

Reactive Programming with Kotlin
By Alex Sullivan

Copyright ©2020 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Reactive Programming with Kotlin

raywenderlich.com 2

Dedications
"To my wonderful partner Pallavi, without whom I would have

never been able to start this undertaking. Your support and
encouragement mean the world to me."

— Alex Sullivan

Reactive Programming with Kotlin

raywenderlich.com 3

About the Author
Alex Sullivan is the author of this book. Alex is a freelance mobile
architect in Boston, where he enjoys reactive programming,
experimenting with different programming languages, and
tinkering with fun approaches to building mobile applications. In
his spare time, Alex enjoys traveling and relaxing with his partner,
binging unhealthy amounts of Netflix and reading. Alex hopes to
one day find a cat he's not allergic to and rant about bracket
placement to him or her.

About the Editors
Victoria Gonda is a tech editor for this book. Victoria is a software
developer with a passion for accessible and quality apps. When
she's not traveling to speak at conferences, she works remotely
from Chicago. Her interest in tech started while studying computer
science and dance production in college. In her spare time, you can
find Victoria relaxing with a book, her partner, and her pets. You
can connect with her on Twitter at @TTGonda.

Alex Curran is a technical editor of this book. He is a mobile-
focused Principle Engineer at a finance startup, with a keen
interest in development best practices and encouraging
collaboration between iOS, Android, and backend developers. In his
spare time, he cooks, reads avidly, and makes natural soaps by
hand. You can find him anywhere at @amlcurran.

Amanjeet Singh is a tech editor for this book. Amanjeet is an
Android Engineer based out of India and an open source
enthusiast. As a developer he always tries to build apps with
optimized performance and good architectures which can be used
on a large scale. In spare time, you can find Amanjeet traveling,
eating and watching movies. You can find him on twitter at
@droid_singh.

Reactive Programming with Kotlin

raywenderlich.com 4

Matei Suica is the final pass editor for this book. Matei is a
software developer that dreams about changing the world with his
work. From his small office in Romania, Matei is always trying to
work on Apps that will help millions. When the laptop lid closes, he
likes to read and go to the gym. You can find him on Twitter:
@mateisuica

About the Artist
Vicki Wenderlich is the designer and artist of the cover of this
book. She is Ray’s wife and business partner. She is a digital artist
who creates illustrations, game art and a lot of other art or design
work for the tutorials and books on raywenderlich.com. When she’s
not making art, she loves hiking, a good glass of wine and
attempting to create the perfect cheese plate.

Reactive Programming with Kotlin

raywenderlich.com 5

Acknowledgments
We'd also like to thank the RxSwift: Reactive Programming with Swift authors, whose
work served as the basis for parts of this book:

• Scott Gardner has been developing iOS apps since 2010, Swift since the day it was
announced, and RxSwift since before version 1. He's authored several video
courses, tutorials, and articles on iOS app development, presented at numerous
conferences, meetups, and online events, and this is his second book. Say hello to
Scott on Twitter at @scotteg.

• Junior Bontognali has been developing on iOS since the first iPhone and joined
the RxSwift team in the early development stage. Based in Switzerland, when he's
not eating cheese or chocolate, he's doing some cool stuff in the mobile space,
without denying to work on other technologies. Other than that he organizes tech
events, speaks and blogs. Say hello to Junior on Twitter at @bontoJR.

• Florent Pillet has been developing for mobile platforms since the last century and
moved to iOS on day 1. He adopted reactive programming before Swift was
announced and has been using RxSwift in production since 2015. A freelance
developer, Florent also uses Rx on Android and likes working on tools for
developers like the popular NSLogger when he's not contracting for clients
worldwide. Say hello to Florent on Twitter at @fpillet.

• Marin Todorov is one of the founding members of the raywenderlich.com team
and has worked on seven of the team's books. Besides crafting code, Marin also
enjoys blogging, teaching, and speaking at conferences. He happily open-sources
code. You can find out more about Marin at www.underplot.com.

Reactive Programming with Kotlin

raywenderlich.com 6

Table of Contents: Overview
Book License 17...

Book Source Code & Forums 18...

What You Need 20..

Book Updates 21...

About the Cover 22..

Section I: Getting Started with RxJava 23.......................

Chapter 1: Hello, RxJava! 24..

Chapter 2: Observables 46...

Chapter 3: Subjects 66..

Chapter 4: Observables & Subjects in Practice 83..............

Section II: Operators & Best Practices 105......................

Chapter 5: Filtering Operators 107...

Chapter 6: Filtering Operators in Practice 126....................

Chapter 7: Transforming Operators 141.................................

Chapter 8: Transforming Operators in Practice 158..........

Chapter 9: Combining Operators 174......................................

Chapter 10: Combining Operators in Practice 197............

Chapter 11: Time-Based Operators 218.................................

Section III: Intermediate RxJava 240.................................

Chapter 12: Error Handling in Practice 241..........................

Chapter 13: Intro to Schedulers 264..

Reactive Programming with Kotlin

raywenderlich.com 7

Chapter 14: Flowables & Backpressure 284..........................

Chapter 15: Testing RxJava Code 301.....................................

Chapter 16: Creating Custom Reactive Extensions 319..

Section IV: RxJava Community Cookbook 337..............

Chapter 17: RxBindings 338..

Chapter 18: Retrofit 360...

Chapter 19: RxPreferences 378...

Chapter 20: RxPermissions 395...

Section V: Putting It All Together 411...............................

Chapter 21: RxJava & Jetpack 412..

Chapter 22: Building a Complete RxJava App 431.............

Conclusion 464..

Reactive Programming with Kotlin

raywenderlich.com 8

Table of Contents: Extended
Book License 17.

Book Source Code & Forums 18.

What You Need 20.

Book Updates 21.

About the Cover 22.

Section I: Getting Started with RxJava 23.

Chapter 1: Hello, RxJava! 24.
Defining RxJava and RxKotlin 24.

Introducing asynchronous programming 26.

Learning the foundations of RxJava 34.

App architecture 42.

RxAndroid and RxBinding 42.

Installing RxJava 43.

Community 44.

Key points 45.

Where to go from here? 45.

Chapter 2: Observables 46.
Getting started 46.

What is an observable? 47.

Lifecycle of an observable 48.

Creating observables 49.

Subscribing to observables 51.

Disposing and terminating 55.

The create operator 57.

Creating observable factories 59.

Using other observable types 61.

Reactive Programming with Kotlin

raywenderlich.com 9

Challenges 64.

Key points 65.

Chapter 3: Subjects 66.
Getting started 67.

What are subjects? 68.

Working with publish subjects 69.

Working with behavior subjects 71.

Working with replay subjects 75.

Working with async subjects 77.

Working with the RxRelay library 79.

Challenge 80.

Key points 82.

Where to go from here? 82.

Chapter 4: Observables & Subjects in Practice 83.
Getting started 84.

Using a BehaviorSubject in a ViewModel 86.

Adding photos 87.

Communicating with other views via subjects 92.

Creating a custom observable 96.

Review: Single, Maybe, Completable 98.

Using Single in the app 101.

Key points 104.

Where to go from here? 104.

Section II: Operators & Best Practices 105.

Chapter 5: Filtering Operators 107.
Getting started 107.

Ignoring operators 107.

Skipping operators 112.

Taking operators 116.

Distinct operators 120.

Reactive Programming with Kotlin

raywenderlich.com 10

Challenge 123.

Key points 125.

Where to go from here? 125.

Chapter 6: Filtering Operators in Practice 126.
Improving the Combinestagram project 127.

Challenge 139.

Key points 140.

Where to go from here? 140.

Chapter 7: Transforming Operators 141.
Getting started 141.

Transforming elements 142.

Transforming inner observables 144.

Observing events 151.

Challenge 155.

Key points 157.

Where to go from here? 157.

Chapter 8: Transforming Operators in Practice 158.
Getting started with GitFeed 159.

Fetching data from the web 160.

Transforming the response 162.

Processing the response 163.

Persisting objects to disk 165.

Adding a last-modified header 166.

Challenge 170.

Key points 173.

Where to go from here? 173.

Chapter 9: Combining Operators 174.
Getting started 174.

Prefixing and concatenating 175.

Merging 180.

Reactive Programming with Kotlin

raywenderlich.com 11

Combining elements 183.

Triggers 187.

Switches 191.

Combining elements within a sequence 192.

Challenge: The zip case 195.

Key points 196.

Where to go from here? 196.

Chapter 10: Combining Operators in Practice 197.
Getting started 197.

Preparing the EONET API class 198.

Add events into the mix 200.

Combining events and categories 203.

Downloading in parallel 207.

Wiring up the days seek bar 213.

Challenge: Adding a progress bar 216.

Key points 217.

Where to go from here? 217.

Chapter 11: Time-Based Operators 218.
Getting started 219.

Buffering operators 219.

Time-shifting operators 231.

Timer operators 234.

Challenge 238.

Key points 239.

Section III: Intermediate RxJava 240.

Chapter 12: Error Handling in Practice 241.
Getting started 241.

Managing errors 244.

Handling errors with catch 245.

Catching errors 248.

Reactive Programming with Kotlin

raywenderlich.com 12

Retrying on error 250.

Errors as objects 256.

Challenges 261.

Key points 263.

Where to go from here? 263.

Chapter 13: Intro to Schedulers 264.
What is a scheduler? 265.

Setting up the project 265.

Switching schedulers 268.

Pitfalls 274.

Best practices and built-in schedulers 278.

Key points 282.

Where to go from here? 283.

Chapter 14: Flowables & Backpressure 284.
Backpresssure 284.

Buffering danger! 286.

Natural backpressure 288.

Introduction to Flowables 288.

Backpressure strategies 290.

Flowables, Observables, Processors and Subjects — Oh, My! 295.

Key points 300.

Where to go from here? 300.

Chapter 15: Testing RxJava Code 301.
Getting started 301.

Introduction to TestObserver 304.

Using a TestScheduler 306.

Injecting schedulers 309.

Using Trampoline schedulers 311.

Using subjects with mocked data 312.

Testing ColorViewModel 314.

Reactive Programming with Kotlin

raywenderlich.com 13

Key points 318.

Where to go from here? 318.

Chapter 16: Creating Custom Reactive Extensions 319.
Getting started 319.

Extending a framework class 321.

Wiring the extension up 323.

Wrapping the locations API 325.

The lift and compose functions 331.

Testing your custom reactive extension 333.

Key points 336.

Where to go from here? 336.

Section IV: RxJava Community Cookbook 337.

Chapter 17: RxBindings 338.
Getting started 339.

Extending ValueAnimator to be reactive 340.

Using RxBindings with Android widgets 341.

Dangerzone! 344.

Working around the issue 344.

Fetching colors from an API 349.

Displaying an information dialog 351.

Challenges 356.

Key points 359.

Where to go from here? 359.

Chapter 18: Retrofit 360.
Getting started 360.

Recap of Retrofit 361.

Including Rx adapters 363.

Creating a JSON object 364.

Updating the JSON 368.

Retrieving JSON 373.

Reactive Programming with Kotlin

raywenderlich.com 14

Key points 377.

Where to go from here? 377.

Chapter 19: RxPreferences 378.
Getting started 379.

Using SharedPreferences 381.

Listening for preference updates 382.

Using RxPreferences 385.

Subscribing to preference changes 386.

Dealing with old versions of RxJava 387.

Saving custom objects 389.

Key points 394.

Where to go from here? 394.

Chapter 20: RxPermissions 395.
Getting started 396.

Requesting the location permission 397.

Using RxPermissions 399.

Requesting another permission 402.

Reading from external storage 403.

Writing the weather to external storage 404.

Reacting to orientation changes 406.

Key points 410.

Where to go from here? 410.

Section V: Putting It All Together 411.

Chapter 21: RxJava & Jetpack 412.
Getting started 413.

RxJava and Room 415.

Reacting to database changes 419.

Updating individual items 420.

Starting the app with cached data 421.

Paging data in 422.

Reactive Programming with Kotlin

raywenderlich.com 15

Key points 430.

Where to go from here? 430.

Chapter 22: Building a Complete RxJava App 431.
Introducing QuickTodo 431.

Architecting the application 433.

Task model 435.

Task data access object 435.

Task repository 438.

Replacing callbacks with observables 447.

Editing tasks 451.

Challenges 461.

Where to go from here? 463.

Conclusion 464.

Reactive Programming with Kotlin

raywenderlich.com 16

LBook License

By purchasing Reactive Programming with Kotlin, you have the following license:

• You are allowed to use and/or modify the source code in Reactive Programming with
Kotlin in as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included
in Reactive Programming with Kotlin in as many apps as you want, but must include
this attribution line somewhere inside your app: “Artwork/images/designs: from
Reactive Programming with Kotlin, available at www.raywenderlich.com”.

• The source code included in Reactive Programming with Kotlin is for your personal
use only. You are NOT allowed to distribute or sell the source code in Reactive
Programming with Kotlin without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and noninfringement. In no event
shall the authors or copyright holders be liable for any claim, damages or other
liability, whether in an action or contract, tort or otherwise, arising from, out of or in
connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties
of their respective owners.

raywenderlich.com 17

BBook Source Code &
Forums

If you bought the digital edition
The digital edition of this book comes with the source code for the starter and
completed projects for each chapter. These resources are included with the digital
edition you downloaded from store.raywenderlich.com.

If you bought the print version
You can get the source code for the print edition of the book here:

https://store.raywenderlich.com/products/reactive-programming-with-kotlin-
source-code

Forums
We’ve also set up an official forum for the book at forums.raywenderlich.com. This is
a great place to ask questions about the book or to submit any errors you may find.

Digital book editions
We have a digital edition of this book available in both ePUB and PDF, which can be
handy if you want a soft copy to take with you, or you want to quickly search for a
specific term within the book.

Buying the digital edition version of the book also has a few extra benefits: free
updates each time we update the book, access to older versions of the book, and you
can download the digital editions from anywhere, at anytime.

raywenderlich.com 18

Visit our book store page here:

• https://store.raywenderlich.com/products/reactive-programming-with-kotlin.

And if you purchased the print version of this book, you’re eligible to upgrade to the
digital editions at a significant discount! Simply email support@razeware.com with
your receipt for the physical copy and we’ll get you set up with the discounted digital
edition version of the book.

Reactive Programming with Kotlin Book Source Code & Forums

raywenderlich.com 19

WWhat You Need

To follow along with the tutorials in this book, you’ll need the following:

• A PC running Windows 10 or a recent Linux such as Ubuntu 20.04 LTS, or a
Mac running the latest point release of macOS Catalina or later: You’ll need
one of these to be able to install the latest versions of IntelliJ IDEA and Android
Studio.

• IntelliJ IDEA Community 2020.1 or later: IntelliJ IDEA is the IDE upon which
Android Studio is based, and it's used in the book to look at pure Kotlin projects
that demonstrate techniques in RxJava. You can download the latest version of
IntelliJ IDEA Community for free here: https://www.jetbrains.com/idea/

• JDK 8 or later: You'll need a Java Development Kit installed for use with IntelliJ
IDEA projects (Android Studio will use its own version of the JDK). You can
download the Oracle JDK from here: https://www.oracle.com/technetwork/java/
javase/downloads/index.html

• Android Studio 4.0 or later: Android Studio is the main development tool for
Android. You can download the latest version of Android Studio for free here:
https://developer.android.com/studio

• An intermediate level knowledge of Kotlin and Android development. This book
is about learning RxJava specifically; to understand the rest of the project code
and how the accompanying demo projects work you will need at least an
intermediate understanding of Kotlin and the Android SDK.

All the Android sample projects in this book will work just fine in an Android
emulator bundled with Android Studio, or you can also use a physical Android
device.

raywenderlich.com 20

BBook Updates

Since you’ve purchased the digital edition version of this book, you get free access to
any updates we may make to the book!

The best way to get update notifications is to sign up for our monthly newsletter.
This includes a list of the tutorials that came out on raywenderlich.com that month,
any important news like book updates or new books, and a list of our favorite iOS
development links for that month. You can sign up here:

• www.raywenderlich.com/newsletter

raywenderlich.com 21

AAbout the Cover

The common starling, pictured on the cover of this book, seems just that: common. It
isn't particularly large — roughly only 8 inches long. It isn't particularly musical and
is considered noisy in flocks and communal roosts. It's also not particularly beautiful,
with dark glossy feathers and a subtle metallic sheen.

And, yet, this simple bird continues to hold our attention, even being referenced in
literature as early as Shakespeare. Why?

First, it has a talent for mimicry and, like the reactive sensibilities explored in this
book, is highly responsive to its environment. It has up to 20 distinct imitations of
other birds, and it is even known to mimic ringing phones and car alarms.

And, most impressively, a flock of starlings in flight is a gorgeous display of reactivity
in motion. You've probably seen it, yourself: thousands of birds creating fluid shapes
— called murmurations — in the air, never pausing, each bird responding to the next.

While we can't know how these birds evolved to this level of cooperation and
responsiveness, we hope to draw some inspiration from them in this book as we
guide you through developing your own reactive programming.

You can learn more about these birds, here: https://en.wikipedia.org/wiki/
Common_starling.

See them in flight, here: https://video.nationalgeographic.com/video/short-film-
showcase/00000158-457d-d0be-a1dc-4f7f8e650000.

raywenderlich.com 22

Section I: Getting Started with
RxJava

In this part of the book, you’re going to learn about the basics of RxJava. You are
going to have a look at what kinds of asynchronous programming problems RxJava
addresses, and what kind of solutions it offers.

Further, you will learn about the few basic classes that allow you to create and
observe event sequences, which are the foundation of the Rx framework.

You are going to start slow by learning about the basics and a little bit of theory.
Please don't skip these chapters! This will allow you to make good progress in the
following sections when things get more complex.

Chapter 1: Hello, RxJava!

Chapter 2: Observables

Chapter 3: Subjects

Chapter 4: Observables & Subjects in Practice

raywenderlich.com 23

1Chapter 1: Hello, RxJava!

By Alex Sullivan & Marin Todorov

This book aims to introduce you, the reader, to the RxJava, RxKotlin and RxAndroid
libraries and to writing reactive Android apps with Kotlin.

Defining RxJava and RxKotlin
You may be asking yourself "Wait, why am I reading about RxJava when I'm using
Kotlin to build Android apps?" Great question! RxJava has been around since 2013,
well before developers began to accept Kotlin as a mainstream programming
language, and is part of a long list of Rx-based libraries written for different
platforms and systems. Since Kotlin has such excellent interoperability with Java, it
wouldn't make sense to completely rewrite RxJava for Kotlin — you can just use the
existing RxJava library instead!

However, just because RxJava doesn't need to be completely rewritten to work in
Kotlin doesn't mean that it couldn't benefit from all of the great features in the
Kotlin programming language.

That's where RxKotlin comes into play. RxKotlin is a library that expands RxJava by
adding a ton of utilities and extension methods that make working with RxJava much
more pleasant in Kotlin. That being said, since RxJava is a complete library on its
own you absolutely do not need RxKotlin to use the RxJava library in a Kotlin-based
Android app.

raywenderlich.com 24

But what exactly is RxJava? Here’s a good definition:

RxJava is a library for composing asynchronous and event-based code by using
observable sequences and functional style operators, allowing for parameterized
execution via schedulers.

Sound complicated? Don’t worry if it does. Writing reactive programs, understanding
the many concepts behind them and navigating a lot of the relevant, commonly used
lingo might be intimidating — especially if you try to take it all in at once, or when
no one has introduced it to you in a structured way.

That’s the goal of this book: to gradually introduce you to the various RxJava APIs
and Rx concepts by explaining how to use each of the APIs, and then covering their
practical usage in Android apps.

You’ll start with the basic features of RxJava, and then gradually work through
intermediate and advanced topics. Taking the time to exercise new concepts
extensively as you progress will make it easier to master RxJava by the end of the
book. Rx is too broad of a topic to cover completely in a single book; instead, we aim
to give you a solid understanding of the library so that you can continue developing
Rx skills on your own.

We still haven’t quite established what RxJava is though, have we? Start with a
simple, understandable definition and progress to a better, more expressive one as
we waltz through the topic of reactive programming later in this chapter.

RxJava, in its essence, simplifies developing asynchronous programs by allowing
your code to react to new data and process it in a sequential, isolated manner. In
other words, RxJava lets you observe sequences of asynchronous events in an app
and respond to each event accordingly. Examples are taps by a user on the screen
and listening for the results of asynchronous network calls.

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 25

As an Android app developer, this should be much more clear and tell you more
about what RxJava is, compared to the first definition you read earlier in this chapter.

Even if you’re still fuzzy on the details, it should be clear that RxJava helps you write
asynchronous code. And you know that developing good, deterministic,
asynchronous code is hard, so any help is quite welcome!

Introducing asynchronous programming
If you tried to explain asynchronous programming in a simple, down-to-earth
language, you might come up with something along the lines of the following:

An Android app, at any moment, might be doing any of the following things and
more:

• Reacting to button taps

• Animating a view across the screen

• Downloading a large photo from the internet

• Saving bits of data to disk

• Playing audio

All of these things seemingly happen at the same time. Whenever the keyboard
animates out of the screen, the audio in your app doesn’t pause until the animation
has finished, right?

All the different bits of your program don’t block each other’s execution. Android
offers you several different APIs that allow you to perform different pieces of work on
different threads and perform them across the different cores of the device’s CPU.

Writing code that truly runs in parallel, however, is rather complex, especially when
different bits of code need to work with the same pieces of data. It’s hard to
determine which piece of code updates the data first or which code has read the
latest value.

Using Android asynchronous APIs
Google has provided several different APIs that help you write asynchronous code.
You've probably used a few of them before, and chances are they left you feeling a bit
frustrated or maybe even scared.

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 26

You’ve probably used at least one of the following:

• AsyncTask: To do some work on the background and then update elements in your
UI with the result of that background work. You have to make sure to properly
handle canceling a running AsyncTask when your Activity or Fragment shuts
down since you could otherwise get a NullPointerException when the
AsyncTask tries to update UI elements that don’t exist anymore.

• IntentService: To start a fire-and-forget background job using an Intent. You
typically use an IntentService if you want to do some work that doesn't need to
touch the UI at all — saving an object to a database, for example.

• Thread: To start background work in a purely Java way without interacting with
any Android APIs. Threads come with the downside of being expensive and not
bound to any sort of ThreadPool.

• Future: To clearly chain work which will complete at some undetermined point in
the future. Futures are considerably clearer to use than AsyncTasks, but run into
some of the same problems around null pointers when a Fragment or Activity
has been destroyed.

The above isn't an exhaustive list — there's also Handler, JobScheduler,
WorkManager, HandlerThread and Kotlin coroutines.

Comparing Coroutines and RxJava
Now that Kotlin coroutines have started to become popular in the Android
development world, you may be asking yourself if it's still worthwhile to learn about
RxJava.

Many comparisons have been made between using RxJava and using coroutines for
Android development. Each review will give you a different answer about which tool
you should use.

In reality, RxJava and coroutines work at different levels of abstractions. Coroutines
offer a more lightweight approach to threading and allow you to write asynchronous
code in a synchronous manner. Rx, on the other hand, is used primarily to create the
event-driven architecture mentioned above, and to allow you to write reactive
applications. So, while they both offer an answer for doing asynchronous work off the
main thread, they're really different tools that are both useful depending on the
context.

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 27

If you're simply looking for an easy way to replace AsyncTask, then coroutines may
make more sense than pulling RxJava into your application. However, if you do want
to move towards a reactive, event-driven architecture, then RxJava is your best bet!

Understanding asynchronous programming
challenges
Since most of your typical classes would do something asynchronously, and all UI
components are inherently asynchronous, it’s impossible to make assumptions about
what order the entirety of your app code will get executed.

After all, your app’s code runs differently depending on various external factors, such
as user input, network activity, or other OS events. Each time the user fires up your
app, the code may run in a completely different order depending on those external
factors. (Well, except for the case when you have an army of robots testing your app,
then you can expect all events to happen with precise, kill-bot synchronization.)

We’re definitely not saying that writing good asynchronous code is impossible. After
all, there's a litany of tools — like the ones listed above — that Android developers
have been using to write asynchronous apps since well before RxJava hit the scene.

The issue is that complex asynchronous code becomes very difficult to write in part
because of the variety of APIs that you as an Android developer will end up using:

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 28

You may be using an AsyncTask to update your UI, an IntentService to save
something to a database, a WorkManager task to sync your app to a server, and other
various asynchronous APIs. Since there is no universal language across all the
asynchronous APIs, reading and understanding the code, and reasoning about its
execution, becomes difficult.

To wrap up this section and put the discussion into a bit more context, you’ll
compare two pieces of code: one synchronous and one asynchronous.

Synchronous code

Performing an operation for each element of a list is something you’ve done plenty
of times. It’s a very simple yet solid building block of app logic because it guarantees
two things: It executes synchronously, and the collection is immutable from the
outside world while you iterate over it.

Take a moment to think about what this implies. When you iterate over a collection,
you don’t need to check that all elements are still there, and you don’t need to
rewind back in case another thread inserts an element at the start of the collection.
You assume you always iterate over the collection in its entirety at the beginning of
the loop.

If you want to play a bit more with these aspects of the for loop, try this in an app or
IntelliJ IDEA project:

var list = listOf(1, 2, 3)
for (number in list) {
 println(number)
 list = listOf(4, 5, 6)
}
print(list)

Is list mutable inside the for body? Does the collection that the loop iterates over
ever change? What’s the sequence of execution of all commands? Can you modify
number if you need to? You may be surprised by what you see if you run this code:

1
2
3
[4, 5, 6]

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 29

Asynchronous code

Consider similar code, but assume each iteration happens as a reaction to a click on a
button. As the user repeatedly clicks on the button, the app prints out the next
element in a list:

var list = listOf(1, 2, 3)
var currentIndex = 0
button.setOnClickListener {
 println(list[currentIndex])

 if (currentIndex != list.lastIndex) {
 currentIndex++
 }
}

Think about this code in the same context as you did for the previous one. As the
user clicks the button, will that print all of the list's elements? You really can’t say.
Another piece of asynchronous code might remove the last element, before it’s been
printed.

Or another piece of code might insert a new element at the start of the collection
after you’ve moved on.

Also, you assume only that the click listener will ever change currentIndex, but
another piece of code might modify currentIndex as well — perhaps some clever
code you added at some point after crafting the above function.

You’ve likely realized that some of the core issues with writing asynchronous code
are: a) the order in which pieces of work are performed and b) shared mutable data.

These are some of RxJava's strong suits!

Next, you need a good primer on the language that will help you start understanding
how RxJava works, what problems it solves, and ultimately let you move past this
gentle introduction and into writing your first Rx code in the next chapter.

Constructing an asynchronous programming
glossary
Some of the language in RxJava is so tightly bound to asynchronous, reactive and/or
functional programming that it will be easier if you first understand the following
foundational terms.

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 30

In general, RxJava tries to address the following aspects of app development:

1. State, and specifically, shared mutable state

State is somewhat difficult to define. To understand state, consider the following
practical example.

When you start your laptop it runs just fine, but after you use it for a few days or even
weeks, it might start behaving weirdly or abruptly hang and refuse to speak to you.
The hardware and software remains the same, but what’s changed is the state. As
soon as you restart, the same combination of hardware and software will work just
fine once more.

The data in memory, the data stored on disk, all the artifacts of reacting to user
input, all traces that remain after fetching data from cloud services — the sum of
these and more is the state of your laptop.

Managing the state of your Android apps, especially when shared between multiple
asynchronous components, is one of the issues you’ll learn how to handle in this
book.

2. Imperative programming

Imperative programming is a programming paradigm that uses statements to
change the program’s state. Much like you would use imperative language while
playing with your dog — “Fetch! Lay down! Play dead!” — you use imperative code to
tell the app exactly when and how to do things.

Imperative code is similar to the code that your computer understands. All the CPU
does is follow lengthy sequences of simple instructions. The issue is that it gets
challenging for humans to write imperative code for complex, asynchronous apps —
especially when shared, mutable state is involved.

For example, take this code, found in onCreate() of an Android Activity:

override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)

 setupUI()
 bindClickListeners()
 createAdapter()
 listenForChanges()
}

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 31

There’s no telling what these methods do. Do they update properties of the Activity
itself? More disturbingly, are they called in the right order? Maybe somebody
inadvertently swapped the order of these method calls and committed the change to
source control. Now the app might behave differently due to the swapped calls.

3. Side effects

Now that you know more about mutable state and imperative programming, you can
pin down most issues with those two things to side effects.

Side effects are any change to the state outside of the current scope. For example,
consider the piece of code in the example above. bindClickListeners() probably
attaches some kind of event handlers to some widgets. This causes a side effect, as it
changes the state of the view: the app behaves one way before executing
bindClickListeners(), and differently after that.

Side effects are also defined at the level of individual functions in your code. If a
function modifies any state other than the local variables defined inside the
function, then the function has introduced a side effect.

Any time you modify data stored on disk or update the text of a TextView on screen,
you cause side effects.

Side effects are not bad in themselves. After all, causing side effects is the ultimate
goal of any program! You need to change the state of the world somehow after your
program has finished executing.

Running for a while and doing nothing makes for a pretty useless app.

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 32

The issue with producing side effects is doing it in a controlled way. You need to be
able to determine which pieces of code cause side effects, and which simply process
and output data.

RxJava tries to address the issues (or problems) listed above by utilizing the
remaining two concepts.

4. Declarative code

In imperative programming, you change state at will. An alternative style of
programming to imperative is functional programming. In functional code, you
don’t cause any side effects.

Since we don’t live in a perfect world, the balance lies somewhere in the middle of
these two extremes. RxJava combines some of the best aspects of imperative code
and functional code.

In addition to not causing side effects, functional code tends to be declarative. Code
is declarative when it focuses on the what that you want to do, instead of the how
that encompasses the imperative way of programming. Declarative code lets you
define pieces of behavior, and RxJava will run these behaviors any time there’s a
relevant event and then provide the behaviors an immutable, isolated data input to
work with.

By programming declaratively, you can work with asynchronous code, but make the
same assumptions as in a simple for loop: that you’re working with immutable data
and you can execute code in a sequential, deterministic way.

5. Reactive systems

"Reactive systems" is a rather abstract term and covers web or mobile apps that
exhibit most or all of the following qualities:

• Responsive: Always keep the UI up to date, representing the latest app state.

• Resilient: Each behavior is defined in isolation and provides for flexible error
recovery.

• Elastic: The code handles varied workload, often implementing features such as
lazy pull-driven data collections, event throttling, and resource sharing.

• Message driven: Components use message-based communication for improved
reusability and isolation, decoupling the lifecycle and implementation of classes.

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 33

In short, reactive systems react to user and other events in a flexible and coherent
fashion.

The terms and concepts defined above are just the start of your RxJava vocabulary.
You'll see more terms as you progress through the book. Now that you have a start on
understanding the problems RxJava helps solve and how it approaches these issues,
it’s time to talk about the building blocks of Rx and how they play together.

Learning the foundations of RxJava
Reactive programming isn’t a new concept; it’s been around for a fairly long time,
but its core concepts have made a noticeable comeback over the last decade.

In that period, web applications have became more involved and are facing the issue
of managing complex asynchronous UIs. On the server side, reactive systems (as
described above) have become a necessity.

A team at Microsoft took on the challenge of solving the problems of asynchronous,
scalable, real-time application development that we’ve discussed in this chapter.
They worked on a library, independently from the core teams in the company, and
sometime around 2009, offered a new client and server-side framework called
Reactive Extensions for .NET (Rx).

It was an installable add-on for .NET 3.5 and later became a built-in core library
in .NET 4.0. It’s been an open-source component since 2012. Open sourcing the code
permitted other languages and platforms to reimplement the same functionality,
which turned Rx into a cross-platform standard.

Today you have RxJS, RxSwift, Rx.NET, RxScala, RxJava, and more. All these libraries
strive to implement the same behavior and same expressive APIs. Ultimately, a
developer creating an Android app with RxJava can freely discuss app logic with
another programmer using RxJS on the web or RxSwift on iOS.

Like the original Rx, RxJava works with all the concepts you’ve covered so far: It
tackles mutable state, it allows you to compose event sequences and improves on
architectural concepts such as code isolation, reusability and decouplings.

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 34

Let’s revisit that definition:

RxJava finds the sweet spot between traditionally imperative Java/Kotlin code and
purist functional code. It allows you to react to events by using immutable code
definitions to asynchronously process pieces of input in a deterministic,
composable way.

You can read more about the family of Rx implementations at http://reactivex.io.
This is the central repository of documentation about Rx’s operators and core
classes. It’s also probably the first place you’ll notice the Rx logo, the electric eel:

Note: I personally thought for some time that it was a piece of seaweed, but
research shows that it is, in fact, an electric eel. (The Rx project used to be
called Volta.)

In this book, you are going to cover both the cornerstone concepts of developing with
RxJava as well as real-world examples of how to use them in your apps.

The three building blocks of Rx code are observables, operators and schedulers.
The sections below cover each of these in detail.

Observables
The Observable<T> class provides the foundation of Rx code: the ability to
asynchronously produce a sequence of events that can “carry” an immutable
snapshot of data T. In the simplest words, it allows classes to subscribe for values
emitted by another class over time.

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 35

The Observable<T> class allows one or more observers to react to any events in real
time and update the app UI, or otherwise process and utilize new and incoming data.

The ObservableSource<T> interface (which the Observable<T> class implements)
is extremely simple. An Observable can emit (and observers can receive) only three
types of events:

• A next event: An event which “carries” the latest (or next) data value. This is the
way observers “receive” values.

• A complete event: This event terminates the event sequence with success. It
means the Observable completed its life-cycle successfully and won’t emit any
other events.

• An error event: The Observable terminates with an error and will not emit other
events.

When talking about asynchronous events emitted over time, you can visualize an
observable sequence of integers on a timeline, like so:

The blue boxes are the next events being emitted by the Observable. The vertical
bar on the right represents the complete event. An error event would be
represented by an x on the timeline.

This simple contract of three possible events an Observable can emit is anything
and everything in Rx. Because it is so universal, you can use it to create even the
most complex app logic.

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 36

Because the observable contract does not make any assumptions about the nature of
the Observable or the Observer, using event sequences is the ultimate decoupling
practice.

You don’t ever need to use callbacks to allow your classes to talk to each other.

To get an idea about some real-life situations, you’ll look at two different kinds of
observable sequences: finite and infinite.

Finite observable sequences

Some observable sequences emit zero, one or more values, and, at a later point,
either terminate successfully or terminate with an error.

In an Android app, consider code that downloads a file from the internet:

• First, you start the download and start observing for incoming data.

• Then you repeatedly receive chunks of data as parts of the file come in.

• In the event the network connection goes down, the download will stop and the
connection will time-out with an error.

• Alternatively, if the code downloads all the file’s data, it will complete with
success.

This workflow accurately describes the lifecycle of a typical observable. Take a look
at the related code below:

API.download(file = "http://www...")
 .subscribeBy(
 onNext = {
 // append data to a file

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 37

 },
 onComplete = {
 // use downloaded file
 },
 onError = {
 // display error to user
 }
)

API.download() returns an Observable<String> instance, which emits String
values as chunks of data come over the network. Calling subscribeBy tells the
observable that you'd like to subscribe for events that you're going to provide
lambdas for.

You subscribe to next events by providing the onNext lambda. In the downloading
example, you append the data to a temporary file stored on disk.

You subscribe to an error event by providing the onError lambda. In the lambda,
you can display a Throwable.message in an alert box or do something else.

Finally, to handle a complete event, you provide the onComplete lambda, where you
can do something like start a new Activity to display the downloaded file or anything
else your app logic dictates.

Infinite observable sequences

Unlike file downloads or similar activities, which are supposed to terminate either
naturally or forcefully, there are other sequences which are simply infinite. Often, UI
events are such infinite observable sequences.

For example, consider the code you need to react to a Switch being toggled in your
app:

• You add an OnCheckedChangedListener to the switch you want to listen to.

• You then need to provide a lambda callback to the OnCheckedChangeListener. It
looks at the isChecked value and updates the app state accordingly.

This sequence of switch checked changes does not have a natural end. As long as
there is a switch on the screen, there is a possible sequence of switch checked
changes. Further, since the sequence is virtually infinite, you always have an initial
value at the time you start observing it — namely, whether the switch is on or off.

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 38

It may happen that the user never toggles the switch, but that doesn’t mean the
sequence of events is terminated. It just means that there were no events emitted.

In RxJava, you could write code like this to react to the switch changing:

switch.checkedChanges()
 .subscribeBy(
 onNext = { isOn ->
 if (isOn) {
 // toggle a setting on
 } else {
 // toggle a setting off
 }
 }
)

checkedChanges() is a soon-to-be-discovered extension method on
CompoundButton that produces an Observable<Boolean>. (This is very easy to code
yourself; you’ll learn how in upcoming chapters).

You subscribe to the Observable returned from checkedChanges() and update the
app settings according to the current state of the switch. Note that you skip the
onError and onComplete parameters to subscribeBy, since these events will not be
emitted from that observable — a switch is either on or it's not.

Operators
ObservableSource<T> and the implementation of the Observable class include
plenty of methods that abstract discrete pieces of asynchronous work, which can be
composed together to implement more complex logic.

Because they are highly decoupled and composable, these methods are most often
referred to as operators. Since these operators mostly take in asynchronous input
and only produce output without causing side effects, they can easily fit together,
much like puzzle pieces, and work to build a bigger picture.

For example, take the mathematical expression (5 + 6) * 10 - 2.

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 39

In a clear, deterministic way, you can apply the operators *, (), + and - in their
predefined order to the pieces of data that are their input, take their output and keep
processing the expression until it’s resolved.

In a somewhat similar manner, you can apply Rx operators to the pieces of input
emitted by an Observable to deterministically process inputs and outputs until the
expression has been resolved to a final value, which you can then use to cause side
effects.

Here’s the previous example about observing switch changes, adjusted to use some
common Rx operators:

switch.checkedChanges()
 .filter { it == true }
 .map { "We've been toggled on!" }
 .subscribeBy(
 onNext = { message ->
 updateTextView(message)
 }
)

Each time checkedChanges() produces either a true or false value, Rx will apply
the filter and map operators to that emitted piece of data.

First, filter will only let through values that are true. If the switch has been
toggled off the subscription code will not be executed because filter will restrict
those values.

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 40

In case of true values, the map operator will take the Boolean type input and convert
it to a String output — the text "We've been toggled on!".

Finally, with subscribeBy you subscribe for the resulting next event, this time
carrying a String value, and you call a method to update some text view with that
text onscreen.

The operators are also highly composable — they always take in data as input and
output their result, so you can easily chain them in many different ways, achieving
much more than what a single operator can do on its own!

As you work through the book, you will learn about more complex operators that
abstract even more-involved pieces of asynchronous work.

Schedulers
Schedulers are similar to the ThreadPools that you see in normal Java and Kotlin
code. If you're not familiar with ThreadPools, you can think of them as a collection
of Threads that are all joined together and available to use.

RxJava comes with a number of predefined schedulers, which cover 99% of use cases.
Hopefully, this means you will never have to go about creating your own scheduler.

In fact, most of the examples in the first half of this book are quite simple and
generally deal with observing data and updating the UI, so you won’t look into
schedulers at all until you’ve covered the basics.

That being said, schedulers are very powerful.

For example, you can specify that you’d like to observe for next events on the IO
scheduler, which makes your Rx code run on a background thread pool — you may
want to use this scheduler if you're downloading files from the network or saving
something to a database.

TrampolineScheduler will run your code concurrently. The ComputationScheduler
will allow you to schedule your subscriptions on a separate set of Threads that are
reserved for heavy lifting computation tasks.

Thanks to RxJava, you can schedule the different pieces of work of the same
subscription on different schedulers to achieve the best performance. Even if they
sound very interesting and quite handy, don’t bother too much with schedulers for
now. You’ll return to them later in the book.

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 41

App architecture
It’s worth mentioning that RxJava doesn’t alter your app’s architecture in any way; it
mostly deals with events, asynchronous data sequences and a universal
communication contract.

You can create apps with Rx by implementing a normal Model-View-Controller
(MVC) architecture. You can also choose to implement a Model-View-Presenter
(MVP) architecture or Model-View-ViewModel (MVVM) if that’s what you prefer.

In case you’d like to go that way, RxJava is also very useful for implementing your
own unidirectional data-flow architecture.

It’s important to note that you definitely do not have to start a project from scratch
to make it a reactive app; you can iteratively refactor pieces of an exiting project or
simply use RxJava when appending new features to your app.

The MVVM architecture was originally developed by Microsoft specifically for event-
driven software created on platforms which offers data bindings. RxJava and MVVM
definitely do play nicely together, and towards the end of this book you’ll look into
that pattern and how to implement it with RxJava.

The reason MVVM and RxJava go great together is that a ViewModel allows you to
expose Observable<T> properties, which you can bind directly to UI widgets in your
Activity, or translate them into LiveData objects from Android Jetpack and then
subscribe to those instead. This makes binding model data to the UI very simple to
represent, and to code. You'll see how to integrate the use of RxJava with LiveData
later in the book.

RxAndroid and RxBinding
RxJava is the implementation of the common Rx API. Therefore, it doesn't know
anything about any Android-specific classes.

There are two companion libraries that can be used to fill in a few of the gaps
between Android and RxJava.

The first is a tiny library called RxAndroid. RxAndroid has one specific purpose: to
provide a bridge between Android's Looper class and RxJava's schedulers. Chances
are, you'll use this library simply to receive the results of an Observable on the UI
thread so that you can update your views.

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 42

The second library is a broader library called RxBinding. RxBinding provides a large
number of utility methods to turn callback-styled view listeners into observables.
You actually already saw an example of this library being used, the
checkedChanges() method used earlier on a Switch:

switch.checkedChanges()
 .subscribeBy(
 onNext = { boolean ->
 println("Switch is on: $boolean")
 }
)

checkedChanges() is an extension method provided by the RxBinding library to turn
a normal CompoundButton like Switch into a stream of on or off states.

RxBinding provides similar bindings for many of the Android view classes, such as
listening for clicks on a Button and changes to the text in an EditText.

Installing RxJava
RxJava is available for free at https://github.com/ReactiveX/RxJava.

RxJava is distributed under the Apache-2.0 license, which, in short, allows you to
include the library in free or commercial software, on an as-is basis. As with all other
Apache-2.0 licensed software, the copyright notice should be included in all apps you
distribute.

Including RxJava in a Gradle-based project, such as an Android app, takes two lines
— add the following to the dependencies block in your module's build.gradle file:

implementation "io.reactivex.rxjava3:rxjava:3.0.2"
implementation "io.reactivex.rxjava3:rxkotlin:3.0.0"

The first implementation line is for RxJava. The second is for including the RxKotlin
extensions. You can omit the RxJava import if you include RxKotlin, but since the
RxKotlin library may not include the latest RxJava library, it's good practice to
include both. You'll generally want to include the latest versions of both libraries.

Note: You may have noticed that the dependency for RxJava actually says
rxjava3 in it. There's three major versions of RxJava: RxJava1, RxJava2, and
RxJava3. RxJava2 added a lot of useful new tricks and types to the library,
while RxJava3 added Java8 support. This book will be using RxJava3. You can

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 43

find some of the differences between the versions in the What's different in
2.0 article: https://github.com/ReactiveX/RxJava/wiki/What's-different-in-2.0,
and the What's different in 3.0 article: https://github.com/ReactiveX/RxJava/
wiki/What's-different-in-3.0)

Community
The RxJava project is alive and buzzing with activity, not only because Rx is inspiring
programmers to create cool software with it, but also due to the positive nature of
the community that formed around this project.

The RxJava community is very friendly, open minded, and enthusiastic about
discussing patterns, common techniques, or just helping each other.

You can find channels dedicated to talking about RxJava in both the Android United
Slack and the official Kotlin Slack.

The first can be found, here: http://android-united.community/. If you request an
invite, it should be approved quickly.

The official Kotlin Slack can be found here: https://kotlinlang.slack.com/.

Search for rx in both Slacks and you should find what you're looking for!

Both Slacks are friendly and inviting. The members are always available to
troubleshoot some particularly tricky Rx code, or to discuss the latest and greatest in
the world of RxJava and RxKotlin.

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 44

Key points
• RxJava is a library that provides an Rx framework for Java-based projects such as

Android apps.

• RxJava can be used even when using the Kotlin language for app development.

• The RxKotlin library adds some Kotlin related utilities and extensions on top of
RxJava.

• RxJava and all Rx frameworks provide for a way to program using asynchronous,
event-based code.

• RxJava helps you build reactive systems in a declarative style.

• The main elements you'll use in RxJava are observables, operators, and
schedulers.

• The RxAndroid and RxBinding libraries assist you in using RxJava on Android.

Where to go from here?
This chapter introduced you to many of the problems that RxJava addresses. You
learned about the complexities of asynchronous programming, sharing mutable
state, causing side effects and more.

You haven’t written any RxJava yet, but you now understand why RxJava is a good
idea and you’re aware of the types of problems it solves. This should give you a good
start as you work through the rest of the book.

And there is plenty to work through! You’ll start by creating very simple observables
and work your way up to complete real-world Android apps using the MVVM
architecture.

Move right on to Chapter 2, “Observables”!

Reactive Programming with Kotlin Chapter 1: Hello, RxJava!

raywenderlich.com 45

2Chapter 2: Observables

By Alex Sullivan & Scott Gardner

Now that you’re all setup with RxJava, it’s time to jump in and start building some
observables!

In this chapter, you’re going to go over a few different examples of creating and
subscribing to observables. Things are going to be pretty theoretical for now, but rest
assured that the skills you pick up in this chapter will come in very handy as you
start working through real-world projects.

Getting started
You’ll work through these theoretical examples of observables using a normal IntelliJ
IDEA project. You’ll move on to Android Studio projects once you switch to working
on real-world Android applications.

Use the File ▸ Open command in IntelliJ IDEA to open the root folder of the starter
project. Accept the defaults in any pop-ups that occur, and the project will then be
opened. You’ll primarily be working in the main.kt file in the src/main/kotlin folder
of the project. For now, there’s just an empty main() function. You’ll fill it out as you
progress through the chapter.

raywenderlich.com 46

Before you start diving into some RxJava code, take a look at the SupportCode.kt
file. It contains the following helper function exampleOf(description: String,
action: () -> Unit):

fun exampleOf(description: String, action: () -> Unit) {
 println("\n--- Example of: $description ---")
 action()
}

You’ll use this function to encapsulate different examples as you work your way
through this chapter. You’ll see how to use this function shortly.

But, before you get too deep into that, now would probably be a good time to answer
the question: What is an observable?

Observables are the heart of Rx. You’re going to spend some time discussing what
observables are, how to create them and how to use them.

What is an observable?
You’ll see “observable,” “observable sequence,” and “stream” used interchangeably in
Rx. And, really, they’re all the same thing. In RxJava, everything is a sequence...

...or something that works with a sequence. And an Observable is just a sequence
with special powers. One of them, in fact the most important one, is that it is
asynchronous. Observables produce events, the process of which the library refers to
as emitting, over a period of time. Events can contain values, such as numbers or
instances of a custom type, or they can be recognized user gestures, such as taps.

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 47

One of the best ways to conceptualize this is by using marble diagrams, which are
values plotted on a timeline.

The left-to-right arrow represents time, and the numbered circles represent
elements of a sequence. The observable will emit element 1, some time will pass, and
then it will emit 2 and 3. How much time, you ask? It could be at any point
throughout the life of the observable — which brings you to the lifecycle of an
observable.

Lifecycle of an observable
In the previous marble diagram, the observable emitted three elements. When an
observable emits an element, it does so in what’s known as a next event.

Here’s another marble diagram, this time including a vertical bar that represents the
end of the road for this observable.

This observable emits three tap events, and then it ends. This is called a complete
event, as the sequence has now terminated. For example, perhaps the taps were on a
view that had been dismissed. The important thing is that the observable has
terminated, and it can no longer emit anything. This is normal termination.

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 48

However, sometimes things can go wrong.

An error has occurred in this marble diagram; it’s represented by the red X. The
observable emitted an error event containing the error. This is no different than
when an observable terminates normally with a complete event. If an observable
emits an error event, it is also terminated and can no longer emit anything else.

Here’s a quick recap:

• An observable emits next events that contain elements. It can continue to do this
until it either:

• ...emits a complete event, which terminates it.

• ...emits an error event, which terminates it.

• Once an observable is terminated, it can no longer emit events.

Now that you understand what an observable is and what it does, you’ll create some
observables to see them in action.

Creating observables
Switch back from the current file to main.kt and add the code below to the main()
function. You'll also need to include the import
io.reactivex.rxjava3.core.Observable:

exampleOf("just") {
 val observable: Observable<Int> = Observable.just(1)
}

In the code above, you used the just static method to create an observable with just
one item: the Integer 1.

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 49

In Rx, methods that operate on observables are referred to as operators — so you
just utilized the just operator.

just is aptly named, since all it does is create an observable sequence containing just
the provided elements. just can take more than one item as well — try updating the
previous line to take in a few more items:

val observable = Observable.just(1,2,3)

This time, you didn’t explicitly specify the type. You might think that because you
gave it several integers, the type is Observable<List<Int>>. However, if you hover
over the Observable.just(1,2,3) expression and click View ▸ Expression Type
you’ll see that the type is actually Observable<Int>.

just has ten overloaded methods that take a variable number of arguments, each of
which are eventually emitted by the observable. If you want to create an observable
of type Observable<List<Int>>, then you can pass a List<Int> into the just
operator. Replace the observable you previously defined with the following:

val observable = Observable.just(listOf(1))

Now, hover over the Observable.just(listOf(1)) expression and click View ▸
Expression Type again. You’ll see that the type is now Observable<List<Int>>.
That means that this new observable will emit one item — and that single item will
be a list of Int values. It can be a little tough to wrap your mind around an
observable that emits lists, but with time it will become second nature.

Another operator you can use to create observables is fromIterable. Add this code
to the bottom of the main() function:

exampleOf("fromIterable") {
 val observable: Observable<Int> =
 Observable.fromIterable(listOf(1, 2, 3))
}

The fromIterable operator creates an observable of individual objects from a
regular list of elements. That is, it takes all of the items in the provided list and emits
those elements as if you had instead written Observable.just(1, 2, 3).

Hover over the Observable.fromIterable(listOf(1, 2, 3)) expression and click
View ▸ Expression Type again. You’ll see that the type of this observable is
Observable<Int> rather than Observable<List<Int>>.

fromIterable can be handy if you have a list of objects you want to convert into an
observable sequence.

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 50

The IntelliJ IDEA console is probably looking pretty bare at the moment if you've run
this code. That’s because you haven’t printed anything except the example header.
Time to change that by subscribing to observables.

Subscribing to observables
As an Android developer, you may be familiar with LocalBroadcastManager; it
broadcasts notifications to observers, which are different than RxJava Observables.
Here’s an example of of a broadcast receiver that listens for a custom-event Intent:

LocalBroadcastManager.getInstance(this)
 .registerReceiver(object : BroadcastReceiver() {
 override fun onReceive(context: Context?, intent: Intent?) {
 println("We got an intent!")
 }
}, IntentFilter("custom-event"))

Subscribing to an RxJava observable is similar; you call observing an observable
subscribing to it. So instead of registerReceiver(), you use subscribe(). Unlike
LocalBroadcastManager, where developers typically use only the getInstance()
singleton instance, each observable in Rx is different.

More importantly, an observable won’t send events until it has a subscriber.
Remember that an observable is really a sequence definition; subscribing to an
observable is more like calling next() on an Iterator in the Kotlin Standard
Library:

val sequence = 0 until 3
val iterator = sequence.iterator()
while (iterator.hasNext()) {
 println(iterator.next())
}

/* Prints:
0
1
2
*/

Subscribing to observables is more streamlined than this, though. You can also add
handlers for each event type an observable can emit. Recall that an observable emits
next, error, and complete events. A next event passes the emitted element to the
handler, and an error event contains a throwable instance.

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 51

To see this in action, add this new example to the IntelliJ project (insert the code
somewhere after the closing curly bracket of the previous example):

exampleOf("subscribe") {
 val observable = Observable.just(1, 2, 3)
}

This is similar to the previous example, except, this time, you’re simply using the
just operator. Now add this code at the bottom of this example’s lambda, to
subscribe to the observable:

observable.subscribe { println(it) }

Cmd-click on the subscribe operator, and you’ll see that it takes a Consumer of
type Int as a parameter. Consumer is a simple interface that has one method,
accept(), which takes a value and returns nothing. You’ll also see that subscribe
returns a Disposable. You’ll cover disposables shortly.

Run your main() function. The result of this subscription is that each event emitted
by the observable prints out:

--- Example of: subscribe ---
1
2
3

Note: The console should automatically appear whenever you run the project,
but you can manually show it by clicking the Run tab in the bottom left of the
IntelliJ IDEA window after you run the main() function. You can also select
View ▸ Tool Windows ▸ Run. This is where the println statements display
their output.

You’ve seen how to create observables of one element and of many elements. But
what about an observable of zero elements? The empty operator creates an empty
observable sequence with zero elements; it will only emit a complete event.

Add this new example to the project:

exampleOf("empty") {
 val observable = Observable.empty<Unit>()
}

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 52

An observable must be defined as a specific type if it can’t be inferred. So, since
empty has nothing from which to infer the type, the type must be defined explicitly.
In this case, Unit is as good as anything else. Add this code to the example to
subscribe to it, importing io.reactivex.rxjava3.kotlin.subscribeBy to resolve
the compile errors:

observable.subscribeBy(
 // 1
 onNext = { println(it) },
 // 2
 onComplete = { println("Completed") }
)

You’re using a new subscribeBy method here instead of the subscribe method you
used previously. subscribeBy is a handy extension method defined in the RxKotlin
library, which we’ll touch on later in the book. Unlike the subscribe method you
used previously, subscribeBy lets you explicitly state what event you want to handle
— onNext, onComplete, or onError. If you were to only supply the onNext field of
subscribeBy, you’d be recreating the subscribe functionality you used above.

Taking each numbered comment in turn:

1. Explicitly handle the next event by printing the carried value, just like before.

2. A complete event doesn’t carry any value, so just print "Completed" instead.

Run this new example. In the console, you’ll see that empty only emits the
completed event which makes the code print "Completed":

--- Example of: empty ---
Completed

But what use is an empty observable? Well, they’re handy when you want to return an
observable that immediately terminates or intentionally has zero values. As opposed
to the empty operator, the never operator creates an observable that doesn’t emit
anything and never terminates. It can be used to represent an infinite duration. Add
this example to the project:

exampleOf("never") {
 val observable = Observable.never<Any>()

 observable.subscribeBy(
 onNext = { println(it) },
 onComplete = { println("Completed") }
)
}

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 53

Nothing is printed, except for the example header. Not even "Completed". How do you
know if this is even working? Hang on to that inquisitive spirit until the Challenges
section of this chapter.

So far, you’ve been working mostly with observables of explicit variables, but it’s also
possible to generate an observable from a range of values.

Add this example to the project:

exampleOf("range") {
 // 1
 val observable: Observable<Int> = Observable.range(1, 10)

 observable.subscribe {
 // 2
 val n = it.toDouble()
 val fibonacci = ((Math.pow(1.61803, n) -
 Math.pow(0.61803, n)) /2.23606).roundToInt()
 println(fibonacci)
 }
}

Taking it section by section:

1. Create an observable using the range operator, which takes a start integer value
and a count of sequential integers to generate.

2. Calculate and print the nth Fibonacci number for each emitted element.

Note: The Fibonacci sequence is generated by adding each of the previous two
numbers in the sequence, starting with 0 and 1: 0, 1, 1, 2, 3, 5, 8, ...

There’s actually a better place than in the subscribe method, to put code that
transforms the emitted element. You’ll learn about that in Chapter 7, “Transforming
Operators.”

Except for the never() example, up to this point, you’ve been working with
observables that automatically emit a completed event and naturally terminate. This
permitted you to focus on the mechanics of creating and subscribing to observables,
but that swept an important aspect of subscribing to observables under the rug.

It’s time to do some housekeeping and deal with that aspect before moving on.

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 54

Disposing and terminating
Remember that an observable doesn’t do anything until it receives a subscription.
It’s the subscription that triggers an observable to begin emitting events, up until it
emits an error or completed event and is terminated. You can manually cause an
observable to terminate by canceling a subscription to it.

Add this new example to the project:

exampleOf("dispose") {
 // 1
 val mostPopular: Observable<String> =
 Observable.just("A", "B", "C")
 // 2
 val subscription = mostPopular.subscribe {
 // 3
 println(it)
 }
}

Quite simply:

1. Create an observable of strings.

2. Subscribe to the observable, this time saving the returned Disposable as a local
constant called subscription.

3. Print each emitted event in the handler.

To explicitly cancel a subscription, call dispose() on it. After you cancel the
subscription, or dispose of it, the observable in the current example will stop
emitting events.

Add this code to the bottom of the example:

subscription.dispose()

Managing each subscription individually would be tedious, so RxJava includes a
CompositeDisposable type. A CompositeDisposable holds disposables — typically
added using the add() method — and will call dispose() on all of them when you
call dispose() on the CompositeDisposable itself. Add this new example to the
project. You'll need to import
io.reactivex.rxjava3.disposables.CompositeDisposable:

exampleOf("CompositeDisposable") {
 // 1

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 55

 val subscriptions = CompositeDisposable()
 // 2
 val disposable = Observable.just("A", "B", "C")
 .subscribe {
 // 3
 println(it)
 }
 // 4
 subscriptions.add(disposable)
 // 5
 subscriptions.dispose()
}

Here’s how this disposable code works:

1. Create a CompositeDisposable.

2. Create an observable and disposable.

3. Subscribe to the observable and print out the emitted item.

4. Add the Disposable return value from subscribe to the subscriptions
CompositeDisposable.

5. Dispose of the disposables.

This is the pattern you’ll use most frequently: creating and subscribing to an
observable and immediately adding the subscription to a CompositeDisposable.

Why bother with disposables at all? If you forget to call dispose() on a Disposable
when you’re done with the subscription, or in some other way cause the observable
to terminate at some point, you will probably leak memory.

If you forget to utilize the Disposable returned by calling subscribe on an
Observable, Android Studio will make it very clear that something is not right in
an Android project!

Imagine leaking an huge view hierarchy just because you forgot to unsubscribe from
a long running observable that you don't even need anymore!

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 56

The create operator
In the previous examples, you’ve created observables with specific next event
elements. Another way to specify all events that an observable will emit to
subscribers is by using the create operator.

Add this new example to the project:

exampleOf("create") {

 val disposables = CompositeDisposable()

 Observable.create<String> { emitter ->

 }
}

The create operator takes a single parameter named source. Its job is to provide the
implementation of calling subscribe on the observable. In other words, it defines all
the events that will be emitted to subscribers. Command-click on create to see it’s
definition:

The source parameter is an ObservableOnSubscribe<T>. ObservableOnSubscribe
is a SAM (Single Abstract Method) interface that exposes one method — subscribe.
That subscribe method takes in an Emitter<T>, which has a few methods that
you’ll use to build up the actual Observable. Specifically, it has onNext, onComplete,
and onError methods that you can invoke.

Change the implementation of create to the following:

Observable.create<String> { emitter ->
 // 1
 emitter.onNext("1")

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 57

 // 2
 emitter.onComplete()

 // 3
 emitter.onNext("?")
}

Here’s the play by play:

1. Emit the string 1 via the onNext method.

2. Emit a completed event.

3. Emit another string ? via the onNext method again.

Do you think the second onNext element (?) could ever be emitted to subscribers?
Why or why not?

To see if you guessed correctly, subscribe to the observable by adding the following
code on the next line after the create implementation:

.subscribeBy(
 onNext = { println(it) },
 onComplete = { println("Completed") },
 onError = { println(it) }
)

You’ve subscribed to the observable, now run the code. The result is that the first
next event element and "Completed" print out. The second next event doesn’t print
because the observable emitted a completed event and terminated before it.

 --- Example of: create ---
1
Completed

Add the following line of code between the emitter.onNext and
emitter.onComplete calls:

 emitter.onError(RuntimeException("Error"))

Run the code after you've made those changes. The observable emits the error and
then is terminated.

--- Example of: create ---
1
Error

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 58

What would happen if you emitted neither a completed nor an error event?
Comment out the onComplete and onError lines of code to find out. Here’s the
complete implementation:

exampleOf("create") {
 Observable.create<String> { emitter ->
 // 1
 emitter.onNext("1")

// emitter.onError(RuntimeException("Error"))
 // 2
// emitter.onComplete()

 // 3
 emitter.onNext("?")
 }.subscribeBy(
 onNext = { println(it) },
 onComplete = { println("Completed") },
 onError = { println("Error") }
)
}

Run those changes. Congratulations, you’ve just leaked memory! :] The observable
will never finish, and since you never disposed of the Disposable returned by
Observable.create the sequence will never be canceled.

 --- Example of: create ---
1
?

Feel free to uncomment the line adding the complete event or dispose of the
returned Disposable if you can’t stand leaving the code in a leaky state.

Creating observable factories
Rather than creating an observable that waits around for subscribers, it’s possible to
create observable factories that vend a new observable to each subscriber.

Add this new example to the project:

exampleOf("defer") {

 val disposables = CompositeDisposable()
 // 1
 var flip = false
 // 2

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 59

 val factory: Observable<Int> = Observable.defer {
 // 3
 flip = !flip
 // 4
 if (flip) {
 Observable.just(1, 2, 3)
 } else {
 Observable.just(4, 5, 6)
 }
 }
}

Here’s the explanation:

1. Create a Boolean flag to flip which observable to return.

2. Create an observable of Int factory using the defer operator.

3. Invert flip, which will be used each time factory is subscribed to.

4. Return different observables based on whether flip is true or false.

Externally, an observable factory is indistinguishable from a regular observable. Add
this code to the bottom of the example to subscribe to factory four times:

for (i in 0..3) {
 disposables.add(
 factory.subscribe {
 println(it)
 }
)
}

disposables.dispose()

Run this code. Each time you subscribe to factory, you get the opposite observable.
You get 123, then 456, and the pattern repeats each time a new subscription is
created:

 --- Example of: defer ---
1
2
3
4
5
6
1
2
3
4

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 60

5
6

Using other observable types
In addition to the normal Observable type, there are a few other types of
observables with a narrower set of behaviors than regular observables. Their use is
optional; you can use a regular observable anywhere you might use one of these
specialized observables. Their purpose is to provide a way to more clearly convey
your intent to readers of your code or consumers of your API. The context implied by
using them can help make your code more intuitive.

There are three special types of observables in RxJava: Single, Maybe and
Completable. Without knowing anything more about them yet, can you guess how
each one is specialized?

• Singles will emit either a success(value) or error event. success(value) is
actually a combination of the next and completed events. This is useful for one-
time processes that will either succeed and yield a value or fail, such as
downloading data or loading it from disk.

• A Completable will only emit a completed or error event. It doesn’t emit any
value. You could use a Completable when you only care that an operation
completed successfully or failed, such as a file write.

• And Maybe is a mash-up of a Single and Completable. It can either emit a
success(value), completed, or error. If you need to implement an operation
that could either succeed or fail, and optionally return a value on success, then
Maybe is your ticket.

You’ll have an opportunity to work more with these special observable types in
Chapter 4, "Observables and Subjects in Practice," and beyond. For now, you’ll run
through a basic example of using a Single to load some text from a text file named
Copyright.txt, because who doesn’t love some legalese once in a while? This file is
in the src folder of the project.

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 61

Add this example to main(), importing io.reactivex.rxjava3.core.Single when
you do:

exampleOf("Single") {
 // 1
 val subscriptions = CompositeDisposable()
 // 2
 fun loadText(filename: String): Single<String> {
 // 3
 return Single.create create@{ emitter ->

 }
 }
}

Here’s what you do in this code:

1. Create a composite disposable to use later.

2. Implement a function to load text from a file on disk that returns a Single.

3. Create and return a Single.

Add this code inside the create lambda to complete the implementation:

// 1
val file = File(filename)
// 2
if (!file.exists()) {
 emitter.onError(FileNotFoundException("Can’t find $filename"))

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 62

 return@create
}
// 3
val contents = file.readText(Charsets.UTF_8)
// 4
emitter.onSuccess(contents)

From the top:

1. Create a new File from the filename.

2. If the file doesn’t exist, emit a FileNotFoundException via the onError method
and return from the create method.

3. Get the data from the file.

4. Emit the contents of the file.

Now you can put this function to work. Add this code to the example:

// 1
val observer = loadText("Copyright.txt")
 // 2
 .subscribeBy(
 // 3
 onSuccess = { println(it) },
 onError = { println("Error, $it") }
)

subscriptions.add(observer)

Here, you:

1. Call loadText(), passing the root name of the text file.

2. Subscribe to the Single it returns.

3. Pass onSuccess and onError lambdas to the subscribeBy method, either
printing the contents of the file or printing the error.

Run the example, and you should see the text from the file printed to the console,
the same as the copyright comment at the top of the project:

 --- Example of: Single ---
Copyright (c) 2014-2020 Razeware LLC
...

Try changing the filename to something else, and you should get the file not found
exception printed instead.

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 63

Challenges
Practice makes permanent. By completing challenges in this book, you’ll practice
what you’ve learned in each chapter and pick up a few more tidbits of knowledge
about working with observables. A starter project as well as a finished version are
provided for each challenge. Enjoy!

Challenge: Perform side effects
In the never operator example earlier, nothing printed out. That was before you were
adding your subscriptions to composite disposables, but if you had added it to one,
you could’ve used a handy operator to print a message when the disposable was
disposed.

Operators that begin with doOn, such as the doOnDispose operator, allows you to
insert side effects; that is, you add handlers that take some action but that won’t
affect the observable. For doOnDispose, that is whenever the disposable is disposed
of.

There’s a few other handy doOn methods that you can use. There’s a doOnNext
method, a doOnComplete method, a doOnError method and a doOnSubscribe
method that you can also use to perform some side effect at the right moment.

To complete this challenge, insert the doOnSubscribe operator in the never
example. Feel free to include any of the other handlers if you’d like; they work just
like doOnSubscribe’s handler does.

And while you’re at it, create a composite disposable and add the subscription to it.

Don’t forget you can always peek into the finished challenge project for
“inspiration.”

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 64

Key points
• Everything is a sequence in RxJava, and the primary sequence type is Observable.

• Observables start emitting when they are subscribed to.

• You must dispose of subscriptions when done with them, and you’ll often use a
CompositeDisposable to do so.

• Single, Completable and Maybe are specialized observable types that are handy
in certain situations.

Reactive Programming with Kotlin Chapter 2: Observables

raywenderlich.com 65

3Chapter 3: Subjects

By Alex Sullivan & Scott Gardner

You’ve gotten a handle on what an Observable is, how to create one, how to
subscribe to it, and how to dispose of things when you’re done. Observables are a
fundamental part of RxJava, but a common need when developing apps is to
manually add new values onto an Observable at runtime that will then be emitted to
subscribers. What you want is something that can act as both an Observable and as
an observer. And that something is called a subject.

In this chapter, you’re going to learn about the different types of subjects in RxJava,
see how to work with each one and why you might choose one over another based on
some common use cases.

raywenderlich.com 66

Getting started
Open the starter project for this chapter in IntelliJ IDEA and add the following code
to the Main.kt file:

exampleOf("PublishSubject") {
 val publishSubject = PublishSubject.create<Int>()
}

Here, you create a PublishSubject using a static method create. The class is aptly
named, because, like a newspaper publisher, it will receive information and then turn
around and publish it to subscribers, possibly after modifying that information in
some way first. The subject here is of type Int, so it can only receive and publish
integers. After being instantiated, it’s ready to receive data.

Add the following code to the example:

publishSubject.onNext(0)

This sends a new integer into the subject. The console doesn't print out anything yet
because there are no observers. Create one by adding the following code to the
example:

val subscriptionOne = publishSubject.subscribe { int ->
 println(int)
}

You created a subscription to publishSubject just like in the last chapter, printing
next events. You’re using the default RxJava subscribe method rather than the
fancier subscribeBy since you only care about the next event for now. But, when
you run, still nothing shows up in IntelliJ IDEA’s output console. Isn’t this fun?
You’re going to learn about the different subjects shortly.

What’s happening here is that a PublishSubject only emits to current subscribers.
So if you weren’t subscribed when something was added to it previously, you don’t
get it when you do subscribe. Think of the tree-falling analogy. If a tree falls and no
one’s there to hear it, does that make your illegal logging business a success? :]

To fix things, add this code to the end of the example:

publishSubject.onNext(1)

Reactive Programming with Kotlin Chapter 3: Subjects

raywenderlich.com 67

Notice that, because you defined the publish subject to be of type Int, only integers
may be sent into it.

Now, because publishSubject has a subscriber, it will emit that integer:

--- Example of: PublishSubject ---
1

In a similar fashion to the subscribe parameters, onNext is how you add a new next
event into a subject, passing the element as the parameter:

publishSubject.onNext(2)

Now the 2 is printed as well:

--- Example of: PublishSubject ---
1
2

With that gentle intro, now it’s time to learn all about subjects.

What are subjects?
Subjects act as both an Observable and an observer. You saw earlier how they can
receive events and also be subscribed to. The subject received next events, and each
time it received an event, it turned around and emitted it to its subscriber.

There are four subject types in RxJava:

• PublishSubject: Starts empty and only emits new elements to subscribers.

• BehaviorSubject: Starts with an optional initial value and replays it or the latest
element to new subscribers.

• ReplaySubject: Initialized with a buffer size and will maintain a buffer of
elements up to that size and replay it to new subscribers.

• AsyncSubject: Starts empty and only emits the last item it receives before it’s
completed to subscribers.

Taking on each of these in turn, you’re going to learn a lot more about subjects and
how to work with them next.

Reactive Programming with Kotlin Chapter 3: Subjects

raywenderlich.com 68

Working with publish subjects
Publish subjects come in handy when you simply want subscribers to be notified of
new events from the point at which they subscribed, until they either unsubscribe, or
the subject has terminated with a complete or error event.

In the following marble diagram, the top line is the publish subject and the second
and third lines are subscribers. The upward-pointing arrows indicate subscriptions,
and the downward-pointing arrows represent emitted events.

The first subscriber subscribes after 1, so it doesn’t receive that event. It does get 2
and 3, though. And because the second subscriber doesn’t join in on the fun until
after 2, it only gets 3.

Returning to the project, add this code to the bottom of the same example:

val subscriptionTwo = publishSubject
 .subscribe { int ->
 printWithLabel("2)", int)
 }

printWithLabel is a simple helper function that — you guessed it — prints a label
and a corresponding value. In the example above, "2)" is the label.

As expected, subscriptionTwo doesn’t print anything out yet because it subscribed
after the 1 and 2 were emitted. Now, enter this code:

publishSubject.onNext(3)

The 3 is printed twice, once for subscriptionOne and once for subscriptionTwo.

1
2

Reactive Programming with Kotlin Chapter 3: Subjects

raywenderlich.com 69

3
2) 3

Add this code to terminate subscriptionOne and then add another .next event
onto the subject:

subscriptionOne.dispose()

publishSubject.onNext(4)

The value 4 is only printed for subscription 2), because subscriptionOne was
disposed.

1
2
3
2) 3
2) 4

When a publish subject receives a completed or error event, also known as a
terminal event, it will emit that terminal event to new subscribers and it will no
longer emit next events. However, it will re-emit its terminal event to future
subscribers. Add this code to the example:

// 1
publishSubject.onComplete()

// 2
publishSubject.onNext(5)

// 3
subscriptionTwo.dispose()

// 4
val subscriptionThree = publishSubject.subscribeBy(
 onNext = { printWithLabel("3)", it) },
 onComplete = { printWithLabel("3)", "Complete") }
)

publishSubject.onNext(6)

Here’s what you do with the code above:

1. Send the complete event through the subject via the onComplete method. This
effectively terminates the subject’s observable sequence.

2. Send another element 5 into the subject. This won’t be emitted and printed,
though, because the subject has already terminated.

Reactive Programming with Kotlin Chapter 3: Subjects

raywenderlich.com 70

3. Don’t forget to dispose of subscriptions when you’re done!

4. Create a new subscription to the subject, using the subscribeBy method to listen
for the onComplete event.

Maybe the new subscriber subscriptionThree will kickstart the subject back into
action? Nope, but you do still get the complete event:

...
3) Complete

Actually, every subject type, once terminated, will re-emit its stop event to future
subscribers. So it’s a good idea to include handlers for stop events in your code, not
just to be notified when it terminates, but also in case it is already terminated when
you subscribe to it.

You might use a publish subject when you’re modeling time-sensitive data, such as
in an online bidding app. It wouldn’t make sense to alert the user who joined at
10:01 am that at 9:59 a.m. there was only one minute left in the auction. That is, of
course, unless you like one-star reviews to your bidding app.

Sometimes, you want to let new subscribers know what the latest element value is,
even though that element was emitted before the subscription. For that, you’ve got
some options.

Working with behavior subjects
Behavior subjects work similarly to publish subjects, except they will replay the latest
next event to new subscribers. Check out this marble diagram:

Reactive Programming with Kotlin Chapter 3: Subjects

raywenderlich.com 71

The first line from the top is the subject. The first subscriber on the second line down
subscribes after 1 but before 2, so it gets 1 immediately upon subscription, and then
2 and 3 as they’re emitted by the subject. Similarly, the second subscriber subscribes
after 2 but before 3, so it gets 2 immediately and then 3 when it’s emitted.

Add this new example to your project:

// 1
exampleOf("BehaviorSubject") {
 // 2
 val subscriptions = CompositeDisposable()
 // 3
 val behaviorSubject =
 BehaviorSubject.createDefault("Initial value")
}

Here’s the play-by-play:

1. Start a new BehaviorSubject example.

2. Create a CompositeDisposable, which you’ll use later on.

3. Create a new BehaviorSubject using the static factory method createDefault,
which takes an initial value to be immediately emitted.

Note: BehaviorSubject can also be initialized without an initial value. You
can use the create static factory method to make one without an initial value.

Now, add the following code to the example:

val subscriptionOne = behaviorSubject.subscribeBy(
 onNext = { printWithLabel("1)", it) },
 onError = { printWithLabel("1)", it) }
)

This creates a subscription to the subject, but the subscription was created after the
subject was. No other elements have been added to the subject, so it replays the
initial value to the subscriber.

--- Example of: BehaviorSubject ---
1) Initial value

Reactive Programming with Kotlin Chapter 3: Subjects

raywenderlich.com 72

Now, insert the following code right before the previous subscription code, but after
the definition of the subject:

behaviorSubject.onNext("X")

The X is printed, because now it’s the latest element when the subscription is made:

--- Example of: BehaviorSubject ---
1) X

Add the following code to the end of the example — but, first, look it over and see if
you can determine what will be printed:

// 1
behaviorSubject.onError(RuntimeException("Error!"))
// 2
subscriptions.add(behaviorSubject.subscribeBy(
 onNext = { printWithLabel("2)", it) },
 onError = { printWithLabel("2)", it) }
))

Taking it section-by-section:

1. Add a RuntimeException error event into the subject.

2. Create a new subscription to the subject.

Did you figure out that the error event will be printed twice, once for each
subscription? If so, right on!

1) X
1) java.lang.RuntimeException: Error!
2) java.lang.RuntimeException: Error!

Another benefit of using a BehaviorSubject is it allows you to access whatever its
latest value is imperatively. Add the code below to create another example:

exampleOf("BehaviorSubject State") {

 val subscriptions = CompositeDisposable()
 val behaviorSubject = BehaviorSubject.createDefault(0)

 println(behaviorSubject.value)
}

Reactive Programming with Kotlin Chapter 3: Subjects

raywenderlich.com 73

After running the example, you should see the following:

--- Example of: BehaviorSubject State ---
0

BehaviorSubjects allow you to reference their last emitted value — notice the
behaviorSubject.value call in the last line of the example.

Add the following to the example:

// 1
subscriptions.add(behaviorSubject.subscribeBy {
 printWithLabel("1)", it)
})

// 2
behaviorSubject.onNext(1)
// 3
println(behaviorSubject.value)
// 4
subscriptions.dispose()

Let’s break teh above down section by section:

1. Subscribe to the BehaviorSubject and add its disposable to a
CompositeDisposable so you can dispose of it later.

2. Call onNext sending another value into the subject.

3. Print whatever the current value of the subject is.

4. Dispose the subscriptions.

Using the value in a BehaviorSubject can help you bridge the gap between the Rx
world and the non-Rx world!

Behavior subjects are useful when you want to pre-populate a view with the most
recent data. For example, you could bind controls in a user profile screen to a
behavior subject, so that the latest values can be used to pre-populate the display
while the app fetches fresh data.

But what if you wanted to show more than the latest value? For example, on a search
screen, you may want to show the most recent five search terms used. This is where
replay subjects come in.

Reactive Programming with Kotlin Chapter 3: Subjects

raywenderlich.com 74

Working with replay subjects
Replay subjects will temporarily cache — or buffer — the latest elements they emit,
up to a specified size of your choosing. They will then replay that buffer to new
subscribers.

The following marble diagram depicts a replay subject with a buffer size of 2. The
first subscriber (middle line) is already subscribed to the replay subject (top line) so
it gets elements as they’re emitted. The second subscriber (bottom line) subscribes
after 2, so it gets 1 and 2 replayed to it.

Keep in mind that, when using a replay subject, this buffer is held in memory. You
can definitely shoot yourself in the foot, here, if you set a large buffer size for a
replay subject of some type whose instances each take up a lot of memory — like
images. Another thing to watch out for is creating a replay subject of a list of items.
Each emitted element will be a list, so the buffer size will buffer that many lists. It
would be easy to create memory pressure here if you’re not careful.

Add this new example to your file:

exampleOf("ReplaySubject") {

 val subscriptions = CompositeDisposable()
 // 1
 val replaySubject = ReplaySubject.createWithSize<String>(2)
 // 2
 replaySubject.onNext("1")

 replaySubject.onNext("2")

 replaySubject.onNext("3")
 // 3
 subscriptions.add(replaySubject.subscribeBy(
 onNext = { printWithLabel("1)", it) },

Reactive Programming with Kotlin Chapter 3: Subjects

raywenderlich.com 75

 onError = { printWithLabel("1)", it)}
))

 subscriptions.add(replaySubject.subscribeBy(
 onNext = { printWithLabel("2)", it) },
 onError = { printWithLabel("2)", it)}
))
}

From the top:

1. You create a new replay subject with a buffer size of 2. Replay subjects are
initialized using the static method createWithSize.

2. Add three elements onto the subject.

3. Create two subscriptions to the subject.

The latest two elements are replayed to both subscribers. 1 never gets emitted,
because 2 and 3 were added onto the replay subject with a buffer size of 2 before
anything subscribed to it:

--- Example of: ReplaySubject ---
1) 2
1) 3
2) 2
2) 3

Now, add the following code to the example:

replaySubject.onNext("4")

subscriptions.add(replaySubject.subscribeBy(
 onNext = { printWithLabel("3)", it) },
 onError = { printWithLabel("3)", it)}
))

With this code, you add another element into the subject, and then create a new
subscription to it. The first two subscriptions will receive that element as normal
because they were already subscribed when the new element was added to the
subject, while the new third subscriber will get the last two buffered elements
replayed to it:

...
1) 4
2) 4
3) 3
3) 4

Reactive Programming with Kotlin Chapter 3: Subjects

raywenderlich.com 76

You’re getting pretty good at this stuff by now, so there should be no surprises, here.
What would happen if you threw a wrench into the works here? Add this line of code
right after adding 4 onto the subject, before creating the third subscription:

replaySubject.onError(RuntimeException("Error!"))

This may surprise you. And if so, that’s OK. Life’s full of surprises:

1) 4
2) 4
1) java.lang.RuntimeException: Error!
2) java.lang.RuntimeException: Error!
3) 3
3) 4
3) java.lang.RuntimeException: Error!

What’s going on here? The replay subject is terminated with an error, which it will
re-emit to new subscribers as you’ve already seen subjects do. But the buffer is also
still hanging around, so it gets replayed to new subscribers as well, before the stop
event is re-emitted.

Working with async subjects
The last type of subject in the RxJava arsenal is the AsyncSubject. Async subjects
are a bit stranger and definitely a bit rarer than the other types of subjects you’ve
encountered, but they’re still valuable. Here’s the lowdown.

An AsyncSubject will only ever emit the last value it received before it’s complete.
So if you pass several values into an AsyncSubject and then call onComplete on it,
subscribers will only see the last value you passed into the subject and then a
complete event. If the subject receives an error event, subscribers will see nothing!

The following marble diagram demonstrates the above. The first line is the
AsyncSubject — it gets a 1 value, a 2 value, and a 3 value, and then completes
(denoted by the vertical bar after the 3 value).

The other two lines are subscribers, and they only receive the last value, the 3 value,
before also getting a complete event.

Reactive Programming with Kotlin Chapter 3: Subjects

raywenderlich.com 77

Add the following example in your project:

exampleOf("AsyncSubject") {
 val subscriptions = CompositeDisposable()
 // 1
 val asyncSubject = AsyncSubject.create<Int>()
 // 2
 subscriptions.add(asyncSubject.subscribeBy(
 onNext = { printWithLabel("1)", it) },
 onComplete = { printWithLabel("1)", "Complete") }
))
 // 3
 asyncSubject.onNext(0)
 asyncSubject.onNext(1)
 asyncSubject.onNext(2)
 // 4
 asyncSubject.onComplete()

 subscriptions.dispose()
}

Taking things step by step, again:

1. Build an AsyncSubject that will handle Ints.

2. Subscribe to the subject, printing out both next events and complete events.

3. Send three values into the subject: 0, 1, and 2.

4. complete the subject.

What kind of output would you expect to get? Run the project and you should see the
following:

--- Example of: AsyncSubject ---
1) 2
1) Complete

Reactive Programming with Kotlin Chapter 3: Subjects

raywenderlich.com 78

Since 2 was the last element sent into the subject before it completed, the subscriber
only sees 2 before it receives the complete event.

AsyncSubjects definitely take a back seat to some of the other subjects you’ve seen
in this chapter, but they can be super useful in the right scenario! For example,
imagine you have a game summary screen that you want to update with the final
values of some game. An AsyncSubject would be perfect to listen for score changes,
since the only score you care about is the last one before the game finishes and the
subject completes!

Working with the RxRelay library
Subjects are fantastic — but, sometimes, they don’t quite get it right. You’ll often
want to represent an infinite stream that will never terminate. That means it will
never send a complete event or an error event. For example, say you have a subject
that pipes through the current user of your app, so you can update a profile page
when a new user logs in. As long as your app is alive, that stream should be active!

If you use a normal subject, someone could inadvertently call onComplete or
onError, thus terminating the stream. That means that when Dave logs out of your
app and Susy logs in, she’ll see all of Dave’s profile information. Sounds like trouble
waiting to happen!

Enter the RxRelay library. RxRelay mimics all of the subjects you’ve come to know
and love, but without the option of calling onComplete or onError. Add the
following to your project and don't worry about the compiler error:

exampleOf("RxRelay") {
 val subscriptions = CompositeDisposable()

 val publishRelay = PublishRelay.create<Int>()

 subscriptions.add(publishRelay.subscribeBy(
 onNext = { printWithLabel("1)", it) }
))

 publishRelay.accept(1)
 publishRelay.accept(2)
 publishRelay.accept(3)
}

Reactive Programming with Kotlin Chapter 3: Subjects

raywenderlich.com 79

In the above example, you’re using a PublishRelay instead of a PublishSubject.
Most things about the relay are the same — just like in a PublishSubject, a
subscriber will only receive elements after they subscribe. But by using a
PublishRelay you guarantee no one else in the codebase will call onComplete or
onError in the stream.

Including the RxRelay library is easy — just add the following to your build.gradle
file, then run Gradle sync:

implementation 'com.jakewharton.rxrelay3:rxrelay:3.0.0'

You can now run the example and see the result:

--- Example of: RxRelay ---
1) 1
1) 2
1) 3

RxRelay comes with a replacement relay for PublishSubject, BehaviorSubject,
and ReplaySubject. There’s no relay version of AsyncSubject since it depends on
the subject receiving a complete event — so it wouldn’t make sense in Relay land!

Challenge

Challenge: Create a blackjack card dealer using
a publish subject
Put your new super subject skills to the test by completing this challenge. There are
start and end versions for each challenge in the chapter downloads.

In case you’re not familiar with it, blackjack is a card game where the goal is to get 21
or as close as possible without going over, which is called getting "busted."

The starter project for this challenge implements a publish subject to model a hand
of cards. To do so, the type of the subject is a list of pairs of String and Int to store
the suit and the card value.

val dealtHand = PublishSubject.create<List<Pair<String, Int>>>()

Reactive Programming with Kotlin Chapter 3: Subjects

raywenderlich.com 80

Aces are high, so an Ace of Spades has a value of 11 compared to a Queen of Hearts
which has a value of 10.

In the SupportCode.kt file for this challenge, there is a cards list of pairs of String
and Int to represent a standard deck of 52 cards.

val cards = mutableListOf(
 Pair("!", 11), Pair(""", 2),Pair("#", 3), ...)

There’s also a couple of functions here. cardString() will take a list of card pairs
and extract just the strings representing the cards.

fun cardString(hand: List<Pair<String, Int>>): String {
 return hand.joinToString("") { it.first }
}

And points() tallies up the points for the passed in list of card pairs.

Remember that you can’t go over 21 points or else you’re busted, so there’s also an
error sealed class to model that.

sealed class HandError: Throwable() {
 class Busted: HandError()
}

And there’s an extension function on IntRange to get a random Int in a range:

fun IntRange.random() =
 Random().nextInt(endInclusive - start) + start

OK, back in the main function, you have two tasks.

The first is to add code below the comment "Add code to update dealtHand here" that
will evaluate the result returned from calling points(), passing the hand list. If the
result is greater than 21, add the error HandError.Busted() onto dealtHand.
Otherwise, add the hand onto dealtHand as a next event.

Your second task is to subscribe to the dealtHand right below the comment
indicating to do that. Handle both the next and error events. For next events, you
can just print out the result from calling the cardString() and points() functions
from the support code. And for an error event, just print out the error.

Alright that’s it. Good luck on this challenge!

Reactive Programming with Kotlin Chapter 3: Subjects

raywenderlich.com 81

Key points
• Subjects are Observables that are also observers.

• You can send events over subjects by using onNext, onError and onComplete.

• PublishSubject is used when you only want to receive events that occur after
you’ve subscribed.

• BehaviorSubject will relay the latest event that has occurred when you subscribe,
including an optional initial value.

• ReplaySubject will buffer a configurable number of events that get replayed to
new subscribers. You must watch out for buffering too much data in a replay
subject.

• AsyncSubject only sends subscribers the most recent next event upon a complete
event occurring.

• The RxRelay library can be used with relays in place of subjects, to prevent
accidental complete and error events to be sent.

Where to go from here?
You’ve now learned about Observables and observers, and seen how to combine them
into a single type called a subject.

Now it’s time to put all you’ve learned into practice in an Android app. You’ll start to
do so in the next chapter!

Reactive Programming with Kotlin Chapter 3: Subjects

raywenderlich.com 82

4Chapter 4: Observables &
Subjects in Practice
By Alex Sullivan & Marin Todorov

By this point in the book, you understand how observables and different types of
subjects work, and you’ve learned how to create and experiment with them in an
IntelliJ project.

It could be a bit challenging, however, to see the practical use of observables in
everyday development situations, such as binding your UI to a data model, showing a
new activity or fragment and getting output out of it.

It’s OK to be a little unsure how to apply these newly acquired skills to the real world.
In this book, you’ll work through theoretical chapters such as Chapter 2,
“Observables,” and Chapter 3, “Subjects,” as well as practical step-by-step chapters —
just like this one!

In the “...in Practice” chapters, you’ll work on a complete app. The starter Android
Studio project will include all the non-Rx and other setup code. Your task will be to
add the other features using your newly-acquired reactive skills.

raywenderlich.com 83

That doesn’t mean to say you won’t learn few new things along the way — au
contraire!

In this chapter, you’ll use RxJava and your new observable superpowers to create an
app that lets users create nice photo collages — the reactive way.

Getting started
Open the starter project for this chapter, Combinestagram, in Android Studio 4.0 or
newer. It takes a couple of tries to roll your tongue just right to say the name, doesn’t
it? It’s probably not the most marketable name, but it will do.

Add the dependencies for RxJava, RxKotlin and RxAndroid in the app/
build.gradle file:

implementation "io.reactivex.rxjava3:rxkotlin:3.0.0"
implementation "io.reactivex.rxjava3:rxandroid:3.0.0"
implementation "io.reactivex.rxjava3:rxjava:3.0.2"

Since RxJava 3.0 uses Java 8 features, you'll also need to let gradle know that you
intend to use those features. Add the following in the android block of the same file:

compileOptions {
 sourceCompatibility JavaVersion.VERSION_1_8
 targetCompatibility JavaVersion.VERSION_1_8
}

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 84

Sync the gradle file, build and run the app, and you’ll see the beginnings of the
project you’ll bring to life:

In this screen, the user can see their collage as the app builds it. They can add new
photos to the collage, clear out the contents of the collage or save it to their phone.

Feel free to take a peek into the utility X.kt file where a list of Bitmaps is converted
into a collage.

You’ll also notice a few other classes in the project. There’s a
PhotosBottomDialogFragment to select photos for the collage and a
SharedViewModel, which is a ViewModel that that the MainActivity and
PhotosBottomDialogFragment will share.

In this chapter, you are going to focus on putting your new skills to practice. Time to
get started!

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 85

Using a BehaviorSubject in a ViewModel
Start by adding a BehaviorSubject, a CompositeDisposable, and a
MutableLiveData to the SharedViewModel class:

// 1
private val disposables = CompositeDisposable()
// 2
private val imagesSubject: BehaviorSubject<MutableList<Photo>>
 = BehaviorSubject.createDefault(mutableListOf())
// 3
private val selectedPhotos = MutableLiveData<List<Photo>>()

1. The CompositeDisposable for the subscriptions.

2. The imagesSubject will emit MutableList<Photo> values.

3. Finally, you’ll use the selectedPhotos variable, that is a LiveData object, to
stream a list of photos to the MainActivity.

Note: It may seem a little strange to use LiveData and RxJava in the same
project, since they’re both streaming libraries that implement the Observer
pattern. However, they actually both have unique strengths and weaknesses
that you can utilize to build better apps. You’ll see more details about this in
Chapter 22, “Building a Complete RxJava App”.

Take a look at the Photo data class. It contains a Drawable resource ID. You’ll use
that later on to actually build the collage.

Next up, add the following code to the SharedViewModel class:

init {
 imagesSubject.subscribe { photos ->
 selectedPhotos.value = photos
 }.addTo(disposables)
}

fun getSelectedPhotos(): LiveData<List<Photo>> {
 return selectedPhotos
}

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 86

You’re subscribing to the imagesSubject stream and updating the selectedPhotos
value with the items emitted by the subject. Since you’re a responsible RxJava user,
you’re adding the Disposable returned by the subscribe() method to the
CompositeDisposable you created earlier.

Speaking of being responsible RxJava users, add the following code below the init
block:

override fun onCleared() {
 disposables.dispose()
 super.onCleared()
}

ViewModels onCleared() method is a great place to dispose of any disposables you
may have lying around. Since a ViewModel is only cleared when the Activity that
created it finishes, you won’t prematurely finish your Observables and Subjects,
and you won’t leak any memory.

Adding photos
It’s time to start adding some photos to the collage. Add the following code to the
SharedViewModel:

fun addPhoto(photo: Photo) {
 imagesSubject.value?.add(photo)
 imagesSubject.onNext(imagesSubject.value!!)
}

addPhoto() takes a Photo object and adds it to the current list of photos in the
collage.

Since you’re using a BehaviorSubject, you can easily extract the current list of
photos from it and add this new photo to that list. You then emit that list again to
notify any observers of the newly updated list of photos.

Navigate to MainActivity and replace the println() call in actionAdd() with the
following:

viewModel.addPhoto(PhotoStore.photos[0])

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 87

For now, you’re always using the first photo from the static list of photos that comes
shipped with the app. Don’t worry, you’ll update that later on.

It’s time to hook everything up and see a collage! Add the following to the bottom of
the onCreate() method of MainActivity, importing
androidx.lifecycle.Observer when prompted:

// 1
viewModel.getSelectedPhotos().observe(this, Observer { photos ->
 photos?.let {
 // 2
 if (photos.isNotEmpty()) {
 val bitmaps = photos.map {
 BitmapFactory.decodeResource(resources, it.drawable)
 }
 // 3
 val newBitmap = combineImages(bitmaps)
 // 4
 collageImage.setImageDrawable(
 BitmapDrawable(resources, newBitmap))
 }
 }
})

The code may seem complicated, but it’s actually very simple:

1. You’re observing the selectedPhotos live data, which emits lists of Photo
objects.

2. Then, if there are any photos, you’re mapping each Photo object to a Bitmap
using the BitmapFactory.decodeResource() method.

3. Next up, you’re combining that list of bitmaps using the combineImages()
method.

4. Finally, you’re setting the collageImage image view with the combined bitmap.

Run the app. When you tap the Add button you should see images in the central
collage image view. Tab the button again to add more images.

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 88

Looking good! Now try to tap the Clear button.

You haven’t hooked up the Clear action yet, so nothing should happen. If something
does happen, then that’s magical, and you’ve discovered a new way of building apps
without writing any code!

Add the following function to the SharedViewModel class:

fun clearPhotos() {
 imagesSubject.value?.clear()
 imagesSubject.onNext(imagesSubject.value!!)
}

clearPhotos() works very similarly to addPhotos(), except instead of adding a new
photo into the existing list you’re clearing out that list and emitting the now empty
list.

Now, navigate back to the MainActivity class and replace the println() statement
in the actionClear() method with the following:

viewModel.clearPhotos()

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 89

Last but not least, add this else statement to the if statement in the selected
photos observing code in the onCreate():

if (photos.isNotEmpty()) {
 // ...
} else {
 collageImage.setImageResource(android.R.color.transparent)
}

Now if the photos list has no photo objects in it, you’re clearing out the image in the
collageImage image view.

Run the app again. This time you should be able to clear photos.

Recapping reactive programming
Reactive programming can be hard to follow at times, so here’s a recap of what’s
happening in the app so far:

1. Whenever the user taps the Add button, the MainActivity class is calling the
addPhoto() method in SharedViewModel with a single static photo.

2. The SharedViewModel class then updates a list of photos that is stored in
imagesSubject, and it calls onNext() with the updated list of photos.

3. Since the view model is subscribed to imagesSubject, it receives the onNext()
notification and forwards the new list of photos through to the selectedPhotos
live data.

4. Since the MainActivity class is subscribing to the selectedPhotos live data, it’s
notified of the new list of photos. It then creates the combined bitmap of photos
and sets it on the collageImage image view. If the list of photos is empty, it
instead clears that image view.

At this stage of the app, this may seem like overkill. However, as you continue to
improve the Combinestagram app, you’ll see that this reactive stream-based
approach has many advantages!

Driving a complex UI
As you play with the current app, you’ll notice the UI could be a bit smarter to
improve the user experience. For example:

• You could disable the Clear button if there aren’t any photos selected just yet or in
the event the user has just cleared the selection.

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 90

• Similarly, there’s no need for the Save button to be enabled if there aren’t any
photos selected.

• You could also disable the save functionality for an odd number of photos, as that
would leave an empty spot in the collage.

• It would be nice to limit the amount of photos in a single collage to six, since more
photos simply look a bit weird.

• Finally, it would be nice if the activity title reflected the current selection.

Let’s set out now to add these improvements to Combinestagram.

Open up MainActivity.kt and add an updateUi() method below onCreate():

private fun updateUi(photos: List<Photo>) {
 saveButton.isEnabled =
 photos.isNotEmpty() && (photos.size % 2 == 0)
 clearButton.isEnabled = photos.isNotEmpty()
 addButton.isEnabled = photos.size < 6
 title = if (photos.isNotEmpty()) {
 resources.getQuantityString(R.plurals.photos_format,
 photos.size, photos.size)
 } else {
 getString(R.string.collage)
 }
}

In the above code, you update the complete UI according to the ruleset we've talked
about. All the logic is in a single place and easy to read through. Now add a call to
updateUi() to the bottom of the Observer lambda observing for selectedPhotos:

if (photos.isNotEmpty()) {
 // ...
} else {
 // ...
}
updateUi(photos)

Run the app again, and you will see all the rules kick in as you play with the UI:

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 91

By now, you’re probably starting to see the real benefits of Rx when applied to your
Android apps. If you look through all the code you’ve written in this chapter, you’ll
see there are only a few simple lines that drive the whole UI!

Communicating with other views via
subjects
Combinestagram is almost perfect. But users may want to actually pick from
multiple photos instead of just one hardcoded one. Maybe.

Instead of serving up one static image, you’ll instead display a bottom dialog
fragment wherein the user can select from a list of photos.

First off, delete the addPhoto() method in SharedViewModel.

Next up, replace the contents of actionAdd() in MainActivity with the following:

val addPhotoBottomDialogFragment =
 PhotosBottomDialogFragment.newInstance()
addPhotoBottomDialogFragment

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 92

 .show(supportFragmentManager, "PhotosBottomDialogFragment")

The above code simply shows the PhotosBottomDialogFragment dialog when the
user taps the Add button. Try it out now, by running the app. You should see the
following after tapping the Add button:

This is the stage in which you’d normally use an interface to have the
PhotosBottomDialogFragment communicate that the user selected a photo.
However, that’s not very reactive — so, instead, you’ll use an observable.

Navigate to PhotosBottomDialogFragment and create a new
PublishSubject<Photo> variable:

private val selectedPhotosSubject =
 PublishSubject.create<Photo>()

val selectedPhotos: Observable<Photo>
 get() = selectedPhotosSubject.hide()

You’ll see this pattern employed often. You created a new PublishSubject, but you
don’t want to expose that subject to other classes because you want to make sure
that you know what’s being put into it. Instead of directly exposing

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 93

selectedPhotosSubject, you create a new public selectedPhotos property that
returns selectedPhotosSubject.hide(). The hide() method simply returns an
Observable version of the same subject.

Add the following to the empty photosClicked() method:

selectedPhotosSubject.onNext(photo)

You’re now forwarding a photo that a user selected through your subject.

All that’s left to do is to subscribe to this new observable.

Navigate over to SharedViewModel and add the following method:

fun subscribeSelectedPhotos(selectedPhotos: Observable<Photo>) {
 selectedPhotos
 .doOnComplete {
 Log.v("SharedViewModel", "Completed selecting photos")
 }
 .subscribe { photo ->
 imagesSubject.value?.add(photo)
 imagesSubject.onNext(imagesSubject.value!!)
 }
 .addTo(disposables)
}

subscribeSelectedPhotos() takes an Observable<Photo> and subscribes to that
observable, forwarding the photos it receives through to the imagesSubject.

Now, navigate back to MainActivity and add the following line in the bottom of the
actionAdd() method:

viewModel.subscribeSelectedPhotos(
 addPhotoBottomDialogFragment.selectedPhotos)

You’re ready to go!

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 94

Run the app and you should be able to add different photos to your collage:

Cleaning up observables: Review
The code seemingly works as expected, but try the following: Add few photos to a
collage, go back to the main screen and inspect logcat.

Do you see a message saying “completed selecting photos"? No? You added a Log
statement to that last subscription using the doOnComplete() operator that should
notify you that the provided selectedPhotos has completed.

Since the selectedPhotos observable never completes, the memory it’s utilizing will
not be freed until the SharedViewModel is itself cleared.

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 95

If the user keeps going back and forth adding new photos and presenting that bottom
dialog fragment, that means more and more observables will be created, since one’s
created for every instance of PhotosBottomDialogFragment. Those observables are
taking up precious memory!

Open PhotosBottomDialogFragment and add the following method:

override fun onDestroyView() {
 selectedPhotosSubject.onComplete()
 super.onDestroyView()
}

Now, whenever the view is destroyed, the selectedPhotosSubject will be
completed and its memory will be reclaimed. You can see that this is true if you run
the app, select a photo, then dismiss the bottom sheet. The log statement now prints
out.

Perfect! You’re now ready for the last part of this chapter: taking a plain old boring
function and converting it into a super-awesome and fantastical reactive one.

Creating a custom observable
You may have noticed that there’s one aspect of the app that doesn’t work yet –
saving a photo. Time to fix that!

Open SharedViewModel and take a look at the saveBitmapFromImageView()
method. It’s pretty simple — it just takes an ImageView and saves its bitmap to the
external files directory.

There’s only one problem: It’s boring. Actually, the real problem is that, after you
save the photo, there’s no way to figure out where it was saved to — and it’s a
blocking call! Both problems that can be fixed by making this function an awesome
reactive function.

First, change the return type of saveBitmapFromImageView() to
Observable<String>. Then, wrap the existing function body in an
Observable.create call like so:

fun saveBitmapFromImageView(
 imageView: ImageView,
 context: Context
): Observable<String> {
 return Observable.create { emitter ->
 // Body of the method

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 96

 // ...
 }
}

You’re now returning an observable. However, that observable never emits anything
and never finishes. Not all that useful.

Add this to the end of the try block:

emitter.onNext(tmpImg)
emitter.onComplete()

Then, add this to the end of the catch block:

emitter.onError(e)

You’re emitting the name of the newly created file and then completing. If the file
fails to save, you’re instead emitting that error.

Navigate back to MainActivity and update the actionSave() method to the
following:

viewModel.saveBitmapFromImageView(collageImage, this)
 .subscribeBy(
 onNext = { file ->
 Toast.makeText(this, "$file saved",
 Toast.LENGTH_SHORT).show()
 },
 onError = { e ->
 Toast.makeText(this,
 "Error saving file :${e.localizedMessage}",
 Toast.LENGTH_SHORT).show()
 }
)

Build and run the App to test the Save functionality.

So you’ve created an observable that either emits one item and completes or emits
an error. That sounds familiar...

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 97

Review: Single, Maybe, Completable
In Chapter 2, “Observables,” you had the chance to learn about a few specialized
RxJava types.

In this chapter, you’ll do a quick review and see how you might use these types in an
app, and then use one of the types in the Combinestagram project! Starting with
Single:

Single
As you already know, Single is an Observable specialization. It represents a
sequence, which can emit just once either a success event or an error.

This kind of type is useful in situations such as saving a file, downloading a file,
loading data from disk or basically any asynchronous operation that yields a value.
You can categorize two distinct use-cases of Single:

1. For wrapping operations that emit exactly one element upon success, just like
saveBitmapFromImageView() earlier in this chapter. You can directly create a
Single instead of an Observable. In fact, you will update the
saveBitmapFromImageView() method in SharedViewModel to create a Single
shortly.

2. To better express your intention to consume a single element from a sequence
and ensure if the sequence emits more than one element the subscription will
error out. To achieve this, you can subscribe to any observable and use
singleOrError() operator to convert it to a Single.

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 98

Maybe
Maybe is quite similar to Single with the only difference that the observable may or
may not emit a value upon successful completion.

If you keep to the photograph-related examples, imagine this use-case for Maybe:
your app is storing photos in its own custom photo album. You persist the album
identifier in SharedPreferences and use that ID each time to “open” the album and
write a photo inside.

You would design an open(albumId): Maybe<String> method to handle the
following situations:

• In case the album with the given ID still exists, just emit a completed event.

• In case the user has deleted the album in the meanwhile, create a new album and
emit a next event with the new ID, so you can persist it in SharedPreferences.

• In case something is wrong and you can’t access the Photos library at all, emit an
error event.

Just like other the specialized types, you can achieve the same functionality by using
a “vanilla” Observable, but Maybe gives more context both to you as you’re writing
your code and to the programmers coming to alter the code later on.

Just as with Single, you can create a Maybe directly by using Maybe.create { ...
}. Or, if you have an existing observable, you can use the firstElement() or
lastElement() methods to get a Maybe of that element.

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 99

Completable
The final type to cover is Completable. This variation of Observable allows only for
a single completed or error event to be emitted before the subscription is disposed
of.

You can create a Completable sequence by using Completable.create { ... }
with code very similar to that which you’d use to create other observables. You can
also use the ignoreElements() method on an Observable to get a completable
version of it that ignores all the elements.

You might notice that Completable simply doesn’t allow for emitting any values and
wonder why would you need a sequence like that. You’d be surprised at the number
of use-cases in which you only need to know whether an asynchronous operation
succeeded or not.

Here’s an example before going back to Combinestagram. Let’s say your app auto-
saves a document while the user is working on it. You’d like to asynchronously save
the document in a background queue, and when completed, show a small notification
or an alert box onscreen if the operation fails.

Let’s say you wrapped the saving logic into a function fun saveDocument():
Completable. This is how easy it is to then express the rest of the logic:

saveDocument()
 .andThen(Observable.just(createMessage))
 .subscribeBy(onNext = { message ->
 message.display()
 }, onError = { e ->
 showError(e.localizedDescription())
 })

The andThen() operator allows you to chain more completables or observables upon
an event and subscribe for the final result. In case, any of them emits an error, your
code will fall through to the final onError lambda.

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 100

Having completed (:]) a review of the specialized observable types, you can now
update saveBitmapFromImageView() to return a more specialized and appropriate
type.

Back to Combinestagram and the problem at hand!

Using Single in the app
Update saveBitmapFromImageView() to return a Single<Photo> and replace the
relevant calls to Observable with the sibling calls to Single:

fun saveBitmapFromImageView(imageView: ImageView, context:
Context): Single<String> {
 return Single.create { emitter ->
 // ...
 try {
 // ..
 emitter.onSuccess(tmpImg)
 } catch(e: IOException) {
 Log.e("MainActivity", "Problem saving collage", e)
 emitter.onError(e)
 }
 }
}

Fancy!

All that’s left is to change the subscription to this single and save the photo.

Navigate back to MainActivity and update the actionSave() method to the
following:

viewModel.saveBitmapFromImageView(collageImage, this)
 .subscribeBy(
 onSuccess = { file ->
 // ...
 },
 onError = { e ->
 // ...
 }
)

You’re utilizing the new reactive version of the saveBitmapFromImageView()
method and subscribing to the Single that it produces. If the single succeeds, you’re
showing a toast indicating that it finished. If it fails, you’re showing a toast with the
error message.

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 101

Give the app one last triumphant run to save the collage.

To see the saved file, use the Device File Explorer accessed from the View ▸ Tool
Windows menu in Android Studio:

Then navigate to the app data directory in the device sdcard folder to see the file.
You can double-click the image file to open it.

Before we move on, there’s still one more issue to tackle.

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 102

You may have noticed that, when you saved a collage, the Save button freezes in the
tapped state and the UI stopped responding. Saving a photo to storage can take a
long time, and is best done on a background thread.

To achieve this, you’ll see a sneak peek of one of the cooler parts of Rx: Schedulers.

In the actionSave() method, add the following code after the call to
saveBitmapFromImageView() and before the call to subscribeBy():

.subscribeOn(Schedulers.io())

.observeOn(AndroidSchedulers.mainThread())

The subscribeOn() method instructs the Single to do its subscription work on the
IO scheduler. The observeOn() method instructs the single to run the
subscribeBy() code on the Android main thread.

You’ll learn much more about schedulers in Chapter 13, "Intro to Schedulers". For
now, run the app. You should see the save button immediately return to its normal
state after being tapped, and the UI should no longer be blocked.

With that, you’ve completed Section I of this book — congratulations!

You are not a young Padawan anymore, but an experienced RxJava Jedi. However,
don’t be tempted to take on the dark side just yet. You will get to battle networking,
thread switching, and error handling soon enough!

Before that, you must continue your training and learn about one of the most
powerful aspects of RxJava. In Section 2, “Operators and Best Practices,” operators
will allow you to take your Observable superpowers to a whole new level!

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 103

Key points
• Observables and Subjects exist not just for theory: you use them in real apps!

• RxJava observables can be combined with LiveData to pass events from a view
model along to the UI.

• RxJava can be used to create complex-UI interactions with a small amount of
declarative code.

• It’s possible and useful to refactor existing non-Rx code into custom observables
using Observable.create.

• The specialized observable types Single, Maybe, and Completable should be used
when possible to make your intentions clear to both future you and your
teammates.

Where to go from here?
Next up, back to some theory as you start Section II.

With your first Rx-enabled app project behind you, it’s time to dig deeper into RxJava
and look at how you can manipulate observable streams using operators.

Reactive Programming with Kotlin Chapter 4: Observables & Subjects in Practice

raywenderlich.com 104

Section II: Operators & Best
Practices

Operators are the building blocks of Rx, which you can use to transform, process, and
react to events emitted by Observables.

Just as you can combine simple arithmetic operators like +, -, and / to create complex
math expressions, you can chain and compose together Rx's simple operators to
express complex app logic.

In this chapter, you are going to:

• Start by looking into filtering operators, which allow you to process some events
but ignore others.

• Move on to transforming operators, which allow you to create and express complex
data transformations. You can for example start with a button event, transform
that into some kind of input, process that and return some output to show in the
app UI.

• Look into combining operators, which allow for powerful composition of most
other operators.

• Explore operators that allow you to do time based processing: delaying events,
grouping events over periods of time, and more. Work though all the chapters, and
by the end of this section you'll be able to write simple RxJava apps!

Chapter 5: Filtering Operators

Chapter 6: Filtering Operators in Practice

Chapter 7: Transforming Operators

Chapter 8: Transforming Operators in Practice

Chapter 9: Combining Operators

raywenderlich.com 105

Chapter 10: Combining Operators in Practice

Chapter 11: Time-Based Operators

Reactive Programming with Kotlin Section II: Operators & Best Practices

raywenderlich.com 106

5Chapter 5: Filtering
Operators
By Alex Sullivan & Scott Gardner

Learning a new technology stack is a bit like building a skyscraper: You’ve got to
build a solid foundation before you can kiss the sky. By now, you’ve established a
solid RxJava foundation, and it’s time to start building up your knowledge base and
skill set, one floor at a time.

This chapter will teach you about RxJava’s filtering operators that you can use to
apply conditional constraints to next events, so that the subscriber only receives the
elements it wants to deal with. If you’ve ever used the filter method in the Kotlin
Standard Library, you’re already half way there. But if not, no worries; you’re going to
be an expert at this filtering business by the end of this chapter.

Getting started
The starter project for this chapter is an IntelliJ project. Open it up and give it a
build. You won’t see anything in the console yet.

Ignoring operators
Without further ado, you’re going to jump right in and look at some useful filtering
operators in RxJava, beginning with ignoreElements. As depicted in the following
marble diagram, ignoreElements will do just that: ignore next event elements. It
will, however, allow through stop events, i.e., complete or error events. Allowing
through stop events is usually implied in marble diagrams.

raywenderlich.com 107

It’s just explicitly called out this time by the dashed line because that’s all
ignoreElements will let through.

Note: Up until now you’ve seen marble diagrams used for observable types.
The marble diagram shown here instead helps to visualize how operators
work. The top line is the observable that is being subscribed to. The box
represents the operator and its parameters, and the bottom line is the
subscriber, or more specifically, what the subscriber will receive after the
operator does its thing.

See one, now do one, by adding this example to your main function:

exampleOf("ignoreElements") {

 val subscriptions = CompositeDisposable()
 // 1
 val strikes = PublishSubject.create<String>()
 // 2
 subscriptions.add(
 strikes.ignoreElements()
 // 3
 .subscribeBy {
 println("You’re out!")
 })
}

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 108

Here’s what you’re doing:

1. Create a strikes subject.

2. Subscribe to all strikes events, but ignore all next events by using
ignoreElements.

3. Since this observable now has no elements, ignoreElements converts it into a
Completable. There is no onNext in subscribeBy for a Completable.

ignoreElements is useful when you only want to be notified when an observable has
terminated, via a complete or error event. Add this code to the example:

strikes.onNext("X")
strikes.onNext("X")
strikes.onNext("X")

Even though this batter can’t seem to hit the broad side of a barn and has clearly
struck out, nothing is printed, because you’re ignoring all next events. It’s up to you
to add a complete event to this subject in order to let the subscriber be notified. Add
this code to do that:

strikes.onComplete()

Now, the subscriber will receive the complete event, and print that catchphrase no
batter ever wants to hear.

--- Example of: ignoreElements ---
You’re out!

Note: If you don’t happen to know much about strikes, batters and the game
of baseball in general, you can read up on those when you decide to take a
little break from programming: https://simple.wikipedia.org/wiki/Baseball.

elementAt operator
There may be times when you only want to handle the nth (ordinal) element emitted
by an observable, such as the third strike. For that you can use elementAt, which
takes the index of the element you want to receive, and it ignores everything else.

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 109

In the marble diagram, elementAt is passed an index of 1, so it only allows through
the second element. Remember: observables, just like lists, are zero-indexed.

Add this new example:

exampleOf("elementAt") {

 val subscriptions = CompositeDisposable()
 // 1
 val strikes = PublishSubject.create<String>()
 // 2
 subscriptions.add(
 strikes.elementAt(2)
 // 3
 .subscribeBy(
 onSuccess = { println("You’re out!") }
))
}

Here’s the play-by-play:

1. You create a strikes subject.

2. You subscribe to the strikes observable, ignoring every element other than the
third item.

3. Since this observable may not have a third item, elementAt returns a Maybe.
Because it's a Maybe will subscribe with onSuccess instead of onNext.

Now you can simply add new strikes onto the subject, and your subscription will take
care of letting you know when the batter has struck out. Add this code inside the
example block:

strikes.onNext("X")
strikes.onNext("X")
strikes.onNext("X")

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 110

"Hey batta, batta, batta, swing batta!"

Now you can build and run and imagine the game:

--- Example of: elementAt ---
You’re out!

filter operator
ignoreElements and elementAt are filtering elements emitted by an observable.
When your filtering needs go beyond all or one, there’s filter. filter takes a
predicate lambda, which it applies to each element, allowing through only those
elements for which the predicate resolves to true.

Check out this marble diagram, where only 1 and 2 are let through, because the
filter’s predicate only allows elements that are less than 3.

Add this example to your main function:

exampleOf("filter") {

 val subscriptions = CompositeDisposable()

 subscriptions.add(
 // 1
 Observable.fromIterable(
 listOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
 // 2
 .filter { number ->
 number > 5
 }.subscribe {
 // 3
 println(it)
 })
}

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 111

From the top:

1. You create an observable of some predefined integers.

2. You use the filter operator to apply a conditional constraint to prevent any
number less than five from getting through. filter takes a predicate that returns
a Bool. Return true to let the element through or false to prevent it. filter
will filter elements for the life of the subscription.

3. You subscribe and print out the elements that passed the filter predicate.

The result of applying this filter is that only numbers greater than five are printed:

--- Example of: filter ---
6
7
8
9
10

Skipping operators
It might be that you need to skip a certain number of elements. Consider observing a
weather forecast, where maybe you don’t want to start receiving hourly forecast data
until later in the day, because you’re stuck in a cubicle until then anyway. The skip
operator allows you to ignore from the first to the number you pass as its parameter.
All subsequent elements will then pass through.

This marble diagram shows skip being passed 2, so it ignores the first 2 elements.

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 112

Enter this new example in your main function:

exampleOf("skip") {
 val subscriptions = CompositeDisposable()

 subscriptions.add(
 // 1
 Observable.just("A", "B", "C", "D", "E", "F")
 // 2
 .skip(3)
 .subscribe {
 println(it)
 })
}

With this code, you:

1. Create an observable of letters.

2. Use skip to skip the first 3 elements and then subscribe to next events.

After skipping the first three elements, only D, E, and F are printed like so:

--- Example of: skip ---
D
E
F

skipWhile operator
There’s a small family of skip operators. Like filter, skipWhile lets you include a
predicate to determine what should be skipped. However, unlike filter, which will
filter elements for the life of the subscription, skipWhile will only skip up until
something is not skipped, and then it will let everything else through from that point
on. Also, with skipWhile, returning true will cause the element to be skipped, and
returning false will let it through: it uses the return value in the opposite way to
filter.

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 113

In this marble diagram, 1 is prevented because 1 % 2 equals 1, but then 2 is allowed
through because it fails the predicate, and 3 (and everything else going forward) gets
through because skipWhile is no longer skipping.

Add this new example to your main function:

exampleOf("skipWhile") {

 val subscriptions = CompositeDisposable()

 subscriptions.add(
 // 1
 Observable.just(2, 2, 3, 4)
 // 2
 .skipWhile { number ->
 number % 2 == 0
 }.subscribe {
 println(it)
 })

}

Here’s what you did:

1. Create an observable of integers.

2. Use skipWhile with a predicate that skips elements until an odd integer is
emitted.

skipWhile only skips elements up until the first element is let through, and then all
remaining elements are allowed through.

--- Example of: skipWhile ---
3
4

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 114

If you were developing an insurance claims app, you could use skipWhile to deny
coverage until the deductible is met. If only the insurance industry were that
straightforward here in the United States.

skipUntil operator
So far, the filtering has been based on some static condition. What if you wanted to
dynamically filter elements based on some other observable? There are a couple of
operators that you’ll learn about here that can do this. The first is skipUntil, which
will keep skipping elements from the source observable (the one you’re subscribing
to) until some other trigger observable emits.

In this marble diagram, skipUntil ignores elements emitted by the source
observable (the top line) until the trigger observable (second line) emits a next
event.

Then it stops skipping and lets everything through from that point on.

Add this example to see how skipUntil works in code:

exampleOf("skipUntil") {

 val subscriptions = CompositeDisposable()
 // 1
 val subject = PublishSubject.create<String>()
 val trigger = PublishSubject.create<String>()

 subscriptions.add(
 // 2
 subject.skipUntil(trigger)
 .subscribe {
 println(it)
 })
}

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 115

In this code, you:

1. Create a subject to model the data you want to work with, and another subject to
model a trigger to change how you handle things in the first subject.

2. Use skipUntil, passing the trigger subject. When trigger emits, skipUntil
will stop skipping.

Add a couple of next events onto subject:

subject.onNext("A")
subject.onNext("B")

Nothing is printed out, because you’re skipping. Now add a new next event onto
trigger:

trigger.onNext("X")

Doing so causes skipUntil to stop skipping. From this point onward, all elements
will be let through. Add another next event onto subject:

subject.onNext("C")

Sure enough, it’s printed out.

--- Example of: skipUntil ---
C

Taking operators
Taking is the opposite of skipping. When you want to only take certain elements,
RxJava has you covered. The first taking operator you’ll learn about is take. As
shown in this marble diagram, the result will take the first of the number of elements
you specified and ignore everything that follows.

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 116

Add this example to your main function to explore the first of the take operators:

exampleOf("take") {
 val subscriptions = CompositeDisposable()

 subscriptions.add(
 // 1
 Observable.just(1, 2, 3, 4, 5, 6)
 // 2
 .take(3)
 .subscribe {
 println(it)
 })
}

Here’s what you did:

1. Create an observable of integers.

2. Take the first three elements using take.

What you take is what you get. The output this time is:

--- Example of: take ---
1
2
3

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 117

takeWhile operator
There’s also a takeWhile operator that works similarly to skipWhile, except you’re
taking instead of skipping. takeWhile works like take, but uses a predicate instead
of a number of next events, as in this marble diagram:

Enter this new example in your main function:

exampleOf("takeWhile") {
 val subscriptions = CompositeDisposable()

 subscriptions.add(
 // 1
 Observable.fromIterable(
 listOf(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1))
 // 2
 .takeWhile { number ->
 number < 5
 }.subscribe {
 println(it)
 })
}

From the top:

1. Create an observable of integers counting up from 1 to 10, and then finally
emitting another 1 value.

2. Use the takeWhile operator and take any number that’s less than 5.

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 118

The output from the takeWhile example is:

--- Example of: takeWhile ---
1
2
3
4

You only receive integers that are less than five and came before any integer that was
greater than 5. The 1 value at the end isn’t emitted because the takeWhile operator
already hit a value greater than 5.

takeUntil operator
Like skipUntil, there’s also a takeUntil operator, shown in the next marble
diagram. It takes from the source observable until the trigger observable emits an
element.

Add this new example, which is just like the skipUntil example you created earlier:

exampleOf("takeUntil") {
 val subscriptions = CompositeDisposable()
 // 1
 val subject = PublishSubject.create<String>()
 val trigger = PublishSubject.create<String>()

 subscriptions.add(
 // 2
 subject.takeUntil(trigger)
 .subscribe {
 println(it)
 })
 // 3
 subject.onNext("1")
 subject.onNext("2")
}

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 119

Here’s what you did:

1. Create a primary subject and a trigger subject.

2. Use takeUntil, passing the trigger that will cause takeUntil to stop taking
once it emits.

3. Add a couple of elements onto subject.

The console shows those elements, but takeUntil is in taking mode because the
trigger did not emmit yet.

--- Example of: takeUntil ---
1
2

Now add an element onto trigger, followed by another element onto subject:

trigger.onNext("X")

subject.onNext("3")

The X stops the taking, so 3 is not allowed through and nothing more is printed.

Distinct operators
The next couple of operators you’re going to learn about let you prevent duplicate
items one-after-another from getting through. As shown in this marble diagram,
distinctUntilChanged only prevents duplicates that are right next to each other.
The second 2 does not emit but second 1 gets through since it is a change relative to
what came before it.

Distinct operators can be visualized like this:

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 120

Add this new example to your main function:

exampleOf("distinctUntilChanged") {
 val subscriptions = CompositeDisposable()

 subscriptions.add(
 // 1
 Observable.just("Dog", "Cat", "Cat", "Dog")
 // 2
 .distinctUntilChanged()
 .subscribe {
 println(it)
 })
}

What you’re doing, here:

1. Create an observable of our fluffy friends.

2. Use distinctUntilChanged to prevent sequential duplicates from getting
through.

distinctUntilChanged only prevents contiguous duplicates. So the third element is
prevented because it’s the same as the second, but the last item, a Dog, is allowed
through, because it comes after a different pet (Cat).

The resulting printout only includes the first Dog, first Cat, and then the Dog at the
end:

--- Example of: distinctUntilChanged ---
Dog
Cat
Dog

The default behavior of distinctUntilChanged uses the equals method to
determine that two items are equal. That may not be what you want, so you can use a
variant of distinctUntilChanged that accepts a predicate comparing two items that
are emitted one after another.

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 121

In the following marble diagram, objects with a property named value are being
compared for distinctness based on value:

Add this new example to your project to use the new version of
distinctUntilChanged in a slightly more elaborate way:

exampleOf("distinctUntilChangedPredicate") {
 val subscriptions = CompositeDisposable()

 subscriptions.add(
 // 1
 Observable.just(
 "ABC", "BCD", "CDE", "FGH", "IJK", "JKL", "LMN")
 // 2
 .distinctUntilChanged { first, second ->
 // 3
 second.any { it in first }
 }
 // 4
 .subscribe {
 println(it)
 }
)
}

From the top, you:

1. Create an observable of strings representing chunks of the English alphabet.

2. Use distinctUntilChanged(comparer: BiPredicate), which takes a lambda
that receives each sequential pair of elements.

3. Return true if any character in the second string is also in the first string.

4. Subscribe and print out elements that are considered distinct based on the
comparing logic you provided.

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 122

As a result, only distinct letters are printed in each pair of next events; that is, in
each pair of strings, one does not contain any of the characters of the other:

--- Example of: distinctUntilChangedPredicate ---
ABC
FGH
IJK

So, this version of distinctUntilChanged is useful when you want to distinctly
prevent duplicates for types that do not have a useful equals implementation.

Challenge

Challenge: Create a phone number lookup
Open the challenge starter project and have a look at what’s to be found inside!

Breaking down this challenge, you’ll need to use several filter operators. Here are the
requirements, along with a suggested operator to use:

1. Phone numbers can’t begin with 0 — use skipWhile.

2. You an only input a single-digit number at a time; use filter to only allow
elements that are less than 10.

3. This is limited to U.S. phone numbers, which are 10 digits, so take only the first
10 numbers inputted; use take and toList.

Review the setup code in the starter project. There’s a simple contacts dictionary:

val contacts = mapOf(
 "603-555-1212" to "Florent",
 "212-555-1212" to "Junior",
 "408-555-1212" to "Marin",
 "617-555-1212" to "Scott")

There’s a utility function that will return a formatted phone number for the list of 10
values you pass to it:

fun phoneNumberFrom(inputs: List<Int>): String {
 val phone = inputs.map { it.toString() }.toMutableList()
 phone.add(3, "-")
 phone.add(7, "-")
 return phone.joinToString("")
}

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 123

There’s a PublishSubject to start you off:

val input = PublishSubject.create<Int>()

And there’s a series of onNext calls to test that your solution works:

input.onNext(0)
input.onNext(603)

input.onNext(2)
input.onNext(1)

// Confirm that 7 results in "Contact not found", and then
// change to 2 and confirm that Junior is found
input.onNext(2)

"5551212".forEach {
 // Need toString() or else Char conversion is done
 input.onNext(it.toString().toInt())
}

input.onNext(9)

Because this challenge focuses on using the filter operators, here is code that you can
use in the subscription’s next event handler. It takes the result from
phoneNumberFrom and print out the contact if found or else "Contact not found":

if (contact != null) {
 println("Dialing $contact ($phone)...")
} else {
 println("Contact not found")
}

Add your code right below the comment // Add your code here.

Once you’ve implemented your solution, follow the instructions in the comment
beginning // Confirm that 7 results in... to test that your solution works.

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 124

Key points
• Ignoring operators like ignoreElements, elementAt, and filter let you remove

certain elements from an observable stream.

• Skipping operators let you skip certain elements and then begin emitting.

• Conversely, taking operators let you take certain elements and then stop emitting.

• Distinct operators let you prevent duplicates from being emitted back-to-back in
an observable stream.

Where to go from here?
You’ve seen the theory behind filttering operators in an IntelliJ project. Next up,
transfer that knowledge into a real Android app by going back to the
Combinestagram photo collage app.

Reactive Programming with Kotlin Chapter 5: Filtering Operators

raywenderlich.com 125

6Chapter 6: Filtering
Operators in Practice
By Alex Sullivan & Marin Todorov

In the previous chapter, you began your introduction to the functional aspect of
RxJava. The first batch of operators you learned about helped you filter the elements
of an observable sequence. As explained previously, the operators are simply
methods on Observable and other associated RxJava types.

The operators operate on the elements of their Observable class and produce a new
observable sequence as a result. This comes in handy because, as you saw previously,
this allows you to chain operators, one after another, and perform several
transformations in sequence:

raywenderlich.com 126

The preceding diagram looks great in theory. In this chapter, you’re going to try
using the filtering operators in a real-life app. In fact, you are going to continue
working on the Combinestagram app that you already know and love from Chapter
4, “Observables and Subjects in Practice”.

Note: In this chapter, you will need to understand the theory behind the
filtering operators in RxJava. If you haven’t worked through Chapter 5,
“Filtering Operators," do that first and then come back to the current chapter.

Improving the Combinestagram project
In this chapter, you will:

• Work through series of tasks, which (surprise!) will require you to use various
filtering operators.

• Use different ones and see how you can use counterparts like skip and take.

• Take care of a few of the issues in the current Combinestagram project.

Note: Since this book has only covered a few operators so far, you will not
write the “best possible” code. For this chapter, don’t worry about best
practices or proper architecture yet, but instead focus on truly understanding
how to use the filtering operators. In this book, you’re going to slowly build up
towards writing good RxJava code. It’s a process!

Reactive Programming with Kotlin Chapter 6: Filtering Operators in Practice

raywenderlich.com 127

Refining the photos sequence
Currently, the main screen of the app looks like this:

Right now, the app works by opening up an instance of
PhotosBottomDialogFragment whenever the user clicks the add button. Then, when
the user clicks one of the photos, a photo object is added to the
selectedPhotosSubject publish subject. The SharedViewModel subscribes to the
selectedPhotosSubject and adds the newly emitted photo object onto its own
imagesSubject. Whenever imagesSubject emits, the selectedPhotos live data
object is updated and the MainActivity class receives the new photo.

That’s all well and good, but Combinestagram could use a few new features. For
example, wouldn’t it be nice if you could view a thumbnail of the image collage? I’ll
answer that for you. It’d be great!

Reactive Programming with Kotlin Chapter 6: Filtering Operators in Practice

raywenderlich.com 128

You could just add more code to the subscribe block in the
subscribeSelectedPhotos method, but that would be messy and that subscribe
block will quickly become too complex if you go that route.

Another option would be to create another subscription to the selectedPhotos
observable. That would actually work here, but there’s an important consideration to
make before you go down that path.

Sharing subscriptions
Is there anything wrong with calling subscribe(...) on the same observable
multiple times? Turns out there might be!

You’ve already seen that observables are lazy, pull-driven sequences. Simply calling a
bunch of operators on an Observable doesn’t involve any actual work. The moment
you call subscribe(...) directly on an observable or on one of the operators
applied to it, that’s when the Observable livens up and starts producing elements.

Take a look at the code below:

val numbers = Observable.create<Int> { emitter ->
 val start = getStartNumber()
 emitter.onNext(start)
 emitter.onNext(start + 1)
 emitter.onNext(start + 2)
 emitter.onComplete()
}

The code creates an Observable<Int>, which produces a sequence of three
numbers: start, start + 1, start + 2.

Now see what getStartNumber() looks like:

var start = 0
private fun getStartNumber(): Int {
 start++
 return start
}

The function increments a variable and returns it; nothing can go wrong there. Or
can it? Add a subscription to numbers in one of the earlier IntelliJ projects and see
for yourself:

numbers
 .subscribeBy(
 onNext = { println("element [$it]") },

Reactive Programming with Kotlin Chapter 6: Filtering Operators in Practice

raywenderlich.com 129

 onComplete = { println(("-------------"))}
))

You will get the exact output you expected. Yay!

element [1]
element [2]
element [3]

Copy and paste the exact same subscription code one more time though, and this
time the output is different.

element [1]
element [2]
element [3]

element [2]
element [3]
element [4]

The problem is that each time you call subscribe(...), this creates a new
Observable for that subscription — and each copy is not guaranteed to be the same
as the previous. And even when the Observable does produce the same sequence of
elements, it’s overkill to produce those same duplicate elements for each
subscription. Imagine if your observable wraps a network call - by subscribing twice,
you’d end up making that same network call twice. Wasteful!

It’s worth noting that Subjects don’t have this problem - since every subscriber will
get new items as they’re emitted (depending on the subject type) you don’t need to
worry about the initial work done in the create block being repeated.

To share a subscription, you can use the share() operator. A common pattern in Rx
code is to create several sequences from the same source Observable by filtering out
different elements in each of the results.

You’ll use share in a practical example in Combinestagram to understand its
purpose a bit better.

Open the project and select SharedViewModel. Scroll to
subscribeSelectedPhotos() and add this line as the first line in the method:

val newPhotos = fragment.selectedPhotos.share()

Reactive Programming with Kotlin Chapter 6: Filtering Operators in Practice

raywenderlich.com 130

Then, instead of subscribing to the fragment.selectedPhotos observable,
subscribe to the newPhotos observable:

subscriptions.add(newPhotos
 .doOnComplete {
 Log.v("SharedViewModel", "Completed selecting photos")
 }
 .subscribe { photo ->
 imagesSubject.value?.add(photo)
 imagesSubject.onNext(imagesSubject.value ?:
 mutableListOf())
 }
)

It’s no longer true that each subscription is creating a new Observable instance like
this:

Instead, with share(), you allow for multiple subscriptions to consume the elements
that a single Observable produces for all of them, like so:

Now you can create a second subscription to newPhotos and filter out some of the
elements you don’t need.

Before moving on though, it’s important to learn a bit more about how share works.

share creates a subscription only when the number of subscribers goes from 0 to 1
(e.g., when there isn’t a shared subscription already). When a second, third and so on
subscriber starts observing the sequence, share uses the already created
subscription to share with them. If all subscriptions to the shared sequence get

Reactive Programming with Kotlin Chapter 6: Filtering Operators in Practice

raywenderlich.com 131

disposed (e.g. there are no more subscribers), share will dispose the shared sequence
as well. If another subscriber starts observing, share will create a new subscription
for it just like described above.

Note: share() does not provide any of the subscriptions with values emitted
before the subscription takes effect.

The rule of thumb about sharing operators is that it’s safe to use share() with
observables that do not complete, or if you guarantee no new subscriptions will be
made after completion.

Ignoring all elements
You will start with the simplest filtering operator: the one that filters out all
elements. No matter your value or type, ignoreElements() says “You shall not
pass!”

Recall that newPhotos emits a Photo element each time the user selects a photo. In
this section, you are going to add a small thumbnail of the collage in the middle of
the screen.

Since you would like to update that icon only once, when the user dismisses the
photo dialog fragment, you need to ignore all Photo elements and act only on a
completed event.

ignoreElements() is the operator that lets you do just that: it discards all elements
of the source sequence and lets through only complete or error.

Inside subscribeSelectedPhotos() at the bottom of the method, add the
following:

subscriptions.add(newPhotos
 .ignoreElements()
 .subscribe {

 })

Before you flesh out the subscribe block you need to create a new enum class to
represent the thumbnail status.

Reactive Programming with Kotlin Chapter 6: Filtering Operators in Practice

raywenderlich.com 132

Add a new file called ThumbnailStatus.kt.

Add the following to the new file:

enum class ThumbnailStatus {
 READY,
 ERROR
}

A thumbnail can be READY, or something may have gone wrong, so it might be in an
ERROR state.

Now add a new MutableLiveData variable that will notify the MainActivity to
update the thumbnail image. Add the following val to the top of SharedViewModel:

private val thumbnailStatus = MutableLiveData<ThumbnailStatus>()

And add a corresponding getter:

fun getThumbnailStatus(): LiveData<ThumbnailStatus> {
 return thumbnailStatus
}

Finally, head back to the subscribeSelectedPhotos method and finish up the
empty new subscribe block you added earlier:

subscriptions.add(newPhotos
 .ignoreElements()
 .subscribe {
 thumbnailStatus.postValue(ThumbnailStatus.READY)
}

This subscription to newPhotos will ignore all images and will run the subscribe
lambda when the user returns to the main activity.

Last but not least, you need to actually consume the new thumbnailStatus live data
object in MainActivity. Add the following to the bottom of the onCreate method:

viewModel.getThumbnailStatus().observe(this,
 Observer { status ->
 if (status == ThumbnailStatus.READY) {
 thumbnail.setImageDrawable(collageImage.drawable)
 }
 }
)

Reactive Programming with Kotlin Chapter 6: Filtering Operators in Practice

raywenderlich.com 133

If the thumbnail status is READY, the activity will update the thumbnail ImageView
with whatever image is in the collageImage ImageView.

Run the app. Whenever you come back from selecting a photo, you should see the
thumbnail box updated with the current collage:

Filtering elements you don’t need
Of course, as great as ignoreElements() is, sometimes you will need to ignore just
some of the elements — not all of them.

In those cases, you will use filter() to let some elements through and discard
others.

Reactive Programming with Kotlin Chapter 6: Filtering Operators in Practice

raywenderlich.com 134

For example, you might have noticed that photos in portrait orientation do not fit
very well in the collages in Combinestagram.

Of course, you could write smarter collage-building code... but in this chapter you’re
going to discard portrait photos and only include landscapes instead. That’s one way
to solve the issue. Pretend it’s a feature, and not a bug!

Scroll to the top of subscribeSelectedPhotos and then add following operator
after the doOnComplete call:

subscriptions.add(newPhotos
 .doOnComplete {
 // ..
 }
 .filter { newImage ->
 val bitmap = BitmapFactory.decodeResource(
 fragment.resources, newImage.drawable)
 bitmap.width > bitmap.height
 }
 .subscribe { photo ->

Reactive Programming with Kotlin Chapter 6: Filtering Operators in Practice

raywenderlich.com 135

 // ..
 }
)

Now each photo that newPhotos emits will have to pass a test before it gets to
subscribe(...). Your filter operator will check if the width of the image is larger
than its height, and if so, it will let it through. Photos in portrait orientation will be
discarded.

Run the app and try adding the portrait photo at the bottom of the photo dialog
fragment (scroll down if you don't see it). No matter how many times you tap on the
photo in portrait orientation, it will not be added to the collage.

Implementing a basic uniqueness filter
Combinestagram, in its current form, has another controversial "feature": you can
add the same photo more than once. That doesn’t make for very interesting collages,
so in this section you’ll add some advanced filtering to prevent the user from adding
the same photo multiple times.

Note: There are better ways to achieve the required result than what you are
going to implement below. It is, however, a great exercise to build a solution
with your current RxJava skill set.

In order to check for duplicate collage images, you need a way to keep track of all the
images that have been added so far. Luckily, you’re using a BehaviorSubject with a
list of photo objects, and since BehaviorSubject exposes its current value you can
just check against that!

Add the following code below the filter operator you just added:

subscriptions.add(newPhotos
 .doOnComplete {
 // ..
 }
 .filter { newImage ->
 // ..
 // 1
 }
 .filter { newImage ->
 // 2
 val photos = imagesSubject.value ?: mutableListOf()
 // 3

Reactive Programming with Kotlin Chapter 6: Filtering Operators in Practice

raywenderlich.com 136

 !(photos.map { it.drawable }
 // 4
 .contains(newImage.drawable))
 }
 .subscribe { photo ->
 // ..
 }
)

Here’s a breakdown of the above code:

1. You’re again using the filter operator to filter out duplicates images

2. You’re getting the latest list of photos from imagesSubject. Since a
BehaviorSubject could be in a state where an initial value hasn’t been supplied,
value is nullable. If you get a null value, which you shouldn’t in this app, you’ll
instead use an empty list.

3. Next up you’re calling map on the list of photos to turn it into a list of int values.
Remember that the int drawable value on a photo represents a drawable ID that
Android can use to fetch a real drawable.

4. Finally, you’re checking to see if this list of drawable ids contains the new images
drawable id. If it does, you return false, so the filter fails.

Run the app. You won’t be able to add duplicate images anymore.

Keep taking elements while a condition is met
One of the “best” bugs in Combinestagram is that the Add button is disabled if you
add six photos, which prevents you from adding any more images. But if you are in
the photos bottom dialog fragment, you can add as many as you wish. There ought to
be a way to limit those, right?

Well, believe it or not, you can easily filter all elements after a certain condition has
been met by using the takeWhile() operator. You provide a boolean condition, and
takeWhile() discards all elements when this condition evaluates to false.

Scroll again towards the top of subscribeToSelectedPhotos and add the following
operator, again after doOnComplete:

subscriptions.add(newPhotos
 .doOnComplete {
 // ..
 }
 .takeWhile {

Reactive Programming with Kotlin Chapter 6: Filtering Operators in Practice

raywenderlich.com 137

 imagesSubject.value?.size ?: 0 < 6
 }
 .filter { newImage ->
 // ..
 }
 .filter { newImage ->
 // ..
 }
 .subscribe { photo ->
 // ..
 }
)

takeWhile(...) will let photos through as long as the total number of images in the
collage is less than six. You use the ?: Elvis operator to default to 0 if
imagesSubject.value?.size is null.

Run the app and try to add lots of photos to the collage. Once you add six photos, you
won’t be able to add any more. Mission accomplished!

Improving the photo selector
One common source of bugs in Android applications is what happens when a user
quickly taps on a button multiple times. My guess is you’ve been in an app before
where you quickly tapped a button and saw the application display multiple new
activities.

A similar bug can happen in Combinestagram. If a user quickly taps two photos, the
app will add those two photos. That might have been a mistake from the user’s
perspective. Luckily, you can use RxJava to quickly take care of that pesky issue!

Add the following new operator to the observable chain in
subscribeToSelectedPhotos right before the actual subscribe call:

.debounce(250, TimeUnit.MILLISECONDS,
 AndroidSchedulers.mainThread())

There’s two interesting things happening above. The first is the use of the debounce
operator, the second is the use of the AndroidSchedulers.mainThread() call.
Schedulers can be complex, but you’ll learn all about them in more detail in a future
chapter. For this example all you need to know is that to keep this code executing on
the Android main thread you need to pass in the
AndroidSchedulers.mainThread() scheduler.

Reactive Programming with Kotlin Chapter 6: Filtering Operators in Practice

raywenderlich.com 138

debounce is an extremely handy operator that limits the number of events that get
through to your subscribe block. debounce takes in an amount of time, 250
milliseconds in the above example, and makes sure that no new items are emitted
until that time window runs out. If a new next event is emitted before that time
period elapses, the old item will be dropped and the a new timer will start.

Timing operators can be challenging to understand, so here’s an example.

Imagine you have an observable that emits A after one second, B after another
second, and then C after 5 more seconds. If you were to call debounce on that
observable and gave it a time period of two seconds you’d only receive two values in
your subscribe block. You’d receive B after four seconds and then C after one more
second. The A would be dropped since the B value came quickly after it.

Go ahead and run the app again. You’ll find that if you quickly tap two photos only
the latest one will be added. Nice!

Challenge

Challenge: Combinestagram’s source code
Your challenge is to notify the user that they’ve reached the photo limit once they
add 6 photos. Here’s a few hints on how to proceed with this challenge.

First, you’ll need some way to tell the Activity class that the photo limit has been
reached. A good way to signal that information would be to create a new enum class
called CollageStatus that could be exposed in a new LiveData instance.

Second, you’ll need some way to figure out what the current CollageStatus is.
Luckily you have imagesSubject, which you can subscribe to and check to see if 6
images have been selected. If you’re feeling fancy, you can use the share operator on
the imagesSubject to practice your sharing skills. Sharing is caring after all!
However, since imagesSubject is a Subject, the share operator is a bit redundant
so feel free to skip that step.

Reactive Programming with Kotlin Chapter 6: Filtering Operators in Practice

raywenderlich.com 139

Key points
• You can share subscriptions to a single observable using share().

• ignoreElements comes in handy when you want to only look for stop events.

• Filtering out elements in an observable using filter lets you prevent certain
elements from coming through the stream, like allowing only landscape and not
portrait photos.

• Implementing a uniqueness filter can be achieved by combining filter with the
current value of a BehaviorSubject.

• Debouncing with the debounce operator helps you to get around pesky bugs that
occur in apps due to rapid user interactions with the interface.

Where to go from here?
You now have a handle on the first type of RxJava operators we’ll examine, filtering
operators, and have used them in an Android app.

Next up, you’ll learn about our second type of RxJava operators, transforming
operators, which let you modify the data being sent through the observable stream.

Reactive Programming with Kotlin Chapter 6: Filtering Operators in Practice

raywenderlich.com 140

7Chapter 7: Transforming
Operators
By Alex Sullivan & Scott Gardner

Before you decided to buy this book and commit to learning RxJava, you might have
felt that RxJava was some esoteric library; elusive, yet strangely compelling you to
master it. And maybe that reminds you of when you first started learning Android or
Kotlin. Now that you’re up to Chapter 7, you’ve come to realize that RxJava isn’t
magic. It’s a carefully constructed API that does a lot of heavy lifting for you and
streamlines your code. You should be feeling good about what you’ve learned so far.

In this chapter, you’re going to learn about one of the most important categories of
operators in RxJava: transforming operators. You’ll use transforming operators all
the time, to prepare data coming from an Observable for use by your Subscriber.
Once again, there are parallels between transforming operators in RxJava and the
Kotlin standard library, such as map() and flatMap(). By the end of this chapter,
you’ll be transforming everything!

Getting started
This chapter will use a normal IntelliJ project, so go ahead and open the starter
project now.

raywenderlich.com 141

Transforming elements
Observables emit elements individually, but you will frequently want to work with
collections. One typical use case is when you’re emitting a list of items to show in a
RecyclerView.

A convenient way to transform an Observable of individual elements into a list of all
those elements is by using toList.

As depicted in this marble diagram, toList will convert an observable sequence of
elements into a list of those elements, and emit a next event containing that array to
the subscribers.

Add this new example to your project:

exampleOf("toList") {

 val subscriptions = CompositeDisposable()
 // 1
 val items = Observable.just("A", "B", "C")

 subscriptions.add(
 items
 // 2
 .toList()
 .subscribeBy {
 println(it)
 }
)
}

Here’s what you just did:

1. Create an Observable of letters.

2. Use toList to transform the elements in a list.

Reactive Programming with Kotlin Chapter 7: Transforming Operators

raywenderlich.com 142

A list of the letters is printed.

--- Example of: toList ---
[A, B, C]

map operator
RxJava's map operator works just like Kotlin's standard map function, except it
operates on observables instead of a collection. In the marble diagram, map takes a
lambda that multiplies each element by 2.

Add this new example to your project:

exampleOf("map") {

 val subscriptions = CompositeDisposable()

 subscriptions.add(
 // 1
 Observable.just("M", "C", "V", "I")
 // 2
 .map {
 // 3
 it.romanNumeralIntValue()
 }
 // 4
 .subscribeBy {
 println(it)
 })
}

Here’s the play-by-play:

1. You create an Observable of Roman numerals, in this case M which stands for
1000, C which stands for 100, V which stands for 5, and I which stands for 1.

Reactive Programming with Kotlin Chapter 7: Transforming Operators

raywenderlich.com 143

2. You use map to transform the Observable, passing in a lambda.

3. You take each of the Roman numeral items emitted by the observable and then
use a romanNumeralIntValue method to convert it into its corresponding integer
value.

4. You subscribe to the Observable to print the transformed values.

Note: The romanNumeralIntValue method is defined in the
SupportingCode.kt file. The implementation is pretty straightforward, but
feel free to have a look if you are curious.

Go ahead and run the code. You should see the following output:

--- Example of: map ---
1000
100
5
1

Using the map operator, you have mapped each element of the original Observable to
a new value as it passes through the stream.

Transforming inner observables
You may have wondered at some point, “How do I work with observables that are
properties of observables?” Get ready to get your mind blown.

In the SupportCode.kt file in your project, add the following class which you’ll use
in the upcoming examples:

class Student(val score: BehaviorSubject<Int>)

Student is a class which has a score property that is a BehaviorSubject<Int>.
RxJava includes a few operators in the flatMap family that allow you to reach into an
Observable and work with its observable properties. You’re going to learn how to use
the two most common ones here.

Reactive Programming with Kotlin Chapter 7: Transforming Operators

raywenderlich.com 144

Note: A heads up before you begin: These operators have elicited more than
their fair share of questions (and groans and moans) from the RxJava's
newcomers. They may seem complex at first but you are going to walk through
detailed explanations of each one. By the end of the section you’ll be ready to
put these operators into action with confidence!

flatMap operator
The first one you’ll learn about is flatMap. The documentation for flatMap states
that it “Projects each element of an observable sequence to an observable sequence
and merges the resulting observable sequences into one observable sequence.”
Makes perfect sense, right?

Not!

That description, and the following marble diagram, may feel a bit overwhelming at
first. Read through the play-by-play explanation that follows, referring back to the
marble diagram, and you'll get it.

Reactive Programming with Kotlin Chapter 7: Transforming Operators

raywenderlich.com 145

The easiest way to follow what’s happening in this marble diagram is to take each
path from the source observable (the top line) all the way through to the target
Observable. The target Observable is represented by the bottom line, and it delivers
elements to the Subscriber. The source observable is a type of object that has a value
property that itself is an observable of type Int. To put it another way, the source
observable emits observables. The initial value of each emitted observable is the
number of the object: O1’s initial value is 1, O2’s is 2, and O3’s is 3.

Starting with O1, flatMap receives the object and reaches in to access its value
property and multiply it by 10. It then projects the transformed elements from O1
onto a new Observable. This is just what a regular map would do.

The first line below flatMap on the diagram is just for O1. That Observable is
flattened down to the target Observable that will deliver elements to the Subscriber
(the bottom line).

Later, O1’s value property changes to 4, which is not visually represented in the
marble diagram (otherwise the diagram would become even more congested).

But the evidence that O1’s value has changed is that it is transformed to 40 and then
projected onto the existing Observable for O1. As with the initial value, it is then
flattened down to the target observable. This all happens in a time-linear fashion.

The next value in the source observable, O2, is received by flatMap. Now its initial
value 2 is transformed to 20, projected onto a new observable for O2, and then
flattened down to the target Observable. Later, O2’s value is changed to 5. It is
transformed to 50, projected, and flattened to the target Observable.

Finally, O3 is received by flatMap, its initial value of 3 is transformed, projected, and
flattened.

flatMap transforms and projects all the values from all the Observables that it
receives. It then flattens them all down to a target Observable. Simple, isn't it? Time
to go hands-on with flatMap and really see how to use it. Add this example to your
project:

exampleOf("flatMap") {

 val subscriptions = CompositeDisposable()
 // 1
 val ryan = Student(BehaviorSubject.createDefault(80))
 val charlotte = Student(BehaviorSubject.createDefault(90))
 // 2
 val student = PublishSubject.create<Student>()

 student

Reactive Programming with Kotlin Chapter 7: Transforming Operators

raywenderlich.com 146

 // 3
 .flatMap { it.score }
 // 4
 .subscribe { println(it) }
 .addTo(subscriptions)
}

Here’s the play-by-play:

1. You create two instances of Student, ryan and charlotte.

2. You create a source subject of type Student.

3. You use flatMap to reach into the student subject and access its score. You
don’t modify score in any way. Just pass it through.

4. You print out next event elements in the Subscription.

There's nothing in the console, yet. Add this code to the example:

student.onNext(ryan)

ryan’s score is now printed out.

--- Example of: flatMap ---
80

Now change ryan’s score by adding this code to the example:

ryan.score.onNext(85)

ryan’s new score is printed.

--- Example of: flatMap ---
80
85

Next, add a different Student instance, charlotte, onto the source subject by
adding the following code:

student.onNext(charlotte)

Reactive Programming with Kotlin Chapter 7: Transforming Operators

raywenderlich.com 147

flatMap does its thing and charlotte’s score is printed.

--- Example of: flatMap ---
80
85
90

Here’s where it gets interesting. Change ryan’s score by adding this line of code:

ryan.score.onNext(95)

ryan’s new score is printed.

--- Example of: flatMap ---
80
85
90
95

This is because flatMap keeps up with each and every Observable it creates, one for
each element added onto the source observable.

Now change charlotte’s score by adding the following code, just to verify that
flatMap monitors both Observables and projects the changes:

charlotte.score.onNext(100)

Sure enough, her new score is printed out.

--- Example of: flatMap ---
80
85
90
95
100

To recap, flatMap keeps projecting changes from each Observable. There will be
times when you want this behavior and there will be times when you only want to
keep up with the latest element in the source observable. Luckily, RxJava has an
operator just for that situation called switchMap.

Reactive Programming with Kotlin Chapter 7: Transforming Operators

raywenderlich.com 148

switchMap operator
According to the documentation, switchMap: "Applies the given
io.reactivex.functions.Function to each item emitted by a reactive source, where that
function returns a reactive source, and emits the items emitted by the most recently
projected of these reactive sources."

So basically, switchMap takes a function which returns some type of reactive source
(a Completable, Observable, Single and so on) and applies that function to each
item emitted by some source observable. The observable returned by switchMap
then emits only the items from whatever reactive source was the last emitted. Take a
look at the following marble diagram:

The top line represents the source observable that emits three separate items - O1,
O2, and O3.

O1 is received by switchMap, it transforms its value by a factor of 10, projects it onto
a new observable for O1, and flattens it down to the target observable. Just like
before.

But then switchMap receives O2 and does its thing, switching to O2’s observable
because it’s now the latest. When O1 emits a value that is transformed to 40, that
value does not get emitted by the target observable, since it has been switched to O2.

Reactive Programming with Kotlin Chapter 7: Transforming Operators

raywenderlich.com 149

The process repeats when O3 is received by switchMap: it switches to the O3 stream
and ignores the previous one (O2). So when O2 emits a value that is transformed to
50, the 50 is not emitted by the overall stream.

In summary, the result of using switchMap is that the target observable only receives
elements from the latest source observable that has emitted. It's ok if things are still
confusing—flatMap and switchMap tend to be some of the hardest operators for
people to understand. But another example will help clear things up!

Add the following example to your project, which is a clone of the previous example
except for changing flatMap to switchMap:

exampleOf("switchMap") {

 val ryan = Student(BehaviorSubject.createDefault(80))
 val charlotte = Student(BehaviorSubject.createDefault(90))

 val student = PublishSubject.create<Student>()

 student
 .switchMap { it.score }
 .subscribe { println(it) }

 student.onNext(ryan)

 ryan.score.onNext(85)

 student.onNext(charlotte)

 ryan.score.onNext(95)

 charlotte.score.onNext(100)
}

Now run the example. You should see the following output:

--- Example of: switchMap---
80
85
90
100

The only thing that's "missing" here compared to the flatMap example is that the
last call to the ryan subject, i.e. ryan.score.onNext(95), isn't being emitted. That's
because the charlotte subject has already emitted and now the switchMap only
emits its values! Since charlotte is a BehaviorSubject it will immediately emit its
latest value, which is 90 in this case.

Reactive Programming with Kotlin Chapter 7: Transforming Operators

raywenderlich.com 150

So you may be wondering when would you use flatMap or switchMap? Probably the
most common use case for using switchMap is with networking operations. You will
go through examples of this later in the book, but for a simple example, imagine that
you’re implementing a type-ahead search. As the user types each letter, e.g. k, o, t, l,
i,n, you’ll want to execute a new search and ignore results from the previous one.
switchMap is how you do that.

Observing events
There may be times when you want to convert an Observable into an Observable of
its events. One typical scenario where this is useful is when you do not have control
over an Observable that has Observable properties, and you want to handle error
events to avoid terminating outer sequences. Don't worry, it will get clearer in a
couple of moments, just hang in there.

materialize operator
The materialize operator can do exactly that. It takes a normal Observable and
turns it into an Observable that emits Notification objects that wrap the event type -
whether it's onNext, onComplete or onError.

Enter this new example into the project:

exampleOf("materialize/dematerialize") {

 val subscriptions = CompositeDisposable()

 val ryan = Student(BehaviorSubject.createDefault(80))
 val charlotte = Student(BehaviorSubject.createDefault(90))

 val student = BehaviorSubject.create<Student>(ryan)
}

This code should look pretty familiar—just like before you're creating two new
Student objects, ryan and charlotte, each of which contain a BehaviorSubject
with an initial value. You're then also creating a BehaviorSubject named student
of type Student with the initial value of ryan.

Reactive Programming with Kotlin Chapter 7: Transforming Operators

raywenderlich.com 151

Similar to the previous two examples, you want to subscribe to the inner score
property of Student. Add this code to the example:

// 1
val studentScore = student
 .switchMap { it.score }
// 2
subscriptions.add(studentScore
 .subscribe {
 println(it)
 })
// 3
ryan.score.onNext(85)

ryan.score.onError(RuntimeException("Error!"))

ryan.score.onNext(90)
// 4
student.onNext(charlotte)

Continuing this example, you:

1. Create a studentScore observable using switchMap to reach into the student
Observable and access its scoreObservable property.

2. Subscribe and print out each score as it’s emitted.

3. Add a score, an error, and another score onto the current student.

4. Add the second student charlotte onto the student Observable. Because you
used switchMap, this will switch to this new student and subscribe to her score.

The error you added is unhandled. As a result, the studentScore observable
terminates, and you get a very gnarly stack trace in the console.

--- Example of: materialize and dematerialize ---
80
85
io.reactivex.exceptions.OnErrorNotImplementedException: Error!

Using the materialize operator, you can wrap each event emitted by an Observable
in a Notification.

Reactive Programming with Kotlin Chapter 7: Transforming Operators

raywenderlich.com 152

In the marble diagram, Int elements emitted by an observable are transformed to
Notification<Int> values when emitted.

Change the studentScore implementation to the following:

val studentScore = student
 .switchMap { it.score.materialize() }

If you check the type of studentScore you’ll see it is now an
Observable<Notification<Int>>. And the Subscription to it now emits
notifications. The error still causes the studentScore to terminate, but not the outer
student Observable.

This way, when you switch to the new student, its score is successfully received and
printed.

--- Example of: materialize/dematerialize ---
OnNextNotification[80]
OnNextNotification[85]
OnErrorNotification[java.lang.RuntimeException: Error!]
OnNextNotification[90]

However, now you’re dealing with Notifications, not the Int elements of the
original Observables.

dematerialize operator
That’s where dematerialize comes in. It will convert a materialized Observable
back into its original form.

Reactive Programming with Kotlin Chapter 7: Transforming Operators

raywenderlich.com 153

In the marble diagram, Notification<Int> values are transformed back into Int
elements.

Change the Subscription in the example to the following:

studentScore
 // 1
 .filter {
 if (it.error != null) {
 println(it.error)
 false
 } else {
 true
 }
 }
 // 2
 .dematerialize { it }
 .subscribe {
 println(it)
 }
 .addTo(subscriptions)

Wrapping things up:

1. You print and filter out any errors.

2. You use dematerialize to return the studentScore Observable to its original
form, emitting scores and stop events, not notifications of scores and stop events.
Since this Observable is emitting Notifications directly you're simply
returning it to dematerialize.

Reactive Programming with Kotlin Chapter 7: Transforming Operators

raywenderlich.com 154

As a result, your student Observable is protected by errors on its inner score
Observable. The error is printed and ryan’s score Observable is terminated, so
adding a new score onto him does nothing.

But when you add charlotte onto the student subject, her score is printed.

--- Example of: materialize/dematerialize ---
80
85
java.lang.RuntimeException: Error!
90

Challenge

Challenge: Sending alpha-numeric characters
In Chapter 5’s challenge, you created a phone number lookup using filtering
operators. You added the code necessary to look up a contact based on a 10-digit
number entered by the user.

Your goal for this challenge is to modify the implementation to be able to take letters
as well, and convert them to their corresponding number based on a standard phone
keypad (abc is 2, def is 3, and so on).

The starter project includes a helper lambda to do the conversion:

val convert: (String) -> Int = { value ->
 val number = try {
 value.toInt()
 } catch (e: NumberFormatException) {
 val keyMap = mapOf(
 "abc" to 2, "def" to 3, "ghi" to 4, "jkl" to 5,
 "mno" to 6, "pqrs" to 7, "tuv" to 8, "wxyz" to 9)

 keyMap.filter { it.key.contains(value.toLowerCase()) }
 .map { it.value }.first()
 }

 if (number < 10) {
 number
 } else {
 // RxJava 2 does not allow null in stream, so return
 // sentinel value
 sentinel
 }
}

Reactive Programming with Kotlin Chapter 7: Transforming Operators

raywenderlich.com 155

Since RxJava 3 doesn't allow null in an Observable stream, we will use a sentinel
value of -1 to mark a number that exceeds 10 digits.

And there are lambdas to format and “dial” the contact if found (really, just print it
out):

val format: (List<Int>) -> String = { inputs ->
 val phone = inputs.map { it.toString() }.toMutableList()
 phone.add(3, "-")
 phone.add(7, "-")
 phone.joinToString("")
}

val dial: (String) -> String = { phone ->
 val contact = contacts[phone]
 if (contact != null) {
 "Dialing $contact ($phone)..."
 } else {
 "Contact not found"
 }
}

These lambda values allow you to move the logic out of the Subscription, where it
really doesn’t belong. So what’s left to do then? You’ll use multiple maps to perform
each transformation along the way. You’ll use skipWhile just like you did in Chapter
5 to skip 0s at the beginning.

The starter project also includes code to test your solution. Just add your solution
right below the comment // Add your code here.

Reactive Programming with Kotlin Chapter 7: Transforming Operators

raywenderlich.com 156

Key points
• Transforming operators let you transform observable items from their original

type to another type or value.

• You can use toList to turn a normal observable into an observable that emits a
single list.

• The map operator will transform individual elements in an observable to some
other value or type.

• You can use flatMap to flatten an observable stream of observables into one
stream of items.

• Similarly, switchMap will also flatten a stream of observables, but this time only
listening to the observable in the source that has most recently emitted.

• You use materialize to make observables emit notifications of events rather than
the events themselves, and dematerialize to transform from the notification type
back to the original type.

Where to go from here?
Just like for the earlier chapters on filtering operators, you'll want to gain experience
using transforming operators in a real Android app project. That's up next!

Reactive Programming with Kotlin Chapter 7: Transforming Operators

raywenderlich.com 157

8Chapter 8: Transforming
Operators in Practice
By Alex Sullivan & Marin Todorov

In the previous chapter, you learned about the real workhorses behind reactive
programming with RxJava: the map and flatMap dynamic duo. Of course, those
aren’t the only two operators you can use to transform Observables, but a program
can rarely do without using those two at least few times. The more experience you
gain with these two, the better (and shorter) your code will be.

You’ve already gotten to play around with transforming operators in the safety of an
Kotlin project, so hopefully you’re ready to take on a real-life project. Like in other
“... in practice” chapters, you will get a starter project, which includes as much non-
Rx code as possible, and you will complete that project by working through a series
of tasks. In the process, you will learn more about map and flatMap, and in which
situations you should use them in your code.

Note: In this chapter, you will need to understand the basics of transforming
operators in RxJava. If you haven’t worked through Chapter 7, “Transforming
Operators,” do that first and then come back to this chapter.

Without further ado, it’s time to get this show started!

raywenderlich.com 158

Getting started with GitFeed
I wonder what the latest activity is on the RxKotlin repository? In this chapter, you’ll
build a project to tell you this exact thing.

The project you are going to work on in this chapter, named GitFeed, displays the
activity of a GitHub repository, such as all the latest likes, forks or comments. To get
started with GitFeed, open the starter project for this chapter.

In the chapter, you’ll use Retrofit, a networking library, and Gson, a JSON
serialization library. Retrofit has a several nifty utilities that allow it to work
particularly well with RxJava.

If you’re not familiar with Retrofit, it’s a simple networking library that allows you
to declare your API in an interface and instantiate that API using Retrofits
magical annotation processor. You'll see more about it in Chapter 18, "Retrofit".

Run the app. You’ll see the following blank screen:

Reactive Programming with Kotlin Chapter 8: Transforming Operators in Practice

raywenderlich.com 159

Start off by opening the app module build.gradle file and looking at the Retrofit and
Gson dependencies:

def retrofit_version = "2.9.0"
implementation "com.squareup.retrofit2:retrofit:
$retrofit_version"
implementation "com.squareup.retrofit2:adapter-
rxjava3:$retrofit_version"
implementation "com.squareup.retrofit2:converter-gson:
$retrofit_version"
implementation "com.squareup.okhttp3:logging-interceptor:4.3.1"

There are four dependencies to note:

1. The actual Retrofit dependency.

2. An adapter that Retrofit provides that makes working with RxJava seamless.

3. A converter that allows you to use Gson.

4. An interceptor from the OkHttp library (on which Retrofit is built) that allows
you to easily log all network output.

Fetching data from the web
Open GithubService.kt. All that’s there now is a companion object create method
that builds up an instance of the GitHubApi Retrofit interface. There’s no actual
networking code in here—yet.

Add the following method in the interface. Make sure the method is defined outside
the companion object.

@GET("repos/ReactiveX/{repo}/events") // 1
fun fetchEvents(@Path("repo") repo: String) // 2
 : Observable<Response<List<AnyDict>>> // 3

Take care to import the Observable from the ReactiveX package and the Response
class from Retrofit.

Reactive Programming with Kotlin Chapter 8: Transforming Operators in Practice

raywenderlich.com 160

If you’re not familiar with Retrofit, the above code can be intimidating. Here’s a
breakdown:

1. Retrofit allows you to use HTTP method type annotations on your methods to
specify what type of HTTP action should be taken (POST, PUT, GET, etc). You also
specify the path to the endpoint in this header. You can even add variables in the
path, which is what {repo} is doing in this example.

2. After the annotation you create the actual method. In the method annotation you
accept the name of the repo you want to fetch events for. By using the @Path
annotation on the repo parameter, you’re telling Retrofit that the passed in value
should replace the {repo} variable you specified in the method annotation.

3. Retrofit integrates very nicely with RxJava. By specifying the return type as an
Observable, Retrofit will create your network call in a way that allows the
result to be propagated out via an Observable. Pretty nifty! The Response type is
a Retrofit type that contains all the information about your network call, like the
status code and any errors. The last interesting thing about this code is the
AnyDict type. AnyDict is a simple typealias for a Map<String, Any>. In typical
usage you’d specify a concrete modal class here instead of a map, but for this app
a simple map is fine.

Note: Normally it makes more sense for a API function to use the Single type
instead of Observable. This is because REST API requests can only respond
once. However this complicates the code later in this chapter, so here we use
Observable for simplicity.

Now, navigate to MainViewModel and add the following line in the empty
fetchEvents method:

val apiResponse = gitHubApi.fetchEvents(repo)

You’re using the fetchEvents method you defined earlier in GitHubService to get
an Observable<Response<List<AnyDict>>>, that is, an Observable of Response
objects, each of which contains a List<AnyDict> representing the list of things that
happened on the provided repo.

Reactive Programming with Kotlin Chapter 8: Transforming Operators in Practice

raywenderlich.com 161

Transforming the response
It’s time to start doing some transformations! And you’ll mix in some filtering
operators too.

Add the following below the apiResponse declaration:

apiResponse.filter { response ->
 (200..300).contains(response.code())
}

You’re using the filter operator to filter out any response whose status code isn’t in
the 200 to 300 range — i.e., any response that isn’t successful. In a production app
you’d want to also handle any error that might occur, but for our purposes ignoring
error codes is fine.

Note: You can read more about HTTP response codes in this Wikipedia article,
List of HTTP status codes https://en.wikipedia.org/wiki/
List_of_HTTP_status_codes.

Now continue the chain by adding the following map call:

.map { response ->
 response.body()!!
}

Remember that map transforms the item emitted by your Observable. In the above
code, you’re transforming the Response object into a List<AnyDict>? by using the
body method on Response. It's safe to use !! here but take care that there are times
when the body of a request is null.

Continue the chain with the following filter call:

.filter { objects ->
 objects.isNotEmpty()
}

You’re filtering out any response that provides an empty list of GitHub actions. Last
but not least, add the following map call:

.map { objects ->
 objects.mapNotNull { Event.fromAnyDict(it) }
}

Reactive Programming with Kotlin Chapter 8: Transforming Operators in Practice

raywenderlich.com 162

In this block, you’re converting the AnyDict objects into Events, which are model
objects that represents GitHub API events. The companion object fromAnyDict
method on Event just converts from an AnyDict into an Event. That code isn’t
particularly interesting so it’s already been written in the starter project.

Note that you’re using the mapNotNull method on List that the Kotlin Standard
library provides because AnyDict could contain null values if the API returns
something we’re not expecting.

Note: In a production app, you’d be able to skip a few of these steps by having
Retrofit directly convert the API response into an Event object. However,
leaving that out helps demonstrate using the map operator and makes the Rx
chain more substantial, which is a great way to learn about these operators.

Processing the response
Finish this chain up with the following code:

// 1
.subscribeOn(Schedulers.io())
// 2
.observeOn(AndroidSchedulers.mainThread())
.subscribeBy(
 // 3
 onNext = { events -> processEvents(events) },
 // 4
 onError = { error ->
 println("Events Error ::: ${error.message}") }
)
// 5
.addTo(disposables)

There’s a bit of magic in this code, so let’s see what it does:

1. You use subscribeOn to make sure the networking code happens off the main
thread.

2. You use observeOn to get the results in subscribeBy on the main thread.

Reactive Programming with Kotlin Chapter 8: Transforming Operators in Practice

raywenderlich.com 163

3. In the onNext lambda you’re passing the events over to the processEvents
method. processEvents takes the first 50 events provided by the API and sends
them over to MainActivity via the eventLiveData object. Just like in the
Combinestagram app from earlier chapters, the MainActivity class observes
the eventLiveData object and updates its list adapter when it gets new items.

4. In the onError block, you’re simply printing out the error. Again, in a production
app you’d want to handle this error in a smart handy way, but for now this will
do.

5. Finally, you’re adding the disposable that is created by calling subscribeBy into
a handy CompositeDisposable object that’s already defined. You’re using the
RxKotlin extension function addTo that lets you add the disposable to the
composite as part of the operator chain.

Build and run the app. You should see a healthy list of GitHub actions for the
RxKotlin repo.

Reactive Programming with Kotlin Chapter 8: Transforming Operators in Practice

raywenderlich.com 164

Persisting objects to disk
It’d be great to be able to persist these GitHub actions to app storage, so you can
view them without a network connection. Ideally, the app should first load events up
from the local database, then show those saved events in the app RecyclerView. In
parallel, the app can fetch new events, show them, and finally save them off to be
loaded next time the user opens the app.

Add the following line to save the actions at the bottom of the processEvents
method in MainViewModel:

EventsStore.saveEvents(events)

EventStore.saveEvents is a simple method that uses Gson to convert a list of
Event instances into JSON and then saves those events to a file. Again, that code is
straightforward enough that it’s not worth spending time on it.

Now that you’re saving events in the processEvents method, you can read the
events and send them off to the Activity before the network provides a fresh set of
events. Add the following to the top of fetchEvents:

eventLiveData.value = EventsStore.readEvents()

EventsStore.readEvents predictably pulls any saved events from the device
storage and returns them.

You’re now serving up a list of events saved to the device. To test this new feature,
first uninstall the app. Then build and run the app again. After the items are pulled
down from the server the events will be saved to the disk. Run the app once more,
and you should see events instantly loaded on screen.

Reactive Programming with Kotlin Chapter 8: Transforming Operators in Practice

raywenderlich.com 165

You may not see any new events, since what was saved could be whatever the API has
to offer at this point in time, but the events should be loaded nice and quick.

Adding a last-modified header
GitFeed is looking pretty good, but there’s still a few issues to iron out. One issue is
that the app is being very wasteful when it comes to using a user’s network data.
Even if the app already has events saved, it requests all of the events every time it
makes a network request.

That’s about to change. You’re going to update the app to only download events that
it hasn’t yet seen. And in the process you’re going to see flatMap used in a real app.
Riveting, right?!

First, head over to GithubService and replace the fetchEvents method with the
following:

@GET("repos/ReactiveX/{repo}/events")
fun fetchEvents(
 @Path("repo") repo: String,
 @Header("If-Modified-Since") lastModified: String
): Observable<Response<List<AnyDict>>>

Notice that fetchEvents now takes a new parameter, a String representing the last
date that the app accessed the API. Instead of being a Path parameter like repo,
lastModified will be added as a header parameter. Specifically, the GitHub API
utilizes the If-Modified-Since header to specify the last time the client tried to
access that resource. Retrofit exposes the @Header annotation to specify that an
argument should be added as a header value. Retrofit truly is an amazing library!

Open up MainViewModel. You should now notice that the line declaring the
apiResponse variable has an error in it. That’s because it’s not passing in the
lastModified value. Add the following code, replacing the apiResponse line:

val lastModified = EventsStore.readLastModified()

val apiResponse = gitHubApi.fetchEvents(repo,
lastModified?.trim() ?: "")

You’re fetching the lastModified value and passing it through to the fetchEvents
method, making sure to trim any whitespace and defaulting to an empty string if
there is no last-modified value. EventsStore.readLastModified hides some
boilerplate around reading a last modified value from a text file you’ll write to next.

Reactive Programming with Kotlin Chapter 8: Transforming Operators in Practice

raywenderlich.com 166

Next up you’ll want to reach into the Response object you get when you make the
fetchEvents call and save the last modified value, which exists as a header object.

You have a few options, here. You could add a doOnNext operator to the Rx chain in
fetchEvents and try to save off the last-modified value there. But that adds
mutation into the Rx chain and muddies the purpose of that individual Observable.

Alternatively, you could make another call to the API and create a new Rx chain to
get that last-modified value. That feels a bit better, but making a whole new API call
is incredibly wasteful.

You may now be wondering: "Why not just use the share operator?"

THAT’S A GREAT IDEA!

Update the apiResponse value one more time, this time utilizing the share operator
to share the API response:

val apiResponse =
 gitHubApi.fetchEvents(repo, lastModified?.trim() ?: "")
 .share()

Now that you have a shared Observable, you can start building up a new Rx chain to
get and save that last modified value.

Add the following code below the previous Rx chain:

apiResponse
 .filter { response ->

Reactive Programming with Kotlin Chapter 8: Transforming Operators in Practice

raywenderlich.com 167

 (200 until 300).contains(response.code())
 }

You’re again filtering out any failed calls.

Now you want to pull the last-modified value out of the Response object. Response
exposes its headers, and the GitHub API utilizes the Last-Modified header to send
down the last-modified date. Unfortunately, it’s nullable and RxJava doesn’t allow
you to emit null values.

Again, there are a few options for how to handle this situation. One would be to
create a wrapper class that itself either contains null or the last-modified value, and
then use the map operator to map from Response to that new wrapper class. There's
an Optional type in Java just for this kind of situation. But that’s a lot of boilerplate
just to get around a possibly nullable value.

Instead, you can use flatMap!

Add the following to the new chain:

.flatMap { response ->
 // 1
 val value = response.headers().get("Last-Modified")
 if (value == null) {
 // 2
 Observable.empty()
 } else {
 // 3
 Observable.just(value)
 }
}

Since flatMap is so tricky, here’s a breakdown of the above code:

1. Pull the last-modified value out of the Response objects headers. This value
could be null.

2. If the value is null, return an empty Observable. If there’s no last-modified
value then there’s nothing left for this Observable to do, so returning an empty
Observable will just finish the chain.

Reactive Programming with Kotlin Chapter 8: Transforming Operators in Practice

raywenderlich.com 168

3. If the value is present, return a new Observable that contains the last-modified
value. This new Observable will now emit that last-modified value and finish.
Perfect!

You’ve now got an Observable that’s emitting the last modified value from the API.
All that’s left is to subscribe to it and save off that value. Add the following code to
finish off the chain:

.subscribeOn(Schedulers.io())

.observeOn(AndroidSchedulers.mainThread())

.subscribeBy(
 onNext = { EventsStore.saveLastModified(it) },
 onError = { error ->
 println("Last Modified Error ::: ${error.message}") }
)
.addTo(disposables)

You’re again using a background scheduler to do the actual work of making the API
call and the main thread scheduler to run the subscribeBy code.

Reactive Programming with Kotlin Chapter 8: Transforming Operators in Practice

raywenderlich.com 169

In the onNext lambda, you’re saving off the last modified value. In the onError
lambda you’re simply logging an error.

Challenge

Challenge: Fetch top repos and spice up the
feed
In this challenge, you will go through one more map/flatMap exercise. You will spice
up GitFeed a little bit: instead of always fetching the latest activity for a given repo
like RxKotlin, you will find the top trending Kotlin repositories and display their
combined activity in the app.

Reactive Programming with Kotlin Chapter 8: Transforming Operators in Practice

raywenderlich.com 170

At first sight, this might look like a lot of work, but in the end you’ll find it’s only
about a dozen lines of code.

Here’s the general structure of the flatMap that you’ll use:

apiResponse
 .flatMap { response: TopResponse ->
 if (response.items == null) {
 Observable.empty()
 } else {
 Observable.fromIterable(
 response.items.map { it["full_name"] as String })
 }
 }

To get you started, here’s the Retrofit code you’ll need to add to GithubService to
fetch the top Kotlin repos and their associated activities:

@GET("repos/{repo}/events")
fun fetchEvents(@Path("repo", encoded = true) repo: String)
 : Observable<Response<List<AnyDict>>>

@GET("search/repositories?q=language:kotlin&per_page=5")
fun fetchTopKotlinRepos(): Observable<TopResponse>

You’ll also want to create a new TopResponse class to handle the top Kotlin
repositories. It should look like this:

class TopResponse(val items: List<AnyDict>?)

You’ll use another flatMap to convert the JSON items value you get in the Response
into a list of repo names using the full_name property of each repo. You’ll want to
check that items is not null, or else return an empty Observable — just as you’ve
done before.

If you’d like to play around some more, you can sort the combined list of events by
date and other interesting ways. What other types of sorting or filtering can you
come up with?

Reactive Programming with Kotlin Chapter 8: Transforming Operators in Practice

raywenderlich.com 171

When you’ve completed the challenge, your results will look something like this:

If you wrapped up this challenge successfully, you can consider yourself a
transformation pro! Oh... if you could only use a map in real life to turn lead into
gold, that would really be something! But data transformation with RxJava comes a
close second — and that’s great, too.

Note: The GitHub JSON API is a great tool to play with. You can grab a bunch
of very interesting data such as trending repositories, public activity, and
more. If you are interested to learn more, visit the API homepage at https://
developer.github.com/v3/.

Reactive Programming with Kotlin Chapter 8: Transforming Operators in Practice

raywenderlich.com 172

Key points
• GitHub has a nice API to play with. It’s a good place to experiment with

transforming operators and Rx in general.

• Retrofit and Gson are a great networking duo for Android. The fact that Retrofit
can return Observables and Singles makes it a good choice for learning Rx.

• Transforming operators can be chained in a flexible way. Experiment without fear!
Sometimes, there’s a better way of chaining them to get the result you want.

• Always handle errors in network requests to prevent crashes. There can be a
number of errors that are out of control. Don’t forget to use the onError case to
prevent the app from crashing with an exception.

• You can easily filter out HTTP Status codes with Rx. Success codes are in the 2xx
range, others status codes are mostly errors.

• Network requests in Android must be subscribed to on a background thread and
observed on the main thread.

• map and flatMap let you transform the data in a server response to something that
the app understands.

Where to go from here?
You’ve now seen filtering and transforming operators in action in an Android app.
There’s one more type of operator that we’ll consider in detail: combining operators.
So, back to IntelliJ in the next chapter to begin your look at how to use combining
operators in RxJava.

Reactive Programming with Kotlin Chapter 8: Transforming Operators in Practice

raywenderlich.com 173

9Chapter 9: Combining
Operators
By Alex Sullivan & Florent Pillet

In earlier chapters, you learned how to create, filter and transform Observable
sequences. RxJava filtering and transformation operators behave much like Kotlin’s
standard collection operators. You got a glimpse into the true power of RxJava with
flatMap, the workhorse operator that lets you perform a lot of tasks with very little
code.

This chapter will show you several different ways to assemble sequences, and how to
combine the data within each sequence. Some operators you’ll work with are very
similar to Kotlin collection functions. They help combine elements from
asynchronous sequences, just as you do with Kotlin lists.

Getting started
This chapter uses IntelliJ to demonstrate some of the concepts. It also uses the
exampleOf method you’ve become so familiar with. Open the starter project and run
the Main.kt file. It’s empty, so you won’t see any output other than a "process
finished" message in the run tab.

RxJava is all about working with and mastering asynchronous sequences. But you’ll
often need to make order out of chaos! There is a lot you can accomplish by
combining Observables.

raywenderlich.com 174

Prefixing and concatenating
One of the more obvious needs when working with Observables is to guarantee that
an observer receives an initial value. There are situations where you’ll need the
“current state” first. Good use cases for this are “current location” and “network
connectivity status.” These are some Observables you’ll want to prefix with the
current state.

Using startWith
The diagram below should make it clear what this operator does:

Add the following code to the main() function:

exampleOf("startWith") {

 val subscriptions = CompositeDisposable()
 // 1
 val missingNumbers = Observable.just(3, 4, 5)
 // 2
 val completeSet =
 missingNumbers.startWithIterable(listOf(1, 2))

 completeSet
 .subscribe { number ->
 println(number)
 }
 .addTo(subscriptions)
}

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 175

The startWithIterable() and startWithItem() operators prefix an Observable
sequence with the given initial value. This value must be of the same type as the
Observable elements. For startWithItem(), this is a single item, while
startWithIterable() can be a list of initial items that will the stream will emit
individually.

Here’s what’s going on in the code above:

1. Create an Observable of numbers.

2. Create an Observable starting with the missing values 1 and 2, then continue
with the original sequence of numbers.

Don’t get fooled by the position of the startWithIterable() operator! Although
you chain it to the missingNumbers stream, the Observable it creates emits the
initial values, followed by the values from the original missingNumbers Observable.

Run the code and look at the run area in the project to confirm this:

--- Example of: startWith ---
1
2
3
4
5

This is a handy tool you’ll use in many situations. It fits in well with the
deterministic nature of RxJava and guarantees observers they’ll get an initial value
right away, and any updates later.

Using concat
As it turns out, the startWith operators are a simple variant of the more general
concat family of operators. Your initial value is a stream of one or more elements, to
which RxJava appends the sequence that startWith chains to. The
Observable.concat static function chains two sequences.

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 176

Have a look:

Add this code to the main() function:

exampleOf("concat") {

 val subscriptions = CompositeDisposable()
 // 1
 val first = Observable.just(1, 2, 3)
 val second = Observable.just(4, 5, 6)
 // 2
 Observable.concat(first, second)
 .subscribe { number ->
 println(number)
 }
 .addTo(subscriptions)
}

Written this way, the concatenation order is more obvious to the untrained reader
than when using one of the startWith operators. Run the example to see elements
from the first stream: 1 2 3, followed by elements of the second stream: 4 5 6.

The Observable.concat static function takes a vararg number of Observables (i.e.
an array). It subscribes to the first Observable of the collection, relays its elements
until it completes, then moves to the next one. The process repeats until it uses all
the Observables in the collection. If at any point an inner Observable emits an error,
the concatenated Observable in turns emits the error and terminates.

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 177

Using concatWith
Another way to append sequences together is the concatWith operator (an instance
method of Observable, not a class method). Add this code to the function:

exampleOf("concatWith") {
 val subscriptions = CompositeDisposable()

 val germanCities =
 Observable.just("Berlin", "Münich", "Frankfurt")
 val spanishCities =
 Observable.just("Madrid", "Barcelona", "Valencia")

 germanCities
 .concatWith(spanishCities)
 .subscribe { number ->
 println(number)
 }
 .addTo(subscriptions)
}

This variant applies to an existing Observable. It waits for the source Observable to
complete, then subscribes to the parameter Observable. Aside from instantiation, it
works just like Observable.concat(). Run the code and check the output; you’ll see
a list of German cities followed by a list of Spanish cities.

Note: Observable sequences are strongly typed. You can only concatenate
sequences whose elements are of the same type!

If you try to concatenate sequences of different types, brace yourself for
compiler errors. The Kotlin compiler knows when one sequence is an
Observable<String> and the other an Observable<Int>, so it will not allow
you to mix them up.

Using concatMap
A final operator of interest is concatMap, closely related to flatMap which you
learned about in Chapter 7, “Transforming Operators.” The lambda you pass to
flatMap returns an Observable sequence which is subscribed to, and the emitted
Observables are all merged. concatMap guarantees that each sequence produced by
the lambda will run to completion before the next is subscribed to. concatMap is
therefore a handy way to guarantee sequential order.

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 178

Try it in the project:

exampleOf("concatMap") {
 val subscriptions = CompositeDisposable()
 // 1
 val countries = Observable.just("Germany", "Spain")
 // 2
 val observable = countries
 .concatMap {
 when (it) {
 "Germany" ->
 Observable.just("Berlin", "Münich", "Frankfurt")
 "Spain" ->
 Observable.just("Madrid", "Barcelona", "Valencia")
 else -> Observable.empty<String>()
 }
 }
 // 3
 observable
 .subscribe { city ->
 println(city)
 }
 .addTo(subscriptions)
}

This example:

1. Creates an Observable of two country names.

2. Uses concatMap to produce another Observable depending on what country
name it receives.

3. Outputs the full sequence of cities for a given country before starting to consider
the next one.

Run the project. You should see this output:

--- Example of: concatMap ---
Berlin
Münich
Frankfurt
Madrid
Barcelona
Valencia

The German cities are all printed out, followed by the cities from Spain.

Now that you know how to append sequences together using the various
concatenating operators, it’s time to move on to combining elements from multiple
sequences.

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 179

Merging
RxJava offers several ways to combine sequences. The easiest to start with is merge.

Using merge
Can you picture what merge does from the diagram below?

Your next task is to add a new exampleOf block, and prepare two subjects to which
you can push values. You learned about Subject in Chapter 3, “Subjects”. Start by
adding this block:

exampleOf("merge") {
 val subscriptions = CompositeDisposable()

 val left = PublishSubject.create<Int>()
 val right = PublishSubject.create<Int>()
}

You’ll now merge left and right together. Add the following to the example:

Observable.merge(left, right)
 .subscribe {
 println(it)

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 180

 }
 .addTo(subscriptions)

Now it’s time to start emitting items. Add the following below the above code, within
the example block:

left.onNext(0)
left.onNext(1)
right.onNext(3)
left.onNext(4)
right.onNext(5)
right.onNext(6)

You emit 0 and 1 from the left subject, then 3 from the right subject, and so on. If
you were using concat here, you’d expect to see the following (assuming you called
onComplete on both of the subjects): 0, 1, 4, 3, 5, 6. But since you’re using merge, you
see the following:

--- Example of: merge ---
0
1
3
4
5
6

Merge emits the items in the order that they come in. Pretty handy, right?

A merge() Observable subscribes to each of the sequences it receives and emits the
elements as soon as they arrive — there’s no predefined order.

You may be wondering when and how merge() completes. Good question! As with
everything in RxJava, the rules are well-defined:

• merge() completes after its source sequence completes and all inner sequences
have completed.

• The order in which the inner sequences complete is irrelevant.

• If any of the sequences emit an error, the merge() Observable immediately relays
the error, then terminates.

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 181

Using mergeWith
Just like for concat and concatWith, there’s also a mergeWith method you can use
instead of the statically resolved Observable.merge method. Add the following
example:

exampleOf("mergeWith") {

 val subscriptions = CompositeDisposable()

 val germanCities = PublishSubject.create<String>()
 val spanishCities = PublishSubject.create<String>()

 germanCities.mergeWith(spanishCities)
 .subscribe {
 println(it)
 }
 .addTo(subscriptions)
}

You’re again using city names, this time via the mergeWith operator.

Now add the following:

germanCities.onNext("Frankfurt")
germanCities.onNext("Berlin")
spanishCities.onNext("Madrid")
germanCities.onNext("Münich")
spanishCities.onNext("Barcelona")
spanishCities.onNext("Valencia")

Just like before you’re sending cities through on the different subjects in a mixed
manner.

Run the project and you should see the following output:

--- Example of: mergeWith ---
Frankfurt
Berlin
Madrid
Münich
Barcelona
Valencia

The cities are received in the same order they are emitted by the merged subjects.

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 182

Combining elements

Using combineLatest
An essential operator in RxJava is the combineLatest operator. It combines values
from several sequences:

Every time one of the inner (combined) sequences emits a value, it calls a lambda
you provide. You receive the last value from each of the inner sequences. This has
many concrete applications, such as observing several text fields at once and
combining their values, watching the status of multiple sources, and so on.

Does this sound complicated? It’s actually quite simple! You’ll break it down by
working through an example.

First, create two subjects to push values to. Add this example to your main()
function:

exampleOf("combineLatest") {

 val subscriptions = CompositeDisposable()

 val left = PublishSubject.create<String>()
 val right = PublishSubject.create<String>()
}

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 183

Next, create an Observable that combines the latest value from both sources. Don’t
worry; you’ll understand how the code works once you’ve finished adding everything
together:

Observables
 .combineLatest(left, right) { leftString, rightString ->
 "$leftString $rightString"
}.subscribe {
 println(it)
}.addTo(subscriptions)

Now add the following code to start pushing values to the Observables:

left.onNext("Hello")
right.onNext("World")
left.onNext("It’s nice to")
right.onNext("be here!")
left.onNext("Actually, it’s super great to")

Run the complete example from above. You’ll see four sentences show up in the
output of the project:

--- Example of: combineLatest ---
Hello World
It’s nice to World
It’s nice to be here!
Actually, it’s super great to be here!

A few notable points about this example:

1. You combine Observables using a lambda receiving the latest value of each
sequence as arguments. In this example, the combination is the concatenated
string of both left and right values. It could be anything else that you need, as the
type of the elements emitted by the combined Observable is the return type of
the lambda.

2. In practice, this means you can combine sequences of heterogeneous types.
combineLatest is the only core operator that permits using Observables of
differing types.

3. Nothing happens until each of the combined Observables emits one value. After
that, each time one of the combined observables emits a new value, the lambda
receives the latest value of each of the Observables and produces its element.

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 184

Note: Remember that combineLatest waits for all its Observables to emit one
element before starting to call your lambda. It’s a frequent source of
confusion! It's also a good opportunity to use the startWith operator to
provide an initial value for the sequences, which could take time to update.
Like the map operator covered in Chapter 7, “Transforming Operators”,
combineLatest creates an Observable whose type is the lambda return type.
You can use this to switch to a new type alongside a chain of operators!

A common pattern is to combine values to a tuple then pass them down the chain.
For example, you’ll often want to combine values and then call filter on them like
so:

val observable = Observables
 .combineLatest(left, right) {
 leftString: String, rightString: String ->

 leftString to rightString
 }
 .filter { !it.first.isEmpty() }

One other interesting thing here is that you’re actually using the
Observables.combineLatest method exposed by RxKotlin here, not the one
exposed by RxJava. RxKotlin provides several convenience methods that make them
easier to call from Kotlin. For example, if you didn’t have RxKotlin, the
combineLatest call from the example would instead have to look like this:

Observable.combineLatest<String, String, String>(left, right,
 BiFunction { leftString, rightString ->
 "$leftString $rightString"
})

There are several variants in the combineLatest family of operators. They take
between two and eight Observable sequences as parameters. As mentioned above,
sequences don’t need to have the same element type.

Note: Last but not least, combineLatest completes only when the last of its
inner sequences completes. Before that, it keeps sending combined values. If
some sequences terminate, it uses the last value emitted to combine with new
values from other sequences.

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 185

Using zip
Another combination operator is the zip family of operators. Like the
combineLatest family, it comes in several variants:

Add a new example:

exampleOf("zip") {

 val subscriptions = CompositeDisposable()

 val left = PublishSubject.create<String>()
 val right = PublishSubject.create<String>()
}

Then create a zipped Observable of both sources. Note that you’re again using the
RxKotlin version of the zip method. You can tell because it’s namespaced with
Observables rather than Observable:

Observables.zip(left, right) { weather, city ->
 "It’s $weather in $city"
}.subscribe {
 println(it)
}.addTo(subscriptions)

Finally, feed some values into your subjects:

left.onNext("sunny")
right.onNext("Lisbon")

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 186

left.onNext("cloudy")
right.onNext("Copenhagen")
left.onNext("cloudy")
right.onNext("London")
left.onNext("sunny")
right.onNext("Madrid")
right.onNext("Vienna")

Run the code and check the output:

--- Example of: zip ---
It’s sunny in Lisbon
It’s cloudy in Copenhagen
It’s cloudy in London
It’s sunny in Madrid

Here’s what zip did for you:

• Subscribed to the Observables you provided.

• Waited for each to emit a new value.

• Called your lambda with both new values.

Did you notice how Vienna didn’t show up in the output? Why is that?

The explanation lies in the way zip operators work. They wait until each of the inner
Observables emits a new value. If one of them completes, zip completes as well. It
doesn’t wait until all of the inner Observables are done! This is called indexed
sequencing, which is a way to walk though sequences in lockstep.

Note: Kotlin also has a zip collection operator. It creates a new collection of
pairs with items from both collections.

Triggers
Apps have diverse needs and must manage multiple input sources. You’ll often need
to accept input from several Observables at once. Some will simply trigger actions in
your code, while others will provide data. RxJava has you covered with powerful
operators that will make your life easier. Well, your coding life at least!

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 187

Using withLatestFrom
You’ll first look at withLatestFrom. Often overlooked by beginners, it’s a useful
companion tool when dealing with user interfaces, among other things.

Add this code to the main() function. You may need to import withLatestFrom
using io.reactivex.rxkotlin.withLatestFrom:

exampleOf("withLatestFrom") {
 val subscriptions = CompositeDisposable()

 // 1
 val button = PublishSubject.create<Unit>()
 val editText = PublishSubject.create<String>()

 // 2
 button.withLatestFrom(editText) { _: Unit, value: String ->
 value
 }.subscribe {
 println(it)
 }.addTo(subscriptions)

 // 3
 editText.onNext("Par")
 editText.onNext("Pari")
 editText.onNext("Paris")
 button.onNext(Unit)
 button.onNext(Unit)
}

This example simulates an Android EditText and Button.

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 188

Run this example and you’ll see this output:

--- Example of: withLatestFrom ---
Paris
Paris

Let’s go through what you just did:

1. Create two subjects simulating button presses and edit text input. Since the
button carries no real data, you can use Unit as an element type.

2. When button emits a value, ignore it but instead emit the latest value received
from the simulated EditText. The Button is acting as a trigger for getting values
from the EditText.

3. Simulate successive inputs to the EditText, with values that are then emitted by
the two successive button presses.

Simple and straightforward! withLatestFrom is useful in all situations where you
want the current (latest) value emitted from an Observable, but only when a
particular trigger occurs.

Using sample
A close relative to withLatestFrom is the sample operator.

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 189

It does nearly the same thing with just one variation: each time the trigger
Observable emits a value, sample emits the latest value from the “other” Observable,
but only if it arrived since the last “tick”. If no new data arrived, sample won’t emit
anything.

Try it in the project. Duplicate the previous example of withLatestFrom, using
sample instead:

exampleOf("sample") {
 val subscriptions = CompositeDisposable()

 val button = PublishSubject.create<Unit>()
 val editText = PublishSubject.create<String>()

 editText.sample(button)
 .subscribe {
 println(it)
 }.addTo(subscriptions)

 editText.onNext("Par")
 editText.onNext("Pari")
 editText.onNext("Paris")
 button.onNext(Unit)
 button.onNext(Unit)
}

Run the project.

Notice that "Paris" now prints only once! This is because no new value was emitted
by the text field between your two fake button presses. You could have achieved the
same behavior by adding a distinctUntilChanged to the withLatestFrom
Observable, but the smallest possible operator chains are the Zen of Rx™.

Note: Don’t forget that withLatestFrom takes the data observable as a
parameter, while sample takes the trigger observable as a parameter. This can
easily be a source of mistakes — so be careful!

Waiting for triggers is a great help when doing UI work. In some cases your “trigger”
may come in the form of a sequence of observables (I know, it’s Inception once again).
Or maybe you want to wait on a pair of observables and only keep one. No matter —
RxJava has operators for this!

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 190

Switches

Using amb
RxJava comes with one main so-called “switching” operator: amb. It allows you to
produce an Observable sequence by switching between the events of the combined
source sequences. This allows you to decide which sequence’s events the subscriber
will receive at runtime.

Think of “amb” as in “ambiguous”.

Add this code to the project:

exampleOf("amb") {

 val subscriptions = CompositeDisposable()

 val left = PublishSubject.create<String>()
 val right = PublishSubject.create<String>()

 // 1
 left.ambWith(right)
 .subscribe {
 println(it)

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 191

 }
 .addTo(subscriptions)

 // 2
 left.onNext("Lisbon")
 right.onNext("Copenhagen")
 left.onNext("London")
 left.onNext("Madrid")
 right.onNext("Vienna")
}

If you run the project, you’ll notice that the output only shows items from the left
subject. Here’s what you did:

1. Create an Observable using ambWith which resolves ambiguity between left and
right.

2. Have both Observables send data.

The ambWith operator combines the left and right Observables. It waits for any of
them to emit an element, then unsubscribes subscriptions from the other one. After
that, it only relays elements from the first active Observable. It really does draw its
name from the term ambiguous: at first, you don’t know which sequence you’re
interested in, and want to decide only when one fires.

This operator is often overlooked. It has a few select practical applications, like
connecting to redundant servers and sticking with the one that responds first.

Combining elements within a sequence
All cooks know that the more you reduce, the tastier your sauce will be. Although not
aimed at chefs, RxJava has the tools to reduce your sauce to its most flavorful
components!

Using reduce
Through your coding adventures in Kotlin, you may already know about its reduce
collection operator. If you don’t, here’s a great opportunity to learn about it, as this
knowledge applies to pure Kotlin collections as well.

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 192

To get started, add this code to the project:

exampleOf("reduce") {

 val subscriptions = CompositeDisposable()

 val source = Observable.just(1, 3, 5, 7, 9)
 source
 .reduce(0) { a, b -> a + b }
 .subscribeBy(onSuccess = {
 println(it)
 })
 .addTo(subscriptions)
}

This is much like what you’d do with Kotlin collections, but instead with Observable
sequences. The code above uses a lambda to add two items together. Run the code
and see this reflected in the result:

--- Example of: reduce ---
25

The reduce operator “accumulates” a summary value. It starts with the initial value
you provide (in this example, you start with 0). Each time the source Observable
emits an item, reduce calls your lambda to produce a new summary by combining
the current value with the newly emitted value per the lambda. When the source
Observable completes, reduce emits the summary value, then completes.

Note: reduce produces its summary (accumulated) value only when the
source Observable completes. Applying this operator to sequences that never
complete won’t emit anything. This is a frequent source of confusion and
hidden problems.

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 193

Using scan
A close relative to reduce is the scan operator. Can you spot the difference in the
diagram below, comparing to the last one above?

Add some code to the project to experiment:

exampleOf("scan") {

 val subscriptions = CompositeDisposable()

 val source = Observable.just(1, 3, 5, 7, 9)

 source
 .scan(0) { a, b -> a + b }
 .subscribe {
 println(it)
 }
 .addTo(subscriptions)
}

Now run it and look at the output:

--- Example of: scan ---
1
4
9
16
25

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 194

You get one output value per input value. As you may have guessed, this value is the
running total accumulated by the lambda. Each time the source Observable emits an
element, scan invokes your lambda. It passes the running value along with the new
element, and the lambda returns the new accumulated value. Like reduce, the
resulting Observable type is the lambda return type.

The range of use cases for scan is quite large; you can use it to compute running
totals, statistics, states and so on. Encapsulating state information within a scan
Observable is a good idea; you won’t need to use local variables, and it goes away
when the source Observable completes.

Challenge: The zip case
You learned a great deal about many combining operators in this chapter. But there
is so much more to learn (and more fun to be had) about sequence combination!

You’ve learned about the zip family of operators that let you go through sequences
in lockstep — it’s time to start using them.

Take the code from the scan example above and improve it so as to display both the
current value and the running total at the same time.

There are several ways to do this — and not necessarily with zip. Bonus points if you
can find more than one method.

The solutions to this challenge, found in the project files for this chapter, show two
possible implementations. Can you find them both?

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 195

Key points
• You can prepend or append Observable sequences to one another using operators

like startWith, concatWith, and concatMap.

• The merge family of operators lets you merge sequences together so that items are
received in the order that they are emitted.

• The combineLatest operator lets you combine heterogeneous observables into a
type that gets emitted each time one of the inner observables emits.

• The zip operators emit only when each of the inner Observables have all emitted
a new value, called indexed sequencing; the overall Observable completes when
any of the inner Observables complete.

• In combined sequences, if an inner sequence emits an error, then generally the
overall Observable emits the error and the sequence terminates.

• Triggering operators like withLatestFrom and sample let you limit the emitting
of elements to only when certain triggering events occur.

• The amb or "ambiguous" operator lets you switch between multiple Observables by
sticking to the first one that is active.

• The reduce and scan operators let you combine the elements in a sequence based
on an input lambda; reduce only emits the final value when it receives the
complete event, whereas scan emits intermediate accumulated values.

Where to go from here?
Having been introduced to combining operators, in the next chapter you’ll see them
in action in an Android app. The app project will retrieve data from a NASA API that
you will combine in various ways. Despite being Earth-based data, it’s sure to be out
of this world!

Reactive Programming with Kotlin Chapter 9: Combining Operators

raywenderlich.com 196

10Chapter 10: Combining
Operators in Practice
By Alex Sullivan & Florent Pillet

In the previous chapter, you learned about combining operators and worked through
increasingly more detailed exercises on some rather mind-bending concepts. Some
operators may have left you wondering about the real-world application of these
reactive concepts.

In this “... in practice” chapter, you’ll have the opportunity to try some of the most
powerful operators. You’ll learn how to solve problems similar to those you’ll face in
your own applications.

Note: This chapter assumes you’ve already worked your way through Chapter
9, “Combining Operators,” and are familiar with both filtering (Chapter 5) and
transforming operators (Chapter 7). At this point in the book, it is important
that you are familiar with these concepts, so make sure to review these
chapters if necessary!

You’ll start with a new project for this chapter and build a small application with an
ambitious name: Our Planet.

Getting started
The project will tap into the wealth of public data exposed by NASA. You’ll target
EONET, NASA’s Earth Observatory Natural Event Tracker. It is a near real-time,
curated repository of natural events of all types occurring on the planet. Check out
https://eonet.sci.gsfc.nasa.gov/ to learn more!

raywenderlich.com 197

To get started with Our Planet, open the starter project for this chapter in Android
Studio 4.0 or newer.

Build and run the starter application; the default screen is empty.

Your tasks with this application are as follows:

• Gather the event categories from the EONET public API https://
eonet.sci.gsfc.nasa.gov/docs/v2.1 and display them on the first screen.

• Download events and show a count for each category.

• When user taps a category, display a list of events for this category.

You’ll learn how useful combineLatest can be in several situations, but you’ll also
exercise concat, merge, and scan. Of course, you’ll also rely on operators you are
already familiar with, like map and flatMap.

Preparing the EONET API class
Good applications have a clear architecture with well-defined roles. The code that
talks with the EONET API shouldn’t live in any of the activities. Instead, it will live in
an object that you’ll reference from a ViewModel.

Expand the model package in the OurPlanet project; you’ll find a Retrofit
interface ready for the app to utilize in EONETApi.kt. That interface will be used
by the EONET object. You’ll also find EOCategoriesResponse, EOCategory and
EOEvent classes that map to the content delivered by the API.

Open the EONET object; it’s already fleshed out with the basic structure of the class,
including the API URL, endpoints, and some date formats you’ll use later on.

Fetching categories
Now open the EONETApi file and add a fetchCategories method to the bottom of
the class, after the companion object block.

@GET(EONET.CATEGORIES_ENDPOINT)
fun fetchCategories(): Observable<EOCategoriesResponse>

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 198

fetchCategories will fetch the different event categories from the EONET API. It
returns an Observable<EOCategoriesResponse>. EOCategoriesResponse is a
simple wrapper class for a list of categories, which are represented here via the
AnyMap typealias.

Just like in previous projects, you’re using AnyMap to represent a simple Map<String,
Any> for objects returned from the network. You’ll deserialize that AnyMap later on.

Next, open the EONET object and add the following method:

fun fetchCategories(): Observable<EOCategoriesResponse> {
 return eonet.fetchCategories()
}

This exposes the fetchCategories method you just created to other consumers of
the EONET object.

Updating the CategoriesViewModel
Open CategoriesViewModel and add the following to the empty startDownload
method:

// 1
EONET.fetchCategories()
 // 2
 .map { response ->
 val categories = response.categories
 categories.mapNotNull { EOCategory.fromJson(it) }
 }
 // 3
 .share()
 // 4
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 // 5
 .subscribe {
 categoriesLiveData.value = it
 }
 .addTo(disposables)

In this block you’re doing the following:

1. Use the new fetchCategories method you added above to query the EONET API
for event categories

2. Use the map operator to turn the response object you received from the previous
call into a List<EOCategory>

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 199

3. Use the share operator so you can re-use this Observable later on.

4. Use the subscribeOn and observeOn methods to make sure you’re querying the
network off the main thread and observing the results on the main thread (you’ll
learn more about these operators in Chapter 13: "Intro to Schedulers")

5. Finally, subscribe to the Observable and update the categoriesLiveData with
the data coming through.8Run the app. You should see a list of events, each of
which show as having zero events listed.

Add events into the mix
Now that you’ve got the categories loading, it’s time to update the app to actually
display the number of events in the category.

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 200

Add a new EOEventsResponse class in the model package:

class EOEventsResponse(val events: List<AnyMap>)

EOEventsResponse will model the top level response you get back from the EONET
API.

Open the EONETApi class and add the following method below the fetchCategories
method:

@GET(EONET.EVENTS_ENDPOINT)
fun fetchEvents(
 @Query("days") forLastDays: Int,
 @Query("status") status: String
): Observable<EOEventsResponse>

fetchEvents queries the EONET API for events that have happened within a certain
number of days, and that have a status of either opened or closed.

Now that you have your Retrofit method set up, it’s time to expose it in the EONET
object. But before you expose the fetchEvents method publicly, you’ll write a small
helper method to help ease the process of returning both open and closed events.
Open EONET and add the following events method:

// 1
private fun events(forLastDays: Int, closed: Boolean):
 Observable<List<EOEvent>> {
 // 2
 val status = if (closed) "closed" else "open"
 // 3
 return EONET.eonet.fetchEvents(forLastDays, status)
 //4
 .map { response ->
 val events = response.events
 events.mapNotNull { EOEvent.fromJson(it) }
 }
}

The events helper method works as follows:

1. It takes two parameters. The first parameter represents how many days back you
want to go when fetching events from the EONET API. The second is a Boolean
representing whether you want to look up closed or open events.

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 201

2. You’re transforming the Boolean closed variable into a String that the EONET
API can understand.

3. You’re then using the fetchEvents method you just wrote to fetch events for a
set number of days back and with the status that you just determined.

4. You’re then taking the response from that network call and using the map
operator to transform it into a List<EOEvent>, similar to what you did earlier
with the EOCategory.

Now that you have the helper method out of the way, you can create the public
fetchEvents method that will expose the events API to a consumer.

Add the following empty method above the events method:

fun fetchEvents(forLastDays: Int = 360):
Observable<List<EOEvent>> {

}

You’re supplying a default number of days to make consumption of this API easier.

When you fetch events from the EONET API, you want to fetch both the closed and
open events, so you get the full picture.

Add the following code at the top of the empty fetchEvents method:

val openEvents = events(forLastDays, false)
val closedEvents = events(forLastDays, true)

You’re using the helper events method you just implemented to create two new
Observables - one for the closed events and one for the open events.

Now that you have two Observables you want to combine them together. Funny how
that would be the case in this chapter! You’re going to use a concat method to
combine openEvents and closedEvents. Add the following code below the two
Observable declarations:

return openEvents.concatWith(closedEvents)

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 202

Here’s what’s going on in the code you just added:

concatWith combines the openEvents Observable with the closedEvents
Observable by first emitting all the events from the openEvents Observable and then
following up with the events from the closedEvents Observable. If either of them
emit an error, the whole Observable will terminate and emit that error. This is an OK
solution for now, but you’ll improve on it later on.

Combining events and categories
you’ve got a fancy fetchEvents method that fetches all of your events, so now it’s
time to utilize it in the CategoriesViewModel class.

You’re going to update the startDownload method to combine the categories you’re
currently fetching with the events associated with each category.

First off, you’re going to stop subscribing to the Observable produced by the
fetchCategories method and instead save it off in a variable named eoCategories,
making sure to remove all the operators after the map operator. You’re new trimmed
down method should look like this:

fun startDownload() {
 val eoCategories = EONET.fetchCategories()

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 203

 .map { response ->
 val categories = response.categories
 categories.mapNotNull { EOCategory.fromJson(it) }
 }
}

Now you’re going to create a new Observable utilizing the fetchEvents method you
just added. Add the following to the bottom of the startDownload method:

val downloadedEvents = EONET.fetchEvents()

You’re using the default number of days to create your downloadedEvents
Observable.

Next you’re going to use another combining trick you learned about in the last
chapter to combine downloadedEvents and eoCategories: the combineLatest
method. Add the following to the startDownload method below the
downloadedEvents declaration:

// 1
val updatedCategories = Observables
 .combineLatest(eoCategories, downloadedEvents)
 { categoriesResponse, eventsResponse ->
 // 2
 categoriesResponse.map { category ->
 // 3
 val cat = category.copy()
 // 4
 cat.events.addAll(eventsResponse.filter {
 it.categories.contains(category.id)
 })
 // 5
 cat
 }
 }

Wow, that’s a hearty block of code! Here’s a breakdown:

1. You’re using the combineLatest method to combine the latest emission from
eoCategories with the latest emission from downloadedEvents. Take a look at
the diagram below this explanation for some visual help on making sense of
combineLatest.

2. combineLatest takes a function that receives one item from the first Observable
and one item from the second Observable as an argument. So in this lambda
block you have categoriesResponse, which is a List<Category>, and
eventsResponse, which is a List<EOEvent>.

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 204

You’re using the Kotlin standard library map method on the categoriesResponse
list to transform each element.

3. Within the map lambda, you’re creating a new copy of the current EOCategory
you’re looping through.

4. You’re then adding every event from the eventsResponse list that has an
associated category with the same id as the current EOCategory into the new cat
copy. In other words, you’re adding every event that belongs to category to your
copy cat.

5. Finally, you’re using Kotlin lambda implicit returns to return the new category
copy. Remember though that the cat line at the bottom of the block is the return
value for the categoriesResponse.map line, which is itself the return value for
the combineLatest lambda. There’s some lambda inception going on here!

9

Last but not least, you’re going to combine the Observable of empty categories, i.e.
eoCategories, with the new Observable of populated categories,
updatedCategories. To do this, you'll use the concatWith operator. Finally, you will
subscribe to the resulting Observable:

eoCategories.concatWith(updatedCategories)

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 205

 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe({
 categoriesLiveData.value = it
 }, {
 Log.e("CategoriesViewModel", it.localizedMessage)
 })
 .addTo(disposables)

Just like before you’re using subscribeOn and observeOn to handle your threading
needs. By using concatWith to combine the empty and populated categories, you’ll
be able to quickly show some data, the empty categories, while downloading new
events to then combine with the categories.

There’s one more small update to make before you can run the app. Open the
CategoriesAdapter class and add the following line to the top of the
updateCategories method:

this.categories.clear()

This will clear out the existing list of categories when you get a new list. Build and
run the app.

You should see the categories listed and quickly updated to show the real count of
events associated with that category.

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 206

Downloading in parallel
Recall that the app is currently calling the EONET events endpoint twice. Once for
closed events and once for open events. Since you’re using the concat operator, it
first downloads the open events and then the closed events.

Wouldn’t it be great if you could parallelize that and download both events at once?
With RxJava, not only can you achieve that parallelization, but you can do it without
touching any of your UI code.

The EONET API allows you to download events in two ways. The first approach,
which the app is currently taking, is to download all of the events at once. The
second approach is to download events by category.

You’ll refactor the app to download events by category rather than all at once. It’ll be
more complicated than the current approach, but you’re already an RxJava ninja, so
you’ll get through it fine!

First, open the EONETApi class and update the fetchEvents method to take in its
GET end point as a parameter:

@GET("{endpoint}")
fun fetchEvents(
 @Path("endpoint", encoded = true) endpoint: String,
 @Query("days") forLastDays: Int,
 @Query("status") status: String
): Observable<EOEventsResponse>

Retrofit makes this easy, since you can use the @Path annotation to update the
endpoint in the @GET annotation.

Next, update the private events method in the EONET object to utilize the changed
fetchEvents method:

private fun events(
 forLastDays: Int,
 closed: Boolean,
 endpoint: String
): Observable<List<EOEvent>> {
 val status = if (closed) "closed" else "open"
 return EONET.eonet.fetchEvents(endpoint, forLastDays, status)
 .map { response ->
 val events = response.events
 events.mapNotNull { EOEvent.fromJson(it) }
 }
}

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 207

You’re now passing in an endpoint, which is a String, into the events helper
method. You’re then passing the endpoint through to the fetchEvents method you
updated earlier.

Now update the public fetchEvents method in the EONET object to take in an
EOCategory and pass its endpoint value into the open and closed events
Observables:

fun fetchEvents(category: EOCategory, forLastDays: Int = 360):
 Observable<List<EOEvent>> {
 val openEvents =
 EONET.events(forLastDays, false, category.endpoint)
 val closedEvents =
 EONET.events(forLastDays, true, category.endpoint)

 return Observable.concat(openEvents, closedEvents)
}

Since you want the two network calls to be made in parallel, you should use the
Observable.merge method to merge the two observables together instead of
concat. Update the return statement of the fetchEvents method to use merge:

return Observable.merge(openEvents, closedEvents)

Incrementally updating events
You’ve done a lot of great work to parallelize downloading closed and open events,
but there’s still a bit farther to go.

Open CategoriesViewModel. In the startDownload method you’ll notice that
there’s an error on the line declaring downloadedEvents. That’s because you’re not
passing in an EOCategory to the fetchEvents method.

You may not have an instance of EOCategory lying around, but you’ve got the next
best thing. The eoCategories Observable defined at the top of the startDownload
method emits lists of EOCategory objects. All you need to do is tie into the
eoCategories Observable to get your EOCategory instance!

Replace the original downloadedEvents Observable with the following two
Observables:

// 1
val eventsObservables = eoCategories.flatMap { categories ->
 // 2
 val categoryEventObservables = categories.map { category ->
 EONET.fetchEvents(category)

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 208

 }
 // 3
 Observable.fromIterable(categoryEventObservables)
}
// 4
val downloadedEvents = Observable.merge(eventsObservables, 2)

That’s a dense chunk of code. Here’s a breakdown:

1. You’re calling flatMap on the eoCategories Observable. eoCategories emits
values of type List<EOCategory>, so categories here is a list of categories.
Remember that flatMap expects you to return an Observable from its lambda.

2. You’re then using the Kotlin standard library map method and the
EONET.fetchEvents method to transform each EOCategory in categories into
an Observable<List<EOEvent>>. That means the type of
categoryEventObservables is actually List<Observable<List<EOEvent>>>.
That’s an intimidating type signature!

3. Next up you’re using Observable.fromIterable to transform your
List<Observable<List<EOEvent>>> into an
Observable<Observable<List<EOEvent>>>. This is the ultimate type of
eventsObservables. It’s hard to reason about Observables inside Observables,
but luckily you can flatten things out...

4. By using the merge operator! merge has a plethora of helpful versions. Rather
than providing merge with a set number of Observables, you can instead give it
an Observable that emits Observables and it will combine them all together.
Merge them, if you will :].

Merge also allows you to pass in a maximum number of concurrent subscriptions
to those Observables. You don’t want your app to make too many network
requests at once, so by passing in an upper limit on the number of Observables
being subscribed to you can help lessen the load.

The end result of the above code is that you get an Observable<List<EOEvent>>
just like before, except now each category that comes through the eoCategories
Observable triggers a call to get that category’s associated EOEvent objects.

Head back to the EONET object and add the following function at the bottom of the
object:

fun filterEventsForCategory(
 events: List<EOEvent>,
 category: EOCategory

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 209

): List<EOEvent> {
 // 1
 return events.filter { event ->
 // 2
 event.categories.contains(category.id) &&
 // 3
 !category.events.map { it.id }.contains(event.id)
 // 4
 }.sortedWith(EOEvent.compareByDates)
}

The above method is used to get a list of EOEvent objects that are associated with,
but not already added to, an EOCategory. Here’s a breakdown:

1. Call the Kotlin standard library filter operator on the passed in list of events.
The filter lambda expects either true or false to determine if it should
include the object in the list it returns.

2. Check if the list of category ids on the event contains the id of the category
passed into this filterEventsForCategory function.

3. Also check to see if the passed in category already contains the event that filter
is currently operating on. If the event belongs to the passed in category, and that
category doesn’t already contain the event, return true so the filter will include
this event in its return list.

4. Last but not least, sort the resulting List<EOEvent> based off their dates.

Back in the startDownload method in the CategoriesViewModel, replace the
updatedCategories declaration with the following:

// 1
val updatedCategories = eoCategories.flatMap { categories ->
 // 2
 downloadedEvents.scan(categories) { updated, events ->
 // 3
 updated.map { category ->
 val eventsForCategory =
 EONET.filterEventsForCategory(events, category)

 if (!eventsForCategory.isEmpty()) {
 val cat = category.copy()
 cat.events.addAll(eventsForCategory.filter {
 it.closeDate != null
 })
 cat
 } else {
 category
 }

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 210

 }
 }
}

Broken down, the above code:

1. Again calls flatMap on the eoCategories Observable. Since eoCategories
emits objects of type List<EOCategory>, the categories argument to the
flatMap lambda is also of type List<EOCategory>.

2. Then use the scan operator on the downloadedEvents Observable to
progressively build up fully populated instances of EOCategory. Recall that the
scan operator takes in an initial value and then runs a function you provide every
time an item is emitted from the Observable, updating that initial value you
provided as it goes. In this case the initial value that you provide is a
List<EOCategory>. Each EOCategory in the list, however, has no associated
EOEvents.

3. In the scan operators accumulator function, you’re mapping through the list of
EOCategorys and creating a new list of events that are associated with that
category, using the filterEventsForCategory method you wrote earlier. You’re
then creating a copy of the category and adding all of its associated events to its
own internal list of events and returning that copy. If there are no new events for
the category, you’re just returning the original category without modifying its
events.

By using the scan combining operator, you’re able to slowly but surely get a fully
populated list of EOCategory objects without waiting for every network call to finish.

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 211

Phew! That was a lot of very complex Rx code.

Build and run the app now. You’ll see that the counts for the categories increase as
new network calls are made to populate each category.

Click into one of the categories and you’ll see a screen that shows your progress.

Interacting with the slider doesn’t do anything. Yet. You’ll change that next.

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 212

Wiring up the days seek bar
Open the EventsActivity class and add the following at the top of the class:

private val days = BehaviorSubject.createDefault(360)

private val subscriptions = CompositeDisposable()

You’ll be using a BehaviorSubject to represent the number of days currently
selected in the days slider.

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 213

Next add the following to the bottom of the onCreate function:

seekBar.setOnSeekBarChangeListener(
 object : SeekBar.OnSeekBarChangeListener {
 override fun onProgressChanged(
 seekBar: SeekBar?, progress: Int, fromUser: Boolean) {
 days.onNext(progress)
 }

 override fun onStartTrackingTouch(seekBar: SeekBar?) {}
 override fun onStopTrackingTouch(seekBar: SeekBar?) {}
 })

You’re using an OnSeekBarChangeListener to forward the current seek bar position
to the days BehaviorSubject. Now whenever you scroll, the subject days will emit
the new seekbar progress.

Next add the following below the OnSeekBarChangeListener code:

val allEvents = intent
 .getParcelableExtra<EOCategory>(CATEGORY_KEY).events
val eventsObservable = Observable.just(allEvents)

You’re retrieving the EOCategory from the Activity intent and creating a new
eventsObservable from the category events.

Now it’s time for the Rx magic. Add the following below the eventsObservable
declaration:

// 1
Observables
 .combineLatest(days, eventsObservable) { days, events ->
 // 2
 val maxInterval = (days.toLong() * 24L * 3600000L)
 // 3
 events.filter { event ->
 val date = event.closeDate
 if (date != null) {
 abs(date.time - Date().time) < maxInterval
 } else {
 true
 }
 }
 }
 // 4
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe {
 adapter.updateEvents(it)
 }
 .addTo(subscriptions)

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 214

Here’s a breakdown of the code:

1. You’re using the combineLatest factory method to combine the days subject
with the eventsObservable. Recall that combineLatest combines the last
emitted value from each passed in Observable. Since eventsObservable only
emits one item, that means that every time the days subject emits, its value will
be combined with the full list of events.

2. Now you’re taking the number of days emitted by the days subject and
converting it into a number of milliseconds. Specifically, you’re multiplying the
number of days by 24 hours and then the number of hours by 3,600,000
milliseconds.

3. You’re then filtering out any events that haven’t happened within the time period
entered on the seek bar.

4. Last but not least, you’re applying the appropriate schedulers and sending the
events that passed the filter to the RecyclerView adapter for this page.

Now add the following below the code you just wrote:

days
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe {
 daysTextView.text =
 String.format(getString(R.string.last_days_format), it)
 }
 .addTo(subscriptions)

You’re again observing the days subject and updating daysTextView to show the
proper value.

There’s only one thing missing. You need to clean up after yourself! Implement the
onDestroy method and dispose of your subscriptions:

override fun onDestroy() {
 subscriptions.dispose()
 super.onDestroy()
}

Now run the app and click into a category. As you slide the seek bar you’ll notice the
events displayed become filtered down to only those that have happened in the time
frame you’ve selected.

Magic, right?

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 215

Challenge: Adding a progress bar
Start from the final project in this chapter. Place an indeterminate horizontal
progress bar below the toolbar and above the list of categories on the main screen.
The progress bar should show while the categories and events are being downloaded
and be hidden as soon as the downloads finish.

You’ll need to update the layout in the activity_categories.xml file to include a
horizontal progress bar. You’ll also need to add a few constraints to it to get
everything working correctly within the containing ConstraintLayout.

Hiding the progress bar will be a side effect of your reactive code. You should also use
a LiveData object in your CategoriesViewModel class to communicate hiding and
showing the progress bar with the CategoriesActivity.

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 216

Key points
• The concatWith method can be used to combine two Observables to emit one

after the other. Watch out for your error handling though, since one Observable
encountering an error will end the whole chain!

• If you need to parallelize multiple Observables, you can use the merge method to
interweave the Observables. You can also limit the number of concurrent
subscriptions happening!

• combineLatest can be effectively used to combine the last values of multiple
Observables. It’s particularly useful if you have one Observable that may not
update often and another that updates frequently. Combining the two Observables
with combineLatest can save you from writing a lot of stateful code!

• The merge method has a ton of overloads. If you have a collection of Observables,
there’s almost certainly a merge overload out there to merge your collection
together. It even works if you have an Observable of Observables!

• The scan operator can be used to continuously emit items as you build up progress
in some process. For this chapter, the progress was fetching events for a certain
type of category. If you need to build up to a final product, scan or reduce are both
great options.

Where to go from here?
That wraps up our chapters focusing on filtering, transforming and combining
operators. You’ve seen them all in action in Android apps.

Before moving on to Section III of the book, you’ll spend a chapter learning about
another type of operator: time-based operators. And you’ll do so while working
within another Android app project.

Reactive Programming with Kotlin Chapter 10: Combining Operators in Practice

raywenderlich.com 217

11Chapter 11: Time-Based
Operators
By Alex Sullivan & Florent Pillet

Timing is everything. The core idea behind reactive programming is to model
asynchronous data flow over time.

In this respect, RxJava provides a range of operators that allow you to deal with time
and the way that sequences react and transform over time. As you’ll see throughout
this chapter, managing the time dimension of your sequences is easy and
straightforward.

To learn about time-based operators, you’ll practice with an animated app that
demonstrates visually how data flows over time. This chapter comes with a basic app
with several buttons that lead to different pages. You’ll use each page to exercise one
or more related operators. The app also includes a number of ready-made classes
that’ll come in handy to build the examples.

raywenderlich.com 218

Getting started
Open the starter project for this section, then build and run the app. You should see a
white screen with five gray buttons:

Clicking any of these buttons will send you to another screen that, for now, just has
some text. As you work through this chapter, you’ll flesh out each page to
demonstrate a different set of time-based reactive operators.

Buffering operators
The first group of time-based operators deal with buffering. They will either replay
past elements to new subscribers, or buffer them and deliver them in bursts. They
allow you to control how and when past and new elements get delivered.

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 219

Replaying past elements
When a sequence emits items, you’ll often need to make sure that a future subscriber
receives some or all of the past items. This is the purpose of the replay and
replayAll operators.

To learn how to use them, you’ll start coding in the replay page of the app. To
visualize what replay does, you’ll display elements on a marble diagram-like view.
The app contains custom classes to make it easy to display animated timelines.

Open ReplayActivity.kt.

Note: For this chapter, you’ll forgo the usual ViewModel + Activity approach
takes elsewhere in the app. Since this app is meant to demonstrate different
time-oriented operators, you don’t need to worry about using a proper
architecture.

Start by adding some definitions above the class ReplayActivity :
AppCompatActivity() line:

val elementsPerSecond = 1
val replayedElements = 1
val replayDelayInMs = 3500L
val maxElements = 5

You’ll create an Observable that emits elements at a frequency of
elementsPerSecond. You’ll also cap the total number of elements emitted, and
control how many elements are “played back” to new subscribers. Build this emitting
Observable in onCreate(), by using the timer function:

val sourceObservable = Observable.create<Int> { emitter ->
 var value = 1
 val disposable = timer(elementsPerSecond) {
 if (value <= maxElements) {
 emitter.onNext(value)
 value++
 }
 }
}

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 220

The timer function is a helper function defined in TimerUtils.kt. It helps to create
simple repeating timers. Feel free to look at its implementation, but it may not make
sense until later in the chapter, when you cover the interval method. Suffice to say
it uses RxJava under the hood and returns a Disposable.

In the lambda passed to the timer function, you’re using the emitter object to emit
the next value and then incrementing value. At the end of the day, this Observable
should now emit increasing values at the frequency you defined earlier.

Note that, for the purpose of this example, you don’t care about completing the
Observable. It simply emits as many elements as instructed and never completes.

Now, add the replay functionality to the end of the sourceObservable declaration:

.replay(replayedElements)

This operator creates a new sequence that records the last replayedElements
number of elements emitted by the source Observable. Every time a new observer
subscribes, it immediately receives these elements (if any) and then keeps receiving
any new element like a normal subscription does.

To visualize the actual effects of replay, you’re going to use a custom UI widget
created for this chapter called MarbleView. The MarbleView class shows elements as
they’re emitted on a timeline, similar to the marble diagrams you’ve seen in previous
chapters.

For this page, there are two MarbleViews already included in the activity_replay
layout file. You’ll use these two views to visualize the replay operators.

Add the following at the bottom of the onCreate method:

sourceObservable.subscribe(replay_1)

replay_1 is the name of the first MarbleView for this screen.

The MarbleView class implements the Observer RxJava interface. Therefore, you can
subscribe it to an Observable sequence and it will receive the sequence’s events.
Every time a new event occurs (element emitted, sequence completed or errored
out), MarbleView displays it on the timeline.

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 221

Next, you want to subscribe again to the source Observable, but with a slight delay.
Add the following again at the bottom of the onCreate method:

dispatchAfter(replayDelayInMs) {
 sourceObservable.subscribe(replay_2)
}

dispatchAfter is another special function to make it easier to perform one-
off actions.

This displays elements received by the second subscription in another marble view.
You’ll see the marble view shortly, I promise!

Now, since replay creates a connectable Observable, you need to connect it to its
underlying source to start receiving items. If you forget this, subscribers will never
receive anything.

Note: Connectable Observables are a special class of Observables. Regardless
of their number of subscribers, they won’t start emitting items until you call
their connect() method. While this is beyond the scope of this chapter,
remember that a couple of operators return ConnectableObservable, not
Observable. Specifically, the replay and publish operators.

Replay operators are covered in this chapter. The publish operator is advanced,
and only touched on briefly in this book. It allows sharing a single subscription
to an Observable, regardless of the number of observers.

So add this code to connect, at the end of onCreate():

sourceObservable.connect()

Now, build and run the app and navigate to the replay page.

You’ll see two timelines. The top marble view reflects an observer named connect()
that subscribes before you.

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 222

The bottom marble view is the one where subscription occurs after a delay. The
source Observable emits numbers for convenience.

This way you can see the progress of emitted elements.

Note: As exciting it is to see a live Observable diagram, it might confuse at
first. Static timelines usually have their elements aligned to the left, but if
you think twice about it, they also have the most recent ones on the right side
just as the animated diagrams you observe right now.

In the settings you used, replayedElements is equal to 1. It configures the replay
operator to only buffer the last element from the source Observable. The animated
marble view shows that the second subscriber receives element 3 and then quickly
receives element 4 afterwards. That’s because the 3 element was the one being
replayed. Then the 4 element was emitted normally.

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 223

Try raising the replayedElements constant to two instead of one. You’ll see a much
more noticeable impact on the MarbleView:

Since two elements were buffered, they were all emitted at the same time. The
MarbleView class will group items emitted at (or around) the same time in a column
to make them more visible.

Note: You can now play with the replayDelay and replayedElements
constants. Observe the effect of tweaking the number of replayed (buffered)
elements. You can also tweak the total number of elements emitted by the
source Observable using maxElements. Set it to a very large value for
"continuous" emission.

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 224

Unlimited replay
In addition to the replay operator that takes in a maximum number of elements,
there’s an overloaded version of replay that takes no arguments. If used with no
arguments, the replay operator will ensure that every item in your Observable is
replayed. This one should be used with caution: Only use it in scenarios where you
know the total number of buffered elements will stay reasonable. For example, it’s
appropriate to use replay with no arguments in the context of HTTP requests. You
know the approximate memory impact of retaining the data returned by a query. On
the other hand, using it on a sequence that may not terminate and may produce a lot
of data will quickly clog your memory. This could grow to the point where you see an
OutOfMemoryException!

To experiment with this new behavior, replace:

.replay(replayedElements)

With:

.replay()

Watch the effect on the marble view. You will see all buffered elements emitted
instantly upon the second subscription.

Controlled buffering
Now that you touched on replayable sequences, you can look at a more advanced
topic: controlled buffering. You’ll first look at the buffer operator. Switch to the
second page in the app called BUFFER. As in the previous example, you’ll begin with
some constants. Add the following to the top of the BufferActivity.kt file:

private val bufferMaxCount = 2
private val bufferTimeSpan = 4L

These constants define the behavior for the buffer operator you’ll soon add to the
code. For this example, you’ll manually feed a subject with values. At the bottom of
the onCreate method add:

val sourceObservable = PublishSubject.create<String>()

You will push short strings (a single emoji) to this Observable. You’ll again use two
predefined MarbleView widgets contained in the activity_buffer.xml layout file.

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 225

Subscribe to fill the top marble view with events, like you did in the REPLAY page:

sourceObservable
 .subscribe(buffer_1)

The buffered marble view will display the number of elements contained in each
buffered array:

sourceObservable
 .buffer(bufferTimeSpan, TimeUnit.SECONDS, bufferMaxCount)
 .map { it.size }
 .subscribe(buffer_2)

What’s happening here? Breaking it down:

• You want to receive lists of elements from the source Observable.

• Each list can hold at most bufferMaxCount elements.

• If that many elements are received before bufferTimeSpan expires, the operator
will emit buffered elements and reset its timer.

• In a delay of bufferTimeSpan after the last emitted group, buffer will emit a list.
If no element has been received during this time frame, the list will be empty.

Try building and running the app and navigating to the BUFFER page now.

Even though there is no activity on the source Observable, you can witness empty
buffers on the buffered marble view. The buffer operator emits empty lists at
regular intervals if nothing has been received from its source Observable. The 0s
mean that zero elements have been emitted from the source Observable.

You can start feeding the raw Observable with data and observe the impact on the
buffered Observable. First, try pushing three elements after five seconds. Append this
to the bottom of the onCreate() method:

dispatchAfter(5000) {
 sourceObservable.onNext("

!

")
 sourceObservable.onNext("

!

")
 sourceObservable.onNext("

!

")
}

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 226

Can you guess what the effect will be? Build and run, and look how the marble view
moves:

Each box shows the number of elements in each emitted array:

• At first, the buffered marble view emits an empty array — there’s no element in the
source Observable yet and the bufferTimeSpan amount of time has passed.

• Then you push three elements on the source Observable.

• The buffered marble view immediately gets an array of two elements because it’s
the maximum count you specified (due to the bufferMaxCount constant).

• Four seconds elapse, and a list with just one element is emitted. This is the last of
the three elements that have been pushed to the source Observable.

As you can see, the buffer immediately emits an array of elements when it reaches
full capacity, then waits for the specified delay, or until it’s full again, before it emits
a new array.

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 227

You can play a bit more with different buffering scenarios. Remove the
dispatchAfter that emits elements, and add this instead:

val elementsPerSecond = 1

timer(elementsPerSecond) {
 sourceObservable.onNext("

!

")
}.addTo(disposables)

The marble view is very different! As before, you can tweak the constants (buffering
time, buffering limit, elements per second) to see how grouping works.

Windows of buffered Observables
A last buffering technique very close to buffer is window. It has roughly the same
signature and nearly does the same thing. The only difference is that it emits an
Observable of the buffered items, instead of emitting an array.

You’re going to build a slightly more elaborate MarbleView. Since windowed
sequences emit multiple Observables, it will be beneficial to visualize them
separately. Get started in the WindowActivity, which is the root of the WINDOW
page by adding several constants to just after the class declaration of
WindowActivity:

private val elementsPerSecond = 3
private val windowTimeSpan = 4L
private val windowMaxCount = 10L

You’re going to look at how timed output is grouped in windowed Observables by
pushing strings to a subject. Start off by adding another PublishSubject<String>
to the bottom of the onCreate() method:

val sourceObservable = PublishSubject.create<String>()

Now, add a timer to push new strings into the sourceObservable:

timer(elementsPerSecond) {
 sourceObservable.onNext("

!

")
}.addTo(disposables)

Then fill up the source marble view:

sourceObservable.subscribe(windowSource)

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 228

You’re now at a point where you want to see each emitted Observable separately. To
this end, you’ll insert a new MarbleView every time window emits a new Observable.

Previous Observables will move downwards. Just before the end of onCreate(),
append the following:

sourceObservable.window(windowTimeSpan, TimeUnit.SECONDS,
AndroidSchedulers.mainThread(), windowMaxCount)

This is your windowed Observable. How can you handle emitted Observables? Using
your trusted flatMap operator of course! Chain this under the window operator:

.flatMap { windowedObservable ->
 val marbleView = MarbleView(this)
 marble_views.addView(marbleView)
 windowedObservable
 .map { value -> value to marbleView}
 .concatWith(Observable.just("" to marbleView))
}

This is the tricky part. Try to figure out the code yourself first, and then fall back on
the following:

• Every time flatMap gets a new Observable, you insert a new MarbleView into the
already existing marble_views layout.

• You then map the Observable of items to an Observable of pairs. The goal is to
transport both the value and the marble view in which to display it.

• Once this inner Observable completes, you concatWith a single pair with an
empty first value, so you can mark the timeline as complete.

• You flatMap the sequence of resulting observables of pairs to a single sequence of
tuples.

• You subscribe to the resulting Observable and fill up timelines as you receive
tuples.

Note: In trying to keep the code short, you’re doing something that is
generally not advisable in Rx code: You’re adding side effects to an operator
that’s supposed to just be transforming data. The right solution would be to
perform side effects using a doOnNext operator. This is left as an exercise in
this chapter’s challenges!

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 229

Finally, you need to subscribe and display elements in each marble view. Since you
mapped the elements to the actual marble view they belong to, this becomes easy.
Chain this code to the previous:

.subscribe { (value, marbleView) ->
 if (value.isEmpty()) {
 marbleView.onComplete()
 } else {
 marbleView.onNext(value)
 }
}
.addTo(disposables)

The value in the tuple is a String: The convention here is that if it is empty, then it
means the sequence completed. The code pushes either a next or a completed event
to the marble view.

Build and run the app, and navigate to the window page. Things very quickly get
interesting as new observables are emitted:

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 230

The C value at the bottom of some of the MarbleViews represent that Observable
completing.

Starting from the second timeline, all the timelines you see are “most recent first.”
This screenshot was taken with a setting of ten elements maximum per windowed
Observable, and a four-second window. This means that a new observable is
produced at least every four seconds. It will emit, at most, ten elements before
completing.

If the source Observable emits more than nine elements during the window time, a
new Observable is produced, and the cycle starts again.

Time-shifting operators
Every now and again, you need to travel in time. While RxJava can’t help with fixing
your past relationship mistakes, it has the ability to freeze time for a little while to
let you wait until self-cloning is available.

Next, you’ll look into two time related operators. Navigate to DelayActivity.kt to get
started.

Delayed subscriptions
Start off by adding the constants to the top of the class:

private val elementsPerSecond = 1
private val delayInSeconds = 3L

Next up, add a new PublishSubject at the bottom of the onCreate() method:

val sourceObservable = PublishSubject.create<Int>()

Now, add the code to add items to the sourceObservable below the previous
declaration:

var current = 1
timer(elementsPerSecond) {
 sourceObservable.onNext(current)
 current++
}

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 231

And subscribe to sourceObservable with the source MarbleView:

sourceObservable.subscribe(source)

You’re going to start off the delay section by using the delaySubscription operator.
Append the following:

sourceObservable
 .delaySubscription(delayInSeconds, TimeUnit.SECONDS,
AndroidSchedulers.mainThread())
 .subscribe(delayed)

The idea behind the delaySubscription operator is, as the name implies, to delay
the time a subscriber starts receiving elements from its subscription. Run the app
and navigate to the DELAYED page, you can observe that the second marble view
starts picking up elements after the delay specified by delayInSeconds.

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 232

Note: In Rx, some observables are called cold while others are hot. Cold
Observables start emitting elements when you subscribe to them. Hot
Observables are more like permanent sources you happen to subscribe to, at
some point (think of broadcasts received in a BroadcastReceiver). When
delaying a subscription, it won’t make a difference if the Observable is cold. If
it’s hot, you may skip elements, as in this example.

Hot and cold Observables are a tricky topic that can take some time getting
your head around. Remember that cold Observables emit events only when
subscribed to, but hot Observables emit events independent of being
subscribed to.

Delayed elements
The other kind of delay in RxJava lets you time-shift the whole sequence. Instead of
subscribing late, the operator subscribes immediately to the source observable, but
delays every emitted element by the specified amount of time. The net result is a
concrete time-shift.

To try this out, stay in the DelayActivity. Replace the delayed subscription (that
you just added) with:

sourceObservable
 .delay(delayInSeconds, TimeUnit.SECONDS,
 AndroidSchedulers.mainThread())
 .subscribe(delayed)

As you can see, the code is similar. You just replaced delaySubscription with
delay. Run the app and look at the marble views. Can you spot the difference?

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 233

In the previous example, delaying the subscription made you miss the first three
elements from the source Observable. When using the delay operator, you time-
shift the elements and won’t miss any. Again, the subscription occurs immediately.
You simply “see” the items with a delay.

Timer operators
A common need in any kind of application is a timer. Android comes with a few
methods to accomplish timing tasks. Typically, Android developers use the Handler
class to accomplish this sort of task. Handler works OK, but the API is somewhat
complicated unless you wrap it, like we did in this app with the dispatchAfter
function.

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 234

RxJava provides a simple and efficient solution for both one-shot and repeating
timers. It integrates perfectly with sequences and offers both cancellation and
composability with other sequences.

Intervals
This chapter used the timer function several times to create interval timers through
a handy custom function. In fact, the timer function uses another special RxJava
function to achieve its timing tasks. Specifically, it uses the Observable.interval
function. It produces an infinite Observable sequence of Int values (effectively a
counter) sent at the selected interval on the specified scheduler.

In order to get some practice with the Observable.interval function, you’re going
to go back through some of the work you did previously and replace instances of the
timer function with a direct call to Observable.timer. Go back to
ReplayActivity.kt class. Towards the beginning of the code, you created a source
Observable. You used timer to create a timer and feed observers with values.

Delete the declaration of sourceObservable (including the replay()) and replace it
with this instead:

val sourceObservable = Observable.interval(1L /
elementsPerSecond,
 TimeUnit.SECONDS,
 AndroidSchedulers.mainThread()).replay(replayedElements)

And. That’s. All.

Interval timers are incredibly easy to create with RxJava. Not only that, but they are
also easy to cancel: Since Observable.interval generates an Observable sequence,
subscriptions can simply dispose() the returned disposable to cancel the
subscription and stop the timer. Very cool!

It is notable that the first value is emitted at the specified duration after a subscriber
starts observing the sequence, not immediately. Also, the timer won’t start before
this point. The subscription is the trigger that kicks it off.

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 235

Note: As you can see in the marble view if you run the app, values emitted by
Observable.interval are integers starting from 0. Should you need different
values, you can simply map them, or use the Observable.intervalRange
function, which allows you supply both a starting value and a total number of
items to emit. In most real life use-cases, the value emitted by the timer is
simply ignored. But it can make a convenient index.

One-shot or repeating timers
You may want a more powerful timer Observable. You can use the
Observable.timer operator that is very much like Observable.interval but adds
the following features:

• You can specify a “due date” as the time that elapsed between the point of
subscription and the first emitted value.

• The repeat period is optional. If you don’t specify one, the timer Observable will
emit once, then complete.

Can you see how handy this can be? Give it a go. Open the DelayActivity.kt again.
Locate the place where you used the delay operator. Replace the whole block of code
with:

Observable.timer(3, TimeUnit.SECONDS)
 .flatMap {
 sourceObservable.delay(delayInSeconds, TimeUnit.SECONDS)
 }
 .subscribe(delayed)

A timer triggering another timer? This is Inception! There are several benefits to
using this over Handler:

• The whole chain is more readable (more “Rx-y”).

• Since the subscription returns a Disposable, you can cancel at any point before
the first or second timer triggers with a single Observable.

• Using the flatMap operator, you can produce timer sequences without having to
jump through hoops with Handler lambdas.

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 236

Timeouts
You’ll complete this roundup of time-based Operators with a special one: timeout.
Its primary purpose is to semantically distinguish an actual timer from a timeout
(error) condition. Therefore, when a timeout operator fires, it emits an
TimeoutException error event; if not caught, it terminates the sequence.

Open the TimeoutActivity.kt file. The associated activity_timeout.xml layout file
contains a single MarbleView and a Button.

You’re going to use an extension from RxBindings that turns button taps into an
Observable sequence. You’ll learn more about RxBindings in the following chapters.
For now, the goal is to:

• Capture button taps.

• If the button is pressed within five seconds, print something and terminate the
sequence.

• If the button is not pressed, print the error condition.

In onCreate(), set up the Observable and connect it to the marble view:

button.clicks()
 .map { "•" }
 .timeout(5, TimeUnit.SECONDS)
 .subscribe(timeout)

Build and run, and click the "Timeout" button on the landing page. If you click the
button within five seconds (and within five seconds of subsequent presses), you’ll see
your taps on the marble view. Stop clicking, and five seconds after that, the timeout
fires! The marble view will stop with an error donated by a big E.

An alternate version of timeout takes an Observable and, when the timeout fires,
switches the subscription to this Observable instead of emitting an error.

There are many uses for this form of timeout, one of which is to emit a value (instead
of an error) then complete normally.

To try this, change the timeout call to the following:

.timeout(5, TimeUnit.SECONDS, Observable.just("X"))

Now, instead of the error indicator, you see the "X" element and a regular
completion. Mission accomplished!

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 237

Challenge

Challenge: Circumscribe side effects
In the discussion of the window operator, you created timelines on the fly inside the
closure of a flatMap operator. While this was done to keep the code short, one of the
guidelines of reactive programming is to “not leave the monad”. In other words,
avoid side effects except for specific areas created to apply side effects. Here, the
“side effect” is the creation of a new marble view in a spot where only a
transformation should occur.

Your task is to find an alternate way to do this. You can consider several approaches;
try to pick the one that seems the most elegant to you. When finished, compare it
with the proposed solution!

There are several possible approaches to tackle this challenge. The most effective
will be to split the work into multiple Observables then join them later.

Make the windowed Observable a separate one that you use to produce two separate
sequences.

1. The first one prepares the marble views (remember that side effects can be
performed with the doOnNext operator).

2. The second one takes both the produced marble view and the source sequence
element to generate a contextual value, every time window emits a new sequence.
You might want to use a combination of zip and flatMap for this.

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 238

Key points
• When a sequence emits items, you’ll often need to make sure that a future

subscriber receives some or all of the past items. This is the purpose of the replay
and replayAll operators.

• Buffering operators are a group of time-based operators that deal with
buffering. They will either replay past elements to new subscribers, or buffer them
and deliver them in bursts. They allow you to control how and when past and new
elements get delivered.

• dispatchAfter is a special function to make it easier to dispatch one-off actions.
This displays elements received by the second subscription in another marble
view.

• delaySubscription operators delay the time a subscriber starts receiving
elements from its subscription. delay operators push the elements to they arrive
later.

• The Observable.interval function produces an infinite Observable sequence of
Int values (effectively a counter) sent at the selected interval on the specified
scheduler.

• Timeout is an operator that semantically distinguishes an actual timer from a
timeout (error) condition. Therefore, when a timeout operator fires, it emits an
TimeoutException error event; if not caught, it terminates the sequence.

Reactive Programming with Kotlin Chapter 11: Time-Based Operators

raywenderlich.com 239

Section III: Intermediate
RxJava

Once you start writing complete apps with RxJava, you will also need to take care of
more intermediate topics than simply observing for events and processing them with
Rx.

In a full production-quality app, you will need to build an error handling strategy, do
more advanced multi-threading processing, create a solid test suite, and more.

In this part of the book, you will work through five challenging chapters, which will
lift your Rx status from a rookie level to a battle-tested warrior.

Chapter 12: Error Handling in Practice

Chapter 13: Intro to Schedulers

Chapter 14: Flowables & Backpressure

Chapter 15: Testing RxJava Code

Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 240

12Chapter 12: Error
Handling in Practice
By Alex Sullivan & Junior Bontognali

Life would be great if we lived in a perfect world, but unfortunately things frequently
don’t go as expected. Even the best RxJava developers can’t avoid encountering
errors, so they need to know how to deal with them gracefully and efficiently. In this
chapter, you’ll learn how to deal with errors, how to manage error recovery through
retries, or just surrender yourself to the universe and let the errors go.

Getting started
The app you’ll be creating for this chapter is a weather app. It will allow a user to
type in a city name and see the weather for that city. It will also allow the user to use
their current location as the trigger to fetch weather details. To accomplish all of
this, you’ll use the OpenWeatherMap API.

Before continuing, make sure you have a valid OpenWeatherMap API Key http://
openweathermap.org. If you don’t already have a key, you can sign up for one at
https://home.openweathermap.org/users/sign_up.

raywenderlich.com 241

Once you’ve completed the sign-up process, visit the dedicated page for API keys at
https://home.openweathermap.org/api_keys and generate a new one.

Open the starter project in Android Studio. In the starter project, open the
WeatherApi.kt file, take the key you generated above and replace the placeholder in
the following location:

val apiKey =
 BehaviorSubject.createDefault("INSERT_YOUR_API_KEY_HERE")

Once that’s done, run the app. When prompted, grant the app permission to use the
device's location. After you grant permission, you’ll see the following screen:

Try entering some text into the top EditText box at the top of the screen where it
says Current Location. You should see the weather details change. You should also
see a nice image in the center of the app indicating what the current weather is. For
example, if it’s snowing outside, you'll see a cloud with some snow underneath. Brrrr!

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 242

If you instead see nothing show up, then that might mean you hit an error. Make sure
the API key you entered is valid and that the city name you entered is a real city. If
you just created your account, make sure you check your email to confirm your email
address. You’ll have to re-run the app if it did experience an error when making the
initial API call. Not a great user experience, right?

This good news is you’re going to fix that user experience!

Before you start diving into managing errors, it’s a good idea to get acquainted with
the code for the app. Open the WeatherViewModel and look around. It takes one
argument:

private val lastKnownLocation: Maybe<Location>

lastKnownLocation is a Maybe representing the last known location of the user. If
you’re interested in learning about how the app creates a Maybe out of the last
known location, take a look at the lastKnownLocation method in the X.kt file.

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 243

In addition to the lastKnownLocation constructor parameter, WeatherViewModel
exposes two public methods that WeatherActivity uses to notify the ViewModel of
clicks on the location button and text change events:

fun locationClicked() = locationClicks.onNext(Unit)

fun cityNameChanged(name: CharSequence) =
 cityNameChanges.onNext(name)

These methods pipe their relevant values into a couple of PublishSubjects that are
defined at the top of the file:

private val locationClicks = PublishSubject.create<Unit>()
private val cityNameChanges =
 PublishSubject.create<CharSequence>()

Now you can easily represent users actions as streams. Hooray!

In the init block, WeatherViewModel uses the Observable.merge function to
merge the two subjects built from locationClicks and cityNameChanges to create
a final Observable that will emit Weather updates to the weatherLiveData object.

Notice that the locationObservable declaration uses the onErrorReturnItem()
method to default to an empty instance of the Weather object if the stream emits
any errors.

Sure, it's a nice, compact, single line, but it doesn’t make for a great UX. You can do
way better!

Managing errors
Errors are an inevitable part of any app. Unfortunately, no one can guarantee an app
will never error out, so you will always need some type of error-handling mechanism.

Some of the most common errors in apps:

• No internet connection: This is quite common. If the app needs an internet
connection to retrieve and process the data, but the device is offline, you need to
be able to detect this and respond appropriately.

• Invalid input: Sometimes you require a certain form of input, but the user might
enter something entirely different. Perhaps you have a phone number field in your
app, but the user ignores that requirement and enters letters instead of digits.

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 244

• API error or HTTP error: Errors from an API can vary widely. They can arrive as a
standard HTTP error (response code from 400 to 500), or as errors in the response,
such as using the status field in a JSON response.

In RxJava, error handling is part of the framework and it handles them in two ways:

• onError: Return a default value.

• Retry: Retry for a limited (or unlimited!) number of times.

The starter version of this chapter’s project doesn’t have any real error handling. All
the errors are caught with a single onErrorReturnItem() operator that returns a
dummy version of the weather. This might sound like a handy solution, but there are
better ways to handle this in RxJava. A consistent and informative error-handling
approach is expected in any app.

At this point, it’s worth noting that there’s nothing magical about how RxJava
propagates errors. For example, if you’re in an operator and you want to signal an
error that ends the rest of the Observable chain, all you have to do is throw an error
just like you would in normal Kotlin code. That error will then propagate down to the
subscriber, who may or may not handle it.

Handling errors with catch
Now that you know about the types of errors you can encounter, it’s time to see how
to handle those errors. The most basic way is to use one of the onError. operators.
The onError operators works much like the try-catch flow in plain Kotlin.

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 245

When an Observable performs, and if something goes wrong, you can return an event
that wraps an error. In RxJava there are two main operators to catch errors. The first
is onErrorResumeWith().

onErrorResumeWith() allows you to return a different Observable when your Rx
chain encounters an error. The chain will then switch to emitting items from the
Observable passed to onErrorResumeWith() whenever it encounters an error. Here’s
the method signature, written in Java:

public final Observable<T> onErrorResumeWith(
 @NonNull ObservableSource<? extends T> fallback
)

Sometimes you may want to return a different type of Observable depending on the
error. In that scenario, you can use onErrorResumeNext(). Instead of directly taking
an Observable, onErrorResumeNext() takes in a function. That function is itself
called by the RxJava library with an error whenever it encounters an error. You then
return an Observable from the function, allowing you to customize what type of
Observable you return based off the type of error you encountered.

If you can’t quite see where you’d use this option, think about a caching strategy that
returns a previously cached value if the Observable errors out. With this operator,
you can then achieve the following flow:

The onErrorResumeNext() in this case returns values that were previously available
and that, for some reason, aren’t available anymore.

The second operator is onErrorReturnItem():

public final Observable<T> onErrorReturnItem(final T item)

This operator is how the app is currently handling errors.

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 246

onErrorReturnItem() ignores errors and just returns a pre-defined value, as
opposed to onErrorResumeWith() which returns a new Observable to switch to. Just
like onErrorResumeWith(), there’s a version of onErrorReturnItem() that takes in
a function to produce an item given an error.

Avoiding a common pitfall
Errors propagate through the Observable's chain, so an Observable will forward an
error that happens at the beginning of an Observable chain to the final subscription
if there aren’t any handling operators in place.

What does this mean exactly? When an Observable errors out, error subscriptions are
notified and all subscriptions are then disposed. So when an Observable errors out,
the Observable is essentially terminated and any events following the error will be
ignored. This is a rule of the Observable contract.

You can see this plotted below on a timeline. Once the network produces an error
and the Observable sequences errors out, the subscription updating the UI will stop
working, effectively preventing future updates:

To translate this into the actual app, remove
the .onErrorReturnItem(Weather.empty) line inside the textObservable in
WeatherViewModel. Then update the subscribe() line in the Observable.merge()
chain at the bottom of the init block to catch the error:

.subscribeBy(
 onError = {
 Log.e("Weather", "Error: $it")
 },
 onNext = {
 weatherLiveData.postValue(it)

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 247

 }
)

Run the app and type in a city that doesn't exist. Something gibberish like asdf works
just fine. You should see something similar to this in the Logcat console:

E/Weather: Error: java.lang.IllegalStateException: Not Found

That Not Found message is the tip of a 404 iceberg. You will also notice that the
search stops working after that 404! Even if you then enter a valid city name, no new
weather data will show. That’s because the Observable has terminated. Not exactly
the best user experience, is it?

Even if you use the onErrorReturnItem() operator, the Observable will still end.
Instead of calling its observer's onError() block, it will instead emit the item
supplied to onErrorReturnItem() and call the observer's onComplete() method.
One common mistake made by people who are new to RxJava error handling is that
they expect the Observable to keep emitting items even if it encounters an error.

Catching errors
Now, revert the changes you just made so that the Observable.merge() call is using
a single line subscribe() and the textObservable is again returning an empty
instance of Weather if it encounters an error.

You’re going to update the app so that, instead of returning an empty instance of a
Weather object when encountering an error, you’ll look for a cached value of that
city's weather to use.

Add the following instance variable below the disposables val:

private val cache = mutableMapOf<String, Weather>()

Your cache will be a simple Map<String, Weather>. The key to the map will be the
name of the city and the value will be the last Weather instance the app pulled down.

It’s time to start filling up your cache.

Update the textObservable definition by replacing the existing flatMapSingle()
call with the following:

.flatMapSingle { cityName ->
 WeatherApi.getWeather(cityName.toString())

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 248

 .doOnSuccess { cache[cityName.toString()] = it }
}

Now, every time you get the weather for a particular city, you’ll store the results of
that network request in the cache. Now, how do you actually pull items from the
cache?

To return a cached value in the event of an error, you’ll replace
the .onErrorReturnItem(Weather.empty) operator in the textObservable
declaration with something a bit more robust.

First, create a new function below the init block in WeatherViewModel. It will have
a compiler error until you fill in the body in the next step:

private fun getWeatherForLocationName(
 name: String
): Single<Weather> {
}

This function will do the heavy lifting of actually fetching a Weather object for a
given city name and will replace the existing flatMapSingle() call.

Now, add the following to the body of getWeatherForLocationName():

return WeatherApi.getWeather(name)
 .doOnSuccess { cache[name] = it }

Just like before, you’re using the doOnNext() operator to update your cache with the
latest and great data.

Now, chain the following after the doOnNext() call:

.onErrorReturn {
 cache[name] ?: Weather.empty
}

Here’s where the magic happens. You’re using the onErrorReturn() operator to
supply a default item whenever the Observable encounters an error. If you have a
cached value of the city’s weather, you’ll use that value. Otherwise, you’ll return the
Weather.empty value.

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 249

Now that you have the onErrorReturn() operator going in the
getWeatherForLocationName() method, you can remove the existing
onErrorReturnItem() operator from the textObservable declaration and start
using getWeatherForLocationName(). Replace the flatMapSingle() block in the
textObservable declaration with the following:

.flatMapSingle { getWeatherForLocationName(it.toString()) }

To test this, run the app and input three or four various cities such as “London,”
“Boston,” and “Amsterdam,” and load the weather for these cities. After that, disable
your internet connection and perform a search for a different city, such as
“Barcelona”; you’ll receive an error and the screen will go blank.

Leave your internet connection disabled and search for one of the cities you just
retrieved data for, and the app should return the cached version.

This is a very common usage of onErrorReturn(). You can definitely extend this to
make it a general and powerful caching solution.

Retrying on error
Catching an error is just one way you can handle errors in RxJava. You can also
handle errors with retry().

When you use a retry() operator and an Observable errors out, the Observable will
repeat itself. It’s important to remember that retry() means repeating the entire
task inside the Observable.

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 250

This is one of the main reasons it’s recommended to avoid side effects that change
the user interface inside an Observable, as you can’t control who will retry it!

Retry operators
There are three basic types of retry() operators. The first one is the most basic:

public final Observable<T> retry()

This operator will repeat the Observable an unlimited number of times until it
returns successfully. For example, if there’s no internet connection, this would
continuously retry until the connection was available.

This might sound like a robust idea, but it’s resource-heavy, and it’s seldom
recommended to retry() for an unlimited number of times if there’s no valid reason
for doing it.

To test this operator, comment the complete onErrorReturn() block in the
getWeatherForLocationName() method you recently created:

//.onErrorReturn {
// cache[name] ?: Weather.empty
//}

In its place, insert a retry():

.retry()

Next, run the app, disable the internet connection and try to perform a search. You’ll
see a lot of output in Logcat, showing the app is trying to make the requests. After a
few seconds, re-enable the internet connection, and you’ll see the result displayed
once the app has successfully processed the request.

Note: Remember that retry() will keep retrying a failed call forever. That
means that if you accidentally searched for an invalid city, the app will forever
be stuck trying to get the weather for that city! If you’re not seeing the results
you expect, take a look at the Logcat output. You should see a line that looks
something like this GET https://api.openweathermap.org/data/2.5/
weather?q=Boston&appid=<appId>&units=metric. Make sure the q=MyCity
parameter is what you’d expect!

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 251

The second operator lets you vary the number of retries:

public final Observable<T> retry(long times)

With this variation, the Observable is repeated for a specified number of times. To
give it a try, do the following:

• Remove the retry() operator you just added.

• Uncomment the previously commented code block.

• Just before onErrorReturn, insert a .retry(3).

The complete getWeatherForLocationName method should now look like this:

private fun getWeatherForLocationName(name: String):
Single<Weather> {
 return WeatherApi.getWeather(name)
 .doOnSuccess { cache[name] = it }
 .retry(3)
 .onErrorReturn {
 cache[name] ?: Weather.empty
 }
}

If the Observable is producing errors, it will be retried three times in succession. If it
errors a fourth time, that error will not be handled and execution will move on to the
onErrorReturn() operator.

Run the app and try searching for the weather with the internet connection disabled
again. This time, there should only be four requests made before it stops trying: one
initial and three retries.

Advanced retries
The last operator, retryWhen(), is suited for advanced retry situations. This error
handling operator is considered one of the most powerful:

public final Observable<T> retryWhen(
 Function<? super Observable<Throwable>,
 ? extends ObservableSource<?>> handler
)

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 252

retryWhen() takes in a function that when given an Observable of throwables
returns a new Observable. That new Observable acts as a type of "trigger" for
retryWhen(). Whenever it emits a value, retryWhen() will retry the original source
Observable. Whenever that new trigger Observable calls onComplete() or
onError(), retryWhen() will then signal to the original source Observable that the
Observable has completed or an error has occurred.

retryWhen() is one of the most complicated operators you will experience in this
book, so don’t worry if the above was confusing.

This is the operator you will include in the current application, using a smart trick to
retry if the internet connection is not available, or if there’s an error from the API.
The goal is to implement an incremental back-off strategy if the original search
errors out. The desired result is as follows:

subscription -> error
delay and retry after 1 second

subscription -> error
delay and retry after 2 seconds

subscription -> error
delay and retry after 3 seconds

subscription -> error
delay and retry after 4 seconds

It’s a smart yet complex solution. In regular imperative code, this would imply the
creation of some abstractions, perhaps using AsyncTasks with Handler to run a loop
and checking if the task failed or not. But with RxJava, it’s a small (albeit complex)
block of code.

Before creating the final result, consider what the inner Observable (the trigger
Observable) should return. Since retryWhen() only looks at the fact that trigger
Observable has emitted and not what it has emitted, the type can be ignored, and the
trigger can be of any type.

The goal is to retry four times with a given sequence of delays. First, inside
WeatherViewModel, add a new instance variable representing the maximum number
of attempts to get the weather the app should make:

private val maxAttempts = 4

After this many retries, the error should be forwarded on.

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 253

Now, replace .retry(3) in the getWeatherForLocationName() method with the
following. There will be a compiler error until you fill in the lambda:

.retryWhen { errors: Flowable<Throwable> ->

}

You'll learn more about Flowables in Chapter 14, "Flowables and Back Pressure",
but for now you can think of a Flowable in the exact same way you think of an
Observable. Here’s the flow that you want to achieve: Whenever errors emits a
value, that means a new error has been emitted from the original source Observable.
In this scenario you want to emit some value (it doesn’t matter what value) after one
second, then two seconds, then three seconds, and then four seconds.

So first things first: You need a way to emit items only after a certain amount of time.
Luckily, you learned about Observable.timer() in the previous chapter! In case you
need a quick recap, Observable.timer() takes in an amount of time and emits 0L
after that amount of time. Then it finishes. Perfect for your needs here!

Add the following code in the currently empty lambda being supplied to the
retryWhen() operator:

errors.flatMap { Flowable.timer(1, TimeUnit.SECONDS) }

You need to use a Flowable instead of an Observable here to satisfy the RxJava type
system. Again, for now you can think of a Flowable in the same way you think of an
Observable. Now, every time the errors Flowable emits, meaning a new error has
been encountered, you’ll send a trigger value (in this case 0L) after one second,
telling retryWhen() to retry the source Observable.

That’s great and all, but there are two problems:

1. You’re emitting after one second every time. Remember that the goal is to create
a sort of back-off strategy in which you wait longer after each network attempt.

2. Every time an error is produced, Flowable.timer() will send out an onNext()
value, triggering another retry. That means that this code effectively retries the
network request infinitely. No good!

So you need a way to signal to Flowable.timer() that it needs to wait longer and
that after a certain number of retries it should just give up.

One way you could achieve the first part about waiting longer is by using flatMap()
to convert an Observable that emits increasing values into a timer.

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 254

Replace the code you just added with the following:

errors
 .scan(1) { count, _ ->
 count + 1
 }
 .flatMap { Flowable.timer(it.toLong(), TimeUnit.SECONDS) }

Recall that the scan() operator works by taking in an initial seed value and a
function that, when given an accumulating value and the item emitted by the source
Observable, returns a new accumulated value. You can use the scan() operator to
begin counting up integers and then use flatMap() to convert those increasing
integers into timers by again using Flowable.timer().

In this manner, you’re now waiting longer and longer between network requests.

Last but not least, you need to make sure that you’re only retrying the network
request a certain number of times. This can be done when combined with the scan()
method you just wrote. Replace the body of the scan() lambda, which currently
contains this code:

.scan(1) { count, _ ->
 count + 1
}

With the following:

.scan(1) { count, error ->
 if (count > maxAttempts) {
 throw error
 }
 count + 1
}

Now, once you’ve tried more than maxAttempts times, you’ll throw the error
produced by the errors Observable, indicating to retryWhen() that you’re done
retrying and it’s time to give up.

Now, build and run. Disable your internet connection and perform a search. If you
look at the Logcat logs, you should see OkHttp making network requests after one
second, then two seconds, then three seconds and so on until you hit the maximum
number of retries you’ve specified with maxAttempts.

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 255

Here’s a good visualization of what’s going on:

You’ve only scratched the surface of using retryWhen(). To get even fancier, you can
inspect the types of errors that you’re seeing coming through the errors Observable
to execute different logic depending on what error you’re seeing. We won’t go that
deep into the rabbit hole in this book, but it’s worth exploring on your own!

Errors as objects
As you go deeper into the world of reactive and functional programming, it can
become painful to keep dealing with Throwables and exceptions for expected results.
It often makes more sense to treat an exception as something that your program
could not have imagined, and thus does not know how to handle.

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 256

For instance, you know that if you type in an invalid city that the OpenWeatherMap
API will return a 404 status code. Should that really be modeled as an exception? You
know it may happen, and as a matter of fact you know it will happen.

Everyone mistypes every now and then, so people are bound to type in an invalid city
name in the app. It often makes more sense to model behavior that you know it can
happen, but may not be the desired path as an object to be handled later on instead
of an exception.

Modeling a network error
Open WeatherApi and look at the bottom of the file. You should see two unused
sealed classes:

sealed class NetworkResult {
 class Success(val weather: Weather) : NetworkResult()
 class Failure(val error: NetworkError) : NetworkResult()
}

sealed class NetworkError : Exception() {
 object ServerFailure : NetworkError()
 object CityNotFound : NetworkError()
}

You’ll soon update the networking portion of the app such that all network requests
that successfully get to the server and come back are mapped to a NetworkResult
object. Remove the existing weatherResponseObservable() and replace it with the
following:

private fun mapWeatherResponse(
 response: Response<WeatherNetworkModel>
): NetworkResult {
 return when (response.code()) {
 // 1
 in 200..300 -> {
 val body = response.body()
 if (body != null) {
 NetworkResult.Success(
 body.toWeather().copy(icon = iconNameToChar(
 body.weather.first().icon)))
 } else {
 NetworkResult.Failure(NetworkError.ServerFailure)
 }
 }
 // 2
 in 400..500 -> NetworkResult.Failure(
 NetworkError.CityNotFound)
 // 3

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 257

 else -> NetworkResult.Failure(NetworkError.ServerFailure)
 }
}

That’s a big chunk of code! Here’s a breakdown:

1. The retrofit interface you’re using specifies a Response object as a return type for
your network calls. That Response object has a status code attached to it that
you’re inspecting. If the status code is anywhere in the 200–300 range, that
means the call was successful. In this scenario you’re attempting to pull out the
data from the response and construct a NetworkResult.Success object. If you
can’t pull the data out, you’re instead returning a NetworkResult.Failure with
a NetworkError of ServerFailure.

2. You’re interpreting any error in the 400–500 range as meaning that the city
couldn’t be found. This isn’t strictly true, but you’ll update it later on to be closer
to the truth.

3. If you see any response code that’s over 500, you’re returning a generic server
failure, since that usually means something has gone wrong on the server's end.

Now update the two getWeather() calls to produce an
Observable<NetworkResult> and use the new mapWeatherResponse() method:

fun getWeather(city: String): Single<NetworkResult> {
 return weather.getWeather(city, apiKey.value)
 .map(this::mapWeatherResponse)
}

fun getWeather(location: Location): Single<NetworkResult> {
 return weather.getWeather(
 location.latitude, location.longitude, apiKey.value)
 .map(this::mapWeatherResponse)
}

Nice! You’ve updated your API.

Now, open the WeatherViewModel class. Since you changed the return type of your
network Observable from Single<Weather> to Single<NetworkResult>, there are
quite a few errors, here.

First off, update the onErrorReturnItem() call in both the locationObservable
and textObservable declaration from this:

.onErrorReturnItem(Weather.empty)

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 258

To a version that returns a NetworkResult:

.onErrorReturnItem(
 WeatherApi.NetworkResult.Success(Weather.empty))

Next up, change the return type of getWeatherForLocationName() to the following:

Single<WeatherApi.NetworkResult>

Remove the doOnSuccess() operator from getWeatherForLocationName(). You’ll
re-implement the caching strategy in a moment.

Now, replace the onErrorReturn() operator with a version that uses the
NetworkResult class:

.onErrorReturn {
 val cachedItem = cache[name] ?: Weather.empty
 WeatherApi.NetworkResult.Success(cachedItem)
}

Only one change left! Now that you’re returning a NetworkResult instead of a
Weather object, you need to handle that new object in the subscribe block of your
merged Observable in the init block at the top of the class.

Add the following method to the WeatherViewModel class:

private fun showNetworkResult(
 networkResult: WeatherApi.NetworkResult
) {
 when (networkResult) {
 // 1
 is WeatherApi.NetworkResult.Success -> {
 cache[networkResult.weather.cityName] =
 networkResult.weather
 weatherLiveData.postValue(networkResult.weather)
 }
 // 2
 is WeatherApi.NetworkResult.Failure -> {
 when (networkResult.error) {
 WeatherApi.NetworkError.ServerFailure ->
 errorLiveData.postValue("Server Failure")
 WeatherApi.NetworkError.CityNotFound ->
 errorLiveData.postValue("City Not Found")
 }
 }
 }
}

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 259

The above code may seem beefy, but it’s not too bad when broken down:

1. You’re checking what the actual type of your networkResult is. If it’s a
successful call to get the weather, you’re updating your cache with the new
weather and emitting it in your weatherLiveData.

2. If it’s a failure, you’re checking what the type of failure is and sending a message
in your errorLiveData to notify the user of the issue.

Last but not least, replace the subscribe() block on your merged Observable at the
bottom of the init block with the following:

.subscribe(this::showNetworkResult)

You’re now ready to rock! Run the app and enter an invalid city name. You should see
a snackbar appear above the keyboard indicating the city name was invalid.

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 260

Challenges

Challenge 1: Reacting to an invalid API key
Recall that, earlier in the chapter, you started using the NetworkResult object to
encapsulate both success and errors from the network. You’re currently interpreting
values between 400 and 500 as "city not found" errors, but that’s not actually the
case.

A 401 error means that the auth token that you’re using is invalid. Since this project
comes with an invalid API key by default, it would be wise to handle this case
specifically and let the user know. For this:

1. Update the project so that there’s one more possible NetworkError called
InvalidKey.

2. mapWeatherResponse() in WeatherApi.kt should return a NetworkFailure
with the InvalidKey error if it encounters a 401 status code.

3. Update showNetworkResult() in WeatherViewModel to handle the new error
type.

To test your implementation, try hitting the key icon in the bottom-right corner of
the app and entering an invalid API key. Then search for a city and see if your new
error shows up.

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 261

Challenge 2: Use retryWhen on restored
connectivity
In this challenge you need to handle the condition of an unavailable internet
connection.

To start, take a look at connectivityStream() in the X.kt file. Given a Context, it
will return an Observable<NetowrkState> indicating that the network is connected
or disconnected. For this:

1. You’ll need to pass an instance of this connectivity stream into the
WeatherViewModel class.

2. You’ll need to update WeatherViewModel to take a new argument of type
Observable<NetworkState>.

3. You can then pass in an Observable in the WeatherActivity
ViewModelProviderFactory code by using the connectivityStream()
function.

Once these things are done, extend the retryWhen() handler to handle the
connectivity situation. Remember that when the internet connection is up, you have
to fire a retry.

To achieve this:

1. Update the lambda in the retryWhen() block in WeatherViewModel.kt.

2. You’ll want to use the flatMap() method on the errors Observable. In the
flatMap() block you’ll want to check what type of error is being emitted. If the
error is an UnknownHostException you know the error is being caused by a lack
of internet.

3. In that case, you’ll want to return the connectivityStream Observable but
filtered so that it only emits when the network state changes to CONNECTED.
Otherwise, you’ll want to use the existing logic to slowly back off repeated
retries.

The final goal is to have the system automatically retry once the internet is back, if
the previous error was due to the device being offline.

As always, you can peek into the challenges folder and see the solution provided.

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 262

Key points
• Errors are an inevitable part of any app. You will always need some type of error-

handling mechanism.

• No internet connection is a common error. If the app needs an internet
connection to retrieve and process the data, but the device is offline, you need to
be able to detect this and respond appropriately.

• Invalid input is a common error. Sometimes you require a certain form of input,
but the user might enter something entirely different. Perhaps you have a phone
number field in your app, but the user ignores that requirement and enters letters
instead of digits.

• API error or HTTP error is a common error. Errors from an API can vary widely.
They can arrive as a standard HTTP error (response code from 400 to 500), or as
errors in the response, such as using the status field in a JSON response.

• In RxJava, error handling is part of the framework and can be handled in two ways:
onError (return a default value) and retry (Retry for a limited or unlimited
number of times).

Where to go from here?
In this chapter, you were introduced to error handling using retry() and
onErrorReturn(). The way you handle errors in your app really depends on what
kind of project you’re building. When handling errors, design and architecture come
in play, and creating the wrong handling strategy might compromise your project
and result in re-writing portions of your code.

You should spend some time playing with retryWhen(). It’s a non-trivial operator,
so the more you play with it, the more you’ll feel comfortable using it in your
applications.

Reactive Programming with Kotlin Chapter 12: Error Handling in Practice

raywenderlich.com 263

13Chapter 13: Intro to
Schedulers
By Alex Sullivan & Junior Bontognali

Until now, you’ve managed to work with schedulers, while avoiding any explanation
about how they handle threading or concurrency. In earlier chapters, you used
methods, which implicitly used some sort of concurrency/threading level, such as the
buffer or interval operators.

You probably have a feeling that schedulers have some sort of magic under the hood,
but before you understand schedulers, you’ll also need to understand what those
observeOn and subscribeOn functions are all about.

This chapter is going to cover the beauty behind schedulers. You’ll learn why the Rx
abstraction is so powerful and why working with asynchronous programming is far
less painful than using AsyncTasks, IntentHandlers and the myriad of other
asynchronous tools Android development offers.

Note: Creating custom schedulers is beyond of the scope of this book. Keep in
mind that the schedulers and initializers provided by RxJava generally cover
99% of cases. Always try to use the built-in schedulers.

raywenderlich.com 264

What is a scheduler?
Before getting your hands dirty with schedulers, it’s important to understand what
they are — and what they are not. To summarize, a scheduler is an abstraction
introduced by the RxJava library to schedule work at some point in time. The work
happens in some asynchronous context. That context could be custom Threads, an
event loop, Executors and so on.

While the Scheduler abstract class is a powerful abstraction over different ways of
executing asynchronous code, for Android apps you can usually think of schedulers
in relation to threads and thread pools. You’ll learn more about the different types of
schedulers and how they allow you to switch between threading contexts later on.

Here’s a good example as to how schedulers can be used:

In this diagram, you have the concept of a cache operator. An Observable makes a
request to a server and retrieves some data. This data is processed by a custom
operator named cache, which stores the data somewhere. After this, the data is
passed to all subscribers in a different scheduler, most likely the main scheduler,
which sits on top of the Android main thread. Remember that anytime you update a
UI element in an Android app it must be done on the main thread.

Setting up the project
Time to write some code! In this project, you are going to work with an Android app
called Schedulers that has a profoundly beautiful user interface. That user interface
is one TextView in the center of a white screen.

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 265

You’ll work on this project in Android Studio instead of IntelliJ IDEA, because, in this
chapter, you’ll also be introduced to the RxAndroid library, which requires Android
dependencies.

To gaze upon the beginnings of this magnificent app, Open Android studio to its
initial screen and select "Open existing project":

This will cause Android studio to load up and build the project. When it finishes (be
patient), you’ll see a Play button appear in the top toolbar next to the connected
device (or emulator), that's after a litte Android icon and the word app:

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 266

Now, use the Play button in the top toolbar to build and run the app. You’ll see a
very basic interface when it runs:

While you’ll technically be working on an Android app, you’ll be focused almost
entirely on the Logcat output, which you can find in the bottom console of Android
Studio:

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 267

Logcat can get pretty noisy, so you should make sure that you’re filtering the output
to the Schedulers app and filtering it further by including the main TAG used by the
app when logging. The TAG is "SchedulerLogging" and you can filter based off that tag
by adding the string in the search box at the top right of the Logcat window:

Inspect the filtered Logcat output, and you should see the following:

0s | [D] [dog] received on Thread: main
0s | [S] [dog] received on Thread: main

Before proceeding, open X.kt and take a look at the implementation of dump and
dumpingSubscription.

The first method dumps the element and the current thread information inside a
doOnNext operator using the [D] prefix. The second does the same using the [S]
prefix, but calls subscribe. Both methods indicate the elapsed time, so the 0s above
stand for “0 seconds elapsed.”

Switching schedulers
One of the most important things in Rx is the ability to switch schedulers at any
time, without any restrictions except for ones imposed by the inner process
generating events.

Note: An example of that type of restriction is if the Observable emits non-
thread safe objects, which cannot be sent across threads. In that case, RxJava
will allow you to switch schedulers, but you would be violating the logic of the
underlying code.

To understand how schedulers behave, you’ll create a simple Observable to play with
that provides some fruit.

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 268

Add the following code to the bottom of the onCreate method in
SchedulersActivity.kt:

val fruit = Observable.create<String> { observer ->
 observer.onNext("[apple]")
 Thread.sleep(2000)
 observer.onNext("[pineapple]")
 Thread.sleep(2000)
 observer.onNext("[strawberry]")
}

This Observable features a Thread.sleep function. While this is not something
you’d usually see in real apps, in this case, it will help you understand how
subscriptions and observations work.

Add the following code to subscribe to the Observable you created:

fruit
 .dump()
 .dumpingSubscription()
 .addTo(disposables)

Build and run, and check out the logging in the console:

0s | [D] [dog] received on Thread: main
0s | [S] [dog] received on Thread: main
0s | [D] [apple] received on Thread: main
0s | [S] [apple] received on Thread: main
2s | [D] [pineapple] received on Thread: main
2s | [S] [pineapple] received on Thread: main
4s | [D] [strawberry] received on Thread: main
4s | [S] [strawberry] received on Thread: main

The starter project already contained code creating a animal behavior subject and
subscribing and dumping the contents. So here you have the original subject,
followed by a fruit every two seconds after that.

The fruit is generated on the main thread, but it would be nice to move it to a
background thread. Growing fruit takes time after all, and you wouldn’t want to block
your main thread while it’s growing! To create the fruit in a background thread, you’ll
have to use subscribeOn.

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 269

Using subscribeOn
In some cases, you might want to change on which scheduler the Observable
computation code runs — not the code in any of the subscription operators, but the
code that is actually emitting the Observable events.

Note: For the custom Observable that you have created, the code that emits
events is the one you supply as the trailing lambda for Observable.create {
... }.

The way to set the scheduler for that computation code is to use the subscribeOn
operator. It might sound like a counterintuitive name at first glance, but after
thinking about it for a while, it starts to make sense. When you want to actually
observe an Observable, you subscribe to it. This determines where the original
processing will happen. If subscribeOn is not called, then RxJava automatically uses
the current thread:

This process is creating events on the main thread using the main scheduler. The
AndroidSchedulers.mainThread() that you’ve used in previous chapters sits on
top of the main thread. All the tasks you want to perform on the main thread have to
use this scheduler, which is why you used it in previous examples when working with
the UI. To switch schedulers, you’ll use subscribeOn.

As noted previously, the subscribeOn operator allows you to provide a Scheduler to
change what thread the Observable creation code is called on. However, before you
can use the operator, you need an instance of Scheduler.

RxJava provides a Schedulers (notice the trailing s in that class name) utility class
that contains several instances of predefined schedulers, as well as a few utility
methods to create new schedulers from existing Java concepts like Executor.

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 270

For this example, you’ll use the io scheduler that you’ve used in past projects. You’ll
see a detailed breakdown of the different types of default schedulers you can use
later on in the chapter.

To use the scheduler, replace the previous subscription to fruits you created with
this new one:

fruit
 .subscribeOn(Schedulers.io())
 .dump()
 .dumpingSubscription()
 .addTo(disposables)

Now that your new scheduler is in place, build and run and check the result:

0s | [D] [dog] received on Thread: main
0s | [S] [dog] received on Thread: main
0s | [D] [apple] received on Thread: RxCachedThreadScheduler-1
0s | [S] [apple] received on Thread: RxCachedThreadScheduler-1
2s | [D] [pineapple] received on Thread:
RxCachedThreadScheduler-1
2s | [S] [pineapple] received on Thread:
RxCachedThreadScheduler-1
4s | [D] [strawberry] received on Thread:
RxCachedThreadScheduler-1
4s | [S] [strawberry] received on Thread:
RxCachedThreadScheduler-1

Under the hood, the Schedulers.io() method is returning a scheduler that works
off of a thread pool. Those threads are cached and the library names them
accordingly.

Now, both the Observable and the subscribed observer from the fruit Observable
are processing data in the same thread.

Since you didn’t use the subscribeOn operator on the animal subscribing code, its
objects are still being emitted on the main thread.

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 271

That’s cool, but what can you do if you want to change where the observer performs
the code of your operators? You have to use observeOn.

Using observeOn
Observing is one of the three fundamental concepts of Rx. It involves an entity
producing events and an observer for those events. In this case, and in opposition to
subscribeOn, the operator observeOn changes the scheduler where the observation
happens.

Once an event is pushed by an Observable to all the subscribed observers, this
operator will ensure that the event is handled by the correct scheduler.

To switch from the io scheduler to the main thread, you need to call observeOn
before subscribing.

There’s only one issue. RxJava has no idea what a main scheduler is. The animal
subscription code is running on the main thread, but that’s just because RxJava
defaults to using whatever thread calls the subscribing code if there’s no observeOn
operator.

Remember, RxJava is a Java library that has no knowledge of Android. Since the main
thread is specific to your Android app, you need some way of creating a scheduler
that always routes work to the Android main thread.

You could write the logic yourself to wrap the Android main Looper in an RxJava
scheduler. Luckily for you, someone else has already done that work!

Open the build.gradle file and add a new dependency for the RxAndroid library in
the dependencies block:

implementation "io.reactivex.rxjava3:rxandroid:3.0.0"

RxAndroid is an extremely small library whose entire purpose is to expose the
Android main looper as a scheduler via the AndroidSchedulers.mainThread()
static utility function.

While the name of the library would imply that it interacts with all things Android,
the maintainers of the library felt that it would be better to whittle the project down
to only the most crucial element of using Rx on Android.

One more time, replace your fruits subscription code:

fruit
 .subscribeOn(Schedulers.io())

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 272

 .dump()
 .observeOn(AndroidSchedulers.mainThread())
 .dumpingSubscription()
 .addTo(disposables)

Run the project and check the Logcat output once more (you will need to wait a few
seconds until the app stops printing):

0s | [D] [dog] received on Thread: main
0s | [S] [dog] received on Thread: main
0s | [D] [apple] received on Thread: RxCachedThreadScheduler-1
0s | [S] [apple] received on Thread: main
2s | [D] [pineapple] received on Thread:
RxCachedThreadScheduler-1
2s | [S] [pineapple] received on Thread: main
4s | [D] [strawberry] received on Thread:
RxCachedThreadScheduler-1
4s | [S] [strawberry] received on Thread: main

You’ve achieved the result you wanted: All the events are now processed on the
correct thread. The Observable is processing and generating events on the
background thread, and the subscribing observer is doing its job on the main thread.

This is a very common pattern: You often use a background process to retrieve data
from a server and process the data received, only switching to the
AndroidSchedulers.mainThread scheduler to process the final event and display
the data in the user interface.

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 273

Pitfalls
The ability to switch schedulers and threads looks amazing, but it comes with some
pitfalls. To see why, you’ll push some events to the subject using a new thread. Since
you need to track on which thread the computation takes place, a good solution is to
use Thread.

Right after the fruit Observable, add the following code to generate some animals:

val animalsThread = Thread {
 Thread.sleep(3000)
 animal.onNext("[cat]")
 Thread.sleep(3000)
 animal.onNext("[tiger]")
 Thread.sleep(3000)
 animal.onNext("[fox]")
 Thread.sleep(3000)
 animal.onNext("[leopard]")
}

Then name the thread, so you will be able to recognize it, and start it up:

animalsThread.name = "Animals Thread"
animalsThread.start()

Run the app. You should see your new thread in action:

...
3s | [D] [cat] received on Thread: Animals Thread
3s | [S] [cat] received on Thread: Animals Thread
4s | [D] [strawberry] received on Thread:
RxCachedThreadScheduler-1
4s | [S] [strawberry] received on Thread: main
6s | [D] [tiger] received on Thread: Animals Thread
6s | [S] [tiger] received on Thread: Animals Thread
9s | [D] [fox] received on Thread: Animals Thread
9s | [S] [fox] received on Thread: Animals Thread
12s | [D] [leopard] received on Thread: Animals Thread
12s | [S] [leopard] received on Thread: Animals Thread

Perfect — you have animals created on the dedicated thread. Next, process the result
on io scheduler.

Note: It might seem repetitive to keep adding code and then replacing it with
something else, but the goal here is to compare the differences between the
various schedulers.

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 274

Replace the original subscription to the animal subject with the following code:

animal
 .dump()
 .observeOn(Schedulers.io())
 .dumpingSubscription()
 .addTo(disposables)

Build and run, and the new result is as follows:

...
3s | [D] [cat] received on Thread: Animals Thread
3s | [S] [cat] received on Thread: RxCachedThreadScheduler-1
4s | [D] [strawberry] received on Thread:
RxCachedThreadScheduler-2
4s | [S] [strawberry] received on Thread: main
6s | [D] [tiger] received on Thread: Animals Thread
6s | [S] [tiger] received on Thread: RxCachedThreadScheduler-1
9s | [D] [fox] received on Thread: Animals Thread
9s | [S] [fox] received on Thread: RxCachedThreadScheduler-1
12s | [D] [leopard] received on Thread: Animals Thread
12s | [S] [leopard] received on Thread:
RxCachedThreadScheduler-1

Now you’re switching threads from the animals thread where the items are actually
pushed to the subject, to one of the cached io threads provided by the
Schedulers.io function.

What if you want the observation process on the io scheduler, but you want to
handle the subscription on the main thread? For the first case, the observeOn is
already correct, but for the second, it’s necessary to use subscribeOn.

Replace the animal subscription, this time with the following:

animal
 .subscribeOn(AndroidSchedulers.mainThread())
 .dump()
 .observeOn(Schedulers.io())
 .dumpingSubscription()
 .addTo(disposables)

Build and run, and you’ll get the following result:

3s | [D] [cat] received on Thread: Animals Thread
3s | [S] [cat] received on Thread: RxCachedThreadScheduler-2
4s | [D] [strawberry] received on Thread:
RxCachedThreadScheduler-1
4s | [S] [strawberry] received on Thread: main
6s | [D] [tiger] received on Thread: Animals Thread

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 275

6s | [S] [tiger] received on Thread: RxCachedThreadScheduler-2
9s | [D] [fox] received on Thread: Animals Thread
9s | [S] [fox] received on Thread: RxCachedThreadScheduler-2
12s | [D] [leopard] received on Thread: Animals Thread
12s | [S] [leopard] received on Thread:
RxCachedThreadScheduler-2

Wait?! What? Why isn’t the computation happening on the correct scheduler? Since
you’re using the subscribeOn operator, you should be seeing the items being
computed on the main scheduler, right? This is a common and dangerous pitfall that
comes from thinking of Rx as asynchronous or multi-threaded by default — which
isn’t the case.

Rx and the general abstraction is free-threaded; there’s no magic thread switching
taking place when processing data. The computation is always performed on the
original thread if not specified otherwise.

Note: Any thread switching happens after an explicit request by the
programmer using the operators subscribeOn and observeOn.

Thinking Rx does some thread handling by default is a common trap to fall into.
What’s happening above is a misuse of the Subject. The original computation is
happening on a specific thread, and those events are pushed in that thread using
Thread() { ... }. Due to the nature of Subject, Rx has no ability to switch the
original computation scheduler and move to another thread, since there’s no direct
control over where the subject is pushed.

Why does this work with the fruit thread though? That’s because using
Observable.create puts Rx in control of what happens inside the Thread block so
that you can more finely customize thread handling.

This unexpected outcome is commonly known as the Hot and Cold Observables
problem.

In the case above, you are dealing with a hot Observable. The Observable doesn’t
have any side-effect during subscription, but it does have its own context in which
events are generated and RxJava can’t control it (namely, it sports its own Thread).

A cold Observable in contrast doesn’t produce any elements before any observers
subscribe to it. That effectively means it doesn’t have its own context until, upon
subscription, it creates some context and starts producing elements.

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 276

Hot vs. cold
The section above touched on the topic of hot and cold Observables. The topic of hot
and cold Observables is quite opinionated and generates a lot of debate, so let’s
briefly look into it, here. The concept can be reduced to a very simple question:

Some examples of side effects are:

• Fire a request to the server

• Edit the local database

• Write to the file system

• Launch a rocket

The world of side effects is endless, so you need to determine whether your
Observable instance is performing side effects upon subscription. If you can’t be
certain about that, then perform more analysis or dig further into the source code.
Launching a rocket on every subscription might not be what you’re looking to
achieve...

Another common way to describe this is to ask whether or not the Observable
shares side-effects. If you’re performing side effects upon subscription, it means that
the side effect is not shared. Otherwise, the side effects are shared with all
subscribers.

This is a fairly general rule, and applies to any RxJava object like a subject and
related subtypes.

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 277

As you’ve certainly noticed, we haven’t spoken much about hot and cold Observables
so far in the book. It’s a common topic in reactive programming, but in Rx you
encounter the concept only in specific cases like the Thread example above or when
you need greater control, such as when you run tests.

Keep this section as a point of reference, so in case you need to approach a problem
in terms of hot or cold Observables, you can quickly open the book to this point and
refresh yourself on the concept.

Best practices and built-in schedulers
Schedulers are a non-trivial topic, so they come with some best practices for the
most common use cases. In this section, you’ll get a quick introduction to serial and
concurrent schedulers, learn how they process the data and see which type works
better for a particular context.

Android main scheduler
AndroidSchedulers.mainThread() sits on top of the main thread. This scheduler is
used to process changes on the user interface and perform other high-priority tasks.

As a general practice when developing applications on Android, long-running tasks
should not be performed using this scheduler, so avoid things like database requests
or other heavy tasks. If you try and execute a network request from this scheduler
you’ll receive a NetworkOnMainThreadException.

Additionally, if you perform side effects that update the UI, you must switch to this
scheduler to make sure all UI updating logic happens on the main thread. If you
don’t, you may see exceptions about modifying UI code from a different thread.

io scheduler
The scheduler returned by Schedulers.io() should be used whenever you’re doing
work that’s IO bound. Specifically, if you’re making any network calls, accessing
items from a database, or reading lines from a file, this is the scheduler for you.

Under the hood, it’s backed by thread pool that will grow as needed, so make sure not
to do strict computational work while using the IO scheduler.

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 278

Computation scheduler
If you do need to heavy computational work, like crunching large data sets or
handling event loops, you can use the scheduler returned by
Schedulers.computation().

In opposition to the IO scheduler, the computation scheduler will not spawn more
threads as needed. Instead, the number of threads it works with is normally limited
to the number of cores the CPU has.

If you think about it this makes sense: If you’re doing computationally heavy work
and you have more threads than number of cores in the CPU, you won’t be able to
process the work any faster since all cores are occupied. Instead, you’d just be
creating more memory overhead by creating new threads.

Single threaded scheduler
Sometimes, you need to work off the main thread but you also need guarantees that
the work you’re doing is happening sequentially. This isn’t a problem if you’re only
working in the confines of one RxJava chain, since, for the most part, those chains
will always happen sequentially.

However, if you have multiple distinct chains and you want to know that you’re
continually adding new work to a queue, you can use the Schedulers.single
scheduler.

The single scheduler is potentially the simplest of all the schedulers. It’s ultimately
backed by one thread. That means that, whenever you queue up new work on that
thread, it’s queued to the bottom so you know it happens after other work you’ve
added before.

Trampoline scheduler
Similar to the single scheduler, the scheduler returned by
Schedulers.trampoline() always operates on a single thread. Unlike the single
scheduler, that thread isn’t a background thread. Instead, it’s the main thread that
created the trampoline scheduler. You’ll see in Chapter 15, "Testing RxJava Code,"
that the trampoline scheduler can be very useful while writing unit tests.

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 279

Test scheduler
TestScheduler is a special kind of beast. It’s meant only to be used in testing, so
make sure not to use this scheduler in production code. This special scheduler
simplifies operator testing. You will have a look into using this scheduler in the
dedicated chapter about testing, but let’s have a quick look since you’re doing the
grand tour of schedulers.

Open the SchedulerTest.kt file. It’s a simple unit test that attempts to test the
Observable.timer method. As any good developer knows, testing code that
interacts with time can be extremely challenging. Without TestScheduler, you may
be forced to block the test from finishing until a certain amount of time has passed.
That makes for very slow unreliably tests, which is a big no-no in the testing world.

TestScheduler allows you to control how much "time" has passed and how actions
and events are triggered.

Take a look at the following code:

val scheduler = TestScheduler()
val observable = Observable.timer(2, TimeUnit.SECONDS,
scheduler)

You’re creating an instance of TestScheduler and then passing that schedule in to
the Observable.timer method. You have seen the Observable.timer factory
method, but you may not have used the version that takes in a scheduler yet.

Command-click into the Observable.timer method and scroll up one method
signature to the version of Timer that doesn’t take a scheduler. In that methods
JavaDocs, you’ll see the following:

* <dd>{@code timer} operates by default on the {@code
computation} {@link Scheduler}.</dd>

By default, most timing oriented operators will operate on the computation
scheduler you saw earlier. That can create problems if you want to test the code later
on or if you expect the code to be run on whatever thread it was started on.

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 280

Going back to the example unit test, you see the following code:

val testTimer = observable.test()

testTimer.assertNotComplete()

scheduler.advanceTimeBy(2, TimeUnit.SECONDS)

testTimer.assertComplete()

You’ll learn about the test method on Observables in Chapter 15, "Testing RxJava
Code." All you need to know for now is thatu it allows you to assert certain events
have happened on yor Observable. In the above example you’re first asserting that
the Observable has not completed yet, which makes sense because the Observable
only completes after two seconds.

Then you’re using the TestScheduler.advanceTimeBy method to artificially
advance what that scheduler thinks of as the current time. Kind of like time
traveling, except it makes for a far less interesting sci-fi television series.

Since you’ve advanced time by two seconds, that means the Observable should have
emitted its value and completed.

Sure enough, if you run the unit test by clicking the small green arrow next to the
test method, you’ll see that it passed.

You’ll learn more about how amazing TestScheduler is later on.

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 281

Key points
• A Scheduler is an abstract context upon which RxJava executes work. In other

words, Schedulers let you choose to do work on different threads.

• You can use the subscribeOn operator to control on what thread your Observable
is created. That allows you to, for example, execute the actual networking portion
of an API call off the main thread.

• After using subscribeOn, you can use the observeOn operator to then choose a
different thread to actually receive the emitted objects on. You’ll often use this
operator to switch back to the main thread to update UI objects.

• While subscribeOn and observeOn are extremely powerful operators, they’re not
magic. If you call the onNext method of a subject on a different thread, RxJava
can’t honor your subscribeOn call and you’ll see the item emitted on the original
thread.

• There are both hot Observables and cold Observables. cold Observables create
some special side effect when they’re subscribed to. A network call that returns an
Oobservable is an example of a cold stream. A hot Observable is always running
and emitting items, even if no one is listening. Subscribing to a hot Observable
will not cause any special side effects.

• There are several built in schedulers for you to use. The io scheduler is great for
network and database calls, while the computation scheduler is good for event
loops and computationally expensive code.

• The RxAndroid library exposes another special scheduler you can use to emit
items on the Android main thread.

• Finally, the TestScheduler class assists in testing RxJava code and should not be
used in production code.

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 282

Where to go from here?
Schedulers are a non-trivial topic in the Rx space; they’re responsible for computing
and performing all tasks in RxJava.

Before proceeding, invest some time in playing around with the examples in this
chapter and test some schedulers to see what impact they have on the final result.
Understanding schedulers will make life easier with RxJava, and will improve your
confidence when using subscribeOn and observeOn.

Reactive Programming with Kotlin Chapter 13: Intro to Schedulers

raywenderlich.com 283

14Chapter 14: Flowables &
Backpressure
By Alex Sullivan

You’ve been using Observables to do some pretty powerful stuff — but there’s one
problem that you still need to cover. What happens if a subscriber can’t keep up with
the next events that the Observable is emitting?

Backpresssure
That thorny scenario where operators or subscribers can’t consume next events as
fast as an Observable may produce them is called backpressure, and you’ll explore
it thoroughly in this chapter!

To start, open up the starter project for this chapter using IntelliJ IDEA. Navigate to
SupportCode.kt and take a look around. You’ll find:

• The tried and true exampleOf method, a safeSleep method that simply calls
Thread.sleep and catches any InterruptedExceptions.

• A freeMemory method that calculates the total mount of free memory the system
has.

Fancy, right?

Now, head over to Main.kt and add the following code in main():

exampleOf("Zipping observable") {
 val fastObservable = Observable.interval(1,
TimeUnit.MILLISECONDS)
 val slowObservable = Observable.interval(1, TimeUnit.SECONDS)
}

raywenderlich.com 284

With the above, you’re creating two new Observables using the
Observable.interval static factory method. The interval method creates an
Observable that counts up from the provided number at a frequency you provide,
forever, so it never terminates.

The two Observables are almost exactly the same, except one will emit a next event
with a new number every millisecond, and the other will only emit every second.

Now, add the following right below the slowObservable line:

// 1
val disposable =
 Observables.zip(slowObservable, fastObservable)
 .subscribeOn(Schedulers.io())
 .subscribe { (first, second) ->
 // 2
 println("Got $first and $second")
 }
// 3
safeSleep(5000)
// 4
disposable.dispose()

That’s a solid chunk of code, so breaking it down step by step:

1. Create a new Observable by using the zip function, which, as you know,
combines two Observables together. You’re using the RxKotlin factory function
to keep everything neat. It also makes a Pair from the two emitted items for you.

2. Subscribe to the zipped Observable and print out both items.

3. Sleep the thread for five seconds. Since you’re subscribing to the zipped
Observable on the io scheduler, the "Zipping Observable" example block would
finish immediately if you didn't sleep the thread. You'd never do this in a real
application since the application would never terminate naturally like this one,
but it’s necessary for the examples in this chapter.

4. As the Rx guru that you are by now, you never forget to dispose the subscriptions.

Run the Main.kt file. You should see the following:

--- Example of: Zipping observable ---
Got 0 and 0
Got 1 and 1
Got 2 and 2
Got 3 and 3

Reactive Programming with Kotlin Chapter 14: Flowables & Backpressure

raywenderlich.com 285

The next events are being zipped together, but it leaves one question unanswered:
What's happening to all the items that the fast Observable is emitting?

It took about five seconds to print out those four numbers, but we know in that time
the fast Observable should have emitted thousands of items, since it should be
emitting every millisecond.

It turns out that RxJava buffers those items under the hood. That means that it
keeps a list of items that keeps growing until the downstream operators and
subscribers can consume them.

Buffering danger!
Most of the time buffering next events is exactly what you want, but sometimes that
buffering approach eats too much memory and can lead to OutOfMemoryError
crashes!

You’ll create a new example that results in an OutOfMemoryError.

Copy the following code after the previous example:

exampleOf("Overflowing observer") {
 // 1
 val disposable = Observable.range(1, 10_000_000)
 // 2
 .subscribeOn(Schedulers.io())
 .observeOn(Schedulers.computation())
 // 3
 .subscribe {
 println("Free memory: ${freeMemory()}")
 safeSleep(100)
 }
 // 4
 safeSleep(20_000)
 disposable.dispose()
}

That’s a lot of code, so again we’ll break it down by section:

1. Create a new Observable using the range static factory method. The range
method returns an Observable that emits integers starting from the first
argument until the second argument — so between 1 and 10_000_000 in this
example.

2. Subscribe on the io scheduler and observe on the computation scheduler. It’s
important that you subscribe and observe on different threads for this example.

Reactive Programming with Kotlin Chapter 14: Flowables & Backpressure

raywenderlich.com 286

You’ll see why later.

3. Subscribe to the Observable. In the subscribe lambda, print out the total
amount of remaining free memory in the system and sleep the thread for 100
seconds. Sleeping for 100 milliseconds allows you to mimic a situation where the
subscribing code is slower than the emitting code.

4. Sleep the thread for 20 seconds, so that the example has enough time to finish.

Run the code. You should see something like this:

--- Example of: Overflowing observer ---
Free memory: 3793645960
Free memory: 3769377888
Free memory: 3701230888
Free memory: 3608875976
...

But you probably won't see an OutOfMemoryError. What gives, you may ask? RxJava
is buffering integers, but an Int is so tiny that it doesn't make much of a dent in your
JVMs memory. So instead, you need to buff up the memory intensity of each item.
Add the following code after the subscribeOn operator and before the observeOn
operator:

.map {
 LongArray(1024 * 8)
}

Now, you’re taking each integer emitted by the range Observable and turning into a
LongArray with a size of 8192. Now that’s a beefy object!

Run the code again. You should see some fireworks:

--- Example of: Overflowing observer ---
Free memory: 3793645432
Free memory: 3595255472
...
Free memory: 276971776
Free memory: 277053320
io.reactivex.exceptions.UndeliverableException:
java.lang.OutOfMemoryError: Java heap space

As you consume more and more memory, and RxJava buffers more and more items,
you’ll see the total amount of free memory decreasing and, eventually, you should
see an OutOfMemoryError. Isn’t making software blow up the best?

Reactive Programming with Kotlin Chapter 14: Flowables & Backpressure

raywenderlich.com 287

Natural backpressure
Now, backpressure isn't always a problem. In the previous example, try removing the
observeOn line and run the example again.

No fireworks! What gives?

Since you removed the observeOn call, it means the subscribing code and the
observing code are now both running on the same thread — the scheduler thread
that you told it to run on with the subscribeOn call.

That means that, when you call safeSleep(100) in the subscribing lambda, the
whole Rx chain stops for 100 milliseconds. The subscribing code is consuming items
as fast as the Observable is emitting them — so there’s no backpressure!

What that means is that, if you’re not mucking about with observeOn and
subscribeOn calls, you really don't need to worry about backpressure.

Introduction to Flowables
But since you usually are mucking about with threading in your RxJava chains, the
RxJava library has got your back.

Flowables are backpressure-aware versions of Observables that allow you to
specify how you want to handle backpressure. A Flowable is distinct from an
Observable, but they both share all of the operators and fun jazzy static
constructors you've grown to love. You don't need to worry about learning a whole
new set of operators to go along with your new Flowable type.

Copy the following code for a new example into your main method below the
previous examples:

exampleOf("Zipping flowable") {
 val slowFlowable = Flowable.interval(1, TimeUnit.SECONDS)
 val fastFlowable = Flowable.interval(1, TimeUnit.MILLISECONDS)
 val disposable =
 Flowables.zip(slowFlowable, fastFlowable)
 .subscribeOn(Schedulers.io())
 .observeOn(Schedulers.newThread())
 .subscribe { (first, second) ->
 println("Got $first and $second")
 }

 safeSleep(5000)

Reactive Programming with Kotlin Chapter 14: Flowables & Backpressure

raywenderlich.com 288

 disposable.dispose()
}

Hopefully, this code looks pretty familiar. It’s exactly the same code as you wrote in
the "Zipping observable" example, except this time it’s using Flowable instead of
Observable!

Just like Observable, Flowable has a static interval factory method that creates an
instance of Flowable that counts up when subscribed to.

And just like in the previous example, you’re combining two Flowables — one fast
and one slow. In the subscribe lambda you’re printing out both values from the
Flowables.

There’s only one problem: You haven't told your Flowables how to react to
backpressure. Unlike Observable, Flowable won't automatically buffer items. If you
run this code, it’ll crash.

Since blowing up code is super fun, run it! You should see the following at least once
in the resulting stack trace:

io.reactivex.exceptions.MissingBackpressureException: can’t
deliver value 128 due to lack of requests

Since your Flowable won't automatically buffer items like Observable does, you
need to tell it how to handle that backpressure. Since the fast flowable is the one that
will encounter backpressure, modify the fastFlowable value to look like the
following example:

val fastFlowable = Flowable.interval(1, TimeUnit.MILLISECONDS)
 .onBackpressureDrop { println("Dropping $it") }

You’re using the onBackPressureDrop operator on your fast Flowable to instruct it
how on how to handle backpressure. onBackPressureDrop can optionally take a
Consumer function that lets you do something with the dropped item. Here, you’re
just printing out the dropped value.

Run the code. It won't crash this time and you should see the following:

--- Example of: Zipping flowable ---
Dropping 128
Dropping 129
Dropping 130
...
Got 0 and 0
...

Reactive Programming with Kotlin Chapter 14: Flowables & Backpressure

raywenderlich.com 289

No more crashing!

Why did the fast Flowable only start dropping items once it got to all the way up to
the 128th value? that’s because using the observeOn method actually creates a
buffer of size 128 to be more performant for bursty Flowables that can emit a lot of
values at once and then stop.

Backpressure strategies
You’ve seen that you can remove back-pressured items from the stream by using the
onBackpressureDrop method, but there’s actually three different ways you can
handle backpressure:

1. onBackPressureDrop: Remove items from the stream as they come if the
downstream consumer can’t handle them.

2. onBackPressureBuffer: Buffer the backpressured item up to a limit that you
specify. You can then handle the case in which the buffer is overrun.

3. onBackPressureLatest: Hold onto the latest value and emit that value when the
downstream consumer can handle it.

onBackPressureBuffer
Copy the following example into your project:

exampleOf("onBackPressureBuffer") {
 val disposable = Flowable.range(1, 100)
 .subscribeOn(Schedulers.io())
 .observeOn(Schedulers.newThread(), false, 1)
 .doOnComplete { println("We're done!") }
 .subscribe {
 println("Integer: $it")
 safeSleep(50)
 }
 safeSleep(1000)
 disposable.dispose()
}

Everything here should look pretty normal, with one exception. What's going on with
that observeOn line?

observeOn(Schedulers.newThread(), false, 1)

Reactive Programming with Kotlin Chapter 14: Flowables & Backpressure

raywenderlich.com 290

observeOn actually has an overloaded version of the operator that can take a
boolean to delay the error across thread boundaries and, more interesting for this
backpressure example, an int representing the internal buffer you learned about
earlier in the chapter.

You’re setting that internal buffer value to 1 so you can clearly see the backpressure
operator at play!

Reactive Programming with Kotlin Chapter 14: Flowables & Backpressure

raywenderlich.com 291

Note: In a real project you'd never want to set the buffer that low. Chances are
that you’ll never actually want to change that buffer size either. But, if you do,
make sure to give it a value of at least 16, so the performance of bursty sources
doesn't go down the tubes!

Now, it’s time to hook up the backpressure! Add the following line below the
subscribeOn operator:

.onBackpressureBuffer(
 // 1
 50,
 // 2
 { println("Buffer overrun; dropping latest") },
 // 3
 BackpressureOverflowStrategy.DROP_LATEST
)

That’s a chunky operator, so breaking it down section by section:

1. onBackpressureBuffer takes in a maximum buffer count, which you've set to
50. If you end up needing to buffer more than 50 items, you’ll want a way to
handle that situation. Which is good news because...

2. You’re also passing in a lambda to take an action if your buffer overruns. In this
example, you’re just printing a message.

3. Since the buffer can overflow, you need to tell RxJava what to do in that scenario.
Right now, you’re telling it to drop items that come in after the buffer overruns.
You can instead use BackpressureOverflowStrategy.DROP_OLDEST to drop the
oldest items in the buffer. Last but not least, you can use
BackpressureOverflowStrategy.ERROR if you want to run into your old friend
MissingBackpressureException.

If you run the example, you should see the following:

Integer: 1
Buffer overrun; dropping latest
Buffer overrun; dropping latest
...
Integer: 2
Integer: 3
...

Reactive Programming with Kotlin Chapter 14: Flowables & Backpressure

raywenderlich.com 292

The first item comes in without issue. Then, since the subscribing code is sleeping for
50 milliseconds, backpressure starts creeping up and you quickly overrun the size 50
buffer.

Since you’re using the DROP_LATEST overflow strategy, the later elements are
dropped and the first items to be buffered are held onto, so once the upstream starts
emitting again you get those buffered items.

onBackPressureLatest
Copy the following example into your project:

exampleOf("onBackPressureLatest") {
 val disposable = Flowable.range(1, 100)
 .subscribeOn(Schedulers.io())
 .observeOn(Schedulers.newThread(), false, 1)
 .doOnComplete { println("We're done!") }
 .subscribe {
 println("Integer: $it")
 safeSleep(50)
 }
 safeSleep(1000)
 disposable.dispose()
}

This code looks pretty familiar, huh? But, as you've seen before, it’s missing a
backpressure operator! Add the following line between subscribeOn and
observeOn:

.onBackpressureLatest()

As mentioned before, onBackpressureLatest() instructs the Flowable to hold
onto the latest back-pressured value and emit that when the downstream can handle
it.

Run the example. you’ll see the following:

--- Example of: onBackPressureLatest ---
Integer: 1
Integer: 100
We're done!

The first item is emitted just like it was before. Then the Flowable encounters
backpressure, all the way up until the last item, which, again emits OK.

Reactive Programming with Kotlin Chapter 14: Flowables & Backpressure

raywenderlich.com 293

You can think of onBackpressureLatest as being equivalent to using
onBackpressureBuffer with a buffer size of one and a
BackpressureOverflowStrategy of DROP_LATEST.

Built-in backpressure support
You've done a fantastic job handling backpressure in several ways. But there’s one
more example to work through. It’s a quick one though!

Copy the following example into your project:

exampleOf("No backpressure") {
 val disposable = Flowable.range(1, 100)
 .subscribeOn(Schedulers.io())
 .observeOn(Schedulers.newThread(), false, 1)
 .doOnComplete { println("We're done!") }
 .subscribe {
 println("Integer: $it")
 safeSleep(50)
 }
 safeSleep(1000)
 disposable.dispose()
}

Run the code. You should see the following:

--- Example of: No backpressure ---
Integer: 1
Integer: 2
Integer: 3
...

Now, you might be thinking, “Wait a minute. I thought that code would throw a
MissingBackpressureException since there’s no onBackPressure... operator?!”
Great observation - some Flowables actually support backpressure right out of the
box!

The range operator will only produce new values when the downstream code
requests them. That means that, if the subscribing code takes a long time, a new
value will only be produced after it finishes its task and is ready for a new value.

Not all operators honor backpressure this way, so it’s important to look at the
Javadocs for operators to see how they handle backpressure. Every Flowable
operator will have a section in the Javadocs explaining how they handle
backpressure.

Reactive Programming with Kotlin Chapter 14: Flowables & Backpressure

raywenderlich.com 294

JavaDocs for Flowable.range

Here's an example of the range operators JavaDocs. You can see the section on
backpressure in the image above.

Now here’s an example of the zip operators backpressure documentation.

JavaDocs for Flowable.zip

You can see from the documentation that, as opposed to the range operator, zip
expects you to handle the backpressure yourself.

Remember to check the documentation of all Flowable operators before using them
to make sure you don't get caught with unexpected backpressure handling!

Flowables, Observables, Processors and
Subjects — Oh, My!
You may be feeling a little overwhelmed since you've just been given a whole new
reactive type — Flowables! But don't worry, Flowables are really just like
Observables, but with more control over backpressure. You can even switch between
the two types seamlessly.

Observable has an instance method on it called toFlowable. I know it’s crazy, but
that method actually converts an Observable to a Flowable.

Since you’re moving from an Observable to a Flowable, you have to handle
backpressure. toFlowable takes a BackpressureStrategy, which indicates how this
Flowable should handle backpressure.

Note: BackpressureStrategy is different from the
BackpressureOverflowStrategy you saw earlier, so don't confuse them!

Reactive Programming with Kotlin Chapter 14: Flowables & Backpressure

raywenderlich.com 295

Choosing a BackpressureStrategy value
There’s five different BackpressureStrategy values you can pick from:

1. MISSING: Use this strategy if you’re planning to use one of the onBackpressureX
strategies you saw earlier. If you don't use one of the backpressure operators, you
may get a MissingBackpressureException if you encounter backpressure.

2. ERROR: Signals MissingBackpressureException if the downstream can’t keep
up.

3. BUFFER: Buffers all of the next events. This is similar to how an Observable
handles backpressure by default.

4. DROP: Drops the most recent next events if the downstream can’t keep up.

5. LATEST: Keeps the latest next event, overriding it if the downstream can’t keep
up.

You can see that many of the constants above are similar to the backpressure
operators you saw earlier. If you need more fine-grained control when converting a
Flowable to an Observable, you can always use one of the onBackpressure...
methods you learned about in this chapter.

Add the following example at the bottom of the main class:

exampleOf("toFlowable") {
 val disposable = Observable.range(1, 100)
 .toFlowable(BackpressureStrategy.MISSING)
 .subscribeOn(Schedulers.io())
 .observeOn(Schedulers.newThread(), false, 1)
 .subscribe {
 println("Integer: $it")
 safeSleep(50)
 }
 safeSleep(1000)
 disposable.dispose()
}

Just like before you’re using the range operator to create an Observable that emits
integers. This time, however, you’re using the toFlowable method to convert the
Observable into a Flowable, passing in MISSING as your backpressure strategy.

Can you guess what will happen when you run this code?

Reactive Programming with Kotlin Chapter 14: Flowables & Backpressure

raywenderlich.com 296

Run the app. Since you’re using the MISSING backpressure strategy and not applying
one of the onBackPressure... operators, your Flowable blows up with a
MissingBackpressureException.

Now swap out the BackpressureStrategy you’re supplying to the toFlowable
operator in the above example with the BUFFER strategy:

.toFlowable(BackpressureStrategy.BUFFER)

Run the project again. This time you’ll see items printed normally. Try out the
LATEST and DROP strategies as well. They should work exactly as you'd expect.

Processors
Since a Subject is just a fancy Observable, you could always use toFlowable on it
to turn it into a Flowable. Just like before, you’ll have to supply a
BackpressureStrategy. Alternatively, if you want a backpressure-aware version of
your favorite subject, you can use the Processor type. it’s just like a Subject, except
backpressure aware!

There’s a Processor type for each Subject you know and love! For example, if you
want a backpressure aware version of BehaviorSubject, you can just use
BehaviorProcessor.

Add the following example to the bottom of the main class:

exampleOf("Processor") {
 // 1
 val processor = PublishProcessor.create<Int>()
 // 2
 val disposable = processor
 .observeOn(Schedulers.newThread(), false, 1)
 .subscribe {
 println("Integer: $it")
 safeSleep(50)
 }
 // 3
 Thread().run {
 for (i in 0..100) {
 processor.onNext(i)
 safeSleep(5)
 }
 }
 safeSleep(1000)
 disposable.dispose()
}

Reactive Programming with Kotlin Chapter 14: Flowables & Backpressure

raywenderlich.com 297

This code is a bit different, so here’s a breakdown:

1. You’re creating a PublishProcessor, which acts just like a PublishSubject
except it won't buffer items if it experiences backpressure. PublishProcessor is
to PublishSubject as Flowable is to Observable.

2. Just like before, you’re calling the overloaded version of observeOn to avoid any
internal scheduler buffering. You’re subscribing directly to the processor and
printing out the integer in the subscribe lambda. To simulate a slow subscriber,
you’re using the safeSleep method to sleep the thread for 50 milliseconds.
Unlike before, you’re not using the subscribeOn operator. Since you’ll be
manually calling onNext on the processor, the items will be initially created on
whatever thread calls onNext, so a subscribeOn call would have no affect.

3. In order to simulate items being generated on a separate thread, you’re creating a
new Thread object and using the onNext method to send a range of integers into
your processor. You’re again using the safeSleep method to ensure that all
values aren't delivered at once to emulate a more real world use case.

Note: Refer to Chapter 13, “Intro to schedulers” chapter for more information
on how subjects (and by extension processors) handle schedulers.

Run the project. Since you didn't utilize one of the onBackPressure... methods, the
project will crash with a MissingBackpressureException.

Processors will not buffer items delivered via the onNext method like a Subject
would. You have to manually control the backpressure just like you do with a
Flowable.

Update the example above to use the onBackPressureDrop operator:

val disposable = processor
 .onBackpressureDrop { println("Dropping $it") }
 .observeOn(Schedulers.newThread(), false, 1)
 .subscribe {
 println("Integer: $it")
 safeSleep(50)
 }

Now whenever an item is dropped due to backpressure you’ll print out a quick
message explaining that the item's been dropped.

Reactive Programming with Kotlin Chapter 14: Flowables & Backpressure

raywenderlich.com 298

Run the project. You should see output that looks like this:

--- Example of: Processor ---
Integer: 0
Dropping 1
Dropping 2
Dropping 3
Dropping 4
Dropping 5
Dropping 6
Dropping 7
Dropping 8
Dropping 9
Integer: 10
Dropping 11
...

Most items are dropped, and the ones that do make it through are printed out in your
subscribe lambda. Processors are good to know about, but in the real world you’ll
rarely need to use them. One example that might warrant using a Processor is if you
find yourself sending large objects, like Bitmaps, through a Subject.

In order to avoid buffering lots of heavy duty, high memory objects you could use a
Processor with the onBackpressureLatest operator. That way, only the freshest
data would be stored in memory.

Reactive Programming with Kotlin Chapter 14: Flowables & Backpressure

raywenderlich.com 299

Key points
• Flowables offer a powerful tool for handling backpressure, which is when a

stream is producing values faster than they can be consumed by an Observer.
Most of the time you can ignore backpressure and use Observables, but Flowable
can be super-handy if you need it.

• You’d typically use a Flowable if you have really large (like over 1000 items)
streams that come at variable speeds. For example, image you have a web socket
that sends down tons of data at random times. You might want to only handle the
latest item, so you could use the onBackpressureLatest method to achieve that.

• If you have an Observable that emits Bitmaps (or other types which can have a
really huge memory footprint), you might want to be aware of the fact that all the
emitted Bitmaps will buffer if you can’t consume them fast enough, which could
lead to an OutOfMemoryError. It might make sense to make use of one of the
backpressure operators there as well.

• Similarly, if you are buffering high memory items into a Subject, consider using a
Processor instead. Just make sure to add the proper onBackPressure... operator
to ensure you aren't hit with a MissingBackpressureException!

Flowables are a powerful and sometimes intimidating part of RxJava. But with this
chapter's help, you now have all the knowledge you need to tackle them in your own
applications!

Where to go from here?
Backpressure is one of things that only show up when you least expect it. Before
proceeding, invest some time in playing around with the examples in this chapter
and test some operators to see what impact they have on the final result.
Understanding backpressure will make your life easier with RxJava, and it will
improve your confidence when working with Flowables.

Reactive Programming with Kotlin Chapter 14: Flowables & Backpressure

raywenderlich.com 300

15Chapter 15: Testing RxJava
Code
By Alex Sullivan

First and foremost — you’re a hero for not skipping this chapter! Testing your code is
at the heart of writing good software — RxJava comes with lots of nifty tricks for
testing everything under the sun. In this chapter, you’ll use JUnit to write unit tests
to test a few operators and this chapter’s app.

Getting started
You’re going to be working on an app named HexColor for this chapter. HexColor is
a nifty app that lets you input a hex color string. The app then shows you that color
and (if it’s within a set of known hex colors) tells you what the name of the color is.
Open the starter project and run the app. You should see an app that looks like this:

raywenderlich.com 301

Enter a full hex string to see the app in action. It wouldn’t be a color-based app if
there wasn’t some product placement, so try to enter the Ray Wenderlich green
color: #006636

You should see the following screen:

In the top-left, you can see the color broken up by RGB values. On the right, you can
see the name of the color.

Fancy, right?

Now that you’re thoroughly impressed, take a look at the ColorViewModel class to
see what’s going on inside. Most of the logic for the app is actually contained in the
init block:

// Send the hex string to the activity
hexStringSubject
 .subscribeOn(backgroundScheduler)
 .observeOn(mainScheduler)
 .subscribe(hexStringLiveData::postValue)
 .addTo(disposables)

// Send the actual color object to the activity
hexStringSubject
 .subscribeOn(backgroundScheduler)
 .observeOn(mainScheduler)
 .map { if (it.length < 7) "#FFFFFF" else it }
 .map { colorCoordinator.parseColor(it) }
 .subscribe(backgroundColorLiveData::postValue)
 .addTo(disposables)

Reactive Programming with Kotlin Chapter 15: Testing RxJava Code

raywenderlich.com 302

// Send over the color name "--" if the hex string is less than
// seven chars
hexStringSubject
 .subscribeOn(backgroundScheduler)
 .observeOn(mainScheduler)
 .filter { it.length < 7 }
 .map { "--" }
 .subscribe(colorNameLiveData::postValue)
 .addTo(disposables)

// If our color name enum contains the given hex string, send
// that color name over.
hexStringSubject
 .subscribeOn(backgroundScheduler)
 .observeOn(mainScheduler)
 .filter {
 hexString -> ColorName.values().map { it.hex }
 .contains(hexString)
 }
 .map { hexString -> ColorName.values().first {
 it.hex == hexString }
 }
 .map { it.toString() }
 .subscribe(colorNameLiveData::postValue)
 .addTo(disposables)

// Send the RGB values of the color to the activity.
hexStringSubject
 .subscribeOn(backgroundScheduler)
 .observeOn(mainScheduler)
 .map {
 if (it.length == 7) {
 colorCoordinator.parseRgbColor(it)
 } else {
 RGBColor(255, 255, 255)
 }
 }
 .map { "${it.red},${it.green},${it.blue}" }
 .subscribe(rgbStringLiveData::postValue)
 .addTo(disposables)

The hexStringSubject property is a BehaviorSubject, which receives hex string
digits from the user as they come in via the digitClicked method. At any given
moment, hexStringSubject has the whole hex string that the user has entered.

Each block in the above code subscribes to the hexStringSubject behavior subject,
interprets the current string, and sends some information to the several live data
objects contained in ColorViewModel.

The app is complete in its functionality — it just needs a few tests to make it perfect!

Reactive Programming with Kotlin Chapter 15: Testing RxJava Code

raywenderlich.com 303

Weirdly enough, whoever wrote this app actually created two test classes with some
plumbing already set up. How convenient!

Before you start writing tests for ColorViewModel, you need some background on
testing in RxJava. To do that, you’ll start by writing a few sample RxJava tests in the
OperatorTest class.

Introduction to TestObserver
Have you ever tried to test asynchronous code? If you have, you probably know that
it’s no cake walk. It can be (very) difficult to both test all aspects of your
asynchronous code and keep your unit tests running quickly. RxJava provides an
extremely convenient set of test utilities to make testing Observables easier — the
first of which is the TestObserver class.

Open up OperatorTest.kt, and add the following code to the test concat method,
which is already in the file:

@Test
fun `test concat`() {
 val observableA = Observable.just(1)
 val observableB = Observable.just(2)
 val observableC = observableA.concatWith(observableB)
}

Note: When offered an import for Observable, make sure to import
io.reactivex.rxjava3.core.Observable, not the java.util version.

You’ve got two simple Observables that emit one integer and then complete. Then
you’ve got a third Observable that uses the concatWith method to concatenate
those two Observables together. As you’ve probably gathered from the name of the
method, you want to test that that concatWith method returns what you’d expect —
an Observable that emits two values: 1 followed by 2, and then it finishes.

You could subscribe to observableC and record what values are emitted and then
assert against those values as they come in. But that would be messy and would
quickly fall apart when you have more complicated streams.

Reactive Programming with Kotlin Chapter 15: Testing RxJava Code

raywenderlich.com 304

You’ve got another option: the test() method.

Every RxJava type (Observable, Maybe, Completable, and so on) exposes a test()
method that returns a TestObserver. You can use this TestObserver class to assert
against different conditions on your Observable (or whatever other RxJava type
you’re using).

Add the following code below the line declaring observableC:

observableC.test()
 .assertResult(1, 2)
 .assertComplete()

You’re using the test() method on observableC and asserting a couple of things:
that the Observable returns two results, 1 and 2, and then completes.

Run this unit test by right-clicking the little green Play button in the left sidebar
next to the test name:

You should see the test pass.

If you’re like me, you’re always skeptical of a test that passes on the first try. Try
updating the assertResult statement to remove one of the values:

.assertResult(1)

Run the test again, and good news — it does indeed fail!

"

 for failure!

The TestObserver class that the test() method returns has many more uses. One
of the most convenient things that it offers is an insight into what values the
Observer has received so far. You can use the values() method on it to get a list of
all the items that Observable has emitted. You’ll see a few more examples of what
TestObserver can do as you progress through some other nifty testing utilities
RxJava exposes.

Reactive Programming with Kotlin Chapter 15: Testing RxJava Code

raywenderlich.com 305

Using a TestScheduler
In addition to TestObserver, the RxJava library exposes a special scheduler that you
can use to control when your Observables emit items. That scheduler is called
TestScheduler.

Add the following code below the concat test you wrote earlier:

@Test
fun `test amb`() {
 // 1
 val observableA = Observable.interval(1, TimeUnit.SECONDS)
 .take(3)
 .map { 5 * it }
 val observableB = Observable
 .interval(500, TimeUnit.MILLISECONDS)
 .take(3)
 .map { 10 * it }

 // 2
 val ambObservable = observableA.ambWith(observableB)

 // 3
 val testObserver = ambObservable.test()

 testObserver.assertValueCount(3)
 testObserver.assertResult(0L, 10L, 20L)
 testObserver.assertComplete()
}

Since that’s a lengthy block of code, here’s a breakdown to describe what’s going on
so far:

1. You’re creating two Observables using the interval method. As a reminder, the
interval factory method creates a new Observable that starts counting up at a
frequency that you dictate. For observableA, that frequency is once every
second. For observableB, that frequency is once every 500 milliseconds. You’re
then taking the first three results from each Observable and doing math on it. For
observableA, you’re multiplying that number by 5. For observableB, you’re
multiplying the number by 10.

Reactive Programming with Kotlin Chapter 15: Testing RxJava Code

raywenderlich.com 306

2. You’re then creating a new ambObservable using the ambWith method. The amb
and ambWith methods are very handy — they take two or more Observables and
combine them into a resulting Observable that mirrors the first Observable to
fire. The other Observable is discarded. amb comes in very handy when you have
two sources of information and you only care about whichever one is the fastest.
Imagine reading from a database and pulling data from a network. You may only
care about which source gets your users the information they care about fastest.
Neat!

3. Finally, you’re using the test() method you learned about earlier to create a
testObserver. You’re then asserting a few things about the ambObservable: it
emitted three values, those values were longs with a value of 0, 10, and 20, and
finally that the Observable completed after emitting those three values.

Note: If you’re confused about why 0, 10, and 20 are emitted by the
ambObservable don’t worry! amb can be a confusing method to wrap your
head around. Since observableA emits every second and observableB emits
every half second, observableB will be the first one to emit between the two.
Since amb only mirrors the first Observable to emit a value, observableB will
win out. Then, since observableB uses the map method to multiply its values
by 10, the resulting observable will emit 0 * 10, 1 * 10, and 2 * 10 - so 0, 10,
and 20.

Run the unit test by clicking the Run test button, which shows up in the left sidebar
next to the top of the test amb method. You should see the following:

java.lang.AssertionError: Value counts differ; Expected: 3,
Actual: 0 (latch = 1, values = 0, errors = 0, completions = 0)

Uh, oh — that doesn’t look like a success at all! It looks like the
assertValueCount(3) call failed. assertValueCount asserts that the Observable
has emitted a certain number of values. The error message shows that
ambObservable has emitted zero items by the time you start asserting.

The reason that call failed is because the testing code hasn’t waited enough time for
the Observables to actually start emitting values. Remember that the first
Observable only emits once a second (starting after the first second), and the second
Observable only emits once every 500 milliseconds.

Reactive Programming with Kotlin Chapter 15: Testing RxJava Code

raywenderlich.com 307

There are two options for handling these sorts of timing issues:

1. You could start adding Thread.sleep calls to make the test wait long enough for
the Observable to start emitting. Good test design and sleeping threads are not
two things that go together! In this case, you run the risk of hitting interrupted
thread exceptions and it makes your tests take much longer to finish. Doesn’t
sound like a great option.

2. You could use a TestScheduler and use it to control time yourself!

It may be shocking, especially with the title of this section, but the best path forward
is option number 2: using a TestScheduler.

At the very top of test amb, create a TestScheduler before creating any of the
Observables:

val scheduler = TestScheduler()

Then, update both Observable.interval calls to take a third parameter — the new
TestScheduler:

val observableA = Observable.interval(1, TimeUnit.SECONDS,
scheduler)
 .take(3)
 .map { 5 * it }
val observableB = Observable
 .interval(500, TimeUnit.MILLISECONDS, scheduler)
 .take(3)
 .map { 10 * it }

This may seem weird. Usually, you use schedulers in either the subscribeOn or
observeOn operators. However, most RxJava operators and factory methods that deal
with time can actually take a scheduler as a parameter.

That scheduler is then responsible for reporting the time back to that observable so
it can figure out when to emit a new item. By default, the computation scheduler is
used for this time logic. In the above example, the interval method will ask the
TestScheduler you passed in for time information.

This is great news because TestScheduler allows you to control what time it reports
back to the interval method!

Reactive Programming with Kotlin Chapter 15: Testing RxJava Code

raywenderlich.com 308

Remove the existing three assertions at the end of test amb, and replace that code
with the following:

scheduler.advanceTimeBy(500, TimeUnit.MILLISECONDS)
testObserver.assertValueCount(1)

You’re using the advanceTimeBy method on TestScheduler to advance the
schedulers clock forward a certain amount of time; in this case, 500 milliseconds.
Since observableB emits every 500 milliseconds, that means that after that call the
ambObservable should have emitted one value.

Run the unit test again. You should see a successful test. Nice!

For completeness, add the following code below the assertValueCount call:

scheduler.advanceTimeBy(1000, TimeUnit.MILLISECONDS)

testObserver.assertValueCount(3)
testObserver.assertResult(0L, 10L, 20L)
testObserver.assertComplete()

You’re again advancing time (can anyone say time travel?). This time you’re moving
forward one more second, which should give observableB the opportunity to emit
two more items. Since you’re using the take method the Observable should finish
after the three values are emitted.

Run the test, again, and you should see another success. Nice!

In addition to the advanceTimeBy method, TestScheduler exposes a method called
triggerActions, which triggers any actions that are due to be run by that point in
time. You’ll see an example later on.

Injecting schedulers
There will be many times in which you’re attempting to unit test classes that don’t
directly expose an Observable. For example: Most of the ViewModel classes that
you’ll see in this book don’t expose an Observable. Instead, they subscribe to those
Observables internally and expose LiveData objects that work better with the
Android lifecycle.

That makes for a great architecture, but it can make it more difficult to test that your
Observables are doing what you expect.

Reactive Programming with Kotlin Chapter 15: Testing RxJava Code

raywenderlich.com 309

Here’s an example Timer class that uses the interval method to count time:

class Timer() {
 var elapsedTime: Int = 0

 init {
 val intervalObservable = Observable
 .interval(1, TimeUnit.SECONDS)
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())

 intervalObservable
 .subscribe {
 elapsedTime++
 }
 }
}

You can query the timer’s elapsedTime variable to see how much time has passed
since it was first instantiated.

Now imagine you wanted to unit test this class. Since intervalObservable isn’t
exposed, you can’t use the test() method or supply a TestScheduler to the
subscribeOn or observeOn operators.

This is where Dependency Injection comes in to play. Injection?! That sounds
painful!

The good news is that Dependency Injection is a fancy term for passing parameters,
which supply dependencies to your classes rather than having those classes create
them internally.

With Dependency Injection, you can rewrite the Timer class as follows:

class Timer(backgroundScheduler: Scheduler,
 mainThreadScheduler: Scheduler, timerScheduler: Scheduler) {
 var elapsedTime: Int = 0

 init {
 Observable.interval(1, TimeUnit.SECONDS, timerScheduler)
 .subscribeOn(backgroundScheduler)
 .observeOn(mainThreadScheduler)
 .subscribe {
 elapsedTime++
 }
 }
}

Reactive Programming with Kotlin Chapter 15: Testing RxJava Code

raywenderlich.com 310

Now you can easily pass in a TestScheduler when you create an instance of Timer
to unit test. Everyone wins!

Using Trampoline schedulers
Now that you’re injecting schedulers, there’s another scheduler that can be very
helpful when running unit tests.

Often times, when unit testing an Observable, you want a scheduler that will force
the work of the Observable to happen on the current thread. You can achieve some of
this behavior by using TestScheduler. However, if you’re not working with
Observables that interact with time it can be laborious to have to call
advanceTimeBy or triggerActions all the time.

Instead, you can use the TrampolineScheduler class, which you saw in Chapter 13,
"Intro to Schedulers."

In case you missed that chapter or it’s been a while, here’s a quick refresher:
TrampolineScheduler is a scheduler that schedules work on the current thread at
the end of an internal queue it holds. It’s a great option when you’re injecting a
scheduler and you don’t want to go through the ceremony of using a
TestScheduler.

How about a quick example? Add the following unit test to the OperatorTest class:

@Test
fun `using trampoline schedulers`() {
 val observableA = Observable.just(1)
 .subscribeOn(TrampolineScheduler.instance())

 val observableB = Observable.just(1)
 .subscribeOn(Schedulers.io())
}

Here you see two Observables, both of which are using the just method to construct
an Observable that emits the integer 1 then finishes.

observableA uses the subscribeOn operator with a TrampolineScheduler, whereas
observableB uses the io scheduler.

If you were to run these two Observables, what do you think would happen?

Reactive Programming with Kotlin Chapter 15: Testing RxJava Code

raywenderlich.com 311

Since observableA is using a TrampolineScheduler, it will be run on whatever the
current thread is, thus blocking the method until it finishes. observableB, on the
other hand, would run on a different thread and the test method would terminate
before it finished!

Add the following code at the end of the method:

observableA.test().assertResult(1)
observableB.test().assertEmpty()

You’re asserting that observableA does indeed finish while observableB does not,
since it’s run on a different thread and won’t have time to finish before the assertion
is called.

Run the unit test. You should see a dazzling success. Well, a success anyways!

Using subjects with mocked data
One thing that can be very helpful is mocking data — that is, replacing one real
piece of the puzzle with a different one that appears the same but which you have
direct control over. This allows you to check that the other pieces of the puzzle work
the way you expect them to when you feed them specified data.

As an example, think of trying to create a button that allows the user to repeatedly
tap to add a photo to a list, with a maximum of five photos. If you were to use a
ViewModel to control that, you would want to keep adding incoming photos until the
list reached its maximum, and then disable the button the ViewModel controlled.

Within the test package, create a new Kotlin file called PhotoTest.kt. In this file, add
the following code to bring this example to life:

// 1
class Photo

// 2
interface PhotoProvider {
 fun photoObservable(): Observable<Photo>
}

// 3
class PhotoViewModel(provider: PhotoProvider) {

 var disableButton = false
 private var photoList = arrayListOf<Photo>()

Reactive Programming with Kotlin Chapter 15: Testing RxJava Code

raywenderlich.com 312

 init {
 // 4
 provider.photoObservable()
 .subscribe {
 photoList.add(it)
 if (photoList.size >= 5) {
 disableButton = true
 }
 }
 }
}

What’s happening here? Walking through this step by step:

1. Create the simplest possible Kotlin class — one that just has a name.

2. Declare an interface, which will provide an Observable that can be watched.

3. Create a ViewModel, which takes the PhotoProvider interface you just created
as a parameter. Congratulations - you’re now using dependency injection!

4. Take the passed in PhotoProvider and subscribe to its Observable. When a new
photo is added, you add it to the list and then determine if the button should be
disabled.

Next, below the existing code, add a new test class and the beginnings of a test:

class PhotosTest {
 @Test
 fun `button disabled after 5 photos`() {
 val photoProviderMock = object: PhotoProvider {
 override fun photoObservable(): Observable<Photo> {
 TODO("Return some data")
 }
 }

 val viewModel = PhotoViewModel(photoProviderMock)

 Assert.assertFalse(viewModel.disableButton)
 }
}

What value should the photoObservable method return? You could provide a simple
Observable that immediately returns five photos. But then you can’t accurately test
the transition from the disableButton value going from false to true.

Reactive Programming with Kotlin Chapter 15: Testing RxJava Code

raywenderlich.com 313

Instead, it’s often beneficial to return a PublishSubject that you can control in the
test by handing it objects one by one. Update your test to create one, then return it as
the photoObservable:

val subject = PublishSubject.create<Photo>()
val photoProviderMock = object: PhotoProvider {
 override fun photoObservable(): Observable<Photo> {
 return subject
 }
}

Next, at the end of the test, add code to pass some photos through the Observable
and check whether disableButton is still false or has been flipped to true:

subject.onNext(Photo())
Assert.assertFalse(viewModel.disableButton)
subject.onNext(Photo())
subject.onNext(Photo())
subject.onNext(Photo())
Assert.assertFalse(viewModel.disableButton)
subject.onNext(Photo())
Assert.assertTrue(viewModel.disableButton)

Run the test by clicking the Run button in the left sidebar, and it will pass —
disableButton is still false after adding four photos, but true after adding a fifth!

Now, you can precisely control when the subject emits new values and be more
confident in your tests. Wahoo!

Testing ColorViewModel
Now that you’re an expert in testing, it’s time to add some real unit tests to the
ViewModelTest class.

Open ViewModelTest.kt and add the following empty unit test:

@Test
fun `color is red when hex string is FF0000`() {
}

This unit test is testing that when the user enters the hex color "FF0000", the view
models colorNameLiveData live data object emits the "Red" color name.

Reactive Programming with Kotlin Chapter 15: Testing RxJava Code

raywenderlich.com 314

If you go back into the ColorViewModel class you can pick out the relevant piece of
code in the init block. It looks like this:

// If our color name enum contains the given hex string, send
that color name over.
hexStringSubject
 .subscribeOn(backgroundScheduler)
 .observeOn(mainScheduler)
 .filter { hexString ->
 ColorName.values().map { it.hex }.contains(hexString)
 }
 .map { hexString ->
 ColorName.values().first { it.hex == hexString }
 }
 .map { it.toString() }
 .subscribe(colorNameLiveData::postValue)
 .addTo(disposables)

You’ll also notice that the ColorViewModel class is set up to take in schedulers for
both background work and main thread work. Nice!

Since this block utilizes the subscribeOn and observeOn operators, and doesn’t
utilize any Observables that deal directly with time, it’s a good candidate for using a
TrampolineScheduler.

Go back to ViewModelTest.kt. In the empty unit test method you just added, add
the following code:

val trampolineScheduler = TrampolineScheduler.instance()
val viewModel = ColorViewModel(trampolineScheduler,
 trampolineScheduler, colorCoordinator)

You’re getting an instance of TrampolineScheduler and constructing a
ColorViewModel, passing that trampoline scheduler in for both the background and
main thread schedulers. You’re also passing in a ColorCoordinator mock that’s
defined at the top of the file. ColorCoordinator is a simple class that parses out
RGB values of a color and wraps a call to the Color.parseColor Android function to
make testing the ViewModel easier.

Since you’re passing in a TrampolineScheduler, you know all of the RxJava work
will be done synchronously. All that’s left is adding the business logic of the test!
Add the following code below the ViewModel declaration:

viewModel.digitClicked("F")
viewModel.digitClicked("F")
viewModel.digitClicked("0")
viewModel.digitClicked("0")

Reactive Programming with Kotlin Chapter 15: Testing RxJava Code

raywenderlich.com 315

viewModel.digitClicked("0")
viewModel.digitClicked("0")

Assert.assertEquals(ColorName.RED.toString(),
 viewModel.colorNameLiveData.value)

Boom! You’re simulating the user clicking the relevant digits and then asserting that
the colorNameLiveData current value is equal to the RED color name.

Run the test and you should see it pass.

That was easy enough with a TrampolineScheduler, but what would it look like
using the TestScheduler? Add the following new unit test:

@Test
fun `color is red when hex string is FF0000 using test
scheduler`() {
 val testScheduler = TestScheduler()
 val viewModel = ColorViewModel(testScheduler,
 testScheduler, colorCoordinator)

 viewModel.digitClicked("F")
 viewModel.digitClicked("F")
 viewModel.digitClicked("0")
 viewModel.digitClicked("0")
 viewModel.digitClicked("0")
 viewModel.digitClicked("0")

 Assert.assertEquals(null, viewModel.colorNameLiveData.value)
 Assert.assertEquals(ColorName.RED.toString(),
 viewModel.colorNameLiveData.value)
}

In this version of the unit test, you’re doing the exact same thing as before except
passing in a TestScheduler instead of a TrampolineScheduler.

Run the test. You should see the following:

java.lang.AssertionError:
Expected :RED
Actual :null

As you saw earlier, TestScheduler requires more ceremony to use than
TrampolineScheduler. You need to tell it to advance time or trigger its actions
before any work done on that scheduler will actually happen.

Reactive Programming with Kotlin Chapter 15: Testing RxJava Code

raywenderlich.com 316

Add the following line between the two assert calls:

testScheduler.triggerActions()

Run the test again and it should succeed. On to the next test!

Last but not least, it’d be good to test that the Clear button correctly clears the hex
string display and replaces it with a single # character. Add the following new unit
test:

@Test
fun `hex subject is reset after clear is clicked`() {
}

What kind of scheduler do you want to use for this test? Take a look at the
ColorViewModel class again. Every time digitClicked is called, the view model
calls onNext with the relevant character on the hexStringSubject.

In the top of the init block, you can see the code that determines what the app
shows in the hex string field:

hexStringSubject
 .subscribeOn(backgroundScheduler)
 .observeOn(mainScheduler)
 .subscribe(hexStringLiveData::postValue)
 .addTo(disposables)

Pretty simple — the current string in hexStringSubject is just fed into the
hexStringLiveData variable. That means that using a TrampolineScheduler in the
test should be good enough; there’s no need to use TestScheduler.

Back in the test, set up the code. Again, you’ll want to use a TrampolineScheduler
to create your ViewModel and feed it the digits of a hex color:

@Test
fun `hex subject is reset after clear is clicked`() {
 val trampolineScheduler = TrampolineScheduler.instance()
 val viewModel = ColorViewModel(trampolineScheduler,
 trampolineScheduler, colorCoordinator)

 viewModel.digitClicked("F")
 viewModel.digitClicked("F")
 viewModel.digitClicked("0")
 viewModel.digitClicked("0")
 viewModel.digitClicked("0")
 viewModel.digitClicked("0")
}

Reactive Programming with Kotlin Chapter 15: Testing RxJava Code

raywenderlich.com 317

Next, add the following lines at the bottom of the test to validate both that the
subject has fully updated and that clicking Clear actually does what you want it to:

Assert.assertEquals("#FF0000", viewModel.hexStringSubject.value)
viewModel.clearClicked()
Assert.assertEquals("#", viewModel.hexStringSubject.value)

Run the test. Everything works exactly as expected, and you’ve got a more resilient
and tested app! Well done!

Key points
• You can use the test() method on any reactive type to easily test them.

• TestObserver provides a useful set of tools to test the values and state of your
Observables.

• With TestObserver, you can assert that your Observable has completed, has
emitted a few values, or has even thrown an error.

• In order to test classes that don’t expose their internal Observables, you should
use the Dependency Injection design pattern to inject your schedulers.

• If you need a synchronous scheduler that allows you to trigger new actions, you
can use TestScheduler.

• If all you need is to make your Observables synchronous, use
TrampolineScheduler.

• Subjects can be used to precisely control when elements are emitted and,
combined with mocked data, make for great testing tools.

Where to go from here?
Testing is an important piece to writing great apps. Hopefully after reading this
chapter, you’ve picked up some tricks to use the next time you need to test some
reactive code. Happy testing!

Reactive Programming with Kotlin Chapter 15: Testing RxJava Code

raywenderlich.com 318

16Chapter 16: Creating
Custom Reactive
Extensions
By Alex Sullivan

After being introduced to RxJava and learning how to create tests, you have yet to
see how to create wrappers using RxJava on top of frameworks created by Google or
by third parties. Wrapping a Google or third party library component is instrumental
in writing reactive applications, so you’ll be introduced to the concept in this
chapter.

In this chapter you’ll create a reactive wrapper around an Android Widget, a request
for a specific permission, and the process of getting location updates. It’s worth
noting here that in a real application you’d probably want to use libraries rather than
write these specific wrappers yourself. Later chapters in this book will introduce you
to a few of those libraries.

Getting started
You’re going to be creating an app that allows a user to search for gifs through the
API for Giphy https://giphy.com, one of the most popular GIF services on the web.

To start, you’ll need a beta key. To get the beta key, navigate to the official docs
https://developers.giphy.com/docs/api, and scroll down to "Create an App."

raywenderlich.com 319

Follow the instructions there to create an app. You can pick the API key type when
prompted. Name your app BestGif:

When you create an app on that page (via the "Create an App" button) you will get a
development key, which will suffice to work through this chapter. The API key is
displayed under the name of your newly created app like so:

Open the starter project in Android Studio. Then, open GiphyApi.kt and copy the
key into the correct place:

private const val API_KEY = "YOUR API KEY HERE"

Reactive Programming with Kotlin Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 320

Once you’ve replaced the API key, run the app. You should see an empty screen with
a simple EditText up top. It doesn't do much yet.

Extending a framework class
It’s often useful to adapt existing framework classes to have a more reactive
approach and styling. Luckily, Kotlin’s extension methods allow for a fluid interface
to achieve reactive framework classes.

You’re going to start off by extending an EditText widget so you can observe text
changes as the user writes them.

Open EditTextUtils.kt and take a look at the EditText.textChanges() method.
Right now it returns an empty Observable, but once you’re done it will return an
Observable that emits whatever the user types.

To create the actual extension, you’re going to rely on Observable.create() to
create an Observable from an existing, non-reactive asynchronous API.

Replace the line returning the empty Observable with the following:

return Observable.create { emitter ->

}

Reactive Programming with Kotlin Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 321

As you’ll recall from Chapter 2, "Observables", Observable.create() takes in an
ObservableOnSubscribe source that allows you to pipe events into an
ObservableEmitter object to control how your Observable emits items.

This is a common paradigm when moving from the callback world to the reactive
world. Observable.create() provides a convenient interface to wrap existing,
callback styled methods.

Now add the following in the Observable.create() block:

val textWatcher = object : TextWatcher {
 override fun afterTextChanged(text: Editable) {
 emitter.onNext(text.toString())
 }

 override fun beforeTextChanged(
 p0: CharSequence?, p1: Int, p2: Int, p3: Int) {}
 override fun onTextChanged(
 p0: CharSequence?, p1: Int, p2: Int, p3: Int) {}
}
addTextChangedListener(textWatcher)

TextWatcher is an Android framework interface that allows you to observe text
changes on any TextView or EditText. It allows you to observe the current value
before the text changes, as the text changes, and after the text has changed.

While the interface requires methods to do all three things, the only thing you care
about is whatever the text is after the EditTexts text has changed. If you wanted to
manipulate the text, then you may care about the other two functions, but for now,
you can just leave them with empty implementations.

Since all you care about is what the text is after it’s changed, you’re sending the new
text received in afterTextChanged() into the Observable via the emitters onNext
method. Pretty simple, right?

Last but not least, you’re telling the EditText to use the object you created as a
onTextChangedListener. Since you’re creating an extension method, this
represents the current instance of EditText.

At this point, you have a fully functioning reactive wrapper. Hooray!

Reactive Programming with Kotlin Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 322

However, it’s not a very responsible wrapper. It never un-registers the text changed
listener from the EditText. Since the onTextChangedListener has a strong
reference to the EditText, it means your EditText won’t be garbage collected until
the Observable is garbage collected, even if the Observable finished long ago. Luckily,
the ObservableEmitter class comes with a easy way to trigger cleaning up any
resources.

Add the following below the line to add the textChangedListener:

emitter.setCancellable {
 removeTextChangedListener(textWatcher)
}

Now whenever the Observable you’re returning finishes or disposes, it will call that
cancellation block and the TextWatcher will be un-registered.

Remember, kids: Safe programming is fun programming. And always wear your
seatbelt.

Wiring the extension up
It’s time to use the new extension. Open up GifActivity.kt, and add the following to
the bottom of onCreate():

text_input
 // 1
 .textChanges()
 // 2
 .flatMapSingle { GiphyApi.searchForGifs(it) }
 // 3
 .onErrorReturnItem(listOf(GiphyGif(
 "https://media.giphy.com/media/SQ24FpNRW9yRG/giphy.gif")))
 // 4
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 // 5
 .subscribe { adapter.items = it }
 .addTo(disposables)

Here’s what’s happening in the above chain:

1. You’re using the new textChanges() extension to get the changed text from the
EditText

Reactive Programming with Kotlin Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 323

2. You’re feeding that received text into GiphyApi.searchForGifs() via
flatMapSingle(). Then, searchForGifs() queries the Giphy API and searches
for gifs with the given string.

3. You’re using the onErrorReturnItem operator to default to an adorable gif of
two kittens if there are any errors.

4. You’re using subscribeOn() and observeOn() to make sure you make the
network call from the io thread pool, and you handle the callback on the main
thread.

5. You’re subscribing to the whole chain, and updating the adapter’s items to the
results received from the API.

Run the app and search for your favorite gif. It should work as expected now, and you
should see a list of loading indicators followed by a list of gifs.

There’s one more issue, though. Every time you type a character, the app does a
network request for new gifs. In reality, you only really want to start searching once
the user has stopped typing for a second or so.

Reactive Programming with Kotlin Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 324

You could update the code in Observable.create() method to add some sort of
timer and only emit items every so often, but that sounds like a ton of work. Instead,
you can utilize the debounce() operator you learned about in Chapter 6, "Filtering
Operators in Practice."

In case you need a refresher, debounce() limits the items emitted by the source
Observable and only emits an item if it isn’t followed by another item after a certain
amount of time. It’s perfect for limiting actions taken after typing.

Add the following operator right below textChanges() in the Rx chain:

.debounce(500, TimeUnit.MILLISECONDS)

Now you’ll only receive an item at most once every 500 milliseconds. Run the app
again and search for a gif. You should see that you only start seeing loading
indicators once you’re done typing.

Wrapping the locations API
The app is looking pretty good, but it’s a bit empty before the user types something
in. This seems like a great excuse to wrap some more framework classes!

You’re going to update the app so that it automatically searches for gifs with the
name of whatever city the user is currently located in, so you’ll be using the location
APIs.

But before you start fetching the location, you need to be a good Android citizen and
request permission. You’ll be using a Subject to convert the existing permissions
API into a reactive one.

Add the following as instance variables in GifActivity:

private val locationRequestCode = 500
private val permissionsSubject =
 BehaviorSubject.create<Boolean>()

Now add and implement onRequestPermissionsResult(), importing
android.Manifest:

override fun onRequestPermissionsResult(
 requestCode: Int,
 permissions: Array<out String>,
 grantResults: IntArray
) {

Reactive Programming with Kotlin Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 325

 super.onRequestPermissionsResult(requestCode, permissions,
 grantResults)
 if (requestCode == locationRequestCode) {
 val locationIndex = permissions.indexOf(
 Manifest.permission.ACCESS_FINE_LOCATION)
 if (locationIndex != -1) {
 val granted = grantResults[locationIndex] ==
 PackageManager.PERMISSION_GRANTED
 permissionsSubject.onNext(granted)
 }
 }
}

Most of the above code is permissions boilerplate that checks the request code and
checks that the location permission has been granted or denied. The one interesting
piece is the part where you call onNext() on the permissionsSubject with a
boolean indicating whether the location permission was granted or denied.

Now that the permissionsSubject is up and running, add the following to the
bottom of onCreate():

permissionsSubject
 .doOnSubscribe {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
 requestPermissions(arrayOf(
 Manifest.permission.ACCESS_FINE_LOCATION),
 locationRequestCode)
 } else {
 permissionsSubject.onNext(true)
 }
 }
 .filter { it }

You’re building up a new Observable chain here, but not subscribing to it just yet.
You’re using doOnSubscribe() to actually kick off the call to request the location
permission. If the API version of the device the app is running on is less than M, i.e.
before the new permissions model came into effect, you can assume you already have
the permission and forward a true event into the permissionsSubject.

Reactive Programming with Kotlin Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 326

You’re also using filter() to filter out any instances where you didn’t receive the
location permission. You’ll see why shortly.

You’ve got a new sleek permissions model. It’s time to finish this feature off with a
reactive wrapper around the locations API.

Open LocationUtils.kt and look at locationUpdates(). Its return type is
Observable<Location>. The location API offers a perfect opportunity for a reactive
wrapper, since it works with a constant stream of items in the form of location
updates.

For this example you’ll be using the fused location API rather than the raw
LocationManager framework API.

To receive location updates, you need to create a LocationRequest object and a
FusedLocationProviderClient. Add the following to the top of
locationUpdates(), before the return statement:

val currentLocationRequest = LocationRequest()
 .setInterval(500)
 .setFastestInterval(0)
 .setMaxWaitTime(0)
 .setSmallestDisplacement(0f)
 .setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY)

val client = FusedLocationProviderClient(context)

You're creating that LocationRequest and FusedLocationProviderClient with
some configuration options.

Now replace the return Observable.empty() line with the old reliable
Observable.create():

 return Observable.create { emitter ->

 }

You’re again using Observable.create() to create a bridge between the callback
world and the reactive world.

You need to use requestLocationUpdates() on FusedLocationProvider to
actually start the process of getting location updates. To get set up to do that, first
add the following in the Observable.create() lambda block:

val callback = object : LocationCallback() {
 override fun onLocationResult(result: LocationResult?) {
 result?.lastLocation?.let { emitter.onNext(it) }

Reactive Programming with Kotlin Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 327

 }
}

This callback will be called whenever the system has a new location update for you,
so that’s where you call onNext() on the ObservableEmitter. onLocationResult()
can deliver a null location, so that’s why you’re using let.

Below the callback declaration add the following:

client.requestLocationUpdates(currentLocationRequest, callback,
 null)

You learned earlier that you can use setCancellable() on ObservableEmitter to
clean up any resources once the Observable terminates. Listening for location
updates is an extremely battery intensive task, so it’s doubly important to clean up
after yourself when wrapping the location APIs. To that end, add the following right
below the requestLocationUpdates() line:

emitter.setCancellable {
 client.removeLocationUpdates(callback)
}

Boom! You’ve wrapped the fused location API with minimal pain, and you’re
cleaning up after yourself like a responsible developer.

Time to utilize your newfound location powers.

Head back to GifActivity. It’s time to finish up that Rx chain you started earlier.

Now that you have access to a reactive wrapper around location updates, you can use
flatMap() to start receiving location updates after you receive the location
permission. Add the following right after the .filter { it } line:

.flatMap { locationUpdates(this) }

Now the type of the Observable switches from Observable<Boolean> to
Observable<Location>. Nice! This line of code really shows how powerful it is to
create reactive wrappers around traditionally callback based APIs. You can now
combine your permission logic and your location logic into one simple declarative
stream.

Reactive Programming with Kotlin Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 328

In this app you don’t actually want to keep listening for location updates. All you
really care about is the first location you get back. After that first location it will be
up to the user to search for their own gif.

You’ve got a few options for limiting the number of location updates to just one. You
could try and change up locationUpdates() to only return one Location object
and then complete. But that limits the usefulness of locationUpdates().

Instead, you can use take() to only take the first item emitted by your new
Observable<Location> object. Add the following operator to the bottom of your
chain, after flatMap():

.take(1)

Now you’ll only get one Location object, then the Observable will terminate. And
since you were a responsible developer and you used setCancellable() on your
ObservableEmitter the app will stop listening for location updates after that first
object comes through.

Reactive Programming with Kotlin Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 329

The Giphy API doesn’t accept a Location object. Instead, you want to convert that
Location into a String representing the users city. Add the following operator to
the bottom of the chain:

.map { cityFromLocation(this, it) }

cityFromLocation() is a method in LocationUtils that uses the Geocoder API to
pull out a locality from a Location object.

It might be a good idea to give the user a heads up that the app is searching for their
city. You can use the hint attribute on your EditText to show them what’s been
searched for. Add the following operator to the chain:

.doOnNext { text_input.hint = it }

It’s time to make the actual network call to fetch some gifs from the city name. Add
the following operator:

.flatMapSingle {
 GiphyApi.searchForGifs(it).subscribeOn(Schedulers.io())
}

You need to call subscribeOn() on the actual Observable returned from flatMap()
to make sure this this nested Observable is also being run on the correct thread.

Add the following to finish the chain:

.observeOn(AndroidSchedulers.mainThread())

.subscribe { adapter.items = it }

.addTo(disposables)

You’re setting the list of GiphyGifs on your RecyclerView adapter in your
subscribe().

Reactive Programming with Kotlin Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 330

The app is ready to go! Give it a run and you should see the app immediately make a
request to the Giphy API with whatever city your emulator is set to, after you grant
location permissions:

The lift and compose functions
You may come across a few other functions in your Rx travels with regard to custom
extensions, especially when interoperating with Java. Since Kotlin supports
extension functions, you probably won’t need to use these very often, but it’s still a
good idea to understand how they work in case you see them out in the wild in any
Java code that you’re interacting with.

Reactive Programming with Kotlin Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 331

The first is compose(), which allows you to write custom RxJava operators that fit
inline with the Rx chain.

You will often find that you want to apply a certain set of schedulers when working
on reactive apps. For instance, if you’re doing a network call and then you want to
display the results of that call to the user, you’ll probably want to use the
subscribeOn(Schedulers.io()) and
observeOn(AndroidSchedulers.mainThread()) operators and schedulers to make
sure you’re running the task on the background thread and applying the results on
the main thread. For example:

val observable: Observable<MyModelClass> =
 networkMethodThatReturnsAnObservable()
observable
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe { displayMyResults(it) }

That subscribeOn() and observeOn() combination is so common that lots of
people make a Kotlin extension function that applies those two operators:

fun <T> Observable<T>.applySchedulers(): Observable<T> {
 return subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
}

You can use that extension function like an operator in your code:

val observable: Observable<MyModelClass> =
 networkMethodThatReturnsAnObservable()
observable
 .applySchedulers()
 .subscribe { displayMyResults(it) }

However, if you’re still using Java, the above won’t look nearly as clean since Java
doesn’t support extension functions, and you have to access those functions through
the file they’re created in:

Observable<Integer> observable = Observable.just(1);
Observable<Integer> schedulersApplied =
 FileContaingFunctionKt.applySchedulers(observable);

Pretty gross, huh?

Reactive Programming with Kotlin Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 332

Instead, you can use compose() to keep the chain flowing. All you have to do is
create a class that implements the ObservableTransformer<T> interface and
override apply():

class ApplySchedulers<T>: ObservableTransformer<T, T> {
 override fun apply(upstream: Observable<T>):
ObservableSource<T> {
 return upstream
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 }
}

Creating that class allows you to write Java code that looks like this:

Observable<Integer> schedulersApplied =
 Observable.just(1).compose(new ApplySchedulers<>());

Much prettier and easier to follow, right?

Fortunately, since you’re using Kotlin you shouldn’t have to mess around with
compose() too much!

The last piece of the reactive extensions puzzle is lift(). lift() is an extremely
complicated method that many of the internal RxJava operators utilize.

The short explanation is that lift() allows you to create a new operator by reaching
into the upstream Observer and directly manipulating its onNext() values.

It’s not worth going too deep into how lift() works. What’s important to know is
that if you’re finding yourself in a situation where you feel like you have to use
lift(), you’re probably overthinking things. It’s almost always a better choice to
make an extension function that utilizes existing RxJava operators.

Testing your custom reactive extension
Testing your custom reactive extensions is just like testing a normal Rx chain. You
just need to make sure you’re testing the right thing!

First off, you’ll test the textChanges() extension to EditText you made earlier.

Reactive Programming with Kotlin Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 333

Open EditTextUtilsKtTest.kt and add the following in the body of
newStringsReachObserver():

val view = EditText(context)
val testObserver = view.textChanges().test()
view.setText("Test 1")
view.setText("Test 2")
view.setText("Test 3")
view.setText("Test 4")
testObserver.assertValueCount(4)
testObserver
 .assertValues("Test 1", "Test 2", "Test 3", "Test 4")

You’re using the test() method you learned about in Chapter 15, "Testing RxJava
Code" to make sure textChanges() emits new text values as expected.

Run the test. It should pass.

Pretty easy right?

Next up you’re going to test that locationUpdates() stops listening for location
updates after its associated Observable terminates, ensuring that the
locationCallback object is not leaked.

Open LocationUtilsKtTest.kt and add the following to
locationUpdatesRemoveOnComplete(). Note that it won't compile yet until you
make some changes in the next step:

val context =
 InstrumentationRegistry.getInstrumentation().targetContext
// 1
val locationProvider =
 mockk<FusedLocationProviderClient>(relaxed = true)

val locationObservable =
 locationUpdates(context, locationProvider)

// 2
verify(exactly = 0) {

locationProvider.removeLocationUpdates(any<LocationCallback>())
}

locationObservable
 // 3
 .take(0)
 .test()

Reactive Programming with Kotlin Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 334

 .assertComplete()

// 4
verify(exactly = 1) {
 locationProvider
 .removeLocationUpdates(any<LocationCallback>())
}

1. You’re using the mockk library to mock out the FusedLocationProviderClient
class so you can verify the location updates are being removed when the
Observable completes.

2. You’re using mockk’s verify() to make sure that before the Observable has
terminated, the method to remove location updates has not been called.

3. You’re using take(0) to force the location Observable to complete immediately,
then validating the Observable has completed.

4. You’re using verify() again to validate that now that the Observable has been
completed and the method to remove location updates has been called once (and
only once).

Note: For this test, you’re not interested in whether the Observable actually
emits any location objects. All you care about here is that the location provider
stops listening for the location as soon as the Observable terminates.

You can’t run this code yet because locationUpdates() doesn’t currently accept a
FusedLocationProviderClient. But you can fix that easily.

Open LocationUtils.kt, and update locationUpdates() so it takes in the client as a
parameter:

fun locationUpdates(
 context: Context,
 client: FusedLocationProviderClient =
 FusedLocationProviderClient(context)
): Observable<Location> {
 ...
}

Next delete the line declaring val client =
FusedLocationProviderClient(context) before creating the observer, since
client is now being passed in as a parameter.

Reactive Programming with Kotlin Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 335

You should be ready to go. Run the testLocationUpdates test and you should see it
pass.

Awesome, you’re not leaking a location callback!

Key points
• You can wrap an existing Android component via Observable.create().

• You should pay attention to any long-lived references inside extensions. Clean up
after yourself and cancel any resources when an Observable is disposed.

• You explored compose() and lift() and when to use them (TL;DR avoid lift()
unless you know what you’re doing; use compose() if you’re writing Java code).

• Test your reactive wrappers by writing unit tests and mocking any system
component.

Where to go from here?
In this chapter, you saw how to implement and wrap the Android framework.
Sometimes, it’s very useful to abstract an official Android framework or third party
library to better connect with RxJava.

There’s no written rule about when an abstraction is necessary, but the
recommendation is to apply this strategy if the code in question meets one or more
of these conditions:

• Uses callbacks with success and failure information.

• Needs to inter-operate with other RxJava parts of the application.

• Uses lots of asynchronous constructs to return information.

You also need to know if the code in question has restrictions on which thread the
data must be processed. For this reason, it’s a good idea to read the documentation
thoroughly before creating an RxJava wrapper.

And don’t forget to look for existing community extensions. There’s a lot of high
quality existing reactive wrappers around common Android APIs, some of which
you’ll learn about in the next few chapters. If you do write your own wrapper,
consider sharing it back with the community!

Reactive Programming with Kotlin Chapter 16: Creating Custom Reactive Extensions

raywenderlich.com 336

Section IV: RxJava
Community Cookbook

RxJava's popularity keeps growing every day. Thanks to the friendly and creative
community that formed around this library, a lot of community-driven Rx projects
are being released on GitHub.

The advantage of the community-built libraries that use RxJava is that unlike the
main repository, which needs to follow the Rx standard, these libraries can afford to
experiment and explore different approaches, provide non multi-platform
specializations, and more.

In this section you are going to look into just a few of the many community open
source projects. The section contains four short cookbook-style chapters that look
briefly into four community projects that help you with binding Android Views,
talking to your server with Retrofit, persisting preferences data, and handling user
permissions.

Chapter 17: RxBinding

Chapter 18: Retrofit

Chapter 19: RxPreferences

Chapter 20: RxPermissions

raywenderlich.com 337

17Chapter 17: RxBindings

By Alex Sullivan

In the last chapter, you learned all about wrapping existing APIs to make them into
Observables. Hopefully, you’ve realized how powerful it is to express a lot of the
framework APIs in reactive terms. Unfortunately, it’s a fair amount of repetitive work
to wrap all of these frameworks.

It’s not too bad to make a reactive extension for, say, a Button. And it’s not too bad
to make a reactive extension for an EditText. But, as you keep going, it starts to
become a bit laborious to keep making these reactive wrappers.

There’s an extremely handy library called RxBindings, which takes care of making
reactive bindings for all of the Android view classes. So good news! You get to be lazy
and rely on a library to make those extensions for you. And as we all know,
programming is 1% creativity and 99% laziness.

In this chapter, you’ll revisit the HexColor app and improve on it by using the
RxBindings library.

raywenderlich.com 338

Getting started
Open the starter project and run the app. You should see the HexColor app from
Chapter 15, “Testing RxJava Code.”

Feel free to tap around. You can type in a hex code, and the background will change
to that color. It will also show the RGB value and if you type in one of the colors in
the ColorName enum, the name will show, too.

There’s a few limitations to the app, though. First off, most colors you enter don’t
have an associated color name in the ColorName enum. You can see this list in X.kt.

That’s a hard nut to crack, since there’s a near infinite number of color combinations
you can use in the app. Next up, manually tapping the digits can be a bit
burdensome. It’d be nice if you could also use the keyboard to enter a new hex color.

In this chapter, you’ll work through solving both of these problems while also using
the RxBinding library to make the Android view components a bit more reactive.

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 339

Extending ValueAnimator to be reactive
Speaking of making things more reactive, take a look at the animateColorChange
method in ColorActivity. It’s the method that’s responsible for that fancy color
changing animation. It’s a pretty great method, but it’s not very reactive. In the spirit
of building on the work you did last chapter, you’re going to wrap that call in a
reactive wrapper to make it fit better with the rest of the reactive app.

Open the AnimationUtils.kt file and look at the colorAnimator method:

fun colorAnimator(fromColor: Int, toColor: Int): Observable<Int>
{
 return Observable.empty()
}

colorAnimator takes two arguments: an integer named fromColor representing the
starting color and another integer named toColor representing the ending color.
The idea, here, is to convert the animateColorChange method to use this
colorAnimator Observable instead of using a ValueAnimator the way it does now.

Replace the return Observable.empty() line with the following:

// 1
val valueAnimator =
 ValueAnimator.ofObject(ArgbEvaluator(), fromColor, toColor)
valueAnimator.duration = 250 // milliseconds
// 2
val observable = Observable.create<Int> { emitter ->
 // 3
 valueAnimator.addUpdateListener {
 emitter.onNext(it.animatedValue as Int)
 }
}

Here’s a breakdown of the above code:

1. Create a new ValueAnimator using the ArgbEvaluator to go from the
fromColor to the toColor. In case you’re not familiar with ValueAnimator, it
provides a handy way to get interpolated values between two values you provide,
that you can later use to animate some view between them. The ArgbEvaluator
interpolates two color Ints to make a smooth transition.

2. Create a new Observable via the create function. The Observable will emit Ints
since that’s what type the ValueAnimator declared above will output.

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 340

3. Add an updateListener to the valueAnimator and call emitter.onNext with
the updated animated value. Now whenever the valueAnimator object calls its
update listener with a new value, the Observable will emit that value.

Now, add the following line to finish up the reactive wrapper:

return observable.doOnSubscribe { valueAnimator.start() }

You’re returning the observable object you created earlier. You’re using the
doOnSubscribe operator to actually start the valueAnimator. Now whenever
someone subscribes to the Observable the valueAnimator will start emitting.

Nifty.

Head over to ColorActivity.kt and replace the animateColorChange method with
the following:

private fun animateColorChange(newColor: Int) {
 val colorFrom = root_layout.background as ColorDrawable
 colorAnimator(colorFrom.color, newColor)
 .subscribe { color ->
 root_layout.setBackgroundColor(color)
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP)
{
 window.statusBarColor = color
 }
 }
 .addTo(disposables)
}

Now, instead of directly using a valueAnimator, you’re using the colorAnimator
method you defined earlier and subscribing to the resulting Observable.

Now that this animation is represented via an Observable, you could easily chain
together multiple animators and utilize the power of Rx.

Using RxBindings with Android widgets
Now that you’ve react-ified that animation code, it’s time to move on to actually
using RxBindings.

First off, open the app's build.gradle file (not the top-level one!).

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 341

Navigate to the dependencies section and take a look at the RxBindings
dependencies:

implementation 'com.jakewharton.rxbinding4:rxbinding:4.0.0'

Open ColorViewModel.kt class. If you look at the structure of the class, you’ll notice
that there’s two distinct "sections" to the class:

1. There’s the init block, which is where the bulk of the actual logic is. This is
where all of the Rx magic happens. It’s declarative and simple to read. It’s not
stateful, and it’s cohesive.

2. There’s the several xClicked methods below the init block. These methods are
primarily boilerplate to forward relevant data into the hexStringSubject.

If you think about it, these xClicked methods are acting as intermediaries for a
stream-like flow. Take the clearClicked method for example. At any point in time,
the app is listening for the user to click the Clear button. That event then triggers a
call to clearClicked, which then maps that Clear-clicked event into a new value for
the hexStringSubject.

Converting clearClicked() to use RxBindings
The clearClicked method is really just an impediment to the above flow. What the
app really needs is another Observable<Unit> that represents the user clicking the
Clear button — RxBindings provides that functionality, but there's a catch.

Update the ColorViewModel class header to add a clearStream Observable:

class ColorViewModel(
 backgroundScheduler: Scheduler,
 mainScheduler: Scheduler,
 colorCoordinator: ColorCoordinator,
 clearStream: Observable<Unit>
) : ViewModel() { ... }

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 342

Now, the ColorViewModel takes a clearStream object of type Observable<Unit>.
The type of clearStream is Unit because the app doesn’t actually care what the
value emitted by the Observable is — all it cares about is that the Observable emitted
something.

Head over to ColorActivity. If you look at the line declaring viewModel, you’ll see
that the ColorViewmodel is being instantiated inside a
ViewModelProvider.NewInstanceFactory object. There’s a fair amount of
boilerplate here that isn’t important. Update the actual line returning a
ColorViewModel:

return ColorViewModel(
 Schedulers.io(),
 AndroidSchedulers.mainThread(),
 ColorCoordinator(),
 clear.clicks()
) as T

There’s only one thing different here: You’re passing one extra argument —
clear.clicks(). clear is a reference to the big X button that clears the current
color in the app. The app is using the Kotlin Android Extensions plugin to
automatically generate view references, so no more findViewById boilerplate.
clicks() is an extension method on View provided by RxBindings that turns a
views click listener into an Observable<Unit>. It’s that easy to get an Observable of
click events using RxBindings. Isn’t that magical?!

Remove the block of code setting a click listener on the clear view. Since you’ll
handle clear events via an Observable, you don’t need to worry about setting a click
listener on it anymore.

Back in ColorViewModel, you can also remove the clearClicked method. Again,
you’ll be handling clear events via an Observable, so it’s unnecessary.

Now that all the plumbing is in place, it’s time to actually utilize the clearStream to
clear out the current color.

In the bottom of the init method, add the following:

clearStream
 .map { "#" }
 .subscribe(hexStringSubject::onNext)
 .addTo(disposables)

The code is dead simple: You’re subscribing to the clearStream Observable and
mapping each Unit event to the "#" string. Then you’re forwarding that string to the

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 343

hexStringSubject object using its onNext method. You’re using a method reference
to make the code nice and compact.

Notice that this code is almost identical to the code in clearClicked. Nothing is
fundamentally changing, you’re just consolidating the code and Rx-ifying the app!

Run the app. Enter your favorite color string (I know you’ve got favorites!) and click
the clear button. It should be cleared.

Dangerzone!
There's actually a subtle but devious bug in the code you just wrote. To demonstrate
the bug, run the app and then rotate the device. Input a hex string and hit the clear
button. You'll notice that nothing happens - the color isn't cleared.

RxBindings works by generating a series of convenient helper functions on a
plethora of different Views. However, when the app is rotated the actual View is
destroyed and a new set of Views are created. But the ViewModel you're using
survives the configuration change - that's the whole point of the ViewModel class!

That means that ColorViewModel is now holding onto a reference for an Observable
that's firing for a View that no longer exists! Since the old clear button has been
destroyed and there's a brand new clear button, RxBindings doesn't have a
reference to the new button. That means you won't get any of the click effects that
you'd expect.

Working around the issue
You can't just pass in an Observable generated by RxBindings into your ViewModel
via the constructor, but you can emulate that reactive flow.

First, you need to go back a few steps. Remove clearStream: Observable<Unit>
from the ColorViewModel constructor and in ColorActivity, delete
clear.clicks() from the parameter list when creating the viewModel object.

Then, start fixing the problem by adding a new property to the top of
ColorViewModel:

private val clearStream = PublishSubject.create<Unit>()

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 344

Now add back in the clearClicked method and trigger the new clearStream
subject:

fun clearClicked() = clearStream.onNext(Unit)

You're now building up your own clear clicked Observable without the bugs
discovered earlier.The last thing you need to do is trigger the clearClicked method.
You can use RxBindings in your ColorActivity to keep things nice and reactive.
Add the following below the viewModel creation block:

clear.clicks().subscribe { viewModel.clearClicked() }
 .addTo(disposables)

You're now getting all of the benefits of reactive views without the bug previously
discovered.

Converting backClicked() to use RxBindings
Now that you’ve handled the Clear button, you’re going to go through the same
process for the Back button. Update the ColorViewModel with another
PublishSubject to represent back clicks:

private val backStream = PublishSubject.create<Unit>()

And update the backClicked method to forward a value into backStream

fun backClicked() = backStream.onNext(Unit)

Finally, start listening to actual click events on the back button with RxBindings in
ColorActivity:

back.clicks().subscribe { viewModel.backClicked() }
 .addTo(disposables)

Take a look at the old implementation of the backClicked method:

fun backClicked() {
 if (currentHexValue().length >= 2) {
 hexStringSubject.onNext(currentHexValue()
 .substring(0, currentHexValue().lastIndex))
 }
}

This method is a bit more complicated than the clearClicked method you replaced
earlier. If the current hex value has a length greater than two — i.e., it’s more than

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 345

just the "#" string — then you want to add a new string onto the hexStringSubject.
That new string is whatever the current string is minus the last character.

Add the following code at the bottom of the classes init block in ColorViewModel:

// 1
backStream
 // 2
 .map { currentHexValue() }
 // 3
 .filter { it.length >= 2 }
 // 4
 .map { it.substring(0, currentHexValue().lastIndex) }
 // 5
 .subscribe(hexStringSubject::onNext)
 .addTo(disposables)

Reactive programming is so different from imperative programming that it may be a
good idea to break the above code down:

1. You’re subscribing to the backStream Observable, which is an
Observable<Unit>. Every time the user clicks the Back button, this Observable
will emit a Unit value.

2. You don’t actually care about the Unit value emitted by the Observable. You’re
just using it as a trigger. So you’re immediately mapping that Unit object to the
currentHexValue(), which you’ll use later on in the stream.

3. You only want to proceed through the chain if the current hex values length is
greater than or equal to two.

4. Next up you’re getting a substring of the current hex value starting at zero and
going up to, but not including, whatever the last index of the hexstring is. The
last index is just the size of the string minus 1. Since you used the filter
operator above, you can be confident that this string will have a length >= 2.

5. You’re subscribing to the Observable and forwarding the emitted string to the
hexStringSubject, so the rest of the code above this block can react to the new
hex string value.

Note: You may be tempted to avoid the first map call and instead just operate
directly on whatever currentHexValue() provides in both the filter
operator and the second map operator. While that may be tempting, it would
also introduce a race condition and a potential crash! Between the first filter
being executed and the second map being executed, another thread could

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 346

update the current hex value and your assumption that the length of the string
returned by currentHexValue() being greater than two is no longer certain.
Chances are it wouldn’t happen in this app, but it’s always worth keeping
those potential race conditions in mind.

Boom! You’ve replicated the code in backClicked in a more streamlined reactive
style. Run the app. Tapping the Back key should work exactly the same.

Last but not least is the digitClicked method.

Converting digitClicked() to use RxBindings
Again, add a new subject representing digit clicks in the ColorViewModel class:

private val digitsStream = BehaviorSubject.create<String>()

This time you're using a BehaviorSubject so that every time you subscribe to the
stream you'll get the latest and greatest digit clicks.

The incoming digits will be of type String. Each String will be a single character.

In ColorActivity, delete the line declaring digits and the forEach block setting
click listeners on each digit.

Then, replece the digits declaration and the following digits.forEach with the
following snippet:

// 1
val digits = listOf(zero, one, two, three, four, five, six,
 seven, eight, nine, A, B, C, D, E, F)
 // 2
 .map { digit ->
 // 3
 digit.clicks().map { digit.text.toString() }
 }

If the above is confusing, don’t worry! Here’s a breakdown:

1. Build up a list of each digit on the "keypad" in the app. Each object in this list is a
TextView. Again, the app is using the Kotlin Android Extensions to provide easy
reference to each view in the app. So this listOf() call returns a
List<TextView>.

2. Call map on this list. digit in the lambda block is a TextView.

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 347

3. Call clicks() on each digit to turn it into an Observable<Unit>. Then, call a
map on that Observable. Map the Unit value to the string representation of the
text in the digit TextView. Don’t be confused by the two maps — one is on the
List<TextView>, the other is on the Observable<Unit>.

The result of the above code is that digits is now a List<Observable<String>>.
How meta is that?!

Now, add the following below digits:

val digitStreams = Observable.merge(digits)

You’re using the merge method you learned about in Chapter 9, “Combining
Operators,” to combine the List<Observable<String>> into a single
Observable<String>. Now, any time a user taps one of the digits in HexColor
digitStreams will emit.

Next, update the digitClicked method to forward your digit through to your
subject:

fun digitClicked(digit: String) = digitsStream.onNext(digit)

Finally, subscribe to the digitStream stream you just created in ColorActivity and
forward the result through to the ColorViewModel:

digitStreams.subscribe(viewModel::digitClicked)
 .addTo(disposables)

You're using a method reference to make the code even more concise.

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 348

Back in ColorViewModel, add the following at the bottom of the init file:

digitsStream
 // 1
 .map { it to currentHexValue() }
 // 2
 .filter { it.second.length < 7 }
 // 3
 .map { it.second + it.first }
 .subscribe(hexStringSubject::onNext)
 .addTo(disposables)

Here’s another breakdown:

1. Take the String emitted by digitsStream and use map to combine it with
whatever the current hex value is. The to infix function is a simple shorthand to
create a Pair object.

2. Use filter to ignore any element emitted while the current hex values length is
≥ 7. If the current hex value is ≥ 7, you want to ignore any taps, since the full hex
color string has already been input.

3. Now, combine the current hex value and the String the user just tapped,
appending the new string onto the existing hex value.

Delete the old digitClicked method and run the app.

Now, take a step back and look at the ColorViewModel class. Doesn’t it look
fantastic? So sleek and declarative. Just a real beauty. Don’t you wish all code could
be this declarative and reactive?

Fetching colors from an API
The code for the app is looking a lot better. But the app itself is still fairly limited; it
can only display names for a small list of colors. You’re going to change that by
integrating with the color API found here: www.thecolorapi.com.

Open the ColorService class and add the following method to the bottom of the
interface outside the companion object:

@GET("id")
fun getColor(@Query("hex") hex: String): Single<ColorResponse>

The above code will fetch a lot of metadata for a color based off the hex string passed
in.

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 349

Now add another constructor parameter at the bottom of the list of constructor
parameters for the ColorViewModel class:

colorApi: ColorApi

In the ColorActivity, pass in ColorApi to the ColorViewModel constructor:

return ColorViewModel(
 Schedulers.io(),
 AndroidSchedulers.mainThread(),
 ColorCoordinator(),
 ColorApi
) as T

Now, open up ColorApi.kt. ColorApi is a simple object that wraps the
ColorService class to make API calls. Replace the body of the getClosestColor
method with the following:

return colorService.getColor(hexString)

Now, head back to ColorViewModel.kt. It’s time to actually use the API.

Find the Observable chain that searches through the ColorName enum whenever a
new hex string comes in. It looks like this:

hexStringSubject
 .subscribeOn(backgroundScheduler)
 .observeOn(mainScheduler)
 .filter { hexString -> ColorName.values()
 .map { it.hex }
 .contains(hexString) }
 .map { hexString -> ColorName.values()
 .first { it.hex == hexString } }
 .map { it.toString() }
 .subscribe(colorNameLiveData::postValue)
 .addTo(disposables)

Delete the whole chain and replace it with the following:

hexStringSubject
 .filter { it.length == 7 }
 .observeOn(mainScheduler)
 .flatMapSingle {
 colorApi.getClosestColor(it)
 .subscribeOn(backgroundScheduler)
 }
 .map { it.name.value }
 .subscribe(colorNameLiveData::postValue)

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 350

 .addTo(disposables)

You’re again filtering out any hex strings that aren’t yet at size seven. You’re then
using flatMap to fetch the color details from the color API making sure to subscribe
to the network call off the main thread. Then you’re using map to convert the
ColorResponse object you get back from the API into a human readable color name.
Finally you’re posting that value to the colorNameLiveData.

Run the app. Try out any color combination, and you’ll see a name. How cool is that?

My favorite is #555555. It makes me feel like a boss.

Displaying an information dialog
Next up on the docket is to allow the user to manually type out a color string without
tapping the digits on the app. To do this, you’re going to expose a bottom sheet
dialog that includes an EditText widget that the user can input text in.

Add the following to the bottom of the onCreate method in ColorActivity:

color_name.clicks()
 .subscribe {
 val bottomSheetDialog =
 ColorBottomSheet.newInstance(hex.text.toString())
 bottomSheetDialog
 .show(supportFragmentManager, "Custom Bottom Sheet")
 }
 .addTo(disposables)

You’re using the clicks extension method on the color_name widget to create an
Observable<Unit> representing clicks. In the subscribe block you’re creating an
instance of the ColorBottomSheet fragment with the current hex color string value
and showing it.

Run the app and input a color. If you click on the color name in the top-right, you
should see a bottom dialog with an empty EditText appear.

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 351

Open up the ColorBottomSheetViewModel class. It’s pretty empty right now. It has
three LiveData objects — one for showing a loading indicator, one for showing the
name of the color input by the user, and a last one for showing the "closest" matching
color to whatever color the user inputs.

Note: The concept of a difference or distance between two colors is actually
really interesting! You can use the distance formula you learned in algebra to
get the "distance" between two colors. Wikipedia has a great article about it:
https://en.wikipedia.org/wiki/Color_difference.

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 352

Before you can start using the color API in this new bottom sheet you need to access
the string that the user types into the EditText at the top of the bottom sheet.

Normally, the way you’d listen for text changes on an EditText would be to create a
new TextWatcher object and implement the afterTextChanged event. But that’s a
lot of boilerplate. You’ll use RxBindings instead to get an Observable<String>
representing the text changes.

First, update the ColorBottomSheetViewModel to have a val representing search
strings. Add the following to the top of the class:

private val searchObservable = BehaviorSubject.create<String>()

And just like before add a method that will be called to forward a value into your new
Observable:

fun onTextChange(text: String) = searchObservable.onNext(text)

Next, head to ColorBottomSheet and add the following below the line declaring the
viewModel in onViewCreated:

hex_input.textChanges()
 .map { it.toString() }
 .subscribe { viewModel.onTextChange(it) }

textChanges is an RxBindings extension method on TextView. It turns an
Observable<Editable>, so you’re using map to convert the Editable into a String.
You're then subscribing to the resulting Observable and forwarding it through to
your ViewModel.

Since you're using the subscribe method, you need to make sure to dispose of the
resulting Disposable at some point. Add a CompositeDisposable value at the top
of the file:

private val disposables = CompositeDisposable()

Update the textChanges block you just wrote to add the Disposable into your
newly created disposables object:

hex_input.textChanges()
 .map { it.toString() }
 .subscribe { viewModel.onTextChange(it) }
 .addTo(disposables)

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 353

You’re now ready to use the text-changes Observable to fetch a color from the color
API.

Head back to ColorBottomSheetViewModel and create an init block with the
following code:

init {
 val colorObservable = searchObservable
 .filter { it.length == 7 }
 .flatMapSingle {
 ColorApi.getClosestColor(it).subscribeOn(Schedulers.io())
 }
 .map { it.name }
 .share()
}

Above:

• You’re using the Observable<String> passed in from ColorBottomSheet, which
you got via the RxBindings library, to construct a new Observable chain. It first
filters out any inputs that aren’t of length seven, since that’s the correct length for
a hex color string.

• Then you’re using flatMapSingle to fetch the closest color to the input string
from the color api, which returns a Single with the network response.

• Finally, you’re using map to pull out the ColorName object from the
ColorResponse.

• You’re using the share operator to share the whole chain so you can have multiple
subscribers listen to the same set of results.

The above block is great, but you’re still not actually subscribing to the
colorObservable or emitting anything into the LiveData objects. Add the following
below the colorObservable chain:

colorObservable
 .subscribe { colorNameLiveData.postValue(it.value) }
 .addTo(disposables)

That’s more like it! You’re subscribing to colorObservable and pulling out the
value object from the ColorName class, which maps to the name of the color, and
pushing it through the colorNameLiveData object.

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 354

Before you run the app, finish off the functionality of the bottom sheet by adding one
more subscriber:

colorObservable
 .subscribe {
 closestColorLiveData.postValue(it.closest_named_hex)
 }
 .addTo(disposables)

You’re now pulling out the closest_named_hex value from the ColorName object
and pushing it through the closestColorLiveData object. Nice!

Note: closest_named_hex is named with underscores rather than the normal
camelCase format to allow for automagical json deserializing from the GSON
deserialization library.

Run the app, enter a color and tap the color name to show the bottom sheet. Input a
hex value and you should see the name of the closest named color the API could find,
as well as the hex value of that closest color. You may need to close the keyboard to
see the output.

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 355

The app is almost perfect. The only issue is if you enter a value on the main screen
and then click the color name you don’t see the details of the color that you input.
You only see the closest color and the name of that color if you type in something
new. This is an easy one line fix.

In ColorBottomSheetViewModel utilize the startsWithItem operator before the
filter operator in the colorObservable declaration (first chain):

.startWithItem(startingColor)

Now, run the app and tap around. You should see the details of whatever color you
originally input on the bottom sheet when it first appears.

Challenges

Challenge 1
Start from the final project from this chapter and update the bottom color sheet to
show a loading indicator while the ColorBottomSheetViewModel is loading a color
from the color API.

You don’t need to worry about adding a new view or hooking up a new live data. You
can use the showLoadingLiveData to toggle whether the loading indicator should be
shown or hidden.

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 356

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 357

Challenge 2
Update the ColorBottomSheet so that the EditText input always includes a #
character, is limited to seven characters, and only allows characters between 1-9 and
A-F.

To accomplish this challenge, you’ll want to use another RxBindings method on
EditText, specifically the afterTextChangesEvents method.
afterTextChangesEvents produces an
Observable<TextViewAfterTextChangeEvent>. TextViewAfterTextChangeEvent
includes an Editable object that you can manipulate to only include the strings that
you want.

If you’re having difficulties, take a look at the completed challenges project for a
hint.

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 358

Key points
• Practicing creating reactive extensions around existing Android classes.

• Using the RxBindings library to create reactive streams from Android widgets.

• Using the clicks extension method to replace an Android click listener.

• Using the textChanges extension method to get a stream of TextView or
EditText changes.

• Using the afterTextChangeEvents method to get a stream describing any
changes that are happening to an EditText.

Where to go from here?
If you’re hooked on RxJava, RxBindings is a great supplement to the regular classes.
RxBinding is simple to use, provides a consistent API for consumption, and makes
your application much more composable and reactive.

Reactive Programming with Kotlin Chapter 17: RxBindings

raywenderlich.com 359

18Chapter 18: Retrofit

By Alex Sullivan

Throughout this book, you’ve often used the popular Retrofit library to build your
apps. In this chapter, you’ll further explore how exactly Retrofit interfaces with the
Rx world and how you can take advantage of all that it offers.

Getting started
For this chapter, you’ll build a JSON-viewing app. The app you’ll build will allow you
to add rows to a JSON object, save that object to the JSONBlob (https://
jsonblob.com/) storage API and then retrieve that saved JSON string.

While building the app, you’ll explore the different options you have when
interacting with Retrofit.

Open the starter project for the chapter and run the app. You’ll see a white screen
with an empty JSON object, signified with the {} text. You’ll also see two EditTexts
and a FloatingActionButton (FAB) at the bottom of the screen.

That’s where you’ll add the new rows for the JSON object.

raywenderlich.com 360

Recap of Retrofit
Before you start exploring how Retrofit interacts with RxJava, it’s worth taking a
moment to recap what Retrofit is.

Retrofit is an open-source, networking library made and maintained by the Square
team. It allows you to declare your networking interface via an interface. It
abstracts away the tedious boilerplate of setting up HTTP connections and executing
them. A typical Retrofit interface will look like this example from Chapter 8,
"Transforming Operators in Practice":

// 1
interface GitHubApi {
 // 2
 @GET("repos/ReactiveX/{repo}/events")
 // 3
 fun fetchEvents(@Path("repo") repo: String,
 @Header("If-Modified-Since") lastModified: String)
 // 4
 : Observable<Response<List<AnyDict>>>
}

Reactive Programming with Kotlin Chapter 18: Retrofit

raywenderlich.com 361

Here’s a breakdown of the above code:

1. As mentioned earlier, Retrofit requires you to declare your API in an interface.
You don’t need to worry about implementing the interface, though; Retrofit
provides a simple hook to create an instance for you.

2. Every method in a Retrofit interface must be annotated with both the HTTP
method type (GET, POST, PUT etc) and the relative path to the APIs endpoint. This
path doesn’t declare the full API endpoint. Instead, you provide a root URL when
using that Retrofit hook to create the interface. You can even make the relative
path dynamic. In this example, the method expects to receive an argument that
will ultimately fill in the {repo} section of the relative path.

3. You can name your Retrofit methods whatever you want. What’s more important
is how you annotate the arguments that will be passed in to the method. This
example uses a dynamic path, so you need to use the @Path annotation to specify
that this argument should fill in {repo} portion of the path. It also uses the
@Header annotation to specify that this particular call should also include an If-
Modified-Since header with the annotated argument being the value that
corresponds to the header.

4. One of the beautiful parts about Retrofit, and the piece that you’ll interact with
the most for this chapter, is the fact that you can choose your return type for your
API methods, and Retrofit will do it’s best to give you objects that correspond to
that type. The above code is telling Retrofit to provide an Observable instance
that emits objects wrapped in Retrofit’s Response object and that contains data
corresponding to the type List<AnyDict>. Now that’s a super-powered library!

While the above code specifies Observable as a return type for the fetchEvents
method, if you’re not using RxJava you’d typically use the Call<T> object as a return
type. You could even just specify the actual model object as a return type. If, instead
of Observable<Response<List<AnyDict>>> you specified List<AnyDict> as the
return type, Retrofit would interpret that as a blocking network call.

Retrofit uses the OkHttp HTTP client under the hood and allows you to customize it
to your heart’s desire. This chapter’s project will use a custom OkHttp instance to log
all network calls.

Reactive Programming with Kotlin Chapter 18: Retrofit

raywenderlich.com 362

Including Rx adapters
Open the JsonBinService class and look at the create method in the companion
object. At the bottom of the method, you’re declaring an instance of the Retrofit
object with the following code:

val retrofit = Retrofit.Builder()
 .baseUrl(JsonBinApi.API)
 .client(client)
 .addConverterFactory(ScalarsConverterFactory.create())
 .addConverterFactory(GsonConverterFactory.create())
 .build()

Notice the two lines calling the addConverterFactory method on the Retrofit
builder.

addConverterFactory takes an instance of Converter.Factory. This converter
plugin architecture is how Retrofit serializes and deserializes the types that the
network returns. In this block, you’re specifying two different converters:

1. The ScalarsConverterFactory, enables Retrofit to convert JSON objects into
simple Java primitive types and strings.

2. The GsonConverterFactory, allows you to plug Gson, a JSON serialization
library, into the Retrofit converter architecture. Without this converter factory,
you wouldn’t be able to tell Retrofit to return complex model types since it would
have no way of deserializing its JSON representation into the objects.

In addition to these converter factories, Retrofit also lets you specify custom call
adapter factories that allow you to customize the return type of your interface
methods.

To specify Rx return types in your Retrofit interface methods, you’ll need one of
these CallAdapter.Factory instances. Luckily, the square team provides a separate
library that exposes just such a factory.

Open the build.gradle file and add the following dependency to the dependencies
block:

implementation "com.squareup.retrofit2:adapter-
rxjava3:$retrofit_version"

Reactive Programming with Kotlin Chapter 18: Retrofit

raywenderlich.com 363

Open the JsonBinService class. Now, update the Retrofit.Builder to specify the
new CallAdapter.Factory:

val retrofit = Retrofit.Builder()
 .baseUrl(JsonBinApi.API)
 .client(client)
 .addCallAdapterFactory(RxJava3CallAdapterFactory.create())
 .addConverterFactory(ScalarsConverterFactory.create())
 .addConverterFactory(GsonConverterFactory.create())
 .build()

You can now specify reactive return types for your Retrofit methods.

Creating a JSON object
Now that you’ve got Retrofit properly configured, it’s time to create a JSON object
and save it with the JSONBlob API.

Open the JsonViewModel class and look around. There's three important fields to
look at:

private val clicks = PublishSubject.Create<Unit>()
private val keyChanges = BehaviorSubject.create<CharSequence>()
private val valueChanges =
 BehaviorSubject.create<CharSequence>()

Each of these arguments represents some action done by the user.

In the above:

• clicks is an Observable<Unit> representing clicks on the bottom FAB.

• keyChanges is an Observable<CharSequence> representing text changes to the
left-most EditText object.

• valueChanges is an Observable<CharSequence> representing text changes to the
right-most EditText object.

Add the following code to the init block of JsonViewModel:

val buttonObservable = clicks
 .flatMap {
 Observables.combineLatest(keyChanges, valueChanges)
 }
 .share()

Reactive Programming with Kotlin Chapter 18: Retrofit

raywenderlich.com 364

You’re using flatMap to create a new Observable every time the user clicks on the
floating action button. The new Observable will combine the latest values emitted by
the keyChanges and valueChanges Observables, thus emitting the current text in
the left key EditText and the right value EditText every time the user clicks the
FAB.

To accomplish this combination, you’re using the Observables.combineLatest
method exposed by the RxKotlin library. Finally, you’re using the share operator so
that you can subscribe to the resulting Observable multiple times.

You’ve now got an Observable that will emit a Pair<CharSequence,
CharSequence> representing the current text in the key EditText and the value
EditText. You now want to use that Observable to create a new JSON object in the
JSONBlob API.

Before you can wire up the creation logic in the JsonViewModel, you’ll need to add a
new Retrofit method that sends a JSON object to the JSONBlob API.

Reactive Programming with Kotlin Chapter 18: Retrofit

raywenderlich.com 365

Open JsonBinService and add the following below the companion object
declaration:

@POST("jsonBlob")
@Headers("Content-Type:application/json")
fun createJson(@Body json: String): Observable<Response<String>>

You’re creating a new method that will POST a JSON string to the JSONBlob
jsonBlob endpoint. The POST will deliver a payload of the initial JSON string. The
return type of your createJson method will be Observable<Response<String>>.

Now that the Retrofit method has been created, you can update the JsonBinApi class
to reference it.

Open JsonBinApi and replace the existing body of the createJson method with the
following:

return service.createJson(json).map {
 it.headers().get("Location")
}

It calls the createJson method you just defined. It then inspects the headers object
of the Response to find the URI of the bin where your newly created JSON is stored.

With the Retrofit method set up and your API ready to go, it’s time to actually send
some JSON to the API.

Open the JsonViewModel class and add the following code below the
buttonObservable declaration:

val creationObservable = buttonObservable
 // 1
 .take(1)
 // 2
 .map { "{\"${it.first}\":\"${it.second}\"}" }
 .doOnNext { jsonTextLiveData.postValue(it) }
 // 3
 .flatMap {
 JsonBinApi.createJson(it).subscribeOn(Schedulers.io())
 }
 // 4
 .map { it.substringAfterLast("/") }
 .cache()

Reactive Programming with Kotlin Chapter 18: Retrofit

raywenderlich.com 366

Here’s a breakdown of the above code:

1. You’re building a new creationObservable by chaining off of the
buttonObservable you designed earlier. You only want to create a JSON object
in the JSONBlob API once. After that, you’ll update the object, so you’re using the
take operator to limit the number of items emitted by the buttonObservable to
just one.

2. You’re then constructing a JSON object by using the map operator and breaking
apart the Pair<CharSequence, CharSequence> you received from
ButtonObservable. The JSON object string may look a bit funky, but that’s just
because you need to use an escaping character, \, to include quotation marks in
the string. After calling map, you’re posting the new JSON object to the
jsonTextLiveData object so the user can immediately see the JSON they
constructed.

3. You’re then using flatMap to create a new Observable by using the new
createJson method you declared earlier.

4. The result of that last flatMap is that you’re now operating on an
Observable<String>. What you really care about is the ID of the new JSON
object you created on the JSONBlob API. So you’re using a map operator to pull
out the ID portion of the URI on the result.

Now you’re cooking with gas!

Add the following code at the bottom of the init method to subscribe to the
creation Observable:

creationObservable
 .subscribe()
 .addTo(disposables)

You're using the cache method so that you can reference the ID of the JSON you
created at a later point.

Now, run the app. Enter some text in both of the EditTexts and click the FAB. You
should see a JSON object appear on your screen.

Reactive Programming with Kotlin Chapter 18: Retrofit

raywenderlich.com 367

Updating the JSON
After creating and storing a JSON object in the JSONBlob API, it’s time to update that
object with new values.

Add the following code to the JsonViewModel init method right below the
creationObservable declaration but before subscribing to it:

val updateObservable = creationObservable
 .flatMap { buttonObservable }
 .map {
 createNewJsonString(it.first, it.second,
 jsonTextLiveData.value!!)
 }

You’re creating a new updateObservable by calling flatMap on the cached
creationObservable and returning the buttonObservable you defined earlier.
You’re then using the map operator to take the latest input from the
buttonObservable and creating a new JSON string from it and the current JSON
string, which is stored in the jsonTextLiveData object.

Reactive Programming with Kotlin Chapter 18: Retrofit

raywenderlich.com 368

By subscribing to updateObservable, you’ll ensure that the creationObservable is
run and then after the initial JSON object is created you switch to just emitting new
JSON strings. By using flatMap here, you’re able to chain the creation of a JSON
object into the updating of that object.

All that’s left to do is to subscribe to the updateObservable. Remove the existing
code that subscribes to creationObservable and replace it with the following:

updateObservable
 .subscribe {
 jsonTextLiveData.postValue(it)
 }
 .addTo(disposables)

Run the app. Add an initial key and value, and then tap the FAB. Next, try adding a
different key and value, and then tap the FAB. You should see an ugly chunk of JSON.

Reactive Programming with Kotlin Chapter 18: Retrofit

raywenderlich.com 369

Now, edit either the key or the value in preparation for adding another line.

Woah. Something weird is happening.

Every time you update the text, even if you don’t click the FAB, the JSON blob is
being updated. That certainly shouldn’t happen. Spend a minute or so making cool
pyramid designs.

After you’re done playing around with the bug, look back at the creation of the
buttonObservable:

val buttonObservable = clicks
 .flatMap {
 Observables.combineLatest(keyChanges, valueChanges)
 }
 .share()

buttonObservable is supposed to emit a Pair<CharSequence, CharSequence>
whenever the button is clicked. However, that’s not actually what the above code
does!

Reactive Programming with Kotlin Chapter 18: Retrofit

raywenderlich.com 370

Instead, buttonObservable, as it’s currently defined, emits a Pair<CharSequence,
CharSequence> when the button is entered and then every time either EditText is
changed. The problem lies in the combineLatest call. combineLatest will emit a
pair anytime either of the EditText objects change.

To fix the bug, update append a take(1) operator to the end of combineLatest:

val buttonObservable = clicks
 .flatMap {
 Observables.combineLatest(keyChanges, valueChanges)
 .take(1)
 }
 .share()

Now only the first pair of CharSequences will be emitted whenever the button is
tapped. Run the app and confirm that you’ll only see changes to the JSON on the
screen when you tap the FAB.

You’re now updating the JSON that the user sees, but you’re not actually saving the
updated JSON on the JSONBlob API.

Open the JsonBinService Retrofit interface and add the following method below
the createJson method you added earlier:

@PUT("jsonBlob/{id}")
@Headers("Content-Type:application/json")
fun updateJson(@Path("id") binId: String, @Body json: String):
Completable

In the above, updateJson takes an ID of the JSON "bin" to update and a new JSON
string. It uses the PUT HTTP method to update the JSON object at the given bin. You
don’t actually care about what the server returns when you hit the endpoint, so
you’re making the return type Completable. Now, you’ll be able to call this method
and be notified when it finishes without actually caring about any data that comes
with it.

You’ll often find that using the Completable return type pairs well with a REST PUT
request, since it’s entirely mutative. Retrofit's fluent call adapter functionality allows
you the flexibility to declare the types that make the most sense for your HTTP calls.

Open the JsonBinApi class and replace the body of the updateJson method with the
following:

return service.updateJson(bin, json)

Reactive Programming with Kotlin Chapter 18: Retrofit

raywenderlich.com 371

Now that you’ve got your API calls ready to go, it’s time to update the
JsonViewModel to actually save off the new JSON. Replace the existing
updateObservable declaration with the following:

val updateObservable = creationObservable
 // 1
 .flatMap { binId ->
 buttonObservable
 // 2
 .map { createNewJsonString(it.first, it.second,
 jsonTextLiveData.value!!) }
 .map { binId to it }
 }
 // 3
 .flatMapCompletable {
 JsonBinApi.updateJson(it.first, it.second)
 .subscribeOn(Schedulers.io())
 }

Here’s a breakdown of the above code:

1. Just like before, you’re using flatMap to start streaming the events from the
buttonObservable.

2. You’re then using the map operator to build up a new JSON object that includes
the latest values in the key and value EditTexts. After that, you’re using another
map operator to create a Pair<String, String> by combining the binId value
from the creationObservable with the new JSON string.

3. You’re then using the flatMapCompletable operator to take the Pair<String,
String> object produced earlier in the chain and sending both the bin id and the
new JSON object through to the JSONBlob via the Retrofit method you
implemented earlier. You’re using flatMapCompletable because the return type
for the updateJson method is Completable.

To complete the JSON updating flow, replace the existing code that subscribes to
updateObservable with the following:

updateObservable
 .subscribe()
 .addTo(disposables)

You’re now sending JSON updates through to the JSONBlob API.

There’s only one issue: You’re never actually printing the new JSON to the screen.
Since the jsonTextLiveData object isn’t being updated, the JSON you’re generating
and sending to the JSONBlob API isn’t being built up. Instead, you’re only ever

Reactive Programming with Kotlin Chapter 18: Retrofit

raywenderlich.com 372

sending up a JSON object with two lines: the first line when you created the object
and the new values from your EditText streams.

You could simply add a doOnNext operator in the Observable chain you just wrote
and emit the new JSON values. However, the JSONBlob API exposes an endpoint that
allows you to fetch the current JSON object in a bin, so you can be confident that
your JSON is actually saved.

That sounds like the best option moving forward.

Retrieving JSON
Open the JsonBinService class again and add the following method below the
updateJson method you added earlier:

@GET("jsonBlob/{id}")
@Headers("Content-Type:application/json")
fun getJson(@Path("id") binId: String): Single<Response<String>>

This time, you’re targeting the /jsonBlob/{id} endpoint, which returns whatever
JSON is stored in that bin. Just like in the updateJson method, you’re passing in a
bin id that will be used to identify your JSON.

For this method, you’re setting the return type as Single<Response<String>>.
There’s two interesting things at play, here:

1. The first is that you’re using the Single reactive type. Once again Retrofit is
amazingly flexible in what return types you can specify for your methods. Single
is a fantastic choice when using Retrofit since your network calls will almost
always return a single result and then finish. Setting the return type as
Single<YourResponseObject> lets you more clearly specify the expected
structure of your HTTP calls.

2. The second interesting piece is that you’re using Retrofit’s built-in Response
object. You used the Response object earlier when creating the JSON, but it's
worthwhile to dig in here. Retrofit always allows you to wrap your model object in
its Response object. The Response object provides several nice to haves, such as
HTTP status codes, access to header objects, and any errors that may have been
encountered. If you didn’t want to use the Response object, you could easily set
the return type of this method to be Single<String>.

Reactive Programming with Kotlin Chapter 18: Retrofit

raywenderlich.com 373

Handling errors
This is a good time to pause for a moment and consider how error handling works in
Retrofits RxJava integration. No matter what reactive return type you specify,
whether its Observable, Single, Completable, or Maybe, if you do not have internet
access when you attempt to make a call through Retrofit you will hit the error block
of your subscriber. Not particularly surprising but good to point out.

What may be slightly more surprising is that depending on what return type you use
with Retrofit, and specifically depending on whether you include the Response
object in that return type, you may or may not see HTTP server errors and non
successful status calls in your error blocks.

You have two options when deciding on a return type for your Retrofit methods:

1. You could include the Response object as a wrapper to your model type in the
return type. That means having a return type that looks like
Single<Response<MyObject>>. In this scenario, if your server returns a non
successful (i.e., non 2xx) status code, a Response<MyObject> will still be
delivered to the success block of your subscriber, even though the server
ultimately rejected the call. You can check the status code of the Response object
to figure out if the call was successful or not. You’ll see an example of this later
on.

2. Alternatively, if you exclude the Response object and instead specify your return
type to look something like Single<MyObject>, you’ll then see non successful
status codes going into the error block. So if your server returned a 404, meaning
the resource wasn’t found, your Single<MyObject> would report an error and
you would need to make sure to handle that error.

Tying it all together
Now that you’ve got a method in your Retrofit interface to retrieve JSON, you need to
update the JsonBinApi class to reference the new method. Replace the body of the
getJson method with the following:

return service.getJson(bin)

Now, open the JsonViewModel class. After you call through to the
JsonBinApi.updateJson method, you need to retrieve the newly updated JSON and
send it through your jsonTextLiveData object.

Reactive Programming with Kotlin Chapter 18: Retrofit

raywenderlich.com 374

Remove the existing flatMapCompletable block of the updateObservable and
replace it with the following:

// 1
.flatMap { pair ->
 // 2
 JsonBinApi.updateJson(pair.first, pair.second)
 // 3
 .andThen(JsonBinApi.getJson(pair.first))
 .toObservable()
 .subscribeOn(Schedulers.io())
}

Here’s a breakdown:

1. Instead of using flatMapCompletable, you’re switching to use a normal flatMap
method. That means the return object in your flatMap lambda will have to be an
Observable instead of a Completable.

2. You’re again calling the JsonBinApi.updateJson method, passing through the
bin id and the new JSON object.

3. Instead of calling it quits after updating the JSON object through the API, you’re
chaining a call to JsonBinApi.getJson after the initial call to update the JSON
object. Since JsonBinApi.updateJson returns a Completable, you can use the
andThen method to execute another reactive type after the completable finishes.
Finally, since flatMap expects an Observable to be returned in its lambda,
you’re using the toObservable method to turn the Single<Response<String>>
object returned by JsonBinApi.getJson into an
Observable<Response<String>>.

Now, update the code at the bottom of the init method that subscribes to the
updateObservable and replace it with the following:

updateObservable
 .subscribe {
 if (it.isSuccessful) {
 val prettyJson = JSONObject(it.body()!!).toString(4)
 jsonTextLiveData.postValue(prettyJson)
 } else {
 errorLiveData.postValue("Whoops, we got an error!")
 }
 }
 .addTo(disposables)

In this block, you’re checking the Response object to see if the HTTP call was
successful. If it was, you’re formatting your JSON to be nice and pretty and then

Reactive Programming with Kotlin Chapter 18: Retrofit

raywenderlich.com 375

sending the new JSON string returned by the API into the jsonTextLiveData. If it
wasn’t successful you’re sending an error message through the errorLiveData.

Run the app. You should now be able to add as many rows to the JSON object as you
want, and you should see a nicely formatted JSON blob.

Reactive Programming with Kotlin Chapter 18: Retrofit

raywenderlich.com 376

Key points
• In order to return any of the reactive types from a Retrofit interface, you have to

make sure to include the RxJava3 call adapter library.

• Once you do include the call adapter library, you can return any of the reactive
types you’ve seen in the book. Observable, Flowable, Completable, Single,
Maybe — the whole gang’s here!

• You can use the Observables (or other reactive types) you receive from Retrofit just
like any other Observable. Make sure to use the subscribeOn and observeOn
operators to do your network operations off the main thread.

• You can wrap your custom model types in the Response object to get access to
HTTP status codes and errors. You can even nest those types inside your reactive
types!

• Make sure to pay extra special attention to how you handle errors when using
Retrofit. If you use the Response object you’ll see fewer exceptions in your
subscribe error handling code.

Where to go from here?
Retrofit is a great example of a library that makes use of RxJava in a very pragmatic
way. Retrofit is a solid addition to any Android project, and even more so when
coupled with RxJava.

Be sure to check out the Retrofit repository on GitHub github.com/square/retrofit if
you’re interested in taking a deeper dive into the library.

Reactive Programming with Kotlin Chapter 18: Retrofit

raywenderlich.com 377

19Chapter 19:
RxPreferences
By Alex Sullivan

Every good Android developer is intimately familiar with SharedPreferences. You
use it to store one-off values that you want to persist across the lifetime of the app.

Many developers will also be familiar with the tools you use to listen to changes in
these preferences. The RxPreferences library provides a reactive wrapper around
these preference notification listeners.

In this chapter, you’ll learn how the library works and how you can use it to
effectively stream preference changes.

raywenderlich.com 378

Getting started
In this chapter, you’re going to put the final touches on the HexColor app that you
started in the Chapter 15, “Testing RxJava Code,” code and expanded upon in
Chapter 17, “RxBindings.”

Open the starter project in Android Studio and run the app. You should see a familiar
screen:

Try tapping out a hex color. You’ll see the screen change to that color, and a color
name will appear in the top right below the actual hex value. If you tap on that color
name, you should see a new pop-up appear at the bottom of the screen with it's own
edit text where you can enter a hex code.

Reactive Programming with Kotlin Chapter 19: RxPreferences

raywenderlich.com 379

At the bottom of that pop-up, there will be a small heart that should be the color of
whatever hex code you input in the edit text at the top of the pop-up.

The goal for this last update to the HexColor app is to allow the user to tap that
heart icon and have the main app’s background update to that new color.

Right now, the app is using a BottomSheetDialogFragment to show the bottom
dialog and an Activity to show the main keyboard and color view.

As you already know, communicating between fragments and activities is a painful
process. It usually means defining an interface for the Activity to implement and
then using getActivity from the BottomSheetDialogFragment to hopefully
communicate any changes back up to the Activity. However, you need to be careful
to make sure that the Activity you get back from getActivity isn’t null, since
that’s always a possibility!

If only there was a better way to communicate this information...

Reactive Programming with Kotlin Chapter 19: RxPreferences

raywenderlich.com 380

Using SharedPreferences
There is! The Android SDK provides SharedPreferences as a means to save small
amounts of information that the user may be interested in across app restarts. The
Android SDK also provides a way to observe preference changes for individual
preference keys using the OnSharedPreferenceChangedListener interface,
allowing you to build up an app that reacts to preference changes.

You can use SharedPreferences to have the bottom sheet dialog save whatever
color the user "loved" by tapping the heart. Then the activity (or the view model for
the activity) can subscribe to those changes and update the app accordingly.

Start off by updating the ColorBottomSheetViewModel class to accept a new
SharedPreferences argument:

class ColorBottomSheetViewModel(
 startingColor: String,
 colorCoordinator: ColorCoordinator,
 sharedPreferences: SharedPreferences
) : ViewModel()

Next, just like you did in the RxBindings chapter, you need to create a subject
representing favorite clicks. Add the following val at the top of the class:

private val favoriteClicksObservable =
 PublishSubject.create<Unit>()

And add a new onFavoriteClick method at the bottom of the class:

fun onFavoriteClick() = favoriteClicksObservable.onNext(Unit)

favoriteClicksObservable is of type PublishSubject<Unit>. Every emission
from the subject will represent a new click by the user.

Now, update the code creating the ColorBottomSheetViewModel object in the
ColorBottomSheet class. The code creating the view model exists in
onViewCreated(), in an anonymous object extending the NewInstanceFactory
class. Add SharedPreferences as the final parameter for the
ColorBottomSheetViewModel constructor.

return ColorBottomSheetViewModel(colorString,
ColorCoordinator(),
 PreferenceManager
 .getDefaultSharedPreferences(requireContext())) as T

Reactive Programming with Kotlin Chapter 19: RxPreferences

raywenderlich.com 381

Next up, use the RxBindings clicks extension method to listen for clicks on the
favorite button. Add the following below the block creating the viewModel:

favorite.clicks().subscribe {
 viewModel.onFavoriteClick()
}.addTo(disposables)

You’ve used the RxBindings clicks() to get an Observable<Unit> representing
clicks to the favorite view. You're then forwarding that click event to the view
model.

Now that you’ve got a way to react to Favorite clicks and an instance of
SharedPreferences, it’s time to update ColorBottomSheetViewModel to save the
currently displayed color object whenever a user clicks the Favorite icon.

Add the following to the bottom of the init block in ColorBottomSheetViewModel:

favoriteClicksObservable
 .subscribe {
 sharedPreferences.edit()
 .putString("favoriteColor", closestColorLiveData.value)
 .apply()
 }
 .addTo(disposables)

You’re now using the latest value from the closestColorLiveData object and
saving it every time the user clicks the Favorite button.

Now you need to listen for this preference update in the activity and react
accordingly.

Listening for preference updates
Just like before, you’ll need to pass in an instance of SharedPreferences into the
view model corresponding to the ColorActivity. Update the ColorViewModel class
to accept an instance of SharedPreferences:

class ColorViewModel(
 backgroundScheduler: Scheduler,
 mainScheduler: Scheduler,
 colorApi: ColorApi,
 colorCoordinator: ColorCoordinator,
 sharedPreferences: SharedPreferences
) : ViewModel()

Reactive Programming with Kotlin Chapter 19: RxPreferences

raywenderlich.com 382

Now, update the ColorActivity to supply the SharedPreferences object. In
ColorActivity's onCreate()', update the line creating the new ColorViewModel to
pass in SharedPreferences as the last parameter.

return ColorViewModel(Schedulers.io(),
 AndroidSchedulers.mainThread(),
 ColorApi, ColorCoordinator(),
 PreferenceManager
 .getDefaultSharedPreferences(this@ColorActivity)) as T

Now that you have an instance of SharedPreferences in ColorViewModel, you can
start using it. Add the following to the bottom of the init block in ColorViewModel:

sharedPreferences.registerOnSharedPreferenceChangeListener {
 sharedPreferences, key ->
 if (key == "favoriteColor") {
 hexStringSubject.onNext(
 sharedPreferences.getString(key, ""))
 }
}

You’re registering a shared preference change listener and checking if the key that’s
changed is the key you’re interested in. If it is, you’re forwarding the new color along
to hexStringSubject. Recall that hexStringSubject drives the rest of the logic of
the app, so pushing a new color string into hexStringSubject should update the
color of the main activity view, the name of the color, and everything else you’ve
come to expect from inputting a new color.

Build and run the app. Then, input a color and tap on the color name in the top-
right. You should see the bottom sheet expand. Now, enter a new color in the edit
text at the top of the bottom sheet and tap the Favorite icon.

Hmmmm. Nothing happened! The main color view behind the bottom sheet dialog
didn’t change!

If you try to debug the app, you’ll see that the
OnSharedPreferenceChangeListener you’re supplying to sharedPreferences is
never being called. What gives?

Reactive Programming with Kotlin Chapter 19: RxPreferences

raywenderlich.com 383

To find the culprit, take a look at the
registerOnSharedPreferenceChangeListener listeners documentation:

Registers a callback to be invoked when a change happens to a
preference.

Caution: The preference manager does not currently store a
strong reference to the listener. You must store a strong
reference to the listener, or it will be susceptible to garbage
collection. We recommend you keep a reference to the listener in
the instance data of an object that will exist as long as you
need the listener.

Under the hood, registerOnSharedPreferenceChangeListener uses a
WeakHashMap to store its listeners. That means that if you don’t store a strong
reference to the listener, the JVM will garbage collect the listener and you’ll lose out
on any notifications you would otherwise receive.

This weak reference is a common point of pain for Android developers looking to use
the OnSharedPreferenceChangeListener interface. Such is life when developing
Android apps!

To create a strong reference to the preference change listener, you can add it as an
instance variable on the ColorViewModel class:

private val listener =
 SharedPreferences.OnSharedPreferenceChangeListener {
 sharedPreferences, key ->
 hexStringSubject.onNext(
 sharedPreferences.getString(key, ""))
}

Now, update the line where you register the preference change listener to reference
the listener instance variable:

sharedPreferences
 .registerOnSharedPreferenceChangeListener(listener)

Run the app and enter a color. Click the color name and then enter a new color in the
bottom sheet. Then, click the Favorite icon. You should now see the background of
the main view change to be the new color. Fancy!

Reactive Programming with Kotlin Chapter 19: RxPreferences

raywenderlich.com 384

Using RxPreferences
Now that you’ve seen how to write reactive code using SharedPreferences on your
own, it’s time to take a look at the RxPreferences library to see an easier and more
efficient way to use SharedPreferences reactively.

First, include the dependency in the apps build.gradle file, then sync the gradle
file:

implementation 'com.f2prateek.rx.preferences2:rx-
preferences:2.0.0'

Open ColorBottomSheetViewModel and replace the shared preferences class
parameter:

sharedPreferences: SharedPreferences

With the Rx version:

sharedPreferences: RxSharedPreferences

RxPreferences introduces a new version of SharedPreferences called
RxSharedPreferences. You’ll use that class instead of SharedPreferences moving
forward.

Now, replace the block of code at the bottom of the init block that subscribes to
favoriteClicksObservable with the following:

val preference = sharedPreferences.getString("favoriteColor")
favoriteClicksObservable
 .map { closestColorLiveData.value!! }
 .subscribe(preference::set)
 .addTo(disposables)

The RxPreferences library exposes getX() methods you’re accustomed to using
with SharedPreferences. However, instead of returning a String or Int, or any of
the other types, it returns a Preference<X>, where X is the String or Int or
whatever else you can pull out of SharedPreferences. In this case, the preference
object is of type Preference<String>. The Preference interface exposes several
handy functions, one of which is setting a new value, which you’re using in the
subscribe() block using a method reference.

Reactive Programming with Kotlin Chapter 19: RxPreferences

raywenderlich.com 385

This code replaces the traditional edit(), putString("myKey", "myString") and
apply() methods on the sharedPreferences object that you’re used to seeing when
setting a new shared preference; RxPreferences abstracts those away!

Now you need to update the ColorBottomSheet class to pass in an instance of
RxSharedPreferences instead of SharedPreferences to the
ColorBottomSheetViewModel. Replace the existing SharedPreferences class
argument in the onViewCreated method with the following:

return ColorBottomSheetViewModel(colorString,
ColorCoordinator(),
 RxSharedPreferences.create(
 PreferenceManager
 .getDefaultSharedPreferences(requireContext()))) as T

The RxSharedPreferences class wraps an existing instance of SharedPreferences,
so you can pass whatever shared preferences object you want.

Subscribing to preference changes
You’re properly saving the favoriteColor preference, so now it’s time to start
observing it using the RxSharedPreferences library. Just like before, you’ll need to
swap out the class arguments for ColorViewModel.

In the ColorViewModel class, replace the sharedPreferences class argument with
the following:

private val sharedPreferences: RxSharedPreferences

You're using val here to make sure you have a strong reference.

Now, update the ColorActivity to pass in an instance of RxSharedPreferences
into the ColorViewModel in the onCreate method:

return ColorViewModel(Schedulers.io(),
AndroidSchedulers.mainThread(),
 ColorApi, ColorCoordinator(),
 RxSharedPreferences.create(
 PreferenceManager
 .getDefaultSharedPreferences(this@ColorActivity))) as T

Reactive Programming with Kotlin Chapter 19: RxPreferences

raywenderlich.com 386

Back in ColorViewModel, delete the instance variable listener. You’ll use the
RxPreferences Rx integration instead of listeners. Make sure to also delete the call
to registerOnSharedPreferenceChangeListener at the bottom of the init block.

Add the following code at the bottom of the init block to replace the
registerOnSHaredPreferenceChangeListener() call you deleted:

sharedPreferences.getString("favoriteColor")
 .asObservable()
 .filter { !it.isBlank() }
 .subscribe { hexStringSubject.onNext(it) }

Just like before, you’re using getString() to get a Preference<String> from
RxSharedPreferences. This time, you’re also using asObservable() to turn that
preference into an Observable representing any changes to the shared preference.

Run the app and try going through the flow. Everything should work perfectly!

Note: Just like before, it’s important to be mindful of the WeakHashMap that
the Android SDK uses under the hood to store preference change listeners,
which RxSharedPreferences utilizes. You need to make sure that you keep a
strong reference to the RxSharedPreferences object to avoid your listeners'
garbage being collected prematurely!

Try deleting the app and setting a breakpoint on the filter() line above. Run the
app in debug mode, and you’ll notice that the breakpoint pauses even without
setting a value on the Preference. Each Preference will emit a default value if no
value has been set yet. A common source of errors when using the
RxSharedPreferences library is assuming that no value will be emitted if you
haven’t saved any shared preferences objects yet, so make sure to keep in mind that
an initial default value will be emitted!

Dealing with old versions of RxJava
There's one thing missing with the Rx chain that you just wrote:

sharedPreferences.getString("favoriteColor")
 .asObservable()
 .filter { !it.isBlank() }
 .subscribe { hexStringSubject.onNext(it) }

Reactive Programming with Kotlin Chapter 19: RxPreferences

raywenderlich.com 387

You're not disposing of the Disposable that subscribe() returns!

Normally you'd use the addTo() RxKotlin extension function to add the disposable
to your CompositeDisposable. Go ahead and give that a shot. You should see an
error that looks something like this:

Unresolved reference. None of the following candidates is
applicable because of receiver type mismatch:
public fun Disposable.addTo(compositeDisposable:
CompositeDisposable): Disposable defined in
io.reactivex.rxjava3.kotlin

The problem is that the RxPreferences library is using RxJava2 under the hood,
whereas you're using the newer RxJava3 library. RxJava2 and 3 have different
package structures - meaning you can't pass an RxJava2 Observable into a method
that expects an RxJava3 Observable and vice versa!

Luckily, the Rx authors provide a bridging library to help ease the transition that you
can use to solve this particular roadblock.

Add the following dependency in the app/build.gradle file and then sync:

implementation "com.github.akarnokd:rxjava3-bridge:3.0.0"

The rxjava3-bridge library exposes several methods to transition between RxJava2
and RxJava3 types.

Open the X.kt file and add the following method at the bottom of the file:

fun <T> io.reactivex.Observable<T>.toV3Observable():
 io.reactivex.rxjava3.core.Observable<T> {
 return RxJavaBridge.toV3Observable(this)
}

You're defining a new extension function on the RxJava2 version of Observable that
converts it into an instance of the RxJava3 Observable using toV3Observable()
from the bridging library.

Now head back to the ColorViewModel class and replace the shared preferences rx
block you added earlier with the following:

sharedPreferences.getString("favoriteColor")
 .asObservable()
 .toV3Observable()
 .filter { !it.isBlank() }
 .subscribe { hexStringSubject.onNext(it) }
 .addTo(disposables)

Reactive Programming with Kotlin Chapter 19: RxPreferences

raywenderlich.com 388

You're now using toV3Observable(), which you defined earlier to convert the
Observable returned by RxSharedPreferences to a RxJava3 Observable. Since it's
now the right type of Observable, you can use the addTo RxKotlin method as
expected.

Saving custom objects
You’re now sending color data from the ColorBottomSheet to the ColorActivity
seamlessly.

However, there’s a major inefficiency. Every time you click the Favorite icon in the
bottom sheet, the ColorViewModel class executes another network call to fetch the
color data for the color you just favorited. That means that the same network call is
being made twice: Once in the ColorBottomSheetViewModel when the user inputs
the color and the once again in the ColorViewModel. It’d be great if you could share
the whole ColorResponse object that the API returns rather than just the hex value
of the color.

And you can! RxPreferences provides an easy mechanism with which to save custom
object types into shared preferences. In this next section, you’ll update the app to
share the entire ColorResponse object returned by the API.

First, add a new file called ColorResponseConverter into the hexcolor package and
add the following code, importing com.f2prateek.rx.preferences2.Preference
when prompted:

class ColorResponseConverter:
 Preference.Converter<ColorResponse> {
 override fun deserialize(serialized: String): ColorResponse {
 TODO()
 }

 override fun serialize(value: ColorResponse): String {
 TODO()
 }
}

ColorResponseConverter is going to implement the Preference.Converter
interface exposed by RxSharedPreferences. Preference.Converter is a simple
conversion interface to serialize an object into a String and deserialize an object
from a String into an object type, in this case a ColorResponse.

Reactive Programming with Kotlin Chapter 19: RxPreferences

raywenderlich.com 389

Now, replace the code in serialize() with the following:

val gson = Gson()
return gson.toJson(value)

To serialize an object, you’ll use Gson to convert the object into a String.

Similarly, replace the contents of deserialize():

val gson = Gson()
return gson.fromJson(serialized, ColorResponse::class.java)

You’re again using Gson, this time to take a previously serialized object and convert
it into an instance of ColorResponse.

Note: It’s trivial to make a generic abstract class that extends the
Preference.Converter interface and uses Gson under the hood to deserialize
any custom object type, so you don’t need to write converters for each of your
objects!

You’ll also need a default, blank instance of ColorResponse to return in case the app
hasn’t yet saved any objects with that type — remember earlier when we discussed
default values being returned? Custom objects are no exception!

Add the following as a top level value in the ColorResponseConverter.kt, outside
of the class. You may need to import
com.raywenderlich.android.hexcolor.networking.ColorName to make sure
you're using the ColorName class instead of the enum:

val defaultColorResponse = ColorResponse(ColorName("#", "#"))

defaultColorResponse is a "blank" instance of ColorResponse.

Open ColorBottomSheetViewModel. Since you’re now going to be saving the results
of the last completed network call, you’ll need to hold onto that value. Add the
following as an instance variable in the view model:

private var previouslyFetchedColor: ColorResponse =
 defaultColorResponse

Reactive Programming with Kotlin Chapter 19: RxPreferences

raywenderlich.com 390

Now, delete the code declaring preference at the bottom of the init block and
replace it with the following:

// 1
val preference = sharedPreferences.getObject(
 "favoriteColor",
 defaultColorResponse,
 ColorResponseConverter()
)
favoriteClicksObservable
 // 2
 .map { previouslyFetchedColor }
 // 3
 .subscribe(preference::set)
 .addTo(disposables)

Here’s a breakdown:

1. You’ve switched from using getString() to using getObject(). getObject()
takes two additional parameters: A default instance of whatever object you’ll be
operating on, which in this case is ColorResponse, and a
Preference.Converter to convert to and from that object type.

2. You’re then using the map operator to transform the Unit value emitted by
favoriteClicksObservable into the previouslyFetchedColor object you
defined earlier.

3. Finally, you’re using set() like before!

All that’s left to do in ColorBottomSheetViewModel is to actually save the last
ColorResponse received from the server.

Update the colorObservable declaration towards the top of the init block such
that it saves the last response from the server. Specifically, add the following line
before the map call:

.doOnNext { previouslyFetchedColor = it }

Now that you’re saving the value, it’s time to respond to the new object type in the
ColorViewModel

Reactive Programming with Kotlin Chapter 19: RxPreferences

raywenderlich.com 391

Observing a custom object
Open the ColorViewModel class. Delete the code observing the "favoriteColor"
preference string and replace it with the following:

sharedPreferences.getObject(
 "favoriteColor",
 defaultColorResponse,
 ColorResponseConverter()
).asObservable()
 .toV3Observable()
 .map { it.name }
 .subscribe {
 colorNameLiveData.postValue(it.value)
 hexStringSubject.onNext(it.closest_named_hex)
 }
 .addTo(disposables)

Just like before, you’re using getObject() to get a Preference<ColorResponse>.
And like the earlier iteration you’re using asObservable() to convert it into an
Observable.

You’re then using map() to convert the ColorResponse into a ColorName, which
holds all the meaningful data. Finally, you’re posting the color name to the
colorNameLiveData and the hex string to the hexStringSubject.

However, you’ve now run into an issue. Whenever hexStringSubject receives a hex
string of length 7, it runs the following Rx block:

hexStringSubject
 .filter { it.length == 7 }
 .observeOn(mainScheduler)
 .subscribe {
 colorNameDisposable?.dispose()
 colorNameDisposable = colorApi.getClosestColor(it)
 .subscribeOn(backgroundScheduler)
 .subscribe { response ->
 colorNameLiveData.postValue(response.name.value)
 }
 }
 .addTo(disposables)

This means that the code will still run a network request whenever the preference is
updated.

To fix this issue, first delete the code block referenced above. You’ll handle making
the API request elsewhere.

Reactive Programming with Kotlin Chapter 19: RxPreferences

raywenderlich.com 392

Then, replace the existing subscribe() block in the Rx chain subscribing to the
digitsStream with the following:

hexStringSubject.onNext(currentHexValue() + it)
if (currentHexValue().length == 7) {
 colorNameDisposable?.dispose()
 colorNameDisposable =
 colorApi.getClosestColor(currentHexValue())
 .subscribeOn(backgroundScheduler)
 .subscribe { colorResponse ->
 colorNameLiveData.postValue(colorResponse.name.value)
 }
}

You’ve moved the logic which executes the network request to be triggered based off
of digits being input rather than the hexStringSubject being updated. That frees
the code that subscribes to hexStringSubject to be entirely cosmetic. Now,
whenever you change a preference, all the normal UI updates will happen without
the network request.

Run the app and make sure the above is the case. You should see the color name
updated in the main color view after you choose a favorite color via the bottom
sheet.

Reactive Programming with Kotlin Chapter 19: RxPreferences

raywenderlich.com 393

Key points
• You can use RxPreferences to create reactive streams out of individual

preferences.

• RxPreferences provides type safe ways to access data stored in shared
preferences.

• Make sure to keep a strong reference to the RxSharedPreferences class to avoid
listeners being garbage collected prematurely!

• If you want to store and retrieve custom objects, use the Converter interface to
convert between strings and your object type.

• You can use the rxjava-bridge library to bridge between RxJava2 and RxJava3
types

Where to go from here?
Now that you know all about making SharedPreferences reactive, you can move
even farther Rx-ifying your apps! Hopefully you’re starting to notice that for every
core component needed to write an Android app, an existing Rx-ified library exists to
keep your code base reactive.

In the upcoming chapters, you’ll learn about a few more libraries, including some
that were written by the Android platform team!

Reactive Programming with Kotlin Chapter 19: RxPreferences

raywenderlich.com 394

20Chapter 20: RxPermissions

By Alex Sullivan

Starting in Android Marshmallow, Android developers need to ask for certain
permissions at runtime to allow the user a chance to reject those permissions
without rejecting the entire app. For the most part, it’s been a great change to the
Android ecosystem. However, it has also come with a non-trivial amount of
developer pain.

Most Android developers are intimately familiar with the Android flow for requesting
a permission. It requires you to request the permission and then handle the result of
that permission request in another callback in the activity life cycle. This discrepancy
between where you request a permission and where you learn if you’ve gotten it or
not is the cause of a lot of headaches.

There’s a helpful library called RxPermissions that you’ll use in this chapter to help
alleviate some of these pain points and give you a reactive flow when requesting
permissions. What more could you want?

raywenderlich.com 395

Getting started
Start off by opening the starter project for this chapter. You’ll work on the
Wundercast app that you started earlier in the book. Recall that Wundercast allows
you to search for a city and see the temperature, humidity and other weather
information.

In addition to the location and API key buttons you’ve come to love, there’s also two
new buttons at the bottom of the screen for this chapter. The Save icon towards the
left will, once you’re done with the chapter, save the currently displayed weather. The
Clock icon to its right will then reload the last saved weather and display it in the
app. Handy, right?

Wundercast uses the OpenWeatherMap API, so before continuing, make sure you
have a valid OpenWeatherMap API key http://openweathermap.org. If you don’t
already have a key, you can sign up for one at https://home.openweathermap.org/
users/sign_up.

Once you’ve completed the sign-up process, visit the dedicated page for API keys at
https://home.openweathermap.org/api_keys and generate a new one.

Then, in the starter project, open the WeatherApi.kt file, take the key you generated
above and replace the placeholder in the top of the file:

val apiKey =
 BehaviorSubject.createDefault("INSERT-API-KEY-HERE")

Reactive Programming with Kotlin Chapter 20: RxPermissions

raywenderlich.com 396

Once that’s done, run the app and make sure you can fetch the weather for your
favorite city or town.

Requesting the location permission
When you first started working on Wundercast, the app would immediately request
the location permission as soon as the app launched. As we all know, that’s not great
user experience. It forces the user to make a quick decision about giving your app the
location permission before they have a chance to see why you actually need it. In
addition to that, requesting the permission without the proper context can make the
user more likely to reject your permission. Instead, it’d be much better if you
requested the location permission only after the user clicked the location button in
the bottom-left.

The starter project for this chapter removed the code to request the location
permission on app launch, so you’ll add that back in now.

Start off by commenting out the locationObservable declaration at the top of the
init method of WeatherViewModel.

Next up, comment out the Observable.merge block at the end of the init method.

Now, add the following code at the bottom of init, below the commented-out merge
code:

textObservable
 .subscribeOn(Schedulers.io())
 .observeOn(AndroidSchedulers.mainThread())
 .subscribe(this::showNetworkResult)
 .addTo(disposables)

Now that you’ve removed the Rx-oriented location code, it’s time to transition to the
sad world of imperative programming. But don’t worry, you’ll be back soon!

Moving to WeatherActivity.kt, add the following code at the bottom of the
onCreate method:

location.setOnClickListener {
 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
 requestPermissions(
 arrayOf(Manifest.permission.ACCESS_FINE_LOCATION),
 locationRequestCode)
 }
}

Reactive Programming with Kotlin Chapter 20: RxPermissions

raywenderlich.com 397

You’re setting a click listener on the location ImageView. The click listener will
request the location permission if the app is running on a phone with a version of
Android at or after Android M. The app is using the Kotlin Android extensions plugin
to automatically generate references to views in the layout file, so no need for any
pesky findViewById calls.

Now, add the locationRequestCode constant at the top of your MainActivity
class:

private val locationRequestCode = 101

You’re now properly requesting the location permission whenever the user taps the
Location button. However, you still need to listen for the permission callback and
decide what to do from there.

Add the following below the onCreate method:

override fun onRequestPermissionsResult(requestCode: Int,
 permissions: Array<out String>, grantResults: IntArray) {
 super.onRequestPermissionsResult(requestCode, permissions,
 grantResults)
 if (requestCode == locationRequestCode) {
 val result = grantResults[0]
 if (result == PackageManager.PERMISSION_GRANTED) {
 TODO("Fetch the location!")
 }
 }
}

You’re listening for the onRequestPermissionResult lifecycle method to be called
and checking if the user granted the location permission.

Add the following method at the bottom of the WeatherViewModel class:

fun updateWeatherFromLocation() {
 cityLiveData.postValue("Current Location")
 lastKnownLocation
 .flatMapSingle {
 WeatherApi.getWeather(it).subscribeOn(Schedulers.io())
 }
 .onErrorResumeWith(Maybe.just(
 WeatherApi.NetworkResult.Success(Weather.empty)
))
 .subscribe(this::showNetworkResult)
 .addTo(disposables)
}

Reactive Programming with Kotlin Chapter 20: RxPermissions

raywenderlich.com 398

In this method, you’re updating the text displayed to the user and using the
lastKnownLocation Maybe<Location> object to fetch the last known location and
then sending it through to the activity via the showNetworkResult method.

Head back to the WeatherActivity class. You’ll use the new
updateWeatherFromLocation method, but before you do that you’ll need to update
the code creating the WeatherViewModel to store the view model as an instance
variable.

Before, all the business logic of the app was happening in the onCreate method, so
you didn’t need a class-wide reference to the view model. Now that you’re
interacting with the view model outside of onCreate, you’ll need that view model
reference at a broader scope — such is life in the imperative world.

Add the following line below the locationRequestCode value you added earlier at
the top of the WeatherActivity class:

private lateinit var model: WeatherViewModel

Now, change the code creating the view model from this:

val model = ...

To this:

model = ...

You now have a reference to the view model, so you can replace the TODO function in
the onRequestPermissionsResult callback with the following:

model.updateWeatherFromLocation()

You should be fetching the weather from the user’s current location if they gave you
the location permission. Run the app and ensure that, after clicking the Location
button in the bottom-left the app, updates with your city’s weather.

Using RxPermissions
You’ve got a working solution that incorporates permissions, but it took a lot of code,
and you had to disrupt the existing reactive setup you had. It required storing more
state, i.e., the view model, in your WeatherActivity class as well.

Reactive Programming with Kotlin Chapter 20: RxPermissions

raywenderlich.com 399

There’s a better way! Add the following dependency to your build.gradle file:

implementation 'com.github.tbruyelle:rxpermissions:0.10.2'

The RxPermissions library provides a reactive wrapper around the permissions flow.

You’re going to go back through the code you just wrote and replace it with the Rx-
based version provided by RxPermissions. Head back to the WeatherActivity class
and delete the onRequestPermissionResult method.

Also delete the clickListener you set on the location view in the bottom of
onCreate.

Right below the block constructing the WeatherViewModel in onCreate, add the
following line:

val permissions = RxPermissions(this)

The RxPermissions class is your window into the RxPermissions library. Through it
you can request any type of permission, you could request normally via the
requestPermissions method.

In order to stick with the reactive theme of the app, you’re going to go back to
utilizing the clicks RxBindings method on the location view.

Add the following block below the permissions declaration:

// 1
val locationObservable = location.clicks()
 // 2
 .flatMap {
 permissions
 .request(Manifest.permission.ACCESS_FINE_LOCATION)
 }
 // 3
 .filter { it }
 // 4
 .map { Unit }

Here’s a breakdown of the above:

1. As mentioned earlier, you’re using the clicks method to get an
Observable<Unit> representing user taps on the location view.

Reactive Programming with Kotlin Chapter 20: RxPermissions

raywenderlich.com 400

2. You’re then using the flatMap operator to start emitting objects from the
permissions.request method. The request method takes in a permission and
returns an Observable<Boolean>. If the resulting observable emits true, that
means the permission was accepted. If it emits false, it means that the user did
not grant the permission.

3. You’re then using the filter operator to make sure that only successful
attempts to get the location permission will progress through the Observable
chain.

4. Finally, you’re using the map operator to convert the Observable back into an
Observable<Unit>, which is the initial type returned by the clicks method.

You're probably noticing the error on the flatMap block. Recall that in the
RxPreferences chapter you had to use the rxjava-bridge library to adapt RxJava2
Observables to their RxJava3 counterpart. Just like the RxPreferences library, the
library you're using to handle permission updates in this chapter hasn't updated to
use the RxJava3 library yet. To get this block compiling, replace the body of the
flatMap call with the following:

RxJavaBridge.toV3Observable(permissions
 .request(Manifest.permission.ACCESS_FINE_LOCATION))

You're using the toV3Observable method exposed by the rxjava-bridge library to
transform the RxJava2 Observable returned by the request method to an RxJava3
Observable.

Take an extra moment to appreciate what’s happening, here in this rx chain: Instead
of going through all of the cruft and hassle of requesting permissions and overriding
on the onRequestPermissionsCallback method, RxPermissions gives you a clean,
simple interface to request a permission and listen to the results via an Observable.

Since it’s hooked into the RxJava world, you can easily combine it with the result of
location.clicks to request a permission anytime a user clicks the Location button.
Isn’t that magical?

Now that you don’t need to reference the view model anywhere outside onCreate,
delete the lateinit var from the top of WeatherActivity. After you do so, add val
in front of model in the onCreate to make that a local constant again.

Reactive Programming with Kotlin Chapter 20: RxPermissions

raywenderlich.com 401

You can also delete the locationRequestCode at the top of WeatherActivity, since
that’s now handled under the hood by RxPermissions.

Finally, make sure to actually subscribe to the locationObservable and forward its
results through to your view model. Add the following below the
locationObservable declaration:

locationObservable.subscribe {
 model.locationClicked()
}.addTo(disposables)

The locationClicked method simply pipes a value through to a subject that's
exposed in your WeatherViewModel. Follow the stream and open up
WeatherViewModel.kt again.

Now that you’ve got your locationClicks receiving values, delete the
updateWeatherFromLocation method you added earlier and un-comment the Rx
blocks declaring locationObservable and using it in the Observable.merge call.
Last but not least, delete the Rx block subscribing to textObservable below the call
to Observable.merge.

Uninstall the app to reset your location permissions, and then run the project. You
should see the app request location permissions and progress through to showing
you your areas weather just like before.

Requesting another permission
You’ve got the basics of requesting permissions with RxPermissions down, good job!
It’s time to implement the save and restore features mentioned earlier in the
chapter.

First, add two new Observables listening for clicks on the save and load views in
WeatherActivity below the existing locationObservable Rx block:

val saveObservable = save.clicks()
val readObservable = load.clicks()

Now, add code requesting the permissions to write on the external storage to both
saveObservable and readObservable:

.flatMap {
 RxJavaBridge.toV3Observable(
 permissions.request(Manifest

Reactive Programming with Kotlin Chapter 20: RxPermissions

raywenderlich.com 402

 .permission.WRITE_EXTERNAL_STORAGE)
)
}
.filter { it }
.map { Unit }

Just like before, you’re using the request method to request a permission. And just
like before you're using the rxjava-bridge library to bridge between versions of
RxJava. This time, you’re requesting the WRITE_EXTERNAL_STORAGE permission so
that you can access external storage.

Note: The WRITE_EXTERNAL_STORAGE permission also implicitly gives your
app access to read from external storage. However, if you do need to request
multiple permissions at once time, you can use the requestEach method
exposed by the RxPermissions library.

Now subscribe to your new Observables and pipe the values through to your view
model. Add the following below the call subscribing to the locationobservable:

saveObservable.subscribe { model.saveClicked() }
 .addTo(disposables)
readObservable.subscribe { model.readSaveClicked() }
 .addTo(disposables)

Just like before, the save and read save clicked methods on your view model simply
trigger existing PublishSubjects defined at the top of the WeatherViewModel class.
You'll use those subjects next.

Reading from external storage
Now that you’re calling both the saveClicked and readSaveClicked methods, it’s
time to update the WeatherViewModel to execute the read and save logic.

Add the following to the top of the WeatherViewModel init block:

val readObservable = readSavedClicks
 .subscribeOn(AndroidSchedulers.mainThread())
 .flatMapMaybe { readLastWeather(filesDir) }
 .doOnNext { cityLiveData.postValue(it.cityName) }
 .map { WeatherApi.NetworkResult.Success(it) }

Reactive Programming with Kotlin Chapter 20: RxPermissions

raywenderlich.com 403

The above code uses the readSavedClicks Observable as a trigger to read the last
saved weather object from the external file directory using the helper function
readLastWeather, which is a top-level function in the X.kt file. readLastWeather
returns a Maybe<Weather>, so if there is no saved weather the maybe will complete
without any elements.

It then uses the map operator to convert the Weather object into a
WeatherApi.NetworkResult so that it’s compatible with the rest of the
WeatherViewModels code.

Next up, you need to display that saved weather to the user.

At the bottom of the init method, add in the readObservable into the call to
Observable.merge as follows:

Observable
 .merge(locationObservable, textObservable, readObservable)

And that’s it! You’re now merging three different sources of weather:

1. The weather that’s produced when the user clicks the Location button.

2. The weather that’s produced when the user enters some text into the edit text.

3. The weather that’s produced when the user restores the last saved weather.

You’re now reading a weather object from the external storage, but it’d be nice to
write one as well!

Writing the weather to external storage
Saving the weather will be just as easy as reading the weather out of external storage.
Add the following block to the bottom of the init method:

saveClicks
 // 1
 .filter { weatherLiveData.value != null }
 .map { weatherLiveData.value!! }
 // 2
 .flatMapCompletable {
 // 3
 it.save(filesDir)
 .doOnComplete {
 snackbarLiveData.postValue(
 "${weatherLiveData.value!!.cityName} weather saved"

Reactive Programming with Kotlin Chapter 20: RxPermissions

raywenderlich.com 404

)
 }
 }
 .subscribe()
 .addTo(disposables)

Here’s a breakdown of the above:

1. Use the filter operator to make sure there’s a value currently being displayed by
inspecting the weatherLiveData, and then use the map operator to convert the
Observable into one emitting the current Weather.

2. Use the flatMapCompletable operator to flatMap from this Observable into a
Completable.

3. Call the save extension method on the Weather object emitted by the
Observable. save returns a Completable representing the completed save
operation. Once it completes, post a new value to the snackbar indicating that
the weather was saved.

Note: You may be wondering why doOnComplete is called inside the
flatMapCompletable block instead of being called before subscribe(). When
using flatMapCompletable, the Completable returned by
flatMapCompletable will only call onComplete when the source Observable
itself completes.

That means that, if doOnComplete was added before subscribe, it would only
be called once the saveClicks Observable completed. Since saveClicks is
driven by a user interaction, it will never complete! You can get around this
trickiness by using the do operators inside the flatMapCompletable block.

Easy! Run the app and fetch the weather, either by using the Location button or by
search via city name. Tap the Save icon next to the Location icon at the bottom of the
screen. You should see a message confirming that the location was saved.

Reactive Programming with Kotlin Chapter 20: RxPermissions

raywenderlich.com 405

Now, search for a different city or restart the app and tap the Load button to the right
of the Save button. You should see the weather details and name of the city that you
just saved.

Reacting to orientation changes
RxPermissions is a great library, but there’s one big pain point to watch out for.

Imagine a scenario wherein your user clicked a button and that triggered a
permission request, just like in Wundercast.

Then, before the user clicks Accept or Deny, they rotate their phone. As we all know,
configuration changes like this result in the operating system destroying your
activity and instantiating a new one. The system will re-create the permissions
prompt. Then the user clicks Accept or Deny.

We now have a problem. The old activity or fragment, i.e., the one that existed before
the user rotated the phone, was observing the permissions Observable returned by
the RxPermissions library.

Reactive Programming with Kotlin Chapter 20: RxPermissions

raywenderlich.com 406

However, the new activity or fragment is not observing for those changes unless you
called the request method directly in onCreate or onStart or one of the other
initialization Android life cycle methods. It would only start observing permission
changes after the user clicked the button that triggered the permission in the first
place.

Now, if you’re just calling the request method in onCreate or one of the other
initialization life cycle methods, you’re fine because the new activity or fragment will
immediately resubscribe to the permissions Observable, and you’ll be all set.

However, that’s not what Wundercast and a lot of other apps do. They depend on a
user clicking something before the prompt should be shown.

You can test this bug out for yourself. Uninstall the app, then reinstall it. Click the
location button and then rotate the phone before accepting the permission prompt.
Once the phone is rotated and the activity has been restarted, accept the prompt.
The app will fail to fetch the weather for your current location because it didn’t
receive the message that the permission was accepted.

There’s a workaround for this particular issue.

In WeatherActivity, replace the line calling flatMap on the location.clicks
method with the following:

.compose(permissions.ensure(
 Manifest.permission.ACCESS_FINE_LOCATION))

There are two new things going on, here:

1. You’re using the compose method instead of flatMap. We touched briefly on how
compose works in Chapter 16, “Creating Custom Reactive Extensions.” If you’d
like a quick recap: The compose method allows you to chain custom Observable
operators on your Rx chains. For the most part, Kotlin extension functions are a
better answer when you’re tempted to use compose, but, in this scenario, the fact
that the code passed into compose is executed immediately, allowing the
RxPermissions library to look up any existing permissions requests and
immediately reroute them to your Observable.

2. You’re using the ensure method instead of the request method you used earlier.
request returns an Observable<Boolean>, whereas ensure returns a
ObservableTransformer object. ObservableTransformer is an interface
primarily used in the compose method mentioned earlier. Both ensure and
request will prompt the user for the permissions you ask for, but ensure is
compatible with compose allowing you to recover from orientation changes.

Reactive Programming with Kotlin Chapter 20: RxPermissions

raywenderlich.com 407

Since the RxPermissions library is still using RxJava2, you again need to go through
the effort of moving between RxJava2 and RxJava3 types, otherwise you'll see an
error. Open the X.kt file and add the following method at the bottom of the file:

fun <T> Observable<T>.ensure(permission: String, rxPermissions:
RxPermissions): Observable<Boolean> {
 return RxJavaBridge.toV2Observable(this)
 .compose(rxPermissions.ensure(permission))
 .`as`(RxJavaBridge.toV3Observable())
}

This new ensure method is an extension method on the Observable type. It
converts this Observable into an RxJava2 Observable, then uses the RxPermissions
libraries compose transformer, and then converts the resulting Observable back into
an RxJava3 Observable.Phew, that's a lot of back and forth!

Back in WeatherActivity, replace the compose call you just added with the
following:

ensure(Manifest.permission.ACCESS_FINE_LOCATION, permissions)

Your error should disappear.

Now, uninstall and then run the app again. Tap the Location button and rotate the
phone, then accept the permission. You should now see the weather updates you’d
expect.

Update the logic in the saveObservable and readObservables to use ensure
instead of flatMap as well:

.ensure(Manifest.permission.WRITE_EXTERNAL_STORAGE, permissions)

This compose trick only works if you make sure to subscribe to the Observable that
will trigger the permission request in onCreate or onStart depending on if you’re in
an activity or a fragment. Since those initialization life cycle methods happen once
your fragment or activity is re-created, it allows you to immediately resubscribe to
permission updates so you don’t miss any of the action.

One final note: Make sure you’re not running the permission requesting logic
directly in onResume. If you request the permission in onResume, your activity will go
into a paused state while the permission is shown. Then if the user denies your
permission your activity will be resumed, calling onResume. This will then trigger a
call to show the permission and so on. Using onCreate allows you to show the
prompt immediately or after some event is triggered without being re-run whenever
the activity is resumed.

Reactive Programming with Kotlin Chapter 20: RxPermissions

raywenderlich.com 408

In general, if you’re triggering a permission based off some event, you should be
using the ensure method. If you’re just triggering the permission as soon as the
activity or fragment is created, feel free to use the request method.

Reactive Programming with Kotlin Chapter 20: RxPermissions

raywenderlich.com 409

Key points
• The RxPermissions library provides an easy mechanism through which to request

permissions.

• You can chain Observables you get back from the library with other Observables
just like normal.

• Keep in mind that the code requesting permissions has to be made in an
initialization method (like onCreate or onStart).

• Use ensure if you’re triggering the permission request off some other event.

• Use request if you’re triggering the permission request as soon as the page loads.

Where to go from here?
RxPermissions is another great example of the Android community embracing the Rx
paradigm. In the next chapter, you’ll dive into yet another library that equally
embraces Rx, however, what makes the library interesting is the fact that Google
developed the library. Google’s decision to support RxJava through the JetPack
components should be a compelling argument in favor of the library. When you’re
ready, continue onwards!

Reactive Programming with Kotlin Chapter 20: RxPermissions

raywenderlich.com 410

Section V: Putting It All
Together

The “easy” part of the book is over. If you made it this far and are looking to learn
even more in order to start creating production apps with RxJava, this section is for
you.

The two chapters in this section are going to help you learn how to build real-life
applications with RxJava.

The first chapter will cover integrating RxJava with the components of Android
Jetpack, in particular, the Room database library and the Paging library. The chapter
will build off of knowledge you've gained earlier in the book working with the
ViewModel and LiveData components of Jetpack.

The second chapter, and the last one in this book, is going to show you how to setup
a reactive application architecture and how to convert callbacks to Rx Observables.

Once you finish working through this section, you will be one of the top RxJava
developers out there. There is, of course, more to know about Rx but at this point you
will be able to figure out things further on your own.

Also, don't forget to give back to the community! It would not have been possible for
us to put this book together without all the amazing Rx folks sharing their
knowledge, code, and good vibes.

Chapter 21: RxJava & Jetpack

Chapter 22: Building a Complete RxJava App

raywenderlich.com 411

21Chapter 21: RxJava &
Jetpack
By Alex Sullivan

Android Jetpack is a suite of libraries provided by the Android team to make
developing Android apps a breeze (well, maybe not quite a breeze...). You’ve already
been working with two of the libraries provided as part of Jetpack throughout the
book: LiveData and ViewModel. In this chapter, you’re going to explore two more
libraries that every Android developer should know about, and how they interact
with RxJava.

The first library you’re going to utilize is the Room database library. Interacting with
a database has typically been a painful process when writing an Android app. In the
beginning, a developer would usually use a custom instance of the
SQLiteOpenHelper class to manually create tables and run updates using SQL.

This approach worked, but came with a lot of downsides. It was cumbersome to keep
all of the SQL statements you were writing in code and it was very easy to have the
objects you were trying to store in the database and the tables representing those
objects get out of sync. To top it all off, you needed a lot of boilerplate to turn those
objects into ContentValues to then be inserted into the database. Luckily, Room
provides an easy to use abstraction on top of SQLiteOpenHlper that makes storing
data a much simpler task.

The second library you’re going to explore is the Paging library. Another common
task for app developers is to implement a kind of infinitely scrollable list, like
Instagram or Facebook has. The Paging library provides simple hooks for you to use
to load new data as a user scrolls down in a list. It even ties together with Room to
give you an easy way to pipe data from your database into your app.

Best of all, both Room and the Paging library come with first-class RxJava
integrations!

raywenderlich.com 412

In this chapter, you’ll explore both libraries by creating a Lord of the Rings-based
book collector app, which allows a user to fetch a list of books from the Open Library
API, scroll through the books, favorite some of them and mark others as read.

Getting started
Open the starter project in Android Studio and run the app. You should see the
following screen:

The BookCollector app displays a list of books fetched from the Open Library API. A
user can then either favorite the book by clicking the star icon, or mark it as a book
they’ve already read by clicking the envelope icon.

There are three pages in the app. The first page is the screen you see in the
screenshot above and the starting screen for the app, which displays the entire list of
books. The second page is a favorites page, which displays the books the user has
favorited. The third page displays all of the books the user has marked as read.

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 413

Each page is controlled by a different Fragment in a ViewPager. Each fragment is
backed by the same view model, which is called MainViewModel. Open the
MainViewModel class now and take a look around.

The first thing you’ll notice is that this view model follows a familiar pattern: There
are three LiveData objects that govern what’s shown on an individual page. Then, in
the init block, the view model queries the Open Library API and uses the cache
operator to cache the result. Then, the view model subscribes to the resulting
Observable three times, once for each live data object, filtering and mapping the
results according to what that live data should emit.

There are also two stubbed out methods:

fun favoriteClicked(book: Book) {
 TODO()
}

fun readClicked(book: Book) {
 TODO()
}

You’ll update these two methods governing what happens when a user clicks the
favorite icon and the read icon later on in the chapter. Before you go any further, it’s
a good idea to get a quick refresher on how Room works.

There are three core components to Room:

1. The Entity: An Entity is a model object annotated with the @Entity
annotation, and represents the data that will reside in the database. Room will
typically create a table under the hood for each class marked with the @Entity
annotation.

2. The Dao: A Dao is an interface marked with the @Dao annotation. This interface
typically exposes high-level methods to insert and query items from the
database. You can think of the Dao as being akin to a Retrofit interface.

3. The Database: The Database class is a class that you create that extends the
RoomDatabase object, and it is annotated with an @Database annotation,
wherein you list all of your Entities and expose the version of the database.

Open Book.kt to see an example of an Entity:

@Entity
data class Book(@PrimaryKey val title: String,
 val authorName: String,
 val publisher: String,

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 414

 val subject: String,
 val isFavorited: Boolean = false,
 val isAlreadyRead: Boolean = false)

The Book class is marked with the @Entity annotation to signify that it can be
inserted and retrieved from a Room database.

Each Entity needs an instance variable marked with the @PrimaryKey annotation.
The @PrimaryKey annotation signifies to Room that this instance variable can
determine uniqueness for an object. That means that, in the example above, you
could never have two Books with the same title in a Room database, since that would
violate a primary key constraint on uniqueness.

Now, open BookDao.kt to see an example of a Dao:

@Dao
interface BookDao

As you can see, the BookDao class is empty. For now. :]

Last but not least, open BookDatabase.kt to see an example Database:

@Database(entities = [Book::class], version = 1)
abstract class BookDatabase : RoomDatabase() {
 abstract fun bookDao(): BookDao
}

It outlines the entities that will live in the database and the version of the database.
For this app, you’ll only have one object residing in the database: the Book class.
Your only exposed dao will be the BookDao.

RxJava and Room
Now that you’re familiar with Room, it’s time to sprinkle some Rx goodness on top
of it.

The team behind Room has exposed a very helpful extension that allows you to
utilize RxJava reactive types in a similar manner to the Retrofit library.

Add the following dependency to your build.gradle file:

implementation "androidx.room:room-rxjava2:$room_version"

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 415

Adding this extension will allow you to return any reactive type you want in your Dao
object. Unfortunately the Room library has yet to update to using RxJava3, so you'll
have to use the bridge library you learned about in previous chapters to transition
between the types returned by the RxJava2 and 3 libraries.

Database philosophy
Before you start getting your hands dirty, take a minute to discuss what the strategy
is going to be moving forward for dealing with the network and the database.

Sometimes, utilizing both a network and a database as a source of information can be
a frustrating experience. If one gets out of sync with the other, it can be confusing
trying to reconcile which you should believe.

To attempt to mitigate the above issue, you’re going to be using the database as the
primary source of truth in the app. The goal for the BookCollector app is going to be
to pull data from the network when the app is started and then immediately insert it
into the database. Once the database has been updated with new content you’ll use it
to populate the information that the user sees.

By utilizing this database first philosophy, you’ll be able to sidestep the chaos of
choosing who to believe and you’ll be able to implement a more reactive pattern of
interacting with your data layer.

Now that you’ve got the philosophy down, it’s time to get this project started!

Open BookDao.kt and add the following method to the interface importing the
io.reactivex.* version of Completable:

@Insert(onConflict = OnConflictStrategy.IGNORE)
fun insertBooks(books: List<Book>): Completable

The insertBooks method will insert a List<Book> into the database. It will ignore
any conflicts when the books are inserted. Since all you care about is a confirmation
that the items were added into the database, it makes sense to use Completable as
the return type of insertBooks.

If you were instead interested in a list of IDs for the newly inserted books you
could’ve specified a return type of Single<List<Long>> instead of Completable.
Just like the Retrofit library, Room will look at the return type you provide and adjust
the behavior of the library accordingly. You’ll see several examples, later on, utilizing
the different return types in the BookDao.

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 416

What good is inserting items into a database if you can’t retrieve them? Add the
following method below insertBooks importing the rxjava2 version of Observable:

@Query("SELECT * from book ORDER BY title")
fun bookStream(): Observable<List<Book>>

The bookStream method will pull all of the books out of the database and return
them as an Observable<List<Book>>. Hold onto your seat, because this is where
things start to get interesting.

If you specify a return type of Observable or Flowable for your Room queries, the
Observable or Flowable you get back will emit a new list of books every time you
insert or update a book. That means that, by subscribing to your Observable, you’ll
get constant updates as the database changes. That allows you to keep your UI
perfectly up-to-date and enables that reactive flow you saw outlined earlier.

The reactive return type you specify in your DAO methods have different meanings
depending on what type of operation you’re executing. Here’s a quick breakdown of
what the different types mean if you’re inserting an item, updating or deleting an
item, or retrieving an item from the database.

Inserting an item
If you’re inserting an item into the database, you can use the following return types:

1. Completable: If your database insertion was successful, your completable will
complete as expected. If it wasn’t successful, an error will be emitted that will
filter into your onError block of your subscription.

2. Single or Maybe: Single and Maybe work the same when inserting with Room. If
the insertion was successful, onSuccess will be emitted with a Long value
representing the ID of the newly inserted object. If you’re inserting a list or array
of items, you can instead specify the return type as Single<List<Long>>, in
which each Long in the list represents the id of the correspondingly inserted item
in the list.

That’s it — you can’t declare a return type of Observable or Flowable, since an
insertion into a database will only ever return up to one value – the ID of the object
that was inserted. Specifying a return type of Observable would be confusing in this
scenario since you could use Single or Maybe, which better describe the situation.

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 417

Updating and deleting an item
If you’re updating or deleting an item in the database, you can use the same return
types as inserting but with a slightly different meaning:

1. Completable: Just like before, you can use a Completable if all you care about is
that the update or delete finished or failed.

2. Single or Maybe: Similarly to inserting an object, you can return a Single or
Maybe when updating or deleting an object in the database. However, instead of
returning Single<Long> or Maybe<Long>, you need to return a Single<Int> or
Maybe<Int>. The Int value represents the number of rows affected by this
update, so even if you update a list of objects you’ll still use Single<Int> or
Maybe<Int>.

Querying
Querying is where all the magic happens, and you can use the full suite of reactive
types, other than Completable, which doesn’t make much sense in a querying
context:

1. Single: If you declare a query's return type as Single, it will return a single
instance of whatever object you’re querying. If, however, the database doesn’t
contain the object your querying for, your single will emit an error, since a
Single needs to emit exactly one value.

2. Maybe: Similarly to Single, a query returning a Maybe will return a single object
if it exists in the database. However, if it doesn’t exist, the Maybe will complete
normally.

3. Observable/Flowable: If you specify your return type as Observable or
Flowable, you’ll receive the items that correspond to that query in the
Observable or Flowable. Whenever the underlying data in the database changes,
the Observable or Flowable will emit again.

Note: When using a query of type Observable or Flowable, Room will make
sure that your query runs off the main thread without you needing to use the
subscribeOn operator.

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 418

Reacting to database changes
Now that you’ve exposed methods to insert and retrieve books from the database, it’s
time to update the app to utilize those methods.

Open the MainViewModel class and replace the observable declaration at the top of
the init block with the following:

// 1
val observable = OpenLibraryApi.searchBooks("Lord of the Rings")
 .subscribeOn(Schedulers.io())
 // 2
 .flatMapCompletable {
 database.bookDao().insertBooks(it).toV3Completable()
 }
 // 3
 .andThen(database.bookDao().bookStream().toV3Observable())
 .share()

Here’s a breakdown of the changes:

1. Just like before, you’re using the OpenLibraryApi class to search for books.

2. This time, instead of just returning those books, you’re inserting all of them into
the database using the insertBooks method you wrote earlier. Since Room is
still using the RxJava2 library, you're using the toV3Completable extension
method to convert an RxJava2 Completable to an RxJava3 Completable. Don’t
forget that after this operator the chain will now be an instance of Completable.

3. Once you’ve inserted the books you’re using, the andThen operator on
Completable to transition to the Observable<List<Book>> returned by the
bookStream method. Just like before you're using the toV3Observable method
to transition from an RxJava2 Observable to an RxJava3 Observable.

You’re now fetching books from the server and saving them to the database. You’re
then querying and observing the database for books, and powering the views based
off that Observable.

Since the type of observable switched from Single to Observable, you’ll need to
update all of the subscribeBy calls in the class to use the onNext parameter instead
of onSuccess, since onSuccess is specific to Single.

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 419

Here’s an example of the updated Rx chain that pushes new values to the
allBooksLiveData object:

observable
 .subscribeBy(
 onNext = { item -> allBooksLiveData.postValue(item) },
 onError = { print("Error: $it") }
)
.addTo(disposables)

Once you’ve made those changes, run the app. Everything should work the same and
you should see the full list of Lord of the Rings books on the initial page.

Updating individual items
The next thing you need to do to get the BookCollector app up and running is to fill
out the details of the favoriteClicked and readClicked methods in the
MainViewModel. However, before you do that, you’ll need a way to insert a single
updated book into the database.

Head back to the BookDao class and add the following method to the interface:

@Update(onConflict = OnConflictStrategy.REPLACE)
fun updateBook(book: Book): Single<Int>

updateBook takes a book and inserts it into the database, replacing any existing
value that’s already there. It returns a Single<Int>, where the Int value represents
the number of rows updated.

Now that you’ve got a way to update an individual book, it’s time to fill out the
favoriteClicked and readClicked methods to utilize that new method.

Back in MainViewModel replace the favoriteClicked method with the following:

fun favoriteClicked(book: Book) {
 database.bookDao()
 .updateBook(book.copy(isFavorited = !book.isFavorited))
 .toV3Single()
 .subscribeOn(Schedulers.io())
 .subscribe()
 .addTo(disposables)
}

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 420

You’re using the new updateBook method and passing through a new instance of
Book with the isFavorited flag toggled. Note that you’re not actually doing
anything with the return value. Instead, the app relies on the bookStream
Observable to emit a new list of items since the data has been updated.

Run the app and click the star icon on one of the books. You’ll notice the outlined
star icon fills in. Swipe to the right to get to the list of favorites for the book, and
you’ll notice the items you starred show up. You can even "unstar" one of the books
from this list and it will disappear. All of this behavior is being driven by the
bookStream observable, which is emitting a new list of books every time you favorite
or unfavorite a book!

Now, replace the readClicked method with a similar body:

fun readClicked(book: Book) {
 database.bookDao()
 .updateBook(book.copy(isAlreadyRead = !book.isAlreadyRead))
 .toV3Single()
 .subscribeOn(Schedulers.io())
 .subscribe()
 .addTo(disposables)
}

Just like before, you’re using the updateBook method and sending through a Book
with the isAlreadyRead flag toggled.

Run the app again. Click the envelope icon on a few books and then swipe to the
third page. You should see all of the books you marked as read, and just like on the
favorites page you can click the read icon here and see them disappear!

By utilizing Room’s reactive types, you’ve created a fully reactive app that observes a
database and listens for new values, which are emitted every time the saved list of
books is updated. Pretty magical, right?

Starting the app with cached data
The app is working great, but it’s not fully utilizing the fact that it’s using a database.
Specifically, when the app starts, it’s immediately making a network request and not
showing any information until that request finishes. That’s a bummer since you’ve
got the data at your fingertips!

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 421

Luckily, you can make short work of that issue by using the startWith operator. In
MainViewModel, replace the existing observable declaration at the top of init with
the following:

val observable = OpenLibraryApi.searchBooks("Lord of the Rings")
 // 1
 .retryWhen { it.delay(5, TimeUnit.SECONDS) }
 .subscribeOn(Schedulers.io())
 .flatMapCompletable {
 database.bookDao().insertBooks(it).toV3Completable()
 }
 .andThen(database.bookDao().bookStream().toV3Observable())
 // 2
 .startWith(database.bookDao().bookStream().toV3Observable()
 .take(1))
 .share()

There’re two new operators at play, here:

1. You’re using the retryWhen operator to retry a failed network request after five
seconds. For more information on how retryWhen works, check out Chapter 12,
"Error Handling in Practice."

2. You’re using the startWith operator to kick off the Observable with the books
already in the database. You’re using the take operator to take the first
List<Book> from the database since you only care about what’s initially in the
database.

Put the phone in Airplane mode and run the app. You should immediately see books
from the database populate the app. Once you turn off Airplane mode and wait a few
seconds, the app will be populated with the latest and greatest from the network.

Paging data in
Now that you’ve explored the Room libraries Rx integration, it’s time to implement
infinite paging using the paging library.

Open OpenLibraryService.kt and update the searchBooks method to take in a page
number:

@GET("search.json")
fun searchBooks(
 @Query("q") searchTerm: String,
 @Query("page") page: Int
): Single<OpenLibraryResponse>

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 422

Now, open OpenLibraryApi.kt and update the searchBooks method to take in a
page number:

fun searchBooks(searchTerm: String, page: Int = 1):
Single<List<Book>> {
 return service.searchBooks(searchTerm, page)
 ...
}

By default, you’ll start at the first page, so you can use a default parameter there.

The paging library utilizes a different type of adapter to handle the special type of
lists it works with. Open BookAdapter.kt and update the type of adapter
BookAdapter to extending the following:

PagedListAdapter<Book, BookViewHolder>(getDiffUtil())

Getting an item from the underlying list in a PagedListAdapter can return a null
item, so replace the book declaration in onBindViewHolder with the following:

val book = getItem(position) ?: return

Now that your API is ready to go and your adapter is all set up, it’s time to hook into
the Paging library and start paging some content in!

Just like before, the strategy is going to be to load directly from the database and
populate it with more data as the user scrolls in the RecyclerView. To do that, you’ll
need a DataSource. A DataSource is a class specific to the Paging library that aids in
loading data from some source. Apt name, right?

Now normally you’d have to create a new class that extends DataSource. But, since
you’re using Room, you can do something that kind of feels like cheating in the
programming world.

Open BookDao.kt and replace the existing bookStream method with the following:

@Query("SELECT * from book ORDER BY title")
fun bookStream(): DataSource.Factory<Int, Book>

Room can actually generate DataSource.Factory objects for you just by changing
the return type of your query! This factory class will create a DataSource, so you
don’t have to create your own custom data source. The Factory in this case is of type
Factory<Int, Book>, since the object type you’re operating on is a Book and the
page type is an Int.

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 423

The next step in the Paging library journey is to create a PagedListBuilder. A
PagedListBuilder is a class in charge of creating new instances of PagedList,
which is that special type of list you updated the BookAdapter to handle.

Now, normally, you’d use the LivePagedListBuilder class to get a
LiveData<PagedList<Book>>, but luckily the wonderful team in charge of building
the Paging library has created Rx bindings for the library, just like they did for Room!

Add the following to your build.gradle file:

implementation "androidx.paging:paging-rxjava2-ktx:
$paging_version"

Now, open MainViewModel and delete everything in the init block. That’s right
everything. The Paging library handles so much behind the scenes that you won’t
need the code to manually hit the API anymore.

At the top of the now empty init block, add the following:

val config = PagedList.Config.Builder()
 .setEnablePlaceholders(false)
 .setPageSize(20)
 .build()

A PagedList.Config is a configuration object that tells the Paging library how you
want to page data in. In this config, you’re setting the following configs:

1. You’re setting enablePlaceholders to false. If you know the size of your
dataset before you start paging data in, you can set placeholder values so the user
has an accurate scroll bar on their RecyclerView. Since you’re querying an API,
you don’t have this information so you can just set it to false.

2. You’re setting the page size to 20. That means the paged list will load in 20
objects at a time from the database, which will take up several scrollable pages in
the RecyclerView.

Below the config declaration, use the RxPagedListBuilder class to create an
Observable<PagedList<Book>>:

RxPagedListBuilder<Int, Book>(
 database.bookDao().bookStream(), config)
 .buildObservable()
 .toV3Observable()
 .subscribe(allBooksLiveData::postValue)
 .addTo(disposables)

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 424

RxPagedListBuilder is one of the classes exposed by RxJava paging integration. It
allows you build an Observable<PagedList<Book>>, which you can then utilize
however you want. In the above example you’re passing in the DataSource.Factory
returned from the BookDao.bookStream method and the config you just created.

Before you can run the app, you’ll need to update the LiveData objects at the top of
the class to be of type MutableLiveData<PagedList<Book>>:

val allBooksLiveData = MutableLiveData<PagedList<Book>>()
val favoriteBooksLiveData = MutableLiveData<PagedList<Book>>()
val alreadyReadBooksLiveData =
 MutableLiveData<PagedList<Book>>()

Now, all the components of your app are speaking the same language.

Run the app. Assuming you haven’t uninstalled the app since the last time you ran it
as part of this chapter, you should see content paging in from the database on the
main page. If you scroll to the other two pages, they’ll be empty. Time to fix that.

Open BookDao.kt again and add the following two methods below bookStream:

@Query("SELECT * from book WHERE isFavorited = 1 ORDER BY
title")
fun favoritesStream(): DataSource.Factory<Int, Book>

@Query("SELECT * from book WHERE isAlreadyRead = 1 ORDER BY
title")
fun alreadyReadStream(): DataSource.Factory<Int, Book>

Remember how you used to use filter and map operators to pull out the favorited
and already-read books? You’re moving that logic into the database and exposing
two new queries: one for favorited books and one for books that have already been
read. Just like in the bookStream method, you’re returning a
DataSource.Factory<Int, Book> to be used with the Paging library.

Open MainViewModel.kt again and add matching RxPagedListBuilder
statements for your new queries:

RxPagedListBuilder<Int, Book>(
 database.bookDao().favoritesStream(), config)
 .buildObservable()
 .toV3Observable()
 .subscribe(favoriteBooksLiveData::postValue)
 .addTo(disposables)

RxPagedListBuilder<Int, Book>(
 database.bookDao().alreadyReadStream(), config)

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 425

 .buildObservable()
 .toV3Observable()
 .subscribe(alreadyReadBooksLiveData::postValue)
 .addTo(disposables)

Now, run the app again. If you scroll to the right, you’ll see the favorited and already-
read book lists being populated as expected. Toggle the favorited status of a book to
confirm that everything works.

Paging in from the network
This app is looking beautiful, but there’s one problem: it’s not pulling anything from
the server! Right now the app is only serving up cached data from the database; it’s
never actually fetching anything new. If you were to uninstall and reinstall the app,
you wouldn’t see any content because nothing would actually be downloaded.

Here’s a diagram of what’s happening right now:

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 426

And here’s the end goal for the app:

To achieve the desired flow of the app pulling down new books from the server when
it runs out of content, you’ll need to use another utility that the Paging library
provides: a BoundaryCallback.

A BoundaryCallback is a handy utility that you can use to execute some action
whenever you’ve run out of cached content to display. It’s use case is specifically
oriented towards apps that want to load data into a database and then fetch new data
from a server once the app has displayed all of the data already loaded in the
database.

Open the BookBoundaryCallback.kt class. It has two unimplemented methods that
you’ll fill out: onZeroItemsLoaded and onItemAtEndLoaded.

onZeroItemsLoaded is called when there’s no items yet loaded into the database.
That would usually be the scenario after the first time the app runs. You’ll use this
callback to load the first page of data from the network.

onItemAtEndLoaded is called when the last item is loaded from the database. You’ll
use this callback to load the latest page of data from the network.

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 427

Both methods will have very similar implementations, so you’re going to create a
helper function. Add the following method at the bottom of the class:

private fun loadItems(requestType:
PagingRequestHelper.RequestType) {
 // 1
 helper.runIfNotRunning(requestType) { callback ->
 // 2
 OpenLibraryApi.searchBooks(searchTerm, currentPage)
 // 3
 .flatMapCompletable {
 db.bookDao().insertBooks(it).toV3Completable()
 }
 .subscribeOn(Schedulers.io())
 // 4
 .subscribe {
 currentPage++
 callback.recordSuccess()
 }
 }
}

Here’s a breakdown of the loadItems method:

1. Sometimes onZeroItemsLoaded or onItemAtEndLoaded can be called multiple
times. That can be a bit of a problem because you don’t want to kick off multiple
network requests to load a single page of data. The paging team has provided a
handy PagingRequestHelper class to help coordinate running these
asynchronous tasks. Here, you’re using the runIfNotRunning method to run a
block of code depending on if the passed in RequestType has been started or not.

2. You’re using the searchBooks method to search for a list of books, passing
through the current page, which starts at one.

3. You’re then inserting the books you get back from the server into the database.

4. Finally, you’re incrementing the page count so the next time you make a network
request you fetch the next page. You’re also letting the PagingRequestHelper
know that the initial fetch was finished by calling the recordSuccess method on
the callback object runIfNotRunning provides.

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 428

Now, replace the onZeroItemsLoaded and onItemAtEndLoaded methods with the
following:

override fun onZeroItemsLoaded() {
 loadItems(PagingRequestHelper.RequestType.INITIAL)
}

override fun onItemAtEndLoaded(itemAtEnd: Book) {
 loadItems(PagingRequestHelper.RequestType.AFTER)
}

You’re passing a RequestType of INITIAL for the first download and AFTER for
subsequent downloads.

Now that you’ve got a BoundaryCallback ready to go, you can set it on the
RxPagedListBuilder objects you set up earlier.

Back in MainViewModel, add the following line after each RxPagedListBuilder
declaration:

.setBoundaryCallback(
 BookBoundaryCallback("The lord of the rings", database))

Run the app again. You should be able to scroll to your heart’s content. If by some
magic you manage to get to the end of the (astoundingly large) list of Lord of the
Rings books, congratulations! You’ve officially learned everything there is to know
about how many cool Lord of the Rings books there are!

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 429

Key points
• Room allows you to specify reactive types in your Dao objects.

• You can use Completable or Single or Maybe when inserting, updating or deleting
items from the database.

• You can use Observable or Flowable when querying items from the database.

• Your query Observable will keep emitting as data changes in the database!

• The Paging library comes with an RxJava extension that allows you to stream
PagedList objects.

• Room and the Paging library make for a fantastic reactive combination!

Where to go from here?
The Room and Paging libraries are great examples of how a library can effectively
integrate Rx into its API. Given these libraries are written by Google, its nice to know
that you’re getting first party support for Rx from these libraries.

If you’re interested in learning more about either libraries and the extend of their Rx
support, you can checkout the documentation (medium.com/androiddevelopers/
room-rxjava-acb0cd4f3757)(developer.android.com/topic/libraries/architecture/
paging#ex-observe-rxjava2) for a deeper look at the integration.

Reactive Programming with Kotlin Chapter 21: RxJava & Jetpack

raywenderlich.com 430

22Chapter 22: Building a
Complete RxJava App
By Alex Sullivan

Throughout this book, you’ve learned about the many facets of RxJava. Reactive
programming is a deep subject; its adoption often leads to architectures very
different from the ones you’ve grown used to. The way you model events and data
flow in RxJava is crucial for proper behavior in your apps, as well as protecting
against issues in future iterations of the product.

To conclude this book, you’ll architect and code a small RxJava application. The goal
is not to use Rx “at all costs,” but rather to make design decisions that lead to a clean
architecture with stable, predictable and modular behavior. The application is simple
by design, to clearly present ideas you can use to architect your own applications.

This chapter is as much about RxJava as it is about the importance of a well-chosen
architecture that suits your needs. RxJava is a great tool that helps your application
run like a well-tuned engine, but it doesn’t spare you from thinking about and
designing your application architecture.

Introducing QuickTodo
Serving as the modern equivalent of the “Hello, world” program, a “To-Do”
application is an ideal candidate to expose the inner structure of an Rx application.

In the previous chapters, you’ve used ViewModel, LiveData, and Room from the
Jetpack suite of libraries to build your apps.

raywenderlich.com 431

In this chapter, you’ll wrap them all together and create a modularized architecture
that allows you to separate your data layer from your presentation layer.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 432

Architecting the application
One particularly important goal of your app is to achieve a clean separation between
the user interface, the business logic of your application and the services the app
contains to help the business logic run. To that end, you really need a clean model
where each component is clearly identified.

First, some terminology for the architecture you are going to implement:

• View model: Defines the business logic and data used by the view to show a
particular view.

• Repository: A provider of content from some store. A repository could fetch
objects from a database or from a network. Either way, it’s abstracted from the
view model so that it can concentrate on view logic.

• Model: The most basic data store in the application. View models and repositories
both manipulate and exchange models.

You’ve used view models throughout the book. Repositories are a new concept and
another good fit for reactive programming. Their purpose is to expose data and
functionality using Observable and the other reactive types as much as possible, so
as to create a global model in which components connect together as reactively as
possible.

For your QuickTodo application, the requirements are relatively modest. You’ll
architect it correctly nonetheless, so you have a solid foundation for future growth.
It’s also an architecture you’ll be able to reuse in other applications.

The basic items you need are:

• A TaskItem model that describes an individual task.

• A TaskRepository repository that provides task creation, update, deletion,
storage and search.

• A storage medium; you’ll use a Room database here and, of course, its Rx
adapters.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 433

As you’ve seen in the previous chapters, the view model exposes the business logic
and the model data to the activity. Just like in previous chapters you’ll use LiveData
objects to emit updates to the activity. Doing this ensures that the activity is kept up
to date even after a configuration change.

LiveData vs. Observables
You may be wondering why you’ve been using LiveData instead of just exposing
Observables from your view model. There are a few reasons to use both utilities:

1. LiveData has the benefit of being directly tied to Android lifecycle events. That
makes it a fantastic candidate for use inside an Activity or Fragment, because it
means you don’t need to worry about disposing of any subscriptions as lifecycle
events fire.

2. You don’t need to worry about when you’re subscribing or observing your
lifecycles. If you were to use Observables instead of LiveData objects, you’d
have to make sure that your activity or fragment is only subscribing after the UI
is setup, since otherwise you may run into an exception when you try to reference
a non-existent UI component. That’s not a large problem for Activities, but it can
be painful in Fragments where the lifecycle is more complex.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 434

3. LiveData, while powerful and helpful, has nowhere near the power of an RxJava
Observable. The power of RxJava should be clear at this point. While both
Observable and LiveData implement the observer pattern, Observables have a
huge array of operators and utilities that they can use to create complex streams.
LiveData is a much simpler construct.

Task model
Now that you’ve got the basic theory down, it’s time to put these concepts into
practice. Open the starter project in Android Studio. Note that the project won’t
build at first; this chapter’s starter project is less fleshed out than previous chapters
to give you an opportunity to go through all different sections of a reactive
application.

Without further ado, you’ll start by adding in the task model. Populate TaskItem.kt
as follows:

@Entity
data class TaskItem(
 @PrimaryKey(autoGenerate = true) val id: Int?,
 val text: String,
 val addedDate: Date,
 val isDone: Boolean
)

Your task model is simple and is marked as a Room entity. A task is defined as having
text (the task contents), a creation date and a checked flag. You'll use the creation
date to sort tasks in the tasks list.

Task data access object
Now that you have a TaskItem that is a Room entity, you’ll need a DAO or data access
object to store and fetch TaskItem model objects from the database.

Open TaskDao.kt. You’ll notice that it’s already marked as a @Dao interface, but,
other than that, it’s completely empty.

For this project, your DAO will need four methods:

1. A method to insert a single TaskItem for when the user creates a new task and
saves it.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 435

2. A method to insert a list of TaskItems to allow the app to pre-populate the
database with several default TaskItems.

3. A method to fetch an individual TaskItem from the database by a given id.

4. And finally a method to observe all of the TaskItems currently in the database.

Add the following to the body of the TaskDao interface, importing the
io.reactivex.* reactive classes (not the io.reactivex.java3.*), and AndroidX
database annotations. At the time of this writing, Room does not work with RxJava3:

// 1
@Insert(onConflict = OnConflictStrategy.REPLACE)
fun insertTask(taskItem: TaskItem): Single<Long>

// 2
@Insert
fun insertTasks(tasks: List<TaskItem>): Completable

// 3
@Query("SELECT * FROM TaskItem WHERE id = :id")
fun fetchTask(id: Int): Maybe<TaskItem>

// 4
@Query("SELECT * FROM TaskItem ORDER BY addedDate")
fun taskStream(): Observable<List<TaskItem>>

Here’s a breakdown of the above DAO implementation:

1. When inserting a single task, you’re specifying a return type of Single<Long>,
where the Long represents the number of updated rows, which we’d expect to
always be one.

2. When inserting multiple tasks, you’re setting the return type to be Completable.
This method is used to add default tasks to the database, so you’re less concerned
with the number of updated rows.

3. When fetching an individual TaskItem from the database, you’re setting the
return type to be Maybe<TaskItem>. Since there’s no guarantee that a task exists
for any given id, a Maybe makes the most sense here. See Chapter 21, "RxJava and
Jetpack," to learn how Maybes work with Room.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 436

4. Finally, the return type for taskStream() is naturally
Observable<List<TaskItem>>. Every time a new TaskItem is inserted or
updated taskStream() should emit a new List<TaskItem> representing all of
the task items in the database.

Next, you’ll seed the database with some sample todo items. Open
TaskRoomDatabase.kt and replace the existing TODO with the following:

val taskDatabase = database ?: return
taskDatabase.taskDao().insertTasks(
 listOf(
 TaskItem(null, "Chapter 1: Hello, RxJava!", Date(), false),
 TaskItem(null, "Chapter 2: Observables", Date(), false),
 TaskItem(null, "Chapter 3: Subjects", Date(), false),
 TaskItem(null,
 "Chapter 4: Observables and Subjects in practice", Date(),
 false),
 TaskItem(null, "Chapter 5: Filtering operators", Date(),
 false)
)
)
.toV3Completable()
.subscribeOn(Schedulers.io())
.subscribe()

The above uses the taskDao interface on an existing Room database to insert five
sample todo TaskItems.

Since these todos haven’t been added to the database yet, you’re passing null in for
the ID field. Passing in null works for now, but when the rest of your app is creating
TaskItems and inserting them into the database you’ll want a more elegant form of
ID to pass around.

Since the Room library is still using Rxjava2, you're using the toV3Completable
extension method to transition from a v2 RxJava Completable to a v3 version. You'll
use v3 for the rest of the app, so keep that in mind when adding your imports.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 437

You should now be able to build and run the application. You’ll be greeted with a
truly unique and novel screen:

Beautiful! A true work of art. The brush strokes in particular are truly riveting.

As gorgeous as it is, it doesn’t do a whole lot right now. It’s time to build a repository
to actually store your data.

Task repository
The task repository is responsible for creating, updating and fetching task items from
the store. Since you’re a responsible developer, you’ll create a TaskRepository
interface to hide the specifics of how tasks are accessed.

For this app, you’ll only add a single RoomTaskRepository. By hiding the specifics
behind an interface you could add a NetworkTaskRepository in the future if the app
starts communicating with an API.

First, create the interface. This is what you’ll expose to the users of the repository.
Open TaskRepository.kt and add the interface definition:

interface TaskRepository {
 fun insertTask(taskItem: TaskItem): Single<Long>

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 438

 fun getTask(id: Int): Maybe<TaskItem>
 fun taskStream(): Observable<List<TaskItem>>
}

Make sure you're importing the RxJava3 versions of Observable, Maybe, and Single.
This is a basic interface providing the fundamental services to create, update and
read query tasks. Nothing fancy here. The most important detail is that the
repository exposes all data operations as reactive elements. Even the functions
which create, delete and update tasks return a Single or a Maybe.

Now open RoomTaskRepository.kt and see that the RoomTaskRepository class
implements the TaskRepository interface.

For now RoomTaskRepository is going to delegate most of its methods to the
TaskDatabase object passed into it. Add the following to the RoomTaskRepository
to make it properly implement TaskRepository:

// 1
companion object {
 const val INVALID_ID = -1
}

override fun insertTask(taskItem: TaskItem): Single<Long> {
 TODO()
}
// 2
override fun getTask(id: Int): Maybe<TaskItem> {
 return database.taskDao().fetchTask(id).toV3Maybe()
}

override fun taskStream(): Observable<List<TaskItem>> {
 // 3
 return database.taskDao().taskStream().toV3Observable()
}

There are three things to note about this implementation:

1. You’ve introduced a new INVALID_ID constant to avoid having other classes pass
in null for the TaskItems ID. You want to avoid null values as much as possible,
since they’re laborious to work around and error-prone.

2. You’re delegating getTask() and taskStream() to the TaskDatabase object
passed into RoomTaskRepository

3. You're again using the toV3X() methods to transition from RxJava2 to RxJava3
types. One of the benefits of having this repository layer is that you can hide the
fact that Room uses an old version of RxJava from the rest of your application.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 439

All that’s left is to fill out insertTask().

insertTask() is a bit unique because it will have two distinct use cases:

1. A user could use it to create a new TaskItem in the database.

2. A user could use it to update an existing TaskItem.

Add the following to replace the body of insertTask():

val validIdTask =
 if (taskItem.id == RoomTaskRepository.INVALID_ID) {
 taskItem.copy(id = null)
 } else {
 taskItem
 }
return database.taskDao().insertTask(validIdTask).toV3Single()

The above code checks to see if the task items id is equal to the INVALID_ID constant
you defined earlier. If it is, it creates a new copy of the task item with a null id.
Otherwise, it uses the passed through ID.

If you didn’t do this check then whenever a user attempted to insert a new task item
into the database you would instead overwrite whatever task was added with an id of
INVALID_ID.

Todo list view
Your repository is up and running now, this means you can start working through
listing all of the todos. The list of todos is going to be segmented into two sections.
First, you’ll have the todos that still need to be done. Below that, you’ll have the
todos that are already finished. There will be a header list item before the unfinished
todos and another header list item before the finished todos to visually separate out
the lists.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 440

If you’ve worked with RecyclerView enough, you’ll know that creating lists that
have different types of data can be challenging. You’re often forced to have two
separate lists of items and to do frustrating math to figure out which item you should
be displaying at a given time. To avoid this headache, it’s often advantageous to
make a new data type specifically to work with your adapter.

Open TodoListItem.kt. Replace the existing TodoListItem class with the following:

sealed class TodoListItem(val viewType: Int) {
 object DueTasks : TodoListItem(0)
 object DoneTasks : TodoListItem(1)
 data class TaskListItem(val task: TaskItem) : TodoListItem(2)
}

TodoListItem takes in a viewType which you’ll use in a moment in an adapter.
You’ve created three different types of TodoListItems:

1. A DueTasks object which represents the first header grouping together the tasks
that are yet to be done.

2. A DoneTasks object which represents the second header grouping together the
tasks that have been finished.

3. And a TaskListItem data class that represents one of the tasks in either the
done or due sections of the list.

By creating a common data type abstraction on top of all the different visual
treatments, you’ll want, in the list you’re allowing, the adapter to still only operate
on one list of items. Instead of operating on a List<TaskItem> it’ll instead work on
a List<TodoListItem>.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 441

Using a ListAdapter
Open TodoAdapter.kt and look at the class header:

class TodoAdapter : ListAdapter<TodoListItem,
 RecyclerView.ViewHolder>(TodoDiffUtil())

There are two interesting pieces, here:

1. TodoAdapter extends ListAdapter rather than RecyclerView.Adapter.
ListAdapter is an extremely handy class in the RecyclerView library that will
compute a diff between the current list and a new list you provide. It will then
dispatch Adapter.notifyItem calls depending on the differences between the
two lists. Using this smart diffing tool allows you to focus on submitting new lists
rather than considering which specific items have changed.

2. You’re supplying a TodoDiffUtil object to the ListAdapter superclass.
ListAdapter isn’t magical. It still needs a way to tell that two list items aren’t
the same item. It uses the DiffUtil.ItemCallback class to differentiate
between the two lists.

You’ll need to update the TodoDiffUtil class to properly dispatch updates to the
adapter.

Open TodoDiffUtil.kt. There are two methods that you’ll need to implement to get
proper diffing:

1. areItemsTheSame(), which checks to see if two items represent the same item.

2. areContentsTheSame(), which checks to see if two items have the same
contents.

The distinction may seem strange, but it makes sense after some thought. You can
have an item in two lists that represent the same item but have different contents.
One could have been before a user marked the task as done and one could have been
after. The items still represent the same item but their contents are different,
because the user took some action on the item.

Add the following to replace the body of areItemsTheSame():

return when (oldItem) {
 // 1
 TodoListItem.DueTasks -> newItem is TodoListItem.DueTasks
 TodoListItem.DoneTasks -> newItem is TodoListItem.DoneTasks
 // 2
 is TodoListItem.TaskListItem -> {

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 442

 if (newItem !is TodoListItem.TaskListItem) return false
 oldItem.task.id == newItem.task.id
 }
}

Here’s a breakdown of the above:

1. Two DueTasks items are always equal since they’re represented as objects. The
same is true for two DoneTasks objects.

2. Two TaskListItems are the same if they have the same id. Even if they have
different contents they represent the same item.

The areContentsTheSame method is much simpler. Add the following to replace the
body of areContentsTheSame():

return oldItem == newItem

Two items have the same contents if they’re equal to each other. Data classes keeps
this short.

Navigate back to TodoAdapter. Now that the TodoDiffUtil has been fleshed out you
can finish the rest of the adapter.

First, replace the body of getItemViewType() with the following:

return getItem(position).viewType

ListAdapter exposes getItem() to fetch an item from its list of items. When using
ListAdapter you don’t manage the list of items yourself, which is why getItem() is
necessary.

Since TodoListItem has a viewType field, getting the viewType for a given position
is trivial.

Now, add the following to the body of onBindViewHolder():

val item = getItem(position)
val resources = holder.itemView.context.resources
when (item) {
 TodoListItem.DueTasks -> {
 holder.itemView.section_title.text =
 resources.getString(R.string.due_tasks)
 }
 TodoListItem.DoneTasks -> {
 holder.itemView.section_title.text =
 resources.getString(R.string.done_tasks)

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 443

 }
 is TodoListItem.TaskListItem -> {
 holder.itemView.task_title.text = item.task.text
 holder.itemView.task_done.isChecked = item.task.isDone
 }
}

The above code uses the Kotlin Android Extensions to reference views on the
TodoSectionViewHolder and sets them according to what type of item getItem()
returned.

Note again that by using a sealed class to represent the items in the list applying
different visual treatments to different items is trivial. No messy logic indexing into
multiple lists!

Reactive programming is made much easier by having components and widgets that
are receptive to having their state reset at any time. If ListAdapter didn’t exist then
you would instead be forced to carry around state in your ViewModel to
differentiate between the two lists. It would also require an expanded API contract
between your View and ViewModel, since the ViewModel would need to convey a
lot more information about which list items should be created, updated, moved, or
deleted.

Setting up the list view model
You’ve got your repository ready to go. You’ve got an adapter up and running. It’s
time to build out the list view model to start seeing some todos.

Open TodoListActivity.kt. At the bottom of onCreate() you’ll notice the following
block of code:

val viewModel = buildViewModel {
 TodoListViewModel()
}

buildViewModel() is a convenience function to abstract away the boilerplate of
instantiating a ViewModel.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 444

TodoListViewModel will be in charge of querying for todos so it will require a few
dependencies. Replace the body of the lambda provided to buildViewModel() with
the following, knowing that you'll have a compiler error until you get to work on
TodoListViewModel:

val repository =
 RoomTaskRepository(TaskRoomDatabase.fetchDatabase(this))
TodoListViewModel(repository, Schedulers.io())

TodoListViewModel will take in two dependencies: a TaskRepository and a
background scheduler. You’re passing in the background scheduler so that you can
control what scheduler your Rx operators run on, which will make unit testing the
view model much easier.

Open TodoListViewModel.kt and update the class header to accept the new
dependencies:

class TodoListViewModel(
 repository: TaskRepository,
 backgroundScheduler: Scheduler
) : ViewModel()

As mentioned earlier, you’ll expose LiveData objects for the activity to consume.
Add the following instance variable to TodoListViewModel:

val listItemsLiveData = MutableLiveData<List<TodoListItem>>()

Now that everything’s in place, you can finally query your TaskRepository for some
TaskItems!

Create an init block in TodoListViewModel and add the following to it:

repository
 // 1
 .taskStream()
 // 2
 .map { tasks -> tasks.map { TodoListItem.TaskListItem(it) } }
 // 3
 .map { listItems ->
 val finishedTasks = listItems.filter { it.task.isDone }
 val todoTasks = listItems - finishedTasks
 listOf(
 TodoListItem.DueTasks,
 *todoTasks.toTypedArray(),
 TodoListItem.DoneTasks,
 *finishedTasks.toTypedArray()
)
 }

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 445

 // 4
 .subscribeOn(backgroundScheduler)
 .subscribe(listItemsLiveData::postValue)
 .addTo(disposables)

That’s a beefy chunk of code, so here’s a breakdown:

1. You’re calling taskStream() on TaskRepository. taskStream() should return
an Observable<List<TaskItem>> that emits a new List<TaskItem> every time
the database is updated.

2. You’re then using map() to transform that List<TaskItem> into a
List<TodoListItem>. Don’t be confused by the map() within a map() here - the
second map() is being called on the List<TaskItem> and is a method exposed on
Lists by the Kotlin standard library.

3. You’re then taking the List<TodoListItem> returned by the previous map() and
adding in the two section header list items. Before you do that you need to
separate out the tasks that have been finished and the tasks that haven’t. To that
end you’re using filter(), again in the Kotlin standard library.

4. Finally, you’re subscribing on a background scheduler and forwarding the results
onto the listItemsLiveData object. You’re using a method reference to avoid
some boilerplate.

The last step before you can run the app and see some progress is to observe the
listItemsLiveData in the TodoListActivity. Add the following below the
viewModel declaration in TodoListActivity.kt:

viewModel.listItemsLiveData
 .observe(this, Observer(adapter::submitList))

Note: Make sure to import androidx.lifecycle.Observer and not its Rx
equivalent when adding this line!

Again, you’re using a method reference to avoid some boilerplate. You’re using
submitList() to update the list of items in your adapter. submitList() is a method
exposed by ListAdapter that takes care of doing all of the diffing logic between the
old list and the new one.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 446

Run the app. You should see a screen that looks like this:

However, toggling the individual tasks does nothing. You’ll change that next.

Replacing callbacks with observables
Since the individual list items each have a switch on them, you’ll need to
communicate with the TodoAdapter whenever the user toggles a switch. Typically,
you’d do that using a callback. However, you can always rework a callback into an
Observable to preserve the reactive chain.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 447

Open TodoAdapter.kt and add the following instance variables to the top of the
class:

private val taskClickSubject = PublishSubject.create<TaskItem>()
private val taskToggledSubject =
 PublishSubject.create<Pair<TaskItem, Boolean>>()
val taskClickStream = taskClickSubject.hide()
val taskToggledStream = taskToggledSubject.hide()

The user is going to be able to take two separate actions on a list item:

1. They can toggle an individual task to mark it as completed.

2. They can click a task and edit some of the details.

To capture those two different actions, you’ve created two private PublishSubjects
which you’ll use shortly. You’re also exposing corresponding Observables. It’s
important to hide the details of your subjects from outside consumers so they don’t
have the opportunity to push unexpected objects into your stream.

Scroll down to the bottom of onBindViewHolder() and add the following in the
TodoListItem.TaskListItem block of the when statement:

holder.itemView.task_done.setOnClickListener {
 taskToggledSubject.onNext(
 item.task to holder.itemView.task_done.isChecked)
}
holder.itemView.setOnClickListener {
 taskClickSubject.onNext(item.task)
}

Whenever someone clicks the task_done Switch you’re calling onNext() on the
taskToggleSubject with a pair of objects. The first object is the TaskItem the user
took an action on. The second object is a Boolean indicating that the task has been
marked as finished or not.

Additionally, whenever a user clicks on anything in the adapter row you’re calling
onNext() on the taskClickSubject, passing through the TaskItem that was
selected.

Utilizing Subjects and Observables is a common approach to reworking a callback
based API into a reactive one. Don’t be afraid to use this strategy liberally.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 448

Updating the TodoListViewModel
Now you need to notify your view model when the above Observables fire. Ideally
you'd be able to pass the newly created Observables into your TodoListViewModel.
Unfortunately, if you were to do that, when the user rotated the screen your view
model would stop receiving callbacks, since the adapter would create new
PublishSubjects which your view model would not know about.

Instead, you're going to subscribe to the Observables in your TodoListActivity and
forward the information through to the TodoListViewModel, just like you did in
previous chapters.

Start off by adding two new PublishSubject values to TodoListViewModel:

private val taskClicks = PublishSubject.create<TaskItem>()
private val taskDoneToggles =
 PublishSubject.create<Pair<TaskItem, Boolean>>()

taskClicks represents a user clicking on a task in the list, while taskDoneToggles
represents toggling a task on and off.

Next up add two methods to forward events into your two new PublishSubjects:

fun taskClicked(taskItem: TaskItem) =
 taskClicks.onNext(taskItem)

fun taskDoneToggled(taskItem: TaskItem, on: Boolean) =
 taskDoneToggles.onNext(Pair(taskItem, on))

These use onNext() to notify each PublishSubject of the event.

Next, add a CompositeDisposable to the top of TodoListActivity:

private val disposables = CompositeDisposable()

This will allow you to responsibly dispose of your observable chains.

Last but not least, add the following below the call building the view model:

adapter.taskClickStream.subscribe {
 viewModel.taskClicked(it)
}.addTo(disposables)

adapter.taskToggledStream.subscribe {
 viewModel.taskDoneToggled(it.first, it.second)
}.addTo(disposables)

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 449

You're subscribing to both the taskClickStream and taskToggledStream
Observables you defined in your adapter and forwarding the result into the
TodoListViewModel.

When the user toggles a task as done, you want to call into the TaskRepository to
update the state of the task item that was toggled. That will then trigger the
taskStream that you subscribed to at the top of the init block, which will keep your
UI up to date.

Add the following to the bottom of the TodoListViewModel's' init block:

// 1
taskDoneToggles
 // 2
 .flatMapSingle { newItemPair ->
 // 3
 repository
 .insertTask(
 newItemPair.first.copy(isDone = newItemPair.second))
 .subscribeOn(backgroundScheduler)
 }
 .subscribe()
 .addTo(disposables)

Here’s a section by section break down of the above:

1. You’re using the taskDoneToggles Observable you added into the view model
earlier to listen for a user tapping the switch one any of the task items.

2. You’re then using flatMapSingle() to transform this stream from an
Observable<Pair<TaskItem, Boolean>> into a Single<Long>. You need to use
flatMapSingle() because flatMap() expects the lambda you pass it to produce
an Observable, but TaskRepository.insertTask() produces a Single.

3. You’re using the aforementioned insertTask() to save the updated version of
the TaskItem the user toggled. The emitted Pair contains both the TaskItem to
update and whether that item has been marked as completed or not, which you’re
using to create a new TaskItem to save off in the database.

Run the app and toggle a few tasks back and forth. You should see them move
fluently between the done and due sections.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 450

Editing tasks
When a user clicks on one of the task items the app should take them to another
screen where they can edit the details of that task.

Open TodoListViewModel.kt and add another LiveData object:

val showEditTaskLiveData = MutableLiveData<Int>()

The activity will observe showEditTaskLiveData to be informed when it should
open an activity to edit a task. The Int passed into the activity will represent the id
of the task item to be edited.

Note: You could make your TaskItem implement Parcelable and then pass it
as an extra in an Intent. However, it’s generally considered best practice to
pass around the smallest piece of data you can between activities so you don’t
end up exceeding the maximum amount of information an Intent can carry.
In this scenario, you can easily fetch a TaskItem from its id.

Add the following to the bottom of the init block:

// 1
taskClicks
 // 2
 .throttleFirst(1, TimeUnit.SECONDS)
 // 3
 .subscribe {
 val id = it.id ?: RoomTaskRepository.INVALID_ID
 showEditTaskLiveData.postValue(id)
 }
 .addTo(disposables)

From top to bottom, the above code:

1. Subscribes to the taskClicks Observable you passed in earlier. Remember that
taskClicks emits every time a user taps one of the rows in the list of tasks.

2. Uses throttleFirst() to ensure that only one tap goes through.
throttleFirst() is a new operator that works similarly to debounce(). Instead
of delaying the mission of the Observable until the time unit has passed,
throttleFirst() immediately emits an item and then skips any new items that
come within the designated time period. By using throttleFirst, you can
ensure that multiple activities aren’t started by quickly tapping the task.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 451

3. Fetches the id from the task, defaulting to the INVALID_ID if the id on the task
item is null. Finally, you’re posting the id to showEditTaskLiveData, indicating
that the activity should launch the edit task activity.

The above flow looks beautiful, but if you were to add unit tests for it you'd run into
an ugly surprise: you have to wait a full second every time you want to emulate a task
being clicked!

To control that timing information, it's best practice to pass in a dedicated
Scheduler to use for timing tasks, that way you can advance time manually using a
TestScheduler in your unit tests.

Update the TodoListViewModel class header to accept another Scheduler as a
parameter:

class TodoListViewModel(
 repository: TaskRepository,
 backgroundScheduler: Scheduler,
 computationScheduler: Scheduler
) : ViewModel()

And update TodoListActivity to pass a Scheduler in:

TodoListViewModel(
 repository,
 Schedulers.io(),
 Schedulers.computation()
)

Back in TodoListViewModel, update the call to throttleFirst():

throttleFirst(1, TimeUnit.SECONDS, computationScheduler)

Now you can easily control time in your unit tests. Far out, man.

Head back to TodoListActivity.kt and add code to observe the
showEditTaskLiveData at the bottom of onCreate():

viewModel.showEditTaskLiveData.observe(this, Observer {
 EditTaskActivity.launch(this, it)
})

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 452

Now, run the app and tap one of the tasks. You should be presented with a blank edit
screen that looks like this:

Saving an edited task
On this edit page you’ll want to achieve several tasks:

1. You want to pre-populate the EditText at the top of the screen with the title of
the TaskItem being edited. If there is no TaskItem being edited, then you’ll leave
it blank.

2. You then want to listen for taps on the done FAB in the bottom right, and save an
updated TaskItem that contains the new title.

3. Finally, you want to finish this new activity and return to the task list after the
user taps the done button.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 453

Open EditTaskActivity.kt and replace the existing EditTaskViewModel being build
in onCreate() with the following. Again, it won't compile until you edit the view
model too:

val repository =
 RoomTaskRepository(TaskRoomDatabase.fetchDatabase(this))
val taskIdKey =
 intent.getIntExtra(TASK_ID_KEY, RoomTaskRepository.INVALID_ID)
EditTaskViewModel(
 // 1
 repository,
 // 2
 Schedulers.io(),
 // 3
 taskIdKey
)

You’re supplying three dependencies to the ViewModel for the EditTask View:

1. A TaskRepository instance, which you’ll use to fetch and save TaskItems.

2. A background Scheduler.

3. The id of the TaskItem you’re editing, which was fetched out of the Intent.

Open EditTaskViewModel.kt and change the class header to accept the new
dependencies:

class EditTaskViewModel(
 taskRepository: TaskRepository,
 backgroundScheduler: Scheduler,
 taskId: Int
) : ViewModel()

There's two different pieces of user input you'll need to react to:

1. A user clicking the done floating action button.

2. A user inputting the name of a task.

Just like before, you'll need to expose methods and subjects in your view model to
handle those actions. Add the following to the top of EditTaskViewModel:

private val finishedClicks = PublishSubject.create<Unit>()
private val taskTitleTextChanges =
 BehaviorSubject.create<CharSequence>()

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 454

Then, add two new methods to pipe values into the two subjects:

fun onFinishClicked() = finishedClicks.onNext(Unit)

fun onTextChanged(text: CharSequence) =
 taskTitleTextChanges.onNext(text)

Your view model is now ready to accept user input.

Next up, navigate to EditTaskActivity and add the following to the top of the
class:

private val disposables = CompositeDisposable()

Last but not least, add the following below the viewModel declaration:

done.clicks()
 .subscribe { viewModel.onFinishClicked() }
 .addTo(disposables)
title_input.textChanges()
 .subscribe { viewModel.onTextChanged(it) }
 .addTo(disposables)

You're using the RxBindings clicks() and textChanges() methods to listen for
user input events and forwarding them to your view model. You're now all setup to
start reacting to user input.

There are two dynamic pieces to the edit task UI:

1. Displaying the title of the TaskItem being edited in the EditText at the top of
the page.

2. Finishing the activity after the user taps on the done FAB.

Therefore you’ll need two LiveData objects exposed in the EditTaskViewModel. Add
the following instance variables in EditTaskViewModel below the disposables
variable:

val finishLiveData = MutableLiveData<Unit>()
val textLiveData = MutableLiveData<String>()

You can think of LiveData objects as having a one-to-one relationship with any
dynamic pieces of your UI. Any static component, like a TextView with text that
doesn’t change, doesn’t need a corresponding LiveData.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 455

Interacting with the TaskRepository
The first thing you’ll need to do in the EditTaskViewModel is retrieve whatever
TaskItem is being edited, if there is one.]

Add an init block to EditTaskViewModel below the variable declarations:

init {
 val existingTask = taskRepository.getTask(taskId).cache()
}

You’re using getTask() on taskRepository along with the taskId passed into the
view model to get a Maybe<TaskItem> representing whatever TaskItem is being
edited. If there is no TaskItem that corresponds to the passed in id, the Maybe will
emit nothing and complete.

You’re also using cache() so you can utilize existingTask in multiple places
without remaking the call every time, since that could be expensive.

Now add the following Rx block after existingTasks declaration:

existingTask
 .subscribeOn(backgroundScheduler)
 .subscribe { textLiveData.postValue(it.text) }
 .addTo(disposables)

You’re subscribing to the existingTask Maybe you fetched earlier on the
backgroundScheduler and then posting the resulting TaskItems text in the
textLiveData.

Open EditTaskActivity.kt again, and subscribe to the textLiveData in the bottom
of onCreate() (again making sure to import androidx.lifecycle.Observer and
not its Rx equivalent):

viewModel.textLiveData
 .observe(this, Observer(title_input::append))

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 456

Run the app again and tap on a task. You should see the title of that task pre-
populated in the EditText:

Saving an updated task
The next feature for the Edit Task screen is to save the updated task when the user
taps the done button.

You have access to two crucial Observables in the EditTaskViewModel that will help
you implement this feature: If you combine the finishedClicks Observable with
the taskTitleTextChanges Observable, you’ll have the latest text whenever the
done button is tapped.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 457

Open EditTaskViewModel.kt and start off another Rx chain at the bottom of the
init block:

Observables.combineLatest(finishedClicks, taskTitleTextChanges)
 .map { it.second }

combineLatest() will combine whatever the latest element is in the
finishedClicks and taskTitleTextChanges Observables into a Pair<Unit,
CharSequence>. The Unit portion of that Pair is the data type passed in from the
finishedClicks Observable. All you care about is that that Observable triggers the
combined Observable, so you can use map() to transform the resulting Observable
from a Observable<Pair<Unit, CharSequence>> into an
Observable<CharSequence>.

Now append the following to the bottom of the Rx chain:

// 1
.flatMapSingle { title ->
 existingTask
 // 2
 .defaultIfEmpty(
 TaskItem(null, title.toString(), Date(), false))
 // 3
 .flatMap {
 val taskItem =
 TaskItem(it.id, title.toString(), Date(), it.isDone)
 taskRepository.insertTask(taskItem)
 }
 // 4
 .subscribeOn(backgroundScheduler)
}

Here’s a breakdown of that short but dense block of code:

1. You’re using flatMapSingle() to convert this Observable into a Single. You’ll
find that whenever you’re executing a network or database call that returns a
Single after some user interaction, you’ll want to use flatMapSingle().
Converting from an Observable to a Single can make the intent of your Rx
chain clear to other developers.

2. flatMapSingle() expects the lambda passed into it to return (shocker!) a
Single. However, the existingTask variable you declared earlier is a Maybe. If
there’s no TaskItem associated with the taskId passed into this view model, you
want to save a new TaskItem instead of modifying an existing one. Enter
defaultIfEmpty(). defaultIfEmpty() takes a Maybe and converts it into a
Single by supplying a default item that the Maybe will use if it’s empty.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 458

That way you can always guarantee that your Maybe will return an item, and it
now satisfies the requirements of being a Single.

3. You’re then using the flatMap() operator to take the TaskItem and save it in the
database using insertTask(), which returns a Single<Long>.

4. You’re doing all of the above work on the backgroundScheduler because you’re a
good Android citizen, and you don’t want to freeze the UI!

That was a powerful batch of code. Congratulations for working your way through it!
Finish off the new Rx chain by subscribing to it and making sure it’s properly
disposed of. Make sure this goes outside of the flatMapSingle():

.subscribe { finishLiveData.postValue(Unit) }

.addTo(disposables)

Once you’re done saving off the TaskItem you can signal to the activity to call
finish via the finishLiveData variable.

To finish off your editing feature, open EditTaskActivity.kt and add code to observe
the finishLiveData at the bottom of onCreate():

viewModel.finishLiveData.observe(this, Observer { finish() })

Now run the app and tap one of the tasks. Edit the title for the task, then tap the
done FAB. You’ll see that the updated task appears in the list, and it moves to the
bottom of whatever section that task is in since you updated the date for that task.

Creating a new task
There’s only one thing missing from your app: The user has no way to create a new
task. Luckily, you can lean on the work you finished in the edit section to complete
this.

First, open TodoListViewModel.kt and add one last PublishSubject at the top of
the class:

private val addClicks = PublishSubject.create<Unit>()

Next up, add a corresponding method to push events through your new subject:

fun addClicked() = addClicks.onNext(Unit)

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 459

Then add another Rx chain to the bottom of the init block:

addClicks
 .throttleFirst(1, TimeUnit.SECONDS, computationScheduler)
 .subscribe {
 showEditTaskLiveData
 .postValue(RoomTaskRepository.INVALID_ID)
 }
 .addTo(disposables)

The addClicks stream represents taps on the add FAB. You’re using
throttleFirst() again to make sure only the first tap is acted upon. When the user
does tap, you’re reusing the showEditTaskLiveData, but this time purposefully
passing an INVALID_ID so a new TaskItem is created and saved into the database.

Last but not least, open TodoListActivity.kt and pipe add click events through to
your view model by adding this to onCreate():

add_button.clicks()
 .subscribe { viewModel.addClicked() }
 .addTo(disposables)

Now the run the app and add a new task item. You should see the new task inserted
at the end of the due tasks list!

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 460

Challenges

Challenge 1: Support item deletion
You’ve probably noticed that it isn’t possible to delete items. You’ll need to make
changes to both TodoListActivity and TodoListViewModel to add this
functionality. Once you complete the challenge, the users will be able to swipe away
a task to delete it.

The project includes a helper file named SwipeToRemoveHelper.kt, which
facilitates the swipe to remove process. Start off by uncommenting the code in
onSwiped() and getMovementFlags(). You'll also need to add a new method to the
TodoAdapter.kt file to allow your SwipeToRemoveHelper class to access files:

fun getListItem(position: Int): TodoListItem {
 return getItem(position)
}

You can add the following code in TodoListActivity's onCreate() to hook it up to
your RecyclerView:

val swipeHelper = SwipeToRemoveHelper(adapter)
ItemTouchHelper(swipeHelper).attachToRecyclerView(todo_list)

Now you can get to the core of the challenge: handling the actual deletion. The
solution to this challenge involves:

• Creating deleteTask() on the TaskRepository, RoomTaskRepository and
TaskDao classes. For the TaskDao method, you can use the @Delete annotation to
instruct Room that you’re deleting an item.

• Using swipeStream variable exposed by SwipeToRemoveHelper with your
TodoListViewModel to listen for remove events.

• Subscribing to the swipeStream and calling repository.deleteTask() with the
swiped away task.

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 461

Challenge 2: Add live statistics
To make the UI more interesting, you want to display the number of due and done
items in your list. A text view is reserved for this purpose at the bottom of the
TodoListActivity view; it’s called statistics. For this challenge, start from either
your solution to the previous challenge, or from the chapter’s final project.

First off, set the statistics view to be visible in onCreate of TodoListActivity:

statistics.visibility = View.VISIBLE

Next up you’ll need to create a new LiveData object to carry the statistics
information from the TodoListViewModel to the activity.

You’ll then need to subscribe to that LiveData in the TodoListActivity and update
the statistics text view.

To get the actual statistics, you’ll want to work off of the taskStream exposed by the
repository. You’re already subscribing to the taskStream Observable, so consider
using cache() to do multiple subscribes!

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 462

Where to go from here?
This concludes the final chapter of this book! We hope you loved it as much as we
did. You now have a solid foundation of programming with RxJava, RxKotlin, and
RxAndroid to build on as you continue your learning. Good luck!

Reactive Programming with Kotlin Chapter 22: Building a Complete RxJava App

raywenderlich.com 463

CConclusion

If you have any questions or comments as you work through this book, please stop by
our forums at http://forums.raywenderlich.com and look for the particular forum
category for this book.

Thank you again for purchasing this book. Your continued support is what makes the
books, tutorials, videos and other things we do at raywenderlich.com possible. We
truly appreciate it!

– The Reactive Programming with Kotlin team

raywenderlich.com 464

	Book License
	Book Source Code & Forums
	What You Need
	Book Updates
	About the Cover
	Chapter 1: Hello, RxJava!
	Defining RxJava and RxKotlin
	Introducing asynchronous programming
	Learning the foundations of RxJava
	App architecture
	RxAndroid and RxBinding
	Installing RxJava
	Community
	Key points
	Where to go from here?

	Chapter 2: Observables
	Getting started
	What is an observable?
	Lifecycle of an observable
	Creating observables
	Subscribing to observables
	Disposing and terminating
	The create operator
	Creating observable factories
	Using other observable types
	Challenges
	Key points

	Chapter 3: Subjects
	Getting started
	What are subjects?
	Working with publish subjects
	Working with behavior subjects
	Working with replay subjects
	Working with async subjects
	Working with the RxRelay library
	Challenge
	Key points
	Where to go from here?

	Chapter 4: Observables & Subjects in Practice
	Getting started
	Using a BehaviorSubject in a ViewModel
	Adding photos
	Communicating with other views via subjects
	Creating a custom observable
	Review: Single, Maybe, Completable
	Using Single in the app
	Key points
	Where to go from here?

	Chapter 5: Filtering Operators
	Getting started
	Ignoring operators
	Skipping operators
	Taking operators
	Distinct operators
	Challenge
	Key points
	Where to go from here?

	Chapter 6: Filtering Operators in Practice
	Improving the Combinestagram project
	Challenge
	Key points
	Where to go from here?

	Chapter 7: Transforming Operators
	Getting started
	Transforming elements
	Transforming inner observables
	Observing events
	Challenge
	Key points
	Where to go from here?

	Chapter 8: Transforming Operators in Practice
	Getting started with GitFeed
	Fetching data from the web
	Transforming the response
	Processing the response
	Persisting objects to disk
	Adding a last-modified header
	Challenge
	Key points
	Where to go from here?

	Chapter 9: Combining Operators
	Getting started
	Prefixing and concatenating
	Merging
	Combining elements
	Triggers
	Switches
	Combining elements within a sequence
	Challenge: The zip case
	Key points
	Where to go from here?

	Chapter 10: Combining Operators in Practice
	Getting started
	Preparing the EONET API class
	Add events into the mix
	Combining events and categories
	Downloading in parallel
	Wiring up the days seek bar
	Challenge: Adding a progress bar
	Key points
	Where to go from here?

	Chapter 11: Time-Based Operators
	Getting started
	Buffering operators
	Time-shifting operators
	Timer operators
	Challenge
	Key points

	Chapter 12: Error Handling in Practice
	Getting started
	Managing errors
	Handling errors with catch
	Catching errors
	Retrying on error
	Errors as objects
	Challenges
	Key points
	Where to go from here?

	Chapter 13: Intro to Schedulers
	What is a scheduler?
	Setting up the project
	Switching schedulers
	Pitfalls
	Best practices and built-in schedulers
	Key points
	Where to go from here?

	Chapter 14: Flowables & Backpressure
	Backpresssure
	Buffering danger!
	Natural backpressure
	Introduction to Flowables
	Backpressure strategies
	Flowables, Observables, Processors and Subjects — Oh, My!
	Key points
	Where to go from here?

	Chapter 15: Testing RxJava Code
	Getting started
	Introduction to TestObserver
	Using a TestScheduler
	Injecting schedulers
	Using Trampoline schedulers
	Using subjects with mocked data
	Testing ColorViewModel
	Key points
	Where to go from here?

	Chapter 16: Creating Custom Reactive Extensions
	Getting started
	Extending a framework class
	Wiring the extension up
	Wrapping the locations API
	The lift and compose functions
	Testing your custom reactive extension
	Key points
	Where to go from here?

	Chapter 17: RxBindings
	Getting started
	Extending ValueAnimator to be reactive
	Using RxBindings with Android widgets
	Dangerzone!
	Working around the issue
	Fetching colors from an API
	Displaying an information dialog
	Challenges
	Key points
	Where to go from here?

	Chapter 18: Retrofit
	Getting started
	Recap of Retrofit
	Including Rx adapters
	Creating a JSON object
	Updating the JSON
	Retrieving JSON
	Key points
	Where to go from here?

	Chapter 19: RxPreferences
	Getting started
	Using SharedPreferences
	Listening for preference updates
	Using RxPreferences
	Subscribing to preference changes
	Dealing with old versions of RxJava
	Saving custom objects
	Key points
	Where to go from here?

	Chapter 20: RxPermissions
	Getting started
	Requesting the location permission
	Using RxPermissions
	Requesting another permission
	Reading from external storage
	Writing the weather to external storage
	Reacting to orientation changes
	Key points
	Where to go from here?

	Chapter 21: RxJava & Jetpack
	Getting started
	RxJava and Room
	Reacting to database changes
	Updating individual items
	Starting the app with cached data
	Paging data in
	Key points
	Where to go from here?

	Chapter 22: Building a Complete RxJava App
	Introducing QuickTodo
	Architecting the application
	Task model
	Task data access object
	Task repository
	Replacing callbacks with observables
	Editing tasks
	Challenges
	Where to go from here?

	Conclusion

