alternative-consequent e) k)
(->CPS (Alternative-alternant e) k) ) ) ) ) )

Assignments are also straightforward. We convert the value to assIgn while
being careful to make the modification in the continuation, like this:

(define-method (->CPS (e Box-Write) k)
(->CPS (Box-Write-form e)

(let «v (new-Variable»)
(make-Continuation
(list v) (convert2Regular-Application

k (make-Box-Write
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(Box-Write-reference e)
(make-Local-Reference v) ) ) ) ) ) )

(define-method (->CPS (e Global-Assignment) k)
(->CPS (Global-Assignment-form e)

(let «v (new-Variable»)
(make-Continuation
(list v) (convert2Regular-Application

k (make-Global-Assignment
(Global-Assignment-variable e)
(make-Local-Reference v) ) ) ) ) ) )

To simplify our lives (and because objectification is overdoing things), we undo
closed applications in favor of an application of a closure. You recall that closed
applications generated by transformations are identified by letify. There will
be a great many of those by the way because the naIve CPS transformation that
we programmed generates many administrative redexes [SF92]. Those redexes are
not too troublesome, however, because if they are compiled correctly, they will
just naturally go away; they may be ugly to look at, but they interfere only with
interpretation.

(define-method (->CPS (e Fix-Let) k)
(->CPS (make-Regular-Application

(make-Function (Fix-Let-variables e) (Fix-Let-bodye»
(Fix-Let-arguments e) )

k ) )

Functions will be burdened with another argument, one to represent the con
tinuation of their caller.

(define-method (->CPS (e Function) k)
(convert2Regular-Application
k (let «k (new-Variable»)

(make-Function (cons k (Function-variables e»
(->CPS (Function-body e)

(make-Local-Reference k) ) ) ) ) )

Functional applications are more complicated forms that have to be handled
in a similar way. We must compute all the arguments, one after another, before
applying the function to them. Once again, in doing that, we've chosen left to right
order.

(define-method (->CPS (e Predefined-Application) k)
(let* «args (Predefined-Application-arguments e»

(vars (let name «args args»
(if (Arguments? args)

(cons (new-Variable)
(name (Arguments-others args» )

'() ) »
(application
(convert2Regular-Application
k
(make-Predefined-Application
(Predefined-Application-variable e)
(convert2arguments
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(map make-local-Reference vars) ) ) ) ) )
(arguments->CPS args vars application) ) )

(define-method (->CPS (e Regular-Application) k)
(let* «fun (Regular-Application-function e»

(args (Regular-Application-arguments e»
(varfun (new-Variable»
(vars (let name «args args»

(if (Arguments? args)
(cons (new-Variable)

(name (Arguments-others args»
,() ) »

(application
(make-Regular-Application
(make-Local-Reference varfun)
(make-Arguments k (convert2arguments

(map make-local-Reference vars) ) ) ) ) )
(->CPS fun (make-Continuation

(list varfun)
(arguments->CPS args vars application) » ) )

(define (arguments->CPS args vars appl)
(if (pair? vars)

(->CPS (Arguments-first args)
(make-Continuation
(list (car vars»
(arguments->CPS (Arguments-others args)

(cdr vars)
appl ) ) )

appl ) )

Re-introducing Closed Forms

The letify transformation indicated earlier has the responsibility of identifying
closed forms and translating them into appropriate let forms. However, we're
going to take advantage of a little polishing here to clean up the result of ->cps.
When ->cps handles an alternative, it will duplicate the same subtree of abstract
syntax representing the continuation-by sharing it physically-in both branches
of the alternative. Thus we no longer have a tree of abstract syntax, but rather a
DAG (directed acyclic graph). To avoid having the eventual transformations fumble
because of these hidden physical sharings, the function letify will entirely copy
the DAG of abstract syntax into a pure tree of abstract syntax. We assume that we
have the generic function clone available for that. [see Ex. 11.2] It should be able
to duplicate any MEROONET object, and we'll adapt it to the case of variables that
must be renamed. So here is that transformation. With collect-temporaries!,
it has a certain resemblance to renaming local variables.

(define-generic (letify (0 Program) env)
(update-walk! letify (clone 0) env) )

(define-method (letify (0 Function) env)
(let* «vars (Function-variables 0»

(body (Function-body 0»
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(new-vars (map clone vars» )
(make-Function
new-vars
(letify body (append (map cons vars new-vars) env» ) ) )

(define-method (letify (0 Local-Reference) env)
(let* «v (Local-Reference-variable 0»

(r (assq v env» )
(if (pair? r)

(make-Local-Reference (cdr r»
(letify-error "Disappeared variable" 0) ) )

(define-method (letify (0 Regular-Application) env)
(if (Function? (Regular-Application-function 0»

(letify (process-closed-application
(Regular-Application-function 0)
(Regular-Application-arguments 0)

env )
(make-Regular-Application
(letify (Regular-Application-function 0) env)
(letify (Regular-Application-arguments 0) env) »

(define-method (letify (0 Fix-Let) env)
(let* «vars (Fix-Let-variables 0»

(new-vars (map clone vars» )
(make-Fix-Let
new-vars
(letify (Fix-Let-arguments 0) env)
(letify (Fix-Let-body 0)

(append (map cons vars new-vars) env) ) ) ) )

(define-method (letify (0 Box-Creation) env)
(let* «v (Box-Creation-variable 0»

(r (assq v env» )
(if (pair? r)

(make-Box-Creation (cdr r»
(letify-error "Disappeared variable" 0) ) ) )

(define-method (clone (0 Pseudo-Variable»
(new-Variable) )

Execution Library

It's probably hard for you to see where the preceding transformation is going.
Its goal is to make continuations apparent, that is, to make callicc trivial to
implement. A continuation will be represented by a closure that forgets the cur
rent continuation in order to restore the one that it represents. Here's the defi
nition of SCM_callcc. Since it is a normal function, it is called with the contin
uation of the caller as its first argument, so here its arity is two! The function
SCM-invoke_cont inuat ion appears first to help the C compiler, which likes to find
things in the right order.

SCM SCM_invoke_continuation (SCM self, unsigned long number,
va_list arguments) {

SCM current_k = va_arg(arguments,SCM);
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SCM value = va_arg(arguments,SCM);
return SCM_invokel(SCM_Unwrap(self)->closure.environment[O],value);

}

SCM SCM_callcc (SCM k, SCM f) {
SCM reified_k =

SCM_close (SCM_CfunctionAddress(SCM_invoke_continuation) ,
2, 1, k);

return SCM_invoke2(f,k,reified_k);
}
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SCM_DefinePredefinedFunctionVariable(CALLCC,ICALL/CC",2,SCM_callcc);

The library of predefined functions in C has not changed. In contrast, their call
protocol has been modified somewhat because of these swarms of continuations. If
we write (let ((f car» (f '(a b»), then our dumb compiler does not realize
that it is in fact equivalent to (car ,( a b» (or even directly equivalent to (quot e
a) by propagating constants). It will generate a computed call to the value of the
global variable CAR, which will receive a continuation as its first argument and a
pair as its second. The new value of CAR is, in fact, merely (lambda (k p) (k
(car p») expressed with the old function car. Consequently, we will introduce
a few C macros again here, and we will redefine the initial library with an arity
increased by one. So that we don't leave you behind here, we'll show you a few
examples. The functions prefixed by SCMq_ make up the interface to functions
prefixed by SCM_.

#define SCM_DefineCPSsubr2(newname,oldname) \
SCM newname (SCM k, SCM x, SCM y) { \

return SCM_invoke1(k,oldname(x,y»; \
}

#define SCM_DefineCPSsubrN(newname,oldname) \
SCM newname (unsigned long number, va_list arguments) { \

SCM k = va_arg(arguments,SCM); \
return SCM_invokel(k,oldname(number-l,arguments»; \

}

SCM_DefineCPSsubr2(SCMq_gtp,SCM_gtp)
SCM_DefinePredefinedFunctionVariable(GREATERP,I>",3,SCMq_gtp);
SCM_DefineCPSsubrN(SCMq_list,SCM_list)
SCM_DefinePredefinedFunctionVariable(LIST,"LIST",-2,SCMq_list);

One last problem is what to do with apply. We have to re-arrange its arguments
so that the continuation gets them in the right positions.

SCM SCMq_apply (unsigned long number, va_list arguments) {
SCM args[32];
SCM last_arg;
SCM k = va_arg(arguments,SCM);
SCM fun = va_arg(arguments,SCM);
unsigned long i;
for ( i=O ; i<number-2 ; i++ ) {

args[i] = va_arg(arguments,SCM);
}

last_arg = args[--i];
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while ( SCM_PairP(last_arg) ) {
args[i++] = SCM_Car(last_arg);
last_arg = SCM_Cdr(last_arg);

}

if ( ! SCM_NullP(last_arg) ) {
SCM_error(SCM_ERR_APPLY_ARG);

}

switch ( i ) {
case 0: return SCM_invoke(fun,1,k);
case 1: return SCM_invoke(fun,2,k,args[0]);
case 2: return SCM_invoke(fun,3,k,args[0],args[1]);

default: return SCM_error(SCM_ERR_APPLY_SIZE);
}

Example

Let's take our current example and look at the generated code. In spite of the C
syntax, you can still see the "color" of CPS in it.

o/chapl0kex.c

2 /* Compiler to C $Revision: 4.0 $
3 (BEGIN
4 (SET! INDEX 1)
5 «LAMBDA
6 (CNTER . TMP)
7 (SET! TMP (CNTER (LAMBDA (I) (LAMBDA X (CONS I X»»)
8 (IF CNTER (CNTER TMP) INDEX»
9 (LAMBDA (F) (SET! INDEX (+ 1 INDEX» (F INDEX»

10 'FDO» */
11
12 #include "scheme.h"
13
14 /* Global environment: */
15 SCM_DefineGlobalVariable(INDEX, "INDEX");
16
17 1* Quotations: */
18 #define thing3 SCM_nil /* () */
19 SCM_DefineString(thing4_object,"FDD");
20 #define thing4 SCM_Wrap(lthing4_object)
21 SCM_DefineSymbol(thing2_object,thing4);
22 #define thing2 SCM_Wrap(lthing2_object)
23 #define thing1 SCM_Int2fixnum(1)
24 #define thingO thing1 /* 1 */
25
26 /* Functions: */
27 SCM_DefineClosure(function_O, SCM I; );
28
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29 SCM_DeclareFunction(function_O) {
30 SCM_DeclareLocalVariable(v_25,O);
31 SCM_DeclareLocalDottedVariable(X,l);
32 SCM v_27; SCM v_26;
33 return (v_26=SCM_Free(I),
34 (v_27=X,
35 SCM_invokei(v_25,
36 SCM_cons(v_26,
37 v_27»»;
38 }
39
40 SCM_DefineClosure(function_i, );
41
42 SCM_DeclareFunction(function_i) {
43 SCM_DeclareLocalVariable(v_24,O);
44 SCM_DeclareLocalVariable(I,l);
45 return SCM_invokei(v_24,
46 SCM_close (SCM_CfunctionAddress
47 (function_O),-2,1,I»;
48 }
49
50 SCM_DefineClosure(function_2, SCM v_15; SCM CNTER; SCM TMP; );
51
52 SCM_DeclareFunction(function_2) {
53 SCM_DeclareLocalVariable(v_2i,O);
54 SCM v_20; SCM v_19; SCM v_18; SCM v_17;
55 return (v_17=(SCM_Content(SCM_Free(TMP»=v_2i),
56 (v_18=SCM_Free(CNTER),
57 «v_18 != SCM_false)
58 ? (v_19=SCM_Free(CNTER),
59 (v_20=SCM_Content(SCM_Free(TMP»,
60 SCM_invoke2(v_19,
61 SCM_Free(v_15),
62 v_20»)
63 SCM_invokel(SCM_Free(v_15),
64 SCM_CheckedGlobal(INDEX»»);
65 }
66
67 SCM_DefineClosure(function_3, );
68
69 SCM_DeclareFunction(function_3) {
70 SCM_DeclareLocalVariable(v_15,O);
71 SCM_DeclareLocalVariable(CNTER,l);
72 SCM_DeclareLocalVariable(TMP,2);
73 SCM v_23; SCM v_22; SCM v_16;
74 return (v_16=TMP= SCM_allocate_box(TMP),
75 (v_22=CNTER,
76 (v_23=SCM_close(SCM_CfunctionAddress(function_l),2,O),
77 SCM_invoke2(v_22,
78 SCM_close (SCM_CfunctionAddress
79 (function_2),1,3,v_15,CNTER,TMP),
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80 v_23»»;
81 }
82
83 SCM_DefineClosure(function_4, );
84
85 SCM_DeclareFunction(function_4) {
86 SCM_DeclareLocalVariable(v_8,0);
87 SCM_DeclareLocalVariable(F,i);
88 SCM v_ii; SCM v_10; SCM v_9; SCM v_i2; SCM v_i4; SCM v_i3;
89 return (v_i3=thingi,
90 (v_i4=SCM_CheckedGlobal(INDEX),
91 (v_i2=SCM_Plus(v_i3,
92 v_i4),
93 (v_9=(INDEX=v_i2),
94 (v_i0=F,
95 (v_ii=SCM_CheckedGlobal(INDEX),
96 SCM_invoke2(v_i0,
97 v_8,
98 v_ii»»»);
99 }
100
101 SCM_DefineClosure(function_5, );
102
103 SCM_DeclareFunction(function_5) {
104 SCM_DeclareLocalVariable(v_i,O);
105 return v_i;
106 }
107
108 SCM_DefineClosure(function_6, );
109
110SCM_DeclareFunction(function_6) {
111 SCM v_5; SCM v_7; SCM v_6; SCM v_4; SCM v_3; SCM v_2; SCM v_28;
112 return (v_28=thingO,
113 (v_2=(INDEX=v_28),
114 (v_3=SCM_close(SCM_CfunctionAddress(function_3),3,0),
115 (v_4=SCM_close(SCM_CfunctionAddress(function_4),2,0),
116 (v_6=thing2,
117 (v_7=thing3,
118 (v_5=SCM_cons(v_6,
119 v_7),
120 SCM_invoke3(v_3,
121 SCM_close (SCM_CfunctionAddress
122 (function_5) ,1,0) ,
123 v_4,
124 v_5»»»»;
125 }
126
127
128 1* Expression: *1
129 void main(void) {
130 SCM_print (SCM_invokeO(SCM_close(SCM_CfunctionAddress
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131
132 exit(O);
133 }
134
135 1* End of generated code. *1
136

(function_6) ,0,0)));
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You see that the size of the file we produce grows from 76 to 130 lines. The
number of functions generated by compilation also increases from 3 to 6, and the
number of local variables used increases from 2 to 22. In short, the executable has
fattened up a bit. The computation takes a little longer,' too. (It took about 50%
longer on our machine.) Afterwards, we modified main to repeat the computation
10 000 times (without calling SCM_print), and we compiled with -0 as the opti
mization level. The computation then increased from 1.1 seconds to 1.7. In both
cases, the computation consumes the same amount of space for continuations, but
in the first case, the allocations occur on the stack (where the hardware and the C
compiler provide ingenious treasures for us) whereas in the second case, allocations
occur on the heap and destroy the locality of its references. As shown in [AS94],
we could, of course, overcome most of these disadvantages.

% gee -ansi -pedantic chap10kex.c scheme.o schemeklib.o
% time a.out
(2 3)

O.OOOu 0.020s 0:00.00 0.0% 3+3k O+Oio Opf+Ow
% size a.out
text data bss dec hex
32768 4096 32 36896 9020

The transformation that we just described does not get around the problem of
stack overflow due to our not preserving the property of tail recursion. In fact, it is
actually made worse by the transformation since the transformation produces more
applications than before but never comes back to these applications. Functions are
called but never return a result, so the C stack will overflow eventually if the
computation is not completed before. One solution is to make a longjmp from
time to time, just to lower the stack, as in [Bak].

10.12 Interface -with C

Since our little compiler can represent data, and in addition, it has adopted the
calling protocol for C functions, it is particularly well suited to use with C. This
foreign interface is very important because it can take advantage of huge libraries
of utilities written in C. We'll show you an example of such a foreign interface, one
chosen to illustrate both its usefulness and the associated problems.

The UN*X system function takes a character string, hands it to the command
interpreter (sh), and then returns an integer corresponding to its return code.
We'll assume that we have a macro available-defforeignprimitive-to declare
the interface for this system function to the compiler, like this:

(defforeignprimitive system int ("system" string) 1)
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As planned, when the compiler sees (syst em 1r), the compiler will verify that its
argument is a character string; then it will call the system function, and eventually
it will convert the result (a C integer) into a Scheme integer. Since C strings and
Scheme strings are coded the same way, it's easy to convert one to the other, but
other conversions can pose strenuous problems, according to [RM92, DPS94a].

Of course, that conversion is not quite enough. We must again insure that
the system function can be called by a computation or by apply. That condition
implies that there must be a Scheme value representing the function, but we'll
ignore that delicate problem.

10.13 Conclusions

This chapter presented a compiler from Scheme to C. We could adapt that compiler
to the execution library of evaluators written in C, such as Bigloo [Ser94], SIOD
[Car94], or SCM [Jaf94]. In this chapter, you've been able to see the problems of
compilation into a high-level language, the gap that separates Scheme from C, and
also the benefits of reasonable cooperation between the two languages.

We strongly urge you to compare the compiler towards C with the compiler
into byte-code. We could readily marry the techniques you saw earlier with the
new ones here, for example:

• changing the compilation of quotations so that they would be read by read;

• freeing ourselves from the C stack (and from C calling protocol) to take
advantage of a stack dedicated to Scheme;

• extending the compiler to compile independent modules; and so on. [see p.
223]

We could also measure the cost (in the size of the execution library and in the
speed of computations) of adding a function such as load, or more simply, eval.
We'll leave how to incorporate them as a (strenuous) exercise. And we'll also leave
as an exercise just how to bootstrap the evaluator, once it's been stuffed like that.

10.14 Exercises

Exercise 10.1 : Invoking closures could borrow the same technique as the one used
for predefined functions of fixed arity; that is, it could adopt a model that could be
characterized as /(/, x, y). Modify whatever needs to be changed to improve the
compiler in that way.

Exercise 10.2 : Access to global variables would be more efficient if we suppressed
the test SCM_CheckedGlobal on reading. That test verifies whether the variable has
been initialized. Design another analysis of initialization. In doing so, look for a
way to characterize the references for which you can be sure that the variable has
been initialized.
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Project 10.3 : The code produced by the compiler in this chapter generates C that
conforms to ISO 90 [IS090]. Modify whatever is necessary to generate Kernighan
& Ritchie C as in [KR78].

Project 10.4 : Adapt the code generator in this chapter to produce C++, as in
[Str86], rather than C.

ReCOllllllended Reading

In recent years, there has been a lot of good work about compiling into C. Nitsan
Seniak treats the topic excellently in his thesis [Sen91], as does Manuel Serrano
in [Ser94]. If you are completely enamored of this subject, you can happily lose
yourself in the source code for Bigloo [Ser94].





11
Essence of an Object System

O BJECTS! Oh, where would we be without them? This chapter defines
the object system that we've used throughout this book. We deliberately
restricted ourselves to a limited set of characteristics so that we would not
overburden the description which will follow here. In fact, as Rabelais

would say, we want to limit it to its sustantificque mouelle, that is, to its very
essence.

This object system is called MEROON. 1 Such a system is complicated and
demands considerable attention if we want it to be simultaneously efficient and
portable. As a result, the system is endowed with a structure strongly influenced,
maybe even distorted, by our worries about portability. To compensate for that,
we're actually going to show you a reduced version of MEROON, and we'll call that
reduced version2 MEROONET.

Lisp and objects have a long history in common. It begins with one of the first
object languages, Smalltalk 72, which was first implemented in Lisp. Since that
time, Lisp, as an excellent development language, has served as the cradle for innu
merable studies about objects. We'll mention only a couple: Flavors, developed by
Symbolics for a windowing system on Lisp machines, experimented with multiple
inheritance; Loops, created at Xerox Parc, introduced the idea of generic functions.
Those efforts culminated in the definition of CLOS (COMMON LISP Object System)
and of TEAOL (the EuLISP object system). These latter two systems bring to
gether most of the characteristics of the preceding object systems while immersing
them in the typing system of the underlying language. By doing so, they satisfy
the first rule of one of these systems: everything should be an object.

Compared to object systems you find in other languages, the object systems of
Lisp are distinguished in two ways:

• Generic functions and their multimethods, a technique known as multiple
dispatch.

Sending a message, written as (message arguments ... ), is not distinguished
syntactically from calling a function, written as (function arguments... ).

1. This naIIle CaIIle from my son's teddy bear, but you may try to give a sensible meaning to that
acronym.
2. Both these systems-MERoON and MEROONET-are available by anonymous ftp according to
instructions on page xix.
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Multimethods do not assume that the receiver of a message is unique, even
though that is often the case. Rather, they determine the method as a func
tion of the class of the significant arguments. For example, printing a number
in hexadecimal on a stream is not a method for numbers, nor a method for
streams, but a method working on the Cartesian product of number x stream.

• Reflection.

Reflection is the quality of systems endowed with the power to speak of
themselves. These systems introduce the idea of metaclasses. The class of an
object is itself an object and thus necessarily belongs to a class which we call a
metaclass, which itself is also an object, and thus it goes on. The behavior of
these meta-objects is known as the meta-object protocol or MOP. It controls
the possibilities of the object system. Levels of reflection are possible, for
example, from self-description to self-modification. It thus becomes possible
to specify the physical representation of objects while still conserving their
inherited properties so, for example, we can accomodate a persistent archiving
system or a data base. Self-description is an important issue for introspection,
notably for design tools to implement programs since such tools make it
possible to inspect objects and to know the structure of objects so we can print
them, compile them, [see p. 340], make them migrate from one machine to
another, as in [Que94], and so forth.

We're extending that long history of object systems as we present MEROONET.

We hope that any restrictions we imposed in building MEROONET will not over
shadow the excellent qualities that it still has. Among them are the following:

• All values that can be handled in Lisp or Scheme-including vectors-can be
represented by MEROONET objects without restrictions on their inheritance.

• MEROONET is self-describing because classes are objects-whole, apart, and
duly available for inspection. We've avoided the trap of infinite regression as
they did in ObjVlisp, according to [Coi87, BC87].

• There are generic functions, like in CLOS [BDG+88], but without multimeth
ods.

• The code is highly efficient.

A number of implementations of object systems in Lisp or Scheme have already
been described in the literature, among them [AR88, Kes88, Coi87, MNC+89,
De189, KdRB92]. However, as a system, MEROONET differs from those in several
ways:

• MEROONET, as we hinted, has adopted the generic functions of Common
Loops [BKK+86] but not multimethods.

• MEROONET supports classes as first class objects, as in ObjVlisp. This makes
a great deal of self-description possible.

• MEROONET abhors multiple inheritance! When we know more about the
semantics of multiple inheritance and when the problems posed in [DHHM92]
have been resolved, then MEROONET will change its mind about this issue
maybe.



11.1. FOUNDATIONS 419

• Objects are represented as contiguous values, that is, as vectors. This repre
sentation makes it possible to define data imported from other languages and
to do so by means of new field descriptors, as in [QC88, Que90a, Que95].

As we describe MEROONET, we'll also discuss the reasons for our implemen
tation choices. Some of those choices were due to the implementation language,
Scheme. Those choices, of course, might have been different if we had directly im
plemented MEROONET in C, for example. In trying to simplify our explanation of
MEROONET, we will cover it from bottom to top, gradually introducing functions
as they are needed. Documentation about how to use MEROONET is mixed in with
the implementation, but you can also consult the short version of the user's manual
(which we won't bother to repeat here). [see p. 87]

11.1 Foundations

The first implementation decision involves object representation in MEROONET.

For that, we use sets of contiguous values. To express that in Scheme, we chose
vectors. Within a vector, we reserve the first index (that is, index zero) to store the
class identity, so that we can access its class from an object. That kind of relation
is known as an instantiation link. It would be more obvious to have an object
point directly to its class (that is, to the most specific class to which it belongs),
but we prefer to number the classes and have each object store one such number.
Printing objects by the usual means in Scheme thus becomes easier because classes
are generally large3 and unweildy data structures whose details don't mean much
to most of us. They may also include circular references that make the normal way
of printing with display cryptic or illegible. Later, when we look at the means
for calling generic functions and the test for belonging to a class, you'll see other
reasons for using these numbers as indices to classes.

If we number the classes, we have to be able to convert such a number into a
class. All classes will consequently be archived in a vector. Since vectors cannot
be extended in Scheme (in contrast to COMMON LISP) there will be a maximum
number of possible classes but not explicit detection of the anomaly if the number
of classes exceeds this limit. The variable *class-number* indicates the first free
number in the vector *classes*. Since some classes are predefined from the mo
ment of bootstrapping, this number will increase. Since we don't want to burden
the code with overly scrupulous tests, we won't bother to test whether a number
really indicates a class.

(define *maximal-number-of-classes* 100)

(define *classes* (make-vector *maximal-number-of-classes* If»~

(define (number->class n)
(vector-ref *classes* n) )

(define *class-number* 0)

Handling classes by their numbers is somewhat laconic, so it obliges us to name
all the classes. Consequently, there are no anonymous classes. Rather, classes are

3. For some garbage collectors, if all the values of Scheme are objects, one pointer less per object
to inspect or to update might also be advantageous.
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seen as static entities. That is, they are not created dynamically. The function
->Class converts a symbol into a class of that name. Again, not wanting to
overburden the code with superfluous tests, we make the function ->Class return
the most recent class by the name we're looking for. That convention will help us
redefine classes without, however, giving redefinition too precise a meaning, so we
should refrain from redefining the same class many times without a good reason.

(define (->Class name)
(let scan «index (- *class-number* 1)))

(and (>= index 0)
(let «c (vector-ref *classes* index)))

(if (eq? name (Class-name c))
c (scan (- index 1)) ) ) ) ) )

For generic functions, the implementation demands that they should have names
and that we can access their internal structure. For those reasons, we'll keep a list
of generic functions: *generics*. The function ->Generic will convert such a
name into a generic function. (We'll come back to this point later.)

(define *generics* (list))
(define (->Generic name)

(let lookup «1 *generics*))
(if (pair? 1)

(if (eq? name (Generic-name (car 1)))
(car 1)
(lookup (cdr 1)) )

#f ) ) )

11.2 Representing Objects

As we've indicated, objects in MEROONET are sets of contiguous values. Since we
want every Scheme value to be assimilated by an object defined in MEROONET, we
need to take into account the idea of a vector,4 and thus we introduce the idea of
an indexed field which contains a certain number of values, rather than containing
a unique value. That characteristic existed already in Smalltalk [GR83] , but in
such a way that it was not possible to inherit a class cleanly if it had an indexed
field. MEROONET does not have this kind of limitation.

There is a problem with character strings: for reasons of efficiency, they are
usually primitives in a programming language. Nevertheless, we could represent
them by vectors of characters-not such a bad idea if we are concerned about in
ternationalization where we might be tempted to adopt larger and larger character
sets represented by two or even four bytes. However, if we still want characters to
be only one byte, and since Scheme doesn't support data structures mixing repe
titions of such characters (of one byte) with other values (such as pointers), then
MEROONET cannot efficiently simulate character strings.

MEROONET offers two kinds of fields: normal fields (defined by objects of the
class Mono-Field) and indexed fields (defined by the class Poly-Field). A normal

4. In fact, we may even want to simulate vectors by MEROONET objects, which are themselves
represented by vectors. The cost is just one coordinate to contain the instantiation linle
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;x

;y

; 3 sides
; color

field will be implemented as a component of a vector, whereas an indexed field will
be represented rather like strings in Pascal, that is, by a set of indexed values. This
convention means that the representation must be prefixed by the number of its
components. To clarify these ideas, consider the class of points defined like this:

(define-class Point Object (x y»

Let's assume that the number 7 is associated with the class Point, so the value
as a point of (make-Point 11 22) will be represented by the vector #(7 11 22).
A polygon could be defined as a set of points representing the various segments that
form its sides. We could make Polygon inherit Point to fix its point of reference.

(define-class Polygon Point «* side»)

Here you see another kind of possible syntax-parenthesized-to define fields.
A normal field will be prefixed by an equal sign whereas an indexed field will be
prefixed by an asterisk. 5 If we want colored polygons, we'll create a new subclass,
like this:

(define-class ColoredPolygon Polygon «= color»)

Every class definition gives rise to a host of functions, notably, a function for
creating objects. Its name is formed by prefixing make- to the name of the class.
When we create a class, we must define all its fields. In particular, we have to
define the size of each indexed field, so we will prefix the indexed values appearing
in such fields by their number. To define a triangle, that is, a three-sided polygon,
and to color it orange, we'll write it like this and then study its representation as
vectors:

(make-ColoredPolygon
11
22
3 (make-Point 44 55) (make-Point 66 77) (make-Point 88 99)
'orange)
~ #(9 ; (Class-number ColoredPolygon-class)

11 ; x
22 ;y

3 ; number of sides
#(7 44 55) ; side{O}
#(7 66 77) ; side{l}
# (7 88 99) ; side{2}

orange ) ; color

The objects of MEROONET are thus all represented by vectors where the first
component contains the number of the class of that object. To keep our terminology
straight, we'll use the word offset when we're talking about the offset within a vector
representing an object, and we'll say index when we're handling an indexed field.
Since one component is reserved for the instantiation link, the first valid offset is
given by the constant *starting-offset*. You can find out the class of an object
by means of the function object->class. 6 We recognize whether a value is an

5. We chose the asterisk to indicate multiplicity, like Kleene used in the notation of regular
expressions.
6. That function is equivalent to the function class-or in COMMON LISP, EuLISP, and IS-Lisp.
We named it differently to avoid introducing confusion and thus be able, for example, to mix
multiple object systems.
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object of MEROONET by means of the function Object? That function poses a
serious problem since Scheme does not allow the creation of new data types. The
predicate Obj ect? recognizes all MEROONET objects, but unfortunately, it also
recognizes vectors of integers, etc.

To complete this prelude, here are the naming conventions for the variables
we've used:

0,01,02 .
v .
i .

object
value (integer, pair, closure, etc.)
index

(define *starting-offset* 1)
(define (object->class 0)

(vector-ref *classes* (vector-ref 0 0» )
(define (Object? 0)

(and (vector? 0)

(integer? (vector-ref 0 0» ) )

11.3 Defining Classes

To define a class, there is the form define-class, taking three successive argu
ments:

• the name of the class to define;

• the name of its superclass;

• the specification of its own fields.

The class that will be created will inherit fields from the definition of its super
class. That kind of inheritance is known as field inheritance. A class also inherits
all the behavior of its superclass with respect to existing generic functions. This
kind of inheritance is known as method inheritance.

Here's the syntax of the form define-class:

(define-class class-name superclass-name ( list-oj-fields ) )

A field appearing in the list of fields can be mentioned either directly by name
(in that case, it's a normal field) or in a list prefixed by a sign indicating whether
it is normal (equal sign) or indexed (asterisk).

Outside the class definition, a number of accompanying functions are created
automatically. (We hope you enjoy them!)

• A predicate recognizes objects of this class. Its name is made from the name
of the class, suffixed as predicates usually are in Scheme with a question
mark.

• One object allocator returns new instances of the class where the fields are
not initialized. Their initial value can consequently be anything. Since the
size of indexed fields must be specified during allocation, this allocator takes
as many sizes as arguments as there are indexed fields in the class. The name
of the allocator is made from the class name prefixed by allocate-.
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• Another object allocator returns new instances of the class and specifies the
initial values of their fields. The values constituting an indexed field are
prefixed by the size of that field. The name of this allocator is made from
the class name prefixed by make-.

• There are selectors for both normal and indexed fields. For each field of the
class, there is a read-selector named by the class, a hyphen, and the field.
The name of the corresponding write-selector is prefixed by set- and suffixed
by the usual exclamation point, underlining the fact that it makes physical
modifications. Selectors for indexed fields take a supplementary argument,
an index.

• A function whose name is made from the name of the associated read-selector
suffixed by -length accesses the size of each indexed field.

To support reflective operations, the class which is being created and which is
itself an instance of the class Class is the value of the global variable that has
the name of the class suffixed by -class. Here's an example of the descriptions
of functions and variables7 generated by (define-class ColoredPolygon Point
(color)) .

(ColoredPolygon? 0) --+ a Boolean
(allocate-ColoredPolygon sides-number) --+ a polygon
(make-ColoredPolygon x y sides-number sides ... color) --+ a polygon
(ColoredPolygon-x 0) --+ a value
(ColoredPolygon-y 0) --+ a value
(ColoredPolygon-side 0 index) --+ a value
(ColoredPolygon-color 0) --+ a value
(set-ColoredPolygon-x! 0 value) --+ unspecijied
(set-ColoredPolygon-y! 0 value) --+ unspecijied
(set-ColoredPolygon-side! o value index) --+ unspecijied
(set-ColoredPolygon-color! o value) --+ unspecijied
(ColoredPolygon-side-length 0) --+ a length
ColoredPolygon-class --+ a class

As we indicated, classes are created by define-class. That special form will
be implemented by a macro, unfortunately with all the problems that implies. First
among those problems is that define-class is a macro with an internal state-its
inheritance hierarchy-but the system of Scheme macros, according to [CR91b],
does not allow that sort of thing. For that reason, we're going to assume that
we have another macro at our disposal, define-meroonet-macro, and its purpose
is to define macros with no restrictions on the way they are expanded. We can
code define-meroonet-macro in any existing implementation, but not in portable
Scheme.

Is that internal state of define-class really necessary? Yes, in MEROONET,

it is, for the following reason: when a class is defined, a number of functions
are created to access its fields. For example, to define the class Point with the

7. We've arbitrarily adopted the convention of naming indexed fields by singular words. We think
it's natural to write (ColoredPolygon-side 0 i) to get the ith side of a polygon and to use side
rather than sides in that context.
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fields x and y, the read-accessors Point-x and Point-yare created. When we
define the class Polygon, MEROONET does not impose Point-x and Point-y as
the sole accessors for the fields x and y. Instead, MEROONET creates the functions
Polygon-x and Polygon-y. The definition of the class Polygon does not mention
inherited fields; the only way of knowing about them is through the name of the
superclass. Therefore, the internal state that define-class maintains associates
the names and types of its fields with each class.

We could avoid this inconvenience by adopting another convention for naming
selectors. For example, we could omit the class name from the name of the selector.
To illustrate that case, let's assume that the reader for the field x is named get-x.
Then the definition of the class Polygon would modify the value of get-x to indicate
how to extract the field x from a polygon. The most simple approach then is to
make get-x a generic function which acquires new methods as classes are defined.
This is the technique that CLOS uses where it is possible during the specification
of a field to mention the generic function to which a method must be added to
read that field. This decision makes generic functions mutable-a situation that
might prove inconvenient for static optimizations during compilation because of
the difficulty then of basing anything on a value changing without restrictions.

In contrast, we have decided to make selectors pure functions, not susceptible to
modifications, so we can facilitate their integration inline. Of course, that implies
some subtle problems, too, like the difference that might exist between Point-x
and Polygon-x. Basically, both these functions extract the same field (x), but
more precisely, the first one extracts x from a point, while the second gets it from a
polygon. It seems normal then for the form (Polygon-x (make-Point 11 22)) to
raise an error and that in consequence, the selectors Point-x and Polygon-x should
be different. Apart from this Byzantine situation, the greatest inconvenience of this
decision is the large number of variables and global functions that it consumes. This
may create a problem in computer memory but not in our own since all the names
are formed systematically and the only reason for naming is for memory.

Recognizing the fields of the superclass (maintained by the internal state of
define-class) comes into play not only in the way selectors are named: allocators
need that information, too, so that their arity will be known and their compilation
will be efficient. We'll get back to these ideas and elaborate them more in later
sections.

In light of all these considerations, for MEROONET, we'll adopt the following
solution: we define a class by constructing an object that is an instance of the class
Class and inserting it in the hierarchy of classes. All that activity will be carried
out by register-class. The functions accompanying that class are generated
by the expansion function Class-generate-related-names. Conforming to the
preceding description, we will temporarily define define-class like this:

(define-meroonet-macro (define-class name super-name
own-field-descriptions )

(let «class (register-class name super-name own-field-descriptions»)
(Class-generate-related-names class) ) )

That definition is problematic with respect to compilation since it mixes ex
pansion time and evaluation time. The class is created and then inserted in the
inheritance hierarchy during macro expansion, while the accompanying functions
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are created during the evaluation of the expanded code. Let's assume that we
compile a file containing the definition of the class Polygon. We can see the result
ing code in a file with the suffix .0 (as with compilers into C, like KCL [YH85],
Scheme~C [Bar89], or Bigloo [Ser94]) or with a suffix like. fasl in a lot of other
compilers. But the resulting code contains only the compilation of the expansion,
that is, the definition of the accompanying functions. The class has really been
created in the memory state of the compiler but not at all in the memory of the
Lisp or Scheme system which will be linked to this. 0 file or which will dynamically
load the . fasl file. The class has thus evaporated and disappeared by the time
the compiler has finished its work.

Consequently, the construction of a class must appear in the expansion, but
if it appears only there, then we can no longer require the class to generate the
accompanying functions since we need to know the fields of the superclass during
macro expansion to generate8 all the selectors. Consequently, it is necessary to
know the class at macro expansion and for it to appear in macro expansion. This
dual existence makes it possible to compile the definitions of a class and its sub
classes in the same file, as for example, Point and Polygon. To keep MEROONET

from building the same class twice9 during interpretation-once at macro expan
sion and then again at the evaluation of the expanded code-we will cleverly do
this: when a class is defined during macro expansion, it will be stored in the global
variable *last-defined-class*; then at evaluation, the class will be created only
if *last-defined-class* is empty.

(define *last-defined-class* If)

(define-meroonet-macro (define-class name supername
own-field-descriptions

(set! *last-defined-class* If)
(let «class (register-class name supername own-field-descriptions»)

(set! *last-defined-class* class)
'(begin

(if (not *last-defined-class*)
(register-class ',name ',supername ',own-field-descriptions)

,(Class-generate-related-names class) ) ) )

11.4 Other Problems

Still illustrating the difficulties of macros with real-life examples (namely, from
MEROONET), we note that the order in which macro are expanded is important
when we use macros with an internal state, as in define-class. Consider the
following composed form in that context:

(begin (define-class Point Object (x y»
(define-class Polygon Point «* side»)

If the expansion goes from left to right, then the class Point is defined and is
thus available for the definition of the class Polygon. However, in the opposite case,

8. Remember that there is no linguistic means in Scheme nor at execution for creating a new
global variable with a computed name.
9. We've made no effort in MEROONET to give a specific meaning to the redefinition of classes,
and for that reason, we avoid redefining them.
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the class Polygon can't be constructed because its superclass is not yet known. We
could get around this problem by a (more complicated) way of deferring the con
struction of Polygon as long as the definition of Point has not yet been expanded.
The definition of Polygon would then be empty, whereas the definition of Point
would contain both.

So how do we compile the definition of ColoredPolygon in a file different from
the one containing the definitions of Point and Polygon? We have to get the fields
of its superclass somehow. MEROONET doesn't trouble itself about this problem: it
simply requires all classes to be compiled together. MEROON, in contrast, adopts
a different strategy. A class that will be inherited must be defined either before in
the same file or with the keyword :prototype. That keyword lO inserts the class in
the class hierarchy at the right place without generating the equivalent code. Thus
we'll write this:

(define-class Polygon Point «* side» :prototype)
(define-class ColoredPolygon Polygon (color»

Yet another solution is to use modules with an import/export mechanism to
indicate which of those modules contain information pertinent to compile which
others. That solution boils down to having a kind of data base, mimeticallyequiv
alent to the internal state of the compiler projected onto the file system.

11.5 Itepresenting Classes

Classes in MEROONET are represented by objects of MEROONET. This represen
tation makes self-description of the system easier. It also makes it easier to write
metamethods based on the structure of classes, rather than on their inheritance.
For example, how to migrate from machine to machine or how to print MEROONET

objects by default can be deduced from their structure, that is, from their class.
Consequently, there is a class-Object-defining all MEROONET objects. That
class serves as the root for inheritance. Classes themselves are instances of the
class Class. Field descriptors are instances of either Mono-Field or Poly-Field,
both subclasses of Field.

When we expand the definition of a class, we make use of a number of func
tions accompanying these predefined classes, such functions as Mono-Field? or
make-Poly-Field, etc. Should we deduce from that that when a class exists, we
can use the functions accompanying it? More specifically, once Point has been
macro expanded, can we use the function make-Point? If we take account of
the preceding define-class, we must admit that we cannot use those functions
because make-Point is not created by expansion but by evaluation. As a result,
metaclasses pose subtle compilation problems-problems that MEROONET does not
address.

As a minimum, we put only what is strictly necessary into a class: its name,
the associated number, the list of its fields, its superclass, the list of numbers of its
subclasses. That information about subclasses will be useful when we talk about

10. It's actually a little more complicated in MEROON. The option :prototype is expanded as a
test that verifies at evaluation whether the prototype conforms to the real class which must exist
then.
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; it is a class
;name
; class-number
; fields
; no superclass
; subclass-numbers

generic functions. We register the numbers rather than the subclasses themselves
in order to avoid circularity at the cost of a slight decrease in efficiency. We can
summarize all that information by saying that Class, the class of all classes, is
defined like this:

(define-class Class Object
(name number fields superclass subclass-numbers)

Fields themselves are defined as objects in MEROONET. Fields are characterized
by their type, their name, and the class that introduces them. In that latter field,
useful for the general function field-value, we will store the number of the class,
rather than the class itself so that classes and fields can be printed. Thus we have
this:

(define-class Field Object (name defining-class-number)
(define-class Mono-Field Field (»
(define-class Poly-Field Field (»

Finally, the following function will give the illusion of extracting the class that
introduced it from a field without bothering about the underlying number.

(define (Field-defining-class field)
(number->class (careless-Field-defining-class-number field» )

Of course, before MEROONET is installed, we can't define these classes but they
are needed by MEROONET itself. To get around this bootstrapping problem, we
create them by hand, like this:

(define Object-class
(vector 1

'Object
o
, ()

#f
'(123)
) )

(define Class-class
(vector

1
'Class
1
(list
(vector 4 'name 1)
(vector 4 'number 1)
(vector 4 'fields 1)
(vector 4 'superclass 1)
(vector 4 'subclass-numbers 1)

Object-class
'() ) )

(define Generic-class
(vector
1

'Generic
2
(list

; it is also a class
;name
; class-number
; fields
; offset= 1
; offset= 2
; offset= 3
; offset= 4
; offset= 5
;superclass
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;otrset= 1
;otrset= 2
;otrset= 3
;otrset= 4

(vector 4 'name 2)
(vector 4 'default 2)
(vector 4 'dispatch-table 2)
(vector 4 'signature 2)
Object-class
, () ) )

(define Field-class
(vector
1
'Field
3
(list
(vector 4 'name 3) ;otrset= 1
(vector 4 'defining-class-number 3) ;otrset= 2
)

Object-class
'(4 5) ) )

(define Mono-Field-class
(vector 1

'Mono-Field
4
(careless-Class-fields Field-class)
Field-class
,() ) )

(define Poly-Field-class
(vector 1

'Poly-Field
5
(careless-Class-fields Field-class)
Field-class
, () ) )

Afterwards, the classes are installed as they should be, like this:

(vector-set! *classes* 0 Object-class)
(vector-set! *classes* 1 Class-class)
(vector-set! *classes* 2 Generic-class)
(vector-set! *classes* 3 Field-class)
(vector-set! *classes* 4 Mono-Field-class)
(vector-set! *classes* 5 Poly-field-class)
(set! *class-number* 6)

Since MEROONET is managed by means of the class hierarchy, which itself
is represented by MEROONET objects, several functions (such as the accessors
Class-number or Class-fields) are needed even before they are constructed. For
that purpose, we will introduce their equivalent with a name prefixed by careless-.
That name is justified by their definition: they don't verify the nature of their ar
gument, so MEROONET uses them only advisedly.

(define (careless-Class-name class)
(vector-ref class 1) )

(define (careless-Class-number class)
(vector-ref class 2) )
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(define (careless-Class-fields class)
(vector-ref class 3) )

(define (careless-Class-superclass class)
(vector-ref class 4) )

(define (careless-Field-name field)
(vector-ref field 1) )

(define (careless-Field-defining-class-number field)
(vector-ref field 2) )
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11.6 Accolllpanying Functions

For accompanying functions, we'll use a very practical utility, symbol-concaten
ate, to form new names.

(define (symbol-concatenate . names)
(string->symbol (apply string-append (map symbol->string names») )

To generate accompanying functions, we have a couple of choices. The first is
to generate their equivalent code directly; the second, to generate a form that will
be evaluated in an appropriate closure. With the second choice, we can factor the
work and thus share the text of functions for which closures are constructed, but
that choice prevents fine-tuning the optimizations because there will be more calls
to computed functions (rather than statically known ones) and as a consequence,
they cannot be inlined. To highlight the differences between those two choices, here
is how the allocator for the class Polygon would be defined in those two cases:

(define allocate-Polygon
(lambda (size)

(let «0 (make-vector (+ 1 2 1 size»»
(vector-set! 0 0 (careless-Class-number Polygon-class»
(vector-set! 0 3 size)
o )

(define allocate-Polygon (make-allocator Polygon-class»

The first choice lets us know statically that the allocator is a unary function
and that its body uses only trivial functions, like make-vector, for reading and
writing vectors. Consequently, it can be inlined readily in a few instructions and
even compiled into a C macro, if we are compiling into C. In contrast, the second
definition says nothing about arity. In fact, it doesn't even tell us11 that this is a
function that will be bound to the variable allocate-Polygon. Even so, we'll go
with the second choice because the first one is more complicated to present and
requires more memory for execution and compilation, so here is how accompanying
functions are generated.

(define (Class-generate-related-names class)
(let* «name (Class-name class»

(class-variable-name (symbol-concatenate name '-class»
(predicate-name (symbol-concatenate name '?»
(maker-name (symbol-concatenate 'make- name»

11. In Lisp, we can't even be sure that the computation terminates, and in Scheme, we don't
know whether it returns a unique value.
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(allocator-name (symbol-concatenate 'allocate- name))
'(begin

(define ,class-variable-name (->Class ',name))
(define ,predicate-name (make-predicate ,class-variable-name))
(define ,maker-name (make-maker ,class-variable-name»
(define ,allocator-name (make-allocator ,class-variable-name»
,G(map (lambda (field) (Field-generate-related-names field class»

(Class-fields class) )
',(Class-name class) ) ) )

11.6.1 Predicates

For every class in MEROONET, there is an associated predicate that responds True
about objects that are instances of that class, whether direct instances or instances
of subclasses. The speed of this predicate is important because Scheme is a language
without static typing so we are forever and again verifying the types or the classes
of the objects we are handling. At compilation, we could try to guess12 about the
types of objects, factor the tests for types, make use of help from user declarations,
or even impose a rule that programs must be well typed, for example, by defining
methods that give information about their calling arguments.

The test about whether an object belongs to a class is thus very basic and
depends on the general predicate is-a? To keep up its speed, is-a? assumes
that the object is an object and that the class is a class as well. Consequently,
we can't apply is-a? to just anything. In contrast, the predicate associated with
a class is less restricted. It will first test whether its argument is actually a ME

ROONET object. Finally, we'll introduce a last predicate to use for its effect in
verifying membership and issuing an intelligible message by default. Since errors
are not standard in Scheme,13 any errors detected by MEROONET call the function
meroonet-error, which is not defined-one portable way of getting an error!

(define (make-predicate class)
(lambda (0) (and (Object? 0)

(is-a? 0 class) ) )

(define (is-a? 0 class)
(let up «c (object->class 0))

(or (eq? class c)
(let «sc (careless-Class-superclass c)))

(and sc (up sc») ) ) ) )

(define (check-class-membership 0 class)
(if (not (is-a? 0 class»)

(meroonet-error "Wrong class" 0 class) ) )

The complexity of the predicate is-a? is linear, since we test whether the
object belongs to the target class, or whether the superclass is the target class, or
whether the superclass of the superclass is the target and so on. This strategy is
not too bad because the first try is usually right, at least in roughly one tryout of
two.

12. The form define-method indicates the class of the discriminating variable, and we could take
advantage of that hint.
13. At least at the moment we're writing, under the reign of R 4 RS [CR91b].
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However, there is a potential problem of infinite regression in is-a? To get
the superclass, we use the function careless-Class-superclass, rather than the
function Class-superclass directly. The difference between those two functions
is that the careless one assumes that its first argument is a class. That assumption
is safe enough in the context of is-a? If we had used the other function, it would
have tested whether its argument was really a class and in doing so, it would have
recursively required the predicate is-a? and thus seriously impaired the efficiency
of MEROONET.

11.6.2 Allocator without Initialization

MEROONET offers two kinds of allocators. The first creates objects whose con
tents may be anything; the second creates objects all of whose fields have been
initialized. The same concepts exist in Lisp and in Scheme: cons is the allocator
with initialization for dotted pairs; vector is the allocator with initialization for
vectors. There is also a second allocator for vectors: without a second argument,
make-vector creates vectors with unspecified contents. MEROONET supports both
types of allocation.

Allocation without initialization means that the contents of an uninitialized
object might be anything. There are at least two ways to understand that idea.
For reasons having to do with garbage collection, (and except for garbage collectors
that tolerate certain ambiguities as in [BW88]), uninitialized means generally that
the object is filled with entities known to the implementation. There are two
different possible semantics here, depending on whether or not those entities are
first class values.

• When the entity #<uninitialized> appears in a field of a data structure,
it explicitly marks the field as containing no value. Attempts to read such a
field raise an error since there is no value associated with it .

• In implementations where there is no such entity, fields are initialized with
normal values, but they might be anything. For example, in Lisp, it's often
nil; in Le-Lisp, it's t; in many Scheme implementations, it's #f. The initial
content of a field is consequently undefined, that is, unspecified, in short,
anything, but it is not an error to read such a field.

There is a third interpretation-one we call "C style"-in which reading an
uninitialized field has unpredictable consequences. For that reason, we strongly
urge you not to try reading such a field. This interpretation is even less specific
than the previous ones. For example, in this interpretation, it is not obligatory
for the implementation to detect an error when there is an attempt to read such
a field. Of course, since this read-procedure doesn't carry out any tests on the
value it reads, it is very fast! However, when we attempt to read such a field,
we may very well get the infamous but informative message "Bus errror, core
dumped" or even worse, some result that has nothing to do with what we're trying
to compute but which we might take as valid, given no warning. The proof that
we never (truly never!) read an uninitialized field is left to the programmer.

The first interpretation-with the entity #<uninitialized>--obliges a reader
to raise an error when it encounters an uninitialized field. Obviously, that costs
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an explicit test every time a field that might be uninitialized is read, according to
[Que93b]. The second interpretation does not require such a test, so it compares
favorably in this respect with C.

In terms of allocation, the C-style interpretation is even more efficient because
there is no need to initialize fields nor to clear them. Paradoxically, allocation with
explicit initialization is usually more efficient than allocation without initialization.
In practice, allocating without initialization on the part of the user does in fact
require an initialization-with #<uninitialized>-at a cost comparable to ini
tialization with any value at all, like #t, for example. But most of the time, a field
that is not initialized when it is allocated will be initialized right away anyway (and
that definitely doubles the work), whereas allocation with explicit initialization fills
all the constant fields definitively in one fell swoop.

According to that first interpretation, CLOS guarantees that it detects an unini
tialized field. In Scheme, it's helpful to realize that variables are in fact represented
by entities that can be defined in MEROONET and for which the detection of unini
tialized fields is obligatory. [see p. 60] Since we have decided to ignore the
formalists, we don't require MEROONET to handle uninitialized fields, and thus we
simplify the code: uninitialized fields will be filled with #f.

To be useful, the idea of an allocator without initialization means that a created
object must be mutable. This point is important because immutable objects are
naturally closer to mathematics than are objects that have an internal state, espe
cially so with respect to equality. [see p. 122] Immutable objects lend themselves
well to optimization since their contents are guaranteed not to vary. Likewise,
in the function make-allocator that we looked at earlier, we would be able to
precompute the expression (Class-number class) (just as we do (Class-fields
class») if the field number in the Class were immutable. In that way, we could
directly record its value rather than have to recompute it for every allocation.

An allocator without explicit initialization will be returned by the function
make-allocator. It will take a class and return a function that accepts as argu
ments a list of natural integers specifying the size of each possible indexed field
appearing in the definition of the class. The first computation consists of deter
mining the size of the zone in memory (of the vector) to reserve (to allocate); to do
that, we recursively run through the list of fields and their sizes. How do we know
the list of fields? We extract it from the class by Class-fields. Once the zone in
memory has been reserved, we must structure it to put the size of indexed fields
there. That's the purpose of the second loop running over the fields and their sizes
and maintaining a current offset inside the allocated memory zone. Finally, the
object, having just acquired its "skeleton" and the instantiation link to the class
where it belongs, is returned as a value.

(define (make-allocator class)
(let «fields (Class-fields class»)

(lambda sizes
; ; compute the size of the instance to allocate
(let «room (let iter «fields fields)

(sizes sizes)
(room *starting-offset*)

(if (pair? fields)



11.6. ACCOMPANYING FUNCTIONS

(cond «Mono-Field? (car fields»
(iter (cdr fields) sizes (+ 1 room»

«Poly-Field? (car fields»
(iter (cdr fields) (cdr sizes)

(+ 1 (car sizes) room) ) ) )
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room) »)
(let «0 (make-vector room If»~)

; ; setup the instantiation link and skeleton of the instance
(vector-set! 0 0 (Class-number class»
(let iter «fields fields)

(sizes sizes)
(offset *starting-offset*)

(if (pair? fields)
(cond «Mono-Field? (car fields»

(iter (cdr fields) sizes (+ 1 offset»
«Poly-Field? (car fields»
(vector-set! 0 offset (car sizes»
(iter (cdr fields) (cdr sizes)

(+ 1 (car sizes) offset) ) ) )
0»»» )

We have a few remarks to make about that code.

1. The allocators that are created take a list of sizes as their argument. Con
sequently, they consume dotted pairs if they are associated with classes that
have at least one indexed field. To be able to allocate, we are obliged to
allocate that much! Later, we'll sketch a solution to this problem.

2. Superfluous sizes are simply ignored without generating an errror.

3. Allocation, as a procedure, runs over the list of fields in the class twice. Doing
so twice is costly, especially if the list doesn't vary: we know once the class
has been created whether the direct instances of the class have a fixed size
or not. We'll correct this point later, too.

4. If a size is not a natural number (thus non-negative), addition will lead to a
computation of the size of the memory zone to allocate that will be in error,
but the error message will be very cryptic. To be more "user-friendly" in this
respect, an explicit test must be carried out, and a relevant and intelligible
error message should be generated.

5. Fields can be instances only of Mono-Field or Poly-Field. It's not possible
to add user-defined classes of fields here.

11.6.3 Allocator with Initialization

Allocators with initialization are created in a similar way, but as we go, we'll
improve the efficiency of allocators for objects of small fixed size. In Scheme,
allocators without initialization (like make-vector or make-string) take the size of
the object to allocate, followed by a possible value to fill in. That value will be used
to initialize all components. Allocators with initialization (like cons, vector, or
string) successively take all the initialization values. The number of initialization
values becomes the size of a unique indexed field for vector and string. Since



434 CHAPTER 11. ESSENCE OF AN OBJECT SYSTEM

we allow multiple indexed fields simultaneously, we must know the size for each of
them since we cannot infer it. Consequently, MEROONET requires the initialization
values of indexed fields to be prefixed by their number. We could allocate a three
sided polygon by writing this:

(make-ColoredPolygon 'x 'y 3 'PointO 'Point1 'Point2 'color)

For allocation with intialization, we'll adopt the following technique: all the
arguments are gathered into one list, parms; a vector is allocated with all these
values and with the number of the appropriate class as its first component. Then
all we have to do is to verify that the object has the correct structure for ME

ROONET, so we run through the arguments and the fields of its class to verify
whether there are at least as many arguments as necessary. After this verification,
the object is returned. This technique is simpler (and thus might be faster) than
the one earlier that seemed more natural, the one consisting of verifying all the
arguments, then allocating only after the object to be returned.

(define (make-maker class)
(or (make-fix-maker class)

(let «fields (Class-fields class»)
(lambda parms

; ; create the instance
(let «0 (apply vector (Class-number class) parms»)

; ; check its skeleton
(let check «fields fields)

(parms parms)
(offset *starting-offset*)

(if (pair? fields)
(cond «Mono-Field? (car fields»

(check (cdr fields) (cdr parms) (+ 1 offset» )
«Poly-Field? (car fields»

(check (cdr fields)
(list-tail (cdr parms) (car parms»
(+ 1 (car parms) offset) ) ) )

0»» »)

Well, this allocator ignores superfluous arguments, but it is still not very efficient
because it allocates the arguments in a list that it then converts into a vector. Since
this list (the value of parms) is used to verify the structure of the object rather than
to verify the components of the object directly, we can't even hope for a compiler
sufficiently intelligent not to create that list of arguments. For that reason, we'll
stick a little wart on the nose of make-maker to improve the case of allocators for
objects that have no indexed fields.

(define (make-fix-maker class)
(define (static-size? fields)

(if (pair? fields)
(and (Mono-Field? (car fields»

(static-size? (cdr fields»
#t ) )

(let «fields (Class-fields class»)
(and (static-size? fields)

(let «size (length fields»
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(en (Class-number class»
(case size

«0) (lambda () (vector cn»)
«1) (lambda (a) (vector cn a»)
«2) (lambda (a b) (vector cn a b»)
«3) (lambda (a b c) (vector cn a b c»)
«4) (lambda (a b c d) (vector cn abc d»)
«5) (lambda (a b c d e) (vector cn abc de»)
«6) (lambda (a b c d e f) (vector cn abc d e f»)
«7) (lambda (a b c d e f g) (vector cn abc d e f g»)
(else If) ) ) ) ) )

So allocators of classes without any indexed fields and with fewer than nine
normal fields are produced by closures with fixed arity. If a class has no indexed
fields but more than nine normal fields, we go back to the preceding case, which
verifies whether the number of initialization values is sufficient. Always hoping to
minimize error detection, we'll make cdr or list-tail detect the fact when there
are not enough initialization values. Those two must not truncate a list that is
already empty. In the case where we're allocating small-sized objects, we'll rely on
the arity check. Of course, since we are relying on various strategies to detect the
same anomaly, we'll get error messages about it that are not uniform-a situation
that is not the best, but the code for MEROONET would balloon by more than a
fourth if we tried to be more "user-friendly" in this respect.

A native implementation of MEROONET must support efficient allocation of
objects. To avoid that monstrous situation we saw earlier of allocating in order
to allocate, it should probably be endowed with an internal means of building
allocators of the type (vector en abc ... ) .

11.6.4 Accessing Fields

For every field of a class, MEROONET creates accompanying functions to read,
to write, and to get the length of a field, if it is indexed. The accompanying
functions related to fields (the selectors) are constructed by the subfunction of
macro expansion: Field-generate-related-names.

(define (Field-generate-related-names field class)
(let* «fname (careless-Field-name field»

(cname (Class-name class»
(cname-variable (symbol-concatenate cname '-class»
(reader-name (symbol-concatenate cname ,- fname»
(writer-name (symbol-concatenate 'set- cname ,- fname '!» )

«begin
(define ,reader-name

(make-reader
(retrieve-named-field ,cname-variable ',fname) ) )

(define ,writer-name
(make-writer
(retrieve-named-field ,cname-variable ',fname) )

,~(if (Poly-Field? field)
«(define ,(symbol-concatenate cname ,- fname '-length)

(make-lengther
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(retrieve-named-field ,cname-variable ',fname) ) »
'() ) ) ) )

As before, the accompanying functions are constructed by closure, not by code
synthesis. The constructors are make-reader, make-writer, and make-lengther.
As arguments, they all take a field and a class. Since the constructors have to be
built at evaluation, they find these objects by the name of the global variable that
contains the class and by the function retrieve-naMed-field, which gets a field
in a class by name.

(define (retrieve-named-field class name)
(let search «fields (careless-Class-fields class»)

(and (pair? fields)
(if (eq? name (careless-Field-name (car fields»)

(car fields)
(search (cdr fields» ) ) ) )

11.6.5 Accessors for Reading Fields

Since we have two types of fields-indexed and normal-we also have two kinds
of readers with different arity. In case the implementation is not to your taste, we
should point out that a constant offset accesses fields not preceded by an indexed
field. The function make-reader for constructing readers, of course, has to take this
fact into account. We'll run through the list of fields in order to determine whether
that offset is constant or not. If it is, an appropriate function will be generated;
otherwise, we'll resort to a general function for reading fields: field-value. In
that way, all the fields with a constant offset (possibly indexed) are read efficiently.

Readers are safe functions in the sense that they verify whether the object to
which they are applied belongs to the right class, that is, a class inheriting from
the class that introduced the field in the first place. That's the role of the function
check-class-membership, that we looked at earlier. Another reason we speak
of them as safe functions is that the reader of an indexed field uses the function
check-index-range to test whether the index is correct with respect to the size
of the indexed field.

(define (make-reader field)
(let «class (Field-defining-class field»)

(let skip «fields (careless-Class-fields class»
(offset *starting-offset*) )

(if (eq? field (car fields»
(cond «Mono-Field? (car fields»

(lambda (0)

(check-class-membership 0 class)
(vector-ref 0 offset) ) )

«Poly-Field? (car fields»
(lambda (0 i)

(check-class-membership 0 class)
(check-index-range i 0 offset)
(vector-ref 0 (+ offset 1 i» ) )

(cond «Mono-Field? (car fields»
(skip (cdr fields) (+ 1 offset» )
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«Poly-Field? (car fields»
(cond «Mono-Field? field)

(lambda (0)

(field-value 0 field) ) )
«Poly-Field? field)

(lambda (0 i)
(field-value 0 field i) ) ) ) ) ) ) ) ) )

(define (check-index-range i 0 offset)
(let «size (vector-ref 0 offset»)

(if (not (and (>= i 0) « i size»)
(meroonet-error "Out of range index" i size) ) ) )
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For fields that are located after an indexed field, we'll make do with a mechanism
that incarnates the general (not generic) function field-value because MEROONET

does not support the creation of new types of fields. The function field-value, of
course, is associated with the function set-field-value!. Computations about
offsets common to both those functions are concentrated in compute-field-off
set.

(define (compute-field-offset 0 field)
(let «class (Field-defining-class field»)

; ; (assume (check-class-membership 0 class))
(let skip «fields (careless-Class-fields class»

(offset *starting-offset*) )
(if (eq? field (car fields»

offset
(cond «Mono-Field? (car fields»

(skip (cdr fields) (+ 1 offset»
«Poly-Field? (car fields»
(skip (cdr fields)

(+ 1 offset (vector-ref 0 offset» ) ) ) ) ) ) )

(define (field-value 0 field . i)
(let «class (Field-defining-class field»)

(check-class-membership 0 class)
(let «fields (careless-Class-fields class»

(offset (compute-field-offset 0 field»
(cond «Mono-Field? field)

(vector-ref 0 offset) )
«Poly-Field? field)
(check-index-range (car i) 0 offset)
(vector-ref 0 (+ offset 1 (car i») ) ) ) ) )

11.6.6 Accessors for Writing Fields

The definition of an accessor to write a field is analogous to that of a reader so it
poses no difficulties. In contrast, the function set-field-value! has a strange
signature. The signature of a writer for fields is based on the signature for a reader
with the value to add at the tail of the arguments. That's the usual pattern in
Scheme, for example, in car and set-car!. However, the fact that there may be
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an optional index present upsets this nice pattern, so we've chosen this order14 : (0

v field. i).

(define (make-writer field)
(let «class (Field-defining-class field»)

(let skip «fields (careless-Class-fields class»
(offset *starting-offset*) )

(if (eq? field (car fields»
(cond «Mono-Field? (car fields»

(lambda (0 v)
(check-class-membership 0 class)
(vector-set! 0 offset v) ) )

«Poly-Field? (car fields»
(lambda (0 i v)

(check-class-membership 0 class)
(check-index-range i 0 offset)
(vector-set! 0 (+ offset 1 i) v) ).) )

(cond «Mono-Field? (car fields»
(skip (cdr fields) (+ 1 offset»

«Poly-Field? (car fields»
(cond «Mono-Field? field)

(lambda (0 v)
(set-field-value! 0 v field) ) )

«Poly-Field? field)
(lambda (0 i v)

(set-field-value! 0 v field i) ) ) )
) ) ) ) ) )

(define (set-field-value! 0 v field. i)
(let «class (Field-defining-class field»)

(check-class-membership 0 class)
(let «fields (careless-Class-fields class»

(offset (compute-field-offset 0 field»
(cond «Mono-Field? field)

(vector-set! 0 offset v) )
«Poly-Field? field)
(check-index-range (car i) 0 offset)
(vector-set! 0 (+ offset 1 (car i» v) ) ) ) ) )

From a stylistic point of view, writers for fields are constructed with the prefix
set-, as in set-cdr!. We could have used the suffix -set! just as well, as in
vector-set! , but we chose the prefix to show as soon as possible that we are deal
ing with a modification. Visually, this choice also looks more like an assignment.

11.6.7 Accessors for Length of Fields

We can access the length of a field either by a specialized accompanying function
or by the general function field-length. Here again, we've been able to improve
access to any field that is not located after an indexed field.

(define (make-Iengther field)
; ; (assume (Poly-Field? field))

14. This order may remind you of putprop if you are already nostalgic about property lists.
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(let «class (Field-defining-class field»)
(let skip «fields (careless-Class-fields class»

(offset *starting-offset*) )
(if (eq? field (car fields»

(lambda (0)

(check-class-membership 0 class)
(vector-ref 0 offset) )

(cond «Mono-Field? (car fields»
(skip (cdr fields) (+ 1 offset»

«Poly-Field? (car fields»
(lambda (0) (field-length 0 field» ) ) ) ) ) )

(define (field-length 0 field)
(let* «class (Field-defining-class field»

(fields (careless-Class-fields class»
(offset (compute-field-offset 0 field»

(check-class-membership 0 class)
(vector-ref 0 offset) ) )

11.7 Creating Classes

The form define-class does not actually create the object to represent the class
being defined. Rather, it delegates that task to the function register-class.
That function actually allocates the object and then calls Class-initialize! to
analyze the parameters of the definition of the class as well as to initialize the
various fields of the class. Once the fields have been filled in (with the help of
parse-fields for fields belonging to the class), the class is inserted in the class
hierarchy. Finally, the call to update-generics will confer all the methods that
the newly created class inherits from its superclass.

(define (register-class name supername own-field-descriptions)
(Class-initialize! (allocate-Class)

name
(->Class supername)
own-field-descriptions ) )

(define (Class-initialize! class name superclass own-field-descriptions)
(set-Class-number! class *class-number*)
(set-Class-name! class name)
(set-Class-superclass! class superclass)
(set-Class-subclass-numbers! class '(»
(set-Class-fields!
class (append (Class-fields superclass)

(parse-fields class own-field-descriptions) ) )
; ; install definitely the class
(set-Class-subclass-numbers!
superclass
(cons *class-number* (Class-subclass-numbers superclass»

(vector-set! *classes* *class-number* class)
(set! *class-number* (+ 1 *class-number*»
; ; propagate the methods of the super to the fresh class
(update-generics class)
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class)

The specifications of fields belonging to the class are analyzed by the function
parse-fields. That function analyzes the syntax of these specifications. When a
specification is parenthesized, it can begin only with an equal sign or an asterisk.
Any other object in that position raises an error indicated by meroonet-error.
MEROONET does not support the redefinition of an inherited field; the function
check-conflicting-name verifies that point. In contrast, it does not check whether
the same name appears more than once among the fields of the object.

(define (parse-fields class own-field-descriptions)
(define (Field-initialize! field name)

(check-conflicting-name class name)
(set-Field-name! field name)
(set-Field-defining-class-number! field (Class-number class»
field)

(define (parse-Mono-Field name)
(Field-initialize! (allocate-Mono-Field) name)

(define (parse-Poly-Fieldname)
(Field-initialize! (allocate-Poly-Field) name)

(if (pair? own-field-descriptions)
(cons (cond

«symbol? (car own-field-descriptions»
(parse-Mono-Field (car own-field-descriptions»

«pair? (car own-field-descriptions»
(case (caar own-field-descriptions)

«=) (parse-Mono-Field
(cadr (car own-field-descriptions» »

«*) (parse-Poly-Field
(cadr (car own-field-descriptions» »

(else (meroonet-error
"Erroneous field specification"
(car own-field-descriptions) » ) ) )

(parse-fields class (cdr own-field-descriptions»
, () ) )

(define (check-conflicting-name class fname)
(let check «fields (careless-Class-fields (Class-superclass class»»

(if (pair? fields)
(if (eq? (careless-Field-name (car fields» fname)

(meroonet-error "Duplicated field name" fname)
(check (cdr fields» )

#t ) ) )

11.8 Predefined Accolllpanying Functions

At this point, we've already presented the entire backbone for defining classes, but
it is not yet completely operational. Indeed, we can't yet define a class because the
predefined accompanying functions, like Class, Field, etc., haven't been covered
yet. Well, we can't use define-class because those functions are missing, but the
role of define-class is to define them, so we find ourselves stuck again with a
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bootstrapping problem.
With a little patience, we'll define those functions "by hand" ourselves. We'll

write just the ones that are minimally necessary and we'll even simplify the code
by leaving out any verifications. If everything goes well, then we will expand
the definitions of predefined classes and cut-and-paste that code, as we have done
before. The truth, the whole truth, and nothing but the truth, is that we have
to define the predicates before the readers, the readers before the writers, and
the writers before the allocators. Foremost, we have to make the accompanying
functions for Class appear before everything else. Here, we'll show you just a
synopsis of these definitions because the entire thing would be a little monotonous.

(define Class? (make-predicate Class-class))

(define Generic? (make-predicate Generic-class))

(define Field? (make-predicate Field-class))

(define Class-name
(make-reader (retrieve-named-field Class-class 'name)))

(define set-Class-name!
(make-writer (retrieve-named-field Class-class 'name)))

(define Class-number
(make-reader (retrieve-named-field Class-class 'number)))

(define set-Class-subclass-numbers!
(make-writer (retrieve-named-field Class-class 'subclass-numbers)))

(define make-Class (make-maker Class-class))

(define allocate-Class (make-allocator Class-class))

(define Generic-name
(make-reader (retrieve-named-field Generic-class 'name)))

(define allocate-Poly-Field (make-allocator Poly-Field-class))

At this stage now, it's possible to use define-class. Careful: don't abuse it
to redefine the predefined classes Obj ect, Class, and all the rest. For one thing,
you mustn't do so because define-class is not idempotent15 so you would get
twelve initial classes, among which six would be inaccessible. For another, when
you compiled, you would duplicate all the accompanying functions.

11.9 Generic Functions

Generic functions are the result of adapting the idea of sending messages-impor
tant in the object world-to the functional world of Lisp. Sending a message in
Smalltalk [GR83] looks like this:

receiver message: arguments ...

As people often say, everything already exists in Lisp-all you have to do is add
parentheses! The first importations of message sending in Lisp used a keyword,
like send or => as in Planner [HS75], to get this:

(send receiver message arguments ... )

15. One work-around would be to reset *class-number* to zero and redefine the classes which
should have the same numbers.
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The receiver, of course, is the object that gets the message. It is unique in
Smalltalk; that is, you can't send a message to more than one object at a time.
Now, in our way of thinking that anything can be an object in Lisp, we see right
away that a function like binary addition makes sense only if it knows the class
of both its objects. For two integers, that is, we use binary integer addition; for
two floating-point numbers, we use binary floating-point addition; and for mixed
cases, we must first convert the integer argument into a floating-point number
before we add them (a practice known as "floating-point contagion"). In fact,
addition has methods for which there is not a unique receiver. Such methods are
known as multimethods. The syntax for sending messages puts the receiver in a
privileged position and thus undermines the idea of multimethods, so Common
Loops [BKK+ 86] proposed changing the syntax to something more suggestive, like
this:

(message receiver arguments ... )

The keyword send has disappeared, and the message itself appears in the func
tion position, so it's a function. Since it inspects its arguments in order to determine
which method to apply, we say it is a generic function. A generic function takes
into account all the arguments it receives, so there are certain consequences:

1. It can treat the ones it wants to as discriminants.

2. It might not give any particular pre-eminence to the first argument (the
former receiver) among the others.

3. It can take more than one argument into account as a discriminant (for
example, in the case of binary addition).

In short, the idea of generic functions generalizes the idea of message-sending,
and it's this idea of generic functions that MEROONET offers. However, multi
methods simply don't appear in this book. Moreover, they generally represent
less than 5% of the cases in use, according to [KR90], so MEROONET doesn't even
implement multimethods.

Some people interested in generic functions ask whether this generalization is
still faithful to the spirit of objects. We won't attempt to respond to this deli
cate question. However, we will admit that generic functions completely hide the
object-aspect since they are real functions that don't need a special operator like
send. Whether or not a function should be generic and use message-sending is
thus left as an implementation question and has no impact on its calling inter
face. On the implementation side, there is a slight surcharge due to encapsulation
since the application of a generic function with a discriminating first argument (g

arguments . .. ) shows that 9 is more or less equivalent to (lambda args (apply
send (car args) g (cdr args))).

How should we represent generic functions in Scheme? Since we have to be able
to apply them, in Scheme they are necessarily represented by functions. However,
since we want to preserve self-description, we would like for them to be MEROONET

objects belonging to the class Generic, so we would like for them to be simultane
ously objects and functions, in short, functional objects, or even Juncallable objects.

CLOS and OakLisp [LP86, LP88] support such concepts.
In fact, generic functions are really objects endowed with an internal state

corresponding to the set of methods that they know. Consequently, we'll adopt the
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following technique, even though it is largely suboptimal. A generic function will
be represented simultaneously by a MEROONET object and a Scheme function, the
value of the variable with the same name as the generic function. That function
will contain the MEROONET object in its closure. Methods will be added to the
object which will thus be visible to the Scheme function that will be applied. The
generic object will be retrieved by its name (and that fact means that we cannot
have anonymous generic functions) rather than by the value of the global variable
bearing the same name; it will be retrieved in such a way as to be insensitive to
the lexical context where generic functions and methods are defined.

The definition form for generic functions uses the following syntax:

(def ine-generic (name variables. .. ) [default... 1 )
The first term defines the form of the call to the generic function and specifies

the discriminating variable (the receiver in Smalltalk). The discriminating variable
appears between parentheses. It is possible to define the default body of the generic
function in the rest of the form. In a language where all values were MEROONET

objects, that would be equivalent to putting a method in the class of all values,
namely, Dbj ect. Since, in this implementation of Scheme, there are values that are
not objects, the default body will be applied to every discriminating value which is
not a MEROONET object. That property makes the integration of MEROONET and
Scheme simpler; it also supports customized error trapping. One of the novelties
of MEROONET is that generic functions may have any signature, even a dotted
variable. In any case, the methods must have a compatible signature.

The class Generic will be defined like this:

(define-class Generic Object (name default dispatch-table signature»

We can retrieve the generic function by name with ->Generic. The field
default contains the default body, either supplied by the user or synthesized au
tomatically by default to raise an error. The signature makes it possible to judge
the compatibility of methods that might be added to the generic function. This
test is important, for one thing, because it would be insane to add methods of
different arity: the call to a generic function is already varied enough in terms of
the method that will be chosen without adding the problems presented by vary
ing arity. For another thing, a native implementation could take advantage of the
uniformity among methods to improve the call for generic functions, as in [KR90].

The internal state of a generic function is produced entirely by a vector indexed
by the class numbers. The vector contains all the known methods of the generic
function. This vector is known as the dispatch table for the generic function. Con
sequently, the means of calling a generic function is straightforward: the number of
the class of the discriminating argument will be the index into the dispatch table to
retrieve the appropriate method. This way of coding is extremely fast, but it takes
up space since the set of these tables is equivalent to an n * m matrix where n is
the number of classes and m the total number of generic functions. There are tech
niques for compressing a dispatch table, as in [VH94, Que93b]. Those techniques
are feasible mainly because most of the time the methods of a generic function
involve only a subtree in the class hierarchy.

The methods of a generic function as well as its default body will all have
the same finite arity, and that's also the case for generic functions with a dotted
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variable. For example, let's assume that the generic function f is defined like this:

(define-generic (f a (b) . c) (g b a c»

Then the default body will be this:

(lambda (a b c) (g b a c»

And all the methods will be represented by functions with arity comparable to
(a b c). The arity of the image of a generic function in Scheme is the same arity
specified for the generic function. For the preceding example, that will be:

(lambda (a b . c) «determine-method G127 b) a b c»

The value of the variable G12716 is the generic object containing the dispatch
table from which the function determine-method chooses the appropriate method.
Since not all values of Scheme are objects, we must first test whether the value of
the discriminating variable is really a MEROONET object.

(define (determine-method generic 0)

(if (Object? 0)

(vector-ref (Generic-dispatch-table generic)
(vector-ref 0 0) )

(Generic-default generic) ) )

So here is the definition of generic functions, finally:

(define-meroonet-macro (define-generic call . body)
(parse-variable-specif icat ions
(cdr call)
(lambda (discriminant variables)

(let «generic (gensym») ; make generic hygienic
(define ,(car call)

(let «,generic (register-generic
',(car call)
(lambda ,(flat-variables variables)

,(if (pair? body)
(begin. ,body)
(meroonet-error

"No method" ',(car call)
. ,(flat-variables variables) ) ) )

',(cdr call) »)
(lambda ,variables

«determine-method ,generic ,(car discriminant»
. ,(flat-variables variables) ) ) ) ) ) ) ) )

The function parse-variable-specifications analyzes the list specifying the
variables in order to extract the discriminating variable and to re-organize the
list of variables to make it conform to what Scheme expects. It will be com
mon to define-generic and define-method. It invokes its second argument on
these two results. Nonchalantly not caring a bit about dogmatism, the function
parse-variable-specifications does not verify whether there is only one dis
criminating variable.

16. To make the expansion of define-generic cleaner, the variable enclosing the generic object
has a name synthesized by gensym.
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(define (parse-variable-specifications specifications k)
(if (pair? specifications)

(parse-variable-specifications
(cdr specifications)
(lambda (discriminant variables)

(if (pair? (car specifications))
(k (car specifications)

(cons (caar specifications) variables) )
(k discriminant (cons (car specifications) variables)) ) ) )

(k #f specifications) ) )

The default body of the generic function is built then. A generic object is
constructed by register-generic making it possible (at the level of the results
of expanding of define-generic) to hide the coding details of generic functions,
especially the variable *generics*. Among these details, the dispatch table is
constructed, so we allocate a vector that we initially fill with the default body.
That default body is effectively the method which will be found if there isn't any
other method around. The size of the dispatch table depends on the total number
of possible classes, not on the number of actual classes. This fact means that when
new classes are defined, we have to increase the size of the dispatch table for all
existing generic functions.

(define (register-generic generic-name default signature)
(let* «dispatch-table (make-vector *maximal-number-of-classes*

default ))
(generic (make-Generic generic-name

default
dispatch-table
signature)) )

(set! *generics* (cons generic *generics*))
generic ) )

The function flat-variables flattens a list of variables and transforms any
final possible dotted variable into a normal one. That transformation occurs in the
default body but will also be applied to any methods to come.

(define (flat-variables variables)
(if (pair? variables)

(cons (car variables) (flat-variables (cdr variables)))
(if (null? variables) variables (list variables)) ) )

A Bit More about Class Definitions

We've already mentioned the role of the function update-generics when a class
is defined. Its role is to propagate the methods of the superclass to this new class.
If we first define the class Point with the method show to display points, and then
we define the class ColoredPoint, it seems normal for ColoredPoint to inherit
that method. To implement that characteristic, we need to have all the generic
functions available so that we can update them.

(define (update-generics class)
(let «superclass (Class-superclass class)))
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(for-each (lambda (generic)
(vector-set! (Generic-dispatch-table generic)

(Class-number class)
(vector-ref (Generic-dispatch-table generic)

(Class-number superclass) ) ) )
*generics* ) )

11.10 Method

Methods are defined by def ine-method of course. Its syntax resembles the syntax
of define. The list of variables is similar to the one that appears in define-gen
eric: the discriminating variable occurs between parentheses as does the name of
the class for which the method is installed.

(define-method (name variables . .. ) forms ...

The generic functions that we've already defined are objects on which we can
confer new behavior or methods by means of define-method. Thus in MEROONET,

generic functions are mutable objects, and to that degree, they make optimizations
difficult, unless we freeze the class hierarchy (as with seal in Dylan [App92b]) and
then analyze the types (or rather, the classes) a little. Making generic functions
immutable would be another solution, but that requires functional objects, which
we've excluded here.

We have already evoked the arity of methods for the default body in the defini
tion of the functional image for generic functions in Scheme. Once the method has
been constructed, it must be inserted in the dispatch table not only for the class
for which it is defined but also for all the subclasses for which it is not redefined.

The remaining problem is the implementation of what Smalltalk calls super
and what CLOS calls call-next-method; that is, the possibility for a method to
invoke the method which would have been invoked if it hadn't been there. The form
(call-next-method) can appear only in a method and corresponds to invoking
the supermethod with implicitly the same17 arguments as the method. Of course,
the supermethod of the class Obj ect is the default body of the generic function.

The way that the function call-next-method local to the body of the method
searches for the supermethod is inspired by determine-method, but this time we
need to test whether the value of the discriminating variable is indeed an object and
whether the number of the class to consider for indexing is no longer the number
of the direct class of the discriminating value but rather that of the superclass.
Thus in order to install a method that uses call-next-method, we have to know
the number of the superclass of the class for which we are installing the method.
Careful: because of special considerations in macro expansion, this number should
not be known right away but only at evaluation. For that reason, we have to resort
to the following technique. The form define-method will build a premethod, that
is, a method using as parameters the generic function and class where it will be

17. We haven't kept the possibility of changing these arguments as in CLOS because it would
then be possible to change the contents of the discriminating variable to anything at all, and
that would violate the intention of the supermethod as well as the hypotheses of the compilation,
probably.



11.10. METHOD 447

installed. In order to hide the details of this installation and to reduce the size of the
macro expansion of define-method, we'll create the function register-method,
like this:

(define-meroonet-macro (define-method call . body)
(parse-variable-specif icat ions
(cdr call)
(lambda (discriminant variables)

(let «g (gensym» (c (gensym») ; make g and c hygienic
(register-method

',(car call)
(lambda (,g ,c)

(lambda ,(flat-variables variables)
(define (call-next-method)

«if (Class-superclass ,c)
(vector-ref (Generic-dispatch-table ,g)

(Class-number (Class-superclass ,c» )
(Generic-default ,g) )

. ,(flat-variables variables) ) )
. ,body) )

',(cadr discriminant)
',(cdr call) ) ) ) ) )

The function register-method determines the class and the implicated generic
function, converts the premethod into a method, verifies that the signatures are
compatible, and installs it in the dispatch table. To test the compatibility of sig
natures during macro expansion would have required define-method to know the
signatures of generic functions. Since this verification is simple and it is done only
once at installation without hampering the efficiency of calls to generic functions,
we have relegated it to evaluation. Notice that there is a comparison of functions
by eq? for propagating methods.

(define (register-method generic-name pre-method class-name signature)
(let* «generic (->Generic generic-name»

(class (->Class class-name»
(new-method (pre-method generic class»
(dispatch-table (Generic-dispatch-table generic»
(old-method (vector-ref dispatch-table (Class-number class»)

(check-signature-compatibility generic signature)
(let propagate «cn (Class-number class»)

(let «content (vector-ref dispatch-table cn»)
(if (eq? content old-method)

(begin
(vector-set! dispatch-table cn new-method)
(for-each
propagate
(Class-subclass-numbers (number->class cn» ) ) ) ) ) ) )

(define (check-signature-compatibility generic signature)
(define (coherent-signatures? la lb)

(if (pair? la)
(if (pair? lb)

(and (or ;; similar discriminating variable
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(and (pair? (car la» (pair? (car lb»)
; ; similar regular variable
(and (symbol? (car la» (symbol? (car lb»)

(coherent-signatures? (cdr la) (cdr lb» )
#f )

(or (and (null? la) (null? lb»
; ; similar dotted variable
(and (symbol? la) (symbol? lb» ) ) )

(if (not (coherent-signatures? (Generic-signature generic) signature»
(meroonet-error "Incompatible signatures" generic signature) ) )

11.11 Conclusions

In the programs you've just seen, there are a lot of points that could be improved
to increase the speed of MEROONET in Scheme or to heighten its reflective qualities.
You can also imagine other improvements in a native implementation where every
value would be a MEROONET object. For that reason, EuLISP, ILOG TALK, and
CLtL2 all integrate the concepts of objects in their basic foundations.

11.12 Exercises

Exercise 11.1 : Design a better, less approximate version of Obj ect?

Exercise 11.2 : Design a generic function, clone, to copy a MEROONET object.
Make that a shallow copy.

Exercise 11.3 : We could create new types of classes, subclasses of Class, that
we call metaclasses. Write a metaclass where the instances are classes that count
the number of objects that they have created.

Exercise 11.4 : In order to heighten the reflective qualities of MEROONET, classes
and fields could have supplementary fields to refer to the accompanying functions
(predicate and allocators for classes; reader, writer, and length-getter for fields)
that are associated with them. Extend MEROONET to do that.

Exercise 11.5 : CLOS does not demand that a generic function should already
exist in order to add a new method to it. Modify define-method to create the
generic function on the fly, if it doesn't exist already.

Exercise 11.6 : In some object systems like CLOS or EuLISP, it is possible,
conjointly with call-next-method, to know whether there is a method that follows,
by means of next-method? This reflective capacity makes it possible to reel off all
the supermethods without error. The "method" that follows the one for Obj ect
corresponds to the default body, but next-method? replies False when there is no
method other than that one. Modify define-method to get next-method?
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ReCOllllllended Reading
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Another approach to objects in Scheme is inspired by that of T in [AR88]. For the
fans of meta-objects, there is the historic article defining ObjVlisp, [Coi87] or the
self-description of CLOS in [KdRB92].





Answers to Exercises

Exercise 1.1: All you have to do is put trace commands in the right places, like
this:

(define (tracing. evaluate exp env)
(if

(case (car exp) ...
(else (let «fn (evaluate (car e) env))

(arguments (evlis (cdr e) env)) )x
(display '(calling ,(car e) with. ,arguments)

*trace-port* )
(let «result (invoke fn arguments)))

(display '(returning from ,(car e) with ,result)
*trace-port* )

result) )) ) ) )

Notice two points. First, the name of a function is printed, rather than its value.
That convention is usually more informative. Second, print statements are sent
out on a particular stream so that they can be more easily redirected to a window
or log-file or even mixed in with the usual output stream.

Exercise 1.2: In [Wan80b], that optimization is attributed to Friedman and
Wise. The optimization lets us overlook the fact that there is still another (evlis
, () env) to carry out when we evaluate the last term in a list. In practice, since
the result is independent of env, there is no point in storing this call along with
the value of env. Since lists of arguments are usually on the order of three or four
terms, and since this optimization can always be carried out at the end of a list, it
becomes a very useful one. Notice the local function that saves a test, too.

(define (evlis exps env)
(define (evlis exps)

; ; (assume (pair'? exps))
(if (pair? (cdr exps))

(cons (evaluate (car exps) env)
(evlis (cdr exps)) )

(list (evaluate (car exps) env)) ) )
(if (pair? exps)

(evlis exps)
,() ) )

Exercise 1.3: This representation is known as the rib cage because of its obvious
resemblance to that part of the body. It lowers the cost of a function call in the
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number of pairs consumed, but it increases the cost for searching and for modifying
the value of variables. Moreover, verifying the arity of the function is no longer so
safe because we can no longer detect superfluous arguments this way. To do so, we
have to modify extend.

(define (lookup id env)
(if (pair? env)

(let look «names (caar env»
(values (cdar env»

(cond «symbol? names)
(if (eq? names id) values

(lookup id (cdr env» ) )
«null? names) (lookup id (cdr env»)
«eq? (car names) id)
(if (pair? values)

(car values)
(wrong "Too less values") ) )

(else (if (pair? values)
(look (cdr names) (cdr values»
(wrong "Too less values") » ) )

(wrong "No such binding" id) ) )

You can deduce the function update! straightforwardly from lookup.

Exercise 1.4 :

(define (s.make-function variables body env)
(lambda (values current.env)

(for-each (lambda (varval)
(putprop var 'apval (cons val (getprop var 'apval») )

variables values )
(let «result (eprogn body current.env»)

(for-each (lambda (var)
(putprop var 'apval (cdr (getprop var 'apval») )

variables)
result ) ) )

(define (s.lookup id env)
(car (getprop id 'apval»

(define (s.update! id env value)
(set-car! (getprop id 'apval) value)

Exercise 1.5: Since there are many other predicates in the same predicament,
just define a macro to define them. Notice that the value of the-false-value is
True for the definition Lisp.

(define-syntax defpredicate
(syntax-rules ()

«defpredicate name value arity)
(defprimitive name

(lambda values (or (apply value values) the-false-value»
arity ) ) ) )

(defpredicate > > 2)
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Exercise 1.6: The hard part of this exercise is due to the fact that the arity of
list is so variable. For that reason, you should define it directly by definitial,
like this:

(definitial list
(lambda (values) values) )

Exercise 1.7: Well, of course, the obvious way to define callicc is to use
callicc. The trick is to convert the underlying Lisp functions into functions in
the Lisp being defined.

(defprimitive call/cc
(lambda (f)

(call/cc (lambda (g)
(invoke
f (list (lambda (values)

(if (= (length values) 1)
(g (car values»
(wrong "Incorrect arity" g) ) ») » )

1 )

Exercise 1.8: Here we have very much the same problem as in the definition
of callicc: you have to do the work between the abstractions of the underlying
definition Lisp and the Lisp being defined. The function apply has variable arity,
by the way, and it must transform its list of arguments (especially its last one) into
an authentic list of values.

(definitial apply
(lambda (values)

(if (>= (length values) 2)
(let «f (car values»

(args (let flat «args (cdr values»)
(if (null? (cdr args»

(car args)
(cons (car args) (flat (cdr args») ) » )

(invoke f args) )
(wrong "Incorrect arity" 'apply) ) ) )

Exercise 1.9: Just store the call continuation to the interpreter and bind this
escape (conveniently adapted to the function calling protocol) to the variable end.

(define (chapter1d-scheme)
(define (toplevel)

(display (evaluate (read) env.global»
(toplevel) )

(display "Welcome to Scheme") (newline)
(call/cc (lambda (end)

(defprimitive end end 1)
(toplevel) » )
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Exercise 1.10: Of course, these comparisons depend simultaneously on at least
two factors: the implementation that you are using and the programs that you are
benchmarking. Normally, the comparisons show a ratio on the order of 5 to 15,
according to [ITW86].
Even so, this exercise is useful to make you aware of the fact that the definition of
evaluate is written in a fundamental Lisp, and it can be evaluated simulataneously
by Scheme or by the language that evaluate defines.

Exercise 1.11: Since you can always take sequences back to binary sequences,
all you have to do here is to show how to rewrite them. The idea is to encapsulate
expressions that risk inducing hooks inside thunks.

(begin expressionl expression2)
«lambda (void other) (other»

expresszonl
(lambda () expression2) )

Exercise 2.1: It's straightforwardly translated as (cons 1 2). For compatibility,
you could also define this:

(define (funcall f . args) (apply f args»
(define (function f) f)

Or, again, you could define it with macros, like this:

(define-syntax funcall
(syntax-rules ()

«funcall f arg ... ) (f arg ... » ) )
(define-syntax function

(syntax-rules ()
«function f) f) ) )

Exercise 2.2: The problem here is to know:

1. whether it is legal to talk about the function bar although it has not yet been
defined;

2. in the case where bar has been defined before the result of (function bar)
has been applied, whether you're going to get an error or the new function
that has just been defined.

The difference is in the special form, function: are we talking about the function
bar or about the value instantly associated with it in the name space for functions?

Exercise 2.3: All you have to do is to modify invoke so that it recognizes
numbers and lists in the function position. Do it like this:

(define (invoke fn args)
(cond «procedure? fn) (fn args»

«number? fn)
(if (= (length args) 1)

(if (>= fn 0) (list-ref (car args) fn)
(list-tail (car args) (- fn»

(wrong IIIncorrect arity" fn) ) )
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«pair? fn)
(map (lambda (f) (invoke f args»

fn ) )
(else (wrong "Cannot apply" fn» )
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Exercise 2.4: The difficulty is that the function being passed belongs to the
Lisp being defined, not to the definition Lisp.

(definitial new-assoc/de
(lambda (values current.denv)

(if (= 3 (length values»
(let «tag (car values»

(default (cadr values»
(comparator (caddr values»

(let look «denv current.denv»
(if (pair? denv)

(if (eq? the-false-value
(invoke comparator (list tag (caar denv»

current.denv ) )
(look (cdr denv»
(cdar denv) )

(invoke default (list tag) current.denv) ) ) )
(wrong "Incorrect arity" 'assoc/de) ) ) )

Exercise 2.5: Here again you have to adapt the function specific-error to
the underlying exception system.

(define-syntax dynamic-let
(syntax-rules ()

«dynamic-let () . body)
(begin . body) )

«dynamic-let «variable value) others ... ) . body)
(bind/de 'variable (list value)

(lambda () (dynamic-let (others ... ) . body» ) ) ) )

(define-syntax dynamic
(syntax-rules ()

«dynamic variable)
(car (assoc/de 'variable specific-error» ) ) )

(define-syntax dynamic-set!
(syntax-rules ()

«dynamic-set! variable value)
(set-car! (assoc/de 'variable specific-error) value) ) ) )

Exercise 2.6: A private variable, properties, common to the two functions,
contains the lists of properties for all the symbols.

(let «properties '(»)
(set! putprop

(lambda (symbol key value)
(let «plist (assq symbol properties»)

(if (pair? plist)
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(let «couple (assq key (cdr plist»»
(if (pair? couple)

(set-cdr! couple value)
(set-cdr! plist (cons (cons key value)

(cdr plist) » ) )
(let «plist (list symbol (cons key value»»

(set! properties (cons plist properties» ) )
value) )

(set! getprop
(lambda (symbol key)

(let «plist (assq symbol properties»)
(if (pair? plist)

(let «couple (assq key (cdr plist»»
(if (pair? couple)

(cdr couple)
#f ) )

#f ) ) ) ) )

Exercise 2.7: Just add the following clause to the interpreter, evaluate.

«label) ; Syntax: (label name (lambda (variables) body»
(let* «name (cadr e»

(new-env (extend env (list name) (list 'void»)
(def (caddr e»
(fun (make-function (cadr def) (cddr def) new-env»

(update! name new-env fun)
fun ) )

Exercise 2.8 Just add the following clause to f. evaluate. Notice the re
semblance to flet except with respect to the function environment where local
functions are created.

«labels)
(let «new-fenv (extend fenv

(map car (cadr e»
(map (lambda (def) 'void) (cadr e» »)

(for-each (lambda (def)
(update! (car def)

new-fenv
(f.make-function (cadr def) (cddr def)

env new-fenv ) ) )
(cadr e)

(f.eprogn (cddr e) env new-fenv ) ) )

Exercise 2.9: Since a let form preserves indetermination, you have to make
sure not to sequence the computation of initialization forms and thus organize them
into a let, which must however be in the right environment. You could do that
using a hygienic expansion or a whole lot of gensyms for the temporary variables,
tempi.
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(let « variablel 'void)

(variablen 'void) )
(let «templ expressionl)

(tempn expressionn )
(set! variablel templ)

(set! variablen tempn)
corps ) )
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Exercise 2.10: Here's a binary version. The l]-conversion has been modified to
take a binary function into account.

(define fix2
(let «d (lambda (w)

(lambda (f)
(f (lambda (x y) «(w w) f) x y») ) »)

(d d) )

Last but not least, here is an n-ary version.

(define fixN
(let «d (lambda (w)

(lambda (f)
(f (lambda args (apply «w w) f) args») ) »)

(d d) )

Exercise 2.11 Perhaps a little intuition is enough to see that the preceding
definition for fixN can be extended, like this:

(define NfixN
(let «d (lambda (w)

(lambda (f*)
(list «car f*)

(lambda a (apply (car «w w) f*» a»
(lambda a (apply (cadr «w w) f*» a»

«cadr f*)
(lambda a (apply (car «w w) f*» a»
(lambda a (apply (cadr «w w) f*» a» ) ) ) »)

(d d) ) )

Now be careful to prevent ((w w) f) being evaluated too hastily, and then gener
alize the extension in this way:

(define NfixN2
(let «d (lambda (w)

(lambda (f*)
(map (lambda (f)

(apply f (map (lambda (i)
(lambda a (apply

(list-ref «w w) f*) i)
a » )

(iota 0 (length f*» » )
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(d d) ) )

Careful: the order of the functions for which you take the fixed point must always
be the same. Consequently, the definition of odd? must be first in the list and the
functional that defines it must have odd? as its first variable.
The function iota is thus defined in a way that recalls APL, like this:

(define (iota start end)
(if « start end)

(cons start (iota (+ 1 start) end»
'() ) )

Exercise 2.12: That function is attributed to Klop in [Bar84]. You can verify
that «klop meta-fact) 5) really does compute 120.
Since all the internal variables s, c, h, e, and m are bound to r, their order does
not matter much in the application (m e c h e s). It is sufficient for the arity to
be respected. You can even add or cut back on variables. If you reduce s, c, h, e,
and m to nothing more than w, then you get Y.

Exercise 2.13: The answer is 120. Isn't it nice that auto-application makes
recursion possible here? Another possibility would have been to modify the code
for the factorial to that it takes itself as an argument. That would lead to this:

(define (factfact n)
(define (internal-fact f n)

(if (= n 1) 1
(* n (f f (- n 1») )

(internal-fact internal-fact n)

Exercise 3.1: That form could be named (the-current-continuation) be
cause it returns its own continuation. There we see the point of callicc with
respect to the-continuation since the-continuation brings back only its con
tinuation, a poor thing of no interest to us. Let's look at the details of a computa
tion, and as we do so, let's index the continuations and functions that come into
play; we'll abbreviate the abbreviation callicc as just cc here. Continuations will
prefix expressions as an index, so we'll calculate k o (calliCCl calliCC2); k o is the
continuation with which to calculate (CCl CC2). Remember that the definition of
callicc is this:

k(call/cc ¢) k(¢ k)
Thus we have that k o (CCl CC2) is rewritten as k o (CC2 ko), which in turn is rewrit
ten as k o (ko ko), which returns the value ko.

Exercise 3.2: We'll use the same conventions as the preceding exercise and
index this expression like this: k o « CCl CC2) (CC3 CC4)). For simplicity, let's
assume that the terms of a functional application are evaluated from left to right.
Then the original expression becomes this: k o (k 1 (CCl CC2) (CC3 CC4)) where kl

is A¢.ko(¢ k2 (CC3 CC4)) and k2 is AC.k o (k l c). The initial form is rewritten as
ko(k l k2 ), that is, ko(k2 k~ (CC3 CC4)) where k~ is AC.ko(k 2 c). That leads to ko(k l k~)
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and then to k o(k~ k~) ... So you see that the calculation loops indefinitely. You
can verify that this looping does not depend on the order of evaluation of the terms
of the functional application. This may very well be the shortest possible program,
measured in number of terms, that will loop indefinitely.

Exercise 3.3: Each computation prefixed by a label will be transformed into
a local function within a huge form, labels. The gos are translated into calls to
those functions, but they are associated with a dynamic escape to insure that the
go forms have the right continuation. The expansion looks like this:

(block EXIT
(let (LABEL (TAG (list 'tagbody)))

(labels «INIT () expressionso... (labell))
(labell () expressionsl... (labeI2))

(labeln () expressionsn ... (return-from EXIT nil)) )
(setq LABEL (function INIT))
(while #t

(setq LABEL (catch TAG (funcall LABEL))) ) ) ) )

The forms (go label) are translated into (throw TAG label); (return value) will
become (return-from EXIT value). In the preceding lines, those names are writ
ten in all capital letters to avoid conflicts.

A fairly complicated translation of go insures the right continuation of the
branching, and in (bar (go L», it prevents bar from being called when (go L)
returns a value. That unfortunately would have happened if we had carelessly
written this, for example:

(tagbody A (return (+ 1 (catch 'foo (go B))))
B (* 2 (throw 'foo 5)) )

See also [Bak92c].

Exercise 3.4: Introduce a new subclass of functions:

(define-class function-with-arity function (arity))

Then redefine the evaluation of lambda forms so that they now create one such
instance:

(define (evaluate-lambda n* e* r k)
(resume k (make-function-with-arity n* e* r (length n*))) )

Now adapt the invocation protocol for these new functions, like this:

(define-method (invoke (f function-with-arity) v* r k)
(if (= (function-with-arity-arity f) (length v*))

(let «env (extend-env (function-env f)
(function-variables f)
v* )))

(evaluate-begin (function-body f) env k) )
(wrong "Incorrect arity" (function-variables f) v*) ) )
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Exercise 3.5 :

(definitial apply
(make-primitive

'apply
(lambda (v* r k)

(if (>= (length v*) 2)
(let «f (car v*»

(args (let flat «args (cdr v*»)
(if (null? (cdr args»

(car args)
(cons (car args) (flat (cdr args») ) » )

(invoke f args r k) )
(wrong "Incorrect arity" 'apply) ) ) ) )

Exercise 3.6: Take a little inspiration from the preceding exercise and define a
new type of function, like this:

(define-class function-nadic function (arity»

(define (evaluate-lambda n* e* r k)
(resume k (make-function-with-arity n* e* r (length n*»)

(define-method (invoke (f function-nadic) v* r k)
(define (extend-env env names values)

(if (pair? names)
(make-variable-env
(extend-envenv (cdr names) (cdr values»
(car names)
(car values) )

(make-variable-env env names values) ) )
(if (>= (length v*) (function-nadic-arity f»

(let «env (extend-env (function-env f)
(function-variables f)
v* »)

(evaluate-begin (function-body f) env k) )
(wrong "Incorrect arity" (function-variables f) v*) ) )

Exercise 3.7: Put the interaction loop in the initial continuation. For example,
you could write this:

(define (chap3j-interpreter)
(letrec «k.init (make-bottom-cont

'void (lambda (v) (display v)
(toplevel) ) »

(toplevel (lambda () (evaluate (read) r.init k.init») )
(toplevel) ) )

Exercise 3.8: Define the class of reified continuations; all it does is encapsulate
three things: an internal continuation (an instance of continuation), the function
callicc to build such an object, and the right method of invocation.

(define-class reified-continuation value (k»

(definitial call/cc
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(make-primitive 'call/cc
(lambda (v* r k)

(if (= 1 (length v*»
(invoke (car v*)

(list (make-reified-continuation k»
r
k )

(wrong "Incorrect arity" 'call/cc v*) ) ) ) )

(define-method (invoke (f reified-continuation) v* r k)
(if (= 1 (length v*»

(resume (reified-continuation-k f) (car v*»
(wrong "Continuations expect one argument" v* r k) ) )

461

Exercise 3.9: This point of this function is never to return.
(defun eternal-return (thunk)

(labels «loop ()
(unwind-protect (thunk)

(loop) ) »
(loop) )

COMMON LISP

Exercise 3.10: The values of those expressions are 33 and 44. The function
make-box simulates a box with no apparent assignment nor function side effects.
We get this effect by combining callicc and letrec. If you think of the expansion
of letrec in terms of let and set !, then it is easier to see how we get that.
However, it makes life much more difficult for partisans of the special form letrec
in the presence of first class continuations that can be invoked more than once.

Exercise 3.11: First, rewrite evaluate simply as a generic function, like this:
(define-generic (evaluate (e) r k)

(wrong "Not a program" e r k) )

Then take the existing functions to ornament evaluate, like this:
(define-method (evaluate (e quotation) r k)

(evaluate-quote (quotation-value e) r k) )
(define-method (evaluate (e assignment) r k)

(evaluate-set! (assignment-name e)
(assignment-form e)
r k ) )

Then you still have to define classes corresponding to the various possible syntactic
forms, like this:

(define-class program Object (»
(define-class quotation program (value»
(define-class assignment program (name form»

Now the only thing left to do is to define an appropriate reader that knows how
to read a program and build an instance of program. That's the purpose of the
function 0 b j ect ify that you'll see in Section 9.11.1.
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Exercise 3.12: To define throw as a function, do this:

(definitial throw
(make-primitive

'throw
(lambda (v* r k)

(if (= 2 (length v*»
(catch-lookup k (car v*)

(make-throw-cont k '(quote ,(cadr v*» r) )
(wrong "Incorrect arity" 'throw v*) ) ) ) )

So that we didn't simply define a variation on catch-lookup, we fabricated a false
instance of throw-cont to trick the interpreter. The only important value there is
the one to transmit.

Exercise 3.13: Code translated into CPS is slower because it creates many
closures to simulate continuation. By the way, a transformation into CPS is not
idempotent. That is, translating code into CPS and then translating that result
into CPS does not yield the identity. That's obvious when we consider the factorial
in CPS. The continuation k can be any function at all and may also have side effects
on control. For example, we could write this:

(define (cps-fact n k)
(if (= n 0) (k 1) (cps-fact (- n 1) (lambda (v) (k (* n v»») )

The function cps-fact can be invoked with a rather special continuation, as in
this example:

(call/cc (lambda (k) (* 2 (cps-fact 4 k»» ~ 24

Exercise 3.14: The function the-current-cont inuat ion could also be defined
as in Exercise 3.1, like this:

(define (cc f)
(let «reified? If»~

(let «k (the-current-continuation»)
(if reified? k (begin (set! reified? It) (f k») ) ) )

Special thanks to Luc Moreau, who suggested this exercise in [Mor94].

Exercise 4.1: Many techniques exist; among them, return partial results or use
continuations. Here are two solutions:

(define (min-maxi tree)
(define (mm tree)

(if (pair? tree)
(let «a (mm (car tree»)

(d (mm (cdr tree») )
(list (min (car a) (car d»

(max (cadr a) (cadr d» ) )
(list tree tree) ) )

(mm tree) )
(define (min-max2 tree)

(define (mm tree k)
(if (pair? tree)
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(mm (car tree)
(lambda (mina maxa)

(mm (cdr tree)
(lambda (mind maxd)

(k (min mina mind)
(max maxa maxd) ) ) ) ) )

(k tree tree) ) )
(mm tree list) )

That first solution consumes a lot of lists that are promptly forgotten. For this
kind of algorithm, you can imagine carrying out transformations that eliminate
this kind of abusive consummation; those transformations are known in [Wad88]
as deforestation The second solution consumes a lot of closures. The version in
this book is much more efficient, in spite of its side effects (though the side effects
might make it intolerable to certain people).

Exercise 4.2: The following functions are prefixed by q to distinguish them from
the corresponding primitive functions.

(define (qons a d) (lambda (msg) (msg a d»)
(define (qar pair) (pair (lambda (a d) a»)
(define (qdr pair) (pair (lambda (a d) d»)

Exercise 4.3: Use the idea that two dotted pairs are the same if a modification
of one is visible in the other.

(define (pair-eq? a b)
(let «tag (list 'tag»

(original-car (car a»
(set-car! a tag)
(let «result (eq? (car b) tag»)

(set-car! a original-car)
result ) ) )

Exercise 4.4: Assuming you've already added a clause to evaluate to recognize
the special form or,

«or) (evaluate-or (cadr e) (caddr e) r s k» ...

then do something like this:

(define (evaluate-or el e2 r s k)
(evaluate el r s (lambda (v ss)

«(v 'boolify)
(lambda () (k v ss»
(lambda () (evaluate e2 r s k» ) ) » )

Notice that f3 is evaluated with the memory 8 not 88.

Exercise 4.5: Actually that exercise is a little ambiguous. Here are two solutions;
one returns the value that the variable had before the calculation of the value to
assign; the other, after that calculation.
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(define (new1-evaluate-set! n e r s k)
(evaluate e r s

(lambda (v ss)
(k (ss (r n» (update ss (r n) v» ) ) )

(define (new2-evaluate-set! n e r s k)
(evaluate e r s

(lambda (v ss)
(k (s (r n» (update ss (r n) v» ) ) )

Those two programs give different results for the following expression:
(let «x 1»

(set! x (set! x 2» )

Exercise 4.6: The only problem with apply is that the last argument is a list of
the Scheme interpreter that we have to decode into values. -11 is a label to help
us identify the primitive apply.

(definitial apply
(create-function
-11 (lambda (v* s k)

(define (first-pairs v*)
; ; (assume (pair? v*))
(if (pair? (cdr v*»

(cons (car v*) (first-pairs (cdr v*»)
'() ) )

(define (terms-of v s)
(if (eq? (v 'type) 'pair)

(cons (s (v 'car» (terms-of (s (v 'cdr» s»
, () ) )

(if (>= (length v*) 2)
(if (eq? «car v*) 'type) 'function)

«(car v*) 'behavior)
(append (first-pairs (cdr v*»

(terms-of (car (last-pair (cdr v*») s) )
s k )

(wrong "First argument not a function") )
(wrong "Incorrect arity for apply") ) ) ) )

For callicc, we allocate a label for each continuation to make it unique.
(definitial callicc

(create-function
-13 (lambda (v* s k)

(if (= 1 (length v*»
(if (eq? «car v*) 'type) 'function)

(allocate 1 s
(lambda (a* ss)

«(car v*) 'behavior)
(list (create-function

(car a*)
(lambda (vv* sss kk)

(if (= 1 (length vv*»
(k (car vv*) sss)
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(wrong "Incorrect arity") ) ) )
ss k ) ) )

(wrong "Non functional argument for call/ce")
(wrong "Incorrect arity for call/ce") ) ) ) )
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Exercise 4.7: The difficulty is to test the compatibility of the arity and to
change a list (of the Scheme interpreter) into a list of values of the Scheme being
interpreted.

(define (evaluate-nlambda n* e* r s k)

(define (arity n*)
(cond «pair? n*) (+ 1 (arity (cdr n*»»

«null? n*) 0)

(else 1) ) )

(define (update-environment r n* a*)
(cond «pair? n*) (update-environment

(update r (car n*) (car a*» (cdr n*) (cdr a*) »
«null? n*) r)
(else (update r n* (car a*») )

(define (update-store s a* v* n*)
(cond «pair? n*) (update-store (update s (car a*) (car v*»

(cdr a*) (cdr v*) (cdr n*) »
«null? n*) s)
(else (allocate-list v* s (lambda (v ss)

(update ss (car a*) v) ») ) )
(allocate 1 s

(lambda (a* ss)
(k (create-function

(car a*)
(lambda (v* s k)

(if (compatible-arity? n* v*)
(allocate (arity n*) s

(lambda (a* ss)
(evaluate-begin e*

(update-environment r n* a*)
(update-store ss a* v* n*)
k ) ) )

(wrong "Incorrect arityll) ) ) )
ss ) ) ) )

(define (compatible-arity? n* v*)
(cond «pair? n*) (and (pair? v*)

(compatible-arity? (cdr n*) (cdr v*» »
«null? n*) (null? v*»
«symbol? n*) It) ) )

Exercise 5.1: Prove it by induction on the number of terms in the application.

Exercise 5.2 :

£[(label v 7I")]p = (Y ..\£.(£[71"] p[v ~ £]))
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Exercise 5.3 :

£[(dynamic V)]p8KU =
let c = (6 v)
In if c = no-such-dynamic-variable

then let a = (-y v)
In if a = no-such-global-variable

then wrong "No such variable"
else (K (u a) u)
endif

else (K c u)
endif

ANSWERS TO EXERCISES

Exercise 5.4: The macro will transform the application into a series of thunks
that we evaluate in a non-prescribed order implemented by the function deter
mine!.

(define-syntax unordered
(syntax-rules ()

«unordered f) (f»
«unordered f arg ... )
(determine! (lambda () f) (lambda () arg) ... ) ) ) )

(define (determine! . thunks)
(let «results (iota 0 (length thunks»»

(let loop «permut (random-permutation (length thunks»»
(if (pair? permut)

(begin (set-car! (list-tail results (car permut»
(force (list-ref thunks (car permut»)

(loop (cdr permut» )
(apply (car results) (cdr results» ) ) ) )

Notice that the choice of the permutation is made at the beginning, so this solu
tion is not really as good as the denotation used in this chapter. If the function
random-permutation is defined like this:

(define (random-permutation n)
(shuffle (iota 0 n» )

then we could make the choice of the permutation dynamic by means of d. deter
mine!.

(define (d.determine! . thunks)
(let «results (iota 0 (length thunks»»

(let loop «permut (shuffle (iota 0 (length thunks»»)
(if (pair? permut)

(begin (set-car! (list-tail results (car permut»
(force (list-ref thunks (car permut»)

(loop (shuffle (cdr permut») )
(apply (car results) (cdr results» ) ) ) )

Exercise 6.1: A simple way of doing that is to add a supplementary argument
to the combinator to indicate which variable (either a symbol or simply its name),
like this:
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(define (CHECKED-GLOBAL-REF- i n)
(lambda ()

(let «v (global-fetch i»)
(if (eq? v undefined-value)

(wrong "Uninitialized variable" n)
v ) ) ) )

However, that solution increases the overall size of the code generated. A better
solution is to generate a symbol table so that the name of the faulty variable would
be there.

(define sg.current.names (list 'foo»
(define (stand-alone-producer e)

(set! g.current (original.g.current»
(let* «m (meaning e r.init It»~

(size (length g.current»
(global-names (map car (reverse g.current»)

(lambda ()
(set! sg.current (make-vector size undefined-value»
(set! sg.current.names global-names)
(set! *env* sr.init)
(m) ) ) )

(define (CHECKED-GLOBAL-REF+ i)
(lambda ()

(let «v (global-fetch i»)
(if (eq? v undefined-value)

(wrong "Uninitialized variable" (list-ref sg.current.names i»
v ) ) ) )

Exercise 6.2: The function list is, of course, just (lambda 1 1), so all you
have to do is use this definition and play around with the combinators, like this:

(definitial list «NARY-CLOSURE (SHALLOW-ARGUMENT-REF 0) 0»)

Exercise 6.3: First, you can redefine every combinator c as (lambda args (c

. , args) ). Then all you have to do is print the results of pretreatment.

Exercise 6.4: The most direct way to get there is to modify the evaluation order
for arguments of applications and thus adopt right to left order.

(define (FROM-RIGHT-STORE-ARGUMENT m m* rank)
(lambda ()

(let* «v* (m*»
(v (m» )

(set-activation-frame-argument! v* rank v)
v* ) ) )

(define (FROM-RIGHT-CONS-ARGUMENT m m* arity)
(lambda ()

(let* «v* (m*»
(v (m» )

(set-activation-frame-argument!
v* arity (cons v (activation-frame-argument v* arity» )
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v* ) ) )

You could also modify meaning* to preserve the evaluation order but to allocate
the record before computing the arguments. By the way, computing the function
term before computing the arguments (regardless of the order in which they are
evaluated) lets you look at the closure you get, for example, to allocate an activation
record adapted to the number of temporary variables required. Then there will be
only one allocation, not two.

Exercise 6.5: Insert the following line as a special form in meaning:

... «redefine) (meaning-redefine (cadr e») ...

Then redefine its effect, like this:

(define (meaning-redefine n)
(let «kind1 (global-variable? g.init n»)

(if kind1
(let «value (vector-ref sg.init (cdr kind1»»

(let «kind2 (global-variable? g.current n»)
(if kind2

(static-wrong "Already redefined variable" n)
(let «index (g. current-extend! n»)

(vector-set! sg.current index value) ) ) ) )
(static-wrong "No such variable to redefine" n) )

(lambda () 2001) ) )

That redefinition occurs during pretreatment, not during execution. The form
redefine returns just any value.

Exercise 6.6: A function without variables does not need to extend the current
environment. Extending the current environment slowed down access to deep vari
ables. Change meaning-fix-abstraction so that it detects thunks, and define a
new combinator to do that.

(define (meaning-fix-abstraction n* e+ r tail?)
(let «arity (length n*»)

(if (= arity 0)
(let «m+ (meaning-sequence e+ r It»)

(THUNK-CLOSURE m+) )
(let* «r2 (r-extend* r n*»

(m+ (meaning-sequence e+ r2 It» )
(FIX-CLOSURE m+ arity) ) ) ) )

(define (THUIK-CLOSURE m+)
(let «arity+1 (+ 0 1»)

(lambda ()
(define (the-function v* sr)

(if (= (activation-frame-argument-length v*) arity+1)
(begin (set! *env* sr)

(m+) )
(wrong "Incorrect arity") ) )

(make-closure the-function *env*) ) ) )
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Exercise 7.1: First, create the register, like this:

(define *dynenv* -1)

Then modify the functions that preserve the environment, like this:

(define (preserve-environment)
(stack-push *dynenv*)
(stack-push *env*) )

(define (restore-environment)
(set! *env* (stack-pop»
(set! *dynenv* (stack-pop»

There's hardly anything left to do as far as finding the dynamic environment now,
but the way to handle the stack has changed.

(define (search-dynenv-index)
*dynenv* )

(define (pop-dynamic-binding)
(stack-pop)
(stack-pop)
(set! *dynenv* (stack-pop» )

(define (push-dynamic-binding index value)
(stack-push *dynenv*)
(stack-push value)
(stack-push index)
(set! *dynenv* (- *stack-index* 1» )

Exercise 7.2: The function is simple:

(definitial load
(let* «arity 1)

(arity+1 (+ arity 1» )
(make-primitive
(lambda ()

(if (= arity+1 (activation-frame-argument-length *val*»
(let «filename (activation-frame-argument *val* 0»)

(set! *pc* (install-object-file! filename» )
(signal-exception
#t (list "Incorrect arity" 'load) ) ) ) ) ) )

However, that definition poses a few problems. Analyze, for example, how a cap
tured continuation returns and restarts when a file is being loaded. For example,

(display 'attention)
(call/cc (lambda (k) (set! *k* k»)
(display 'caution)

After this file has been loaded, will invoking the continuation *k* reprint the symbol
caution? Yes, with this implementation!
Also notice that if we load the compiled file defining a global variable, say, bar,
which was unknown to the application, it will remain unknown to the application.
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Exercise 7.3: Here's the function:

(definitial global-value
(let* «arity 1)

(arity+1 (+ arity 1» )
(define (get-index name)

(let «where (memq name sg.current.names»)
(if where (- (length where) 1)

(signal-exception
#f (list "Undefined global variable" name) ) ) ) )

(make-primitive
(lambda ()

(if (= arity+1 (activation-frame-argument-Iength *val*»
(let* «name (activation-frame-argument *val* 0»

(i (get-index name» )
(set! *val* (global-fetch i»
(when (eq? *val* undefined-value)

(signal-exception #f (list "Uninitialized variable" i» )
(set! *pc* (stack-pop» )

(signal-exception
#t (list "Incorrect arity" 'global-value) ) ) ) ) ) )

Since we have re-introduced the possibility of an non-existing variable, of course,
we have to test whether the variable has been initialized.

Exercise 7.4: First, add the allocation of a vector to the function run-machine
to store the current value of dynamic variables .

... (set! *dynamics* (make-vector (+ 1 (length dynamics»
undefined-value » ;lVEVV

Then redefine the appropriate access functions, like this:

(define (find-dynamic-value index)
(let «v (vector-ref *dynamics* index»)

(if (eq? v undefined-value)
(signal-exception #f (list "No such dynamic binding" index»
v ) ) )

(define (push-dynamic-binding index value)
(stack-push (vector-ref *dynamics* index»
(stack-push index)
(vector-set! *dynamics* index value)

(define (pop-dynamic-binding)
(let* «index (stack-pop»

(old-value (stack-pop»
(vector-set! *dynamics* index old-value) ) )

Alas! that implementation is unfortunately incorrect because immediate access
takes advantage of the fact that saved values are now found on the stack. A
continuation capture gets only the values to restore, not the current values. When
an escape suppresses a slice of the stack, it fails to restore the dynamic variables
to what they were when the form bind-exit began to be evaluated. To correct all
that, we must have a form like unwind-protect or more simply we must abandon
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superficial implementation for a deeper implementation that doesn't pose that kind
of problem and can be extended naturally in parallel.

Exercise 7.5: With the following renamer, you can even interchange two vari
ables by writing a list of substitutions such as ((fact fib) (fib fact)), but
look out: this is a dangerous game to play!

(define (build-application-renaming-variables
new-application-name application-name substitutions

(if (probe-file application-name)
(call-with-input-file application-name

(lambda (in)
(let* «dynamics (read in»

(global-names (read in»
(constants (read in»
(code (read in»
(entries (read in»

(close-input-port in)
(write-result-file
new-application-name
(list ";;; renamed variables from" application-name)
dynamics
(let sublis «global-names global-names»

(if (pair? global-names)
(cons (let «s (assq (car global-names)

substitutions »)
(if (pair? s) (cadr s)

(car global-names) ) )
(sublis (cdr global-names» )

global-names) )
constants
code
entries ) ) ) )

(signal #f (list "No such file" application-name» ) )

Exercise 7.6: Be careful to modify the right instruction!

(define-instruction (CHECKED-GLOBAL-REF i) 8
(set! *val* (global-fetch i»
(if (eq? *val* undefined-value)

(signal-exception #t (list "Uninitialized variable" i»
(vector-set! *code* (- *pc* 2) 7) ) )

Exercise 8.1: The test is not necessary because it doesn't recognize two variables
by the same name. That convention prevents a list of variables from being cyclic.

Exercise 8.2: Here's the hint:

(define (prepare e)
(eval/ce '(lambda () ,e»
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Exercise 8.3

(define (eval/at e)
(let «g (gensym»)

(eval/ce (lambda (,g) (eval/ce ,g») ) )

ANSWERS TO EXERCISES

Exercise 8.4: Yes, by programming an appropriate error handler, like this:

(set! variable-defined?
(lambda (env name)

(bind-exit (return)
(monitor (lambda (c ex) (return If»~

(eval/b name env)
#t ) ) ) )

Exercise 8.5: We will quietly skip over how to handle the special form monitor,
which appears in the definition of the reflective interpreter. After all, if we don't
make any mistakes, monitor behaves just like begin. What follows here does not
exactly conform to Scheme because the definition of special forms requires their
names to be used as variables (not exactly legal, we know). However, that works in
many implementations of Scheme. For the form the-environment, we will define
it to capture the necessary bindings.

(define-syntax the-environment
(syntax-rules ()

«the-environment)
(capture-the-environment make-toplevel make-flambda flambda?
flambda-behavior prompt-in prompt-out exit it extend error
global-env toplevel eval evlis eprogn reference quote if set!
lambda flambda monitor) ) ) )

(define-syntax capture-the-environment
(syntax-rules ()

«capture-the-environment word ... )
(lambda (name . value)

(case name
«word) «handle-location word) value» ...
«display) (if (pair? value)

(wrong "Immutable" 'display)
show»

(else (if (pair? value)
(set-top-level-value! name (car value»
(top-level-value name) » ) ) ) ) )

(define-syntax handle-location
(syntax-rules ()

«handle-location name)
(lambda (value)

(if (pair? value)
(set! name (car value»
name ) ) ) ) )

Finally we'll define the functions to handle the first class environment; they are
variable-defined?, variable-value, and set-variable-value!.
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(define undefined (cons 'un 'defined»
(define-class Envir Object

( name value next ) )
(define (enrich env . names)

(let enrich «env env) (names names»
(if (pair? names)

(enrich (make-Envir (car names) undefined env) (cdr names»
env ) ) )

(define (variable-defined? name env)
(if (Envir? env)

(or (eq? name (Envir-name env»
(variable-defined? name (Envir-next env» )

#t ) )

(define (variable-value name env)
(if (Envir? env)

(if (eq? name (Envir-name env»
(let «value (Envir-value env»)

(if (eq? value undefined)
(error "Uninitialized variable" name)
value) )

(variable-value name (Envir-next env» )
(env name) ) )

As you see, the environment is a linked list of nodes ending with a closure. Now
the reflective interpreter can run!

Exercise 9.1: Use the hygienic macros of Scheme to write this:

(define-syntax repeat1
(syntax-rules (:while :unless :do)

«_ :while p :unless q :do body ... )
(let loop ()

(if P (begin (if (not q) (begin body ... »
(loop) » ) ) ) )

You could also use define-abbreviation directly to write this instead:

(with-aliases «+let let) (+begin begin) (+when when) (+not not»
(define-abbreviation (repeat2 . parms)

(let «p (list-ref parms 1»
(q (list-ref parms 3»
(body (list-tail parms 5»
(loop (gensym» )

(,+let ,loop ()
(,+when ,p(,+begin (,+when (,+not ,q) . ,body)

(,loop) » ) ) ) )

Exercise 9.2: The difficulty here is to do arithmetic with the macro language
of Scheme. One approach is to generate calls at execution to the function length
on lists of selected lengths.

(define-syntax enumerate
(syntax-rules ()
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«enumerate) (display 0»
«enumerate e1 e2 ... )
(begin (display 0) (enumerate-aux e1 (e1) e2 ... ) ) ) ) )

(define-syntax enumerate-aux
(syntax-rules ()

«enumerate-aux e1 len) (begin e1 (display (length 'len»»
«enumerate-aux e1 len e2 e3 ... )
(begin e1 (display (length 'len»

(enumerate-aux e2 (e2 . len) e3 ... ) ) ) ) )

Exercise 9.3: All you have to do is modify the function make-macro-envi
ronment so that all the levels are melded into one, like this:

(define (make-macro-environment current-level)
(let «metalevel (delay current-level»)

(list (make-Magie-Keyword 'eval-in-abbreviation-world
(special-eval-in-abbreviation-world metalevel)

(make-Magie-Keyword 'define-abbreviation
(special-define-abbreviation metalevel»

(make-Magie-Keyword 'let-abbreviation
(special-let-abbreviation metalevel»

(make-Magie-Keyword 'with-aliases
(special-with-aliases metalevel) ) ) )

Exercise 9.4: Writing the converter is a cake-walk. The only real point of interest
is how to rename the variables. We'll keep an A-list to store the correspondances.

(define-generic (->Scheme (e) r»
(define-method (->Scheme (e Alternative) r)

'(if ,(->Scheme (Alternative-condition e) r)
,(->Scheme (Alternative-consequent e) r)
,(->Scheme (Alternative-alternant e) r) )

(define-method (->Scheme (e Local-Assignment) r)
'(set! ,(->Scheme (Local-Assignment-reference e) r)

,(->Scheme (Local-Assignment-form e) r) ) )

(define-method (->Scheme (e Reference) r)
(variable->Scheme (Reference-variable e) r)

(define-method (->Scheme (e Function) r)
(define (renamings-extend r variables names)

(if (pair? names)
(renamings-extend (cons (cons (car variables) (car names» r)

(cdr variables) (cdr names) )
r ) )

(define (pack variables names)
(if (pair? variables)

(if (Local-Variable-dotted? (car variables»
(car names)
(cons (car names) (pack (cdr variables) (cdr names»)

'() ) )
(let* «variables (Function-variables e»
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(new-names (map (lambda (v) (gensym»
variables »

(newr (renamings-extend r variables new-names»
'(lambda ,(pack variables new-names)

,(->Scheme (Function-body e) newr» ) )
(define-generic (variable->Scheme (e) r»
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Exercise 9.5: As it's written, MEROONET mixes the two worlds of expansion and
execution; several resources belong to both worlds simultaneously. For example,
register-class is invoked at expansion and when a file is loaded.

Exercise 10.1: All you have to change is the function SCM-invoke and the calling
protocol for closures of minor fixed arity. It suffices to take the one for primitives
of fixed arity-just don't forget to provide the object representing the closure as
the first argument. You must also change the interface for generated C functions
to make them adopt the signature you've just adopted.

Exercise 10.2: Refine global variables so that they have a supplementary field
indicating whether they have really been intialized or not. In consequence of that
design change, you'll have to change how free global variables are detected.

(define-class Global-Variable Variable (initialized?»

(define (objectify-free-global-reference name r)
(let «v (make-Global-Variable name If»~)

(set! g.current (cons v g.current»
(make-Global-Reference v) ) )

Then insert the analysis in the compiler. It involves the interaction between the
generic inspector and the generic function inian!.

(define (compile->C e out)
(set! g.current '(»
(let «prg (extract-things!

(lift! (initialization-analyze! (Sexp->object e») »)
(gather-temporaries! (closurize-main! prg»
(generate-C-program out e prg) ) )

(define (initialization-analyze! e)
(call/cc (lambda (exit) (inian! e (lambda () (exit 'finished»»)
e )

(define-generic (inian! (e) exit)
(update-walk! inian! e exit) )

Now the problem is to follow the flow of computation and to determine the global
variables that will surely be written before they are read. Rather than develop a
specific and complicated analysis for that, why not try to determine a subset of
variables that have surely been initialized? That's what the following five methods
do.

(define-method (inian! (e Global-Assignment) exit)
(call-next-method)
(let «gv (Global-Assignment-variable e»)

(set-Global-Variable-initialized?! gv It)
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(inian-warning "Surely initialized variable" gv)
e ) )

(define-method (inian! (e Global-Reference) exit)
(let «gv (Global-Reference-variable e»)

(cond «Predefined-Variable? gv) e)
«Global-Variable-initialized? gv) e)
(else (inian-error "Surely uninitialized variable" gv)

(exit) ) ) ) )

(define-method (inian! (e Alternative) exit)
(inian! (Alternative-condition e) exit)
(exit) )

(define-method (inian! (e Application) exit)
(call-next-method)
(exit) )

(define-method (inian! (e Function) exit)
e )

That analysis follows the computation, determines assignments, and stops once the
computation becomes too complicated to follow; that is, once a function is applied
or once an alternative appears. In contrast, it is not necessary to look at the body
of abstractions since a closure is calculated in finite time and without any errors.

Exercise 11.1: The predicate Object? can be re-enforced and made less error
prone if you reserve another component in the vectors representing objects to con
tain a label. After creating this label, you should modify the predicate Obj ect?
as well as all the places where there is an allocation that should add this label,
especially during bootstrapping, that is, when the predefined classes are defined.

(define *starting-offset* 2)
(define meroonet-tag (cons 'meroonet 'tag»
(define (Object? 0)

(and (vector? 0)
(>= (vector-length 0) *starting-offset*)
(eq? (vector-ref 0 1) meroonet-tag) ) )

This modification will make the predicate more robust, but it does not increase
the speed. However, the predicate can still be fooled if the label on an object is
extracted by vector-ref and inserted in some other vector.

Exercise 11.2: Since the function is generic, you can specialize it for certain
classes. The following version gobbles up too many dotted pairs.

(define-generic (clone (0»
(list->vector (vector->list 0» )

Exercise 11.3: Define a new type of class, the metaclass CountingClass, with
a supplementary field to count the allocations that will occur.

(define-class CountingClass Class (counter»

The code in MEROONET was written so that any modifications you make should
not put everything else in jeopardy. It should be possible to define a class with
that metaclass, like this:
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(define-meroonet-macro (define-CountingClass name super-name
own-field-descriptions

(let «class (register-CountingClass
name super-name own-field-descriptions »)

(generate-related-names class) ) )

(define (register-CountingClass name super-name own-field-descriptions)
(initialize! (allocate-CountingClass)

name
(->Class super-name)
own-field-descriptions ) )

However, a better way of doing it would be to extend the syntax of define-class
to accept an option indicating the metaclass to use, making Class the default.
Then you must make several functions generic, like:

(define-generic (generate-related-names (class»)

(define-method (generate-related-names (class Class»
(Class-generate-related-names class) )

(define-generic (initialize! (0) . args»
(define-method (initialize! (0 Class) . args)

(apply Class-initialize! 0 args) )

(define-method (initialize! (class CountingClass) . args)
(set-CountingClass-counter! class 0)
(call-next-method) )

The allocators in the accompanying functions should be modified to maintain the
counter, like this:

(define-method (generate-related-names (class CountingClass»
(let «cname (symbol-append (Class-name class) '-class»

(alloc-name (symbol-append 'allocate- (Class-name class»)
(make-name (symbol-append 'make- (Class-name class») )

'(begin ,(call-next-method)
(set! ,alloc-name ; patch the allocator

(let «old ,alloc-name»
(lambda sizes

(set-CountingClass-counter!
,cname (+ 1 (CountingClass-counter ,cname» )

(apply old sizes) ) ) )
(set! ,make-name ;patch the maker

(let «old ,make-name»
(lambda args

(set-CountingClass-counter!
,cname (+ 1 (CountingClass-counter ,cname» )

(apply old args) ) ) ) ) ) )

To complete the exercise, here's an example of how to use it to count points:

(define-CountingClass CountedPoint Object (x y»

(unless (and (= 0 (CountingClass-counter CountedPoint-class»
(allocate-CountedPoint)
(= 1 (CountingClass-counter CountedPoint-class»
(make-CountedPoint 11 22)
(= 2 (CountingClass-counter CountedPoint-class»
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; ; should not be evaluated if everything is O!{

(meroonet-error "Failed test on CountedPoint")

Exercise 11.4: Create a new metaclass, ReflectiveClass, with the supplemen
tary fields, predicate, allocator, and maker. Then modify the way accompany
ing functions are generated so that these fields will be filled during the definition
of the class. Do the same for the fields.

(define-class ReflectiveClass Class (predicate allocator maker»

(define-method (generate-related-names (class ReflectiveClass»
(let «cname (symbol-append (Class-name class) '-class»

(predicate-name (symbol-append (Class-name class) '?»
(allocator-name (symbol-append 'allocate- (Class-name class»)
(maker-name (symbol-append 'make- (Class-name class») )

'(begin ,(call-next-method)
(set-ReflectiveClass-predicate! ,cname ,predicate-name)
(set-ReflectiveClass-allocator! ,cname ,allocator-name)
(set-ReflectiveClass-maker! ,cname ,maker-name) ) ) )

Exercise 11.5: The essential problem is to detect whether a generic function
exists. In Scheme, it is not possible to know whether or not a global variable exists,
so you'll have to consult the list *generics*. Fortunately, it contains all the known
generic functions.

(define-meroonet-macro (define-method call . body)
(parse-variable-specif icat ions
(cdr call)
(lambda (discriminant variables)

(let «g (gensym» (c (gensym») ; make g and c hygienic
'(begin

(unless (->Generic ',(car call» (define-generic ,call» ;new
(register-method
',(car call)
(lambda (,g ,c)

(lambda ,(flat-variables variables)
(define (call-next-method)

«if (Class-superclass ,c)
(vector-ref (Generic-dispatch-table ,g)

(Class-number (Class-superclass ,c» )
(Generic-default ,g) )

. ,(flat-variables variables) ) )
. ,body) )

',(cadr discriminant)
',(cdr call) ) ) ) ) )

Exercise 11.6: Every method now has two local functions, call-next-method
and next-method? It would be clever not to generate them unless the body of the
method contains calls to these functions.

(define-meroonet-macro (define-method call . body)
(parse-variable-specifications
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(cdr call)
(lambda (discriminant variables)

(let «g (gensym» (c (gensym») ; make g and c hygienic
(register-method

',(car call)
(lambda (,g ,c)

(lambda ,(flat-variables variables)
,G(generate-next-method-functions g c variables)
. ,body) )

',(cadr discriminant)
',(cdr call) ) ) ) ) )

The function next-method? is inspired by call-next-method, but it merely veri
fies whether a method exists; it doesn't bother to invoke one.

(define (generate-next-method-functions g c variables)
(let «get-next-method (gensym»)

((define (,get-next-method)
(if (Class-superclass ,c)

(vector-ref (Generic-dispatch-table ,g)
(Class-number (Class-superclass ,c» )

(Generic-default ,g) ) )
(define (call-next-method)

«,get-next-method) . ,(flat-variables variables»
(define (next-method?)

(not (eq? (,get-next-method) (Generic-default ,g») ) ) ) )
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eq?, 27, 123
eql, 123
equal?, 123, 124

cost, 138
equality, 122
equalp, 123
eqv?, 123, 125, 137
error

dynamic, 274
static, 194, 274

escape, 249, 250
escape

definition, 71
dynamic, 79
extent, 78, 79, 81, 83
invoking, 251
lexical, 79
lexical, properties of, 76
valid, 251

ESCAPER, 250
escape-tag, 250
escape-valid?, 251
EuLISP, xx
EuLISP, 101
eval, 2, 271, 280, 332, 414

function, 280
interpreted, 282
properties, 3
special form, 277

eval/at, 280, 472
eval/b, 289
EVAL/CE, 278
eval/ce, 337
eval-in-abbreviation-world, 328
evaluate, 4, 7, 89, 128, 271, 275, 350
evaluate-amnesic-if, 128
evaluate-application, 34, 93,131
evaluate-application2,35
evaluate-arguments, 93, 105
evaluate-begin, 90, 104, 105, 129
evaluate-block, 97
evaluate-catch, 96
evaluate-eval, 275
evaluate-ftn-lambda, 132
evaluate-if, 90, 128
evaluate-immutable-quote, 143
evaluate-lambda, 92, 131, 459, 460
evaluate-memo-quote, 141

evaluate-nlambda,465
evaluate-or,463
evaluate-quote, 90, 140
evaluate-return-from,98
evaluate-set!, 92, 130, 463
evaluate-throw, 96
evaluate-unwind-protect, 99
evaluate-variable, 91, 130
evaluation, 271

levels of, 351
simultaneous, 331
stack, 71

evaluation order, 467
evaluation rule

definition, 150
Evaluator, 351
evaluator

definition, 2
eval-when,328
even?, 55, 66, 120, 290
evfun-cont, 93
evlis, 12, 451
exception, 223
executable, 313
execution library, 397
existence of a language, 28
exogenous mode, 314, 323
expander, 316, 318
expand-expression, 329
expand-store, 133
Expansion Passing Style, 318
EXPLICIT-CONSTANT, 241
export, 286
expression

computation and, 87
extend, 14, 29
extendable global environment, 119
EXTEND-ENV,244
extend-env,92
extending

languages, 311
extensionality, 153
extent

continuations, 78, 79, 83
dynamic, 79, 83
escapes, 78, 79, 81, 83
indefinite, 81, 83

extract!, 368
extract-addresses, 289
extract-things!,368
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F
f, 26, 136, 195
f.eprogn,33
f.evaluate, 33,41
f.evaluate-application,41
f.evlis,33
f.lookup,41
f.make-function,34
fact, 27, 54, 71, 82, 262, 324, 326

with continuation, 102
with callicc, 82
written with prog, 71

fact 1, 322, 325
fact2, 72, 325
Fact-Closure, 365
factfact,458
factorial, 322, 324-326
factorial, 54, 365
feature, 331
*features*,331
fenv.global,38
fetch-byte, 237
FEXPR, 302, 303
fib, 27
Field?, 441
field

accessing length of, 438
reader, 436
writer, 437

field descriptor
in MEROONET, 419, 420

Field-class, 427
Field-define-class,427
Field-defining-class,427
Field-generate-related-names,435
field-length, 438
field-value, 437
find-dynamic-value,470
find-expander, 318
find-global-environment, 348
find-symbol, 72, 75, 76, 82

naive style, 72
with block, 76
with callIcc, 82
with throll, 75

find-variable?, 348
FINISH, 246
first class citizen, 32
first class environment, 286
first class module, 297

first class object
bindings are not, 68
in MEROONET, 418

fix, 63
fix2, 457
FIX-CLOSURE, 214, 227, 233
fixed point

least, 64
fixed point combinator, 63
FIX-LET, 217, 226, 233
Fix-Let, 344
fixN, 457
flambda?,306
flambda-apply, 306
flat environment, 202
Flat-Function, 365
Flattened-Program, 368
flat-variables, 445
flet, 39
floating-point contagion, 442
foo, 27
force, 176
foreign interface, 413
form, xviii

binding, 68
normal, 150
reducible, 197
special, 311, 312
special, definition, 6

frame coalescing, 383
free variable

A-calculus and, 150
definition, 3
dynamic scope and, 21
lexical scope and, 21

Free-Environment, 365
Free-Reference, 365
FROM-RIGHT-CONS-ARGUMENT,467
FROM-RIGHT-STORE-ARGUMENT,467
frozen global environment, 117
ftp, xix
full-env,91
Full-Environment, 348
*fun*, 228
funcall, 36
funcallable object, 442
Function, 344
function, 37, 92

closure, 21
function

accompanying, 429, 440
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applying in A-calculus, 150
calling protocol, 184, 227, 228
continuation as, 81
continuations, 92
descriptor of, 200
environment, 44
execution environment of, 16
generic, 87, 418, 441, 442
generic, defining, 88
generic, representing, 442
integrable, 26
nested, 363
nested, eliminating, 372
objects, 92
open coded, 26
predefined, 440
primitive, definition, 6
representing, 15
space, 44
substituting terms in A-calculus, 150
variable arity of, 196
writing in A-calculus, 150

function position
lambda form in, 34
lists in, 40
numbers in, 39

function_,386
functional

definition, 67
functional application

compiling, 382
definition, 7, 11
representing, 4

functional environment, 33
functional object, 442
Functional-Description, 384
functionally applicative object, 40
Function-Definition, 368
FUNCTION-GOTO,244
FUNCTION-INVOKE, 229, 244
function-nadic,460
function-with-aritY,459
fusing

temporary blocks, 383
Fval, 285

G
g.current, 191
g.current-extend!,191
g.current-initialize!,192
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g.init,191
g.init-extend!,191
g.init-initialize!,192
g.predef,350
,,170
garbage collection, 431
garbage collector, 390
gatekeeper, 118
gather-cont,93
gather-temporaries!, 370
generate-arity, 385
generate-closure-structure, 386
generate-C-program,372
generate-C-value, 376
generate-functions, 386
generate-global-environment, 373
generate-global-variable, 373
generate-header, 373
generate-local-temporaries, 387
generate-main, 387
generate-next-method-functions, 479
generate-pair, 377
generate-possibly-dotted-definition,

386
generate-quotation-alias, 376
generate-quotations, 375
generate-related-names,477,478
generate-symbol,377
generate-trailer, 373
generate-vector-of-fix-makers, 334
->Generic,420
Generic?, 441
generic function, 87, 418, 441, 442

default body, 445
defining, 88
dispatch table, 443
dotted signature, 443
image of, 444
in MEROONET, 418
representing, 442

Generic-class, 427
Generic-name, 441
*generics*,420
gensym, 342
get-description, 200
get-dynamic-variable-index, 254
global environment, 25, 116, 117, 119,
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global variable, 240

creating, 279
Global-Assignment, 344
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global-env,307,308
global-fetch, 192
GLOBAL-REF, 212, 240
GLOBAL-REF-code, 264
Global-Reference, 344
GLOBAL-SET!, 213, 225, 233
global-update!,192
global-value, 283, 470
Global-Variable, 344, 475
global-variable?, 191
Gnu Emacs Lisp, 268
go, 108
GOTO, 229, 242
goto, 71
grammar

Scheme, 272
ground floor, 351

H
handle-location, 472
hash table, 125
header file scheme. h, 373
hidden communication, 314
hygience

first rule, 342
hygiene, 341-343, 355
hygienic

definition, 61
variable, 61

hyper-fact, 69
hyperstatic

definition, 55
purely lexical global world, 55

hyperstatic global environment, 119

I
identifer, legal, 374
identity, 35
IdScheme->IdC,374
If, 155
if, 7, 8

arity, 7
if-cont, 90
image of generic function, 444
immutable binding

assignment and, 26
definition, 26

immutable-transcode, 143
implementation
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of MEROONET, 419
import, 296
impoverished closure, 135
include file scheme. h, 373
incredible, 321
infinite regression, 337, 430
inheritance

fields, 422
methods, 422

inian!,475
initialization-analyze!, 475
initialize!, 477
inline, 26, 121, 199, 243, 339, 384
insert-box!, 362,363
insert-global!,348
inspecting

environments, 302
install-code!, 263
install-macro!, 322
install-object-file!,263
instantiation link, 419
instruction-decode, 237
instruction-size, 237
int - >char, xviii
integrable function, 26
integrating

MEROONET with Scheme, 443
primitives, 199

integration, 199
interaction loop

compiling, 195
interface, foreign, 413
intermediate language, 224
interpreter

continuations, 89
fast, 183
reflective, 308

invoke, 15, 89, 92, 95, 96, 211, 245, 249,
251, 283, 365, 454, 459, 460

INVOKE1, 243
invoking

escapes, 251
iota, 458
is-a?, 430
IS-Lisp, xx

J
jmp_buf, 403
jump, 242
JUMP-FALSE, 229, 242
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"', 152
kar, 122
keyword, 316
klop, 69
kons, 122
Kyoto COl\1MON LISP, 360

L
L,161
label, 56
labeled-cont,96
labels, 57
lambda,nx, 7, 11,183,303
lambda form in function position, 34
A-calculus, 147, 149

applied, 151
binding and, 150
combinators in, 63

A-drifting, 184
A-hoisting, 184
lambda-parameters-limit, 239
language

defined, 1
defining, 1
enstence of, 28
extending, 311
intermediate, 224
lazy, 59
program meaning and, 147
purely functional, 62
target, 359
universal, 2

*last-defined-class*, 425
ld, 262
legal identifer, 374
Le-Lisp, 148
length of field, 438
let*, nx
let, nx, 47

creating uninitialized bindings, 60
purpose of, 58

let-abbreviation, 318, 321
let/cc, 101, 249
letify, 407
letrec, nx, 57, 290

expansion of, 58
letrec-syntax, 321
let-syntax, 321
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lencal
binding, 19
escape environment, closures and,

79
escapes, 76
escapes, properties of, 76
Lisp, 19
Lisp, example, 20

lencal binding
A-calculus and, 150

lencal environment
in Scheme, 44

lencal escape
compared to lencal variable, 79

lexical index, 186
lencal indices, 186
lencal variable

compared to lencal escape, 79
space, 44

lift!, 366
lift-procedures!,366
linearizing, 225, 226

assignments, 228
linking, 260
Lisp

dynamic, 19, 21
dynamic, example, 20, 23
lencal, 19
lencal, example, 20
literature about, 1
longevity, 311
special forms and primitive func

tions, 6
Turing machine and, 2
universal language and, 2

Lispl, 32
Lisp2, 32
LisPl

local recursion in, 57
Lisp2

function space in, 44
local recursion in, 56
name conflicts in, 42

LiSP2'IEX, 175
LisPl

compared to Lisp2, 34, 40
Lisp2

compared to Lispl, 34, 40
list, xviii, 453, 467

with combinators, 467
list
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as functional application, 11
in function position, 40
infinite, 59

listify!,196
literature about Lisp, 1
load, 268, 315, 332, 414, 469
local variable, 239
Local-Assignment, 344
Local-Reference, 344
Local-Variable, 344
local-variable?, 186
location, 116
LONG-GOTO,242
longjmp,402,404
lookup, 4, 13, 61, 89, 91, 285, 452
loop, 312, 344

M
m4, 316
machine

Turing, 2
virtual, 183

macro, 311
beautification, 338
calling, 317
compiling, 332
composable, 315
defined by a macro, 333
displacing, 320
exported, 334
expressiveness, 316
filtering, 340
hygiene and, 341, 343, 355
hygienic, 339
hyperstatic, 332
local, 334
looping, 320
masks, 338
occasional, 333
redefining, 331
scope, 333
shortcuts, 338

macro expander
monolithic, 315

macro expansion, 314
endogenous, 314
exogenous, 314
order of, 425

macro-character, 312
macro-eval,322,332
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macrolet, 319, 321
*macros*, 322
Magic-Keyword, 345
make-allocator, 432
make-box, 109, 114
make-Class, 441
make-code-segment,246
make-Fact-Closure,365
make-fix-maker,434
make-flambda,306
make-function, 11, 16, 19, 283
make-lengther,438
make-macro-environment,353,474
make-maker, 434
make-named-box, 126
make-predefined-application-generator,

385
make-predicate, 430
make-reader, 436
make-string, xviii
make-toplevel, 306
make-vector, xviii
make-writer, 438
malloc, 390
mangling, 374
map, 22
mark-global-preparation-environment,

348
*maximal-fixnum*, 376
*maximal-number-of-classes*,419
meaning*, 190, 210, 216
meaning, 175, 187, 188,207, 276, 277, 297
meaning, 148

reference implementation and, 148
meaning*-multiple-sequence, 188, 209,

214
meaning*-single-sequence,188, 209, 214
meaning-abstraction, 175, 184, 197, 214
meaning-alternative, 188, 209, 213
meaning-application, 200, 215
meaning-assignment, 193, 213, 291
meaning-bind-exit,250
meaning-closed-application, 197
meaning-define, 204
meaning-dotted*, 198, 217
meaning-dotted-abstraction, 196, 214
meaning-dotted-closed-application,198,

217
meaning-dynamic-let, 253
meaning-dynamic-reference,253
meaning-eval,276,278
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meaning-export, 287
meaning-fix-abstraction,191, 209, 214,

293, 468
meaning-fix-closed-application, 197
meaning-import, 297
meaning-monitor, 257
meaning-no-argument, 190, 210, 216
meaning-no-dotted-argument, 198,217
meaning-primit ive-applicat ion, 201, 218
meaning-quotation, 188, 212
meaning-redefine, 468
meaning-reference, 193, 208, 212, 291,

299
meaning-regular-application,189,210,

216
meaning-sequence, 188, 209, 214
meaning-some-arguments, 190, 210, 216
meaning-some-dotted-arguments,198,217
memo, memo-ize, 320
memo-delay, 176
memo-function, 141

quoting and, 141
memory, 132, 183

decreasing consumption of, 184
MEROON,417
meroon-apply,338
MEROONET, 317, 417

field descriptors in, 419
first class objects in, 418
generic functions in, 418
implementation of, 419
multiple inheritance in, 418
object representation in, 419
self-description in, 418

meroon-if,339
message

sending, 133, 441
message-passing style, 114
meta-fact, 63
metamethod, 361
method, 87

defining, 88
propagating, 445

M-expression, 7
migration, 184
*minimal-fixnum*,376
min-max, 111
min-max1,462
min-max2,462
mode autoquote, 13
modifying

507

values to define variables, 54
monitor, 256
Mono-Field-class,427
multimethod, 418, 442
multiple dispatch, 417
multiple inheritance

in MEROONET, 418
multiple values, 103
multiple worlds, 313
mutable binding

definition, 26

N
naive-endogeneous-macroexpander,322
name, 112, 113
name

call by, 150
name conflict

in Lisp2, 42
name spaces and, 43
solutions of, 43

name space
environments and, 43

naming conventions, 89
NARY-CLOSURE, 214, 230
nesting

functions, 363
new1-evaluate-set!,463
new2-evaluate-set!,463
new-assoc/de,455
newline, xviii
new-location, 133
new-renamed-variable,371
new-Variable, 405
next-method?, 448
NfixN, 457
NfixN2, 457
NIL, 9, 395
nil, 26, 136, 195
No-Argument, 344
No-Free, 365
no-more-argument-cont, 105
no-more-arguments,93
NoN-CoNT-ERR,257,259
normal form

definition, 150
normal order, 150
v, 152
NULL, 382
null-env,91
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number?, xviii
number

in function position, 39
number->class,419
number-of, 347

o
OakLisp, xx, 442
Object?, 422

better version, 476
Object, 88
object

functional, 442
functionally applicative, 40

object representation
in MEROONET, 419

Object-class, 427
object->class,422
objectification, 344, 360
objectify, 345
objectify-alternative, 346
objectify-application, 346
objectify-assignment, 349
objectify-free-global-reference,348,

475
objectify-function, 348
objectify-quotation, 346
objectify-sequence, 346
objectify-symbol, 348
objectify-variables-list,348
ObjVlisp, 418
odd?, 55, 66, 120, 290
odd-and-even, 66
w,150
OO-lifting, 365
open coded function, 26
operator

J, 81
special, definition, 6

order
evaluation, 467
initialization not specified in Scheme,

59
initializing variables and, 58
macro expansion and, 425
not important in evaluation, 62
right to left, 467

order, normal, 150
other-box-ref, 114
other-box-set!,114
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other-make-box, 114
other-make-named-box, 126

p
package, 336
PACK-FRAME!, 230
pair?, 137
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pair-eq?,463
parse-fields, 440
parse-variable-specifications,444
passwd, 118
pc-independent code, 231
PC-Scheme, 225
Perl, 20, 316
physical modifier, 122
'Jr, 152
Planner, 441
P-list, 285
pointer, 359
Poly-Field-class,427
polymorphism, 158
POP-ARG1, 244
POP-ARG2, 244
pop-dynamic-binding, 253, 469, 470
POP-ESCAPER, 250
pop-except ion-handler, 258
POP-FRAME!, 243
POP-FRAME!O,243
POP-FUNCTION, 229, 244
POP-HANDLER, 257
popping, 226
pp, 373
PREDEFINED, 212, 241
PREDEFINEDO, 241
Predefined-Application, 344
predefined-fetch, 192
Predefined-Reference, 344
Predefined-Variable, 344
predicate, 422
premethod, 447
preparation, 312
prepare, 314, 316,471
PRESERVE-ENV,229,244
preserve-environment, 245, 469
primitive, 94
primitive

integrating, 199
primitive function

definition, 6
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primitives, 179
procedure?, xviii
procedure-)definition,293,294
procedure-)environment, 292, 295
process-closed-application,346
process-nary-closed-application,347
prog, 71
progn, 9

role in block, 76
Program, 344
program?, 274
program

definition, 147
meaning of, 147
pretreater, 204
pretreating, 203
representing, 4

program counter, 228
programming by continuations, 71
promise

example, 353
propagating

methods, 445
properties, 455
property list, 125
protection, 84, 86
protect-return-cont,99
pseudo-activation-frame, 297
pseudo-activation-frame, 297
Pseudo-Variable, 405
push-dynamic-binding, 253, 469, 470
PUSH-ESCAPER, 250
push-except ion-handler, 258
PUSH-HANDLER, 257
pushing, 226
PUSH-VALUE, 229, 244

Q
qar, 463
qdr, 463
qons, 463
quotation?, 274
quotation

collecting, 367, 372
compiling, 375

quotation-fetch, 241
Quotation-Variable, 368
quote, xix, 7, 140, 277, 312
quote78, 143
quote79, 143
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quote80, 143
quote81, 143
quote82, 143
quoting

compositional, 140
continuations and, 90
cycles and, 144
definition, 8
implicit and explicit, 8
memo-functions and, 141
semantics of, 140
transformations and, 141

R
r.global,136
r. init, 94, 129, 195, 288
random-permutation, 466
read, xviii, 139, 272, 312
reader

for fields, 436
read-file, 260
recommended reading, xx, 29, 70, 110,

181, 222, 268, 309, 357, 415,
449

recursion, 53
local, 56, 57
mutual, 55
simple, 54
tail, 104
without assignments, 62

redefining
macros, 331

redex
definition, 150

reducible form, 197
Reference, 344
reference implementation, 148
reference-)C,380
referential transparency, 22
reflection, 271, 418
ReflectiveClass,478
REFLECTIVE-FIX-CLOSURE,293
reflective-lambda, 295
register-class, 439
register-CountingClass,476
register-generic, 445
register-method, 447
regression, infinite, 430
Regular-Application, 344
REGULAR-CALL, 216, 227, 229
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reified-continuation,460
reified-environment,287
relocate-constants!, 264
relocate-dynamics!, 265
relocate-globals!,264
Renamed-Local-Variable,371
renaming

variables, 370
renaming-variables-counter, 371
repeat, 312
repeat1,473
representing

Booleans, 8
continuations, 87
continuations as functions, 81
data, 7
environments, 13
functional applications, 4

functions, 15
generic functions, 442
programs, 4, 7
special forms, 6
values, 133
variables, 4

rerooting, 25
RESTORE-ENV,229,244
restore-environment, 245, 469
restore-stack, 247
resume, 89, 90, 92, 93, 95-99, 104, 105
retrieve-named-field,436
RETURN, 231, 244
return, 72, 386
return-from, 76, 80, 249
return-from-cont,98
re-usability, 22
r-extend*, 186, 288, 348
r-extend,348
run, 229, 237
run-application, 266
run-clause, 235
run-machine, 246, 259
RunTime-Primitive, 350

s
s.global,136
s.init,133
s.lookup,24,452
s.make-function, 24,452
s.update!,24,452
save-stack, 247
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lexical escapes in, 76
EPS, 318
GNU EMACS LISP, 20
ILOG TALK, 360
LLM3, 148
PL, 148
PSL, 148
PVM, 148
VDM, 148
scan-pair, 377
scan-quotations, 375
scan-symbol, 377
->Scheme,474
Scheme, xx

grammar of, 272
initialization order not specified, 59
lexical environment in, 44
semantics of, 151
uninitialized bindings not allowed,

60
scheme.h,390
scheme.h include file, 373
Scheme->C, 360
Scheme->C-names-mapping,374
schemelib.c,395
SCM, 392
SCM, 414
SCMJDefinePredefinedFunctionVariable,

395
SCMJDefineGlobalVariable,373
SCM_invoke_continuation,408
SCM_2bool,394
SCM_allocate_box, 381
SCM_Car, 394
SCM_Cdr, 394
SCM_CheckedGlobal,380,395
SCM_close, 385, 397
SCM_CLOSURE_TAG,397
SCM_cons, 385
SCM_Content, 381, 396
SCM_DeclareFunction, 386
SCM_DeclareLocalDottedVariable,386
SCM_DeclareLocalVariable, 386
SCM_Define, 393
SCM_Define... ,379
SCM_DefineClosure,386,396
SCM_DefinePair, 379
SCM_DefineString, 379
SCM_DefineSymbol,379
SCM_error, 398
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SCM_false, 379, 382
SCM_Fixnum2int,391
SCM_FixnumP,391
SCM_header, 392
SCM_Int2fixnum,379,391
SCM_invoke, 382, 396, 399, 403
SCM_nil, 379
SCM_nil_object,395
SCM_object, 391
SCM_Plus, 385
SCM_print, 387
SCM_STACK_HIGHER,403
SCM_tag, 392
SCM_true, 379
SCM_undefined, 395
SCM_unwrapped_object, 392
SCM_unwrapped_pair,393
SCM_Wrap, 379, 394
SCMq_,409
SCMref,393
scope

bindings and, 68
definition, 20
lexical, 68
macros and, 333
shadowing and, 21
textual, 68

search-dynenv-index,253,469
search-except ion-handlers, 258
selector, 423

careless-,428
self_, 396
self-description

in MEROONET, 418
semantics, 147

algebraic, 149
aXiomatic, 149
definition, 148
denotational, definition, 149
meaning and, 148
natural, 149
of quoting, 140
operational, 148
Scheme, 151

send, 441, 446
sending

messages, 133, 441
SEQUENCE, 214, 226,233
Sequence, 344
sequence, 9, 90, 129, 154, 178, 209, 214,
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set!, xix, 7, 11
set

as prefix, 438
as suffix, 438

set of free variables, 365
set-car!, xviii, 124
set-cdr!, xviii, 27, 124, 137, 398
set-Class-name!,441
set-Class-subclass-numbers!,441
set!-cont,92
SET-DEEP-ARGUMENT!,240
set-difference, 204
(setf symbol-function), 285
(setf symbol-value), 285
set-field-value!,438
SET-GLOBAL!, 240
SET-GLOBAL!-code,264
set-global-value!,283
setjmp, 402
set-kdr!,122
setq, 11
SET-SHALLOW-ARGUMENT!, 228,240
SET-SHALLOW-ARGUMENT!2,240
set-variable-value!,301
set-winner!, 112
sg.current,192
sg.current.names,467
sg.init,192
sg.predef,350
sh, 313, 413
shadowable-fetch, 299
shadow-extend*, 298
shadowing

scope, 21
SHADOW-REF, 299
shallow binding

definition, 23
implementation techniques, 25

SHALLOW-ARGUMENT-REF, 212, 237, 239,
240

SHALLOW-ARGUMENT-REFO, 240
SHALLOW-ARGUMENT-REF1, 240
SHALLOW-ARGUMENT-REF2, 240
SHALLOW-ARGUMENT-REF3, 240
SHALLOW-ARGUMENT-SET!, 213,228
*shared-memo-quotations*, 141
shell, 313
SHORT-GOTO,242
SHORT-JUMP-FALSE, 242
SHORT-NUMBER, 242
side effect, 111, 121
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(J', 152
signal-exception, 258
signature, dotted, 443
silent

variable, 22
simulating

dotted pairs, 122
shallow binding, 24

simultaneous-eval-macroexpander,331
single-threaded, 169
SIOD,414
size, 423
size_, 396
size-clause, 235
Smalltalk, 272, 420, 441
some-facts, 322
space

dynamic variable, 44
function, 44
lexical variables, 44
of macros, 327

special form, 311, 312
catch, 74
function, 21
if,8
quote, 7
throw, 74
definition, 6
representing, 6

special operator
definition, 6

special variable, 22
special-begin, 350
special-def ine-abbreviat ion, 353
special-eval-in-abbreviation-world,353
special-extend, 48
*special-form-keywords*, 350
special-if, 350
special-lambda, 350
special-let-abbreviation,354
special-quote, 350
special-set!, 350
special-with-aliases, 354
Sqil, 238, 360
sr.init,195
sr-extend*, 185
sr-extend,350
*stack*, 226
stack, 226

C,403
evaluation, 71
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pushing, 226

*stack-index*, 226
stack-pop, 226
stack-push, 226
stammer, 306
stand-alone-producer,204,467
stand-alone-producer7d,246
standard header file scheme. h, 373
*starting-offset*,422
static error, 194, 274
static-wrong, 194
STORE-ARGUMENT, 216, 226, 227, 233
string?, xviii
string, xviii
string-ref, xviii
string-set!, xviii
string->symbol, xviii, 284
substituting, 150
supermethod, 447
s ymbo1?, xviii
symbol, 125

variables and, 4
symbol table, 213, 467
symbol-concatenate, 429
symbol-function, 285
symbol-value, 285
symbol->variable, 5
syntax

data and, 272
programs and, 272
tree, 372

system, 413

T
T, xx
t, 26, 136, 195
tagbody, 108
Talk, xx
target language, 359
TEAO~, 87
'lEX, 20
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