

Kotlin Design
Patterns and
Best Practices
Second Edition

Build scalable applications using traditional, reactive,
and concurrent design patterns in Kotlin

Alexey Soshin

BIRMINGHAM—MUMBAI

Kotlin Design Patterns and Best Practices
Second Edition
Copyright © 2022 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable
for any damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing
cannot guarantee the accuracy of this information.

Group Product Manager: Aaron Lazar
Publishing Product Manager: Sathyanarayanan Ellapulli
Senior Editor: Rohit Singh
Content Development Editor: Rosal Colaco
Technical Editor: Karan Solanki
Copy Editor: Safis Editing
Project Coordinator: Deeksha Thakkar
Proofreader: Safis Editing
Indexer: Manju Arasan
Production Designer: Jyoti Chauhan
Marketing Coordinator: Sonakshi Bubbar

First published: June 2018
Second edition: December 2021

Production reference: 1131221

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80181-572-7

www.packt.com

http://www.packt.com

To Lula Leus, my constant source of inspiration.

To my mentor, Lior Bar On. Without you, I would have never
started writing.

– Alexey Soshin

Foreword
Kotlin just turned 10 recently. It's a relatively young programming language. However,
Kotlin stands on the shoulders of giants: many features and best practices have been
borrowed from other programming languages. Thanks to this, we can reuse the
knowledge that we have learned elsewhere when developing Kotlin programs.

Design patterns are part of the best practices that will help developers to use Kotlin
efficiently. It is great to see the effort in describing the patterns that comes from the
passionate people in the Kotlin community. Alexey Soshin has put a lot of effort
into sharing his knowledge, not only in this book but also in interactive courses and
other media.

Kotlin Design Patterns and Best Practices provides a gentle introduction to the Kotlin
programming language. It guides you through the vocabulary of design patterns chapter
by chapter. If you are a Java developer and have used design patterns previously, the book
will show you how to do the same with Kotlin.

Design patterns appeared in the era of object-oriented languages such as C++ and
Java. Kotlin, however, provides language features that allow developers to program in
a functional style. This book captures the benefits of the functional approach and explains
how to apply it with Kotlin.

A sizable part of this book covers asynchronous programming with Kotlin coroutines.
Today, it's essential to understand how to write concurrent programs and use the
asynchronous programming approach to implement concurrency in your programs. This
understanding is also critical for designing these programs correctly. Concurrency design
patterns will help you understand how to develop concurrent programs better.

This book will give you a solid grounding for becoming familiar with Kotlin and best
practices for building programs with this modern programming language. I salute the
author for his effort and enthusiasm!

Anton Arhipov

Kotlin Developer Advocate at JetBrains

Contributors

About the author
Alexey Soshin is a software architect with 15 years of experience in the industry. He
started exploring Kotlin when Kotlin was still in beta, and since then has been a big
enthusiast of the language. He's a conference speaker, published writer, and the author
of a video course titled Pragmatic System Design.

About the reviewers
Aditya Kumar is an Android developer with around 4 years of experience in this domain.
In his journey so far, he has worked with companies such as Microsoft and Uber. He has
helped in developing a few key components of many projects and is always known for his
contribution to the Kotlin community. Besides Android development, he is also interested
in other technologies such as engineering systems and backend engineering and is very
keen on exploring those aspects in the future.

Nicola Corti is a Google Developer Expert for Kotlin. He has been working with the
language since before version 1.0 and he is the maintainer of several open source libraries
and tools for mobile developers (Detekt, Chucker, AppIntro, and so on). He's currently
working in the React Native team at Meta in London, UK, helping to build and ship
one of the most popular cross-platform frameworks for mobile. Furthermore, he is an
active member of the developer community. His involvement ranges from speaking
at international conferences to being a member of CFP committees and supporting
developer communities across Europe.

Joost Heijkoop is an independent consultant, a seasoned JVM and frontend
developer working to make things better and tackle hard problems, and an organizer
at Kotlin.amsterdam and Amsterdam.scala, and is always happy to help.

Table of Contents

Preface

Section 1: Classical Patterns

1
Getting Started with Kotlin

Technical requirements � 4
Basic language syntax and
features � 4
Multi-paradigm language � 5

Understanding Kotlin code
structure � 5
Naming conventions � 5
Packages � 5
Comments � 6
Hello Kotlin � 6

Understanding types � 8
Basic types � 9
Type inference � 9
Values � 10
Comparison and equality � 10
Declaring functions � 11

Null safety � 12
Reviewing Kotlin data
structures � 13
Lists � 14
Sets � 14

Maps � 15
Mutability � 16
Alternative implementations for
collections � 16
Arrays � 17

Control flow � 18
The if expression � 18
The when expression � 20

Working with text � 20
String interpolation � 20
Multiline strings � 21

Loops � 22
for-each loop � 22
The for loop � 23
The while loop � 24

Classes and inheritance � 25
Classes � 25
Interfaces � 29
Abstract classes � 30
Visibility modifiers � 31
Inheritance � 31

viii Table of Contents

Data classes � 33

Extension functions � 34
Introduction to design patterns � 35

What are design patterns? � 36
Why use design patterns in Kotlin? � 37

Summary � 38
Questions � 38

2
Working with Creational Patterns

Technical requirements � 40
Singleton � 40
Factory Method � 44
Static Factory Method � 46

Abstract Factory � 49
Casts � 51
Subclassing � 51
Smart casts � 52
Variable shadowing � 53

Collection of Factory Methods � 54

Builder � 55
Fluent setters � 58
Default arguments � 60

Prototype � 61
Starting from a prototype � 63

Summary � 64
Questions � 64

3
Understanding Structural Patterns

Technical requirements � 66
Decorator � 66
Enhancing a class � 66
The Elvis operator � 67
The inheritance problem � 68
Operator overloading � 71
Caveats of the Decorator design pattern � 73

Adapter � 74
Adapting existing code � 76
Adapters in the real world � 77
Caveats of using adapters � 78

Bridge � 78
Bridging changes � 80
Type aliasing � 82

Constants � 82

Composite � 83
Secondary constructors � 86
The varargs keyword � 86
Nesting composites � 87

Facade � 88
Flyweight � 90
Being conservative � 90
Saving memory � 92
Caveats of the Flyweight design pattern � 93

Proxy � 94
Lazy delegation � 95

Summary � 96
Questions � 96

Table of Contents ix

4
Getting Familiar with Behavioral Patterns

Technical requirements � 98
Strategy � 98
Fruit arsenal � 99
Citizen functions � 101

Iterator � 103
State � 106
Fifty shades of State � 106
State of the nation � 109

Command � 110
Undoing commands � 114

Chain of Responsibility � 115
Interpreter � 119
We need to go deeper � 119
A language of your own � 120

Call suffix � 124

Mediator � 125
The middleman � 129
Mediator flavors � 130
Mediator caveats � 131

Memento � 131
Visitor � 134
Writing a crawler � 134

Template method � 137
Observer � 142
Animal choir example � 142

Summary � 148
Questions � 148

Section 2: Reactive and Concurrent Patterns

5
Introducing Functional Programming

Technical requirements � 152
Reasoning behind the
functional approach � 152
Immutability � 153
Immutable collections � 153
The problem with shared
mutable state � 154
Tuples � 156

Functions as values � 157
Learning about higher-order functions � 157
Higher-order functions in a standard
library � 159

The it notation � 160
Closures � 161
Pure functions � 161
Currying � 163
Memoization � 165

x Table of Contents

Using expressions instead
of statements � 167
Pattern matching � 167

Recursion � 169
Summary � 171
Questions � 171

6
Threads and Coroutines

Technical requirements � 174
Looking deeper into threads � 174
Thread safety � 176
Why are threads expensive? � 178

Introducing coroutines � 180
Starting coroutines � 180

Jobs � 182
Coroutines under the hood � 184
Setting timeouts � 190
Dispatchers � 191
Structured concurrency � 192

Summary � 194
Questions � 194

7
Controlling the Data Flow

Technical requirements � 196
Reactive principles � 196
Responsive principle � 196
Resilient principle � 197
Elastic principle � 197
Message-driven principle � 198

Higher-order functions on
collections � 198
Mapping elements � 199
Filtering elements � 199
Finding elements � 200

Executing code for each element � 200
Summing up elements � 202
Getting rid of nesting � 202

Exploring concurrent data
structures � 203
Sequences � 203
Channels � 206
Flows � 210

Summary � 216
Questions � 216

8
Designing for Concurrency

Technical requirements � 218
Deferred Value � 218

Barrier � 220
Using data classes as barriers � 221

Table of Contents xi

Scheduler � 223
Creating your own schedulers � 224

Pipeline � 225
Composing a pipeline � 227

Fan Out � 228
Fan In � 229

Racing � 231
Unbiased select � 232

Mutex � 234
Sidekick channel � 235
Summary � 237
Questions � 238

Section 3: Practical Application of Design
Patterns

9
Idioms and Anti-Patterns

Technical requirements � 242
Using the scope functions � 242
Let function � 242
Apply function � 243
Also function � 244
Run function � 245
With function � 246

Type checks and casts � 247
An alternative to the try-with-
resources statement � 249
Inline functions � 250

Implementing Algebraic Data
Types � 251
Reified generics � 254
Using constants efficiently � 256
Constructor overload � 258
Dealing with nulls � 260
Making asynchronicity explicit � 261
Validating input � 262
Preferring sealed classes over
enums � 264
Summary � 265
Questions � 266

10
Concurrent Microservices with Ktor

Technical requirements � 268
Getting started with Ktor � 268
Routing requests � 273
Testing the service � 275

Modularizing the application � 276
Connecting to a database � 277
Creating new entities � 280
Making the tests consistent � 282

xii Table of Contents

Fetching entities � 282
Organizing routes in Ktor � 288
Achieving concurrency in Ktor � 290

Summary � 290
Questions � 291

11
Reactive Microservices with Vert.x

Technical requirements � 294
Getting started with Vert.x � 294
Routing in Vert.x � 296
Verticles � 298
Handling requests � 299
Subrouting the requests � 300

Testing Vert.x applications � 301
Working with databases � 303

Managing configuration � 304

Understanding Event Loop � 308
Communicating with Event Bus
� 310
Sending JSON over Event Bus � 312

Summary � 314
Questions � 314

Assessments
Index
Other Books You May Enjoy

Preface
Design patterns enable you as a developer to speed up the development process by
providing you with proven development paradigms. Reusing design patterns helps
prevent complex issues that can cause major problems, improves your code base,
promotes code reuse, and makes an architecture more robust.

The mission of this book is to ease the adoption of design patterns in Kotlin and provide
good practices for programmers.

The book begins by showing you the practical aspects of smarter coding in Kotlin,
explaining the basic Kotlin syntax and the impact of design patterns. From there, the book
provides an in-depth explanation of the classical creational, structural, and behavioral
design pattern families, before heading into functional programming. It then takes you
through reactive and concurrent patterns, teaching you about using streams, threads, and
coroutines to write better code along the way.

By the end of the book, you will be able to efficiently address common problems faced
while developing applications and be comfortable working on scalable and maintainable
projects of any size.

Who this book is for
This book is for developers who would like to master design patterns with Kotlin in order
to build reliable, scalable, and maintainable applications. Prior programming knowledge
is highly advised in order to get started with this book. Prior design pattern knowledge
would be helpful, but is not mandatory.

What this book covers
Chapter 1, Getting Started with Kotlin, covers basic Kotlin syntax and discusses what
design patterns are good for and why they should be used in Kotlin. The goal of this
chapter is not to cover the entire Kotlin vocabulary but to get you familiar with some basic
concepts and idioms. The following chapters will slowly expose you to more language
features as they become relevant to the design patterns we'll discuss.

xiv Preface

Chapter 2, Working with Creational Patterns, explains all the classical creational patterns.
These patterns deal with how and when to create your objects. Mastering these patterns
will allow you to manage the life cycle of your objects better and write code that is easy to
maintain.

Chapter 3, Understanding Structural Patterns, focuses on how to create hierarchies
of objects that are flexible and simple to extend. It covers the Decorator and Adapter
patterns, among others.

Chapter 4, Getting Familiar with Behavioral Patterns, covers behavioral patterns with
Kotlin. Behavioral patterns deal with how objects interact with one another and how
objects can change behavior dynamically. We'll see how objects can communicate
efficiently and in a decoupled manner.

Chapter 5, Introducing Functional Programming, covers the basic principles of functional
programming and how they fit into the Kotlin programming language. It will cover topics
such as immutability, higher-order functions, and functions as values.

Chapter 6, Threads and Coroutines, dives deeper into how to launch new threads in Kotlin
and covers the reasons why coroutines can scale much better than threads. We will discuss
how the Kotlin compiler treats coroutines and the relationship with coroutine scopes and
dispatchers.

Chapter 7, Controlling the Data Flow, covers higher-order functions for collections.
We'll see how sequences, channels, and flows apply those functions in a concurrent
and reactive manner.

Chapter 8, Designing for Concurrency, explains how concurrent design patterns help
us manage many tasks at once and structure their life cycle. By using these patterns
efficiently, we can avoiding problems such as resource leaks and deadlocks.

Chapter 9, Idioms and Anti-Patterns, discusses the best and worst practices in Kotlin.
You'll learn what idiomatic Kotlin code should look like and also which patterns to avoid.
After completing this chapter, you should be able to write more readable and maintainable
Kotlin code, as well as avoiding some common pitfalls.

Chapter 10, Concurrent Microservices with Ktor, puts the skills we've learned so far to use
by building a microservice using the Kotlin programming language. For that, we'll use the
Ktor framework, which was developed by JetBrains.

Chapter 11, Reactive Microservices with Vert.x, demonstrates an alternative approach to
building microservices with Kotlin by using the Vert.x framework, which is based on
reactive design patterns. We'll discuss the tradeoffs between the approaches, looking at
some real code examples, and figure out when to use them.

Assessments contains all the answers to the questions from all the chapters in this book.

Preface xv

To get the most out of this book
You should have basic knowledge of Java and know what the JVM is. It is also assumed
that you are comfortable working with the command line. A few command-line examples
we use in this book are based on OS X but could be easily adapted for Windows or Linux.

If you are using the digital version of this book, we advise you to type the code yourself
or access the code from the book's GitHub repository (a link is available in the next
section). Doing so will help you avoid any potential errors related to the copying and
pasting of code.

Download the example code files
You can download the example code files for this book from GitHub at https://
github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-
Practices. If there's an update to the code, it will be updated in the GitHub repository.

We have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots and diagrams used
in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801815727_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles.
Here is an example: "From the listener side, handling exceptions is as simple as wrapping
the collect() function in a try/catch block."

https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801815727_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801815727_ColorImages.pdf

xvi Preface

A block of code is set as follows:

val chan = produce(capacity = 10) {

 (1..10).forEach {

 send(it)

 }

}

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

flow {

 (1..10).forEach {

 ...

 if (it == 9) {

 throw RuntimeException()

 }

 }

}

Any command-line input or output is written as follows:

...

4 seconds -> received 30

5 seconds -> received 40

6 seconds -> received 49

...

Bold: Indicates a new term, an important word, or words that you see onscreen. For
instance, words in menus or dialog boxes appear in bold. Here is an example: "On the
next screen, choose JUnit 5 as your Test framework and set Target JVM version to 1.8,
then click Finish."

Tips or Important Notes
Appear like this.

Preface xvii

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, email us at
customercare@packtpub.com and mention the book title in the subject of
your message.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please visit www.packtpub.com/support/errata and
fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit authors.
packtpub.com.

Share Your Thoughts
Once you've read Kotlin Design Patterns and Best Practices, we'd love to hear your
thoughts! Please click here to go straight to the Amazon review page for this book
and share your feedback.

Your review is important to us and the tech community and will help us make sure
we're delivering excellent quality content.

mailto:customercare@packtpub.com
http://www.packtpub.com/support/errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-81572-0

Section 1:
Classical Patterns

In this section, we will cover the basic syntax of the Kotlin programming language and the
implementation of all the classical design patterns in Kotlin.

The classical design patterns deal with three major problems in system design: how to
create objects efficiently, how to encapsulate object hierarchies, and how to make object
behavior more dynamic.

We'll discuss which design patterns come as part of the language, and how to implement
those that don't.

This section comprises the following chapters:

•	 Chapter 1, Getting Started with Kotlin

•	 Chapter 2, Working with Creational Patterns

•	 Chapter 3, Understanding Structural Patterns

•	 Chapter 4, Getting Familiar with Behavioral Patterns

1
Getting Started

with Kotlin
The bulk of this chapter will be dedicated to basic Kotlin syntax. It is important to be
comfortable with a language before we start implementing any design patterns in it.

We'll also briefly discuss what problems design patterns solve and why you should use
them in Kotlin. This will be helpful to those who are less familiar with the concept
of design patterns. But even for experienced engineers, it may provide an interesting
perspective.

This chapter doesn't aim to cover the entire language vocabulary but to get you familiar
with some basic concepts and idioms. The following chapters will expose you to even
more language features as they become relevant to the design patterns that we'll discuss.

In this chapter, we will cover the following main topics:

•	 Basic language syntax and features

•	 Understanding Kotlin code structure

•	 Type system and null safety

•	 Reviewing Kotlin data structures

•	 Control flow

•	 Working with text and loops

4 Getting Started with Kotlin

•	 Classes and inheritance

•	 Extension functions

•	 Introduction to design patterns

By the end of this chapter, you'll have a knowledge of Kotlin's basics, which will be the
foundation for the following chapters.

Technical requirements
To follow the instructions in this chapter, you'll need the following:

•	 IntelliJ IDEA Community Edition (https://www.jetbrains.com/idea/
download/)

•	 OpenJDK 11 or higher (https://openjdk.java.net/install/)

The code files for this chapter are available at https://github.com/
PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/
tree/main/Chapter01.

Basic language syntax and features
Whether you come from Java, C#, Scala, or any other statically typed programming
language, you'll find Kotlin syntax quite familiar. This is not by coincidence but to
make the transition to this new language as smooth as possible for those with previous
experience in other languages. Besides that familiarity, Kotlin brings a vast amount
of features, such as better type safety. As we move ahead, you'll notice that all of them
are attempting to solve real-world problems. That pragmatic approach is remarkably
consistent across the language. For example, one of the strongest benefits of Kotlin is
complete Java interoperability. You can have Java and Kotlin classes alongside each other
and freely use any library that is available in Java for a Kotlin project.

To summarize, the goals of the language are as follows:

•	 Pragmatic: Makes things we do often easy to achieve

•	 Readable: Keeps a balance between conciseness and clarity on what the code does

•	 Easy to reuse: Supports adapting code to different situations

•	 Safe: Makes it hard to write code that crashes

•	 Interoperable: Allows the use of existing libraries and frameworks

https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://openjdk.java.net/install/
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter01
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter01
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter01

Understanding Kotlin code structure 5

This chapter will discuss how these goals are achieved.

Multi-paradigm language
Some of the major paradigms in programming languages are procedural, object-oriented,
and functional paradigms.

Being pragmatic, Kotlin allows for any of these paradigms. It has classes and inheritance,
coming from the object-oriented approach. It has higher-order functions from functional
programming. You don't have to wrap everything in classes if you don't want to, though.
Kotlin allows you to structure your entire code as just a set of procedures and structs if
you need to. You will see how all these approaches come together, as different examples
will combine different paradigms to solve the problems discussed.

Instead of covering all aspects of a topic from start to finish, we will be building the
knowledge as we go.

Understanding Kotlin code structure
The first thing you'll need to do when you start programming in Kotlin is to create a new
file. Kotlin's file extension is usually .kt.

Unlike Java, there's no strong relationship between the filename and class name. You can
put as many public classes in your file as you want, as long as the classes are related to one
another and your file doesn't grow too long to read.

Naming conventions
As a convention, if your file contains a single class, name your file the same as your class.

If your file contains more than one class, then the filename should describe the common
purpose of those classes. Use Camel case when naming your files, as per the Kotlin coding
conventions: https://kotlinlang.org/docs/coding-conventions.html.

The main file in your Kotlin project should usually be named Main.kt.

Packages
A package is a collection of files and classes that all share a similar purpose or domain.
Packages are a convenient way to have all your classes and functions under the same
namespace, and often in the same folder. That's the reason Kotlin, similar to many other
languages, uses the notion of a package.

https://kotlinlang.org/docs/coding-conventions.html

6 Getting Started with Kotlin

The package that the file belongs to is declared using a package keyword:

package me.soshin

Similar to placing classes in files, you can put any package in any directory or file,
but if you're mixing Java and Kotlin, Kotlin files should follow Java package rules, as
given at https://docs.oracle.com/javase/tutorial/java/package/
namingpkgs.html.

In purely Kotlin projects, common package prefixes can be omitted from the folder
structure. For example, if all your projects are under the me.soshin package, and
part of your application deals with mortgages, you can place your files directly in
the /mortgages folder and not in the /me/soshin/mortgages folder like Java
requires.

There is no need to declare a package for your Main.kt file.

Comments
Going forward, we will be documenting parts of the code using Kotlin comments.
Similar to many other programming languages, Kotlin uses // for a single-line comment
and /* */ for multiline comments.

Comments are a useful way to provide more context both to other developers and to your
future self. Now, let's write our first Kotlin program and discuss how Kotlin's guiding
principles are applied to it.

Hello Kotlin
There's no book dedicated to a programming language that can avoid the ubiquitous Hello
World example. We're certainly not going to challenge that honored tradition.

To begin learning how Kotlin works, let's put the following code in our Main.kt file
and run it:

fun main() {

 println("Hello Kotlin")

}

When your run this example, for example by pressing the Run button in your IntelliJ
IDEA, it simply outputs the following:

> Hello Kotlin

https://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html
https://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html

Understanding Kotlin code structure 7

There are some interesting attributes in that piece of code in comparison to the following
Java code that does exactly the same:

class Main {

 public static void main(String[] args) {

 System.out.println("Hello Java");

 }

}

Let's focus on those attributes in the next sections.

No wrapping class
In Java, C#, Scala, and many other languages, it's necessary to wrap every function in
a class for it to become executable.

Kotlin, though, has the concept of package-level functions. If your function doesn't need
to access properties of a class, you don't need to wrap it in a class. It's as simple as that.

We'll discuss package-level functions in more detail in the following chapters.

Important Note:
From here on, we'll use ellipsis notation (three dots) to indicate that some parts
of the code were omitted to focus on the important bits. You can always find
the full code examples at the GitHub link for this chapter.

No arguments
Arguments, supplied as an array of strings, are a way to configure your command-line
application. In Java, you cannot have a runnable main() function that doesn't take this
array of arguments:

public static void main(String[] args) { ... }

But in Kotlin, those are entirely optional.

No static modifier
Some languages use the static keyword to indicate that a function in a class can
be executed without the need to instantiate the class. The main() function is one
such example.

8 Getting Started with Kotlin

In Kotlin, there's no such limitation. If your function doesn't have any state, you can place
it outside of a class, and there is no static keyword in Kotlin.

A less verbose print function
Instead of the verbose System.out.println method that outputs a string to the
standard output, Kotlin provides us with an alias called println() that does exactly the
same.

No semicolons
In Java, and many other languages, every statement or expression must be terminated with
a semicolon, as shown in the following example:

System.out.println("Semicolon =>");

Kotlin is a pragmatic language. So, instead, it infers during compilation where it should
put the semicolons:

println("No semicolons! =>")

Most of the time, you won't need to put semicolons in your code. They're considered
optional.

This is an excellent example of how pragmatic and concise Kotlin is. It sheds lots of fluff
and lets you focus on what's important.

Important Note:
You don't have to write your code in a file for simple snippets. You can also
play with the language online: try https://play.kotlinlang.org/
or use a REPL and an interactive shell after installing Kotlin and running
kotlinc.

Understanding types
Previously, we said that Kotlin is a type-safe language. Let's examine the Kotlin type
system and compare it to what Java provides.

Important Note:
The Java examples are for familiarity and not to prove that Kotlin is superior to
Java in any way.

https://play.kotlinlang.org/

Understanding types 9

Basic types
Some languages make a distinction between primitive types and objects. Taking Java as an
example, there is the int type and Integer – the former being more memory-efficient
and the latter more expressive by supporting a lack of value and having methods.

There is no such distinction in Kotlin. From a developer's perspective, all the types are
the same.

But it doesn't mean that Kotlin is less efficient than Java in that aspect. The Kotlin
compiler optimizes types. So, you don't need to worry about it much.

Most of the Kotlin types are named similarly to Java, the exceptions being Java's Integer
being called Int and Java's void being called Unit.

It doesn't make much sense to list all the types, but here are some examples:

Table 1.1 - Kotlin types

Type inference
Let's declare our first Kotlin variable by extracting the string from our Hello Kotlin
example:

var greeting = "Hello Kotlin"

println(greeting)

Note that nowhere in our code is it stated that greeting is of the String type. Instead,
the compiler decides what type of variable should be used. Unlike interpreted languages,
such as JavaScript, Python, or Ruby, the type of variable is defined only once.

In Kotlin, this will produce an error:

var greeting = "Hello Kotlin"

greeting = 1 // <- Greeting is a String

If you'd like to define the type of variable explicitly, you may use the following notation:

var greeting: String = "Hello Kotlin"

10 Getting Started with Kotlin

Values
In Java, variables can be declared final. Final variables can be assigned only once and
their reference is effectively immutable:

final String s = "Hi";

s = "Bye"; // Doesn't work

Kotlin urges us to use immutable data as much as possible. Immutable variables in Kotlin
are called values and use the val keyword:

val greeting = "Hi"

greeting = "Bye"// Doesn't work, "Val cannot be reassigned"

Values are preferable over variables. Immutable data is easier to reason about, especially
when writing concurrent code. We'll touch more on that in Chapter 5, Introducing
Functional Programming.

Comparison and equality
We were taught very early in Java that comparing objects using == won't produce the
expected results, since it tests for reference equality – whether two pointers are the same,
and not whether two objects are equal.

Instead, in Java, we use equals() for objects and == to compare only primitives, which
may cause some confusion.

JVM does integer caching and string interning to prevent that in some basic cases, so for
the sake of the example, we'll use a large integer:

Integer a = 1000;

Integer b = 1000;

System.out.println(a == b); // false

System.out.println(a.equals(b)); // true

This behavior is far from intuitive. Instead, Kotlin translates == to equals():

val a = 1000

val b = 1000

println(a == b) // true

println(a.equals(b)) // true

Understanding types 11

If you do want to check for reference equality, use ===. This won't work for some of the
basic types, though:

println(a === b) // Still true

We'll discuss referential equality more when we learn how to instantiate classes.

Declaring functions
In Java, every method must be wrapped by a class or interface, even if it doesn't rely on
any information from it. You're probably familiar with many Util classes in Java that
only have static methods, and their only purpose is to satisfy the language requirements
and bundle those methods together.

We already mentioned earlier that in Kotlin, a function can be declared outside of a class.
We've seen it with the main() function. The keyword to declare a function is fun. The
argument type comes after the argument name, and not before:

fun greet(greeting: String) {

 println(greeting)

}

If you need to return a result, its type will come after the function declaration:

fun getGreeting(): String {

 return "Hello, Kotlin!"

}

You can try this out yourself:

fun main() {

 greet(getGreeting())

}

If the function doesn't return anything, the return type can be omitted completely. There's
no need to declare it as void, or its Kotlin counterpart, Unit.

When a function is very short and consists of just a single expression, such as our
getGreeting() function, we can remove the return type and the curly brackets, and
use a shorter notation:

fun getGreeting() = "Hello, Kotlin!"

12 Getting Started with Kotlin

Here, the Kotlin compiler will infer that we're returning a String type.

Unlike some scripting languages, the order in which functions are declared is not
important. Your main function will have access to all the other functions in its scope,
even if those are declared after it in the code file.

There are many other topics regarding function declarations, such as named arguments,
default parameters, and variable numbers of arguments. We'll introduce them in the
following chapters with relevant examples.

Important Note:
Many examples in this book assume that the code we provide is wrapped in the
main function. If you don't see a signature of the function, it probably should
be part of the main function. As an alternative, you can also run the examples
in an IntelliJ scratch file.

Null safety
Probably the most notorious exception in the Java world is NullPointerException.
The reason behind this exception is that every object in Java can be null. The code here
shows us why this is a problem:

final String s = null;

System.out.println(s.length());

// Causes NullPointerException

It's not like Java didn't attempt to solve that problem, though. Since Java 8, there has been
an Optional construct that represents a value that may not be there:

var optional = Optional.of("I'm not null");

if (optional.isPresent()) {

 System.out.println(optional.get().length());

}

Reviewing Kotlin data structures 13

But it doesn't solve our problem. If our function receives Optional as an argument, we
can still pass it a null value and crash the program at runtime:

void printLength(Optional<String> optional) {

 if (optional.isPresent()) { // <- Missing null check

 here

 System.out.println(optional.get().length());

 }

}

printLength (null); // Crashes!

Kotlin checks for nulls during compile time:

val s: String = null // Won't compile

Let's take a look at the printLength() function written in Kotlin:

fun printLength(s: String) {

 println(s.length)

}

Calling this function with null won't compile at all:

printLength(null)

// Null cannot be a value of a non-null type String

If you specifically want your type to be able to receive nulls, you'll need to mark it as
nullable using the question mark:

fun printLength(stringOrNull: String?) { ... }

There are multiple techniques in Kotlin for dealing with nulls, such as smart casts, the
Elvis operator, and so on. We'll discuss alternatives to nulls in Chapter 4, Getting Familiar
with Behavioral Patterns. Let's now move on to data structures in Kotlin.

Reviewing Kotlin data structures
There are three important groups of data structures we should get familiar with in Kotlin:
lists, sets, and maps. We'll cover each briefly, then discuss some other topics related to data
structures, such as mutability and tuples.

14 Getting Started with Kotlin

Lists
A list represents an ordered collection of elements of the same type. To declare a list in
Kotlin, we use the listOf() function:

val hobbits = listOf("Frodo", "Sam", "Pippin", "Merry")

Note that we didn't specify the type of the list. The reason is that the type inference
can also be used when constructing collections in Kotlin, the same as when initializing
variables.

If you want to provide the type of the list, you similarly do that for defining arguments for
a function:

val hobbits: List<String> = listOf("Frodo", "Sam", "Pippin",
 "Merry")

To access an element in the list at a particular index, we use square brackets:

println(hobbits[1])

The preceding code will output this:

> Sam

Sets
A set represents a collection of unique elements. Looking for the presence of an element
in a set is much faster than looking it up in a list. But, unlike lists, sets don't provide
indexes access.

Let's create a set of football World Cup champions until after 1994:

val footballChampions = setOf("France", "Germany", "Spain",
 "Italy", "Brazil", "France", "Brazil", "Germany")

println(footballChampions) // [France, Germany, Spain,
 Italy, Brazil]

You can see that each country exists in a set exactly once. To check whether an element is
in a Set collection, you can use the in function:

println("Israel" in footballChampions)

println("Italy" in footballChampions)

Reviewing Kotlin data structures 15

This gives us the following:

> false

> true

Note that although sets, in general, do not guarantee the order of elements, the current
implementation of a setOf() function returns LinkedHashSet, which preserves
insertion order – France appears first in the output, since it was the first country
in the input.

Maps
A map is a collection of key-value pairs, in which keys are unique. The keyword that
creates a pair of two elements is to. In fact, this is not a real keyword but a special
function. We'll learn about it more in Chapter 5, Introducing Functional Programming.

In the meantime, let's create a map of some of the Batman movies and the actors that
played Bruce Wayne in them:

val movieBatmans = mapOf(

 "Batman Returns" to "Michael Keaton",

 "Batman Forever" to "Val Kilmer",

 "Batman & Robin" to "George Clooney"

)

println(movieBatmans)

This prints the following:

> {Batman Returns=Michael Keaton,

> Batman Forever=Val Kilmer,

> Batman & Robin=George Clooney}

To access a value by its key, we use square brackets and provide the key:

println(movieBatmans["Batman Returns"])

The preceding code will output this:

> Michael Keaton

16 Getting Started with Kotlin

Those data structures also support checking that an element doesn't exist:

println(" Batman Begins " !in movieBatmans)

We get the following output:

> true

Mutability
All of the data structures we have discussed so far are immutable or, more correctly,
read-only.

There are no methods to add new elements to a list we create with the listOf()
function, and we also cannot replace any element:

hobbits[0] = "Bilbo " // Unresolved reference!

Immutable data structures are great for writing concurrent code. But, sometimes, we still
need a collection we can modify. In order to do that, we can use the mutable counterparts
of the collection functions:

val editableHobbits = mutableListOf("Frodo", "Sam",
 "Pippin", "Merry")

editableHobbits.add("Bilbo")

Editable collection types have functions such as add() that allow us to modify or, in
other words, mutate them.

Alternative implementations for collections
If you have worked with JVM before, you may know that there are other implementations
of sets and maps. For example, TreeMap stores the keys in a sorted order.

Here's how you can instantiate them in Kotlin:

import java.util.*

// Mutable map that is sorted by its keys

val treeMap = java.util.TreeMap(

 mapOf(

 "Practical Pig" to "bricks",

 "Fifer" to "straw",

 "Fiddler" to "sticks"

Reviewing Kotlin data structures 17

)

)

println(treeMap.keys)

We will get the following output:

> [Fiddler, Fifer, Practical Pig]

Note that the names of the Three Little Pigs are ordered alphabetically.

Arrays
There is one other data structure we should cover in this section – arrays. In Java, arrays
have a special syntax that uses square brackets. For example, an array of strings is declared
String[], while a list of strings is declared as List<String>. An element in a Java
array is accessed using square brackets, while an element in a list is accessed using the
get() method.

To get the number of elements in an array in Java, we use the length() method, and to
do the same with a collection, we use the size() method. This is part of Java's legacy and
its attempts to resemble C++.

In Kotlin, array syntax is consistent with other types of collections. An array of strings is
declared as Array<String>:

val musketeers: Array<String> = arrayOf("Athos", "Porthos",
 "Aramis")

This is the first time we see angle brackets in Kotlin code. Similar to Java or TypeScript,
the type between them is called type argument. It indicates that this array contains
strings. We'll discuss this topic in detail in Chapter 4, Getting Familiar with Behavioral
Patterns, while covering generics.

If you already have a collection and would like to convert it into an array, use the
toTypedArray function:

listOf(1, 2, 3, 5).toTypedArray()

In terms of its abilities, a Kotlin array is very similar to a list. For example, to get the
number of elements in a Kotlin array, we use the same size property as other collections.

18 Getting Started with Kotlin

When would you need to use arrays then? One example is accepting arguments in the
main function. Previously, we've seen only main functions without arguments, but
sometimes you want to pass them from a command line.

Here's an example of a main function that accepts arguments from a command line and
prints all of them, separated by commas:

fun main(args: Array<String>) {

 println(args.joinToString(", "))

}

Other cases include invoking Java functions that expect arrays or using varargs syntax,
which we will discuss in Chapter 3, Understanding Structural Patterns.

As we are now familiar with some basic data structures, it's time to discuss how we can
apply logic to them using if and when expressions.

Control flow
You could say that the control flow is the bread and butter of writing programs. We'll start
with two conditional expressions, if and when.

The if expression
In Java, if is a statement. Statements do not return any value. Let's look at the following
function, which returns one of two possible values:

public String getUnixSocketPolling(boolean isBsd) {

 if (isBsd) {

 return "kqueue";

 }

 else {

 return "epoll";

 }

}

While this example is easy to follow, in general, having multiple return statements is
considered bad practice because they often make the code harder to comprehend.

Control flow 19

We could rewrite this method using Java's var keyword:

public String getUnixSocketPolling(boolean isBsd) {

 var pollingType = "epoll";

 if (isBsd) {

 pollingType = "kqueue";

 }

 return pollingType;

}

Now, we have a single return statement, but we had to introduce a mutable variable.
Again, with such a simple example, this is not an issue. But, in general, you should try to
avoid mutable shared state as much as possible, since such code is not thread-safe.

Why are we having problems writing that in the first place, though?

Contrary to Java, in Kotlin, if is an expression, meaning it returns a value. We could
rewrite the previous function in Kotlin as follows:

fun getUnixSocketPolling(isBsd: Boolean): String {

 return if (isBsd) {

 "kqueue"

 } else {

 "epoll"

 }

}

Or we could use a shorter form:

fun getUnixSocketPolling(isBsd: Boolean): String
 = if (isBsd) "kqueue" else "epoll"

Due to the fact that if is an expression, we didn't need to introduce any local variables.

Here, we're again making use of single-expression functions and type inference. The
important part is that if returns a value of the String type. There's no need for multiple
return statements or mutable variables whatsoever.

Important Note:
Single-line functions in Kotlin are very cool and pragmatic, but you should
make sure that somebody else other than you understands what they do. Use
with care.

20 Getting Started with Kotlin

The when expression
What if (no pun intended) we want to have more conditions in our if statement?

In Java, we use the switch statement. In Kotlin, there's a when expression, which is a lot
more powerful, since it can embed some other Kotlin features. Let's create a method that's
given a superhero and tells us who their archenemy is:

fun archenemy(heroName: String) = when (heroName) {

 "Batman" -> "Joker"

 "Superman" -> "Lex Luthor"

 "Spider-Man" -> "Green Goblin"

 else -> "Sorry, no idea"

}

The when expression is very powerful. In the next chapters, we will elaborate on how we
can combine it with ranges, enums, and sealed classes as well.

As a general rule, use when if you have more than two conditions. Use if for simple
cases.

Working with text
We've already seen many examples of working with text in the previous section. After all,
it's not possible to print Hello Kotlin without using a string, or at least it would be
very awkward and inconvenient.

In this section, we'll discuss some of the more advanced features that allow you to
manipulate text efficiently.

String interpolation
Let's assume now we would like to actually print the results from the previous section.

First, as you may have already noticed, in one of the previous examples, Kotlin provides
a nifty println() standard function that wraps the bulkier System.out.println
command from Java.

But, more importantly, as in many other modern languages, Kotlin supports string
interpolation using the ${} syntax. Let's take the example from before:

val hero = "Batman"

println("Archenemy of $hero is ${archenemy(hero)}")

Working with text 21

The preceding code would print as follows:

> Archenemy of Batman is Joker

Note that if you're interpolating a value of a function, you need to wrap it in curly braces.
If it's a variable, curly braces could be omitted.

Multiline strings
Kotlin supports multiline strings, also known as raw strings. This feature exists in many
modern languages, and was brought to Java 15 as text blocks.

The idea is quite simple. If we want to print a piece of text that spans multiple lines, let's
say something from Alice's Adventures in Wonderland by Lewis Carroll, one way is to
concatenate it:

println("Twinkle, Twinkle Little Bat\n" +

 "How I wonder what you're at!\n" +

 "Up above the world you fly,\n" +

 "Like a tea tray in the sky.\n" +

 "Twinkle, twinkle, little bat!\n" +

 "How I wonder what you're at!")

While this approach certainly works, it's quite cumbersome.

Instead, we could define the same string literal using triple quotes:

println("""Twinkle, Twinkle Little Bat

 How I wonder what you're at!

 Up above the world you fly,

 Like a tea tray in the sky.

 Twinkle, twinkle, little bat!

 How I wonder what you're at!""")

This is a much cleaner way to achieve the same goal. If you execute this example, you may
be surprised that the poem is not indented correctly. The reason is that multiline strings
preserve whitespace characters, such as tabs.

22 Getting Started with Kotlin

To print the results correctly, we need to add a trimIndent() invocation:

println("""

 Twinkle, Twinkle Little Bat

 How I wonder what you're at!

 """.trimIndent())

Multiline strings also have another benefit – there's no need to escape quotes in them.
Let's look at the following example:

println("From \" Alice's Adventures in Wonderland\" ")

Notice how the quote characters that are part of the text had to be escaped using the
backslash character.

Now, let's look at the same text using multiline syntax:

println(""" From " Alice's Adventures in Wonderland" """)

Note that there's no need for escape characters anymore.

Loops
Now, let's discuss another typical control structure – a loop. Loops are a very natural
construct for most developers. Without loops, it would be tough to repeat the same code
block more than once (although we will discuss how to do that without loops in later
chapters).

for-each loop
Probably the most helpful type of a loop in Kotlin is a for-each loop. This loop can
iterate over strings, data structures, and basically everything that has an iterator. We'll
learn more about iterators in Chapter 4, Getting Familiar with Behavioral Patterns, so for
now, let's demonstrate their use on a simple string:

for (c in "Word") {

 println(c)

}

Loops 23

This will print the following:

>W

>o

>r

>d

The for-each loop works on all the types of data structures we already discussed as well,
that is, lists, sets, and maps. Let's take a list as an example:

val jokers = listOf("Heath Ledger", "Joaquin Phoenix",
 "Jack Nicholson")

for (j in jokers) {

 println(j)

}

We'll get the following output:

> Heath Ledger

> Joaquin Phoenix

> Jack Nicholson

You'll see this loop many more times in this book, as it's very useful.

The for loop
While in some languages for-each and for loops are two completely different
constructs, in Kotlin a for loop is simply a for-each loop over a range.

To understand it better, let's look at a for loop that prints all the single-digit numbers:

for (i in 0..9) {

 println(i)

}

This doesn't look anything like a Java for loop and may remind you more of Python. The
two dots are called a range operator.

24 Getting Started with Kotlin

If you run this code, you will notice that this loop is inclusive. It prints all the numbers,
including 9. This is similar to the following Java code:

for (int i = 0; i <= 9; i++)

If you want your range to be exclusive and not to include the last element, you can use the
until function:

for (i in 0 until 10) {

 println("for until $i")

// Same output as the previous

 loop

}

If you'd like to print the numbers in reverse order, you can use the downTo function:

for (i in 9 downTo 0) {

 println("for downTo $i") // 9, 8, 7...

}

It may seem confusing that until and downTo are called functions, although they look
more like operators. This is another interesting Kotlin feature called infix call, which will
be discussed later.

The while loop
There are no changes to the while loop functionality compared to some other languages,
so we'll cover them very briefly:

var x = 0

while (x < 10) {

 x++

 println("while $x")

}

Classes and inheritance 25

This will print numbers from 1 to 10. Note that we are forced to define x as var. The
lesser-used do while loop is also present in the language:

var x = 5

do {

 println("do while $x")

 x--

} while (x > 0)

Most probably, you won't be using the while loop and especially the do while loop
much in Kotlin. In the following chapters, we'll discuss much more idiomatic ways
to do this.

Classes and inheritance
Although Kotlin is a multi-paradigm language, it has a strong affinity to the Java
programming language, which is based on classes. Keeping Java and JVM interoperability
in mind, it's no wonder that Kotlin also has the notion of classes and classical inheritance.

In this section, we'll cover the syntax for declaring classes, interfaces, abstract classes, and
data classes.

Classes
A class is a collection of data, called properties, and methods. To declare a class, we use
the class keyword, exactly like Java.

Let's imagine we're building a video game. We can define a class to represent the player
as follows:

class Player {

}

The instantiation of a class simply looks like this:

val player = Player()

Note that there's no new keyword in Kotlin. The Kotlin compiler knows that we want to
create a new instance of that class by the round brackets after the class name.

If the class has no body, as in this simple example, we can omit the curly braces:

class Player // Totally fine

26 Getting Started with Kotlin

Classes without any functions or properties aren't particularly useful, but we'll explore in
Chapter 4, Getting Familiar with Behavioral Patterns, why this syntax exists and how it is
consistent with other language features.

Primary constructor
It would be useful for the player to be able to specify their name during creation. In order
to do that, let's add a primary constructor to our class:

class Player(name: String)

Now, this declaration won't work anymore:

val player = Player()

Also, we'll have to provide a name for every new player we instantiate:

val player = Player("Roland")

We'll return to constructors soon enough. But for now, let's discuss properties.

Properties
In Java, we are used to the concept of getters and setters. If we were to write a class
representing a player in a game in Kotlin using Java idioms, it may have looked like this:

class Player(name: String) {

 private var name: String = name

 fun getName(): String {

 return name

 }

 fun setName(name: String) {

 this.name = name;

 }

}

If we want to get a player's name, we invoke the getName() method. If we want to
change a player's name, we invoke the setName() method. That's quite simple to follow
but very verbose.

Classes and inheritance 27

It is the first time we see the this keyword in Kotlin, so let's quickly explain what it
means. Similar to many other languages, this holds the reference to the current object of
that class. In our case, it points to the instance of a Player class.

Why don't we write our classes like that, though?

class Player {

 var name: String = ""

}

Seems like this approach has lots of benefits. It is much less verbose for sure. Reading a
person's name is now much shorter – player.name.

Also, changing the name is much more intuitive – player.name = "Alex";.

But by doing so, we lost a lot of control over our object. We cannot make Player
immutable, for example. If we want everybody to be able to read the player's name, they'll
also be able to change it at any point in time. This is a significant problem if we want to
change that code later. With a setter, we can control that, but not with a public field.

Kotlin properties provide a solution for all those problems. Let's look at the following class
definition:

class Player(val name: String)

Note that this is almost the same as the example from the Primary constructor section, but
now name has a val modifier.

This may look the same as the PublicPerson Java example, with all its problems. But
actually, this implementation is similar to ImmutablePerson, with all its benefits.

How is that possible? Behind the scenes, Kotlin will generate a member and a getter with
the same name for our convenience. We can set the property value in the constructor and
then access it using its name:

val player = Player("Alex")

println(player.name)

Trying to change the name of our Player will result in an error, though:

player.name = "Alexey" // value cannot be reassigned

28 Getting Started with Kotlin

Since we defined this property as a value, it is read-only. To be able to change a property,
we need to define it as mutable. Prefixing a constructor parameter with var will
automatically generate both a getter and a setter:

class Player(val name: String, var score: Int)

If we don't want the ability to provide the value at construction time, we can move the
property inside the class body:

class Player(val name: String) {

 var score: Int = 0

}

Note that now we must also provide a default value for that property, since it cannot be
simply null.

Custom setters and getters
Although we can set a score now easily, its value may be invalid. Take the following
example:

player.score = -10

If we want to have a mutable property with some validations, we need to define an explicit
setter for it, using set syntax:

class Player(val name: String) {

 var score: Int = 0

 set(value) {

 field = if (value >= 0) {

 value

 } else {

 0

 }

 }

}

Here, value is the new value of the property and field is its current value. If our new
value is negative, we decide to use a default value.

Classes and inheritance 29

Coming from Java, you may be tempted to write the following code in your setter instead:

set(value) {

 this.score = if (value >= 0) value else 0

}

But, in Kotlin, this will create an infinite recursion. You must remember that Kotlin
generates a setter for mutable properties. So, the previous code will be translated to
something like this:

// This is a pseudocode, not real Kotlin code!

...

fun setValue(value: Int) {

 setValue(value) // Infinite recursion!

}

...

For that reason, we use the field identifier, which is provided automatically.

In a similar manner, we can declare a custom getter:

 class Player(name: String) {

 val name = name

 get() = field.toUpperCase()

}

First, we save a value received as a constructor argument into a field with the same
name. Then, we define a custom getter that will convert all characters in this property to
uppercase:

println(player.name)

We'll get this as our output:

> ALEX

Interfaces
You are probably already familiar with the concept of interfaces from other languages. But
let's quickly recap.

In typed languages, interfaces provide a way to define behavior that some class will have to
implement. The keyword to define an interface is simply interface.

30 Getting Started with Kotlin

Let's now define an interface for rolling a die:

interface DiceRoller {

 fun rollDice(): Int

}

To implement the interface, a class specifies its name after a colon. There's no implement
keyword in Kotlin.

import kotlin.random.*

class Player(...) : DiceRoller

{

 ...

 fun rollDice() = Random.nextInt(0, 6)

}

This is also the first time we see the import keyword. As the name implies, it allows us to
import another package, such as kotlin.random, from the Kotlin standard library.

Interfaces in Kotlin also support default functions. If a function doesn't rely on any state,
such as this function that simply rolls a random number between 0 and 5, we can move it
into the interface:

interface DiceRoller {

 fun rollDice() = Random.nextInt(0, 6)

}

Abstract classes
Abstract classes, another concept familiar to many, are similar to interfaces in that they
cannot be instantiated directly. Another class must extend them first. The difference is that
unlike interface, an abstract class can contain state.

Let's create an abstract class that is able to move our player on the board or, for the sake of
simplicity, just store the new coordinates:

abstract class Moveable() {

 private var x: Int = 0

 private var y: Int = 0

 fun move(x: Int, y: Int) {

 this.x = x

Classes and inheritance 31

 this.y = y

 }

}

Any class that implements Moveable will inherit a move() function as well.

Now, let's discuss in some more detail the private keyword you see here for the
first time.

Visibility modifiers
We mentioned the private keyword earlier in this chapter but didn't have a chance
to explain it. The private properties or functions are only accessible to the class that
declared them – Moveable, in this case.

The default visibility of classes and properties is public, so there is no need to use the
public keyword all the time.

In order to extend an abstract class, we simply put its name after a colon. There's also no
extends keyword in Kotlin.

class ActivePlayer(name: String) : Moveable(), DiceRoller {

...

}

How would you be able to differentiate between an abstract class and an interface, then?

An abstract class has round brackets after its name to indicate that it has a constructor. In
the upcoming chapters, we'll see some uses of that syntax.

Inheritance
Apart from extending abstract classes, we can also extend regular classes as well.

Let's try to extend our Player class using the same syntax we used for an abstract class.
We will attempt to create a ConfusedPlayer class, that is, a player that when given
(x and y) moves to (y and x) instead.

First, let's just create a class that inherits from Player:

class ConfusedPlayer(name: String): ActivePlayer(name)

Here, you can see the reason for round brackets even in abstract classes. This allows
passing arguments to the parent class constructor. This is similar to using the super
keyword in Java.

32 Getting Started with Kotlin

Surprisingly, this doesn't compile. The reason for this is that all classes in Kotlin are final
by default and cannot be inherited from.

To allow other classes to inherit from them, we need to declare them open:

open class ActivePlayer (...) : Moveable(), DiceRoller {

...

}

Let's now try and override the move method now:

class ConfusedPlayer(name : String): Player(name) {

 // move() must be declared open

 override fun move(x: Int, y: Int) {

 this.x = y // must be declared protected

 this.y = x // must be declared protected

 }

}

Overriding allows us to redefine the behavior of a function from a parent class. Whereas
in Java, @Override is an optional annotation, in Kotlin override is a mandatory
keyword. You cannot hide supertype methods, and code that doesn't use override
explicitly won't compile.

There are two other problems that we introduced in that piece of code. First, we cannot
override a method that is not declared open as well. Second, we cannot modify the
coordinates of our player from a child class since both coordinates are private.

Let's use the protected visibility modifier the makes the properties accessible to child
classes and mark the function as open to be able to override it:

abstract class Moveable() {

 protected var x: Int = 0

 protected var y: Int = 0

 open fun move(x: Int, y: Int) {

 this.x = x

 this.y = y

 }

}

Classes and inheritance 33

Now, both of the problems are fixed. You also see the protected keyword here for the
first time. Similar to Java, this visibility modifier makes a property or a method visible
only to the class itself and to its subclasses.

Data classes
Remember that Kotlin is all about productiveness. One of the most common tasks for Java
developers is to create yet another Plain Old Java Object (POJO). If you're not familiar
with POJO, it is basically an object that only has getters, setters, and implementation of
equals or hashCode methods. This task is so common that Kotlin has it built into the
language. It's called a data class.

Let's take a look at the following example:

data class User(val username: String, private val

 password: String)

This will generate us a class with two getters and no setters (note the val part), which will
also implement equals, hashCode, and clone functions in the correct way.

The introduction of data classes is one of the most significant improvements in reducing
the amount of boilerplate in the Kotlin language. Just like the regular classes, data classes
can have their own functions:

data class User(val username: String, private val

 password: String) {

 fun hidePassword() = "*".repeat(password.length)

}

val user = User("Alexey", "abcd1234")

println(user.hidePassword()) // ********

Compared to regular classes, the main limitation of data classes is that they are always
final, meaning that no other class can inherit from them. But it's a small price to pay to
have equals and hashCode functions generate automatically.

Kotlin data classes versus Java records
Learning from Kotlin, Java 15 introduced the notion of records. Here is how we can
represent the same data as a Java record:

public record User(String username, String password) {}

34 Getting Started with Kotlin

Both syntaxes are pretty concise. Are there any differences, though?

•	 Kotlin data classes a have copy() function that records lack. We'll cover it in
Chapter 2, Working with Creational Patterns, while discussing the prototype design
pattern.

•	 In a record, all properties must be final, or, in Kotlin terms, records support only
values and not variables.

•	 The data classes can inherit from other classes, while records don't allow that.

To summarize, data classes are superior to records in many ways. But both are great
features of the respective languages. And since Kotlin is built with interoperability in
mind, you can also easily mark a data class as a record to be accessible from Java:

@JvmRecord

data class User(val username: String, val password: String)

Extension functions
The last feature we'll cover in this chapter before moving on is extension functions.
Sometimes, you may want to extend the functionality of a class that is declared final.
For example, you would like to have a string that has the hidePassword() function
from the previous section.

One way to achieve that is to declare a class that wraps the string for us:

data class Password(val password: String) {

 fun hidePassword() = "*".repeat(password.length)

}

This solution is quite wasteful, though. It adds another level of indirection.

In Kotlin, there's a better way to implement this.

To extend a class without inheriting from it, we can prefix the function name with the
name of the class we'd like to extend:

fun String.hidePassword() = "*".repeat(this.length)

This looks almost like a regular top-level function declaration, but with one crucial change
– before the function name comes a class name. That class is called a method receiver.

Inside the function body, this will refer to any String class that the function was
invoked on.

Introduction to design patterns 35

Now, let's declare a regular string and try to invoke this new function on it:

val password: String = "secretpassword"

println("Password: ${password.hidePassword()}")

This prints the following:

> Password: **************

What black magic is this? We managed to add a function to a final class, something that
technically should be impossible.

This is another feature of the Kotlin compiler, one among many. This extension function
will be compiled to the following code:

// This is not real Kotlin

fun hidePassword(this: String) {

 "*".repeat(this.length)

}

You can see that, in fact, this is a regular top-level function. Its first argument is an
instance of the class that we extend. This also might remind you of how methods on
structs in Go work.

The code that prints the masked password will be adapted accordingly:

val password: String = "secretpassword"

println("Password: ${hidePassword(password)}")

For that reason, the extension functions cannot override the member function of the class,
or access its private or protected properties.

Introduction to design patterns
Now that we are a bit more familiar with basic Kotlin syntax, we can move on to discuss
what design patterns are all about.

36 Getting Started with Kotlin

What are design patterns?
There are different misconceptions surrounding design patterns. In general, they are
as follows:

•	 Design patterns are just missing language features.

•	 Design patterns are not necessary in a dynamic language.

•	 Design patterns are only relevant to object-oriented languages.

•	 Design patterns are only used in enterprises.

Actually, design patterns are just a proven way to solve a common problem. As a concept,
they are not limited to a specific programming language (Java), nor to a family of
languages (the C family, for example), nor are they limited to programming in general.
You may have even heard of design patterns in software architecture, which discuss how
different systems can efficiently communicate with each other. There are service-oriented
architectural patterns, which you may know as Service-Oriented Architecture (SOA),
and microservice design patterns that evolved from SOA and emerged over the past few
years. The future will, for sure, bring us even more design pattern families.

Even in the physical world, outside software development, we're surrounded by design
patterns and commonly accepted solutions to a particular problem. Let's look at
an example.

Design patterns in real life
Did you ride an elevator lately? Was there a mirror on the wall of the elevator? Why is that?
How did you feel when you last rode an elevator that had no mirror and no glass walls?

The main reason we commonly have mirrors in our elevators is to solve a frequent
problem – riding in an elevator is boring. We could put in a picture. But a picture would
also get boring after a while, if you rode the same elevator at least twice a day. Cheap, but
not much of an improvement.

We could put in a TV screen, as some do. But it makes the elevator more expensive. And it
also requires a lot of maintenance. We need to put some content on the screen to make it
not too repetitive. So, either there's a person whose responsibility is to renew the content
once in a while or a third-party company that does it for us. We'll also have to handle
different problems that may occur with screen hardware and the software behind it.
Seeing the blue screen of death is amusing, of course, but only mildly.

Introduction to design patterns 37

Some architects even go for putting elevator shafts on the building exterior and making
part of the walls transparent. This may provide some exciting views. But this solution
also requires maintenance (dirty windows don't make for the best view) and a lot of
architectural planning.

So, we put in a mirror. You get to watch an attractive person even if you ride alone. Some
studies indicate that we find ourselves more attractive than we are, anyway. Maybe you
get a chance to review your appearances one last time before that important meeting.
Mirrors visually expand the visual space and make the entire trip less claustrophobic or
less awkward if it's the start of a day and the elevator is really crowded.

Design process
Let's try and understand what we did just now.

We didn't invent mirrors in elevators. We've seen them thousands of times. But we
formalized the problem (riding in an elevator is boring) and discussed alternative
solutions (TV screens and glass walls) and the benefits of the commonly used solution
(solves the problem and is easy to implement). That's what design patterns are all about.

The basic steps of the design process are as follows:

1.	 Define exactly what the current problem is.
2.	 Consider different alternatives, based on the pros and cons.
3.	 Choose the solution that solves the problem while best fitting your specific

constraints.

Why use design patterns in Kotlin?
Kotlin comes to solve the real-world problems of today. In the following chapters, we will
discuss both the design patterns first introduced by the Gang of Four back in 1994, as well
as design patterns that emerged from the functional programming paradigm and the
design patterns that we use to handle concurrency in our applications.

You'll find that some of the design patterns are so common or useful that they're already
built into the language as reserved keywords or standard functions. Some of them will
need to combine a set of language features. And some are not so useful anymore, since the
world has moved forward, and other patterns are replacing them.

But in any case, familiarity with design patterns and best practices expands your developer
toolbox and creates a shared vocabulary between you and your colleagues.

38 Getting Started with Kotlin

Summary
In this chapter, we covered the main goals of the Kotlin programming language. We
learned how variables are declared, the basic types, null safety, and type inference. We
observed how program flow is controlled by commands such as if, when, for, and
while, and we also took a look at the different keywords used to define classes and
interfaces: class, interface, data class, and abstract class. We learned how to construct
new classes and how to implement interfaces and inherit from other classes. Finally, we
covered what design patterns are suitable for and why we need them in Kotlin.

Now, you should be able to write simple programs in Kotlin that are pragmatic and
type-safe. There are many more aspects of the language we need to discuss. We'll cover
them in later chapters once we need to apply them.

In the next chapter, we'll discuss the first of the three design pattern families – creation
patterns.

Questions
1.	 What's the difference between var and val in Kotlin?
2.	 How do you extend a class in Kotlin?
3.	 How do you add functionality to a final class?

2
Working with

Creational Patterns
In this chapter, we'll cover how classic creational patterns are implemented using Kotlin.
These patterns deal with how and when you create your objects. For each design pattern,
we will discuss what it aims to achieve and how Kotlin accommodates those needs.

We will cover the following topics in this chapter:

•	 Singleton

•	 Factory Method

•	 Abstract Factory

•	 Builder

•	 Prototype

Mastering these design patterns will allow you to manage your objects better, adapt well to
changes, and write code that is easy to maintain.

40 Working with Creational Patterns

Technical requirements
For this chapter, you will need to install the following:

•	 IntelliJ IDEA Community Edition (https://www.jetbrains.com/idea/
download/)

•	 OpenJDK 11 (or higher) (https://openjdk.java.net/install/)

You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/
tree/main/Chapter02.

Singleton
Singleton – the most popular bachelor in town. Everybody knows him, everybody talks
about him, and everybody knows where to look for him.

Even people who don't like using design patterns will know Singleton by name. At one
point, it was even proclaimed an anti-pattern, but only because of its wide popularity.

So, for those who are encountering it for the first time, what is this design pattern all about?

Usually, if you have a class, you can create as many instances of it as you want. For
example, let's say that we both are asked to list all of our favorite movies:

val myFavoriteMovies = listOf("Black Hawk Down", "Blade
 Runner")

val yourFavoriteMovies = listOf(...)

Note that we can create as many instances of List as we want, and there's no problem
with that. Most classes can have multiple instances.

Next, what if we both want to list the best movies in the Quick and Angry series?

val myFavoriteQuickAndAngryMovies = listOf()

val yourFavoriteQuickAndAngryMovies = listOf()

Note that these two lists are exactly the same because they are empty. And they will stay
empty because they are immutable and because the Quick and Angry series is simply
horrendous. I hope you would agree with that.

https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://openjdk.java.net/install/
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter02
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter02
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter02

Singleton 41

Since these two instances of a class are exactly the same, according to the equals method,
it doesn't make much sense to keep them in memory multiple times. It would be great if
all references to an empty list pointed to the same instance of an object. And in fact, that's
what happens with null, if you think about it. All nulls are the same.

That's the main idea behind the Singleton design pattern.

There are a couple of requirements for the Singleton design pattern:

•	 We should have exactly one instance in our system.

•	 This instance should be accessible from any part of our system.

In Java and some other languages, this task is quite complex. First, you need to forbid
new instances of an object being created by making a constructor for the private class.
Then, you also need to make sure that instantiation is preferably lazy, thread-safe, and
performant, with the following requirements:

•	 Lazy: We might not want to instantiate a singleton object when our program starts,
as this may be an expensive operation. We would like to instantiate it only when it's
needed for the first time.

•	 Thread-safe: If two threads are trying to instantiate a singleton object at the same
time, they both should receive the same instance and not two different instances.
If you're not familiar with this concept, we'll cover it in Chapter 5, Introducing
Functional Programming.

•	 Performant: If many threads are trying to instantiate a singleton object at the
same time, we shouldn't block them for a long period of time, as this will be
halting their execution.

Meeting all of these requirements in Java or C++ is quite difficult, or at least very verbose.

Kotlin makes creating singletons easy by introducing a keyword called object. You may
recognize this keyword from Scala. By using this keyword, we'll get an implementation of
a singleton object, which accommodates all of our requirements.

Important Note:
The object keyword is used for more than just creating singletons. We'll
discuss this in depth later in this chapter.

We declare objects just like a regular class but with no constructor, as a singleton object
cannot be instantiated by us:

object NoMoviesList

42 Working with Creational Patterns

From now on, we can access NoMoviesList from anywhere in our code, and there will
be exactly one instance of it:

val myFavoriteQuickAndAngryMovies = NoMoviesList

val yourFavoriteQuickAndAngryMovies = NoMoviesList

println(myFavoriteQuickAndAngryMovies ===

 yourFavoriteQuickAndAngryMovies) // true

Take note of the referential equality sign that checks that two variables point to the same
object in memory. Is this really a list though?

Let's create a function that prints the list of our movies:

fun printMovies(movies: List<String>) {

 for (m in movies) {

 println(m)

 }

}

When we pass an initial list of movies, the code compiles just fine:

// Prints each movie on a newline

printMovies(myFavoriteMovies)

But if we pass it our empty movie list, the code won't compile:

printMovies(myFavoriteQuickAndAngryMovies)

// Type mismatch: inferred type is NoMoviesList but
// List<String> was expected

The reason for this is that our function only accepts arguments of the list of strings type,
while there's nothing to tell the function that NoMoviesList is of this type (even though
its name suggests it).

Luckily, in Kotlin, singleton objects can implement interfaces, and a generic List
interface is available:

object NoMoviesList : List<String>

Singleton 43

Now, our compiler will prompt us to implement the required functions. We'll do that by
adding a body to object:

object NoMoviesList : List<String> {

 override val size = 0

 override fun contains(element: String) = false

 ... /

}

We'll leave it to you to implement the other functions if you wish. This should be a good
exercise of everything you've learned about Kotlin until now. However, you don't have to
do this. Kotlin already provides a function to create empty lists of any type:

printMovies(emptyList())

If you're curious, this function returns a singleton object that implements a List. You
can see the complete implementation in the Kotlin source code using your IntelliJ IDEA
or on GitHub (https://github.com/JetBrains/kotlin/blob/master/
libraries/stdlib/src/kotlin/collections/Collections.kt). This is an
excellent example of how design patterns are still actively applied in modern software.

A Kotlin object has one major difference from a class – it can't have constructors. If
you need to implement initialization for your Singleton, such as loading data from a
configuration file for the first time, you can use the init block instead:

object Logger {

 init {

 println("I was accessed for the first time")

 // Initialization logic goes here

 }

 // More code goes here

}

Note that if a Singleton is never invoked, it won't run its initialization logic at all, thereby
saving resources. This is called lazy initialization.

Now that we have learned how to limit object creation, let's discuss how to create objects
without using a constructor directly.

https://github.com/JetBrains/kotlin/blob/master/libraries/stdlib/src/kotlin/collections/Collections.kt
https://github.com/JetBrains/kotlin/blob/master/libraries/stdlib/src/kotlin/collections/Collections.kt

44 Working with Creational Patterns

Factory Method
The Factory Method design pattern is all about creating objects.

But why do we need a method to create objects? Isn't that what constructors are for?

Well, constructors have limitations.

As an example, imagine we're building a game of chess. We would like to allow our players
to save the state of the game into a text file and then restore the game from that position.

Since the size of the board is predetermined, we only need to record the position and type
of each piece. We'll use algebraic notation for this – for example, the Queen piece at C3
will be stored in our file as qc3, the pawn piece at A8 will be stored as pa8, and so on.

Let's assume that we already read this file into a list of strings (which, by the way, would be
an excellent application of the Singleton design pattern we discussed earlier).

Given the list of notations, we would like to populate our board with them:

// More pieces here

val notations = listOf("pa8", "qc3", ...)

val pieces = mutableListOf<ChessPiece>()

for (n in notations) {

 pieces.add(createPiece(n))

}

println(pieces)

Before we can implement our createPiece function, we need to decide what's
common to all chess pieces. We'll create an interface for that:

interface ChessPiece {

 val file: Char

 val rank: Char

}

Note that interfaces in Kotlin can declare properties, which is a very powerful feature.

Each chess piece will be a data class that implements our interface:

data class Pawn(

 override val file: Char,

 override val rank: Char

Factory Method 45

) : ChessPiece

data class Queen(

 override val file: Char,

 override val rank: Char

) : ChessPiece

The implementation of the other chess pieces is left as an exercise for you to do.

Now, what's left is to implement our createPiece function:

fun createPiece(notation: String): ChessPiece {

 val (type, file, rank) = notation.toCharArray()

 return when (type) {

 'q' -> Queen(file, rank)

 'p' -> Pawn(file, rank)

 // ...

 else -> throw RuntimeException("Unknown piece: $type")

 }

}

Before we can discuss what this function achieves, let's cover three new syntax elements
we haven't seen before.

First, the toCharArray function splits a string into an array of characters. Since we
assume that all of our notations are three characters long, the element at the 0 position
will represent the type of the chess piece, the element at the 1 position will represent its
vertical column – also known as file – and the last element will represent its horizontal
column – also known as rank.

Next, we can see three values: type, file, and rank, surrounded by parentheses. This is
called a destructuring declaration, and you may be familiar with them from JavaScript,
for example. Any data class can be destructured.

The previous code example is similar to the following, much more verbose code:

val type = notation.toCharArray()[0]

val file = notation.toCharArray()[1]

val rank = notation.toCharArray()[2]

46 Working with Creational Patterns

Now, let's focus on the when expression. Based on the letter representing the type, it
instantiates one of the implementations of the ChessPiece interface. Remember, this is
what the Factory Method design pattern is all about.

To make sure you grasp this design pattern well, feel free to implement the classes and
logic for other chess pieces as an exercise.

Finally, let's look at the bottom of our function, where we see the first use of
a throw expression.

This expression, as the name suggests, throws an exception, which will stop the normal
execution of our simple program. We'll discuss how to handle exceptions in Chapter 5,
Introducing Functional Programming.

In the real world, the Factory Method design pattern is often used by libraries that
need to parse configuration files – be they of the XML, JSON, or YAML format – into
runtime objects.

Static Factory Method
There is a similarly named design pattern (which has a slightly different implementation)
that is often confused with the Factory Method design pattern, and it is described in the
Gang of Four book – the Static Factory Method design pattern.

The Static Factory Method design pattern was popularized by Joshua Bloch in his book,
Effective Java. To understand this better, let's look at some examples from the Java
standard library: the valueOf() methods. There are at least two ways to construct a
Long (that is, a 64-bit integer) from a string:

Long l1 = new Long("1"); // constructor

Long l2 = Long.valueOf("1"); // static factory method

Both the constructor and the valueOf() method receive string as input and produce
Long as output.

So, why should we prefer the Static Factory Method design pattern to a simple constructor?

Here are some of the advantages of using the Static Factory Method compared
to constructors:

•	 It provides an opportunity to explicitly name different object constructors. This is
especially useful when your class has multiple constructors.

Factory Method 47

•	 We usually don't expect exceptions from a constructor. That doesn't mean that the
instantiation of a class can't fail. Exceptions from a regular method, on the other
hand, are much more accepted.

•	 Speaking of expectations, we expect the constructor to be fast. But construction of
some objects is inherently slow. Consider using the Static Factory Method instead.

These are mostly style advantages; however, there are also technological advantages to
this approach.

Caching
The Static Factory Method design pattern may provide caching, as Long actually does.
Instead of always returning a new instance for any value, valueOf() checks in the cache
whether this value was already parsed. If it was, it returns a cached instance. Repeatedly
calling the Static Factory Method with the same values may produce less garbage for
collection than using constructors all the time.

Subclassing
When calling the constructor, we always instantiate the class we specify. On the other
hand, calling a Static Factory Method is less restrictive and may produce either an
instance of the class itself or one of its subclasses. We'll come to this after discussing the
implementation of this design pattern in Kotlin.

Static Factory Method in Kotlin
We discussed the object keyword earlier in this chapter in the Singleton section. Now,
we'll see another use of it as a companion object.

In Java, Static Factory Methods are declared static. But in Kotlin, there's no such
keyword. Instead, methods that don't belong to an instance of a class can be declared
inside companion object:

class Server(port: Long) {

 init {

 println("Server started on port $port")

 }

 companion object {

 fun withPort(port: Long) = Server(port)

48 Working with Creational Patterns

 }

}

Important Note:
Companion objects may have a name – for example, companion object
parser. But this is only to provide clarity about what the goal of the object is.

As you can see, this time, we have declared an object that is prefixed by the companion
keyword. Also, it's located inside a class, and not at the package level in the way we saw in
the Singleton design pattern.

This object has its own methods, and you may wonder what the benefit of this is. Just like
a Java static method, calling a companion object will lazily instantiate it when the
containing class is accessed for the first time:

Server.withPort(8080) // Server started on port 8080

Moreover, calling it on an instance of a class simply won't work, unlike in Java:

Server(8080) // Won't compile, constructor is private

Important Note:
A class may have only one companion object.

Sometimes, we also want the Static Factory Method to be the only way to
instantiate our object. In order to do that, we can declare the default constructor
of our object as private:

class Server private constructor(port: Long) {

 ...

}

This means that now there's only one way of constructing an instance of our class –
through our Static Factory Method:

val server = Server(8080)) // Doesn't compile

val server = Server.withPort(8080) // Works!

Let's now discuss another design pattern that is often confused with the Factory Method –
Abstract Factory.

Abstract Factory 49

Abstract Factory
Abstract Factory is a greatly misunderstood design pattern. It has a notorious reputation
for being very complex and bizarre. Actually, it's quite simple. If you understood the
Factory Method design pattern, you'll understand this one in no time. This is because the
Abstract Factory design pattern is a factory of factories. That's all there is to it. The factory
is a function or class that's able to create other classes. In other words, an abstract factory
is a class that wraps multiple factory methods.

You may understand this and still wonder what the use of such a design pattern may be.
In the real world, the Abstract Factory design pattern is often used in frameworks and
libraries that get their configuration from files. The Spring Framework is just one example
of these.

To better understand how the design pattern works, let's assume we have a configuration
for our server written in a YAML file:

server:

 port: 8080

environment: production

Our task is to construct objects from this configuration.

In the previous section, we discussed how to use Factory Method to construct objects
from the same family. But here, we have two families of objects that are related to each
other but are not siblings.

First, let's describe them as interfaces:

interface Property {

 val name: String

 val value: Any

}

Instead of a data class, we'll return an interface. You'll see how this helps us later in
this section:

interface ServerConfiguration {

 val properties: List<Property>

}

50 Working with Creational Patterns

Then, we can provide basic implementations to be used later:

data class PropertyImpl(

 override val name: String,

 override val value: Any

) : Property

data class ServerConfigurationImpl(

 override val properties: List<Property>

) : ServerConfiguration

The server configuration simply contains the list of properties – and a property is a pair
comprising a name object and a value object.

This is the first time we have seen the Any type being used. The Any type is Kotlin's
version of Java's object, but with one important distinction: it cannot be null.

Now, let's write our first Factory Method, which will create Property given as a string:

fun property(prop: String): Property {

 val (name, value) = prop.split(":")

 return when (name) {

 "port" -> PropertyImpl(name, value.trim().toInt())

 "environment" -> PropertyImpl(name, value.trim())

 else -> throw RuntimeException("Unknown property:
 $name")

 }

}

As in many other languages, trim() is a function that is declared on strings that removes
any spaces in the string. Now, let's create two properties to represent the port (port) and
environment (environment) of our service:

val portProperty = property("port: 8080")

val environment = property("environment: production")

There is a slight issue with this code. To understand what it is, let's try to store the value of
the port property into another variable:

val port: Int = portProperty.value

// Type mismatch: inferred type is Any but Int was expected

Abstract Factory 51

We already ensured that port is parsed to an Int in our Factory Method. But now, this
information is lost because the type of the value is declared as Any. It can be String,
Int, or any other type, for that matter. We need a new tool to solve this issue, so let's take
a short detour and discuss casts in Kotlin.

Casts
Casts in typed languages are a way to try and force the compiler to use the type we specify,
instead of the type it has inferred. If we are sure what type the value is, we can use an
unsafe cast on it:

val port: Int = portProperty.value as Int

The reason it is called unsafe is that if the value is not of the type we expect, our program
will crash without the compiler being able to warn us.

Alternatively, we could use a safe cast:

val port: Int? = portProperty.value as? Int

Safe casts won't crash our program, but if the type of the object is not what we expect,
it will return null. Notice that our port variable now is declared as the nullable Int,
so we have to explicitly deal with the possibility of not getting what we want during
compilation time.

Subclassing
Instead of resorting to casts, let's try another approach. Instead of using a single
implementation with a value of the Any type, we'll use two separate implementations:

data class IntProperty(

 override val name: String,

 override val value: Int

) : Property

data class StringProperty(

 override val name: String,

 override val value: String

) : Property

52 Working with Creational Patterns

Our Factory Method will have to change a little to be able to return one of the two classes:

fun property(prop: String): Property {

 val (name, value) = prop.split(":")

 return when (name) {

 "port" -> IntProperty(name, value.trim().toInt())

 "environment" -> StringProperty(name, value.trim())

 else -> throw RuntimeException("Unknown property:
 $name")

 }

}

This looks fine, but if we try to compile our code again, it still won't work:

val portProperty = Parser.property("port: 8080")

val port: Int = portProperty.value

Although we now have two concrete classes, the compiler doesn't know if the parsed
property is IntProperty or StringProperty. All it knows is that it's Property,
and the type of the value is still Any:

> Type mismatch: inferred type is Any but Int was expected

We need another trick, and that trick is called smart casts.

Smart casts
We can check if an object is of a given type by using the is keyword:

println(portProperty is IntProperty) // true

However, the Kotlin compiler is very smart. If we performed a type check on an if
expression, it would mean that portProperty was indeed IntProperty, right? So, it
could be safely cast.

The Kotlin compiler will do just that for us:

if (portProperty is IntProperty) {

 val port: Int = portProperty.value // works!

}

Abstract Factory 53

There is no compilation error anymore, and we also do not have to deal with
nullable values.

Smart casts also work on nulls. In Kotlin's type hierarchy, the non-nullable Int type is a
subclass of a nullable type, Int?, and this is true for all types. Previously, we mentioned
that a safe cast will return null if it fails:

val port: Int? = portProperty.value as? Int

We could check if port is null, and if it isn't, it will be smartly cast to a non-nullable type:

if (port != null) {

 val port: Int = port

}

Nice! But wait, what's going on in this code?

In the previous chapter, we said that values cannot be reassigned. But here, we defined the
port value twice. How is this possible? This is not a bug, but another Kotlin feature, and it
is called variable shadowing.

Variable shadowing
First, let's consider how our code would look if there was no shadowing. We would have
to declare two variables with different names:

val portOrNull: Int? = portProperty.value as? Int

if (portOrNull != null) {

 val port: Int = portOrNull // works

}

However, this is a waste, for two reasons. First, the variable names become quite verbose.
Second, the portOrNull variable would most probably never be used past this point
because null is not a very useful value to begin with. Instead, we can declare values with
the same names in different scopes, denoted by curly brackets ({}).

Please note that variable shadowing may confuse you, and it is error-prone by nature.
However, it is important to be aware that it exists, but the recommendation is to name
your variables explicitly whenever possible.

54 Working with Creational Patterns

Collection of Factory Methods
Now that we've had our detour into casts and variable shadowing, let's go back to the
previous code example and implement a second Factory Method, that will create a
server configuration object:

fun server(propertyStrings: List<String>):

 ServerConfiguration {

 val parsedProperties = mutableListOf<Property>()

 for (p in propertyStrings) {

 parsedProperties += property(p)

 }

 return ServerConfigurationImpl(parsedProperties)

}

This method takes the lines from our configuration file and converts them
into Property objects using the property() Factory Method that we've
already implemented.

We can test that our second Factory Method works as well:

println(server(listOf("port: 8080", "environment:

 production")))

> ServerConfigurationImpl(properties=[IntProperty(name=port,
value=8080), StringProperty(name=environment,
value=production)])

Since these two methods are related, it would be good to put them together under the
same class. Let's call this class Parser. Although we didn't parse any actual file and
agreed that we get its contents line by line already, by the end of this book, you would
probably agree that implementing the actual reading logic is quite trivial.

We can also use Static Factory Method and the companion object syntax we
learned about in the previous section.

The resulting implementation will look like this:

class Parser {

 companion object {

 fun property(prop: String): Property {

 ...

 }

Builder 55

 fun server(propertyStrings: List<String>): ...{

 ...

 }

 }

}

This pattern allows us to create families of objects – in this case, ServerConfig is the
parent of a property.

The previous code is just one way to implement an Abstract Factory. You may find some
implementations that rely on implementing an interface instead:

interface Parser {

 fun property(prop: String): Property

 fun server(propertyStrings: List<String>):
 ServerConfiguration

}

class YamlParser : Parser {

 // Implementation specific to YAML files

}

class JsonParser : Parser {

 // Implementation specific to JSON files

}

This approach may be better if your Factory Methods grow to contain lots of code.

One last question you may have is where we can see Abstract Factory used in real
code. One example is the java.util.Collections class. It has methods such
as emptyMap, emptyList, and emptySet, which each generate a different class.
However, what is common to all of them is that they are all collections.

Builder
Sometimes, our objects are very simple and have only one constructor, be it an empty
or non-empty one. But sometimes, their creation is very complex and based on a lot of
parameters. We've seen one pattern already that provides a better constructor – the Static
Factory Method design pattern. Now, we'll discuss the Builder design pattern, which will
help us create complex objects.

56 Working with Creational Patterns

As an example of such an object, imagine we need to design a system that sends emails.
We won't implement the actual mechanism of sending them, we will just design a class
that represents it.

An email may have the following properties:

•	 An address (at least one is mandatory)

•	 CC (optional)

•	 Title (optional)

•	 Body (optional)

•	 Important flag (optional)

We can describe an email in our system as a data class:

data class Mail_V1(

 val to: List<String>,

 val cc: List<String>?,

 val title: String?,

 val message: String?,

 val important: Boolean,

)

Important Note:
Look at the definition of the last argument in the preceding code. This comma
is not a typo. It is called a trailing comma, and these were introduced in Kotlin
1.4. This is done so you can easily change the order of the arguments.

Next, let's attempt to create an email addressed to our manager:

val mail = Mail_V1(

 listOf("manager@company.com"), // To

 null, // CC

 "Ping ", // Title

 null, // Message,

 true)) // Important

Note that we have defined carbon copy (that's what CC stands for) as nullable so that
it can receive either a list of emails or null. Another option would be to define it as
List<String> and force our code to pass listOf().

Builder 57

Since our constructor receives a lot of arguments, we had to put in some comments in
order not to get confused.

But what happens if we need to change this class now?

First, our code will stop compiling. Second, we need to keep track of the comments. In
short, constructors with a long list of arguments quickly become a mess.

This is the problem the Builder design pattern sets out to solve. It decouples the assigning
of arguments from the creation of objects and allows the creation of complex objects one
step at a time. In this section, we'll see a number of approaches to this problem.

Let's start by creating a new class, MailBuilder, which will wrap our Mail class:

class MailBuilder {

 private var to: List<String> = listOf()

 private var cc: List<String> = listOf()

 private var title: String = ""

 private var message: String = ""

 private var important: Boolean = false

 class Mail internal constructor(

 val to: List<String>,

 val cc: List<String>?,

 val title: String?,

 val message: String?,

 val important: Boolean

)

 ... // More code will come here soon

}

Our builder has exactly the same properties as our resulting class. But these properties
are all mutable.

Note that the constructor is marked using the internal visibility modifier. This means
that our Mail class will be accessible to any code inside our module.

To finalize the creation of our class, we'll introduce the build() function:

fun build(): Mail {

 if (to.isEmpty()) {

 throw RuntimeException("To property is empty")

58 Working with Creational Patterns

 }

 return Mail(to, cc, title, message, important)

}

And for each property, we'll have another function to be able to set it:

fun message(message: String): MailBuilder {

 this.message = message

 return this

}

// More functions for each of the properties

Now, we can use our builder to create an email in the following way:

val email = MailBuilder("hello@hello.com").title("What's
 up?").build()

After setting a new value, we return a reference to our object by using this, which
provides us with access to the next setter to allow us to perform chaining (please refer to
the Fluent setters section in this chapter for an explanation of this).

This is a working approach. But it has a couple of downsides:

•	 The properties of our resulting class must be repeated insider the builder.

•	 For every property, we need to declare a function to set its value.

Kotlin provides two other ways that you may find even more useful.

Fluent setters
The approach using fluent setters is a bit more concise. Here, we won't construct any
additional classes. Instead, our data class constructor will contain only the mandatory
fields. All other fields will become private, and we'll provide setters for these fields:

data class Mail_V2(

 val to: List<String>,

 private var _message: String? = null,

 private var _cc: List<String>? = null,

 private var _title: String? = null,

 private var _important: Boolean? = null

) {

Builder 59

 fun message(message: String) = apply {

 _message = message

 }

 // Pattern repeats for every other field

 //...

}

Important Note:
Using underscores for private variables is a common convention in Kotlin.
It allows us to avoid repeating this.message = message and mistakes
such as message = message.

In this code example, we used the apply function. This is part of the family of scoping
functions that can be invoked on every Kotlin object, and we'll cover them in detail in
Chapter 9, Idioms and Anti-Patterns. The apply function returns the reference to an
object after executing the block. So, it's a shorter version of the setter function from the
previous example:

fun message(message: String): MailBuilder {

 this.message = message

 return this

}

This provides us with the same API as the previous example:

val mailV2 =
Mail_V2(listOf("manager@company.com")).message("Ping")

However, we may not need setters at all. Instead, we can use the apply() function we
previously discussed on the object itself. This is one of the extension functions that every
object in Kotlin has. This approach will work only if all of the optional fields are variables
instead of values.

Then, we can create our email like this:

val mail = Mail_V2("hello@mail.com").apply {

 message = "Something"

 title = "Apply"

}

60 Working with Creational Patterns

This is a nice approach, and it requires less code to implement. However, there are a few
downsides to this approach too:

•	 We had to make all of the optional arguments mutable. Immutable fields
should always be preferred to mutable ones, as they are thread-safe and
easier to reason about.

•	 All of our optional arguments are also nullable. Kotlin is a null-safe language, so
every time we access them, we first have to check that their value was set.

•	 This syntax is very verbose. For each field, we need to repeat the same pattern over
and over again.

Now, let's discuss the last approach to this problem.

Default arguments
In Kotlin, we can specify default values for constructor and function parameters:

data class Mail_V3(

 val to: List<String>,

 val cc: List<String> = listOf(),

 val title: String = "",

 val message: String = "",

 val important: Boolean = false

)

Default arguments are set using the = operator after the type. This means that although
our constructor still has all the arguments, we don't need to provide them any.

So, if you would like to create an email without a body, you can do it like this:

val mail = Mail_V3(listOf("manager@company.com"), listOf(),
"Ping")

However, note that we had to specify that we don't want anyone in the CC field by
providing an empty list, which is a bit inconvenient.

What if we wanted to send an email that is only flagged as important?

Not having to specify order with fluent setters was very handy. Kotlin has named
arguments for that:

val mail = Mail_V3(title = "Hello", message = "There", to =
listOf("my@dear.cat"))

Prototype 61

Combining default parameters with named arguments makes creating complex objects
in Kotlin rather easy. For that reason, you will rarely need the Builder design pattern at
all in Kotlin.

In real applications, you'll often see the Builder design pattern used to construct instances
of servers. A server would accept an optional host and an optional port and so on, and
then when all of the arguments were set, you'd invoke a listen method to start it.

Prototype
The Prototype design pattern is all about customization and creating objects that are
similar but slightly different. To understand it better, Let's look at an example.

Imagine we have a system that manages users and their permissions. A data class
representing a user might look like this:

data class User(

 val name: String,

 val role: Role,

 val permissions: Set<String>,

) {

 fun hasPermission(permission: String) = permission in
 permissions

}

Each user must have a role, and each role has a set of permissions.

We'll describe a role as an enum class:

enum class Role {

 ADMIN,

 SUPER_ADMIN,

 REGULAR_USER

}

The enum classes are a way to represent a collection of constants. This is more convenient
than representing a role as a string, for example, as we check at compile time that such an
object exists.

62 Working with Creational Patterns

When we create a new user, we assign them permissions that are similar to another user
with the same role:

// In real application this would be a database of users

val allUsers = mutableListOf<User>()

fun createUser(name: String, role: Role) {

 for (u in allUsers) {

 if (u.role == role) {

 allUsers += User(name, role, u.permissions)

 return

 }

 }

 // Handle case that no other user with such a role exists

}

Let's imagine that we now need to add a new field to the User class, which we will
name tasks:

data class User(

 val name: String,

 val role: Role,

 val permissions: Set<String>,

 val tasks: List<String>,

) {

 ...

}

Our createUser function will stop compiling. We'll have to change it by copying the
value of this newly added field to the new instance of our class:

allUsers += User(name, role, u.permissions, u.tasks)

This work will have to be repeated every time the User class is changed.

Prototype 63

However, there's a bigger problem still: What if a new requirement is introduced, making
the permissions property, for example, private?

data class User(

 val name: String,

 val role: Role,

 private val permissions: Set<String>,

 val tasks: List<String>,

) {

 ...

}

Our code will stop compiling again, and we'll have to change it again. The constant
requirement of changes to the code is a clear indication that we need another approach to
solve this problem.

Starting from a prototype
The whole idea of a prototype is to be able to clone an object easily. There are at least two
reasons you may want to do this:

•	 It helps in instances where creating your object is very expensive – for example, if
you need to fetch it from the database.

•	 It helps if you need to create objects that are similar but vary slightly and you don't
want to repeat similar parts over and over again.

Important Note:
There are also more advanced reasons to use the Prototype design pattern.
JavaScript, for example, uses prototypes to implement inheritance-like behavior
without having classes.

Luckily, Kotlin fixes the somewhat broken Java clone() method. Data classes have
a copy() method, which takes an existing data class, and creates a new copy of it,
optionally changing some of its attributes in the process:

// Name argument is underscored here simply not to confuse

// it with the property of the same name in the User object

fun createUser(_name: String, role: Role) {

 for (u in allUsers) {

 if (u.role == role) {

64 Working with Creational Patterns

 allUsers += u.copy(name = _name)

 return

 }

 }

 // Handle case that no other user with such a role exists

}

In a similar way to what we saw with the Builder design pattern, named arguments allow
us to specify attributes that we can change in any order. And we need to specify only
the attributes we want to change. All of the other data will be copied for us, even the
private properties.

The data class is yet another example of a design pattern that is so common that it
became part of a language syntax. They are an extremely useful feature, and we will see
them being used many more times in this book.

Summary
In this chapter, we have learned when and how to use creational design patterns. We
started by discussing how to use the object keyword to construct a singleton class, and
then we discussed the use of companion object if you need a Static Factory Method.
We also covered how to assign multiple variables at once using destructuring declarations.

Then, we discussed smart casts, and how they can be applied in the Abstract Factory
design pattern to create families of objects. We then moved to the Builder design pattern
and learned that functions can have default parameter values. We then learned that we can
refer to their arguments using not only positions but also names.

Finally, we covered the copy() function of the data classes, and how it helps us when
implementing the Prototype design pattern to produce similar objects with slight
changes. You should now understand how to use creational design patterns to better
manage your objects.

In the next chapter, we'll cover the second family of design patterns: structural patterns.
These design patterns will help us create extensible and maintainable object hierarchies.

Questions
1.	 Name two uses for the object keyword we learned about in this chapter.
2.	 What is the apply() function used for?
3.	 Provide one example of a Static Factory Method.

3
Understanding

Structural Patterns
This chapter covers structural patterns in Kotlin. In general, structural patterns deal with
relationships between objects.

We'll discuss how to extend the functionality of our objects without producing complex
class hierarchies. We'll also discuss how to adapt to changes in the future or fix some of
the design decisions taken in the past, as well as how to reduce the memory footprint
of our program.

In this chapter, we will cover the following patterns:

•	 Decorator

•	 Adapter

•	 Bridge

•	 Composite

•	 Facade

•	 Flyweight

•	 Proxy

66 Understanding Structural Patterns

By the end of this chapter, you'll have a better understanding of how to compose your
objects so that they can be simpler to extend and adapt to different types of changes.

Technical requirements
The requirements for this chapter are the same as the previous chapters—you'll need
IntelliJ IDEA and the JDK.

You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/
tree/main/Chapter03.

Decorator
In the previous chapter, we discussed the Prototype design pattern, which allows us
to create instances of classes with slightly (or not so slightly) different data. This raises
a question:

What if we want to create a set of classes that all have slightly different behavior?

Well, since functions in Kotlin are first-class citizens (which we will explain in this
chapter), you could use the Prototype design pattern to achieve this aim. After all, creating
a set of classes with slightly different behavior is what JavaScript does successfully. But the
goal of this chapter is to discuss another approach to the same problem. After all, design
patterns are all about approaches.

By implementing the Decorator design pattern, we allow the users of our code to specify
the abilities they want to add.

Enhancing a class
Let's say that we have a rather simple class that registers all of the captains in the Star Trek
universe along with their vessels:

open class StarTrekRepository {

 private val starshipCaptains = mutableMapOf("USS

 Enterprise" to "Jean-Luc Picard")

 open fun getCaptain(starshipName: String): String {

 return starshipCaptains[starshipName] ?: "Unknown"

 }

https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter03
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter03
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter03

Decorator 67

 open fun addCaptain(starshipName: String, captainName:
 String) {

 starshipCaptains[starshipName] = captainName

 }

}

One day, your captain—sorry, scrum master—comes to you with an urgent requirement.
From now on, every time someone searches for a captain, we must also log this
into a console. However, there's a catch to this simple task: you cannot modify the
StarTrekRepository class directly. There are other consumers for this class, and they
don't need this logging behavior.

But before we dive deeper into this problem, let's discuss one peculiarity we can observe
in our class – that is, a strange operator you can see in the getCaptain function.

The Elvis operator
In Chapter 1, Getting Started with Kotlin, we learned that Kotlin is not only strongly typed,
but it is also a null-safe language.

What happens if, as in our example, there could be no value stored in a map for a particular
key?

If we're working with a map, one option is to use the getOrDefault method that maps
provide in Kotlin. This might be a viable option in this particular case, but it won't work in
situations where you might have to deal with a null value.

Another option is to use the Elvis operator (?:). If you're wondering about how this
operator got its name, it does resemble Elvis Presley's hairstyle somewhat:

Figure 3.1 – If we turn the Elvis operator 90 degrees clockwise, it looks a bit like a pompadour hairstyle

The goal of the Elvis operator is to provide a default value in case we receive a null value.
Take another look at the getCaptain function to see how this is done. The desugared
form of the same function would be as follows:

return if (starshipCaptains[starshipName] == null)

 "Unknown" else starshipCaptains[starshipName]

68 Understanding Structural Patterns

So, you can see that this operator saves us a lot of typing.

The inheritance problem
Let's go back to the task at hand. Since our class and its methods are declared open, we can
extend the class and override the function we need:

class LoggingGetCaptainStarTrekRepository :

 StarTrekRepository() {

 override fun getCaptain(starshipName: String): String {

 println("Getting captain for $starshipName")

 return super.getCaptain(starshipName)

 }

}

That was quite easy! Although the name of that class is getting quite long.

Note how we delegate to the implementation in our parent class by using the super
keyword here. However, the next day, your boss (sorry, scrum-master) comes again and
asks for another feature. When adding a captain, we need to check that their name is no
longer than 15 characters. That may be a problem for some Klingons, but you decide to
implement it anyway. And, by the way, this feature should not be related to the logging
feature we developed previously. Sometimes we just want the logging, and sometimes we
just want the validation. So, here's what our new class will look like:

class ValidatingAddCaptainStarTrekRepository :

 StarTrekRepository() {

 override fun addCaptain(starshipName: String,

 captainName: String) {

 if (captainName.length > 15) {

 throw RuntimeException("$captainName is longer
 than 20 characters!")

 }

 super.addCaptain(starshipName, captainName)

 }

}

Another task done.

Decorator 69

However, the next day, another requirement arises: in some cases,
we need StarTrekRepository to have logging enabled and also
perform validation at the same time. I guess we'll have to name it
LoggingGetCaptainValidatingAddCaptainStarTrekRepository now.

Problems like this are surprisingly common, and they are a clear indication that a design
pattern may help us here.

The purpose of the Decorator design pattern is to add new behaviors to our objects
dynamically. In our example, logging and validating are two behaviors that we sometimes
want to be applied to our object and sometimes don't want to be applied.

We'll start by converting our StarTrekRepository into an interface:

interface StarTrekRepository {

 fun getCaptain(starshipName: String): String

 fun addCaptain(starshipName: String, captainName:
 String)

 }

Then, we'll implement that interface using the same logic as before:

class DefaultStarTrekRepository : StarTrekRepository {

 private val starshipCaptains = mutableMapOf("USS Enter
 prise" to "Jean-Luc Picard")

 override fun getCaptain(starshipName: String): String {

 return starshipCaptains[starshipName] ?: "Unknown"

 }

 override fun addCaptain(starshipName: String, captain
 Name: String) {

 starshipCaptains[starshipName] = captainName

 }

}

70 Understanding Structural Patterns

Next, instead of extending our concrete implementation, we'll implement the interface
and use a new keyword called by:

class LoggingGetCaptain(private val repository:

 StarTrekRepository): StarTrekRepository by repository {

 override fun getCaptain(starshipName: String): String {

 println("Getting captain for $starshipName")

 return repository.getCaptain(starshipName)

 }

}

The by keyword delegates the implementation of an interface to another object. That's
why the LoggingGetCaptain class doesn't have to implement any of the functions
declared in the interface. They are all implemented by default by another object that the
instance wraps.

In this case, the hardest part to understand is the signature. What we need from the
Decorator design pattern is as follows:

•	 We need to be able to receive the object we're decorating.

•	 We need to be able to keep a reference to the object.

•	 When our decorator is called, we need to be able to decide if we would like to
change the behavior of the object we're holding or to delegate the call.

•	 We need to be able to extract an interface or have one provided already by the
(library) author.

Note that we don't use the super keyword anymore. If we tried to, it wouldn't work,
as there is a class that we're implementing now. Instead, we use the reference to the
wrapped interface.

To make sure we understand this pattern, let's implement our second decorator:

class ValidatingAdd(private val repository:

 StarTrekRepository): StarTrekRepository by repository {

 private val maxNameLength = 15

 override fun addCaptain(starshipName: String,

 captainName: String) {

 require (captainName.length < maxNameLength) {

 "$captainName name is longer than
 $maxNameLength characters!"

Decorator 71

 }

 repository.addCaptain(starshipName, captainName)

 }

}

The only difference between the preceding example and the
ValidatingAddCaptainStarTrekRepository implementation is that we use the
require function instead of an if expression. This is often more readable, and it will
also throw IllegalArgumentException if the expression is false.

Let's see how it works now:

val starTrekRepository = DefaultStarTrekRepository()

val withValidating = ValidatingAdd(starTrekRepository)

val withLoggingAndValidating =
 LoggingGetCaptain(withValidating)

withLoggingAndValidating.getCaptain("USS Enterprise")

withLoggingAndValidating.addCaptain("USS Voyager",
 "Kathryn Janeway")

The last line will throw an exception:

> Kathryn Janeway name is longer than 15 characters!

As you can see, this pattern allows us to compose behavior, just as we wanted. Now, let's
take a short detour and discuss operator overloading in Kotlin, as this will help us to
improve our design pattern even more.

Operator overloading
Let's take another look at the interface that was extracted. Here, we are describing basic
operations on a map that are usually associated with array/map access and assignment.
In Kotlin, we have some nice syntactic sugar called operator overloading. If we look at
DefaultStarTrekRepository, we can see that working with maps is very intuitive
in Kotlin:

starshipCaptains[starshipName]

starshipCaptains[starshipName] = captainName

72 Understanding Structural Patterns

It would be useful if we could work with our repository as if it was a map:

withLoggingAndValidating["USS Enterprise"]

withLoggingAndValidating["USS Voyager"] = "Kathryn Janeway"

Using Kotlin, we can actually achieve this behavior quite easily. First, let's change
our interface:

interface StarTrekRepository {

 operator fun get(starshipName: String): String

 operator fun set(starshipName: String, captainName:
 String)

}

Note that we've added the operator keyword that prefixes the function definition. Let's
understand what this keyword means.

Most programming languages support some form of operator overloading. Let's take Java
as an example and look at the following two lines:

System.out.println(1 + 1); // Prints 2

System.out.println("1" + "1") // Prints 11

We can see that the + operator acts differently depending on whether the arguments are
strings or integers. That is, it can add two numbers, but it can also concatenate two strings.
You can imagine that the plus operation can be defined on other types. For example, it
makes a lot of sense to concatenate two lists using the same operator:

List.of("a") + List.of("b")

Unfortunately, this code won't compile in Java, and we can't do anything about it. That's
because operator overloading is a feature reserved to the language itself, and not for its
users.

Let's look at another extreme, the Scala programming language. In Scala, any set of
characters can be defined as an operator. So, you may encounter code such as the
following:

Seq("a") ==== Seq("b") // You'll have to guess what
 this code does

Decorator 73

Kotlin takes a middle ground between these two approaches. It allows you to overload
certain well-known operations, but it limits what can and cannot be overloaded. Although
this list is limited, it is quite long, so we'll not write it in full here. However, you can find it
in the official Kotlin documentation: https://kotlinlang.org/docs/operator-
overloading.html.

If you use the operator keyword with a function that is unsupported or with the wrong
set of arguments, you'll get a compilation error. The square brackets that we started with
in the previous code example are called indexed access operators and correlate with the
get(x) and set(x, y) methods we have just defined.

Caveats of the Decorator design pattern
The Decorator design pattern is great because it lets us compose objects on the fly. And
using Kotlin's by keyword makes it easy to implement. But there are still limitations that
you need to be aware of.

First, you cannot see inside of the Decorator. This means that there's no way of knowing
which specific object it wraps:

println(withLoggingAndValidating is LoggingGetCaptain)

// This is our top level decorator, no problem here

println(withLoggingAndValidating is StarTrekRepository)

// This is the interface we implement, still no problem

println(withLoggingAndValidating is ValidatingAdd)

// We wrap this class, but compiler cannot validate it

println(withLoggingAndValidating is DefaultStarTrekRepository)

// We wrap this class, but compiler cannot validate it

Although withLoggingAndValidating contains ValidatingAdd (and it may
behave like it), it is not an instance of ValidatingAdd! Keep that in mind when
performing casts and type checks.

So, you might wonder where this pattern would be used in the real world. One example is
the java.io.* package, with classes implementing the Reader and Writer interfaces.

For example, if you want to read a file efficiently, you can use BufferedReader, which
receives another reader as its constructor argument:

val reader = BufferedReader(FileReader("/some/file"))

https://kotlinlang.org/docs/operator-overloading.html
https://kotlinlang.org/docs/operator-overloading.html

74 Understanding Structural Patterns

FileReader serves this purpose, as it implements the Reader interface. So does
BufferedReader itself.

Let's move on to our next design pattern.

Adapter
The main goal of the Adapter design pattern is to convert one interface to another
interface. In the physical world, the best example of this idea would be an electrical plug
adapter or a USB adapter.

Imagine yourself in a hotel room late in the evening, with 7% battery left on your phone.
Your phone charger was left in the office at the other end of the city. You only have an EU
plug charger with a Mini USB cable. But your phone uses USB-C, as you had to upgrade.
You're in New York, so all of your outlets are (of course) USB-A. So, what do you do? Oh,
it's easy. You look for a Mini USB to USB-C adapter in the middle of the night and hope
that you have remembered to bring your EU to US plug adapter as well. Only 5% battery
left – time is running out!

So, now that we understand what adapters are for in the physical world, let's see how we
can apply the same principle in code.

Let's start with interfaces.

USPlug assumes that power is Int. It has 1 as its value if it has power and any other
value if it doesn't:

interface USPlug {

 val hasPower: Int

}

EUPlug treats power as String, which is either TRUE or FALSE:

interface EUPlug {

 val hasPower: String // "TRUE" or "FALSE"

}

For UsbMini, power is an enum:

interface UsbMini {

 val hasPower: Power

}

Adapter 75

enum class Power {

 TRUE, FALSE

}

Finally, for UsbTypeC, power is a Boolean value:

interface UsbTypeC {

 val hasPower: Boolean

}

Our goal is to bring the power value from a US power outlet to our cellphone, which will
be represented by this function:

fun cellPhone(chargeCable: UsbTypeC) {

 if (chargeCable.hasPower) {

 println("I've Got The Power!")

 } else {

 println("No power")

 }

}

Let's start by declaring what a US power outlet will look like in our code. It will be a
function that returns a USPlug:

// Power outlet exposes USPlug interface

fun usPowerOutlet(): USPlug {

 return object : USPlug {

 override val hasPower = 1

 }

}

In the previous chapter, we discussed two different uses of the object keyword. In the
global scope, it creates a Singleton object. When used together with the companion
keyword inside of a class, it creates a place for defining static functions. The same
keyword can also be used to generate anonymous classes. Anonymous classes are classes
that are created on the fly, usually to implement an interface in an ad-hoc manner.

76 Understanding Structural Patterns

Our charger will be a function that takes EUPlug as an input and outputs UsbMini:

// Charger accepts EUPlug interface and exposes UsbMini

// interface

fun charger(plug: EUPlug): UsbMini {

 return object : UsbMini {

 override val hasPower=Power.valueOf(plug.hasPower)

 }

}

Next, let's try to combine our cellPhone, charger, and usPowerOutlet functions:

cellPhone(

 // Type mismatch: inferred type is UsbMini but
 // UsbTypeC was expected

 charger(

 // Type mismatch: inferred type is USPlug but
 // EUPlug was expected

 usPowerOutlet()

)

)

As you can see, we get two different type errors – the Adapter design pattern should help
us solve these.

Adapting existing code
We need two types of adapters: one for our power plugs and another one for our
USB ports.

In Java, you would usually create a pair of classes for this purpose. In Kotlin, we can
replace these classes with extension functions. We already mentioned extension functions
briefly in Chapter 1, Getting Started with Kotlin. Now, it's time to cover them in more
detail.

We could adapt the US plug to work with the EU plug by defining the following extension
function:

fun USPlug.toEUPlug(): EUPlug {

 val hasPower = if (this.hasPower == 1) "TRUE" else
 "FALSE"

Adapter 77

 return object : EUPlug {

 // Transfer power

 override val hasPower = hasPower

 }

}

The this keyword in the context of an extension function refers to the object we're
extending – just as if we were implementing this method inside of the class definition.
Again, we use an anonymous class to implement the required interface on the fly.

We can create a USB adapter between the Mini USB and USB-C instances in a similar
way:

fun UsbMini.toUsbTypeC(): UsbTypeC {

 val hasPower = this.hasPower == Power.TRUE

 return object : UsbTypeC {

 override val hasPower = hasPower

 }

}

Finally, we can get back online again by combining all those adapters together:

cellPhone(

 charger(

 usPowerOutlet().toEUPlug()

).toUsbTypeC()

)

As you can see, we didn't have to create any new classes that implement these interfaces.
By using Kotlin's extension functions, our code stays short and to the point.

The Adapter design pattern is more straightforward than the other design patterns, and
you'll see it used widely. Now, let's discuss some of its real-world uses in more detail.

Adapters in the real world
You've probably encountered many uses of the Adapter design pattern already. These are
normally used to adapt between concepts and implementations. For example, let's take the
concept of a JVM collection versus the concept of a JVM stream.

78 Understanding Structural Patterns

We already discussed collections in Chapter 1, Getting Started with Kotlin. A list is
a collection of elements that can be created using the listOf() function:

val list = listOf("a", "b", "c")

A stream is a lazy collection of elements. You cannot simply pass a collection to a function
that receives a stream, even though it may make sense:

fun printStream(stream: Stream<String>) {

 stream.forEach(e -> println(e))

}

printStream(list) // Doesn't compile

Luckily, collections provide us with the .stream() adapter method:

printStream(list.stream()) // Adapted successfully

Many other Kotlin objects have adapter methods that usually start with to as a prefix. For
example, toTypedArray() converts a list to an array.

Caveats of using adapters
Have you ever plugged a 110 V US appliance into a 220 V EU socket through an adapter,
and fried it totally?

If you're not careful, that's something that could also happen to your code. The following
example uses another adapter, and it also compiles well:

val stream = Stream.generate { 42 }

stream.toList()

But it never completes because Stream.generate() produces an infinite list of
integers. So, be careful and adopt this design pattern wisely.

Bridge
While the Adapter design pattern helps you to work with legacy code, the Bridge design
pattern helps you to avoid abusing inheritance. The way it works is actually very simple.

Let's imagine we want to build a system to manage different kinds of troopers for the
Galactic Empire.

Bridge 79

We'll start with an interface:

interface Trooper {

 fun move(x: Long, y: Long)

 fun attackRebel(x: Long, y: Long)

}

And we'll create multiple implementations for different types of troopers:

class StormTrooper : Trooper {

 override fun move(x: Long, y: Long) {

 // Move at normal speed

 }

 override fun attackRebel(x: Long, y: Long) {

 // Missed most of the time

 }

}

class ShockTrooper : Trooper {

 override fun move(x: Long, y: Long) {

 // Moves slower than regular StormTrooper

 }

 override fun attackRebel(x: Long, y: Long) {

 // Sometimes hits

 }

}

There are also stronger versions of them:

class RiotControlTrooper : StormTrooper() {

 override fun attackRebel(x: Long, y: Long) {

 // Has an electric baton, stay away!

 }

}

class FlameTrooper : ShockTrooper() {

80 Understanding Structural Patterns

 override fun attackRebel(x: Long, y: Long) {

 // Uses flametrower, dangerous!

 }

}

And there are also scout troopers that can run faster than the others:

class ScoutTrooper : ShockTrooper() {

 override fun move(x: Long, y: Long) {

 // Runs faster

 }

}

That's a lot of classes!

One day, our dear designer comes and asks that all stormtroopers should be able to shout,
and each will have a different phrase. Without thinking twice, we add a new function to
our interface:

interface Infantry {

 fun move(x: Long, y: Long)

 fun attackRebel(x: Long, y: Long)

 fun shout(): String

}

By doing that, all the classes that implement this interface stop compiling. And we have
a lot of them. That's a lot of changes that we'll have to make. So, we'll just have to suck it
up and get to work.

Or will we?

We go and change the implementations of five different classes, feeling lucky that there are
only five and not fifty.

Bridging changes
The idea behind the Bridge design pattern is to flatten the class hierarchy and have fewer
specialized classes in our system. It also helps us to avoid the fragile base class problem
when modifying the superclass introduces subtle bugs to classes that inherit from it.

Bridge 81

First, let's try to understand why we have this complex hierarchy and many classes. It's
because we have two orthogonal, unrelated properties: weapon type and movement speed.

Let's say that instead, we wanted to pass those properties to the constructor of a class that
implements the same interface we have been using all along:

data class StormTrooper(

 private val weapon: Weapon,

 private val legs: Legs

) : Trooper {

 override fun move(x: Long, y: Long) {

 legs.move(x, y)

 }

 override fun attackRebel(x: Long, y: Long) {

 weapon.attack(x, y)

 }

}

The properties that StormTrooper receives should be interfaces, so we can choose their
implementation later:

typealias PointsOfDamage = Long

typealias Meters = Int

interface Weapon {

 fun attack(): PointsOfDamage

}

interface Legs {

 fun move(): Meters

}

Notice that these methods return Meters and PointsOfDamage instead of simply
returning Long and Int. This feature is called type aliasing. To understand how this
works, let's take a short detour.

82 Understanding Structural Patterns

Type aliasing
Kotlin allows us to provide alternative names for existing types. These are called aliases.

To declare an alias, we use a new keyword: typealias. From now on, we can use
Meters instead of plain old Int to return from our move() method. These aren't new
types. The Kotlin compiler will always translate PointsOfDamage to Long during
compilation. Using them provides two advantages:

•	 The first advantage is better semantics (as in our case). We can tell exactly what the
meaning of the value we're returning is.

•	 The second advantage is being concise. Type aliases allow us to hide complex generic
expressions. We'll expand on this in the following sections.

Constants
Let's go back to our StormTrooper class. It's time to provide some implementations for
the Weapon and Legs interfaces.

First, let's define the regular damage and speed of StormTrooper, using
imperial units:

const val RIFLE_DAMAGE = 3L

const val REGULAR_SPEED: Meters = 1

These values are very effective since they are known during compilation.

Unlike static final variables in Java, they cannot be placed inside a class. You should
place them either at the top level of your package or nest them inside of an object.

Important Note:
Although Kotlin has type inference, we can specify the types of our constants
explicitly and even use type aliases. How about having DEFAULT_TIMEOUT
: Seconds = 60 instead of DEFAULT_TIMEOUT_SECONDS = 60
in your code?

Now, we can provide some implementations for our interfaces:

class Rifle : Weapon {

 override fun attack(x: Long, y: Long) = RIFLE_DAMAGE

}

class Flamethrower : Weapon {

Composite 83

 override fun attack(x: Long, y: Long)= RIFLE_DAMAGE * 2

}

class Batton : Weapon {

 override fun attack(x: Long, y: Long)= RIFLE_DAMAGE * 3

}

Next, let's look at how we can move the following:

class RegularLegs : Legs {

 override fun move() = REGULAR_SPEED

}

class AthleticLegs : Legs {

 override fun move() = REGULAR_SPEED * 2

}

Finally, we need to make sure that we can implement the same functionality without the
complex class hierarchy we had before:

val stormTrooper = StormTrooper(Rifle(), RegularLegs())

val flameTrooper = StormTrooper(Flamethrower(),
 RegularLegs())

val scoutTrooper = StormTrooper(Rifle(), AthleticLegs())

Now we have a flat class hierarchy, which is much simpler to extend and also to
understand. If we need more functionality, such as the shouting ability we mentioned
earlier, we would add a new interface and a new constructor argument for our class.

In the real world, this pattern is often used in conjunction with dependency injection
frameworks. For example, this would allow us to replace an implementation that used
a real database with a mocked interface. This would make our code easier to set up and
faster to test.

Composite
This chapter is dedicated to composing objects within one another, so it may look strange
to have a separate section for the Composite design pattern. As a result, this raises
a question:

Shouldn't this design pattern encompass all of the others?

84 Understanding Structural Patterns

As in the case of the Bridge design pattern, the name may not reflect its true uses and
benefits.

Let's continue with our StormTrooper example from before. Lieutenants of the Empire
quickly discover that no matter how well equipped, stormtroopers cannot hold their
ground against the rebels because they are uncoordinated.

To provide better coordination, the Empire decides to introduce the concept of a squad
for the stormtroopers. A squad should contain one or more stormtrooper of any kind, and
when given commands, it should behave exactly as if it was a single unit.

Squad, clearly, consists of a collection of stormtroopers:

class Squad(val units: List<Trooper>)

Let's add a couple of them to begin with:

val bobaFett = StormTrooper(Rifle(), RegularLegs())

val squad = Squad(listOf(bobaFett.copy(), bobaFett.copy(),
bobaFett.copy()))

To make our squad act as if it was a single unit, we'll add two methods to it called move
and attack:

class Squad(private val units: List<Trooper>) {

 fun move(x: Long, y: Long) {

 for (u in units) {

 u.move(x, y)

 }

 }

 fun attack(x: Long, y: Long) {

 for (u in units) {

 u.attackRebel(x, y)

 }

 }

}

Composite 85

Both functions will repeat any received orders to all of the units they contain. At first,
the approach seems to be working. However, what happens if we change our Trooper
interface by adding a new function? Consider the following code:

interface Trooper {

 fun move(x: Long, y: Long)

 fun attackRebel(x: Long, y: Long)

 fun retreat()

}

Nothing seems to break, but our Squad class stops doing what it was supposed to do –
that is, act as if it was a single unit. A single unit now has a method that our composite
class does not.

In order to prevent this from happening in the future, let's see what happens if our Squad
class implements the same interface as the units it contains:

class Squad(private val units: List<StormTrooper>):
 Trooper { ... }

That change will force us to implement the retreat function and mark the other two
functions with the override keyword:

class Squad(private val units: List<StormTrooper>): Trooper {

 override fun move(x: Long, y: Long) {

 ...

 }

 override fun attackRebel(x: Long, y: Long) {

 ...

 }

 override fun retreat() {

 ...

 }

}

Now, we'll take a short detour to discuss an alternative and more convenient approach to
this example – one that would allow us to construct the same object but result in
a composite that is more pleasant to use.

86 Understanding Structural Patterns

Secondary constructors
Our code did achieve its goals. However, it would be good if instead of passing a list
of stormtroopers to the constructor (as we do now), we could pass our stormtroopers
directly, without wrapping them in a list:

val squad = Squad(bobaFett.copy(), bobaFett.copy(),

 bobaFett.copy())

One way to achieve this is to add secondary constructors to our Squad class.

Up until now, we were always using the primary constructor of the class. That's the
constructor declared after the class name. But we can define more than one constructor
for a class. We can define secondary constructors for a class using the constructor
keyword inside the class body:

class Squad(private val units: List<Trooper>): Trooper {

 constructor(): this(listOf())

 constructor(t1: Trooper): this(listOf(t1))

 constructor(t1: Trooper, t2: Trooper): this(listOf(t1,

 t2))

}

Unlike Java, there's no need to repeat the class name for each constructor. That also means
fewer changes are required if you decide to rename the class.

Note how each secondary constructor must call the primary constructor. This is similar to
using the super keyword in Java.

The varargs keyword
This is clearly not the way to go, since we cannot predict how many more elements
someone might want to pass us. If you come from Java, you have probably thought about
variadic functions already, which can take an arbitrary number of arguments of the same
type. In Java, you would declare the parameter using an ellipsis: Trooper... units.

Kotlin provides us with the vararg keyword for the same purpose. By combining
a secondary constructor with varargs, we get the following piece of code, which is
very nice:

class Squad(private val units: List<Trooper>): Trooper {

 constructor(vararg units: Trooper):

 this(units.toList())

Composite 87

 ...

}

Now, we are able to create a squad with any number of stormtroopers without the need to
wrap them in a list first:

val squad = Squad(bobaFett.copy(), bobaFett.copy(), bobaFett.
copy())

Let's try to understand how this works under the hood. The Kotlin compiler translates
a vararg argument to an Array of the same type:

constructor(units: Array<Trooper>) : this(units.toList())

Arrays in Kotlin have an Adapter method that allows them to be converted to a list of the
same type. Interestingly, we can use the Adapter design pattern to help us implement the
Composite design pattern.

Nesting composites
The Composite design pattern has another interesting property. Previously, we proved that
we can create a squad containing multiple stormtroopers. We can also create a squad
of squads:

val platoon = Squad(Squad(), Squad())

Now, giving an order to the platoon will work in exactly the same way as giving it
to a squad. In fact, this pattern allows us to support a tree-like structure of arbitrary
complexity and to perform operations on all of its nodes.

The Composite design pattern may seem a bit incomplete until we reach the next chapter,
where we will discover its partner: the Iterator design pattern. When both design patterns
are combined, they really shine. If you are still unsure how this pattern is useful after
completing this section, come back to it after you have also learned about the Iterator
design pattern.

In the real world, the Composite design pattern is widely used in user interface (UI)
frameworks. For example, the Group widget in Android is an implementation of the
Composite design pattern. It can group multiple other elements and implement the View
interface in order to be able to act on their behalf.

As long as all the objects in the hierarchy implement the same interface, no matter how
deep the nesting is, we can ask the top-level object to invoke an action on everything
beneath it.

88 Understanding Structural Patterns

Facade
The use of facade as a term to refer to a design pattern comes directly from building
architecture. That is, a facade is the face of a building that is normally made to look more
appealing than the rest of it. In programming, facades can help to hide the ugly details of
an implementation.

The Facade design pattern itself aims to provide a nicer, simpler way to work with
a family of classes or interfaces. We previously discussed the idea of a family of classes
when covering the Abstract Factory design pattern. The Abstract Factory design pattern
focuses on creating related classes, while the Facade design pattern focuses on working
with them once they have been created.

To better understand this, let's go back to the example we used for the Abstract Factory
design pattern. In order to be able to start our server from a configuration using our
Abstract Factory, we could provide users of our library with a set of instructions:

•	 Check if the given file is .json or .yaml by trying to parse it with a JSON parser.

•	 If we received an error, try parsing it using a YAML parser.

•	 If there were no errors, pass the results to the Abstract Factory to create the
necessary objects.

While helpful, following this set of instructions may require quite a bit of skill and
knowledge. Developers may struggle to find the correct parser, or they might ignore any
exceptions thrown from a JSON parser in instances where it's dealing with a .yaml file,
for example.

What problems are our users facing at the moment?

To load a configuration, they will need to interact with at least three different interfaces:

•	 A JSON parser (covered in the Abstract Factory section in Chapter 2, Working with
Creational Patterns)

•	 YAML Parser (covered in the Abstract Factory section in Chapter 2, Working with
Creational Patterns)

•	 Server Factory (covered in the Factory Method section in Chapter 2, Working with
Creational Patterns)

Instead, it would be great to have a single function (startFromConfiguration())
that would take a path to a configuration file, parse it, and then, if there were no errors in
the process, start our server.

Facade 89

We'll be providing a facade to our users to simplify working with a set of classes. One way
to achieve this goal would be to provide a new class to encapsulate all of this logic for us.
This is a common tactic in most languages.

However, in Kotlin, we have a better option that uses a technique we already
discussed in this chapter when covering the Adapter design pattern. We can make
startFromConfiguration() an extension function on the Server class:

@ExperimentalPathApi

fun Server.startFromConfiguration(fileLocation: String) {

 val path = Path(fileLocation)

 val lines = path.toFile().readLines()

 val configuration = try {

 JsonParser().server(lines)

 }

 catch (e: RuntimeException) {

 YamlParser().server(lines)

 }

 Server.withPort(configuration.port)

}

You can see that this implementation is exactly the same as in the Adapter design pattern.
The only difference is the end goal. In the case of the Adapter design pattern, the goal
is to make an otherwise unusable class usable. Remember, one of the goals of the Kotlin
language is to reuse as much as possible. For the Façade design pattern, the goal is to make
a complex group of classes easy to use.

Important Note:
Depending on when you read this book, you may not need the
ExperimentalPathApi annotation anymore. This feature was
introduced in Kotlin 1.4, and once it is stable it will be made an integral part of
the language.

We already discussed that in Kotlin, try is an expression that returns a value. Here, you
can see that we can also return a value from a catch block, further reducing the need for
mutable variables.

90 Understanding Structural Patterns

Next, let's understand what happens in the first two lines of this function. Path is a rather
new API that was introduced in Kotlin 1.4. It aims to simplify working with files. Notice
that toFile is an example of the Adapter design pattern that converts between a path
and an actual file. Finally, the readLine() function will attempt to read the entire file
into memory, split line by line. Consider using the Facade design pattern when working
with any code base that would benefit from being simplified.

Flyweight
Flyweight is an object without any state. The name comes from it being very light.
If you've been reading either one of the two previous chapters, you might already be
thinking of a type of object that should be very light: a data class. But a data class is all
about state.

So, is the data class related to the Flyweight design pattern at all?

To understand this design pattern better, we need to jump back in time some twenty years.
Back in 1994, when the original Design Patterns book was published, your regular PC had
4 MB of RAM. During this period, one of the main goals of any process was to save that
precious RAM, as you could fit only so much into it.

Nowadays, some cellphones have 8 GB of RAM. Bear that in mind when we discuss what
the Flyweight design pattern is all about in this section.

Having said that, let's see how we can use our resources more efficiently, as this is always
important!

Being conservative
Imagine we're building a 2D side-scrolling arcade platform game. That is, you have your
game character, which you control with arrow keys or a gamepad. Your character can
move left, right, and jump.

Since we're a really small indie company consisting of one developer (who is also a graphic
designer, product manager, and sales representative), two cats, and a canary named
Michael, we use only 16 colors in our game. And our character is 64 pixels tall and 64
pixels wide.

Our character has a lot of enemies, which consist mostly of carnivorous Tanzanian snails:

class TanzanianSnail

Flyweight 91

Since it's a 2D game, each snail has only two directions of movement: LEFT and RIGHT.
We can represent these directions using an enum class:

enum class Direction {

 LEFT,

 RIGHT

}

To be able to draw itself on a screen, each snail will hold a pair of images and a direction:

class TansanianSnail {

 val directionFacing = Direction.LEFT

 val sprites = listOf(File("snail-left.jpg"),

 File("snail-right.jpg"))

 // More information about the state of a snail comes

 here

 // This may include its health, for example

}

Important Note:
The definition of the File class comes from java.io.File. Remember
that you can always refer to our GitHub project to see the needed imports.

Based on the direction, we can get the current sprite that shows us which direction the
snail is facing and use this to draw it:

fun getCurrentSprite(): File {

 return when (directionFacing) {

 Direction.LEFT -> sprites[0]

 Direction.RIGHT -> sprites[1]

 }

}

When any of the enemies move, they basically just slide left or right.

92 Understanding Structural Patterns

What we would like is to have multiple animated sprites to reproduce the snail's
movements in each direction. We can generate a list of such sprites for each snail enemy
using a List generator:

class TansanianSnail {

 val directionFacing = Direction.LEFT

 val sprites = List(8) { i ->

 File(when(i) {

 0 -> "snail-left.jpg"

 1 -> "snail-right.jpg"

 in 2..4 -> "snail-move-left-${i-1}.jpg"

 else -> "snail-move-right${(4-i)}.jpg"

 })

 }

}

Here, we initialize a list of eight elements, passing a block function as a constructor.
The benefit of this approach is that we can apply complex logic during the creation of
a collection while still keeping it effectively immutable.

For each element, we decide what image to get:

•	 Positions 0 and 1 are for still images, facing left and right.

•	 Positions 2 through 4 are for moving left.

•	 Positions 5 through 7 are for moving right.

Let's do some math now. Each snail is represented by a 64 x 64 image. Assuming each
color takes up exactly one byte, the single images will take up 4 KB of RAM in the
memory. Since we have eight images for a snail, we need 32 KB of RAM for each one,
which allows us to fit only 32 snails into 1 MB of memory.

Since we want to have thousands of these dangerous and extremely fast creatures on
screen and to be able to run our game on a 10-year-old phone, we clearly need a better
solution.

Saving memory
What's the problem we have with all of our snails?

Flyweight 93

They're actually quite fat, heavyweight snails. We would like to put them on a diet. Each
snail stores eight images within its snaily body. But these images are actually the same for
each snail. This raises a question:

What if we extract those sprites into a Singleton object or a Factory Method and then only
reference them from each instance?

For example, consider the following code:

object SnailSprites {

 val sprites = List(8) { i ->

 java.io.File(when (i) {

 0 -> "snail-left.jpg"

 1 -> "snail-right.jpg"

 in 2..4 -> "snail-move-left-${i-1}.jpg"

 else -> "snail-move-right${(4-i)}.jpg"

 })

 }

}

class TansanianSnail() {

 val directionFacing = Direction.LEFT

 val sprites = SnailSprites.sprites

}

This way, our getCurrentSprite function could stay the same, and we'll only
consume 256 KB of memory, no matter how many snails we generate. We could generate
millions of them without affecting the footprint of our program.

And this is exactly the idea behind the Flyweight design pattern. That is, limit the
number of heavyweight objects (in our case, the image files) by sharing them between the
lightweight objects (in our case, the snails).

Caveats of the Flyweight design pattern
We should take extra care about the immutability of the data we pass. If, for example,
we used var instead of val in our Singleton, it could be disastrous for our code. The
same goes for mutable data structures. We wouldn't want someone removing an image,
replacing it, or clearing the list of images altogether.

94 Understanding Structural Patterns

Luckily, Kotlin makes handling these cases rather easy. Just make sure to always use
values instead of variables in your extrinsic state, and remember to use immutable data
structures, which cannot be altered after they have been created.

You can debate the usefulness of this pattern in this era of plentiful memory. However,
as we have already said, the tools in the toolbox don't take up much space, and having
another design pattern under your belt may still prove useful.

Proxy
Much like the Decorator design pattern, the Proxy design pattern extends an object's
functionality. However, unlike a decorator, which always does what it's told, having
a proxy may mean that when asked to do something, the object does something totally
different.

When we discussed Creational Patterns in Chapter 2, Working with Creational Patterns,
we already touched on the idea of expensive objects. For example, an object that accesses
network resources or takes a lot of time to create.

We at the Funny Cat App provide our users with funny cat images on a daily basis. On our
homepage and mobile application, each user sees a lot of pictures of funny cats. When
they click or touch any of those images, it expands to its full-screen glory.

Fetching cat images over the network is very expensive, and it consumes a lot of memory,
especially if those are images of cats that tend to indulge in a second dessert after dinner.
What we want to do is fetch the full-sized image only once at the time it is requested. And
if it is requested multiple times, we want to be able to show it to family or friends. In short,
we don't want to have to fetch it every time.

There's no way to avoid loading the image once. But when it's being accessed for the
second time, we would like to avoid going over the network again and instead return the
result that was cached in memory. That's the idea of the Proxy design pattern; instead
of the expected behavior of going over the network each time, we're being a bit lazy and
returning the result that we already prepared.

It's a bit like going into a cheap diner, ordering a hamburger, and getting it after only two
minutes, but cold. Well, that's because someone else hated onions and returned it to the
kitchen a while ago. True story.

Proxy 95

This sounds like it would require a lot of logic. But as you've probably guessed (especially
after meeting the Decorator design pattern), Kotlin can perform miracles by reducing the
amount of boilerplate code you need to write to achieve your goals:

data class CatImage(val thumbnailUrl: String,

 val url: String) {

 val image: ByteArray by lazy {

 // Read image as bytes

 URL(url).readBytes()

 }

}

Previously, we've seen the by keyword in a different context – that is, when delegating
the implementation of an interface to another class (as discussed in The Decorator design
pattern section of this chapter).

As you may have noticed, in this case, we use the by keyword to delegate the initialization
of a field to happen later. We use a function called lazy, which is one of the delegator
functions in the Kotlin standard library. At the first call to the image property, it will
execute our code block and save its results into the image property. The following
invocations of that property will simply return its value.

Sometimes, the Proxy design pattern is divided into three sub-patterns:

•	 Virtual proxy: Lazily caches the result

•	 Remote proxy: Issues a call to the remote resource

•	 Protection or access control proxy: Denies access to unauthorized parties

You can regard our previous example as either a virtual proxy or a combination of the
virtual and remote types of proxies.

Lazy delegation
You may wonder what happens if two threads try to initialize the image at the same time.
By default, the lazy() function is synchronized. Only one thread will win, and others
will wait until the image is ready.

If you don't mind two threads executing the lazy block (for example, if it's not that
expensive), you can use lazy(LazyThreadSafetyMode.PUBLICATION) instead.

96 Understanding Structural Patterns

If performance is absolutely critical for you and you're absolutely sure that
two threads won't ever execute the same block simultaneously, you can use
LazyThreadSafetyMode.NONE, which is not thread-safe.

Proxying and delegation is a very useful approach for many complex problems, and we'll
explore this in the following chapters.

Summary
In this chapter, we have learned how structural design patterns can help us to create more
flexible code that can adapt to changes with ease, sometimes even at runtime. We've
covered how we can add functionality to an existing class with the Decorator design
pattern, and we've explored how operator overloading can allow us to provide more
intuitive syntax to common operations.

We then learned how to adapt one interface to another interface using extension methods,
and we also learned how to create anonymous objects to implement an interface only
once. Next, we discussed how to simplify class hierarchies using the Bridge design pattern.
You should now know how to create a shortcut for a type name with typealias and
also how to define efficient constants with const.

Moving on, we looked at the Composite design pattern, and we considered how it could
help you to design a system that needs to treat groups of objects and regular objects in the
same way. We also learned about secondary constructors and how a function can receive
an arbitrary number of arguments when using the vararg keyword. We learned how the
Facade design pattern helps us to simplify working with complex systems by exposing
a simple interface, while the Flyweight design pattern allows us to reduce the memory
footprint of our application.

Finally, we've covered how delegating to another class works in Kotlin, implementing the
same interface and using the by keyword in the Proxy design pattern and demonstrating
its use with a lazy delegate. With these design patterns, you should be able to structure
your system in a much more extensible and maintainable manner.

In the next chapter, we'll discuss the third family of classic design patterns: behavioral
patterns.

Questions
1.	 What differences are there between the implementations of the Decorator

and Proxy design patterns?
2.	 What is the main goal of the Flyweight design pattern?
3.	 What is the difference between the Facade and Adapter design patterns?

4
Getting Familiar
with Behavioral

Patterns
This chapter discusses behavioral patterns in terms of Kotlin. Behavioral patterns deal
with how objects interact with one another.

We'll learn how an object can alter its behavior based on the situation, how objects
can communicate without knowledge of one another, and how to iterate over complex
structures easily. We'll also touch on the concept of functional programming in Kotlin,
which will help us implement some of these patterns easily.

In this chapter, we will cover the following topics:

•	 Strategy

•	 Iterator

•	 State

•	 Command

•	 Chain of Responsibility

•	 Interpreter

98 Getting Familiar with Behavioral Patterns

•	 Mediator

•	 Memento

•	 Visitor

•	 Template method

•	 Observer

By the end of this chapter, you'll be able to structure your code in a highly decoupled and
flexible manner.

Technical requirements
In addition to the requirements from the previous chapters, you will also need a Gradle-
enabled Kotlin project to be able to add the required dependencies.

You can find the source code for this chapter here: https://github.com/
PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/
tree/main/Chapter04.

Strategy
The goal of the Strategy design pattern is to allow an object to alter its behavior at
runtime.

Let's recall the platformer game we were designing in Chapter 3, Understanding Structural
Patterns, while discussing the Facade design pattern.

Canary Michael, who acts as a game designer in our small indie game development
company, came up with a great idea. What if we were to give our hero an arsenal of
weapons to protect us from those horrible carnivorous snails?

Weapons all shoot projectiles (you don't want to get too close to those dangerous snails) in
the direction our hero is facing:

enum class Direction {

 LEFT, RIGHT

}

https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter04
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter04
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter04

Strategy 99

All projectiles should have a pair of coordinates (our game is 2D, remember?) and a
direction:

data class Projectile(private var x: Int,

 private var y: Int,

 private var direction: Direction)

If we were to shoot only one type of projectile, that would be simple, since we covered the
Factory pattern in Chapter 2, Working with Creational Patterns.

We could do something like that here:

class OurHero {

 private var direction = Direction.LEFT

 private var x: Int = 42

 private var y: Int = 173

 fun shoot(): Projectile {

 return Projectile(x, y, direction)

 }

}

But Michael wants our hero to have at least three different weapons:

•	 Peashooter: Shoots small peas that fly straight. Our hero starts with it.

•	 Pomegranate: Explodes when hitting an enemy, much like a grenade.

•	 Banana: Returns like a boomerang when it reaches the end of the screen.

Come on, Michael, give us some slack! Can't you just stick with regular guns that all work
the same?

Fruit arsenal
First, let's discuss how we could solve this in the Java way.

In Java, we would have created an interface that abstracts these changes. In our case, what
changes is our hero's weapon:

interface Weapon {

 fun shoot(x: Int,

 y: Int,

100 Getting Familiar with Behavioral Patterns

 direction: Direction): Projectile

}

Then, all the other weapons would implement this interface. Since we don't deal
with aspects such as rendering or animating objects, no specific behavior will be
implemented here:

// Flies straight

class Peashooter : Weapon {

 override fun shoot(

 x: Int,

 y: Int,

 direction: Direction

) = Projectile(x, y, direction)

}

// Returns back after reaching end of the screen

class Banana : Weapon {

 override fun shoot(

 x: Int,

 y: Int,

 direction: Direction

) = Projectile(x, y, direction)

}

// Other similar implementations here

All of the weapons in our game will implement the same interface, overriding its single
method.

Our hero will hold a reference to a weapon, Peashooter, at the beginning:

private var currentWeapon: Weapon = Peashooter()

This reference will delegate the actual shooting process to it:

fun shoot(): Projectile = currentWeapon.shoot(x, y,
 direction)

Strategy 101

What's left is the ability to equip another weapon:

fun equip(weapon: Weapon) {

 currentWeapon = weapon

}

And that's what the Strategy design pattern is all about. It makes our algorithms – in this
case, the weapons in our game – interchangeable.

Citizen functions
With Kotlin, there's a more efficient way to implement the same functionality using fewer
classes. That's thanks to the fact that functions in Kotlin are first-class citizens. But what
does that mean?

For one, we can assign functions to the variables of our class, just like any other standard
value. It makes sense that you can assign a primitive value to your variable:

val x = 7

You could also assign an object to a variable, as we have done many times already:

var myPet = Canary("Michael")

So, why shouldn't you be able to assign a function to your variable?

In Kotlin, you can easily do that. Here's an example:

val square = fun(x: Int): Long {

 return (x * x).toLong()

}

Let's see how that may help us simplify our design.

First, we'll define a namespace for all our weapons. We can use an object for that. This is
not mandatory but it helps keep everything in check. Then, instead of classes, each of our
weapons will become a function:

object Weapons {

 // Flies straight

 fun peashooter(x: Int, y: Int, direction: Direction):

 Projectile {

 return Projectile(x, y, direction)

102 Getting Familiar with Behavioral Patterns

 }

 // Returns back after reaching end of the screen

 fun banana(x: Int, y: Int, direction: Direction):

 Projectile {

 return Projectile(x, y, direction)

 }

 // Other similar implementations here

}

As you can see, instead of implementing an interface, we have multiple functions receiving
the same parameters and returning the same object.

The most interesting part is our hero. The OurHero class now contains two values,
both of which are functions:

class OurHero {

 var currentWeapon = Weapons::peashooter

 val shoot = fun() {

 currentWeapon(x, y, direction)

 }

}

The interchangeable part is currentWeapon, while shoot is now an anonymous
function that wraps it.

To test that our idea works, we can shoot the default weapon once, then switch to another
weapon and shoot with it again:

val hero = OurHero()

hero.shoot()

hero.currentWeapon = Weapons::banana

hero.shoot()

Notice that this dramatically reduces the number of classes we have to write while keeping
the same functionality. If your interchangeable algorithm doesn't have a state, you can
replace it with a simple function. Otherwise, introduce an interface, and let each Strategy
pattern implement it.

Iterator 103

That's also the first time we used the function reference operator, ::. This operator allows
us to refer to a function as if it was a variable instead of invoking it.

Strategy is a valuable pattern whenever your application needs to change its behavior at
runtime. One example is a booking system for flights that allows for overbooking; that is,
placing more passengers on a flight than there are seats. You may decide that you wish to
enable overbooking up until one day before the flight and then disallow it. You can do this
by switching strategies instead of adding complex checks to your code.

Now, let's look at another pattern that should help us work with complex data structures.

Iterator
When we were discussing the Composite design pattern in the previous chapter, we noted
that the design pattern felt a bit incomplete. Now is the time to reunite the twins separated
at birth. Much like Arnold Schwarzenegger and Danny DeVito, they're very different but
complement each other well.

As you may remember from the previous chapter, a squad consists of troopers or other
squads. Let's create one now:

val platoon = Squad(

 Trooper(),

 Squad(

 Trooper(),

),

 Trooper(),

 Squad(

 Trooper(),

 Trooper(),

),

 Trooper()

)

Here, we created a platoon that consists of four troopers in total.

It would be useful if we could print all the troopers in this platoon using a for-each
loop, which we learned about back in Chapter 1, Getting Started with Kotlin.

104 Getting Familiar with Behavioral Patterns

Let's just try to write that code and see what happens:

for (trooper in platoon) {

 println(trooper)

}

Although this code doesn't compile, the Kotlin compiler provides us with a useful hint:

>For loop range must have an iterator method

Before we follow the compiler's guidance and implement the method, let's briefly discuss
what problem we have at the moment.

Our platoon, which implements a Composite design pattern, is not a flat data structure.
It can contain objects that contain other objects – squads can contain troopers as well as
other squads. In this case, however, we want to abstract that complexity and work with
it as if it was just a list of troopers. The Iterator pattern does just that – it flattens our
complex data structure into a simple sequence of elements. The order of the elements and
what elements to ignore is for the iterator to decide.

To use our Squad object in a for-each loop, we will need to implement a special
function called iterator(). And since it's a special function, we'll need to use the
operator keyword:

operator fun iterator() = ...

What our function returns is an anonymous object that implements the Iterator<T>
interface:

operator fun iterator() = object: Iterator<Trooper> {

 override fun hasNext(): Boolean {

 // Are there more objects to iterate over?

 }

 override fun next(): Trooper {

 // Return next Trooper

 }

}

Once again, we can see the use of generics in Kotlin. Iterator<Trooper> means that
the objects that our next() method returns will always be of the Trooper type.

Iterator 105

To be able to iterate all the elements, we need to implement two methods – one to fetch
the next element and one to let the loop know when to stop. Let's do that by executing the
following steps:

1.	 First, we need a state for our iterator. It will remember that the last element is
returned:

operator fun iterator() = object: Iterator<Trooper> {

 private var i = 0

 // More code here

}

2.	 Next, we need to tell it when to stop. In simple cases, this would be equal to the size
of the underlying data structure:

override fun hasNext(): Boolean {

 return i < units.size

}

This will be a bit more complex since we need to handle some edge cases. You can
find the complete implementation in this book's GitHub repository.

3.	 Finally, we need to know which unit to return. For simple cases, we could just
return the current element and increase the element count by one:

override fun next() = units[i++]

In our case, this is a bit more complex since squads could contain other squads.
Again, you can find the full implementation in this book's GitHub repository.

Sometimes, it also makes sense to receive an iterator as a parameter of a function:
fun <T> printAnything(iter: Iterator<T>) {

 while (iter.hasNext()) {

 println(iter.next())

 }

}

This function will iterate over anything that supplies an iterator. This is also
an example of a generic function in Kotlin. Note <T>, which comes before the
function's name.

As a regular developer that doesn't invent new data structures for a living, you may not
implement iterators often. However, it's still important to know how they work behind
the scenes.

106 Getting Familiar with Behavioral Patterns

The following section will show how to design finite-state machines efficiently.

State
You can think of the State design pattern as an opinionated Strategy pattern, which
we discussed at the beginning of this chapter. But while the Strategy pattern is usually
replaced from the outside by the client, the state may change internally based solely on the
input it gets.

Look at this dialog a client wrote with the Strategy pattern:

•	 Client: Here's a new thing to do, start doing it from now on.

•	 Strategy: OK, no problem.

•	 Client: What I like about you is that you never argue with me.

Compare it with this one:

•	 Client: Here's some new input I got from you.

•	 State: Oh, I don't know. Maybe I'll start doing something differently. Maybe not.

The client should also expect that the state may even reject some of its inputs:

•	 Client: Here's something for you to ponder, State.

•	 State: I don't know what it is! Don't you see I'm busy? Go bother some Strategy with
this!

So, why do clients still tolerate that state of ours? Well, the state is good at keeping
everything under control.

Fifty shades of State
The carnivorous snails from our platformer game have had enough of this abuse. So, the
player throws peas and bananas at them, only to get to another sorry castle. Now, they
shall act!

Let's see how the State design pattern can help us model a changing behavior of an actor
– in our case, of the enemies in our platformer game. By default, the snail should stand
still to conserve snail energy. But when the hero gets close, it should dash toward them
aggressively.

If the hero manages to injure it, it should retreat to lick its wounds. Then, it will repeat
attacking until either of them is dead.

State 107

First, we'll declare what can happen during a snail's life:

interface WhatCanHappen {

 fun seeHero()

 fun getHit(pointsOfDamage: Int)

 fun calmAgain()

}

Our snail implements this interface so that it is notified of anything that may happen to it
and act accordingly:

class Snail : WhatCanHappen {

 private var healthPoints = 10

 override fun seeHero() {

 }

 override fun getHit(pointsOfDamage: Int) {

 }

 override fun calmAgain() {

 }

}

Now, we can declare the Mood class, which we will mark with the sealed keyword:

sealed class Mood {

 // Some abstract methods here, like draw(), for example

}

Sealed classes are abstract and cannot be instantiated. We'll see the benefit of using them
in a moment. But before that, let's declare other states:

object Still : Mood()

object Aggressive : Mood()

object Retreating : Mood()

object Dead : Mood()

These are all the different states – sorry, moods – of our snail.

108 Getting Familiar with Behavioral Patterns

In terms of the State design pattern, Snail is the context. It holds the state. So, we declare
a member for it:

class Snail : WhatCanHappen {

 private var mood: Mood = Still

 // As before

}

Now, let's define what Snail should do when it sees our hero:

override fun seeHero() {

 mood = when(mood) {

 is Still -> Aggressive

 }

}

Notice that this doesn't compile. This is where the sealed class comes into play. Much
like with an enum, Kotlin knows that there's a finite number of classes that extend from it.
So, it requires that our when is exhaustive and specifies all the different cases in it.

Important Note:
If you're using IntelliJ as your IDE, it will even suggest that you Add
remaining branches automatically.

We can use else to describe no state change:

override fun seeHero() {

 mood = when(mood) {

 is Still -> Aggressive

 else -> mood

 }

}

When the snail gets hit, we need to decide whether it's dead or not. For that, we can use
when without an argument:

override fun getHit(pointsOfDamage: Int) {

 healthPoints -= pointsOfDamage

 mood = when {

State 109

 (healthPoints <= 0) -> Dead

 mood is Aggressive -> Retreating

 else -> mood

 }

}

Note that we use the is keyword here, which is the same as instanceof in Java, but
more concise.

State of the nation
The previous approach contains most of the logic for our context. You may sometimes see
a different approach, which is valid as your context becomes bigger.

In this approach, Snail would become thin:

class Snail {

 internal var mood: Mood = Still(this)

 private var healthPoints = 10

 // That's all!

}

Note that we marked mood as internal. This lets other classes in the same package
alter it. Instead of Snail implementing WhatCanHappen, our Mood will implement it
instead:

sealed class Mood : WhatCanHappen

Now, the logic resides within our state objects:

class Still(private val snail: Snail) : Mood() {

 override fun seeHero() {

 snail.mood = Aggressive

 }

 override fun getHit(pointsOfDamage: Int) {

 // Same logic from before

 }

110 Getting Familiar with Behavioral Patterns

 override fun calmAgain() {

 // Return to Still state

 }

}

Note that our state objects now receive a reference to their context in the constructor.

Use the first approach if the amount of code in your state is relatively small. Use the
second approach for cases if the variants differ a lot. One example from the real world,
where this pattern is widely used, is Kotlin's Coroutines mechanism. We'll discuss this in
detail in Chapter 5, Introducing Functional Programming.

Now, let's look at another pattern that encapsulates actions.

Command
This design pattern allows you to encapsulate actions inside an object to be executed
sometime later. Furthermore, if we can execute one action later, we could also execute
many, or even schedule exactly when to execute them.

Let's go back to our Stormtrooper management system from Chapter 3, Understanding
Structural Patterns. Here's an example of implementing the attack and move functions
from before:

class Stormtrooper(...) {

 fun attack(x: Long, y: Long) {

 println("Attacking ($x, $y)")

 // Actual code here

 }

 fun move(x: Long, y: Long) {

 println("Moving to ($x, $y)")

 // Actual code here

 }

}

We could even use the Bridge design pattern from the previous chapter to provide the
actual implementations.

Command 111

The problem we need to solve now is that our trooper can remember exactly one
command. That's it. If they start at (0, 0), which is the top of the screen, we can tell
them to move(20, 0), which is 20 steps to the right, and then to move(20, 20).
In this case, they'll move straight to (20, 20) and will probably get destroyed because
there are rebels that we must try to avoid at all costs:

[storm trooper](0, 0) -> good direction -> (20, 0)

 [rebel] [rebel] ⇓
 [rebel] [rebel] [rebel] ⇓
 [rebel] [rebel]

 (5, 20) (20, 20)

If you've been following this book from the start or at least joined at Chapter 3,
Understanding Structural Patterns, you probably have an idea of what we need to do, since
we have already discussed the concept of functions as first-class citizens in the language.

Let's sketch a draft for this. We know that we want to hold a list of objects, but we don't
know what type they should be yet. So, we'll use Any for now:

class Trooper {

 private val orders = mutableListOf<Any>()

 fun addOrder(order: Any) {

 this.orders.add(order)

 }

 // More code here

}

Then, we want to iterate over the list and execute the orders we have:

class Trooper {

 ...

 // This will be triggered from the outside once in a while

 fun executeOrders() {

 while (orders.isNotEmpty()) {

 val order = orders.removeFirst()

 order.execute() // Compile error for now

 }

112 Getting Familiar with Behavioral Patterns

 }

 ...

}

Note that Kotlin provides us with the isNotEmpty() function on collections, as an
alternative to the !orders.isEmpty() check, as well as a removeFirst() function,
which allows us to use our collection as if it was a queue.

Even if you're not familiar with the Command design pattern, you can guess that if we
want our code to compile, we can define an interface with a single method, execute():

interface Command {

 fun execute()

}

Then, we can hold a list at the same time in a member property:

private val commands = mutableListOf<Command>()

Each type of order, be it a move order or an attack order, would implement this interface
as needed. That's basically what the Java implementation of this pattern would suggest in
most cases. But isn't there a better way?

Let's look at Command again. The execute() method receives nothing, returns nothing,
and does something. It's the same as writing the following code:

fun command(): Unit {

 // Some code here

}

It's no different from what we've seen previously. We could simplify this further:

() -> Unit

And instead of having an interface for this called Command, we'll have typealias:

typealias Command = ()-> Unit

This makes our Command interface redundant and allows us to remove it.

Now, this line stops compiling again:

command.execute() // Unresolved reference: execute

Command 113

This is because execute() is just some name we invented. In Kotlin, functions use
invoke():

command.invoke() // Compiles

We can also omit invoke(), which will leaves us with the following code:

fun executeOrders() {

 while (orders.isNotEmpty()) {

 val order = orders.removeFirst()

 order() // Executed the next order

 }

}

That's nice, but currently, our function has no parameters at all. What happens if our
function receives arguments?

One option would be to change the signature of our Command so that we receive two
parameters:

(x: Int, y: Int)-> Unit

But what if some commands receive no arguments, or only one, or more than two? We also
need to remember what to pass to invoke() at each step.

A much better way is to have a function generator. This is a function that returns another
function. If you have ever worked with the JavaScript language, then you'll know that it's a
common practice to use closures to limit the scope and remember stuff. We'll do the same
here:

val moveGenerator = fun(trooper: Trooper,

 x: Int,

 y: Int): Command {

 return fun() {

 trooper.move(x, y)

 }

}

114 Getting Familiar with Behavioral Patterns

When called with proper arguments, moveGenerator will return a new function. This
function can be invoked whenever we find it suitable and it will remember three things:

•	 What method to call

•	 Which arguments to use

•	 Which object to use it on

Now, our Trooper may have a method like this:

fun appendMove(x: Int, y: Int) = apply {

 commands.add(moveGenerator(this, x, y))

}

This provides us with a nice fluent syntax:

val trooper = Trooper()

trooper.appendMove(20, 0)

 .appendMove(20, 20)

 .appendMove(5, 20)

 .execute()

Fluent syntax means that we can chain methods on the same object easily without the
need to repeat its name many times.

This code will print the following output:

> Moving to (20, 0)

> Moving to (20, 20)

> Moving to (5, 20)

Now, we may issue any number of commands to our Trooper without needing to know
how they are executed internally.

A function that receives or returns another function is called a higher-order function.
We'll explore such functions many more times in this book.

Undoing commands
While not directly related, one of the advantages of the Command design pattern is the
ability to undo commands. What if we wanted to support such a functionality?

Chain of Responsibility 115

Undoing is usually very tricky because it involves one of the following:

•	 Returning to the previous state (this is impossible if there's more than one client as
this requires a lot of memory)

•	 Computing deltas (tricky to implement)

•	 Defining opposite operations (not always possible)

In our case, the opposite of the move from (0,0) to (0, 20) command would be move from
wherever you're now to (0,0). This can be achieved by storing a pair of commands:

private val commands =
 mutableListOf<Pair<Command, Command>>()

We'll need to change our appendMove function so that it also stores the reverse
command every time:

fun appendMove(x: Int, y: Int) = apply {

 val oppositeMove = /* If it's the first command,
 generate move to current location. Otherwise, get the
 previous command */

 commands.add(moveGenerator(this, x, y) to oppositeMove)

}

Computing the opposite move is quite complex as we don't save the position of our soldier
currently (it was something we should have implemented anyway). We'll also have to deal
with some edge cases. But this should provide you with an idea of how such behavior can
be achieved.

The Command design pattern is yet another example of functionality that is already
embedded inside the language. In this case, this functions as a first-class citizen, which
reduces the need to implement design patterns yourself. In the real world, this pattern
is practical whenever you want to enqueue multiple actions or schedule an action to be
executed later.

Chain of Responsibility
I'm a horrible software architect, and I don't particularly appreciate speaking with people.
Hence, while sitting in The Ivory Tower (that's the name of the cafe I often visit), I wrote a
small web application. If a developer has a question, they shouldn't approach me directly,
oh no! They'll need to send me a proper request through this system and I shall only
answer them if I deem their request worthy.

116 Getting Familiar with Behavioral Patterns

A filter chain is a ubiquitous concept in web servers. Usually, when a request reaches you,
it's expected that the following is true:

•	 Its parameters have already been validated.

•	 The user has already been authenticated, if possible.

•	 User roles and permissions are known and the user is authorized to perform an
action.

So, the code I initially wrote looked something like this:

data class Request(val email: String, val question: String)

fun handleRequest(r: Request) {

 // Validate

 if (r.email.isEmpty() || r.question.isEmpty()) {

 return

 }

 // Authenticate

 // Make sure that you know whos is this user

 if (r.isKnownEmail()) {

 return

 }

 // Authorize

 // Requests from juniors are automatically ignored by

 architects

 if (r.isFromJuniorDeveloper()) {

 return

 }

 println("I don't know. Did you check StackOverflow?")

}

It's a bit messy, but it works.

Then, I noticed that some developers decided that they can send me two questions at
once. We have to add some more logic to this function. But wait – I'm an architect, after
all. So, isn't there a better way to delegate this?

Chain of Responsibility 117

The goal of the Chain of Responsibility design pattern is to break a complex piece of logic
into a collection of smaller steps, where each step, or link in the chain, decides whether to
proceed to the next one or to return a result.

This time, we won't learn new Kotlin tricks but use those that we already know about. So,
for example, we could start by implementing an interface such as this one:

interface Handler {

 fun handle(request: Request): Response

}

We never discussed what my response to one of the developers looked like. That's because
I keep my chain of responsibility so long and complex that usually, they tend to solve the
problems by themselves. I've never had to answer one of them, quite frankly. But let's
assume the response looks something like this:

data class Response(val answer: String)

We could do this the Java way and start implementing each piece of logic inside its own
handler:

class BasicValidationHandler(private val next: Handler) :
 Handler {

 override fun handle(request: Request): Response {

 if (request.email.isEmpty() ||

 request.question.isEmpty()) {

 throw IllegalArgumentException()

 }

 return next.handle(request)

 }

}

As you can see, here, we are implementing an interface with a single method, which we
override with our desired behavior.

118 Getting Familiar with Behavioral Patterns

Other filters would look very similar to this one. We can compose them in any order
we want:

val req = Request("developer@company.com",
 "Who broke my build?")

val chain = BasicValidationHandler(

 KnownEmailHandler(

 JuniorDeveloperFilterHandler(

 AnswerHandler()

)

)

)

val res = chain.handle(req)

But I won't even ask you the rhetorical question this time about better ways to do things.
Of course, there's a better way. We're in the Kotlin world now. And we've seen how to use
various functions in the previous section. So, let's define a function for this task:

typealias Handler = (request: Request) -> Response

We don't have a separate class and interface for something that simply receives a request
and returns a response. Here's an example of how we can implement authentication in our
application by using a simple function as a value:

val authentication = fun(next: Handler) =

 fun(request: Request): Response {

 if (!request.isKnownEmail()) {

 throw IllegalArgumentException()

 }

 return next(request)

 }

Here, authentication is a function that receives a function and returns a function.
This pattern allows us to easily compose those functions:

val req = Request("developer@company.com",
 "Why do we need Software Architects?")

val chain = basicValidation(authentication

Interpreter 119

 (finalResponse()))

val res = chain(req)

println(res)

Which method you choose to use is up to you. For example, using interfaces is more
explicit and would suit you better if you're creating a library or framework that others may
want to extend.

Using functions is more concise and if you just want to split your code in a more
manageable way, it may be the better choice.

You've probably seen this approach many times in the real world. For example, many
web server frameworks use it to handle cross-cutting concerns, such as authentication,
authorization, logging, and even routing requests. Sometimes, these are called filters or
middleware, but it's the same Chain of Responsibility design pattern in the end. We'll
discuss it again in more detail in Chapter 10, Concurrent Microservices with Ktor, and
Chapter 11, Reactive Microservices with Vert.x, where we'll see how it's implemented by
some of the most popular Kotlin frameworks.

The next design pattern will be a bit different from all the others and also somewhat more
complex.

Interpreter
This design pattern may seem very simple or very hard, based on how much background
you have in computer science. Some books that discuss classical software design patterns
even decide to omit it altogether or put it somewhere at the end, for curious readers only.

The reason behind this is that the Interpreter design pattern deals with translating specific
languages. But why would we need that? Don't we have compilers to do that anyway?

We need to go deeper
All developers have to speak many languages or sub-languages. Even as regular
developers, we use more than one language. Think of tools that build your projects,
such as Maven or Gradle. You can consider their configuration files and build scripts as
languages with specific grammar. If you put elements out of order, your project won't be
built correctly. This is because such projects have interpreters to analyze configuration files
and act upon them.

120 Getting Familiar with Behavioral Patterns

Other examples are query languages, whether one of the SQL variations or one of the
languages specific to NoSQL databases. If you're an Android developer, you may think of
XML layouts as such languages too. Even HTML could be considered as a language that
defines user interfaces. And there are others, of course.

Maybe you've worked with one of the testing frameworks that defines a custom language
for testing, such as Cucumber (github.com/cucumber).

Each of these examples can be called a domain-specific language (DSL). A DSL is
a language inside a language, built for a particular domain. We'll discuss how they work in
the next section.

A language of your own
In this section, we'll define a simple DSL-for-SQL language. We won't define the format or
grammar for it; instead, we'll provide an example of what it should look like:

val sql = select("name, age") {

 from("users") {

 where("age > 25")

 } // Closes from

} // Closes select

println(sql)

The goal of our language is to improve readability and prevent some common SQL
mistakes, such as typos (such as using FORM instead of FROM). We'll cover the compile-
time validations and autocompletion along the way.

The preceding code prints the following output:

> SELECT name, age FROM users WHERE age > 25

We'll start with the easiest part – implementing the select function:

fun select(columns: String, from: SelectClause.()->Unit):

 SelectClause {

 return SelectClause(columns).apply(from)

}

http://github.com/cucumber

Interpreter 121

We could write this using single expression notation, but we are using the more verbose
version for clarity here. This is a function that has two parameters. The first is a String,
which is simple. The second is another function that receives nothing and returns nothing.

The most interesting part is that we specify the receiver for our lambda:

SelectClause.()->Unit

This is a very smart trick, so be sure to follow along. Remember extension functions,
which we discussed in Chapter 1, Getting Started with Kotlin, and expanded on in Chapter
2, Working with Creational Patterns. The preceding code can be translated into the
following code:

(SelectClause)->Unit

Here, you can see that although it may seem like this lambda receives nothing, it receives
one argument: an object of the SelectClause type. The second trick lies in the usage of
the apply() function, which we've already seen.

Let's look at this line:

SelectClause(columns).apply(from)

This can be translated into the following piece of code:

val selectClause = SelectClause(columns)

from(selectClause)

return selectClause

Here are the steps the preceding code will perform:

1.	 Initialize SelectClause, which is a simple object that receives one argument in
its constructor.

2.	 Call the from() function with an instance of SelectClause as its only
argument.

3.	 Return an instance of SelectClause.

This code only makes sense if from() does something useful with SelectClause.

Let's look at our DSL example again:

select("name, age", {

 this@select.from("users", {

 where("age > 25")

122 Getting Familiar with Behavioral Patterns

 })

})

We've made the receiver explicit now, meaning that the from() function will call the
from() method on the SelectClause object.

You can start guessing what this method looks like. It receives String as its first
argument and another lambda as its second:

class SelectClause(private val columns: String) {

 private lateinit var from: FromClause

 fun from(

 table: String,

 where: FromClause.() -> Unit

): FromClause {

 this.from = FromClause(table)

 return this.from.apply(where)

 }

 override fun toString() = "SELECT $columns $from"

}

This example could be shortened, but then we'd need to use apply() within apply(),
which may seem confusing at this point.

This is the first time we've seen the lateinit keyword. Remember that the Kotlin
compiler is very serious about null safety. If we omit lateinit, it will require us to
initialize the variable with a default value. But since we'll only know this at a later time, we
are asking the compiler to relax a bit.

Important Note:
Note that if we don't make good on our promises and forget to initialize the
variable, we'll get UninitializedPropertyAccessException
when we access it for the first time.

This keyword is quite dangerous, so use it with caution.

Interpreter 123

Let's go back to our preceding code; all we do is the following:

1.	 Create an instance of FromClause.
2.	 Store FromClause as a member of SelectClause.
3.	 Pass an instance of FromClause to the where lambda.
4.	 Return an instance of FromClause.

Hopefully, you're starting to get the gist of it:

select("name, age", {

 this@select.from("users", {

 this@from.where("age > 25")

 })

})

What does this mean? After understanding the from() method, this should be much
simpler. FromClause must have a method called where() that receives one argument
of the String type:

class FromClause(private val table: String) {

 private lateinit var where: WhereClause

 fun where(conditions: String) = this.apply {

 where = WhereClause(conditions)

 }

 override fun toString() = "FROM $table $where"

}

Note that we have made good on our promise and shortened the method this time.

We initialized an instance of WhereClause with the string we received and returned it –
simple as that:

class WhereClause(private val conditions: String) {

 override fun toString() = "WHERE $conditions"

}

124 Getting Familiar with Behavioral Patterns

WhereClause only prints the word WHERE and the conditions it received:

class FromClause(private val table: String) {

 // More code here...

 override fun toString() = "FROM $table $where"

}

FromClause prints the word FROM, as well as the table name it received and everything
WhereClause printed:

class SelectClause(private val columns: String) {

 // More code here...

 override fun toString() = "SELECT $columns $from"

}

SelectClause prints the word SELECT, the columns it got, and whatever
FromClause printed.

Taking a break
Kotlin provides beautiful capabilities for creating readable and type-safe DSLs. But the
Interpreter design pattern is one of the hardest in the toolbox. If you didn't get it from the
get-go, take some time to debug the previous code. Understand what the this expression
means at each step, as well as when we call the function of an object and when we call the
method of an object.

Call suffix
We left out one last notion of Kotlin's DSL until the end of this section so that we didn't
confuse you.

Let's look at our DSL again:

val sql = select("name, age") {

 from("users") {

 where("age > 25")

 } // Closes from

 } // Closes select

Note that although the select function receives two arguments – a string and a lambda
– the lambda is written outside of the round brackets, not inside them.

Mediator 125

This is called call suffix and is a widespread practice in Kotlin. If our function receives
another function as its last argument, we can pass it out of parentheses.

This results in a much clearer syntax, especially for DSLs such as this one.

The Interpreter design pattern and Kotlin's abilities to produce DSLs with type-safe
builders are compelling. But as they say, with great power comes great responsibility. So,
consider if your case is complex enough to construct a language within a language, or
whether using the Kotlin basic syntax will be enough.

Now, let's go back to the game we were building to see how we can decouple object
communication.

Mediator
The development team of our game has some real problems – and they're not related to
code directly. As you may recall, our little indie company consists of only me, a canary
named Michael that acts as a product manager, and two cat designers that sleep most
of the day but produce some decent mockups from time to time. We have no Quality
Assurance (QA) whatsoever. Maybe that's one of the reasons our game keeps crashing all
the time.

Recently Michael has introduced me to a parrot named Kenny, who happens to be QA:

interface QA {

 fun doesMyCodeWork(): Boolean

}

interface Parrot {

 fun isEating(): Boolean

 fun isSleeping(): Boolean

}

object Kenny : QA, Parrot {

 // Implements interface methods based on parrot
 // schedule

}

Kenny is a simple object that implements two interfaces: QA, to do QA work, and
Parrot, because it's a parrot.

126 Getting Familiar with Behavioral Patterns

Parrot QAs are very motivated. They're ready to test the latest version of my game at any
time. But they don't like to be bothered when they are either sleeping or eating:

object Me

object MyCompany {

 val cto = Me

 val qa = Kenny

 fun taskCompleted() {

 if (!qa.isEating() && !qa.isSleeping()) {

 println(qa.doesMyCodeWork())

 }

 }

}

In case Kenny has any questions, I gave him my direct number:

object Kenny : ... {

 val developer = Me

}

Kenny is a hard-working parrot. But we had so many bugs that we also had to hire a
second parrot QA, Brad. If Kenny is free, I give the job to him as he's more acquainted
with our project. But if he's busy, I check if Brad is free and give the task to him:

class MyCompany {

 ...

 val qa2 = Brad

 fun taskCompleted() {

 ...

 else if (!qa2.isEating() && !qa2.isSleeping()) {

 println(qa2.doesMyCodeWork())

 }

 }

}

Mediator 127

Brad, being more junior, usually checks with Kenny first. And Kenny also gave my
number to him:

object Brad : QA, Parrot {

 val senior = Kenny

 val developer = Me

 ...

}

Then, Brad introduces me to George. George is an owl, so he sleeps at different times than
Kenny and Brad. This means that he can check my code at night.

George checks everything with Kenny and with me:

object George : QA, Owl {

 val developer = Me

 val mate = Kenny

 ...

}

The problem is that George is an avid football fan. So, before calling him, we need to
check if he's watching a game:

class MyCompany {

 ...

 val qa3 = George

 fun taskCompleted() {

 ...

 else if (!qa3.isWatchingFootball()) {

 println(qa3.doesMyCodeWork())

 }

 }

}

128 Getting Familiar with Behavioral Patterns

Kenny, out of habit, checks in with George too, because George is a very
knowledgeable owl:

object Kenny : QA, Parrot {

 val peer = George

 ...

}

Then, there's Sandra. She's a different kind of bird because she's not part of QA but
a copywriter:

interface Copywriter {

 fun areAllTextsCorrect(): Boolean

}

interface Kiwi

object Sandra : Copywriter, Kiwi {

 override fun areAllTextsCorrect(): Boolean {

 return ...

 }

}

I try not to bother her unless there's a major release:

class MyMind {

 ...

 val translator = Sandra

 fun taskCompleted(isMajorRelease: Boolean) {

 ...

 if (isMajorRelease) {

 println(translator.areAllTranslationsCorrect())

 }

 }

}

Mediator 129

I have a few problems here:

•	 First, my mind almost explodes trying to remember all those names. So might
yours.

•	 Second, I need to remember how to interact with each person. I'm the one doing all
the checks before calling them.

•	 Third, notice how George tries to confirm everything with Kenny, and Kenny
with George. Luckily, up until now, George has always been watching a football
game when Kenny calls him. And Kenny is asleep when George needs to confirm
something with him. Otherwise, they would get stuck on the phone for eternity.

•	 Fourth, and what bothers me the most, is that Kenny plans to leave soon to open his
own startup, ParrotPi. Imagine all the code we'll have to change now!

All I want to do is check if everything is alright with my code. Someone else should do all
this talking!

The middleman
The Mediator design pattern is simply a control freak. It doesn't like it when one object
speaks to the other directly. It gets mad sometimes when that happens. No – everybody
should only speak through him. What's the explanation for this? It reduces coupling
between objects. Instead of knowing some other objects, everybody should know only
them, the mediator.

I decided that Michael should manage all those processes and act as the mediator of them:

interface Manager {

 fun isAllGood(majorRelease: Boolean): Boolean

}

Only Michael will know all the other birds:

object Michael : Canary, ProductManager {

 private val kenny = Kenny(this)

 private val brad = Brad(this)

 override fun isAllGood(majorRelease: Boolean): Boolean {

 if (!kenny.isEating() && !kenny.isSleeping()) {

 println(kenny.doesMyCodeWork())

 } else if (!brad.isEating() && !brad.isSleeping()) {

130 Getting Familiar with Behavioral Patterns

 println(brad.doesMyCodeWork())

 }

 return true

 }

}

Notice how the mediator encapsulates the complex interactions between different objects,
exposing a very simple interface.

I'll only remember Michael and he'll do the rest:

class MyCompany(private val manager: Manager) {

 fun taskCompleted(isMajorRelease: Boolean) {

 println(manager.isAllGood(isMajorRelease))

 }

}

I'll also change my phone number and make sure that everybody gets only Michael's:

class Brad(private val manager: Manager) : ... {

 // No reference to Me here

 ...

}

Now, if somebody needs somebody else's opinion, they'll need to go through Michael first:

class Kenny(private val manager: Manager) : ... {

 // No reference to George, or anyone else

 ...

}

As you can see, there's nothing new we can learn about Kotlin through this pattern.

Mediator flavors
There are two flavors to the Mediator pattern. We'll call them strict and loose. We saw the
strict version previously. We tell the mediator exactly what to do and expect an answer
from it.

The loose version will expect us to notify the mediator of what happened, but not to
expect an immediate answer. Instead, if they need to notify us in return, they should
call us.

Memento 131

Mediator caveats
Michael suddenly becomes ever so important. Everybody knows only him and only
he can manage their interactions. He may even become a God Object, all-knowing and
almighty, which is an antipattern from Chapter 9, Idioms and Anti-Patterns. Even if he's
that important, be sure to define what this mediator should, and – even more importantly
– shouldn't do.

Let's continue with our example and discuss yet another behavioral pattern.

Memento
Since Michael became a manager, it's been tough to catch him if I have a question. And
when I do ask him something, he just throws something and runs to the next meeting.

Yesterday, I asked him what new weapon we should introduce in our game. He told me
it should be a Coconut Cannon, clear as day. But today, when I presented him with this
feature, he chirped at me angrily! Finally, he said he told me to implement a Pineapple
Launcher instead. I'm lucky he's just a canary.

It would be great if I could record him so that when we have another meeting that goes
awry because he's not paying full attention, I can simply replay everything he said.

Let's sum up my problems first – Michael's thoughts are his and his only:

class Manager {

 private var thoughts = mutableListOf<String>()

 ...

}

The problem is that since Michael is a canary, he can only hold 2 thoughts in his mind:

class Manager {

 ...

 fun think(thought: String) {

 thoughts.add(thought)

 if (thoughts.size > 2) {

 thoughts.removeFirst()

 }

 }

}

132 Getting Familiar with Behavioral Patterns

If Michael thinks about more than 2 things at a time, he'll forget the first thing he thought
about:

michael.think("Need to implement Coconut Cannon")

michael.think("Should get some coffee")

michael.think("Or maybe tea?") // Forgot about Coconut
 Cannon

michael.think("No, actually, let's implement Pineapple
 Launcher") // Forgot that he wanted coffee

Even in the recording, what he says is quite hard to understand (because he doesn't return
anything).

And even if I do record him, Michael can claim it's what he said, not what he meant.

The Memento design pattern solves this problem by saving the internal state of an object,
which can't be altered from the outside (so that Michael cannot deny that he said it) and
can only be used by the object itself.

In Kotlin, we can use an inner class to implement this:

class Manager {

 ...

 inner class Memory(private val mindState: List<String>) {

 fun restore() {

 thoughts = mindState.toMutableList()

 }

 }

}

Here, we can see a new keyword, inner, for marking our class. If we omit this keyword,
the class is called Nested and is similar to the static nested class from Java. Inner classes
have access to the private fields of the outer class. For that reason, our Memory class can
change the internal state of the Manager class easily.

Now, we can record what Michael says at this moment by creating an imprint of the
current state:

fun saveThatThought(): Memory {

 return Memory(thoughts.toList())

}

Memento 133

At this point, we can capture his thoughts in an object:

val michael = Manager()

michael.think("Need to implement Coconut Cannon")

michael.think("Should get some coffee")

val memento = michael.saveThatThought()

michael.think("Or maybe tea?")

michael.think("No, actually, let's implement Pineapple
 Launcher")

Now, we need to add a means of going back to a previous line of thought:

class Manager {

 ...

 fun `what was I thinking back then?`(memory: Memory) {

 memory.restore()

 }

}

Here, we can see that if we want to use special characters in function names, such as
spaces, we can, but only if a function name is wrapped in backticks. Usually, that's not the
best idea, but it has its uses, as we'll cover in Chapter 10, Concurrent Microservices with
Ktor.

What's left is using memento to go back in time:

with(michael) {

 think("Or maybe tea?")

 think("No, actually, let's implement Pineapple
 Launcher")

}

michael.`what was I thinking back then?`(memento)

The last invocation will return Michael's mind to thinking about Coconut Cannon, of
all things.

Note how we use the with standard function to avoid repeating michael.think() on
each line. This function is helpful if you need to refer to the same object often in the same
block of code and would like to avoid repetition.

134 Getting Familiar with Behavioral Patterns

I don't expect you to see the Memento design pattern implemented very often in the real
world. But it still may be useful in some types of applications that need to recover to some
previous state.

At the beginning of this chapter, we discussed the Iterator design pattern, which helps
us work with complex data structures. Next, we'll look at another design pattern with a
somewhat similar goal.

Visitor
This design pattern is usually a close friend of the Composite design pattern, which we
discussed in Chapter 3, Understanding Structural Patterns. It can either extract data from
a complex tree-like structure or add behavior to each node of the tree, much like the
Decorator design pattern does for a single object.

My plan, being a lazy software architect, worked out quite well. My request-answering
system from the chain of responsibility worked quite well and I don't have plenty of time
for coffee. But I'm afraid some developers begin to suspect that I'm a bit of a fraud.

To confuse them, I plan to produce weekly emails with links to all the latest buzzword
articles. Of course, I don't plan to read them myself – I just want to collect them from
some popular technology sites.

Writing a crawler
Let's look at the following data structure, which is very similar to what we had when we
discussed the Iterator design pattern:

Page(Container(Image(),

 Link(),

 Image()),

 Table(),

 Link(),

 Container(Table(),

 Link()),

 Container(Image(),

 Container(Image(),

 Link())))

Visitor 135

Page is a container for other HTML elements, but not HtmlElement by itself.
Container holds other containers, tables, links, and images. Image holds its link in the
src attribute. Link has the href attribute instead.

What we would like to do is extract all the URLs from the object.

We will start by creating a function that will receive the root of our object tree – a Page
container, in this case – and return a list of all the available links:

fun collectLinks(page: Page): List<String> {

 // No need for intermediate variable there

 return LinksCrawler().run {

 page.accept(this)

 this.links

 }

}

Using run allows us to control what we return from the block's body. In this case, we will
return the links objects we've gathered. Inside the run block, this refers to the object it
operates on – in our case, LinksCrawler.

In Java, the suggested way to implement the Visitor design pattern is to add a method
for each class that will accept our new functionality. We'll do the same, but not for all the
classes. Instead, we'll only define this method for container elements:

private fun Container.accept(feature: LinksCrawler) {

 feature.visit(this)

}

// Or using a shorter syntax:

private fun Page.accept(feature: LinksCrawler) =
 feature.visit(this)

Our feature will need to hold a collection internally and expose it for read purposes. In
Java, we will only specify the getter for this member; no setter is required. In Kotlin, we
can specify the value without a backing field:

class LinksCrawler {

 private var _links = mutableListOf<String>()

 val links

136 Getting Familiar with Behavioral Patterns

 get()= _links.toList()

 ...

}

We want our data structure to be immutable. That's the reason we're calling toList()
on it.

Important Note:
The functions that iterate over branches could be simplified even further if we
use the Iterator design pattern.

For containers, we simply pass their elements further:

class LinksCrawler {

 ...

 fun visit(page: Page) {

 visit(page.elements)

 }

 fun visit(container: Container) =
 visit(container.elements)

 ...

}

Specifying the parent class as sealed helps the compiler further. We discussed sealed
classes earlier in this chapter while covering the State design pattern. Here is the code:

sealed class HtmlElement

class Container(...) : HtmlElement(){

 ...

}

class Image(...) : HtmlElement() {

 ...

}

class Link(...) : HtmlElement() {

 ...

Template method 137

}

class Table : HtmlElement()

The most interesting logic is in the leaves of our tree-like structure:

class LinksCrawler {

 ...

 private fun visit(elements: List<HtmlElement>) {

 for (e in elements) {

 when (e) {

 is Container -> e.accept(this)

 is Link -> _links.add(e.href)

 is Image -> _links.add(e.src)

 else -> {}

 }

 }

 }

}

Note that in some cases, we don't want to do anything. This is specified by an empty block
in our else clause, else -> {}. This is yet another example of smart casts in Kotlin.

Notice that after we checked that the element is a Link, we gained type-safe access to its
href attribute. That's because the compiler is doing the casts for us. The same is true for
the Image element.

Although we achieved our goals, the usability of this pattern can be debated. As you can
see, it's one of the more verbose elements we have and introduces tight coupling between
classes that are receiving additional behavior and the Visitor pattern itself.

Template method
Some lazy people make art out of their laziness. Take me, for example. Here's my daily
schedule:

1.	 8:00 A.M. – 9:00 A.M.: Arrive at the office
2.	 9:00 A.M. – 10:00 A.M.: Drink coffee

138 Getting Familiar with Behavioral Patterns

3.	 10:00 A.M. –1 2:00 P.M.: Attend some meetings or review code
4.	 12:00 P.M. – 1:00 P.M.: Go out for lunch
5.	 1:00 P.M. – 4:00 P.M.: Attend some meetings or review code
6.	 4:00 P.M.: Sneak back home

Some parts of my schedule never change, while some do. Specifically, I have two slots in
my calendar that any number of meetings could occupy.

At first, I thought I could decorate my changing schedule with that setup and teardown
logic, which happens before and after. But then there's lunch, which is holy for architects
and happens in between.

Java is pretty clear on what you should do. First, you create an abstract class. Then, you
mark all the methods that you want to implement by yourself as private:

abstract class DayRoutine {

 private fun arriveToWork() {

 println("Hi boss! I appear in the office

 sometimes!")

 }

 private fun drinkCoffee() {

 println("Coffee is delicious today")

 }

 ...

 private fun goToLunch() {

 println("Hamburger and chips, please!")

 }

 ...

 private fun goHome() {

 // Very important no one notices me, so I must keep
 // quiet!

 println()

 }

Template method 139

 ...

}

All the methods that are changing from day to day should be defined as abstract:

abstract class DayRoutine {

 ...

 abstract fun doBeforeLunch()

 ...

 abstract fun doAfterLunch()

 ...

}

If you want to be able to replace a function but also want to provide a default
implementation, you should leave it public:

abstract class DayRoutine {

 ...

 open fun bossHook() {

 // Hope he doesn't hook me there

 }

 ...

}

Remember that public is the default visibility in Kotlin.

Finally, you have a method that executes your algorithm. It's final by default:

abstract class DayRoutine {

 ...

 fun runSchedule() {

 arriveToWork()

 drinkCoffee()

 doAfterLunch()

 goToLunch()

 doAfterLunch()

 goHome()

 }

}

140 Getting Familiar with Behavioral Patterns

Now, if we want to have a schedule for Monday, we can simply implement the
missing parts:

class MondaySchedule : DayRoutine() {

 override fun doBeforeLunch() {

 println("Some pointless meeting")

 println("Code review. What this does?")

 }

 override fun doAfterLunch() {

 println("Meeting with Ralf")

 println("Telling jokes to other architects")

 }

 override fun bossHook() {

 println("Hey, can I have you for a sec in my
 office?")

 }

}

What does Kotlin add on top of that? What it usually does – conciseness. As we saw
previously, this can be achieved through functions.

We have three moving parts – two mandatory activities (the software architect must do
something before and after lunch) and one optional (the boss may stop him before he
sneaks off home):

fun runSchedule(beforeLunch: () -> Unit,

 afterLunch: () -> Unit,

 bossHook: (() -> Unit)? = fun() { println() }) {

 ...

}

We'll have a function that accepts up to three other functions as its arguments. The first
two are mandatory, while the third may not be supplied at all or assigned with null to
explicitly state that we don't want that function to occur:

fun runSchedule(...) {

 ...

 arriveToWork()

Template method 141

 drinkCoffee()

 beforeLunch()

 goToLunch()

 afterLunch()

 bossHook?.let { it() }

 goHome()

}

Inside this function, we'll have our algorithm. The invocations of beforeLunch() and
afterLunch() should be clear; after all, those are the functions that are passed to us as
arguments. The third one, bossHook, may be null, so we only execute it if it's not. We
can use the following construct for that:

?.let { it() }

But what about the other functions – the ones we want to always implement by ourselves?

Kotlin has a notion of local functions. These are functions that reside in other functions:

fun runSchedule(...) {

 fun arriveToWork(){

 println("How are you all?")

 }

 val drinkCoffee = { println("Did someone left the milk
 out?") }

 fun goToLunch() = println("I would like something
 italian")

 val goHome = fun () {

 println("Finally some rest")

 }

 arriveToWork()

 drinkCoffee()

 ...

 goToLunch()

 ...

142 Getting Familiar with Behavioral Patterns

 goHome()

}

These are all valid ways to declare a local function. No matter how you define them,
they're invoked in the same way. Local functions can only be accessed by the parent
function they were declared in and are a great way to extract common logic without the
need to expose it.

With that, we're left with the code structure. Defining the algorithm's structure but letting
others decide what to do at some points – that's what the Template method is all about.

We're almost at the end of this chapter. There is just one more design pattern to discuss,
but it's one of the most important ones.

Observer
Probably one of the highlights of this chapter, this design pattern provides us with a bridge
to the following chapters, which are dedicated to functional programming.

So, what is the Observer pattern all about? You have one publisher, which may also be
called a subject, that may have many subscribers, also known as observers. Each time
something interesting happens with the publisher, all of its subscribers should be updated.

This may look a lot like the Mediator design pattern, but there's a twist. Subscribers
should be able to register or unregister themselves at runtime.

In the classical implementation, all subscribers/observers need to implement a particular
interface for the publisher to update them. But since Kotlin has higher-order functions, we
can omit this part. The publisher will still have to provide a means for observers to be able
to subscribe and unsubscribe.

This may have sounded a bit complex, so let's take a look at the following example.

Animal choir example
So, some animals have decided to have a choir of their own. The cat was elected as the
conductor of the choir (it doesn't like to sing anyway).

The problem is that these animals escaped from the Java world, so they don't have a
common interface. Instead, each has a different way of making a sound:

class Bat {

 fun screech() {

 println("Eeeeeee")

Observer 143

 }

}

class Turkey {

 fun gobble() {

 println("Gob-gob")

 }

}

class Dog {

 fun bark() {

 println("Woof")

 }

 fun howl() {

 println("Auuuu")

 }

}

Luckily, the cat was elected not only because it was vocally challenged, but also because it
was smart enough to follow this chapter until now. So, it knows that in the Kotlin world, it
can accept functions:

class Cat {

 fun joinChoir(whatToCall: ()->Unit) {

 ...

 }

 fun leaveChoir(whatNotToCall: ()->Unit) {

 ...

 }

}

Previously, we learned how to pass a new function as an argument, as well as a literal
function. But how do we pass a reference to a member function?

144 Getting Familiar with Behavioral Patterns

We can do this in the same way that we did in the Strategy design pattern; that is, by using
the member reference operator (::):

val catTheConductor = Cat()

val bat = Bat()

val dog = Dog()

val turkey = Turkey()

catTheConductor.joinChoir(bat::screech)

catTheConductor.joinChoir(dog::howl)

catTheConductor.joinChoir(dog::bark)

catTheConductor.joinChoir(turkey::gobble)

Now, the cat needs to save all those subscribers somehow. Luckily, we can put them on
a map. What would be the key? This should be the function itself:

class Cat {

 private val participants = mutableMapOf<()->Unit, ()-
 >Unit>()

 fun joinChoir(whatToCall: ()->Unit) {

 participants[whatToCall] = whatToCall

 }

 ...

}

If all those ()->Unit instances are making you dizzy, be sure to use typealias to give
them more semantic meaning, such as subscriber.

Now, the bat decides to leave the choir. After all, no one can hear its beautiful singing:

class Cat {

 ...

 fun leaveChoir(whatNotToCall: ()->Unit) {

 participants.remove(whatNotToCall)

 }

 ...

}

Observer 145

All bat needs to do is pass its subscriber function again:

catTheConductor.leaveChoir(bat::screech)

That's the reason we used the map in the first place. Now, the cat can call all its choir
members and tell them to sing – well, produce sounds:

typealias Times = Int

class Cat {

 ...

 fun conduct(n: Times) {

 for (p in participants.values) {

 for (i in 1..n) {

 p()

 }

 }

 }

}

So, the rehearsal went well. But the cat is very tired after doing all those loops. It would
rather delegate the job to choir members. That's not a problem:

class Cat {

 private val participants = mutableMapOf<(Int)->Unit,

 (Int)->Unit>()

 fun joinChoir(whatToCall: (Int)->Unit) {

 ...

 }

 fun leaveChoir(whatNotToCall: (Int)->Unit) {

 ...

 }

 fun conduct(n: Times) {

 for (p in participants.values) {

 p(n)

 }

146 Getting Familiar with Behavioral Patterns

 }

}

Our subscribers will have to change slightly to receive a new argument. Here's an example
for the Turkey class:

class Turkey {

 fun gobble(repeat: Times) {

 for (i in 1..repeat) {

 println("Gob-gob")

 }

 }

}

This is a bit of a problem. What if the cat was to tell each animal what sound to make: high
or low? We'd have to change all the subscribers again, as well as the cat.

While designing your publisher, pass the single data classes with many properties, instead
of sets of data classes or other types. That way, you won't have to refactor your subscribers
as much if new properties are added:

enum class SoundPitch {HIGH, LOW}

data class Message(val repeat: Times, val pitch:
 SoundPitch)

class Bat {

 fun screech(message: Message) {

 for (i in 1..message.repeat) {

 println("${message.pitch} Eeeeeee")

 }

 }

}

Here, we used enum to describe the different types of pitches and a data class to
encapsulate the pitch to be used, as well as how many times the message should be
repeated.

Observer 147

Make sure that your messages are immutable. Otherwise, you may experience strange
behavior! What if you have sets of different messages you're sending from the same publisher?
We could use smart casts to solve this:

interface Message {

 val repeat: Times

 val pitch: SoundPitch

}

data class LowMessage(override val repeat: Times) : Message {

 override val pitch = SoundPitch.LOW

}

data class HighMessage(override val repeat: Times) :

 Message {

 override val pitch = SoundPitch.HIGH

}

class Bat {

 fun screech(message: Message) {

 when (message) {

 is HighMessage -> {

 for (i in 1..message.repeat) {

 println("${message.pitch} Eeeeeee")

 }

 }

 else -> println("Can't :(")

 }

 }

}

The Observer design pattern is enormously useful. Its power lies in its flexibility. The
publisher doesn't need to know anything about the subscribers, except the signature of the
function it invokes. In the real world, it is widely used both in reactive frameworks, which
we'll discuss in Chapter 6, Threads and Coroutines, and Chapter 11, Reactive Microservices
with Vert.x, and in Android, where all the UI events are implemented as subscriptions.

148 Getting Familiar with Behavioral Patterns

Summary
This was a long chapter, but we've also learned a lot. We finished covering all the classical
design patterns, including 11 behavioral ones. In Kotlin, functions can be passed to other
functions, returned from functions, and assigned to variables. That's what the higher-
order functions and functions as first-class citizens concepts are all about. If your class is
all about behavior, it often makes sense to replace it with a function. This concept helped
us implement the Strategy and Command design patterns.

We learned that the Iterator design pattern is yet another operator in the language.
Sealed classes make the when statements exhaustive and we used them to implement the
State design pattern.

We also looked at the Interpreter design pattern and learned that lambda with a receiver
allows clearer syntax in your DSLs. Another keyword, lateinit, tells the compiler to
relax a bit when it's performing its null safety checks. Use it with care!

Finally, we covered how to reference an existing method with function references while
talking about the Observer design pattern.

In the next chapter, we'll move on from the object-oriented programming paradigm, with
its well-known design patterns, to another paradigm – functional programming.

Questions
1.	 What's the difference between the Mediator and Observer design patterns?
2.	 What is a Domain-Specific Language (DSL)?
3.	 What are the benefits of using a sealed class or interface?

Section 2:
Reactive and

Concurrent Patterns

This section focuses on modern approaches to design patterns, such as Reactive and
concurrent design patterns, and functional programming in general.

We'll start this section with an introduction to the basic principles of functional
programming and how its concepts are embedded in Kotlin. Then, we'll examine
concurrency primitives in Kotlin, the most important being coroutines. Once we
have a good grasp of both functional programming and coroutines, we'll then see how,
by combining them, we can create concurrent data structures that allow us to finely
control the flow of our data and the design patterns that allow us to better structure
concurrent code.

This section comprises the following chapters:

•	 Chapter 5, Introducing Functional Programming

•	 Chapter 6, Threads and Coroutines

•	 Chapter 7, Controlling the Data Flow

•	 Chapter 8, Designing for Concurrency

5
Introducing

Functional
Programming

This chapter will discuss the fundamental principles of functional programming and
how they fit into the Kotlin programming language.

As you'll discover, we've already touched on some of the concepts in this chapter, as
it would have been hard to discuss the benefits of the language up until now without
touching on functional programming concepts such as data immutability and functions
as values. But as we did before, we'll look at those features from a different angle.

In this chapter, we will cover the following topics:

•	 Reasoning behind the functional approach

•	 Immutability

•	 Functions as values

•	 Expressions, not statements

•	 Recursion

152 Introducing Functional Programming

After completing this chapter, you'll understand how the concepts of functional
programming are embedded in the Kotlin language and when to use them.

Technical requirements
For this chapter, you will need to install the following:

•	 IntelliJ IDEA Community Edition (https://www.jetbrains.com/idea/
download/)

•	 OpenJDK 11 (or higher) (https://openjdk.java.net/install/)

You can find the code files for this chapter on GitHub at https://github.com/
PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/
tree/main/Chapter05.

Reasoning behind the functional approach
Functional programming has been around for as long as other programming paradigms,
for example, procedural and object-oriented programming. But in the past 15 years,
it has gained significant momentum. The reason for this is that something else stalled:
CPU speeds. We cannot speed up our CPUs as much as we did in the past, so we must
parallelize our programs. And it turns out that the functional programming paradigm is
exceptionally good at running parallel tasks.

The evolution of multicore processors is a fascinating topic in itself, but we'll cover it only
briefly here. Workstations have had multiple processors since at least the 1980s to support
the running of tasks from different users in parallel. Since workstations were massive
during this era, they didn't need to worry about cramming everything into one chip. But
when multiprocessors came to the consumer market around 2005, it became necessary to
have one physical unit that could work in parallel. This is why we have multiple cores in
one chip in our PC or laptop.

But that's not the only reason we use functional programming. Here are a few more:

•	 Functional programming favors pure functions, and pure functions are usually
easier to reason about and test.

•	 Code written in a functional way is often more declarative than imperative, dealing
with the what instead of the how, and this can be a benefit.

In the following sections, we'll explore the different aspects of functional programming,
starting with immutability.

https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/idea/download/
https://openjdk.java.net/install/
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter05
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter05
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter05

Immutability 153

Immutability
One of the fundamental concepts of functional programming is immutability. This
means that from the moment the function receives input to the moment the function
returns output, the object doesn't change. But how could it change? Well, let's look at a
simple example:

fun <T> printAndClear(list: MutableList<T>) {

 for (e in list) {

 println(e)

 list.remove(e)

 }

}

printAndClear(mutableListOf("a", "b", "c"))

This code would output a first, and then we would receive
ConcurrentModificationException.

The reason for this is that the for-each loop uses an iterator (which we already
discussed in the previous chapter), and by mutating the list inside the loop, we interfere
with its operation. However, this raises a question:

Wouldn't it be great if we could protect ourselves from these runtime exceptions in the
first place?

Let's see how immutable collections can help us with this.

Immutable collections
In Chapter 1, Getting Started with Kotlin, we already mentioned that collections in Kotlin
are immutable by default, which is unlike many other languages.

The previous problem is caused by us not following the single-responsibility principle,
which states that a function should do only one thing and do it well. Our function tries
both to remove elements from an array and to print them at the same time.

If we change the argument from MutableList to List, we won't be able to invoke
the remove() function on it, resolving our current problem. But this raises another
question:

What if we need an empty list?

154 Introducing Functional Programming

In this case, our function should return a new object:

private fun <T> printAndClear(list: MutableList<T>):

 MutableList<T> {

 for (e in list) {

 println(e)

 }

 return mutableListOf()

}

In general, functions that don't return any values should be avoided in functional
programming, as it usually means that they have a side effect.

However, it's not enough that the collection type is immutable. The content of the
collection should be immutable as well. To understand this better, let's look at the
following simple class:

data class Player(var score: Int)

You can see that this class has only one variable: score.

Next, we'll create a single instance of the data class and put it in an immutable
collection:

val scores = listOf(Player(0))

We could put multiple instances of this class inside the collection, but to illustrate our
point, only one is needed.

Next, let's introduce the concept of threads.

The problem with shared mutable state
If you aren't familiar with threads, don't worry, we'll discuss them in detail in Chapter
6, Threads and Coroutines. All you need to know for now is that threads allow the code
to run concurrently. When using concurrent code and code that utilizes multiple CPUs,
functional programming really helps. You may find that any other example that doesn't
involve concurrency at all may seem rather convoluted or artificial.

Immutability 155

For now, let's create a list that contains two threads:

val threads = List(2) {

 thread {

 for (i in 1..1000) {

 scores[0].score++

 }

 }

 }

As you can see, each thread increments score by 1000 in total, using a regular for
loop.

We wait for the threads to complete by using join(), and then we check the counter
value:

for (t in threads) {

 t.join()

}

println(scores[0].score) // Less than 2000 for sure

If you run the code yourself, the value will be anything under 2000.

This is a classic case of a race condition for mutable variables. The number you'll get will
be different every time you run this code. The reason for this may be familiar to you if
you have encountered concurrency previously. And, it has nothing to do with threads not
completing their work, by the way. You can make sure of this by adding a print message
after the loop:

thread {

 for (i in 1..1000) {

 scores[0].score = scores[0].score + 1

 }

 println("Done")

}

This also isn't the fault of using the increment (++) operator. As you can see, we used the
long notation to increment the value, but if you run it again as many times as possible, you
would still get the wrong results.

156 Introducing Functional Programming

The reason for this behavior is that the addition operation and the assignment operation
are not atomic. Two threads may override the addition operations of each other, resulting
in the number not being incremented enough times.

Here, we used an extreme example of a collection that contains exactly one element. In the
real world, the collections you will be working with will usually contain multiple elements.
For example, you would track scores for multiple players, or even maintain a ranking
system for thousands of players simultaneously. This would complicate the example even
further.

What you need to remember is the following: even if a collection is immutable, it may still
contain mutable objects inside. Mutable objects are not thread-safe.

Next, let's look at tuples, which are an example of immutable objects.

Tuples
In functional programming, a tuple is a piece of data that cannot be changed after it is
created. One of the most basic tuples in Kotlin is pair:

val pair = "a" to 1

pair contains two properties – called first and second – and is immutable:

pair.first = "b" // Doesn't work

pair.second = 2 // Still doesn't

We can destructure pair into two separate values using a destructure declaration:

val (key, value) = pair

println("$key => $value")

When iterating over a map, we also work with another type of tuple: Map.Entry:

for (p in mapOf(1 to "Sunday", 2 to "Monday")) {

 println("${p.key} ${p.value}")

}

This tuple already has key and value members, instead of first and second.

In addition to pair, there is a Triple tuple that also contains a third value:

val firstEdition = Triple("Design Patterns with Kotlin",
 310, 2018)

Functions as values 157

In general, data classes are usually a good implementation for tuples because they
provide clear naming. If you look at the preceding example, it's not immediately obvious
that the 310 value represents the number of pages.

However, as we saw in the previous section, not every data class is a proper tuple. You
need to make sure that all of its members are values and not variables. You also need to
check whether any nested collections or classes it has are immutable as well.

Now, let's discuss another important topic in functional programming: functions as a first-
class citizen of the language.

Functions as values
We already covered some of the functional capabilities of Kotlin in the chapters dedicated
to design patterns. The Strategy and Command design patterns are only two examples
that rely heavily on the ability to accept functions as arguments, return functions, store
functions as values, or put functions inside of collections. In this section, we'll cover some
other aspects of functional programming in Kotlin, such as function purity and currying.

Learning about higher-order functions
As we discussed previously, in Kotlin, it's possible for a function to return another
function. Let's look at the following simple function to understand this syntax in depth:

fun generateMultiply(): (Int) -> Int {

 return fun(x: Int): Int {

 return x * 2

 }

}

Here, our generateMultiply function returns another function that doesn't have a
name. Functions without a name are called anonymous functions.

We could also rewrite the preceding code using shorter syntax:

fun generateMultiply(): (Int) -> Int {

 return { x: Int ->

 x * 2

 }

}

If a function without a name uses short syntax, it's called a lambda function.

158 Introducing Functional Programming

Next, let's look at the signature of the return type:

(Int) -> Int

From that signature, we know that the function that we return will accept a single integer
as input and produce an integer as output.

If a function doesn't accept any arguments, we denote that using empty round brackets:

() -> Int

If a function doesn't return anything, we use the Unit type to specify that:

(Int) -> Unit

Functions in Kotlin can be assigned to a variable or value to be invoked later on:

val multiplyFunction = generateMultiply()

...

println(multiplyFunction(3, 4))

The function assigned to a variable is usually called a literal function.

We applied this in Chapter 4, Getting Familiar with Behavioral Patterns, when discussing
the Strategy design pattern.

It's also possible to specify a function as a parameter:

fun mathInvoker(x: Int, y: Int, mathFunction: (Int, Int) ->
 Int) {

 println(mathFunction(x, y))

}

mathInvoker(5, 6, multiplyFunction)

If a function is the last parameter, it can also be supplied in an ad hoc fashion, outside of
the brackets:

mathInvoker(7, 8) { x, y ->

 x * y

}

Functions as values 159

This syntax is also called trailing lambda or call suffix. We saw an example of this in
Chapter 4, Getting Familiar with Behavioral Patterns, when discussing the Interpreter
design pattern.

Now that we've covered the basic syntax of functions, let's see how they can be used.

Higher-order functions in a standard library
When working with Kotlin, something you will be doing on a daily basis is working with
collections. As we mentioned briefly in Chapter 1, Getting Started with Kotlin, collections
have support for higher-order functions.

For example, in the previous chapters, to print elements of a collection one by one, we
used a boring for-each loop:

val dwarfs = listOf("Dwalin", "Balin", "Kili", "Fili",
 "Dori", "Nori", "Ori", "Oin", "Gloin", "Bifur", "Bofur",
 "Bombur", "Thorin")

for (d in dwarfs) {

 println(d)

}

Many of you probably groaned at seeing this. But I hope you didn't stop reading the book
altogether. Of course, there is also another way to achieve the same goal that is common in
many programming languages: a forEach function:

dwarfs.forEach { d ->

 println(d)

}

This function is one of the most basic examples of a higher-order function. Let's see how
it's declared:

fun <T> Iterable<T>.forEach(action: (T) -> Unit)

Here, action is a function that receives an element of a collection and doesn't return
anything. This function presents an opportunity to discuss another aspect of Kotlin: the
it notation.

160 Introducing Functional Programming

The it notation
It is very common in functional programming to keep your functions small and simple.
The simpler the function, the easier it is to understand, and the more chances it has to be
reused in other places. And the aim of reusing code is one of the basic Kotlin principles.

Notice that in the preceding example, we didn't specify the type of the d variable. We
could do this using the same colon notation we have used elsewhere:

dwarfs.forEach { d: String ->

 println(d)

}

However, usually, we don't need to do this because the compiler can figure this out from
the generic types that we use. After all, dwarfs is of the List<String> type, so d is of
the String type as well.

The type of the argument is not the only part that we can omit when writing short
lambdas like this one. If a lambda takes a single argument, we can use the implicit name
for it, which in this case, is it:

dwarfs.forEach {

 println(it)

}

In cases where we need to invoke a single function to a single parameter, we could also
use a function reference. We saw an example of this in Chapter 4, Getting Familiar with
Behavioral Patterns, when discussing the Strategy design pattern:

dwarfs.forEach(::println)

We'll use the shortest notation in most of the following examples. It is advised to use the
longer syntax for cases such as one lambda nested in another. In those cases, giving proper
names for the parameters is more important than conciseness.

The it notation 161

Closures
In the object-oriented paradigm, state is always stored within objects. But in functional
programming, this isn't necessarily the case. Let's look at the following function as an
example:

fun counter(): () -> Int {

 var i = 0

 return { i++ }

}

The preceding example is clearly a higher-order function, as you can see by its return
type. It returns a function with zero arguments that produces an integer.

Let's store it in a variable, in the way we've already learned, and invoke it multiple times:

val next = counter()

println(next())

println(next())

println(next())

As you can see, the function is able to keep a state, in this case, the value of a counter, even
though it is not part of an object.

This is called a closure. The lambda has access to all of the local variables of the
function that wraps it, and those local variables persist, as long as the reference to
the lambda is kept.

The use of closures is another tool in the functional programming toolbox that reduces
the need to define lots of classes that simply wrap a single function with some state.

Pure functions
A pure function is a function without any side effects. A side effect can be considered
anything that accesses or changes the external state. The external state can be a non-local
variable (where a variable from a closure is still considered to be non-local) or any kind of
IO (that is, reading or writing to a file or using any kind of network capabilities).

Important Note:
For those not familiar with the term, IO stands for Input/Output, and this
covers any kind of interaction that is external to our program, such as writing
to files or reading from a network.

162 Introducing Functional Programming

For example, the lambda we just discussed in the Closures section is not considered pure
because it can return different output for the same input when it is invoked multiple times.

Impure functions are hard to test and to reason about in general, as the result they
return may depend on the order of execution or on factors that we can't control (such as
network issues).

One thing to remember is that logging or even printing to a console still involves IO and is
subject to the same set of problems.

Let's look at the following simple function:

fun sayHello() = println("Hello")

So, in this case, how do you ensure that Hello is printed? The task is not as simple as it
seems, as we'll need some way to capture the standard output – that is, the same console
where we usually see stuff printed.

We'll compare it to the following function:

fun hello() = "Hello"

The following function doesn't have any side effects. That makes it a lot easier to test:

fun testHello(): Boolean {

 return "Hello" == hello()

}

The hello() function may look a bit meaningless, but that's actually one of the
properties of pure functions. Their invocation could be replaced by their result if we knew
it ahead of time. This is often called referential transparency.

As we mentioned earlier, not every function written in Kotlin is a pure function:

fun <T> removeFirst(list: MutableList<T>): T {

 return list.removeAt(0)

}

If we call the function twice on the same list, it will return different results:

val list = mutableListOf(1, 2, 3)

println(removeFirst(list)) // Prints 1

println(removeFirst(list)) // Prints 2

The it notation 163

Compare the preceding function to this one:

fun <T> withoutFirst(list: List<T>): T {

 return ArrayList(list).removeAt(0)

}

Now, our function is totally predictable, no matter how many times we invoke it:

val list = mutableListOf(1, 2, 3)

println(withoutFirst(list)) // It's 1

println(withoutFirst(list)) // Still 1

As you can see, in this instance, we used an immutable interface, List<T>, which
helps us by preventing the possibility of mutating our input. When combined with the
immutable values we discussed in the previous section, pure functions allow easier testing
by providing predictable results and the parallelization of our algorithms.

A system that utilizes pure functions is easier to reason about because it doesn't rely on
any external factors – what you see is what you get.

Currying
Currying is a way to translate a function that takes a number of arguments into a chain of
functions, where each function takes a single argument. This may sound confusing, so let's
look at a simple example:

fun subtract(x: Int, y: Int): Int {

 return x - y

}

println(subtract(50, 8))

This is a function that takes two arguments as an input and returns the difference between
them. However, some languages allow us to invoke this function with the following
syntax:

subtract(50)(8)

This is what currying looks like. Currying allows us to take a function with multiple
arguments (in our case, two) and convert this function into a set of functions, where each
one takes only a single argument.

164 Introducing Functional Programming

Let's examine how this can be achieved in Kotlin. We've already seen how we can return a
function from another function:

fun subtract(x: Int): (Int) -> Int {

 return fun(y: Int): Int {

 return x - y

 }

}

Here is the shorter form of the preceding code:

fun subtract(x: Int) = fun(y: Int): Int {

 return x - y

}

In the preceding example, we use single-expression syntax to return an anonymous
function without the need to declare the return type or use the return keyword.

And here it is in an even shorter form:

fun subtract(x: Int) = {y: Int -> x - y}

Now, an anonymous function is translated to a lambda, with the return type of the
lambda inferred as well.

Although not very useful by itself, it's still an interesting concept to grasp. And if you're
a JavaScript developer looking for a new job, make sure you understand it fully, since
it's asked about in nearly every interview.

One real-world scenario where you might want to use currying is logging. A log function
usually looks something like this:

enum class LogLevel {

 ERROR, WARNING, INFO

}

fun log(level: LogLevel, message: String) =
 println("$level: $message")

We could fix the log level by storing the function in a variable:

val errorLog = fun(message: String) {

 log(LogLevel.ERROR, message)

}

The it notation 165

Notice that the errorLog function is easier to use than the regular log function because
it accepts one argument instead of two. However, this raises a question:

What if we don't want to create all of the possible loggers ahead of time?

In this case, we can use currying. The curried version of this code would look like this:

fun createLogger(level: LogLevel): (String) -> Unit {

 return { message: String ->

 log(level, message)

 }

}

Now, it's up to whoever uses our code to create the logger they want:

val infoLogger = createLogger(LogLevel.INFO)

infoLogger("Log something")

This, in fact, is very similar to the Factory design pattern we covered in Chapter 2,
Working with Creational Patterns. Again, the power of a modern language decreases the
number of custom classes we need to implement to achieve the same behavior.

Next, let's talk about another powerful technique that can save us from having to do the
same computation over and over again.

Memoization
If our function always returns the same output for the same input, we can easily map
its input to the output, caching the results in the process. This technique is called
memoization.

A common task when developing different types of systems or solving problems is finding
a way to avoid repeating the same computation multiple times. Let's assume we receive
multiple lists of integers, and for each list, we would like to print its sum:

val input = listOf(

 setOf(1, 2, 3),

 setOf(3, 1, 2),

 setOf(2, 3, 1),

 setOf(4, 5, 6)

)

166 Introducing Functional Programming

Looking at the input, you can see that the first three sets are in fact equal – the difference
is only in the order of the elements, so calculating the sum three times would be wasteful.

The sum calculation can be easily described as a pure function:

fun sum(numbers: Set<Int>): Double {

 return numbers.sumByDouble { it.toDouble() }

}

This function does not depend on any external state and doesn't change the external state
in any way. So, it is safe for the same input to replace the call to this function with the
value it had returned previously.

We could store the results of a previous computation for the same set in a mutable map:

val resultsCache = mutableMapOf<Set<Int>, Double>()

To avoid creating too many classes, we could use a higher-order function that would wrap
the result in the cache that we created earlier:

fun summarizer(): (Set<Int>) -> Double {

 val resultsCache = mutableMapOf<Set<Int>, Double>()

 return { numbers: Set<Int> ->

 resultsCache.computeIfAbsent(numbers, ::sum)

 }

}

Here, we use a method reference operator (::) to tell computeIfAbsent to use the
sum() method in the event where the input hasn't been cached yet.

Note that sum() is a pure function, while summarize() is not. The latter will behave
differently for the same input. But that's exactly what we want in this case.

Running the following code on the preceding input will invoke the sum function only
twice:

val summarizer = summarizer()

input.forEach {

 println(summarizer(it))

}

Using expressions instead of statements 167

The combination of immutable objects, pure functions, and closures provides us with a
powerful tool for performance optimization. Just remember: nothing is free. We trade one
resource, CPU time, for another resource, which is memory. And it's up to you to decide
which resource is more expensive in each case.

Using expressions instead of statements
A statement is a block of code that doesn't return anything. An expression, on the other
hand, returns a new value. Since statements produce no results, the only way for them
to be useful is to mutate the state, whether that's changing a variable, changing a data
structure, or performing some kind of IO.

Functional programming tries to avoid mutating the state as much as possible.
Theoretically, the more we rely on expressions, the more our functions will be pure, with
all the benefits of functional purity.

We've used the if expression many times already, so one of its benefits should be clear:
it's less verbose and, for that reason, less error-prone than the if statement from other
languages.

Pattern matching
The concept of pattern matching will seem like switch/case on steroids. We've already
seen how the when expression can be used, which we explored in Chapter 1, Getting
Started with Kotlin, so let's briefly discuss why this concept is important for the functional
paradigm.

You may know that in Java, switch accepts only some primitive types, strings, or enums.

Consider the following code, which is usually used to demonstrate how polymorphism is
implemented in the language:

class Cat : Animal {

 fun purr(): String {

 return "Purr-purr";

 }

}

class Dog : Animal {

 fun bark(): String {

 return "Bark-bark";

168 Introducing Functional Programming

 }

}

interface Animal

If we were to decide which of the functions to call, we would need to write code akin to
the following:

fun getSound(animal: Animal): String {

 var sound: String? = null;

 if (animal is Cat) {

 sound = (animal as Cat).purr();

 }

 else if (animal is Dog) {

 sound = (animal as Dog).bark();

 }

 if (sound == null) {

 throw RuntimeException();

 }

 return sound;

}

This code attempts to figure out at runtime what methods the getSound class
implements.

This method could be shortened by introducing multiple returns, but in real projects,
multiple returns are usually a bad practice.

Since we don't have a switch statement for classes, we need to use an if statement
instead.

Now, let's compare the preceding code with the following Kotlin code:

fun getSound(animal: Animal) = when(animal) {

 is Cat -> animal.purr()

 is Dog -> animal.bark()

 else -> throw RuntimeException("Unknown animal")

}

Recursion 169

Since when is an expression, we avoided declaring the intermediate variable we previously
had altogether. In addition, the code that uses pattern matching doesn't need any type
checks and casts.

Now we've learned how to replace imperative if statements with much more functional
when expressions, let's see how we can replace imperative loops in our code by using
recursion.

Recursion
Recursion is a function invoking itself with new arguments. Many well-known
algorithms, such as Depth First Search, rely on recursion.

Here is an example of a very inefficient function that uses recursion to calculate the sum
of all the numbers in a given list:

fun sumRec(i: Int, sum: Long, numbers: List<Int>): Long {

 return if (i == numbers.size) {

 return sum

 } else {

 sumRec(i+1, numbers[i] + sum, numbers)

 }

}

We often try to avoid recursion due to the stack overflow errors that we may receive if our
call stack is too deep. You can call this function with a list that contains a million numbers
to demonstrate this:

val numbers = List(1_000_000) {it}

println(sumRec(0, numbers))

// Crashed pretty soon, around 7K

However, Kotlin supports an optimization called tail recursion. One of the great benefits
of tail recursion is that it avoids the dreaded stack overflow exception. If there is only
a single recursive call in our function, we can use that optimization.

170 Introducing Functional Programming

Let's rewrite our recursive function using a new keyword, tailrec, to avoid this
problem:

tailrec fun sumRec(i: Int, sum: Long, numbers: List<Int>):

 Long {

 return if (i == numbers.size) {

 return sum

 } else {

 sumRec(i+1, numbers[i] + sum, numbers)

 }

}

Now, the compiler will optimize our call and avoid the exception completely.

However, this optimization doesn't work if you have multiple recursive calls, such as in the
Merge Sort algorithm.

Let's examine the following function, which is the sort part of the Merge Sort algorithm:

tailrec fun mergeSort(numbers: List<Int>): List<Int> {

 return when {

 numbers.size <= 1 -> numbers

 numbers.size == 2 -> {

 return if (numbers[0] < numbers[1]) {

 numbers

 } else {

 listOf(numbers[1], numbers[0])

 }

 }

 else -> {

 val left = mergeSort(numbers.slice
 (0..numbers.size / 2))

 val right = mergeSort(numbers.slice
 (numbers.size / 2 + 1 until numbers.size))

 return merge(left, right)

 }

 }

}

Summary 171

Notice that there are two recursive calls instead of one. The Kotlin compiler will then issue
the following warning:

> "A function is marked as tail-recursive but no tail calls
are found"

Summary
You should now have a better understanding of functional programming and its benefits,
as well as how Kotlin approaches this topic. We've discussed the concepts of immutability
and pure functions, and how combining these results in more testable code that is easier to
maintain.

We discussed how Kotlin supports closures, which allow a function to access the variables
of the function that wraps it and effectively store the state between executions. This
enables techniques such as currying and memoization that allow us to fix some of the
function arguments (by acting as defaults) and remember the value returned from a
function in order to avoid recalculating it.

We learned that Kotlin uses the tailrec keyword to allow the compiler to optimize
tail recursion. We also looked at higher-order functions, expressions versus statements, and
pattern matching. All of these concepts allow us to write code that is easier to test and has
less risk of concurrency bugs.

In the next chapter, we'll put this knowledge to practical use and discover how reactive
programming builds upon functional programming to create scalable and resilient
systems.

Questions
1.	 What are higher-order functions?
2.	 What is the tailrec keyword in Kotlin?
3.	 What are pure functions?

6
Threads and

Coroutines
In the previous chapter, we had a glance at how our application can efficiently serve
thousands of requests per second—to discuss why immutability is important, we
introduced a race condition problem using two threads.

In this chapter, we'll dive deeper into how to launch new threads in Kotlin and the reasons
why coroutines can scale much better than threads. We will discuss how the Kotlin
compiler treats coroutines and the relationship between coroutine scopes and dispatchers.
We'll discuss the concept of structured concurrency, and how it helps us prevent resource
leaks in our programs.

We'll cover the following topics in this chapter:

•	 Looking deeper into threads

•	 Introducing coroutines and suspend functions

•	 Starting coroutines

•	 Jobs

•	 Coroutines under the hood

•	 Dispatchers

•	 Structured concurrency

174 Threads and Coroutines

After reading this chapter, you'll be familiar with Kotlin's concurrency primitives and how
to best utilize them.

Technical requirements
In addition to the requirements from the previous chapters, you will also need a Gradle-
enabled Kotlin project to be able to add the required dependencies.

You can find the source code for this chapter here: https://github.com/
PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/
tree/main/Chapter06.

Looking deeper into threads
Before we dive into the nuances, let's discuss what kinds of problems threads can solve.

In your laptop, you have a CPU with multiple cores – probably four of them, or even eight.
This means that it can do four different computations in parallel, which is pretty amazing
considering that 15 years ago, a single-core CPU was the default and even two cores were
only for enthusiasts.

But even back then, you were not limited to doing only a single task at a time, right? You
could listen to music and browse the internet at the same time, even on a single-core CPU.
How does your CPU manage to pull that off? Well, the same way your brain does. It juggles
tasks. When you're reading a book while listening to your friend talking, part of the time,
you're not reading, and part of the time, you're not listening – that is, until we get at least
two cores in our brains.

The servers you run your code on have pretty much the same CPU. This means that they
can serve four requests simultaneously. But what if you have 10,000 requests per second?
You can't serve them in parallel because you don't have 10,000 CPU cores. But you can try
and serve them concurrently.

The most basic concurrency model provided by JVM is known as a thread. Threads allow
us to run code concurrently (but not necessarily in parallel) so that we can make better
use of multiple CPU cores, for example. They are more lightweight than processes. One
process may spawn hundreds of threads. Unlike processes, sharing data between threads is
easy. But that also introduces a lot of problems, as we'll see later.

https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter06
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter06
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter06

Looking deeper into threads 175

Let's learn how to create two threads in Java first. Each thread will output numbers
between 0 and 100:

 for (int t = 0; t < 2; t++) {

 int finalT = t;

 new Thread(() -> {

 for (int i = 0; i < 100; i++) {

 System.out.println("Thread " + finalT + ":
 " + i);

 }

 }).start();

}

The output will look something like this:

> ...

> T0: 12

> T0: 13

> T1: 60

> T0: 14

> T1: 61

> T0: 15

> T1: 16

> ...

Note that the output will vary between executions and that at no point is it guaranteed to
be interleaved.

The same code in Kotlin would look as follows:

repeat(2) { t ->

 thread {

 for (i in 1..100) {

 println("T$t: $i")

 }

 }

}

176 Threads and Coroutines

In Kotlin, there's less boilerplate because there's a function that helps us create a new
thread. Notice that, unlike Java, we don't need to call start() to launch the thread. It
starts by default. If we would like to postpone it for later, we can set the start parameter
to false:

val t = thread(start = false)

...

// Later

t.start()

Another useful concept from Java is daemon threads. These threads don't prevent JVM
from exiting and are very good for non-critical background tasks.

In Java, the API is not fluent, so we'll have to assign our thread to a variable, set it to be a
daemon thread, and then start it. In Kotlin, this is much simpler:

thread(isDaemon = true) {

 for (i in 1..1_000_000) {

 println("daemon thread says: $i")

 }

}

Notice that although we asked this thread to print numbers up to one million, it prints
only a few hundred. That's because it's a daemon thread. When the parent thread stops, all
the daemon threads stop as well.

Thread safety
There are entire books written about thread safety and there are good reasons for this.
Concurrency bugs that are caused by a lack of thread safety are the hardest ones to track.
They're hard to reproduce because you'll usually need a lot of threads competing for the
same resource in order for an actual race to happen. Because this book is about Kotlin and
not thread safety in general, we'll only scratch the surface of this topic. If you're interested
in the topic of thread safety in the JVM language, you should check out the book Java
Concurrency in Practice, by Brian Goetz.

Looking deeper into threads 177

We'll start with the following example, which creates 100,000 threads to increment
a counter. To make sure that all the threads complete their work before we check
the value, we'll use CountDownLatch:

var counter = 0

val latch = CountDownLatch(100_000)

repeat(100) {

 thread {

 repeat(1000) {

 counter++

 latch.countDown()

 }

 }

}

latch.await()

println("Counter $counter")

The reason this code doesn't print the correct number is that we introduced a data race
since the ++ operation is not atomic. So, if more threads try to increment our counter,
then there are more chances for data races.

Unlike Java, there's no synchronized keyword in Kotlin. The reason for this is that
Kotlin designers believe that a language shouldn't be tailored to a particular concurrency
model. Instead, there's a synchronized() function we can use:

thread {

 repeat(1000) {

 synchronized(latch) {

 counter++

 latch.countDown()

 }

 }

}

Now, our code prints 100,000, as expected.

178 Threads and Coroutines

If you miss the synchronized methods from Java, there's the @Synchronized annotation
in Kotlin. Java's volatile keyword is also replaced by the @Volatile annotation
instead. The following table shows us an example of this comparison:

Table 6.1 – Comparison between Java and Kotlin (synchronized and volatile methods)

The reason Synchronized and Volatile are annotations and not keywords is because
Kotlin can be compiled on other platforms in addition to JVM. But the concepts of
synchronized methods or volatile variables exist for JVM specifically.

Why are threads expensive?
There is a price to pay whenever we create a new thread. Each thread needs a new
memory stack.

What if we simulate some work inside each thread by putting it to sleep?

In the following piece of code, we'll attempt to create 10,000 threads, each sleeping for
a relatively short period:

val counter = AtomicInteger()

try {

 for (i in 0..10_000) {

 thread {

 counter.incrementAndGet()

 Thread.sleep(100)

 }

 }

} catch (oome: OutOfMemoryError) {

 println("Spawned ${counter.get()} threads before
 crashing")

 System.exit(-42)

}

Looking deeper into threads 179

Each thread requires one megabyte of RAM for its stack. Creating so many threads will
require lots of communication with your operating system and a lot of memory. We
attempt to identify whether we ran out of memory by catching the relevant exception.

Depending on your operating system, this will result in either OutOfMemoryError or
the entire system becoming very slow.

Of course, there are ways to limit how many threads are run at once using the Executors
API. This API was introduced back in Java 5, so it should be pretty well-known to you.

Using that API, we can create a new thread pool of a specified size. Try setting the pool
size to 1, the number of cores on your machine to 100 and 2000, and see what happens:

val pool = Executors.newFixedThreadPool(100)

Now, we would like to submit a new task. We can do this by calling pool.submit():

val counter = AtomicInteger(0)

val start = System.currentTimeMillis()

for (i in 1..10_000) {

 pool.submit {

 // Do something

 counter.incrementAndGet()

 // Simulate wait on IO

 Thread.sleep(100)

 // Do something again

 counter.incrementAndGet()

 }

}

By incrementing counter once before sleep and once after, we are simulating some
business logic – for example, preparing some JSON and then parsing the response – while
sleep itself simulates a network operation.

180 Threads and Coroutines

Then, we need to make sure that the pool terminates and give it 20 seconds to do so by
using the following lines:

pool.awaitTermination(20, TimeUnit.SECONDS)

pool.shutdown()

println("Took me ${System.currentTimeMillis() - start}
 millis to complete ${counter.get() / 2} tasks")

Notice that it took us 20 seconds to complete. That's because a new task cannot begin until
the previous tasks wake up and finish their jobs.

And that's exactly what happens in a multithreaded system that is not concurrent enough.

In the next section, we'll discuss how coroutines try to solve this problem.

Introducing coroutines
In addition to the threading model provided by Java, Kotlin also has a coroutines model.
Coroutines might be considered lightweight threads, and we'll see what advantages they
provide over an existing model of threads shortly.

The first thing you need to know is that coroutines are not part of the language. They are
simply another library provided by JetBrains. For that reason, if we want to use them, we
need to specify this in our Gradle configuration file; that is, build.gradle.kts:

dependencies {

 ...

 implementation("org.jetbrains.kotlinx:kotlinx-
 coroutines-core:1.5.1")

}

Important Note:
By the time you read this book, the latest version of the Coroutines library will
be 1.6 or greater.

First, we will compare starting a new thread and a new coroutine.

Starting coroutines
We've already seen how to start a new thread in Kotlin in the Looking deeper into threads
section. Now, let's start a new coroutine instead.

Introducing coroutines 181

We'll create almost the same example we did with threads. Each coroutine will increment
some counter, sleep for a while to emulate some kind of I/O, and then increment it again:

val latch = CountDownLatch(10_000)

val c = AtomicInteger()

val start = System.currentTimeMillis()

for (i in 1..10_000) {

 GlobalScope.launch {

 c.incrementAndGet()

 delay(100)

 c.incrementAndGet()

 latch.countDown()

 }

}

latch.await(10, TimeUnit.SECONDS)

println("Executed ${c.get() / 2} coroutines in
 ${System.currentTimeMillis() - start}ms")

The first way of starting a new coroutine is by using the launch() function. Again, note
that this is simply another function and not a language construct.

Another interesting point here is the call to the delay() function, which we use to
simulate some I/O-bound work, such as fetching something from a database or over the
network.

Like the Thread.sleep() method, it puts the current coroutine to sleep. But unlike
Thread.sleep(), other coroutines can work while it sleeps soundly. This is because
delay() is marked with a suspend keyword, which we'll discuss in the Jobs section.

If you run this code, you'll see that the task takes about 200 ms with coroutines, while with
threads, it either takes 20 seconds or runs out of memory. And we didn't have to change
our code that much. That's all thanks to the fact that coroutines are highly concurrent.
They can be suspended without blocking the thread that runs them. Not blocking a thread
is great because we can use fewer OS threads (which are expensive) to do more work.

182 Threads and Coroutines

If you run this code in your IntelliJ IDEA, you'll notice that GlobalScope is marked as
a delicate API. This means that GlobalScope shouldn't be used in real-world projects
unless the developer understands how it works under the hood. Otherwise, it may cause
unintended leaks. We'll learn about better ways of launching coroutines later in this
chapter.

Although we've seen that coroutines are much more concurrent than threads, there's
nothing magical in them. Now, let's learn about another way of starting a coroutine, as
well as some issues coroutines may still suffer from.

The launch() function that we just discussed starts a coroutine that doesn't return
anything. In contrast, the async() function starts a coroutine that returns some value.

Calling launch() is much like calling a function that returns Unit. But most of our
functions return some kind of result. For that purpose, we have the async() function. It
also launches a coroutine, but instead of returning a job, it returns Deferred<T>, where
T is the type that you expect to get later.

For example, the following function will start a coroutine that generates a UUID
asynchronously and returns it:

fun fastUuidAsync() = GlobalScope.async {

 UUID.randomUUID()

}

println(fastUuidAsync())

If we run the following code from our main method, though, it won't print the expected
result. The result that this code prints instead of some UUID value is as follows:

> DeferredCoroutine{Active}

The returned object from a coroutine is called a job. Let's understand what this is and how
to use it correctly.

Jobs
The result of running an asynchronous task is called a job. Much like the Thread object
represents an actual OS thread, the job object represents an actual coroutine.

This means that what we tried to do is this:

val job: Job = fastUuidAsync()

println(job)

Introducing coroutines 183

job has a simple life cycle. It can be in one of the following states:

•	 New: Created but not started yet.

•	 Active: Just created by the launch() function, for example. This is the default
state.

•	 Completed: Everything went well.

•	 Canceled: Something went wrong.

Two more states are relevant to jobs that have child jobs:

•	 Completing: Waiting to finish executing children before completing

•	 Canceling: Waiting to finish executing children before canceling

If you want to learn more about parent and child jobs, jump to the Parent jobs section of
this chapter.

The job we've confused with its value is in the Active state, meaning that it hasn't finished
computing our UUID yet.

A job that has a value is known as being Deffered:

val job: Deferred<UUID> = fastUuidAsync()

We'll discuss the Deferred value in more detail in Chapter 8, Designing for Concurrency.

To wait for a job to complete and get the actual value, we can use the await() function:

val job: Deferred<UUID> = fastUuidAsync()

println(job.await())

This code doesn't compile, though:

> Suspend function 'await' should be called only from a
coroutine or another suspend function

The reason for this is that, as stated in the error itself, our main() function is not marked
with a suspend keyword and isn't a coroutine either.

184 Threads and Coroutines

We can fix this by wrapping our code in a runBlocking function:

runBlocking {

 val job: Deferred<UUID> = fastUuidAsync()

 println(job.await())

}

This function will block our main thread until all the coroutines finish. It is an
implementation of the Bridge design pattern from Chapter 4, Getting Familiar with
Behavioral Patterns, which allows us to connect between regular code and code that uses
coroutines.

Running this code now will produce the expected output of some random UUID.

Important Note:
In this chapter, while discussing coroutines, we will sometimes omit
runBlocking for conciseness. You can always find the full working
examples in this book's GitHub repository.

The job object also has some other useful methods, which we'll discuss in the following
sections.

Coroutines under the hood
So, we've mentioned the following facts a couple of times:

•	 Coroutines are like lightweight threads. They need fewer resources than regular
threads, so you can create more of them.

•	 Instead of blocking an entire thread, coroutines suspend themselves, allowing the
thread to execute another piece of code in the meantime.

But how do coroutines work?

As an example, let's take a look at a function that composes a user profile:

fun profileBlocking(id: String): Profile {

 // Takes 1s

 val bio = fetchBioOverHttpBlocking(id)

 // Takes 100ms

 val picture = fetchPictureFromDBBlocking(id)

 // Takes 500ms

Introducing coroutines 185

 val friends = fetchFriendsFromDBBlocking(id)

 return Profile(bio, picture, friends)

}

Here, our function takes around 1.6 seconds to complete. Its execution is completely
sequential, and the executing thread will be blocked for the entire time.

We can redesign this function so that it works with coroutines, as follows:

suspend fun profile(id: String): Profile {

 // Takes 1s

 val bio = fetchBioOverHttpAsync(id)

 // Takes 100ms

 val picture = fetchPictureFromDBAsync(id)

 // Takes 500ms

 val friends = fetchFriendsFromDBAsync(id)

 return Profile(bio.await(), picture.await(),
 friends.await())

}

Without the suspend keyword, our asynchronous code simply won't compile. We'll
cover what the suspend keyword means later in this section.

To understand what each of the asynchronous functions looks like, let's take a look at one
of them as an example:

fun fetchFriendsFromDBAsync(id: String) = GlobalScope.async

{

 delay(500)

 emptyList<String>()

}

Now, let's compare the performance of the two functions: one that is written in a blocking
manner, and another that uses coroutines.

We can wrap both functions using a runBlocking function, as we've seen previously,
and measure the time it takes them to complete using measureTimeMillis:

runBlocking {

 val t1 = measureTimeMillis {

 blockingProfile("123")

186 Threads and Coroutines

 }

 val t2 = measureTimeMillis {

 profile("123")

 }

 println("Blocking code: $t1")

 println("Async: $t2")

}

The output will be something like this:

> Blocking code: 1623

> Coroutines: 1021

The execution time of the concurrent coroutines is the maximum of the longest coroutine,
while with sequential code, it's the sum of all functions.

Having understood the first two examples, let's look at another way to write the
same code.

We'll mark each of the functions with the suspend keyword:

suspend fun fetchFriendsFromDB(id: String): List<String> {

 delay(500)

 return emptyList()

}

If you run this example, the performance will be the same as the blocking code. So, why
would we want to use suspendable functions?

Suspendable functions don't block the thread. Looking at the bigger picture, by using the
same number of threads, we can serve far more users, all thanks to the smart way Kotlin
rewrites suspendable functions.

When the Kotlin compiler sees the suspend keyword, it knows it can split and rewrite
the function, like this:

fun profile(state: Int, id: String, context: ArrayList<Any>):
Profile {

 when (state) {

 0 -> {

 context += fetchBioOverHttp(id)

 profile(1, id, context)

Introducing coroutines 187

 }

 1 -> {

 context += fetchPictureFromDB(id)

 profile(2, id, context)

 }

 2 -> {

 context += fetchFriendsFromDB(id)

 profile(3, id, context)

 }

 3 -> {

 val (bio, picture, friends) = context

 return Profile(bio, picture, friends)

 }

 }

}

This rewritten code uses the State design pattern from Chapter 4, Getting Familiar with
Behavioral Patterns, to split the execution of the function into many steps. By doing so, we
can release the thread that executes coroutines at every stage of the state machine.

Important Note:
This is not a perfect depiction of the generated code. The goal is to
demonstrate the idea behind what the Kotlin compiler does, but some subtle
implementation details are omitted for brevity.

Note that unlike the asynchronous code we produced earlier, the state machine itself is
sequential and takes the same amount of time as the blocking code to execute all its steps.

It is a fact that none of these steps block any threads, which is important in this example.

Canceling a coroutine
If you are a Java developer, you may know that stopping a thread is quite complicated.

For example, the Thread.stop() method is deprecated. There's Thread.
interrupt(), but not all threads are checking this flag, not to mention setting
a volatile flag, which is often suggested but is very cumbersome.

188 Threads and Coroutines

If you're using a thread pool, you'll get Future, which has the cancel(boolean
mayInterruptIfRunning) method. In Kotlin, the launch() function returns a job.

This job can be canceled. The same rules from the previous example apply, though. If your
coroutine never calls another suspend function or the yield function, it will disregard
cancel().

To demonstrate that, we'll create one coroutine that yields once in a while:

val cancellable = launch {

 try {

 for (i in 1..10_000) {

 println("Cancellable: $i")

 yield()

 }

 }

 catch (e: CancellationException) {

 e.printStackTrace()

 }

}

As you can see, after each print statement, the coroutine calls the yield function. If it
was canceled, it will print the stack trace.

We'll also create another coroutine that doesn't yield:

val notCancellable = launch {

 for (i in 1..10_000) {

 if (i % 100 == 0) {

 println("Not cancellable $i")

 }

 }

}

This coroutine never yields and prints its results every 100 iterations to avoid spamming
the console.

Introducing coroutines 189

Now, let's try cancelling both coroutines:

println("Canceling cancellable")

cancellable.cancel()

println("Canceling not cancellable")

notCancellable.cancel()

Then, we'll wait for the results:

runBlocking {

 cancellable.join()

 notCancellable.join()

}

By invoking join(), we can wait for the execution of the coroutine to complete.

Let's look at the output of our code:

> Canceling cancellable

> Cancellable: 1

> Not cancellable 100

>...

> Not cancellable 1000

> Canceling not cancellable

A few interesting points we can learn from this experiment regarding the behavior of
coroutines are as follows:

•	 Canceling the cancellable coroutine doesn't happen immediately. It may still
print a line or two before being canceled.

•	 We can catch CancellationException, but our coroutine will be marked
as canceled anyway. Catching that exception doesn't automatically allow us to
continue.

Now, let's understand what happened. The coroutine checks whether it was canceled, but
only when it is switching between states. Since the non-cancellable coroutine didn't have
any suspending functions, it never checked if it was asked to stop.

190 Threads and Coroutines

In the cancellable coroutine, we used a new function: yield(). We could have
called yield() on every loop iteration, but decided to do that every 100th one. This
function checks whether there is anybody else that wants to do some work. If there's
nobody else, the execution of the current coroutine will resume. Otherwise, another
coroutine will start or resume from the point where it stopped earlier.

Note that without the suspend keyword on our function or a coroutine generator,
such as launch(), we can't call yield(). This is true for any function marked with
suspend: it should either be called from another suspend function or from a coroutine.

Setting timeouts
Let's consider the following situation. What if, as happens in some cases, fetching the user's
profile takes too long? What if we decided that if the profile takes more than 0.5 seconds to
return, we'll just show no profile?

This can be achieved using the withTimeout() function:

val coroutine = async {

 withTimeout(500) {

 try {

 val time = Random.nextLong(1000)

 println("It will take me $time to do")

 delay(time)

 println("Returning profile")

 "Profile"

 }

 catch (e: TimeoutCancellationException) {

 e.printStackTrace()

 }

 }

}

We set the timeout to be 500 milliseconds, and our coroutine will delay for between 0
and 1000 milliseconds, giving it a 50 percent chance of failing.

Introducing coroutines 191

We'll await the results from the coroutine and see what happens:

val result = try {

 coroutine.await()

}

catch (e: TimeoutCancellationException) {

 "No Profile"

}

println(result)

Here, we benefit from the fact that try is an expression in Kotlin. So, we can return a
result immediately from it.

If the coroutine manages to return before the timeout, the value of result becomes
profile. Otherwise, we receive TimeoutCancellationException and set the
value of result to no profile.

A combination of timeouts and try-catch expressions is a really powerful tool that
allows us to create robust interactions.

Dispatchers
When we ran our coroutines using the runBlocking function, their code was executed
on the main thread.

You can check this by running the following code:

runBlocking {

 launch {

 println(Thread.currentThread().name) // Prints

 "main"

 }

}

In contrast, when we run a coroutine using GlobalScope, it runs on something called
DefaultDispatcher:

GlobalScope.launch {

 println("GlobalScope.launch:

 ${Thread.currentThread().name}")

}

192 Threads and Coroutines

This prints the following output:

> DefaultDispatcher-worker-1

DefaultDispatcher is a thread pool that is used for short-lived coroutines.

Coroutine generators, such as launch() and async(), rely on default arguments, one
of which is the dispatcher they will be launched on. To specify an alternative dispatcher,
you can provide it as an argument to the coroutine builder:

runBlocking {

 launch(Dispatchers.Default) {

 println(Thread.currentThread().name)

 }

}

The preceding code prints the following output:

> DefaultDispatcher-worker-1

In addition to the Main and Default dispatchers, which we've already discussed, there
is also an IO dispatcher, which is used for long-running tasks. You can use it similarly for
other dispatchers by providing it to the coroutine builder, like so:

async(Dispatchers.IO) {

 // Some long running task here

}

Structured concurrency
It is a very common practice to spawn coroutines from inside another coroutine.

The first rule of structured concurrency is that the parent coroutine should always wait
for all its children to complete. This prevents resource leaks, which is very common in
languages that don't have the structured concurrency concept.

This means that if we look at the following code, which starts 10 child coroutines, the
parent coroutine doesn't need to wait explicitly for all of them to complete:

val parent = launch(Dispatchers.Default) {

 val children = List(10) { childId ->

 launch {

 for (i in 1..1_000_000) {

Introducing coroutines 193

 UUID.randomUUID()

 if (i % 100_000 == 0) {

 println("$childId - $i")

 yield()

 }

 }

 }

 }

}

Now, let's decide that one of the coroutines throws an exception after some time:

...

if (i % 100_000 == 0) {

 println("$childId - $i")

 yield()

}

if (childId == 8 && i == 300_000) {

 throw RuntimeException("Something bad happened")

}

...

If you run this code, something interesting happens. Not only does the coroutine itself
terminate, but also all its siblings are terminated as well.

What happens here is that an uncaught exception bubbles up to the parent coroutine and
cancels it. Then, the parent coroutine terminates all the other child coroutines to prevent
any resource leaks.

Usually, this is the desired behavior. If we'd like to prevent child exceptions from stopping
the parent as well, we can use supervisorScope:

val parent = launch(Dispatchers.Default) {

 supervisorScope {

 val children = List(10) { childId ->

 ...

 }

 }

}

194 Threads and Coroutines

By using supervisorScope, even if one of the coroutines fails, the parent job won't
be affected.

The parent coroutine can still terminate all its children by using the cancel() function.
Once we invoke cancel() on the parent job, all of its children are canceled too.

Now that we've discussed the benefits of structured concurrency, let's reiterate one
point from the start of this chapter: using GlobalScope and the fact that it's marked
as a delicate API. Although GlobalScope exposes functions such as launch()
and async(), it doesn't benefit from structured concurrency principles and is prone
to resource leaks when used incorrectly. For that reason, you should avoid using
GlobalScope in real-world applications.

Summary
In this chapter, we covered how to create threads and coroutines in Kotlin, as well as the
benefits of coroutines over threads.

Kotlin has simplified syntax for creating threads, compared to Java. But it still has the
overhead of memory and, often, performance. Coroutines can solve these issues; use
coroutines whenever you need to execute some code concurrently in Kotlin.

At this point, you should know how to start a coroutine and how to wait for it to complete,
getting its results in the process. We also covered how coroutines are structured and
learned about how they interact with dispatchers.

Finally, we touched upon the topic of structured concurrency, a modern idea that helps us
prevent resource leaks in concurrent code easily.

In the next chapter, we'll discuss how we can use these concurrency primitives to create
scalable and robust systems that suit our needs.

Questions
1.	 What are the different ways to start a coroutine in Kotlin?
2.	 With structured concurrency, if one of the coroutines fails, all the siblings will be

canceled as well. How can we prevent that behavior?
3.	 What is the purpose of the yield() function?

7
Controlling

the Data Flow
The previous chapter covered an important Kotlin concurrency primitive: coroutines. In
this chapter, we'll discuss two other vital concurrent primitives in Kotlin: channels and
flows. We'll also touch on higher-order functions for collections, as their API is very
similar to that of channels and flows.

The idea of making extensive use of small, reusable, and composable functions comes
directly from the functional programming paradigm, which we discussed in the previous
chapter. These functions allow us to write code in a manner that describes what we want
to do instead of how we want to do it.

In this chapter, we'll cover the following topics:

•	 Reactive principles

•	 Higher-order functions for collections

•	 Concurrent data structures

•	 Sequences

•	 Channels

•	 Flows

196 Controlling the Data Flow

After reading this chapter, you'll be able to efficiently communicate between different
coroutines and process your data with ease.

Technical requirements
In addition to the technical requirements from the previous chapters, you will also need a
Gradle-enabled Kotlin project to be able to add the required dependencies.

You can find the source code used in this chapter on GitHub at the following location:

https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-
Best-Practices/tree/main/Chapter07

Reactive principles
We'll start this chapter with a brief detour into Reactive programming, as it forms the
foundation of the data streaming concept.

Reactive programming is a paradigm based on functional programming in which we
model our logic as a set of operations in a data stream. The fundamental concepts of
reactive programming are summarized nicely in The Reactive Manifesto (https://www.
reactivemanifesto.org).

According to this manifesto, reactive programs should be all of the following:

•	 Responsive

•	 Resilient

•	 Elastic

•	 Message-driven

To understand these four principles, we'll use an example.

Let's imagine you are calling your Internet Service Provider, since your internet is slow, for
example. Do you have this picture in your mind? Let's start then.

Responsive principle
How much time are you willing to spend waiting on the line? That depends on the urgency
of the situation and how much time you have. If you're in a hurry, you'll probably drop the
call sooner rather than later because you don't know how much time you'll need to wait
while listening to that horrible music.

https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter07
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter07
https://www.reactivemanifesto.org
https://www.reactivemanifesto.org

Reactive principles 197

That's the system being unresponsive to you. This also happens with web systems. A
request to a web server may get stuck in a queue when waiting for other requests to be
processed.

On the other hand, a responsive call center may tell you in a pleasant voice once in a while
how many people are in the queue before you – or even how much time you'll have to
wait.

In both cases, the result is the same. You've wasted your time waiting on the line. But the
second system was responsive to your needs, and you could make decisions based on that.

Resilient principle
Let's move on to the resilient principle. Imagine you're waiting on the line for 10 minutes
and then the line drops. That's the system not being resilient to failures.

The Reactive Manifesto recommends several ways to achieve resiliency:

•	 Delegation: You'll probably hear, "Our current representative is unable to resolve your
slow internet; we are redirecting you to someone else."

•	 Replication: Then, you may hear, "We are aware that many people are on the line;
we are adding more representatives as we speak." This also relates to elasticity, which
we'll cover in the next section.

•	 Containment and isolation: Finally, the automatic voice tells you, "If you don't want
to wait, please leave your number and we'll get back to you." Containment means that
you are now decoupled from the scalability problems the system is having (that is,
the system not having enough representatives). In contrast, isolation means that
even if the system has issues with a phone line not being reliable, you don't care.

Elastic principle
In the previous section, we discussed replication. To prevent failures, our call center
always has at least three representatives on shift. Maybe all of them are answering calls, or
perhaps they're just patiently waiting.

What happens, though, if some rabid mole chews through the internet cable?

Suddenly, there is a surge of calls from disgruntled customers.

If our call center has only three phones, there is not much we can do about this. But if we
had some extra resources, we could bring more representatives in to handle the incident
and calm our customers. And after the cable was finally fixed, we could let them go back
to their business. That's the system being elastic in response to the workload.

198 Controlling the Data Flow

Elasticity builds on scalability. For example, we could manage all of the incoming calls if
each representative could work independently by having their own phone. If we had more
representatives than phones, the number of phones would become a bottleneck, with some
representatives unable to answer any calls.

Message-driven principle
The message-driven principle is also referred to as asynchronous message passing. So, in
the previous section, we saw that if you could leave a message for any representative to call
back, it could make the system more resilient.

So, what if all customers only leave messages?

Then, each representative could prioritize those messages or batch them. For example,
printing all of the billing receipts together instead of working through the messages in a
random order.

Using messages also allows applying backpressure. If a representative receives too many
messages, they may collapse from stress. To avoid that, they may text you to say that you'll
have to wait a bit longer to receive your answer. Again, we're also talking about delegation
here, as all of these principles overlap.

Messages are also non-blocking. After you leave the message, you don't sit there waiting
for the representative's response. Instead, you usually go back to your regular tasks. The
ability to perform other tasks while you wait is one of the cornerstones of concurrency.

In this section, we learned about the four reactive principles. Reactive applications are
responsive, resilient, elastic, and message-driven. In the following sections, we'll see how
these principles are applied in Kotlin. We'll start with collections, or as they'd be referred to
in reactive programming terms, static data streams.

Higher-order functions on collections
We briefly touched on this topic in Chapter 1, Getting Started with Kotlin, but before we
can discuss streams, let's make sure that those of us who come from languages that don't
have higher-order functions on collections know what they are, what they do, and what
the benefits of using them are.

We won't be able to cover all of the functions available on collections, but we'll cover the
most widely used ones.

Higher-order functions on collections 199

Mapping elements
The map() function takes each element of a collection and returns a new element of a
possibly different type. To understand this idea better, let's say we have a list of letters and
we would like to output their ASCII values.

First, let's implement it in an imperative way:

val letters = 'a'..'z'

val ascii = mutableListOf<Int>()

for (l in letters) {

 ascii.add(l.toInt())

}

Notice that even for such a trivial task, we had to write quite a lot of code. We also had to
define our output list as mutable.

Now, the same code using the map() function would look like this:

val result: List<Int> = ('a'..'z').map { it.toInt() }

Notice how much shorter the implementation is. We don't need to define a mutable list,
nor do we need to write a for-each loop ourselves.

Filtering elements
Another common task is filtering a collection. You know the drill – you iterate over it and
only put values that fit your criteria in a new collection. For example, if given a range of
numbers between 1 and 100, we would like to return only those that are divisible by 3 or
divisible by 5.

In the imperative way, this function might look something like this:

val numbers = 1..100

val notFizzbuzz = mutableListOf<Int>()

for (n in numbers) {

 if (n % 3 == 0 || n % 5 == 0) {

 notFizzbuzz.add(n)

 }

}

200 Controlling the Data Flow

In its functional variant, we would use the filter() function:

val filtered: List<Int> = (1..100).filter { it % 3 == 0 ||

 it % 5 == 0 }

Again, notice how much more concise our code becomes. We only specify what needs to
be done, filtering elements that match the criteria, and not how this should be done (for
example, using an if statement).

Finding elements
Finding the first element in a collection is another common task. If we were to write
a function for finding a number that is divisible by both 3 and 5, we could implement it
like this:

fun findFizzbuzz(numbers: List<Int>): Int? {

 for (n in numbers) {

 if (n % 3 == 0 && n % 5 == 0) {

 return n

 }

 }

 return null

}

The same functionality can be achieved using the find function:

val found: Int? = (1..100).find { it % 3 == 0 && it % 5 ==
 0 }

In a similar way to the preceding imperative function, the find function returns null if
there is no element that meets our criteria.

There's also an accompanying findLast() method, which does the same, but which
starts with the last element of the collection.

Executing code for each element
All previous families of functions had one common characteristic: they all resulted in a
stream. But not all the higher-order functions return streams. Some will return a single
value, such as Unit or, for example, a number. Those functions are called terminator
functions.

Higher-order functions on collections 201

In this section, we'll deal with the first terminator function. Terminator functions return
something else rather than a new collection, so you can't chain the result of this call to
other calls. Therefore, they terminate the chain.

In the case of forEach(), it returns the result of the Unit type. The Unit type is akin
to void in Java and means that the function doesn't return anything useful. So, the
forEach() function is like the plain old for loop:

val numbers = (0..5)

numbers.map { it * it} // Can continue

 .filter { it < 20 } // Can continue

 .forEach { println(it) } // Cannot continue

Note that forEach() has some minor performance impacts compared to the traditional
for loop.

There's also forEachIndexed(), which provides an index in the collection alongside
the actual value:

numbers.map { it * it }

 .forEachIndexed { index, value ->

 print("$index:$value, ")

}

The output for the preceding code will be as follows:

> 0:1, 1:4, 2:9, 3:16, 4:25,

Since Kotlin 1.1, there's also the onEach() function, which is a bit more useful because it
returns the collection again:

numbers.map { it * it}

 .filter { it < 20 }

 .sortedDescending()

 .onEach { println(it) } // Can continue now

 .filter { it > 5 }

As you can see, this function is not terminating.

202 Controlling the Data Flow

Summing up elements
Much like forEach(), reduce() is a terminating function. But instead of terminating
with Unit, which is not very useful, it terminates with a single value of the same type as
the collection it operates on.

To see how reduce() works in practice, let's summarize all numbers between 1
and 100:

val numbers = 1..100

var sum = 0

for (n in numbers) {

 sum += n

}

Now, let's write the same code using reduce:

val reduced: Int = (1..100).reduce { sum, n -> sum + n }

Note that here it lets us avoid declaring a mutable variable for storing the sum of the
elements. Unlike previous higher-order functions we've seen, reduce() receives not one
but two arguments. The first argument is the accumulator. In the imperative example, it's
the sum variable. The second argument is the next element. We used the same names for
the arguments, so it should be relatively easy to compare both implementations.

Getting rid of nesting
Sometimes when working with collections, we may end up with a collection of collections.
For example, consider the following code:

val listOfLists: List<List<Int>> = listOf(listOf(1, 2),
listOf(3, 4, 5), listOf(6, 7, 8))

But what if we wanted to turn this collection into a single list containing all of the nested
elements?

Then, the output would look like this:

> [1, 2, 3, 4, 5, 6, 7, 8]

Exploring concurrent data structures 203

One option is to iterate our input and use the addAll method that the mutable
collections have:

val flattened = mutableListOf<Int>()

for (list in listOfLists) {

 flattened.addAll(list)

}

A better option is to use a flatMap() function, which will do the same:

val flattened: List<Int> = listOfLists.flatMap { it }

This concrete example could be simplified even further by using a flatten() function:

val flattened: List<Int> = listOfLists.flatten()

But the flatMap() function is usually more useful, as it allows you to apply other
functions to each collection, in an Adapter like pattern.

There are many other higher-order functions declared on collections, so we couldn't cover
all of them in this short section. You must browse through the official documentation and
learn about them. Nevertheless, the functions discussed previously should provide a solid
ground for the next topic we'll cover.

Now, when you're familiar with how to transform and iterate over the static data streams,
let's see how we can apply the same operations to dynamic data streams.

Exploring concurrent data structures
Now we're familiar with some of the most common higher-order functions on collections,
let's combine this knowledge with what we learned in the previous chapter about
concurrency primitives in Kotlin to discuss the concurrent data structures Kotlin provides.

The two most essential concurrent data structures are channels and flows. However,
before we can discuss them, we need to look at another data structure: sequences.
While this data structure is not concurrent itself, it will provide us with a bridge into the
concurrent world.

Sequences
Higher-order functions on collections existed in many functional programming languages
for a long time. But for Java developers, the higher-order functions for collections first
appeared in Java 8 with the introduction of the Stream API.

204 Controlling the Data Flow

Despite providing developers with valuable functions such as map(), filter(), and
some of the others we already discussed, there were two major drawbacks to the Stream
API. First, in order to use these functions, you had to migrate to Java 8. And second,
your collection had to be converted to something called a stream, which had all of the
functions defined on it. If you want to return a collection again after mapping and filtering
your stream, you can collect it back.

There is also another significant difference between streams and collections. Unlike
collections, streams can be infinite. Since Kotlin doesn't limit itself to only JVM and is also
backward-compatible to Java 6, it needed to provide another solution for the possibility of
infinite collections. This solution was named sequence to avoid clashing with Java streams
when they're available.

We can create a new sequence using the generateSequence() function. For example,
the next function will create an infinite sequence of numbers:

val seq: Sequence<Long> = generateSequence(1L) { it + 1 }

As the first argument we specify the initial value, while the second argument is a lambda
that generates the next value based on the previous one. The returned type, as you can see,
is Sequence.

A regular collection or a range can be converted to a sequence using the asSequence()
function:

(1..100).asSequence()

If we need to build a sequence using more complex logic, you can use a sequence()
builder:

val fibSeq = sequence {

 var a = 0

 var b = 1

 yield(a)

 yield(b)

 while (true) {

 yield(a + b)

 val t = a

 a = b

 b += t

 }

}

Exploring concurrent data structures 205

In this example, we create a sequence of Fibonacci numbers. Then, we use the yield()
function to return the next value in the series. Every time the sequence is used, the code
will resume from the last yield() function invoked.

While the concept of sequences doesn't seem very useful in itself, there is a significant
difference between sequences and collections. Sequences are lazy, while collections
are eager.

This means that using higher-order functions on collections has a hidden cost for
collections beyond a certain size. Most of them will copy the collection for the sake of
immutability.

To understand this difference, let's look at the following code. First, we'll create a list
containing a million numbers and measure how much time it takes to square each
number in the list – once while operating on a collection and another while working
on a sequence:

val numbers = (1..1_000_000).toList()

println(measureTimeMillis {

 numbers.map {

 it * it

 }.take(1).forEach { it }

}) // ~50ms

println(measureTimeMillis {

 numbers.asSequence().map {

 it * it

 }.take(1).forEach { it }

}) // ~5ms

We use the take() function, which is another higher-order function on collections, to
take just the first element of the calculation.

You can see that the code that uses a sequence executes much faster. This is because
sequences, being lazy, execute the chain for each element. This means that only a single
number from the entire list is squared.

On the other hand, functions on collections work on the entire collection. This means
that first, all of the numbers are squared, then put in a new collection, and only a single
number is taken from the results.

206 Controlling the Data Flow

Sequences, channels, and flows follow the reactive principles, so it's essential to understand
them before moving on. Note that reactive principles are not tied to functional
programming. You can also be reactive while writing object-oriented or procedural
code. However, it's still easier to discuss these principles after learning about functional
programming and its foundations.

Channels
In the previous chapter, we learned how to spawn coroutines and control them.

But, what if two coroutines need to communicate with each other?

In Java, threads communicate either by using the wait()/notify()/notifyAll()
pattern or by using one of the rich set of classes from the java.util.concurrent
package – for example, BlockingQueue.

In Kotlin, as you may have noticed, there are no wait()/notify() methods. Instead,
to communicate between coroutines, Kotlin uses channels. Channels are very similar to
BlockingQueue, but instead of blocking a thread, channels suspend a coroutine, which
is a lot cheaper. We'll use the following steps to create a channel and a coroutine:

1.	 First, let's create a channel:

val chan = Channel<Int>()

Channels are typed. This channel can only receive integers.
2.	 Then, let's create a coroutine that reads from this channel:

launch {

 for (c in chan) {

 println(c)

 }

}

Reading from a channel is as simple as using a for-each loop.
3.	 Now, let's send some values to this channel. This is as simple as using the send()

function:

(1..10).forEach {

 chan.send(it)

}

chan.close()

Exploring concurrent data structures 207

4.	 Finally, we close the channel. Once closed, the coroutine that listens to the channel
will also break out of the for-each loop, and if there's nothing else to do, the
coroutine will terminate.

This style of communication is called Communicating Sequential Processes, or more
simply, CSP.

As you can see, channels are a convenient and type-safe way to communicate between
different coroutines. But we had to define the channels manually. In the following two
sections, we'll see how this can be further simplified.

Producers
If we need a coroutine that supplies a stream of values, we could use the produce()
function. This function creates a coroutine that is backed up by ReceiveChannel<T>,
where T is the type the coroutine produces.

We could rewrite the example from the previous section, as follows, by using the
produce() function:

val chan = produce {

 (1..10).forEach {

 send(it)

 }

}

launch {

 for (c in chan) {

 println(c)

 }

}

Note that inside the produce() block, the send() function is readily available for us to
push new values to the channel.

Instead of using a for-each loop in our consumer coroutine, we can use
a consumeEach() function:

launch {

 chan.consumeEach {

 println(it)

 }

}

208 Controlling the Data Flow

Now, it's time to look at another example where a coroutine is bound to a channel.

Actors
Similar to producer(), actor() is a coroutine bound to a channel. But instead of a
channel going out of the coroutine, there's a channel going into the coroutine.

Let's look at the following example:

val actor = actor<Int> {

 channel.consumeEach {

 println(it)

 }

}

(1..10).forEach {

 actor.send(it)

}

In this example, our main function is again producing the values and the actors consume
them through the channel. This is very similar to the first example we saw, but instead of
explicitly creating a channel and a separate coroutine, we have them bundled together.

If you've worked with Scala or any other programming language that has actors, you may
be familiar with a slightly different actor model from what we've described. For example,
in some implementations, actors have both inbound and outbound channels (often called
mailboxes). But in Kotlin, an actor has only an inbound mailbox in the form of a channel.

Buffered channels
In all of the previous examples, whether creating channels explicitly or implicitly, we in
fact used their unbuffered version.

To demonstrate what this means, let's take a look at a slightly altered example from the
previous section:

val actor = actor<Long> {

 var prev = 0L

 channel.consumeEach {

 println(it - prev)

 prev = it

 delay(100)

Exploring concurrent data structures 209

 }

}

Here, we have almost the same actor object, which receives timestamps and prints the
difference between every two timestamps it gets. We also introduce a small delay before it
can read the next value.

Instead of sending a sequence of numbers, we would send the current timestamp to this
actor object:

repeat(10) {

 actor.send(System.currentTimeMillis())

}

actor.close().also { println("Done sending") }

Now, let's take a look at the output of our code:

> ...

> 101

> 103

> 101

> Done sending

Notice that our producer is suspended until the channel is ready to accept the next value.
Therefore, the actor object is able to apply backpressure on the producer, telling it not to
send the next value until the actor object is ready.

Now, let's make a minor change to the way we define our actor object:

val actor = actor<Long>(capacity = 10) {

...

}

Every channel has a capacity, which is zero by default. This means until a value is
consumed from a channel, no other value can be sent over it.

Now, if we run our code again, we'll see a completely different output:

> Done sending

> ...

> 0

> 0

210 Controlling the Data Flow

The producer doesn't have to wait for the consumer anymore because the channel now
buffers the messages. So, the messages are sent as fast as possible and the actor is still able
to consume them at its own pace.

In a similar manner, capacity could be defined on the producer channel:

val chan = produce(capacity = 10) {

 (1..10).forEach {

 send(it)

 }

}

And it could be defined on the raw channel as well:

val chan = Channel<Int>(10)

Buffered channels are a very powerful concept that allow us to decouple producers from
consumers. You should use them carefully, though, as the larger the capacity of the
channel is, the more memory it will require.

Channels are a relatively low-level concurrency construct. So, let's take a look at another
type of stream, which provides us with a higher level of abstraction.

Flows
A flow is a cold, asynchronous stream and is an implementation of the Observable design
pattern we covered in Chapter 4, Getting Familiar with Behavioral Patterns.

As a quick reminder, the Observable design pattern has two methods: subscribe()
(which allows consumers to, well, subscribe for messages) and publish() (which sends
a new message to all of the subscribers).

The publish method of the Flow object is called emit(), while the subscribe method is
called collect().

We can create a new flow using the flow() function:

val numbersFlow: Flow<Int> = flow {

 ...

}

Inside the flow constructor, we can use the emit() function to publish a new value to
all listeners.

Exploring concurrent data structures 211

For example, here we create a flow that would publish ten numbers using the flow
constructor:

flow {

 (0..10).forEach {

 println("Sending $it")

 emit(it)

 }

}

Now that we've covered how to publish a message, let's discuss how to subscribe to a flow.

For that, we can use the collect() function available on the flow object:

numbersFlow.collect { number ->

 println("Listener received $number")

}

If you run this code now, you'll see that the listener prints all the numbers it receives from
the flow.

Unlike some other reactive frameworks and libraries, there is no special syntax to raise an
exception to the listener. Instead, we can simply use the standard throw expression to do
that:

flow {

 (1..10).forEach {

 ...

 if (it == 9) {

 throw RuntimeException()

 }

 }

}

From the listener side, handling exceptions is as simple as wrapping the collect()
function in a try/catch block:

try {

 numbersFlow.collect { number ->

 println("Listenerreceived $number")

 }

212 Controlling the Data Flow

}

catch (e: Exception) {

 println("Got an error")

}

Like channels, the Kotlin flows are suspending, but they are not concurrent. Flows support
backpressure, although this is completely transparent to the user. To see what this means,
let's create multiple subscribers for the same flow:

(1..4).forEach { coroutineId ->

 delay(5000)

 launch(Dispatchers.Default) {

 numbersFlow.collect { number ->

 delay(1000)

 println("Coroutine $coroutineId received

 $number")

 }

 }

}

Each subscriber runs in its own coroutine, with a delay of five seconds between each new
subscription. This allows us to see them run concurrently.

Now, let's take a look at the output:

> ...

> Sending 1

> Coroutine 1 received 5

> Sending 6

> Coroutine 2 received 1

> Sending 2

> Coroutine 1 received 6

> ...

Exploring concurrent data structures 213

From this output, we can learn two important lessons:

•	 Flows are cold streams: This means for each new subscriber, the flow starts anew.
In our case, each new subscriber will receive all numbers, starting from 1.

•	 Flows use backpressure: Note that the next number is not sent until the previous
number is received. This is similar to the behavior of unbuffered channels and
different from buffered channels, where the producer can send numbers faster than
the consumer can consume them.

Next, let's see how these two properties of flows can be altered, if necessary.

Buffering flows
In some cases, for example, when we have plenty of available memory, we aren't interested
in applying backpressure on the producer right away. To do so, each consumer can specify
that the flow should be buffered by using the buffer() function:

numbersFlow.buffer().collect { number ->

 delay(1000)

 println("Coroutine $coroutineId received $number")

}

If we look at the output of the preceding code again, we'll see a dramatic change:

> ...

> Sending 8

> Sending 9

> Sending 10

> Coroutine 1 received 1

> Coroutine 1 received 2

> ...

With a buffer, the flow produces values without any backpressure from the consumer
until the buffer is filled. Then, the consumer is still able to collect the values at its own
pace. This behavior is similar to buffered channels, and in fact, the implementation uses
a channel under the hood.

214 Controlling the Data Flow

Buffering a flow is useful when it takes a considerable amount of time to process each
message. Take uploading images from your phone as an example. Of course, the upload
will take a different amount of time based on the size of the image. You don't want to
block the user interface until the image is uploaded because that would be a bad user
experience and against reactive principles.

Instead, you could define a buffer that fits into the memory, upload the images at your
own pace, and block the user interface only once the buffer is full of tasks.

In the case of images, we are dealing with a series of elements we don't want to lose. So,
let's consider a different example, where we could allow dropping some of the elements in
our flow.

Conflating flows
Imagine we have a flow that produces changes in stock prices at a rate of ten times
a second, and we have a UI that needs to display the latest stock values. To do this, we'll
just use a number that goes up by 1 for every tick:

val stock: Flow<Int> = flow {

 var i = 0

 while (true) {

 emit(++i)

 delay(100)

 }

}

The UI itself, however, doesn't have to be refreshed ten times every second. Once every
second is more than enough. If we simply try to use collect(), as in the previous
example, we'll be constantly behind the producer:

var seconds = 0

stock.collect { number ->

 delay(1000)

 seconds++

 println("$seconds seconds -> received $number")

}

Exploring concurrent data structures 215

The preceding code outputs the following:

> 1 seconds -> received 1

> 2 seconds -> received 2

> 3 seconds -> received 3

> ...

The preceding output is incorrect. The reason for this is that we apply backpressure to
the flow, slowing it down. Another option would be to buffer 10 values, as we've seen in
the previous example. But since we want to refresh the UI ten times slower than the flow
refreshes itself, we'll have to discard nine values out of ten. We'll leave it to the readers to
try and implement that logic.

A better solution would be to conflate the flow. A conflated flow doesn't store all of
the messages. Instead, it keeps only the most recent values. We implement this in the
following code:

stock.conflate().collect { number ->

 delay(1000)

 seconds++

 println("$seconds seconds -> received $number")

}

Let's first look at the output:

> ...

> 4 seconds -> received 30

> 5 seconds -> received 40

> 6 seconds -> received 49

> ...

You can see that now the values are correct. On average, our counter is incremented ten
times every second.

Now, our flow will never be suspended and the subscriber will receive only the most
recent value that the flow has calculated.

216 Controlling the Data Flow

Summary
This chapter was dedicated to practicing functional programming with reactive principles
and learning the building blocks of functional programming in Kotlin. We also learned
about the main benefits of reactive systems. For example, such systems should be
responsive, resilient, elastic, and driven by messaging.

Now, you should know how to transform your data, filter your collections, and find
elements within the collection that meet your criteria.

You should also better understand the difference between cold and hot streams.
A cold stream, such as a flow, starts working only when someone subscribes to it. A new
subscriber will usually receive all of the events. On the other hand, a hot stream, such as
a channel, continuously emits events, even if nobody is listening to them. A new
subscriber will receive only the events that were sent after the subscription was made.

We also discussed the concept of backpressure, which can be implemented in a flow.
For example, if the consumer is not able to process all of the events, it may suspend the
producer, buffer the events in the hope of catching up, or conflate the stream, handling
only some of the events.

The next chapter will cover concurrent design patterns, which allow us to architect
concurrent systems in a scalable, maintainable, and extensible manner, using coroutines
and reactive streams as building blocks.

Questions
1.	 What is the difference between higher-order functions on collections and on

concurrent data structures?
2.	 What is the difference between cold and hot streams of data?
3.	 When should a conflated channel or flow be used?

8
Designing for
Concurrency

Concurrent design patterns help us to manage many tasks at once and structure their life
cycle. By using these patterns efficiently, we can avoid problems such as resource leaks and
deadlocks.

In this chapter, we'll discuss concurrent design patterns and how they are implemented in
Kotlin. To do this, we'll be using the building blocks from previous chapters: coroutines,
channels, flows, and concepts from functional programming.

We will be covering the following topics in this chapter:

•	 Deferred value

•	 Barrier

•	 Scheduler

•	 Pipeline

•	 Fan out

•	 Fan in

•	 Racing

218 Designing for Concurrency

•	 Mutex

•	 Sidekick channel

After completing this chapter, you'll be able to work with asynchronous values efficiently,
coordinate the work of different coroutines, and distribute and aggregate work, as well as
have the tools needed to resolve any concurrency problems that may arise in the process.

Technical requirements
In addition to the technical requirements from the previous chapters, you will also need
a Gradle-enabled Kotlin project to be able to add the required dependencies.

You can find the source code used in this chapter on GitHub at the following location:

https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-
Best-Practices/tree/main/Chapter08

Deferred Value
The goal of the Deferred Value design pattern is to return a reference to a result of an
asynchronous computation. A Future in Java and Scala, and a Promise in JavaScript are
both implementations of the Deferred Value design pattern.

We've already discussed deferred values in Chapter 6, Threads and Coroutines. We've
seen that the async() function returns a type called Deferred, which is also an
implementation of this design pattern.

Interestingly enough, the Deferred value itself is an implementation of both the Proxy
design pattern that we've seen in Chapter 3, Understanding Structural Patterns, and the
State design pattern from Chapter 4, Getting Familiar with Behavioral Patterns.

We can create a new container for the result of an asynchronous computation using the
CompletableDeferred constructor:

val deferred = CompletableDeferred<String>()

https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter08
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter08

Deferred Value 219

To populate the Deferred value with a result, we use the complete() function, and if
an error occurs in the process, we can use the completeExceptionally() function
to pass the exception to the caller. To understand it better, let's write a function that
returns an asynchronous result. Half of the time the result will contain OK, and the other
half of the time it will contain an exception.

suspend fun valueAsync(): Deferred<String> = coroutineScope {

 val deferred = CompletableDeferred<String>()

 launch {

 delay(100)

 if (Random.nextBoolean()) {

 deferred.complete("OK")

 }

 else {

 deferred.completeExceptionally(

 RuntimeException()

)

 }

 }

 deferred

}

You can see that we return the Deferred value almost immediately, then we start an
asynchronous computation using launch and simulate some computation using the
delay() function.

Since the process is asynchronous, the results won't be ready immediately. To wait for
the results, we can use the await() function that we've already discussed in Chapter 6,
Threads and Coroutines:

runBlocking {

 val value = valueAsync()

 println(value.await())

}

220 Designing for Concurrency

It's important to make sure that you always complete your Deferred value by calling
either of the complete() or completeExceptionally() functions. Otherwise,
your program may wait indefinitely for the results. It is also possible to cancel deferred
if you're no longer interested in its results. To do this, simply call cancel() on it:

deferred.cancel()

You'll rarely need to create your own deferred value. Usually, you would work with the one
returned from the async() function.

Next, let's discuss how to wait for multiple asynchronous results at once.

Barrier
The Barrier design pattern provides us with the ability to wait for multiple concurrent
tasks to complete before proceeding further. A common use case for this is composing
objects from different sources.

For example, take the following class:

data class FavoriteCharacter(

 val name: String,

 val catchphrase: String,

 val picture: ByteArray = Random.nextBytes(42)

)

Let's assume that the catchphrase data comes from one service and the picture data
comes from another. We would like to fetch these two pieces of data concurrently:

fun CoroutineScope.getCatchphraseAsync

(

 characterName: String

) = async { … }

fun CoroutineScope.getPicture

(

 characterName: String

) = async { … }

Barrier 221

The most basic way to implement concurrent fetching would be as follows:

suspend fun fetchFavoriteCharacter(name: String) =
coroutineScope {

 val catchphrase = getCatchphraseAsync(name).await()

 val picture = getPicture(name).await()

 FavoriteCharacter(name, catchphrase, picture)

}

But this solution has a major problem – we don't start fetching the picture data until
the catchphrase data was fetched. In other words, the code is unnecessarily sequential.
Let's see how this can be improved.

Using data classes as barriers
We can slightly alter the previous code to achieve the concurrency we want:

suspend fun fetchFavoriteCharacter(name: String) =
coroutineScope {

 val catchphrase = getCatchphraseAsync(name)

 val picture = getPicture(name)

 FavoriteCharacter(name, catchphrase.await(),
 picture.await())

}

Moving the await function into the invocation of the data class constructor allows us to
start all of the coroutines at once and then wait for them to complete, just as we wanted.

The additional benefit of using data classes as barriers is the ability to destructure them
easily:

val (name, catchphrase, _) = fetchFavoriteCharacter("Inigo
Montoya")

println("$name says: $catchphrase")

This works well if the type of data we receive from different asynchronous tasks is
heterogeneous. In some cases, we receive the same types of data from different sources.

222 Designing for Concurrency

For example, let's ask Michael (our canary product owner), Taylor (our barista), and
Me who our favorite movie character is:

object Michael {

 suspend fun getFavoriteCharacter() = coroutineScope {

 async {

 FavoriteCharacter("Terminator",

 "Hasta la vista, baby")

 }

 }

}

object Taylor {

 suspend fun getFavoriteCharacter() = coroutineScope {

 async {

 FavoriteCharacter("Don Vito Corleone", "I'm

 going to make him an offer he can't refuse")

 }

 }

}

object Me {

 suspend fun getFavoriteCharacter() = coroutineScope {

 async {

 // I already prepared the answer!

 FavoriteCharacter("Inigo Montoya",
 "Hello, my name is...")

 }

 }

}

Here, we have three very similar objects that differ only in the contents of the
asynchronous results they return.

Scheduler 223

In this case, we can use a list to gather the results:

val characters: List<Deferred<FavoriteCharacter>> =
 listOf(

 Me.getFavoriteCharacter(),

 Taylor.getFavoriteCharacter(),

 Michael.getFavoriteCharacter(),

)

Notice the type of the list. It's a collection of the Deferred elements of the
FavoriteCharacter type. On such collections, there's an awaitAll() function
available that acts as a barrier as well:

println(characters.awaitAll())

When working with a set of homogenous asynchronous results and you need all of them
to complete before proceeding further, use awaitAll().

The Barrier design pattern creates a rendezvous point for multiple asynchronous tasks.
The next pattern will help us abstract the execution of those tasks.

Scheduler
The goal of the Scheduler design pattern is to decouple what is being run from how it's
being run and optimize the use of resources when doing so.

In Kotlin, Dispatchers are an implementation of the Scheduler design pattern that
decouple the coroutine (that is, the what) from underlying thread pools (that is, the how).

We've already seen dispatchers briefly in Chapter 6, Threads and Coroutines.

To remind you, the coroutine builders such as launch() and async() can specify
which dispatcher to use. Here's an example of how you specify it explicitly:

runBlocking {

 // This will use the Dispatcher from the parent

 // coroutine

 launch {

 // Prints: main

 println(Thread.currentThread().name)

 }

 launch(Dispatchers.Default) {

224 Designing for Concurrency

 // Prints DefaultDispatcher-worker-1

 println(Thread.currentThread().name)

 }

}

The default dispatcher creates as many threads as you have CPUs in the underlying thread
pool. Another dispatcher that is available to you is the IO Dispatcher:

async(Dispatchers.IO) {

 for (i in 1..1000) {

 println(Thread.currentThread().name)

 yield()

 }

}

This will output the following:

> …

> DefaultDispatcher-worker-2

> DefaultDispatcher-worker-1

> DefaultDispatcher-worker-1

> DefaultDispatcher-worker-1

> DefaultDispatcher-worker-3

> DefaultDispatcher-worker-3

> ...

The IO Dispatcher is used for potentially long-running or blocking operations and will
create up to 64 threads for that purpose. Since our example code doesn't do much, the IO
Dispatcher doesn't need to create many threads. That's why you'll see only a small number
of workers used in this example.

Creating your own schedulers
We are not limited to the dispatchers Kotlin provides. We can also define dispatchers of
our own.

Pipeline 225

Here is an example of creating a dispatcher that would use a dedicated thread pool of 4
threads based on ForkJoinPool, which is efficient for divide-and-conquer tasks:

val forkJoinPool = ForkJoinPool(4).asCoroutineDispatcher()

repeat(1000) {

 launch(forkJoinPool) {

 println(Thread.currentThread().name)

 }

}

If you create your own dispatcher, make sure that you either release it with close() or
reuse it, as creating a new dispatcher and holding to it is expensive in terms of resources.

Pipeline
The Pipeline design pattern allows us to scale heterogeneous work, consisting of multiple
steps of varying complexity across multiple CPUs, by breaking the work into smaller,
concurrent pieces. Let's look at the following example to understand it better.

Back in Chapter 4, Getting Familiar with Behavioral Patterns, we wrote an HTML page
parser. It was assumed that the HTML pages themselves were already fetched for us,
though. What we would like to design now is a process that would create a possibly
infinite stream of pages.

First, we would like to fetch news pages once in a while. For that, we'll have a producer:

fun CoroutineScope.producePages() = produce {

 fun getPages(): List<String> {

 // This should actually fetch something

 return listOf(

 "<html><body><h1>

 Cool stuff</h1></body></html>",

 "<html><body><h1>

 Even more stuff</h1></body></html>"

)

 }

 val pages = getPages()

226 Designing for Concurrency

 while (this.isActive) {

 for (p in pages) {

 send(p)

 }

 }

}

The isActive flag will be true as long as the coroutine is running and hasn't been
canceled. It is a good practice to check this property in loops that may run for a long time
so they can be stopped between iterations if needed.

Each time we receive new titles, we send them downstream. Since tech news isn't updated
very often, we can check for updates only once in a while by using delay(). In the actual
code, the delay would probably be minutes, if not hours.

The next step is creating a Document Object Model (DOM) out of those raw strings
containing HTML. For that, we'll have a second producer, with this one receiving a
channel that connects it to the first one:

fun CoroutineScope.produceDom(pages: ReceiveChannel<String>) =
produce {

 fun parseDom(page: String): Document {

 // In reality this would use a DOM library to parse

 // string to DOM

 return Document(page)

 }

 for (p in pages) {

 send(parseDom(p))

 }

}

We can use the for loop to iterate over the channel as long as it's still open. This is a very
elegant way of consuming data from an asynchronous source without the need to define
callbacks.

Pipeline 227

We'll have a third function that receives the parsed documents and extracts the title out of
each one:

fun CoroutineScope.produceTitles(parsedPages:
ReceiveChannel<Document>) = produce {

 fun getTitles(dom: Document): List<String> {

 return dom.getElementsByTagName("h1").map {

 it.toString()

 }

 }

 for (page in parsedPages) {

 for (t in getTitles(page)) {

 send(t)

 }

 }

}

We're looking for the headers, and so we use getElementsByTagName("H1"). For
each header found, we turn it into its string representation.

Now, we will move on toward composing our coroutines into pipelines.

Composing a pipeline
Now that we've familiarized ourselves with the components of the pipeline, let's see how
we can combine multiple components together:

runBlocking {

 val pagesProducer = producePages()

 val domProducer = produceDom(pagesProducer)

 val titleProducer = produceTitles(domProducer)

 titleProducer.consumeEach {

 println(it)

 }

}

228 Designing for Concurrency

The resulting pipeline will look as follows:

Input=>pagesProducer=>domProducer=>titleProducer=>Output

A pipeline is a great way to break a long process into smaller steps. Note that each
resulting coroutine is a pure function, so it's also easy to test and reason about.

The entire pipeline could be stopped by calling cancel() on the first coroutine in line.

Fan Out
The goal of the Fan Out design pattern is to distribute work between multiple concurrent
processors, also known as workers. To understand it better, let's look again at the previous
section but consider the following problem:

What if the amount of work at the different steps in our pipeline is very different?

For example, it takes a lot more time to fetch the HTML content than to parse it. In such
a case, we may want to distribute that heavy work between multiple coroutines. In the
previous example, only a single coroutine was reading from each channel. But multiple
coroutines can consume from a single channel too, thus dividing the work.

To simplify the problem we're about to discuss, let's have only one coroutine producing
some results:

fun CoroutineScope.generateWork() = produce {

 for (i in 1..10_000) {

 send("page$i")

 }

 close()

}

And we'll have a function that creates a new coroutine that reads those results:

fun CoroutineScope.doWork(

 id: Int,

 channel: ReceiveChannel<String>

) = launch(Dispatchers.Default) {

 for (p in channel) {

 println("Worker $id processed $p")

 }

}

Fan In 229

This function will generate a coroutine that is executed on the Default dispatcher. Each
coroutine will listen to a channel and print every message it receives to the console.

Now, let's start our producer. Remember that all the following pieces of code need to be
wrapped in the runBlocking function, but for simplicity, we omitted that part:

val workChannel = generateWork()

Then, we can create multiple workers that distribute the work between themselves by
reading from the same channel:

val workers = List(10) { id ->

 doWork(id, workChannel)

}

Let's now examine a part of the output of this program:

> ...

> Worker 4 processed page9994

> Worker 8 processed page9993

> Worker 3 processed page9992

> Worker 6 processed page9987

Note that no two workers receive the same message and the messages are not being
printed in the order they were sent. The Fan Out design pattern allows us to efficiently
distribute the work across a number of coroutines, threads, and CPUs.

Next, let's discuss an accompanying design pattern that often goes hand-in-hand with
Fan Out.

Fan In
The goal of the Fan In design pattern is to combine results from multiple workers. This
design pattern is helpful when our workers produce results and we need to gather them.

This design pattern is the opposite of the Fan Out design pattern we discussed in the
previous section. Instead of multiple coroutines reading from the same channel, multiple
coroutines can write their results to the same channel.

230 Designing for Concurrency

Combining the Fan Out and Fan In design patterns is a good base for MapReduce
algorithms. To demonstrate this, we'll slightly change the workers from the previous
example, as follows:

private fun CoroutineScope.doWorkAsync(

 channel: ReceiveChannel<String>,

 resultChannel: Channel<String>

) = async(Dispatchers.Default) {

 for (p in channel) {

 resultChannel.send(p.repeat(2))

 }

}

Now, once done, each worker sends the results of its calculation to resultChannel.

Note that this pattern is different from the actor and producer builders we've seen before.
Actors each have their own channels, while in this case, resultChannel is shared
across all the workers.

To collect the results from the workers, we'll use the following code:

runBlocking {

 val workChannel = generateWork()

 val resultChannel = Channel<String>()

 val workers = List(10) {

 doWorkAsync(workChannel, resultChannel)

 }

 resultChannel.consumeEach {

 println(it)

 }

}

Let's now clarify what this code does:

1.	 First, we create resultChannel, which all our workers will share.
2.	 Then, we supply it to each worker. We have ten workers in total. Each worker

repeats the message it received twice and sends it on resultChannel.
3.	 Finally, we consume the results from the channel in our main coroutine. This way,

we accumulate results from multiple concurrent workers in the same place.

Racing 231

Here's a sample of the output from the preceding code:

> ...

> page9995page9995

> page9996page9996

> page9997page9997

> page9999page9999

> page9998page9998

> page10000page10000

Next, let's discuss another design pattern, which will help us improve the responsiveness
of our code in some cases.

Racing
Racing is a design pattern that runs multiple jobs concurrently, picking the result that
returns first as the winner and discarding others as losers.

We can implement Racing in Kotlin using the select() function on channels.

Let's imagine you are building a weather application. For redundancy, you fetch the
weather from two different sources, Precise Weather and Weather Today. We'll describe
them as two producers that return their name and temperature.

If we have more than one producer, we can subscribe to their channels and take the first
result that is available.

First, let's declare the two weather producers:

fun CoroutineScope.preciseWeather() = produce {

 delay(Random.nextLong(100))

 send("Precise Weather" to "+25c")

}

fun CoroutineScope.weatherToday() = produce {

 delay(Random.nextLong(100))

 send("Weather Today" to "+24c")

}

Their logic is pretty much the same. Both wait for a random number of milliseconds and
then return a temperature reading and the name of the source.

232 Designing for Concurrency

We can listen to both channels simultaneously using the select expression:

runBlocking {

 val winner = select<Pair<String, String>> {

 preciseWeather().onReceive { preciseWeatherResult ->

 preciseWeatherResult

 }

 weatherToday().onReceive { weatherTodayResult ->

 weatherTodayResult

 }

 }

 println(winner)

}

Using the onReceive() function allows us to listen to multiple channels simultaneously.

Running this code multiple times will randomly print (Precise Weather, +25c)
and (Weather Today, +24c), as there is an equal chance for both of them to
arrive first.

Racing is a very useful concept when you are willing to sacrifice resources in order to get
the most responsiveness from your system and we achieved that using Kotlin's select
expression. Now, let's explore the select expression a little further to discover another
concurrent design pattern that it implements.

Unbiased select
When using the select clause, the order is important. Because it is inherently biased, if
two events happen at the same time, it will select the first clause.

Let's see what that means in the following example.

We'll have only one producer this time, which sends over a channel which movie we
should watch next:

fun CoroutineScope.fastProducer(

 movieName: String

) = produce(capacity = 1) {

 send(movieName)

}

Racing 233

Since we defined a non-zero capacity on the channel, the value will be available as soon as
this coroutine runs.

Now, let's start the two producers and use a select expression to see which of the two
movies will be selected:

runBlocking {

 val firstOption = fastProducer("Quick&Angry 7")

 val secondOption = fastProducer(

 "Revengers: Penultimatum")

 delay(10)

 val movieToWatch = select<String> {

 firstOption.onReceive { it }

 secondOption.onReceive { it }

 }

 println(movieToWatch)

}

No matter how many times you run this code, the winner will always be the same:
Quick&Angry 7. This is because if both values are ready at the same time, the select
clause will always pick the first channel available in the order they are declared.

Now, let's use selectUnbiased instead of the select clause:

...

val movieToWatch = selectUnbiased<String> {

 firstOption.onReceive { it }

 secondOption.onReceive { it }

}

...

Running this code now will sometimes produce Quick&Angry 7 and sometimes
produce Revengers: Penultimatum. Unlike the regular select clause,
selectUnbiased doesn't care about the order. If more than one result is available, it
will pick one randomly.

234 Designing for Concurrency

Mutex
Also known as mutual exclusions, mutex provides a means to protect a shared state that
can be accessed by multiple coroutines at once.

Let's start with the same old dreaded counter example, where multiple concurrent tasks
try to update the same counter:

var counter = 0

val jobs = List(10) {

 async(Dispatchers.Default) {

 repeat(1000) {

 counter++

 }

 }

}

jobs.awaitAll()

println(counter)

As you've probably guessed, the result that is printed is less than 10,000 – totally
embarrassing!

To solve this, we can introduce a locking mechanism that will allow only a single
coroutine to interact with the variable at once, making the operation atomic.

Each coroutine will try to obtain the ownership of the counter. If another coroutine is
updating the counter, our coroutine will wait patiently and then try to acquire the lock
again. Once updated, it must release the lock so that other coroutines can proceed:

var counter = 0

val mutex = Mutex()

val jobs = List(10) {

 launch {

 repeat(1000) {

 mutex.lock()

 counter++

 mutex.unlock()

 }

 }

}

Sidekick channel 235

Now, our example always prints the correct number: 10,000.

Mutex in Kotlin is different from the Java mutex. In Java, lock() on a mutex blocks the
thread, until the lock can be acquired. A Kotlin mutex suspends the coroutine instead,
providing better concurrency. Locks in Kotlin are cheaper.

This is good for simple cases. But what if the code within the critical section, that is,
between lock() and unlock(), throws an exception?

We would have to wrap our code in try...catch, which is not very convenient:

try {

 mutex.lock()

 counter++

}

finally {

 mutex.unlock()

}

However, if we omit the finally block, our lock will never be released and it will block
all other coroutines from proceeding and creating a deadlock.

Exactly for this purpose, Kotlin also introduces withLock():

mutex.withLock {

 counter++

}

Notice how much more concise this syntax is compared with the previous example.

Sidekick channel
The Sidekick channel design pattern allows us to offload some work from our main
worker to a back worker.

Up until now, we've only discussed the use of select as a receiver. But we can also use
select to send items to another channel. Let's look at the following example.

236 Designing for Concurrency

First, we'll declare batman as an actor coroutine that processes 10 messages per second:

val batman = actor<String> {

 for (c in channel) {

 println("Batman is beating some sense into $c")

 delay(100)

 }

}

Next, we'll declare robin as another actor coroutine that is a bit slower and processes
only four messages per second:

val robin = actor<String> {

 for (c in channel) {

 println("Robin is beating some sense into $c")

 delay(250)

 }

}

So, we have a superhero and his sidekick as two actors. Since the superhero is more
experienced, it usually takes him less time to beat the villain he's facing.

But in some cases, he still has his hands full, so a sidekick needs to step in. We'll throw five
villains at the pair with a few delays and see how they fare:

val epicFight = launch {

 for (villain in listOf("Jocker", "Bane", "Penguin",
 "Riddler", "Killer Croc")) {

 val result = select<Pair<String, String>> {

 batman.onSend(villain) {

 "Batman" to villain

 }

 robin.onSend(villain) {

 "Robin" to villain

 }

 }

 delay(90)

 println(result)

 }

}

Summary 237

Notice that the type of parameter for select refers to what is returned from the block
and not what is being sent to the channels. That's the reason we use Pair<String,
String> here.

This code prints the following:

> Batman is beating some sense into Jocker

> (Batman, Jocker)

> Robin is beating some sense into Bane

> (Robin, Bane)

> Batman is beating some sense into Penguin

> (Batman, Penguin)

> Batman is beating some sense into Riddler

> (Batman, Riddler)

> Robin is beating some sense into Killer Croc

> (Robin, Killer Croc)

Using a sidekick channel is a useful technique to provide fallback values. Consider using
one in cases when you need to consume a consistent stream of data and cannot easily scale
your consumers.

Summary
In this chapter, we covered various design patterns related to concurrency in Kotlin. Most
of them are based on coroutines, channels, deferred values, or a combination of these
building blocks.

Deferred values are used as placeholders for asynchronous values. The Barrier design
pattern allows multiple asynchronous tasks to rendezvous before proceeding further. The
Scheduler design pattern decouples the code of tasks from the way they are executed at
runtime.

The Pipeline, Fan In, and Fan Out design patterns help us distribute the work and collect
the results. Mutex helps us to control the number of tasks that are being executed at the
same time. The Racing design pattern allows us to improve the responsiveness of our
application. Finally, the Sidekick Channel design pattern offloads work onto a backup task
in case the main task is not able to process the incoming events quickly enough.

All of these patterns should help you to manage the concurrency of your application in an
efficient and extensible manner. In the next chapter, we'll discuss Kotlin's idioms and best
practices, as well as some of the anti-patterns that emerged with the language.

238 Designing for Concurrency

Questions
1.	 What does it mean when we say that the select expression in Kotlin is biased?
2.	 When should you use a mutex instead of a channel?
3.	 Which of the concurrent design patterns could help you implement a MapReduce

or divide-and-conquer algorithm efficiently?

Section 3:
Practical Application

of Design Patterns

In this section, you will apply your new knowledge of design patterns to implement
a real-world application and learn some best practices and anti-patterns.

The section starts with a collection of best practices and things to avoid while developing
applications using Kotlin. Then, in the following two chapters, we will build two
microservices, first using a concurrent framework called Ktor, and in the last chapter
using a reactive framework called Vert.x.

We'll also use this opportunity to examine how design patterns we've seen in the previous
chapters come into play in real-world applications.

This section comprises the following chapters:

•	 Chapter 9, Idioms and Anti-Patterns

•	 Chapter 10, Concurrent Microservices with Ktor

•	 Chapter 11, Reactive Microservices with Vert.x

9
Idioms and

Anti-Patterns
In the previous chapters, we discussed the different aspects of the Kotlin programming
language, the benefits of functional programming, and concurrent design patterns.

This chapter discusses the best and worst practices in Kotlin. You'll learn what idiomatic
Kotlin code should look like and which patterns to avoid. This chapter contains
a collection of best practices spanning those different topics.

In this chapter, we will cover the following topics:

•	 Using the scope functions

•	 Type checks and casts

•	 An alternative to the try-with-resources statement

•	 Inline functions

•	 Implementing algebraic data types

•	 Reified generics

•	 Using constants efficiently

•	 Constructor overload

242 Idioms and Anti-Patterns

•	 Dealing with nulls

•	 Making asynchronicity explicit

•	 Validating input

•	 Preferring sealed classes over enums

After completing this chapter, you should be able to write more readable and maintainable
Kotlin code, as well as avoid some common pitfalls.

Technical requirements
In addition to the requirements from the previous chapters, you will also need
a Gradle-enabled Kotlin project to be able to add the required dependencies.

You can find the source code for this chapter here: https://github.com/
PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/
tree/main/Chapter09.

Using the scope functions
Kotlin has the concept of scoping functions, which are available on any object and can
replace the need to write repetitive code. Among other benefits, these scoping functions
help us simplify single-expression functions. They are considered higher-order functions
since each scoping function receives a lambda expression as an argument. In this section,
we'll discuss all the necessary functions and execute their code blocks using objects as
their scope. In this section, we'll use the terms scope and context object interchangeably to
describe the objects that those functions operate on.

Let function
We can use the let() function to invoke a function on a nullable object, but only if the
object is not null.

Let's take, as an example, the following map of quotes (we discussed this in
Chapter 1, Getting Started with Kotlin):

val clintEastwoodQuotes = mapOf(

 "The Good, The Bad, The Ugly" to "Every gun makes its
 own tune.",

 "A Fistful Of Dollars" to "My mistake: four coffins."

)

https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter09
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter09
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter09

Using the scope functions 243

Now, let's fetch a quote from a movie that may not exist in the collection and print it, but
only if it's not null:

val quote = clintEastwoodQuotes["Unforgiven"]

if (quote != null) {

 println(quote)

}

The same code can we rewritten using the let scoping function:

clintEastwoodQuotes["Unforgiven"]?.let {

 println(it)

}

One common mistake is forgetting to use the safe navigation operator before let,
because let() by itself also works on nulls:

clintEastwoodQuotes["Unforgiven"].let {

 println(it)

}

This code will print null to the console. Make sure that you don't forget the question
mark (?) when you use let() for null checks.

Apply function
We have discussed apply() in previous chapters. It returns the same object it operates
on and sets the context to this. You can use apply() if you need to initialize a mutable
object.

Think of how many times you had to create a class that has an empty constructor, and
then call a lot of setters, one after another. Let's look at the following class as an example.
This may be a class that comes from a library, for example:

class JamesBond {

 lateinit var name: String

 lateinit var movie: String

 lateinit var alsoStarring: String

}

244 Idioms and Anti-Patterns

When we need to create a new instance of such a class, we could do so in a procedural
manner:

val agent = JamesBond()

agent.name = "Sean Connery"

agent.movie = "Dr. No"

Alternatively, we can only set name and movie, and leave alsoStarring blank, using
the apply() function:

val `007` = JamesBond().apply {

 this.name = "Sean Connery"

 this.movie = "Dr. No"

}

println(`007`.name)

Since the context of the block is set to this, we can simplify the preceding code even
further:

val `007` = JamesBond().apply {

 name = "Sean Connery"

 movie = "Dr. No"

}

Using the apply() function is especially good when you're working with Java classes
that usually have a lot of setters and a default empty constructor.

Also function
As we mentioned in the introduction to this section, single-expression functions are
very nice and concise. Let's look at the following simple function, which multiplies two
numbers:

fun multiply(a: Int, b: Int): Int = a * b

But often, you have a single-statement function that also needs to, for example, write to
a log or have another side effect. To achieve this, we could rewrite our function in the
following way:

fun multiply(a: Int, b: Int): Int {

 val c = a * b

Using the scope functions 245

 println(c)

 return c

}

We had to make our function much more verbose here and introduce another variable.
Let's see how we can use the also() function instead:

fun multiply(a: Int, b: Int): Int =

 (a * b).also { println(it) }

This function will assign the results of the expression to it and return the result of the
expression. The also() function is also useful when you want to have a side effect on a
chain of calls:

val l = (1..100).toList()

l.filter{ it % 2 == 0 }

 // Prints, but doesn't mutate the collection

 .also { println(it) }

 .map { it * it }

Here, you can see that we can continue our chain of calls with a map() function, even
though we used the also() function to print each element of a list.

Run function
The run() function is very similar to the let() function, but it sets the context of the
block to this instead of using it.

Let's look at an example to understand this better:

val justAString = "string"

val n = justAString.run {

 this.length

}

In this example, this is set to reference the justAString variable.

Usually, this could be omitted, so the code will look as follows:

val n = justAString.run {

 length

}

246 Idioms and Anti-Patterns

The run() function is mostly useful when you plan to initialize an object, much like the
apply() function we discussed earlier. However, instead of returning the object itself,
like apply() does, you usually like to return the result of some computation:

val lowerCaseName = JamesBond().run {

 name = "ROGER MOORE"

 movie = "THE MAN WITH THE GOLDEN GUN"

 name.toLowerCase() // <= Not JamesBond type

}

println(lowerCaseName)

The preceding code prints the following output:

> roger moore

Here, the object was initialized with "ROGER MOORE". Note that here, we operated on
the JamesBond object, but our return value was a String.

With function
Unlike the other four scoping functions, with() is not an extension function. This means
you cannot do the following:

"scope".with { ... }

Instead, with() receives the object you want to scope as an argument:

with("scope") {

 println(this.length) // "this" set to the argument of
 // with()

}

And as usual, we can omit this:

with("scope") {

 length

}

Just like run() and let(), you can return any result from with().

Type checks and casts 247

In this section, we learned how the various scope functions can help reduce the amount of
boilerplate code by defining a code block to be executed on the object. In the next section,
we'll see how Kotlin also allows us to write fewer instance checks than other languages.

Type checks and casts
While writing your code, you may often be inclined to check what type your object is
using, is, and cast it using as. As an example, let's imagine we're building a system for
superheroes. Each superhero has their own set of methods:

interface Superhero

class Batman : Superhero {

 fun callRobin() {

 println("To the Bat-pole, Robin!")

 }

}

class Superman : Superhero {

 fun fly() {

 println("Up, up and away!")

 }

}

There's also a function where a superhero tries to invoke their superpower:

fun doCoolStuff(s: Superhero) {

 if (s is Superman) {

 (s as Superman).fly()

 }

 else if (s is Batman) {

 (a as Batman).callRobin()

 }

}

248 Idioms and Anti-Patterns

But as you may know, Kotlin has smart casts, so implicit casting, in this case, is not
needed. Let's rewrite this function using smart casts and see how they improve our code.
All we need to do is remove the explicit casts from our code:

fun doCoolStuff(s: Superhero) {

 if (s is Superman) {

 s.fly()

 }

 else if (s is Batman) {

 s.callRobin()

 }

}

Moreover, in most cases, using when() while smart casting produces cleaner code:

fun doCoolStuff(s : Superhero) {

 when(s) {

 is Superman -> s.fly()

 is Batman -> s.callRobin()

 else -> println("Unknown superhero")

 }

}

As a rule of thumb, you should avoid using casts and rely on smart casts most of the time:

// Superhero is clearly not a string

val superheroAsString = (s as String)

But if you absolutely must, there's also a safe cast operator:

val superheroAsString = (s as? String)

The safe cast operator will return null if the object cannot be cast, instead of throwing an
exception.

An alternative to the try-with-resources statement 249

An alternative to the try-with-resources
statement
Java 7 added the notion of AutoCloseable and the try-with-resources statement.

This statement allows us to provide a set of resources that will be automatically closed
once the code is done with them. So, there will be no more risk (or at least less risk) of
forgetting to close a file.

Before Java 7, this was a total mess, as shown in the following code:

BufferedReader br = null; // Nulls are bad, we know that

try {

 br = new BufferedReader(new FileReader

 ("./src/main/kotlin/7_TryWithResource.kt "));

 System.out.println(br.readLine());

}

finally {

 if (br != null) { // Explicit check

 br.close(); // Boilerplate

 }

}

After Java 7 was released, the preceding code could be written as follows:

try (BufferedReader br = new BufferedReader(new
 FileReader("/some/path"))) {

 System.out.println(br.readLine());

}

Kotlin doesn't support this syntax. Instead, the try-with-resource statement is replaced
with the use() function:

val br = BufferedReader(FileReader("./src/main
 /kotlin/7_TryWithResource.kt"))

br.use {

 println(it.readLines())

}

250 Idioms and Anti-Patterns

An object must implement the Closeable interface for the use() function to be
available. The Closeable object will be closed as soon as we exit the use{} block.

Inline functions
You can think of inline functions as instructions for the compiler to copy and paste
your code. Each time the compiler sees a call to a function marked with the inline
keyword, it will replace the call with the concrete function body.

It makes sense to use the inline function if it's a higher-order function that receives a
lambda as one of its arguments. This is the most common use case where you would like
to use inline.

Let's look at such a higher-order function and see what pseudocode the compiler will
output.

First, here is the function definition:

inline fun logBeforeAfter(block: () -> String) {

 println("Before")

 println(block())

 println("After")

}

Here, we pass a lambda, or a block, to our function. This block simply returns the word
"Inlining" as a String:

logBeforeAfter {

 "Inlining"

}

If you were to view the Java equivalent of the decompiled bytecode, you'd see that there's
no call to our makesSense function at all. Instead, you'd see the following:

String var1 = "Before"; <- Inline function call

System.out.println(var1);

var1 = "Inlining";

System.out.println(var1);

var1 = "After";

System.out.println(var1);

Implementing Algebraic Data Types 251

Since the inline function is a copy/paste of your code, you shouldn't use it if you have
more than a few lines of code. It would be more efficient to have it as a regular function.
But if you have single-expression functions that receive a lambda, it makes sense to mark
them with the inline keyword to optimize performance. In the end, it's a trade-off
between the size of your application and its performance.

Implementing Algebraic Data Types
Algebraic Data Types, or ATDs for short, is a concept from functional programming and
is very similar to the Composite design pattern we discussed in Chapter 3, Understanding
Structural Patterns.

To understand how ADTs work and what their benefits are, let's discuss how we can
implement a simple binary tree in Kotlin.

First, let's declare an interface for our tree. Since a tree data structure can contain any type
of data, we can parameterize it with a type (T):

sealed interface Tree<out T>

The type is marked with an out keyword, which means that this type is covariant. If you
aren't familiar with this term, we'll cover it later, while implementing the interface.

The opposite of a covariant is a contravariant. Contravariant types should be marked using
the in keyword.

We can also mark this interface with a sealed keyword. We saw this keyword applied to
regular classes in Chapter 4, Getting Familiar with Behavioral Patterns, while discussing
the Visitor pattern. But sealed interfaces are a relatively new feature and were
introduced in Kotlin 1.5.

The meaning is the same, though: only the owner of the interface can implement it. This
means that all the implementations of the interface are known at compile time.

Next, let's declare what an empty tree looks like:

object Empty : Tree<Nothing> {

 override fun toString() = "Empty"

}

Since all empty trees are the same, we declare it as an object. This is another use of the
Singleton design pattern, which we discussed in Chapter 2, Working with Creational
Patterns. We can also use Nothing as the type of an empty tree. This is a special class in
Kotlin's object hierarchy.

252 Idioms and Anti-Patterns

Important Note:
There is some confusion between Any, which represents any class and is
similar to Object in Java, and Nothing, which represents no class. We'll
see why Any wouldn't work in this case later in this chapter.

Next, let's define a non-empty node of a tree:

data class Node<T>(

 val value: T,

 val left: Tree<T> = Empty,

 val right: Tree<T> = Empty

) : Tree<T>

Node also implements the Tree interface, but it is a data class and not an object since
every node is different. The type of the value of a Node is T, which means it can contain
any type of value, but all the nodes in the same tree will contain the same type of value.
This is the real power of generics.

A node also has two children, left and right, since it's a binary tree. By default, both of
them are empty.

We can specify the default values for the children of a node thanks to the fact that the type
is covariant and Empty is of the Nothing type. Nothing is at the bottom of the class
hierarchy, while Any is at the very top.

When we declared the type of our Tree as out T, we meant that our Tree could
contain values of type T or anything that inherits from that type.

Since Nothing is at the bottom of a class hierarchy, it inherits from all types.

Now that everything has been set, let's learn how to create a new instance of the tree we
just defined:

val tree = Node(

 1,

 Empty,

 Node(

 2,

 Node(3)

)

)

println(tree)

Implementing Algebraic Data Types 253

Here, we created a tree with 1 as the value of the root node and a right node with a value
of 2. The right node has a left child with a value of 3. This is what our tree looks like:

Figure 9.1 – Tree diagram

The preceding code outputs the following:

> Node(value=1, left=Empty, right=Node(value=2,
left=Node(value=3, left=Empty, right=Empty), right=Empty))

However, printing the tree in such a form is not very interesting. So, let's implement a
function that will summarize all the nodes of a tree if it's numeric:

fun Tree<Int>.sum(): Long = when (this) {

 Empty -> 0

 is Node -> value + left.sum() + right.sum()

}

This is also called an operation on an ADT. This is an extension function that is declared
only on trees that contain integers.

For each node, we check whether it's Empty or Node. That's the beauty of sealed
classes and interfaces. Since the compiler knows that the Tree interface has exactly two
implementations, we don't need an else block in our when expression.

If it's an Empty node, we use 0 as a neutral value. If it's not empty, then we sum its values
with the left and right children.

254 Idioms and Anti-Patterns

This function is also another example of a recursive algorithm, which we discussed in
Chapter 5, Introducing Functional Programming.

Now, let's discuss another topic related to generics in Kotlin.

Reified generics
Previously in this chapter, we mentioned inline functions. Since inline functions are
copied, we can get rid of one of the major JVM limitations: type erasure. After all, inside
the function, we know exactly what type we're getting.

Let's look at the following example. We would like to create a generic function that will
receive a Number (Number can either be Int or Long), but will only print it if it's of the
same type as the function type.

We'll start with a naïve implementation, simply trying the instance check on the type
directly:

fun <T> printIfSameType(a: Number) {

 if (a is T) { // <== Error

 println(a)

 }

}

However, this code won't compile and we'll get the following error:

> Cannot check for instance of erased type: T

What we usually do in Java, in this case, is pass the class as an argument. We can try a
similar approach in Kotlin. If you've worked with Android before, you'll recognize this
pattern immediately, since it's used a lot in the standard library:

fun <T : Number> printIfSameType(clazz: KClass<T>, a:

 Number) {

 if (clazz.isInstance(a)) {

 println("Yes")

 } else {

 println("No")

 }

}

Reified generics 255

We can check that the code works correctly by running the following lines:

printIfSameType(Int::class, 1) // Prints yes, as 1 is Int

printIfSameType(Int::class, 2L) // Prints no, as 2 is Long

printIfSameType(Long::class, 3L) // Prints yes, as 3 is Long

This code works but has a few downsides:

•	 We cannot use the is operator and must use the isInstance() function instead.

•	 We must pass the correct class; that is, clazz: KClass<T>.

This code could be improved by using a reified type:

inline fun <reified T : Number> printIfSameReified(a:
 Number) {

 if (a is T) {

 println("Yes")

 } else {

 println("No")

 }

}

This function works the same as the previous one but doesn't need a class as input to
work. A function that uses a reified type must be declared as inline. This is due to
type erasure on the JVM.

We can test that our code still works as expected:

printIfSameReified<Int>(1) // Prints yes, as 1 is Int

printIfSameReified<Int>(2L) // Prints no, as 2 is Long

printIfSameReified<Long>(3L) // Prints yes, as 3 is Long

Notice that now, we specify the type that the function operates on, such as Int or Long,
between angular brackets, instead of passing a class to it as an argument. We get the
following benefits from using the reified functions:

•	 A clear method signature, without the need to pass a class as an argument.

•	 The ability to use the is construct inside the function.

•	 It's type-inference friendly, which means that if the type parameter can be inferred
by the compiler, it can be completely omitted.

256 Idioms and Anti-Patterns

Of course, the same rules for the regular inline functions apply here. This code would
be replicated, so it shouldn't be too large.

Now, let's consider another case for reified types – function overloading. We'll try
to define two functions with the same name that differ only in terms of the types they
operate on:

fun printList(list: List<Int>) {

 println("This is a list of Ints")

 println(list)

}

fun printList(list: List<Long>) {

 println("This is a list of Longs")

 println(list)

}

This won't compile because there's a platform declaration clash. Both have the same
signature in terms of JVM: printList(list: List). This is because types are erased
during compilation.

But with reified, we can achieve this easily:

inline fun <reified T : Any> printList(list: List<T>) {

 when {

 1 is T -> println("This is a list of Ints")

 1L is T -> println("This is a list of Longs")

 else -> println("This is a list of something else")

 }

 println(list)

}

Since the entire function is inlined, we can check the actual type of the list and output the
correct result.

Using constants efficiently
Since everything in Java is an object (unless it's a primitive type), we're used to putting all
the constants inside our objects as static members.

Using constants efficiently 257

And since Kotlin has companion objects, we usually try putting them there:

class Spock {

 companion object {

 val SENSE_OF_HUMOR = "None"

 }

}

This will work, but you should remember that companion object is an object, after all.

So, this will be translated into the following code, more or less:

public class Spock {

 private static final String SENSE_OF_HUMOR = "None";

 public String getSENSE_OF_HUMOR() {

 return Spock.SENSE_OF_HUMOR;

 }

 ...

}

In this example, the Kotlin compiler generates a getter for our constant, which adds
another level of indirection.

If we look at the code using the constant, we'll see the following:

String var0 = Spock.Companion.getSENSE_OF_HUMOR();

System.out.println(var0);

We can invoke a method to get the constant value, which is not very efficient.

Now, let's mark this value as constant and see how the code produced by the compiler
changes:

class Spock {

 companion object {

 const val SENSE_OF_HUMOR = "None"

 }

}

258 Idioms and Anti-Patterns

Here are the bytecode changes:

public class Spock {

 public static final String SENSE_OF_HUMOR = "None";

 ...

}

And here is the call:

String var1 = "None";

System.out.println(var1);

Notice that there's no reference for our Spock class in the code anymore. The compiler
has already inlined its value for us. After all, it's constant, so it will never change and can
be safely inlined.

If all you need is a constant, you can also set it up outside of any class:

const val SPOCK_SENSE_OF_HUMOR = "NONE"

And if you need namespacing, you can wrap it in an object:

object SensesOfHumor {

 const val SPOCK = "None"

}

Now that we've learned how to use constants more efficiently, let's learn how to work with
constructors in an idiomatic manner.

Constructor overload
In Java, we're used to having overloaded constructors. For example, let's look at the
following Java class, which requires the a parameter and defaults the value of b to 1:

class User {

 private final String name;

 private final boolean resetPassword;

 public User(String name) {

 this(name, true);

 }

Constructor overload 259

 public User(String name, boolean resetPassword) {

 this.name = name;

 this.resetPassword = resetPassword;

 }

}

We can simulate the same behavior in Kotlin by defining multiple constructors using the
constructor keyword:

class User(val name: String, val resetPassword: Boolean) {

 constructor(name: String) : this(name, true)

}

The secondary constructor, as defined in the class body, will invoke the primary
constructor, providing 1 as the default value for the second argument.

However, it's usually better to have default parameter values and named arguments
instead:

class User(val name: String, val resetPassword: Boolean =
 true)

Note that all the secondary constructors must delegate to the primary constructor using
the this keyword. The only exception is when you have a default primary constructor:

class User {

 val resetPassword: Boolean

 val name: String

 constructor(name: String, resetPassword: Boolean =

 true) {

 this.name = name

 this.resetPassword = resetPassword

 }

}

Next, let's discuss how to efficiently handle nulls in Kotlin code.

260 Idioms and Anti-Patterns

Dealing with nulls
Nulls are unavoidable, especially if you work with Java libraries or get data from
a database. We've already discussed that there are different ways to check whether
a variable contains null in Kotlin; for example:

// Will return "String" half of the time and null the other

// half

val stringOrNull: String? = if (Random.nextBoolean())

 "String" else null

// Java-way check

if (stringOrNull != null) {

 println(stringOrNull.length)

}

We could rewrite this code using the Elvis operator (?:):

val alwaysLength = stringOrNull?.length ?: 0

If the length is not null, this operator will return its value. Otherwise, it will return the
default value we supplied, which is 0 in this case.

If you have a nested object, you can chain those checks. For example, let's have a
Response object that contains a Profile, which, in turn, contains the first name and
last name fields, which can be nullable:

data class Response(

 val profile: UserProfile?

)

data class UserProfile(

 val firstName: String?,

 val lastName: String?

)

This chaining will look like this:

val response: Response? = Response(UserProfile(null, null))

println(response?.profile?.firstName?.length)

Making asynchronicity explicit 261

If any of the fields in the chain are null, our code won't crash. Instead, it will print null.

Finally, you can use the let() block for null checks, as we briefly mentioned in the Using
the scope functions section. The same code, but using the let() function instead, will
look like this:

println(response?.let {

 it.profile?.let {

 it.firstName?.length

 }

})

If you want to get rid of it everywhere, you can use another scoping function, run():

println(response?.run {

 profile?.run {

 firstName?.length

 }

})

Try to avoid using the unsafe !! null operator in production code:

println(json!!.User!!.firstName!!.length)

This will result in KotlinNullPointerException. However, during tests, the !!
operator may prove useful, as it will help you spot null-safety issues faster.

Making asynchronicity explicit
As you saw in the previous chapter, it is very easy to create an asynchronous function in
Kotlin. Here is an example:

fun CoroutineScope.getResult() = async {

 delay(100)

 "OK"

}

However, this asynchronicity may be an unexpected behavior for the user of the function,
as they may expect a simple value.

262 Idioms and Anti-Patterns

What do you think the following code prints?

println("${getResult()}")

For the user, the preceding code somewhat unexpectedly prints the following instead of
"OK":

> Name: DeferredCoroutine{Active}@...

Of course, if you have read Chapter 6, Threads and Coroutines, you will know that what's
missing here is the await() function:

println("${getResult().await()}")

But it would have been a lot more obvious if we'd named our function accordingly, by
adding an async suffix:

fun CoroutineScope.getResultAsync() = async {

 delay(100)

 "OK"

}

Kotlin's convention is to distinguish asynchronous functions from regular ones by adding
Async to the end of the function's name. If you're working with IntelliJ IDEA, it will
even suggest you that rename it.

Now, let's talk about some built-in functions for validating the user's input.

Validating input
Input validation is a necessary but very tedious task. How many times did you have to write
code like the following?

fun setCapacity(cap: Int) {

 if (cap < 0) {

 throw IllegalArgumentException()

 }

 ...

}

Validating input 263

Instead, you can check arguments with the require() function:

fun setCapacity(cap: Int) {

 require(cap > 0)

}

This makes the code a lot more fluent. You can use require() to check for nulls:

fun printNameLength(p: Profile) {

 require(p.firstName != null)

}

But there's also requireNotNull() for that:

fun printNameLength(p: Profile) {

 requireNotNull(p.firstName)

}

Use check() to validate the state of your object. This is useful when you are providing an
object that the user may not have set up correctly:

class HttpClient {

 var body: String? = null

 var url: String = ""

 fun postRequest() {

 check(body != null) {

 "Body must be set in POST requests"

 }

 }

}

And again, there's a shortcut for this as well: checkNotNull().

The difference between the require() and check() functions is that require()
throws IllegalArgumentException, implying that the input that was
provided to the function was incorrect. On the other hand, check() throws
IllegalStateException, which means that the state of the object is corrupted.

Consider using functions such as require() and check() to improve the readability
of your code.

264 Idioms and Anti-Patterns

Finally, let's discuss how to efficiently represent different states in Kotlin.

Preferring sealed classes over enums
Coming from Java, you may be tempted to overload your enum with functionality.

For example, let's say you build an application that allows users to order a pizza and track
its status. We can use the following code for this:

// Java-like code that uses enum to represent State

enum class PizzaOrderStatus {

 ORDER_RECEIVED, PIZZA_BEING_MADE, OUT_FOR_DELIVERY,
 COMPLETED;

 fun nextStatus(): PizzaOrderStatus {

 return when (this) {

 ORDER_RECEIVED -> PIZZA_BEING_MADE

 PIZZA_BEING_MADE -> OUT_FOR_DELIVERY

 OUT_FOR_DELIVERY -> COMPLETED

 COMPLETED -> COMPLETED

 }

 }

}

Alternatively, you can use the sealed class:

sealed class PizzaOrderStatus(protected val orderId: Int) {

 abstract fun nextStatus(): PizzaOrderStatus

}

class OrderReceived(orderId: Int) :

 PizzaOrderStatus(orderId) {

 override fun nextStatus() = PizzaBeingMade(orderId)

}

class PizzaBeingMade(orderId: Int) :

 PizzaOrderStatus(orderId) {

 override fun nextStatus() = OutForDelivery(orderId)

}

Summary 265

class OutForDelivery(orderId: Int) :

 PizzaOrderStatus(orderId) {

 override fun nextStatus() = Completed(orderId)

}

class Completed(orderId: Int) : PizzaOrderStatus(orderId) {

 override fun nextStatus() = this

}

Here, we created a separate class for each object state, extending the
PizzaOrderStatus sealed class.

The benefit of this approach is that we can now store the state, along with its status,
more easily. In our example, we can store the ID of the order:

var status: PizzaOrderStatus = OrderReceived(123)

while (status !is Completed) {

 status = when (status) {

 is OrderReceived -> status.nextStatus()

 is PizzaBeingMade -> status.nextStatus()

 is OutForDelivery -> status.nextStatus()

 is Completed -> status

 }

}

In general, sealed classes are good if you want to have data associated with a state, and
you should prefer them over enums.

Summary
In this chapter, we reviewed the best practices in Kotlin, as well as some of the caveats
of the language. Now, you should be able to write more idiomatic code that is also
performant and maintainable.

You should make use of the scoping functions where necessary, but make sure not to
overuse them as they may make the code confusing, especially for those newer to the
language.

266 Idioms and Anti-Patterns

Be sure to handle nulls and type casts correctly, with let(), the Elvis operator, and
the smart casts that the language provides. Finally, generics and sealed classes and
interfaces are powerful tools that help describe complex relationships and behaviors
between different classes.

In the next chapter, we'll put those skills to use by writing a real-life microservice Reactive
design pattern.

Questions
1.	 What is the alternative to Java's try-with-resources in Kotlin?
2.	 What are the different options for handling nulls in Kotlin?
3.	 Which problem can be solved by reified generics?

10
Concurrent

Microservices
with Ktor

In the previous chapter, we explored how we should write idiomatic Kotlin code that will
be readable and maintainable, as well as performant.

In this chapter, we'll put the skills we've learned so far to use by building a microservice
using the Ktor framework. We also want this microservice to be reactive and to be as
close to real life as possible. For that, we'll use the Ktor framework, the benefits of which
we'll list in the first section of this chapter.

In this chapter, we will cover the following topics:

•	 Getting started with Ktor

•	 Routing requests

•	 Testing the service

•	 Modularizing the application

•	 Connecting to a database

•	 Creating new entities

268 Concurrent Microservices with Ktor

•	 Making the test consistent

•	 Fetching entities

•	 Organizing routes in Ktor

•	 Achieving concurrency in Ktor

By the end of this chapter, you'll have a microservice written in Kotlin that is well tested
and can read data from a PostgreSQL database and store data in it.

Technical requirements
This is what you'll need to get started:

•	 JDK 11 or later

•	 IntelliJ IDEA

•	 Gradle 6.8 or later

•	 PostgreSQL 14 or later

This chapter will assume that you have PostgreSQL already installed and that you
have the basic knowledge for working with it. If you don't, please refer to the official
documentation: https://www.postgresql.org/docs/14/tutorial-
install.html.

You can find the source code for this chapter here: https://github.com/
PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/
tree/main/Chapter10.

Getting started with Ktor
You're probably tired of creating to-do or shopping lists.

So, instead, in this chapter, the microservice will be for a cat shelter. The
microservice should be able to do the following:

•	 Supply an endpoint we can ping to check whether the service is up and running

•	 List the cats currently in the shelter

•	 Provide us with a means to add new cats

https://www.postgresql.org/docs/14/tutorial-install.html
https://www.postgresql.org/docs/14/tutorial-install.html
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter10
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter10
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter10

Getting started with Ktor 269

The framework we'll be using for our microservice in this chapter is called Ktor. It's a
concurrent framework that's developed and maintained by the creators of the Kotlin
programming language.

Let's start by creating a new Kotlin Gradle project:

1.	 From your IntelliJ IDEA, select File | New | Project and choose Kotlin from New
Project and Gradle Kotlin as your Build System.

2.	 Give your project a descriptive name – CatsHostel, in my case – and choose
Project JDK (in this case, we are using JDK 15):

Figure 10.1 – Selecting the Project JDK type

270 Concurrent Microservices with Ktor

3.	 On the next screen, select JUnit 5 as your Test framework and set Target JVM
version to 1.8. Then, click Finish:

Figure 10.2 – Selecting Test framework and Target JVM version

4.	 Now, you should see the following structure:

Figure 10.3 – Project structure

Next, let's open build.gradle.kts. This file controls how your project is built, its
dependencies, and the libraries that the project is going to use. Depending on the version
of your IntelliJ IDEA, the file's contents may differ a bit, but the general structure stays
the same.

Getting started with Ktor 271

The .kts extension means that the configuration file for our Kotlin project is written
in Kotlin, or to be precise, in Kotlin Script. Now, we would like to start using the Ktor
framework to write our server. To do that, let's find our dependencies block, which
should look like this:

dependencies {

 implementation(...)

 testImplementation("org.junit.jupiter:junit-jupiter-
 api:5.6.0")

 testRuntimeOnly("org.junit.jupiter:junit-jupiter-
 engine:5.6.0")

}

The preceding code mentions all the libraries that your project will be using. The
implementation() configuration means that the library will be used at all times. The
testImplementation() configuration means that the library will only be used during
tests.

Now, let's take a look at how a library is defined in the following example:

"org.junit.jupiter:junit-jupiter-api:5.6.0"

This is a regular string that has been separated into three parts, as follows:

"group:name:version"

The group and name strings identify the library; the version configuration should be
self-explanatory.

Now, let's modify the dependencies block, as follows:

val ktorVersion = "1.6.0"

dependencies {

 implementation("io.ktor:ktor-server-

 netty:$ktorVersion")

 ...

}

Since the files with .kts extensions are Kotlin files, we can use regular Kotlin syntax in
them. In this case, we are using values and string interpolation to extract the version of
our library.

272 Concurrent Microservices with Ktor

The latest version of Ktor to date is 1.6.4, but when you read this book, it will be greater
than this. You can find the latest version here: https://ktor.io/.

As a general rule, all Ktor libraries should be the same version and that's when the variable
becomes useful.

Tip:
If you have followed the steps from the beginning of this section, you should
have a file called server.kt in the src/main/kotlin folder in your
project. If you don't, create one now.

Now, let's add the following content to the server.kt file:

fun main() {

 embeddedServer(Netty, port = 8080) {

 routing {

 get("/") {

 call.respondText("OK")

 }

 }

 }.start(wait = true)

 println("open http://localhost:8080")

}

That's all the code we need to write to start a web server that will respond with OK when
you open http://localhost:8080 in your browser.

Now, let's understand what happens here:

•	 To interact with the request and return a response, we can use the call object, also
known as the context. This object provides all the convenient methods for parsing
requests and returning responses in different formats, and we'll see the different
methods available for it throughout this chapter.

•	 The embeddedServer() function is an implementation of the Builder pattern,
which we discussed in Chapter 2, Working with Creational Patterns. It allows us to
configure our server. Most of the arguments have the same defaults. We override
port to 8080 just for convenience.

•	 We specify the wait argument to be true so that our server will wait for incoming
requests.

https://ktor.io/

Routing requests 273

•	 The only mandatory argument to the embeddedServer function is the server
engine. In our example, we use Netty, which is a very well-known JVM library, but
there are others as well. The most interesting of them is CIO, which was developed
by JetBrains themselves.

Now, let's understand what CIO and Netty are. They are both Factory patterns
that create the actual instance of our server when invoked. This is a really interesting
combination of different design patterns in one place to create a very flexible and
extensible architecture.

To switch to using CIO, all we need to do is add a new dependency:

dependencies {

 ...

 implementation("io.ktor:ktor-server-cio:$ktorVersion")

 ...

}

Then, we need to pass another server engine, CIO, to our embeddedServer function:

embeddedServer(CIO, port = 8080) {

 ...

}.start(wait = true)

Notice that we didn't have to change anything else in our code when we switched the
server engine. That is because embeddedServer() uses the Bridge design pattern to
make components interchangeable.

Now that our server has been started, let's investigate how we define different responses
for each request to the server.

Routing requests
Now, let's take a look at the routing block:

routing {

 get("/") {

 call.respondText("OK")

 }

}

274 Concurrent Microservices with Ktor

This block describes all the URLs that will be handled by our server. In this case, we only
handle the root URL. When that URL is requested, a text response, OK, will be returned to
the user.

The following code returns a text response. Now, let's see how we can return a JSON
response instead:

get("/status") {

 call.respond(mapOf("status" to "OK"))

}

Instead of using the respondText() method, we'll use respond(), which receives
an object instead of a string. In our example, we're passing a map of strings to the
respond() function. If we run this code, though, we'll get an exception.

This is because, by default, objects are not serialized into JSON. Multiple libraries can do
this for us. In this example, we'll use the kotlinx-serialization library. Let's start
by adding it to our dependencies:

dependencies {

 ...

 implementation("org.jetbrains.kotlinx:kotlinx-
 serialization-json-jvm:1.3.0")

 ...

}

Next, we need to add the following lines before our routing block:

install(ContentNegotiation) {

 json()

}

Now, if we run our code again, it will output this on our browser:

> {"status":"OK"}

We've just created our first route, which returns an object serialized as JSON. Now, we can
check whether our application works by opening http://localhost:8080/status
in our browser. But that is a bit cumbersome. In the next section, we'll learn how to write
a test for the /status endpoint.

Testing the service 275

Testing the service
To write our first test, let's create a new file called ServerTest.kt under the src/
test/kotlin directory.

Now, let's add a new dependency:

dependencies {

 ...

 testImplementation("io.ktor:ktor-server-

 tests:$ktorVersion")

}

Next, let's add the following contents to our ServerTest.kt file:

internal class ServerTest {

 @Test

 fun testStatus() {

 withTestApplication {

 val response = handleRequest(HttpMethod.Get,
 "/status").response

 assertEquals(HttpStatusCode.OK,
 response.status())

 assertEquals("""{"status": "OK"}""",
 response.content)

 }

 }

}

Tests in Kotlin are grouped into classes, and each test is a method in the class, which is
marked with the @Test annotation.

Inside the test method, we start a test server, issue a GET request to the /status
endpoint, and check that the endpoint responds with a correct status code and
JSON body.

If you run this test now, though, it will fail, because we haven't started our server yet. To
do so, we'll need to refactor it a bit, which we'll do in the next section.

276 Concurrent Microservices with Ktor

Modularizing the application
So far, our server has been started from the main() function. This was simple to set up,
but this doesn't allow us to test our application.

In Ktor, the code is usually organized into modules. Let's rewrite our main function, as
follows:

fun main() {

 embeddedServer(

 CIO,

 port = 8080,

 module = Application::mainModule

).start(wait = true)

}

Here, instead of providing the logic of our server within a block, we specified a module
that will contain all the configurations for our server.

This module is defined as an extension function on the Application object:

fun Application.mainModule() {

 install(ContentNegotiation) {

 json()

 }

 routing {

 get("/status") {

 call.respond(mapOf("status" to "OK"))

 }

 }

 println("open http://localhost:8080")

}

As you can see, the content of this function is the same as that of the block that we passed
to our embeddedService function earlier.

Now, all we need to do is go back to our test and specify which module we would like
to test:

@Test

fun testStatus() {

Connecting to a database 277

 withTestApplication(Application::mainModule) {

 ...

 }

}

If you run this test now, it should pass, because our server has started properly in test
mode.

So far, we've only dealt with the infrastructure of our service; we haven't touched on its
business logic: managing cats. To do so, we'll need a database. In the next section, we'll
discuss how Ktor solves this problem using the Exposed library.

Connecting to a database
To store and retrieve cats, we'll need to connect to a database. We'll use PostgreSQL for
that purpose, although using another SQL database won't be any different.

First, we'll need a new library to connect to the database. We'll use the Exposed library,
which is also developed by JetBrains.

Let's add the following dependency to our build.gradle.kts file:

dependencies {

 implementation("org.jetbrains.exposed:exposed:0.17.14")

 implementation("org.postgresql:postgresql:42.2.24")

 ...

}

Once the libraries are in place, we need to connect to them. To do that, let's create a new
file called DB.kt under /src/main/kotlin with the following contents:

object DB {

 private val host=System.getenv("DB_HOST")?:"localhost"

 private val port =
 System.getenv("DB_PORT")?.toIntOrNull() ?: 5432

 private val dbName = System.getenv("DB_NAME") ?:
 "cats_db"

 private val dbUser = System.getenv("DB_USER") ?:
 "cats_admin"

 private val dbPassword = System.getenv("DB_PASSWORD")
 ?: "abcd1234"

278 Concurrent Microservices with Ktor

 fun connect() = Database.connect(
 "jdbc:postgresql://$host:$port/$dbName",
 driver = "org.postgresql.Driver",
 user = dbUser,
 password = dbPassword

)

}

Since our application needs exactly one instance of a database, the DB object can use the
Singleton pattern, which we discussed in Chapter 2, Working with Creational Patterns.
For that, we will use the object keyword.

Then, for each of the variables that we need to connect to the database, we will attempt
to read them from our environment. If the environment variable is not set, we will use
a default value using the Elvis operator.

Tip:
Creating a database and a user is beyond the scope of this book, but you
can refer to the official documentation for this, at https://www.
postgresql.org/docs/14/app-createuser.html and
https://www.postgresql.org/docs/14/app-createdb.
html.

Alternatively, you can simply run the following two commands in your command line:

$ createuser cats_admin -W –d

$ createdb cats_db -U cats_admin

The first command creates a database user called cats_admin and asks you to specify
a password for this user. Our application will use this cats_admin user to interact with
the database. The second command creates a database called cats_db that belongs to the
cats_admin user. Now that our database has been created, all we need to do is create a
table that will store our cats in it.

For that, let's define another Singleton object in our DB.kt file that will represent a table:

object CatsTable : IntIdTable() {

 val name = varchar("name", 20).uniqueIndex()

 val age = integer("age").default(0)

}

https://www.postgresql.org/docs/14/app-createuser.html
https://www.postgresql.org/docs/14/app-createuser.html
https://www.postgresql.org/docs/14/app-createdb.html
https://www.postgresql.org/docs/14/app-createdb.html

Connecting to a database 279

Let's understand what the preceding definition means:

•	 IntIdTable means that we want to create a table with a primary key of the
Int type.

•	 In the body of our object, we define the columns. In addition to the ID column,
we'll have a name column that is of the varchar type, or in other words, a string,
and is 20 characters at the most.

•	 The cat's name column is also unique, meaning that no two cats can have the
same name.

•	 We also have a third column that is of the integer type, or Int in Kotlin terms,
and is defaulted to 0.

We'll also have a data class to represent a single cat:

data class Cat(val id: Int,

 val name: String,

 val age: Int)

The only thing that is left for us to do is add the following lines of code to our
mainModule() function:

DB.connect()

transaction {

 SchemaUtils.create(CatsTable)

}

Each time our application starts, the preceding code will connect to the database. Then,
it will attempt to create a table that stores our entities. If a table already exists, nothing
will happen.

Now that we have established a connection to our database, let's examine how we can use
this connection to store a few cats in it.

280 Concurrent Microservices with Ktor

Creating new entities
Our next task is adding the first cat to our virtual shelter.

Following the REST principles, it should be a POST request, where the body of the request
may look something like this:

{"name": "Meatloaf", "age": 4}

We'll start by writing a new test:

@Test

fun `POST creates a new cat`() {

 ...

}

Backticks are a useful Kotlin feature that allows us to have spaces in the names of our
functions. This helps us create descriptive test names.

Next, let's look at the body of our test:

withTestApplication(Application::mainModule) {

 val response = handleRequest(HttpMethod.Post, "/cats") {

 addHeader(

 HttpHeaders.ContentType,

 ContentType.Application.FormUrlEncoded.toString()

)

 setBody(

 listOf(

 "name" to "Meatloaf",

 "age" to 4.toString()

).formUrlEncode()

)

 }.response

 assertEquals(HttpStatusCode.Created, response.status())

}

We discussed the withTestApplication and handleRequest functions in the
previous section. This time, we are using a POST request. These types of requests should
have the correct header, so we must set those headers using the addHeader() function.
We must also set the body to the contents discussed previously.

Creating new entities 281

Finally, we must check whether the response header is set to the Created HTTP code.

If we run this test now, it will fail with an HTTP code of 404 since we haven't
implemented the post /cats endpoint yet.

Let's go back to our routing block and add a new endpoint:

post("/cats") {

 ...

 call.respond(HttpStatusCode.Created)

}

To create a new cat, we'll need to read the body of the POST request. We'll use the
receiveParameters() function for this:

val parameters = call.receiveParameters()

val name = requireNotNull(parameters["name"])

val age = parameters["age"]?.toInt() ?: 0

The receiveParameters function returns a case-insensitive map. First, we will
attempt to fetch the cat's name from this map, and if there's no name in the request, we
will fail the call. This will be handled by Ktor.

Then, if we didn't receive age, we will default it to 0 using the Elvis operator.

Now, we must insert those values into the database:

transaction {

 CatsTable.insert { cat ->

 cat[CatsTable.name] = name

 cat[CatsTable.age] = age

 }

}

Here, we open a transaction block to make changes to the database. Then, we use the
insert() method, which is available on every table. Inside the insert lambda, the
cat variable refers to the new row we are going to populate. We set the name of that row
to the value of the name parameter and do the same for age.

If you run your test now, it should pass. But if you run it again, it will fail. That's because
the name of a cat in the database is unique. Also, we don't clean the database between test
runs. So, the first run creates a cat named Meatloaf, while the second run fails. This is
because such a cat already exists.

282 Concurrent Microservices with Ktor

To make our tests consistent, we need a way to clean our database between runs.

Making the tests consistent
Let's go back to our test and add the following piece of code:

@BeforeEach

fun setup() {

 DB.connect()

 transaction {

 SchemaUtils.drop(CatsTable)

 }

}

Here, we are using the @BeforeEach annotation on a function. As its name suggests,
this code will run before each test. The function will establish a connection to the database
and drop the table completely. Then, our application will recreate the table.

Now, our tests should pass consistently. In the next section, we'll learn how to fetch a cat
from the database using the Exposed library.

Fetching entities
Following the REST practices, the URL for fetching all cats should be /cats, while for
fetching a single cat, it should be /cats/123, where 123 is the ID of the cat we are
trying to fetch.

Let's add two new routes for that:

get("/cats") {

 ...

}

get("/cats/{id}") {

 ...

}

The first route is very similar to the /status route we introduced earlier in this chapter.
But the second round is slightly different: it uses a query parameter in the URL. You can
recognize query parameters by the curly brackets around their name.

Fetching entities 283

To read a query parameter, we can access the parameters map:

val id = requireNotNull(call.parameters["id"]).toInt()

If there is an ID on the URL, we need to try and fetch a cat from the database:

val cat = transaction {

 CatsTable.select {

 CatsTable.id.eq(id)

 }.firstOrNull()

}

Here, we open a transaction and use the select statement to get a cat with an ID equal
to what we were provided previously.

If an object was returned, we would convert it into JSON. Otherwise, we would return an
HTTP code of 404, Not Found:

if (row == null) {

 call.respond(HttpStatusCode.NotFound)

} else {

 call.respond(

 Cat(

 row[CatsTable.id].value,

 row[CatsTable.name],

 row[CatsTable.age]

)

)

}

Now, let's add a test for fetching a single cat as well:

@Test

fun `GET with ID fetches a single cat`() {

 withTestApplication(Application::mainModule) {

 val id = transaction {

 CatsTable.insertAndGetId { cat ->

 cat[name] = "Fluffy"

 }

 }

284 Concurrent Microservices with Ktor

 val response = handleRequest(HttpMethod.Get,

 "/cats/$id").response

 assertEquals("""{"id":1,"name":

 "Fluffy","age":0}""", response.content)

 }

}

In this test, we create a cat using Exposed. Here, we're using a new method called
insertAndGetId. As its name suggests, it will return the ID of a newly created row.
Then, we try to fetch that cat using our newly created endpoint.

If we try to run this test, though, it will fail with the following exception:

> Serializer for class 'Cat' is not found.

By default, Ktor doesn't know how to turn our custom data class into JSON. To fix that,
we'll need to add a new plugin to our build.gradle.kts file:

plugins {

 kotlin("jvm") version "1.5.10"

 application

 kotlin("plugin.serialization") version "1.5.10"

}

This plugin will create serializers at compile time for any class marked with
the @Serializable annotation. All we need to do now for the test to pass
is add that annotation to our Cat class:

@Serializable

data class Cat(

 val id: Int,

 val name: String,

 val age: Int

)

That's it; now, our test for fetching a cat by its ID should pass.

Fetching entities 285

Finally, we would like to be able to fetch all the cats from the database. To do that, we must
change our test setup a little:

@TestInstance(TestInstance.Lifecycle.PER_CLASS)

class ServerTest {

 @BeforeAll

 fun setup() {

 DB.connect()

 transaction {

 SchemaUtils.create(CatsTable)

 }

 }

 @AfterAll

 fun cleanup() {

 DB.connect()

 transaction {

 SchemaUtils.drop(CatsTable)

 }

 }

 ...

}

Here, we changed the setup of our test to drop the table once all the tests have been
executed. So, instead of the @BeforeEach annotation, which executes the function
before each test, we use the @AfterAll annotation, which executes the function after all
tests have been executed.

For this annotation to work, we also need to add the @TestInstance annotation to our
class. The default for that is PER_METHOD, but since we want to execute multiple tests at
once, and then clean up after, we need to set the life cycle of our test class to PER_CLASS.

Next, let's wrap our test into a nested class, like this:

@Nested

inner class `With cat in DB` {

 @Test

 fun `GET with ID fetches a single cat`() {

286 Concurrent Microservices with Ktor

 ...

 }

}

Nested test classes are a great way to encapsulate specific test situations. In our case, we
would like to run two tests when there is a cat in our database already.

Now, let's add the following setup code to our nested test:

lateinit var id: EntityID<Int>

@BeforeEach

fun setup() {

 DB.connect()

 id = transaction {

 CatsTable.insertAndGetId { cat ->

 cat[name] = "Fluffy"

 }

 }

}

@AfterEach

fun teardown() {

 DB.connect()

 transaction {

 CatsTable.deleteAll()

 }

}

Before we execute each test in this nested class, we will create a cat in the database and
after each test, we will delete all the cats from our database. Since we would like to keep
track of the ID of the cat that we create, we will store it in a variable.

Now, our test class for fetching a single entity looks like this:

@Test

fun `GET with ID fetches a single cat`() {

 withTestApplication(Application::mainModule) {

 val response = handleRequest(HttpMethod.Get,
 "/cats/$id").response
 assertEquals("""{"id":$id,"name":"Fluffy",
 "age":0}""", response.content)

Fetching entities 287

 }

}

Notice that we interpolate the cat's ID into our expected response since it will change with
each test execution.

The test for fetching all the cats from the database will look almost the same:

@Test

fun `GET without ID fetches all cats`() {

 withTestApplication(Application::mainModule) {

 val response = handleRequest(HttpMethod.Get,
 "/cats").response
 assertEquals("""[{"id":$id,"name":"Fluffy",
 "age":0}]""", response.content)

 }

}

We just don't specify the ID, and the response is wrapped into a JSON array, as you can
see by the square brackets around it.

Now, all we need to do is implement this new route:

get("/cats") {

 val cats = transaction {

 CatsTable.selectAll().map { row ->

 Cat(

 row[CatsTable.id].value,

 row[CatsTable.name],

 row[CatsTable.age]

)

 }

 }

 call.respond(cats)

}

288 Concurrent Microservices with Ktor

If you followed the example for fetching a single entity from the database (from the
beginning of this section), then this example won't be very different for you. We use the
selectAll() function to fetch all the rows from the table. Then, we map each row to
our data class. The only problem that is left for us to solve is that our code is quite messy
and resides in a single file. It would be better if we split all the cat routes into a separate
file. We'll do that in the next section.

Organizing routes in Ktor
In this section, we'll see what the idiomatic approach in Ktor is for structuring multiple
routes that belong to the same domain.

Our current routing block looks like this:

routing {

 get("/status") {

 ...

 }

 post("/cats") {

 ...

 }

 get("/cats") {

 …

 }

 get("/cats/{id}") {

 ...

 }

}

It would be good if we could extract all the routes that are related to cats into a separate
file. Let's start by replacing all the cat routes with a function:

routing {

 get("/status") {

 ...

 }

 cats()

}

Organizing routes in Ktor 289

If you are using IntelliJ IDEA, it will even suggest that you generate an extension function
on the Routing class:

fun Routing.cats() {

 ...

}

Now, we can move all our cat routes to this function:

fun Routing.cats() {

 post("/cats") {

 ...

 }

 get("/cats") {

 ...

 }

 get("/cats/{id}") {

 ...

 }

}

Now, you can see that the /cats URL is repeated many times. We can lift it using the
route() block:

Table 10.1 - Cleaner code after using the route() block

Notice how much cleaner our code has become now.

290 Concurrent Microservices with Ktor

Now, there's one last important topic for us to cover. At the beginning of this chapter, we
mentioned that Ktor is a highly concurrent framework. And in Chapter 6, Threads and
Coroutines, we said that concurrency in Kotlin is mainly achieved by using coroutines. But
we have started a single coroutine in this chapter. We'll look at this in the next section.

Achieving concurrency in Ktor
Looking back at the code we've written in this chapter, you may be under the impression
that the Ktor code is not concurrent at all. However, this couldn't be further from the
truth.

All the Ktor functions we've used in this chapter are based on coroutines and the concept
of suspending functions.

For every incoming request, Ktor will start a new coroutine that will handle it, thanks to
the CIO server engine, which is based on coroutines at its core. Having a concurrency
model that is performant but not obtrusive is a very important principle in Ktor.

In addition, the routing blocks we used to specify all our endpoints have access to
CoroutineScope, meaning that we can invoke suspending functions within those
blocks.

One of the examples for such a suspending function is call.respond(), which we
were using throughout this chapter. Suspending functions provide our application with
opportunities to context switch, and to execute other code concurrently. This means
that the same number of resources can serve far more requests than they would be
able to otherwise. We'll stop here and summarize what we've learned about developing
applications using Ktor.

Summary
In this chapter, we have built a well-tested service using Kotlin that uses the Ktor
framework to store entities in the database. We've also discussed how the multiple design
patterns that we encountered at the beginning of this book, such as Factory, Singleton, and
Bridge, are used in the Ktor framework to provide a flexible structure for our code.

Now, you should be able to interact with the database using the Exposed framework.
We've learned how we can declare, create, and drop tables, how to insert new entities, and
how to fetch and delete them.

Questions 291

In the next chapter, we'll look at an alternative approach to developing web applications,
but this time using a Reactive framework called Vert.x. This will allow us to compare
the concurrent and Reactive approaches for developing web applications and discuss the
tradeoffs of each of the approaches.

Questions
1.	 How are the Ktor applications structured and what are their benefits?
2.	 What are plugins in Ktor and what are they used for?
3.	 What is the main problem that the Exposed library solves?

11
Reactive

Microservices
with Vert.x

In the previous chapter, we familiarized ourselves with the Ktor framework. We created
a web service that could store cats in its database.

In this chapter, we'll continue working on the example from the previous chapter, but
this time using the Vert.x framework and Kotlin. Vert.x is a Reactive framework that is
built on top of Reactive principles, which we discussed in Chapter 7, Controlling the Data
Flow. We'll list some of the other benefits of the Vert.x framework in this chapter. You can
always read more about Vert.x by going to the official website: https://vertx.io.

The microservice we'll develop in this chapter will provide an endpoint for health
checks – the same as the one we created in Ktor – and will be able to delete and update
the cats in our database.

In this chapter, we will cover the following topics:

•	 Getting started with Vert.x

•	 Routing in Vert.x

•	 Verticles

https://vertx.io

294 Reactive Microservices with Vert.x

•	 Handling requests

•	 Testing Vert.x applications

•	 Working with databases

•	 Understanding Event Loop

•	 Communicating with Event Bus

Technical requirements
For this chapter, you'll need the following:

•	 JDK 11 or later

•	 IntelliJ IDEA

•	 Gradle 6.8 or later

•	 PostgreSQL 14 or later

Like the previous chapter, this chapter will also assume that you have PostgreSQL already
installed and that you have basic knowledge of working with it. We'll also use the same
table structure we created with Ktor.

You can find the full source code for this chapter here: https://github.com/
PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/
tree/main/Chapter11.

Getting started with Vert.x
Vert.x is a Reactive framework that is asynchronous and non-blocking. Let's understand
what this means by looking at a concrete example.

We'll start by creating a new Kotlin Gradle project or by using start.vertx.io:

1.	 From your IntelliJ IDEA application, select File | New | Project and choose Kotlin
from the New Project wizard.

2.	 Then, specify a name for your project – CatsShelterVertx, in my case – and
choose Gradle Kotlin as your Build System.

3.	 Then, select the Project JDK version that you have installed from the dropdown.
The output should look as follows:

https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter11
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter11
https://github.com/PacktPublishing/Kotlin-Design-Patterns-and-Best-Practices/tree/main/Chapter11
http://start.vertx.io

Getting started with Vert.x 295

Figure 11.1 – Creating a Kotlin application

Next, add the following dependencies to your build.gradle.kts file:

val vertxVersion = "4.1.5"

dependencies {

 implementation("io.vertx:vertx-core:$vertxVersion")

 implementation("io.vertx:vertx-web:$vertxVersion")

 implementation("io.vertx:vertx-lang-

 kotlin:$vertxVersion")

 implementation("io.vertx:vertx-lang-kotlin-

 coroutines:$vertxVersion")

 ...

}

Similar to what we discussed in the previous chapter, all the dependencies must be of the
same version to avoid any conflicts. That's the reason we are using a variable for the library
version – to be able to change all of them together.

296 Reactive Microservices with Vert.x

The following is an explanation of each dependency:

•	 vertx-core is the core library.

•	 vertx-web is needed since we want our service to be REST-based.

•	 vertx-lang-kotlin provides idiomatic ways to write Kotlin code with Vert.x.

•	 Finally, vertx-lang-kotlin-coroutines integrates with the coroutines,
which we discussed in detail in Chapter 6, Threads and Coroutines.

Then, we must create a file called server.kt in the src/main/kotlin folder with the
following content:

fun main() {

 val vertx = Vertx.vertx()

 vertx.createHttpServer().requestHandler{ ctx ->

 ctx.response().end("OK")

 }.listen(8081)

 println("open http://localhost:8081")

}

That's all you need to start a web server that will respond with OK when you open
http://localhost:8081 in your browser.

Now, let's understand what happens here. First, we create a Vert.x instance using the
Factory method from Chapter 3, Understanding Structural Patterns.

The requestHandler method is just a simple listener or a subscriber. If you don't
remember how it works, check out Chapter 4, Getting Familiar with Behavioral Patterns,
for the Observable design pattern. In our case, it will be called for each new request. That's
the asynchronous nature of Vert.x in action.

Next, let's learn how to add routes in Vert.x.

Routing in Vert.x
Notice that no matter which URL we specify, we always get the same result. Of course,
that's not what we want to achieve. Let's start by adding the most basic endpoint, which
will only tell us that the service is up and running.

Routing in Vert.x 297

For that, we'll use Router:

val vertx = Vertx.vertx()

val router = Router.router(vertx)

...

Router lets you specify handlers for different HTTP methods and URLs.

Now, let's add a /status endpoint that will return an HTTP status code of 200 and a
message stating OK to our user:

router.get("/status").handler { ctx ->

 ctx.response()

 .setStatusCode(200)

 .end("OK")

}

vertx.createHttpServer()

 .requestHandler(router)

 .listen(8081)

Now, instead of specifying the request handler as a block, we will pass this function to our
router object. This makes our code easier to manage.

We learned how we return a flat text response in the very first example. So, now, let's
return JSON instead. Most real-life applications use JSON for communication. Let's
replace the body of our status handler with the following code:

val json = json {

 obj(

 "status" to "OK"

)

}

ctx.response()

 .setStatusCode(200)

 .end(json.toString())

Here, we are using a DSL, which we discussed in Chapter 4, Getting Familiar with
Behavioral Patterns, to create a JSON object.

You can open http://localhost:8081/status in your browser and make sure
that you get {"status": "OK"} as a response.

298 Reactive Microservices with Vert.x

Now, let's discuss how we can structure our code better with the Vert.x framework.

Verticles
Our current code resides in the server.kt file, which is getting bigger and bigger. We
need to find a way to split it. In Vert.x, code is split into classes called verticles.

You can think of a verticle as a lightweight actor. We discussed Actors in Chapter 5,
Introducing Functional Programming.

Let's see how we can create a new verticle that will encapsulate our server:

class ServerVerticle : CoroutineVerticle() {

 override suspend fun start() {

 val router = router()

 vertx.createHttpServer()

 .requestHandler(router)

 .listen(8081)

 println("open http://localhost:8081")

 }

 private fun router(): Router {

 // Our router code comes here now

 val router = Router.router(vertx)

 ...

 return router

 }

}

Every verticle has a start() method that handles its initialization. As you can see, we
moved all the code from our main() function to the start() method. If we run the
code now, though, nothing will happen. That's because the verticle hasn't been started yet.

Handling requests 299

There are different ways to start a verticle, but the simplest way is to pass the instance
of the class to the deployVerticle() method. In our case, this is the
ServerVerticle class:

fun main() {

 val vertx = Vertx.vertx()

 vertx.deployVerticle(ServerVerticle())

}

Here is another, more flexible way to specify the class name as a string:

fun main() {

 val vertx = Vertx.vertx()

 vertx.deployVerticle("ServerVerticle")

}

If our verticle class is not in the default package, we'll need to specify the fully qualified
path for Vert.x to be able to initialize it.

Now, our code has been split into two files, ServerVerticle.kt and server.kt,
and is organized better. Next, we'll learn how we can do the same refactoring to organize
our routes in a better way.

Handling requests
As we discussed earlier in this chapter, all requests in Vert.x are handled by the Router
class. We covered the concept of routing in the previous chapter, so now, let's just discuss
the differences between the Ktor and Vert.x approaches to routing requests.

We'll declare two endpoints to delete cats from the database and update information about
a particular cat. We'll use the delete and put verbs, respectively, for this:

router.delete("/cats/:id").handler { ctx ->

 // Code for deleting a cat

}

router.put("/cats/:id").handler { ctx ->

 // Code for updating a cat

}

Both endpoints receive a URL parameter. In Vert.x, we use a colon notation for this.

300 Reactive Microservices with Vert.x

To be able to parse JSON requests and responses, Vert.x has a BodyHandler class. Now,
let's declare it as well. This should come just after the instantiation of our router:

val router = Router.router(vertx)

router.route().handler(BodyHandler.create())

This will tell Vert.x to parse the request body into JSON for any request.

Notice that the /cat prefix is repeated multiple times in our code now. To avoid that
and make our code more modular, we can use a subrouter, which we'll discuss in the next
section.

Subrouting the requests
Subrouting allows us to split routes into multiple classes to keep our code more
organized. Let's move the new routes to a new function by following these steps:

1.	 We'll leave the /alive endpoint as is, but we'll extract all the other endpoints into
a separate function:

private fun catsRouter(): Router {

 val router = Router.router(vertx)

 router.delete("/:id").handler { ctx ->

 // Code for deleting a cat

 }

 router.put("/:id").handler { ctx ->

 // Code for updating a cat

 }

 return router

}

Inside this function, we create a separate Router object that will only handle the
routes for cats, not the status routes.

2.	 Now, we need to connect SubRouter to our main router:

router.mountSubRouter("/cats", catsRouter())

Keeping our code clean and well separated is very important. Extracting routes into
subrouters helps us with that.

Now, let's discuss how this code can be tested.

Testing Vert.x applications 301

Testing Vert.x applications
To test our Vert.x application, we'll use the JUnit 5 framework, which we discussed in the
previous chapter.

You'll need the following two dependencies in your build.gradle.kts file:

dependencies {

 ...

 testImplementation("org.junit.jupiter:junit-jupiter-

 api:5.6.0")

 testRuntimeOnly("org.junit.jupiter:junit-jupiter-

 engine:5.6.0")

}

Our first test will be located in the /src/test/kotlin/ServerTest.kt file.

The basic structure of all the integration tests looks something like this:

@TestInstance(TestInstance.Lifecycle.PER_CLASS)

class ServerTest {

 private val vertx: Vertx = Vertx.vertx()

 @BeforeAll

 fun setup() {

 runBlocking {

 vertx.deployVerticle(ServerVerticle()).await()

 }

 }

 @AfterAll

 fun tearDown() {

 // And you want to stop your server once

 vertx.close()

 }

 @Test

302 Reactive Microservices with Vert.x

 fun `status should return 200`() {

 }

}

This structure is different from what we've seen in Ktor. Here, we start the server
ourselves, in the setup() method.

Since Vert.x is Reactive, the deployVerticle() method will return a Future object
immediately, releasing the thread, but that doesn't mean that the server verticle has started
yet.

To avoid this race, we can use the await() method, which will block the execution of
our tests until the server is ready to receive requests.

Now, we want to issue an actual HTTP call to our /status endpoint, for example, and
check the response code. For that, we'll use the Vert.x web client.

Let's add it to our build.gradle.kts dependencies section:

testImplementation("io.vertx:vertx-web-client:$vertxVersion")

Since we only plan to use WebClient in tests, we specify testImplementation
instead of implementation. But WebClient is so useful that you'll probably end up
using it in your production code anyway.

After adding this new dependency, we need to instantiate our web client in the setup
method:

lateinit var client: WebClient

@BeforeAll

fun setup() {

 vertx.deployVerticle(ServerVerticle())

 client = WebClient.create(

 vertx,

 WebClientOptions()

 .setDefaultPort(8081)

 .setDefaultHost("localhost")

)

}

Working with databases 303

The setup() method will be called once before all the tests start. In this method, we are
deploying our server verticle and creating a web client with some defaults for all our tests
to share.

Now, let's write a test to check that our server is up and running:

@Test

fun `status should return 200`() {

 runBlocking {

 val response = client.get("/status").send().await()

 assertEquals(201, response.statusCode())

 }

}

Now, let's understand what happens in this test:

•	 client is an instance of WebClient that is shared by all our tests. We invoke the
/status endpoint using the get verb. This is a Builder design pattern, so to issue
our request, we need to use the send() method. Otherwise, nothing will happen.

•	 Vert.x is a Reactive framework, so instead of blocking our thread until a response
is received, the send() method returns a Future. Then, we use await(), which
adapts a Future to a Kotlin coroutine to be able to wait for the results concurrently.

•	 Once the response is received, we check it in the same way that we did in other tests
– by using the assertEquals function, which comes from JUnit.

Now that we know how to write tests in Vert.x, let's discuss how we can work with
databases in a Reactive manner.

Working with databases
To be able to progress further with our tests, we need the ability to create entities in the
database. For that, we'll need to connect to the database.

First, let's add the following two lines to our build.gradle.kts dependencies section:

implementation("org.postgresql:postgresql:42.3.0")

implementation("io.vertx:vertx-pg-client:$vertxVersion")

The first line of code fetches the PostgreSQL driver. The second one adds the Vert.x
JDBC client, which allows Vert.x, which has the driver, to connect to any database that
supports JDBC.

304 Reactive Microservices with Vert.x

Managing configuration
Now, we want to hold the database configuration somewhere. For local development, it
may be fine to have those configurations hardcoded. We'll execute the following steps to
do this:

1.	 When we connect to the database, we need to specify the following parameters
at the very least:

	� Username

	� Password

	� Host

	� Database name

We'll store the preceding parameters in a Singleton object:
object Db {

 val username = System.getenv("DATABASE_USERNAME")
 ?: "cats_admin"

 val password = System.getenv("DATABASE_PASSWORD")
 ?: "abcd1234"

 val database = System.getenv("DATABASE_NAME")
 ?: "cats_db"

 val host = System.getenv("DATABASE_HOST")
 ?: "localhost"

}

Our Singleton object has four members. For each, we check whether an
environment variable was set, and if there's no such environment variable, we
provide a default value using the Elvis operator.

2.	 Now, let's add a function that will return a connection pool:

fun connect(vertx: Vertx): SqlClient {

 val connectOptions = PgConnectOptions()

 .setPort(5432)

 .setHost(host)

 .setDatabase(database)

 .setUser(username)

 .setPassword(password)

 val poolOptions = PoolOptions()

Working with databases 305

 .setMaxSize(20)

 return PgPool.client(

 vertx,

 connectOptions,

 poolOptions

)

}

Our connect() method creates two configuration objects: PgConnectOptions
sets the configuration for the database we want to connect to, while PoolOptions
specifies the configuration of the connection pool.

3.	 Now, all we need to do is instantiate the database client in our test:

...

lateinit var db: SqlClient

@BeforeAll

fun setup() {

 runBlocking {

 ...

 db = Db.connect(vertx)

 }

}

4.	 Having done that, let's create a new Nested class in our test file for cases where we
expect to have a cat in our database:

@Nested

inner class `With Cat` {

 @BeforeEach

 fun createCats() {

 ...

 }

 @AfterEach

 fun deleteAll() {

 ...

306 Reactive Microservices with Vert.x

 }

}

Unlike the Exposed framework, which we discussed in the previous chapter, the
database client in Vert.x doesn't have specific methods for insertion, deletion, and
so on. Instead, it provides a lower-level API that allows us to execute any type of
query on the database.

5.	 First, let's write a query that will clean our database:

@AfterEach

fun deleteAll() {

 runBlocking {

 db.preparedQuery("DELETE FROM cats")
 .execute().await()

 }

}

The basic structure for working with the database client in Vert.x is to pass a query
to the prepareQuery() method, then execute it using execute().

We want to wait for the query to complete before we move on to the next test, so
we use the await() function to wait for the current coroutine, and we use the
runBlocking() adapter method to have a coroutine context to do so.

6.	 Now, let's write another query that will add a cat to the database before each test
runs:

lateinit var catRow: Row

@BeforeEach

fun createCats() {

 runBlocking {

 val result = db.preparedQuery(

 """INSERT INTO cats (name, age)

 VALUES ($1, $2)

 RETURNING ID""".trimIndent()

).execute(Tuple.of("Binky", 7)).await()

 catRow = result.first()

Working with databases 307

 }

}

Here, we are using the preparedQuery() method once more, but this time, our
SQL query string contains placeholders. Each placeholder starts with a dollar sign
and their indexes start with 1.

Then, we pass the values for those placeholders to the execute() method.
Tuple.of is a Factory method design pattern that you should be able to recognize
well by now.

We also want to remember the ID of the cat that we create since we'll use that
ID to delete or update the cat. For this reason, we store the created row in
a lateinit variable.

7.	 We now have everything prepared to write our test:

@Test

fun `delete deletes a cat by ID`() {

 runBlocking {

 val catId = catRow.getInteger(0)

 client.delete("/cats/${catId}").send().await()

 val result = db.preparedQuery("SELECT * FROM
 cats WHERE id = $1")
 .execute(Tuple.of(catId)).await()

 assertEquals(0, result.size())

 }

}

First, we get the ID of the cat we want to delete from the database row using the
getInteger() method. Unlike parameters that start with 1, the columns of a
database row start with 0. So, by getting an integer at index 0, we get the ID of our
cat.

Then, we invoke the web client's delete() method and wait for it to complete.

Afterward, we execute a SELECT statement on our database, checking that the row
was indeed deleted.

If you run this test now, it will fail, because we haven't implemented the delete endpoint
yet. We'll do that in the next section.

308 Reactive Microservices with Vert.x

Understanding Event Loop
The goal of the Event Loop design pattern is to continuously check for new events in a
queue, and each time a new event comes in, to quickly dispatch it to someone who knows
how to handle it. This way, a single thread or a very limited number of threads can handle
a huge number of events.

In the case of web frameworks such as Vert.x, events may be requests to our server.

To understand the concept of the Event Loop better, let's go back to our server code and
attempt to implement an endpoint for deleting a cat:

val db = Db.connect(vertx)

router.delete("/:id").handler { ctx ->

 val id = ctx.request().getParam("id").toInt()

 db.preparedQuery("DELETE FROM cats WHERE ID = $1")
 .execute(Tuple.of(id)).await()

 ctx.end()

}

This code is very similar to what we've written in our tests in the previous section. We
read the URL parameter from the request using the getParam() function, then we pass
this ID to the prepared query. This time, though, we can't use the runBlocking adapter
function, since it will block the Event Loop.

Vert.x uses a limited number of threads, as many as twice the number of your CPU cores,
to run all its code efficiently. However, this means that we cannot execute any blocking
operations on those threads since it will negatively impact the performance of our
application.

To solve this issue, we can use a coroutine builder we're already familiar with: launch().
Let's see how this works:

router.delete("/:id").handler { ctx ->

 launch {

 val id = ctx.request().getParam("id").toInt()

 db.preparedQuery("DELETE FROM cats WHERE ID = $1")
 .execute(Tuple.of(id)).await()

 ctx.end()

 }

}

Understanding Event Loop 309

Since our verticle extends CoroutineVerticle, we have access to all the regular
coroutine builders that will run on the Event Loop.

Now, all we need to do is mark our routing functions with the suspend keyword:

private suspend fun router(): Router {

 ...

}

private suspend fun catsRouter(): Router {

 ...

}

Now, let's add another test for updating a cat:

@Test

fun `put updates a cat by ID`() {

 runBlocking {

 val catId = catRow.getInteger(0)

 val requestBody = json {

 obj("name" to "Meatloaf", "age" to 4)

 }

 client.put("/cats/${catId}")

 .sendBuffer(Buffer.buffer(requestBody.toString()))

 .await()

 val result = db.preparedQuery("SELECT * FROM cats

 WHERE id = $1")

 .execute(Tuple.of(catId)).await()

 assertEquals("Meatloaf",
 result.first().getString("name"))

 assertEquals(4, result.first().getInteger("age"))

 }

}

This test is very similar to the deletion test, with the only major difference being that we
use sendBuffer and not the send() method, so we can send a JSON body to our put
endpoint.

310 Reactive Microservices with Vert.x

We create the JSON similarly to what we saw when we implemented the /status
endpoint earlier in this chapter.

Now, let's implement the put endpoint for the test to pass:

router.put("/:id").handler { ctx ->

 launch {

 val id = ctx.request().getParam("id").toInt()

 val body = ctx.bodyAsJson

 db.preparedQuery("UPDATE cats SET name = $1, age =
 $2 WHERE ID = $3")

 .execute(

 Tuple.of(

 body.getString("name"),

 body.getInteger("age"),

 id

)

).await()

 ctx.end()

 }

}

Here, the main difference from the previous endpoint we've implemented is that this time,
we need to parse our request body. We can do that by using the bodyAsJson property.
Then, we can use the getString and getInteger methods, which are available in
JSON, to get the new values for name and age.

With this, you should have all the required knowledge to implement other endpoints as
needed. Now, let's learn how to structure our code in a better way using the concept of
Event Bus since it all resides in a single large class.

Communicating with Event Bus
Event Bus is an implementation of the Observable design pattern, which we discussed in
Chapter 4, Getting Familiar with Behavioral Patterns.

Communicating with Event Bus 311

We've already mentioned that Vert.x is based on the concept of verticles, which are
isolated actors. We've already seen the other types of actors in Chapter 6, Threads and
Coroutines. Kotlin's coroutines library provides the actor() and producer()
coroutine generators, which create a coroutine bound to a channel.

Similarly, all the verticles in the Vert.x framework are bound by Event Bus and can pass
messages to one another using it. Now, let's extract the code from our ServerVerticle
class into a new class, which we'll call CatVerticle.

Any verticle can send a message over Event Bus by choosing between the following
methods:

•	 request() will send a message to only one subscriber and wait for a response.

•	 send() will send a message to only one subscriber, without waiting for a response.

•	 publish() will send a message to all subscribers, without waiting for a response.

No matter which method is used to send the message, you subscribe to it using the
consumer() method on Event Bus.

Now, let's subscribe to an event in our CatsVerticle class:

class CatsVerticle : CoroutineVerticle() {

 override suspend fun start() {

 val db = Db.connect(vertx)

 vertx.eventBus().consumer<Int>("cats:delete"){req->

 launch {

 val id = req.body()

 db.preparedQuery("DELETE FROM
 cats WHERE ID = $1")

 .execute(Tuple.of(id)).await()

 req.reply(null)

 }

 }

 }

}

The generic type of the consumer() method specifies the type of message we'll receive.
In this case, it's Int.

312 Reactive Microservices with Vert.x

The string that we provide to the method – in our case, cats:delete – is the address
we subscribe to. It can be any string, but it is good to have some convention, such as what
type of object we operate on and what we want to do with it.

Once the delete action has been executed, we respond to our publisher with the reply()
method. Since we don't have any information to send back, we simply send null.

Now, let's replace our previous delete route with the following code:

router.delete("/:id").handler { ctx ->

 val id = ctx.request().getParam("id").toInt()

 vertx.eventBus().request<Nothing>("cats:delete", id) {

 ctx.end()

 }

}

Here, we send the ID of the cat we received from the request to one of our listeners using
the request() method, and we specify that the type of our message is Int. We also use
the same address we specified in the consumer code.

Since we have split our code into a new verticle, we need to remember to start it as well.
Add the following line to both the main() function and the setup() method in your
test:

vertx.deployVerticle(CatsVerticle())

Next, let's learn how to send complex objects over Event Bus.

Sending JSON over Event Bus
As our final exercise, let's learn how to update a cat. For that, we'll need to send more than
just an ID over Event Bus.

Let's rewrite our put handler, as follows:

router.put("/:id").handler { ctx ->

 launch {

 val id = ctx.request().getParam("id").toInt()

 val body: JsonObject = ctx.bodyAsJson.mergeIn(json{
 obj("id" to id)

 })

 vertx.eventBus().request<Int>("cats:update", body)

Communicating with Event Bus 313

 { res ->

 ctx.end(res.result().body().toString())

 }

 }

}

Here, you can see that we can send JSON objects over Event Bus easily. We merge the ID
we receive as a URL parameter with the rest of the request body and send this JSON over
an Event Bus. When a response is received, we output it back to the user.

Now, let's see how we consume the event we just sent:

vertx.eventBus().consumer<JsonObject>("cats:update"){req ->
 launch {

 val body = req.body()

 db.preparedQuery("UPDATE cats SET name = $1, age =
 $2 WHERE ID = $3")

 .execute(

 Tuple.of(

 body.getString("name"),

 body.getInteger("age"),

 body.getInteger("id")

)

).await()

 req.reply(body.getInteger("id"))

 }

}

We moved our logic from Router to our CatsVerticle class, but since we use
JSON to communicate, the code stayed almost the same. In our verticle, we listen to the
cats:update event, and once we receive the response, we extract name, age, and id
from the JSON object to confirm that the operation was successful.

This concludes our chapter. There is still much for you to learn about the Vert.x
framework in case you're curious, but with the knowledge you've gained from this chapter
at hand, you should be able to do so with some confidence.

314 Reactive Microservices with Vert.x

Summary
This chapter concludes our journey into the design patterns in Kotlin. Vert.x uses actors,
called verticles, to organize the logic of the application. Actors communicate between
themselves using Event Bus, which is an implementation of the Observable design pattern.

We also discussed the Event Loop pattern, how it allows Vert.x to process lots of events
concurrently, and why it's important not to block its execution.

Now, you should be able to write microservices in Kotlin using two different frameworks,
and you can choose what approach works best for you.

Vert.x provides a lower-level API than Ktor, which means that we may think more about
how we structure our code, but the resulting application may be more performant as
well. Since this is the end of this book, all that's left is for me to wish you the best of luck
in learning about Kotlin and its ecosystem. You can always get some help from me and
other Kotlin enthusiasts by going to https://stackoverflow.com/questions/
tagged/kotlin and https://discuss.kotlinlang.org/.

Happy learning!

Questions
1.	 What's a verticle in Vert.x?
2.	 What's the goal of the Event Bus?
3.	 Why shouldn't we block the Event Loop?

https://stackoverflow.com/questions/tagged/kotlin
https://stackoverflow.com/questions/tagged/kotlin
https://discuss.kotlinlang.org/

Assessments

Chapter 1, Getting Started with Kotlin

Question 1
What's the difference between var and val in Kotlin?

Answer
The val keyword declares an immutable value that cannot be modified once assigned.
The var keyword declares a mutable variable that can be assigned multiple times.

Question 2
How do you extend a class in Kotlin?

Answer
To extend a class, you can specify its name and constructor after a semicolon. If it's a
regular class, it must be declared open for your code to be able to extend it.

Question 3
How do you add functionality to a final class?

Answer
To add functionality to a class that we cannot inherit from, we can use an extension
function. The extension function will have access only to the class itself and to its public
fields and functions.

316 Assessments

Chapter 2, Working with Creational Patterns

Question 1
Name two uses for the object keyword we learned about in this chapter.

Answer
The object keyword is used to declare a singleton if it's used in a global scope or as
a collection of static methods if it's used in a conjunction with the companion keyword
inside a class.

Question 2
What is the apply() function used for?

Answer
The apply() function is used when we want to change the state of an object and then
return it immediately.

Question 3
Provide one example of a static factory method that we discussed in this chapter.

Answer
The JVM valueOf() method on the Long objects is a static factory method.

Chapter 3, Understanding Structural Patterns

Question 1
What differences are there between the implementations of the Decorator and Proxy
design patterns?

Answer 317

Answer
The Decorator and Proxy design patterns could be implemented in the same manner. The
only difference is in their intent – the Decorator design pattern adds functionality to an
object, while the Proxy design pattern may change an object's functionality.

Question 2
What is the main goal of the Flyweight design pattern?

Answer
The goal of the Flyweight design pattern is to conserve memory by reusing the same
immutable state across multiple lightweight objects.

Question 3
What is the difference between the Facade and Adapter design patterns?

Answer
The Facade design pattern creates a new interface to simplify working with complex code,
while the Adapter design pattern allows one interface to substitute another interface.

Chapter 4, Getting Familiar with Behavioral
Patterns

Question 1
What's the difference between Mediator and Observer design patterns?

Answer
Both serve a similar purpose. Mediator introduces tight coupling between components
that may serve different purposes, while Observer operates on similar components that
are loosely coupled.

318 Assessments

Question 2
What is a Domain-Specific Language (DSL)?

Answer
A DSL is a language that focuses on solving problems in a specific domain. This is
different from a general-purpose language, such as Kotlin, that can be applied to
different domains. Kotlin encourages developers to create DSLs for their needs.

Question 3
What are the benefits of using a sealed class or interface?

Answer
Since all types of a sealed class are known at compile time, Kotlin compiler can verify that
the when statement covers all cases or, in other words, is exhaustive.

Chapter 5, Introducing Functional
Programming

Question 1
What are higher order functions?

Answer
A higher order function is any function that either receives another function as input or
returns a function as output.

Question 2
What is the tailrec keyword in Kotlin?

Answer 319

Answer
The purpose of the tailrec keyword is to allow the Kotlin compiler to optimize tail
recursion and avoid stack overflow.

Question 3
What are pure functions?

Answer
Pure functions are functions that don't have any side effects, such as I/O.

Chapter 6, Threads and Coroutines

Question 1
What are the different ways to start a coroutine in Kotlin?

Answer
A coroutine in Kotlin could be started with either the launch() or async() functions.
The difference is that async() also returns a value, while launch() doesn't.

Question 2
With structured concurrency, if one of the coroutines fails, all the siblings will be canceled
as well. How can we prevent that behavior?

Answer
We can prevent canceling siblings by using supervisorScope instead of
coroutineScope.

Question 3
What is the purpose of the yield() function?

320 Assessments

Answer
The yield() function returns a value and suspends the coroutine until it has been
resumed.

Chapter 7, Controlling the Data Flow

Question 1
What is the difference between higher order functions on collections and on concurrent
data structures?

Answer
Higher order functions on collections will process the entire collection, creating a copy
of it, before proceeding to the next step. Higher order functions on concurrent data
structures are reactive, processing one element after the other.

Question 2
What is the difference between cold and hot streams of data?

Answer
A cold stream repeats itself for each new consumer, while the hot stream will only send
the available data to the new consumer from the time of subscription.

Question 3
When should a conflated channel/flow be used?

Answer
A conflated flow can be used in situations when the consumer is slower than the producer
and some of the messages could be dropped, leaving only the most recent message for
consumption.

Chapter 8, Designing for Concurrency 321

Chapter 8, Designing for Concurrency

Question 1
What does it mean when we say that the select expression in Kotlin is biased?

Answer
A biased select expression means that in case of a draw between two channels, the first
channel listed in the select expression will always be picked.

Question 2
When should you use a mutex instead of a channel?

Answer
Mutexes are used to protect a resource shared between multiple coroutines. Channels are
used to pass data between coroutines.

Question 3
Which of the concurrent design patterns could help you implement MapReduce or a
divide and conquer algorithm efficiently?

Answer
For divide and conquer algorithms, the fan-out design pattern could be used to split the
data and a fan-in design pattern could be used to combine the results.

Chapter 9, Idioms and Anti-Patterns

Question 1
What is the alternative to Java's try-with-resources in Kotlin?

322 Assessments

Answer
In Kotlin, the use() function works on the Closeable interface to make sure that
resources are released after use.

Question 2
What are the different options for handling nulls in Kotlin?

Answer
There are multiple options to handle nulls: the Elvis operator, smart casts, and the let
and run scope functions can help with that.

Question 3
Which problem can be solved by reified generics?

Answer
On JVM, types are erased at runtime. By inlining the generic function body into the call
site, it allows preservation of the actual types used by the compiler.

Chapter 10, Concurrent Microservices
with Ktor

Question 1
How are the Ktor applications structured and what are their benefits?

Answer
Ktor applications are divided into modules, each module being an extension function on
the Application object. Modularizing our application allows us to test different aspects
of it separately.

Question 2 323

Question 2
What are plugins in Ktor and what are they used for?

Answer
Plugins are a way Ktor addresses cross-cutting concerns. They are used for serializing
and deserializing requests and responses, and setting headers, and even routing itself is a
plugin.

Question 3
What is the main problem that the Exposed library solves?

Answer
The Exposed library provides a higher-level API for working with databases.

Chapter 11, Reactive Microservices with Vert.x

Question 1
What's a verticle in Vert.x?

Answer
A verticle is a lightweight actor that allows us to separate our business logic into small
reactive units.

Question 2
What's the goal of the Event Bus in Vert.x?

Answer
The Event Bus allows verticles to communicate with each other indirectly by sending and
consuming messages.

324 Assessments

Question 3
Why shouldn't we block the event loop?

Answer
The event loop uses a limited number of threads to process many requests concurrently. If
even one of the threads is blocked, it reduces the performance of a Vert.x app.

Index

A
abstract classes

about 30
creating 30, 31

Abstract Factory design pattern
about 49, 50, 88
casts 51
collection, of Factory methods 54, 55
smart casts 52, 53
subclassing 51, 52
variable shadowing 53

Adapter design pattern
about 74-76
existing code, adapting 76, 77
limitations 78
usage 77

Algebraic Data Types (ATDs)
implementing 251-253

aliases 82
also() function 244, 245
anonymous functions 157
anti-pattern 40
application

modularizing 276, 277
apply() function 243, 244
arrays 17

asynchronous function
creating 261

asynchronous message passing 198

B
Barrier design pattern

about 220, 221
data classes, using as 221-223

Bridge design pattern
about 78-80
change, modifying 80, 81
constants 82, 83
type aliasing 82

Builder design pattern
about 55-58
default arguments 60
fluent setters 58-60

by keyword 70

C
C# 4
C++ 41
caching 47
call suffix 124, 159

326 Index

casts 51
Chain of Responsibility

design pattern 115-119
classes

about 25
abstract classes 30
custom getters 28, 29
custom setters 28, 29
data classes 33
primary constructor 26
properties 26, 27
visibility modifiers 31

closure 161
collections 78
Command design pattern

about 110-114
undoing 114, 115

comments, Kotlin coding structure 6
Communicating Sequential

Processes (CSP) 207
companion object 47
Composite design pattern

about 83-85, 103
nesting composites 87
secondary constructors 86
varargs keyword 86, 87

concurrent data structures
channels 206, 207
exploring 203
flows 210-213
flows, buffering 213, 214
flows, conflating 214, 215
sequences 203-206

concurrent data structures, channels
actors 208
buffered channels 208-210
producers 207, 208

concurrent design patterns 217
constants

about 82, 83
using, efficiently 256-258

constructors
working with 258, 259

context 272
control flow

about 18
if expression 18, 19
when expression 20

coroutines
about 180
canceling 187-189
starting 180-182
timeouts, setting 190, 191
working 184-187

creational patterns
Abstract Factory 49, 50
Builder 55-58
Factory Method 44, 45
Prototype 61, 62
Singleton 40-43

Cucumber
URL 120

currying 163-165

D
daemon threads 176
databases

configuration, managing 304-307
connecting to 277-279
working with 303

data class
about 33
versus Java records 33, 34

Index 327

Decorator design pattern
about 66
class, enhancing 66, 67
Elvis operator 67
inheritance problem 68-71
limitations 73
operator overloading 71, 72

Deferred Value design pattern 218-220
delegator functions 95
delicate API 182
Depth First Search 169
design patterns

about 36
design process 37
in real life 36, 37
using, in Kotlin 37

destructuring declaration 45
dispatchers 191
Document Object Model (DOM) 226
domain-specific language (DSL) 120
DSL-for-SQL language

about 120-124
capabilities 124

E
elastic principle 197, 198
Elvis operator 67
entities

creating 280, 281
fetching 282-288

Event Bus
communicating with 310-312
JSON, sending over 312, 313

Event Loop 308-310
Executors API 179
extension functions 34, 35, 76

F
Facade design pattern 88, 89, 98
Factory Method design pattern

about 44, 45
Static Factory Method 46

Fan In design pattern 229-231
Fan Out design pattern 228, 229
filter chain 116
filter() function 199
filters 119
find function 200
flow 210-213
fluent setters 58, 59
fluent syntax 114
Flyweight design pattern

2D side-scrolling arcade platform
game, building 90-92

about 90
limitations 93
memory, saving 93

for-each loop 22
for loop 23
functional programming

expression, using 167
functions 157
notation 160
pattern matching 167-169
reasoning 152
recursion 169-171

functional programming, functions
higher-order functions 157, 158
higher-order functions, in

standard library 159
functional programming,

fundamental concepts
immutability 153
immutable collections 153, 154

328 Index

threads 154-156
tuples 156, 157

functional programming, notation
closures 161
currying 163-165
memoization 165, 166
pure function 161-163

function overloading 256

G
Go work 35

H
Hello Kotlin

about 6
no arguments 7
no semicolons 8
no static modifier 7
no wrapping class 7
verbose print function 8

higher-order function 114
higher-order functions, on collections

about 198
code, executing for each

elements 200, 201
elements, filtering 199
elements, mapping 199
elements, searching 200
elements, summing up 202
nesting, ending up 202, 203

I
if expression 18, 19
immutability 153
immutable collections 153, 154

impure functions 162
infix call 24
inheritance 25, 31, 32
inline functions 250, 251
input

validating 262, 263
IntelliJ IDEA 66
interfaces

about 29
defining 30
implementing 30

Interpreter design pattern
about 119
call suffix 124
DSL-for-SQL language 120-124

iterator design pattern 103-105

J
Java 4, 41, 72
Java 8 12
Java 15 21
Java package rules

reference link 6
JDK 66
job

about 182-184
states 183

JSON
sending, over Event Bus 312, 313

JSON parser 88

K
Kotlin

checks and casts, type 247, 248
design patterns, using 37
package-level functions 7

Index 329

Kotlin 1.4 56, 90
Kotlin code structure

about 5
comments 6
Hello Kotlin 6
naming conventions 5
package 5, 6

Kotlin coding conventions
reference link 5

Kotlin comments 6
Kotlin data structures

alternative implementations,
for collections 16

arrays 17
lists 14
maps 15
mutability 16
reviewing 13
sets 14

Kotlin type system
about 8
basic types 9
comparison 10
equality 10
examples 9
function declaration 11, 12
type inference 9
values 10

Ktor
about 269
concurrency, achieving 290
routes, organizing in 288-290
URL 272
working with 268-273

L
lambda function 157
language

features 4
goals 4
multi-paradigm language 5
syntax 4

lazy delegation 95
lazy initialization 43
let() function 242, 243
list 14, 78
literal function 158
loops

about 22
for-each loop 22
for loop 23
while loop 24

M
mailboxes 208
map 15
map() function 199
Mediator design pattern

about 125-129
caveats 131
flavors 130
middleman 129, 130

Memento design pattern 131-133
memoization 165, 166
Merge Sort algorithm 170
message-driven principle 198
method receiver 34
middleman 129, 130
middleware 119
multiline strings 21

330 Index

multi-paradigm language 5
mutability 16
mutual exclusions (mutex) 234, 235

N
naming conventions, Kotlin

coding conventions 5
nesting composites 87
nulls

dealing with 260, 261
null safety 12, 13

O
Observer design pattern

about 142
animal choir example 142-147

operation 253
operator overloading

about 71, 72
reference link 73

P
package, Kotlin coding structure 5
package-level functions 7
pattern matching 167-169
Pipeline design pattern

about 225-227
composing 227, 228

Plain Old Java Object (POJO) 33
prototype 63
Prototype design pattern 61, 62, 66
Proxy design pattern

about 94, 95, 218
lazy delegation 95

Proxy design pattern, sub-patterns
protection or access control proxy 95
remote proxy 95
virtual proxy 95

pure function 161-163

Q
Quality Assurance (QA) 125

R
Racing design pattern

about 231, 232
unbiased select 232, 233

range operator 23
raw strings 21
reactive programming

elastic principle 197, 198
message-driven principle 198
resilient principle 197
responsive principle 196, 197

records 33
recursion 169-171
referential transparency 162
reified generics 254-256
requests

handling 299
routing 273, 274
subrouting 300

resilient principle
about 197
ways 197

responsive principle 196, 197
round brackets 25
run() function 245, 246

Index 331

S
safe casts 51
Scala 4, 41
Scheduler design pattern

about 223, 224
creating 224

scope functions
also() function 244, 245
apply() function 243, 244
let() function 242, 243
run() function 245, 246
using 242
with() function 246

sealed classes, over enums
preferring 264, 265

secondary constructors 86
sequences 203-206
service

testing 275
Service-Oriented Architecture (SOA) 36
set 14, 15
shared mutable state

threads 154-156
Sidekick channel design pattern 235-237
Singleton design pattern

about 40, 251
requirements 41

smart casts 52, 53
Spring Framework 49
State design pattern

about 106, 187, 218
context approach 109, 110
fifty shades 106-109

Static Factory Method design pattern
about 46
advantages 46, 47
caching 47

in Kotlin 47, 48
subclassing 47

Strategy design pattern
about 98, 99
citizen function 101, 102
weapons 99
weapons, implementing 99-101

stream 78, 204
string interpolation 20
Structural Patterns 134
structured concurrency 192, 193
subclassing 47-52
suspending functions 290

T
tail recursion 169
Template method design pattern 137-142
terminator functions 200
tests

consistent test, creating 282
text

working with 20
text blocks 21
threads

about 174
example 175
expensive 178, 179

thread safety 176-178
trailing comma 56
trailing lambda 159
try-with-resources statement

alternative 249, 250
tuples 156, 157
type aliasing

about 82
advantages 82

type argument 17

332 Index

U
user interface (UI) 87

V
varargs keyword 86, 87
variable shadowing 53
variadic functions 86
verticles 298, 299
Vert.x

requests, handling 299
routing in 296-298
verticles 298, 299
working with 294-296

Vert.x applications
testing 301-03

Visitor design pattern
about 134
crawler, writing 134-137

W
when expression 20
while loop 24
with() function 246

Y
YAML parser 88

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://Packt.com
http://packt.com
mailto:customercare@packtpub.com
http://www.packt.com

334 Other Books You May Enjoy

Other Books You
May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

How to Build Android Apps with Kotlin

Eran Boudjnah, Alexandru Dumbravan, Alex Forrester, Jomar Tigcal

ISBN: 978-1-83898-411-3

•	 Create maintainable and scalable apps using Kotlin

•	 Understand the Android development lifecycle

•	 Simplify app development with Google architecture components

•	 Use standard libraries for dependency injection and data parsing

•	 Apply the repository pattern to retrieve data from outside sources

•	 Publish your app on the Google Play store

https://www.packtpub.com/free-ebook/how-to-build-android-apps-with-kotlin/9781838984113

Other Books You May Enjoy 335

Mastering Kotlin

Nate Ebel

ISBN: 978-1-83855-572-6

•	 Model data using interfaces, classes, and data classes

•	 Grapple with practical interoperability challenges and solutions with Java

•	 Build parallel apps using concurrency solutions such as coroutines

•	 Explore functional, reactive, and imperative programming to build flexible apps

•	 Discover how to build your own domain-specific language

•	 Embrace functional programming using the standard library and Arrow

•	 Delve into the use of Kotlin for frontend JavaScript development

•	 Build server-side services using Kotlin and Ktor

https://www.packtpub.com/product/mastering-kotlin/9781838555726

336 Other Books You May Enjoy

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.
packtpub.com and apply today. We have worked with thousands of developers and
tech professionals, just like you, to help them share their insight with the global tech
community. You can make a general application, apply for a specific hot topic that we
are recruiting an author for, or submit your own idea.

Share Your Thoughts
Now you've finished Kotlin Design Patterns and Best Practices, we'd love to hear your
thoughts! If you purchased the book from Amazon, please click here to go straight to the
Amazon review page for this book and share your feedback or leave a review on the site
that you purchased it from.

Your review is important to us and the tech community and will help us make sure we're
delivering excellent quality content.

http://authors.packtpub.com
http://authors.packtpub.com
https://packt.link/r/1-801-81572-0
https://packt.link/r/1-801-81572-0

	Cover
	Title page
	Copyright and Credits
	Dedications
	Foreword
	Contributors
	Table of Contents
	Preface
	Section 1:
Classical Patterns
	Chapter 1: Getting Started
with Kotlin
	Technical requirements
	Basic language syntax and features
	Multi-paradigm language

	Understanding Kotlin code structure
	Naming conventions
	Packages
	Comments
	Hello Kotlin

	Understanding types
	Basic types
	Type inference
	Values
	Comparison and equality
	Declaring functions

	Null safety
	Reviewing Kotlin data structures
	Lists
	Sets
	Maps
	Mutability
	Alternative implementations for collections
	Arrays

	Control flow
	The if expression
	The when expression

	Working with text
	String interpolation
	Multiline strings

	Loops
	for-each loop
	The for loop
	The while loop

	Classes and inheritance
	Classes
	Interfaces
	Abstract classes
	Visibility modifiers
	Inheritance
	Data classes

	Extension functions
	Introduction to design patterns
	What are design patterns?
	Why use design patterns in Kotlin?

	Summary
	Questions

	Chapter 2: Working with Creational Patterns
	Technical requirements
	Singleton
	Factory Method
	Static Factory Method

	Abstract Factory
	Casts
	Subclassing
	Smart casts
	Variable shadowing
	Collection of Factory Methods

	Builder
	Fluent setters
	Default arguments

	Prototype
	Starting from a prototype

	Summary
	Questions

	Chapter 3: Understanding Structural Patterns
	Technical requirements
	Decorator
	Enhancing a class
	The Elvis operator
	The inheritance problem
	Operator overloading
	Caveats of the Decorator design pattern

	Adapter
	Adapting existing code
	Adapters in the real world
	Caveats of using adapters

	Bridge
	Bridging changes
	Type aliasing
	Constants

	Composite
	Secondary constructors
	The varargs keyword
	Nesting composites

	Facade
	Flyweight
	Being conservative
	Saving memory
	Caveats of the Flyweight design pattern

	Proxy
	Lazy delegation

	Summary
	Questions

	Chapter 4: Getting Familiar with Behavioral Patterns
	Technical requirements
	Strategy
	Fruit arsenal
	Citizen functions

	Iterator
	State
	Fifty shades of State
	State of the nation

	Command
	Undoing commands

	Chain of Responsibility
	Interpreter
	We need to go deeper
	A language of your own
	Call suffix

	Mediator
	The middleman
	Mediator flavors
	Mediator caveats

	Memento
	Visitor
	Writing a crawler

	Template method
	Observer
	Animal choir example

	Summary
	Questions

	Section 2:
Reactive and Concurrent Patterns
	Chapter 5: Introducing Functional Programming
	Technical requirements
	Reasoning behind the functional approach
	Immutability
	Immutable collections
	The problem with shared mutable state
	Tuples

	Functions as values
	Learning about higher-order functions
	Higher-order functions in a standard library

	The it notation
	Closures
	Pure functions
	Currying
	Memoization

	Using expressions instead of statements
	Pattern matching

	Recursion
	Summary
	Questions

	Chapter 6: Threads and Coroutines
	Technical requirements
	Looking deeper into threads
	Thread safety
	Why are threads expensive?

	Introducing coroutines
	Starting coroutines
	Jobs
	Coroutines under the hood
	Setting timeouts
	Dispatchers
	Structured concurrency

	Summary
	Questions

	Chapter 7: Controlling
the Data Flow
	Technical requirements
	Reactive principles
	Responsive principle
	Resilient principle
	Elastic principle
	Message-driven principle

	Higher-order functions on collections
	Mapping elements
	Filtering elements
	Finding elements
	Executing code for each element
	Summing up elements
	Getting rid of nesting

	Exploring concurrent data structures
	Sequences
	Channels
	Flows

	Summary
	Questions

	Chapter 8: Designing for Concurrency
	Technical requirements
	Deferred Value
	Barrier
	Using data classes as barriers

	Scheduler
	Creating your own schedulers

	Pipeline
	Composing a pipeline

	Fan Out
	Fan In
	Racing
	Unbiased select

	Mutex
	Sidekick channel
	Summary
	Questions

	Section 3:
Practical Application of Design Patterns
	Chapter 9: Idioms and
Anti-Patterns
	Technical requirements
	Using the scope functions
	Let function
	Apply function
	Also function
	Run function
	With function

	Type checks and casts
	An alternative to the try-with-resources statement
	Inline functions
	Implementing Algebraic Data Types
	Reified generics
	Using constants efficiently
	Constructor overload
	Dealing with nulls
	Making asynchronicity explicit
	Validating input
	Preferring sealed classes over enums
	Summary
	Questions

	Chapter 10: Concurrent Microservices
with Ktor
	Technical requirements
	Getting started with Ktor
	Routing requests
	Testing the service
	Modularizing the application
	Connecting to a database
	Creating new entities
	Making the tests consistent
	Fetching entities
	Organizing routes in Ktor
	Achieving concurrency in Ktor
	Summary
	Questions

	Chapter 11: Reactive Microservices
with Vert.x
	Technical requirements
	Getting started with Vert.x
	Routing in Vert.x
	Verticles
	Handling requests
	Subrouting the requests

	Testing Vert.x applications
	Working with databases
	Managing configuration

	Understanding Event Loop
	Communicating with Event Bus
	Sending JSON over Event Bus

	Summary
	Questions

	Assessments
	Index
	About Packt
	Other Books You May Enjoy

