
Marco Vermeulen
Rúnar Bjarnason
Paul Chiusano
Foreword by Raul Raja

MANNING

Functional Programming in



Functional Programming in Kotlin





Functional
Programming

in Kotlin
MARCO VERMEULEN

RÚNAR BJARNASON

PAUL CHIUSANO

FOREWORD BY RAUL RAJA

MANN I NG
SHELTER ISLAND



For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity. 
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2021 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in 
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written 
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are 
claimed as trademarks. Where those designations appear in the book, and Manning Publications 
was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have 
the books we publish printed on acid-free paper, and we exert our best efforts to that end. 
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of 
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book 
was correct at press time. The author and publisher do not assume and hereby disclaim any 
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether 
such errors or omissions result from negligence, accident, or any other cause, or from an usage 
of the information herein.

Development editor: Marina Michaels
Technical development editors: Mark Elston, John Guthrie,

Joshua White
Manning Publications Co. Review editor: Aleksandar Dragosavljević
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foreword
Functional programming has profoundly changed the way we approach and solve
problems through software. Functional programming emphasizes immutability, func-
tion purity, and composition of functions as a means to build correct and predictable
programs—properties in our code that have changed how we look at distributed sys-
tems, applications, and software engineering in recent decades.

 Whereas a few years ago, functional programming’s success was questioned and it
was frequently compared or linked to other paradigms, today’s adoption has extended
to most language compilers and standard libraries and impacts how communities and
teams approach architecture and system design.

 Kotlin is a multiparadigm, multiplatform language that includes functional fea-
tures such as continuations, nullable types, interfaces, pattern matching, algebraic
data types, and many others that make it unique, fun, and one of the most performant
languages with which to practice functional programming.

 Since every language has its own notion of how functional programming manifests
itself, you may be wondering what the essence of functional programming is and
whether you can learn it in a principled way. Marco brings us this adaptation of the
Red Book, Functional Programming in Scala, this time using Kotlin as a vehicle to illus-
trate these patterns from the ground up. Functional Programming in Kotlin breaks down
basic concepts around function composition and algebraic design and then invites
you to practice and learn through exercises and examples that illustrate how you can
implement functional patterns and data types from scratch.
xiii



FOREWORDxiv
 From common scenarios like error handling to more complex cases like streaming,
Functional Programming in Kotlin complements the functional programmer’s learning
journey and provides a foundational approach to learning core functional abstractions
and patterns.

 RAUL RAJA

 Arrow maintainer
 CTO 47 Degrees



preface
Writing good software is no easy task. We write code to provide machine-executable
instructions that should execute with ease and efficiency. More importantly, code has
another fundamental purpose: it exists as a means of clear communication with oth-
ers who interact with our code now and in the future. And so, code has transcended
its role as a tool for instructing machines and become one used for collaboratively
instructing machines.

 I have been coding since a relatively young age. It all began when I wrote BASIC on
my ZX Spectrum and, later, machine language on my Commodore 64. After a long,
winding road, this culminated in me becoming a passionate Java developer many
years later. Up to that point, everything I had learned was of a procedural nature, a
sequence of imperative steps to instruct the computer. In the early 2000s, Java blew my
mind by introducing me to the concept of object orientation. I could now model real-
world concepts in the memory of my computer as objects! Java also taught me the
value of having a static type system that enforces specific rules at compilation time,
resulting in fewer runtime issues.

 As time went by, I discovered another way of thinking about software. This realiza-
tion dawned on me when I started programming in another statically typed language,
Scala. Functional programming was a completely new paradigm that shifted my mind
from thinking about classes and objects to emphasizing the functions and methods
within them. When learning Scala, I was lucky enough to have some fantastic resources
at my disposal. The first was the excellent Functional Programming Principles in Scala
video course by Martin Odersky on Coursera. The other was the famous “Red Book,”
xv
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Functional Programming in Scala (Manning, 2014), into which Paul Chiusano and
Rúnar Bjarnason had poured many years of their experience and effort. Both of these
shaped my thinking tremendously and altered the way that I perceive programming to
this day.

 When I began looking at Kotlin, I realized that despite the language having capa-
bilities similar to Scala’s, there was a significant focus on pragmatism, but not so much
on the academic aspects of functional programming (FP) using the type system. After
completing the Kotlin for Java Developers course on Coursera with a group of friends, we
spoke about carrying on the study group using the material in the Red Book as a basis
for our studies in typed FP while using Kotlin. Sadly, these further studies never mate-
rialized, but I carried on by myself and presented the concept of a new Kotlin FP book
to Manning. My initial idea was to provide the same material as Paul and Rúnar had
written but with all code translated to Kotlin instead of Scala. I was delighted when
Manning accepted the proposal. Once the work began, it took on a life of its own,
changing a lot from the original, not only in code but also in text. Having said that,
the structure of the book is still very true to the original.

 Rewriting this book for Kotlin developers has brought me tremendous personal
growth and has been a great learning experience. I’ve come to a far more profound
and rich understanding of the concepts in this book than I had previously. My hope
for all embarking on this journey is that you may glean as much from these pages as I
did in writing them. Understanding these concepts can forever change the way you
think about writing code and how you convey your ideas to those who follow in your
footsteps. I hope the book has the same effect on you as it did on me and that, above
all, you have fun and enjoy every single page as I did.
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about this book
The purpose of this book is not to teach you Kotlin. Instead, it’s a book to level you up
on typed functional programming, using Kotlin as a vehicle to teach you the underlying
principles by example. For this reason, the presented code isn’t always the most prag-
matic or “correct” choice but instead outlines and demonstrates these principles.
There are undoubtedly more idiomatic ways of implementing many of the Kotlin
code examples, but I wrote the code for clarity to convey the concepts I am trying to
bring home.

Who should read this book
This book is for people who already have a thorough understanding of Kotlin and its
language features. In addition, readers should have a firm grasp of object-oriented
design with a working knowledge of classes, interfaces, methods, and variables. You do
not need any prior knowledge of or experience with functional programming.

 Even though this book is primarily academic, it is also very hands-on. Through-
out the book, we examine many code examples and embark on lots of exercises to
reinforce the learning process. For this reason, you should have a solid understand-
ing of IntelliJ IDEA or a similar IDE that has full support for Kotlin. If you are more
comfortable using a text editor and terminal instead of an IDE, that will also be
sufficient.
xix



ABOUT THIS BOOKxx
How this book is organized
The book has 4 parts that span 15 chapters. Part 1 introduces you to what functional pro-
gramming is and equips you with the basic building blocks we use throughout the book:

■ Chapter 1 explains what functional programming means and provides some
ideas about the benefits it brings.

■ Chapter 2 teaches you some basics like writing functional loops with recursion
and tail-call elimination, higher-order functions, and functional polymorphism.

■ Chapter 3 deals with defining and working with two collection data structures,
lists and trees, in a purely functional way.

■ Chapter 4 delves into effective error handling without throwing exceptions.
■ Chapter 5 discusses non-strictness (or laziness) to improve efficient evaluation

and introduces a stream data type.
■ Chapter 6 closes the first part of the book by teaching how to handle state muta-

tion actions (or transitions) in a functional program.

Part 2 is somewhat different than part 1 in that it uses a very loose exploratory style to
teach the process of designing several combinator libraries:

■ Chapter 7 shows you how to design and build a functional library for asynchro-
nous parallel processing.

■ Chapter 8 demonstrates how we can design a property-based testing library for
randomized testing.

■ Chapter 9 takes us into the realm of parsing and demonstrates how we can
arrive at an elegant design for a JSON parser combinator library.

Part 3 brings us to a more advanced topic that is particular to typed functional pro-
gramming: type classes. We deal with several design pattern abstractions used in the real
world and prepare you to use them:

■ Chapter 10 is all about monoids, an abstraction used to combine values.
■ Chapter 11 picks apart the infamous monad and explains it clearly through the

use of examples.
■ Chapter 12 brings us to the applicative and traversable functors, showing what

defines an applicative and how it differs from the monad.

The final part of the book, part 4, deals with side effects in purely functional code by
drawing on all the lessons we have learned thus far:

■ Chapter 13 introduces the I/O monad to simplify how we express effectful code
by using an embedded imperative DSL.

■ Chapter 14 teaches how to localize or contain side effects and mutations in a
purely functional program.

■ Chapter 15 is the culmination of all that we have learned: we develop a stream-
ing API for modular, composable programs that can perform incremental pro-
cessing of I/O streams.
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How to read this book
Although you can read the book sequentially from start to finish, we have designed
the sequencing of the four parts so that you can comfortably break between them,
apply what you have learned to your work, and then come back later for the next part.
Part 1 teaches foundational principles and concepts that may then be applied in part
2, helping to cement these concepts in place. Part 3 then builds on the foundations
laid in part 1. Subsequently, the material in part 4 will make the most sense after you
have a strong familiarity with the functional style of programming developed through-
out parts 1, 2, and 3. After parts 1 and 3, it may be good to take breaks and practice
writing functional programs beyond the exercises we provide. Of course, this is ulti-
mately up to you.

 Most chapters in this book have a similar structure. We introduce a new idea or
technique, explain it with examples, and then work through several exercises of
increasing difficulty level. We provide appendixes at the back of the book contain-
ing hints for many of the exercises (appendix A) and solutions for all of them
(appendix B).

 We strongly suggest that you do the exercises as you proceed through each chap-
ter. We have marked exercises for both their difficulty and importance. We mark exer-
cises that we think are hard or that we consider optional for understanding the material.
The hard designation is our effort to give you some idea of what to expect—it is only our
guess, and you may find some unmarked questions difficult and some questions marked
hard to be relatively easy. The optional designation is for informative exercises, but you
may skip them without impeding your ability to follow subsequent material. Please
refrain from looking at appendix B’s solutions when doing the exercises—using it only
as a last resort or to verify your answers.

 If you have further questions or lack clarity about the code or exercises, we encour-
age you to drop in at the liveBook forum for further discussion: https://livebook
.manning.com/book/functional-programming-in-kotlin.

About the code
This book contains many examples of source code in numbered listings, in exercises,
and inline with normal text. In all cases, source code is formatted in a fixed-width
font like this to separate it from ordinary text. Code annotations accompany list-
ings, highlighting important concepts where needed.

 In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. Sometimes, even this was not enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text.

 Sometimes we show a Kotlin interpreter session to demonstrate the result of
running or evaluating code. You can identify interpreter blocks because the com-
mands issued have a preceding >>>. Code that follows this prompt is to be typed or

https://livebook.manning.com/book/functional-programming-in-kotlin
https://livebook.manning.com/book/functional-programming-in-kotlin
https://livebook.manning.com/book/functional-programming-in-kotlin
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pasted into the interpreter, and the subsequent line shows the interpreter’s response,
like this:

>>> 1.show()
res1: kotlin.String = The value of this Int is 1

We strongly suggest that you clone the source code repository from GitHub at https://
github.com/fpinkotlin/fpinkotlin. All the code compiles and is linted by its continu-
ous integration build on GitHub. The exact code that you find in this book is as it
appeared in the source code repository at the time of printing.

 You can find all the example and listing code under src/main/kotlin, with separate
packages for each chapter and section. All the exercises and solutions are under the
src/test/kotlin folder, with separate packages containing exercises and solutions for
each chapter.

 Many exercises have corresponding tests where applicable, and each exercise has a
placeholder function called SOLUTION_HERE() as it appears in the book. As you prog-
ress through each chapter’s exercises, you can re-enable the tests as instructed in the
source code and implement the solution where the placeholder appears. You can
then run the tests from within the IDE or from the command line with Gradle, as you
prefer. You are welcome to provide your own or additional tests to test-drive the solu-
tion if you feel the need.

 It is also worth noting that you are always free to raise pull requests on the GitHub
repository in the spirit of open source software development to improve the exam-
ples, exercises, or tests.

liveBook discussion forum
Purchase of Functional Programming in Kotlin includes free access to a private web
forum run by Manning Publications where you can make comments about the book, ask
technical questions, and receive help from the author and from other users. To access
the forum, go to https://livebook.manning.com/#!/book/functional-programming-
in-kotlin/discussion. You can also learn more about Manning's forums and the rules
of conduct at https://livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest their interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://github.com/fpinkotlin/fpinkotlin
https://github.com/fpinkotlin/fpinkotlin
https://livebook.manning.com/#!/book/functional-programming-in-kotlin/discussion
https://livebook.manning.com/#!/book/functional-programming-in-kotlin/discussion
https://livebook.manning.com/#!/discussion


Part 1

Introduction to
functional programming

The opening section of this book, chapters 1–6, is all about first principles of
functional programming. We begin with an extreme stance: we attempt to write
programs only with the foundational building blocks of pure functions—functions
with no side effects. But why even bother writing programs with such a limita-
tion? To fully grasp what functional programming is, we need to relearn how to
program using these fundamental building blocks.

 In short, we need to rewire our brains to think differently; where we’ve become
accustomed to an imperative way of thinking, we have to learn a radically new
approach to solving programming problems. The best way to achieve this relearn-
ing is by taking a few steps back, starting small, and gradually building up to what
we aspire to. That is what we spend our time doing in the first part of this book.

 Just because we avoid talking about side effects in these chapters doesn’t
mean they don’t exist. We realize and acknowledge that programs usually have
side effects. After all, what use would programs be if they didn’t accept input
from a keyboard, mutate memory, display output on a screen, write to a hard
drive, or play something over a sound card? We’ll discuss this later, but we need
to get the basics right before moving on to such advanced topics.

 In chapter 1, we explain exactly what functional programming means and
give you some idea of its benefits. The rest of the chapters in part 1 introduce
the basic techniques for functional programming using Kotlin. Chapter 2 covers
fundamentals like how to write functional loops, manipulating functions as
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ordinary values, and the concept of functional polymorphism. Chapter 3 deals with
in-memory data structures that may change over time, while chapter 4 talks about han-
dling errors in a purely functional way. Chapter 5 introduces the notion of non-
strictness, which can be used to improve the efficiency and modularity of functional
code. Finally, chapter 6 introduces modeling stateful programs using pure functions.

 Part 1 gets you thinking about programs purely regarding functions from input to
output. This will teach you the techniques you’ll need in part 2 when we start writing
code of more practical use.



What is functional
programming?
Most of us started programming using an imperative style of coding. What do we
mean by this? It means we give the computer a set of instructions or commands,
one after the other. As we do so, we are changing the system’s state with each step
we take. We are naturally drawn to this approach because of its initial simplicity. On
the other hand, as programs grow in size and become more complicated, this seem-
ing simplicity will lead to the very opposite; complexity arises and takes the place of
what we initially intended to do. The end result is code that is not maintainable, dif-
ficult to test, hard to reason about, and (possibly worst of all) full of bugs. The ini-
tial velocity that we could deliver features slows down substantially until even a
simple enhancement to our program becomes a slow and laborious task.

This chapter covers
 Understanding side effects and the problems 

they pose

 Achieving a functional solution by removing side 
effects

 Defining what a pure function is

 Proving referential transparency and purity using 
the substitution model
3



4 CHAPTER 1 What is functional programming?
 Functional programming is an alternative to the imperative style that addresses the
problems just mentioned. In this chapter, we look at a simple example where a piece
of imperative code with side effects (we’ll understand what that means shortly) is trans-
formed into the functional style by a sequence of refactoring steps. The eradication of
these side effects is one of the core concepts behind functional programming, so is
one of the highlights of this chapter. We will understand the dangers these effects
pose and see how to extract them from our code, bringing us back to the safe place of
simplicity from which we departed when we initially set out on our journey.

 At this point, it’s also worth mentioning that this book is about functional pro-
gramming using Kotlin by example to demonstrate the principles of this program-
ming paradigm. Moreover, the focus is not on Kotlin as a language but rather on
deriving the concepts used in functional programming. In fact, many of the con-
structs we will build are not even available in Kotlin but only in third-party libraries
such as Arrow (https://arrow-kt.io). This book teaches you functional programming
from first principles that could be applied to many programming languages, not just
to Kotlin.

 While reading this book, keep in mind the mathematical nature of the functional
programming we will learn. Many have written about functional programming, but
the kind we describe in this book is a bit different. It relies heavily on the type system
that statically typed languages such as Kotlin provide, often called typed functional pro-
gramming. We will also mention category theory, a branch of mathematics that aligns
itself very closely with this programming style. Due to this mathematical slant, be pre-
pared for words such as algebra, proofs, and laws.

 Along these lines, this is not a book of recipes or magic incantations. It won’t give
you quick fixes or fast pragmatic solutions to your everyday problems as a program-
mer. Instead, it will teach you and equip you with foundational concepts and theory
that you can apply to help you arrive at many pragmatic solutions of your own.

 Functional programming (FP) is based on a simple premise with far-reaching
implications: we construct our programs using only pure functions—in other words,
functions with no side effects. What are side effects? A function has a side effect if it
does something other than simply return a result. For example:

 Modifying a variable beyond the scope of the block where the change occurs
 Modifying a data structure in place
 Setting a field on an object
 Throwing an exception or halting with an error
 Printing to the console or reading user input
 Reading from or writing to a file
 Drawing on the screen

We provide a more precise definition of side effects later in this chapter. But consider
what programming would be like without the ability to do these things or with signif-
icant restrictions on when and how these actions can occur. It may be difficult to

https://arrow-kt.io
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imagine. How could we write useful programs? If we couldn’t reassign variables, how
would we write simple programs like loops? What about working with data that
changes or handling errors without throwing exceptions? How could we write pro-
grams that must perform IO, like drawing to the screen or reading from a file?

 The answer is that functional programming restricts how we write programs but
not what our programs can express. Throughout this book, we’ll learn how to express
the core of our programs without side effects, including programs that perform IO,
handle errors, and modify data. We’ll learn how following the discipline of FP is tre-
mendously beneficial because of the increase in modularity that we gain from program-
ming with pure functions. Because of their modularity, pure functions are easier to
test, reuse, parallelize, generalize, and reason about. Furthermore, pure functions are
much less prone to bugs. In this chapter, we look at a simple program with side effects
and demonstrate some of the benefits of FP by removing those side effects. We also
discuss the benefits of FP more generally and work up to defining two essential con-
cepts: referential transparency and the substitution model.

1.1 The benefits of FP: A simple example
Let’s look at an example that demonstrates some of the benefits of programming with
pure functions. The point is just to illustrate some basic ideas that we’ll return to
throughout this book. Don’t worry too much about the Kotlin syntax. As long as you
have a basic idea of what the code is doing, that’s what’s important.

NOTE Since the focus of this book is on FP and not Kotlin, we assume you
already have a working knowledge of the language. Consider reading Man-
ning’s Kotlin in Action (2017, by Dmitry Jemerov and Svetlana Isakova) for a
more comprehensive treatment of the language itself.

1.1.1 A program with side effects

Suppose we’re implementing a program to handle purchases at a coffee shop. We’ll
begin with a Kotlin program that uses side effects in its implementation (also called an
impure program).

class Cafe {

fun buyCoffee(cc: CreditCard): Coffee {

val cup = Coffee()    

cc.charge(cup.price)   

return cup  
}

}

Listing 1.1 A Kotlin program with side effects

Instantiates 
a new cup 
of Coffee

Charges a credit card with the 
Coffee’s price. A side effect!

Returns the 
Coffee
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A method call is made on the charge method of the credit card, resulting in a side
effect. Then the cup is passed back to the caller of the method.

 The line cc.charge(cup.price) is an example of a side effect. Charging a credit
card involves some interaction with the outside world. Suppose it requires contacting
the credit card provider via some web service, authorizing the transaction, charging
the card, and (if successful) persisting a record of the transaction for later reference.
In contrast, our function merely returns a Coffee while these other actions are all
happening on the side. Hence the term side effect. (Again, we define side effects more
formally later in this chapter.)

 As a result of this side effect, the code is difficult to test. We don’t want our tests to
actually contact the credit card provider and charge the card! This lack of testability
suggests a design change: arguably, CreditCard shouldn’t know how to contact the
credit card provider to execute a charge, nor should it know how to persist a record of
this charge in our internal systems. We can make the code more modular and testable
by letting CreditCard be agnostic of these concerns and passing a Payments object
into buyCoffee.

class Cafe {
fun buyCoffee(cc: CreditCard, p: Payments): Coffee {

val cup = Coffee()
p.charge(cc, cup.price)
return cup

}
}

Although side effects still occur when we call p.charge(cc, cup.price), we have at
least regained some testability. Payments can be an interface, and we can write a mock
implementation of this interface suitable for testing. But that isn’t ideal either. We’re
forced to make Payments an interface when a concrete class might have been fine oth-
erwise, and any mock implementation will be awkward to use. For example, it might
contain some internal state that we’ll have to inspect after the call to buyCoffee, and
our test will have to make sure this state has been appropriately modified (mutated)
by the call to charge. We can use a mock framework or similar to handle this detail for
us, but this all feels like overkill if we just want to test that buyCoffee creates a charge
equal to the price of a cup of coffee.

 Separate from the concern of testing, there’s another problem: it’s challenging to
reuse buyCoffee. Suppose a customer, Alice, would like to order 12 cups of coffee.
Ideally, we could just reuse buyCoffee for this, perhaps calling it 12 times in a loop.
But as it is currently implemented, that will involve contacting the payment provider
12 times and authorizing 12 separate charges to Alice’s credit card! That adds more
processing fees and isn’t good for Alice or the coffee shop.

 What can we do about this? We could write a whole new function, buyCoffees,
with particular logic for batching the charges. Here, that might not be a big deal since

Listing 1.2 Adding a Payments object
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the logic of buyCoffee is so simple; but in other cases, the logic we need to duplicate
may be nontrivial, and we should mourn the loss of code reuse and composition!

1.1.2 A functional solution: Removing the side effects

The functional solution is to eliminate side effects and have buyCoffee return the
charge as a value in addition to returning Coffee, as shown in figure 1.1. The con-
cerns of processing the charge by sending it to the credit card provider, persisting a
record of it, and so on, will be handled elsewhere.

Here’s what a functional solution in Kotlin might look like.

class Cafe {
fun buyCoffee(cc: CreditCard): Pair<Coffee, Charge> {

val cup = Coffee()
return Pair(cup, Charge(cc, cup.price))

}
}

We’ve separated the concern of creating a charge from the processing or interpretation of
that charge. The buyCoffee function now returns a Charge as a value along with
Coffee. We’ll see shortly how this lets us reuse it more easily to purchase multiple cof-
fees with a single transaction. But what is Charge? It’s a data type we just invented, con-
taining a CreditCard and an amount, equipped with a handy combine function for
combining charges with the same CreditCard.

 
 

Listing 1.3 A more functional approach to buying coffee

With a side effect

Send

transaction

(side effect)

CreditCard CreditCardCup Cup, Charge

Charge
List(charge1,
charge2,...)

Without a side effect

Credit card

service

buyCoffee buyCoffee

coalesce

Figure 1.1 A call to buyCoffee, with and without a side effect
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data class Charge(val cc: CreditCard, val amount: Float) {      

fun combine(other: Charge): Charge =   
if (cc == other.cc)           

Charge(cc, amount + other.amount)  
else throw Exception(

"Cannot combine charges to different cards"
)

}

This data type is responsible for holding the values for a CreditCard and an amount
of Float. A handy method is also exposed that allows this Charge to be combined with
another Charge instance. An exception will be thrown when an attempt is made to
combine two charges with a different credit card. The throwing of an exception is not
ideal, and we’ll discuss more functional approaches to handling error conditions in
chapter 4.

 Now let’s look at buyCoffees to implement the purchase of n cups of coffee.
Unlike before, this can now be implemented in terms of buyCoffee, as we had hoped.

class Cafe {

fun buyCoffee(cc: CreditCard): Pair<Coffee, Charge> = TODO()

fun buyCoffees(
cc: CreditCard,
n: Int

): Pair<List<Coffee>, Charge> {

val purchases: List<Pair<Coffee, Charge>> =
List(n) { buyCoffee(cc) }    

val (coffees, charges) = purchases.unzip()  

return Pair(
coffees,
charges.reduce { c1, c2 -> c1.combine(c2) }

)    
}

}

The example takes two parameters: a CreditCard and the Int number of coffees to be
purchased. After the Coffees have been successfully purchased, they are placed into a
List data type. The list is initialized using the List(n) { buyCoffee(cc) } syntax,

Listing 1.4 Charge as a data type

Listing 1.5 Buying multiple cups with buyCoffees

Data class declaration with a
constructor and immutable fields

Combines charges for 
the same credit card

Ensures that it’s the same card; 
otherwise, throws an exception

Returns a new 
Charge, combining 
the amount of this 
charge and the other

Creates a self-
initialized List

Splits the list of Pairs 
into two separate lists

Produces the output, pairing coffees 
into a combined single Charge
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where n describes the number of coffees and { buyCoffee(cc) } is a function that ini-
tializes each element of the list.

 An unzip is then used to destructure the list of pairs into two separate lists, each rep-
resenting one side of the Pair. Destructuring is the process of extracting values from a
complex data type. We are now left with the coffees list being a List<Coffee> and
charges being a List<Charge>. The final step involves reconstructing the data into
the required output. This is done by constructing a Pair of List<Coffee>s mapped to
the combined Charges for all the Coffees in the list. reduce is an example of a higher-
order function, which we will introduce appropriately in chapter 2.

Overall, this solution is a marked improvement—we’re now able to reuse buyCoffee
directly to define the buyCoffees function. Both functions are trivially testable with-
out defining complicated mock implementations of a Payments interface! In fact,
Cafe is now wholly ignorant of how the Charge values will be processed. We can still
have a Payments class for actually processing charges, of course, but Cafe doesn’t need
to know about it. Making Charge into a first-class value has other benefits we might
not have anticipated: we can more easily assemble business logic for working with
these charges. For instance, Alice may bring her laptop to the coffee shop and work
there for a few hours, making occasional purchases. It might be nice if the coffee shop
could combine Alice’s purchases into a single charge, again saving on credit card pro-
cessing fees. Since Charge is first class, we can now add the following extension method
to List<Charge> to coalesce any same-card charges.

 
 

Extracting values by destructuring
Kotlin allows us to destructure objects (also known as decomposition or extraction).
This occurs when values in the assignment (the left side) are extracted from the
expression (the right side). When we want to destructure a Pair into its left and
right components, we simply assign the contained values, separated by a comma
and surrounded by a pair of braces, ( and ):

val (left, right) = Pair(1, 2)
assert left == 1
assert right == 2

In subsequent code, we can now use these destructured values as we normally use
any value in Kotlin. It is also possible to ignore an unwanted destructured value by
replacing it with an underscore, _:

val (_, right) = Pair(1, 2)

Destructuring is not restricted to the Pair type but can also be used on many others
such as List or even data classes.
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fun List<Charge>.coalesce(): List<Charge> =
this.groupBy { it.cc }.values

.map { it.reduce { a, b -> a.combine(b) } }

All we need to know for now is that we are adding some behavior by using an extension
method: in this case, a coalesce function to List<Charge>. Let’s focus on the body of
this method. Notice that we’re passing functions as values to the groupBy, map, and
reduce functions. If you can’t already, you’ll learn to read and write one-liners like this
over the next several chapters. The statements { it.cc } and { a, b -> a.combine(b) }
are syntax for anonymous functions, which we introduce in the next chapter. You may
find this kind of code difficult to read because the notation is very compact. But as you
work through this book, reading and writing Kotlin code like this will very quickly
become second nature. This function takes a list of charges, groups them by the credit
card used, and then combines them into a single charge per card. It’s perfectly reus-
able and testable without any additional mock objects or interfaces. Imagine trying to
implement the same logic with our first implementation of buyCoffee!

 This is just a taste of why FP has the benefits claimed, and this example is inten-
tionally simple. If the series of refactorings used here seems natural, obvious, unre-
markable, or like standard practice, that’s good. FP is merely a discipline that takes
what many consider a good idea to its logical endpoint, applying the discipline even in
situations where its applicability is less obvious. As you’ll learn throughout this book,
the consequences of consistently following the discipline of FP are profound, and the
benefits are enormous. FP is a truly radical shift in how programs are organized at
every level—from the simplest of loops to high-level program architecture. The style
that emerges is quite different, but it’s a beautiful and cohesive approach to program-
ming that we hope you come to appreciate.

Listing 1.6 Coalescing the charges

What about the real world?
In the case of buyCoffee, we saw how we could separate the creation of the Charge
from the interpretation or processing of that Charge. In general, we’ll learn how this sort
of transformation can be applied to any function with side effects to push these effects
to the outer layers of the program. Functional programmers often speak of implementing
programs with a pure core and a thin layer on the outside that handles effects.

Even so, at some point, we must actually have an effect on the world. We still need to
submit that Charge for processing by some external system. And what about all the
other programs that necessitate side effects or mutations? How do we write such pro-
grams? As you work through this book, you’ll discover how many programs that seem
to necessitate side effects have some functional analogue. In other cases, you’ll find
ways to structure code so that effects occur but aren’t observable. For example, you
can mutate data declared locally in the body of some function if you ensure that it can’t
be referenced outside that function. Or you can write to a file as long as no enclosing
function can observe this occurring. These are perfectly acceptable scenarios. 
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1.2 Exactly what is a (pure) function?
Earlier, we said that FP means programming with pure functions, and a pure function
lacks side effects. In our discussion of the coffee shop example, we worked using an
informal notion of side effects and purity. Here we’ll formalize this notion to pinpoint
more precisely what it means to program functionally. This will also give us additional
insight into one benefit of FP: pure functions are easier to reason about.

 A function f with input type A and output type B (written in Kotlin as a single type:
(A) -> B, pronounced “A to B”) is a computation that relates every value a of type A to
exactly one value b of type B such that b is determined solely by the value of a. Any
changing state of an internal or external process is irrelevant to compute the result
f(a). For example, a function intToString having type (Int) -> String will take
every integer to a corresponding string. Furthermore, if it really is a function, it will do
nothing else (figure 1.2).

In other words, if a function has no observable effect on the execution of the program
other than to compute a result given its inputs, we say that it has no side effects. We
sometimes qualify such functions as pure functions to make this more explicit, but
doing so is somewhat redundant. Unless we state otherwise, we’ll often use function to
imply no side effects. (Procedure is often used to refer to a parameterized chunk of
code that may have side effects.)

 You should be familiar with a lot of pure functions already. Consider the addition (+)
operator, which resolves to the plus function on all integers. It takes an integer value
and returns another integer value. For any two given integers, plus will always return
the same integer value. Another example is the length function of a String in Java,
Kotlin, and many other languages where strings can’t be modified (are immutable). For
any given string, the same length is always returned, and nothing else occurs.

 We can formalize this idea of pure functions using the concept of referential
transparency (RT). This is a property of expressions in general and not just func-
tions. Let’s consider an expression to be any part of a program that can be evaluated
to a result. It could be anything we could type into the Kotlin interpreter and get an
answer. For example, 2 + 3 is an expression that applies the pure function plus on 2
to 3 (also an expression). This has no side effect. The evaluation of this expression

a: A b: Bf: (A) -> B

"1": String
intToString:

(Int) -> String
1: Int Figure 1.2 A pure function 

does only what it states, 
without side effects.
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results in the same value, 5, every time. In fact, if we saw 2 + 3 in a program, we could
simply replace it with the value 5, and it wouldn’t change a thing about the meaning
of our program.

 This is all it means for an expression to be referentially transparent—in any pro-
gram, the expression can be replaced by its result without changing the meaning of
the program. And we say that a function is pure if calling it with RT arguments is also
RT. We’ll look at some examples next.

1.3 RT, purity, and the substitution model
Let’s see how the definition of RT applies to our original buyCoffee example:

fun buyCoffee(cc: CreditCard): Coffee {
val cup = Coffee()
cc.charge(cup.price)
return cup

}

The return type of cc.charge(cup.price), even if it’s Unit, is discarded by buy-
Coffee. Thus, the result of evaluating buyCoffee(aliceCreditCard) will be merely
cup, which is equivalent to a new Coffee(). For buyCoffee to be pure, by our defini-
tion of RT, it must be the case that p(buyCoffee(aliceCreditCard)) behaves the
same as p(Coffee()) for any p. This clearly doesn’t hold—the program Coffee()
doesn’t do anything, whereas buyCoffee(aliceCreditCard) will contact the credit
card provider and authorize a charge. Already we have an observable difference
between the two programs.

 RT enforces the rule that everything a function does should be represented by the
value it returns, according to the function’s result type. This constraint enables a natu-
ral and straightforward mode of reasoning about program evaluation called the sub-
stitution model. When expressions are referentially transparent, we can imagine that
computation proceeds much like we’d solve an algebraic equation. We fully expand
every part of the expression, replacing all variables with their referents, and then
reduce it to its simplest form. At each step, we replace a term with an equivalent one;
computation proceeds by substituting equals for equals. In other words, RT enables
equational reasoning about programs.

 Let’s look at two more examples—one where all expressions are RT and can be
reasoned about using the substitution model, and one where some expressions violate

Referential transparency and purity
An expression e is referentially transparent if, for all programs p, all occurrences of
e in p can be replaced by the result of evaluating e without affecting the meaning of
p. A function f is pure if the expression f(x) is referentially transparent for all refer-
entially transparent x. 
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RT. There’s nothing complicated here; we’re just formalizing something you likely
already understand.

 Let’s try the following in the Kotlin interpreter, also known as the Read-Eval-Print-
Loop or REPL (pronounced like “ripple,” but with an e instead of an i. Note that in
Java and in Kotlin, strings are immutable. A “modified” string is really a new string; the
old string remains intact:

>>> val x = "Hello, World"
res1: kotlin.String = Hello, World

>>> val r1 = x.reversed()            
res2: kotlin.String = dlroW ,olleH

>>> val r2 = x.reversed()            
res3: kotlin.String = dlroW ,olleH

Suppose we replace all occurrences of the term x with the expression referenced by x
(its definition), as follows:

>>> val r1 = "Hello, World".reversed()    
res4: kotlin.String = dlroW ,olleH

>>> val r2 = "Hello, World".reversed()    
res5: kotlin.String = dlroW ,olleH

This transformation doesn’t affect the outcome. The values of r1 and r2 are the same
as before, so x was referentially transparent. What’s more, r1 and r2 are referentially
transparent as well: if they appeared in some other part of a more extensive program,
they could, in turn, be replaced with their values throughout, and it would have no
effect on the program.

 Now let’s look at a function that is not referentially transparent. Consider the
append function on the java.lang.StringBuilder class. This function operates on
the StringBuilder in place. The previous state of the StringBuilder is destroyed
after a call to append. Let’s try this out (see figure 1.3):

>>> val x = StringBuilder("Hello")
res6: kotlin.text.StringBuilder /* = java.lang.StringBuilder */ = Hello

>>> val y = x.append(", World")
res7: java.lang.StringBuilder! = Hello, World

>>> val r1 = y.toString()
res8: kotlin.String = Hello, World

>>> val r2 = y.toString()
res9: kotlin.String = Hello, World

r1 and r2 evaluate 
to the same value.

r1 and r2 still evaluate 
to the same value.
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So far, so good. Now let’s see how this side effect breaks RT. Suppose we substitute the
call to append as we did earlier, replacing all occurrences of y with the expression ref-
erenced by y (see figure 1.4):

>>> val x = StringBuilder("Hello")
res10: kotlin.text.StringBuilder /* = java.lang.StringBuilder */ = Hello

>>> val r1 = x.append(", World").toString()
res11: kotlin.String = Hello, World

>>> val r2 = x.append(", World").toString()
res12: kotlin.String = Hello, World, World

This transformation of the program results in a different outcome. We can conclude
that StringBuilder.append is not a pure function. What’s going on here is that
although r1 and r2 look like they’re the same expression, they are actually referenc-
ing two different values of the same StringBuilder. By the time the second call is
made to x.append, the first call will already have mutated the object referenced by x.
If this seems complicated, that’s because it is! Side effects make reasoning about pro-
gram behavior more difficult.

x
StringBuilder("Hello")

x.append(", World")

y.toString()

y.toString()

y
"Hello, World"

r1
"Hello, World"

r2
"Hello, World"

Figure 1.3 Calling toString() multiple times on a StringBuilder always yields the same result.

x
StringBuilder("Hello")

r1
"Hello, World"

r2
"Hello, World, World"

r1 = x.append(", World")

r2 = x.append(", World")

Figure 1.4 Calling append() multiple times on a StringBuilder never yields 
the same result.
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 Conversely, the substitution model is simple to reason about since the effects of
evaluation are purely local (they affect only the expression being evaluated). We need
not mentally simulate sequences of state updates to understand a block of code.
Understanding requires only local reasoning. We don’t have to mentally track all the
state changes that may occur before or after our function’s execution to understand
what our function will do; we simply look at the function’s definition and substitute
the arguments into its body. Even if you haven’t used the term “substitution model,”
you have certainly used this mode of reasoning when thinking about your code.

 Formalizing the notion of purity this way gives insight into why functional pro-
grams are often more modular. Modular programs consist of components that can be
understood and reused independently of the whole. The meaning of the whole
depends only on the meaning of the components and the rules governing their com-
position: that is, they are composable. A pure function is modular and composable
because it separates the computation logic from “what to do with the result” and “how
to obtain the input”; it’s a black box. Input is obtained in exactly one way: via the argu-
ment(s) to the function. And the output is simply computed and returned. By keep-
ing each of these concerns separate, the computation logic is more reusable; we can
reuse the logic anywhere without any regard to the side effects surrounding that logic.
We saw this in the buyCoffee example. By eliminating the side effect of payment pro-
cessing performed on the output, we could more easily reuse the function’s logic,
both for testing and for further composition (like when we wrote buyCoffees and
coalesce). 

1.4 What lies ahead
This short introduction should have given you a good foretaste of what functional pro-
gramming is. The next chapter looks at using higher-order functions, how to write
functional loops, polymorphic functions, passing anonymous functions, and more.

 At this point, it is worth repeating that this book is for developers wishing to learn
functional programming from first principles. The focus is on those who have a firm
grasp of object orientation and imperative programming in a general-purpose lan-
guage, preferably with some prior experience with Kotlin. We want to stress again that
this is not a book about Kotlin, but rather about functional programming, using Kotlin
to illustrate the concepts presented. That said, this book will significantly enhance
your ability to apply FP techniques and design principles to any Kotlin code you write
in the future.

 It is also worth noting that this book is challenging, and completing it will require
some effort and diligence on your part. We take a hands-on approach: each chapter
has exercises that will help you understand and internalize the material covered. The
exercises build on each other, and you should be sure to complete them before mov-
ing on to each subsequent section.

 If you follow through with this book, you will have many new techniques and skills
available to use when coding. For instance:
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 Learn how to write code in a functional style.
 Work with various data structures.
 Functionally handle errors.
 Use lazy evaluation, and work with pure functional state.
 Apply a functional design to parallelism, property-based testing, and parser

combinator libraries.
 Understand and use monoids, monads, and applicative and traversable functors.
 Confidently work with advanced features such as external and local effects,

mutable state, stream processing, and incremental IO.

Summary
 Functional programming results in increased code modularity.
 Modularity gained from programming in pure functions leads to improved test-

ability, code reuse, parallelization, and generalization.
 Modular functional code is easier to reason about.
 Functional programming leads us toward using only pure functions.
 A pure function can be defined as a function that has no side effects.
 A function has a side effect if it does something other than returning a result.
 A function is said to be referentially transparent if everything it does is represented

by what it returns.
 The substitution model can be used to prove the referential transparency of a

function.



Getting started
with functional

programming in Kotlin
In chapter 1, we committed ourselves to use only pure functions. From this com-
mitment, a question naturally arises: how do we write even the simplest of pro-
grams? Most of us are used to thinking of programs as sequences of instructions
executed in order, where each instruction has some kind of effect. In this chapter,
we begin learning how to write programs in the Kotlin language by combining pure
functions.

 In this chapter, we introduce some of the basic techniques for how to write func-
tional programs. We discuss how to write loops using tail-recursive functions, and
we introduce higher-order functions (HOFs). HOFs are functions that take other
functions as arguments and may themselves return functions as their output. We

This chapter covers
 Defining higher-order functions that pass 

functions as parameters to other functions

 Writing loops in a functional way using recursion

 Abstracting HOFs to become polymorphic

 Calling HOFs with anonymous functions

 Following types to implement polymorphic 
functions
17
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also look at some examples of polymorphic HOFs where we use types to guide us toward
an implementation.

 There’s a lot of new material in this chapter. Some of the material related to HOFs
may be brain-bending if you have much experience programming in a language with-
out the ability to pass functions around like that. Remember, you don’t need to inter-
nalize every single concept in this chapter or solve every exercise. We’ll come back to
these concepts again from different angles throughout the book, and our goal here is
just to give you some initial exposure.

2.1 Higher-order functions: Passing functions to functions
Let’s get right into it by covering some of the basics of writing functional programs.
The first new idea is this: functions are values. And just like values of other types—
such as integers, strings, and lists—functions can be assigned to variables, stored in
data structures, and passed as arguments to functions.

 When writing purely functional programs, we’ll often find it helpful to write a
function that accepts other functions as arguments. This is called a higher-order func-
tion, and we’ll look next at some simple examples to illustrate. In later chapters, we’ll
see how useful this capability really is and how it permeates the functional program-
ming style. But to start, suppose we want to adapt our program to print out both the
absolute value of a number and the factorial of another number. Here’s a sample run
of such a program:

The absolute value of -42 is 42
The factorial of 7 is 5040

2.1.1 A short detour: Writing loops functionally

To adapt our existing program to demonstrate HOFs, we need to introduce some new
behavior. We will do so by adding a new function that calculates the nth factorial. To
write this simple function, we will first take a short detour by showing how loops are
written in a purely functional way. We do this by introducing recursion.

 First, let’s write factorial.

fun factorial(i: Int): Int {
fun go(n: Int, acc: Int): Int =   

if (n <= 0) acc
else go(n - 1, n * acc)

return go(i, 1)      
}

NOTE It is common to write functions that are local to the body of another
function. In functional programming, we shouldn’t consider this any stranger
than a local integer or string.

Listing 2.1 A factorial function

An inner or local 
function definition

Calls the local 
function
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The way we write loops functionally, without mutating a loop variable, is with a recur-
sive function. In listing 2.1, we’re defining a recursive helper function inside the body
of the factorial function. This function will typically handle recursive calls that
require an accumulator parameter or some other signature change that the enclosing
function does not have. Such a helper function is often called go or loop by conven-
tion. In Kotlin, we can define functions inside any block, including within another func-
tion definition. Since it’s local, the go function can only be referred to from within the
scope of the factorial function’s body, just like a local variable. The definition of facto-
rial finally just consists of a call to go with the initial conditions for the loop.

 The arguments to go are the state for the loop. In this case, they’re the remaining
value n and the current accumulated factorial acc. To advance to the next iteration,
we simply call go recursively with the new loop state (here, go(n-1, n*acc)); and to
exit from the loop, we return a value without a recursive call (here, we return acc in
the case that n <= 0).

 Kotlin does not manually detect this sort of self-recursion but requires the function
to declare the tailrec modifier. This, in turn, will instruct the compiler to emit the
same kind of bytecode as would be found for a while loop, provided the recursive call
is in tail position. (We can write while loops by hand in Kotlin, but it’s rarely necessary
and considered bad form since it hinders good compositional style.) See the “Tail calls
in Kotlin” sidebar for the technical details, but the basic idea is that this optimization
(or tail call elimination) can be applied when there’s no additional work left to do
after the recursive call returns.

NOTE The term optimization is not really appropriate here. An optimization
usually connotes a nonessential performance improvement, but when we use
tail calls to write loops, we generally rely on them being compiled as iterative
loops that don’t consume a call stack frame for each iteration (which would
result in a StackOverflowError for large inputs).

Tail calls in Kotlin
A call is said to be in the tail position if the caller does nothing other than return
the value of the recursive call. For example, the recursive call to go(n-1,n*acc)
we discussed earlier is in the tail position since the method returns the value of
this recursive call directly and does nothing else with it. On the other hand, if we
said 1 + go(n-1,n*acc), go would no longer be in the tail position since the method
would still have work to do when go returned its result (adding 1 to it).

If all recursive calls made by a function are in tail position, and the function declares
the tailrec modifier, Kotlin compiles the recursion to iterative loops that don’t con-
sume call stack frames for each iteration:

fun factorial(i: Int): Int {
tailrec fun go(n: Int, acc: Int): Int =   

if (n <= 0) acc

The tailrec modifier 
instructs the compiler 
to eliminate tail calls.
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EXERCISE 2.1

Write a recursive function to get the nth Fibonacci number (https://www.britannica
.com/science/Fibonacci-number). The first two Fibonacci numbers are 0 and 1. The
nth number is always the sum of the previous two—the sequence begins 0, 1, 1, 2, 3, 5,
8, 13, 21. Your definition should use a local tail-recursive function.

fun fib(i: Int): Int =

SOLUTION_HERE()

NOTE You will see a SOLUTION_HERE() placeholder whenever you need to
provide some code throughout this book. This function is a simple alias for
the built-in TODO() function that Kotlin already provides to mark something
as TODO. On evaluation, this function will throw a NotImplementedError.
Such unimplemented code will always compile but will throw the exception as
soon as it is evaluated in a program. This gives us a helpful way of putting a
reminder in our code without affecting the compilation or breaking the build. 

2.1.2 Writing our first higher-order function

The code we have written so far has only one specific purpose. How can we adapt it to
handle several scenarios? This section follows an iterative approach where we will
crudely introduce a new requirement and then gradually improve the design until we
are left with a functional solution using a higher-order function.

(continued)
else go(n - 1, n * acc)   

return go(i, 1)
}

If a recursive function has a call in tail position but does not declare itself as tailrec,
the compiler won’t eliminate tail calls, which in turn could result in a StackOverflow-
Error being thrown.

In the case where we apply the tailrec modifier to a function without its final dec-
laration being in tail position, the compiler will issue a warning:

Warning:(19, 9) Kotlin: A function is marked as tail-recursive
but no tail calls are found

Even though a warning is better than nothing, a compilation error would be far more
helpful and much safer in this instance.

The function’s final declaration 
is in tail position.

https://www.britannica.com/science/Fibonacci-number
https://www.britannica.com/science/Fibonacci-number
https://www.britannica.com/science/Fibonacci-number
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 Now that we have a function called factorial that calculates the nth factorial, let’s
introduce it to the code from before. In addition, we’ll do some naive duplication by
introducing formatFactorial, just as we had formatAbs for the abs function. Fig-
ure 2.1 shows how the new formatFactorial function will be called from main as we
did for formatAbs.

object Example {

private fun abs(n: Int): Int =
if (n < 0) -n
else n

private fun factorial(i: Int): Int {  
fun go(n: Int, acc: Int): Int =

if (n <= 0) acc
else go(n - 1, n * acc)

return go(i, 1)
}

fun formatAbs(x: Int): String {
val msg = "The absolute value of %d is %d"
return msg.format(x, abs(x))

}

fun formatFactorial(x: Int): String {   
val msg = "The factorial of %d is %d"
return msg.format(x, factorial(x))

}
}

fun main() {
println(Example.formatAbs(-42))
println(Example.formatFactorial(7))  

}

Listing 2.2 A simple program including the factorial function

formatAbs()

formatFactorial() factorial()

abs()
Existing code
branch

Newly
introduced
code branch

main()

Figure 2.1 Introducing new behavior to our program by adding functions related to 
factorials

Add the factorial 
function, making 
it private.

Add the formatFactorial 
function, which is 
public by default.

Call formatFactorial 
from the main 
method.
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The two functions, formatAbs and formatFactorial, are almost identical. If we like,
we can generalize these to a single function, formatResult, which accepts as an argu-
ment the function to apply to its argument:

fun formatResult(name: String, n: Int, f: (Int) -> Int): String {
val msg = "The %s of %d is %d."
return msg.format(name, n, f(n))

}

Our formatResult function is a HOF that takes another function, called f (see the
“Variable-naming conventions” sidebar). We give a type to f, as we would for any other
parameter. Its type is (Int) -> Int (pronounced “int to int” or “int arrow int”), which
indicates that f expects an integer argument and will also return an integer.

Our function abs from before matches that type; it accepts an Int and returns an Int.
Likewise, factorial accepts an Int and returns an Int, which also matches the (Int)
-> Int type. We can therefore pass abs or factorial as the f argument to format-
Result as we do in the following two cases inside our main method:

fun main() {
println(formatResult("factorial", 7, ::factorial))
println(formatResult("absolute value", -42, ::abs))

}

A namespace prefix, ::, is added to reference the factorial and abs functions. You
can find more explanation about accessing and namespacing function references in
the “Functions as values” sidebar.

Variable-naming conventions
It’s a standard convention to use names like f, g, and h for parameters to a HOF. In
functional programming, we tend to use terse variable names, even one-letter
names. This is because HOFs are so general that they have no opinion on what the
argument should actually do in the limited scope of the function body. All they know
about the argument is its type. Many functional programmers feel that short names
make code easier to read since they make the code structure easier to see at a glance.

Functions as values
Kotlin offers several ways to pass function parameters. Some of these involve pass-
ing functions by reference, whereas others involve them being passed anonymously.
Both of these will seem familiar to anybody who has attempted functional program-
ming in Java 8 or higher.

The first approach involves passing a callable reference to an existing declaration: in
this case, we can simply pass through a namespaced reference to a function such
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2.2 Polymorphic functions: Abstracting over types
So far, we’ve defined only monomorphic functions or functions that operate on only one
type of data. For example, abs and factorial are specific to arguments of type Int,
and the HOF formatResult is also fixed to operate on functions that take arguments
of type Int. Often, and especially when writing HOFs, we want to write code that
works for any type it’s given. These are called polymorphic functions. You’ll get plenty of
experience writing such functions in the chapters ahead, so here we’ll just introduce
the idea.

NOTE We’re using the term polymorphism in a slightly different way than you
might be used to if you’re familiar with object-oriented programming, where
that term usually connotes some form of subtyping or inheritance relation-
ship. There are no interfaces or subtyping in this example. The kind of poly-
morphism we’re using here is sometimes called parametric polymorphism and is
more akin to the generics found in languages like Java. When applied to

as this::abs (or simply ::abs) for a reference in the same object. A fully qualified
reference such as Example::abs can be used for a function out of scope in a com-
panion object. If we import the namespace, we can reference the function directly
from out of scope when calling a HOF as we did in the working example:

import Example.factorial
...
formatResult("factorial", 7, ::factorial)

The second approach might seem equally familiar to someone coming from Java. This
involves anonymously instantiating and passing a function literal (also called an anon-
ymous function or lambda) as the parameter. Using the abs example as before, it
would look something like this:

formatResult("absolute", -42,
fun(n: Int): Int { return if (n < 0) -n else n }

)

This does seem a bit clunky and can be simplified to something more idiomatic:

formatResult("absolute", -42, { n -> if (n < 0) -n else n })

If a lambda function has only one parameter, it can even be replaced with the implicit
convenience parameter it. The final result looks like this:

formatResult("absolute", -42, { if (it < 0) -it else it })

Even though we have omitted type declarations in these examples, the types are still
vital and are inferred in all cases. The lambda must still be of type (Int) -> Int;
otherwise, compilation will fail.
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functions, we speak of polymorphic functions or generic functions, although we
will be referring to them as the former from here on out.

2.2.1 An example of a polymorphic function

We can often discover polymorphic functions by observing that several monomorphic
functions share a similar structure. For example, the following monomorphic func-
tion, findFirst, returns the first index in an array where the key occurs, or -1 if it’s
not found. It specializes in searching for a String in an Array of String values.

fun findFirst(ss: Array<String>, key: String): Int {
tailrec fun loop(n: Int): Int =

when {
n >= ss.size -> -1  
ss[n] == key -> n     
else -> loop(n + 1)   

}
return loop(0)   

}

The details of the code aren’t too important here. What’s important is that the code
for findFirst will look almost identical if we’re searching for a String in an
Array<String>, an Int in an Array<Int>, or an A in an Array<A> for any given type A.
Figure 2.2 show how we can write findFirst more generally for any type A by accept-
ing a function to test a particular A value.

fun <A> findFirst(xs: Array<A>, p: (A) -> Boolean): Int {   
tailrec fun loop(n: Int): Int =

when {
n >= xs.size -> -1

Listing 2.3 Monomorphic function to find a string in an array

Listing 2.4 Polymorphic function to find an element in an array

If the end of the loop has 
been reached without finding 
the key, returns -1

If the key is found, 
returns its position

Recursively calls the 
function, incrementing 
the counterInitializes the loop

with count 0

Introduce the type
parameter.

Make the array generic,
using the type parameter.

Replace the string value
with a predicate function.

fun findFirst :Int(ss: Array<String>,s: String)

fun <A> findFirst :Int(xs: Array<A>, p: (A)->Boolean

Figure 2.2 Transition from a monomorphic to polymorphic function by introducing 
abstract types

Operates on an array of A; takes a
predicate function operating on

individual elements of A
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p(xs[n]) -> n   
else -> loop(n + 1)

}
return loop(0)

}

This is an example of a polymorphic function, sometimes called a generic function.
We’re abstracting over the type of the array and the function used for searching it. To
write a polymorphic function as a method, we introduce a comma-separated list of
type parameters surrounded by angle brackets (here, just a single <A>) following the
name of the function, in this case findFirst. We can call the type parameters any-
thing we want—<Foo, Bar, Baz> and <TheParameter, another_good_one> are valid
type parameter declarations—although, by convention, we typically use short, one-letter,
uppercase type parameter names like <A,B,C>.

 The type parameter list introduces type variables that can be referenced in the rest
of the type signature (exactly analogous to how variables introduced in the parameter
list to a function can be referenced in the function’s body). In findFirst, the type
variable A is referenced in two places: the elements of the array are required to have
the type A (since it’s an Array<A>), and the p function must accept a value of type A
(since it’s a function of type (A) -> Boolean). The fact that the same type variable is
referenced in both places in the type signature implies that the type must be the same
for both arguments, and the compiler will enforce this fact anywhere we try to call
findFirst. If we try to search for a String in an Array<Int>, for instance, we’ll get a
type mismatch error.

EXERCISE 2.2

Implement isSorted, which checks whether a singly linked list List<A> is sorted
according to a given comparison function. The function is preceded by two extension
properties that add head and tail to any List value. The head property returns the first
element of the list, while tail returns all subsequent elements as another List<A>.
For a refresher on extension properties, refer to the “Extension methods and proper-
ties” sidebar.

val <T> List<T>.tail: List<T>
get() = drop(1)

val <T> List<T>.head: T
get() = first()

fun <A> isSorted(aa: List<A>, order: (A, A) -> Boolean): Boolean =

SOLUTION_HERE()

Applies the predicate 
function to the array 
element
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2.2.2 Calling HOFs with anonymous functions

When using HOFs, it’s often convenient to be able to call these functions with function
literals, rather than having to supply an existing named function. For instance, we can
test the findFirst function in the REPL as follows:

>>> findFirst(arrayOf(7, 9, 13), { i: Int -> i == 9 })
res0: kotlin.Int = 1

There is some new syntax here. The expression arrayOf(7, 9, 13) is a built-in library
function that builds an array. It constructs a new array containing three integers. We
also pass in a function literal as the predicate, checking if the implicit integer parame-
ter of this function is equal to 9. The syntax { i: Int -> i == 9 } is a function literal or
anonymous function. Instead of defining this function as a method with a name, we
can define it inline using this convenient syntax. This particular function takes one
argument called i of type Int, and it returns a Boolean indicating whether x is equal
to 9. In general, the arguments to the function are declared to the left of the -> arrow,

Extension methods and properties
Kotlin provides us with a convenient way of adding behavior (or state) to any type of
instance. It does so by way of extension methods and properties.

We can easily add behavior to all instances of a given type by adding an extension
method as follows:

fun Int.show(): String = "The value of this Int is $this"

The new show method is now available on all instances of Int, allowing us to make
the following call:

>>> 1.show()
res1: kotlin.String = The value of this Int is 1

Similarly, we can expose properties on all instances:

val Int.show: String
get() = "The value of this Int is $this"

As expected, we can access the field as follows:

>>> 1.show
res2: kotlin.String = The value of this Int is 1

These extension methods and properties are dispatched statically. In other words, we
are not actually modifying the underlying class. An extension function being called is
determined by the type of the expression on which the function is invoked, not by the
type of the result of evaluating that expression at run time. 
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and we can then use them in the body of the function to the right of the arrow. For
example, if we want to write an equality function that takes two integers and checks if
they’re equal to each other, we can write that like this:

>>> { x: Int, y: Int -> x == y }
res1: (kotlin.Int, kotlin.Int) -> kotlin.Boolean =
(kotlin.Int, kotlin.Int) -> kotlin.Boolean

The (kotlin.Int, kotlin.Int) -> kotlin.Boolean notation given by the REPL indi-
cates that the value of res1 is a function that takes two arguments. When Kotlin can
infer the type of the function’s inputs from the context, the type annotations on the
function’s arguments may be omitted: for example, { x, y -> x < y }. We’ll see an
example of this in the next section and lots more examples throughout this book. 

2.3 Following types to implementations
As you might have seen when writing isSorted, the possible implementations are sig-
nificantly reduced when implementing a polymorphic function. If a function is poly-
morphic in some type A, the only operations that can be performed on that A are
those passed in as arguments or defined in terms of these given operations. In some
cases, you’ll find that the possibilities for a given polymorphic type are constrained
such that only one implementation is possible!

NOTE Technically, all values in Kotlin can be compared for equality (using
==) and turned into a string representation with toString(), and an integer
can be generated from a value’s internals using hashCode(). But this is some-
thing of a wart inherited from Java.

Let’s look at an example of a function signature that can only be implemented one
way. It’s a HOF for performing what’s called partial application. This function, partial1,
takes a value and a function with two arguments and returns a function with one argu-
ment as its result. Partial application gets its name from the fact that the function is
being applied to some but not all of the arguments it requires:

fun <A, B, C> partial1(a: A, f: (A, B) -> C): (B) -> C = TODO()

The partial1 function has three type parameters: A, B, and C. It then takes two argu-
ments. The argument f is a function that takes two arguments of types A and B, respec-
tively, and returns a value of type C. The value returned by partial1 will also be a
function of type (B) -> C. How would we go about implementing this HOF? It turns
out there’s only one implementation that compiles, and it follows logically from the
type signature. It’s like a fun little logic puzzle.

NOTE Even though it’s a fun puzzle, this isn’t a purely academic exercise.
Functional programming in practice involves a lot of fitting together building
blocks in the only way that makes sense. This exercise aims to provide practice
using HOFs and Kotlin’s type system to guide your programming.
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Let’s start by looking at the type of thing we have to return. The return type of partial1
is (B) -> C, so we know we have to return a function of that type. We can just begin
writing a function literal that takes an argument of type B:

fun <A, B, C> partial1(a: A, f: (A, B) -> C): (B) -> C =
{ b: B -> TODO() }

This can be weird at first if you’re not used to writing anonymous functions. Where
did that B come from? Well, we’ve just written “Return a function that takes a value b
of type B.” On the right-hand side of the -> arrow (where the TODO() is now) comes
the body of that anonymous function. We’re free to refer to the value b for the same
reason we’re allowed to refer to the value a in the body of partial1.

NOTE Within the body of this inner function, the outer a is still in scope. We
sometimes say that the inner function closes over its environment, which
includes a.

Let’s keep going. Now that we’ve asked for a value of type B, what should we return
from our anonymous function? The type signature says that it has to be a value of type
C. And there’s only one way to get such a value. According to the signature, C is the
return type of the function f. So the only way to get that C is to pass an A and a B to f.
That’s easy:

fun <A, B, C> partial1(a: A, f: (A, B) -> C): (B) -> C =
{ b: B -> f(a, b) }

And we’re done! The result is a HOF that takes a function with two arguments and
partially applies it. That is, if we have an A and a function that needs both A and B to
produce C, we can get a function that just needs B to produce C (since we already have
the A). It’s like saying, “If I can give you a carrot for an apple and a banana, and you
already gave me an apple, you just have to give me a banana, and I’ll give you a car-
rot.” Note that the type annotation on b isn’t needed here. Since we told Kotlin the
return type would be (B) -> C, Kotlin knows the type of b from the context, and we
could just write { b -> f(a,b) } as the implementation. Generally speaking, we’ll omit
the type annotation on a function literal if it can be inferred by Kotlin. The final result
is as follows:

fun <A, B, C> partial1(a: A, f: (A, B) -> C): (B) -> C =
{ b -> f(a, b) }

EXERCISE 2.3

Let’s look at another example, currying, which converts a function f of two arguments
into a function with one argument that partially applies f. (Currying is named after
the mathematician Haskell Curry, who discovered the principle. It was independently
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discovered earlier by Moses Schönfinkel, but Schönfinkelization just didn’t catch on.)
Here again, there’s only one implementation that compiles.

fun <A, B, C> curry(f: (A, B) -> C): (A) -> (B) -> C =

SOLUTION_HERE()

EXERCISE 2.4

Implement uncurry, which reverses the transformation of curry. Note that since ->
associates to the right, (A) -> ((B) -> C) can be written as (A) -> (B) -> C.

fun <A, B, C> uncurry(f: (A) -> (B) -> C): (A, B) -> C =

SOLUTION_HERE()

Let’s look at a final example, function composition, which feeds the output of one func-
tion to the input of another function. Again, the implementation of this function is
wholly determined by its type signature.

EXERCISE 2.5

Implement the HOF that composes two functions.

fun <A, B, C> compose(f: (B) -> C, g: (A) -> B): (A) -> C =

SOLUTION_HERE()

It’s all well and good to puzzle together little one-liners like this, but what about pro-
gramming with a sizeable real-world code base? In functional programming, it turns
out to be precisely the same. HOFs like compose don’t care whether they’re operating
on huge functions backed by millions of lines of code or functions that are simple
one-liners. Polymorphic HOFs often end up being widely applicable precisely because
they say nothing about any particular domain and are simply abstracting over a typical
pattern occurring in many contexts. For this reason, programming in the large has
much the same flavor as programming in the small. We’ll write many widely useful
functions throughout this book, and the exercises in this chapter are a taste of the
style of reasoning you’ll employ when writing such functions. 
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Summary
 A higher-order function accepts other functions as parameters.
 Loops can be written functionally by using tail call recursion.
 The compiler can warn us if tail call elimination was not successful.
 Generic polymorphic functions can be written by introducing type variables to

functions.
 Anonymous functions can be passed as parameters to higher-order functions.
 Types in method signatures can be used to drive the implementation of poly-

morphic functions.



Functional
data structures
We said in chapter 1 that functional programs don’t update variables or modify
mutable data structures. The emphasis on keeping variables immutable raises
pressing questions: what sort of data structures can we use in functional program-
ming, how do we define them in Kotlin, and how do we operate on them?

 This chapter teaches the concept of functional data structures by writing our
own implementations of a singly linked list and a tree. We also learn about the related
processing technique of matching and get lots of practice writing and generalizing
pure functions.

 This chapter has many exercises to help with this last point—writing and gener-
alizing pure functions. Some of these exercises may be challenging. Always try your

This chapter covers
 Defining functional data structures using 

algebraic data types

 Writing branching logic in a single expression

 Sharing data using functional data structures

 Using list recursion and generalizing to HOFs

 Writing and generalizing pure functions

 Implementing List and Tree
31



32 CHAPTER 3 Functional data structures
best to solve them by yourself, although you can find helpful tips and pointers at the
back of the book in appendix A. If you really get stuck or would like to confirm that your
answers are correct, see appendix B for complete solutions. Try to use this resource only
when you absolutely must! All the source code for the samples and exercises is also avail-
able in our GitHub repository (https://github.com/fpinkotlin/fpinkotlin).

3.1 Defining functional data structures
A functional data structure is operated on using only pure functions. As you may
recall from chapter 1, a pure function must not change data in place or perform
other side effects. Therefore, functional data structures are by definition immutable.
An empty list should be as eternal and immutable as the integer values 3 or 4. And just
as evaluating 3 + 4 results in a new number 7 without modifying either 3 or 4, concate-
nating two lists together (the syntax is a + b for two lists a and b) yields a new list and
leaves the two inputs unmodified.

 Doesn’t this mean we end up doing a lot of extra data copying? Perhaps surpris-
ingly, the answer is no, and we’ll talk about exactly why that is later in this section. But
first, let’s examine what’s probably the most ubiquitous functional data structure: the
singly linked list. It serves as an excellent example due to its simplicity, making it easy to
reason about and understand the underlying principles of immutable data structures.
The following listing introduces some new syntax and concepts that we’ll talk through
in detail.

sealed class List<out A>   

object Nil : List<Nothing>()   

data class Cons<out A>(val head: A, val tail: List<A>) : List<A>()   

Let’s look first at the definition of the data type, which begins with the keywords
sealed class. Usually, we introduce a data type with the class keyword. Here we’re
declaring a class called List, with no instance methods on it. Adding sealed in front
of the class declaration means that all implementations must be declared in this file. A
sealed class is also abstract by default, so it cannot be instantiated by itself.

 Two implementations, or data constructors, of List are declared next to represent
the two possible forms a List can take. As figure 3.1 shows, a List can be empty,
denoted by the data constructor Nil, or it can be nonempty, denoted by the data con-
structor Cons (traditionally short for construct). A nonempty list consists of an initial
element, head, followed by a List (possibly empty) of remaining elements (the tail).

 Just as functions can be polymorphic, data types can be, as well. By adding the type
parameter <out A> after sealed class List and then using that A parameter inside
the Cons data constructor, we declare the List data type to be polymorphic in the type

Listing 3.1 Definition of the singly linked list data structure

Sealed definition of 
the data type

Nil implementation 
of List

Cons
implementation

of List

https://github.com/fpinkotlin/fpinkotlin
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of elements it contains. That means we can use this same definition for a list of Int
elements (denoted List<Int>), Double elements (denoted List<Double>), String
elements (List<String>), and so on (the out indicates that the type parameter A is
covariant—see the sidebar “More about variance” for more information).

 A data constructor declaration gives us a function to construct that form of the
data type. Here are a few examples:

val ex1: List<Double> = Nil
val ex2: List<Int> = Cons(1, Nil)
val ex3: List<String> = Cons("a", Cons("b", Nil))

Using object Nil, we can write Nil to construct an empty List, and data class Cons
lets us write Cons(1, Nil), Cons("a", Cons("b", Nil)) and so on to build singly
linked lists of arbitrary length. Note that because List is parameterized on a type, A,
these are polymorphic functions that can be instantiated with different types for A.
Here, ex2 instantiates the A type parameter to Int, while ex3 instantiates it to String.
The ex1 example is interesting: Nil is being instantiated with type List<Double>,
which is allowed because the empty list contains no elements and can be considered a
list of whatever type we want!

More about variance
In the declaration class List<out A>, the out in front of the type parameter A is a
variance annotation signaling that A is a covariant or “positive” parameter of List.
This means, for instance, that List<Dog> is considered a subtype of List<Animal>,
assuming Dog is a subtype of Animal. (More generally, for all types X and Y, if X is a
subtype of Y, then List<X> is a subtype of List<Y>.) We could omit the out in front
of A, which would make List invariant in that type parameter.

But notice now Nil extends List<Nothing>. Nothing is a subtype of all types,
which means in conjunction with the variance annotation, Nil can be considered a
List<Int>, a List<Double>, and so on, exactly as we want.

These concerns about variance aren’t all that important for the present discussion.
They are more of an artifact of how Kotlin encodes data constructors via subtyping,

head:1 head:2 head:3
tail:
Cons(2,

Cons(1, Cons(2, Cons(3,

tail:
Cons(3,

tail:
Nil Nil

Nil)

Figure 3.1 The singly linked list. Each tail links to the next list element.



34 CHAPTER 3 Functional data structures
Many other languages provide the feature of pattern matching to work with such data
types, as in the functions sum and product. Next, we’ll examine in more detail how we
achieve this with the when expression. 

3.2 Working with functional data structures
Up to this point, we have focused our attention on the definition of the most basic
functional data structure: the singly linked list. Having this definition isn’t much use
unless we actually start doing something with it. In this section, you learn to apply the
technique of matching to interpret and process the List defined in section 3.1.

sealed class List<out A> {    

companion object {    

fun <A> of(vararg aa: A): List<A> {      
val tail = aa.sliceArray(1 until aa.size)
return if (aa.isEmpty()) Nil else Cons(aa[0], of(*tail))

}

}
}

A companion object is added to the body of its definition to add some behavior to the
List type. Any functions defined within the companion object block can be invoked
like a static method in Java. For instance, the of method can be used in the following
way to construct a new List from the parameters passed in:

>>> List.of(1, 2)
res0: chapter3.List<kotlin.Int> = Cons(head=1, tail=Cons(head=2, tail=Nil))

This method accepts a parameter qualified by a vararg keyword. This means the func-
tion is variadic in nature: we can pass in an arbitrary number of parameters of the
same type in place of that parameter. These values are bound to the parameter as an

(continued)

so don’t worry if this is not completely clear right now. It’s certainly possible to write
code without using variance annotations, and function signatures are sometimes
more straightforward (whereas type inference often gets worse). We’ll use variance
annotations throughout this book where it’s convenient to do so, but you should feel
free to experiment with both approaches.

If you would like to learn more about generics, including covariance and contravari-
ance in Kotlin, feel free to read the Kotlin documentation at https://kotlinlang.org/
docs/generics.html.

Listing 3.2 Companion object in a sealed definition of the List type

Defines the List data 
structure

Companion object 
containing functions

Factory 
helper 
function

https://kotlinlang.org/docs/generics.html
https://kotlinlang.org/docs/generics.html
https://kotlinlang.org/docs/generics.html
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array of that type and accessed in the method body. We don’t need to know much
more about this, although we explain it in detail in the following sidebar.

Let’s look in detail at the functions, sum and product, which we placed in the compan-
ion object. Both definitions use a matching technique using the when expression.

fun sum(ints: List<Int>): Int =
when (ints) {

is Nil -> 0
is Cons -> ints.head + sum(ints.tail)

}

fun product(doubles: List<Double>): Double =
when (doubles) {

is Nil -> 1.0
is Cons ->

Variadic functions in Kotlin
The of function in the List object is a factory method for creating new List
instances. This method is also a variadic function, meaning it accepts zero or more
arguments of type A. If no argument is provided, it will result in a Nil instance of
List. If arguments are provided, the method will return a Cons representing those
values:

fun <A> of(vararg aa: A): List<A> {
val tail = aa.sliceArray(1 until aa.size)
return if (aa.isEmpty()) Nil else Cons(aa[0], List.of(*tail))

}

For data types, it is common to have a variadic of method in the companion object
to conveniently construct instances of the data type. By calling this function of and
placing it in the companion object, we can invoke it with syntax like List.of(1, 2,
3, 4) or List.of("hi", "bye"), with as many values as we want, each separated
by commas.

In the example, the parameter aa to the method is marked with a preceding vararg
keyword and will subsequently be available as type Array<out A> despite having the
declared type of A. In this case, we use the sliceArray method of the Array type
to extract the tail as a new Array.

It is also possible to pass an array into a method as a variadic parameter using a
prefixed spread operator, *. We have done so with the recursive call to of with *tail
in our example.

Although the details of working with arrays are unimportant in the context of this dis-
cussion, you can find more information on this topic in the Kotlin documentation at
https://kotlinlang.org/docs/basic-types.html#arrays.

Listing 3.3 Function definitions in the List companion object

https://kotlinlang.org/docs/basic-types.html#arrays
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if (doubles.head == 0.0) 0.0
else doubles.head * product(doubles.tail)

}

As you might expect, the sum function states that the sum of an empty list is 0, and the
sum of a nonempty list is the first element plus the sum of the remaining elements.
Likewise, the product function states that the product of an empty list is 1.0, the
product of any list starting with 0.0 is 0.0, and the product of any other nonempty list
is the first element multiplied by the product of the remaining elements. Note that
these are recursive definitions, which are common when writing functions that oper-
ate over recursive data types like List (which refers to itself recursively in its Cons data
constructor).

In Kotlin, matching is achieved using the when expression, working a bit like a fancy
switch statement. It matches its argument against all branches sequentially until some
branch condition is satisfied. The value of the satisfied branch becomes the value of
the overall expression. An else branch is evaluated if none of the other branch condi-
tions are satisfied. The else branch is mandatory unless the compiler can prove that
all possible cases are covered with branch conditions.

 Let’s look a bit closer at matching. Several variants of this construct can be used to
achieve the purpose of matching a value, including matching by constant values,
expressions, ranges, and types. The when construct can even be used as an improved
if-else expression. We won’t need all of these variants for our purposes in learning
functional programming (FP), so let’s only focus on those required.

Singletons implemented as companion objects
The companion object block inside a class declares and creates a new Singleton
object, which is a class with only a single named instance. If you are familiar with
Singleton objects in Java, declaring one is a lot more verbose than in Kotlin. A Sin-
gleton in Kotlin is also a lot safer than in Java, without the need for double-checked
locking to guarantee thread safety within the object’s body. Kotlin has no equivalent
to Java’s static keyword, and a companion object is often used in Kotlin where you
might use a class with static members in Java.

We’ll often declare a companion object nested inside our data type and its data con-
structors. This results in an object with the same name as the data type (in this case,
List) where we put various convenience methods for creating or working with values
of the data type.

For instance, if we wanted a function fun <A> fill(n: Int, a: A): List<A> that
created a List with n copies of the element a, the List companion object would be
a good place to put it. We could have created an object Foo if we wanted, but using
the List companion object makes it clear that all the functions are relevant to work-
ing with lists.
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3.2.1 The “when” construct for matching by type

For our purposes, the most helpful approach to matching is by type. The is keyword
is used to match each logic branch by its concrete type. As an added benefit, the
type that is matched on the left is also smartcast to the implementation required on
the branch’s right. This feature results in the value being cast to the left (matched)
type for further use on each branch’s right (expression) side. Let’s explain this by
way of example.

val ints = List.of(1, 2, 3, 4)   

fun sum(xs: List<Int>): Int =
when (xs) {

is Nil -> 0     
is Cons -> xs.head + sum(xs.tail)     

}

fun main() = sum(ints)   

The value ints is of type List. In this case, it would be a Cons, but it could be a Nil in
the case where an empty List was created. When passed into the when construct, it
assumes the abstract type of List until it is matched by one of the logic branches. In
this example, a Nil match will merely return a 0, but a Cons match will result in some
interesting behavior—when we transition from the left-hand side of our branch to the
right, the value ints is automatically cast to Cons so that we can access its members
head and tail! This feature, know as smartcasting, becomes invaluable when working
with data types where each subtype in a class hierarchy may have a distinct constructor
containing specific fields.

 We must always match by type exhaustively; in our case, this would be by all the
sealed implementations of our base class, List. If our match proves not to be exhaus-
tive (matching on classes that are not sealed or not listing all the sealed variants of
the base class), we need to provide the else condition as a catchall expression.
In the case of List, which is sealed and only has a Nil and Cons implementation, this
is not required. 

3.2.2 The when construct as an alternative to if-else logic

Another good use for the when construct is to write simpler if-else expressions.
When used in this way, no parameter needs to be supplied after the when keyword.
Each conditional branch acts as a predicate for a matching evaluation. As with if-else,
the when construct is also an expression that can be assigned to a value. As an exam-
ple, let’s look at a simple if expression.

 
 

Listing 3.4 Using smartcast to cast to a concrete implementation

Declares an 
abstract List

Matches a Nil 
implementation

Smartcasts a Cons 
implementation

Invokes the sum 
function with list



38 CHAPTER 3 Functional data structures
val x = Random.nextInt(-10, 10)
val y: String =

if (x == 0) {     
"x is zero"

} else if (x < 0) {     
"is negative"

} else {    
"x is positive"

}

This snippet is simple enough, but it’s challenging to understand due to all the unnec-
essary ceremonies caused by the surrounding boilerplate code. Using the when con-
struct results in something like the following.

val x = Random.nextInt(-10, 10)
val y: String =

when {          
x == 0 ->        

"x is zero"
x < 0 ->          

"x is negative"
else ->   

"x is positive"
}

The construct acts on any variables currently in scope: in this case, the random value
of x. Each logic expression on the left results in a Boolean result that leads to evaluat-
ing one of the branches on the right. Since the entire when construct is an expression,
the result is assigned to y.

 This code is far more elegant and concise, making it easier to read and reason
about. The when construct is one of the most-used tools in our Kotlin toolbox, and we
will return to it throughout this book. However, it has some drawbacks and lacks some
crucial features that other peer languages support. 

3.2.3 Pattern matching and how it differs from Kotlin matching

Matching in Kotlin is not perfect and falls short of what other languages offer in this
space. Languages such as Haskell, Scala, and Rust provide a feature called pattern
matching. This is remarkably similar to what we’ve seen in Kotlin’s matching but has
better semantics, more abilities, and improved usability versus that offered by Kotlin’s
approach. Let’s compare the matching provided by Kotlin’s when construct and how
these other languages handle matching, to highlight these deficiencies.

 Pattern matching gives us the ability to not only match on a logic expression but
also to extract values from that expression. This extraction, or destructuring, plays a vital
role in FP, mainly when working with algebraic data types. To fully understand how

Listing 3.5 Logical if-else chain used to evaluate expressions

Listing 3.6 Using the when construct to evaluate expressions
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pattern matching works, let’s take a closer look at how we would write this code in
Kotlin using when and then how we wish we could write it using some Kotlin pseudo-
code that applies the pattern-matching technique.

 First, let’s revisit the sum function we wrote in the companion object of our List class.

fun sum(xs: List<Int>): Int =
when (xs) {

is Nil -> 0
is Cons -> xs.head + sum(xs.tail)   

}

The most noticeable problem is that we are accessing the value xs inside the evalua-
tion of our branch logic by members as xs.head and xs.tail. Notice that xs is
declared a List, which has no head or tail. The fact that List has been smartcast to
Cons is never explicitly stated, which causes confusion about the ambiguous type of xs.

 If Kotlin supported pattern matching as provided by other languages, it would
allow us to express this as in the following Kotlin pseudocode.

fun sum(xs: List): Int = when(xs) {
case Nil -> 0               
case Cons(head, tail) -> head + sum(tail)     

}

What is most noticeable is the new case keyword followed by a pattern declaration: in
this case, Cons(head, tail). This pattern is first to be matched and then applied.
When the code is executed, each branch pattern is applied to the object parameter of
when in sequence. When the branch doesn’t match, it is simply passed over. When a
match is found, the pattern is applied, extracting any declared fields of that object and
making them available on the right-hand side of that particular branch.

 Suppose a List object with the structure Cons(1, (Cons(2, Nil))) is passed into
our pattern-matching construct. Since the first pattern of Nil does not match, we fall
through to the second pattern. Keep in mind that the Cons data class has the follow-
ing class definition with a primary constructor:

data class Cons<out A>(val head: A, val tail: List<A>) : List<A>()

The constructor (val head: A, val tail: List<A>) is now superimposed over the
object, and both head and tail values are extracted: in this case, a head of type Int
with value 1, and a tail of type List<Int> with value Cons(2, Nil). These two val-
ues are extracted and made available on the right-hand side of the condition branch,
where they can be used without accessing the original object xs passed into the when
construct.

Listing 3.7 Simple when matching in the List companion object

Listing 3.8 Pattern matching in List using pseudocode
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 This shift in logic may seem very subtle at first, but it significantly impacts how we
approach matching code such as this. It means we no longer access the matched object
xs directly, nor do we require any smartcasting to occur to access its fields. Instead, we
interact with its extracted fields directly, not even touching xs in our evaluations.

 Even though many users have asked for pattern matching to be included in the
Kotlin language (for example, see https://discuss.kotlinlang.org/t/destructuring-in-
when/2391), the creators have taken a strong stance against it, claiming that it would
make the language too complex. We sincerely hope that it will be included in the lan-
guage at a future date. 

3.3 Data sharing in functional data structures
When data is immutable, how do we write functions that, for example, add elements
to or remove them from a list? The answer is simple. When we add an element 1 to the
front of an existing list—say, xs—we return a new list, in this case Cons(1,xs). Since
lists are immutable, we don’t need to actually copy xs; we can just reuse it. This is
called data sharing. Sharing immutable data often lets us implement functions more
efficiently; we can always return immutable data structures without worrying about
subsequent code modifying our data. There’s no need to pessimistically make copies
to avoid modification or corruption, as such copies would be redundant due to the
data structures being immutable.

NOTE Pessimistic copying can become a problem in large programs. When
mutable data is passed through a chain of loosely coupled components, each
component has to make its own copy of the data because other components
might modify it. Immutable data is always safe to share, so we never have to
make copies. We find that in the large, FP can often achieve greater efficiency
than approaches that rely on side effects due to much greater sharing of data
and computation.

In the same way, to remove an element from the front of a list, mylist = Cons(x,xs),
we simply return its tail, xs. There’s no real removing going on. The original list,
mylist, is still available, unchanged. We say that functional data structures are per-
sistent, meaning existing references are never changed by operations on the data struc-
ture. Figure 3.2 demonstrates the persistent nature of such data structures.

val cons2 = cons1.tail

val         Cons(   Cons(   Cons(      )))cons1 =      1,      2,      3, Nil

Cons 1 Cons 2 Cons 3

head:1 head:2 head:3tail: tail:
tail:
Nil

Figure 3.2 Data sharing in a singly linked list due to common underlying data structures

https://discuss.kotlinlang.org/t/destructuring-in-when/2391
https://discuss.kotlinlang.org/t/destructuring-in-when/2391


41Data sharing in functional data structures
Let’s try implementing a few functions for modifying lists in different ways. The func-
tions we will write in the exercises can be written two ways; either way is perfectly
acceptable. The first approach is to place the functions inside the List companion
object as we did for sum and product in the example. In this approach, the method
takes the list it is acting on as its first argument:

fun <A> tail(xs: List<A>): List<A> = TODO()

>>> val xs = List.of(1, 2, 3, 4)
>>> List.tail(xs)

The other approach involves using extension methods like those introduced in the
previous chapter. Doing so adds behavior to the list type itself, so we can operate on it
in the following way:

fun <A> List<A>.tail(): List<A> = TODO()

>>> xs.tail()

EXERCISE 3.1

Implement the function tail for removing the first element of a List. Note that the
function takes constant time. What different choices can you make in your implemen-
tation if the List is Nil? We’ll return to this question in the next chapter.

fun <A> tail(xs: List<A>): List<A> =

SOLUTION_HERE()

EXERCISE 3.2

Using the same idea as in the previous exercise, implement the function setHead for
replacing the first element of a List with a different value.

fun <A> setHead(xs: List<A>, x: A): List<A> =

SOLUTION_HERE()
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3.3.1 The efficiency of data sharing

As we saw in section 2.3, data sharing often lets us implement operations more effi-
ciently due to the immutability of the underlying data structures that we are dealing
with. Let’s look at a few examples.

EXERCISE 3.3

Generalize tail to the function drop, which removes the first n elements from a list.
Note that this function takes time proportional only to the number of elements being
dropped—you don’t need to make a copy of the entire List.

fun <A> drop(l: List<A>, n: Int): List<A> =

SOLUTION_HERE()

EXERCISE 3.4

Implement dropWhile, which removes elements from the List prefix as long as they
match a predicate.

fun <A> dropWhile(l: List<A>, f: (A) -> Boolean): List<A> =

SOLUTION_HERE()

Both drop and dropWhile employed data sharing to achieve their purposes. A more
surprising example of data sharing is the following function, which adds all the ele-
ments of one list to the end of another.

fun <A> append(a1: List<A>, a2: List<A>): List<A> =
when (a1) {

is Nil -> a2
is Cons -> Cons(a1.head, append(a1.tail, a2))

}

Note that this definition only copies values until the first list is exhausted, so its run
time and memory usage are determined only by the length of a1. The remaining list
then just points to a2. If we were to implement this same function for two arrays, we’d
be forced to copy all the elements in both arrays into the result. In this case, the
immutable linked list is much more efficient than an array!

Listing 3.9 Appending all elements of one list to another
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EXERCISE 3.5

Not everything works out so nicely as when we append two lists to each other. Imple-
ment a function, init, that returns a List consisting of all but the last element of a
List. So, given List(1, 2, 3, 4), init should return List(1, 2, 3). Why can’t this
function be implemented in constant time like tail?

fun <A> init(l: List<A>): List<A> =

SOLUTION_HERE()

Due to the structure of a singly linked list, any time we want to replace the tail of a
Cons, even if it’s the last Cons in the list, we must copy all the previous Cons objects.
Writing purely functional data structures that support different operations efficiently
is all about finding clever ways to exploit data sharing. We’re not going to cover these
data structures here; for now, we’re content to use the functional data structures oth-
ers have written. 

3.4 Recursion over lists and generalizing to HOFs
Let’s look again at the implementations of sum and product. These two functions seem
remarkably similar in what they do and how they do it. Next, we will look at extracting
commonalities to derive a higher-order function (HOF) of these two functions.

 To bring the implementations of these two functions closer together, we’ve simpli-
fied the product implementation slightly so as not to include the “short-circuiting”
logic of checking for 0.0.

fun sum(xs: List<Int>): Int = when (xs) {
is Nil -> 0
is Cons -> xs.head + sum(xs.tail)

}

fun product(xs: List<Double>): Double = when (xs) {
is Nil -> 1.0
is Cons -> xs.head * product(xs.tail)

}

Note how similar these two definitions are. They’re operating on different types:
List<Int> versus List<Double>. Aside from the types, the only differences are the
value to return in the case that the list is empty (0 in the case of sum, 1.0 in the case of
product) and the operation to combine results (+ in the case of sum and * in the case
of product). Whenever we encounter duplication like this, we can generalize it away
by pulling subexpressions out into function arguments.

Listing 3.10 Normalizing product by removing the short circuit
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 Suppose a subexpression refers to any local variables (the + operation summing up
two values in sum and the * operation multiplying two values in product). In that case,
you can turn the subexpression into a function that accepts these variables as argu-
ments. Let’s do that now. Our function will take as arguments the value to return in
the case of the empty list and the function to add an element to the result in the case
of a nonempty list.

fun <A, B> foldRight(xs: List<A>, z: B, f: (A, B) -> B): B =
when (xs) {

is Nil -> z
is Cons -> f(xs.head, foldRight(xs.tail, z, f))

}

fun sum2(ints: List<Int>): Int =
foldRight(ints, 0, { a, b -> a + b })

fun product2(dbs: List<Double>): Double =
foldRight(dbs, 1.0, { a, b -> a * b })

foldRight is not specific to any one type of element, and we discover while generaliz-
ing that the value that’s returned doesn’t have to be the same type as the elements of
the list! One way of describing what foldRight does is that it replaces the constructors
of the list, Nil and Cons, with z and f, illustrated here using the substitution model
that we learned about in chapter 1:

Cons(1, Cons(2, Nil))
f (1, f (2, z ))

Let’s look at a complete example where we systematically replace evaluations until we
arrive at our final result. We’ll trace the evaluation of the following declaration using
the same technique as before:

foldRight(Cons(1, Cons(2, Cons(3, Nil))),
0, { x, y -> x + y })

We will repeatedly substitute the definition of foldRight for its evaluation. This substi-
tution technique is used throughout this book:

foldRight(Cons(1, Cons(2, Cons(3, Nil))),
0, { x, y -> x + y })

1 + foldRight(Cons(2, Cons(3, Nil)), 0,
{ x, y -> x + y })

1 + (2 + foldRight(Cons(3, Nil), 0,
{ x, y -> x + y }))

1 + (2 + (3 + (foldRight(Nil as List<Int>, 0,
{ x, y -> x + y }))))

1 + (2 + (3 + (0)))
6

Listing 3.11 Using foldRight as a generalization of product and sum
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Note that foldRight must traverse all the way to the end of the list (pushing frames
onto the call stack as it goes) before it can begin collapsing by applying the anony-
mous function.

 We are using the lambda syntax for passing the anonymous function parameter,
{ x, y -> x + y } as f into each recursive call to foldRight. All types for function
parameters of f can be inferred, so we do not need to provide them for x and y,
respectively.

EXERCISE 3.6

Can product, implemented using foldRight, immediately halt the recursion and
return 0.0 if it encounters a 0.0? Why or why not? Consider how any short-circuiting
might work if you call foldRight with a large list. This question has deeper implica-
tions that we will return to in chapter 5.

EXERCISE 3.7

See what happens when you pass Nil and Cons to foldRight, like this (the type anno-
tation Nil as List<Int> is needed here because, otherwise, Kotlin infers the B type
parameter in foldRight as List<Nothing>):

foldRight(
Cons(1, Cons(2, Cons(3, Nil))),
Nil as List<Int>,
{ x, y -> Cons(x, y) }

)

What do you think this says about the relationship between foldRight and the data
constructors of List?

 Simply passing in Nil is not sufficient as we lack the type information of A in this
context. As a result, we need to express this as Nil as List<Int>. Since this is very ver-
bose, a convenience method to circumvent it can be added to the companion object:

fun <A> empty(): List<A> = Nil

This method will be used in all subsequent listings and exercises to represent an
empty List.
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EXERCISE 3.8

Compute the length of a list using foldRight.

fun <A> length(xs: List<A>): Int =

SOLUTION_HERE()

WARNING From this point on, the exercises will noticeably increase in diffi-
culty—so much so that in many instances, they’ll stretch you beyond what you
know. If you can’t do an exercise, that is perfectly okay and to be expected.
Simply try your best to solve each one, and if you really don’t succeed, refer to
appendix B for the solution, along with an explanation of how to solve the
problem where applicable. As stated before, you should do so only as a last
resort or to verify your final solutions. Also, please refrain from skipping any
exercises, as each exercise builds on the knowledge gained from the previous
one. The chapter’s content can be grasped fully only by working through
each exercise, and this is the recurring theme throughout the book.

EXERCISE 3.9

Our implementation of foldRight is not tail-recursive and will result in a Stack-
OverflowError for large lists (we say it’s not stack-safe). Convince yourself that this
is the case, and then write another general list-recursion function, foldLeft, that is
tail-recursive, using the techniques we discussed in the previous chapter. Here is its
signature:

tailrec fun <A, B> foldLeft(xs: List<A>, z: B, f: (B, A) -> B): B =

SOLUTION_HERE()

EXERCISE 3.10

Write sum, product, and a function to compute the length of a list using foldLeft.

EXERCISE 3.11

Write a function that returns the reverse of a list (given List(1,2,3), it returns
List(3,2,1)). See if you can write it using a fold.
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EXERCISE 3.12

Hard: Can you write foldLeft in terms of foldRight? How about the other way
around? Implementing foldRight via foldLeft is useful because it lets us implement
foldRight tail-recursively, which means it works even for large lists without overflow-
ing the stack.

EXERCISE 3.13

Implement append in terms of either foldLeft or foldRight.

EXERCISE 3.14

Hard: Write a function that concatenates a list of lists into a single list. Its runtime
should be linear in the total length of all lists. Try to use functions we have already
defined.

3.4.1 More functions for working with lists

There are many more useful functions for working with lists. We’ll cover a few more
here to get additional practice with generalizing functions and some basic familiarity
with common patterns when processing lists. After finishing this section, you won’t
emerge with an intuitive sense of when to use each of these functions. Instead, just get
in the habit of looking for possible ways to generalize any recursive functions you write
to process lists. If you do this, you’ll (re)discover these functions for yourself and
develop an instinct for when you’d use each one.

EXERCISE 3.15

Write a function that transforms a list of integers by adding 1 to each element. This
should be a pure function that returns a new List.
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EXERCISE 3.16

Write a function that turns each value in a List<Double> into a String. You can use
the expression d.toString() to convert some d: Double to a String.

EXERCISE 3.17

Write a function map that generalizes modifying each element in a list while maintain-
ing the structure of the list. Here is its signature (in the standard library, map and
flatMap are methods of List):

fun <A, B> map(xs: List<A>, f: (A) -> B): List<B> =

SOLUTION_HERE()

EXERCISE 3.18

Write a function filter that removes elements from a list unless they satisfy a given
predicate. Use it to remove all odd numbers from a List<Int>.

fun <A> filter(xs: List<A>, f: (A) -> Boolean): List<A> =

SOLUTION_HERE()

EXERCISE 3.19

Write a function flatMap that works like map except that the function given will return
a list instead of a single result, and that list should be inserted into the final resulting
list. Here is its signature:

fun <A, B> flatMap(xa: List<A>, f: (A) -> List<B>): List<B> =

SOLUTION_HERE()

For instance, flatMap(List.of(1, 2, 3), { i -> List.of(i, i) }) should result in
List(1, 1, 2, 2, 3, 3).
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EXERCISE 3.20

Use flatMap to implement filter.

EXERCISE 3.21

Write a function that accepts two lists and constructs a new list by adding correspond-
ing elements. For example, List(1,2,3) and List(4,5,6) become List(5,7,9).

EXERCISE 3.22

Generalize the function you just wrote so that it’s not specific to integers or addition.
Name your generalized function zipWith. 

3.4.2 Lists in the Kotlin standard library

A List implementation already exists in the Kotlin standard library (see https://
kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/index.html). At this point,
it’s important to note the difference between our List and that provided by the stan-
dard library: Kotlin provides a read-only List instead of one that is genuinely immutable
like our implementation. In fact, the underlying implementation of the standard

Trailing lambda parameters
Kotlin provides some syntactic sugar when passing a lambda parameter into a HOF.
More specifically, if a function takes several parameters, of which the lambda is the
final parameter, it can be placed outside the parentheses of the parameter list. For
instance,

flatMap(xs, { x -> List.of(x) } )

can be expressed as

flatMap(xs) { x -> List.of(x) }

This is known as a trailing lambda, and it makes for a more fluid and readable
expression.

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/index.html
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/-list/index.html
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library read-only and mutable lists are one and the same: a java.util.ArrayList.
This pragmatic decision was made for the purpose of Java interoperability.

 The only difference between the read-only and mutable variants of the Kotlin list is
that the mutable version implements a MutableList interface that has methods allow-
ing for adding, updating, and deleting the underlying list elements. MutableList
extends from List, which in turn does not have these mutating methods. Figure 3.3
shows the inheritance hierarchy of this unified implementation with multiple views on
the underlying list through the use of interfaces.

There are many valuable methods on the standard library lists. You may want to try
experimenting with these and other methods in the REPL after reading the API docu-
mentation. These methods are defined on List<A>, rather than as standalone func-
tions as we’ve done in this chapter:

 fun take(n: Int): List<A>—Returns a list consisting of the first n elements
of this

 fun takeWhile(f: (A) -> Boolean): List<A>—Returns a list consisting of the
longest valid prefix of this whose elements all pass the predicate f

 fun all(f: (A) -> Boolean): Boolean—Returns true if and only if all elements
of this pass the predicate f

 fun any(f: (A) -> Boolean): Boolean—Returns true if any element of this
passes the predicate f

Mutable
Iterable

Mutable
List

Mutable
Set

Mutable
Map

Mutable
Collection

Collection

List Set Map

Iterable

Figure 3.3 Kotlin standard library collections inheritance hierarchy showing the relationship 
between mutable and read-only variants
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We recommend looking through the Kotlin API documentation after finishing this
chapter to see the other functions. In particular, look up some of the functions you’ve
implemented while doing the exercises for this chapter. If you find yourself writing an
explicit recursive function for doing some sort of list manipulation, check the List
API to see if something like the function you need already exists. 

3.4.3 Inefficiency of assembling list functions 
from simpler components

One of the problems with List is that although we can often express operations and
algorithms in terms of very general-purpose functions, the resulting implementation
isn’t always efficient—we may end up making multiple passes over the same input or
else have to write explicit recursive loops to allow early termination.

 It is always desirable to implement functions in the most efficient way possible;
doing anything else would be wasteful. We don’t have the means of implementing
such efficient code yet, so we will look at implementing this now with the tools we
currently have and then come back to it in chapter 5, where we will work on its
efficiency.

EXERCISE 3.23

Hard: As an example, implement hasSubsequence to check whether a List contains
another List as a subsequence. For instance, List(1,2,3,4) would have List(1,2),
List(2,3), and List(4) as subsequences, among others. You may have some difficulty
finding a concise purely functional implementation that is also efficient. That’s okay.
Implement the function however comes most naturally. We’ll return to this implemen-
tation in chapter 5 and hopefully improve on it.

 Here’s a tip: any two values x and y can be compared for equality in Kotlin using
the expression x == y.

tailrec fun <A> hasSubsequence(xs: List<A>, sub: List<A>): Boolean =

SOLUTION_HERE()

3.5 Trees
The List data structure and its implementations that we have been dealing with in
this chapter are examples of algebraic data types (ADTs). An ADT is just a data type
defined by one or more data constructors, each of which may contain zero or more
arguments. (In Kotlin, the implementations of an ADT are restricted by making the
base class sealed. This prevents altering the class hierarchy by introducing user-defined
implementations.) We say that the data type is the sum or union of its data construc-
tors, and each data constructor is the product of its arguments—hence the name alge-
braic data type.
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NOTE The naming is not coincidental. There’s a deep connection, beyond
the scope of this book, between the “addition” and “multiplication” of types
to form an ADT and addition and multiplication of numbers.

Just as algebra is fundamental to mathematics, algebraic data types are fundamental
to functional programming languages. They’re the primitives on which all of our
richer data structures are built, including the List and Tree that we derive in this
chapter. They can also be seen as the building blocks of FP and give us something to
act on when we execute our programs.

NOTE Somewhat confusingly, the acronym ADT is sometimes also used to
stand for abstract data type. This book will use it only to refer to algebraic data type.

We can use algebraic data types to define other data structures. Let’s define a simple
binary tree data structure.

sealed class Tree<out A>

data class Leaf<A>(val value: A) : Tree<A>()

data class Branch<A>(val left: Tree<A>, val right: Tree<A>) : Tree<A>()

Matching again provides a convenient way of operating over elements of our ADT.
Let’s try writing a few functions.

EXERCISE 3.24

Write a function size that counts the number of nodes (leaves and branches) in a tree.

ADTs and encapsulation
You might object that algebraic data types violate encapsulation by making public the
internal representation of a type. In FP, we approach concerns about encapsulation
differently—we don’t typically have delicate mutable state that could lead to bugs or
violation of invariants if exposed publicly. Exposing the data constructors of a type is
often fine, and the decision to do so is approached much like any other decision
about what the public API of a data type should be.

We typically use ADTs in situations where the set of cases is closed (known to be
fixed, denoted by the sealed keyword). For List and Tree, changing the set of data
constructors would significantly change what these data types are. List is a singly
linked list—that is its nature—and the two cases Nil and Cons form part of its useful
public API. We can certainly write code that deals with a more abstract API than List
(we’ll see examples later in the book). Still, this sort of information hiding can be han-
dled as a separate layer rather than being baked into List directly.

Listing 3.12 Definition of a binary tree data structure
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EXERCISE 3.25

Write a function maximum that returns the maximum element in a Tree<Int>.
 Here’s a tip: Kotlin provides a handy built-in function called maxOf that determines

the maximum of two values. For example, the maximum of x and y can be deter-
mined by maxOf(x, y).

EXERCISE 3.26

Write a function depth that returns the maximum path length from the root of a tree
to any leaf.

EXERCISE 3.27

Write a function map, analogous to the method of the same name on List, that modi-
fies each element in a tree with a given function.

EXERCISE 3.28

Generalize size, maximum, depth, and map for Tree, writing a new function fold that
abstracts over their similarities. Reimplement them in terms of this more general
function. Can you draw an analogy between this fold function and the left and right
folds for List?

fun <A, B> fold(ta: Tree<A>, l: (A) -> B, b: (B, B) -> B): B =

SOLUTION_HERE()

fun <A> sizeF(ta: Tree<A>): Int =

SOLUTION_HERE()

fun maximumF(ta: Tree<Int>): Int =

SOLUTION_HERE()

fun <A> depthF(ta: Tree<A>): Int =

SOLUTION_HERE()



54 CHAPTER 3 Functional data structures
fun <A, B> mapF(ta: Tree<A>, f: (A) -> B): Tree<B> =

SOLUTION_HERE()

Summary
 Immutable data structures are objects that can be acted on by pure functions.
 A sealed class has a finite amount of implementations, restricting the data struc-

ture grammar.
 The when construct can match typed data structures and select an appropriate

outcome evaluation.

Algebraic data types in the standard library
Pair and Triple are simple tuple-like classes that can hold two or three typed val-
ues consecutively. Pair, Triple, and the data classes are all algebraic data types.
Data classes have been covered before, but let’s take a closer look at the Pair and
Triple ADTs:

>>> val p = "Bob" to 42
>>> p
res0: kotlin.Pair<kotlin.String, kotlin.Int> = (Bob, 42)   

>>> p.first            
res1: kotlin.String = Bob

>>> p.second     
res2: kotlin.Int = 42

>>> val (first, second) = p  
>>> first
res3: kotlin.String = Bob

>>> second
res4: kotlin.Int = 42

In this example, "Bob" to 42 constructs a pair of type Pair<String, Int>. We can
extract the first or second element of this pair using values first and second on the
Pair object. It is also possible to destructure a Pair into its sum components, much
like we can do with a data class.

A higher arity variant of the Pair is the Triple, which works much as we would
expect it to with fields first, second, and third. (Arity is the number of arguments
or operands that a function or operation in logic, mathematics, and computer science
takes.) These tuple types are a handy device for when the data class with its named
fields and many methods seems like overkill. Sometimes a simple container of typed
values will do just as well, if not better. 

A pair contains two
values of arbitrary type.

The first value can be 
accessed as first.

The second value can 
be accessed as second.

A pair can be 
destructured.
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 Kotlin matching helps work with data structures but falls short of pattern match-
ing supported by other functional languages.

 Data sharing through the use of immutable data structures allows safe access
without the need for copying structure contents.

 List operations are expressed through recursive, generalized HOFs, promoting
code reuse and modularity.

 Kotlin standard library lists are read-only, not immutable, allowing data corrup-
tion to occur when acted on by pure functions.

 Algebraic data types (ADTs) are the formal name of immutable data structures
and can be modeled by data classes, Pairs, and Triples in Kotlin.

 Both List and Tree developed in this chapter are examples of ADTs.



Handling errors
without exceptions
We noted briefly in chapter 1 that throwing an exception is a side effect and an
undesired behavior. But why do we consider throwing exceptions bad? Why is it not
the desired effect? The answer has much to do with a loss of control. At the point that
an exception is thrown, control is delegated away from the program, and the
exception is propagated up the call stack. This loss of control means one of two
things: the program will be terminated because the exception was not handled, or
else some part of the program higher up the call stack will catch and deal with the
exception. The complexity of our program has just escalated dramatically, and in

This chapter covers
 Pitfalls of throwing exceptions

 Understanding why exceptions break referential 
transparency

 Handling exceptional cases: a functional 
approach

 Using Option to encode success and ignore 
failure

 Applying Either to encode successes and 
failures
56
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functional programming, this loss of control and additional complexity should be
avoided at all costs.

 If exceptions aren’t to be thrown in functional code, how do we deal with excep-
tional cases? The big idea is that we can represent failures and exceptions with com-
mon values. We can write higher-order functions (HOFs) that abstract out common
patterns of error handling and recovery. The functional solution of returning errors
as values is safer. It retains referential transparency, and through the use of HOFs, we
can preserve the primary benefit of exceptions: consolidating error-handling logic. We’ll
take a closer look at exceptions and discuss some of their problems, after which we
will see how to deal with such cases using a functional approach.

 For the same reason that we created our own List and Tree data types in chapter
3, we’ll create two Kotlin types, Option and Either, in this chapter. As before, the
types that we are creating are not present in the Kotlin standard library but are freely
available in other typed functional programming languages.

 These types have also been ported from such languages by Arrow, a supplementary
functional companion library to Kotlin. Although Arrow has now deprecated Option,
we still include it in the book as it remains widely used throughout the functional pro-
gramming community. Even though this is not a book about Arrow, it is worth looking
at the documentation at https://arrow-kt.io. The purpose of this chapter is to enhance
your understanding of how such types can be used for handling errors.

4.1 The problems with throwing exceptions
Why do exceptions break referential transparency (RT), and why is that a problem?
Let’s look at a simple example. We’ll define and then call a function that throws an
exception.

fun failingFn(i: Int): Int {
val y: Int = throw Exception("boom")   
return try {

val x = 42 + 5
x + y

} catch (e: Exception) {
43   

}
}

Calling failingFn from the REPL gives the expected error:

>>> chapter4.Listing_4_1.failingFn(12)
java.lang.Exception: boom

at chapter4.Listing_4_1.failingFn(Listing_4_1.kt:7)

We can prove that y is not referentially transparent. Recall from section 1.3 that any
RT expression may be substituted for the value it refers to, and this substitution

Listing 4.1 Throwing and catching an exception

Declaration of 
type Int throws 
Exception

Unreachable code, so 
does not return 43

https://arrow-kt.io
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should preserve program meaning. If we substitute throw Exception("boom!") for y
in x + y, the result is different because the exception is now raised inside a try block
that catches the exception and returns 43:

fun failingFn2(i: Int): Int =
try {

val x = 42 + 5
x + (throw Exception("boom!")) as Int   

} catch (e: Exception) {
43     

}

We can demonstrate this in the REPL:

>>> chapter4.Listing_4_1.failingFn2(12)
res0: kotlin.Int = 43

Another way of understanding RT is that the meaning of an RT expression does not
depend on context and may be reasoned about locally, whereas the meaning of a non-RT
expression is context dependent and requires more global reasoning. For instance, the
meaning of the RT expression 42 + 5 doesn’t depend on the larger expression it’s
embedded in—it’s always and forever equal to 47. But the meaning of the expression
throw Exception("boom!") is very context dependent—as we just demonstrated, it
takes on different meanings depending on which try block (if any) it’s nested within.

 Exceptions have two main problems:

 As we just discussed, exceptions break RT and introduce context dependence, moving
us away from the substitution model’s simple reasoning and making it possible
to write confusing, exception-based code. This is the source of the folklore
advice that throwing exceptions should be used only for error handling, not for
control flow. In functional programming, we avoid throwing exceptions except
under extreme circumstances where we cannot recover.

 Exceptions are not type-safe. The type of failingFn, (Int) -> Int tells us nothing
about the fact that exceptions may occur, and the compiler certainly won’t
force callers of failingFn to decide how to handle those exceptions. If we for-
get to check for an exception in failingFn, a thrown exception won’t be
detected until run time.

Higher-order functions and the use of checked exceptions
Java’s checked exceptions at least force a decision about whether to handle or re-
raise an error, but they result in significant boilerplate for callers. More importantly,
they don’t work for HOFs, which can’t possibly be aware of the specific exceptions
that could be raised by their arguments. For example, consider the map function we
defined for List:

A thrown Exception 
can be annotated with 
any type; here it is Int.

Exception is caught, 
so returns 43
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We’d like an alternative to exceptions without these drawbacks. Still, we don’t want to
lose out on the primary benefit of exceptions: they allow us to consolidate and centralize
error-handling logic rather than being forced to distribute this logic throughout our
codebase. The technique we use is based on an old idea: instead of throwing an excep-
tion, we return a value indicating an exceptional condition. This idea might be famil-
iar to anyone who has used return codes in C to handle exceptions. But instead of
using error codes, we introduce a new generic type for these “possibly defined values”
and use HOFs to encapsulate common patterns of handling and propagating errors.
Unlike C-style error codes, the error-handling strategy we use is completely type-safe, and
we get complete assistance from the type checker in forcing us to deal with errors with
a minimum of syntactic noise. We’ll see how all of this works shortly. 

4.2 Problematic alternatives to exceptions
Let’s consider a realistic situation where we might use an exception, and look at
approaches we could use instead. Here’s an implementation of a function that com-
putes the mean of a list, which is undefined if the list is empty:

fun mean(xs: List<Double>): Double =
if (xs.isEmpty())

throw ArithmeticException("mean of empty list!")   
else xs.sum() / length(xs)      

The mean function is an example of a partial function: it’s not defined for some
inputs. A function is typically partial because it makes some assumptions about its
inputs that aren’t implied by the input types. (A function may also be partial if it
doesn’t terminate for some inputs. We won’t discuss this form of partiality here since
it’s not a recoverable error and there’s no question of how best to handle it.) You
may be used to throwing exceptions in this case, but two other options exist, which
also are not desirable. Let’s look at these for our mean example before we look at the
preferred approach.

fun <A, B> map(xs: List<A>, f: (A) -> B): List<B> =
foldRightL(xs, List.empty()) { a: A, xa: List<B> ->

Cons(f(a), xa)
}

This function is clearly useful, highly generic, and at odds with the use of checked
exceptions—we can’t have a version of map for every single checked exception that
could possibly be thrown by f. Even if we wanted to do this, how would map even know
the possible exceptions? This is why generic code, even in Java, often resorts to
using RuntimeException or some common checked Exception type. 

An Arithmetic-
Exception is thrown 
if xs is empty.

Otherwise, returns 
the valid result
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4.2.1 Sentinel value

The first possible alternative to throwing an exception is to return some sort of bogus
value of type Double. We could simply return xs.sum() / xs.length() in all cases and
have it return Double.NaN when the denominator xs.length() is zero. Alternatively,
we could return some other sentinel value. In yet other situations, we might return
null instead of a value of the needed type. This general class of approaches is how
error handling is often done in languages without exceptions, and we reject this solu-
tion for a few reasons:

 It allows errors to silently propagate—the caller can forget to check this condi-
tion and won’t be alerted by the compiler, resulting in subsequent code not
working correctly. Often the error isn’t detected until much later in the code.

 It results in a fair amount of boilerplate code at call sites with explicit if state-
ments to check whether the caller has received a “real” result. This boilerplate
is magnified if you happen to be calling several functions, each of which uses
error codes that must be checked and aggregated in some way.

 It does not apply to polymorphic code. We might not even have a sentinel value
of that type for some output types even if we wanted to! Consider a function like
max, which finds the maximum value in a sequence according to a custom com-
parison function: fun <A> max(xs: List<A>, greater: (A,A) -> Boolean): A. If
the input is empty, we can’t invent a value of type A. Nor can null be used here
since null is only valid for nonprimitive types, and A may, in fact, be a primitive
like Double or Int.

 It demands a particular policy or calling convention of callers—proper use of
the mean function would require that callers do something other than call mean
and make use of the result. Giving functions particular policies like this makes it
difficult to pass them to HOFs, which must treat all arguments uniformly. 

4.2.2 Supplied default value

The second alternative to throwing an exception is to force the caller to supply an
argument that tells us what to do in case we don’t know how to handle the input:

fun mean(xs: List<Double>, onEmpty: Double) =
if (xs.isEmpty()) onEmpty           
else xs.sum() / xs.size()       

This makes mean into a total function, taking each value of the input type into precisely
one value of the output type. But it still has drawbacks: it requires that immediate callers
have direct knowledge of how to handle the undefined case and limits them to return-
ing a Double. What if mean is called as part of a more extensive computation, and we’d
like to abort that computation if mean is undefined? Or what if we’d like to take some
utterly different branch in the more extensive computation in this case? Simply pass-
ing an onEmpty parameter doesn’t give us this freedom. We need a way to defer the

A default value is 
provided if xs is empty.

Otherwise, returns the valid result
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decision of how to handle undefined cases so that they can be dealt with at the most
appropriate level. 

4.3 Encoding success conditions with Option
The preferred approach we alluded to in section 1.2 is explicitly representing that a
function may not always have an answer in the return type. We can think of this
approach as deferring the error-handling strategy to the caller. We will introduce a
new type called Option to represent such a condition. As we mentioned earlier, this
type also exists in many other functional languages and libraries, so we’ll create it here
for pedagogical purposes:

sealed class Option<out A>

data class Some<out A>(val get: A) : Option<A>()

object None : Option<Nothing>()

Option has two cases:

 Undefined, in which case it will be None
 Defined, in which case it will be Some

We can use Option for our definition of mean as shown here.

fun mean(xs: List<Double>): Option<Double> =
if (xs.isEmpty()) None              
else Some(xs.sum() / xs.size())   

The return type now reflects the possibility that the result may not always be defined.
For example, figure 4.1 shows how we still always return a result of the declared type
(now Option<Double>) from our function instead of potentially invalid Double values.

4.3.1 Usage patterns for Option

Partial functions abound in programming, and Option (and the Either data type that
we’ll discuss shortly in section 4.4) is typically how this partiality is dealt with in FP. You
won’t see Option used anywhere in the Kotlin standard library, although you will see
its use across many languages and in functional libraries. Here are some examples of
how you may see it used:

 Lookup on maps for a given key with getOption returns a value wrapped in
Some if found or else None for nonexistent values.

 firstOrNone and lastOrNone defined for lists and other iterables return an
Option containing the first or last elements of a sequence if it’s nonempty.

Listing 4.2 Using Option to make the mean function pure

None value is returned 
if xs is empty

Some value is returned, 
wrapping a valid result
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These aren’t the only examples—as functional programmers, we’ll see Option come
up in many different situations. What makes Option convenient is that we can factor
out standard error-handling patterns via HOFs, freeing us from writing the usual boil-
erplate that comes with exception-handling code. In this section, we cover some of the
essential functions for working with Option. Our goal is not for you to attain fluency
with all these functions but to get you familiar enough to revisit this chapter and make
progress on your own when you have to write functional code to deal with errors.

Nullable types, and how they compare to Option
Kotlin chose not to introduce the concept of Option, with the creators citing instan-
tiation of lightweight wrappers as performance overhead. The alternative solution for
dealing with null values was introducing the concept of the nullable type.

Mapping all invalid inputs to a
token value of the same type as
valid output. Highly ambiguous,
and the call site is unaware of
such . Notspecial values
checked by the compiler.

Sentinel values for

invalid outcomes
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BASIC FUNCTIONS ON OPTION

Option can be thought of like a List that can contain at most one element, and many
of the List functions we saw earlier have analogous functions on Option. Let’s look at
some of these functions.

 We’ll do something slightly different than in chapter 3, where we put all our List
functions in the List companion object. Here we’ll use extension methods when pos-
sible, enhancing the objects so they can be called with the syntax obj.fn(arg1) or obj
fn arg1 instead of fn(obj, arg1). This stylistic choice has no particular significance,
and we’ll use both styles throughout this book. (In general, we’ll use this object-oriented
style of syntax where possible for functions that have a single, clear operand---like
List.map---and the standalone function style otherwise.) Let’s take a closer look.

fun <A, B> Option<A>.map(f: (A) -> B): Option<B> =

SOLUTION_HERE()       

fun <A, B> Option<A>.flatMap(f: (A) -> Option<B>): Option<B> =

SOLUTION_HERE()       

fun <A> Option<A>.getOrElse(default: () -> A): A =

SOLUTION_HERE()       

fun <A> Option<A>.orElse(ob: () -> Option<A>): Option<A> =

SOLUTION_HERE()       

fun <A> Option<A>.filter(f: (A) -> Boolean): Option<A> =

SOLUTION_HERE()       

The type system differentiates between references that could hold a null and those
that can never do so. A parallel type hierarchy was introduced so that every type in
the type system has an equivalent nullable type. For instance, a value that references
a String that could potentially be null must be of type String?. The ? differentiates
it from its non-nullable equivalent, String. This nullable value needs to be handled
at the call site, with the compiler forcing us to deal with the duality of its state.

Handling nulls at compile time is certainly better than allowing null values to prop-
agate and blow up with a NullPointerException at run time, but it still leaves a trail
of boilerplate code at every call site where these nullable types need to be handled.

This book focuses on what we believe to be a more functional approach by using the
Option data type to represent nullable values. The overhead caused by using such
objects is negligible, so we won’t refer to nullable types from here on out.

Listing 4.3 Enhancing the Option data type

Apply f to transform value of A 
to B if the Option is not None.

Applies f, which may fail, to the 
Option if the Option is not None

Returns a default value 
if the Option is None

Returns a default Option 
if the Option is None

Converts Some to None if 
the predicate f is not met
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There is something worth mentioning here. The default: () -> A type annotation in
getOrElse (and the similar annotation in orElse) indicates that the argument is a no-
args function that returns a type B. This is frequently used for implementing lazy eval-
uation. Don’t worry about this for now—we’ll talk much more about this concept of
non-strictness in chapter 5.

EXERCISE 4.1

Implement all of the preceding functions on Option. As you implement each func-
tion, try to think about what it means and in what situations you’d use it. We’ll
explore when to use each of these functions next. Here are a few hints for solving
this exercise:

 It’s fine to use matching, although you should be able to implement all the
functions other than map and getOrElse without resorting to this technique.

 For map and flatMap, the type signature should be enough to determine the
implementation.

 getOrElse returns the result inside the Some case of the Option; or if the Option
is None, getOrElse returns the given default value.

 orElse returns the first Option if it’s defined; otherwise, it returns the second
Option.

USAGE SCENARIOS FOR THE BASIC OPTION FUNCTIONS

Although we can explicitly match on an Option, we’ll almost always use the previous
HOFs. Here, we give some guidance on when to use each one. Fluency with these
functions will come with practice, but the objective is to get some basic familiarity.
Next time you try writing functional code that uses Option, see if you can recognize
the patterns these functions encapsulate before resorting to pattern matching.

 Let’s start with map. We can use the map function to transform the result inside an
Option, if it exists. We can think of it as proceeding with computation on the assump-
tion that an error hasn’t occurred; it’s also a way of deferring error handling to later
code. Let’s use an employee department lookup to demonstrate the use of map (see
figure 4.2):

data class Employee(
val name: String,
val department: String,
val manager: Option<String>

)
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fun lookupByName(name: String): Option<Employee> = TODO()

fun timDepartment(): Option<String> =
lookupByName("Tim").map { it.department }

Here, lookupByName("Tim") returns an Option<Employee>, which we transform using
map to pull out the String representing the department. Note that we don’t need to
explicitly check the result of lookupByName("Tim"); we simply continue the computa-
tion as if no error occurred inside the argument to map. If lookupByName("Tim")
returns None, this will abort the rest of the computation, and map will not call the
it.department function.

 In our example, Employee has a manager of type Option<String>. If we wanted to
determine who the manager was using a simple map as we did for department, it would
leave us with an unwieldy Option<Option<String>>:

val unwieldy: Option<Option<String>> =
lookupByName("Tim").map { it.manager }

When we apply flatMap, it first maps and then flattens the result so that we are left
with a more useful Option<String> representing Tim’s manager (see figure 4.3).
(Perhaps it should have been called mapFlat, but that doesn’t sound quite as appeal-
ing!) That can then, in turn, be dealt with by getOrElse for a more tangible result:

val manager: String = lookupByName("Tim")
.flatMap { it.manager }
.getOrElse { "Unemployed" }

"Tim"
Some<Employee>

lookupByName("Tim")

None None

"Accounts"
Some<String>

map {it.department}
where department
is a simple String

on Employee

getOrElse {"Unemployed"}

"Unemployed"
String

"Accounts"
String

Figure 4.2 Transforming the content of an Option using mapFigure 4.2 Transforming the content of an Option using map
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EXERCISE 4.2

Implement the variance function in terms of flatMap. If the mean of a sequence is m,
the variance is the mean of x minus m to the power of 2 for each element of x in the
sequence. In code, this is (x - m).pow(2). The mean method developed in listing 4.2
can be used to implement this. (See this page for a definition of variance: https://en
.wikipedia.org/wiki/Variance#Definition.)

fun variance(xs: List<Double>): Option<Double> =

SOLUTION_HERE()

As the implementation of variance demonstrates, with flatMap we can construct a
computation with multiple stages, any of which may fail. The computation will abort
as soon as the first failure is encountered since None.flatMap(f) will immediately
return None, without running f.

 We can use filter to convert successes into failures if the successful values don’t
match the predicate. A common pattern is to transform an Option via calls to map,
flatMap, and/or filter and then use getOrElse to do error handling at the end.
This can be demonstrated by continuing with our employee example:

val dept: String = lookupByName("Tim")
.map { it.department }
.filter { it != "Accounts" }
.getOrElse { "Unemployed" }

getOrElse is used here to convert from an Option<String> to a String by providing a
default department in case the key "Tim" doesn’t exist in the map or if Tim’s depart-
ment isn’t "Accounts".

"Tim"
Some<Employee>

lookupByName("Tim")

None None

"David Brent"
Some<String>

flatMap {it.manager}
where manager

is an <Option String>
on Employee

getOrElse {"Gareth"}

"Gareth"
String

"David Brent"
String

Figure 4.3 Flattening and transforming the content of Option<Option>> with flatMap

https://en.wikipedia.org/wiki/Variance#Definition
https://en.wikipedia.org/wiki/Variance#Definition
https://en.wikipedia.org/wiki/Variance#Definition
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 orElse is similar to getOrElse, except that we return another Option if the first is
None. This is often useful when we need to chain together possibly failing computa-
tions, trying the second if the first hasn’t succeeded.

 A common idiom is to do o.getOrElse(throw Exception("FAIL")) to convert the
None case of an Option back to an exception. The general rule of thumb is that we use
exceptions only if no reasonable program would ever catch the exception; if for some
callers, the exception might be a recoverable error, we use Option (or Either, dis-
cussed in section 4.4) to give them flexibility.

 As you can see, returning errors as common values can be convenient. Using HOFs
lets us achieve the same sort of consolidation of error-handling logic we would get from
using exceptions. Note that we don’t have to check for None at each stage of the compu-
tation—we can apply several transformations and then check for and handle None when
we’re ready. But we also get additional safety since Option<A> is a different type than A.
The compiler won’t let us forget to explicitly defer or handle the possibility of None. 

4.3.2 Option composition, lifting, and wrapping 
exception-oriented APIs

It may be easy to jump to the conclusion that once we start using Option, it infects our
entire code base. We can imagine how any callers of methods that take or return
Option will have to be modified to handle either Some or None. But this doesn’t hap-
pen, and the reason is that we can lift ordinary functions to become functions that
operate on Option.

 For example, the map function lets us operate on values of type Option<A> using a
function of type (A) -> B, returning Option<B>. Another way of looking at this is that
map turns a function f of type (A) -> B into a function of type (Option<A>) ->
Option<B>. Let’s make this explicit.

fun <A, B> lift(f: (A) -> B): (Option<A>) -> Option<B> =
{ oa -> oa.map(f) }

This tells us that any function we already have lying around can be transformed (via
lift) to operate within the context of a single Option value. Let’s look at an example
to demonstrate how we can use lift on the built-in kotlin.math.abs function to get
the absolute value of a number:

val absO: (Option<Double>) -> Option<Double> =
lift { kotlin.math.abs(it) }

The kotlin.math namespace contains various standalone mathematical functions,
including abs, sqrt, exp, etc. We didn’t need to rewrite the kotlin.math.abs func-
tion to work with optional values; we just lifted it into the Option context after the
fact. We can do this for any function (see figure 4.4).

Listing 4.4 Lifting a function to work with Options
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Let’s look at another example. Suppose we’re implementing the logic for a car insur-
ance company’s website, which contains a page where users can submit a form to
request an instant online quote. We’d like to parse the information from this form
and ultimately call our rate function:

/**
* Top secret formula for computing an annual car
* insurance premium from two key factors.
*/

fun insuranceRateQuote(
age: Int,
numberOfSpeedingTickets: Int

): Double = TODO()

We want to be able to call this function, but if the user is submitting their age and
number of speeding tickets in a web form, these fields will arrive as simple strings that
we have to (try to) parse into integers. This parsing may fail; given a string, s, we can
attempt to parse it into an Int using s.toInt(), which throws a NumberFormat-
Exception if the string isn’t a valid integer:

>>> "112".toInt()
res0: kotlin.Int = 112

>>> "hello".toInt()
java.lang.NumberFormatException: For input string: "hello"

Let’s convert the exception-based API of toInt() to Option and see if we can imple-
ment a function parseInsuranceRateQuote that takes the age and number of speed-
ing tickets as strings and tries to call the insuranceRateQuote function if parsing both
values is successful:

fun parseInsuranceRateQuote(
age: String,
speedingTickets: String

): Option<Double> {

val optAge: Option<Int> = catches { age.toInt() }

lift(kotlin.math.abs):

(Option<Double>) -> Option<Double>

kotlin.math.abs:

(Double) -> Double

lift

Figure 4.4 Lifting a simple function to 
receive and emit Option types
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val optTickets: Option<Int> =
catches { speedingTickets.toInt() }

//return insuranceRateQuote(optAge, optTickets)   
}

fun <A> catches(a: () -> A): Option<A> =    
try {

Some(a())               
} catch (e: Throwable) {  

None
}

The catches function is a general-purpose function we can use to convert from an
exception-based API to an Option-oriented API. This uses a non-strict or lazy argu-
ment, as indicated by using the no-args function definition () -> A as the type of a.
We’ll discuss laziness in much greater detail in chapter 5. Still, we need to know
that the lazy parameter can be evaluated by calling invoke() or with the equivalent
() shorthand notation. In other words, the invocation could have been made as
a.invoke() or a().

 But there’s a problem: after we parse optAge and optTickets into Option<Int>,
how do we call insuranceRateQuote, which currently takes two Int values? Do we
have to rewrite insuranceRateQuote to take Option<Int> values instead? No, and
changing insuranceRateQuote would entangle concerns, forcing it to be aware that a
prior computation might have failed—not to mention that we may not have the ability
to modify insuranceRateQuote; perhaps it’s defined in a separate module that we
don’t have access to. Instead, we’d like to lift insuranceRateQuote to operate in the
context of two optional values. We could do this using explicit pattern matching in the
body of parseInsuranceRateQuote, but that would be tedious.

EXERCISE 4.3

Write a generic function, map2, that combines two Option values using a binary func-
tion. If either Option value is None, the return value is, too. Here is its signature:

fun <A, B, C> map2(a: Option<A>, b: Option<B>, f: (A, B) -> C): Option<C> =

SOLUTION_HERE()

With map2, we can now implement parseInsuranceRateQuote as follows:

fun parseInsuranceRateQuote(
age: String,
speedingTickets: String

): Option<Double> {

Does not type-
check due to 
incompatibilities

Accepts the A argument non-strictly 
so we can catch any exceptions that 
occur while evaluating a and convert 
them to None

Invokes non-strict parameter 
a with () inside Some

Discards information about the error e. We’ll 
improve on this in section 4.4 with Either.
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val optAge: Option<Int> = catches { age.toInt() }

val optTickets: Option<Int> =
catches { speedingTickets.toInt() }

return map2(optAge, optTickets) { a, t ->
insuranceRateQuote(a, t)

}
}

Using map2 lets us use the existing insuranceRateQuote function. Nonetheless, one
drawback still prevails: if either or both of the Options are None, an overall None is
returned, so we lose the knowledge of which has failed.

 Nevertheless, the map2 function means we never need to modify any existing func-
tions with two arguments to make them “Option-aware.” We can lift them to operate
in the context of Option after the fact. Can you already see how you might define
map3, map4, and map5? Let’s look at a few other similar cases.

EXERCISE 4.4

Write a function, sequence, that combines a list of Options into one Option contain-
ing a list of all the Some values in the original list. If the original list contains None even
once, the result of the function should be None; otherwise, the result should be Some
with a list of all the values. Its signature is as follows:

fun <A> sequence(xs: List<Option<A>>): Option<List<A>> =

SOLUTION_HERE()

This is a clear instance where it’s not appropriate to define the function in the object-
oriented style. This shouldn’t be a method on List (which shouldn’t need to know
anything about Option), and it can’t be a method on Option, so it goes in the Option
companion object.

Sometimes we’ll want to map over a list using a function that might fail, returning
None if applying it to any element of the list returns None. For example, what if we have
a whole list of String values that we wish to parse to Option<Int>? In that case, we can
simply sequence the results of the map:

fun parseInts(xs: List<String>): Option<List<Int>> =
sequence(xs.map { str -> catches { str.toInt() } })

Unfortunately, this is inefficient since it traverses the list twice: first to convert each
String to an Option<Int>, and again to combine these Option<Int> values into an
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Option<List<Int>>. Wanting to sequence the results of a map this way is a common
enough occurrence to warrant a new generic function, traverse.

EXERCISE 4.5

Implement the traverse function. It’s fairly straightforward to do using map and
sequence, but try for a more efficient implementation that only looks at the list once.
When complete, implement sequence by using traverse.

fun <A, B> traverse(
xa: List<A>,
f: (A) -> Option<B>

): Option<List<B>> =

SOLUTION_HERE()

After seeing so many examples, we can conclude that we should never have to modify any
existing functions to work with optional values. Given map, lift, sequence, traverse,
map2, map3, and so on, we have all the tools available to deal with such cases. 

4.3.3 For-comprehensions with Option

Many languages have a feature called for-comprehensions or monad-comprehensions. This
concept can be described as a construct that applies syntactic sugar over a series of
flatMap and map calls, yielding a final result. Although the for-comprehension is not
strictly required, it has a far more pleasing and concise syntax that resembles impera-
tive code instead of dealing with a sequence of nested calls.

 Kotlin does not provide a for-comprehension out of the box, but fortunately,
Arrow has this covered. In Arrow, it is implemented as an fx block that we can use in
conjunction with many data types, but it works similarly to what other languages pro-
vide. Let’s look at some pseudocode for our Option type to demonstrate how the fx
block would look. We can implement map2 using such an fx method on Option. Con-
sider the following code as an implementation of map2:

fun <A, B, C> map2(
oa: Option<A>,
ob: Option<B>,
f: (A, B) -> C

): Option<C> =
oa.flatMap { a ->

ob.map { b ->
f(a, b)

}
}
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Using an fx function, this can now be distilled into something far more expressive
and seemingly imperative:

fun <A, B, C> map2(
oa: Option<A>,
ob: Option<B>,
f: (A, B) -> C

): Option<C> =
Option.fx {

val a = oa.bind()
val b = ob.bind()
f(a, b)

}

A for-comprehension consists of a sequence of statements, such as val a = oa.bind()
and val b = ob.bind(), followed by an expression like f(a, b) that yields the result.
The compiler desugars these statements into flatMap calls on each Option, and the
final expression is converted to a call to map yielding the result.

 It is worth noting that this for-comprehension style will not work with our Option
type as it currently stands, as the supported classes need to be instances of the Monad
type class. We will learn about Monads and type classes in part 3 of the book; for now,
suffice to say that this will work only when we rely on Arrow and have the necessary
boilerplate code in place for the likes of the Option, Either, List, State, and IO
classes that we will come to know later in the book.

 As you become more comfortable using flatMap and map, feel free to begin using
for-comprehensions in place of explicit calls to these combinators. 

4.4 Encoding success and failure conditions with Either
As we alluded to earlier, the big idea in this chapter is that we can represent failures
and exceptions with common values and write functions that abstract out standard
error-handling and -recovery patterns. Option isn’t the only data type we could use for
this purpose, and although it is used frequently, it’s rather simplistic. You may have
noticed that Option doesn’t tell us anything about what went wrong in the case of an
exceptional condition. All it can do is give us None, indicating that there’s no value to
be had. But sometimes we want to know more. For example, we might want a String
giving more information; or, if an exception was raised, we might want to know what
that error actually was.

 We can craft a data type that encodes whatever information we want about failures.
Sometimes just knowing whether a failure occurred is sufficient, in which case we can
use Option; other times, we want more information. In this section, we walk through a
simple extension to Option, the Either data type, which lets us track a reason for the
failure. Let’s look at its definition.
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sealed class Either<out E, out A>

data class Left<out E>(val value: E) : Either<E, Nothing>()

data class Right<out A>(val value: A) : Either<Nothing, A>()

Either has only two cases, just like Option. The essential difference is that both cases
carry a value. The Either data type represents values that can be one of two things in
a very general way. We can say that it’s a disjoint union of two types. When we use it to
indicate success or failure, by convention, the Right constructor is reserved for the
success case (a pun on “right,” meaning correct), and Left is used for failure. We’ve
given the left type parameter the suggestive name E (for error).

NOTE Either is also often used more generally to encode one of two possibil-
ities in cases where it isn’t worth defining a fresh data type. We’ll see exam-
ples of this throughout the book.

Let’s look at the mean example again, this time returning a String in case of failure:

fun mean(xs: List<Double>): Either<String, Double> =
if (xs.isEmpty())

Left("mean of empty list!")
else Right(xs.sum() / xs.size())

Sometimes we may want to include more information about the error, such as a stack
trace showing the location of the error in the source code. In such cases, we can sim-
ply return the exception in the Left side of an Either:

fun safeDiv(x: Int, y: Int): Either<Exception, Int> =
try {

Right(x / y)
} catch (e: Exception) {

Left(e)
}

To help create a new Either, we will once again write a function, called catches, that
factors out this common pattern of converting thrown exceptions to values.

fun <A> catches(a: () -> A): Either<Exception, A> =
try {

Right(a())
} catch (e: Exception) {

Left(e)
}

Listing 4.5 The Either data type

Listing 4.6 A catches function converting exceptions to Either
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EXERCISE 4.6

Implement versions of map, flatMap, orElse, and map2 on Either that operate on the
Right value.

fun <E, A, B> Either<E, A>.map(f: (A) -> B): Either<E, B> =

SOLUTION_HERE()

fun <E, A, B> Either<E, A>.flatMap(f: (A) -> Either<E, B>): Either<E, B> =

SOLUTION_HERE()

fun <E, A> Either<E, A>.orElse(f: () -> Either<E, A>): Either<E, A> =

SOLUTION_HERE()

fun <E, A, B, C> map2(
ae: Either<E, A>,
be: Either<E, B>,
f: (A, B) -> C

): Either<E, C> =

SOLUTION_HERE()

4.4.1 For-comprehensions with Either

In this section, we focus on writing elegant for-comprehensions with Either. Arrow
includes a variant of Either that can be used in such for-comprehensions, although it
is possible to retrofit our own data type with the necessary boilerplate. For the sake of
simplicity, we will use the Arrow implementation. Let’s look at the following extensive
example to demonstrate how it works.

suspend fun String.parseToInt(): arrow.core.Either<Throwable, Int> =     
arrow.core.Either.catch { this.toInt() }   

suspend fun parseInsuranceRateQuote(   
age: String,
numberOfSpeedingTickets: String

): arrow.core.Either<Throwable, Double> {
val ae = age.parseToInt()       
val te = numberOfSpeedingTickets.parseToInt()
return arrow.core.Either.fx {  

val a = ae.bind()      
val t = te.bind()

Listing 4.7 Using Either in for-comprehensions

Adds the parseToInt
extension method to String

Uses the Either.catch 
method to produce an 
Either<Throwable, Int>

Method is marked 
suspended, meaning its 
child process could block

Uses an extension method 
to produce an Either

Opens the for-comprehension 
with Either.fx

flatMaps the right-
biased Either by 
calling bind()
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insuranceRateQuote(a, t)    
}

}

This example has a lot going on, so let’s work through it slowly. First, we declare an
extension function that adds a parseToInt method to all String instances. This
function will handle any exceptions thrown by the toInt method on String and will
automatically return an Either.Left containing the thrown exception or else an
Either.Right containing the successfully parsed value. Because this could potentially
be a blocking operation, we need to mark the function with a suspend keyword. A sus-
pending function is just a regular Kotlin function with an additional suspend modifier,
which indicates that the function can be suspended on the execution of a long-running
child process.

 The parseInsuranceRateQuote method, in turn, uses this extension function to
parse both its String parameters into Either<Throwable, Int>. Both of these param-
eters could result in a failure that results in an Either.Left containing the exception
and are subsequently flatMapped from within the for-comprehension marked by the
fx block.

 The final call to insuranceRateQuote will only ever be called if both instances of
Either are Right. This will result in an Either.Right<Double>. On the other hand, if
either or both instances are Either.Left<Throwable>, the first will be returned to the
method’s caller, short-circuiting the rest of the for-comprehension. The right side of
the Either always takes precedence, so it is said to be right-biased.

 Now we get information about the actual exception that occurred, rather than just
getting back None in the event of a failure.

EXERCISE 4.7

Implement sequence and traverse for Either. These should return the first error
that’s encountered, if there is one.

As a final example, here’s an application of map2 where the function mkPerson vali-
dates both the given name and given age before constructing a valid Person.

data class Name(val value: String)
data class Age(val value: Int)
data class Person(val name: Name, val age: Age)

fun mkName(name: String): Either<String, Name> =
if (name.isBlank()) Left("Name is empty.")
else Right(Name(name))

Listing 4.8 Using Either to validate data

Returns the final evaluation 
of insuranceRateQuote as 
Either.Right on success
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fun mkAge(age: Int): Either<String, Age> =
if (age < 0) Left("Age is out of range.")
else Right(Age(age))

fun mkPerson(name: String, age: Int): Either<String, Person> =
map2(mkName(name), mkAge(age)) { n, a -> Person(n, a) }

EXERCISE 4.8

In listing 4.8, map2 can report only one error, even if both the name and age are
invalid. What would you need to change to report both errors? Would you change map2
or the signature of mkPerson? Or could you create a new data type that captures this
requirement better than Either does, with some additional structure? How would
orElse, traverse, and sequence behave differently for that data type?

Summary
 Throwing exceptions is not desirable and breaks referential transparency.
 Throwing exceptions should be reserved for extreme situations where recovery

is not possible.
 You can achieve purely functional error handling by using data types that

encapsulate exceptional cases.
 The Option data type is convenient for encoding a simple success condition as

Some or a failure as an empty None.
 The Either data type can encode a success condition as Right or a failure con-

dition as Left.
 Functions prone to throwing exceptions may be lifted to be compliant with

Option and Either types.
 A series of Option or Either operations may be halted on the first failure

encountered.
 The for-comprehension is a construct that allows the fluid expression of a series of

combinator calls.
 The Arrow library, a functional companion to Kotlin, has the Either construct

that allows for-comprehensions through binding methods to simplify code.



Strictness and laziness
Kotlin, like most modern programming languages, uses strict evaluation by default.
That is, it allows only functions whose parameters must be entirely evaluated before
they may be called. In all our examples so far, we have focused on this evaluation
strategy, also know as eager or greedy evaluation. In fact, this is what we have been
using while deriving data types such as List, Option, and Either. We will look at a
more formal definition of strictness later, but what does strict evaluation imply in
the real world?

 Strictly evaluated expressions are evaluated at the moment they are bound to a
variable. This includes when they are passed to functions as parameters. This strat-
egy is acceptable if we merely assign a simple value, but what if our expression per-
forms an expensive or complex computation to determine its value? And, taking

This chapter covers
 Strict vs. non-strict functions

 Implementing a lazy list data type

 Memoizing streams to avoid recomputation

 Inspecting streams to visualize and test

 Separating program description from evaluation

 Infinite streams and corecursion
77
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this a step further, what if this expensive computation is to be used in expressing all
elements of a list data type, where we might only need the first few elements?

 The notion of non-strict or lazy evaluation comes to the rescue here—the value is
only computed at the point where it is actually referenced, not where it is declared.
We are no longer greedy in performing all the calculations but instead compute them
on demand.

 In this chapter, we look more closely at the concept of non-strict evaluation and
the implications of applying this strategy. We also build an algebraic data type that
models this concept closely, allowing us to perform all the same operations as with the
data types we implemented previously. We see how these operations help us bring
about a separation of concerns between the declaration of a computation and its
eventual evaluation. Finally, we delve into how to produce infinite data streams using
corecursion, a technique of lazily generating infinite sequences of values based on what
the streams themselves produce.

 In chapter 3, we talked about purely functional data structures, using singly linked
lists as an example. We covered several bulk operations on lists: map, filter, fold-
Left, foldRight, zipWith, and so on. We noted that each of these operations makes
its own pass over the input and constructs a new list for the output.

 Imagine if you had a deck of cards and you were asked to remove the odd-numbered
cards and then flip over all the queens. Ideally, you’d make a single pass through the
deck, looking for queens and odd-numbered cards at the same time. This is more effi-
cient than removing the odd cards and then looking for queens in the remainder.
And yet the latter is what Kotlin does in the following snippet of code:

>>> List.of(1, 2, 3, 4).map { it + 10 }.filter { it % 2 == 0 }.map { it * 3 }
res0: kotlin.collections.List<kotlin.Int> = [36, 42]

In this expression, map { it + 10 } will produce an intermediate list that is then passed
to filter { it % 2 == 0 }, which in turn constructs a list that is passed to map { it * 3 },
which then produces the final list. In other words, each transformation produces a
temporary list that is only ever used as input to the next transformation and is then
immediately discarded.

 Think about how this program would be evaluated. If we manually produced a
trace of its evaluation, the steps would look like something like the following.

List.of(1, 2, 3, 4)
.map { it + 10 }.filter { it % 2 == 0 }.map { it * 3 }

List.of(11, 12, 13, 14)
.filter { it % 2 == 0 }.map { it * 3 }

List.of(12, 14)
.map { it * 3 }

List.of(36, 42)

Listing 5.1 Evaluation trace of a strict list implementation
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Here we’re showing the result of each substitution performed to evaluate our
expression. For example, to go from the first line to the second, we’ve replaced
List.of(1,2,3,4).map { it + 10 } with List.of(11,12,13,14), based on the defini-
tion of map.

NOTE With program traces like these, it’s often more illustrative to not fully
trace the evaluation of every subexpression. In this case, we’ve omitted the
full expansion of List.of(1,2,3,4).map { it + 10 }. We could “enter” the
definition of map and trace its execution step by step, but we chose to omit
this level of detail for the sake of simplicity.

This view clarifies how the calls to map and filter each perform their own traversal of
the input and allocate lists for the output. Wouldn’t it be nice if we could somehow
fuse sequences of transformations like this into a single pass and avoid creating tem-
porary data structures? We could rewrite the code into a while loop by hand, but ide-
ally, we’d like to have this done on our behalf while retaining the same high-level
compositional style. We want to compose our programs using higher-order functions
like map and filter instead of writing monolithic loops.

 It turns out that we can accomplish this kind of automatic loop fusion using non-
strictness (or, less formally, laziness). In this chapter, we explain what this means, and we
work through the implementation of a lazy list type that fuses sequences of transfor-
mations. Although building a “better” list is the motivation for this chapter, we’ll see
that non-strictness is a fundamental technique for improving the efficiency and modu-
larity of functional programs in general.

5.1 Strict and non-strict functions
Before we get to our example of lazy lists, we need to cover some basics. What do
strictness and non-strictness mean, and how can we express these concepts in Kotlin?

 Non-strictness is a property of a function. To say a function is non-strict just means
the function may choose not to evaluate one or more of its arguments. In contrast, a
strict function always evaluates its arguments. Strict functions are the norm in most
programming languages, and most languages only support functions that expect their
arguments fully evaluated. Unless we tell it otherwise, any function definition in
Kotlin will be strict (and all the functions we’ve defined so far have been strict). As an
example, consider the following function:

fun square(x: Double): Double = x * x

When we invoke square(41.0 + 1.0), the function square receives the evaluated
value of 42.0 because it’s strict. If we invoke square(exitProcess(-1)), the program
will be terminated before square has a chance to do anything, since the exitPro-
cess(-1) expression will be evaluated before entering the body of square.

 Although we haven’t yet presented the syntax for indicating non-strictness in Kotlin,
you’re almost certainly familiar with the concept. For example, the short-circuiting
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Boolean functions && and ||, found in many programming languages, including
Kotlin, are non-strict. You may be used to thinking of && and || as built-in syntax—
part of the language—but you can also think of them as functions that may or may not
choose not to evaluate their arguments. The function && takes two Boolean arguments
but only evaluates the second argument if the first is true:

>>> false && { println("!!"); true }.invoke() //does not print anything
res0: kotlin.Boolean = false

And || only evaluates its second argument if the first is false:

>>> true || { println("!!"); false }.invoke() //does not print anything either
res1: kotlin.Boolean = true

Another example of non-strictness is the if control construct in Kotlin:

val result = if (input.isEmpty()) exitProcess(-1) else input

Even though if is a built-in language construct in Kotlin, it can be thought of as a
function that accepts three parameters: a condition of type Boolean, an expression of
some type A to return in the case that the condition is true, and another expression of
the same type A to return if the condition is false. This if function is non-strict since
it won’t evaluate all of its arguments. To be more precise, we can say that the if func-
tion is strict in its condition parameter, since it will always evaluate the condition to
determine which branch to take, and non-strict in the two branches for the true and
false cases, since it will only evaluate one or the other based on the condition.

 In Kotlin, we can write non-strict functions by accepting some of our arguments
unevaluated. Since Kotlin has no way of expressing unevaluated arguments, we always
need to do this explicitly. Here’s a non-strict if function:

fun <A> lazyIf(
cond: Boolean,
onTrue: () -> A,     
onFalse: () -> A

): A = if (cond) onTrue() else onFalse()

val y = lazyIf((a < 22),
{ println("a") },      
{ println("b") }

)

We’d like to pass unevaluated arguments with () -> immediately before their type. A
value of type () -> A is a function that accepts zero arguments and returns an A. (In
fact, the type () -> A is a syntactic alias for the type Function<A>.) In general, the une-
valuated form of an expression is called a thunk, and we can force the thunk to evaluate
the expression and get a result. We do so by invoking the function and passing an
empty argument list, as in onTrue() or onFalse(). Likewise, callers of lazyIf have to

The function parameter 
type for a lazy value type 
A is () -> A.

Function literal syntax 
for creating a () -> A
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explicitly create thunks, and the syntax follows the same conventions as the function
literal syntax we’ve already seen. Overall, this syntax makes it very clear what’s happen-
ing—we’re passing a function with no arguments in place of each non-strict parame-
ter and then explicitly calling this function to obtain a result in the body.

 With this syntax, arguments passed unevaluated to a function will be evaluated
once for each place they are referenced in the function’s body. That is, Kotlin won’t
(by default) cache the result of evaluating an argument:

fun maybeTwice(b: Boolean, i: () -> Int) =
if (b) i() + i() else 0

>>> val x = maybeTwice(true, { println("hi"); 1 + 41 })
hi
hi

Here, i is referenced twice in the body of maybeTwice, and we’ve made it particularly
obvious that it’s evaluated each time by passing the block { println("hi"); 1 + 41 },
which prints hi as a side effect before returning a result of 42. The expression 1 + 41
will be computed twice as well. If we wish to only evaluate the result once, we can
cache the value explicitly by delegating to the lazy built-in function on assigning a
new value:

fun maybeTwice2(b: Boolean, i: () -> Int) {
val j: Int by lazy(i)
if (b) j + j else 0

}

>>> val x = maybeTwice2(true, { println("hi"); 1 + 41 })
hi

We use lazy evaluation to initialize the value of j. This approach defers initialization
until j is referenced by the if statement. It also caches the result so that subsequent
references to this value don’t trigger repeated evaluation. The mechanism used for
evaluation is not vital to this discussion but is treated in more detail in the sidebar
“Lazy initialization.”

NOTE We say that non-strict function arguments are passed in by name,
whereas strict arguments are passed in by value.

Formal definition of strictness
Suppose the evaluation of an expression runs forever or throws an error instead of
returning a definite value. In that case, we say that the expression doesn’t terminate
or that it evaluates to bottom. A function f is strict if the expression f(x) evaluates
to bottom for all x that evaluates to bottom.



82 CHAPTER 5 Strictness and laziness
5.2 An extended example: Lazy lists
Let’s return to the problem posed at the beginning of this chapter, where we were per-
forming several transformations on a list that required multiple traversals. We’ll
explore how laziness can be used to improve the efficiency and modularity of func-
tional programs using lazy lists, or streams, as an example. We’ll see how chains of trans-
formations on streams are fused into a single pass by using laziness. Here’s a simple
Stream definition; it includes a few new things we’ll discuss next.

sealed class Stream<out A>

data class Cons<out A>(
val head: () -> A,
val tail: () -> Stream<A>

) : Stream<A>()

object Empty : Stream<Nothing>()

Lazy initialization
Lazy initialization is the tactic of delaying creating an object, calculating a value, or
some other expensive process until the first time it is needed. The full definition can
be found at https://en.wikipedia.org/wiki/Lazy_initialization.

This language feature is implemented in Kotlin by way of a built-in function called
lazy. An instance of Lazy<T>, with T being the type of the value to be assigned, is
returned on invocation with a thunk argument that is a lambda. This Lazy object
serves as a delegate for implementing a lazy property. Delegation is expressed using
the by keyword:

val x: Int by lazy { expensiveOp() }   

fun useit() =
if (x > 10) "hi"        
else if (x == 0) "zero"  
else ("lo")

The lazy property x is initialized on first access by executing expensiveOp inside the
lambda thunk that was passed into the lazy function. The result is then cached
inside the delegate object, and subsequent evaluations can take advantage of it.

Access to the thunk is thread-safe by default using concurrent locks, but the behavior
can be altered using different lazy thread-safe modes. The use of these modes is
beyond the scope of this discussion but is well documented on Kotlin’s website:
https://kotlinlang.org/docs/reference/delegated-properties.html. 

Listing 5.2 Stream data type with sealed implementations

Uses the by keyword to bind the 
Lazy<Int> returned by lazy to x

When x is evaluated in the conditional 
statement, expensiveOp is called and the 
result is cached.

Uses the cached value instead of making 
another call to expensiveOp

https://en.wikipedia.org/wiki/Lazy_initialization
https://kotlinlang.org/docs/reference/delegated-properties.html
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This type looks identical to our List type, except that the Cons data constructor takes
explicit thunks (() -> A and () -> Stream<A>) instead of regular strict values. If we wish
to examine or traverse the Stream, we need to force these thunks as we did earlier in
our definition of lazyIf. For instance, here’s an extension function to optionally
extract the head of a Stream:

fun <A> Stream<A>.headOption(): Option<A> =
when (this) {

is Empty -> None
is Cons -> Some(head())   

}

As we are adding behavior to a Stream instance, we have the head and tail values
available in this when it is smartcast to Cons in the when construct. Note that we have
to force head explicitly via head(), but other than that, the code works the same way as
it would for List. But this ability of Stream to evaluate only the portion actually
demanded (we don’t evaluate the tail of the Cons) is very useful, as we’ll see in the fol-
lowing section.

5.2.1 Memoizing streams and avoiding recomputation

Evaluations representing expensive computations should be avoided at all costs. One
way of preventing excessive evaluation is a technique called memoization. In applying
this technique, we prevent multiple evaluations of expensive computations by caching
the result of the initial evaluation. The net result is that every pure expression is evalu-
ated only once and then reused for the remainder of that program.

 We typically want to cache the values of a Cons node once they are forced. If we use
the Cons data constructor directly, this code will actually compute expensive(y) twice:

val x = Cons({ expensive(y) }, { tl })
val h1 = x.headOption()
val h2 = x.headOption()

We typically avoid this problem by defining a smart constructor, which is what we call a
function for constructing a data type that ensures some additional invariant or pro-
vides a slightly different signature than the “real” constructor. By convention, smart
constructors live in the companion object of the base class, and their names typically
lowercase the first letter of the corresponding data constructor. Here, our cons smart
constructor takes care of memoizing the by-name arguments for the head and tail of
the Cons. This is a common trick, and it ensures that our thunk will do its work only
once when forced for the first time. Subsequent forces will return the cached lazy val:

fun <A> cons(hd: () -> A, tl: () -> Stream<A>): Stream<A> {
val head: A by lazy(hd)
val tail: Stream<A> by lazy(tl)
return Cons({ head }, { tail })

}

Explicitly forces the head 
thunk using head()
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The empty smart constructor returns Empty but annotates Empty as a Stream<A>,
which is better for type inference in some cases.

NOTE Recall that Kotlin uses subtyping to represent data constructors, but
we almost always want to infer Stream as the type, not Cons or Empty. Making
smart constructors that return the base type is a common trick.

We can see how both smart constructors are used in the Stream.of function:

fun <A> empty(): Stream<A> = Empty

fun <A> of(vararg xs: A): Stream<A> =
if (xs.isEmpty()) empty()
else cons({ xs[0] },

{ of(*xs.sliceArray(1 until xs.size)) })

Since Kotlin does not take care of wrapping the arguments to cons in thunks, we need
to do this explicitly by surrounding xs[0] and of(*xs.sliceArray(1 until xs.size))
in lambdas so the expressions won’t be evaluated until we force the Stream. 

5.2.2 Helper functions for inspecting streams

Before continuing, let’s write a few helper functions to make inspecting streams easier.

EXERCISE 5.1

Write a function to convert a Stream to a List, which will force its evaluation to let you
look at the result in the REPL. You can convert to the singly linked List type that we
developed in chapter 3, and you can implement this and other functions that operate
on a Stream using extension methods.

fun <A> Stream<A>.toList(): List<A> =

SOLUTION_HERE()

Think about stack safety when implementing this function. Consider tail-call elimina-
tion and the use of another method that you implemented on List.

EXERCISE 5.2

Write the functions take(n) to return the first n elements of a Stream and drop(n) to
skip the first n elements of a Stream.

fun <A> Stream<A>.take(n: Int): Stream<A> =

SOLUTION_HERE()
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fun <A> Stream<A>.drop(n: Int): Stream<A> =

SOLUTION_HERE()

EXERCISE 5.3

Write the function takeWhile to return all starting elements of a Stream that match
the given predicate.

fun <A> Stream<A>.takeWhile(p: (A) -> Boolean): Stream<A> =

SOLUTION_HERE()

You can use take and toList together to inspect streams in the REPL. For example,
try printing Stream.of(1,2,3).take(2).toList(). This is also very useful during
assertion expressions in unit tests. 

5.3 Separating program description from evaluation
A significant theme in functional programming is separation of concerns. We want to
separate the description of computations from actually running them. We’ve touched
on this theme in previous chapters in different ways. For example, first-class functions
capture some computation in their bodies but only execute it once they receive their
arguments. And we used Option to capture the fact that an error occurred, but decid-
ing what to do about it became a separate concern. With Stream, we’re able to build
up a computation that produces a sequence of elements without running the compu-
tation steps until we need those elements.

 Laziness lets us separate the description of an expression from the evaluation of that
expression. This gives us a powerful ability: we can choose to describe a “larger”
expression than we need and then evaluate only a portion of it. As an example, let’s
look at the function exists that checks whether an element matching a Boolean func-
tion exists in this Stream:

fun exists(p: (A) -> Boolean): Boolean =
when (this) {

is Cons -> p(this.head()) || this.tail().exists(p)
else -> false

}

Note that || is non-strict in its second argument. If p(head()) returns true, then
exists terminates the traversal early and returns true as well. Also, remember that
the tail of the stream is a lazy val. So not only does the traversal terminate early, but the
tail of the stream is never evaluated at all! Whatever code would have generated the tail
is never executed.
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 The exists function here is implemented using explicit recursion. But remember
that with List in chapter 3, we could implement general recursion in the form of
foldRight. We can do the same thing for Stream, but lazily.

fun <B> foldRight(
z: () -> B,
f: (A, () -> B) -> B    

): B =
when (this) {

is Cons -> f(this.head()) {
tail().foldRight(z, f)   

}
is Empty -> z()

}

This looks very similar to the foldRight function we wrote for List in chapter 3, but
note how our combining function f is non-strict in its second parameter. If f chooses
not to evaluate its second parameter, the traversal will be terminated early. We can see
this by using foldRight to implement exists2 (note that this definition of exists,
although illustrative, isn’t stack-safe if the stream is large and all elements test false):

fun exists2(p: (A) -> Boolean): Boolean =
foldRight({ false }, { a, b -> p(a) || b() })

EXERCISE 5.4

Implement forAll, which checks that all elements in the Stream match a given predi-
cate. Your implementation should terminate the traversal as soon as it encounters a
non-matching value.

fun <A> Stream<A>.forAll(p: (A) -> Boolean): Boolean =

SOLUTION_HERE()

EXERCISE 5.5

Use foldRight to implement takeWhile.

EXERCISE 5.6

Hard: Implement headOption using foldRight.

Listing 5.3 Using foldRight on Stream to generalize recursion

The type () -> B means the function f 
takes its second argument by name and 
may choose not to evaluate it.

If f doesn’t evaluate its 
second argument, the 
recursion never occurs.
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EXERCISE 5.7

Implement map, filter, append, and flatMap using foldRight. The append method
should be non-strict in its argument.

 Consider using previously defined methods where applicable.

Note that these implementations are incremental—they don’t fully generate their
answers. It’s not until some other computation looks at the elements of the resulting
Stream that the computation to generate that Stream actually takes place—and then it
will do just enough work to generate the requested elements. Because of this incre-
mental nature, we can call these functions one after another without fully instantiat-
ing the intermediate results.

 Let’s look at a simplified program trace for a fragment of the motivating example
with which we started this chapter. Let’s express this in terms of Stream instead of
List for clarity: Stream.of(1, 2, 3, 4).map { it + 10 }.filter { it % 2 == 0 }. We
leave off the final transformation, .map { it * 3 } for the sake of simplicity. We’ll con-
vert this expression to a List to force evaluation. Take a minute to work through this
trace to understand what’s happening. It’s a bit more challenging than the trace we
looked at earlier in the chapter. Remember, a trace like this is just the same expression
over and over, evaluated by one more step each time.

import chapter3.Cons as ConsL
import chapter3.Nil as NilL

Stream.of(1, 2, 3, 4).map { it + 10 }
.filter { it % 2 == 0 }
.map { it * 3 }.toList()

Stream.cons({ 11 }, { Stream.of(2, 3, 4).map { it + 10 } })
.filter { it % 2 == 0 }
.map { it * 3 }.toList()     

Stream.of(2, 3, 4).map { it + 10 }
.filter { it % 2 == 0 }
.map { it * 3 }.toList()    

Stream.cons({ 12 }, { Stream.of(3, 4).map { it + 10 } })
.filter { it % 2 == 0 }
.map { it * 3 }.toList()          

ConsL(36, Stream.of(3, 4).map { it + 10 }
.filter { it % 2 == 0 }
.map { it * 3 }.toList())    

Listing 5.4 Trace of the evaluation order of operations on a Stream

Applies map to the 
first element

Applies filter to the first element; 
predicate returns false

Applies map to the 
second element

Applies filter to the second element; the 
predicate returns true; applies a second 
map; produces the first element of the result
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ConsL(36, Stream.cons({ 13 }, { Stream.of(4).map { it + 10 } })
.filter { it % 2 == 0 }
.map { it * 3 }.toList()     

)

ConsL(36, Stream.of(4).map { it + 10 }
.filter { it % 2 == 0 }
.map { it * 3 }.toList())        

ConsL(36, Stream.cons({ 14 }, { Stream.empty<Int>().map { it + 10 } })
.filter { it % 2 == 0 }
.map { it * 3 }.toList()      

)

ConsL(36, ConsL(42, Stream.empty<Int>().map { it + 10 }
.filter { it % 2 == 0 }
.map { it * 3 }.toList()))    

ConsL(36, ConsL(42, NilL))  

The thing to notice in this trace is how the filter and map transformations are inter-
leaved—the computation alternates between generating a single element of the out-
put of map and testing with filter to see if that element is divisible by 2 (adding it to
the output list if it is). Note that we don’t fully instantiate the intermediate stream that
results from the map. It’s as if we had interleaved the logic using a special-purpose
loop. For this reason, people sometimes describe streams as “first-class loops” whose
logic can be combined using higher-order functions like map and filter.

 Since intermediate streams aren’t instantiated, it’s easy to reuse existing combina-
tors in novel ways without worrying that we’re doing more processing of the stream
than necessary. For example, we can reuse filter to define find, a method to return
just the first element that matches (if it exists). Even though filter transforms the

Import aliases
Kotlin features import aliasing using the as keyword. This allows objects, classes,
methods, and the like to be imported with a different name. In this case, Cons is
already defined in Stream, so import aliases for the List data type’s Cons and Nil
are imported as ConsL and NilL, respectively. This is a handy trick when namespace
clashes occur, without resorting to full package name qualifiers:

import chapter3.Cons as ConsL
import chapter3.Nil as NilL

Applies map to the 
third element

Applies filter to the third element; 
the predicate returns false

Applies map to the 
last element

Applies filter to the last element; 
the predicate returns true; applies 
a second map; produces the 
second element of the result

End of the stream: Empty has been reached.
Now map and filter have no more work to do;

the empty stream becomes Nil.
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whole stream, that transformation is done lazily, so find terminates as soon as a match
is found:

fun find(p: (A) -> Boolean): Option<A> =
filter(p).headOption()

The incremental nature of stream transformations also has important consequences
for memory usage. Because no intermediate streams are generated, transforming the
stream requires only enough working memory to store and transform the current ele-
ment. For instance, in the transformation Stream.of(1, 2, 3, 4).map { it + 10
}.filter { it % 2 == 0 }, the garbage collector can reclaim the space allocated for the
values 11 and 13 emitted by map as soon as filter determines they aren’t needed. Of
course, this is a simple example; in other situations, we might be dealing with more
elements. The stream elements themselves could be large objects that retain signifi-
cant amounts of memory. Reclaiming this memory as quickly as possible can cut down
on the amount of memory required by our program as a whole.

 We’ll have a lot more to say about defining memory-efficient streaming calcula-
tions, in particular calculations that require I/O, in part 4 of this book. 

5.4 Producing infinite data streams through 
corecursive functions
The functions we’ve written also work for infinite streams because such streams are
incremental. Here’s an example of an infinite Stream of 1s:

fun ones(): Stream<Int> = Stream.cons({ 1 }, { ones() })

As shown in figure 5.1, ones generates an infinite sequence. 

ones().take(3): [1, 1, 1]

t: ()->
Stream<Int>

h: ()-> Int

h() = 1

ones()

t()

h: ()-> Int

h() = 1

h: ()-> Int

h() = 1

h: ()-> Int

h() = 1

t: () ->
Stream<Int>

t: ()->
Stream<Int>

t: ()->
Stream<Int>

Empty

Figure 5.1 The ones function is incremental, producing an infinite stream of 1 values on demand.
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Despite the infinite nature of the sequence, the functions we’ve written so far only
inspect the portion of the stream needed to generate the demanded output. For
example:

>>> ones().take(5).toList()
res0: chapter3.List<kotlin.Int> = Cons(head=1,

tail=Cons(head=1, tail=Cons(head=1,
tail=Cons(head=1, tail=Cons(head=1, tail=Nil)))))

>>> ones().exists { it % 2 != 0 }
res1: Boolean = true

Try playing with a few other examples:

ones().map { it + 1 }.exists { it % 2 == 0 }
ones().takeWhile { it == 1 }
ones().forAll { it == 1 }

In each case, we get back a result immediately. But be careful: it’s easy to write expres-
sions that never terminate or aren’t stack-safe. For example, ones.forAll { it != 1 }
will forever need to inspect more of the series since it will never encounter an element
that allows it to terminate with a definite answer (this will manifest as a stack overflow
rather than an infinite loop).

NOTE It’s possible to define a stack-safe version of forAll using an ordinary
recursive loop.

Let’s see what other functions we can discover for generating streams.

EXERCISE 5.8

Generalize ones slightly to the function constant, which returns an infinite Stream of
a given value.

fun <A> constant(a: A): Stream<A> =

SOLUTION_HERE()

EXERCISE 5.9

Write a function that generates an infinite stream of integers, starting from n: n + 1, n
+ 2, and so on. (In Kotlin, the Int type is a 32-bit signed integer, so this stream will
switch from positive to negative values at some point and will repeat itself after about 4
billion elements.)

fun from(n: Int): Stream<Int> =

SOLUTION_HERE()
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EXERCISE 5.10

Write a function fibs that generates the infinite stream of Fibonacci numbers: 0, 1, 1,
2, 3, 5, 8, and so on.

fun fibs(): Stream<Int> =

SOLUTION_HERE()

EXERCISE 5.11

Write a more general stream-building function called unfold. It takes an initial state,
and a function for producing both the next state and the next value in the generated
stream.

fun <A, S> unfold(z: S, f: (S) -> Option<Pair<A, S>>): Stream<A> =

SOLUTION_HERE()

Option is used to indicate when the Stream should be terminated, if at all. The func-
tion unfold is a very general Stream-building function.

 The unfold function is an example of what’s sometimes called a corecursive func-
tion. Whereas a recursive function consumes data, a corecursive function produces
data. And whereas recursive functions terminate by recursing on smaller inputs, core-
cursive functions need not terminate as long as they remain productive, which just
means we can always evaluate more of the result in a finite amount of time. The
unfold function is productive as long as f terminates, since we just need to run the
function f one more time to generate the next element of the Stream. Corecursion is
also sometimes called guarded recursion, and productivity is sometimes called cotermina-
tion. These terms aren’t that important to our discussion, but you’ll hear them used
sometimes in the context of functional programming.

EXERCISE 5.12

Write fibs, from, constant, and ones in terms of unfold.
 Using unfold to define constant and ones means we don’t get sharing as in the

recursive definition fun ones(): Stream<Int> = Stream.cons({ 1 }, { ones() }). The
recursive definition consumes constant memory even if we keep a reference to it while
traversing it, while the unfold-based implementation does not. Preserving sharing
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isn’t something we usually rely on when programming with streams, since it’s extremely
delicate and not tracked by the types. For instance, sharing is destroyed when calling
even xs.map { x -> x }.

EXERCISE 5.13

Use unfold to implement map, take, takeWhile, zipWith (as in chapter 3), and zipAll.
The zipAll function should continue the traversal as long as either stream has more
elements—it uses Option to indicate whether each stream has been exhausted.

fun <A, B> Stream<A>.map(f: (A) -> B): Stream<B> =

SOLUTION_HERE()

fun <A> Stream<A>.take(n: Int): Stream<A> =

SOLUTION_HERE()

fun <A> Stream<A>.takeWhile(p: (A) -> Boolean): Stream<A> =

SOLUTION_HERE()

fun <A, B, C> Stream<A>.zipWith(
that: Stream<B>,
f: (A, B) -> C

): Stream<C> =

SOLUTION_HERE()

fun <A, B> Stream<A>.zipAll(
that: Stream<B>

): Stream<Pair<Option<A>, Option<B>>> =

SOLUTION_HERE()

Now that we have some practice writing stream functions, let’s return to the exercise
we covered at the end of chapter 3: a function, hasSubsequence, to check whether a
list contains a given subsequence. With strict lists and list-processing functions, we
were forced to write a rather tricky monolithic loop to implement this function with-
out doing extra work. Using lazy lists, can you see how you could implement has-
Subsequence by combining some other functions we’ve already written? Try to ponder
this on your own before continuing.
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EXERCISE 5.14

Hard: Implement startsWith using functions you’ve written previously. It should
check whether one Stream is a prefix of another. For instance, Stream(1,2,3)starts-
With Stream(1,2) would be true.

fun <A> Stream<A>.startsWith(that: Stream<A>): Boolean =

SOLUTION_HERE()

Here’s a tip: this can be solved by reusing only functions developed with unfold ear-
lier in this chapter.

EXERCISE 5.15

Implement tails using unfold. For a given Stream, tails returns the Stream of suf-
fixes of the input sequence, starting with the original Stream. For example, given
Stream.of(1,2,3), it would return Stream.of(Stream.of(1,2,3), Stream.of(2,3),
Stream.of(3), Stream.empty()).

fun <A> Stream<A>.tails(): Stream<Stream<A>> =

SOLUTION_HERE()

We can now implement hasSubsequence using functions we’ve already written:

fun <A> hasSubsequence(s: Stream<A>): Boolean =
this.tails().exists { it.startsWith(s) }

This implementation performs the same number of steps as a more monolithic imple-
mentation using nested loops with logic for breaking out of each loop early. By using
laziness, we can compose this function from simpler components and still retain the
efficiency of the more specialized (and verbose) implementation.

EXERCISE 5.16

Hard/Optional: Generalize tails to the function scanRight, which is like a fold-
Right that returns a stream of the intermediate results. For example:

>>> Stream.of(1, 2, 3).scanRight(0, { a, b -> a + b }).toList()

res1: chapter3.List<kotlin.Int> =
Cons(head=6,tail=Cons(head=5,tail=Cons(head=3,tail=Cons(head=0,tail=Nil))))
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This example should be equivalent to the expression List.of(1+2+3+0, 2+3+0,
3+0, 0). Your function should reuse intermediate results so that traversing a
Stream with n elements always takes time linear in n. Can it be implemented using
unfold? How, or why not? Could it be implemented using another function you’ve
written?

5.5 Conclusion
In this chapter, we introduced non-strictness as a fundamental technique for imple-
menting efficient and modular functional programs. Non-strictness can be thought of
as a technique for recovering some efficiency when writing functional code. Still, it’s
also a much bigger idea—non-strictness can improve modularity by separating the
description of an expression from the how-and-when of its evaluation. Keeping these
concerns separate lets us reuse a description in multiple contexts, evaluating different
portions of our expression to obtain different results. We weren’t able to do that when
description and evaluation were intertwined as they are in strict code. We saw several
examples of this principle in action throughout the chapter, and we’ll see many more
in the remainder of the book.

 We’ll switch gears in the next chapter and talk about purely functional approaches
to state. This is the last building block needed before we begin exploring the process
of functional design.

Summary
 Strict expressions are evaluated at the moment they are bound to a variable.

This is acceptable for simple expressions but not for expensive computations,
which should be deferred as long as possible.

 Non-strict or lazy evaluation results in computations being deferred to the point
where the value is first referenced. This allows expensive computations to be
evaluated on demand.

 A thunk is the unevaluated form of an expression and is a humorous past parti-
ciple of “think.”

 Lazy initialization can be achieved by wrapping an expression in a thunk, which
can be forced to execute explicitly at a later stage if required.

 You can use the Stream data type to model a lazy list implementation using Cons
and Empty sealed types.

 Memoizing is a technique used to prevent multiple evaluations of an expression
by caching the first evaluation result.

 A smart constructor provides a function with a slightly different signature than
the actual constructor. It ensures some invariants in addition to what the origi-
nal offers.
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 We can separate the concerns of description and evaluation when applying lazi-
ness, resulting in the ability to describe a larger expression than needed while
only evaluating a smaller portion.

 Infinite streams can be generated by using corecursive functions to produce data
incrementally. The unfold function is such a stream generator.



Purely functional state
Working with program state is tricky, and even more so in functional programming,
where we value principles such as immutability and eradicating side effects. Mutat-
ing state comes at a considerable cost, making programs difficult to reason about
and maintain. Fortunately, we have a design pattern at hand to deal with program
state in a purely functional way. Applying this pattern allows us to deal with state in
a deterministic fashion and subsequently lets us reason about and test our pro-
grams more easily.

 By viewing the program state as a transition or action that is passed along as con-
text during a series of transformations, we can contain and localize the complexity

This chapter covers
 Writing pure stateful APIs by making state 

updates explicit

 Identifying general repetition in pure state 
transitions

 Using combinators to abstract over explicit state 
transitions

 Combining multiple and nested state actions

 Introducing a general state action data type
96
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associated with state machines. We can even take this a step further by hiding these
state transitions altogether through the use of higher-order combinator functions that
pass along state actions implicitly in the background. A pattern begins to emerge as we
combine these concepts of passing and hiding state transitions in the background.

 In this chapter, we see how to write purely functional programs that manipulate
state, using the simple domain of random number generation as the example. Although
it’s not the most compelling use case for the techniques in this chapter, the simplicity
of random number generation makes it an excellent first example. We’ll see more
compelling use cases in parts 3 and 4 of the book, especially part 4, where we’ll say a
lot more about dealing with state and effects. The goal here is to give you the basic
pattern for making any stateful API purely functional. As you start writing your own
functional APIs, you’ll likely run into many of the same questions we’ll explore here.

6.1 Generating random numbers using side effects
Let’s begin by looking at the contrived example of generating random numbers using
a pseudo-random number generator. This action would usually be handled using
mutable state and side effects. Let’s demonstrate this using a typical imperative solu-
tion before showing how it can be achieved in a purely functional way.

 If we need to generate random numbers in Kotlin, a class in the standard library,
kotlin.random.Random (Kotlin API link: https://bit.ly/35MLFhz) has a pretty stan-
dard imperative API that relies on side effects. The following listing is an example of
using the Random class.

>>> val rng = kotlin.random.Random   

>>> rng.nextDouble()
res1: kotlin.Double = 0.2837830961138915

>>> rng.nextDouble()
res2: kotlin.Double = 0.7994579111535903

>>> rng.nextInt()
res3: kotlin.Int = -1630636086

>>> rng.nextInt(10)
res4: kotlin.Int = 8   

As we see in figure 6.1, we might know little about what happens inside kotlin.random
.Random, but one thing is sure: the object rng has some internal state that is updated
after each invocation. If not, we’d get the same value when calling nextInt or next-
Double on consecutive calls. These methods aren’t referentially transparent because
the state updates are performed as a side effect. As we know from our discussion in
chapter 1, this implies that they aren’t as testable, composable, modular, and easily
parallelized as they could be.

Listing 6.1 Using Kotlin’s Random class to mutate internal state

Creates a new random number 
generator seeded with the 
current system time

Gets a random integer 
between 0 and 9

https://bit.ly/35MLFhz
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Let’s take testability as an example. If we want to write a method that uses random-
ness, we need tests to be reproducible. Let’s say we had the following side-effecting
method, intended to simulate the rolling of a single six-sided die, which should return
a value between 1 and 6, inclusive.

fun rollDie(): Int {        
val rng = kotlin.random.Random
return rng.nextInt(6)   

}

This method has an off-by-one error. It’s supposed to return a value between 1 and 6,
but it actually returns a value from 0 to 5. But even though it doesn’t work correctly,
five out of six times, a test of this method will meet the test specification! And if a test
did fail, it would be ideal to reliably reproduce the failure before we attempt to fix it.

 Note that what’s important here is not this specific example but the general idea.
In this case, the bug is obvious and easy to reproduce. But we can easily imagine a situ-
ation where the method is much more complicated and the bug far more subtle. The
more complex the program and the subtler the bug, the more critical it is to repro-
duce bugs reliably.

Listing 6.2 Simulating the roll of a die with an off-by-one error

rng: Random

rng: Random

rng: Random

rng: Random

nextDouble()

nextDouble()

nextInt()

State 1

State 2

State 3

State 4

Mutation!

Mutation!

Mutation!

Figure 6.1 Using the Random class to 
generate pseudo-random numbers while 
mutating state

Should return a random 
number from 1 to 6

Returns a random 
number from 0 to 5
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 One suggestion for making such a test more deterministic might be to pass in the
random number generator. That way, when we wanted to reproduce a failed test, we
could pass the same generator that caused the test to fail:

fun rollDie2(rng: kotlin.random.Random): Int = rng.nextInt(6)

But there’s a problem with this solution. The “same” generator has to be created with
the same seed and be in the same state. This implies that its methods have been called
a certain number of times since it was created. That is difficult to guarantee because
every time we call nextInt, the previous state of the random number generator is
destroyed. Do we now need a separate mechanism to track how many times we’ve
called the methods on Random?

 No! The answer to all of this, of course, is that we should eschew side effects on
principle!

6.2 Purely functional random number generation
Let’s evolve our design by removing this undesirable side effect. We will do so by
reworking our example into a purely functional solution to recover referential trans-
parency. We can do so by making the state updates explicit. We don’t update the state
as a side effect but simply return the new state along with the value we’re generating.
The next listing shows one possible interface to a random number generator.

interface RNG {
fun nextInt(): Pair<Int, RNG>

}

This method should generate a random Int. We’ll later define other functions in
terms of nextInt. Rather than returning only the generated random number (as
kotlin.random.Random does) and updating some internal state by mutating it in place,
we return the random number and the new state. We leave the old state unmodified.
In effect, we separate the concern of computing what the next state is from communicat-
ing the new state to the rest of the program. No global mutable memory is being
used—we simply return the next state back to the caller. This leaves the caller of next-
Int in complete control of what to do with the new state. Note that we’re still encapsu-
lating the state in the sense that users of this API don’t know anything about the
implementation of the random number generator itself.

 For our example, we do need an implementation, so let’s pick a simple one. The
following is an algorithm called a linear congruential generator (https://en.wikipedia
.org/wiki/Linear_congruential_generator). The details of this implementation aren’t
crucial, but notice that nextInt returns both the generated value and a new RNG to use
for generating the next value.

Listing 6.3 Interface to a random number generator

https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Linear_congruential_generator
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data class SimpleRNG(val seed: Long) : RNG {
override fun nextInt(): Pair<Int, RNG> {

val newSeed =
(seed * 0x5DEECE66DL + 0xBL) and

0xFFFFFFFFFFFFL           
val nextRNG = SimpleRNG(newSeed)     
val n = (newSeed ushr 16).toInt()    
return n to nextRNG    

}
}

The following listing demonstrates how we can use this API from the interpreter.

>>> val rng = SimpleRNG(42)            

>>> val (n1, rng2) = rng.nextInt()       

>>> println("n1:$n1; rng2:$rng2")

n1:16159453; rng2:SimpleRNG(seed=1059025964525)

>>> val (n2, rng3) = rng2.nextInt()      

>>> println("n2:$n2; rng3:$rng3")

n2:-1281479697; rng3:SimpleRNG(seed=197491923327988)

We can run this sequence of statements as often as we want, and we’ll always get the
same values. When we call rng.nextInt(), it will always return 16159453 and a new
RNG, whose nextInt will always return -1281479697. In other words, we have now
arrived at a pure API. 

6.3 Making stateful APIs pure
This problem of making seemingly stateful APIs pure and its solution of having the
API compute the next state rather than actually mutate anything aren’t unique to ran-
dom number generation. This problem comes up frequently, and we can always deal
with it this same way.

NOTE An efficiency loss comes with computing the next state using pure
functions because it means we can’t actually mutate the data in place. Here,
it’s not really a problem since the state is just a single Long that must be cop-
ied. This loss of efficiency can be mitigated by using efficient, purely func-
tional data structures. In some cases, it’s also possible to mutate the data in
place without breaking referential transparency; we’ll talk about this in part 4
of the book.

Listing 6.4 Purely functional random number generator implementing RNG

Listing 6.5 Repeatable random number generation using SimpleRNG

Uses the current seed to generate 
a new seed. and is a bitwise AND.

The next state, which is an 
RNG instance created from 
the new seed

The value n is the new pseudo-
random integer. ushr is a right 
binary shift with zero fill.

The return value is a Pair<Int, RNG>
containing both a pseudo-random

integer and the next RNG state.

Chooses an 
arbitrary value to 
initialize SimpleRNG

Destructures the 
Pair<Int, RNG> 
returned from nextInt
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For instance, suppose you have a data repository that can produce a sequence of
numbers:

class MutatingSequencer {
private var repo: Repository = TODO()
fun nextInt(): Int = TODO()
fun nextDouble(): Double = TODO()

}

Now suppose nextInt and nextDouble each mutate repo in some way. We can
mechanically translate this interface to a purely functional one by making the state
transition explicit:

interface StateActionSequencer {
fun nextInt(): Pair<Int, StateActionSequencer>
fun nextDouble(): Pair<Double, StateActionSequencer>

}

Whenever we use this pattern, we make the caller responsible for passing the next
computed state through the rest of the program. Going back to the pure RNG interface
shown in listing 6.3, if we reuse a previous RNG, it will always generate the same value it
generated before:

fun randomPair(rng: RNG): Pair<Int, Int> {
val (i1, _) = rng.nextInt()
val (i2, _) = rng.nextInt()
return i1 to i2

}

Here, i1 and i2 will be the same! If we want to generate two distinct numbers, we
need to use the RNG returned by the first call to nextInt to generate the second Int.

fun randomPair2(rng: RNG): Pair<Pair<Int, Int>, RNG> {
val (i1, rng2) = rng.nextInt()
val (i2, rng3) = rng2.nextInt()       
return (i1 to i2) to rng3     

}

You can see the general pattern, and perhaps you can also see how it might be tedious
to use this API directly. Let’s write a few functions to generate random values and see
if we notice any repetition that we can factor out.

EXERCISE 6.1

Write a function that uses RNG.nextInt to generate a random integer between 0 and
Int.MAX_VALUE (inclusive).

Listing 6.6 Using new RNG instances to generate more random numbers

Use rng2 instead 
of rng here.

Returning the final state rng3 after generating 
random numbers allows the caller to continue 
generating random values.
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 Here’s a tip: each negative value must be mapped to a distinct non-negative value.
Make sure to handle the corner case when nextInt returns Int.MIN_VALUE, which
doesn’t have a non-negative counterpart.

fun nonNegativeInt(rng: RNG): Pair<Int, RNG> =

SOLUTION_HERE()

EXERCISE 6.2

Write a function to generate a Double between 0 and 1, not including 1. In addition to
the function you already developed, you can use Int.MAX_VALUE to obtain the maxi-
mum positive integer value, and you can use x.toDouble() to convert an x: Int to a
Double.

fun double(rng: RNG): Pair<Double, RNG> =

SOLUTION_HERE

EXERCISE 6.3

Write functions to generate a Pair<Int, Double>, a Pair<Double, Int>, and a Triple
<Double, Double, Double>. You should be able to reuse functions you’ve already written.

Dealing with awkwardness in functional programming
As you write more functional programs, you’ll sometimes encounter situations where
the functional way of expressing a program feels awkward or tedious. Does this imply
that purity is equivalent to writing an entire novel without using the letter E? Of course
not! Awkwardness like this is almost always a sign of some missing abstraction wait-
ing to be discovered.

When you encounter these situations, we encourage you to plow ahead and look for
common patterns you can factor out. Most likely, this is a problem that others have
encountered, and you may even rediscover the “standard” solution yourself. Even if
you get stuck, struggling to puzzle out a clean solution will help you to better under-
stand what solutions others have discovered to deal with similar problems.

With practice, experience, and familiarity with the idioms in this book, expressing a
program functionally will become effortless and natural. Of course, good design is
still complicated, but programming using pure functions dramatically simplifies the
design space.
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fun intDouble(rng: RNG): Pair<Pair<Int, Double>, RNG> =

SOLUTION_HERE()

fun doubleInt(rng: RNG): Pair<Pair<Double, Int>, RNG> =

SOLUTION_HERE()

fun double3(rng: RNG): Pair<Triple<Double, Double, Double>, RNG> =

SOLUTION_HERE()

EXERCISE 6.4

Write a function to generate a list of random integers.

fun ints(count: Int, rng: RNG): Pair<List<Int>, RNG> =

SOLUTION_HERE()

6.4 An implicit approach to passing state actions
Up to this point, we have moved from an approach using mutable state to a purely
functional way of propagating state explicitly, thereby avoiding side effects. Apart
from being procedural and error prone, passing this state along feels unnecessarily
cumbersome and tedious. Let’s evolve our design even further by removing the neces-
sity of passing this state along explicitly.

 Looking back at our implementations, notice a common pattern: each of our func-
tions has a type of the form (RNG) -> Pair<A, RNG> for some type A. Functions of this
type are called state actions or state transitions because they transform RNG states from
one to the next. These state actions can be combined using combinators, which are
higher-order functions that we’ll define in this section. Since it’s pretty tedious and
repetitive to pass the state along by ourselves, we want our combinators to automati-
cally pass it from one action to the next.

 To make the type of actions convenient to talk about, and to simplify our thinking
about them, let’s make a type alias for the RNG state action data type.

typealias Rand<A> = (RNG) -> Pair<A, RNG>

We can think of a value of type Rand<A> as “a randomly generated A,” although that’s
not precise. It’s really a state action—a program that depends on some RNG, uses it to
generate an A, and also transitions the RNG to a new state that can be used by another
action later.

Listing 6.7 Type alias representing a state transition
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 We can now turn methods such as RNG.nextInt—which returns a Pair<Int, RNG>
containing a generated Int along with the next RNG—into values of this new type:

val intR: Rand<Int> = { rng -> rng.nextInt() }

We want to write combinators that let us combine Rand actions while avoiding the
explicit passing of the RNG state. We’ll end up with a kind of domain-specific language
that does all the passing for us. For example, a simple RNG state transition is the unit
action, which passes the RNG state through without using it, always returning a con-
stant value rather than a random value.

fun <A> unit(a: A): Rand<A> = { rng -> a to rng }

There’s also map for transforming the output of a state action without modifying the
state itself. Remember, Rand<A> is a type alias for a function type (RNG) -> Pair(A, RNG),
so this is just a kind of function composition.

fun <A, B> map(s: Rand<A>, f: (A) -> B): Rand<B> =
{ rng ->

val (a, rng2) = s(rng)
f(a) to rng2

}

As an example of how map is used, here’s nonNegativeEven, which reuses nonNegative-
Int to generate an Int that’s greater than or equal to zero and divisible by 2:

fun nonNegativeEven(): Rand<Int> =
map(::nonNegativeInt) { it - (it % 2) }

EXERCISE 6.5

Use map to reimplement double in a more elegant way. See exercise 6.2.

fun doubleR(): Rand<Double> =

SOLUTION_HERE()

6.4.1 More power by combining state actions

We’ve been developing an API for working with single-state actions by hiding their
transitions. Sometimes we need to harness more power from multiple state actions at
once while retaining the ability to hide their transitions in the background. We would

Listing 6.8 unit: passes state while setting a constant

Listing 6.9 map: modifies output without modifying state
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like to keep following this approach when implementing intDouble and doubleInt
from exercise 6.3, but map simply can’t do this. We need a new combinator, map2, that
can combine two RNG actions into one using a binary rather than a unary function.

EXERCISE 6.6

Write the implementation of map2 based on the following signature. This function
takes two actions, ra and rb, and a function f for combining their results, and returns
a new action that combines them:

fun <A, B, C> map2(
ra: Rand<A>,
rb: Rand<B>,
f: (A, B) -> C

): Rand<C> =

SOLUTION_HERE()

We only have to write the map2 combinator once, and then we can use it to combine
arbitrary RNG state actions. For example, if we have an action that generates values of
type A and an action to generate values of type B, then we can combine them into one
action that generates pairs of A and B:

fun <A, B> both(ra: Rand<A>, rb: Rand<B>): Rand<Pair<A, B>> =
map2(ra, rb) { a, b -> a to b }

We can use both to reimplement intDouble and doubleInt from exercise 6.3 more
succinctly. We do this by using the Rand values intR and doubleR:

val intR: Rand<Int> = { rng -> rng.nextInt() }

val doubleR: Rand<Double> =
map(::nonNegativeInt) { i ->

i / (Int.MAX_VALUE.toDouble() + 1)
}

val intDoubleR: Rand<Pair<Int, Double>> = both(intR, doubleR)

val doubleIntR: Rand<Pair<Double, Int>> = both(doubleR, intR)

EXERCISE 6.7

Hard: If you can combine two RNG transitions, you should be able to combine a whole
list of them. Implement sequence to combine a List of transitions into a single transi-
tion. Use it to reimplement the ints function you wrote in exercise 6.4. For the sake
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R

i
lar

that
of simplicity in this exercise, it is acceptable to write ints with recursion to build a list
with x repeated n times.

fun <A> sequence(fs: List<Rand<A>>): Rand<List<A>> =

SOLUTION_HERE()

Once you’re done implementing sequence(), try reimplementing it using a fold. 

6.4.2 Recursive retries through nested state actions

We’ve progressed from mutating existing state to passing state actions explicitly, after
which we developed a more elegant API to hide these transitions in the background.
In doing so, we are beginning to see a pattern emerging: we’re progressing toward
implementations that don’t explicitly mention or pass along the RNG value. The map
and map2 combinators allowed us to implement, in a relatively concise and elegant
way, functions that were otherwise tedious and error prone to write. But there are
some functions that we can’t very well write in terms of map and map2.

 One such function is nonNegativeLessThan, which generates an integer between 0
(inclusive) and n (exclusive). A first stab at an implementation might be to generate a
non-negative integer modulo n:

fun nonNegativeLessThan(n: Int): Rand<Int> =
map(::nonNegativeInt) { it % n }

This will undoubtedly generate a number in the range, but it will be skewed because
Int.MaxValue may not be exactly divisible by n. So numbers that are less than the
remainder of that division will come up more frequently. When nonNegativeInt gen-
erates numbers greater than the largest multiple of n that fits in a 32-bit integer, we
should retry the generator and hope to get a smaller number. We might attempt the
following.

fun nonNegativeLessThan(n: Int): Rand<Int> =
map(::nonNegativeInt) { i ->

val mod = i % n
if (i + (n - 1) - mod >= 0) mod
else nonNegativeLessThan(n)(???)   

           
}

This is moving in the right direction, but nonNegativeLessThan(n) has the wrong
type to be used here. Remember, it should return a Rand<Int> that is a function that
expects an RNG! But we don’t have one right there. We would like to chain things
together so the RNG that’s returned by nonNegativeInt is passed along to the recursive

Listing 6.10 Failed recursive retry with no state available

etries recursively
if the Int we got

s greater than the
gest multiple of n
 fits in a 32-bit Int

Incorrect type of 
nonNegativeLessThan(n) 
fails compilation
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call to nonNegativeLessThan. We could pass it along explicitly instead of using map, as
shown next.

fun nonNegativeIntLessThan(n: Int): Rand<Int> =
{ rng ->

val (i, rng2) = nonNegativeInt(rng)
val mod = i % n
if (i + (n - 1) - mod >= 0)

mod to rng2
else nonNegativeIntLessThan(n)(rng2)

}

But it would be better to have a combinator that does this passing along for us. Nei-
ther map nor map2 will cut it. We need a more powerful combinator, flatMap.

EXERCISE 6.8

Implement flatMap, and then use it to implement nonNegativeLessThan.

fun <A, B> flatMap(f: Rand<A>, g: (A) -> Rand<B>): Rand<B> =

SOLUTION_HERE()

flatMap allows us to generate a random A with Rand<A> and then take that A and
choose a Rand<B> based on its value. In nonNegativeLessThan, we use it to choose
whether to retry or not, based on the value generated by nonNegativeInt.

EXERCISE 6.9

Reimplement map and map2 in terms of flatMap. The fact that this is possible is what
we’re referring to when we say that flatMap is more powerful than map and map2. 

6.4.3 Applying the combinator API to the initial example

In our quest to arrive at a more elegant approach to handling state transitions, we
have achieved a clean API that employs combinators to seamlessly pass state in the
background without any effort from us.

 We can now revisit our example from section 6.1. Can we make a more testable die
roll using our purely functional API?

 Here’s an implementation of rollDie using nonNegativeLessThan, including the
off-by-one error we had before:

Listing 6.11 Successful recursive retry passing derived state explicitly
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fun rollDie(): Rand<Int> =
nonNegativeIntLessThan(6)

If we test this function with various RNG states, we pretty soon find an RNG that causes
the function to return 0:

>>> val zero = rollDie(SimpleRNG(5)).first
zero: Int = 0

And we can re-create this reliably by using the same SimpleRNG(5) random generator,
without having to worry that its state is destroyed after being used.

 Fixing the bug is trivial:

fun rollDieFix(): Rand<Int> =
map(nonNegativeIntLessThan(6)) { it + 1 }

Using combinators, we have significantly reduced complexity by no longer having to
pass the random number generator through our program explicitly. We have defined
a higher-level domain-specific language that dramatically simplifies how we reason
about a problem such as this simple off-by-one error. 

6.5 A general state action data type
Even though we have only been working with state in random number generation, we
can easily apply this technique to any other domain where passing state is required.
On closer inspection, we see that the combinators we have written aren’t specific to
any domain and can be utilized for passing any kind of state. In this section, we
develop a data type that allows us to generalize over the state transition of any arbi-
trary kind.

 As we’ve just discovered, the functions we’ve just written—unit, map, map2, flat-
Map, and sequence—aren’t particular to random number generation. They’re general-
purpose functions for working with state actions, and they don’t care about the type of
the state. Note that, for instance, map doesn’t care that it’s dealing with RNG state
actions, so we can give it a more general signature by replacing RNG with S.

fun <S, A, B> map(
sa: (S) -> Pair<A, S>,
f: (A) -> B

): (S) -> Pair<B, S> = TODO()

Changing this signature doesn’t require modifying the implementation of map! The
more general signature was there all along; we just didn’t see it.

 We should then come up with a more general type than Rand for handling any type
of state.

 

Listing 6.12 Generalized version of the map combinator
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typealias State<S, A> = (S) -> Pair<A, S>

Here, State is short for computation that carries some state along, or state action, state tran-
sition, or even statement (see section 6.6). We might want to write it as its own class,
wrapping the underlying function and naming it run.

data class State<S, out A>(val run: (S) -> Pair<A, S>)

With that said, the representation doesn’t matter much. What’s important is that we
have a single, general-purpose type; and using this type, we can write general-purpose
functions for capturing common patterns of stateful programs.

 We can now make Rand a type alias for State.

typealias Rand<A> = State<RNG, A>

EXERCISE 6.10

Generalize the functions unit, map, map2, flatMap, and sequence. Add them as meth-
ods on the State data class where possible. Alternatively, where it makes sense, place
them in the State companion object.

 Always consider where a method should live—in the companion object or on the
class of the data type itself. In the case of a method that operates on an instance of the
data type, such as map, placing it at the class level certainly makes sense. When we emit
a value, such as in the unit method, or if we operate on multiple instances, such as in
map2 and sequence, it probably makes more sense to tie them to the companion
object. This choice is often subject to individual taste and may differ depending on
who is providing the implementation.

The functions we’ve written in exercise 6.10 capture only a few of the most common
patterns. As you write more functional code, you’ll likely encounter other patterns
and discover other functions to capture them. 

6.6 Purely functional imperative programming
We begin to sacrifice readability as a result of the escalating complexity of our functional
code. Is it possible to regain some of the readability we’ve lost in the process? Can we get
back to something that resembles the simple imperative style we know so well?

Listing 6.13 Generalized State type alias for state transition

Listing 6.14 Wrapping the state transition in a data class

Listing 6.15 Rand type alias updated to use State
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 The good news is that we can achieve this more straightforward style of expression
when we are coding in a purely functional way. This section will demonstrate how we
can write functional code with the appearance of being imperative. We can achieve this
using the for-comprehension, a concept that we briefly touched on in chapter 4 but will
now discuss in far greater detail.

 Up to now, we have spent a lot of time developing our own implementation of
State and have learned a lot in doing so. We will now switch over to using an alterna-
tive implementation provided by Arrow. In chapters 3 and 4, we introduced Arrow as a
functional companion for Kotlin. We learned about the Either data type that is pro-
vided by Arrow and can work with for-comprehensions. It so happens that the provided
implementation of State also has this capability, which will enable the imperative style
that we are after.

 In the preceding sections, we wrote functions that followed a definite pattern. We
ran a state action, assigned its result to a val, then ran another state action that used
that val, assigned its result to another val, and so on. It looked a lot like imperative
programming.

 In the imperative programming paradigm, a program is a sequence of statements
where each statement may modify the program state. That’s precisely what we’ve been
doing, except that our “statements” are really State actions, which are really func-
tions. As functions, they read the current program state simply by receiving it in their
argument, and they write to the program state simply by returning a value.

We implemented combinators like map, map2, and ultimately flatMap to handle prop-
agating the state from one statement to the next. But in doing so, we seem to have lost
a bit of the imperative mood.

 Consider as an example the following declarations. Here we care more about the
type signatures than the implementations.

NOTE In the Arrow State class, the state type argument appears first.

Are imperative and functional programming opposites?
Absolutely not! Remember, functional programming is just programming without side
effects. Imperative programming is about programming with statements that modify
some program state—and as we’ve seen, it’s entirely reasonable to maintain state
without side effects.

Functional programming has excellent support for writing imperative programs, with
the added benefit that such programs can be reasoned about equationally because
they’re referentially transparent. We’ll have much more to say regarding equational
reasoning about programs in part 2. We’ll also cover imperative programs in parts 3
and 4.
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val int: State<RNG, Int> = TODO()           

fun ints(x: Int): State<RNG, List<Int>> = TODO()  

fun <A, B> flatMap(
s: State<RNG, A>,
f: (A) -> State<RNG, B>

): State<RNG, B> = TODO()    

fun <A, B> map(
s: State<RNG, A>,
f: (A) -> B

): State<RNG, B> = TODO()     

Now we can write some code that uses the declarations available from listing 6.16.

val ns: State<RNG, List<Int>> =
flatMap(int) { x ->           

flatMap(int) { y ->       
map(ints(x)) { xs ->       

xs.map { it % y }   
}

}
}

It’s not clear what’s going on here, due to all the nested flatMap and map calls. Let’s
look for a more straightforward approach by turning our attention to the for-
comprehension. This construct will unravel a series of flatMap calls, allowing us to
rewrite the previous code in what seems to be a series of imperative declarations. The
trick lies in the destructuring that occurs in every step. Each time we see something
being destructured, it implies a call to flatMap.

 For example, a line that is written as flatMap(int) { x -> ... } could be rewritten
as val x: Int = int.bind() within the confines of a for-comprehension. With this in
mind, let’s try rewriting listing 6.17 using this technique.

val ns2: State<RNG, List<Int>> =
State.fx(Id.monad()) {              

val x: Int = int.bind()      
val y: Int = int.bind()      
val xs: List<Int> = ints(x).bind()   
xs.map { it % y }          

}

Listing 6.16 State declarations and combinators to propagate state

Listing 6.17 State propagation using a series of flatMaps and maps

Listing 6.18 State propagation using a for-comprehension

A State<RNG, Int> 
that can generate a 
single random integer

Returns a State<RNG, 
List<Int>> that can 
generate a list of x 
random integers

The flatMap function 
operates on a 
State<RNG, A> with 
a function from A to 
State<RNG, B>.

The map function operates on a 
State<RNG, A> with a function 
that transforms A to B.

int generates a single 
random integer.

ints(x) generates a list of 
length-x random integers.

Replaces every element in
the list with its remainder

when divided by y

Opens the for-comprehension by passing a
code block into State.fx(Id.monad())

Binds int to an Int named x

Binds int to an Int named y

Binds ints(x) to a 
List<Int> of length x

Replaces every element in xs with its remainder 
when divided by y; returns the result
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We begin by opening the for-comprehension using a call to State.fx and passing in
an instance of Id.monad(). We won’t concern ourselves much with the details, but suf-
fice to say that this will allow us to pass in an anonymous function that acts as a block
of imperative code and then return the final outcome of this block as a value.

 The code block making up the for-comprehension is much easier to read (and
write), and it looks like what it is—an imperative program that maintains some state.
But it’s the same code as in the previous example. We get the next Int and assign it to x,
get the next Int after that and assign it to y, then generate a list of length x, and finally
return the list with all of its elements modulo y.

 We have almost everything we need to write fully fledged functional programs
in an imperative style. To facilitate this kind of imperative programming with for-
comprehensions (or flatMaps), we really only need two additional primitive State
combinators: one to read the state and one to write the state. If we imagine that we
have a combinator get for getting the current state and a combinator set for setting a
new state, we can implement a combinator that can modify the state in arbitrary ways.

fun <S> modify(f: (S) -> S): State<S, Unit> =
State.fx(Id.monad()) {           

val s: S = get<S>().bind()     
set(f(s)).bind()     

}

This method returns a State action that modifies the incoming state by the function
f. It yields Unit to indicate that it doesn’t have a return value other than the state.

 What do the get and set actions look like? They’re exceedingly simple. The get
action simply passes the incoming state along and returns it as the value.

fun <S> get(): State<S, S> =
State { s -> Tuple2(s, s) }

The set action is constructed with a new state s. The resulting action ignores the
incoming state, replaces it with the new state, and returns Unit instead of a meaning-
ful value.

fun <S> set(s: S): State<S, Unit> =
State { Tuple2(s, Unit) }

The get, set, and modify combinators can already be found on the arrow.mtl
.StateApi class, but we wanted to show what they entail for the purpose of demon-
stration. These two simple actions, together with the State combinators we wrote

Listing 6.19 Combinator to modify the current State

Listing 6.20 get combinator: retrieves and then passes its state

Listing 6.21 set combinator: updates the state and returns Unit

Sets up the for-
comprehension for State

Gets the current state 
and assigns it to s

Sets the new state
of f applied to s
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earlier—unit, map, map2, and flatMap—are all the tools we need to implement any
kind of state machine or stateful program in a purely functional way.

TIP We recommend that you familiarize yourself with the Arrow documenta-
tion for State (http://mng.bz/jBWP) and look at the underlying source code
(http://mng.bz/Wrn1) to fully grasp how it works. As mentioned in section 1.5,
the Arrow implementation is somewhat richer than the one we’ve written,
employing a monad transformer StateT and exposing a public API StateApi
for the State class. Don’t worry too much about what a monad transformer is;
just be aware that StateApi is responsible for exposing methods such as get,
set, modify, stateSequential, and stateTraverse, which might come in handy
in the exercise that follows.

EXERCISE 6.11

Hard/Optional: To gain experience using State, implement a finite state automaton
that models a simple candy dispenser. The machine has two types of input: you can
insert a coin, or you can turn the knob to dispense candy. It can be in one of two
states: locked or unlocked. It also tracks how many candies are left and how many
coins it contains.

sealed class Input

object Coin : Input()
object Turn : Input()

data class Machine(
val locked: Boolean,
val candies: Int,
val coins: Int

)

The rules of the machine are as follows:

 Inserting a coin into a locked machine will cause it to unlock if there’s any
candy left.

 Turning the knob on an unlocked machine will cause it to dispense candy and
become locked.

 Turning the knob on a locked machine or inserting a coin into an unlocked
machine does nothing.

 A machine that’s out of candy ignores all inputs.

The method simulateMachine should operate the machine based on the list of inputs
and return the number of coins and candies left in the machine at the end. For
example, if the input Machine has 10 coins and 5 candies, and a total of 4 candies are

http://mng.bz/jBWP
http://mng.bz/Wrn1
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successfully bought, the output should be (14, 1). Use the following declaration stubs
to implement your solution:

fun simulateMachine(
inputs: List<Input>

): State<Machine, Tuple2<Int, Int>> =

SOLUTION_HERE()

6.7 Conclusion
In this chapter, we touched on how to write purely functional programs that have
state. We used random number generation as the motivating example, but the overall
pattern comes up in many different domains. The idea is simple: use a pure function
that accepts a state as its argument and returns the new state alongside its result. The
next time you encounter an imperative API that relies on side effects, see if you can
provide a purely functional version of it and use some of the functions we wrote here
to make working with it more convenient.

Summary
 Updating state explicitly allows the recovery of referential transparency, which is

lost in situations when mutating state.
 Stateful APIs are made pure by computing each subsequent state, not mutating

the existing state.
 A function that computes a state based on a previous state is known as a state

action or state transition.
 You can use combinators to abstract repetitive state transition patterns and even

combine and nest state actions when required.
 You can adopt an imperative style when dealing with state transitions through the

use of for-comprehensions.
 Arrow offers a proper State API and associated data type to model all the con-

cepts dealt with in this chapter.



Part 2

Functional design
and combinator libraries

In part 1, we took a radical stance to rethink how we approach programming
using pure functions without side effects. This approach has allowed us to solve
problems in ways vastly different than what we’re accustomed to. We learned
about looping, data structures, exception handling, and dealing with state
changes, all while using only pure functions. This has equipped us with many
building blocks that we can use to solve more complex problems.

 Part 2 of this book is all about applying the knowledge gained in part 1. We
put this knowledge to use by designing and writing libraries that perform com-
mon tasks that we expect to see in the real world. In chapter 7, we write a library
that handles parallel and asynchronous communication. Chapter 8 sees us writ-
ing a property-based testing framework, and chapter 9 demonstrates how we can
build a string-parsing library.

 These chapters aren’t about teaching you parallelism, testing, or parsing—
many other books have been written about these topics, and those aren’t what
we are trying to teach. Instead, these chapters focus on how we go about the pro-
cess, not what we are building. We apply our functional building blocks to solve
complex problems in the real world by designing purely functional libraries for
any domain—even domains that don’t resemble those presented here.

 This part of the book is a somewhat meandering journey. Functional design
is often a messy and iterative process. We hope to show a realistic view of how
functional design unfolds in the real world. Don’t worry if you don’t follow every
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bit of the discussion; the details aren’t as important as the method of arriving. These
chapters should be like peering over the shoulder of someone as they think through
possible designs. And because no two people approach this process the same way, the
particular path chosen might not strike you as the most natural—perhaps it considers
issues in what seems like an odd order, skips too fast, or goes too slow. We each work at
our own pace and follow our own intuition. The important thing to take away is how
to write small prototypes to conduct experiments, make observations, and arrive at
informed decisions based on the results.

 There is no right or wrong way to design functional libraries. Instead, we have
many design choices, each with different trade-offs. Our goal is to let you understand
these trade-offs and their consequences. At times, we approach a fork in the road of
our design journey, and we may deliberately veer off in the wrong direction to learn
from the undesirable consequences. This gives us new insight and learning when we
decide to backtrack to the correct path later. You should always feel free to experi-
ment and play with different choices, which will help you arrive at the best possible
design for your purpose.



Purely functional
parallelism
Because modern computers have multiple cores per CPU and often multiple CPUs,
it’s more important than ever to design programs in such a way that they can take
advantage of this parallel processing power. But the interaction of parallel pro-
cesses is complex, and the traditional mechanism for communication among exe-
cution threads—shared mutable memory—is notoriously difficult to reason about.
This can all too easily result in programs that have race conditions and deadlocks,
aren’t readily testable, and don’t scale well.

 In this chapter, we build a purely functional library to create parallel and asyn-
chronous computations. We’ll rein in the complexity inherent in parallel programs
by describing them using only pure functions. This will let us use the substitution

This chapter covers
 Designing a purely functional library

 Choosing appropriate data types and functions 
to model the domain

 Reasoning about an API in terms of an algebra 
to discover types

 Defining laws to govern API behavior

 Generalizing combinators
117
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model to simplify our reasoning and hopefully make working with concurrent compu-
tations both easy and enjoyable.

 What you should take away from this chapter is not how to write a library for purely
functional parallelism, but how to approach the problem of designing a purely functional
library. Our primary concern will be to make our library highly composable and modu-
lar. To this end, we’ll keep with our theme of separating the concern of describing a
computation from actually running it. We want our library users to be able to write
programs at a very high level, insulating them from the nitty-gritty of how their pro-
grams are executed. For example, toward the end of the chapter, we develop a combi-
nator, parMap, that lets us easily apply a function f to every element in a collection
simultaneously:

val outputList = parMap(inputList, f)

To get there, we’ll work iteratively. We’ll begin with a simple use case that we’d like
our library to handle and then develop an interface that facilitates this use case. Only
then will we consider what our implementation of this interface should be. As we keep
refining our design, we’ll oscillate between the interface and implementation to bet-
ter understand the domain and the design space through progressively more complex
use cases. We’ll introduce algebraic reasoning and demonstrate that an API can be
described by an algebra that obeys specific laws.

 Why design our own library? Why not just take advantage of the concurrency that
comes with Kotlin’s standard library by using coroutines? We’ll design our own library
for two reasons. The first is for pedagogical purposes, to demonstrate how easy it is to
design your own library. The second reason is that we want to encourage the view that
no existing library is authoritative or beyond reexamination, even if it was designed by
experts and labeled “standard.” There’s a particular safety in doing what everybody
else does, but what’s conventional isn’t necessarily the most practical. Most libraries
contain a lot of arbitrary design choices, many made unintentionally. When you start
from scratch, you get to revisit all the fundamental assumptions that went into design-
ing the library, take a different path, and discover things about the problem space that
others may not have considered. As a result, you might arrive at your own design that
suits your purposes better. In this particular case, our fundamental assumption will be
that our library permits absolutely no side effects.

 We write a lot of code in this chapter, in part posed as exercises for you, the reader.
You can always find hints and answers in appendixes A and B at the back of the book.

7.1 Choosing data types and functions
When designing a functional library, we usually have some general ideas about what
we want to achieve. The difficulty in the design process is refining these ideas and
finding a data type that enables the functionality we want. In this case, we’d like to
be able to “create parallel computations,” but what does that mean exactly? Let’s try
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to refine this into something we can implement by examining a simple, paralleliz-
able computation—summing a list of integers. The usual left fold for this would be
as follows:

fun sum(ints: List<Int>): Int =
ints.foldLeft(0) { a, b -> a + b }

NOTE For ease of use, we aren’t using our List implementation from chap-
ter 3 but have opted for the List provided by the Kotlin standard library. This
list implementation exposes a read-only interface, although the underlying
implementation is mutable. We are willing to make this compromise because
we won’t be using any advanced list features, and as library authors want to
keep the dependency graph as small as possible.

Instead of folding sequentially, we could use a divide-and-conquer algorithm as shown
in the following listing.

fun sum(ints: List<Int>): Int =
if (ints.size <= 1)

ints.firstOption().getOrElse { 0 }     
else {

val (l, r) = ints.splitAt(ints.size / 2)    
sum(l) + sum(r)  

}

We divide the sequence in half using the splitAt function, recursively sum both
halves, and then combine their results. And unlike the foldLeft-based implementa-
tion, this implementation can be parallelized with the two halves being summed in
parallel.

Listing 7.1 Summing a list using a divide-and-conquer approach

The importance of simple examples
Summing integers in practice is so fast that parallelization imposes more overhead
than it saves. But simple examples like this are the most helpful to consider when
designing a functional library.

Complicated examples include all sorts of incidental details that can confuse the ini-
tial design process. We’re trying to explain the essence of the problem domain. An
excellent way to do that is to start with trivial examples, factor out common concerns
across these examples, and gradually add complexity.

In functional design, our goal is to achieve expressiveness without numerous excep-
tional cases, instead opting to build a composable and straightforward set of core
data types and functions.

Deals with cases of 1 or 0 ints using the
Arrow extension method firstOption, 
like headOption in chapter 5

Splits the list in two and 
destructures it using the 
helper extension method 
splitAt

Recursively calls sum 
for both l and r and 
sums them up
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As we think about what sorts of data types and functions could enable parallelizing
this computation, we begin to shift our perspective. Rather than focusing on how this
parallelism will be implemented and forcing ourselves to work with the underlying
APIs directly, we turn the tables. Instead, we’ll design our own shiny new API as illumi-
nated by our examples, working backward from there to our own implementation that
uses underlying libraries such as java.concurrent to do the heavy lifting.

7.1.1 A data type for parallel computations

Let’s take a closer look at the line sum(l) + sum(r) in listing 7.1, which invokes sum on
the two halves recursively. We immediately see that any data type we might choose to
represent our parallel computation needs to contain a result. This result will have some
meaningful type (in this case, Int). We also require a way to extract the result. Let’s
apply this newfound knowledge to our design. For now, we can just invent a container
type for our result, call it Par<A> (for parallel), and legislate the existence of the func-
tions we need.

class Par<A>(val get: A)       

fun <A> unit(a: () -> A): Par<A> = Par(a())      

fun <A> get(a: Par<A>): A = a.get   

Can we really do such a thing? Yes, of course! For now, we don’t need to worry about
what other functions we require, what the internal representation of Par might be, or
how these functions are implemented. We are simply conjuring the needed data type
and its associated functions to meet our example’s needs. Let’s revisit our example
from listing 7.1.

fun sum(ints: List<Int>): Int =
if (ints.size <= 1)

ints.firstOption().getOrElse { 0 }
else {

val (l, r) = ints.splitAt(ints.size / 2)
val sumL: Par<Int> = unit { sum(l) }       
val sumR: Par<Int> = unit { sum(r) }      
sumL.get + sumR.get    

}

We have now added our new Par data type to the mix. We wrap both recursive calls to
sum in Par using the unit factory method, which in turn is responsible for evaluating
all calls to sum. Next, we extract both results from their Pars to sum them up.

Listing 7.2 Defining a new data type for parallelism

Listing 7.3 Using our new data type to assimilate parallelism

New data type to 
contain a result

Creates a unit of 
parallelism from 
unevaluated A

Extracts the evaluated result of A

Computes the left 
side of the list in the 
context of Par

Computes the right 
side of the list in 
the context of Par

Extracts the Int results from 
the Pars and sums them
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 We now have a choice about the meaning of unit and get: unit could begin evalu-
ating its argument immediately in a separate logical thread, or it could simply defer
evaluation of its argument until get is called.

NOTE We use the term logical thread somewhat informally to mean a compu-
tation that runs concurrently with the main execution thread of our program.
There doesn’t need to be a one-to-one correspondence between logical
threads and OS threads. For instance, we may have a large number of logi-
cal threads mapped onto a smaller number of OS threads via thread pooling.

But in listing 7.3, if we want to obtain any degree of parallelism, we require that unit
begin evaluating its argument concurrently and immediately return without blocking.
Can you see why? Function arguments in Kotlin are strictly evaluated from left to
right, so if unit delays execution until get is called, we will spawn the parallel compu-
tation and wait for it to finish before spawning the second parallel computation. This
means the computation is effectively sequential!

 But if unit begins evaluating its argument concurrently, then calling get is respon-
sible for breaking referential transparency. We can see this by replacing sumL and sumR
with their definitions—if we do so, we still get the same result, but our program is no
longer parallel, as can be seen here:

unit { l }.get + unit { r }.get

If unit starts evaluating its argument right away, the next thing to happen is that get
will wait for that evaluation to complete. So the two sides of the + sign won’t run in
parallel if we simply inline the sumL and sumR variables. We can see that unit has a
definite side effect but only in conjunction with get. We say this because unit, which
merely represents an asynchronous computation Par<Int>, will block execution when
we call get. This, in turn, exposes the side effect. So we should avoid calling get, or at
least delay calling it until the very end. We seek to combine asynchronous computa-
tions without waiting for them to complete.

 Before we continue, let’s reflect on what we’ve done. First, we conjured up a sim-
ple, almost trivial example. Next, we explored this example to uncover a design
choice. Then, via some experimentation, we discovered an intriguing consequence of
one option and, in the process, learned something fundamental about the nature of
our problem domain! The overall design process is a series of small adventures. You
don’t need a special license to do such exploration, and you certainly don’t need to be
an expert in functional programming. Just dive in and see what you can find!

7.1.2 Combining parallel computations to ensure concurrency

Let’s see if we can avoid the pitfall mentioned earlier of combining unit and get. If
we don’t call get, that implies that our sum function must return a Par<Int>. What
consequences does this change reveal? Again, let’s just invent a function, say map2,
with the required signature:
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fun sum(ints: List<Int>): Par<Int> =
if (ints.size <= 1)

unit { ints.firstOption().getOrElse { 0 } }
else {

val (l, r) = ints.splitAt(ints.size / 2)
map2(sum(l), sum(r)) { lx: Int, rx: Int -> lx + rx }

}

EXERCISE 7.1

The higher-order function map2 is a new function for combining the result of two par-
allel computations. What is its signature? Give the most general signature possible
(don’t assume it works only for Int).

Observe that we’re no longer calling unit in the recursive case, and it isn’t clear
whether unit should accept its argument lazily anymore. In this example, accepting
the lazy argument doesn’t seem to provide many benefits, but perhaps this isn’t always
the case. Let’s come back to this question later.

 What about map2—should it take its arguments lazily? Would it make sense for
map2 to run both sides of the computation in parallel, giving each side an equal
opportunity to run? It would seem arbitrary for the order of the map2 arguments to
matter, as we simply want it to indicate that the two computations being combined are
independent and can be run in parallel. What choice lets us implement this meaning?
As a simple example, consider what happens if map2 is strict in both arguments as we
evaluate sum(listOf(1, 2, 3, 4)). Take a minute to work through and understand
the following (somewhat stylized) program trace.

sum(listOf(1, 2, 3, 4))    

map2(
sum(listOf(1, 2)),
sum(listOf(3, 4))

) { i: Int, j: Int -> i + j }   

map2(
map2(

sum(listOf(1)),
sum(listOf(2))

) { i: Int, j: Int -> i + j },   
sum(listOf(3, 4))

) { i: Int, j: Int -> i + j }

map2(
map2(

unit { 1 },

Listing 7.4 Strict evaluation of parameters: left side evaluated first

Unevaluated 
expression

Substitutes the 
definition of 
map2 for sum

Substitutes the 
definition of map2 for 
the left argument
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unit { 2 }
) { i: Int, j: Int -> i + j },     
sum(listOf(3, 4))

) { i: Int, j: Int -> i + j }

map2(
map2(

unit { 1 },
unit { 2 }

) { i: Int, j: Int -> i + j },
map2(

sum(listOf(3)),
sum(listOf(4))

) { i: Int, j: Int -> i + j }   
) { i: Int, j: Int -> i + j }

To evaluate sum(x) in listing 7.4, we substitute x into the definition of sum, as we’ve
done in previous chapters. Because map2 is strict, and Kotlin evaluates arguments left
to right, whenever we encounter map2(sum(x),sum(y)) { i, j -> i + j }, we then have
to evaluate sum(x) and so on, recursively. This has the unfortunate consequence that
we’ll strictly construct the entire left half of the tree of summations first before moving
on to (strictly) constructing the right half. Here, sum(listOf(1,2)) gets fully expanded
before we consider sum(listOf(3,4)). And suppose map2 evaluates its arguments in
parallel (using whatever resource is being used to implement the parallelism, like a
thread pool). This implies that the left half of our computation will start executing
before we even begin constructing the right half of our computation.

 What if we keep map2 strict but don’t let it begin execution immediately? Does that
help? If map2 doesn’t begin evaluation immediately, this implies that a Par value is
merely constructing a description of what needs to be computed in parallel. Nothing
actually occurs until we evaluate this description, perhaps by using a get-like function.
The problem is that if we construct our descriptions strictly, they’ll be rather heavy-
weight objects. Looking at the following trace, we see that our description will contain
the entire tree of operations to be performed.

map2(
map2(

unit { 1 },
unit { 2 }) { i: Int, j: Int -> i + j },

map2(
unit { 3 },
unit { 4 }) { i: Int, j: Int -> i + j }

) { i: Int, j: Int -> i + j }

Whatever data structure we use to store this description, it will likely occupy more
space than the original list itself! It would be nice if our descriptions were more
lightweight. It also seems that we should make map2 lazy so it begins the immediate

Listing 7.5 Strict description construction: full tree of operations

Substitutes the 
results for the left 
sum expressions

Substitutes the 
definition for the 
right-hand side
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execution of both sides in parallel. This also addresses the problem of giving either
side priority over the other. 

7.1.3 Marking computations to be forked explicitly

Something still doesn’t feel right about our latest choice. Is it always the case that we
want to evaluate the two arguments to map2 in parallel? Probably not. Consider this
simple hypothetical example:

map2(
unit { 1 },
unit { 2 }

) { i: Int, j: Int -> i + j }

In this case, we happen to know that the two computations we’re combining will exe-
cute so quickly that there isn’t any point in spawning a new logical thread to evaluate
them. But our API doesn’t give us any way to provide this sort of information. Our cur-
rent API is very inexplicit about when computations are forked off the main thread into
a new thread process—the programmer doesn’t get to specify where this forking
should occur. What if we make the forking more explicit? We can do that by inventing
another function, which we can take to mean the given Par should be run in a sepa-
rate logical thread:

fun <A> fork(a: () -> Par<A>): Par<A> = TODO()

Applying this function to our running sum example, we can express it as follows:

fun sum(ints: List<Int>): Par<Int> =
if (ints.size <= 1)

unit { ints.firstOption().getOrElse { 0 } }
else {

val (l, r) = ints.splitAt(ints.size / 2)
map2(

fork { sum(l) },
fork { sum(r) }

) { lx: Int, rx: Int -> lx + rx }
}

With fork, we can now make map2 strict, leaving it up to the programmer to wrap
arguments if they wish. A function like fork solves the problem of instantiating our
parallel computations too strictly, but more fundamentally, it puts the parallelism
explicitly under programmer control. We’re addressing two concerns here. The first is
that we need some way to indicate that the results of the two parallel tasks should be
combined. Apart from this, we have the choice of whether a particular task should
be performed asynchronously. By keeping these concerns separate, we avoid having
any sort of global policy for parallelism attached to map2 and other combinators we
write, which would mean making difficult and ultimately arbitrary choices about what
global policy is best.
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 Let’s return to the question of whether unit should be strict or lazy. With fork, we
can now make unit strict without any loss of expressiveness. A non-strict version of it,
let’s call it lazyUnit, can be implemented using unit and fork.

fun <A> unit(a: A): Par<A> = Par(a)

fun <A> lazyUnit(a: () -> A): Par<A> =
fork { unit(a()) }

The function lazyUnit is a simple example of a derived combinator, as opposed to a
primitive combinator like unit. We were able to define lazyUnit in terms of other
operations only. Later, when we pick a representation for Par, lazyUnit won’t need to
know anything about this representation—its only knowledge of Par is through the
operations fork and unit defined on Par.

 We know we want fork to signal that its argument is evaluated in a separate logical
thread. But we still have the question of whether it should begin doing so immediately
upon being called or hold on to its argument to be evaluated in a logical thread later
when the computation is forced using something like get. In other words, should eval-
uation be the responsibility of fork or of get? Should evaluation be eager or lazy?
When you’re unsure about a meaning to assign to a function in your API, you can
always continue with the design process—at some point later, the trade-offs of differ-
ent choices of meaning may become apparent. Here we use a helpful trick—we’ll
think about what sort of information is required to implement fork and get with vari-
ous meanings.

 Suppose fork begins evaluating its argument immediately in parallel. In that case,
the implementation must clearly know something, either directly or indirectly, about
creating threads or submitting tasks to some sort of thread pool. This implies that the
thread pool or whatever resource we use to implement the parallelism must be glob-
ally accessible and properly initialized wherever we want to call fork. This means we
lose the ability to control the parallelism strategy used for different parts of our pro-
gram. And although there’s nothing wrong with having a global resource for execut-
ing parallel tasks, we can imagine how it would be helpful to have more fine-grained
control over what implementations are used and in what context. For instance, we
might like each subsystem of an extensive application to get its own thread pool with
different parameters. As we consider this, it seems much more appropriate to give get
the responsibility of creating threads and submitting execution tasks.

 Note that coming to these conclusions didn’t require knowing exactly how fork and
get would be implemented or even what the representation of Par would be. We just
reasoned informally about the sort of information required to spawn a parallel task and
then examined the consequences of having Par values know about this information.

 If fork simply holds on to its unevaluated argument until later, it requires no
access to the mechanism for implementing parallelism. It just takes an unevaluated

Listing 7.6 Combining strict unit and fork into a lazy unit variant
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Par and “marks” it for concurrent evaluation. With this model, Par itself doesn’t need
to know how to actually implement the parallelism. It’s more a description of a parallel
computation that is interpreted at a later time by something like the get function. This
is a shift from before, where we were considering Par to be a container of a value that
we could simply get when it becomes available. Now it’s more of a first-class program
that we can run. Keeping this new discovery in mind, let’s rename our get function to
run and dictate that this is where the parallelism is implemented:

fun <A> run(a: Par<A>): A = TODO()

Because Par is now just a pure data structure, run has to have some means of imple-
menting the parallelism, whether it spawns new threads, delegates tasks to a thread
pool, or uses another mechanism. 

7.2 Picking a representation
Just by exploring this simple example and thinking through the consequences of dif-
ferent choices, we’ve arrived at the following API:

fun <A> unit(a: A): Par<A>   

fun <A, B, C> map2(
a: Par<A>,
b: Par<B>,
f: (A, B) -> C

): Par<C>           

fun <A> fork(a: () -> Par<A>): Par<A>        

fun <A> lazyUnit(a: () -> A): Par<A>         

fun <A> run(a: Par<A>): A    

EXERCISE 7.2

At any point while evolving an API, you can start thinking about possible representations
for the abstract types that appear. Try to come up with a representation for Par that
makes it possible to implement the functions of our API.

Let’s see if we can come up with a representation together. We know that run some-
how needs to execute asynchronous tasks. We could write our own low-level API, but
there’s an existing class we can use in the Java Standard Library: java.util.concurrent
.ExecutorService. Here is what the API looks like, roughly paraphrased in Kotlin.

 

Creates a computation that 
immediately results in the value a

Combines the results of two 
parallel computations with 
a binary function Marks a computation for 

concurrent evaluation 
by run

Wraps expression a for 
concurrent evaluation by run

Fully evaluates a given Par, spawning 
computations and extracting values
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interface Callable<A> {
fun call(): A

}

interface Future<A> {
fun get(): A
fun get(timeout: Long, timeUnit: TimeUnit): A
fun cancel(evenIfRunning: Boolean): Boolean
fun isDone(): Boolean
fun isCancelled(): Boolean

}

interface ExecutorService {
fun <A> submit(c: Callable<A>): Future<A>

}

The ExecutorService allows us to submit a Callable, equivalent to a lazy argument,
or thunk, in Kotlin. The result from calling submit is a Future: a handle to a computa-
tion that is potentially running in a new thread. We can query the Future for a result
by calling one of its blocking get methods. It also sports some additional methods for
canceling and querying its current state.

Listing 7.7 Executor API represented in Kotlin

The problem with using concurrency primitives directly
What about java.lang.Thread and Runnable? Let’s take a look at these classes.
Here’s a partial excerpt of their API, paraphrased in Kotlin:

interface Runnable {
fun run(): Unit

}

class Thread(r: Runnable) {
fun start(): Unit = TODO()   
fun join(): Unit = TODO()    

}

Already, we can see a problem with both of these types: none of the methods return
a meaningful value. Therefore, if we want to get any information out of a Runnable,
it has to have a side effect, like mutating some state that we can inspect. This is bad
for compositionality—we can’t manipulate Runnable objects generically since we
always need to know something about their internal behavior. Thread also has the
disadvantage that it maps directly onto operating system threads, which are a scarce
resource. It would be preferable to create as many “logical threads” as is natural for
our problem and later deal with mapping these onto existing OS threads.

We can handle this sort of thing by using Kotlin’s coroutines, which are great for han-
dling parallelism. Still, since this book is not about exploring Kotlin’s advanced fea-
tures, we will instead opt for something simple like java.util.concurrent.Future,

Begins running r in 
a separate thread

Blocks the calling thread 
until r finishes running
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Now try to imagine how we could modify run in our Par data type if we had access to
an instance of the ExecutorService:

fun <A> run(es: ExecutorService, a: Par<A>): A = TODO()

The simplest possible way to express Par<A> might be to turn it into a type alias of a
function such as (ExecutorService) -> A. If we invoked this function with an
instance of an ExecutorService, it would produce something of type A, making the
implementation trivial. We can improve this further by giving the caller of run the
ability to defer how long to wait for computation or cancel it altogether. With this in
mind, Par<A> becomes (ExecutorService) -> Future<A> with run simply returning
Future<A>:

typealias Par<A> = (ExecutorService) -> Future<A>

fun <A> run(es: ExecutorService, a: Par<A>): Future<A> = a(es)

Note that since Par is now represented by a function that needs an ExecutorService,
the creation of the Future doesn’t actually happen until this ExecutorService is
provided.

 Is it really that simple? Let’s assume it is for now and revise our model if we find
that it doesn’t fulfill our requirements in the future. 

(continued)

ExecutorService, and friends. Why don’t we choose to use these directly? Here’s
a paraphrased portion of their API:

class ExecutorService {
fun <A> submit(a: Callable<A>): Future<A> = TODO()

}

interface Future<A> {
fun get(): A

}

Although java.util.concurrent is a tremendous help in abstracting over physical
threads, these primitives are still at a much lower level of abstraction than the library
we want to create in this chapter. A call to Future.get, for example, blocks the call-
ing thread until ExecutorService has finished executing it, and its API provides no
means of composing futures. Of course, we can build the implementation of our
library on top of these tools (and this is what we end up doing later in the chapter),
but these primitives don’t present the modular and compositional API that we’d want
to use directly from functional programs.
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7.3 Refining the API with the end user in mind
The way we’ve worked so far is a bit artificial. There aren’t such clear-cut boundaries
between designing the API and choosing a representation with one preceding the
other in practice. Ideas for a representation can drive the API design, but the opposite
may also happen—the choice of API can drive the representation. It is natural to shift
fluidly between these two perspectives, run experiments when questions arise, build
prototypes, and so on.

 We devote this section to exploring and refining our API. Although we’ve already
obtained a lot of mileage out of evolving this simple example, let’s try to learn more
about what we can express using the primitive operations we already built before add-
ing new ones. With our primitives and their chosen meanings, we’ve carved out a
small universe for ourselves. We now get to discover what ideas can be expressed in
this universe. This can and should be a fluid process—we can change the rules of our
universe at any time, make a fundamental change to our representation, or introduce
a new primitive, all while observing how our creation subsequently behaves.

 We will begin by implementing the functions of the API we’ve developed up to this
point. Now that we have a representation for Par, a first attempt should be straightfor-
ward. What follows is a naive implementation using this initial representation.

object Pars {
fun <A> unit(a: A): Par<A> =

{ es: ExecutorService -> UnitFuture(a) }     

data class UnitFuture<A>(val a: A) : Future<A> {

override fun get(): A = a

override fun get(timeout: Long, timeUnit: TimeUnit): A = a

override fun cancel(evenIfRunning: Boolean): Boolean = false

override fun isDone(): Boolean = true

override fun isCancelled(): Boolean = false
}

fun <A, B, C> map2(
a: Par<A>,
b: Par<B>,
f: (A, B) -> C

): Par<C> =         
{ es: ExecutorService ->

val af: Future<A> = a(es)
val bf: Future<B> = b(es)
UnitFuture(f(af.get(), bf.get()))     

}

Listing 7.8 Primitive operations for Par in the Pars object

Represents unit as a 
function that returns 
a UnitFuture

map2 is only responsible 
for combinatorial logic—
no implicit threading.

Timeouts are not 
respected due to 
the calls to get().
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fun <A> fork(
a: () -> Par<A>

): Par<A> =                
{ es: ExecutorService ->

es.submit(Callable<A> { a()(es).get() })
}

}

As stated before, this example is a naive solution to the problem. We will now identify
the issues and address them one by one. The unit operator is represented as a func-
tion that returns a UnitFuture, a simple implementation of Future that wraps a con-
stant value and never uses ExecutorService. It is always executed and can’t be
canceled. Its get method simply returns the value that we gave it.

 Next up is the map2 operator. It doesn’t evaluate the call to f in a separate logical
thread, per our design choice of having fork be the sole function in the API that con-
trols parallelism. We could always wrap map2 with a call to fork if we wanted the evalu-
ation of f to occur in a separate thread.

 This implementation of map2 also does not respect timeouts. It simply passes the
ExecutorService on to both Par values, waits for the results of the Futures af and
bf, applies f to both, and finally wraps them in a UnitFuture. To respect timeouts,
we’d need a new Future implementation that recorded the amount of time spent
evaluating af and then subtracted that time from the available time allocated for
evaluating bf.

 The fork operator has the most straightforward and natural implementation pos-
sible. Still, there are also some problems here—for one, the outer Callable will block
waiting for the “inner” task to complete. Since this blocking occupies a thread or
resource backing our ExecutorService, we lose out on some potential parallelism.
This is a symptom of a more severe problem with the implementation, discussed later
in the chapter.

 We should note that Future doesn’t have a purely functional interface. This is part
of the reason we don’t want users of our library to deal with Future directly. An
important point to make is that even though the methods on Future rely on side
effects, our entire Par API remains pure. Only after the user calls run and the imple-
mentation receives an ExecutorService do we expose the Future’s machinery. Our
users are therefore programming to a pure interface with an implementation that
relies on effects. But since our API remains pure, these effects aren’t side effects. In
part 4 of the book, we’ll discuss this distinction in detail.

EXERCISE 7.3

Hard: Fix the implementation of map2 so that it respects the contract of timeouts on
Future.

fork is not truly running in parallel 
due to the a() blocking call.



131Refining the API with the end user in mind
EXERCISE 7.4

This API already enables a rich set of operations. As an example, using lazyUnit,
write a function to convert any function (A) -> B to one that evaluates its result asyn-
chronously.

fun <A, B> asyncF(f: (A) -> B): (A) -> Par<B> =

SOLUTION_HERE()

What else can we express with our existing combinators? Let’s look at a more concrete
example.

 Suppose we have a Par<List<Int>> representing a parallel computation that
produces a List<Int>, and we’d like to convert this to a Par<List<Int>> with a
sorted result:

fun sortPar(parList: Par<List<Int>>): Par<List<Int>> = TODO()

We could run the Par, sort the resulting list, and repackage it in a Par with unit. But
we want to avoid calling run. The only other combinator we have that allows us to
manipulate the value of a Par in any way is map2. So if we pass parList to one side of
map2, we’ll be able to gain access to the List inside and sort it. And we can pass what-
ever we want to the other side of map2, so let’s just pass a Unit:

fun sortPar(parList: Par<List<Int>>): Par<List<Int>> =
map2(parList, unit(Unit)) { a, _ -> a.sorted() }

That was easy. We can now tell a Par<List<Int>> that we’d like that list sorted. But we
might as well generalize this further. We can “lift” any function of type (A) -> B to
become a function that takes Par<A> and returns Par<B>; we can map any function
over a Par:

fun <A, B> map(pa: Par<A>, f: (A) -> B): Par<B> =
map2(pa, unit(Unit), { a, _ -> f(a) })

As a result, sortPar now becomes the following:

fun sortPar(parList: Par<List<Int>>): Par<List<Int>> =
map(parList) { it.sorted() }

That’s terse and clear. We just combined the operations to make the types line up.
And yet, if you look at the implementations of map2 and unit, it should be clear this
implementation of map means something sensible.

 Was it cheating to pass the bogus value unit(Unit) as an argument to map2, only to
ignore its value? Not at all! The fact that we can implement map in terms of map2 but



132 CHAPTER 7 Purely functional parallelism
not the other way around shows that map2 is strictly more powerful than map. This sort
of thing happens a lot when we’re designing libraries—often, a function that seems to
be primitive turns out to be expressible using a more powerful primitive.

 What else could we implement using our API? Could we map over a list in parallel?
Unlike map2, which combines two parallel computations, parMap (as we’ll call it) needs
to combine N parallel computations. It seems like this should somehow be expressible:

fun <A, B> parMap(
ps: List<A>,
f: (A) -> B

): Par<List<B>> = TODO()

We could always just write parMap as a new primitive. Remember that Par<A> is simply
a type alias for (ExecutorService) -> Future<A>.

 There’s nothing wrong with implementing operations as new primitives. In some
cases, we can even implement the operations more efficiently by assuming something
about the underlying representation of the data types we’re working with. But right
now, we’re interested in exploring what operations are expressible using our existing
API and grasping the relationships between the various operations we’ve defined.
Understanding what combinators are truly primitive will become more important in
part 3 when we show how to abstract over common patterns across libraries.

 There is also another good reason not to implement parMap as a new primitive: it is
challenging to do correctly, particularly if we want to respect timeouts properly. It is
frequently the case that primitive combinators encapsulate rather tricky logic, and
reusing them means we don’t have to duplicate this logic.

 Let’s see how far we can get implementing parMap in terms of existing combinators:

fun <A, B> parMap(
ps: List<A>,
f: (A) -> B

): Par<List<B>> {
val fbs: List<Par<B>> = ps.map(asyncF(f))
TODO()

}

Remember, asyncF converts an (A) -> B to an (A) -> Par<B> by forking a parallel
computation to produce the result. So we can fork off our N parallel computations
pretty easily, but we need some way to collect their results. Are we stuck? Well, just
from inspecting the types, we can see that we need a way to convert our List<Par<B>>
to the Par<List<B>> required by the return type of parMap.

EXERCISE 7.5

Hard: Write this function, called sequence. No additional primitives are required. Do
not call run.
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fun <A> sequence(ps: List<Par<A>>): Par<List<A>> =

SOLUTION_HERE()

Once we have sequence, we can complete our implementation of parMap:

fun <A, B> parMap(
ps: List<A>,
f: (A) -> B

): Par<List<B>> = fork {
val fbs: List<Par<B>> = ps.map(asyncF(f))
sequence(fbs)

}

Note that we’ve wrapped our implementation in a call to fork. With this implementa-
tion, parMap will return immediately, even for an enormous input list. When we later
call run, it will fork a single asynchronous computation, which itself spawns N parallel
computations and then waits for these computations to finish, collecting their results
into a list.

EXERCISE 7.6

Implement parFilter, which filters elements of a list in parallel.

fun <A> parFilter(
sa: List<A>,
f: (A) -> Boolean

): Par<List<A>> =

SOLUTION_HERE()

Can you think of any other valuable functions to write? Experiment with writing a few
parallel computations of your own to see which ones can be expressed without addi-
tional primitives. Here are some ideas to try:

 Is there a more general version of the parallel summation function we wrote at
the beginning of this chapter? Try using it to find the maximum value of a List
in parallel.

 Write a function that takes a list of paragraphs (a List<String>) and returns
the total number of words across all paragraphs in parallel. Generalize this
function as much as possible.

 Implement map3, map4, and map5 in terms of map2. 
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7.4 Reasoning about the API in terms 
of algebraic equations
As the previous section demonstrates, we can often go far by simply writing down the
type signature for an operation we want and then “following the types” to an imple-
mentation. When working this way, we can almost forget the concrete domain (for
instance, when we implemented map in terms of map2 and unit) and just focus on lin-
ing up types. This isn’t cheating; it’s natural reasoning analogous to what we do when
simplifying an algebraic equation. We’re treating the API as an algebra, or an abstract
set of operations along with a set of laws or properties we assume to be accurate, and
then doing formal symbol manipulation following the rules of the game specified by
this algebra.

NOTE We do mean algebra in the mathematical sense of one or more sets,
together with a collection of functions operating on objects of these sets and a
set of axioms. Axioms are statements assumed true, from which we can derive
other theorems that must also be true. In our case, the sets are particular types
like Par<A> and List<Par<A>>, and the functions are operations like map2,
unit, and sequence.

Up until now, we’ve taken an informal approach to reason about our API. There’s
nothing wrong with this, but let’s take a step back and formalize some laws we
would like our API to hold. Without realizing it, we’ve mentally built up a model of
what properties or laws we expect. By articulating them, we can highlight design
choices that wouldn’t otherwise be apparent when reasoning informally. Two laws
that come to mind are the laws of mapping and forking, which we discuss next in this
section.

7.4.1 The law of mapping

Like any design choice, choosing laws has profound consequences—it places con-
straints on what the operations mean, determines the possible implementation
choices, and affects what other properties can be true. Let’s look at an example where
we’ll make up some law that seems feasible. This might be used as a test case if we were
writing tests for our library:

map(unit(1)) { it + 1 } == unit(2)

We’re saying that mapping over unit(1) with the { it + 1 } function is in some sense
equivalent to unit(2). Laws often start out this way, as concrete examples of identities
we expect to hold. Here we mean identity in the mathematical sense of a statement
that two expressions are identical or equivalent. In what sense are they equivalent?
This is an interesting question, because Par is a simple function of (Executor-
Service) -> Future. For now, let’s say two Par objects are equivalent if for any valid
ExecutorService argument, their Future results have the same value.
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 Laws and functions share much in common. Just as we can generalize functions,
we can generalize laws. For instance, the preceding expression can be generalized in
this way:

map(unit(x), f) == unit(f(x))

Here we’re saying this should hold true for any choice of x and f, not just 1 and the
{ it + 1 } function. This places some constraints on our implementation. Our imple-
mentation of unit can’t inspect the value it receives and decide to return a parallel
computation with a result of 42 when the input is 1—it can only pass along whatever it
receives. Similarly, for our ExecutorService, when we submit Callable objects to it
for execution, it can’t make any assumptions or change behavior based on the values
it receives. More concretely, this law disallows downcasting or is checks (often
grouped under the term typecasting) in the implementations of map and unit.

 Much like we strive to define functions in terms of simpler functions, each doing
only one thing, we can also define laws in terms of simpler laws that each affirm one
thing. Let’s see if we can simplify this law further. We said we wanted this law to hold
for any choice of x and f. Something interesting happens if we substitute the identity
function for f. An identity function just passes along its value and can be defined as fun
<A> id(a: A): A = a. We can now simplify both sides of the equation and get a new law
that’s less complicated, much like the substitution one might do when solving an alge-
braic equation.

val x = 1
val y = unit(x)
val f = { a: Int -> a + 1 }
val id = { a: Int -> a }

map(unit(x), f) == unit(f(x))     
map(unit(x), id) == unit(id(x))    
map(unit(x), id) == unit(x)     
map(y, id) == y    

This is fascinating! Our simplified law talks about map only, leaving the mention of
unit as an extraneous detail. To get some insight into what this new law suggests, let’s
think about what map can’t do. It can’t throw an exception and crash the computation
before applying the function to the result. Can you see why this violates the law? All
map can do is apply the function f to the result of y, which in turn leaves y unaffected
when that function is id. We say that map is required to be structure preserving in that it
doesn’t alter the structure of the parallel computation—only the value “inside” the
computation. 

Listing 7.9 Substituting to simplify both sides of an equation

Declares the 
initial law

Substitutes the 
identity function 
id for f

Simplifies id(x) to x

Substitutes the 
equivalent y for unit(x)
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7.4.2 The law of forking

This particular law doesn’t do much to constrain our implementation of Par. You’ve
probably been assuming these properties without even realizing it. It would be strange
to have any exceptional cases in the implementations of map, unit, and Executor-
Service.submit or have map randomly throw exceptions. Let’s consider a more potent
property, that fork should not affect the result of parallel computation:

fork { x } == x

This declaration seems obvious and should be true of our implementation. It is clearly a
desirable property that is consistent with our expectation of how fork should work.
fork(x) should do the same thing as x, albeit asynchronously in a logical thread sepa-
rate from the main thread. If this law didn’t always hold true, we’d have to know when it
was safe to call without changing its meaning and without any help from the type system.

 Surprisingly, this simple property places strong constraints on our implementation
of fork. After you’ve written down a law like this, take off your implementer hat, put
on your testing hat, and try to break your law. Think through any possible corner
cases, try to come up with counterexamples, and even construct an informal proof
that the law holds—at least enough to convince a skeptical fellow programmer.

BREAKING THE LAW: A SUBTLE BUG

Let’s try this mode of thinking: we’re expecting that fork(x) == x for all choices of x
and any choice of ExecutorService. We have a good sense of what x could be—it’s an
expression that uses fork, unit, map2, or any possible combinators derived from
them. What about ExecutorService? What implementations are available? Looking at
the API documentation of java.util.concurrent.Executors (http://mng.bz/Q2B1)
gives us a good idea of all the possibilities.

EXERCISE 7.7

Hard: Take a look through the various static methods in Executors to get a feel for
the different implementations of ExecutorService that exist. Then, before continu-
ing, go back and revisit your implementation of fork and try to find a counterexam-
ple or convince yourself that the law holds for your implementation.

Why laws about code and proofs are important
It may seem unusual to state and prove properties about an API. This certainly isn’t
something typically done in regular programming. Why is it essential in functional pro-
gramming (FP)?

http://mng.bz/Q2B1
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Putting on that testing hat, we write an assertion function to validate equality of two
Par instances given ExecutorService. It is added as an infix shouldBe extension
method on Par:

infix fun <A> Par<A>.shouldBe(other: Par<A>) = { es: ExecutorService ->
if (this(es).get() != other(es).get())

throw AssertionError("Par instances not equal")
}

Using this handy new assertion method, we’ll discover a rather subtle problem that
occurs in most implementations of fork. When using an ExecutorService backed by
a thread pool of fixed size (see Executors.newFixedThreadPool), it’s prone to run
into a deadlock. Suppose we have an ExecutorService backed by a thread pool where
the maximum number of threads is one. A deadlock will occur if we attempt to run
the following example using our current implementation:

val es = Executors.newFixedThreadPool(1)

val a: Par<Int> = lazyUnit { 42 + 1 }
val b: Par<Int> = fork { a }
(a shouldBe b)(es)

Can you see why this is the case? Let’s take a closer look at our implementation of fork:

fun <A> fork(a: () -> Par<A>): Par<A> =
{ es ->

es.submit(Callable<A> {
a()(es).get()      

})
}

We submit the Callable first, and within that Callable, another Callable to the
ExecutorService, blocking on its result. Recall that a()(es) submits a Callable to

Using FP, it’s easy and expected to factor out standard functionality into generic,
reusable components that can be composed. Side effects hurt compositionality, but
more generally, any hidden nondeterministic behavior that prevents us from treating
our components as black boxes makes composition difficult or impossible.

A good example is our description of the law for fork. We can see that if the law we
posited didn’t hold, many of our general-purpose combinators that depend on fork,
such as parMap, would no longer be sound. As a result, their usage might be danger-
ous, since using them in broader parallel computations could result in deadlocks.

Giving our APIs an algebra with meaningful laws that aid reasoning makes them more
usable for clients. It also means we can confidently treat all the objects of our APIs
as black boxes. As we’ll see in part 3, this is crucial for being able to factor out com-
mon patterns across the different libraries we’ve written.

Waiting for the result 
of one Callable inside 
another Callable
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the ExecutorService and get back a Future. This is a problem if our thread pool has
size 1. The outer Callable is submitted and picked up by the sole thread. Within that
thread, before it completes, we submit and block, waiting for the result of another
Callable. But there are no threads available to run this Callable. They’re waiting on
each other, and therefore our code deadlocks.

EXERCISE 7.8

Hard: Show that any fixed-size thread pool can be made to deadlock given this imple-
mentation of fork.

When you find counterexamples like this, you have two choices: you can try to fix your
implementation such that the law holds, or you can refine your law to more explicitly
state the conditions under which it holds. For example, you could simply stipulate
that you require thread pools that can grow unbounded. Even this is a good exercise.
It forces you to document invariants or assumptions that were previously implicit.

 Can we fix fork to work on fixed-size thread pools? Let’s look at a different
implementation:

fun <A> fork(pa: () -> Par<A>): Par<A> =
{ es -> pa()(es) }

This certainly avoids deadlock. The only problem is that we aren’t actually forking a
separate logical thread to evaluate pa. So fork(hugeComputation)(es) for some
ExecutorService would run hugeComputation in the main thread, which we wanted
to avoid by calling fork. Even though that is not the intention of fork, this is still a
useful combinator since it lets us delay the instantiation of computation until it’s
needed. Let’s give it a new name, delay:

fun <A> delay(pa: () -> Par<A>): Par<A> =
{ es -> pa()(es) }

What we’d really like to do is run arbitrary computations over fixed-size thread pools.
To do that, we’ll need to pick a different representation of Par. 

7.4.3 Using actors for a non-blocking implementation

In this section, we develop a fully non-blocking implementation of Par that works for
fixed-size thread pools. Since this isn’t essential to our overall goals of discussing vari-
ous aspects of functional design, you may skip to section 7.5 if you prefer. Otherwise,
read on.

 The essential problem with the current representation is that we can’t get a value
out of a Future without the current thread blocking on its get method. A representation
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of Par that doesn’t leak resources this way has to be non-blocking in the sense that the
implementations of fork and map2 must never call a method that blocks the current
thread like Future.get does. Writing a correct implementation can be challenging.
Fortunately, we have laws to test our implementation, and we only have to get it right
once. After that, our library users can enjoy a composable and abstract API that does
the right thing every time.

 In the code that follows, you don’t need to understand what’s going on every step
of the way. We just want to demonstrate, using actual code, what a correct, law-abiding
representation of Par might look like.

RETHINKING PAR AS NON-BLOCKING BY REGISTERING A CALLBACK

So how can we implement a non-blocking representation of Par? The idea is simple.
Instead of turning Par into a java.util.concurrent.Future, which only allows us to
get a value through a blocking call, we’ll introduce our own version of Future. Our
version can register a callback that will be invoked when the result is ready. This is a slight
shift in perspective:

abstract class Future<A> {
internal abstract fun invoke(cb: (A) -> Unit)   

}

typealias Par<A> = (ExecutorService) -> Future<A>   

Our brand-new Par type looks identical to our initial representation, except that we’re
now returning Future with a different API than that found in java.util.concurrent
.Future. Rather than calling get to obtain the result from Future, our Future has an
invoke method that receives a function cb that expects the result of type A and uses
it to perform some effect. This kind of function is sometimes called a continuation or
a callback.

 The invoke method is marked internal so we don’t expose it to our library users.
Marking it internal restricts access to the method beyond the scope of our module.
This is so our API remains pure and we can guarantee that our laws are upheld.

Using local side effects for a pure API
The Future type we defined here is rather imperative. The definition (A) -> Unit
immediately raises eyebrows. Such a function can only be useful for executing side
effects using the given A, as we certainly won’t be using the returned value Unit. Are
we still doing FP using a type like Future? Yes, although this is a common technique
of using side effects as an implementation detail for a purely functional API. We can
get away with this because the side effects we use are not observable to code that
uses Par. Note that the invoke method is internal and isn’t even visible beyond
our library.

The invoke method is 
declared internal so is not 
visible beyond our module.

Par looks the same as before, 
although we’re using our new 
non-blocking Future instead of 
the one in java.util.concurrent.
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Let’s begin by looking at an example of the actual creation of a Par. The simplest way
to do this is through unit.

fun <A> unit(a: A): Par<A> =
{ es: ExecutorService ->

object : Future<A>() {
override fun invoke(cb: (A) -> Unit) = cb(a)   

}
}

Since unit already has a value a of type A available, all this function needs to do is call
the continuation cb, passing in that value.

 With this representation of Par, let’s look at how we might implement the run
function, which we’ll change to just return an A. Since it goes from Par<A> to A, it will
have to construct a continuation and pass it to the Future value’s invoke method.
Making this continuation originate from here will release the latch and make the
result available immediately.

fun <A> run(es: ExecutorService, pa: Par<A>): A {
val ref = AtomicReference<A>()       
val latch = CountDownLatch(1)  
pa(es).invoke { a: A ->

ref.set(a)
latch.countDown()   

}
latch.await()     
return ref.get()   

}

In our current implementation, run blocks the calling thread while waiting for the
latch to be released. In fact, it isn’t possible to write an implementation of run that
doesn’t block. Our method has to wait for a value of A to materialize before it can
return anything. For this reason, we want users of our API to avoid calling run until

(continued)

As we go through the rest of our implementation of the non-blocking Par, you may
want to convince yourself that the side effects employed can’t be observed by exter-
nal code. The notion of local effects, observability, and subtleties of our definitions
of purity and referential transparency are discussed in much more detail in chapter
14, but for now, an informal understanding is okay.

Listing 7.10 Creating a new non-blocking Par through unit

Listing 7.11 Implementing run to accommodate a non-blocking Par

Passes the value to 
the continuation. 
Done!

Creates a mutable, thread-safe 
reference to store the result

A CountDownLatch 
blocks threads until the 
countdown reaches 0.

Sets the result, and releases the 
latch when the result is received

Waits until the result is available 
and the latch is releasedOnce we’ve passed the latch,

we know ref has been set,
and we return its value.
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they definitely want to wait for a result. We could even go so far as to remove run from
our API and expose the invoke method on Par so that users can register asynchro-
nous callbacks. That would certainly be a valid design choice, but we’ll leave our API
as it is for now.

 If the latch needs to be released only once, the function in listing 7.11 can be sim-
plified using a CompletableFuture. The CompletableFuture class is a non-abstract
implementation of the interface Future, which has been part of the JDK since Java 8.
It gives the developer full control over making a result available while including all the
thread-blocking management provided by any Future implementation returned by
ExecutorService methods.

fun <A> run2(es: ExecutorService, pa: Par<A>): A {
val ref = CompletableFuture<A>()     
pa(es).invoke { a: A ->

ref.complete(a)      
}
return ref.get()  

}

CountDownLatch is no longer necessary since blocking the thread is managed by the
CompletableFuture.

 We saw unit in listing 7.10, but what about fork? This is where we introduce the
actual parallelism.

fun <A> fork(a: () -> Par<A>): Par<A> =
{ es: ExecutorService ->

object : Future<A>() {
override fun invoke(cb: (A) -> Unit) =

eval(es) { a()(es).invoke(cb) }   
}

}

fun eval(es: ExecutorService, r: () -> Unit) {
es.submit(Callable { r() })      

}

When the Future returned by fork receives its continuation cb, it forks off a task to eval-
uate the lazy argument a. Once the argument has been evaluated and called to pro-
duce a Future<A>, we register cb for invocation after Future has its resulting A.

 Let’s consider map2. Recall the signature for this combinator:

fun <A, B, C> map2(pa: Par<A>, pb: Par<B>, f: (A, B) -> C): Par<C>

Listing 7.12 Implementing run using a CompletableFuture

Listing 7.13 Forking off a task to evaluate the lazy argument

Creates a CompletableFuture to 
manage blocking the current 
thread, and stores the result

Sets the result. This unlocks the 
CompletableFuture and makes 
its result available.Waits until the result is

available, and then
returns its value

Forks off the 
evaluation of a and 
returns immediately

A helper function to evaluate 
an action asynchronously using 
an ExecutorService
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Here, a non-blocking implementation is considerably trickier. Conceptually, we’d like
map2 to run both Par arguments in parallel. When both results have arrived, we want
to invoke f and then pass the resulting C to the continuation. But there are several
race conditions to worry about, and a correct non-blocking implementation is difficult
using only low-level primitives like those provided in java.util.concurrent. 

A BRIEF DETOUR DEMONSTRATING THE USE OF ACTORS

To implement map2, we’ll use a non-blocking concurrency primitive called an actor. An
actor is essentially a concurrent process that doesn’t constantly occupy a thread.
Instead, it only occupies a thread when it receives a message. Significantly, although
multiple threads may concurrently send messages to an actor, the actor processes only
one message at a time, queueing other messages for subsequent processing. This
makes actors useful as concurrency primitives when writing tricky code that must be
accessed by multiple threads and that would otherwise be prone to race conditions or
deadlocks.

 It’s best to illustrate this with an example. Many implementations of actors would
suit our purposes fine. But in the interest of simplicity, we’ll use our own minimal
actor implementation that’s with the chapter code in the file actor.kt. We’ll interact
with it through some client code to get a feel for how it works. We begin by getting the
actor up and running.

val es: ExecutorService = Executors.newFixedThreadPool(4)     
val s = Strategy.from(es)          
val echoer = Actor<String>(s) {      

println("got message: $it")
}

Now that we have the instance of the actor referenced by echoer, we can send some
messages:

echoer.send("hello")    
//got message: hello       

echoer.send("goodbye")    
//got message: goodbye

echoer.send("You're just repeating everything I say, aren't you?")
//got message: You're just repeating everything I say, aren't you?

It’s not essential to understand the actor implementation. Correct and efficient imple-
mentation is rather subtle; but if you’re curious, see the actor.kt file in the chapter code.
The implementation is under 100 lines of ordinary Kotlin code. The hardest part of
understanding an actor implementation is that multiple threads may be messaging the

Listing 7.14 Setting up an actor to handle client requests

Creates an 
ExecutorService 
instance es to 
back our actor

Wraps es in 
a Strategy 
named s

Spins up an actor using the Strategy,
passing it an anonymous handler function

Sends the "hello" 
message to the actor The spawned process invokes the 

handler, immediately freeing up 
the current thread to process the 
next messages.

The actor is sent new "goodbye" message without 
waiting for the "hello" handler to complete.
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actor simultaneously. The implementation needs to ensure that messages are processed
one at a time and that all messages sent to the actor are eventually processed rather than
being queued indefinitely. Even so, the code ends up being concise. 

IMPLEMENTING MAP2 VIA ACTORS

We can now implement map2 using an actor to collect the results of both arguments.
The code is reasonably straightforward, and there are no race conditions to worry
about since we know that the actor will process only one message at a time:

fun <A, B, C> map2(pa: Par<A>, pb: Par<B>, f: (A, B) -> C): Par<C> =
{ es: ExecutorService ->

object : Future<C>() {
override fun invoke(cb: (C) -> Unit) {

val ar = AtomicReference<Option<A>>(None)      
val br = AtomicReference<Option<B>>(None)
val combiner =

Actor<Either<A, B>>(Strategy.from(es)) { eab ->   
when (eab) {

is Left<A> ->   
br.get().fold(

{ ar.set(Some(eab.a)) },
{ b -> eval(es) { cb(f(eab.a, b)) } }

)
is Right<B> ->   

ar.get().fold(
{ br.set(Some(eab.b)) },
{ a -> eval(es) { cb(f(a, eab.b)) } }

)
}

}
pa(es).invoke { a: A -> combiner.send(Left(a)) }     
pb(es).invoke { b: B -> combiner.send(Right(b)) }

}
}

}

We have four possible scenarios to deal with in the combiner actor. Let’s look at each
one in turn:

 If the A result arrives first, it is stored in ar, and the actor waits for B to arrive.
 If the A result arrives last and B is already present, the results a and b are com-

bined by f to be of type C and passed into the callback cb.
 If the B result arrives first, it is stored in br, and the actor waits for A to arrive.
 If the B result arrives last and A is already present, the results a and b are com-

bined by f to be of type C and passed into the callback cb.

The actor is then passed as a continuation to both sides. It is wrapped as a Left if it’s
an A or Right if it’s a B. We use the Either data type, invoking Left(a) and Right(b)
constructors for each side of this union. They serve to indicate to the actor where the
result originated.

Uses two 
AtomicReference
instances to 
store mutable 
resultsAn actor that awaits

both results, combines
them with f, and passes

the result to cb

Branch taken when a Left(a) is
received; combines if a Right(b)

was previously set in br

Branch taken when a Right(b) is
received; combines if a Left(a)

was previously set in ar

Passes the actor as a
continuation to both sides
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 Given these implementations, we should now be able to run Par values of arbitrary
complexity without having to worry about running out of threads, even if the actors
only have access to a single JVM thread.

 We can write some client code to try out this fancy new machinery:

val p: (ExecutorService) -> Future<List<Double>> =
parMap((1..10).toList()) { sqrt(it.toDouble()) }

val x: List<Double> =
run(Executors.newFixedThreadPool(2), p)

println(x)

Running this code yields a result as follows:

[1.0, 1.4142135623730951, 1.7320508075688772, 2.0, 2.23606797749979,
2.449489742783178, 2.6457513110645907, 2.8284271247461903, 3.0,
3.1622776601683795...

This calls fork about 100,000 times, starting that many actors to combine these values
two at a time. Thanks to our non-blocking Actor implementation, we don’t need
100,000 JVM threads to perform this processing, but we manage to do it with a fixed
thread pool size of 2! And thus we have proved that our law of forking holds for fixed-
size thread pools.

EXERCISE 7.9

Hard/Optional: Currently, our non-blocking representation doesn’t handle errors. If
at any point our computation throws an exception, the run implementation’s latch
never counts down, and the exception is simply swallowed. Can you fix that?

Taking a step back, the purpose of this section hasn’t necessarily been to figure out
the best non-blocking implementation of fork, but more to show that laws are essen-
tial. They give us another angle to consider when thinking about the design of a
library. If we hadn’t tried writing out some of the laws of our API, we might not have
discovered the thread resource leak in our first implementation until much later.

 In general, there are multiple approaches you can consider when choosing laws
for your API. You can think about your conceptual model and reason from there to
postulate laws that should hold true. You can also just invent laws you think might be
helpful or instructive (like we did with our fork law) and see if it’s possible and even
sensible to ensure that they hold for your model. And finally, you can look at your
implementation and come up with laws you expect to hold based on that.
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NOTE This last way of defining new laws is probably the weakest, since it can
be too easy to have the laws reflect the implementation, even if the implemen-
tation is buggy or requires all sorts of unusual side conditions that make com-
position difficult. 

7.5 Refining combinators to their most general form
Functional design is an iterative process. After you write your API and have at least a
prototype implementation, try using it for progressively more complex or realistic sce-
narios. Sometimes you’ll find that these scenarios require new combinators. But
before jumping right to the implementation of new combinators, it’s a good idea to
see if you can refine the combinator you need to its most general form. It may be that
what you need is just a specific case of a more general combinator.

NOTE For the sake of simplicity, we will revert to using our original, more
straightforward blocking representation of Par<A> instead of the newer non-
blocking actor-based solution. Feel free to attempt the exercises in this sec-
tion using the non-blocking variant of Par<A>.

Let’s look at an example of this generalization. Suppose we want a function to choose
between two forking computations based on the result of an initial computation:

fun <A> choice(cond: Par<Boolean>, t: Par<A>, f: Par<A>): Par<A>

This constructs a computation that proceeds with t if cond results in true, or f if cond
results in false. We can certainly implement this by blocking on the result of the
cond and then using that result to determine whether to run t or f. Here’s a simple
blocking implementation:

fun <A> choice(cond: Par<Boolean>, t: Par<A>, f: Par<A>): Par<A> =
{ es: ExecutorService ->

when (run(es, cond).get()) {    
true -> run(es, t)
false -> run(es, f)

}
}

But before we are satisfied and move on, let’s think about this combinator a bit fur-
ther. What is it doing? It’s running cond; and then, when the result is available, it runs
either t or f. This seems reasonable, but let’s think of some possible variations that
capture the essence of this combinator. There is something somewhat arbitrary about
the use of Boolean and the fact that we’re only selecting between two possible parallel
computations, t and f, in this combinator. Why just two? If it’s helpful to choose
between two parallel computations based on the results of a first, it should certainly be
helpful to choose among N computations:

fun <A> choiceN(n: Par<Int>, choices: List<Par<A>>): Par<A>

Blocks on the predicate 
Par<Boolean> before 
proceeding
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Let’s say that choiceN runs n and then uses that to select a parallel computation from
choices. This is a bit more general than choice.

EXERCISE 7.10

Implement choiceN, followed by choice in terms of choiceN.

Let’s take a step back and observe what we’ve done in this iteration. We’ve generalized
our original combinator choice to choiceN, which can now express choice as well as
other use cases not supported by choice. Let’s keep going to see if we can refine
choice to an even more general combinator.

 The combinator choiceN remains somewhat arbitrary. The choice of List seems
overly specific. Why does it matter what sort of container we have? What if instead of a
List, we have a Map of computations? Map<K, V> is a data structure that associates keys
of type K with values of type V. The one-to-one relationship of K to V allows us to look
up a value by its associated key.

EXERCISE 7.11

Implement a combinator called choiceMap that accepts a Map<K, Par<V>> as con-
tainer.

fun <K, V> choiceMap(
key: Par<K>,
choices: Map<K, Par<V>>

): Par<V> =

SOLUTION_HERE()

Don’t be overly concerned with handling null values returned by Map.get. For the
sake of this exercise, consider using Map.getValue for value retrieval.

Even the Map encoding of the set of possible choices feels overly specific, just like List
was. If we look at our implementation of choiceMap, we can see that we aren’t really
using much of the API of Map. Really, Map<A,Par<B>> is used to provide a function,
(A) -> Par<B>. And now that we’ve spotted this fact, looking back at choice and
choiceN, we can see that for choice, the pair of arguments was just used as a function
of type (Boolean) -> Par<A> (where the Boolean selects one of the two Par<A> argu-
ments); and for choiceN, the list was used as a function of type (Int) -> Par<A>!

 Let’s make a more general signature that unifies them all. We’ll call it chooser and
allow it to perform selection through a function (A) -> Par<B>.
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EXERCISE 7.12

Implement this new primitive chooser, and then use it to implement choice, choiceN,
and choiceMap.

fun <A, B> chooser(pa: Par<A>, choices: (A) -> Par<B>): Par<B> =

SOLUTION_HERE()

Whenever you generalize functions like this, take a critical look at your final product.
Although the function may have been motivated by a specific use case, the signature
and implementation may have a more general meaning. In this case, chooser is per-
haps no longer the most appropriate name for this operation, which is actually quite
general—it’s a parallel computation that, when invoked, runs an initial computation
whose result is used to determine a second computation. Nothing says that this sec-
ond computation even needs to exist before the first computation’s result is available.
It doesn’t even need to be stored in a container like List or Map. Perhaps it’s being
generated from whole cloth using the result of the first computation. This function,
which comes up often in functional libraries, is usually called bind or flatMap:

fun <A, B> flatMap(pa: Par<A>, f: (A) -> Par<B>): Par<B>

Is flatMap really the most primitive possible function, or can we generalize it yet further?
Let’s play around a bit more. The name flatMap is suggestive of the fact that this opera-
tion could be decomposed into two steps: mapping f: (A) -> Par<B> over our Par[A],
which generates a Par<Par<B>>, and flattening this nested Par<Par<B>> to a Par<B>.

 Here is the interesting part: it suggests that all we need to do is add an even simpler
combinator, let’s call it join, to convert a Par<Par<X>> to Par<X> for any choice of X.
Again, we’re simply following the types. We have an example that demands a function
with a given signature, so we just bring it into existence. Now that it exists, we can
think about what the signature means. We call it join since, conceptually, it’s a paral-
lel computation that, when run, will execute the inner computation, wait for it to fin-
ish (much like Thread.join), and then return its result.

EXERCISE 7.13

Implement join. Can you see how to implement flatMap using join? And can you
implement join using flatMap?

fun <A> join(a: Par<Par<A>>): Par<A> =

SOLUTION_HERE()
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We’ll stop here, although you’re encouraged to explore this algebra further. Try more
complicated examples, discover new combinators, and see what you find! If you are so
inclined, here are some questions to consider:

 Can you implement a function with the same signature as map2, but using flat-
Map and unit? How is its meaning different than that of map2?

 Can you think of laws relating join to the other primitives of the algebra?
 Are there parallel computations that can’t be expressed using this algebra? Can

you think of any computations that can’t even be expressed by adding new
primitives to the algebra?

We’ve now completed the design of a library for defining parallel and asynchronous
computations in a purely functional way. Although this domain is interesting, the pri-
mary goal of this chapter is to give you a window into the process of functional design,
a sense of the kind of issues you’re likely to encounter, and ideas for how to handle
such issues.

 Chapters 4 through 6 frequently inferred the principle of separation of concerns: spe-
cifically, the idea of separating the description of a computation from the interpreter
that runs it. In this chapter, we saw this principle in action—we designed a library that
describes parallel computations as values of a data type Par, with a separate interpreter
called run to spawn threads to execute them. 

Summary
 Functional API design is an iterative and exploratory process driven by real-

world examples.
 A purely functional library that deals with parallelization is a perfect example to

demonstrate API design.
 Data types and their associated functions are born out of exploring domain

examples.

Recognizing the expressiveness and limitations of an algebra
As you practice more functional programming, one of the skills you’ll develop is the
ability to recognize what functions are expressible from an algebra and what the lim-
itations of that algebra are. For instance, in the preceding example, it may not have
been evident at first that a function like choice couldn’t be expressed purely in terms
of map, map2, and unit. It also may not have been evident that choice was just a
particular case of flatMap. Over time, observations like this will come more quickly.
You’ll also get better at spotting how to modify your algebra to make some required
combinator expressible. These abilities will be helpful for all of your API design work.

Being able to reduce an API to a minimal set of primitive functions is a handy skill. It
often happens that primitive combinators encapsulate some tricky logic, and reusing
them means we don’t have to duplicate our work.
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 Treating an API as you would an algebraic equation leads to following the types to
a concrete implementation.

 Laws help define constraints on operations, lead to implementation choices,
and validate properties.

 Combinators can often be generalized to broaden their application across
many different applications and scenarios.

 Effective library design separates the description of computations from the
interpreter responsible for running them.



Property-based testing
In chapter 7, we worked through the design of a functional library for expressing
parallel computations. We introduced the idea that an API should form an algebra—
that is, a collection of data types, functions over these data types, and, importantly,
laws or properties that express relationships between these functions. We also hinted
at the idea that it might be possible to somehow validate these laws automatically.
Validation is an important step, as we need to know that the code we write con-
forms with the laws we have imposed on our program. It would be of great benefit
if we could somehow automate this validation process.

 This chapter takes us toward a simple but powerful library for automated property-
based testing. The general idea of such a library is to decouple the specification of
program behavior from the creation of test cases. The programmer focuses on
specifying the behavior of a program and giving high-level constraints on the test

This chapter covers
 Understanding property-based testing

 Fabricating test data using generators

 Minimizing test case outcomes to give 
meaningful feedback

 Using properties to affirm laws
150
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cases. The framework then automatically generates test cases that satisfy these con-
straints and runs tests to validate that the program behaves as specified.

 Although a library for testing has a very different purpose than a library for paral-
lel computations, surprisingly, we’ll discover that they both have very similar combina-
tors. This similarity is something we’ll return to in part 3.

8.1 A brief tour of property-based testing
Property-based testing frameworks are already broadly accepted and used among
functional programmers in many different languages such as Haskell, Scala, and even
Kotlin. As an example, let’s look at Kotest, a popular testing framework for Kotlin
development. It has built-in support for property-based testing in which a property
looks something like this.

val intList = Gen.list(Gen.choose(0, 100))

forAll(intList) {
(it.reversed().reversed() == it) and

(it.firstOption() == it.reversed().lastOrNone())
}

forAll(intList) {
it.reversed() == it

}

Here, intList is not a List<Int> as you might expect, but rather a Gen<List<Int>>,
which is something that knows how to generate test data of type List<Int>. We can sam-
ple from this generator to produce lists of different lengths, each filled with random num-
bers between 0 and 100. Generators in a property-based testing library have a rich API.
We can combine and compose generators in different ways, reuse them, and so on.

 The function forAll creates a property by combining a generator of the type
Gen<A> with some predicate of type (A) -> Boolean. The property asserts that all val-
ues produced by the generator should satisfy this predicate. Like generators, proper-
ties should also have a rich API.

 Although Kotest does not currently support this, we should use operators like
and and or to combine multiple properties. The resulting property would only hold
if none of the properties could be falsified by any generated test cases. Together,
these combined properties would form a complete specification of the correct
behavior to be validated.

 It is well worth noting that the goal of this sort of testing is not necessarily to fully
specify program behavior, but rather to give greater confidence in the code. Property-
based testing does not replace unit testing, which finds its purpose more in expressing
intent and driving design than validating our confidence in the code.

Listing 8.1 Demonstration of property-based testing using Kotest

A generator of lists 
containing integers 
between 0 and 100

A valid property that specifies the 
behavior of the List.reversed method

Checks that reversing a list twice 
gives back the original list

Checks that the first
element becomes the last

element after reversal
Second property 
that fails under 
most conditions



152 CHAPTER 8 Property-based testing
 When we express these properties, Kotest randomly generates List<Int> values
to try to find a case that falsifies the predicates we’ve supplied. It generates 100 test
cases (of type List<Int>), and each list is checked to see if it satisfies the predicates.
Properties can fail—the second property should indicate that the predicate tested
false for some input, which is then printed to standard out to facilitate further test-
ing or debugging.

EXERCISE 8.1

To get used to thinking about testing in this way, come up with properties that specify
the implementation of a sum: (List<Int>) -> Int function. You don’t have to write
your properties as executable Kotest code—an informal description is fine. Here are
some ideas to get you started:

 Reversing and summing a list should give the same result as summing the origi-
nal, non-reversed list.

 What should the sum be if all elements of the list are the same value?
 Do any other properties spring to mind?

EXERCISE 8.2

What properties specify a function that finds the maximum of a List<Int>?

Property-based testing libraries often come equipped with other useful features. We’ll
talk more about some of these features later, but the following give you an idea of
what’s possible:

 Test case minimization—In the event of a failing test, the framework tries increas-
ingly smaller dataset sizes until it finds the smallest dataset that still fails, which is
more illuminating for diagnosing failures. For instance, if a property fails for a
list of size 10, the framework tries smaller lists and reports the most minor list
that fails the test.

 Exhaustive test case generation—We call the set of values that could be produced
by some Gen<A> the domain. When the domain is small enough (for instance, if
it’s all even integers less than 100), we can exhaustively test all its values rather
than generate sample values. If the property holds for all values in a domain, we
have actual proof rather than just the absence of evidence to the contrary.

NOTE This is the exact usage of domain as the domain of a function (https://
en.wikipedia.org/wiki/Domain_of_a_function)—generators describe possible

https://en.wikipedia.org/wiki/Domain_of_a_function
https://en.wikipedia.org/wiki/Domain_of_a_function
https://en.wikipedia.org/wiki/Domain_of_a_function
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inputs to functions we’d like to test. Note that we’ll also sometimes use domain
in the more colloquial sense to refer to a subject or area of interest: for exam-
ple, “the domain of functional parallelism” or “the error-handling domain.”

Kotest is just one framework that provides property-based testing capabilities. And while
there’s nothing wrong with it, we’ll derive our own library in this chapter, starting from
scratch. As in chapter 7, this is mostly for pedagogical purposes and partly because we
should consider no library to be the final word on any subject. There is certainly noth-
ing wrong with using an existing library like Kotest, and existing libraries can be a good
source of ideas. But even if you decide you like the existing library’s solution, spending
an hour or two playing with designs and writing down some type signatures is a great
way to learn more about the domain and understand the design trade-offs. 

8.2 Choosing data types and functions
This section is another somewhat messy and iterative process of discovering data
types and functions for our library. This time around, we’re designing a library for
property-based testing to validate our programs’ laws or properties. As before, this is
a chance to peek over the shoulder of someone working through possible scenarios
and designs.

 The particular path we take and the library we arrive at aren’t necessarily the same
as what you would come up with on your own. If property-based testing is unfamiliar
to you, even better: this is a chance to explore a new domain and its design space
while making your own discoveries about it. If at any point you feel inspired or have
ideas about the design of a library, don’t wait for an exercise to prompt you! Put down
the book, and explore your ideas. You can always come back to this chapter if you run
out of ideas or get stuck.

8.2.1 Gathering initial snippets for a possible API

With that said, let’s get started. Whenever we begin with library design, we need to define
some data types that embody the concepts of our library. With this starting point in mind,
what data types should we use for our testing library? What primitives should we define,
and what might they mean? What laws should our functions satisfy? As before, we can
look at a simple example, “read off” the needed data types and functions, and see what
we find. For inspiration, let’s look at the Kotest example we showed earlier:

val intList = Gen.list(Gen.choose(0, 100))

forAll(intList) {
(it.reversed().reversed() == it) and

(it.firstOption() == it.reversed().lastOrNone())
}

Without knowing anything about the implementation of Gen.choose or Gen.list, we
can guess that whatever data type they return (let’s call it Gen, short for generator) must
be parametric in some type. That is, Gen.choose(0,100) probably returns a Gen<Int>,
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and Gen.list is then a function with the signature (Gen<Int>) -> Gen<List<Int>>.
But it doesn’t seem like Gen.list should care about the type of the Gen it receives as
input. It would be odd to require separate combinators for creating lists of Int, Dou-
ble, String, and so on, so let’s go ahead and make our method polymorphic. We’ll
call our method listOf to make the intent clear:

fun <A> listOf(a: Gen<A>): List<Gen<A>> = TODO()

We can learn many things by looking at this signature. Notice that we’re not specifying
the size of the list to generate. For this to be implementable, our generator must
either make an assumption or explicitly tell the size. Assuming a size seems a bit
inflexible: any assumption is unlikely to be appropriate in all contexts. So it seems that
generators must be told the size of test cases to generate. We can imagine an API
where this is made explicit:

fun <A> listOfN(n: Int, a: Gen<A>): List<Gen<A>> = TODO()

This would undoubtedly be a helpful combinator, but not having to explicitly specify
sizes is powerful as well. It means whatever function runs the tests has the freedom to
choose test case sizes, which opens up the possibility of doing the test case minimiza-
tion we mentioned earlier. If the sizes are permanently fixed and specified by the pro-
grammer, the test runner won’t have this flexibility. Keep this concern in mind as we
get further along in our design.

 What about the rest of this example? The forAll function looks interesting. We
can see that it accepts a Gen<List<Int>> and what looks to be a corresponding predi-
cate, (List<Int>) -> Boolean. Again, it doesn’t seem as though forAll should care
about the generator types and the predicate, as long as they match up. We can express
this as follows:

fun <A> forAll(a: Gen<A>, f: (A) -> Boolean): Prop = TODO()

Here, we’ve simply invented a new type, Prop (short for property), for the result of
binding a Gen to a predicate. We might not know the internal representation of Prop
or what other functions it supports, but based on our prior discussion in section 8.1, it
should be combined with other Prop instances through the use of an and method.
Let’s introduce that as a new interface:

interface Prop {
fun and(p: Prop): Prop

}

8.2.2 Exploring the meaning and API of properties

Now that we have a few fragments of an API, let’s discuss what we want our types and
functions to entail. First, let’s consider Prop. We know of functions forAll (for creat-
ing a property) and and (for composing properties), and now we’ll learn about check.
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Here we deviate further from Kotest’s property design as it doesn’t have such a
method in its API. We’ll imagine this to be a method that runs our property and has a
side effect of printing to the console. We will expose this as a convenience function on
Prop, giving it a return type of Unit for now:

interface Prop {
fun check(): Unit
fun and(p: Prop): Prop

}

The return type raises an issue in that we can’t chain together multiple checked Props
using the and operator. This might remind you of a similar problem encountered in
chapter 7 when we looked at using Thread and Runnable for parallelism.

 Since check has a side effect, the only option for implementing and in this case would
be to run check on both Prop instances. So if check printed out a test report, we would
get two of them, each printing failures and successes independently of each other. That’s
likely not the correct outcome. The problem is not so much that check has a side effect
but, more generally, that it throws away information by returning Unit.

 To combine Prop values using combinators like and, we need check (or whatever
function “runs” properties) to return a meaningful value. What type should that value
have? Well, let’s consider what sort of information we’d expect to get out of checked
properties. At a minimum, we need to know whether the property succeeded or failed,
so a Boolean return value would do just fine as a first pass. We now have enough to go
ahead with implementing the and method.

EXERCISE 8.3

Assuming the following representation, use check to implement and as a method
of Prop:

interface Prop {
fun check(): Boolean
fun and(p: Prop): Prop =

SOLUTION_HERE()
}

In this representation, Prop is nothing more than a non-strict Boolean. Any of the
usual Boolean functions (AND, OR, NOT, XOR, and so on) can easily be defined for
Prop. But a Boolean alone is probably insufficient. If a property fails, we might want to
know how many tests succeeded first. We might also be interested in what arguments
produced the failure. And if a property succeeds, it would be useful to know how
many tests it ran. Next, let’s encode this information by returning an Either to indi-
cate success or failure:
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typealias SuccessCount = Int

interface Prop {
fun check(): Either<String, SuccessCount>
fun and(p: Prop): Prop

}

For now, we’ve assigned the failure case to be a String, but what type should we return
on the left side? We don’t know anything about the type of test cases being generated.
Should we add a type parameter to Prop and make it Prop<A> so check could return
Either<A, SuccessCount>? Before going too far down this route, let’s ask ourselves
whether we care about the type of value that caused the property to fail. We don’t,
really. We would only care about the type if we were going to do further computation
with the failure.

NOTE We prefer using type aliases instead of simple types like String, Int,
and Double because we can assign meaningful names to them. This makes
our code far more accessible to comprehend by others who interact with it.

Most likely, we’re just going to end up printing it to the screen for inspection by who-
ever runs the tests. After all, the goal here is to find bugs and indicate test cases that
triggered them to be fixed. As a general rule, we shouldn’t use String to represent
the data we want to compute with. But for values that we’re just going to show to
human beings, a String is absolutely appropriate. This suggests that we can get away
with the following representation for Prop:

typealias SuccessCount = Int
typealias FailedCase = String

interface Prop {
fun check(): Either<Pair<FailedCase, SuccessCount>, SuccessCount>
fun and(p: Prop): Prop

}

In the case of failure, check returns a Left(Pair(s,n)), where s is a String repre-
senting the value that caused the property to fail, and n is the number of cases that
succeeded before the failure occurred. Conversely, a success is a Right(n), where n
represents the total number of cases that succeeded.

 For now, that takes care of the return value of check, but what about its arguments?
Currently, the check method takes none. Is this sufficient? Since check is a method on
Prop, we can think about what information is available to it at its creation. In particu-
lar, let’s take another look at forAll:

fun <A> forAll(a: Gen<A>, f: (A) -> Boolean): Prop = TODO()

Without knowing more about the representation of Gen, it is hard to say whether there
is enough information here to be able to generate values of type A. Why is this import-
ant? We will need this information to implement check. So, for now, we’ll take a step
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back and turn our attention to Gen to get a better idea of what it means and what its
dependencies might be. 

8.2.3 Discovering the meaning and API of generators

We determined earlier that a Gen<A> knows how to generate values of type A. How
could it go about doing this? Well, it could randomly generate these values. Consider-
ing that we devoted all of chapter 6 to this topic, it would seem like we’re missing a
trick if we don’t use what we learned in that chapter! Thinking back to our example,
we provided an interface for a purely functional random number generator, RNG. We
then showed how to make it convenient to combine computations that use it. If we
recall the definition of State, we can simply make Gen a type that wraps a State tran-
sition over a random number generator.

interface RNG {
fun nextInt(): Pair<Int, RNG>

}

data class State<S, out A>(val run: (S) -> Pair<A, S>)

data class Gen<A>(val sample: State<RNG, A>)

EXERCISE 8.4

Implement Gen.choose using this representation of Gen. It should generate integers
in the range start to stopExclusive. Feel free to use functions you’ve already writ-
ten. As an additional challenge, write your implementation so that it generates inte-
gers evenly across the stopExclusive - start interval.

fun choose(start: Int, stopExclusive: Int): Gen<Int> =

SOLUTION_HERE()

EXERCISE 8.5

Let’s see what else we can implement using this representation of Gen. Try implement-
ing unit, boolean, and listOfN with the following signatures, once again drawing on
previously written functions:

fun <A> unit(a: A): Gen<A> =

SOLUTION_HERE()

Listing 8.2 Defining Gen by wrapping a state transition over an RNG
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fun boolean(): Gen<Boolean> =

SOLUTION_HERE()

fun <A> listOfN(n: Int, ga: Gen<A>): Gen<List<A>> =

SOLUTION_HERE()

As discussed in chapter 7, we’re interested in understanding which operations are
primitive and which are derived and finding a small yet expressive set of primitives.
An excellent way to explore what is possible with a given set of primitives is to pick
concrete examples you’d like to express and see if you can assemble the functional-
ity you want. As you do so, look for patterns, try factoring out these patterns into
combinators, and refine your set of primitives. We encourage you to stop reading
here and simply play with the primitives and combinators we’ve written so far. If you
want some concrete examples to inspire you, here are a few ideas:

 If we can generate a single Int in some range, do we also need a new primitive
to generate a Pair<Int, Int> in some range?

 Can we produce a Gen<Option<A>> from a Gen<A>? What about a Gen<A> from
Gen<Option<A>>?

 Can we generate strings using our existing primitives?.

The importance of play
You don’t have to wait around for a concrete example to explore your library’s prob-
lem domain. In fact, if you rely exclusively on such valuable or important examples to
design your API, you’ll often miss out on crucial design aspects and end up writing
APIs with overly specific features.

We don’t want to overfit our design to the particular examples we happen to think of
right now. We want to reduce the problem to its essence, and sometimes the best
way to do this is by playing. Don’t try to solve significant problems or produce helpful
functionality—at least, not right away. Just experiment with different representations,
primitives, and operations. Let questions naturally arise, and explore whatever piques
your interest. Observations like “These two functions seem similar. I wonder if there’s
a more general operation hiding inside?” and “Would it make sense to make this
data type polymorphic?” and “What would it mean to change this aspect of the rep-
resentation from a single value to a List of values?” will begin to surface.

There is no right or wrong way to do this, but there are so many different design
choices that it’s impossible not to run headlong into fascinating questions to play
with. It doesn’t matter where you begin—if you keep playing, the domain will inevita-
bly guide you to make all the design choices that are required. 
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8.2.4 Generators that depend on generated values

Suppose we’d like a Gen<Pair<String, String>> that generates pairs where the sec-
ond string contains only characters from the first. Or suppose we have a Gen<Int> that
chooses an integer between 0 and 11, and we’d like to make a Gen<List<Double>>
that then generates lists of whatever length is chosen. There’s a dependency in both of
these cases—we generate a value and then use that value to determine what generator
to use next. For this, we need flatMap, which lets one generator depend on another.

EXERCISE 8.6

Implement flatMap, and then use it to implement this more dynamic version of
listOfN. Place flatMap and listOfN in the Gen data class as shown:

data class Gen<A>(val sample: State<RNG, A>) {

companion object {
fun <A> listOfN(gn: Gen<Int>, ga: Gen<A>): Gen<List<A>> =

SOLUTION_HERE()
}

fun <B> flatMap(f: (A) -> Gen<B>): Gen<B> =

SOLUTION_HERE()
}

EXERCISE 8.7

Implement union for combining two generators of the same type into one by pulling
values from each generator with equal likelihood.

fun <A> union(ga: Gen<A>, gb: Gen<A>): Gen<A> =

SOLUTION_HERE()

EXERCISE 8.8

Implement weighted, a version of union that accepts a weight for each Gen and gener-
ates values from each Gen with probability proportional to its weight.
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fun <A> weighted(
pga: Pair<Gen<A>, Double>,
pgb: Pair<Gen<A>, Double>

): Gen<A> =

SOLUTION_HERE()

8.2.5 Refining the property data type

Now that we have explored the representation of our generators, let’s return to our
definition of Prop. Our Gen representation has revealed information about the
requirements for Prop. Our current definition of Prop looks like this, ignoring the and
operator for now:

interface Prop {
fun check(): Either<Pair<FailedCase, SuccessCount>, SuccessCount>

}

At this point, Prop is nothing more than an Either, although it’s missing some vital
information. We have the number of successful test cases in SuccessCount, but we
haven’t specified how many test cases to examine before considering the property to
have passed the test. We could undoubtedly hardcode a value, but it would be far better
to abstract over this detail. We will do so by injecting an integer aliased as TestCases. We
will also turn Prop into a data class and make check a value instead of a method:

typealias TestCases = Int

typealias Result = Either<Pair<FailedCase, SuccessCount>, SuccessCount>

data class Prop(val check: (TestCases) -> Result)

Also, we’re recording the number of successful tests on both sides of Either. But
when a property passes, it’s implied that the number of passed tests will be equal to
the argument to check. So the caller of check learns nothing new by being told the
success count. Since we don’t currently need any information in the Right case of that
Either, we can turn it into an Option:

typealias Result = Option<Pair<FailedCase, SuccessCount>>

data class Prop(val check: (TestCases) -> Result)

This seems a bit weird since None will mean all tests succeeded and Some will indicate a
failure. Until now, we’ve only used the None case of Option to indicate failure; but in this
case, we’re using it to represent the absence of a failure. That is a perfectly legitimate use
for Option, but its intent isn’t obvious. So let’s make a new data type equivalent to
Option<Pair<FailedCase, SuccessCount>> that makes our intent more explicit.
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sealed class Result {
abstract fun isFalsified(): Boolean

}

object Passed : Result() {
override fun isFalsified(): Boolean = false

}

data class Falsified(
val failure: FailedCase,
val successes: SuccessCount

) : Result() {
override fun isFalsified(): Boolean = true

}

Is this a sufficient representation of Prop now? Let’s take another look at forAll. Can
forAll be implemented? If not, why not?

fun <A> forAll(a: Gen<A>, f: (A) -> Boolean): Prop = TODO()

As we can see, forAll doesn’t have enough information to return a Prop. Besides the
number of test cases to try, check must have all the information needed to generate
test cases. If it needs to generate random test cases using our current representation
of Gen, it will need an RNG. Let’s go ahead and supply this dependency to Prop.

data class Prop(val check: (TestCases, RNG) -> Result)

If we think of other dependencies that it might need besides the number of test cases
and the source of randomness, we can add these as extra parameters to check later.

 By supplying RNG as a parameter to Prop, we now have enough information to
implement forAll. Here’s a first stab.

fun <A> forAll(ga: Gen<A>, f: (A) -> Boolean): Prop =
Prop { n: TestCases, rng: RNG ->

randomSequence(ga, rng).mapIndexed { i, a ->
try {

if (f(a)) Passed
else Falsified(a.toString(), i)

} catch (e: Exception) {
Falsified(buildMessage(a, e), i)

}
}.take(n)

Listing 8.3 Modeling the possible results of a test run as an ADT

Listing 8.4 Supplying an RNG for Prop to generate test cases

Listing 8.5 Implementing forAll using all the building blocks

Sealed type of Result

Subtype indicates 
that all tests passed

Subtype indicates that one of the 
test cases falsified the property

Prepares a Sequence 
of indexes i mapped 
to generated values a

On test failure, records the failed case and index, 
exposing how many tests succeeded before failure

In the case of an 
exception, records it 
as a result with a 
pretty message
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.find { it.isFalsified() }

.toOption()

.getOrElse { Passed }
}

private fun <A> randomSequence(
ga: Gen<A>,
rng: RNG

): Sequence<A> =
sequence {

val (a: A, rng2: RNG) = ga.sample.run(rng)
yield(a)
yieldAll(randomSequence(ga, rng2))

}

private fun <A> buildMessage(a: A, e: Exception) =
"""
|test case: $a
|generated and exception: ${e.message}
|stacktrace:
|${e.stackTrace.joinToString("\n")}

""".trimMargin()

Notice that we’re catching exceptions and reporting them as test failures rather than
letting check throw the exception. This is so we don’t lose information about what
argument potentially triggered the failure.

NOTE We are using the Kotlin standard library Sequence type that allows
us to generate a lazy stream of values by using the sequence, yield, and
yieldAll functions. The details are not important: all we need to know is that
we take n elements from the Sequence and apply a terminal operation to find
an occurrence that is falsified, or else we report a pass.

EXERCISE 8.9

Now that we have a representation of Prop, implement and and or for composing
Prop values. Notice that in the case of an or failure, we don’t know which property was
responsible, the left or the right. Can you devise a way of handling this?

data class Prop(val run: (TestCases, RNG) -> Result) {
fun and(p: Prop): Prop =

SOLUTION_HERE()

fun or(p: Prop): Prop =

SOLUTION_HERE()
}

Generates an infinite sequence of A 
recursively, sampling a generator

Uses string 
interpolation and 
margin trim to build 
a pretty message
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8.3 Test case minimization
Earlier, we mentioned the idea of test case minimization. By this, we mean we’d like
our framework to find the smallest or simplest failing test case to better illustrate a fail-
ure and facilitate debugging. Let’s see if we can tweak our representations to support
this outcome. There are two general approaches we could take:

 Shrinking—After we’ve found a failing test case, we can run a separate proce-
dure to minimize the test case by successively decreasing its “size” until it no
longer fails. This is called shrinking, and it usually requires us to write separate
code for each data type to implement the minimization process.

 Sized generation—Rather than shrinking test cases, we simply generate our test
cases in order of increasing size and complexity. So we start small and increase
the size until we find a failure. This idea can be extended in various ways to
allow the test runner to make larger jumps in the space of possible sizes while
still making it possible to find the smallest failing test.

Kotest, in addition to most of the popular property-based testing frameworks like
ScalaCheck (www.scalacheck.org) and Haskell’s QuickCheck (https://hackage.haskell
.org/package/QuickCheck), takes the first approach of shrinking. Due to the greater
complexity of implementing the approach, we’ll choose to use the alternative option,
instead. Sized generation is more straightforward and, in some ways, more modular
because our generators only need to know how to generate a test case of a given size.
We’ll see how this plays out shortly.

 Instead of modifying our Gen data type, for which we’ve already written several use-
ful combinators, let’s introduce sized generation as a separate layer in our library. A
simple representation of a sized generator is just a function that takes a size and pro-
duces a generator.

data class SGen<A>(val forSize: (Int) -> Gen<A>)

EXERCISE 8.10

Implement a helper function called unsized for converting Gen to SGen. You can add
this as a method on Gen.

data class Gen<A>(val sample: State<RNG, A>) {
fun unsized(): SGen<A> =

SOLUTION_HERE()
}

Listing 8.6 Sized generator as a function from Int to Gen

https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/QuickCheck
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EXERCISE 8.11

Not surprisingly, SGen at a minimum supports many of the same operations as Gen,
and the implementations are rather mechanical. Define some convenience functions
on SGen that simply delegate to the corresponding functions on Gen. Also provide a
convenient way of invoking an SGen.

data class SGen<A>(val forSize: (Int) -> Gen<A>) {

operator fun invoke(i: Int): Gen<A> =

SOLUTION_HERE()

fun <B> map(f: (A) -> B): SGen<B> =

SOLUTION_HERE()

fun <B> flatMap(f: (A) -> Gen<B>): SGen<B> =

SOLUTION_HERE()
}

Note that even though this approach is very repetitive, we will continue doing it this way
for now. Part 3 of this book presents a better approach to handling such repetition.

EXERCISE 8.12

Implement a listOf combinator on Gen that doesn’t accept an explicit size and
should return an SGen instead of a Gen. The implementation should generate lists of
the size provided to the SGen.

fun listOf(): SGen<List<A>> =

SOLUTION_HERE()

Next, let’s see how SGen affects the definition of Prop, and in particular, its forAll
method. The SGen version of forAll looks like this:

fun <A> forAll(g: SGen<A>, f: (A) -> Boolean): Prop = TODO()

On closer inspection of this declaration, we see that it isn’t possible to implement it.
This is because SGen is expecting to be told a size, but Prop doesn’t receive any such
information. Much like we did with the source of randomness and number of test
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ize
cases in the underlying check function of Prop (see listing 8.4), we need to add this
new number as a dependency to the function. So since we want to put Prop in charge
of invoking the underlying generators with various sizes, we’ll have Prop accept a max-
imum size. Prop will then generate test cases up to and including the maximum speci-
fied size. An additional benefit is that this will also allow it to search for the smallest
failing test case. Let’s see how this works out.

NOTE This rather simplistic implementation gives an equal number of test
cases to each size being generated and increases the size by 1 starting from 0. We
could imagine a more sophisticated implementation that does something like a
binary search for a failing test case size—starting with sizes 0,1,2,4,8,16… and
then narrowing the search space in the event of a failure.

typealias MaxSize = Int

data class Prop(val check: (MaxSize, TestCases, RNG) -> Result) {

companion object {

fun <A> forAll(g: SGen<A>, f: (A) -> Boolean): Prop =
forAll({ i -> g(i) }, f)

fun <A> forAll(g: (Int) -> Gen<A>, f: (A) -> Boolean): Prop =
Prop { max, n, rng ->

val casePerSize: Int = (n + (max - 1)) / max

val props: Sequence<Prop> =
generateSequence(0) { it + 1 }

.take(min(n, max) + 1)

.map { i -> forAll(g(i), f) }

val prop: Prop = props.map { p ->
Prop { max, _, rng ->

p.check(max, casePerSize, rng)
}

}.reduce { p1, p2 -> p1.and(p2) }

prop.check(max, n, rng)
}

}

fun and(p: Prop): Prop =
Prop { max, n, rng ->

when (val prop = check(max, n, rng)) {
is Passed -> p.check(max, n, rng)
is Falsified -> prop

}

Listing 8.7 Generating test cases up to a given maximum size

Entry point used in tests

Generates this 
many random 
cases for each s

Generates an incrementing Sequence<Int> starting at 0

Makes one property per 
size, but never more than 
n properties (uses the 
previously defined forAll)

Combines them all 
into one property 
using Prop.and

Checks the 
combined property

Retrofits and to handle 
the new max parameter
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}
}

This code might seem a bit daunting at first, but on closer examination, it’s pretty
straightforward. check now has a new MaxSize parameter that sets an upper bound on
the size of test cases to run. Our forAll entry point takes an SGen and a predicate that is
passed through to our new forAll function and, in turn, generates a combined Prop.

 This property first calculates the number of test cases to run per size. It then gener-
ates a Sequence consisting of one Prop per size using the previously defined forAll
function from listing 8.5. Finally, it combines them all into a single property using an
updated version of our previously defined and function. At the end of all this, the
remaining reduced property is checked. 

8.4 Using the library and improving the user experience
We’ve now converged on what seems like a reasonable API. We could keep tinkering
with it, but at this point, let’s try using it, instead. We will do this by constructing tests
and looking for deficiencies in what it can express or its general usability. Usability is
somewhat subjective, but we generally like to have convenient syntax and appropriate
helper functions for common usage patterns. We aren’t necessarily aiming to make
the library more expressive, but we want to make it pleasant to use.

8.4.1 Some simple examples

Let’s revisit an example that we mentioned at the start of this chapter: specifying the
behavior of a function max, available as a method on List<Int>. The maximum of a list
should be greater than or equal to every other element in the list. Let’s specify this.

val smallInt = Gen.choose(-10, 10)

val maxProp = forAll(SGen.listOf(smallInt)) { ns ->
val mx = ns.max()

?: throw IllegalStateException("max on empty list")
!ns.exists { it > mx }

}

At this point, calling check directly on a Prop is rather cumbersome. We can introduce
a helper function for running property values and printing their result to the console
in a helpful format. Let’s simply call it run.

fun run(
p: Prop,
maxSize: Int = 100,
testCases: Int = 100,

Listing 8.8 Property specifying the maximum value in a list

Listing 8.9 Convenience method for running properties using defaults

No value greater than mx 
should exist in ns.

Sets the default maximum size 
of the test cases to 100

Sets the default number of 
test cases to run to 100
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rng: RNG = SimpleRNG(System.currentTimeMillis())
): Unit =

when (val result = p.check(maxSize, testCases, rng)) {
is Falsified ->

println(
"Falsified after ${result.successes}" +

"passed tests: ${result.failure}"
)

is Passed ->
println("OK, passed $testCases tests.") 

}

We’re taking advantage of some default arguments here, making the method more
convenient to call. We want the default number of tests to be enough to get good cov-
erage yet not too large, or they’ll take too long to run.

 If we try running run(maxProp), we notice that the property fails!

Falsified after 0 passed tests: test case: []
generated and exception: max on empty list
stacktrace:
...

Property-based testing has a way of revealing hidden assumptions about our code and
forcing us to be more explicit about these assumptions. The standard library’s imple-
mentation of max returns null when dealing with empty lists, which we interpreted as
an IllegalStateException. We need to fix our property to take this into account.

EXERCISE 8.13

Define nonEmptyListOf for generating nonempty lists, and then update your specifi-
cation of max to use this generator.

fun <A> nonEmptyListOf(ga: Gen<A>): SGen<List<A>> =

SOLUTION_HERE()

fun maxProp(): Prop =

SOLUTION_HERE()

EXERCISE 8.14

Write a property called maxProp to verify the behavior of List.sorted, which you can
use to sort (among other things) a List<Int>. 

Provides a simple 
random number 
generator, ready 
for action

If there are two items, 
we join the items on 
the string ' and '.

Prints a success message to 
standard out in case tests pass
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8.4.2 Writing a test suite for parallel computations

Recall that in chapter 7, we discovered laws that should hold true for our parallel com-
putations. Can we express these laws with our library? The first “law” we looked at was
actually a particular test case:

map(unit(1)) { it + 1 } == unit(2)

We certainly can express this, but the result is somewhat ugly, assuming our represen-
tation of Par<A> is an alias for the function type (ExecutorService) -> Future<A>:

val es = Executors.newCachedThreadPool()
val p1 = forAll(Gen.unit(Pars.unit(1))) { pi ->

map(pi, { it + 1 })(es).get() == Pars.unit(2)(es).get()
}

The resulting test is verbose and cluttered, and the idea of the test is obscured by irrel-
evant detail. Notice that this isn’t a question of the API being expressive enough—yes,
we can express what we want, but a combination of missing helper functions and poor
syntax obscures the actual intent.

PROVING PROPERTIES

Next, let’s improve on this verbosity and clutter. Our first observation is that forAll is
a bit too general for this test case. We aren’t varying the input to the test. We just have
a hardcoded example that should be as convenient to write as in any traditional unit
testing framework. Let’s introduce a combinator for it on the Prop companion object:

fun check(p: () -> Boolean): Prop = TODO()

How would we implement this? One possible way is to use forAll:

fun check(p: () -> Boolean): Prop {
val result by lazy { p() }
return forAll(Gen.unit(Unit)) {

result
}

}

This doesn’t seem quite right. We’re providing a unit generator that only generates a
single Unit value. Then we proceed by ignoring that value just to force evaluation of
the given Boolean. Not great.

 Even though we memoize the result so it’s not evaluated more than once, the test
runner will still generate multiple test cases and test the Boolean many times. For
example, if we execute run(check(true)), this will test the property 100 times and
print “OK, passed 100 tests.” But checking a property that is always true 100 times is a
terrible waste of effort. What we need is a new primitive.

 The representation of Prop that we have so far is just a function of type (MaxSize,
TestCases, RNG) -> Result, where Result is either Passed or Falsified. A simple

Passes in a non-
strict value

Result is 
memoized to avoid 
recomputation.
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implementation of a check primitive is to construct a Prop that ignores the number of
test cases:

fun check(p: () -> Boolean): Prop =
Prop { _, _, _ ->

if (p()) Passed
else Falsified("()", 0)

}

This is certainly better than using forAll, but run(check(true)) will still print “passed
100 tests” even though it only tests the property once. It’s not really true that such a
property has “passed” in the sense that it remains unfalsified after several tests. It is
proved after just one test. It seems that we want a new kind of Result.

object Proved : Result()

We can now return Proved instead of Passed in a property created by check. We need
to modify the test runner to take this new case into account.

fun run(
p: Prop,
maxSize: Int = 100,
testCases: Int = 100,
rng: RNG = SimpleRNG(System.currentTimeMillis())

): Unit =
when (val result = p.run(maxSize, testCases, rng)) {

is Falsified ->
println(

"Falsified after ${result.successes} passed tests: " +
result.failure

)
is Passed ->

println("OK, passed $testCases tests.")
is Proved ->

println("OK, proved property.")
}

We also need to modify our implementations of Prop combinators like and. These
changes are pretty trivial since such combinators don’t need to distinguish between
Passed and Proved results.

fun and(p: Prop) =
Prop { max, n, rng ->

when (val prop = run(max, n, rng)) {
is Falsified -> prop

Listing 8.10 Proved: a result that has proof after a single test

Listing 8.11 Updating run to handle the new Proved result type

Listing 8.12 Updating Prop to handle Passed and Proved passes
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, 
else -> p.run(max, n, rng)
}

}

TESTING PAR

Getting back to proving the property that map(unit(1)) { it + 1 } is equal to unit(2),
we can use our new check primitive to express this in a way that doesn’t obscure the
intent:

val p = check {
val p1 = map(unit(1)) { it + 1 }
val p2 = unit(2)
p1(es).get() == p2(es).get()

}

This is now pretty clear. But can we do something about the noise of p1(es).get()
and p2(es).get()? This needless repetition obscures the intent of our test and has
very little to do with what we are attempting to prove. We’re forcing this code to be
aware of the internals of Par so that we can compare two Par values to each other for
equality. One improvement is to lift the equality comparison into Par using map2,
which means we only have to run a single Par at the end to get our result:

fun <A> equal(p1: Par<A>, p2: Par<A>): Par<Boolean> =
map2(p1, p2, { a, b -> a == b })

val p = check {
val p1 = map(unit(1)) { it + 1 }
val p2 = unit(2)
equal(p1, p2)(es).get()

}

This is already a bit better than having to run each side separately. But while we’re at
it, why don’t we move the running of Par into a separate function called forAllPar?
This also gives us a good place to insert variation across different parallel strategies
without cluttering the property we’re specifying:

val ges: Gen<ExecutorService> = weighted(

Gen.choose(1, 4).map {
Executors.newFixedThreadPool(it)

} to .75,                               
Gen.unit(

Executors.newCachedThreadPool()
) to .25)                           

fun <A> forAllPar(ga: Gen<A>, f: (A) -> Par<Boolean>): Prop =
forAll(

map2(ges, ga) { es, a -> es to a }
) { (es, a) -> f(a)(es).get() }

The else fallback handles 
both Passed and Proved 
success types.

Weighted generator 
of executor services

Creates a fixed thread 
pool 75% of the time

Creates an unbounded thread 
pool 25% of the time

Creates a Pair<Gen<ExecutorService>
Gen<A>> using the to keyword
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The value ges is a Gen<ExecutorService> that will vary over fixed-size thread pools
from one to four threads and consider an unbounded thread pool.

 Next, let’s focus our attention on map2(ges, ga) { es, a -> es to a }. This is a
rather noisy way of combining two generators to produce a pair of their outputs. Let’s
introduce a combinator to clean up this mess:

fun <A, B> combine(ga: Gen<A>, gb: Gen<B>): Gen<Pair<A, B>> =
map2(ga, gb) { a, b -> a to b }

This already feels a lot better and less clunky!

fun <A> forAllPar(ga: Gen<A>, f: (A) -> Par<Boolean>): Prop =
forAll(

combine(ges, ga)
) { esa ->

val (es, a) = esa
f(a)(es).get()

}

Even though this is better, we haven’t arrived yet. Our aim is to make the user experi-
ence of our library as frictionless as possible. We can make it even easier and more nat-
ural to use by applying some features in our Kotlin bag of tricks. For one, we can
introduce combine as a method on Gen. We can also use the infix keyword to get rid
of unnecessary punctuation and parentheses:

infix fun <A, B> Gen<A>.combine(gb: Gen<B>): Gen<Pair<A, B>> =
map2(this, gb) { s, a -> s to a }

This in turn gives us a far more fluid expression:

fun <A> forAllPar(ga: Gen<A>, f: (A) -> Par<Boolean>): Prop =
forAll(ges combine ga) { esa ->

val (es, a) = esa
f(a)(es).get()

}

The final improvement we can make is to improve the injection of parameters into
the anonymous function by performing an inline destructure of Pair<Executor-
Service, A>, bringing us to our final iteration:

fun <A> forAllPar(ga: Gen<A>, f: (A) -> Par<Boolean>): Prop =
forAll(ges combine ga) { (es, a) ->

f(a)(es).get()
}

We can now go ahead and use our new property to implement checkPar, which in
turn consumes Par<Boolean> as emitted by Par.equal from chapter 7. All of this com-
bined means a better experience for the users of our library:
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fun checkPar(p: Par<Boolean>): Prop =
forAllPar(Gen.unit(Unit)) { p }

val p2 = checkPar(
equal(

map(unit(1)) { it + 1 },
unit(2)

)
)

With all these stepwise improvements, our property has become easier to understand
and use. These might seem like minor changes, but such refactoring and cleanup
have a significant effect on the usability of our library. The helper functions we’ve writ-
ten make the properties easier to read and more pleasant to work with.

 Let’s look at some other properties from chapter 7. Recall that we generalized
our test case:

map(unit(x), f) == unit(f(x))

We then simplified it to the law that mapping the identity function over a computa-
tion should have no effect:

map(y, id) == y

Can we express this? Not exactly. This property implicitly states that the equality holds
for all choices of y, for all types. We’re forced to pick particular values for y:

val pint: Gen<Par<Int>> =
Gen.choose(0, 10).map {

unit(it)
}

val p = forAllPar(pint) { n ->
equal(map(n) { it }, n)

}

We can undoubtedly range over more choices of y, but what we have here is probably
good enough. The implementation of map doesn’t care about the values of our parallel
computation. So, there isn’t much point in constructing the same test for Double,
String, and so on. What can affect map is the structure of the parallel computation. If we
wanted greater assurance that our property held, we could provide richer generators for
the structure. Here, we’re only supplying Par expressions with one level of nesting.

EXERCISE 8.15

Write a richer generator for Par<Int> that builds more deeply nested parallel compu-
tations than the simple variant we’ve provided so far.
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EXERCISE 8.16

Express the property about fork from chapter 7 that fork(x) == x. 

8.5 Generating higher-order functions 
and other possibilities

So far, our library seems quite expressive, but there is one area where it’s lacking:
we don’t have an excellent way to test higher-order functions (HOFs). While we
have many ways of generating data using our generators, we don’t really have a good
way of generating functions. In this section, we deal with generating functions to
test HOFs.

 For instance, let’s consider the takeWhile function defined for List and Sequence.
Recall that this function returns the longest prefix of its input whose elements all sat-
isfy a predicate. For instance, listOf(1,2,3).takeWhile { it < 3 } results in
List(1,2). A simple property we’d like to check is that for any list s: List<A> and any
f: (A) -> Boolean, the expression s.takeWhile(f).forAll(f) evaluates to true.
That is, every element in the returned list satisfies the predicate

NOTE Arrow provides a forAll extension method for List and Sequence with
the signature fun <A> List<A>.forAll(f: (A) -> Boolean>): Boolean.

EXERCISE 8.17

Come up with some other properties that takeWhile should satisfy. Can you think of a
good property expressing the relationship between takeWhile and dropWhile?

We could certainly take the approach of examining only particular arguments when
testing HOFs. For instance, here’s a more specific property for takeWhile:

val isEven = { i: Int -> i % 2 == 0 }

val takeWhileProp =
Prop.forAll(Gen.listOfN(n, ga)) { ns ->

ns.takeWhile(isEven).forAll(isEven)
}

This works, but is there a way to let the testing framework handle generating functions
to use with takeWhile instead? Let’s consider our options. To make this concrete, sup-
pose we have a Gen<Int> and would like to produce a Gen<(String) -> Int>. What
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are some ways we could do that? Well, we could produce (String) -> Int functions
that simply ignore their input string and delegate to the underlying Gen<Int>:

fun genStringIntFn(g: Gen<Int>): Gen<(String) -> Int> =
g.map { i -> { _: String -> i } }

This approach isn’t really sufficient. We’re simply generating constant functions that
ignore their input. In the case of takeWhile, where we need a function that returns a
Boolean, the function will always return true or false depending on what the under-
lying boolean generator passes it—clearly not very interesting for testing the behavior
of our function:

fun genIntBooleanFn(g: Gen<Boolean>): Gen<(Int) -> Boolean> =
g.map { b: Boolean -> { _: Int -> b } }

Now, let’s consider the following function, which returns a function generator that per-
forms some logic based on a value passed to it. In this case, a threshold t is passed, and
any Int injected into the function will be tested to see if the value exceeds t:

fun genIntBooleanFn(t: Int): Gen<(Int) -> Boolean> =
Gen.unit { i: Int -> i > t }

Let’s put our new function generator to work. We begin by generating a List<Int> as
well as a random threshold value. We preload our function generator with the given
random threshold and let it produce its function of (Int) -> Boolean. Finally, we
apply this generated function to takeWhile on our generated list and then apply the
same predicate to forAll, which should always result in true:

val gen: Gen<Boolean> =
Gen.listOfN(100, Gen.choose(1, 100)).flatMap { ls: List<Int> ->

Gen.choose(1, ls.size / 2).flatMap { threshold: Int ->
genIntBooleanFn(threshold).map { fn: (Int) -> Boolean ->

ls.takeWhile(fn).forAll(fn)
}

}
}

When run in the context of our test harness using Prop.forAll, we should always see
the test passing:

run(Prop.forAll(gen) { success -> success })

Even though this example is somewhat contrived and trivial, it sufficiently demon-
strates what is possible in terms of random function generators. Feel free to take these
ideas further in your own studies. 
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8.6 The laws of generators
As we’ve worked through designing our library, we see patterns emerging that we’ve
come across in previous chapters. Many of the combinators we’ve discovered even
have the same name and functionality. For example, several of the functions we’ve
implemented for our Gen type look pretty similar to other functions we defined on
Par, List, Stream, and Option. Looking back at our implementation of Par in chap-
ter 7 reveals that we defined the following combinator:

fun <A, B> map(a: Par<A>, f: (A) -> B): Par<B> = TODO()

And in this chapter, we defined map for Gen (as a method on Gen<A>):

fun <A, B> map(a: Gen<A>, f: (A) -> B): Gen<B> = TODO()

We’ve also defined similar-looking functions for Option, List, Stream, and State. We
have to wonder: is it merely that our functions share similar-looking signatures? Or do
they satisfy the same laws as well? Let’s look at a law we introduced for Par in chapter 7:

map(y, id) == y

Does this law hold true for our implementation of Gen.map? What about for Stream,
List, Option, and State? Yes, it does! Try it and see. This indicates that these func-
tions share similar-looking signatures. They also, in some sense, have similar meanings
in their respective domains. It appears that deeper forces are at work! We’re uncover-
ing some fundamental patterns that cut across all these domains. In part 3, we’ll learn
the names of these patterns, discover the laws that govern them, and understand what
it all means. 

8.7 Conclusion
Let’s reiterate. The goal was not necessarily to learn about property-based testing as
such, but rather to highlight particular aspects of functional design. First, we saw
that oscillating between the abstract algebra and the concrete representation lets
the two inform each other. This avoids overfitting the library to a particular repre-
sentation and also avoids a disconnected abstraction that is far removed from the
end goal.

 Second, we noticed that this domain led us to discover many of the same combi-
nators we’ve seen a few times before: map, flatMap, and so on. The signatures of
these functions are analogous, but the laws satisfied by the implementations are
analogous too. There are many seemingly different problems being solved in the soft-
ware world, yet the space of functional solutions is much smaller. Many libraries are
just simple combinations of specific fundamental structures that repeatedly appear
across various domains. This is an opportunity for code reuse that we’ll exploit in
part 3. We will learn both the names of these structures as well as how to spot more
general abstractions.
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Summary
 We can use property-based testing to validate laws or properties that relate func-

tions to each other.
 Building a property-based testing library is an excellent example of designing a

functional library using an iterative approach.
 We can model a simple testing library using data types representing properties

and generators to affirm the laws of a program.
 We can use generators with other generators to express complex laws when val-

idating the code under test.
 It is possible to minimize test case output by shrinking applied test data or using

incremental sized generation.
 The library’s user experience is essential, and usability should always be a pri-

mary goal of library design.
 We can design functional libraries using an oscillation between abstract algebra

and concrete representation.
 Combinators across domains obey the same laws and have the same semantics,

which establishes universal functional design patterns.



Parser combinators
In this chapter, we work through the design of a combinator library for creating
parsers. We’ll use JSON parsing as a motivating use case. Like chapters 7 and 8, this
chapter is not so much about parsing as it is about providing further insight into
the process of functional design.

This chapter covers
 An algebraic design approach to libraries

 Primitives vs. higher-level combinators

 Using combinators to achieve design goals

 Improving library ease of use with syntactic sugar

 Postponing combinator implementation by first 
focusing on algebra design

What is a parser?
A parser is a specialized program that takes unstructured data (such as text or a
stream of symbols, numbers, or tokens) as input and outputs a structured represen-
tation of that data. For example, we can write a parser to turn a comma-separated
file into a list of lists. The elements of the outer list represent the records, and the
177
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This chapter introduces a design approach that we call algebraic design. This design
approach is a natural evolution of what we’ve already done to different degrees in past
chapters: designing our interface first, along with associated laws, and letting the com-
bination of these guide our choice of data type representations.

 At a few key points during this chapter, we’ll give more open-ended exercises
intended to mimic the scenarios you might encounter when writing your own libraries
from scratch. You’ll get the most out of this chapter if you use these opportunities to
put down the book and spend some time investigating possible approaches. When you
design your own libraries, you won’t be handed a neatly chosen sequence of type sig-
natures to fill in with implementations. Instead, you’ll have to decide what types and
combinators you need—and a goal of this part of the book is to prepare you for doing
so on your own. As always, if you get stuck on one of the exercises or want some more
ideas, you can keep reading or consult the answers in appendix B. It may also be a
good idea to do these exercises with another person or even compare notes with other
readers of the liveBook edition.

(continued)

elements of each inner list represent the comma-separated fields of each record.
Another example is a parser that takes an XML or JSON document and turns it into
a tree-like data structure.

In a parser combinator library like the one we build in this chapter, a parser doesn’t
have to be anything quite that complicated, and it doesn’t have to parse entire doc-
uments. It can do something as elementary as recognizing a single character in the
input. We then use combinators to assemble composite parsers from elementary
ones and still more complex parsers from those.

Parser combinators vs. parser generators
You might be familiar with parser generator libraries like Yacc (https://en.wikipedia
.org/wiki/Yacc) or similar libraries in other languages (for instance, ANTLR [https://
www.antlr.org] in Java). These libraries generate code for a parser based on a speci-
fication of the grammar. This approach works fine and can be pretty efficient but
comes with all the usual problems of code generation—the libraries produce as their
output a monolithic chunk of code that’s difficult to debug. It’s also challenging to
reuse logic since we can’t introduce new combinators or helper functions to abstract
over common patterns in our parsers.

In a parser combinator library, parsers are just ordinary first-class values. Reusing
parsing logic is trivial, and we don’t need any sort of external tool separate from our
programming language.

https://en.wikipedia.org/wiki/Yacc
https://en.wikipedia.org/wiki/Yacc
https://en.wikipedia.org/wiki/Yacc
https://www.antlr.org
https://www.antlr.org
https://www.antlr.org
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9.1 Designing an algebra
Recall from section 7.4 that we defined algebra to mean a collection of functions oper-
ating over data types, along with a set of laws specifying relationships between these
functions. In past chapters, we moved rather fluidly between inventing functions in
our algebra, refining the set of functions, and tweaking our data type representations.
Laws were somewhat of an afterthought—we worked out the laws only after we had a
representation and an API fleshed out. There’s nothing wrong with this design style,
but we’ll take a different approach in this chapter. We’ll start with the algebra (includ-
ing its laws) and decide on a representation later. This approach—let’s call it algebraic
design—can be used for any design problem but works particularly well for parsing.
This is because it’s easy to imagine what combinators are required for parsing differ-
ent kinds of inputs. This, in turn, lets us keep an eye on the concrete goal even as we
defer deciding on a representation.

 There are many different kinds of parsing libraries. There are even several open
source Kotlin parser combinator libraries available. As in the previous chapter, we’re
deriving our own library from first principles partially for pedagogical purposes and to
further encourage the idea that no library is authoritative. Ours will be designed for
expressiveness by being able to parse arbitrary grammars, as well as for speed and
good error reporting. This last point is essential. Whenever we run a parser on input
that isn’t expected—which can happen if the input is malformed—it should generate
a parse error. If there are parse errors, we want to point out exactly where the errors are
in the input and accurately indicate their cause. Error reporting is often an afterthought
in parsing libraries, but we’ll make sure we give careful attention to it from the start.

9.1.1 A parser to recognize single characters

Okay, let’s begin. For simplicity and for speed, our library will create parsers that oper-
ate on strings as input. We could make the parsing library more generic, but we will
refrain due to the cost. We need to pick some parsing tasks to help us discover a good
algebra for our parsers. What should we look at first? Something practical like parsing
an email address, JSON, or HTML? No! These tasks can come later. A good, straight-
forward domain to start with is parsing various combinations of repeated letters and
gibberish words like abracadabra and abba. As silly as this sounds, we’ve seen before
how simple examples help us ignore extraneous details and focus on the essence of
the problem.

 So let’s start with the simplest of parsers: one that recognizes the single-character
input 'a'. As in past chapters, we can just invent a combinator for the task and call
it char:

fun char(c: Char): Parser<Char>

What have we done here? We’ve conjured up a type called Parser that is parameter-
ized on a single parameter indicating the result type of Parser. That is, running a
parser shouldn’t simply yield a yes/no response—if it succeeds, we want to get a result
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that has some useful type; and if it fails, we expect information about the failure. The
char('a') parser will succeed only if the input is exactly the character 'a', and it will
return that same character 'a' as its result.

 This talk of “running a parser” clarifies that our algebra needs to be extended to
support that. Let’s invent another function to do so:

fun <A> run(p: Parser<A>, input: String): Either<PE, A>

Wait a minute, what does PE represent? It’s a type parameter we just conjured into
existence! At this point, we don’t care about the representation of PE (short for parse
error)—or Parser, for that matter. We’re in the process of specifying an interface that
happens to make use of two types whose representation or implementation details we
choose to remain ignorant of as much as possible. Let’s make this explicit with some
interface declarations.

interface Parsers<PE> {         

interface Parser<A>    

fun char(c: Char): Parser<Char>

fun <A> run(p: Parser<A>, input: String): Either<PE, A>

}

In listing 9.1, a top-level interface called Parsers is introduced. This will become the
home for all combinators and helper functions relating to the Parser and related PE
parser error. For now, we’ll keep both these types in their most straightforward repre-
sentation and add new combinators to the body of the Parsers interface.

 Returning to the char function, we should satisfy an obvious law: for any c of type
Char,

run(char(c), c.toString()) == Right(c)

9.1.2 A parser to recognize entire strings

Let’s continue. We can recognize the single character 'a', but what if we want to rec-
ognize the string "abracadabra"? We don’t have a way of recognizing entire strings
yet, so let’s add a function to Parsers that helps us construct a Parser<String>:

fun string(s: String): Parser<String>

Likewise, this should satisfy an obvious law: for any String s,

run(string(s), s) == Right(s)

Listing 9.1 Interface in which to declare Parser combinators

Interface parameterized with parse 
error PE, where all future parser 
combinators may be declared

A simple representation of the parser
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What if we want to recognize either string "abra" or "cadabra"? We could add a very
specialized combinator for this purpose:

fun orString(s1: String, s2: String): Parser<String>

But choosing between two parsers seems like something that would be more useful in
a general way regardless of their result type. Let’s go ahead and make this polymorphic:

fun <A> or(pa: Parser<A>, pb: Parser<A>): Parser<A>

We expect that or(string("abra"), string("cadabra")) will succeed whenever
either string parser succeeds:

run(or(string("abra"), string("cadabra")), "abra") ==
Right("abra")

run(or(string("abra"), string("cadabra")), "cadabra") ==
Right("cadabra")

Even though this works, it is difficult for the reader to understand. Let’s do some work
on our presentation. We can give this or combinator friendlier infix syntax where we
omit all . and parentheses, like s1 or s2.

interface Parsers<PE> {

interface Parser<A>

fun string(s: String): Parser<String>       

fun <A> or(a1: Parser<A>, a2: Parser<A>): Parser<A>     

infix fun String.or(other: String): Parser<String> =
or(string(this), string(other))        

fun <A> run(p: Parser<A>, input: String): Either<PE, A>
}

We introduce a convenient or extension method on String marked with the infix
modifier. The method will lift two adjoining Strings into Parser<String> instances
and then apply the or combinator on both parsers. This now allows us to declare the
law for or as follows:

run("abra" or "cadabra", "abra") == Right("abra")

9.1.3 A parser to recognize repetition

Much neater! We can now recognize various strings, but we don’t have a way of talking
about the repetition. For instance, how would we recognize three repetitions of our
"abra" or "cadabra" parser? Once again, let’s add a combinator to serve this purpose.

Listing 9.2 Adding syntactic sugar to the or combinator

The string parser for
turning String into

Parser<String>
The or combinator 
for deciding between
two instances of 
Parser<A>

Infix extension 
method to make the 
or combinator more 
pleasing to use on 
Strings
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This should remind you of a similar function that we wrote in the previous chapter on
property-based testing:

fun <A> listOfN(n: Int, p: Parser<A>): Parser<List<A>>

We made listOfN parametric in the choice of A since it doesn’t seem like it should
care whether we have a Parser<String>, a Parser<Char>, or some other type of parser.
Here are some examples of what we expect from listOfN expressed through laws:

run(listOfN(3, "ab" or "cad"), "ababab") == Right("ababab")
run(listOfN(3, "ab" or "cad"), "cadcadcad") == Right("cadcadcad")
run(listOfN(3, "ab" or "cad"), "ababcad") == Right("ababcad")
run(listOfN(3, "ab" or "cad"), "cadabab") == Right("cadabab")

At this point, we’ve been accumulating required combinators, but we haven’t tried to
refine our algebra into a minimal set of primitives. We also haven’t talked much about
more general laws. We’ll start doing this next; but rather than give the game away,
we’ll ask you to examine a few more straightforward use cases yourself while trying to
design a minimal algebra with associated laws. This should be a challenging task, but
enjoy wrestling with it and see what you can come up with.

 Here are additional parsing tasks to consider, along with some guiding questions:

 A Parser<Int> that recognizes zero or more 'a' characters and whose result
value is the number of 'a' characters it has seen. For instance, given "aa", the
parser results in 2; given "" or "b123" (a string not starting with 'a'), it results
in 0; and so on.

 A Parser<Int> that recognizes one or more 'a' characters and whose result
value is the number of 'a' characters it has seen. Is this defined in terms of the
same combinators as the parser for 'a' repeated zero or more times? The
parser should fail when given a string without a starting 'a'. How would you
like to handle error reporting in this case? Could the API give an explicit mes-
sage like "Expected one or more 'a'" in the case of failure?

 A parser that recognizes zero or more 'a', followed by one or more 'b', result-
ing in a pair of counts of characters seen. For instance, given "bbb", we get
Pair(0,3); given "aaaab", we get Pair(4,1); and so on.

Some additional considerations:

 If we’re trying to parse a sequence of zero or more "a" and are only interested
in the number of characters seen, it seems inefficient to have to build up a
List<Char>, only to throw it away and extract the length. Could something be
done about this?

 Are the various forms of repetition in our algebra primitives, or could they be
defined in terms of something more straightforward?

 Earlier, we introduced a type parameter PE representing parse errors, but we
haven’t chosen any representation or functions for its API so far. Our algebra
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also doesn’t have a way to let the programmer control what errors are reported.
This seems like a limitation, given that we’d like meaningful error messages
from our parsers. Can something be done about this?

 Does a or (b or c) mean the same thing as (a or b) or c? If yes, is this a primi-
tive law for our algebra, or is it implied by something simpler?

 Try to come up with a set of laws to specify our algebra. The laws don’t necessar-
ily need to be complete; just write down some laws that you expect should hold
for any Parsers implementation.

Spend some time coming up with combinators and possible laws based on this guid-
ance. When you feel stuck or at a good stopping point, continue reading the next sec-
tion, which walks through one possible algebra design to meet these requirements.

9.2 One possible approach to designing an algebra
In this section, we walk through the discovery process of a set of combinators for the
parsing tasks mentioned earlier. If you worked through this design task yourself, you
likely took a different path from the one we will take. You may well have ended up
with a different set of combinators, which is perfectly fine.

9.2.1 Counting character repetition

First, let’s consider the parser that recognizes zero or more repetitions of the charac-
ter 'a' and returns the number of characters it has seen. We can start by adding a
primitive combinator that takes us halfway there—let’s call it many:

fun <A> many(pa: Parser<A>): Parser<List<A>>

This isn’t exactly what we’re after—we need a Parser<Int> that counts the number of
elements. We could change the many combinator to return a Parser<Int>, but that
feels too specific. Undoubtedly there will be occasions when we care about more than
just the list length. Better to introduce another combinator that should be familiar by
now, map:

fun <A, B> map(pa: Parser<A>, f: (A) -> B): Parser<B>

The advantages of algebraic design
When you design the algebra of a library first, representations for the data types of
the algebra don’t matter as much. As long as they support the required laws and func-
tions, you don’t even need to make your representations public.

There’s an underlying idea here that a type is given meaning based on its relationship
to other types (which are specified by the set of functions and their laws), rather than
its internal representation. This viewpoint is often associated with category theory, a
branch of mathematics we’ve alluded to before. 
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We can now define our parser as follows:

map(many(char('a'))) { it.size }

Let’s transform these combinators into extension methods to make this a bit more
pleasing to the eye:

fun <A> Parser<A>.many(): Parser<List<A>>

fun <A, B> Parser<A>.map(f: (A) -> B): Parser<B>

With these combinators in place, our new parser can be expressed as numA, followed
by its proof:

val numA: Parser<Int> = char('a').many().map { it.size }

run(numA, "aaa") == Right(3)
run(numA, "b") == Right(0)

When passing a string consisting of "aaa", we expect a count of 3. Similarly, if we pass
a string of "b", we expect a count of 0.

 We have a strong expectation for the behavior of map. It should merely transform
the result value if the Parser was successful, and it should not examine additional
input characters. Also, a failing parser can’t become a successful one via map or vice
versa. In general, we expect map to be structure preserving, much like we required for
Par and Gen. Let’s formalize this by stipulating the now-familiar law:

map(p) { a -> a } == p

How should we document this law? We could put it in a documentation comment, but
in the preceding chapter, we developed a way to make our laws executable. Let’s use our
property-based testing library here!

object ParseError      

abstract class Laws : Parsers<ParseError> {       
private fun <A> equal(    

p1: Parser<A>,
p2: Parser<A>,
i: Gen<String>

): Prop =
forAll(i) { s -> run(p1, s) == run(p2, s) }

fun <A> mapLaw(p: Parser<A>, i: Gen<String>): Prop =  
equal(p, p.map { a -> a }, i)

}

The Laws class is declared abstract for the moment; once we’ve implemented all meth-
ods in the Parsers interface, it will become an object. We now have a way to test

Concrete implementation of ParseError 
for type parameter PE in Parsers

Implements the Parsers 
interface, allowing access 
to all combinators and 
helper functions

Helper function 
for asserting 
parser equality

Property that 
tests whether 
our map function 
obeys the law
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whether our combinator holds true for the specified law. This will come in handy later
when we test that our implementation of Parsers behaves as we expect. As we dis-
cover more laws, you are encouraged to write them out as actual properties inside the
Laws class. For the sake of brevity, we won’t give Prop implementations of all the laws,
but that doesn’t mean you shouldn’t write them yourself!

 Incidentally, if we consider string to be one of our core primitive functions, com-
bined with map, we can quickly implement char in terms of string:

fun char(c: Char): Parser<Char> = string(c.toString()).map { it[0] }

And similarly, another combinator called succeed can be defined in terms of string
and map. This parser always succeeds with the value a, regardless of the input string
(since string("") will always succeed, even if the input is empty):

fun <A> succeed(a: A): Parser<A> = string("").map { a }

Does this combinator seem familiar to you? We can specify its behavior with a law:

run(succeed(a), s) == Right(a)

9.2.2 Slicing and nonempty repetition

The combination of many and map certainly lets us express the parsing task of counting
the number of 'a' characters that we have seen. Still, it seems inefficient to construct
a List<Char> only to discard its values and extract its length. It would be nice to run a
Parser purely to see what portion of the input string it examines. Let’s come up with
a combinator for that very purpose, called slice:

fun <A> slice(pa: Parser<A>): Parser<String>

We call this combinator slice since we intend to return the portion of the input
string examined by the parser, if successful. As an example:

run(slice(('a' or 'b').many()), "aaba") == Right("aaba")

We ignore the list accumulated by many and simply return the portion of the input
string matched by the parser. With slice converted to an extension method, our
parser that counts 'a' characters can now be written as follows:

char('a').many().slice().map { it.length }

The length field refers to String.length, which takes constant time. This is different
from the size() method on List, which may take time proportional to the length of the
list, and subsequently requires us to construct the list before we can count its elements.

NOTE The time List.size() takes depends on the implementation. For
example, if the number of items is stored in an integer, size() will take con-
stant time.
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Note that there is no implementation yet. We’re merely coming up with our desired
interface. But slice does put a constraint on the implementation: even if the parser
p.many().map { it.size() } will generate an intermediate list when run, p.many()
.slice().map { it.length } will not. This is a strong hint that slice is primitive since
it must have access to the internal representation of the parser.

 Let’s consider the following use case. What if we want to recognize one or more 'a'
characters? First, we introduce a new combinator for this purpose, called many1:

fun <A> many1(p: Parser<A>): Parser<List<A>>

It feels like many1 shouldn’t have to be primitive but must be defined in terms of many.
In fact, many1(p) is just p followed by many(p). So it seems we need a way to run one
parser followed by another, assuming the first is successful. Let’s accommodate run-
ning parsers sequentially by adding a product combinator:

fun <A, B> product(pa: Parser<A>, pb: Parser<B>): Parser<Pair<A, B>>

We can now add an infix product extension method to Parser<A> that allows us to
express pa product pb:

infix fun <A, B> Parser<A>.product(
pb: Parser<B>

): Parser<Pair<A, B>>

Up to this point, there has been a complete focus on driving development from alge-
bra alone. We will keep this approach, but let’s have some fun and implement some
combinators!

EXERCISE 9.1

Using product, implement the now-familiar combinator map2. In turn, use this to
implement many1 in terms of many.

override fun <A, B, C> map2(
pa: Parser<A>,
pb: () -> Parser<B>,
f: (A, B) -> C

): Parser<C> =

SOLUTION_HERE()

override fun <A> many1(p: Parser<A>): Parser<List<A>> =

SOLUTION_HERE()
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With many1, we can now implement the parser for zero or more 'a' followed by one
or more 'b' as follows:

char('a').many().slice().map { it.length } product
char('b').many1().slice().map { it.length }

EXERCISE 9.2

Hard: Try coming up with laws to specify the behavior of product.

Now that we have map2, is many really primitive? Let’s think about what many(p) will
do. It will try running p followed by many(p) again, and again, and so on until the
attempt to parse p fails. It will accumulate the results of all successful runs of p into a
list. As soon as p fails, the parser will return the empty List.

EXERCISE 9.3

Hard: Before continuing, see if you can define many in terms of or, map2, and succeed.

fun <A> many(pa: Parser<A>): Parser<List<A>> =

SOLUTION_HERE()

EXERCISE 9.4

Hard: Implement the listOfN combinator introduced earlier using map2 and succeed.

fun <A> listOfN(n: Int, pa: Parser<A>): Parser<List<A>> =

SOLUTION_HERE()

We’ve already had a stab at implementing many in exercise 9.3. Let’s try to work
through this problem together to see what we can learn. Here’s the implementation
in terms of or, map2, and succeed:

infix fun <T> T.cons(la: List<T>): List<T> = listOf(this) + la

fun <A> many(pa: Parser<A>): Parser<List<A>> =
map2(pa, many(pa)) { a, la ->

a cons la
} or succeed(emptyList())
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We start by adding a neat little extension method that allows for creating a list by pre-
fixing an element to a list of elements. We call it cons. This is merely some syntactic
sugar that replaces listOf(a) + la with a cons la and makes the code a bit easier to
comprehend.

 The implementation of many looks tidy and declarative. We’re using map2 to
express that we want p followed by many(p) and that we want to combine their results
with cons to construct a list of results. Or, if that fails, we want to succeed with an
empty list. But there’s a problem with this implementation. We’re calling many recur-
sively in the second argument to map2, which is a strict evaluation of its second argu-
ment. Consider a simplified program trace of the evaluation of many(p) for some
parser p. We’re only showing the expansion of the left side of the or here:

many(p)
map2(p, many(p)) { a, la -> a cons la }
map2(p, map2(p, many(p)) { a, la -> a cons la }) { a, la ->

a cons la
}

Because a call to map2 constantly evaluates its second argument, our many function will
never terminate! That’s no good. This indicates that we need to make product and
map2 non-strict in their second arguments:

fun <A, B> product(
pa: Parser<A>,
pb: () -> Parser<B>

): Parser<Pair<A, B>> = TODO()

fun <A, B, C> map2(
pa: Parser<A>,
pb: () -> Parser<B>,
f: (A, B) -> C

): Parser<C> =
product(pa, pb).map { (a, b) -> f(a, b) }

EXERCISE 9.5

We could also deal with non-strictness using a separate combinator, as we did in chap-
ter 7. Provide a new combinator called defer, and make the necessary changes to your
existing combinators. What do you think of that approach in this instance?

 Note that the purpose of this exercise is merely to try the approach of introducing
a defer function and see what impact it would have on our existing combinators. We
won’t be introducing it beyond this exercise because of the complexity it adds, along
with the limited benefit that it gives our library. That said, it was worth trying it out!
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By updating our implementation of many to take advantage of the second lazy parame-
ter of map2 by using defer, our problem goes away.

fun <A> many(pa: Parser<A>): Parser<List<A>> =
map2(pa, many(pa).defer()) { a, la ->      

a cons la
} or succeed(emptyList())

Because map2 draws on the functionality of product, it should be non-strict in its sec-
ond argument, too. If the first Parser fails, the second won’t even be consulted.

 We now have good combinators for parsing one thing followed by another or mul-
tiple things of the same kind in succession. But since we’re considering whether com-
binators should be non-strict, let’s revisit the or combinator once again:

fun <A> or(pa: Parser<A>, pb: Parser<A>): Parser<A>

We’ll assume that or is left-biased, meaning it tries p1 on the input and then tries p2
only if p1 fails. This is purely a design choice. You may prefer to have a version of or
that always evaluates both p1 and p2. In our case, we opt for the non-strict version with
the second argument, which may never even be consulted. This is what such an or
combinator would look like:

fun <A> or(pa: Parser<A>, pb: () -> Parser<A>): Parser<A>

9.3 Handling context sensitivity
This section explores a combinator that allows us to pass context on to the following
combinator. We call this ability for a combinator to pass state context sensitivity.

 Let’s pause and reflect on what we’ve covered so far in this chapter. We’ve already
come a long way in defining a set of valuable primitives that we can use in subsequent
sections. Table 9.1 reviews the most useful ones that we’ve defined.

Listing 9.3 Implementation of many that relies on lazy evaluation

Table 9.1 A list of useful primitives derived so far

Primitive Description

string(s) Recognizes and returns a single String

slice(p) Returns the portion of input inspected by p, if successful

succeed(a) Always succeeds with the value a

map(p, f) Applies the function f to the result of p, if successful

product(p1, p2) Sequences two parsers, running p1 and then p2, and then returns the pair of 
their results if both succeed

or(p1, p2) Chooses between two parsers, first attempting p1 and then passing p2 any 
uncommitted input in case p1 failed

The second parameter 
to map2 becomes a 
thunk.
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Using these primitives, we can express various forms of repetition (many, listOfN, and
many1) as well as combinators like char and map2. Would it surprise you if these primi-
tives were sufficient for parsing any context-free grammar, including JSON? Well, they
are! We’ll get to writing that JSON parser soon, but we need a few more building
blocks first.

 Suppose we want to parse a single digit like '4', followed by as many 'a' characters
as that digit. Examples of this kind of input are "0", "1a", "2aa", "4aaaa", and so on.
This is an example of a context-sensitive grammar, and it can’t be expressed with the
product primitive we’ve defined already. The reason is that the choice of the second
parser depends on the result of the first. In other words, the second parser depends
on the context of the first. Back to our example, we want to run the first parser to
extract the digit and then do a listOfN using the number from the first parser’s result.
The product combinator simply can’t express something like that.

 This progression might seem familiar to you. In past chapters, we encountered
similar situations and dealt with them by introducing a new primitive called flatMap:

fun <A, B> flatMap(pa: Parser<A>, f: (A) -> Parser<B>): Parser<B>

Can you see how this combinator solves the problem of context sensitivity? It provides
an ability to sequence parsers, where each parser in the chain depends on the output
of the previous one.

EXERCISE 9.6

Using flatMap and any other combinators, write the context-sensitive parser we couldn’t
express earlier. The result should be a Parser<Int> that returns the number of char-
acters read. You can use a new primitive called regex to parse digits, which promotes a
regular expression String to a Parser<String>.

EXERCISE 9.7

Implement product and map2 in terms of flatMap and map.

EXERCISE 9.8

map is no longer primitive. Express it in terms of flatMap and/or other combinators.
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We have now introduced a new primitive called flatMap that enables context-sensitive
parsing and allows us to implement map and map2. This is not the first time flatMap
has come to the rescue.

 Our list of primitives has now shrunk to six: string, regex, slice, succeed, or, and
flatMap. Even though we have fewer primitives, we have more capabilities than before
because we adopted the more general flatMap in favor of map and product. This new
power tool enables us to parse arbitrary context-free grammars like JSON and context-
sensitive grammars, including highly complex ones like C++ and Perl!

NOTE Up to now, we have spent very little time implementing any of these
primitives and have instead worked on fleshing out the algebra by defining
abstract definitions in our Parsers interface. Let’s persist with this approach
and defer the implementation of these primitives as much as possible. 

9.4 Writing a JSON parser
Until this point, we have been building up a set of primitives that gives us the basic
building blocks to construct more complex parsers. We have managed to parse char-
acters and strings, recognize repetitions, and pass context. In this section, we build on
the list of primitives derived so far by developing something of actual use: a JSON
parser. This is the fun part, so let’s jump right into it!

9.4.1 Defining expectations of a JSON parser

We haven’t implemented our algebra yet, nor do we have combinators for good error
reporting. Our JSON parser doesn’t need to know the internal details of how parsers
are represented, so we can deal with this later. We can simply write a function that pro-
duces a JSON parser using only the set of primitives we’ve defined, as well as any
derived combinators we may need along the way.

 We will review the JSON format in a minute, but let’s first examine the parse result
type that we will expect as an outcome of building our parser. The final outcome will
be a structure that looks something like the following.

object JSONParser : ParsersImpl<ParseError>() {      
val jsonParser: Parser<JSON> = TODO()   

}

Defining this top-level function at such an early stage might seem like a peculiar thing
to do since we won’t be able to run our parser until we have a concrete implementa-
tion of the Parsers interface. But we’ll proceed anyway since it’s common FP practice
to define an algebra and explore its expressiveness prior to defining an implementa-
tion. A concrete implementation can tie us down and makes changing the API more
difficult. This is especially true during the design phase of a library. It is much easier

Listing 9.4 Top-level constructs to develop for JSON parsing

Gives access to algebra 
implementations

Top-level declaration for Parser<JSON>,
with JSON to be defined shortly
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to refine an algebra without having to commit to any particular implementation. This
algebra-first design approach is radically different from what we have done so far in
this book but is probably the most important lesson in this chapter.

 In section 9.5, we’ll return to the question of adding better error reporting to our
parsing API. We can do this without disturbing the API’s overall structure or changing
the JSON parser very much. We’ll also come up with a concrete, runnable representa-
tion of our Parser type. Notably, the JSON parser we implement in this section will be
completely independent of that representation. 

9.4.2 Reviewing the JSON format

If you aren’t already familiar with the JSON format, this section briefly introduces the
main concepts of this data representation. You may also want to read the description
at https://en.wikipedia.org/wiki/JSON and the official grammar specification at https://
json.org if you want to know more. Here’s an example of a simple JSON document.

{
"Company name" : "Microsoft Corporation",
"Ticker": "MSFT",
"Active": true,
"Price": 30.66,
"Shares outstanding": 8.38e9,
"Related companies": [ "HPQ", "IBM", "YHOO", "DELL", "GOOG" ]

}

A value in JSON can be one of several types. An object in JSON is a comma-separated
sequence of key-value pairs wrapped in curly braces ({}). The keys must be strings like
"Ticker" and "Price", and the values can be other objects, arrays like ["HPQ", "IBM"
… ] that contain further values, or literals like "MSFT", true, null, and 30.66.

 We’ll write a rather dumb parser that simply parses a syntax tree from the docu-
ment without doing any further processing. Next, we’ll need a representation for a
parsed JSON document. Let’s introduce a data type for this purpose. 

sealed class JSON {
object JNull : JSON()
data class JNumber(val get: Double) : JSON()
data class JString(val get: String) : JSON()
data class JBoolean(val get: Boolean) : JSON()
data class JArray(val get: List<JSON>) : JSON()
data class JObject(val get: Map<String, JSON>) : JSON()

}

Listing 9.5 Example JSON object that can be parsed

Listing 9.6 Data type for a JSON object to use for parsing

https://en.wikipedia.org/wiki/JSON
https://json.org
https://json.org
https://json.org
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9.4.3 A JSON parser

The primitives we have developed so far aren’t very useful by themselves, but when
used as building blocks for something bigger, they suddenly have much more value.
Table 9.2 reviews our current list of primitives.

In addition, we have used these primitives to define several combinators like map,
map2, many, and many1.

EXERCISE 9.9

Hard: At this point, you are going to take over the design process. You’ll be creating
Parser<JSON> from scratch using the primitives we’ve defined. You don’t need to
worry about the representation of Parser just yet. As you go, you’ll undoubtedly dis-
cover additional combinators and idioms, notice and factor out common patterns,
and so on. Use the skills you’ve been developing throughout this book, and have fun!
If you get stuck, you can always consult the tips in appendix A or the final solution in
appendix B.

 Here are some basic guidelines to help you in the exercise:

 Any general-purpose combinators you discover can be declared in the Parsers
abstract class directly. These are top-level declarations with no implementation.

 Any syntactic sugar can be placed in another abstract class called ParsersDsl
that extends from Parsers. Make generous use of infix, along with anything
else in your Kotlin bag of tricks to make the final JSONParser as easy to use as
possible. The functions implemented here should all delegate to declarations
in Parsers.

 Any JSON-specific combinators can be added to JSONParser, which extends
ParsersDsl.

 You’ll probably want to introduce combinators that make it easier to parse the
tokens of the JSON format (like string literals and numbers). For this, you can

Table 9.2 Primitives to be used as basis for JSON parsing combinators

Primitive Description

string(s) Recognizes and returns a single String

regex(p) Recognizes a regular expression of String

slice(p) Returns the portion of input inspected by p, if successful

succeed(a) Always succeeds with the value a

flatMap(p, f) Runs a parser and then uses its result to select a second parser to run in sequence

or(p1, p2) Chooses between two parsers, first attempting p1 and then p2 if p1 fails
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use the regex primitive we introduced earlier. You can also add a few primitives
like letter, digit, whitespace, and so on to build up your token parsers.

NOTE This exercise is about defining the algebra consisting of primitive and
combinator declarations only. No implementations should appear in the final
solution.

The basic skeleton of what you will be building should look something like this:

abstract class Parsers<PE> {

// primitives

internal abstract fun string(s: String): Parser<String>

internal abstract fun regex(r: String): Parser<String>

internal abstract fun <A> slice(p: Parser<A>): Parser<String>

internal abstract fun <A> succeed(a: A): Parser<A>

internal abstract fun <A, B> flatMap(
p1: Parser<A>,
f: (A) -> Parser<B>

): Parser<B>

internal abstract fun <A> or(
p1: Parser<out A>,
p2: () -> Parser<out A>

): Parser<A>

// other combinators here
}

abstract class ParsersDsl<PE> : Parsers<PE>() {
// syntactic sugar here

}

abstract class JSONParsers : ParsersDsl<ParseError>() {
val jsonParser: Parser<JSON> =

SOLUTION_HERE()
}

Take a deep breath, and have lots of fun!

9.5 Surfacing errors through reporting
So far, we haven’t discussed error reporting. We’ve focused exclusively on discovering
a set of primitives that allows us to express parsers for different grammars. Aside from
parsing grammar, we also want our parser to respond in a meaningful way when given
unexpected input.
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 Even without knowing what the implementation of Parsers will look like, we can
reason abstractly about what information is being specified by a set of combinators.
None of the combinators we’ve introduced so far say anything about what error message
should be reported in the event of failure or what other information a ParseError
should contain. Our existing combinators only specify what the grammar is and what
to do with the result if successful. If we were to declare ourselves done with the design,
moving us on to the implementation of the primitives and combinators, we’d have to
make some arbitrary decisions about error reporting and error messages that are
unlikely to be universally appropriate.

 In this section, we discover a set of combinators for expressing what errors are
reported by a Parser. Before we dive in, here are some pointers to consider during
our discovery process:

 Given the following parser,

val spaces = string(" ").many()

string("abra") product spaces product string("cadabra")

what sort of error would you like to report given the input "abra cAdabra"
(note the capital 'A')? Would a simple Expected 'a' do? Or how about
Expected "cadabra"? What if you wanted to choose a different error message,
along the lines of "Magic word incorrect, try again!"?

 Given a or b, if a fails on the input, do we always want to run b? Are there cases
where we might not want to run b? If there are such cases, can you think of
additional combinators that would allow the programmer to specify when or
should consider the second parser?

 How do you want to handle reporting the location of errors?
 Given a or b, if a and b both fail on the input, should we support reporting both

errors? And do we always want to report both errors? Or do we want to give the
programmer a way to specify which of the two errors is reported?

Combinators specify information to implementation
In a typical library design scenario where we have at least some idea of a concrete
representation, we often think of functions in terms of how they will affect the final
representation of our program.

By starting with the algebra first, we’re forced to think differently: we must think of
functions in terms of what information they specify to a possible implementation. The
signatures determine what information is given to the implementation, and the imple-
mentation is free to use this information however it wants as long as it respects any
specified laws.
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9.5.1 First attempt at representing errors

Now that we have considered these ideas about error handling, we will start defining
the algebra by progressively introducing our error-reporting combinators. Let’s begin
with an obvious one. None of the primitives so far let us assign an error message to a
parser. We can introduce a primitive combinator for this called tag:

fun <A> tag(msg: String, p: Parser<A>): Parser<A>

The intended meaning of tag is that if p fails, its ParseError will somehow incorpo-
rate msg. What does this mean, exactly? Well, we could do the simplest thing possible
and assume that ParseError is a type alias for String and that the returned Parse-
Error will equal the tag. But we’d like our parse error to also tell us where the problem
occurred. Let’s tentatively add this concept to our algebra; call it Location.

data class Location(val input: String, val offset: Int = 0) {

private val slice by lazy { input.slice(0..offset + 1) }     

val line by lazy { slice.count { it == '\n' } + 1 }     

val column by lazy {
when (val n = slice.lastIndexOf('\n')) {   

-1 -> offset + 1
else -> offset - n

}
}

}

fun errorLocation(e: ParseError): Location

fun errorMessage(e: ParseError): String

We’ve picked a concrete representation for Location that includes the entire input,
an offset into this input where the error occurred, and the line and column numbers
computed lazily from the whole input and offset. We can now say more precisely what
we expect from tag. In the event of failure with Left(e), errorMessage(e) will equal
the message set by tag. What about Location? We’d like for this to be provided by the
Parsers implementation with the location of where the error occurred. This notion
still seems a bit fuzzy at the moment—if we have a or b, and both parsers fail on the
input, which location will be reported? In addition, which tag(s) will we see? We’ll dis-
cuss this in greater depth in the following section. 

Listing 9.7 ParseError in terms of message and location

Prepares a substring of the input
up to where the error occurred

Calculates the 
number of lines 
to the error 
location

Calculates the number 
of columns to the error 
location
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9.5.2 Accumulating errors through error nesting

Is the tag combinator sufficient for all our error-reporting needs? Not quite. Let’s
take a closer look with an example:

tag("first magic word", string("abra")) product     
string(" ").many() product          
tag("second magic word", string("cadabra"))    

What sort of ParseError would we like to get back from run(p, "abra cAdabra")?
Note the capital A in cAdabra. The immediate cause for an error is this capital 'A'
instead of the expected lowercase 'a'. That error has an exact location, and it will be
helpful to report this somehow when debugging the issue. But reporting only that
low-level error wouldn’t be very informative, especially if this were part of an extensive
grammar and we were running the parser on even more extensive input.

 When using tag, we should have some more contextual information—the immedi-
ate error occurred in the Parser tagged "second magic word". This is undoubtedly
very helpful in pinpointing where things went wrong. Ideally, the error message
should tell us that while parsing "cAdabra" using "second magic word", there was an
unexpected capital 'A'. That highlights the error and gives us the context needed to
understand it. Perhaps the top-level parser (p in this case) might be able to provide an
even higher-level description of what the parser was doing when it failed—for
instance, "parsing magic spell"—which could also be informative.

 So it seems wrong to assume that one level of error reporting will always be suffi-
cient. Therefore, let’s provide a way to nest tags.

fun <A> scope(msg: String, p: Parser<A>): Parser<A>

Despite scope having the same method declaration as tag, the implementation of
scope doesn’t throw away the tag(s) attached to p—it merely adds additional informa-
tion if p fails. Let’s specify what this means. First, we modify the functions that pull
information out of a ParseError. Rather than containing just a single Location and
String message, we should get a List<Pair<Location, String>>.

data class ParseError(val stack: List<Pair<Location, String>>)

This is a stack of error messages indicating what the Parser was doing when it failed.
We can now specify what scope does when it encounters multiple errors: if run(p, s)
is Left(e1), then run(scope(msg, p), s)) is Left(e2), where e2.stack.head will
contain msg, and e2.stack.tail will contain e1.

Listing 9.8 Using the scope combinator to nest tags

Listing 9.9 Stacked errors using the ParseError data type

Tags the first parser

Skips any whitespace

Tags the next parser
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 We can write helper functions later to make constructing and manipulating Parse-
Error values more convenient and also format them nicely for human consumption.
For now, we just want to make sure the error contains all the relevant information for
reporting purposes. Also, it does seem like ParseError will be sufficient for most pur-
poses. Let’s pick this as our concrete representation for use in the return type of run
in the Parsers interface:

fun <A> run(p: Parser<A>, input: String): Either<ParseError, A>

9.5.3 Controlling branching and backtracking

We need to address one last concern regarding error reporting. As we just discussed,
when an error occurs inside an or combinator, we need some way of determining
which error(s) to report. We don’t want to only have a global convention; we some-
times want to allow the programmer to control this choice. Let’s look at a more con-
crete motivating example:

val spaces = string(" ").many()

val p1 = scope("magic spell") {
string("abra") product spaces product string("cadabra")

}
val p2 = scope("gibberish") {

string("abba") product spaces product string("babba")
}

val p = p1 or p2

What ParseError would we like to get back from run(p, "abra cAdabra")? Again,
note the offending capital A in cAdabra. Both branches of the or will produce errors
on the input. The "gibberish" parser will report an error due to expecting the first
word to be "abba", and the "magic spell" parser will report an error due to the acci-
dental capitalization in "cAdabra". Which of these errors do we want to report back to
the user?

 In this instance, we happen to want the "magic spell" parse error. After success-
fully parsing the "abra" word, we’re committed to the "magic spell" branch of the or,
which means if we encounter a parse error, we don’t examine the subsequent branch
of the or. In other instances, we may want to allow the parser to consider the next
branch.

 So it appears we need a primitive to let the programmer indicate when to commit
to a particular parsing branch. Recall that we loosely assigned p1 or p2 to mean “try
running p1 on the input, and then try running p2 on the same input if p1 fails.” We
can change its meaning to “try running p1 on the input, and if it fails in an uncommit-
ted state, try running p2 on the same input; otherwise, report the failure.” This is use-
ful for more than just providing good error messages—it also improves efficiency by
letting the implementation avoid examining lots of possible parsing branches.
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 One common solution to this problem is to have all parsers commit by default if they
examine at least one character to produce a result. We now introduce a combinator
called attempt, which delays committing to a parse:

fun <A> attempt(p: Parser<A>): Parser<A>

It should satisfy something like the following situation. This is not exactly equality; even
though we want to run p2 if the attempted parser p1 fails, we may want p2 to somehow
incorporate the errors from both branches if it fails:

attempt(p1.flatMap { _ -> fail }) or p2 == p2

Here, fail is a parser that always fails. In fact, we could introduce this as a primitive
combinator if we like. What happens next is, even if p1 fails midway through examin-
ing the input, attempt reverts the commit to that parse and allows p2 to be run. The
attempt combinator can be used whenever dealing with such ambiguous grammar.
Multiple tokens may have to be examined before the ambiguity can be resolved, and
that parsing can commit to a single branch. As an example, we might write this:

(attempt(
string("abra") product spaces product string("abra")

) product string("cadabra")) or
(string("abra") product spaces product string("cadabra!"))

Suppose this parser is run on "abra cadabra!". After parsing the first "abra", we
don’t know whether to expect another "abra" (the first branch) or "cadabra!" (the
second branch). By wrapping an attempt around string("abra") product spaces
product string("abra"), we allow the second branch to be considered up until we’ve
finished parsing the second "abra", at which point we commit to that branch.

EXERCISE 9.10

Can you think of any other primitives that might be useful for specifying what error(s)
in an or chain are reported?

Note that we still haven’t written an actual implementation of our algebra! Despite the
lack of implementation, this process has been more about making sure our combina-
tors provide a well-defined interface for our library users to interact with. More than
that, it should provide a way for them to convey the correct information to the under-
lying implementation. It will then be up to the implementation to interpret the infor-
mation in a way that satisfies the laws we’ve stipulated. 
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9.6 Implementing the algebra
This entire chapter has focused on building up an algebra of definitions without
implementing a single thing! This has culminated in a final definition of Parser<JSON>.
At this point, it would be prudent to go back and retrofit the parser that you devel-
oped in exercise 9.9 with the error-reporting combinators discussed in section 9.5, if
you haven’t already done so. Now comes the exciting part where we define an imple-
mentation that can be run!

 Our list of primitives has once again changed with the addition of our error-handling
combinators. Table 9.3 reviews the list one more time.

The list has changed somewhat by adding tag, scope, and attempt. We have also
dropped succeed, from table 9.2.

 In the next section, we work through a representation for Parser and implement
the Parsers interface using this representation. The algebra we’ve designed places
strong constraints on possible representations. We should be able to come up with a
simple, purely functional representation of Parser that can be used to implement the
Parsers interface. But first, let’s express the top-level constructs used as a starting
point for our implementation.

interface Parser<A>       

data class ParseError(val stack: List<Pair<Location, String>>)

abstract class Parsers<PE> {      
internal abstract fun <A> or(p1: Parser<A>, p2: Parser<A>): Parser<A>

}

Table 9.3 Updated list of primitives to be used as basis for JSON parsing combinators

Primitive Description

string(s) Recognizes and returns a single String

regex(s) Recognizes a regular expression of String

slice(p) Returns the portion of input inspected by p, if successful

tag(msg, p) In the event of failure, replaces the assigned message with msg

scope(msg, p) In the event of failure, adds msg to the error stack returned by p

flatMap(p, f) Runs a parser and then uses its result to select a second parser to run in sequence

attempt(p) Delays committing to p until after it succeeds

or(p1, p2) Chooses between two parsers, first attempting p1 and then p2 if p1 fails

Listing 9.10 Top-level representation of Parser

Whatever representation we discover 
for Parser. This is merely an example.

The Parsers class holds all the unimplemented
primitive and combinator algebra definitions.
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open class ParsersImpl<PE>() : Parsers<PE>() {    
override fun <A> or(p1: Parser<A>, p2: Parser<A>): Parser<A> = TODO()

}

abstract class ParserDsl<PE> : ParsersImpl<PE>() {      
infix fun <A> Parser<A>.or(p: Parser<A>): Parser<A> =

this@ParserDsl.or(this, p)           
}

object Example : ParserDsl<ParseError>() {   
init {

val p1: Parser<String> = TODO()
val p2: Parser<String> = TODO()
val p3 = p1 or p2

}
}

9.6.1 Building up the algebra implementation gradually

We are finally going to discuss a concrete implementation of Parsers that fulfills all
the features accumulated so far. Rather than jumping straight to the end with a final
representation of Parser, we’ll build it up gradually. We will do so by inspecting the
primitives of the algebra and then reasoning about the information that will be
required to support each one.

 Let’s begin with the string combinator:

fun string(s: String): Parser<String>

We also know that we need to support the function run:

fun <A> run(p: Parser<A>, input: String): Either<PE, A>

As a first pass, we can assume that our Parser is simply the implementation of the run
function:

typealias Parser<A> = (String) -> Either<ParseError, A>

We can use this to implement the string primitive as follows.

override fun string(s: String): Parser<String> =
{ input: String ->

if (input.startsWith(s))
Right(s)

else Left(Location(input).toError("Expected: $s"))  
}

private fun Location.toError(msg: String) =    
ParseError(listOf(this to msg))

Listing 9.11 Implementing string in terms of Location

ParsersImpl is the concrete 
implementation for all Parsers.

ParserDsl adds 
syntactic sugar to 
make working with 
combinators easier.

Accesses the or function 
in ParsersImpl through 
this@ParserDsl: a 
workaround to prevent a 
circular reference

Object that uses our 
combinator library

Uses toError 
to construct a 
ParseError

Extension that 
converts Location 
to a ParseError
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The else branch of string has to build up a ParseError. These errors are inconve-
nient to construct right now, so we’ve introduced a helper extension function called
toError on Location. 

9.6.2 Sequencing parsers after each other

So far, so good. We have a representation for Parser that at least supports string.
Let’s move on to the sequencing of parsers. Unfortunately, to represent a parser like
"abra" product "cadabra", our existing representation isn’t going to suffice. If the
parse of "abra" is successful, then we want to consider those characters consumed
before we run the "cadabra" parser on the remaining characters. So to support
sequencing, we require a way of letting a Parser indicate how many characters it con-
sumed. Capturing this turns out to be pretty easy, considering that Location contains
the entire input string and an offset into this string.

typealias Parser<A> = (Location) -> Result<A>    

sealed class Result<out A>
data class Success<out A>(val a: A, val consumed: Int) : Result<A>()  
data class Failure(val get: ParseError) : Result<Nothing>()

We just introduced a richer alternative data type called Result instead of using a sim-
ple Either as before. In the event of success, we return a value of type A and the num-
ber of characters of input consumed. The caller can then use this count to update the
Location state. This type is starting to get to the essence of what a Parser truly is—it’s
a kind of state action that can fail, similar to what we built in chapter 6. It receives an
input state and, on success, returns a value and enough information to control how
the state should be updated.

 The understanding that a Parser is just a state action gives us a way to frame a rep-
resentation that supports all the fancy combinators and laws we’ve stipulated so far.
We simply consider what each primitive requires our state type to track and then work
through the details of how each combinator transforms this state.

EXERCISE 9.11

Hard: Implement string, regex, succeed, and slice for this representation of
Parser. Some private helper function stubs have been included to lead you in the
right direction.

 Note that slice is probably less efficient than it could be since it must still con-
struct a value only to discard it. Don’t bother addressing this as part of the current
exercise.

Listing 9.12 Result as an ADT to track consumed characters

The function definition of Parser 
now returns a Result<A>.

The Success type carries the count
of consumed characters.
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abstract class Parser : ParserDsl<ParseError>() {
    override fun string(s: String): Parser<String> =

SOLUTION_HERE()

private fun firstNonMatchingIndex(
s1: String,
s2: String,
offset: Int

): Option<Int> =

SOLUTION_HERE()

private fun State.advanceBy(i: Int): State =

SOLUTION_HERE()

override fun regex(r: String): Parser<String> =

SOLUTION_HERE()

private fun String.findPrefixOf(r: Regex): Option<MatchResult> =

SOLUTION_HERE()

override fun <A> succeed(a: A): Parser<A> =

SOLUTION_HERE()

override fun <A> slice(p: Parser<A>): Parser<String> =

SOLUTION_HERE()

private fun State.slice(n: Int): String =

SOLUTION_HERE()
}

9.6.3 Capturing error messages through labeling parsers

Moving down our list of primitives, let’s look at scope next. We want to push a new
message onto the ParseError stack in the event of failure. Let’s introduce a helper
function for this on ParseError. We’ll call it push.

NOTE The copy method comes for free with any data class. It returns a
copy of the object but with one or more attributes modified. If no new value is
specified for a field, it will have the same value as in the original object. This
uses the exact mechanism as default parameters in Kotlin.

fun ParseError.push(loc: Location, msg: String): ParseError =
this.copy(stack = (loc to msg) cons this.stack)

Listing 9.13 Pushing an error onto the ParseError stack head
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Now that we have this, we can implement scope using the mapError extension method
on Result that we will describe next.

fun <A> scope(msg: String, pa: Parser<A>): Parser<A> =
{ state -> pa(state).mapError { pe -> pe.push(state, msg) } }

The mapError extension method allows the transformation of an error in case of failure.

fun <A> Result<A>.mapError(f: (ParseError) -> ParseError): Result<A> =
when (this) {

is Success -> this
is Failure -> Failure(f(this.get))

}

Because we push onto the stack after the inner parser has returned, the bottom of the
stack will contain more detailed messages that occurred later in parsing. For example,
if scope(msg1, a product scope(msg2, b)) fails while parsing b, the first error on the
stack will be msg1, followed by whatever errors were generated by a, then msg2, and
finally, errors generated by b.

 We can implement tag similarly, but instead of pushing onto the error stack, it
replaces what’s already there. We can write this again using mapError and an exten-
sion on ParseError, also called tag, which will be discussed afterward.

fun <A> tag(msg: String, pa: Parser<A>): Parser<A> =
{ state ->

pa(state).mapError { pe ->
pe.tag(msg)      

}
}

We added a helper extension function to ParseError that is also named tag. We’ll
make a design decision that tag trims the error stack, cutting off more detailed mes-
sages from inner scopes, using only the most recent location from the bottom of the
stack. This is what it looks like.

fun ParseError.tag(msg: String): ParseError {

val latest = this.stack.lastOrNone()       

val latestLocation = latest.map { it.first }     

Listing 9.14 Implementing scope to record errors using push

Listing 9.15 Extension function to map ParseError on Result failure

Listing 9.16 Implementing tag to record errors using tag

Listing 9.17 Extension function to tag ParseError on Result failure

Calls a helper method 
on ParseError, also 
named tag

Gets the last element of 
the stack or None if the 
stack is empty

Uses the element’s 
location, if present
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return ParseError(latestLocation.map { it to msg }.toList())    
}

EXERCISE 9.12

Revise your implementation of string to provide a meaningful error message in the
event of an error. 

9.6.4 Recovering from error conditions and backtracking over them

Next, let’s look at or and attempt. If we consider what we’ve already learned about or,
we can summarize its behavior as follows: it should run the first parser, and if that fails
in an uncommitted state, it should run the second parser on the same input. We also said
that consuming at least one character should result in a committed parse and that
attempt(p) converts committed failures of p to uncommitted failures.

 We can support the behavior we want by simply adding a field to the Failure case
of Result. All we need is a Boolean value indicating whether the parser failed in a
committed state. Let’s call it isCommitted:

data class Failure(
val get: ParseError,
val isCommitted: Boolean

) : Result<Nothing>()

The implementation of attempt now draws on this new information and cancels the
commitment of any failures that occur. It does so by using a helper function called
uncommit, which we can define on Result.

fun <A> attempt(p: Parser<A>): Parser<A> = { s -> p(s).uncommit() }

fun <A> Result<A>.uncommit(): Result<A> =
when (this) {

is Failure ->
if (this.isCommitted)

Failure(this.get, false)
else this

is Success -> this
}

Now the implementation of or can simply check the isCommitted flag before running
the second parser. Consider the parser x or y: if x succeeds, then the whole expression
succeeds. If x fails in a committed state, we fail early and skip running y. Otherwise, if x
fails in an uncommitted state, we run y and ignore the result of x.

Listing 9.18 Implementing attempt to cancel commitment of failures

Assembles a new ParseError with only
this location and the tag message
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n 
the 
fun <A> or(pa: Parser<A>, pb: () -> Parser<A>): Parser<A> =
{ state ->

when (val r: Result<A> = pa(state)) {
is Failure ->

if (!r.isCommitted) pb()(state)    
else r            

is Success -> r  
}

}

9.6.5 Propagating state through context-sensitive parsers

Now for the final primitive in our list: flatMap. Recall that flatMap enables context-
sensitive parsers by allowing the selection of a second parser to depend on the result
of the first parser. The implementation is simple, as we advance the location before
calling the second parser. Again we will use a helper function, this time called
advanceBy, on Location. Despite this being simple, there is one caveat to be dealt
with. If the first parser consumes any characters, we ensure that the second parser is
committed using a helper function called addCommit on ParseError.

fun <A, B> flatMap(pa: Parser<A>, f: (A) -> Parser<B>): Parser<B> =
{ state ->

when (val result = pa(state)) {
is Success ->

f(result.a)(state.advanceBy(result.consumed))    
.addCommit(result.consumed != 0)        
.advanceSuccess(result.consumed)  

is Failure -> result
}

}

In advanceBy on Location, we increment the offset:

fun Location.advanceBy(n: Int): Location =
this.copy(offset = this.offset + n)

The addCommit function on ParseError is equally straightforward, ensuring that the
committed state is updated if it was not already committed:

fun <A> Result<A>.addCommit(commit: Boolean): Result<A> =
when (this) {

is Failure ->
Failure(this.get, this.isCommitted || commit)

is Success -> this
}

Listing 9.19 Implementation of or that honors committed state

Listing 9.20 Ensuring that the parser is committed

An uncommitted failure 
invokes lazy pb and runs 
it with original state 
passed to or.A committed 

failure passes 
through.

Success passes
through.

Advances the 
source locatio
before calling 
second parser

Commits if the first 
parser has consumed 
any characters

Increments the number of characters
consumed to account for characters

already consumed by pa
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The final piece of the puzzle is the advanceSuccess function on Result, which is
responsible for incrementing the number of consumed characters of a successful
result. We want the total number of characters consumed by flatMap to be the sum of
the consumed characters of the parser pa and the parser produced by f. We use
advanceSuccess on the result of f to ensure that this adjustment is made:

fun <A> Result<A>.advanceSuccess(n: Int): Result<A> =
when (this) {

is Success ->
Success(this.a, this.consumed + n)      

is Failure -> this      
}

EXERCISE 9.13

Implement run as well as any of the remaining primitives not yet implemented using
our current representation of Parser. Try running your JSON parser on various inputs.

 You should now have working code, although unfortunately, you’ll find that it
causes a stack overflow for significant inputs. A straightforward solution is to provide a
specialized implementation of many that avoids using a stack frame for each list ele-
ment. Ensuring that any combinators that perform repetition are defined in terms of
many solves this problem.

EXERCISE 9.14

Come up with a good way to format a ParseError for human consumption. There
are many choices to make, but a critical insight is that we typically want to combine
or group tags attached to the exact location when presenting the error as a String
for display.

We could spend a lot more time improving and developing the example in this chap-
ter, but we’ll leave it as is for now. We encourage you to keep playing with and enhanc-
ing what you have on your own, although the parser combinator library isn’t the most
crucial point that we’re trying to bring home in this chapter—it was really all about
demonstrating the approach of algebra-first library design. 

9.7 Conclusion
This chapter concludes part 2 of the book. We hope you’ve come away with an under-
standing of how to go about designing a functional library. More importantly, we also
hope this part of the book inspires you to begin designing and building your own

Advances the number of 
consumed characters by 
n on success

Passes through the 
result on failure
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libraries based on domains that are of personal interest to you. Functional design isn’t
something reserved only for experts. It should be part of the day-to-day work done by
functional programmers at all levels of experience.

 Before you start part 3, we implore you to venture out on your own by designing
some libraries while writing functional code, as you’ve been learning up to this point.
Have lots of fun while you wrestle with and conquer design problems that emerge as
you go along. When you come back, a universe of patterns and abstractions awaits you
in part 3.

Summary
 Algebraic library design establishes the interface with associated laws up front

and then drives implementation.
 A parser combinator library provides a motivating use case for functional library

design and is well suited for an algebraic design approach.
 Primitives are simple combinators that don’t depend on others. They provide

building blocks for more complex higher-order combinators.
 Algebraic design encourages the invention of primitives first, which allows the

discovery of more complex combinators to follow.
 A combinator is said to be context sensitive when it passes on state, allowing

sequencing of combinators.
 A parser combinator may accumulate errors, which allows for surfacing an

error report in case of failure.
 A parser may fail with an uncommitted state, which allows for backtracking and

recovery from errors.
 Starting design with the algebra lets combinators specify information to the

implementation.



Part 3

Common structures
in functional design

Now that we’ve completed our meandering journey through the realm of
functional library design, we should be equipped to deal with most design prob-
lems that might cross our path. Along the way, we’ve picked up some new skills,
such as applying the design principles of compositionality and algebraic reasoning.

 Part 3 takes a few steps back to look at the bigger picture. As we’ve pro-
gressed through the first two parts by establishing building blocks (part 1) and
using them in our own designs (part 2), we’ve seen some common patterns
emerging. This part of the book identifies these commonalities and turns them
into abstractions or patterns that can be reused and applied wherever needed.
The primary goal is to train you to recognize such patterns when designing your
own libraries and to write code that takes full advantage of extracting them.

 These abstractions should not be confused with polymorphic hierarchies,
which we have come to know in object-oriented design. Here the abstractions
are more conceptual and provide functionality that is decoupled from the classes
they enhance—although, just like in object orientation, the end goal is to elimi-
nate unnecessary duplication in our code.

 In typed functional programming, we call these abstractions type classes, and
they manifest themselves as classes, interfaces, functions, or a combination of
these. When we recognize such a common structure in the wild among different
solutions in various contexts, we unite the common instances of that structure
under a single definition and give it a name.
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 For example, you may recognize a monad or an applicative functor, which in turn
will have a big influence on how you extract this behavior and proceed with your
design. A further benefit of identifying these abstractions is that we now have a vocab-
ulary that allows us to communicate clearly with others about common collective
behaviors.

 Part 2 was more focused on library design, whereas part 3 is more focused on
abstraction of common patterns. Each chapter introduces a new abstract behavior
with some associated laws and then shows how it is embodied in a type class. Chap-
ter 10 introduces monoids used for combining values. Chapter 11 explains the notori-
ous monad and what it’s best used for. Chapter 12 goes on to describe applicative and
traversable functors. We also tie these type classes back to data types that we’ve seen
earlier in the book, showing clearly how to extract these patterns into their own
instances.



Monoids
By the end of part 2, we were getting comfortable considering data types in terms
of their algebras. In particular, we were concerned with the operations they support
and the laws that govern those operations. By now, you will have noticed that the
algebras of very different data types tend to share specific patterns in common. In
this chapter, we begin identifying these patterns and taking advantage of them.

 This chapter is our first introduction to purely algebraic structures. As an example,
we’ll begin by considering a simple structure known as the monoid, which is defined
only by its algebra. The name monoid might sound intimidating at first, but it is
merely a mathematical term that in category theory refers to a category with one
object. Besides satisfying the same laws, instances of the monoid interface may have

This chapter covers
 Using purely algebraic structures

 Understanding monoids and fold operations

 Using balanced folds to perform parallel 
computations in chunks

 Higher-kinded types and foldable data structures

 Composing monoids to perform complex 
calculations
211
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little or nothing to do with one another. Nonetheless, we’ll see how this algebraic
structure is often all we need to write useful, polymorphic functions.

 We choose to start with monoids because they’re simple, ubiquitous, and useful.
Monoids often appear in everyday programming, whether we’re aware of it or not.
Working with lists, concatenating strings, or accumulating a loop’s results can often be
phrased in terms of the monoid. In situations like this, monoid instances are employed as
concrete implementations of this algebraic structure. We will begin with defining some
monoid instances for combining integers, Booleans, and Options. We will then also see
how monoid instances are a perfect fit for implementing fold operations on lists.

 The chapter culminates in how monoids can be used in two real-world situations:
they facilitate parallelization by giving us the freedom to break problems into chunks
that can be computed in parallel; they can also be composed to assemble complex cal-
culations from simpler parts.

10.1 What is a monoid?
Grasping algebraic structures such as the monoid might seem like a daunting task, but
by approaching it from a purely algebraic perspective, we come to realize how simple
it actually is. Rather than explaining it in words, we will first explore the concept by
way of example.

 Let’s begin by considering the algebra of string concatenation. We can add "foo" +
"bar" to get "foobar". In addition to this, the empty string is known as an identity ele-
ment for that operation. That is, if we say (s + "") or ("" + s), the result is always s for
any value of s. Furthermore, if we combine three strings by saying (r + s + t), the
operation is associative. By this we mean it doesn’t matter whether we parenthesize it:
(r + s) + t or r + (s + t).

 The exact same rules govern integer addition. It is associative since (x + y) + z is
always equal to x + (y + z). It has an identity element of 0, which does nothing when
added to another integer. Ditto for multiplication. It works in the same way but has an
identity element of 1. The Boolean operators && and || are likewise associative, and
they have identity elements true and false, respectively.

 These are just a few simple examples, but when you go looking, algebras like this
can be found wherever laws apply. The term for this particular kind of algebra is
monoid, and the laws of associativity and identity are collectively called the monoid laws.
A monoid consists of the following:

 Some type A
 An associative binary operation combine that takes two values of type A and com-

bines them into one: combine(combine(x,y), z) == combine(x, combine(y,z))
for any choice of x: A, y: A, or z: A (see figure 10.1)

 The value nil: A, which is an identity for that operation: combine(x, nil) == x
and combine(nil, x) == x for any x: A (see figure 10.2)
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We can express a monoid in terms of a Kotlin interface.

interface Monoid<A> {
fun combine(a1: A, a2: A): A
val nil: A

}

An example instance of this interface is the String monoid:

Listing 10.1 A monoid expressed as a Kotlin interface

Figure 10.1 The law of associativity expressed in terms of combine for monoids

combine(x,a): A

combine(a,z): Aa:A = combine(x,y)

a:A = combine(y,z)

y: A

y: A

x: A

x: A

z: A

z: A

Figure 10.2 The law of identity expressed in terms of combine for monoids

combine(x, nil): A

combine(nil, x): A

x: A
x: A

x: A

nil: A

nil: A x: A

Satisfies the law of associativity: 
combine(combine(x, y), z) == 
combine(x, combine(y, z))

Satisfies the law of identity: combine(x, 
nil == x and combine(nil, x) == x
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val stringMonoid = object : Monoid<String> {

override fun combine(a1: String, a2: String): String = a1 + a2

override val nil: String = ""
}

List concatenation also forms a monoid. The following method is able to generate a
monoid for any type A:

fun <A> listMonoid(): Monoid<List<A>> = object : Monoid<List<A>> {

override fun combine(a1: List<A>, a2: List<A>): List<A> = a1 + a2

override val nil: List<A> = emptyList()
}

EXERCISE 10.1

Give Monoid instances for integer addition and multiplication, as well as for Bool-
ean operators.

fun intAddition(): Monoid<Int> =

SOLUTION_HERE()

fun intMultiplication(): Monoid<Int> =

SOLUTION_HERE()

fun booleanOr(): Monoid<Boolean> =

SOLUTION_HERE()

fun booleanAnd(): Monoid<Boolean> =

SOLUTION_HERE()

The purely abstract nature of an algebraic structure
Notice that other than satisfying the monoid laws, the various Monoid instances
don’t have much to do with each other. The answer to the question, “What is a
monoid?” is simply that a monoid is a type, together with the monoid operations and
a set of laws. A monoid is an algebra and nothing more. Of course, you may build
some other intuition by considering the various concrete instances. Still, this intuition
isn’t necessarily correct, and nothing guarantees that all monoids you encounter will
match your intuition!
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EXERCISE 10.2

Give a Monoid instance for combining Option values.

fun <A> optionMonoid(): Monoid<Option<A>> =

SOLUTION_HERE()

fun <A> dual(m: Monoid<A>): Monoid<A> =

SOLUTION_HERE()

EXERCISE 10.3

A function having the same argument and return type is sometimes called an endofunc-
tion. (The Greek prefix endo- means within, in the sense that an endofunction’s
codomain is within its domain.) Write a monoid for endofunctions.

fun <A> endoMonoid(): Monoid<(A) -> A> =

SOLUTION_HERE()

EXERCISE 10.4

Use the property-based testing framework we developed in chapter 8 to implement
properties for the monoid laws of associativity and identity. Use your properties to test
some of the monoids we’ve written so far.

fun <A> monoidLaws(m: Monoid<A>, gen: Gen<A>): Prop =

SOLUTION_HERE()

Talking about monoids
Programmers and mathematicians disagree about terminology when they talk about
a type being a monoid versus having a monoid instance.

As a programmer, it is tempting to think of a Monoid<A> instance as being a monoid.
But that isn’t really true. The monoid is actually both things—the type together with
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Just what is a monoid, then? It’s simply a type A and an implementation of Monoid<A>
that satisfies the laws. Stated otherwise, a monoid is a type together with a binary operation
(combine) over that type, satisfying associativity and having an identity element (nil).

 What does this buy us? Like any abstraction, a monoid is helpful to the extent that
we can write generic code, assuming only the capabilities provided by the abstraction.
Can we write any interesting programs, knowing nothing about a type other than that
it forms a monoid? Absolutely! We’ll look at an example in section 10.2.

(continued)

the instance satisfying the laws. It’s more accurate to say that the type A forms a
monoid under the operations defined by the Monoid<A> instance. Put in a different
way, we might say “type A is a monoid” or even “type A is monoidal.” In any case, the
Monoid<A> instance is evidence of this fact.

This is much the same as saying that the page or screen you’re reading “forms a rect-
angle” or “is rectangular.” It’s less accurate to say that it “is a rectangle” (although
that still makes sense), but to say that it “has a rectangle” would be strange.

The monoid is a type class
The monoid is the first occurrence of a type class that we’ve encountered so far. But
what exactly is a type class? To understand what it is, we first need to understand
the role of polymorphism in functional programming. Polymorphism isn’t merely
restricted to class hierarchies, as we’ve come to know in object orientation. Func-
tional programming draws on a concept of ad hoc polymorphism, where we can apply
polymorphic functions to arguments of different types.

A type class is a type system construct that can be used to implement ad hoc poly-
morphism. It does so by adding constraints to type variables in parametrically poly-
morphic types. That statement is a mouthful, so let’s take some time to understand
it better. Such a constraint typically involves a type class T and a type variable a,
which means a can only be instantiated to any type whose members support the over-
loaded operations associated with T.

In practical terms, T can represent our Monoid, which takes the type parameter A, which
might be String. We instantiate a new instance of Monoid<String> that represents
our monoid instance a. This monoid instance will now have the ability to combine
String instances without being coupled to or constrained by the String class itself.

This brief description only introduces the concept of type classes, but feel free to
jump ahead to appendix D if you would like to know more about them and how to use
them effectively in Kotlin. The remainder of part 3 will deal with various type classes
other than monoids. 
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10.2 Folding lists with monoids
Monoids have an intimate connection with lists. If we recall the various fold opera-
tions defined on the List type in chapter 3, two parameters were always present: a
zero value initializer and a function that combined two values into an accumulated
result. All of this was done in the context of a single type: that of the initializer value.

 Let’s take a closer look at the signatures of foldLeft and foldRight on List to
confirm this observation:

fun <A, B> foldRight(z: B, f: (A, B) -> B): B

fun <A, B> foldLeft(z: B, f: (B, A) -> B): B

We see the initializer z, the combining function (A, B) -> B, and the result type of B
carried through from the initializer. What happens if we turn A and B into a single
type called A?

fun <A> foldRight(z: A, f: (A, A) -> A): A

fun <A> foldLeft(z: A, f: (A, A) -> A): A

The components of a monoid fit these argument types like a glove. So if we had a
List<String>, words, we could simply pass the combine and nil of stringMonoid to
reduce the list with the monoid and concatenate all the strings. Let’s try this in the REPL:

>>> val words = listOf("Hic", "Est", "Index")
res0: kotlin.collections.List<kotlin.String> = [Hic, Est, Index]

>>> words.foldRight(stringMonoid.nil, stringMonoid::combine)
res1: kotlin.String = HicEstIndex

>>> words.foldLeft(stringMonoid.nil, stringMonoid::combine)
res2: kotlin.String = HicEstIndex

Note that it doesn’t matter if we choose foldLeft or foldRight when folding with a
monoid. We should get the same result in both cases. This is because the laws of
associativity and identity hold true. A left fold associates operations to the left,
whereas a right fold associates to the right, with the identity element on the far left
and right, respectively:

>>> words.foldLeft("") { a, b -> a + b } == (("" + "Hic") + "Est") + "Index"
res3: kotlin.Boolean = true

>>> words.foldRight("") { a, b -> a + b } == "Hic" + ("Est" + ("Index" + ""))
res4: kotlin.Boolean = true

Armed with this knowledge, we can now write a function called concatenate that
folds a list with a monoid:
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fun <A> concatenate(la: List<A>, m: Monoid<A>): A =
la.foldLeft(m.nil, m::combine)

In some circumstances, the element type may not have a Monoid instance. In cases like
this, we can map over the list to turn it into a type that does have an associated instance.

EXERCISE 10.5

The function foldMap is used to align the types of the list elements so a Monoid
instance can be applied to the list. Implement this function.

fun <A, B> foldMap(la: List<A>, m: Monoid<B>, f: (A) -> B): B =

SOLUTION_HERE()

EXERCISE 10.6

Hard: The foldMap function can be implemented using either foldLeft or fold-
Right. But you can also write foldLeft and foldRight using foldMap. Give it a try
for fun!

fun <A, B> foldRight(la: Sequence<A>, z: B, f: (A, B) -> B): B =

SOLUTION_HERE()

fun <A, B> foldLeft(la: Sequence<A>, z: B, f: (B, A) -> B): B =

SOLUTION_HERE()

10.3 Associativity and parallelism
Processing a list sequentially from the left or right is not very efficient when we want to
parallelize such a process. This becomes increasingly important as the list size grows and
the computation becomes more complex. It is possible to take advantage of the associa-
tive aspect of the monoid to come up with a more efficient way of folding such lists. This
section explores how to do so using a technique called the balanced fold. It utilizes the
monoid to achieve a more efficient fold that can be used in parallel computation. But
what exactly is a balanced fold? Let’s look at it by way of example.

 Suppose we have a sequence a, b, c, d that we’d like to reduce using a monoid.
Folding to the right, the combination of a, b, c, and d would look like this:

combine(a, combine(b, combine(c, d)))
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Folding to the left would look like this:

combine(combine(combine(a, b), c), d)

But a balanced fold looks like this (see figure 10.3):

combine(combine(a, b), combine(c, d))

Note that the balanced fold allows for parallelism because the two inner combine calls are
independent and can be run simultaneously. But beyond that, the balanced tree struc-
ture can be more efficient in cases where each combine cost is proportional to the size of
its arguments. For instance, consider the run-time performance of this expression:

listOf("lorem", "ipsum", "dolor", "sit")
.foldLeft("") { a, b -> a + b }

At every step of the fold, we’re allocating the full intermediate String only to discard
it and allocate a larger string in the next step. Recall that String values are immutable
and that evaluating a + b for strings a and b requires allocating a fresh character array
and copying both a and b into this new array. Doing so takes time proportional to
a.length + b.length.

 We can confirm this by tracing through the evaluation of the preceding expression:

listOf("lorem", "ipsum", "dolor", "sit")
.foldLeft("") { a, b -> a + b }

listOf("ipsum", "dolor", "sit")
.foldLeft("lorem") { a, b -> a + b }

listOf("dolor", "sit")
.foldLeft("loremipsum") { a, b -> a + b }

listOf("sit")
.foldLeft("loremipsumdolor") { a, b -> a + b }

Figure 10.3 A balanced fold splits 
the workload into equal groups for 
efficient processing.

combine(x,y): A

b: Aa: A

x:A = combine(a,b)

c: A

y:A = combine(c,d)

d: A
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listOf<String>()
.foldLeft("loremipsumdolorsit") { a, b -> a + b }

"loremipsumdolorsit"

Note the intermediate strings being created in each step and then immediately dis-
carded. A more efficient strategy would be the balanced fold, as described earlier.
Here we combine the sequence in halves, first constructing "loremipsum" and
"dolorsit" and then adding those together to form "loremipsumdolorsit".

EXERCISE 10.7

Implement foldMap based on the balanced fold technique. Your implementation
should use the strategy of splitting the sequence in two, recursively processing each
half, and then adding the answers together using the provided monoid.

fun <A, B> foldMap(la: List<A>, m: Monoid<B>, f: (A) -> B): B =

SOLUTION_HERE()

EXERCISE 10.8

Hard/Optional: Also implement a parallel version of foldMap called parFoldMap
using the library we developed in chapter 7.

TIP Implement par, a combinator to promote Monoid<A> to a Monoid<Par<A>>,
and then use this to implement parFoldMap.

fun <A> par(m: Monoid<A>): Monoid<Par<A>> =

SOLUTION_HERE()

fun <A, B> parFoldMap(
la: List<A>,
pm: Monoid<Par<B>>,
f: (A) -> B

): Par<B> =

SOLUTION_HERE()

EXERCISE 10.9

Hard/Optional: Use foldMap as developed in exercise 10.7 to detect the ascending
order of a List<Int>. This will require some creativity when deriving the appropriate
Monoid instance.
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fun ordered(ints: Sequence<Int>): Boolean =

SOLUTION_HERE()

10.4 Example: Parallel parsing
Up to this point, we’ve been looking at trivial examples that have little or no use in
your day-to-day work. Even though asserting list ordering might be mildly helpful, we
will apply this to a nontrivial use case like you would encounter in the real world. An
excellent example of such a case is a word-count program.

 For our example, let’s say we wanted to count the number of words in a String.
This is a relatively simple parsing problem. We could scan the string character by char-
acter, looking for whitespace and counting up the number of runs of consecutive non-
whitespace characters. When sequentially parsing like that, the parser state could be
as simple as tracking whether the last character seen was whitespace.

 This is well and good for a short string, but imagine doing it for an enormous text
file that may be too big to fit in memory on a single machine. It would be great if we
could work with chunks of the file in parallel. The strategy would be to split the file
into manageable chunks, process several chunks in parallel, and then combine the
results. In that case, the parser state would need to be slightly more complicated. We’d
need to combine intermediate results regardless of whether the section we were look-
ing at was at the beginning, middle, or end of the file. In other words, we’d want the
combining operation to be associative.

 To keep things simple and concrete, let’s consider a short string and pretend it’s a
large file:

"lorem ipsum dolor sit amet, "

If we split this string roughly in half, we might split it in the middle of a word. In the
case of our string, that would yield "lorem ipsum do" and "lor sit amet, ". When we
add up the results of counting the words in these strings, we want to avoid double-
counting the word dolor. Clearly, just counting the words as an Int isn’t sufficient. We
need to find a data structure that can handle partial results like the half words do and
lor and track the complete words seen so far, like ipsum, sit, and amet. We can repre-
sent this using the following algebraic data type.

sealed class WC

data class Stub(val chars: String) : WC()
data class Part(val ls: String, val words: Int, val rs: String) : WC()

Listing 10.2 ADT representation of partial results of a word count

A Stub is an accumulation 
of characters that form 
a partial word.

A Part contains a left stub, a
word count, and a right stub.
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A Stub is the simplest case where we haven’t seen any complete words yet. A Part
keeps the count of complete words we’ve seen so far as integer words. The value ls
holds any partial word we’ve seen to the left of those words, and rs holds any partial
word to the right.

 For example, counting over the string "lorem ipsum do" results in Part ("lorem",
1, "do") since there’s a single complete word, "ipsum". And since there’s no
whitespace to the left of lorem or the right of do, we can’t be sure if they’re complete
words or not, so we don’t count them. Counting over "lor sit amet, " results in
Part("lor", 2, ""), discarding the comma.

EXERCISE 10.10

Write a monoid instance for WC, and ensure that it meets both monoid laws.

fun wcMonoid(): Monoid<WC> =

SOLUTION_HERE()

EXERCISE 10.11

Use the WC monoid to implement a function that counts words in a String by recur-
sively splitting it into substrings and counting the words in those substrings.

fun wordCount(s: String): Int =

SOLUTION_HERE()

Monoid homomorphisms
If you’ve donned your law-discovering hat while reading this chapter, you may have
noticed that a law exists holding for functions between monoids. For instance, con-
sider the String concatenation monoid and the integer addition monoid. If you take
the lengths of two strings and add them up, it’s the same as taking the length of the
concatenation of those two strings:

"foo".length + "bar".length == ("foo" + "bar").length

Here, length is a function from String to Int that preserves the monoid structure.
Such a function is called a monoid homomorphism. (Homomorphism comes from Greek:
homo meaning “same” and morphe meaning “shape.”) A monoid homomorphism f
between monoids M and N obeys the following general law for all values x and y:

M.combine(f(x), f(y)) == f(N.combine(x, y))
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10.5 Foldable data structures
Chapter 3 implemented the data structures List and Tree, both of which could be
folded. Then, in chapter 5, we wrote Stream, a lazy structure that could be folded
much like List. As if that wasn’t enough, we’ve now added fold functionality that
operates on Kotlin’s Sequence.

 When we’re writing code that needs to process data in one of these structures, we
often don’t care about the shape of the structure. It doesn’t matter if it’s a tree, a list,
lazy, eager, efficiently random access, and so forth.

 For example, if we have a structure full of integers and want to calculate their sum,
we can use foldRight:

ints.foldRight(0) { a, b -> a + b }

Looking at this code snippet, we shouldn’t care about the type of ints at all. It could
be a Vector, Stream, List, or anything with a foldRight method, for that matter. We
can capture this commonality in the following interface for all these container types:

interface Foldable<F> {

fun <A, B> foldRight(fa: Kind<F, A>, z: B, f: (A, B) -> B): B

fun <A, B> foldLeft(fa: Kind<F, A>, z: B, f: (B, A) -> B): B

fun <A, B> foldMap(fa: Kind<F, A>, m: Monoid<B>, f: (A) -> B): B

fun <A> concatenate(fa: Kind<F, A>, m: Monoid<A>): A =
foldLeft(fa, m.nil, m::combine)

}

The same law should hold for the homomorphism from String to WC in the preceding
exercises.

This property can be helpful when designing your own libraries. If two types that your
library uses are monoids, and some functions exist between them, it’s a good idea
to think about whether those functions are expected to preserve the monoid structure
and check the monoid homomorphism law with property-based tests.

Sometimes there will be a homomorphism in both directions between two monoids.
If they satisfy a monoid isomorphism (iso- meaning “equal”), we say that the two
monoids are isomorphic. A monoid isomorphism between M and N has two homomor-
phisms, f and g, where both f andThen g and g andThen f are an identity function.

For example, the String and Array<Char> monoids are isomorphic in concatena-
tion. The two Boolean monoids (false, ||) and (true, &&) are also isomorphic,
via the ! (negation) operation. 

The interface declares type F 
that represents any container.

Kind<F, A> represents
the kind of F<A>.
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The Foldable interface declares a generic type F representing any container such as
Option, List, or Stream. We also see something new: a type called Kind<F, A> repre-
senting F<A>. We can’t express multiple levels of generics in Kotlin type declarations,
so Arrow provides us with Kind to declare that the kind of F is an outer container for
inner elements of type A. Just as functions that take other functions as arguments are
called higher-order functions, something like Foldable is a higher-order type constructor
or a higher-kinded type.

NOTE To reiterate, Kotlin cannot express higher-kinded types directly, so we
need to rely on Arrow to give us this ability. Please be sure you have read and under-
stood appendix C before continuing. All subsequent material builds on this knowledge.

EXERCISE 10.12

Implement foldLeft, foldRight, and foldMap on the Foldable<F> interface in terms
of each other. It is worth mentioning that using these functions in terms of each other

Higher-kinded types and Kotlin
If you come from an object-oriented programming background, you know what a con-
structor is. In particular, a value constructor is a method or function that has a value
applied to it to “construct” another value (object). Likewise, we have something called
a type constructor, which is a type that allows another type to be applied to it. The
result of this construction is called a higher-kinded type.

As an example, take the Foldable interface. We declare a new instance of this inter-
face, a ListFoldable. This is a Foldable of the List type. Let’s express this exact
situation with a snippet of pseudocode:

interface Foldable<F<A>> {
//some abstract methods

}

object ListFoldable : Foldable<List<A>> {
//some method implementations with parameterized A

}

On closer inspection, this is not as simple as we expected. We are dealing with a type
constructor that is a Foldable of F<A>, which in the implementation is a List<A>
but could also be a Stream<A>, Option<A>, or something else. Notice the two levels
of generics we are dealing with: F and A (or, more concretely, List<A> in the imple-
mentation). This nesting of kinds can’t be expressed in Kotlin and will fail compilation.

Higher-kinded types are an advanced language feature that languages like Kotlin and
Java do not support. Although this might change in the future, the Arrow team has
provided an interim workaround for situations like this. Appendix C goes into greater
detail about how Arrow solves this problem to enable higher-kinded types in Kotlin.



225Foldable data structures
could result in undesired effects like circular references. This will be addressed in
exercise 10.13.

interface Foldable<F> {

fun <A, B> foldRight(fa: Kind<F, A>, z: B, f: (A, B) -> B): B =

SOLUTION_HERE()

fun <A, B> foldLeft(fa: Kind<F, A>, z: B, f: (B, A) -> B): B =

SOLUTION_HERE()

fun <A, B> foldMap(fa: Kind<F, A>, m: Monoid<B>, f: (A) -> B): B =

SOLUTION_HERE()
}

EXERCISE 10.13

Implement Foldable<ForList> using the Foldable<F> interface from the previous
exercise.

object ListFoldable : Foldable<ForList>

EXERCISE 10.14

Recall that we implemented a binary Tree in chapter 3. Now, implement Fold-
able<ForTree>. You only need to override foldMap of Foldable to make this work, let-
ting the provided foldLeft and foldRight methods use your new implementation.

 A foldable version of Tree, along with ForTree and TreeOf, has been provided in
the chapter 10 exercise boilerplate code.

object TreeFoldable : Foldable<ForTree>

The semigroup and its relation to the monoid
We began part 3 of the book with monoids because they are simple and easy to
understand. Despite their simplicity, they can be broken down even further into
smaller units called semigroups.



226 CHAPTER 10 Monoids
EXERCISE 10.15

Write an instance of Foldable<ForOption>.

object OptionFoldable : Foldable<ForOption>

EXERCISE 10.16

Any Foldable structure can be turned into a List. Write this convenience method for
Foldable<F> using an existing method on the interface:

fun <A> toList(fa: Kind<F, A>): List<A> =

SOLUTION_HERE()

(continued)

As we have already learned, the monoid consists of two operations: an ability to com-
bine and another to create an empty nil value. The ability to combine is known as a
semigroup and can be defined as follows:

interface Semigroup<A> {
fun combine(a1: A, a2: A): A

}

In other words, a monoid is the combination of a semigroup with a nil value opera-
tion and may be expressed as follows:

interface Monoid<A> : Semigroup<A> {
val nil: A

}

Even though we won’t be using the semigroup directly, it is still good to know that the
monoid is not the simplest algebraic structure available.

The semigroup encompasses 
combinatorial aspect of the monoid.

Monoid

Aval    :nil

Semigroup

):a1: A a2: A Afun        (combine ,



227Composing monoids
10.6 Composing monoids
The monoids we have covered up to now were self-contained and didn’t depend on
other monoids for their functionality. This section deals with monoids that depend on
other monoids to implement their functionality.

 When considering the monoid by itself, its applications are somewhat limited.
Next, we will look at ways to make it more useful by combining it with other monoids.
We can achieve this by either composing or nesting monoids.

 The Monoid abstraction in itself is not all that compelling, and it’s only vaguely
more interesting with the generalized foldMap. The real power of monoids comes
from the fact that they compose. In other words, if types A and B are both monoids, they
can be composed as a new monoid of Pair<A, B>. We refer to this monoidal composi-
tion as their product.

EXERCISE 10.17

Implement productMonoid by composing two monoids. Your implementation of com-
bine should be associative as long as A.combine and B.combine are both associative.

fun <A, B> productMonoid(
ma: Monoid<A>,
mb: Monoid<B>

): Monoid<Pair<A, B>> =

SOLUTION_HERE()

10.6.1 Assembling more complex monoids

One way to enhance monoids is to let them depend on one another. This section
deals with assembling monoids from other monoids.

 Some data structures form interesting monoids as long as the types of elements
they contain also form monoids. For instance, there’s a monoid for merging key-value
pairs of Maps, as long as the value type is a monoid.

fun <K, V> mapMergeMonoid(v: Monoid<V>): Monoid<Map<K, V>> =
object : Monoid<Map<K, V>> {

override fun combine(a1: Map<K, V>, a2: Map<K, V>): Map<K, V> =
(a1.keys + a2.keys).foldLeft(nil, { acc, k ->

acc + mapOf(
k to v.combine(

a1.getOrDefault(k, v.nil),
a2.getOrDefault(k, v.nil)

)
)

})

Listing 10.3 Monoid that merges maps using another monoid
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override val nil: Map<K, V> = emptyMap()
}

We can now assemble complex monoids quickly by using this simple mapMergeMonoid
combinator as follows:

val m: Monoid<Map<String, Map<String, Int>>> =
mapMergeMonoid<String, Map<String, Int>>(

mapMergeMonoid<String, Int>(
intAdditionMonoid

)
)

This allows us to combine nested expressions using the monoid with no additional
programming. Let’s take this to the REPL:

>>> val m1 = mapOf("o1" to mapOf("i1" to 1, "i2" to 2))
>>> val m2 = mapOf("o1" to mapOf("i3" to 3))

>>> m.combine(m1, m2)

res0: kotlin.collections.Map<kotlin.String,kotlin.collections.Map<
kotlin.String, kotlin.Int>> = {o1={i1=1, i2=2, i3=3}}

By nesting monoids, we have now merged a nested data structure by issuing a single
command. Next, we will look at a monoid that emits a function as a monoid.

EXERCISE 10.18

Write a monoid instance for functions whose results themselves are monoids.

fun <A, B> functionMonoid(b: Monoid<B>): Monoid<(A) -> B> =

SOLUTION_HERE(
)

EXERCISE 10.19

A bag is like a set, except that it’s represented by a map that contains one entry per
element. Each element is the key, and the value is the number of times the element
appears in the bag. For example:

>>> bag(listOf("a", "rose", "is", "a", "rose"))

res0: kotlin.collections.Map<kotlin.String, kotlin.Int> = {a=2, rose=2, is=1}
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Use monoids to compute such a bag from a List<A>.

fun <A> bag(la: List<A>): Map<A, Int> =

SOLUTION_HERE()

10.6.2 Using composed monoids to fuse traversals

Sometimes we require several calculations to be applied to a list, resulting in multiple
traversals to get the results. This section describes how we can use monoids to perform
these calculations simultaneously during a single traversal.

 Multiple monoids can be composed into one, which means we can perform multi-
ple calculations together when folding a data structure. For example, we can take the
length and sum of a list simultaneously to calculate the mean.

>>> val m = productMonoid<Int, Int>(intAdditionMonoid, intAdditionMonoid)
>>> val p = ListFoldable.foldMap(List.of(1, 2, 3, 4), m, { a -> Pair(1, a) })

res0: kotlin.Pair<kotlin.Int, kotlin.Int> = (4, 10)

>>> val mean = p.first / p.second.toDouble()
>>> mean

res1: kotlin.Double = 0.4

It can be tedious to assemble monoids by hand using productMonoid and foldMap.
Part of the problem is that we’re building up the Monoid separately from the mapping
function of foldMap, and we must manually keep these “aligned” as we did here. A
better way would be to create a combinator library that makes it more convenient to
assemble these composed monoids. Such a library could define complex computa-
tions that may be parallelized and run in a single pass. This is beyond the scope of the
chapter but certainly worth exploring as a fun project if this fascinates you.

 Our goal in part 3 is to get you accustomed to more abstract structures and help
you develop the ability to recognize them. In this chapter, we introduced one of the
most straightforward purely algebraic abstractions, the monoid. When you start look-
ing for it, you’ll find ample opportunity to exploit the monoidal structure in your own
libraries. The associative property enables folding any Foldable data type and gives
the flexibility of doing so in parallel. Monoids are also compositional, and you can use
them to assemble folds in a declarative and reusable way.

 Monoid has been our first purely abstract algebra, defined only in terms of its
abstract operations and the laws that govern them. We saw how we can still write useful
functions that know nothing about their arguments except that their type forms a
monoid. This more abstract mode of thinking is something we’ll develop further in

Listing 10.4 Determining the mean of a list
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the rest of part 3. We’ll consider other purely algebraic interfaces and show how they
encapsulate common patterns that we’ve repeated throughout this book. 

Summary
 A purely algebraic structure is a declarative abstraction of laws that enforces these

laws when writing polymorphic functions.
 The monoid is an algebraic structure that upholds the laws of associativity and

identity and is defined by a type with operations that uphold these laws.
 Monoid operations are closely related to fold operations and are most often

used for such operations.
 Balanced folds are highly effective in parallelization and are a natural fit for

monoids.
 Higher-kinded types allow abstraction of operations to promote code reuse across

multiple implementations and are types that take other types to construct new
types.

 Monoids may be composed to form products that represent more complex
monoidal structures.

 Multiple operations can be applied simultaneously with composed monoids,
thus preventing unnecessary list traversal.



Monads and functors
Many of us break out in cold sweat on hearing the word monad. We have visions of
people in lofty ivory towers, wholly disconnected from reality, looking down on the
rest of humanity with disdain. We hear them mumbling academic concepts that
have little or no bearing on the real world.

 Even though many have used this word in such ways, we hope to show you that it
could not be further from the truth. The monad concept is pragmatic and can
transform the way we write code. Granted, this term and its relative, functor (which
we will also come to know in this chapter), have their origins in category theory’s
academic roots. Despite that, we will learn of its practical nature and that there is
nothing to fear.

This chapter covers
 Defining functors by generalizing the map 

operation

 Deriving general-purpose methods by applying 
functors

 Revisiting and formalizing the functor law

 Defining combinators that constitute monads

 Proving the laws that govern monads
231
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 This chapter serves to demystify the ominous monad. By the end of it, you should
have a working understanding of what a monad is and how to apply it in a pragmatic
way to your daily programming challenges. This could well be one of the most import-
ant lessons you learn from this book.

 Chapter 10 introduced a simple algebraic structure, the monoid. This was our
first instance of a completely abstract, purely algebraic interface, also known as a type
class. It led us to think about interfaces in a new way that is unlike an object-oriented
view. That is, a useful interface may be defined only by a collection of operations
related by laws.

 This chapter continues this mode of thinking and applies it to the problem of fac-
toring out code duplication across some of the libraries we wrote in parts 1 and 2.
We’ll discover two new abstract interfaces, Monad and Functor, and get more general
experience with spotting these sorts of abstract structures in our code.

11.1 Functors
The focal point of this chapter is the monad, but to fully grasp what it’s about, we
need to come to terms with the functor on which it relies. In chapter 10, we learned
that the monoid had a relationship with the semigroup. In fact, we discovered that the
monoid is a semigroup with some additional functionality. (The semigroup defines
the ability to combine two values of the same type; the monoid adds to this by provid-
ing an empty or nil value.) Although the relationship between the monad and the
functor isn’t as clear-cut as this, we can still say that a monad is usually a functor, too.
For this reason, this section will help us first understand what a functor is and how to
apply it. Once we have laid this foundation, we can advance into the territory of
monads with confidence.

11.1.1 Defining the functor by generalizing the map function

In parts 1 and 2, we implemented several different combinator libraries. In each case,
we wrote a small set of primitives and then several combinators defined purely in
terms of those primitives. We noted some similarities between derived combinators
across the libraries we wrote. For instance, we implemented a map function for each
data type to lift a function, transforming one argument “in the context of” some data
type. For Option, Gen, and Parser, the type signatures were as follows:

fun <A, B> map(ga: Option<A>, f: (A) -> B): Option<B>

fun <A, B> map(ga: Gen<A>, f: (A) -> B): Gen<B>

fun <A, B> map(ga: Parser<A>, f: (A) -> B): Parser<B>

These type signatures differ only in the concrete data type (Option, Gen, or Parser).
We can capture this idea with a Kotlin interface called Functor as a data type that imple-
ments map.
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interface Functor<F> {
fun <A, B> map(fa: Kind<F, A>, f: (A) -> B): Kind<F, B>

}

Here we parameterize map on the type constructor, Kind<F, A>, much like we did with
Foldable in chapter 10. Recall that a type constructor is applied to a type to produce
another type. For example, List is a type constructor, not a type. There are no values
of type List, but we can apply it to the type Int to produce the type List<Int>. Like-
wise, Parser can be applied to String to yield Parser<String>. Instead of picking a
particular Kind<F, A>, like Gen<A> or Parser<A>, the Functor interface is parametric
in the choice of F. Here’s an instance for List:

val listFunctor = object : Functor<ForList> {
override fun <A, B> map(fa: ListOf<A>, f: (A) -> B): ListOf<B> =

fa.fix().map(f)
}

NOTE As in chapter 10, we draw on the Kind type and its related boilerplate
code to express higher-kinded types in Kotlin. Please refer to appendix C to
understand what this entails.

We say that a type constructor like List (or Option, or F) is a functor, and the Func-
tor<F> instance constitutes proof that F is a functor. What can we do with this abstrac-
tion? We can discover useful functions just by playing with the operations of the
interface in a purely algebraic way. Let’s see what (if any) valuable operations we can
define only in terms of map. For example, if we have F<Pair<A, B>>, where F is a func-
tor, we can “distribute” F over the pair to get Pair<F<A>, F<B>>:

fun <A, B> distribute(
fab: Kind<F, Pair<A, B>>

): Pair<Kind<F, A>, Kind<F, B>> =
map(fab) { it.first } to map(fab) { it.second }

We wrote this by merely following the types, but let’s think about what it means for con-
crete data types like List, Gen, Option, and so on. For example, if we distribute a
List<Pair<A, B>>, we get two lists of the same length, one with all the As and the
other with all the Bs. That operation is sometimes called unzip. So we just wrote a
generic unzip function that works not just for lists but for any functor!

 And when we have an operation on a product like this, we should see if we can con-
struct the opposite operation over a sum or coproduct. Coproduct is the term in cate-
gory theory given to a disjoint union, or Either, as we have come to know it so far. In
our case, given a coproduct of higher kinds, we should get back a kind of coproducts.
We will call this codistribute:

Listing 11.1 Functor interface defining map functionality
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fun <A, B> codistribute(
e: Either<Kind<F, A>, Kind<F, B>>

): Kind<F, Either<A, B>> =
when (e) {

is Left -> map(e.a) { Left(it) }
is Right -> map(e.b) { Right(it) }

}

What does codistribute mean for Gen? If we have either a generator for A or a gener-
ator for B, we can construct a generator that produces either A or B depending on
which generator we actually have.

 We just came up with two general and potentially useful combinators based purely
on the abstract interface of Functor. We can reuse them for any type that allows imple-
mentation of map. 

11.1.2 The importance of laws and their relation to the functor

Whenever we create an abstraction like Functor, we should consider what abstract
methods it should have and the laws we expect it to hold for the implementations.
The laws you stipulate for abstraction are entirely up to you, although Kotlin won’t
enforce any of these laws on your behalf. If you borrow the name of an existing math-
ematical abstraction like functor or monoid, we recommend using the laws already spec-
ified by mathematics. Laws are important for two reasons:

 Laws help an interface form a new semantic level whose algebra may be rea-
soned about independently of the instances. For example, when we take the prod-
uct of Monoid<A> and Monoid<B> to form Monoid<Pair<A,B>>, the monoid laws
let us conclude that the “fused” monoid operation is also associative. We don’t
need to know anything about A and B to conclude this.

 On a concrete level, we often rely on laws when writing various combinators
derived from the functions of an abstract interface like Functor. We’ll see exam-
ples later in this section.

For Functor, we’ll stipulate the familiar law we first introduced in chapter 7 for our
Par data type. This law stipulated the relation between the map combinator and an
identity function as follows.

map(x) { a -> a } == x

In other words, mapping over a structure x with the identity function should itself be an
identity. This law seems quite natural, and as we progressed beyond Par, we noticed that
this law was satisfied by the map functions of other types like Gen and Parser. The law cap-
tures the requirement that map(x) “preserves the structure” of x. Implementations satisfy-
ing this law are restricted from doing strange things like throwing exceptions, removing
the first element of a List, converting a Some to None, and so on. Only the elements of the

Listing 11.2 Functor law relating map and an identity function
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structure are modified by map; the shape or structure itself is left intact. Note that this law
holds for List, Option, Par, Gen and most other data types that define map!

 To give a concrete example of this preservation of the structure, we can consider
distribute and codistribute, defined earlier. Here are the corresponding signa-
tures, for reference:

fun <A, B> distribute(
fab: Kind<F, Pair<A, B>>

): Pair<Kind<F, A>, Kind<F, B>>

fun <A, B> codistribute(
e: Either<Kind<F, A>, Kind<F, B>>

): Kind<F, Either<A, B>>

Since we know nothing about F other than that it is a functor, the law assures us
that the returned values will have the same shape as the arguments. If the input to
distribute is a list of pairs, the returned pair of lists will be of the same length as
the input, and corresponding elements will appear in the same order. This kind of
algebraic reasoning can potentially save us a lot of work since relying on this law
means we don’t have to write separate tests for these properties. 

11.2 Monads: Generalizing the flatMap and unit functions
Now that we understand a bit more about Functor and how to apply it, we discover
that, like Monoid, Functor is just one of many abstractions that can be factored out of
our libraries. But Functor isn’t the most compelling abstraction, as there aren’t many
practical operations that can be defined purely in terms of map.

 Instead, let’s focus our attention on the more interesting interface called Monad,
which adds to the functionality of Functor. Using this interface, we can implement far
more operations than with a functor alone, all while factoring out what would other-
wise be duplicate code. Monads also come with laws that allow us to reason about how
our libraries behave in the way we expect them to.

 Recall that we have implemented map2 to “lift” a function taking two parameters
for several of the data types in this book. For Gen, Parser, and Option, the map2 func-
tion can be implemented as follows.

fun <A, B, C> map2(
fa: Gen<A>,
fb: Gen<B>,
f: (A, B) -> C

): Gen<C> =        
flatMap(fa) { a -> map(fb) { b -> f(a, b) } }

fun <A, B, C> map2(
fa: Parser<A>,
fb: Parser<B>,

Listing 11.3 Implementing map2 for Gen, Parser and Option

Makes a generator of a random C 
that runs random generators fa 
and fb, combining their results 
with the function f
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f: (A, B) -> C
): Parser<C> =       

flatMap(fa) { a -> map(fb) { b -> f(a, b) } }

fun <A, B, C> map2(
fa: Option<A>,
fb: Option<B>,
f: (A, B) -> C

): Option<C> =        
flatMap(fa) { a -> map(fb) { b -> f(a, b) } }

These functions have more in common than just the name. Despite operating on data
types that seemingly have nothing to do with one another, the implementations are
identical! The only thing that differs is the data type being operated on. This confirms
what we’ve been hinting at all along: these are particular instances of a more general
pattern. We should be able to exploit such a pattern to avoid repeating ourselves. For
example, we should be able to write map2 only once in such a way that it can be reused
for all of these data types.

 We’ve made the code duplication particularly obvious here by choosing uniform
names for our functions and parameters, taking the arguments in the same order, and
so on. Duplication may be a bit more challenging to spot in your everyday work. But
the more libraries you write, the better you’ll get at identifying patterns that you can
factor out into common abstractions.

11.2.1 Introducing the Monad interface

Monads are everywhere! In fact, this is what unites Parser, Gen, Par, Option, and many
of the other data types we’ve looked at so far. Much as we did with Foldable and
Functor, we can come up with a Kotlin interface for Monad that defines map2 and numer-
ous other functions once and for all, rather than having to duplicate their definitions
for every concrete data type.

 In part 2 of this book, we concerned ourselves with individual data types, finding a
minimal set of primitive operations from which we could derive many helpful combi-
nators. We’ll do the same kind of thing here to refine an abstract interface to a small
set of primitives.

 Let’s start by introducing a new interface, which we’ll call Mon for now. Since we
know that we eventually want to define map2, let’s go ahead and do so.

interface Mon<F> {                                       

fun <A, B, C> map2(
fa: Kind<F, A>,   
fb: Kind<F, B>,        
f: (A, B) -> C

): Kind<F, C> =
flatMap(fa) { a -> map(fb) { b -> f(a, b) } }    

}

Listing 11.4 Defining a Mon interface as home for map2

Makes a parser that produces 
C by combining the results of 
parsers fa and fb with the 
function f

Combines two Options with the 
function f if both have a value; 
otherwise, returns None

The Mon 
interface is 
parameterized 
with a higher-
kinded type 
of F.

Uses Kind<F, A> to 
represent F<A>

Will not compile since map and flatMap 
are not defined in the context of F
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In this example, we’ve just taken the implementation of map2 and changed Parser,
Gen, and Option to the polymorphic F of the Mon<F> interface in the signature. We
refer to in-place references to the kind of F using the Kind interface. But in this poly-
morphic context, the implementation won’t compile! We don’t know anything about F
here, so we certainly don’t know how to flatMap or map over a Kind<F, A>!

NOTE Our decision to call the type constructor argument F here was arbi-
trary. We could have called this argument Foo, w00t, or Blah2, although by
convention, we usually give type constructor arguments one-letter uppercase
names such as F, G, and H or sometimes M and N, or P and Q.

What we can do is simply add map and flatMap to the Mon interface and keep them
abstract. In doing so, we keep map2 consistent with what we had before.

fun <A, B> map(fa: Kind<F, A>, f: (A) -> B): Kind<F, B>

fun <A, B> flatMap(fa: Kind<F, A>, f: (A) -> Kind<F, B>): Kind<F, B>

This translation was rather mechanical. We just inspected the implementation of map2
and added all the functions it called, map and flatMap, as suitably abstract methods on
our interface. This interface will now compile—but before we declare victory and
move on to defining instances of Mon<List>, Mon<Parser>, Mon<Option>, and so on,
let’s see if we can refine our set of primitives. Our current set of primitives is map and
flatMap, from which we can derive map2. Do flatMap and map form a minimal set of
primitives? Well, the data types that implemented map2 all had a unit, and we know
that map can be implemented in terms of flatMap and unit—for example, on Gen:

fun <A, B> map(fa: Gen<A>, f: (A) -> B): Gen<B> =
flatMap(fa) { a -> unit(f(a)) }

So let’s pick flatMap and unit as our minimal set of primitives. We’ll unify all data
types under a single concept that has these functions defined. The interface will be
called Monad and have abstract declarations of flatMap and unit while providing
default implementations for map and map2 in terms of our abstract primitives.

interface Monad<F> : Functor<F> {    

fun <A> unit(a: A): Kind<F, A>

fun <A, B> flatMap(fa: Kind<F, A>, f: (A) -> Kind<F, B>): Kind<F, B>

override fun <A, B> map(
fa: Kind<F, A>,
f: (A) -> B

Listing 11.5 Adding flatMap and map declarations to Mon

Listing 11.6 Declaring Monad with primitives for flatMap and unit

Monad provides a default 
implementation of map and 
can so implement Functor.
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): Kind<F, B> =                
 flatMap(fa) { a -> unit(f(a)) }

fun <A, B, C> map2(
fa: Kind<F, A>,
fb: Kind<F, B>,
f: (A, B) -> C

): Kind<F, C> =
flatMap(fa) { a -> map(fb) { b -> f(a, b) } }

}

To tie this back to a concrete data type, we can implement the Monad instance for Gen.

object Monads {

val genMonad = object : Monad<ForGen> {     

override fun <A> unit(a: A): GenOf<A> = Gen.unit(a)   

override fun <A, B> flatMap(
fa: GenOf<A>,
f: (A) -> GenOf<B>

): GenOf<B> =
fa.fix().flatMap { a: A -> f(a).fix() }    

}
}

We only need to implement flatMap and unit, and we get map and map2 at no addi-
tional cost. This is because Monad inherits these two functions from Functor. We’ve
implemented them once only for any data type allowing an instance of Monad to be
created! But we’re just getting started. There are many more such functions that we
can implement in this manner.

EXERCISE 11.1

Write monad instances for Par, Option, and List. Additionally, provide monad instances
for arrow.core.ListK and arrow.core.SequenceK.

What the monad name means
We could have called Monad anything, like FlatMappable, Unicorn, or Bicycle. But
monad is already a perfect name in everyday use. The name comes from category
theory, a branch of mathematics that has inspired many functional programming con-
cepts. The name monad is intentionally similar to monoid, and the two concepts are
related profoundly.

Listing 11.7 Monad instance for Gen using concrete types

The override of map in Functor 
needs to be made explicit for 
successful compilation.

ForGen is a surrogate type we provide 
to get around Kotlin’s limitations in 
expressing higher-kinded types.

The type alias GenOf<A>
is syntactic sugar for

Kind<ForGen, A>.

Downcasts all GenOf<A> to Gen<A> using
the provided extension method fix() for

compatibility with Gen.flatMap
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 Note that the ListK and SequenceK types provided by Arrow are wrapper classes
that turn their platform equivalents, List and Sequence, into fully equipped type
constructors.

object Monads {

fun parMonad(): Monad<ForPar> =

SOLUTION_HERE()

fun optionMonad(): Monad<ForOption> =

SOLUTION_HERE()

fun listMonad(): Monad<ForList> =

SOLUTION_HERE()

fun listKMonad(): Monad<ForListK> =

SOLUTION_HERE()

fun sequenceKMonad(): Monad<ForSequenceK> =

SOLUTION_HERE()
}

EXERCISE 11.2

Hard: State looks like it could be a monad, too, but it takes two type arguments: S
and A. You need a type constructor of only one argument to implement Monad. Try to
implement a State monad, see what issues you run into, and think about how you can
solve them. We’ll discuss the solution later in this chapter. 

data class State<S, out A>(val run: (S) -> Pair<A, S>) : StateOf<S, A>

11.3 Monadic combinators
We have already come to a point where we’ve defined primitives for the monad.
Equipped with these, we can move ahead and discover additional combinators. In
fact, now we can look back at previous chapters and see if we implemented other func-
tions for our monadic data types. Many of these types can be implemented as once-
and-for-all monads, so let’s do that now.
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EXERCISE 11.3

The sequence and traverse combinators should be pretty familiar to you by now, and
your implementations of them from previous chapters are probably all very similar.
Implement them once and for all on Monad<F>.

fun <A> sequence(lfa: List<Kind<F, A>>): Kind<F, List<A>> =

SOLUTION_HERE()

fun <A, B> traverse(
la: List<A>,
f: (A) -> Kind<F, B>

): Kind<F, List<B>> =

SOLUTION_HERE()

One combinator we saw for Gen and Parser was listOfN, which allowed us to repli-
cate a generator or parser n times to get a parser or generator of lists of that length.
We can implement this combinator for all monads F by adding it to our Monad inter-
face. We could also give it a more generic name such as replicateM, meaning “repli-
cate in a monad.”

EXERCISE 11.4

Implement replicateM to generate a Kind<F, List<A>>, with the list being of length n.

fun <A> replicateM(n: Int, ma: Kind<F, A>): Kind<F, List<A>> =

SOLUTION_HERE()

fun <A> _replicateM(n: Int, ma: Kind<F, A>): Kind<F, List<A>> =

SOLUTION_HERE()

EXERCISE 11.5

Think about how replicateM will behave for various choices of F. For example, how
does it behave in the List monad? And what about Option? Describe in your own
words the general meaning of replicateM.
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There was also a combinator for our Parser data type called product, which took two
parsers and turned them into a parser of pairs. We implemented this product combi-
nator in terms of map2. We can also write it generically for any monad F.

fun <A, B> product(
ma: Kind<F, A>,
mb: Kind<F, B>

): Kind<F, Pair<A, B>> =
map2(ma, mb) { a, b -> a to b }

We don’t have to restrict ourselves to combinators that we’ve seen already. We should
take the liberty to explore new solutions, too.

EXERCISE 11.6

Hard: Here’s an example of a function we haven’t seen before. Implement the function
filterM. It’s a bit like filter, except that instead of a function from (A) -> Boolean, we
have an (A) -> Kind<F, Boolean>. Replacing various ordinary functions like filter
with the monadic equivalent often yields interesting results. Implement this function,
and then think about what it means for various data types such as Par, Option, and Gen.

fun <A> filterM(
ms: List<A>,
f: (A) -> Kind<F, Boolean>

): Kind<F, List<A>> =

SOLUTION_HERE()

The combinators we’ve seen here are only a tiny sample of the entire library that
Monad lets us implement once and for all. We’ll see more examples in chapter 13. 

11.4 Monad laws
Algebraic concepts like monads and functors are embodiments of the laws that define
and govern them. In this section, we introduce the laws that govern our Monad inter-
face. Certainly, we’d expect the functor laws to also hold for Monad, since a Monad<F> is
a Functor<F>, but what else do we expect? What laws should constrain flatMap and
unit? In short, we can cite several laws that fulfill these constraints:

 The associative law
 The left identity law
 The right identity law

This section looks at each one, all while proving that they hold for the monad.

Listing 11.8 Generic implementation of product using map2
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11.4.1 The associative law

The first monadic law we will look into is the associative law. This law is all about the
ordering of operations. Let’s look at this by way of example. If we want to combine
three monadic values into one, which two should we combine first? Should it matter?
To answer this question, let’s step away from the abstract level for a moment and look
at a simple, concrete example using the Gen monad.

 Say we’re testing a product order system, and we need to generate some fake
orders as a fixture for our test. We might have an Order data class and a generator for
that class.

data class Order(val item: Item, val quantity: Int)
data class Item(val name: String, val price: Double)

val genOrder: Gen<Order> =
Gen.string().flatMap { name: String ->     

Gen.double(0..10).flatMap { price: Double ->    
Gen.choose(1, 100).map { quantity: Int ->   

Order(Item(name, price), quantity)
}

}
}

Here we’re generating the Item inline (from name and price), but there might be
places where we want to generate an Item separately. We can pull that into its own
generator:

val genItem: Gen<Item> =
Gen.string().flatMap { name: String ->

Gen.double(0..10).map { price: Double ->
Item(name, price)

}
}

This can now in turn can be used to generate orders:

val genOrder2: Gen<Order> =
Gen.choose(1, 100).flatMap { quantity: Int ->

genItem.map { item: Item ->
Order(item, quantity)

}
}

And that should do exactly the same thing, right? It seems safe to assume so. But not
so fast! How can we be sure? It’s not exactly the same code!

 Let’s expand the implementation of genOrder into calls to map and flatMap to bet-
ter see what’s going on:

Listing 11.9 Declaring an Item and Order text fixture generator

Generates a random 
string name

Generates a double 
price between 0 
and 10

Generates an 
integer quantity 
between 1 and 
100
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val genOrder3: Gen<Order> =
Gen.choose(1, 100).flatMap { quantity: Int ->

Gen.string().flatMap { name: String ->
Gen.double(0..10).map { price: Double ->

Order(Item(name, price), quantity)
}

}
}

When we compare this with listing 11.8, we can clearly see that they are not identical,
yet it seems perfectly reasonable to assume that the two implementations do precisely
the same thing. Even though the order has changed, it would be surprising and weird
if they didn’t. It’s because we’re assuming that flatMap obeys an associative law.

x.flatMap(f).flatMap(g) ==
x.flatMap { a -> f(a).flatMap(g) }

And this law should hold for all values x, f, and g of the appropriate types—not just
for Gen but for Parser, Option, or any other monad.

11.4.2 Proving the associative law for a specific monad

Up to this point, we’ve been working strictly at an abstract level. But what bearing does
this have on a real-world situation? How does this apply to the data types we have dealt
with in past chapters? To find out, let’s prove that this law holds for Option. All we have
to do is substitute None or Some(v) for x in the preceding equation and expand both
its sides. We will start with the case where x is None:

None.flatMap(f).flatMap(g) ==
None.flatMap { a -> f(a).flatMap(g) }

Since None.flatMap(f) is None for all f, this can be simplified to

None == None

In other words, the law holds for None. Let’s confirm that the same is true when x is
Some(v) for an arbitrary value v.

x.flatMap(f).flatMap(g) == x.flatMap { a -> f(a).flatMap(g) }  

Some(v).flatMap(f).flatMap(g) ==
Some(v).flatMap { a -> f(a).flatMap(g) }   

f(v).flatMap(g) == { a: Int -> f(a).flatMap(g) }(v)     

f(v).flatMap(g) == f(v).flatMap(g)   

Listing 11.10 Law of associativity in terms of flatMap

Listing 11.11 Verifying the associative law by replacing x

Original law 
associativity 
for flatMap

Replaces x with 
Some(v) on 
both sides

Collapses Some(v).flatMap 
on both sides by applying v
to f directly

v to
ctly
ight
ving
lity
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Thus we can conclude that this law also holds when x is Some(v) for any value of v. We
can so conclude that the law holds for both cases of Option.

KLEISLI COMPOSITION: A CLEARER VIEW OF THE ASSOCIATIVE LAW

It’s not so easy to recognize the law of associativity in the preceding example. In con-
trast, remember how clear the associative law for monoids was?

combine(combine(x,y), z) == combine(x, combine(y,z))

Our associative law for monads looks nothing like that! Fortunately for us, there is a
way to make this law clearer by considering monadic functions instead of monadic val-
ues as we have been doing up to now.

 What exactly do we mean by a monadic function, and how does it differ from the
monadic values we have seen so far? If a monadic value is an instance of F<A>, a
monadic function is a function in the form (A) -> F<B>. A function such as this is
known as a Kleisli arrow and is named after the Swiss mathematician Heinrich Kleisli.
What makes Kleisli arrows unique is that they can be composed with each other:

fun <A, B, C> compose(
f: (A) -> Kind<F, B>,
g: (B) -> Kind<F, C>

): (A) -> Kind<F, C>

EXERCISE 11.7

Implement the following Kleisli composition function in Monad:

fun <A, B, C> compose(
f: (A) -> Kind<F, B>,
g: (B) -> Kind<F, C>

): (A) -> Kind<F, C> =

SOLUTION_HERE()

Considering that flatMap takes a Kleisli arrow as a parameter, we can now state the
associative law for monads using this new function in a far more symmetric way.

compose(compose(f, g), h) == compose(f, compose(g, h))

EXERCISE 11.8

Hard: Implement flatMap in terms of an abstract definition of compose. By this, it
seems as though we’ve found another minimal set of monad combinators: compose
and unit.

Listing 11.12 Law of associativity in terms of compose
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fun <A, B> flatMap(
fa: Kind<F, A>,
f: (A) -> Kind<F, B>

): Kind<F, B> =

SOLUTION_HERE()

VERIFYING ASSOCIATIVITY IN TERMS OF FLATMAP AND COMPOSE

In listing 11.10, we expressed the associative law for monads in terms of flatMap. We
then chose a more straightforward representation of this law using compose in list-
ing 11.12. In this section, we prove that the two proofs are equivalent by applying the
substitution model to the law expressed in terms of compose using the implementa-
tion in terms of flatMap derived in exercise 11.8. We will look at one side at a time for
the sake of simplicity. Let’s focus on the left side of the equation first.

compose(compose(f, g), h)   

{ a -> flatMap(compose(f, g)(a), h) }     

{ a -> flatMap({ b: A -> flatMap(f(b), g) }(a), h) }   

{ a -> flatMap(flatMap(f(a), g), h) }    

flatMap(flatMap(x, g), h)     

Next, we shift our attention to the right-hand side.

compose(f, compose(g, h))    

{ a -> flatMap(f(a), compose(g, h)) }   

{ a -> flatMap(f(a)) { b -> flatMap(g(b), h) } }    

flatMap(x) { b -> flatMap(g(b), h) }    

The final outcome looks like this:

flatMap(flatMap(x, g), h) ==
flatMap(x) { b -> flatMap(g(b), h) }

Listing 11.13 Applying the substitution model to the left side

Listing 11.14 Applying substitution model to the right side

Left side of the law of associativity
expressed in terms of compose

Replaces the outer 
compose with flatMap, 
propagating a

Replaces the inner 
compose with flatMap, 
propagating b

Applies a through b to f

Simplifies by introducing alias 
x for any f with a applied

Right side of the law of associativity
expressed in terms of compose

Replaces the outer 
compose with flatMap, 
propagating a

Replaces the inner 
compose with flatMap, 
propagating b

Simplifies by introducing alias 
x for any f with a applied
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We can express this more simply by making flatMap an extension function on the
higher kind x:

x.flatMap(g).flatMap(h) ==
x.flatMap { b -> g(b).flatMap(h) }

This aligns perfectly with the law stated in terms of flatMap in listing 11.10. All that
differs is the naming of some of the parameters. We can thus conclude that the proofs
are equivalent. 

11.4.3 The left and right identity laws

The other laws used to define the monad are called the identity laws. It is worth men-
tioning that this is not a single law but a pair of laws, referred to as left identity and
right identity. Collectively with the associative law, they’re often referred to as the three
monad laws.

 Let’s begin by thinking about what identity means. Just like nil was an identity ele-
ment for combine in the monoid, there is also an identity element for compose in the
monad. The name unit is often used in mathematics to mean an identity for some
operation, so it goes to follow that we chose unit for the name of our monad identity
operation:

fun <A> unit(a: A): Kind<F, A>

Now that we have a way of defining the identity element, we will use it in conjunction
with compose to express the two identity laws. Recall from exercise 11.7 that compose
takes two arguments, one of type (A) -> Kind<F, B> and the other of (B) -> Kind<F, C>.
The unit function has the correct type to be passed as an argument to compose. The
effect should be that anything composed with unit is that same thing. This usually
takes the form of our two laws, left identity and right identity:

compose(f, { a: A -> unit(a) }) == f
compose({ a: A -> unit(a) }, f) == f

We can also state these laws in terms of flatMap, but they’re less clear to understand
that way:

flatMap(x) { a -> unit(a) } == x
flatMap(unit(a), f) == f(a)

EXERCISE 11.9

Using the following values, prove that the left and right identity laws expressed in
terms of compose are equivalent to that stated in terms of flatMap:
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val f: (A) -> Kind<F, A>
val x: Kind<F, A>
val v: A

EXERCISE 11.10

Prove that the identity laws hold for the Option monad.

EXERCISE 11.11

Monadic combinators can be expressed in another minimal set: map, unit, and join.
Implement the join combinator in terms of flatMap.

EXERCISE 11.12

Either flatMap or compose may now be implemented in terms of join. For the sake of
this exercise, implement both.

EXERCISE 11.13

Hard/Optional: Restate the monad law of associativity in terms of flatMap using
join, map, and unit.

EXERCISE 11.14

Hard/Optional: In your own words, write an explanation of what the associative law
means for Par and Parser.
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EXERCISE 11.15

Hard/Optional: Explain in your own words what the identity laws state in concrete
terms for Gen and List.

 Recall the identity laws for left and right identity, respectively:

flatMap(x) { a -> unit(a) } == x
flatMap(unit(a), f) == f(a)

11.5 Just what is a monad?
Up to now, we’ve been examining monads at the micro level by identifying various
combinators and proving associated laws. Even though this is useful, it doesn’t really
tell us much about what a monad is. To further our understanding, let’s zoom out to a
broader perspective on this subject. In doing so, we see something unusual about the
Monad interface: the data types for which we’ve given monad instances don’t seem to
have much to do with each other. Yes, Monad factors out code duplication among
them, but what is a monad, exactly? When we say monad, what does it mean?

 You may be used to thinking of interfaces as providing a relatively complete API
for an abstract data type, merely abstracting over the specific representation. After all,
a singly linked list and an array-based list may be implemented differently behind the
scenes, but they’ll probably share a standard List interface in terms of which a lot of
valuable and concrete application code can be written. Monad, like Monoid, is a more
abstract and purely algebraic interface. Monad combinators are often just a tiny frag-
ment of the full API for a given data type that happens to be a monad. So Monad
doesn’t generalize one type or another; instead, many vastly different data types can
satisfy the Monad interface and laws.

 We’ve seen three minimal sets of primitive monadic combinators, and instances of
Monad will have to provide implementations of one of these sets:

 flatMap and unit
 compose and unit
 map, join, and unit

We also know that two monad laws must be satisfied: associativity and identity, which can
be formulated in various ways. So we can state plainly what a monad is :

A monad is an implementation of one of the minimal sets of monadic combinators,
satisfying the laws of associativity and identity.

That’s an excellent, precise, terse definition. And if we’re being precise, this is the only
correct definition. A monad is defined by its operations and laws: no more, no less.
But it’s a little unsatisfying. It doesn’t say much about what it implies—what a monad
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means. The problem is that it’s a self-contained definition. Even if you’re an experienced
programmer and have obtained a vast amount of knowledge related to programming,
this definition does not intersect with any of that accumulated knowledge.

11.5.1 The identity monad

To really understand what’s going on with monads, let’s try to think about them in
terms of things we already know, and then we will connect them to a broader context.
To develop some intuition for what monads mean, let’s look at some more monads and
compare their behavior.

 To distill monads to their most essential form, we look to the simplest interesting
specimen, the identity monad, given by the following type:

data class Id<A>(val a: A)

EXERCISE 11.16

Implement map, flatMap, and unit as methods on this class, and give an implementa-
tion for Monad<Id>:

data class Id<out A>(val a: A) : IdOf<A> {
companion object {

fun <A> unit(a: A): Id<A> =

SOLUTION_HERE()
}

fun <B> flatMap(f: (A) -> Id<B>): Id<B> =

SOLUTION_HERE()

fun <B> map(f: (A) -> B): Id<B> =

SOLUTION_HERE()
}

fun idMonad(): Monad<ForId> =

SOLUTION_HERE()

Id is just a simple wrapper. It doesn’t really add anything. Applying Id to A is an iden-
tity since the wrapped type and the unwrapped type are totally isomorphic (we can go
from one to the other and back again without any loss of information). But what is the
meaning of the identity monad? Let’s try using it in some code:

val IDM: Monad<ForId> = idMonad()
val id: Id<String> = IDM.flatMap(Id("Hello, ")) { a: String ->
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IDM.flatMap(Id("monad!")) { b: String ->
Id(a + b)

}
}.fix()

When evaluating id in the REPL, we find the following result:

>>> id
res1: example.Id(a=Hello, monad!)

So what is the action of flatMap for the identity monad in the example? It’s simply vari-
able substitution. The variables a and b are bound to "Hello, " and "monad!", respec-
tively, and then substituted into the expression a + b. We could have written the same
thing without the Id wrapper using simple variables:

>>> val a = "Hello, "
>>> val b = "monad!"
>>> a + b
res2: kotlin.String = Hello, monad!

Other than the Id wrapper, there is no difference. So now we have at least a partial
answer to the question of what a monad means. We could say that monads provide a
context for introducing and binding variables and allowing variable substitution. But
is there more to it than that?

11.5.2 The State monad and partial type application

We examined the simplest possible case by observing the Id monad in the previous
section. We will now shift our focus to the opposite end of the spectrum by looking at
a more challenging monad that we dealt with in chapter 6: the State monad.

 If you recall this data type, you will remember that we wrote flatMap and map func-
tions in exercises 6.8 and 6.9, respectively. Let’s take another look at this data type
with its combinators.

data class State<S, out A>(val run: (S) -> Pair<A, S>) {

companion object {
fun <S, A> unit(a: A): State<S, A> =

State { s: S -> a to s }

}

fun <B> map(f: (A) -> B): State<S, B> =
flatMap { a -> unit<S, B>(f(a)) }

fun <B> flatMap(f: (A) -> State<S, B>): State<S, B> =
State { s: S ->

val (a: A, s2: S) = this.run(s)

Listing 11.15 State data type representing state transitions
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f(a).run(s2)
}

}

State definitely appears to fit the profile of being a monad, but there does seem to be
a caveat. If you played with this in exercise 11.2, you may have noticed that the type
constructor takes two type arguments, while Monad requires a type constructor of only
one. This means we can’t get away with declaring Monad<ForState>, as the surrogate
type ForState would need to imply a State<S, A>. Here we have two type parameters,
not one.

 If we choose a particular S, then we have something like ForStateS and State-
OfS<A>, which is closer to the kind expected by Monad. In other words, State has not
one monad instance but a whole family of them: one for each choice of S. What we
really want to do is partially apply State where the S type argument is fixed to be some
concrete type, resulting in only one remaining type variable, A.

 This is much as we would partially apply a function, except now we do it at the type
level. For example, we can create an IntState type constructor, which is an alias for
State with its first type argument fixed to be Int:

typealias IntState<A> = State<Int, A>

And IntState is exactly the kind of thing for which we can build a Monad.

val intState = object : Monad<ForIntState> {       
override fun <A> unit(a: A): IntStateOf<A> =   

IntState { s: Int -> a to s }

override fun <A, B> flatMap(
fa: IntStateOf<A>,
f: (A) -> IntStateOf<B>

): IntStateOf<B> =
fa.fix().flatMap { a: A -> f(a).fix() }

}

Of course, this would be really repetitive if we had to write an explicit Monad instance
for every specific state type. Consider IntState, DoubleState, StringState, and so
on. Besides the fact that this doesn’t scale well, it would also mean our State data type
would need to inherit from IntState, along with every other partially applied type in
the family of monads. This simply isn’t possible in Kotlin!

 Putting aside this approach of hardcoded monad instances, let’s look at how we
can solve this with less code duplication. Fortunately, there is a way of doing this by
introducing the StateMonad interface, which can be partially applied with a type such
as Int, resulting in a StateMonad<Int>.

 
 

Listing 11.16 State monad instance partially applied for Int types

Surrogate type in 
substitution of 
Kind<Int, A> to 
appease the compiler

Type alias for 
Kind<ForIntState, A>
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interface StateMonad<S> : Monad<StatePartialOf<S>> {    

override fun <A> unit(a: A): StateOf<S, A>    

override fun <A, B> flatMap(
fa: StateOf<S, A>,
f: (A) -> StateOf<S, B>

): StateOf<S, B>
}

The main difference comes in the declaration of the StateMonad interface itself. The
monad interface has a type parameter S for the family member it represents. It will
extend from a new type alias, StatePartialOf<S>, an alias for Kind<ForState, S>.

 The types such as StatePartialOf and StateOf are boilerplate code that we can
write ourselves, although Arrow conveniently generates it for us. Appendix C describes
what boilerplate is required and how to let Arrow do all the hard work on our
behalf.

NOTE Section C.2 in appendix C describes the boilerplate code required for
declaring a partially applied type constructor. Please be sure you have read and
thoroughly understood this content.

We can now declare a new member of the state monad family using the StateMonad
interface. Let’s stick with our intStateMonad example from before using this inter-
face and boilerplate code.

val intStateMonad: StateMonad<Int> = object : StateMonad<Int> {
override fun <A> unit(a: A): StateOf<Int, A> =

State { s -> a to s }

override fun <A, B> flatMap(
fa: StateOf<Int, A>,
f: (A) -> StateOf<Int, B>

): StateOf<Int, B> =
fa.fix().flatMap { a -> f(a).fix() }

}

We have evolved from the hardcoded ForIntState monad in listing 11.16 to a more
flexible partially applied variant in listing 11.18. Once more, just by giving imple-
mentations of flatMap and unit, we implement all the other monadic combinators
for free.

Listing 11.17 Doing away with hardcoded partially applied types

Listing 11.18 Partially applied State, bringing flexibility

The Monad type 
constructor takes 
a partially applied 
type parameter 
StatePartialOf 
for any S.

Monadic
combinators are no
longer restricted to

deal in single type
parameter currency.
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EXERCISE 11.17

Now that we have a State monad, try it to see how it behaves. Declare some values of
replicateM, map2, and sequence with type declarations using intMonad. Describe how
each one behaves under the covers.

fun replicateIntState(): StateOf<Int, List<Int>> =

SOLUTION_HERE()

fun map2IntState(): StateOf<Int, Int> =

SOLUTION_HERE()

fun sequenceIntState(): StateOf<Int, List<Int>> =

SOLUTION_HERE()

Now that we’ve examined both Id and State, we can once again take a step back and
ask what the meaning of monad is. Let’s look at the difference between the two.
Remember from chapter 6 that the primitive operations on State (besides the
monadic operations flatMap and unit) are that we can modify the current state using
some form of get and set combinators:

fun <S> getState(): State<S, S> = State { s -> s to s }

fun <S> setState(s: S): State<S, Unit> = State { Unit to s }

Remember that we also found these combinators constitute a minimal set of primitive
operations for State. So together with the monadic primitives, flatMap and unit,
they completely specify everything we can do with the State data type. This is true in gen-
eral for monads—they all have flatMap and unit, and each monad brings its own set
of additional primitive operations specific to that monad.

EXERCISE 11.18

Express the laws you would expect to mutually hold for getState, setState, flatMap,
and unit.

What does this tell us about the meaning of the State monad? To fully grasp what
we’re trying to convey, let’s once again turn our attention to the intStateMonad
from listing 11.18 by using it in a real example.
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val F = intStateMonad

fun <A> zipWithIndex(la: List<A>): List<Pair<Int, A>> =
la.foldLeft(F.unit(emptyList<Pair<Int, A>>())) { acc, a ->

acc.fix().flatMap { xs ->
acc.fix().getState<Int>().flatMap { n ->

acc.fix().setState(n + 1).map { _ ->
listOf(n to a) + xs

}
}

}
}.fix().run(0).first.reversed()

This function numbers all the elements in a list using a State action. It keeps a state
that’s an Int, which is incremented at each step. We run the composite State action
starting from 0. Finally, we reverse the order since we ran the computation in reverse
using foldLeft.

 To express this even more clearly, we can imagine the body passed to the leftFold
using an Arrow-style for-comprehension in the following snippet of pseudocode.

...
{ acc: StateOf<Int, List<Pair<Int, A>>>, a: A ->

acc.fx {
val xs = acc.bind()
val n = acc.getState().bind()
acc.setState(n + 1).bind()
listOf(n to a) + xs

}
}
...

Figure 11.1 show how the for-comprehension removes all clutter introduced by flat-
Map and map. This construct lets us focus on what seems like a sequence of imperative
instructions using the State to propagate an incrementing counter.

 Note what’s going on with getState and setState in the for-comprehension.
We’re obviously getting variable binding just like in the Id monad—we’re binding the
value of each successive state action (acc, getState, and then setState) to variables.
But there’s more going on here between the lines. At each line in the for-comprehen-
sion, the implementation of flatMap makes sure the current state is available to get-
State and the new state is propagated to all actions that follow setState.

 What does the difference between the action of Id and the action of State tell us
about monads in general? We can see that a chain of flatMap calls (or an equivalent
for-comprehension) is like an imperative program with statements that assign to vari-
ables, and the monad specifies what occurs at statement boundaries. For example, with Id,

Listing 11.19 Getting and setting state with flatMap and map

Listing 11.20 Getting and setting state with a for-comprehension
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nothing occurs except unwrapping and rewrapping in the Id constructor. With State,
the most current state is passed from one statement to the next. With the Option
monad, a statement may return None and terminate the program. With the List monad,
a statement may return many results, which causes statements that follow it to poten-
tially run multiple times, once for each result.

 The Monad contract doesn’t specify what is happening between the lines, only that
whatever is happening satisfies the laws of associativity and identity.

EXERCISE 11.19

Hard: To cement your understanding of monads, give a monad instance for the
Reader data type and explain what it means. Also take some time to answer the follow-
ing questions:

acc.flatMap { xs ->

acc.getState().flatMap { n ->

acc.setState(n + 1).map { ->

listOf(n to a) + xs

}

}

}

acc.fx {

}

val xs = acc.bind()

val n = acc.getState().bind()

acc.setState(n + 1).bind()

listOf(n to a) + xs

}
Figure 11.1 The for-comprehension 
is syntactic sugar that represents a 
monadic flow as imperative steps.
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 What are its primitive operations?
 What is the action of flatMap?
 What meaning does it give to monadic functions like sequence, join, and

replicateM?
 What meaning does it give to the monadic laws?

In this chapter, we took a pattern that we’ve seen repeated throughout the book
and unified it under a single concept: the monad. This allowed us to write several
combinators once and for all for many different data types that, at first glance,
don’t seem to have anything in common. We discussed monad laws that all monads
satisfy from various perspectives and then developed some insight into the broader
meaning of the term monad.

 An abstract topic like this can’t be fully understood all at once. It requires an iter-
ative approach that revisits the topic from different perspectives. When you discover
new monads or new applications or see them appear in a new context, you’ll inevita-
bly gain new insight. And each time it happens, you might think to yourself, “OK, I
thought I understood monads before, but now I really get it.” Don’t be fooled!

Summary
 The type constructor F representing types like List and Option is a functor, and

the Functor<F> instance proves that this assumption holds true.
 The functor interface has a map method, a higher-order function that applies a

transformation to each element of the enclosing kind.
 Laws are important because they establish the semantics of an interface. This

results in an algebra that may be reasoned about independently from its instances.
 The functor law stipulates the relationship between map and identity functions.

It preserves the structure of the enclosing kind and is only concerned with
transforming its elements.

 The monad interface is a functor that typically has flatMap and unit primitives.
These primitive functions can be used to derive many other valuable combina-
tors, including those of the functor.

 The monadic laws constrain the behavior of a monad by enforcing principles of
associativity and identity on its instances.

 The associative law deals with ordering, and it guarantees that outcomes will
remain the same no matter how flatMap operations are nested.

 The identity laws are left identity and right identity, each dealing with a situation
where the result of unit is the subject or object of a flatMap expression.

 Three minimal sets of combinators can define a monad: unit combined with
flatMap or compose, or unit with map and join.



257Summary
 Each monad has a set of essential primitives and its own set of additional combi-
nators, and the interaction of all of these combined makes the behavior of each
monad unique.

 The monad contract doesn’t specify what is happening between the lines of a for-
comprehension, only that whatever is happening satisfies the monadic laws.



Applicative and
traversable functors
In the previous chapter on monads, we saw how a lot of the functions we’ve been
writing for different data types and combinator libraries can be expressed in terms
of a single interface, Monad. Monads provide powerful functionality, as we’ve seen
by the fact that we can use flatMap to write what seems like an imperative program
in a purely functional way.

 In this chapter, we learn about a related abstraction, the applicative functor, which
is less potent than the monad but more general (and hence more common). The
process of arriving at applicative functors also provides some insight into discovering
such abstractions, and we use some of these ideas to uncover another useful
abstraction, the traversable functor. It may take some time for the full significance

This chapter covers
 Defining the applicative and traversable functor 

algebraic structures

 Applicatives and monads: relationship, 
differences, and trade-offs

 Proving applicative laws

 Working with traversable structures

 Monad composition using the monad transformer
258
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and usefulness of these abstractions to sink in, but you’ll see them popping up again
and again in your daily work with functional programming if you pay attention.

12.1 Generalizing monads for reusability
By now, we’ve seen various operations, like sequence and traverse, implemented
many times for different monads; and in chapter 11, we generalized the implementa-
tions to work for any monad F. This section identifies an alternative abstraction that is
less powerful but boasts excellent benefits over its peer, the monad. Before we carry
on, let’s recap the combinators as mentioned earlier:

fun <A> sequence(lfa: List<Kind<F, A>>): Kind<F, List<A>> =
traverse(lfa) { fa -> fa }

fun <A, B> traverse(
la: List<A>,
f: (A) -> Kind<F, B>

): Kind<F, List<B>> =
la.foldRight(

unit(List.empty<B>()),
{ a: A, acc: Kind<F, List<B>> ->

map2(f(a), acc) { b: B, lb: List<B> -> Cons(b, lb) }
}

)

Here, the implementation of traverse is using map2 and unit, and we’ve seen that
map2 can be implemented in terms of flatMap:

fun <A, B, C> map2(fa: Kind<F, A>, fb: Kind<F, B>, f: (A, B) -> C) =
flatMap(fa) { a -> map(fb) { b -> f(a, b) } }

What you may not have noticed is that a large number of the helpful combinators on
Monad can be defined using only unit and map2. The traverse combinator is one
example—it doesn’t call flatMap directly and is therefore agnostic to whether map2 is
primitive or derived. Furthermore, for many data types, map2 can be implemented
directly, without using flatMap.

 All this suggests a variation on the Monad interface. Monad has flatMap and unit
primitives and provides a derived map2 combinator. But what happens if we provide
unit and map2 as primitives, instead? The result is that we obtain a different abstraction
called an applicative functor. It is less potent than a monad, but we will discover its ben-
efits shortly. 
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12.2 Applicatives as an alternative abstraction 
to the monad
Applicative functors can be represented by a new interface called Applicative in
which map2 and unit are the primitives. This interface can be expressed in terms of an
alternative set of primitives, apply and unit, from which Applicative gets its name.
This section explores the interface definition in terms of its primitives and how it
relates to the monad. We begin by having a closer look at Applicative in terms of
map2 and unit.

interface Applicative<F> : Functor<F> {

fun <A, B, C> map2(
fa: Kind<F, A>,
fb: Kind<F, B>,
f: (A, B) -> C

): Kind<F, C>

fun <A> unit(a: A): Kind<F, A>

override fun <A, B> map(
fa: Kind<F, A>,
f: (A) -> B

): Kind<F, B> =          
map2(fa, unit(Unit)) { a, _ -> f(a) }          

fun <A, B> traverse(
la: List<A>,
f: (A) -> Kind<F, B>

): Kind<F, List<B>> =    
la.foldRight(

unit(List.empty<B>()),
{ a: A, acc: Kind<F, List<B>> ->

map2(f(a), acc) { b: B, lb: List<B> -> Cons(b, lb) }
}

)
}

This establishes that, like monads, all applicatives are functors. We implement map in
terms of map2 and unit, as we’ve done before for particular data types. The implemen-
tation is suggestive of laws for Applicative that we’ll examine later since we expect
this implementation of map to preserve the structure as dictated by the Functor law.
Figure 12.1 shows the relationship between the Applicative and Functor.

 Note that the implementation of traverse is unchanged. We can similarly move
other combinators into Applicative that don’t depend directly on flatMap or join.

 
 

Listing 12.1 Applicative has map2 and unit primitives

The map combinator 
from Functor is 
implemented in 
terms of unit and 
map2.

Invokes the unit 
primitive with a 
dummy value Unit

The traverse 
combinator remains 
unchanged.
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EXERCISE 12.1

Transplant the implementations of the following combinators from Monad into Appli-
cative using only map2 and unit or methods implemented in terms of them:

fun <A> sequence(lfa: List<Kind<F, A>>): Kind<F, List<A>> =

SOLUTION_HERE()

fun <A> replicateM(n: Int, ma: Kind<F, A>): Kind<F, List<A>> =

SOLUTION_HERE()

fun <A, B> product(
ma: Kind<F, A>,
mb: Kind<F, B>

): Kind<F, Pair<A, B>> =

SOLUTION_HERE()

<<Interface>>

Applicative<F>

<<Interface>>

Functor<F>

+     map(fa: Kind<F, A>, f: (A)fun -> B): Kind<F, B>

+     <A,B,C> map2(fa: Kind<F, A>, fb: Kind<F, B>, f: (A,B)fun -> C): Kind<F, C>

+     <A> unit(a: A): Kind<F, A>fun

+     traverse(la: List<A>, f: (A)fun -> Kind<F, B>): Kind<F, List<B>>

Figure 12.1 Applicatives are functors that implement map in terms of map2 and unit primitives.
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EXERCISE 12.2

Hard: As stated earlier in this section, the name applicative comes from the fact that
we can formulate the Applicative interface using an alternate set of primitives, unit
and apply, rather than unit and map2. Show that this formulation is equivalent in
expressiveness by defining map2 and map in terms of unit and apply. Also establish
that apply can be implemented in terms of map2 and unit, as shown in figure 12.2.

interface Applicative<F> : Functor<F> {

fun <A, B> apply(
fab: Kind<F, (A) -> B>,
fa: Kind<F, A>

): Kind<F, B> =

SOLUTION_HERE("Define in terms of map2 and unit")

fun <A> unit(a: A): Kind<F, A>

override fun <A, B> map(
fa: Kind<F, A>,
f: (A) -> B

): Kind<F, B> =

SOLUTION_HERE("Define in terms of apply and unit")

fun <A, B, C> map2(
fa: Kind<F, A>,
fb: Kind<F, B>,
f: (A, B) -> C

): Kind<F, C> =

SOLUTION_HERE("Define in terms of apply and unit")
}

<<Interface>>

Applicative<F>: Functor<F>

+     <A, B> traverse(la: List<A>, f: (A)fun -> Kind<F, B>): Kind<F, List<B>>

+     <A> sequence(lfa: List<Kind<F, A>>): Kind<F, List<A>>fun

+     <A> replicateM(n: Int, ma: Kind<F, A>): Kind<F, List<A>>fun

+     <A B> product(fa: Kind<F, A>, fb: Kind<F, B>): Pair<Kind<F, A>, Kind<F, B>>fun

+     <A,B> apply(fab: Kind<F, (A)fun -> B, fa: Kind<F, A>): Kind<F, B>

+     <A,B,C> map2(fa: Kind<F, A>, fb: Kind<F, B>, f: (A,B)fun -> C): Kind<F, C>

+     <A> unit(a: A): Kind<F, A>fun

Figure 12.2 The applicative functor is defined in terms of apply, map2, and unit primitives.
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EXERCISE 12.3

The apply method is useful for implementing map3, map4, and so on, and the pattern
is straightforward. Implement map3 and map4 using only the unit and apply func-
tions. Note that given f: (A, B) -> C, f.curried() has type (A) -> (B) -> C. These
handy curried extension methods are provided by Arrow on functions up to arity 22
(the number of parameters that a function takes—in this case, 22) in the arrow-syntax
module.

fun <A, B, C, D> map3(
fa: Kind<F, A>,
fb: Kind<F, B>,
fc: Kind<F, C>,
f: (A, B, C) -> D

): Kind<F, D> =

SOLUTION_HERE()

fun <A, B, C, D, E> map4(
fa: Kind<F, A>,
fb: Kind<F, B>,
fc: Kind<F, C>,
fd: Kind<F, D>,
f: (A, B, C, D) -> E

): Kind<F, E> =

SOLUTION_HERE()

Additionally, we can now make Monad<F> a subtype of Applicative<F>, as shown in
figure 12.3, by providing the default implementation of map2 in terms of flatMap.
This tells us that all monads are applicative functors, and we don’t need to provide sepa-
rate Applicative instances for all our data types that are already monads. Let’s take a
closer look at this.

interface Monad<F> : Applicative<F> {

fun <A, B> flatMap(fa: Kind<F, A>, f: (A) -> Kind<F, B>): Kind<F, B> =
join(map(fa, f))                  

fun <A> join(ffa: Kind<F, Kind<F, A>>): Kind<F, A> =
flatMap(ffa) { fa -> fa }

fun <A, B, C> compose(
f: (A) -> Kind<F, B>,
g: (B) -> Kind<F, C>

): (A) -> Kind<F, C> =
{ a -> flatMap(f(a), g) }

Listing 12.2 Monad as a subtype of Applicative

A minimal 
implementation 
of Monad must 
implement unit 
and provide either 
flatMap, or join 
and map.
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override fun <A, B> map(     
fa: Kind<F, A>,
f: (A) -> B

): Kind<F, B> =
flatMap(fa) { a -> unit(f(a)) }

override fun <A, B, C> map2(    
fa: Kind<F, A>,
fb: Kind<F, B>,
f: (A, B) -> C

): Kind<F, C> =
flatMap(fa) { a -> map(fb) { b -> f(a, b) } }

}

map combinator 
overridden from 
Functor

map2 combinator 
overridden from 
Applicative

<<Interface>>

Applicative<F>

+     <A,B> apply(fab: Kind<F, (A)fun -> B, fa: Kind<F, A>): Kind<F, B>

+     <A,B,C> map2(fa: Kind<F, A>, fb: Kind<F, B>, f: (A,B)fun -> C): Kind<F, C>

+     <A> unit(a: A): Kind<F, A>fun

<<Interface>>

Functor<F>

+     map(fa: Kind<F, A>, f: (A)fun -> B): Kind<F, B>

<<Interface>>

Monad<F>

+     <A,B> flatMap(fa: Kind<F, A>, f: (A)fun -> Kind<F, B>): Kind<F, B>

+     <A,B> join(ffa: Kind<F, Kind<F, A>>): Kind<F, A>fun

+     <A,B,C> map2(fa: Kind<F, A>, fb: Kind<F, B>, f: (A,B)fun -> C): Kind<F, C>

+     map(fa: Kind<F, A>, f: (A)fun -> B): Kind<F, B>

Figure 12.3 Monads are applicative functors.
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So far, we’ve merely been rearranging the functions of our API and following the type
signatures. Let’s take a step back to understand the difference in expressiveness
between Monad and Applicative and what it all means in the greater context. 

12.3 The difference between monads and 
applicative functors
The monad interface has capabilities that aren’t present in the applicative. This sec-
tion explores these differences more closely by way of concrete examples, clearly
showing where the applicative falls short of the monad.

 In the last chapter, we noted that several minimal sets of operations defined a
Monad:

 unit and flatMap
 unit and compose
 unit, map, and join

Are the Applicative operations unit and map2 yet another minimal set of operations
for the monad? No. There are monadic combinators such as join and flatMap that
simply can’t be implemented with just map2 and unit. For convincing proof of this,
take a closer look at join:

fun <A> join(ffa: Kind<F, Kind<F, A>>): Kind<F, A>

We can see that unit and map2 have no hope of implementing this function by just
reasoning algebraically. The join function “removes a layer” of F. Conversely, the unit
function only lets us add an F layer, and map2 lets us apply a function within F without
flattening any layers. By the same argument, we can see that Applicative has no
means of implementing flatMap, either.

 So Monad is clearly adding some extra capabilities beyond Applicative. But what
exactly is it adding? Let’s look at some concrete examples to make this clearer.

12.3.1 The Option applicative vs. the Option monad

This section uses the Option type to demonstrate the difference between monads and
applicatives. Specifically, we’ll look at the difference in behavior between the map2 and
flatMap functions applied to multiple instances of this type.

 Suppose we’re using Option to work with the results of lookups in two Map objects.
If we simply need to combine the results from two (independent) lookups, map2 is
acceptable.

val F: Applicative<ForOption> = TODO()

val employee = "Alice"
val departments: Map<String, String> = mapOf("Alice" to "Tech")   
val salaries: Map<String, Double> = mapOf("Alice" to 100_000.00)   

Listing 12.3 Independent lookups using Option applicative

Department, indexed
by employee name Salaries,

indexed 
employe
name
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val o: Option<String> =
F.map2(

departments[employee].toOption(),
salaries[employee].toOption()

) { dept, salary ->
"$employee in $dept makes $salary per year."   

}.fix()     

Here we’re doing two independent lookups, but we merely want to combine their
results within the Option context. If we want the result of one lookup to affect what lookup
we do next, then instead we need flatMap or join, as the following listing shows.

val employee = "Bob"
val idsByName: Map<String, Int> = mapOf("Bob" to 101)     
val departments: Map<Int, String> = mapOf(101 to "Sales")    
val salaries: Map<Int, Double> = mapOf(101 to 100_000.00)   

val o: Option<String> =
idsByName[employee].toOption().flatMap { id ->   

F.map2(
departments[id].toOption(),
salaries[id].toOption()

) { dept, salary ->
"$employee in $dept makes $salary per year."

}.fix()
}

Here, departments is a Map<Int, String> indexed by employee id, which in turn is an
Int. If we want to print out Bob’s department and salary, we need to first resolve
Bob’s name to his id and then use this id to do respective lookups in departments
and salaries. We might say that with Applicative, the structure of our computation
is fixed; with Monad, the results of previous computations may influence what compu-
tations to run next. 

12.3.2 The Parser applicative vs. the Parser monad

Let’s look at one more example. Suppose we’re parsing a file of comma-separated val-
ues with two columns: date and temperature. Here’s an example file:

2010-01-01,25
2010-01-02,28
2010-01-03,42
2010-01-04,53

If we know ahead of time that the file will have the date and temperature columns in
that order, we can encode this order in the Parser we construct.

Listing 12.4 Dependent lookups using the Option monad

Returns a human-
readable string if 
both department 
and salary are found

Downcasts from OptionOf<String> 
to Option<String>

Employee ID, indexed
by employee name Department, 

indexed by 
employee ID

Salaries, 
indexed by 
employee ID

Looks up Bob’s id 
and then uses the 
result to do further 
lookups
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data class Row(val date: Date, val temp: Double)

val F: Applicative<ForParser> = TODO()

val date: Parser<Date> = TODO()
val temp: Parser<Double> = TODO()

val row: Parser<Row> = F.map2(date, temp) { d, t -> Row(d, t) }.fix()
val rows: Parser<List<Row>> = row.sep("\n")

If we don’t know the order of the columns and need to extract this information from
the header, then we need flatMap. Here’s an example file where the columns happen
to be in the opposite order:

#Temperature,Date
25,2010-01-01
28,2010-01-02
42,2010-01-03
53,2010-01-04

To parse this format, where we must dynamically choose our Row parser based on first
parsing the header (the first line starting with #), we need flatMap.

val F: Monad<ForParser> = TODO()

val header: Parser<Parser<Row>> = TODO()
val rows: Parser<List<Row>> =

F.flatMap(header) { row: Parser<Row> -> row.sep("\n") }.fix()

The header is parsed, yielding a Parser<Row> result. A parser is then used to parse the
subsequent rows. Since the order of the columns is not known up front, the Row parser
is selected dynamically based on the result of parsing the header.

 There are many ways to state the distinction between Applicative and Monad. Of
course, the type signatures tell us all we really need to know, and we can understand
the difference between the interfaces algebraically. But here are a few other common
ways of stating the difference:

 Applicative computations have fixed structure and simply sequence effects, whereas
monadic computations may choose structure dynamically, based on the result
of previous effects.

 An applicative constructs context-free computations, while monads allow for con-
text sensitivity. For example, a monadic parser allows for context-sensitive gram-
mars, while an applicative parser can only handle context-free grammars.

 Monads make effects first-class in that they may be generated at run time rather
than chosen ahead of time by the program. We saw this in our Parser example

Listing 12.5 Statically structured file parsing

Listing 12.6 Dynamically structured file parsing
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in listing 12.6, where we generated our Parser<Row> as part of the act of parsing
and used this Parser<Row> for subsequent parsing.

 Applicative functors compose, whereas monads generally don’t.

12.4 The advantages of applicative functors
Up to now, we have learned that the applicative is less potent than the monad. But why
would we bother using the applicative if it lacks capabilities provided by the monad?
The truth is that sometimes we don’t need these additional capabilities and can achieve
our purposes equally well using the simpler abstraction provided by the applicative.
Let’s look at a few reasons why the Applicative interface is so important:

 In general, it’s preferable to implement combinators like traverse using as few
assumptions as possible. It’s better to assume that a data type can provide map2
than flatMap. Otherwise, we’d have to write a new traverse every time we
encountered a type that’s Applicative but not Monad! We’ll look at examples of
such types shortly.

 Because Applicative is “weaker” than Monad, this gives the interpreter of applica-
tive effects more flexibility. To take just one example, consider parsing. If we
describe a parser without resorting to flatMap, it implies that the structure of our
grammar is determined before we begin parsing. Therefore, our interpreter (or
runner) of parsers has more information about what it will be doing up front. It’s
free to make additional assumptions and possibly use a more efficient implemen-
tation strategy for running the parser based on this known structure. Adding
flatMap is powerful, but it means we’re generating our parsers dynamically, so
the interpreter may be more limited in what it can do. Power comes at a cost.

 The composability of applicatives is in contrast with the monad’s inability to
compose. We’ll see how this works in section 12.7.

12.4.1 Not all applicative functors are monads

Let’s look at two examples of data types that are applicative functors but not monads.
We will examine the Stream and Either types as points in case. These are certainly not
the only examples; if you do more functional programming, you’ll undoubtedly dis-
cover or create lots of data types that are applicative but not monadic.

“Effects” in functional programming
Functional programmers often informally call type constructors like Par, Option,
List, Parser, Gen, and so on effects. This usage is distinct from the term side effect,
which implies some referential transparency violation. These types are called effects
because they augment common values with “extra” capabilities. So, Par adds the
ability to define parallel computation, Option adds the possibility of failure, and so
on. We sometimes use the terms monadic effects or applicative effects to mean types
with an associated Monad or Applicative instance. 
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THE APPLICATIVE FOR STREAMS

The first example we’ll look at is a potentially infinite stream. We can define map2 and
unit for such streams, but not flatMap:

val streamApplicative = object : Applicative<ForStream> {

override fun <A> unit(a: A): StreamOf<A> =
Stream.continually(a)     

override fun <A, B, C> map2(
sa: StreamOf<A>,
sb: StreamOf<B>,
f: (A, B) -> C

): StreamOf<C> =
sa.fix().zip(sb.fix()).map { (a, b) -> f(a, b) }    

}

The idea behind this applicative is to combine corresponding elements of two streams
via zipping.

EXERCISE 12.4

In your own words, what is the meaning of sequence on streamApplicative? Special-
izing the signature of sequence to Stream, we have the following:

fun <A> sequence(lsa: List<Stream<A>>): Stream<List<A>>

VALIDATION: AN EITHER VARIANT THAT ACCUMULATES ERRORS

Chapter 4 looked at the Either data type and considered how such a data type would
have to be modified to allow us to report multiple errors. For a concrete example,
think of validating a web form submission. If we only reported the first error, the user
would have to repeatedly submit the form and fix one error at a time.

 This is the situation with Either if we use it monadically. First, let’s write the
monad for the partially applied Either type.

EXERCISE 12.5

Write a monad instance for Either.

fun <E> eitherMonad(): EitherMonad<E> =

SOLUTION_HERE()

Next, we introduce a web form that will represent a successful validation:

data class WebForm(val f1: String, val f2: Date, val f3: String)

Infinite and 
constant stream 
of A elements

Combines 
elements of 
two streams 
with f
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Now consider what happens in a sequence of flatMap calls like the following, where
each of the functions validName, validDateOfBirth, and validPhone has type
Either<String, T> for a given type T:

val F = eitherMonad<String>()
F.flatMap(validName(name)) { f1: String ->

F.flatMap(validDateOfBirth(dob)) { f2: Date ->
F.map(validPhone(phone)) { f3: String ->

WebForm(f1, f2, f3)
}

}
}

If validName fails with an error, then validDateOfBirth and validPhone will be short-
circuited and won’t even run. The computation with flatMap inherently establishes a
linear chain of dependencies. The variable f1 will never be bound to anything unless
validName succeeds.

 Now consider the following example using an applicative with map3:

val A = eitherApplicative<String>()
A.map3(

validName(name),
validDateOfBirth(dob),
validPhone(phone)

) { f1, f2, f3 ->
WebForm(f1, f2, f3)

}

Here, we’re beginning to move in the right direction. No dependencies are implied
among the three expressions passed to the map3 function, and in principle, we can
imagine collecting any errors from each Either into a List. If we compare that to
using flatMap on the Either monad, it will halt after the first error. But map3 alone
won’t get us across the line. There is a limitation with the Either data type: it doesn’t
retain all possible errors that could occur. We would ultimately still end up with an
Either<String, T>, with String representing only a single error condition.

 Let’s invent a new data type—call it Validation—that is much like Either, except
that it can explicitly accumulate more than one error.

sealed class Validation<out E, out A> : ValidationOf<E, A>

data class Failure<E>(
val head: E,
val tail: List<E> = emptyList()

) : Validation<E, Nothing>()

data class Success<A>(val a: A) : Validation<Nothing, A>()

Listing 12.7 Validation representing multiple errors
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EXERCISE 12.6

Write an Applicative instance for Validation that accumulates errors in Failure.
Note that in the case of Failure there is always at least one error stored in head. The
rest of the errors accumulate in tail.

fun <E> validation(): Applicative<ValidationPartialOf<E>> =

SOLUTION_HERE()

Let’s see how we can use this new applicative in our web form example from earlier.
The data will likely be collected from the user as strings, and we must make sure the
data meets a particular specification. If it doesn’t, we must list errors to the user, indi-
cating how to fix the problem. The specification might say that name can’t be empty,
birthdate must be in the form "yyyy-MM-dd", and phoneNumber must contain exactly
10 digits.

fun validName(name: String): Validation<String, String> =
if (name != "") Success(name)
else Failure("Name cannot be empty")

fun validDateOfBirth(dob: String): Validation<String, Date> =
try {

Success(SimpleDateFormat("yyyy-MM-dd").parse(dob))
} catch (e: Exception) {

Failure("Date of birth must be in format yyyy-MM-dd")
}

fun validPhone(phone: String): Validation<String, String> =
if (phone.matches("[0-9]{10}".toRegex())) Success(phone)
else Failure("Phone number must be 10 digits")

Finally, to validate an entire web form, we can simply construct a WebForm using map3
on the applicative instance.

val F = validationApplicative<String>()

fun validatedWebForm(
name: String,
dob: String,
phone: String

): Validation<String, WebForm> {
val result = F.map3(

validName(name),

Listing 12.8 Returning the Validation data type

Listing 12.9 Applicative validation of multiple fields
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validDateOfBirth(dob),
validPhone(phone)

) { n, d, p -> WebForm(n, d, p) }
return result.fix()

}

If any or all of the functions produce a Failure, the validatedWebForm method will
return all the error conditions combined in a single Failure instance.

 We have now seen the crucial difference in behavior between a monad and an
applicative. The applicative might not be as powerful as the monad but can be a
handy device when interdependency of results is not a requirement. 

12.5 Reasoning about programs through 
the applicative laws
As we’ve seen before, algebraic abstractions can be validated through proofs expressed
by specific laws that describe them. This helps us understand what each abstraction
achieves and helps us mathematically verify their behavior. The applicative functor is
no different from the other abstractions, so let’s establish some laws for it.

 Keep in mind that there are various other ways of representing these laws; this is
only one of them. We can verify that these laws are satisfied by the data types we’ve
been working with so far. The easiest one is the Option type.

12.5.1 Laws of left and right identity

What sort of laws should we expect applicative functors to obey? Well, it goes without
saying that we expect them to obey the functor laws because an applicative is a functor.

map(v, id) == v

map(map(v, g), f) == map(v, (f compose g))

Some other laws may be implied for applicative functors because of how we’ve imple-
mented map in terms of map2 and unit. Recall our definition of map:

override fun <A, B> map(
fa: Kind<F, A>,
f: (A) -> B

): Kind<F, B> =
map2(fa, unit(Unit)) { a, _ -> f(a) }

If we look closer, there is something somewhat arbitrary about this definition—we
could just as quickly have put unit on the left side of the call to map2:

override fun <A, B> map(
fa: Kind<F, A>,
f: (A) -> B

): Kind<F, B> =
map2(unit(Unit), fa) { _, a -> f(a) }

Listing 12.10 Applicative is a functor, so functor laws apply.
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The first two laws for Applicative might be summarized by saying that both these
implementations of map respect the functor laws. In other words, map2 of some fa:
F<A> with unit preserves the structure of fa. We’ll call these the left and right identity
laws (shown here in the first and second lines of code, respectively).

map2(unit(Unit), fa) { _, a -> a }

map2(fa, unit(Unit)) { a, _ -> a }

12.5.2 Law of associativity

To grasp the law of associativity, let’s take a closer look at the signature of map3:

fun <A, B, C, D> map3(
fa: Kind<F, A>,
fb: Kind<F, B>,
fc: Kind<F, C>,
f: (A, B, C) -> D

): Kind<F, D>

We can quickly implement map3 using apply and unit, but let’s think about how we
could define it in terms of map2. We have to combine our effects two at a time, and we
seem to have two choices: we can combine fa and fb and then combine the result
with fc, or we can associate the operation the other way, grouping fb and fc together
and combining the result with fa. The law of associativity for applicative functors tells
us that we should get the same result either way. But wait: doesn’t that remind you of
the law of associativity that we discovered for both monoids and monads?

combine(combine(a, b), c) == combine(a, combine(b, c))

compose(compose(f, g), h) == compose(f, compose(g, h))

The law of associativity for applicative functors is the same general idea. If we didn’t
have this law, we’d need two versions of map3, perhaps map3L and map3R, depending on
the grouping. We’d get an explosion of other combinators based on having to distin-
guish between different groupings.

 Lucky for us, this is not the case. By restating the law of associativity in terms of
product, we can prove that it is true for applicatives. (Applicative can also be formu-
lated in terms of product, map, and unit.) Recall that product just combines two
effects into a pair, using map2:

fun <A, B> product(
ma: Kind<F, A>,
mb: Kind<F, B>

): Kind<F, Pair<A, B>> =
map2(ma, mb) { a, b -> a to b }

Listing 12.11 Left and right identity laws for Applicative
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And if we have pairs nested on the right, we can always flip them into pairs nested on
the left using something like the following assoc function:

fun <A, B, C> assoc(p: Pair<A, Pair<B, C>>): Pair<Pair<A, B>, C> =
(p.first to p.second.first) to p.second.second

So, using the combinators product and assoc, the law of associativity for applicative
functors can be expressed as follows:

product(product(fa, fb), fc) ==
map(product(fa, product(fb, fc)), ::assoc)

Note that calls to product are left associated on one side and right associated on the
other side of the equality sign. We’re simply mapping with the assoc function to
realign the resulting tuples on the right side. The net result is something that looks
more familiar to us. 

product(product(fa, fb), fc) == product(fa, product(fb, fc))

12.5.3 Law of naturality

Our final law for applicative functors is naturality. To illustrate how this works, let’s
look at a simple example using Option:

val A: Applicative<ForOption> = TODO()

data class Employee(val name: String, val id: Int)
data class Pay(val rate: Double, val daysPerYear: Int)

fun format(oe: Option<Employee>, op: Option<Pay>): Option<String> =
A.map2(oe, op) { e, p ->

"${e.name} makes ${p.rate * p.daysPerYear}"
}.fix()

val employee = Employee("John Doe", 1)
val pay = Pay(600.00, 240)
val message: Option<String> =

format(Some(employee), Some(pay))

Here we’re applying a transformation to the result of map2—we extract the name from
Employee and the yearly wage from Pay. But we could just as well apply these transforma-
tions separately before calling format, passing an Option<String> and Option<Double>
rather than an Option<Employee> and Option<Pay>. This might be a reasonable
refactor so that format doesn’t need to have any intimate knowledge of how the
Employee and Pay data types are represented:

fun format(oe: Option<String>, op: Option<Double>): Option<String> =
F.map2(oe, op) { e, p -> "$e makes $p" }.fix()

Listing 12.12 Law of associativity in terms of the applicative
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val maybeEmployee = Some(Employee("John Doe", 1))
val maybePay = Some(Pay(600.00, 240))

val message: Option<String> =
format(

F.map(maybeEmployee) { it.name }.fix(),
F.map(maybePay) { it.rate * it.daysPerYear }.fix()

)

We’re applying the transformation to extract the name and pay fields before calling
map2. We expect this program to have the same meaning as before, and this sort of
pattern comes up frequently. When working with Applicative effects, we can gener-
ally apply transformations before or after combining values with map2. The naturality law
states that it doesn’t matter; we get the same result either way.

 With this new understanding gained by the example, let’s look at how we can for-
malize the definition of this law. Consider that we have a function called productF
that produces the product of two functions, as well as the definition of product that
provides the product of values:

fun <I1, O1, I2, O2> productF(
f: (I1) -> O1,
g: (I2) -> O2

): (I1, I2) -> Pair<O1, O2> =
{ i1, i2 -> f(i1) to g(i2) }

fun <A, B> product(
ma: Kind<F, A>,
mb: Kind<F, B>

): Kind<F, Pair<A, B>> =
map2(ma, mb) { a, b -> a to b }

We can now state the law of naturality more formally with the following declaration:

map2(fa, fb, productF(f, g)) == product(map(fa, f), map(fb, g))

The applicative laws are not surprising or profound. Like the monad laws, these are
simple sanity checks that the applicative functor works in the way we’d expect. They
ensure that unit, map, and map2 behave consistently and reasonably with each other.

EXERCISE 12.7

Hard: Prove that all monads are applicative functors by showing that if the monad
laws hold, the Monad implementations of map2 and map satisfy the applicative laws.
Prove this by using the left identity and right identity applicative laws.
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EXERCISE 12.8

Just as we can take the product of two monoids A and B to give the monoid (A, B), we
can take the product of two applicative functors. Implement this function:

fun <F, G> product(
AF: Applicative<F>,
AG: Applicative<G>

): Applicative<ProductPartialOf<F, G>> =

SOLUTION_HERE()

EXERCISE 12.9

Hard: Applicative functors also compose another way! If Kind<F, A> and Kind<G, A>
are applicative functors, then so is Kind<F, Kind<G, A>>. Implement the following
function:

fun <F, G> compose(
AF: Applicative<F>,
AG: Applicative<G>

): Applicative<CompositePartialOf<F, G>> =

SOLUTION_HERE()

EXERCISE 12.10

Hard: Try to write compose that composes two Monads. It’s not possible, but it is
instructive to attempt it and understand why this is the case.

fun <F, G> compose(
mf: Monad<F>,
mg: Monad<G>

): Monad<CompositePartialOf<F, G>> =

SOLUTION_HERE()
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12.6 Abstracting traverse and sequence using 
traversable functors
In this chapter, we discovered applicative functors by noticing that map2 didn’t depend
directly on flatMap, a function that belongs exclusively to the monad. Other func-
tions exist that may be isolated similarly. This section focuses on two such functions,
traverse and sequence, that also don’t depend on flatMap. We take this a step fur-
ther and spot yet another abstraction by generalizing these two functions. Take a
closer look at the signatures of these combinators:

fun <A, B> traverse(l: List<A>, f: (A) -> Kind<F, B>): Kind<F, List<B>>

fun <A> sequence(lfa: List<Kind<F, A>>): Kind<F, List<A>>

Any time you see a concrete type constructor like List showing up in an abstract inter-
face like Applicative, you may want to ask, “What happens if I abstract over this type
constructor?” Recall from chapter 10 that several data types other than List are Fold-
able. Are there data types other than List that are traversable? Yes, of course!

EXERCISE 12.11

On the Applicative interface, implement sequence over a Map rather than over a List.

fun <K, V> sequence(
mkv: Map<K, Kind<F, V>>

): Kind<F, Map<K, V>> =

SOLUTION_HERE()

That is all well and good, but traversable data types are too numerous for us to write
specialized sequence and traverse methods for each. We need a new interface to con-
tain generalized versions of these functions, which we will call Traversable:

interface Traversable<F> : Functor<F> {      

fun <G, A, B> traverse(
fa: Kind<F, A>,
AG: Applicative<G>,        
f: (A) -> Kind<G, B>

): Kind<G, Kind<F, B>> =
sequence(map(fa, f), AG)

fun <G, A> sequence(
fga: Kind<F, Kind<G, A>>,
AG: Applicative<G>         

): Kind<G, Kind<F, A>> =      
traverse(fga, AG) { it }

}

The Traversable 
interface is a 
Functor.

Injects an Applicative<G> 
instance to be used during 
the implementation of 
traversable instances

Flips a Kind<F, Kind<G, A>> 
into a Kind<G, Kind<F, A>>
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The interesting operation here is sequence. Look at its signature closely. It takes
Kind<F, Kind<G, A>> and swaps the order of F and G, as long as G is an applicative
functor. This is a rather abstract, algebraic notion. We’ll get to what it means in a min-
ute, but first, let’s look at a few instances of Traversable.

NOTE Applicative instances are injected into traverse and sequence, so
we have an applicative functor in scope when writing traversable instances
of our own.

EXERCISE 12.12

Hard: Write Traversable instances for Option, List, and Tree.

@higherkind
data class Tree<out A>(val head: A, val tail: List<Tree<A>>) : TreeOf<A>

fun <A> optionTraversable(): Traversable<ForOption> =

SOLUTION_HERE()

fun <A> listTraversable(): Traversable<ForList> =

SOLUTION_HERE()

fun <A> treeTraversable(): Traversable<ForTree> =

SOLUTION_HERE()

We now have traversable instances for List, Option, and Tree. What does this general-
ized traverse/sequence mean? Let’s try plugging in some concrete type signatures
for calls to sequence. We can speculate about what these functions do, just based on
their signatures:

 (List<Option<A>>) -> Option<List<A>>—This is a call to Traversable<For-
List>.sequence() with Option as the Applicative. It returns None if any of the
input List is None; otherwise, it returns the original List wrapped in Some.

 (Tree<Option<A>>) -> Option<Tree<A>>—This is a call to Traversable<For-
Tree>.sequence() with Option as the Applicative. It returns None if any of the
input Tree is None; otherwise, it returns the original Tree wrapped in Some.

 (Map<K, Par<A>>) -> Par<Map<K, A>>—This is a call to Traversable<For-
Map>.sequence() with Par as the Applicative. It produces a parallel computa-
tion that evaluates all values of the map in parallel.

It turns out that a startling number of operations can be defined in the most general way
possible in terms of sequence and/or traverse. We’ll explore these in the next section.
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 A traversal is similar to a fold. Both take some data structure and apply a function
to the data within to produce a result. The difference is that traverse preserves the
original structure, whereas foldMap discards the structure and replaces it with the
operations of a monoid. For instance, look at the signature (Tree<Option<A>>) ->
Option<Tree<A>>. We’re preserving the Tree structure, not merely collapsing the val-
ues using some monoid. 

12.7 Using Traversable to iteratively transform higher kinds
In this book, we’ve encountered traverse and sequence on several higher kinds such
as the Either and Stream types. In each case, they displayed the same kind of behav-
ior. Both functions are beneficial in scenarios where iteration of a structure is
required to bring about some transformation on that kind.

 Our Traversable interface is now beginning to take shape and has generalized
traverse and sequence functions. In addition, we’ve already discovered that
Traversable is a Functor. This implies that we also have map at our disposal. In fact, if
we take this a step further and implement map in terms of traverse, then traverse
becomes a generalization of map. For this reason, we often call them traversable functors.

 Now let’s explore the large set of operations that can be implemented quite gener-
ally using Traversable. We’ll only scratch the surface here, but if you’re interested,
feel free to do some exploring of your own.

EXERCISE 12.13

Hard: Let’s begin by implementing map in terms of traverse as a method on
Traversable<F>. Note that when implementing map, you can call traverse with your
choice of Applicative<G>.

interface Traversable<F> : Functor<F> {

override fun <A, B> map(
fa: Kind<F, A>,
f: (A) -> B

): Kind<F, B> =

SOLUTION_HERE()
}

Next, we examine what the relationship is between Traversable and Foldable. This
will expose an unexpected connection between Applicative and Monoid.
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12.7.1 From monoids to applicative functors

We’ve just learned that traverse is more general than map. Next we’ll learn that
traverse can also express foldMap and, by extension, foldLeft and foldRight! Take
another look at the signature of traverse:

fun <G, A, B> traverse(
fa: Kind<F, A>,
AP: Applicative<G>,
f: (A) -> Kind<G, B>

): Kind<G, Kind<F, B>>

Suppose that our G is a type constructor ConstInt that forces any type to Int, so that
ConstInt<A> throws away its type argument A and just gives us Int:

typealias ConstInt<A> = Int

Then, in the type signature for traverse, if we instantiate G to be ConstInt, the appli-
cative is no longer required, and the signature becomes

fun <A, B> traverse(fa: Kind<F, A>, f: (A) -> Int): Int

This is now starting to look suspiciously like foldMap from Foldable:

fun <A, B> foldMap(fa: Kind<F, A>, m: Monoid<B>, f: (A) -> B): B

If the kind F in traverse is something like List, then what we need to implement this
signature is a way of combining the Int values returned by f for each element of the
list, and a “starting” value for handling the empty list. In other words, we only need a
Monoid<Int>, and that’s easy to come by. In fact, given a constant functor like we have
here, we can turn any Monoid into an Applicative!

 If we were to generalize ConstInt to any M, not just Int, we would imagine it to be
something like the following pseudocode:

typealias Const<M, A> = M

As we’ve done before, we will use generated boilerplate code to express higher kinds
for a partially applied type constructor. A wrapper class called Const will be used as a
shim to smooth over any incompatibilities we might encounter.

@higherkind
data class Const<M, out A>(val value: M) : ConstOf<M, A>

This intermediary layer that Const provides gives us all we need to express our par-
tially applied type constructor through ConstPartialOf. We can now express our
monoid applicative using Const as follows.

Listing 12.13 Using a shim to generalize a type constructor
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fun <M> monoidApplicative(m: Monoid<M>): Applicative<ConstPartialOf<M>> =
object : Applicative<ConstPartialOf<M>> {

override fun <A> unit(a: A): ConstOf<M, A> = Const(m.nil)   

override fun <A, B, C> map2(
ma: ConstOf<M, A>,
mb: ConstOf<M, B>,
f: (A, B) -> C       

): ConstOf<M, C> =
Const(m.combine(ma.fix().value, mb.fix().value))  

}

This means Traversable can extend Foldable in addition to Functor. We can now
give Traversable a default implementation of foldMap in terms of traverse.

interface Traversable<F> : Functor<F>, Foldable<F> {    

fun <G, A, B> traverse(
fa: Kind<F, A>,
AP: Applicative<G>,
f: (A) -> Kind<G, B>

): Kind<G, Kind<F, B>>

override fun <A, M> foldMap(
fa: Kind<F, A>,
m: Monoid<M>,
f: (A) -> M

): M =
traverse(fa, monoidApplicative(m)) { a ->

Const<M, A>(f(a))                   
}.fix().value       

}

Note that Traversable now extends both Foldable and Functor, as demonstrated in
figure 12.4! Notably, Foldable itself can’t extend Functor. Even though it’s possible to
write map in terms of a fold for most foldable data structures like List, it’s not possible
in general.

EXERCISE 12.14

Answer, to your own satisfaction, the question of why it’s not possible for Foldable to
extend Functor. Can you think of a Foldable that isn’t a functor?

Listing 12.14 Turning Monoid into Applicative using a shim

Listing 12.15 Traversable extending Functor and Foldable

Discards
and uses
monoid’
value ins

Discards the f 
for combining

Combines ma and mb using the monoid’s
combine, wrapping the result in a Const shim

Traversable now 
implements both 
Functor and 
Foldable.

Wraps the 
transformed result 
in a Const shim

Downcasts the kind to Const 
and extracts its value
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So what is Traversable really useful for? We’ve seen practical applications of particu-
lar instances, such as turning a list of parsers into a parser that produces a list. But in
what kinds of cases do we want the generalization we’ve worked so hard to achieve?
What sort of generalized library does Traversable allow us to write?

12.7.2 Traversing collections while propagating state actions

The State applicative functor is particularly powerful. Using a State action to traverse
a collection, we can implement complex traversals that keep some internal state. In
other words, the State allows us to pass state along during the traversal of the ele-
ments of a collection while transforming it.

 An unfortunate amount of boilerplate is necessary to partially apply State in the
proper way, but traversing with State is common enough that we can write this code
once and for all and then forget about it. It begins with defining a state monad
instance that works with partially applied State of S.

<<Interface>>
Functor<F>

<<Interface>>
Foldable<F>

<<Interface>>
Traversable<F>

+ fun <A, B> map(
fa: Kind<F, A>,
f: (A)  > B-

): Kind<F, B>

+ fun <A, B> foldMap(
fa: Kind<F, A>,
m: Monoid<B>,
f: (A)  > B-

): B

+ fun <G, A, B> traverse(
la: List<A>,
AG: Applicative<G>,
f: (A)  > Kind<F, B>-

): Kind<F, List<B>>

+ fun <A, B> foldMap(
fa: Kind<F, A>,
m: Monoid<B>,
f: (A)  > B-

): B

Figure 12.4 The Traversable interface extends Foldable and Functor.
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typealias StateMonad<S> = Monad<StatePartialOf<S>>

fun <S> stateMonad() = object : StateMonad<S> {

override fun <A> unit(a: A): StateOf<S, A> =
State { s -> a to s }

override fun <A, B> flatMap(
fa: StateOf<S, A>,
f: (A) -> StateOf<S, B>

): StateOf<S, B> =
fa.fix().flatMap { f(it).fix() }

override fun <A, B, C> compose(
f: (A) -> StateOf<S, B>,
g: (B) -> StateOf<S, C>

): (A) -> StateOf<S, C> =
{ a -> join(map(f(a), g)) }

}

The type StateMonad<S> is nothing but an alias for Monad<StatePartialOf<S>>. We
implement all the relevant monadic methods for any partially applied stateMonad
instance of S.

 Next, the monad can be disguised as an applicative. This can be done by cloaking
the monad in an applicative that delegates its unit and map2 calls through to the
injected monad instance.

fun <S> stateMonadApplicative(m: StateMonad<S>) =
object : Applicative<StatePartialOf<S>> {

override fun <A> unit(a: A): Kind<StatePartialOf<S>, A> =
m.unit(a)           

override fun <A, B, C> map2(
fa: Kind<StatePartialOf<S>, A>,
fb: Kind<StatePartialOf<S>, B>,
f: (A, B) -> C

): Kind<StatePartialOf<S>, C> =
m.map2(fa, fb, f)      

override fun <A, B> map(
fa: Kind<StatePartialOf<S>, A>,
f: (A) -> B

): Kind<StatePartialOf<S>, B> =
m.map(fa, f)    

}

Listing 12.16 Monad for a partially applied state

Listing 12.17 Applicative that cloaks the state monad

Delegates the 
applicative unit 
call to monad m

Delegates the 
applicative map2 
call to monad m

Delegates the 
functor map call 
to monad m
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Now that we have written this code once, we can forget about it and use it to supply
the partially applied state monad instance to the traverseS function as a disguised
applicative!

fun <S, A, B> traverseS(
fa: Kind<F, A>,
f: (A) -> State<S, B>

): State<S, Kind<F, B>> =
traverse(

fa,
stateMonadApplicative(stateMonad<S>())

) { a -> f(a).fix() }.fix()

Let’s put our new traverseS function to work. Here’s a familiar State traversal that
labels every element with its position. We keep an integer state, starting with 0, and
add 1 at each step.

fun <A> zipWithIndex(ta: Kind<F, A>): Kind<F, Pair<A, Int>> =
traverseS(ta) { a: A ->

State.get<Int>().flatMap { s: Int ->    
State.set(s + 1).map { _ ->    

a to s
}

}
}.run(0).first   

This definition works for List, Tree, or any other traversable type.
 Continuing along these lines, we can keep a state of type List<A>, to turn any tra-

versable functor into a List.

fun <A> toList(ta: Kind<F, A>): List<A> =
traverseS(ta) { a: A ->

State.get<List<A>>().flatMap { la ->      
State.set<List<A>>(Cons(a, la)).map { _ ->   

Unit
}

}
}.run(Nil).second.reverse()   

We begin with the empty list Nil as the initial state, and at every element in the tra-
versal, we add that element to the front of the accumulated list. This constructs the list
in the reverse order of the traversal, so we end by reversing the list that we get from
running the completed state action.

Listing 12.18 Zipping a list with its index using a state action

Listing 12.19 Converting any traversable to a list

Gets the current 
state (a counter)

Sets the current state 
as the incremented 
counter value

Runs the state 
action starting 
with index 0

Gets the 
current state (an 
accumulated list)

Adds the current 
element as the 
head of the Cons 
and sets it as the 
new state

Runs the state action 
starting with Nil and 
then reverses the list
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 The code for toList and zipWithIndex is nearly identical. And in fact, most tra-
versals with State follow this exact pattern: we get the current state, compute the next
state, set it, and yield a value. We can capture this behavior in a function called map-
Accum as follows.

fun <S, A, B> mapAccum(
fa: Kind<F, A>,
s: S,
f: (A, S) -> Pair<B, S>

): Pair<Kind<F, B>, S> =
traverseS(fa) { a: A ->

State.get<S>().flatMap { s1 ->
val (b, s2) = f(a, s1)
State.set(s2).map { _ -> b }

}
}.run(s)

fun <A> zipWithIndex(ta: Kind<F, A>): Kind<F, Pair<A, Int>> =
mapAccum(ta, 0) { a, s ->

(a to s) to (s + 1)
}.first

fun <A> toList(ta: Kind<F, A>): List<A> =
mapAccum(ta, Nil) { a: A, s: List<A> ->

Unit to Cons(a, s)
}.second.reverse()

This new generalized function allows us to reuse the traverseS function in different
settings to render an appropriate result. We are now able to express zipWithIndex
and toList in a more concise way by using mapAccum.

EXERCISE 12.15

There’s an interesting consequence of being able to turn any traversable functor into
a reversed list: we can write, once and for all, a function to reverse any traversable func-
tor! Write this function, and think about what it means for List, Tree, and other tra-
versable functors. Also, it should obey the following law for all x and y of the
appropriate types:

toList(reverse(x)) + toList(reverse(y)) == reverse(toList(y) + toList(x))

fun <A> reverse(ta: Kind<F, A>): Kind<F, A> =

SOLUTION_HERE()

Listing 12.20 Generalizing state traversal in mapAccum
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EXERCISE 12.16

Use mapAccum to give a default implementation of foldLeft for the Traversable
interface.

fun <A, B> foldLeft(fa: Kind<F, A>, z: B, f: (B, A) -> B): B =

SOLUTION_HERE()

12.7.3 Combining traversable structures

It’s the nature of a traversal that it must preserve the shape of its argument. This is
both its strength and its weakness. This is well demonstrated when we try to combine
two structures into one.

 Given Traversable<F>, can we combine a value of some type Kind<F, A> and
another of some type Kind<F, B> into a Kind<F, C>? We can try using mapAccum to
write a generic version of zip:

fun <A, B> zip(ta: Kind<F, A>, tb: Kind<F, B>): Kind<F, Pair<A, B>> =
mapAccum(ta, toList(tb)) { a: A, b: List<B> ->

when (b) {
is Cons -> (a to b.head) to b.tail
is Nil -> throw Exception("incompatible shapes for zip")

}
}.first

Note that this version of zip is unable to handle arguments of different shapes. For
instance, if F is List, it can’t handle lists of different lengths. In this implementation,
the list fb must be at least as long as fa. If F is Tree, then fb must have at least the same
number of branches as fa at every level.

 We can change the generic zip slightly and provide two versions, zipL and zipR, so
that the shape of one side or the other is dominant.

fun <A, B> zipL(
ta: Kind<F, A>,
tb: Kind<F, B>

): Kind<F, Pair<A, Option<B>>> =
mapAccum(ta, toList(tb)) { a: A, b: List<B> ->

when (b) {
is Nil -> (a to None) to Nil
is Cons -> (a to Some(b.head)) to b.tail

}
}.first

Listing 12.21 zip implementations using traversable quality



287Using Traversable to iteratively transform higher kinds
fun <A, B> zipR(
ta: Kind<F, A>,
tb: Kind<F, B>

): Kind<F, Pair<Option<A>, B>> =
mapAccum(tb, toList(ta)) { b: B, a: List<A> ->

when (a) {
is Nil -> (None to b) to Nil
is Cons -> (Some(a.head) to b) to a.tail

}
}.first

These implementations work out nicely for List and other sequence types. In the case
of List, the result of zipR will have the shape of the tb argument and will be padded
with None on the left if tb is longer than ta.

 For types with more fascinating structures, like Tree, these implementations may
not be what we want. Note that in zipL, we’re simply flattening the right argument
to a List<B> and discarding its structure. For Tree, this will amount to a pre-order
traversal of the labels at each node. We’re then “zipping” this sequence of labels
with the values of our left Tree, ta; we aren’t skipping over nonmatching subtrees.
For trees, zipL and zipR are most valuable if we happen to know that both trees
share the same shape. 

12.7.4 Traversal fusion for single pass efficiency

In chapter 5, we talked about how multiple passes over a structure can be fused into a
single traversal to prevent inefficiency. Chapter 10 looked at how we can use monoid
products to carry out multiple computations over a foldable structure in a single pass.
Likewise, using products of applicative functors, we can fuse multiple traversals of a
traversable structure to prevent inefficiencies.

EXERCISE 12.17

Use applicative functor products to write the fusion of two traversals. This function
will, given two functions f and g, traverse ta a single time, collecting the results of
both functions at once:

fun <G, H, A, B> fuse(
ta: Kind<F, A>,
AG: Applicative<G>,
AH: Applicative<H>,
f: (A) -> Kind<G, B>,
g: (A) -> Kind<H, B>

): Pair<Kind<G, Kind<F, B>>, Kind<H, Kind<F, B>>> =

SOLUTION_HERE()
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12.7.5 Simultaneous traversal of nested traversable structures

Not only can we use composed applicative functors to fuse traversals, but travers-
able functors themselves also compose. If we have a nested structure like Map<K,
Option<List<V>>>, then we can traverse the map, the option, and the list at the same
time and quickly get to the V value inside because Map, Option, and List are all tra-
versable. Once again, this amounts to a more efficient single pass of the entire nested
structure.

EXERCISE 12.18

Hard: Implement the composition of two Traversable instances.

fun <F, G> compose(
TF: Traversable<F>,
TG: Traversable<G>

): Traversable<CompositePartialOf<F, G>> =
object : Traversable<CompositePartialOf<F, G>> {

override fun <H, A, B> traverse(
fa: CompositeOf<F, G, A>,
AH: Applicative<H>,
f: (A) -> Kind<H, B>

): Kind<H, CompositeOf<F, G, B>> =

SOLUTION_HERE()
}

12.7.6 Pitfalls and workarounds for monad composition

Now let’s return to the issue of composing monads. As we saw earlier in this chapter,
Applicative instances always compose, but Monad instances generally don’t. If we had
tried to implement general monad composition before, we would have found that to
implement join for nested monads G and H, we’d have to write something of a type
like (G<H<G<H<A>>>>) -> G<H<A>>. And that can’t be written generally. But if H also
happens to have a Traverse instance, we can sequence to turn H<G<A>> into G<H<A>>,
leading to G<G<H<H<A>>>>. Then we can join the adjacent G layers and the adjacent H
layers using their respective Monad instances!

EXERCISE 12.19

Hard/Optional: Implement the composition of two monads where one of them is
traversable. Put on your thinking cap for a super-intensive exercise!

fun <G, H, A> composeM(
MG: Monad<G>,
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MH: Monad<H>,
AH: Applicative<H>,
TH: Traversable<H>

): Monad<CompositePartialOf<G, H>> =

SOLUTION_HERE()

This is a cumbersome process, and we won’t explore it in any depth due to the immense
pain involved. Instead, we’ll focus our attention on a more popular approach, the
monad transformer, as seen in many functional libraries such as Arrow and Cats.

 Expressiveness and power sometimes come at the price of compositionality and
modularity. Composing monads is often addressed with custom-written versions of
each monad that are specifically constructed for composition. This is what we refer to
as a monad transformer. As an example, the OptionT monad transformer composes
Option with any other monad.

data class OptionT<M, A>(
val value: Kind<M, Option<A>>,     
val MM: Monad<M>    

) {
fun <B> flatMap(f: (A) -> OptionT<M, B>): OptionT<M, B> =    

OptionT(MM.flatMap(value) { oa: Option<A> ->
when (oa) {

is None -> MM.unit(None)
is Some -> f(oa.get).value

}
}, MM)

}

OptionT<M, A> is a wrapper over Kind<M, Option<A>>. This monad transformer aims
to make working with Kind<M, Option<A>> simpler by removing a lot of the boiler-
plate. It exposes methods that look like those on Option but in fact it handles the outer
flatMap or map calls to M on our behalf. This gets M out of the way to directly focus on
working with the nested Option. That is what we actually care about! Let’s look at how
the monad transformer OptionT can be used:

val F = listMonad
val ls = List.of(Some(1), None, Some(2))      
val xs: List<Option<String>> =

OptionT(ls, F).flatMap { i: Int ->       
OptionT(F.unit(Some("${i * 2}")), F)     

}.value.fix()

assertEqual(xs, List.of(Some("2"), None, Some("4")))

Listing 12.22 Monad transformers to compose different monads

Option<A> is nested 
inside kind M.

Monad instance MM allows 
us to work with type M.

The flatMap method
conveniently mimics that

of Option while using
Monad<M> to operate on M.

Declares ls, a 
List<Option<Int>>

Uses the monad transformer 
OptionT to operate directly 
on the nested i: Int

Emits the OptionT 
instance for each element 
as required by flatMap
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The monad transformer wraps a structure of Kind<M, Option<A>> and exposes the
operations you would expect on the nested Option type. The function block passed
into flatMap acts directly on the nested Option instances if they are Some values. This
allows us to transform before emitting a new OptionT instance that will form part of
this list.

 But there is a downside: this particular implementation only works for Option. And
the general strategy of taking advantage of Traverse works only with traversable func-
tors. For example, to compose with State (which can’t be traversed), a specialized
StateT monad transformer has to be written.

Summary
 Applicative and Traversable are algebraic abstractions derived from Monad

signatures.
 The applicative functor is a less expressive but more compositional generaliza-

tion of the monad.
 The Applicative functions unit and map allow the lifting of values and func-

tions, respectively.
 The map2 and apply functions characterize Applicative and give us the power

to lift functions of higher arity.
 Traversable functors result from generalizing the sequence and traverse func-

tions that have been seen in many data types so far.
 The Applicative and Traversable interfaces together let us construct com-

plex, nested, and parallel traversals out of simple elements that need only be
written once.

 The monad by nature does not compose, although the more generalized appli-
cative functor doesn’t suffer from this limitation.

 Monad transformers allow us to compose monads, but they are not a general-
ized, flexible, and scalable approach to monadic composition.

Monad transformer libraries
There is no generic composition strategy that works for every monad, which means
custom monad transformers need to be written for each monad to guarantee compo-
sitionality with other monads. Even though this approach is plausible, it doesn’t scale
well. Despite this shortcoming, many functional libraries such as Arrow and Cats pro-
vide an mtl module, short for monad transformer library. Such libraries provide us with
all the necessary monad transformers over the most common types. This is handy
for most of our monad composition needs. 



Part 4

Effects and I/O

Functional programming is a complete programming paradigm. All pro-
grams imaginable can be expressed functionally, including those that mutate
data in place and interact with the external world by writing to files or reading
from databases. In this part of the book, we apply what we covered in parts 1–3
to show how functional programming can express these effectful programs.

 We begin chapter 13 by examining the most straightforward handling of
external effects, using an I/O monad. This provides a simplistic embedded imper-
ative syntax in a functional programming context. We can use the same general
approach to handle local effects and mutation, which we introduce in chapter 14.
Both of these chapters motivate the development of more composable ways to
deal with effects. In chapter 15, our final chapter, we develop a library for
streaming I/O and discuss how to write composable and modular programs that
incrementally process I/O streams.

 Our goal in this part of the book is not to cover absolutely every technique
relevant to handling I/O and mutation. Rather, we want to introduce some
essential ideas to equip you with a conceptual framework for future learning.
You’ll undoubtedly encounter problems that don’t look exactly like those dis-
cussed here. But along with parts 1–3, after finishing this part, you’ll be in the
best position to apply FP to whatever programming tasks you may face.



 



External effects and I/O
This chapter continues from what we’ve learned so far about monads and algebraic
data types and extends them to handle external effects like interacting with databases
or the console, or reading and writing to files. We develop a monad called IO with
the specific purpose of dealing with such I/O effects in a purely functional way.

 We’ll make an essential distinction in this chapter between effects and side effects.
The IO monad provides a straightforward way of embedding imperative programming
with I/O side effects in a pure program, all while preserving referential transpar-
ency. Doing so clearly separates effectful code that has an effect on the outside world
from the rest of our program.

This chapter covers
 Segregating pure functions from effects in a 

program

 Separating effectful concerns using an I/O 
data type

 Hiding effectful code in data type abstractions

 Implementing a free monad for flexible I/O 
delegation
293
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 This will also illustrate an essential technique for dealing with external effects. We
will use pure functions to compute a description of an effectful computation, which is
then executed by a separate interpreter that actually performs those effects. Essentially,
we’re crafting an embedded domain-specific language (EDSL) for imperative pro-
gramming. This is a powerful technique that we’ll use throughout the rest of part 4.
Our goal is to equip you with the skills needed to craft your own EDSLs for describing
such effectful programs.

13.1 Factoring effects out of an effectful program
Before we get to the IO data type with all its bells and whistles, let’s take a few steps
back and start by looking at a simple program that performs some external effects.
We’ll see how we can bring about a separation of concerns between effectful and pure
code. For example, let’s consider the following program that outputs results to the
console.

data class Player(val name: String, val score: Int)

fun contest(p1: Player, p2: Player): Unit =
when {

p1.score > p2.score ->
println("${p1.name} is the winner!")

p1.score < p2.score ->
println("${p2.name} is the winner!")

else ->
println("It's a draw!")

}

The contest function couples the I/O code for displaying the result tightly to the
pure logic for computing the winner. We can refactor the logic out into its own pure
function called winner as follows.

fun winner(p1: Player, p2: Player): Option<Player> =   
when {

p1.score > p2.score -> Some(p1)
p1.score < p2.score -> Some(p2)
else -> None

}

fun contest(p1: Player, p2: Player): Unit =    
when (val player = winner(p1, p2)) {

is Some ->
println("${player.get.name} is the winner!")

is None ->
println("It's a draw!")

}

Listing 13.1 A simple program that has side effects

Listing 13.2 Refactoring to separate the logic and console effect

Contains the logic 
for computing a 
winner if there 
is one

Responsible for 
declaring the 
winner on console 
standard out
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But we can do even better than this. A good rule of thumb is that it’s always possible to
refactor an impure procedure into three parts, as shown in figure 13.1.

 A pure “core” function
 A side-effecting function that supplies the pure function’s input
 A side-effecting function that does something with the pure function’s output

In listing 13.2, we factored the pure function winner out of contest. Conceptually,
contest had two responsibilities: it was computing the result of the contest, and it was
displaying the result that was computed. With the refactored code, winner has a single
responsibility: calculating the winner. The contest method retains the responsibility
of printing the result of winner to the console.

 We can improve this even further by extracting a third function. The contest
function still has two responsibilities: it’s computing which message to display and
then printing that message to the console. We could factor out a pure function here,
which might be beneficial if we later decide to show the result in some UI or write it to
a file instead. Let’s refactor this next:

fun winnerMsg(op: Option<Player>): String =       
when (op) {

is Some -> "${op.get.name} is the winner"
is None -> "It's a draw"

}

fun contest(p1: Player, p2: Player): Unit =   
println(winnerMsg(winner(p1, p2)))      

Note how the println side effect is now only in the outermost layer of the program,
and what’s inside the call to println is a pure expression.

 This might seem like a simplistic example, but the same principle applies to larger,
more complex programs. We hope you can see how this sort of refactoring is quite a
natural process. We aren’t changing our program—just the internal details of how it is
refactored into smaller functions. The takeaway here is that inside every function with
side effects is a pure function waiting to get out.

Side-effecting function

Has effects to obtain data

from the outside world

Pass

input

Pass

output

Side-effecting function

Has effects to act on the

outside world

Pure core function

No effects on the outside

world; referentially

transparent

Figure 13.1 A pure core function relies on other functions to interact with the world.

Responsible for 
determining most 
appropriate message

Responsible for printing 
message to standard out

Draws on winner and winnerMsg 
to print to standard out
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 We can formalize this insight somewhat. Given an impure function f of type (A) ->
B, we can split f into two functions:

 A pure function of type (A) -> D, where D is a description of the result of f
 An impure function of type (D) -> B, which can be thought of as an interpreter of

this description

We’ll extend this to handle “input” effects shortly. For now, let’s consider applying this
strategy repeatedly to a program. Each time we apply it, we make more functions pure
and push side effects to the outer layers. We could call these impure functions the
“imperative shell” around the “pure core.” Eventually, we reach functions that seem to
necessitate side effects like the built-in println, which has type (String) -> Unit.
What do we do then?

13.2 Introducing the IO type to separate effectful code
Bringing separation between effectful and pure functions is a step in the right direc-
tion, but what else can we do? Let’s consider introducing a new data type to model
this separation of concerns. It turns out that even procedures like println are doing
more than one thing. They can be refactored in much the same way by introducing
the new type called IO:

interface IO {
fun run(): Unit

}

fun stdout(msg: String): IO =
object : IO {

override fun run(): Unit = println(msg)
}

fun contest(p1: Player, p2: Player): IO =
stdout(winnerMsg(winner(p1, p2)))

Our contest function is now pure—it returns an IO value, which simply describes an
action that needs to take place but doesn’t actually execute it. We say that contest has
(or produces) an effect or is effectful, but it’s only the interpreter of IO (the run
method) that has a side effect. The contest function has only one responsibility,
which is to compose the parts of the program together: winner to compute who the
winner is, winnerMsg to calculate what the resulting message should be, and stdout
to indicate that the message should be printed to the console. But the responsibility
of interpreting the effect and actually manipulating the console is held by the run
method on IO.

 Other than technically satisfying the referential transparency requirements, has
the IO type bought us anything? As with any other data type, we can assess the merits
of IO by considering what sort of algebra it provides: is it something interesting, from
which we can define a large number of useful operations and programs, with interesting
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laws that give us the ability to reason about what these more extensive programs will
do? Not yet. But let’s look at some operations we can define:

interface IO {
companion object {

fun empty(): IO = object : IO {
override fun run(): Unit = Unit

}
}

fun run(): Unit

fun assoc(io: IO): IO = object : IO {
override fun run() {

this@IO.run()      
io.run()     

}
}

}

As it stands, the only thing to be said about IO is that it forms a Monoid (empty is nil,
and assoc is the combination operation). So if we have, for example, a List<IO>, we
can reduce that to a single IO, and the associativity of assoc means we can do this by
folding either left or right. On its own, this isn’t very interesting. All it seems to have
given us is the ability to delay when a side effect happens.

 Now we’ll let you in on a secret: you, as the programmer, get to invent whatever
API you wish to represent your computations, including those that interact with the
universe external to your program. This process of writing pleasing, useful, and com-
posable descriptions of what you want your programs to do is at its core language
design. You’re crafting a little language and an associated interpreter that will allow you
to express various programs. If you don’t like something about this language you’ve
created, change it! You should approach this like any other design task.

13.2.1 Handling input effects

As you’ve seen before, when building up a small grammar, you may encounter situa-
tions that it clearly can’t express. So far, our IO type can represent only output effects.
There’s no way to express IO computations that must, at some points, wait for input
from an external source. Suppose we wanted to write a program that prompts the user
for a temperature in degrees Fahrenheit and then converts this value to Celsius before
echoing it out to the user. A naive imperative program with no error handling might
look something like this.

fun fahrenheitToCelsius(f: Double): Double = (f - 32) * 5.0 / 9.0

fun converter() {
println("Enter a temperature in Degrees Fahrenheit:")

Listing 13.3 Imperative program to convert Fahrenheit to Celsius

this@IO.run() invokes run 
on the current IO object.

io.run() invokes run() on the 
IO that was passed in as io.
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val d = readLine().orEmpty().toDouble()
println(fahrenheitToCelsius(d))

}

Unfortunately, we run into problems if we want to make converter into a pure func-
tion that returns an IO:

fun converter(): IO {
val prompt: IO =

stdout("Enter a temperature in Degrees Fahrenheit:")
TODO("now what??")

}

In Kotlin, readLine is a function with the side effect of capturing a line of input from
the console. It returns a String?. We could wrap a call to readLine in IO, but we have
nowhere to put the result! We don’t yet have a way of representing this sort of effect.
The problem is that our current IO type can’t express computations that yield a value
of a meaningful type—our interpreter of IO just produces Unit as its output. Should
we give up on our IO type and resort to using side effects? Of course not! We extend
our IO type to allow input by adding a type parameter.

interface IO<A> {

fun run(): A

fun <B> map(f: (A) -> B): IO<B> =
object : IO<B> {

override fun run(): B = f(this@IO.run())
}

fun <B> flatMap(f: (A) -> IO<B>): IO<B> =
object : IO<B> {

override fun run(): B = f(this@IO.run()).run()
}

infix fun <B> assoc(io: IO<B>): IO<Pair<A, B>> =
object : IO<Pair<A, B>> {

override fun run(): Pair<A, B> =
this@IO.run() to io.run()

}
}

An IO computation can now return a meaningful value. Note that we’ve added map
and flatMap functions directly to IO so that it can be used as a monad. Of course, we
generally wouldn’t do this but instead would delegate this responsibility to a monad
instance for separation of concerns. For the sake of simplicity, we won’t go that far, as
we’re only trying to convey an idea in this example. We’ve also added an updated ver-
sion of the assoc function that allows us to create a product of two IOs. Finally, we’ve

Listing 13.4 Parameterized IO of A to allow input of type A
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added a companion object to IO with handy functions that allow us to create a new
instance easily by using an elegant code block like IO { … }:

companion object {

fun <A> unit(a: () -> A) = object : IO<A> {
override fun run(): A = a()

}

operator fun <A> invoke(a: () -> A) = unit(a)
}

We can finally write our converter example as follows:

fun stdin(): IO<String> = IO { readLine().orEmpty() }

fun stdout(msg: String): IO<Unit> = IO { println(msg) }

fun converter(): IO<Unit> =
stdout("Enter a temperature in degrees Fahrenheit: ").flatMap {

stdin().map { it.toDouble() }.flatMap { df ->
stdout("Degrees Celsius: ${fahrenheitToCelsius(df)}")

}
}

Our converter definition no longer has side effects—it’s a referentially transparent
description of computation with effects, and converter.run() is the interpreter that
will actually execute those effects. And because IO forms a monad, we can use all the
monadic combinators we wrote previously. Here are some other example usages of IO:

val echo: IO<Unit> = stdin().flatMap(::stdout)    

val readInt: IO<Int> = stdin().map { it.toInt() }   

val readInts: IO<Pair<Int, Int>> = readInt assoc readInt   

Now that we understand the basic idea, let’s look at a more extensive example: an
interactive program that prompts the user for input in a loop (REPL) and then com-
putes the factorial (the product of all integers less than a number) of the input.
Here’s an example run:

The Amazing Factorial REPL, v0.1
q - quit
<number> - compute the factorial of the given number
<anything else> - crash spectacularly
3
factorial: 6
7
factorial: 5040
q

Reads a line from the 
console and echoes it back

Parses an Int by reading 
a line from the console

Parses a Pair<Int,Int> by reading two lines from the console
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The code is shown in listing 13.5. It uses a few monadic functions we haven’t seen yet:
doWhile, foreachM, whenM, and seq. The detail of this code isn’t all that important; the
point is just to demonstrate how we could embed an imperative programming style
into a purely functional segment of Kotlin code. All the usual imperative program-
ming tricks are here—we can write loops, mutate variables, perform I/O, and so on.

private fun factorial(n: Int): IO<Int> =               
IO.ref(1).flatMap { acc: IORef<Int> ->            

ioMonad.foreachM((1..n).toStream()) { i ->
acc.modify { it * i }.map { Unit }   

}.fix().flatMap {
acc.get()    

}
}

val factorialREPL: IO<Unit> =
ioMonad.sequenceDiscard(

IO { println(help) }.fix(),
ioMonad.doWhile(IO { readLine().orEmpty() }) { line ->    

ioMonad.whenM(line != "q") {
factorial(line.toInt()).flatMap { n ->

IO { println("factorial: $n") }
}

}
}.fix()

).fix()

It is worth noting that we have an ioMonad instance on the scope that is used through-
out this snippet for delegating the monadic capability for IO. Please refer to the
source code repository to see how it is implemented.

Listing 13.5 Imperative program with a doWhile loop

Type classes for ad hoc polymorphism
Throughout this book, we have focused on the importance of the separation of con-
cerns. One such separation could be enforced between the behavior of an algebraic
type and a data type that requires its behavior. For instance, it can be argued that
the IO data type and its monadic behavior should be distinct from each other. But
how can we draw an elegant distinction without resorting to inheritance hierarchies
popularized at large by object orientation?

In typed functional programming (FP), we use a pattern called type classes to achieve
this ad hoc polymorphism. This idea was first popularized in Haskell but has made
its way into many other languages. Each language has a different way of achieving
this goal, but the idea remains the same: add a contract of behavior provided by an
interface to another class without impacting its code. This can be achieved very ele-
gantly in Kotlin through the use of delegation to extension functions on the data
type.

Imperative factorial 
using a mutable IO 
reference

Allocates a mutable 
reference of Int

Modifies the 
reference in a loop

Dereferences to 
obtain the Int 
value inside a 
reference

The doWhile
function 
produces 
lines while 
available.
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Listing 13.5 uses a mix of familiar monadic combinators along with some new ones
that we haven’t seen before. Even though they could be defined for any monad, you
may want to think about what these combinators mean for types other than IO. Note
that not all of them make sense for every monadic type. For instance, what does for-
ever mean for Option? What about Stream?

override fun <A> doWhile(     
fa: IOOf<A>,
cond: (A) -> IOOf<Boolean>

): IOOf<Unit> =
fa.fix().flatMap { a: A ->

cond(a).fix().flatMap<Unit> { ok: Boolean ->
if (ok) doWhile(fa, cond).fix() else unit(Unit).fix()

}
}

override fun <A, B> forever(fa: IOOf<A>): IOOf<B> {     
val t: IOOf<B> by lazy { forever<A, B>(fa) }
return fa.fix().flatMap { t.fix() }

}

override fun <A, B> foldM(     
sa: Stream<A>,
z: B,
f: (B, A) -> IOOf<B>

): IOOf<B> =
when (sa) {

is Cons ->
f(z, sa.head()).fix().flatMap { b ->

foldM(sa.tail(), z, f).fix()
}

is Empty -> unit(z)
}

All data type instances can be extended with a set of functions that encapsulate a
behavior (such as a set of monadic functions). These functions will delegate to a sin-
gleton type class instance that holds the appropriate functionality. For convenience,
it is also possible to access the type class instance from the companion object of
the data type.

Arrow provides convenient boilerplate code generation based on the presence of an
@extension annotation on a type class interface. For those who don’t want to use
Arrow, it is possible to write all this boilerplate code by hand. The generated code
itself is trivial but mundane and repetitive, and worth generating nonetheless. Please
refer to appendix D for an explanation of how this mechanism works and how to gen-
erate the code.

Listing 13.6 Monadic combinators specific to IO

Repeats the effect of the first 
argument as long as the cond 
function yields true

Repeats the effect 
of its argument 
infinitely

Folds the stream with the 
function f, combining the effects 
and returning the result
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override fun <A, B> foldDiscardM(    
sa: Stream<A>,
z: B,
f: (B, A) -> Kind<ForIO, B>

): Kind<ForIO, Unit> =
foldM(sa, z, f).fix().map { Unit }

override fun <A> foreachM(      
sa: Stream<A>,
f: (A) -> IOOf<Unit>

): IOOf<Unit> =
foldDiscardM(sa, Unit) { _, a -> f(a) }

override fun <A> whenM(    
ok: Boolean,
f: () -> IOOf<A>

): IOOf<Boolean> =
if (ok) f().fix().map { true } else unit(false)

Once again, the details of these functions aren’t as important as what we are trying to
convey. We certainly don’t endorse writing code this way in Kotlin, but it does demon-
strate that FP is not in any way limited in its expressiveness—every program can be
expressed in a purely functional way, even if that functional program is a straightfor-
ward embedding of an imperative program into the IO monad.

NOTE If you have a monolithic block of impure code like this, you can always
just write a definition that performs actual side effects and then wrap it in
IO—this will be more efficient, and the syntax is better than what’s provided
using a combination of various Monad combinators. 

13.2.2 Benefits and drawbacks of the simple IO type

An IO monad like what we have so far is a kind of least common denominator for
expressing programs with external effects. Its usage is essential mainly because it
clearly separates pure from impure code, forcing us to be honest about where interactions
with the outside world are occurring. It also encourages the beneficial factoring of
effects that we discussed earlier. But when programming within the IO monad, we have
many of the same difficulties we would in ordinary imperative programming, which
has motivated functional programmers to look for more composable ways of describ-
ing effectful programs. (We’ll see an example of this in chapter 15 when we develop a
data type for composable streaming I/O.) Nonetheless, our IO monad does provide
some real benefits:

 IO computations are ordinary values. We can store them in lists, pass them to
functions, create them dynamically, and so on. Any typical pattern can be
wrapped up in a function and reused.

 Reifying IO computations as values means we can craft a more compelling inter-
preter than the simple run method baked into the IO type. Reification is the
process of expressing abstract concepts in terms of something more concrete.

The same as the 
foldM function, but 
ignores the result

Calls the function f for each 
element of the stream and 
combines the effects

Invokes a function 
depending on the value 
of a Boolean parameter
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Later in this chapter, we’ll build a more refined IO type sporting an interpreter
that uses non-blocking I/O in its implementation. What’s more, as we vary the
interpreter, client code like the converter example remains identical—we
don’t expose the representation of IO to the programmer at all! It’s entirely an
implementation detail of our IO interpreter.

Despite the advantages of our naive IO monad, it also comes with several problems:

 Many IO programs will overflow the run-time call stack and throw a Stack-
OverflowError. If you haven’t encountered this problem yet in your own exper-
imentation, you’d certainly run into it if you were to write more extensive
programs using our current IO type. For example, if you keep typing numbers
into the factorialREPL program from earlier, it eventually blows the stack.

 A value of type IO<A> is entirely opaque. It’s really just a lazy identity—a func-
tion that takes no arguments. When we call run, we hope that it eventually pro-
duces a value of type A, but there’s no way for us to inspect such a program and
see what it might do. It might hang forever and do nothing, or it might eventu-
ally do something productive. There’s no way to tell. We could say that it’s too
general, and as a result, there’s little reasoning that we can do with IO values. We
can compose them with the monadic combinators, or we can run them, but
that’s about all.

 Our simple IO type has nothing to say about concurrency or asynchronous
operations. The primitives we have so far only allow us to sequence opaque
blocking IO actions one after another. Many I/O libraries, such as the java.nio
package that comes with the Java standard libraries, allow non-blocking and
asynchronous I/O. Our IO type is incapable of using such operations. We’ll rec-
tify that by the end of this chapter when we develop a more practical IO monad.

Let’s start by solving the first problem of stack overflows since this will lead naturally to
our solution for the other two issues. 

13.3 Avoiding stack overflow errors by reification 
and trampolining
We have seen that recursive calls without tail-call elimination will eventually lead to a
StackOverflowError. In our current implementation of the IO monad, this could very
quickly happen. Let’s look at an elementary program that demonstrates this problem:

val p: IO<Unit> =
IO.monad()       

.forever<Unit, Unit>(stdout("Still going..."))   

.fix()      

If we evaluate p.run, it will crash with a StackOverflowError after printing a few thou-
sand lines. If you look at the stack trace, you’ll see that run is calling itself over and over:

Accesses the monad 
instance for IO Loops a text message 

to standard output 
forever

Fixes the IOOf<Unit> 
to be an IO<Unit>
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Exception in thread "main" java.lang.StackOverflowError
...
at chapter13.sec3.ListingKt$stdout$1.invoke(listing.kt:7)
at chapter13.sec3.ListingKt$stdout$1.invoke(listing.kt)
at chapter13.boilerplate.io.IO$Companion$unit$1.run(IO.kt:28)
at chapter13.boilerplate.io.IO$flatMap$1.run(IO.kt:45)
at chapter13.boilerplate.io.IO$flatMap$1.run(IO.kt:45)
at chapter13.boilerplate.io.IO$flatMap$1.run(IO.kt:45)
at chapter13.boilerplate.io.IO$flatMap$1.run(IO.kt:45)
...

It turns out the problem is in the definition of flatMap:

fun <B> flatMap(f: (A) -> IO<B>): IO<B> =
object : IO<B> {

override fun run(): B = f(this@IO.run()).run()
}

This method creates a new IO object whose run definition calls run again before calling
f. This will keep building up nested run calls and eventually blow the stack, as we saw
previously. Is there something we can do to sidestep this problem?

13.3.1 Reifying control flow as data constructors

The answer is surprisingly simple. Instead of letting program control flow through
without any constraints using function calls, we explicitly bake the desired control
flow into our data type. For example, instead of making flatMap a method that con-
structs a new IO in terms of run, we can just make it a data constructor called FlatMap
of the IO data type. This allows the interpreter to be a tail-recursive loop. Whenever it
encounters a constructor like FlatMap(x, f), it will only interpret x and then call f on
the result. Here’s a new IO type that implements that idea.

sealed class IO<A> : IOOf<A> {
companion object {

fun <A> unit(a: A) = Suspend { a }
}

fun <B> flatMap(f: (A) -> IO<B>): IO<B> = FlatMap(this, f)
fun <B> map(f: (A) -> B): IO<B> = flatMap { a -> Return(f(a)) }

}

data class Return<A>(val a: A) : IO<A>()       
data class Suspend<A>(val resume: () -> A) : IO<A>()  
data class FlatMap<A, B>(

val sub: IO<A>,
val f: (A) -> IO<B>

) : IO<B>()   

Listing 13.7 Reify control flow, avoiding stack overflow errors

Pure computation that immediately
returns an A without any further steps.

When run sees this constructor, it
knows the computation has finished.

Suspension of the 
computation where
r is a function that 
takes no arguments
but has some effect
and yields a result

Composition of two steps. Reifies 
flatMap as a data constructor rather 
than a function. When run sees this, it 
should first process the subcomputation 
sub and then continue with f once sub 
produces a result.
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This new IO type has three data constructors representing the three different kinds of
control flow that we want the interpreter of this data type to support. These three new
data constructors are shown in figure 13.2. Return represents an IO action that has fin-
ished, meaning we want to return the value a without any further steps. Suspend
means we want to execute some effect to produce a result. And the FlatMap data con-
structor lets us extend or continue an existing computation by using the result of the
first computation to produce a second one. The flatMap method’s implementation
can now simply call the FlatMap data constructor and return immediately. When the
interpreter encounters FlatMap(sub, f), it can interpret the subcomputation sub and
then remember to call the continuation f on the result. Then f will continue execut-
ing the program.

We’ll get to the interpreter shortly, but first, let’s rewrite our stdout example by using
this new IO type:

fun stdout(s: String): IO<Unit> = Suspend { println(s) }

val p = IO.monad()
.forever<Unit, Unit>(stdout("To infinity and beyond!"))
.fix()

This creates an infinite nested structure, much like a Stream. The “head” of the
stream is a lambda, with the rest of the computation like the “tail.” The unfurled
pseudocode would look something like this:

FlatMap(Suspend{ println("To infinity and beyond!") }) { _ ->
FlatMap(Suspend { println("To infinity and beyond!") }) { _ ->

Execute the thunk that
was passed in, and
return its result to
FlatMap.

Reify as a typeflatMap
constructor instead of a
function. Also handle the case
of two consecutive sFlatMap
for tail-call elimination.

End of the chain; return
the result to .FlatMap

Suspend

FlatMap

Return
Figure 13.2 The trampoline uses 
reified types to control state and 
enforce tail call elimination.
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FlatMap(Suspend { println("To infinity and beyond!")}) { _ ->
TODO("repeat forever...")

}
}

}

And here’s the tail-recursive interpreter that traverses the structure and performs the
effects:

@Suppress("UNCHECKED_CAST")
tailrec fun <A> run(io: IO<A>): A =

when (io) {
is Return -> io.a
is Suspend -> io.resume()
is FlatMap<*, *> -> {              

val x = io.sub as IO<A>         
val f = io.f as (A) -> IO<A>    
when (x) {

is Return ->
run(f(x.a))

is Suspend ->      
run(f(x.resume()))

is FlatMap<*, *> -> {
val g = x.f as (A) -> IO<A>
val y = x.sub as IO<A>
run(y.flatMap { a: A -> g(a).flatMap(f) })   

}
}

}
}

Note that instead of saying run(f(run(x))) in the FlatMap(x,f) case (thereby losing
tail recursion), we instead pattern match on x, since it can only be one of three things:

 If it’s a Return, we can just call f on the pure value inside.
 If it’s a Suspend, we can just execute its resumption, call FlatMap with f on its

result, and recurse.
 But if x is itself a FlatMap constructor, then we know io consists of two FlatMap

constructors nested on the left like this: FlatMap(FlatMap(y,g),f).

To continue running the program in that case, the next thing we naturally want to do
is look at y to see if it is another FlatMap constructor; but the expression may be arbi-
trarily deep, and we want to maintain tail-recursion. We re-associate this to the right,
effectively turning (y.flatMap(g)).flatMap(f) into y.flatMap { a -> g(a).flat-
Map(f) }. We’re taking advantage of the monadic law of associativity! Then we call run
on the rewritten expression, letting us remain tail-recursive. Thus, when we actually
interpret our program, it will be incrementally rewritten as a right-associated
sequence of FlatMap constructors:

FlatMap(a1) { a2 ->
FlatMap(a2) { a3 ->

We could just return run(f(run(x))) 
here, but then the inner call to run 
wouldn’t be in tail position. Instead, 
we match on x to see what it is.

Deals with run-time type 
erasure by casting

Here x is a Suspend(r), 
so we force the r thunk 
and call f on the result.

In this case, io is an expression like FlatMap(FlatMap(y, g), f).
We re-associate this to the right to call run in tail position,

and the next iteration will match on y.
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FlatMap(a3) { a4 ->
...
FlatMap(aN) { a -> Return(a)))))

If we now pass our example program p to run, it will continue running indefinitely
without a stack overflow, which is what we want. This result is that our run function
won’t overflow the stack, even for infinitely recursive IO programs.

 What have we done here? When a program running on the JVM makes a function
call, it will push a frame onto the call stack to remember where to return after the call
has finished so that the execution can continue. We’ve made this program control
explicit in our IO data type. When run interprets an IO program, it will determine
whether the program is requesting to execute some effect with a Suspend(s) or
whether it wants to call a subroutine with FlatMap(x,f). Instead of the program mak-
ing use of the call stack, run will call x() and then continue by calling f on the result
of that. And f will immediately return a Suspend, a FlatMap, or a Return, transferring
control to run again. Our IO program is, therefore, a kind of coroutine (if you aren’t
familiar with the term coroutine, you may want to check out the official Kotlin page at
https://kotlinlang.org/docs/coroutines-overview.html, but it’s not essential to follow-
ing the rest of this chapter) that executes cooperatively with run. It continually makes
either Suspend or FlatMap requests, and every time it does so, it suspends its own exe-
cution and returns control to run. And it’s actually run that drives the execution of the
program forward, one such suspension at a time. A function like run is sometimes
called a trampoline.

NOTE The overall technique of returning control to a single loop to elimi-
nate the stack is called trampolining. 

13.3.2 Trampolining: A general solution to stack overflow

Let’s take a further look at how this technique of trampolining can be applied to elim-
inate stack overflow exceptions. Nothing says that the resume functions in our IO
monad have to perform side effects. The IO type we have so far is a general data struc-
ture for trampolining computations—even pure computations that don’t do any I/O!

 The StackOverflowError problem manifests itself on the JVM wherever we have a
composite function that consists of more function calls than we have space for on the
call stack. This problem is easy to demonstrate. Consider the following snippet of code:

val f = { x: Int -> x }
val g = List(100000) { idx -> f }      

.fold(f) { ff, h -> { n: Int -> ff(h(n)) } }    

Running this in the REPL results in the following error condition:

>>> g(42)
java.lang.StackOverflowError

Fills a list of size 100,000 with function f, 
ignoring the idx parameter required by fill

Constructs the composite 
function g where 100,000 
functions call each other

https://kotlinlang.org/docs/coroutines-overview.html
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And it will likely fail for much smaller compositions. Fortunately, we can solve this with
our IO monad as follows:

val f = { x: Int -> Return(x) }
val g = List(100000) { idx -> f }     

.fold(f) { a: (Int) -> IO<Int>, b: (Int) -> IO<Int> ->
{ x: Int ->

Suspend { Unit }.flatMap { _ -> a(x).flatMap(b) }  
}

}

Running this with the run interpreter gives us the result we expect without an error:

>>> run(g(42))
res1: kotlin.Int = 42

But there’s no I/O going on here, so IO is a bit of a misnomer. It really gets that name
from the fact that Suspend can contain a side-effecting function. But what we have is
not a monad for I/O—it’s actually a monad for tail-call elimination! Let’s change its
name to reflect that fact.

sealed class Tailrec<A> : TailrecOf<A> {
fun <B> flatMap(f: (A) -> Tailrec<B>): Tailrec<B> = FlatMap(this, f)
fun <B> map(f: (A) -> B): Tailrec<B> = flatMap { a -> Return(f(a)) }

}

data class Return<A>(val a: A) : Tailrec<A>()
data class Suspend<A>(val resume: () -> A) : Tailrec<A>()
data class FlatMap<A, B>(

val sub: Tailrec<A>,
val f: (A) -> Tailrec<B>

) : Tailrec<B>()

In renaming IO to Tailrec, the final program now looks something like this:

val f = { x: Int -> Return(x) }
val g = List(100000) { idx -> f }
    .fold(f) { a: (Int) -> Tailrec<Int>, b: (Int) -> Tailrec<Int> ->
        { x: Int ->
            Suspend { Unit }.flatMap { _ -> a(x).flatMap(b) }
        }
    }

We can use the Tailrec data type to add trampolining to any function type (A) -> B
by modifying the return type B to Tailrec<B>. We just saw an example where we
changed a program that used (Int) -> Int to use (Int) -> Tailrec<Int>. The pro-
gram had to be modified to use flatMap in function composition (this is Kleisli com-
position from chapter 11—the trampolined function uses Kleisli composition in the

Listing 13.8 Tailrec monad for tail-call elimination

Fills a list of size 100,000 with 
updated function f, again ignoring 
the idx parameter required by fill

Creates a large, left-nested
chain of flatMap calls
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Tailrec monad instead of ordinary function composition) and to Suspend before
every function call. Using Tailrec can be slower than direct function calls, but its
advantage is that we gain predictable stack usage.

NOTE When we use Tailrec to implement tail calls that wouldn’t be other-
wise optimized, it’s faster than using direct calls (not to mention stack-safe). It
seems that the overhead of building and tearing down stack frames is greater
than the overhead of having all calls be wrapped in a Suspend. There are vari-
ations on Tailrec that we haven’t investigated in detail—it isn’t necessary to
transfer control to the central loop after every function call, only periodically
to avoid stack overflows. We can, for example, implement the same basic idea
using exceptions. 

13.4 A more nuanced IO type
If we use Tailrec as our IO type, this solves the stack overflow problem, but the other
two problems mentioned in section 13.2.2 still stand: the monad remains inexplicit
about the kinds of effects that may occur and does not consider any form of parallel-
ism in its design. Let’s try to deal with these outstanding concerns.

 During execution, the run interpreter will look at a Tailrec program such as
FlatMap(Suspend(s),k), in which case the next thing to do is to call s(). The pro-
gram is returning control to run, requesting that it execute some effect s, wait for the
result, and respond by passing the resulting value to k (which may subsequently
return a further request). At the moment, the interpreter can’t know anything about
what kind of effects the program will have. It’s completely opaque. So the only thing it
can do is call s(). Not only can that have an arbitrary and unknowable side effect, but
there’s also no way the interpreter could allow asynchronous calls if it wanted to. Since
the suspension is merely a function, all we can do is call it and wait for it to complete.

 What if we used Par from chapter 7 for the suspension instead of a function? If you
recall, Par is a datatype that encapsulates parallel processing. Let’s remodel this and
call the type Async since the interpreter can now support asynchronous execution.

sealed class Async<A> : AsyncOf<A> {
fun <B> flatMap(f: (A) -> Async<B>): Async<B> =

FlatMap(this, f)

fun <B> map(f: (A) -> B): Async<B> =
flatMap { a -> Return(f(a)) }

}

data class Return<A>(val a: A) : Async<A>()
data class Suspend<A>(val resume: Par<A>) : Async<A>()    
data class FlatMap<A, B>(

val sub: Async<A>,
val f: (A) -> Async<B>

) : Async<B>()

Listing 13.9 Async monad handling parallel execution

Suspension is now 
delegated to the 
Par type.
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Note that the resume argument to Suspend is now a Par<A> rather than a () -> A (of
type Function<A>). The implementation of run changes accordingly—it returns a
Par<A> rather than an A, and we rely on a separate tail-recursive step function to re-
associate the FlatMap constructors:

@Suppress("UNCHECKED_CAST")                                  
tailrec fun <A> step(async: Async<A>): Async<A> =

when (async) {
is FlatMap<*, *> -> {

val y = async.sub as Async<A>                    
val g = async.f as (A) -> Async<A>               
when (y) {

is FlatMap<*, *> -> {
val x = y.sub as Async<A>                
val f = y.f as (A) -> Async<A>           
step(x.flatMap { a -> f(a).flatMap(g) })

}
is Return -> step(g(y.a))
else -> async

}
}
else -> async

}

@Suppress("UNCHECKED_CAST")
fun <A> run(async: Async<A>): Par<A> =

when (val stepped = step(async)) {
is Return -> Par.unit(stepped.a)
is Suspend -> stepped.resume
is FlatMap<*, *> -> {

val x = stepped.sub as Async<A>                 
val f = stepped.f as (A) -> Async<A>            
when (x) {

is Suspend -> x.resume.flatMap { a -> run(f(a)) }
else -> throw RuntimeException(

"Impossible, step eliminates such cases"
)

}
}

}

Our Async data type now supports asynchronous computations—we can embed them
using the Suspend constructor, which takes an arbitrary Par. One thing to be aware of
here is the need for explicitly casting values extracted from FlatMap. This is an unfor-
tunate consequence of run-time type erasure that we need to deal with on the JVM.
More details are provided in the sidebar “Run-time type erasure on the JVM.”

 
 
 

Run-time type 
erasure forces 
explicit casting.



311A more nuanced IO type
The changes we have made here work well, but we can take this idea one step further
and abstract over the choice of type constructor used in Suspend. To do that, we’ll
generalize Tailrec / Async and parameterize it on some type constructor F rather
than use Function or Par specifically. We’ll name this more abstract data type the
Free monad:

@higherkind
sealed class Free<F, A> : FreeOf<F, A>        
data class Return<F, A>(val a: A) : Free<F, A>()
data class Suspend<F, A>(val s: Kind<F, A>) : Free<F, A>()  
data class FlatMap<F, A, B>(

val s: Free<F, A>,
val f: (A) -> Free<F, B>

) : Free<F, B>()

13.4.1 Reasonably priced monads

The Return and FlatMap constructors witness that this data type is a monad for any
choice of F, and since they’re precisely the operations required to generate a monad, we
say that it’s a free monad. When we say “free” in this context, it means generated freely in
the sense that F doesn’t need to have any monadic structure of its own.

EXERCISE 13.1

Free is a monad for any choice of F. Implement map and flatMap methods on the
Free sealed class, and give the Monad instance for Free<F, A>.

fun <F, A, B> Free<F, A>.flatMap(f: (A) -> Free<F, B>): Free<F, B> =

SOLUTION_HERE()

fun <F, A, B> Free<F, A>.map(f: (A) -> B): Free<F, B> =

SOLUTION_HERE()

fun <F> freeMonad(): Monad<FreePartialOf<F>> =

SOLUTION_HERE()

Run-time type erasure on the JVM
Generics were introduced as a feature on the JVM with Java 1.5. To maintain back-
ward compatibility with older Java versions that did not support generics at that time,
the creators of Java decided to introduce the concept known as type erasure. This
means all generic information is lost at compile time when Java bytecode is gener-
ated. The unfortunate side effect is that it is impossible to know what generic param-
eters were substituted for at run time.

The difference between Free and Tailrec is 
that Free is parameterized with a type 
constructor F. Tailrec is a special case of 
Free where F is fixed to be Function.

The suspension is now of
some arbitrary kind F
rather than Function.
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EXERCISE 13.2

Implement a specialized tail-recursive interpreter called runTrampoline for running a
Free<Function0, A>. The Function0 higher kind is provided in the chapter boiler-
plate source and wraps the zero-argument function () -> A while offering compatibil-
ity with our Free implementation.

tailrec fun <A> runTrampoline(ffa: Free<ForFunction0, A>): A =

SOLUTION_HERE()

EXERCISE 13.3

Hard: Implement a generic interpreter for Free<F, A>, given a Monad<F>. You can pat-
tern your implementation after the Async interpreter given previously, including use
of a tail-recursive step function.

tailrec fun <F, A> step(free: Free<F, A>): Free<F, A> =

SOLUTION_HERE()

fun <F, A> run(free: Free<F, A>, M: Monad<F>): Kind<F, A> =

SOLUTION_HERE()

What is the meaning of Free<F,A>? Essentially, it is a recursive structure that contains a
value of type A wrapped in zero or more layers of F. Put another way, it’s a tree with
data of type A at the leaves, where the branches are described by F. Put yet another
way, it’s an abstract syntax tree for a program in a language whose instructions are
given by F, with free variables in A.

 It’s also a monad because flatMap lets us take the A and, from it, generate more lay-
ers of F. Before getting at the result, an interpreter of the structure must be able to
process all of those F layers. We can view the structure and its interpreter as interact-
ing coroutines, and the type F defines the protocol of this interaction. By choosing our F
carefully, we can precisely control what kinds of interactions are allowed. 

13.4.2 A monad that supports only console I/O

Opacity in the choice of type parameters could leave us with little ability to reason
about how such parameters could behave. This section explores how we can be more
specific in our choice of the type parameter, which will lead to code that is easier to
comprehend and interact with.
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 Function0 is not just the most straightforward possible choice for the type parame-
ter F, but also one of the least restrictive in terms of what’s allowed. This lack of restric-
tion gives us no ability to reason about what a value of type Function0<A> might do. A
more restrictive choice for F in Free<F, A> might be an algebraic data type that, for
example, only models interactions with the console:

@higherkind
sealed class Console<A> : ConsoleOf<A> {

abstract fun toPar(): Par<A>    

abstract fun toThunk(): () -> A     

}

object ReadLine : Console<Option<String>>() {

override fun toPar(): Par<Option<String>> = Par.unit(run())

override fun toThunk(): () -> Option<String> = { run() }

private fun run(): Option<String> =   
try {

Some(readLine().orEmpty())
} catch (e: Exception) {

None
}

}

data class PrintLine(val line: String) : Console<Unit>() {

override fun toPar(): Par<Unit> = Par.lazyUnit { println(line) }

override fun toThunk(): () -> Unit = { println(line) }

}

Console<A> represents a computation that yields an A, but it’s restricted to one of two
possible forms: ReadLine (having type Console<Option<String>>) or PrintLine. We
bake two interpreters into Console: one that converts to a Par, and another that con-
verts to an () -> A. The implementations of these interpreters are straightforward.

 We can now embed this data type into Free to obtain a restricted IO type allow-
ing for only console I/O. We just use the Suspend constructor of Free to return a
ConsoleIO<A>, which in turn is merely a type alias for Free<ForConsole, A>:

typealias ConsoleIO<A> = Free<ForConsole, A>

companion object {
fun stdin(): ConsoleIO<Option<String>> =

Suspend(ReadLine)

Interprets this 
Console<A> 
as a Par<A>

Interprets this 
Console<A> 
as an () -> A

Internal helper function 
used by both interpreters 
of ReadLine



314 CHAPTER 13 External effects and I/O
fun stdout(line: String): ConsoleIO<Unit> =
Suspend(PrintLine(line))

}

Using this Free<ForConsole, A> type or, equivalently, ConsoleIO<A>, we can write
programs that interact with the console, and we reasonably expect that they don’t per-
form other kinds of I/O.

NOTE Of course, a Kotlin program can always technically have side effects.
Here we’re assuming that the programmer has adopted the discipline of pro-
gramming without side effects since Kotlin can’t guarantee this in itself.

val f1: Free<ForConsole, Option<String>> =
Console.stdout("I can only interact with the console")

.flatMap { _ -> Console.stdin() }

This is all well and good, but how do we actually run a ConsoleIO? Recall our signature
for run:

fun <F, A> run(free: Free<F, A>, MF: Monad<F>): Kind<F, A>

To run a Free<Console, A>, we seem to need a Monad<Console>, which we don’t have.
Note that it’s not possible to implement flatMap for Console because of the ambigu-
ity of the underlying type Par or Function0 that needs to be dealt with. This implies
that Console is not a monad:

fun <B> flatMap(f: (A) -> Console<B>): Console<B> =
when (this) {

is ReadLine -> TODO("not possible!")
is PrintLine -> TODO("also not possible!")

}

Instead, we must translate our Console type to some other type (like Function0 or
Par) that is monadic. We’ll use the following type and corresponding instances to per-
form this translation:

interface Translate<F, G> {
operator fun <A> invoke(fa: Kind<F, A>): Kind<G, A>

}

fun consoleToFunction0() = object : Translate<ForConsole, ForFunction0> {
override fun <A> invoke(

fa: Kind<ForConsole, A>
): Kind<ForFunction0, A> =

Function0(fa.fix().toThunk())
}

fun consoleToPar() = object : Translate<ForConsole, ForPar> {
override fun <A> invoke(

fa: Kind<ForConsole, A>
): Kind<ForPar, A> =
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fa.fix().toPar()
}

Using this type, we can generalize our earlier implementation of run slightly:

fun <F, G, A> runFree(
free: Free<F, A>,
t: Translate<F, G>,
MG: Monad<G>

): Kind<G, A> =
when (val stepped = step(free)) {

is Return -> MG.unit(stepped.a)
is Suspend -> t(stepped.resume)
is FlatMap<*, *, *> -> {

val sub = stepped.sub as Free<F, A>
val f = stepped.f as (A) -> Free<F, A>
when (sub) {

is Suspend ->
MG.flatMap(t(sub.resume)) { a -> runFree(f(a), t, MG) }

else -> throw RuntimeException(
"Impossible, step eliminates such cases"

)
}

}
}

We accept a value of type Translate<F, G> and perform the translation as we inter-
pret the Free<F, A> program. Now we can implement the convenience functions
runConsoleFunction0 and runConsolePar to convert a Free<ForConsole, A> to
either Function0<A> or Par<A>:

fun <A> runConsoleFunction0(a: Free<ForConsole, A>): Function0<A> =
runFree(a, consoleToFunction0(), functionMonad()).fix()

fun <A> runConsolePar(a: Free<ForConsole, A>): Par<A> =
runFree(a, consoleToPar(), parMonad()).fix()

This relies on having Monad<ForFunction0> and Monad<ForPar> instances in scope:

fun functionMonad() = object : Monad<ForFunction0> {
override fun <A> unit(a: A): Function0Of<A> = Function0 { a }
override fun <A, B> flatMap(

fa: Function0Of<A>,
f: (A) -> Function0Of<B>

): Function0Of<B> = { f(fa.fix().f()) }()
}

fun parMonad() = object : Monad<ForPar> {
override fun <A> unit(a: A): ParOf<A> = Par.unit(a)

override fun <A, B> flatMap(
fa: ParOf<A>,
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f: (A) -> ParOf<B>
): ParOf<B> = fa.fix().flatMap { a -> f(a).fix() }

}

EXERCISE 13.4

Hard/Optional: It turns out that runConsoleFunction0 isn’t stack-safe, since flatMap
isn’t stack-safe for Function0 (it has the same problem as our original, naive IO type in
which run called itself in the implementation of flatMap). Implement translate using
runFree, and then, in turn, use it to implement runConsole in a stack-safe way.

fun <F, G, A> translate(
free: Free<F, A>,
translate: Translate<F, G>

): Free<G, A> =

SOLUTION_HERE()

fun <A> runConsole(a: Free<ForConsole, A>): A =

SOLUTION_HERE()

A value of type Free<F, A> is like a program written in an instruction set provided by F.
In the case of Console, the two instructions are PrintLine and ReadLine. The recursive
scaffolding (Suspend) and monadic variable substitution (FlatMap and Return) are pro-
vided by Free. We can introduce other choices of F for different instruction sets: for
example, different I/O capabilities—a filesystem F granting read/write access (or
even just read access) to the filesystem. Or we could have a network F granting the
ability to open network connections and read from them, and so on. 

13.4.3 Testing console I/O by using pure interpreters

A clear separation of concerns has emerged in our design so far. We will now focus our
attention on this clear divide that confines effects to the interpreter and explore how
we can test the entire setup by making the interpreter pure for such situations.

 Note that nothing about the ConsoleIO type implies that any effects must occur!
That decision is the responsibility of the interpreter. We could choose to translate our
Console actions into pure values that perform no I/O at all. For example, an inter-
preter for testing purposes could just ignore PrintLine requests and always return a
constant string in response to ReadLine requests. We would do this by translating our
Console requests to a (String) -> A, which forms a monad in A, as we saw in the
readerMonad of chapter 11, exercise 11.19.
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Default
method

used f
ConsoleR

inst
data class ConsoleReader<A>(val run: (String) -> A) : ConsoleReaderOf<A> {

companion object     

fun <B> flatMap(f: (A) -> ConsoleReader<B>): ConsoleReader<B> =
ConsoleReader { r -> f(run(r)).run(r) }      

fun <B> map(f: (A) -> B): ConsoleReader<B> =
ConsoleReader { r -> f(run(r)) }    

}

@extension       
interface ConsoleReaderMonad : Monad<ForConsoleReader> {   

override fun <A> unit(a: A): ConsoleReaderOf<A> =
ConsoleReader { a }

override fun <A, B> flatMap(
fa: ConsoleReaderOf<A>,
f: (A) -> ConsoleReaderOf<B>

): ConsoleReaderOf<B> =
fa.fix().flatMap { a -> f(a).fix() }   

override fun <A, B> map(
fa: ConsoleReaderOf<A>,
f: (A) -> B

): ConsoleReaderOf<B> =
fa.fix().map(f)    

}

We can access this type by introducing another convenient helper function on Console
called toReader:

sealed class Console<A> : ConsoleOf<A> {
...
abstract fun toReader(): ConsoleReader<A>
...

}

Now that we have this function in place, let’s use it in Translate<ForConsole,
ForConsoleReader>, allowing us to implement runConsoleReader with runFree:

val consoleToConsoleReader =
object : Translate<ForConsole, ForConsoleReader> {

override fun <A> invoke(fa: ConsoleOf<A>): ConsoleReaderOf<A> =
fa.fix().toReader()   

}

fun <A> runConsoleReader(cio: ConsoleIO<A>): ConsoleReader<A> =
runFree(cio, consoleToConsoleReader, ConsoleReader.monad()).fix()  

Listing 13.10 ConsoleReader monad handling console I/O

Companion object required by Arrow to attach the 
.monad() function to access a monad instance

Default flatMap method to be 
used for all ConsoleReader 
instances

 map
 to be
or all
eader
ances

Annotation to generate a 
ConsoleReaderMonad type class instance

Declares a 
type class for 
ConsoleReader 
monadic behavior

Uses the default 
flatMap method of the 
ConsoleReader instance

Uses the default 
map method of the 
ConsoleReader instance

Draws on toReader on Console 
to translate into ConsoleReader

Accesses the ConsoleReader monad instance required by runFree
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For a more complete simulation of the console I/O, we can write a buffered inter-
preter that uses two lists: one to represent the input buffer and another to represent
the output buffer. When the interpreter encounters a ReadLine, it can pop an ele-
ment off the input buffer; and when it encounters a PrintLine(s), it can push s onto
the output buffer:

data class Buffers(       
val input: List<String>,          
val output: List<String>   

)

data class ConsoleState<A>(
val run: (Buffers) -> Pair<A, Buffers>

) : ConsoleStateOf<A> {         
// implement flatMap and map here

}

@extension
interface ConsoleStateMonad : Monad<ForConsoleState> {

// override unit and flatMap here
}

val consoleToConsoleState =
object : Translate<ForConsole, ForConsoleState> {

override fun <A> invoke(fa: ConsoleOf<A>): ConsoleStateOf<A> =
fa.fix().toState()

}

fun <A> runConsoleState(cio: ConsoleIO<A>): ConsoleState<A> =   
runFree(cio, consoleToConsoleState, ConsoleState.monad()).fix()

This will allow us to have multiple interpreters for our small domain languages! We
could, for example, use runConsoleState to test console applications with our
property-based testing library from chapter 8 and then use runConsole to run our
program for real.

NOTE runConsoleReader and runConsoleState aren’t stack-safe as imple-
mented, for the same reason runConsoleFunction0 wasn’t stack-safe. We can fix
this by changing the representations to (String) -> Tailrec<A> for Console-
Reader and (Buffers) -> Tailrec<Pair<A, Buffers>> for ConsoleState.

The fact that we can write a generic runFree that turns Free programs into State or
Reader values demonstrates something amazing: nothing about our Free type requires
side effects of any kind. For example, from the perspective of our ConsoleIO programs,
we don’t know (and don’t care) whether they’re going to be run with an interpreter that
uses “real” side effects like runConsole, or one like runConsoleState that doesn’t. As far
as we’re concerned, a program is just a referentially transparent expression—a pure computa-
tion that may occasionally make requests of an interpreter. The interpreter is free to use
side effects or not. This has now become an entirely separate concern. 

Represents a 
pair of buffers

The input buffer will be 
fed to ReadLine requests.

The output buffer will receive 
strings contained in PrintLine 
requests.

Specialized state 
action for console 
state transitions

Converts to 
a pure state 
action
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13.5 Non-blocking and asynchronous I/O
Now let’s turn our attention to the last remaining problem with our original IO
monad: performing non-blocking or asynchronous I/O. When performing I/O, we
frequently need to invoke operations that take a long time to complete and don’t
occupy the CPU. These include accepting a network connection from a server socket,
reading a chunk of bytes from an input stream, writing a large number of bytes to a
file, and so on. Let’s think about what this means in terms of the implementation of
our Free interpreter.

 When runConsole encounters a Suspend(s), s is of type Console, and we have a
translation f from Console to the target monad. To allow for non-blocking asynchro-
nous I/O, we simply change the target monad from Function0 to Par or some other
concurrency. So just as we were able to write both pure and effectful interpreters for
Console, we can write both blocking and non-blocking interpreters, just by varying the
target monad.

 Let’s look at an example. Here, runConsolePar turns the Console requests into
Par actions and then combines them all into one Par<A>. We can think of it as a kind
of compilation—we’re replacing the abstract Console requests with more concrete
Par requests that read from and write to the standard input and output streams when
the resulting Par value is run:

val p: ConsoleIO<Unit> =
Console.stdout("What's your name").flatMap {

Console.stdin().map { n ->
when (n) {

is Some<String> ->
println("Hello, ${n.get}!")

is None ->
println("Fine, be that way!")

}
}

}

val result: Par<Unit> = runConsolePar(p)

Although this simple example runs in Par, which in principle permits asynchronous
actions, it doesn’t use any asynchronous actions—both stdin and println are blocking
I/O operations. But there are I/O libraries that support non-blocking I/O directly, and
Par will let us bind to such libraries. The details of these libraries vary, but to give you
a general idea, a non-blocking source of bytes might have an interface like this:

interface Source {
fun readBytes(

numBytes: Int,
callback: (Either<Throwable, Array<Byte>>) -> Unit

): Unit
}
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Here it’s assumed that readBytes returns immediately. We give readBytes a callback
function indicating what to do when the result becomes available or the I/O subsys-
tem encounters an error.

 Using this sort of library directly is painful, although this API is still better than
what’s offered by the non-blocking nio package in Java. We want to program against a
monadic compositional interface and abstract over the details of the nasty underlying
I/O library. Luckily, the Par type lets us wrap callbacks, such as for this contrived
Future type.

abstract class Future<A> {
internal abstract fun invoke(cb: (A) -> Unit)

}

@higherkind
class Par<A>(val run: (ExecutorService) -> Future<A>) : ParOf<A> {

companion object
}

The representation of Future is remarkably similar to that of Source. It’s a single
method that returns immediately but takes a callback or continuation cb that will be
invoked once the value of type A becomes available. It’s straightforward to wrap
Source.readBytes in a Future, but we need to add a primitive to our Par algebra. We
do this by adding an extension method to the companion object:

fun <A> Par.Companion.async(run: ((A) -> Unit) -> Unit): Par<A> =
Par { es ->

object : Future<A>() {
override fun invoke(cb: (A) -> Unit): Unit = run(cb)

}
}

With this in place, we can now wrap the asynchronous readBytes function in the
friendly monadic interface of Par:

fun nonblockingRead(
source: Source,
numBytes: Int

): Par<Either<Throwable, Array<Byte>>> =
Par.async { cb: (Either<Throwable, Array<Byte>>) -> Unit ->

source.readBytes(numBytes, cb)
}

fun readPar(
source: Source,
numBytes: Int

): Free<ForPar, Either<Throwable, Array<Byte>>> =
Suspend(nonblockingRead(source, numBytes))

Listing 13.11 Par type that integrates third-party libraries
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We are now free to construct chains of non-blocking computations:

val src: Source = TODO("define the source")
val prog: Free<ForPar, Unit> =

readPar(src, 1024).flatMap { chunk1 ->
readPar(src, 1024).map { chunk2 ->

//do something with chunks
}

}

13.6 A general-purpose IO type
With all the shortcomings of our earlier design resolved and out of the way, we can
now formulate a general methodology of writing programs that perform I/O. For any
given set of I/O operations that we want to support, we can write an algebraic data
type whose case classes represent the individual operations. For example, we could
have a Files data type for file I/O and a DB data type for database access and use
something like Console to interact with standard input and output. For any such data
type F, we can generate a free monad Free<F, A> in which to write our programs.
These can be tested individually and then finally “compiled” down to a lower-level IO
type, which we earlier called Async:

typealias IO<A> = Free<ForPar, A>

This IO type supports both trampolined sequential execution (because of Free) and
asynchronous execution (because of Par). In our main program, we bring all of the
individual effect types together under this most general type. All we need is a transla-
tion from any given F to Par.

13.6.1 The main program at the end of the universe

When the JVM calls into our main program, it expects a main method with a specific
signature. The return type of this method is Unit, meaning it’s expected to have some
side effects. But we can delegate to a pureMain program that’s entirely pure! The only
thing the main method does, in that case, is interpret our pure program, actually per-
forming the effects.

abstract class App {

fun main(args: Array<String>) {       
val pool = Executors.newFixedThreadPool(8)
unsafePerformIO(pureMain(args), pool)

}

private fun <A> unsafePerformIO(
ioa: IO<A>,
pool: ExecutorService

Listing 13.12 Turning side effects into just effects

All the main method 
does is interpret our 
pureMain.
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): A =

run(ioa, Par.monad()).fix().run(pool).get()   

abstract fun pureMain(args: Array<String>): IO<Unit>  
}

We want to make a distinction here between effects and side effects. The pureMain pro-
gram doesn’t have any side effects. It should be a referentially transparent expression
of type IO<Unit>. The performing of effects is entirely contained within main, which is
outside the universe of our actual program, pureMain. Since our program can’t observe
these effects occurring, but they nevertheless occur, we say that our program has
effects but not side effects. 

13.7 Why the IO type is insufficient for streaming I/O
We have established a very flexible implementation of IO that allows for application in
many different settings. But even with all the improvements we’ve made so far, it’s still
not suited for all applications. One such application is streaming I/O. Let’s take a
closer look at why it’s not suited and what can be done to improve our design.

 Despite the flexibility of the IO monad and the advantage of having I/O actions as
first-class values, the IO type fundamentally provides us with the same level of abstrac-
tion as ordinary imperative programming. This means writing efficient, streaming
I/O will generally involve monolithic loops.

 Let’s look at an example. Suppose we wanted to write a program to convert a file,
fahrenheit.txt, containing a sequence of temperatures in degrees Fahrenheit, sepa-
rated by line breaks, to a new file, celsius.txt, containing the same temperatures in
degrees Celsius. An algebra for this might look something like the following:

@higherkind
interface Files<A> : FilesOf<A>

data class ReadLines(
val file: String

) : Files<List<String>>

data class WriteLines(
val file: String,
val lines: List<String>

) : Files<Unit>

Using this as our F type in Free<F, A>, we might try to write the program we want in
the following way:

val p: Free<ForFiles, Unit> =
Suspend(ReadLines("fahrenheit.txt"))

.flatMap { lines: List<String> ->

Interprets the IO action and performs the effect by turning 
IO<A> into Par<A> and then A. The name of this method 
reflects that it’s unsafe to call because it has side effects.

Our actual program
goes here, as an 
implementation of 
pureMain in a 
subclass of App.
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Suspend(WriteLines("celsius.txt", lines.map { s ->
fahrenheitToCelsius(s.toDouble()).toString()

}))
}

This works, although it requires loading the contents of fahrenheit.txt entirely into
memory to work on it, which could be problematic if the file is huge. We’d prefer to
perform this task using roughly constant memory: read a line or a fixed-size buffer full
of lines from farenheit.txt, convert to Celsius, dump to celsius.txt, and repeat. To
achieve this efficiency, we could expose a lower-level file API that gives access to I/O
handles:

@higherkind
interface FilesH<A> : FilesHOf<A>

data class OpenRead(val file: String) : FilesH<HandleR>
data class OpenWrite(val file: String) : FilesH<HandleW>
data class ReadLine(val h: HandleR) : FilesH<Option<String>>
data class WriteLine(val h: HandleW) : FilesH<Unit>

interface HandleR
interface HandleW

The only problem is that we would need to write a monolithic loop:

fun loop(f: HandleR, c: HandleW): Free<ForFilesH, Unit> =
Suspend(ReadLine(f)).flatMap { line: Option<String> ->

when (line) {
is None ->

Return(Unit)
is Some ->

Suspend(WriteLine(handleW {
fahrenheitToCelsius(line.get.toDouble())

})).flatMap { _ -> loop(f, c) }
}

}

fun convertFiles() =
Suspend(OpenRead("fahrenheit.txt")).flatMap { f ->

Suspend(OpenWrite("celsius.txt")).map { c ->
loop(f, c)

}
}

There’s nothing inherently wrong with writing a monolithic loop like this, but it’s not
composable. Suppose we decide later that we’d like to compute a five-element moving
average of the temperatures. Modifying our loop function to do this would be some-
what painful. Compare that to the equivalent change we might make to list-based
code, where we could define a movingAvg function and just stick it before or after our
conversion to Celsius:
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fun movingAvg(n: Int, l: List<Double>): List<Double> = TODO()

val cs = movingAvg(
5, lines.map { s ->

fahrenheitToCelsius(s.toDouble())
}).map { it.toString() }

Even movingAvg could be composed of smaller pieces. For instance, we could build it
using a generic combinator, windowed:

fun <A, B> windowed(
n: Int,
l: List<A>,
f: (A) -> B,
M: Monoid<B>

): List<B> = TODO()

The point is that programming with a composable abstraction like List is much
nicer than programming directly with the primitive I/O operations. Lists aren’t
exceptional in this regard. They’re just one instance of a composable API that’s
pleasant to use. We shouldn’t have to give up all the nice compositionality that we’ve
come to expect from FP just to write programs that use efficient, streaming I/O.
Luckily, we don’t have to. As we’ll see in chapter 15, we get to build whatever
abstractions we want for creating computations that perform I/O. If we like the met-
aphor of lists or streams, we can design a list-like API for expressing I/O computa-
tions. If we discover some other composable abstraction, we can find a way to use it,
instead. FP gives us that flexibility.

 The IO monad is not the final word in writing effectful programs. It’s important
because it represents a kind of lowest common denominator when interacting with
the external world. But in practice, we want to use IO directly as little as possible
because IO programs tend to be monolithic and have limited reuse. In chapter 15,
we’ll discuss how to build more pleasing, more composable, more reusable abstrac-
tions using essentially the same technique that we used here.

 Before getting to that, we’ll apply what we’ve learned so far to fill in the other miss-
ing piece of the puzzle: local effects. At various places throughout this book, we’ve used
local mutations rather casually, with the assumption that these effects weren’t observ-
able. In chapter 14, we’ll explore what this means in more detail, see more examples of
using local effects, and show how effect scoping can be enforced by the type system. 

Summary
 A program’s effectful code should be separated from its pure code so that effects

reside in the outer “imperative shell” while leaving the unblemished “pure core”
in the center.

 It is always possible to refactor an impure procedure into a pure core function,
a side-effecting function that supplies the pure function’s input, and a side-
effecting function that does something with the pure function’s output.
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 Inside every function with side effects is a pure function waiting to get out.
 Separating pure from effectful code can be generalized into an IO data type

that allows us to describe interactions with the outside world without resorting
to side effects.

 Reification is the act of expressing something abstract in a more concrete way.
In our case, this is usually to express a concept as a type constructor rather than
as a function.

 Trampolining is a technique that draws on control-flow reification and tail-call
elimination to prevent stack overflows from occurring in recursive code.

 The free monad allows for a capable IO monad with an interpreter that allows
unobtrusive non-blocking asynchronous I/O internally.

 The IO monad is not the final word in writing effectful programs but provides
the lowest common denominator for interacting with the external world. It
forms the basis of more advanced composable I/O data types to be explored in
subsequent chapters.



Local effects
and mutable state
In chapter 1, we introduced the concept of referential transparency, setting the
premise for purely functional programming. We declared that pure functions can’t
mutate data in place or interact with the external world. In chapter 13, we learned
that this isn’t exactly true. We can write purely functional and compositional pro-
grams that describe interactions with the outside world. These programs are unaware
that they can be evaluated with an interpreter that has an effect on the world.

 In this chapter, we develop a more mature concept of referential transparency.
We’ll consider the idea that effects can occur locally inside an expression and that
we can guarantee that no other part of the larger program can observe these effects

This chapter covers
 Defining referential transparency in terms of 

mutable state

 Hiding local state change through typed scoping 
of effects

 Developing a domain-specific language (DSL) to 
encapsulate mutable state

 Establishing an algebra and interpreter for 
running programs
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occurring. Consider a function that needs to sort a list of integer values using a quick-
sort algorithm. It requires the in-place mutation of an array, which breaks referential
transparency. We could hide this mutation within the function’s boundaries to not
expose any of these details to the caller. In this case, the caller is oblivious to how the
function goes about sorting the list of integers and is none the wiser about any muta-
tion used to achieve the new ordering.

 This chapter also introduces the idea that expressions can be referentially trans-
parent with regard to some programs and not others.

14.1 State mutation is legal in pure functional code
Until this point, you may have had the impression that you’re not allowed to use mutable
state in purely functional programming. But if we look carefully, nothing about the defi-
nitions of referential transparency and purity disallows the mutation of local state. Let’s
refer to our definitions of referential transparency and purity from chapter 1:

An expression e is referentially transparent if for all programs p, all occurrences of e in p
can be replaced by the result of evaluating e without affecting the meaning of p.

A function f is pure if the expression f(x) is referentially transparent for all referentially
transparent x.

By that definition, the following function is pure, even though it uses a while loop, an
updatable var, and a mutable array.

fun quicksort(xs: List<Int>): List<Int> =
if (xs.isEmpty()) xs else {

val arr = xs.toIntArray()

fun swap(x: Int, y: Int) {
val tmp = arr[x]
arr[x] = arr[y]
arr[y] = tmp

}

fun partition(n: Int, r: Int, pivot: Int): Int {
val pivotVal = arr[pivot]
swap(pivot, r)
var j = n
for (i in n until r) if (arr[i] < pivotVal) {

swap(i, j)
j += 1

}
swap(j, r)
return j

}

fun qs(n: Int, r: Int): Unit = if (n < r) {
val pi = partition(n, r, n + (n - r) / 2)

Listing 14.1 In-place quicksort with a mutable array

Swaps two 
elements in 
an array

Partitions a portion
of the array into 
elements less than 
and greater than 
pivot, respectively

 Sorts a portion 
of the array in 
place
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qs(n, pi - 1)
qs(pi + 1, r)

} else Unit

qs(0, arr.size - 1)
arr.toList()

}

To make more sense of how this function works, we can visualize it by way of a dia-
gram; see figure 14.1.

 The quicksort function sorts a list by turning it into a mutable array, sorting the
array in place using the well-known quicksort algorithm, and then turning the array
back into a list. This function’s intricacies aren’t that important, but what is relevant is

1. Caller invokes the function, unaware

of any impure operations that occur

within the function boundaries:

quickSort(xs): List<Int>

6. Swap two elements in the mutable

array:

5. Partition the array around a pivot

point:

4. Top-level helper responsible for

sorting portions of the array

recursively:

7. Return the mutated array

as a read-only list:

3. Invoke the helperqs
function to begin sorting

the entire array:

Mutation

fun swap(
x: Int,
y: Int): Unit

fun partition(
n: Int,
r: Int,

pivot: Int): Int

fun qs n: Int,r: Int):Unit(

return arr.toList()

qs(0,arr.size -1)

2. Copy the list to a mutable

array:

val ar : Array<Int>r

fun quickSort(xs: List<Int>): List<Int>

Figure 14.1 The quickSort function hides local effects from outside observers.
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its overall effect. It’s not possible for any caller to know that the individual subexpres-
sions inside the body of quicksort aren’t referentially transparent or that the local
methods swap, partition, and qs aren’t pure, because at no point does any code out-
side the quicksort function hold a reference to the mutable array. Since all of the
mutation is locally scoped, the overall function is pure. That is, for any referentially
transparent expression xs of type List<Int>, the expression quicksort(xs) is also
referentially transparent.

 Like quicksort, some algorithms need to mutate data in place to work correctly or
efficiently. Fortunately for us, we can always safely mutate data that is created locally.
Any function can use side-effecting components internally and still present a pure
external interface to its callers, and we should feel no shame about taking advantage
of this in our programs. We may prefer purely functional components in our imple-
mentations for other reasons—they’re easier to get right, can be assembled more eas-
ily from other pure functions, and so on—but in principle, there’s nothing wrong
with building a pure function with local side effects in the implementation.

NOTE All the mutation is locally scoped to the function, making the overall
function pure by presenting a pure interface to its callers. 

14.2 A data type to enforce scoping of side effects
Section 14.1 clarifies that pure functions may legally have side effects concerning data
that’s locally scoped. This section goes further by formalizing such local side effects by
introducing a data type that captures this concept.

 The quicksort function may mutate the array because it allocated that array, it is
locally scoped, and no outside code can observe the mutation. On the other hand, if
quicksort somehow mutated its input list directly (as is common in mutable collec-
tion APIs), that side effect would be observable to all callers of quicksort.

 There’s nothing wrong with doing this sort of loose reasoning to determine the
scoping of side effects, but it’s sometimes desirable to enforce effect scoping using the
type system. The constituent parts of quicksort would have direct side effects if used
on their own, and with the types we’re using, we get no help from the compiler in con-
trolling the scope of these side effects. Nor are we alerted if we accidentally leak side
effects or mutable state to a broader scope than intended. In this section, we develop
a data type that uses the type system to enforce scoping of mutations.

NOTE There’s a cost in terms of efficiency and notational convenience, so
think of this as another technique you have at your disposal, not something
that must be employed every time you use local mutation.

Note that we could just work in IO, but that’s really not appropriate for local mutable
state. If quicksort returned IO<List<Int>>, it would be an IO action that’s perfectly safe
to run and would have no side effects, which isn’t the case in general for arbitrary IO
actions. We want to distinguish between effects that are safe to run (like locally mutable
state) and external effects like I/O. So, in our case, a new data type is warranted.
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14.2.1 A domain-specific language for scoped mutation

The most natural approach to formalizing scoped mutation is to write a domain-specific
language (DSL) for talking about such mutable state. We can already write and read a
state with the State<S, A> monad. Recall that this monad is a function of type (S) ->
Pair<A, S> that takes an input state and produces a result and an output state. But
when we’re talking about mutating the state in place, we’re not really passing it from
one action (any function that takes the current state and produces a new one—in this
chapter, any function that does so by mutating the state in place) to the next. Instead,
we’ll pass a kind of token marked with the type S. A function called with the token then
has the authority to mutate data that is tagged with the same type S.

 This new data type will employ the type system to gain two static guarantees. We
want our code not to compile if it violates these invariants:

 If we hold a reference to a mutable object, then nothing should observe us
mutating it from the outside.

 A mutable object should never be observed outside of the scope in which it
was created.

We relied on the first invariant for our implementation of quicksort—we mutated an
array, but since no one else had a reference to that array, the mutation wasn’t observable
outside our function definition. The second invariant is more subtle; it says we won’t
leak references to any mutable state as long as that mutable state remains in scope. This
invariant is vital for some use cases; see the sidebar “Another use case for typed scoping
of mutation” for more details.

We’ll call our new local-effects monad ST, which could stand for state thread, state transi-
tion, state token, or state tag. It’s different from the State monad in that its run method
is protected; but apart from that, the functionality remains the same.

Another use case for typed scoping of mutation
Imagine writing a file I/O library. At the lowest level, the underlying OS file read oper-
ation might fill up a mutable buffer of type Array<Byte>, reusing the same array on
every read instead of allocating a new buffer each time. In the interest of efficiency,
it might be nice if the I/O library could simply return a “read-only” view of type
List<Byte> that’s backed by this array, rather than defensively copying the bytes to
a new data structure. But this isn’t entirely safe—the caller may keep around this
(supposedly) immutable sequence, and when we overwrote the underlying array on
the next read, that caller would observe the data changing out from under it!

To make recycling buffers safe, we need to restrict the scope of the List<Byte> view
we give to callers and make sure callers can’t retain references (directly or indirectly)
to these mutable buffers when we begin the next read operation that clobbers the
underlying Array<Byte>. This unsafe approach is how the Kotlin standard library’s
List has been implemented. We will come back to this phenomenon and discuss it
further in chapter 15.
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 In listing 14.2, the type STOf<S, A> is defined as an alias rather than through a
@higherkind annotation:

typealias STOf<S, A> = arrow.Kind2<ForST, S, A>

abstract class ST<S, A> internal constructor() : STOf<S, A> {
companion object {

operator fun <S, A> invoke(a: () -> A): ST<S, A> {
val memo by lazy(a)  
return object : ST<S, A>() {

override fun run(s: S) = memo to s
}

}

}

protected abstract fun run(s: S): Pair<A, S>

fun <B> map(f: (A) -> B): ST<S, B> = object : ST<S, B>() {
override fun run(s: S): Pair<B, S> {

val (a, s1) = this@ST.run(s)        
return f(a) to s1

}
}

fun <B> flatMap(f: (A) -> ST<S, B>): ST<S, B> = object : ST<S, B>() {
override fun run(s: S): Pair<B, S> {

val (a, s1) = this@ST.run(s)        
return f(a).run(s1)

}
}

}

The run method is protected because an S represents the ability to mutate state, and
we don’t want the mutation to escape. So how do we then run an ST action, giving it
an initial state? This is really two questions. We’ll start by answering the question of
how we specify the initial state.

 It is worth saying that you don’t need to understand every detail of the implemen-
tation of ST. What matters is the idea that we can use the type system to constrain the
mutable state’s scope. 

14.2.2 An algebra of mutable references

Our first example of an application for the ST monad is a DSL for talking about
mutable references. This takes the form of a combinator library with some primitives.
The language for talking about these references that encapsulate and isolate mutable
memory cells should have the following primitive commands:

Listing 14.2 ST data type representing local state mutation

Limits 
constructor 
access to this 
moduleCaches the

value in case
run is called

more than
once

Delegates to the protected 
run function of the instance
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 Allocate a new mutable cell
 Write to a mutable cell
 Read from a mutable cell

The data structure we’ll use for mutable references, as seen in figure 14.2, is just a
wrapper around a protected var:

abstract class STRef<S, A> private constructor() {
companion object {

operator fun <S, A> invoke(a: A): ST<S, STRef<S, A>> = ST {
object : STRef<S, A>() {

override var cell: A = a
}

}
}

protected abstract var cell: A

fun read(): ST<S, A> = ST {
cell

}

fun write(a: A): ST<S, Unit> = object : ST<S, Unit>() {
override fun run(s: S): Pair<Unit, S> {

cell = a
return Unit to s

}
}

}

The methods on STRef to read and write the cell are pure since they just return ST
actions. Note that the type S is not the type of the cell that’s being mutated, and we never
actually use the value of type S. Nevertheless, to call invoke and run one of these ST
actions, we need a value of type S. Therefore, that value serves as a kind of token—an
authorization to mutate or access the cell—but serves no further purpose.

Figure 14.2 The ST<S,A> type 
hides local mutations from observers 
within the STRef<S,A> type.

class ST<S,A>
class STRef<S,A>

var cell: (mutable)A

protected fun run(s: S): Pair<S,A>

fun <B> map(f: (A)->B): B

fun <B> flatMap(f: (A)-> ST<S,B>): ST<S,B>
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 The STRef class is abstract with private constructor access, and the only way to con-
struct an instance from outside is by calling the invoke method on the STRef compan-
ion object. The STRef is constructed with an initial value for the cell of type A. But
what’s returned is not an STRef, but an ST<S, STRef<S, A>> action that constructs the
STRef when run and given the token of type S. It’s important to note that the ST
action and the STRef that it creates are tagged with the same S type.

 At this point, let’s try writing a trivial program that draws on the ST data type. It is
awkward because we have to choose a type S arbitrarily, which we will set to Nothing
for now. In the first instance, we will tolerate excessive nesting in the code:

val p1 =
STRef<Nothing, Int>(10).flatMap { r1 ->

STRef<Nothing, Int>(20).flatMap { r2 ->
r1.read().flatMap { x ->

r2.read().flatMap { y ->
r1.write(y + 1).flatMap {

r2.write(x + 1).flatMap {
r1.read().flatMap { a ->

r2.read().map { b ->
a to b

}
}

}
}

}
}

}
}

This isn’t very readable due to the nested flatMap and map statements. Instead, we’ll
express this as a for-comprehension with an fx block, drawing on Arrow for some
help. The details of how we refactored this aren’t overly important, but if you are curi-
ous, you can visit the GitHub repository to see how it was achieved:

val p2 =
ST.fx<Nothing, Pair<Int, Int>> {

val r1 = STRef<Nothing, Int>(10).bind()
val r2 = STRef<Nothing, Int>(20).bind()
val x = r1.read().bind()
val y = r2.read().bind()
r1.write(y + 1).bind()
r2.write(x + 1).bind()
val a = r1.read().bind()
val b = r2.read().bind()
a to b

}

This little program allocates two mutable Int cells, swaps their contents, adds 1 to
both, and then reads their new values. But we can’t run this program yet because run
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is still protected, and we could never actually pass it a value of type Nothing anyway.
Let’s work on that next. 

14.2.3 Running mutable state actions

By now, you may have figured out the plot with the ST monad. The plan is to use ST to
build up a computation that, when run, allocates a local mutable state, proceeds to
mutate it to accomplish some task, and then discards the mutable state. The whole com-
putation is referentially transparent because the mutable state is private and locally
scoped. But we want to be able to guarantee this isolation. For example, an STRef con-
tains a mutable var, and we want the type system to guarantee that we can never extract
an STRef out of an ST action. That would violate the invariant that the mutable refer-
ence is local to the ST action, breaking referential transparency in the process.

 So how do we safely run ST actions? First, we must differentiate between actions
that are safe to run and ones that aren’t. Spot the difference between these types:

 ST<S, STRef<S, Int>> (not safe to run)
 ST<S, Int> (completely safe to run)

The former is an ST action that returns a mutable reference. But the latter is different.
A value of type ST<S, Int> is literally just an Int, even though computing the Int may
involve some local mutable state. There’s an exploitable difference between these two
types. The STRef involves the type S, but Int doesn’t.

 We want to disallow running an action of type ST<S, STRef<S, A>> because that
would expose the STRef. And in general, we want to disallow running any ST<S, T>
where T involves the type S. On the other hand, it’s easy to see that it should always be
safe to run an ST action that doesn’t expose a mutable object. If we have such a pure
action of a type like ST<S, Int>, it should be safe to pass it an S to get the Int out of it.
Furthermore, we don’t care what S actually is in that case because we’re going to throw it
away. The action might as well be polymorphic in S.

 To represent this, we’ll introduce a new interface that represents ST actions that
are safe to run—in other words, actions that are polymorphic in S:

interface RunnableST<A> {
fun <S> invoke(): ST<S, A>

}

This is similar to the idea behind the Translate interface from chapter 13. A value of
type RunnableST<A> takes a type S and produces a value of type ST<S, A>.

 In the previous section, we arbitrarily chose Nothing as our S type. Let’s instead
wrap it in RunnableST, as shown in figure 14.3, making it polymorphic in S. Then we
don’t have to choose the type S. It will be supplied by whatever calls invoke:

val p3 = object : RunnableST<Pair<Int, Int>> {
override fun <S> invoke(): ST<S, Pair<Int, Int>> =

ST.fx {
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val r1 = STRef<S, Int>(10).bind()
val r2 = STRef<S, Int>(20).bind()
val x = r1.read().bind()
val y = r2.read().bind()
r1.write(y + 1).bind()
r2.write(x + 1).bind()
val a = r1.read().bind()
val b = r2.read().bind()
a to b

}
}

Now we are ready to write the runST function that will call invoke on any polymorphic
RunnableST by arbitrarily choosing a type for S. Since the RunnableST action is poly-
morphic in S, it’s guaranteed to not use the value that is passed in. So it’s completely
safe to pass the value of type Unit!

 The runST function must go on the ST companion object. Since run is protected
on the ST class, it’s accessible from the companion object but nowhere else:

fun <A> runST(st: RunnableST<A>): A =
st.invoke<Unit>().run(Unit).first

We can now run our trivial program p3 from earlier:

>>> ST.runST(p3)
res0: kotlin.Pair<kotlin.Int, kotlin.Int> = (21, 11)

Figure 14.3 The ST algebra is constructed to hide mutation in STRef and is run 
through RunnableST by the runST function.

fun <A> runST(st: RunnableST<A>): A

interface RunnableST<A>

fun <S> invoke(): ST<S, A>

class ST<S,A>

protected fun run(s: S): Pair<S,A>
fun <B> map(f: (A)->B): B
fun <B> flatMap(f: (A)-> ST<S,B>): ST<S,B>

class STRef<S,A>

var cell: (mutable)A
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The expression ST.runST(p3) uses mutable state internally, but it doesn’t have any
side effects. As far as any other expression is concerned, it’s just a pair of integers like
any other. It will always return the same pair of integers and do nothing else.

 But this isn’t the most critical part. Most importantly, we cannot run a program
that tries to return a mutable reference. It’s not possible to create a RunnableST that
returns a naked STRef:

>>> object : RunnableST<STRef<Nothing, Int>> {
... override fun <S> invoke(): ST<S, STRef<Nothing, Int>> = STRef(1)
... }

error: type mismatch: inferred type is ST<S, STRef<S, Int>>
but ST<S, STRef<Nothing, Int>> was expected

override fun <S> invoke(): ST<S, STRef<Nothing, Int>> = STRef(1)
^

In this example, we arbitrarily chose Nothing just to illustrate the point. The point is
that the type S is bound to the invoke method at runtime, so when we create a new
RunnableST instance, that type isn’t accessible.

 Because an STRef is always tagged with the type S of the ST action that it lives in,
it can never escape. And this is guaranteed by the type system! As a corollary, the
fact that you can’t get an STRef out of an ST action guarantees that if you have an
STRef, you must be inside of the ST action that created it, so it’s always safe to
mutate the reference. 

14.2.4 The mutable array represented as a data type for the ST monad

Mutable references on their own are a good start but aren’t all that useful. Mutable
arrays are a far more compelling use case for the ST monad. In this section, we’ll
define an algebra for manipulating mutable arrays in the ST monad before we go on
to write an in-place quicksort algorithm compositionally in the next section. We need
primitive combinators to allocate, read, and write mutable arrays.

abstract class STArray<S, A> @PublishedApi internal constructor() {

companion object {
inline operator fun <S, reified A> invoke(

sz: Int,
v: A

): ST<S, STArray<S, A>> = ST {
object : STArray<S, A>() {

override val value = Array(sz) { v }
}

}

}

Listing 14.3 Isolating mutable arrays in STArray for ST

Makes the internally visible constructor usable from
public inline functions, thus making it indirectly public

Constructs an array 
of the given size 
filled with value v
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protected abstract val value: Array<A>

val size: ST<S, Int> = ST { value.size }

fun write(i: Int, a: A): ST<S, Unit> = object : ST<S, Unit>() {
override fun run(s: S): Pair<Unit, S> {

value[i] = a
return Unit to s

}
}

fun read(i: Int): ST<S, A> = ST { value[i] }

fun freeze(): ST<S, List<A>> = ST { value.toList() }

}

Just as with STRef, we always return an STArray packaged in an ST action with a corre-
sponding S type, and any manipulation of the array (even reading from it) is an ST
action tagged with the same type S. Therefore, it’s impossible to observe a naked
STArray outside of the ST monad. The only exception is code in the Kotlin module in
which the STArray data type itself is declared. The relation between ST and STArray
can be seen in figure 14.4.

Using these primitives, we can now write more complex functions on arrays.

EXERCISE 14.1

Add a combinator on STArray to fill the contained array using a Map. Each key in the
map represents an array index, and the corresponding value should be written at that
index position. For example, sta.fill(mapOf(0 to "a", 2 to "b")) should write the
value "a" at index 0 and "b" at index 2 in the underlying array. Use existing combinators

The array object is 
immutable, but its 
content is not.

Writes a value at the
given index of the array

Reads a value from the 
given index of the array

Returns an immutable
(read-only) list structure

Figure 14.4 The ST<S,A> type 
hides local array mutations within 
the STArray<S,A> type.

class ST<S,A>

class STArray<S,A>

var value: (mutable)Array<A>

protected fun run(s: S): Pair<S,A>

fun <B> map(f: (A)->B): B

fun <B> flatMap(f: (A)-> ST<S,B>): ST<S,B>
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to write your implementation. The function is represented as an extension method
for convenience:

fun <S, A> STArray<S, A>.fill(xs: Map<Int, A>): ST<S, Unit> =

SOLUTION_HERE()

Not everything can be done efficiently using these existing combinators. For example,
the Kotlin standard library already has an efficient way to turn a list into an array. Let’s
go ahead and make that primitive, too:

inline fun <S, reified A> fromList(
xs: List<A>

): ST<S, STArray<S, A>> =
ST {

object : STArray<S, A>() {
override val value: Array<A> = xs.toTypedArray()

}
}

Notice how we use the inline modifier and reified type A, allowing this type to be
passed to the function as a type parameter (https://kotlinlang.org/docs/reference/
inline-functions.html#reified-type-parameters). 

14.2.5 A purely functional in-place quicksort

In section 14.1, we implemented a quicksort algorithm using an in-place mutation of
an array. In this section, we revisit this code but apply the new constructs we’ve devel-
oped so far to enforce the conditions of such local mutations using the type system.

 The components for quicksort are now easy to write in ST. For example, here is
the swap function in the STArray to swap two elements of the array:

fun swap(i: Int, j: Int): ST<S, Unit> =
read(i).flatMap { x ->

read(j).flatMap { y ->
write(i, y).flatMap {

write(j, x)
}

}
}

Now that we have this in place, we can proceed with the other functions that make up
the quicksort algorithm.

https://kotlinlang.org/docs/reference/inline-functions.html#reified-type-parameters
https://kotlinlang.org/docs/reference/inline-functions.html#reified-type-parameters
https://kotlinlang.org/docs/reference/inline-functions.html#reified-type-parameters
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EXERCISE 14.2

Hard: Write the purely functional versions of partition and qs.

fun <S> partition(
arr: STArray<S, Int>,
l: Int,
r: Int,
pivot: Int

): ST<S, Int> =

SOLUTION_HERE()

fun <S> qs(arr: STArray<S, Int>, l: Int, r: Int): ST<S, Unit> =

SOLUTION_HERE()

fun <S> noop() = ST<S, Unit> { Unit }

With these components in place, quicksort can now be assembled by using them:

fun quicksort(xs: List<Int>): List<Int> =
if (xs.isEmpty()) xs else ST.runST(object : RunnableST<List<Int>> {

override fun <S> invoke(): ST<S, List<Int>> =
ST.fx {

val arr = STArray.fromList<S, Int>(xs).bind()
val size = arr.size.bind()
qs(arr, 0, size - 1).bind()
arr.freeze().bind()

}
})

As you can see, the ST monad allows us to write pure functions that nevertheless
mutate the data they receive. The type system ensures that we don’t expose mutation
in an unsafe way.

EXERCISE 14.3

Give the same treatment to kotlin.collections.HashMap (an alias for java.util
.HashMap) as we’ve given here to references and arrays. Come up with a minimal set
of primitive combinators for creating and manipulating hash maps:

abstract class STMap<S, K, V> @PublishedApi internal constructor() {

//SOLUTION_HERE()
}
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14.3 Purity is contextual
In section 14.2, we talked about effects that aren’t observable because they’re entirely
local to some scope. A program can’t observe mutation of data unless it holds a refer-
ence to that data. But other effects may be less observable, depending on who’s look-
ing. This section explores such obscure and often overlooked cases, as they still fall
within the category of local effects even though they are not very apparent.

14.3.1 Definition by example

As a simple example of such a case, let’s take a kind of side effect that occurs all the time
in ordinary Kotlin programs, even ones that we’d usually consider purely functional:

>>> data class Person(val name: String)

>>> Person("Alvaro") == Person("Alvaro")
res0: kotlin.Boolean = true

>>> Person("Alvaro") === Person("Alvaro")
res1: kotlin.Boolean = false

Here, Person("Alvaro") looks pretty innocent. We could be forgiven if we assumed
that it was a completely referentially transparent expression. But each time it appears,
it produces a different Person instance in memory. If we test two appearances of
Person("Alvaro") for equality using the == function, we get true as we’d expect. But
testing for reference equality (a notion inherited from the Java language) with ===, we
get false. The two appearances of Person("Alvaro") aren’t references to the same
object if we peek under the hood of the JVM.

NOTE The Kotlin operators == and === correspond to the method equals()
and the == operator in Java, respectively.

Note that if we evaluate Person("Alvaro"), store the result as x, and then substitute x
to get the expression x === x, it has a different result, as we are now pointing to the
same object reference:

>>> val x = Person("Alvaro")
>>> x === x
res2: kotlin.Boolean = true

Therefore, by our original definition of referential transparency, every data constructor
in Kotlin has a side effect. The effect is that a new and unique object is created in mem-
ory, and the data constructor returns a reference to that new object.

 For most programs, this makes no difference because most programs don’t check
for reference equality. It’s only the === operator that allows our programs to observe
this side effect occurring. Therefore, we could say that it’s not a side effect at all in the
context of the vast majority of programs.

Performs a structural 
comparison between objects

Performs a referential 
comparison between objects
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 Our definition of referential transparency doesn’t take this into account. Referen-
tial transparency is with regard to some context, and our definition doesn’t establish
this context.

 Here is a more general definition of referential transparency:

An expression e is referentially transparent with regard to a program p if every occurrence
of e in p can be replaced by the result of evaluating e without affecting the meaning of p.

This definition is only slightly modified to reflect the fact that not all programs
observe the same effects. We say that an effect of e is non-observable by p if it doesn’t
affect the referential transparency of e with regard to p. For instance, most programs
can’t observe the side effect of calling a constructor because they don’t use ===.

 This definition is still somewhat vague. What is meant by “evaluating”? And what’s the
standard by which we determine whether the meanings of two programs are the same?

 In Kotlin, there’s a standard answer to the first question. We’ll take evaluation to
mean reduction to some normal form. Since Kotlin is a strictly evaluated language, we can
force the evaluation of an expression e to normal form by assigning it to a val:

>>> val v = e

And referential transparency of e with regard to a program p means we can rewrite p,
replacing every appearance of e with v without changing our program’s meaning.

 But what do we mean by “changing the meaning of our program”? Just what is the
meaning of a program? This is a somewhat philosophical question, and there are various
ways to answer it that we won’t explore in detail here. But the general point is that when
we talk about referential transparency, it’s always regarding some context. The context
determines what sorts of programs we’re interested in and how we assign meaning to our
programs. Establishing this context is a choice; we need to decide what aspects of a pro-
gram participate in its meaning. Let’s explore this subtlety a bit further. 

14.3.2 What counts as a side effect?

Earlier, we talked about how the === operator can observe the side effect of object cre-
ation. Let’s look more closely at this idea of observable behavior and program mean-
ing. It requires that we delimit what we consider observable and what we don’t. For
example, take this method, which has a definite side effect:

fun timesTwo(x: Int): Int {
if (x < 0) println("Got a negative number")
return x * 2

}

Invoking the timesTwo function with -1 or 1 does not result in the same program in
every respect. It may compute the same result, but we can say that the program’s
meaning has changed. But this isn’t true for all programs that call timesTwo or for all
notions of program equivalence.
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 We need to decide up front whether changes in standard output are something we
actually care to observe—whether they’re part of the changes in behavior that matter
in our context. In this case, it’s exceedingly unlikely that any other part of the pro-
gram will be able to observe the println side effect occurring inside timesTwo.

 Of course, timesTwo has a hidden dependency on the I/O subsystem. It requires
access to the standard output stream. But as we’ve seen, most programs that we’d con-
sider purely functional also require access to some of the underlying machinery of
Kotlin’s environment, like being able to construct objects in memory and discard
them. At the end of the day, we have to decide which effects are significant enough to
track. We could use the IO monad to track println calls, but maybe we don’t want to
bother. If we’re just using the console to do some temporary debug logging, it seems
like a waste of time to track this. But if the program’s correct behavior depends in
some way on what it prints to the console (for example, if it’s a UNIX command-line
utility), then we definitely want to track it.

 This brings us to an essential point: tracking effects is a choice we make as program-
mers. It’s a value judgment, and there are trade-offs associated with how we choose.
We can take it as far as we want. But as with the context of referential transparency, we
are faced with a common choice. For example, it would be completely valid and possi-
ble to track memory allocations in the type system if that really mattered to us. But on
the JVM, we benefit from automatic memory management, so the cost of explicit
tracking is usually greater than the benefit.

 The policy we should adopt is to track those effects that program correctness depends on.
If a program is fundamentally about reading and writing files, then file I/O should be
tracked in the type system to be feasible. If a program relies on object reference equal-
ity, it would be nice to know that statically, too. Static type information lets us know
what kinds of effects are involved, thereby letting us make educated decisions about
whether they matter to us in a given context.

 The ST type in this chapter and the IO monad in the previous chapter should have
given you a taste for what it’s like to track effects in the type system. But this isn’t the end
of the road. You’re limited only by your imagination and the expressiveness of the types. 

Summary
 Local mutable state is an in-place mutation that is not visible outside the bound-

aries of the function that contains it.
 Mutable state is legal as long as the local mutation is hidden from the observer,

thus maintaining referential transparency to the caller.
 A domain-specific language is a useful device for encapsulating local mutable

references. This takes advantage of the type system to hide such effects from
the client.

 An algebra such as ST can be developed to allocate, write, and read mutable
memory cells so that it can effectively hide this mutation from external callers.
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 A local state transition algebra such as STRef, STArray, or STMap can operate on
references, arrays, or maps, allowing the flexibility required for dealing with
various forms of local state mutation effects.

 Side effects should be considered contextual, and developers can choose what
effects matter in the context they are working in.



Stream processing
and incremental I/O
We said in the introduction to part 4 that functional programming is a complete par-
adigm. Every imaginable program can be expressed functionally, including pro-
grams that interact with the external world. But it would be disappointing if the IO
type were the only way to construct such programs. IO and ST work by simply
embedding an imperative programming language into the purely functional subset
of features that we have explored up to now. While programming within the IO
monad, we have to reason about our programs much like we would in ordinary
imperative programming.

 We can do better. In this chapter, we show how to recover the high-level compo-
sitional style developed in parts 1–3 of this book, even for programs that interact
with the outside world. The design space in this area is enormous, and our goal

This chapter covers
 Shortcomings of imperative IO

 Transformation using stream transducers

 Building an extensible Process type

 Single input and output processing with Source 
and Sink

 Combining multiple input streams using Tee
344
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here is not to explore it in its entirety but just to convey ideas and give a sense of
what’s possible.

15.1 Problems with imperative I/O: An example
We’ll start by considering a simple concrete scenario that we’ll use to highlight some
of the problems with imperative I/O embedded in the IO monad. Our first easy chal-
lenge in this chapter is to write a program that checks whether the number of lines in
a file is greater than 40,000.

NOTE For the sake of simplicity, we are using the Sequence provided in the
Kotlin standard library for our examples. This gives us a convenient way to
demonstrate some concepts before switching to our own Stream implementa-
tion in section 15.2.

This is a deliberately simple task that illustrates the essence of the problem our library
is intended to solve. We could certainly accomplish this task with ordinary imperative
code inside the IO monad. Let’s look at this approach first.

fun linesGt40k(fileName: String): IO<Boolean> = IO {
val limit = 40000
val src = File(fileName)
val br = src.bufferedReader()   
try {

var count = 0
val lines = br.lineSequence().iterator()    
while (count <= limit && lines.hasNext()) {   

lines.next()   
count += 1

}
count > limit

} finally {
br.close()

}
}

Here we have a piece of imperative code with side effects embedded within an IO
monad. We can now run this IO action with unsafePerformIO(linesGt40k("lines
.txt")), where unsafePerformIO is a side-effecting method that takes IO<A>, return-
ing A and performing the desired effects (this was covered in section 13.6.1).

 Although this code uses low-level primitives like a while loop, a mutable Iterator,
and a var, there are some good things about it. First, it’s incremental—the entire file
isn’t loaded into memory up front. Instead, lines are fetched from the file only when
needed. If we didn’t buffer the input, we could keep as little as a single line of the file
in memory at a time. It also terminates early, as soon as the answer is known.

 There are some terrible things about this code, too. For one, we have to remember
to close the file when we’re done. This might seem obvious, but if we forget to do this,

Listing 15.1 Counting lines in a file: classic imperative style

Convenience method to 
access BufferedReader 
from java.io.File

The lineSequence 
extension method 
provides a 
Sequence<String>.

Uses hasNext() to 
see if more lines 
are available

Calling next() has 
the side effect of 
advancing in the 
iterator.
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or (more commonly) if we close the file outside of a finally block and an exception
occurs first, the file will remain open. This is called a resource leak. A file handle is an
example of a scarce resource—the operating system can have only a limited number
of files open at any given time. If this task were part of a more extensive program—say
we were scanning an entire directory recursively, building up a list of all files with
more than 40,000 lines—our larger program could quickly fail because too many files
were left open.

 We want to write programs that are resource-safe—they should close file handles as
soon as the handles are no longer needed (whether because of normal termination or
an exception), and they shouldn’t attempt to read from a closed file. The same is true
for other resources like network sockets, database connections, and so on. Using IO
directly can be problematic because it means our programs are entirely responsible
for ensuring their own resource safety, and we get no help from the compiler in mak-
ing sure they do this. Wouldn’t it be lovely if our library would ensure that programs
are resource-safe by construction?

 But even aside from the problems with resource safety, there’s something unsatisfy-
ing about this code. It entangles the high-level algorithm with low-level concerns
about iteration and file access. Of course, we have to obtain the elements from a
resource, handle any errors that occur, and close the resource when we’re done, but
our program isn’t about any of those things. It’s about counting elements and return-
ing a value as soon as we hit 40,000. And that happens between all of those I/O actions.
Intertwining the algorithm and the I/O concerns is not just ugly—it’s a barrier to
composition, and our code will be challenging to extend later. To see this, consider a
few variations of the original scenario:

 Check whether the number of nonempty lines in the file exceeds 40,000.
 Find a line index before 40,000 where the first letters of consecutive lines spell

out "abracadabra".

For the first case, we could imagine passing a (String) -> Boolean into our lines-
Gt40k function. But for the second case, we’d need to modify our loop to keep track
of some further state. Besides being uglier, the resulting code would likely be tricky to
get right. In general, writing efficient code in the IO monad means writing monolithic
loops, and monolithic loops are not composable.

 Let’s compare this to the case where we have a Sequence<String> for the lines
being analyzed:

lines.withIndex().exists { it.index >= 40000 }

Much better! With a Sequence, we get to assemble our program from preexisting com-
binators, withIndex and exists. If we want to consider only nonempty lines, we can
easily use filter:

lines.filter { it.trim().isNotBlank() }
.withIndex()
.exists { it.index >= 40000 }
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For the second scenario, we can use the indexOf method defined on CharSequence in
conjunction with take (to terminate the search after 40,000 lines), map (to pull out
the first character of each line), and joinToString (to materialize the sequence of
characters into a String):

lines.filter { it.trim().isNotBlank() }
.take(40000)
.map { it.first() }
.joinToString("")
.indexOf("abracadabra")

We want to write something like the preceding code when reading from an actual
file. The problem is, we don’t have a Sequence<String>; we only have a file from
which we can read. We could cheat by writing a function lines that returns an
IO<Sequence<String>>:

fun lines(fileName: String): IO<Sequence<String>> =
IO {

val file = File(fileName)
val br = file.bufferedReader()
val end: String by lazy {

br.close()
System.lineSeparator()

}

sequence {
yieldAll(br.lineSequence())
yield(end)

}
}

This function creates a Sequence<String> within the IO and terminates the sequence
with the lazy evaluation of a line separator character. As a side effect of this lazy evalu-
ation, the buffered reader feeding the sequence is closed. The sequence function is
part of the Kotlin standard library to generate arbitrary sequences. It takes a lambda
with multiple yieldAll or yield function calls responsible for producing the ele-
ments in the sequence.

 We’re cheating because the Sequence<String> inside the IO monad isn’t actually a
pure value. As elements of the stream are forced, it executes side effects of reading
from the file; only if we examine the entire stream and reach its end will we close the
file. Although lazy I/O is appealing in that it lets us recover the compositional style to
some extent, it’s problematic for several reasons:

 It isn’t resource-safe. The resource, which in our case is a file, will be released
only if we traverse to the end of the stream. But we’ll frequently want to termi-
nate traversal early. In our example, exists will stop traversing Stream as soon
as it finds a match. We certainly don’t want to leak resources every time we ter-
minate early!
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 Nothing stops us from traversing that same Sequence again after the file has
been closed. This will result in one of two things, depending on whether the
Sequence memoizes (caches) its elements once they’re forced. If they’re memoized,
we’ll see excessive memory usage since all the elements will be retained in
memory. If they’re not memoized, traversing the stream again will cause a read
from a closed file handle and cause an IOException to be thrown.

 Since forcing elements of the stream has I/O side effects, two threads traversing
a Stream at the same time can result in unpredictable behavior.

 In more realistic scenarios, we won’t necessarily have full knowledge of what’s
happening with the Sequence<String>. It could be passed to a function we
don’t control, which might store it in a data structure for an extended period
before ever examining it. Proper usage now requires some out-of-band knowl-
edge: we can’t just manipulate this Sequence<String> like a typical pure value—
we have to know something about its origin. This is bad for composition, where
we shouldn’t have to know anything about a value other than its type. 

15.2 Transforming streams with simple transducers
So far, we’ve examined the shortcomings of both embedded I/O and simplistic, lazy
I/O. These approaches lack the high-level compositionality that we’ve come to prefer.
This section begins to recover this high-level style, as seen in chapters 3 and 5 when we
dealt with Stream and List. We do so by introducing the notion of stream transducers,
alternatively know as stream processors. We use these two terms interchangeably through-
out this chapter.

 A stream transducer specifies a transformation from one stream to another. We’re
using the term stream quite generally here to refer to a sequence, possibly lazily gener-
ated or supplied by an external source. This could be a stream of lines from a file, a
stream of HTTP requests, a stream of mouse click positions, or anything else. Let’s
consider a simple data type, Process, that lets us express stream transformations.
We’re making several omissions in this code for the sake of simplicity. For instance, we
are relaxing type variance and omitting some trampolining that would prevent stack
overflows in certain circumstances:

sealed class Process<I, O> : ProcessOf<I, O> {
//driver and instance methods

}

data class Emit<I, O>(
val head: O,
val tail: Process<I, O> = Halt()    

) : Process<I, O>()

data class Await<I, O>(
val recv: (Option<I>) -> Process<I, O>

) : Process<I, O>()

class Halt<I, O> : Process<I, O>()

Default parameter to allow 
Emit(s) instead of needing 
Emit(s, Halt())
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Figure 15.1 shows how a Process<I, O> is used to transform a stream containing I val-
ues to a stream of O values. But Process<I, O> isn’t a typical (Stream<I>) -> Stream<O>
function, which could consume the input stream and construct the output stream.
Instead, we have a state machine that must be driven forward with a driver, a function
that simultaneously consumes both our Process and the input stream. A Process can
be in one of three states, each of which signals something to the driver:

 Emit(head, tail) indicates to the driver that the head value should be emitted
to the output stream, and the state machine should then be transitioned to the
tail state.

 Await(recv) requests a value from the input stream. The driver should pass
the next available value to the recv function or None if the input has no more
elements.

 Halt indicates to the driver that no more elements should be read from the
input or emitted to the output.

Let’s look at a sample driver that interprets these requests. Here’s one that transforms
a Stream. We can implement it as a method on Process:

operator fun invoke(si: Stream<I>): Stream<O> =
when (this) {

is Emit -> Cons({ this.head }, { this.tail(si) })
is Await -> when (si) {

is Cons -> this.recv(Some(si.head()))(si.tail())
is Empty -> this.recv(None)(si)

}
is Halt -> Stream.empty()

}

Driver

Emit<I,O>

Await<I,O>

Halt<I,O>

Process<I,O>
Stream<O> Stream<I>

Cons
<O>

Cons
<O>

Cons
<I>

Empty

Figure 15.1 The Process<I, O> state machine is used to transform a Stream<I> 
to Stream<O>.
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Thus, given p: Process<I, O> and an si: Stream<I>, the expression p(si) produces
Stream<O>. What’s interesting is that Process is agnostic about how its input is fed in.
We’ve written a driver that feeds a Process from a Stream, but we could also write a
driver that feeds a Process from something else, like a file. We’ll get to writing such
a driver in section 15.2.3.

15.2.1 Combinators for building stream transducers

Now that we grasp the machinery behind the stream transducer, we can put it to work
to produce meaningful results. This section covers some handy combinators that
build Process instances, allowing us to operate on various streams with the driver
method in the REPL.

 For starters, we can lift any function f: (I) -> O to Process<I, O>. We just Await
and then Emit the value received, transformed by f:

fun <I, O> liftOne(f: (I) -> O): Process<I, O> =
Await { i: Option<I> ->

when (i) {
is Some -> Emit<I, O>(f(i.get))
is None -> Halt<I, O>()

}
}

Now let’s play in the REPL:

>>> val p = liftOne<Int, Int> { it * 2 }
>>> p(Stream.of(1, 2, 3, 4, 5)).toList()
res0: chapter3.List<kotlin.Int> = Cons(head=2, tail=Nil)

As we can see, this Process just waits for one element, emits it, and then stops. To
transform a whole stream with a function, we do this repeatedly in a loop, alternating
between awaiting and emitting. We can write a combinator for this called repeat as
another method on Process:

fun repeat(): Process<I, O> {
fun go(p: Process<I, O>): Process<I, O> =

when (p) {
is Halt -> go(this)        
is Await -> Await { i: Option<I> ->

when (i) {
is None -> p.recv(None)    
else -> go(p.recv(i))

}
}
is Emit -> Emit(p.head, go(p.tail))

}
return go(this)

}

Restarts the 
process if it halts 
on its own

Doesn’t repeat if 
terminated from 
source
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This combinator replaces the Halt constructor of the Process with a recursive step,
repeating the same process forever. We can now lift any function to a Process that
maps over a Stream:

fun <I, O> lift(f: (I) -> O): Process<I, O> = liftOne(f).repeat()

Since the repeat combinator recurses forever and Emit is strict in its arguments, we
have to be careful not to use it with a Process that never waits! For example, we can’t
just say Emit(1).repeat() to get an infinite stream that keeps emitting 1. Remember,
Process is a stream transducer, so if we want to do something like that, we need to
transduce one infinite stream to another:

>>> val units = Stream.continually(Unit)
res1: chapter5.Stream<kotlin.Unit> =
Cons(head=() -> A, tail=() -> chapter5.Stream<A>)

>>> lift<Unit, Int> { _ -> 1 }(units)
res2: chapter5.Stream<kotlin.Int> =
Cons(head=() -> O, tail=() -> chapter5.Stream<O>)

We can go beyond mapping the elements of a stream from one type to another. We
can also insert or remove elements. For instance, here’s a Process that filters out ele-
ments that don’t match the predicate p:

fun <I> filter(p: (I) -> Boolean): Process<I, I> =
Await<I, I> { i: Option<I> ->

when (i) {
is Some -> if (p(i.get)) Emit(i.get) else Halt()
is None -> Halt()

}
}.repeat()

We simply await some input and, if it matches the predicate, emit it to the output. The
call to repeat makes sure that the Process keeps going until the input stream is
exhausted. Let’s see how this plays out in the REPL:

>>> val even = filter<Int> { it % 2 == 0 }
>>> even(Stream.of(1, 2, 3, 4, 5)).toList()
res3: chapter3.List<kotlin.Int> = Cons(head=2, tail=Cons(head=4, tail=Nil))

Let’s look at another example of a Process called sum that keeps emitting a running
total of the values seen so far:

fun sum(): Process<Double, Double> {
fun go(acc: Double): Process<Double, Double> =

Await { i: Option<Double> ->
when (i) {

is Some -> Emit(i.get + acc, go(i.get + acc))
is None -> Halt<Double, Double>()

}
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}
return go(0.0)

}

This kind of definition follows a typical pattern in defining a Process. We use an inner
function that tracks the current state, which is the sum total up to this point. Let’s try
sum in the REPL:

>>> sum()(Stream.of(1.0, 2.0, 3.0, 4.0)).toList()
res4: chapter3.List<kotlin.Double> =
Cons(head=1.0, tail=Cons(head=3.0, tail=
Cons(head=6.0, tail=Cons(head=10.0, tail=Nil))))

Now it is time to write some more Process combinators of your own to help you get
accustomed to this programming style. Try to work through implementations of at
least some of these exercises until you get the hang of it.

EXERCISE 15.1

Implement take, which halts Process after it encounters the given number of ele-
ments, and drop, which ignores the given number of arguments and then emits the
rest. Also implement takeWhile and dropWhile, which take and drop elements,
respectively, as long as the given predicate remains true.

fun <I> take(n: Int): Process<I, I> =

SOLUTION_HERE()

fun <I> drop(n: Int): Process<I, I> =

SOLUTION_HERE()

fun <I> takeWhile(p: (I) -> Boolean): Process<I, I> =

SOLUTION_HERE()

fun <I> dropWhile(p: (I) -> Boolean): Process<I, I> =

SOLUTION_HERE()

EXERCISE 15.2

Implement count. It should emit the number of elements seen so far. For instance,
count(Stream("a", "b", "c", "d")) should yield Stream(1, 2, 3, 4).
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fun <I> count(): Process<I, Int> =

SOLUTION_HERE()

EXERCISE 15.3

Implement mean, a function that emits a running average of the values encountered in
a stream so far.

fun mean(): Process<Double, Double> =

SOLUTION_HERE()

Just as we’ve seen many times throughout this book, when we notice common patterns
while defining a series of functions, we can factor these patterns out into generic com-
binators. The functions sum, count, and mean all share a common pattern. Each has a
single piece of state, has a state transition function that updates this state in response
to input, and produces a single output. We can generalize this behavior to a combina-
tor called loop:

fun <S, I, O> loop(z: S, f: (I, S) -> Pair<O, S>): Process<I, O> =
Await { i: Option<I> ->

when (i) {
is Some -> {

val (o, s2) = f(i.get, z)
Emit(o, loop(s2, f))

}
is None -> Halt<I, O>()

}
}

EXERCISE 15.4

Write sum and count in terms of loop.

fun sum(start: Double): Process<Double, Double> =

SOLUTION_HERE()

fun <I> count(): Process<I, Int> =

SOLUTION_HERE()
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15.2.2 Combining multiple transducers by appending and composing

So far, we’ve looked at developing single-stream processors that can perform simple
transformations. Even though this is already very useful, wouldn’t it be great if we
could combine multiple processes and treat them as one? This section deals with the
composition of multiple processes.

 We can build up more complex stream transformations by composing Process val-
ues. Given two Process values, f and g, we can feed the output of f to the input of g.
We’ll name this operation pipe and implement it as an infix function on Process. It
has the quality that f pipe g fuses the transformations done by f and g. As soon as val-
ues are emitted by f, they’re transformed by g.

NOTE This operation might remind you of function composition, which
feeds the single output of a function as the single input to another function.
Both Process and Function1 are instances of a broader abstraction called a
category.

EXERCISE 15.5

Hard: Implement pipe as an infix function on Process.

infix fun <I, O, O2> Process<I, O>.pipe(
g: Process<O, O2>

): Process<I, O2> =

SOLUTION_HERE()

We can now easily write an expression like filter { it % 2 == 0 } pipe lift { it + 1 }
to filter and map in a single transformation. We can call a sequence of transforma-
tions like this a pipeline.

 Since we have Process composition and we can lift any function into a Process,
it becomes trivial to implement map to transform the output of a Process with
a function:

fun <O2> map(f: (O) -> O2): Process<I, O2> = this pipe lift(f)

Now that we have map, it means the type constructor Process<I, O> is a functor. If we
ignore the input side I for a moment, we can think of Process<I, O> as a sequence
of O values. This map implementation is then analogous to mapping over a Stream or
a List.

 Most of the operations defined for ordinary sequences are defined for Process,
too. For example, we can append one process to another. Given two processes, x and y,
the expression x append y is a process that will run x to completion and then run y on
whatever input remains after x has halted. For the implementation, we replace the
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Halt of x with y (much as append on List replaces the Nil terminating the first list
with the second list):

infix fun append(p2: Process<I, O>): Process<I, O> =
when (this) {

is Halt -> p2
is Emit -> Emit(this.head, this.tail append p2)
is Await -> Await { i: Option<I> ->

(this.recv andThen { p1 -> p1 append p2 })(i)
}

}

Now, with the help of append on Process, we can define flatMap:

fun <O2> flatMap(f: (O) -> Process<I, O2>): Process<I, O2> =
when (this) {

is Halt -> Halt()
is Emit -> f(this.head) append this.tail.flatMap(f)
is Await -> Await { i: Option<I> ->

(this.recv andThen { p -> p.flatMap(f) })(i)
}

}

The obvious question then is whether Process<I, O> forms a monad. It turns out that
it does! To write the Monad instance, we partially apply the I parameter of Process,
which is a trick we’ve used before with other higher-kinded types:

@extension
interface ProcessMonad<I, O> : Monad<ProcessPartialOf<I>> {

override fun <A> unit(a: A): ProcessOf<I, A> = Emit(a)

override fun <A, B> flatMap(
fa: ProcessOf<I, A>,
f: (A) -> ProcessOf<I, B>

): ProcessOf<I, B> =
fa.fix().flatMap { a -> f(a).fix() }

override fun <A, B> map(
fa: ProcessOf<I, A>,
f: (A) -> B

): ProcessOf<I, B> =
fa.fix().map(f)

}

The unit function just emits the argument and then halts, similar to unit for the List
monad.

 This Monad instance is the same idea as the Monad for List. What makes Process
more interesting than List is that it can accept input. And it can transform that input
through mapping, filtering, folding, grouping, and so on. It turns out that Process
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can express almost any stream transformation, all the while remaining agnostic about
how it is obtaining its input or what should happen with its output.

EXERCISE 15.6

Hard/Optional: Come up with a generic combinator that lets you express mean in
terms of sum and count. Define this combinator, and implement mean in terms of it.

fun mean(): Process<Double, Double> =

SOLUTION_HERE()

EXERCISE 15.7

Optional: Implement zipWithIndex. It emits a running count of zero-based values emit-
ted along with each stream value. For example, Process("a", "b").zipWithIndex()
yields Process(0 to "a", 1 to "b").

fun <I, O> Process<I, O>.zipWithIndex(): Process<I, Pair<Int, O>> =

SOLUTION_HERE()

EXERCISE 15.8

Optional: Implement a processor for exists that takes a predicate. There are multi-
ple ways to implement this. Given a Stream.of(1, 3, 5, 6, 7), exists { it % 2 == 0 }
could do the any of the following:

 Produce Stream(true), halting and only yielding the final result
 Produce Stream(false, false, false, true), halting and yielding all interme-

diate results
 Produce Stream(false, false, false, true, true), not halting, and yielding

all the intermediate results

Note that there is no penalty for implementing the “trimming” of this final form with
a separate combinator because pipe fuses the processors.

fun <I> exists(f: (I) -> Boolean): Process<I, Boolean> =

SOLUTION_HERE()
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We can now easily express the core stream transducer for our line-counting problem
as count() pipe exists { it > 40000 }. Using this arrangement makes it easy to attach
filters and other transformations to our pipeline. 

15.2.3 Stream transducers for file processing

Our original problem of answering whether a file has more than 40,000 elements is
now easy to solve. So far, we’ve been transforming pure streams. Luckily, we can just as
easily use a file to drive a Process. Rather than generate a Stream as a result, we can
accumulate what is emitted by Process. This accumulation is very similar to what
foldLeft does on List.

fun <A, B> processFile(
file: File,
proc: Process<String, A>,
z: B,
fn: (B, A) -> B

): IO<B> = IO {      

tailrec fun go(
ss: Iterator<String>,
curr: Process<String, A>,
acc: B

): B =            
when (curr) {

is Halt -> acc
is Await -> {

val next =
if (ss.hasNext()) curr.recv(Some(ss.next()))
else curr.recv(None)

go(ss, next, acc)
}
is Emit -> go(ss, curr.tail, fn(acc, curr.head))

}

file.bufferedReader().use { reader ->        
go(reader.lines().iterator(), proc, z)

}
}

We introduce a processFile function that specializes in reducing a file’s contents by
applying a process operation. This function has a local go helper responsible for pro-
cessing a string iterator using a Process, accumulating its result in an acc accumula-
tor value. The proc process (or chain of processes) and the initial value z determine
the output value of type B. We finally pass an iterator of the file lines into the go helper
function with the process and initial value. With this in place, we can solve the original
line-count problem with the following code snippet:

val proc = count<String>() pipe exists { it > 40000 }
processFile(f, proc, false) { a, b -> a || b }

Listing 15.2 processFile accumulating processed output

Wraps the entire 
operation in IO

Helper function that applies 
process in the tail-recursive 
iteration of file lines

Uses a Kotlin built-in use 
extension to close the buffered 
reader after the operation
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EXERCISE 15.9

Optional: Write a program that reads degrees Fahrenheit as Double values from a file.
One value per line is passed through a Process to convert it to degrees Celsius, and
the result is written to another file. You can use the toCelsius function to help with
the calculation:

fun toCelsius(fahrenheit: Double): Double =

SOLUTION_HERE()

fun convert(infile: File, outfile: File): File =

SOLUTION_HERE()

15.3 An extensible process type for protocol 
parameterization
The previous section saw the establishment of a limited Process type that implicitly
assumes an environment or context containing a single stream of values. A further lim-
itation of this design is that we assume a fixed protocol for communicating with the
driver. A Process can issue only three instructions to the driver: Halt, Emit, and
Await. There is no way to extend this protocol short of defining an entirely new type
of Process.

 This section seeks to make our design more extensible by parameterizing the pro-
tocol used for issuing the driver’s requests. This type of parameterization works much
the same as the Free type that we covered in chapter 13. Let’s begin by looking at an
improved design.

@higherkind
sealed class Process<F, O> : ProcessOf<F, O> {

companion object {
data class Await<F, A, O>(

val req: Kind<F, A>,          
val recv: (Either<Throwable, A>) -> Process<F, O>      

) : Process<F, A>()

data class Emit<F, O>(
val head: O,
val tail: Process<F, O>

) : Process<F, O>()

data class Halt<F, O>(val err: Throwable) : Process<F, O>()   

Listing 15.3 Extensible Process type parameterizing F

Await now handles a 
request of Kind<F, A>.

The recv function now takes an
Either so we can handle errors.

Halts due to err, which could be an actual
error or End indicating normal termination
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object End : Exception()      

object Kill : Exception()   
}

}

Unlike Free<F, A>, Process<F, O> represents a stream of O output values produced by
making potential external requests using the protocol F via Await. The F parameter
serves the same role here for Await as the F parameter used for Suspend in Free from
chapter 13.

 The vital difference between Free and Process is that Process can request Emit
values multiple times, whereas Free always contains one answer in its final Return.
And instead of terminating with Return, Process terminates with Halt.

 To ensure resource safety when writing processes that close over a resource like a
file handle or database connection, the recv function of Await takes an Either
<Throwable, A>. If an error occurs while running the request req, the recv function
should decide what to do (the recv function should be trampolined to avoid stack
overflow errors by returning a TailRec<Process<F, O>>. We’ve omitted this detail for
simplicity. We’ll adopt the convention that the End exception indicates no more input,
and Kill indicates the process is being forcibly terminated and should clean up any
resources it’s using.

 The Halt constructor picks up a cause for the termination in the form of a Throw-
able. The cause may be End, indicating normal termination due to exhausted input,
while Kill indicates forcible termination or some other error. Note that Exception is
a subtype of Throwable.

 This new Process type is more general than the previous one, which we’ll refer to
from now on as a “single-input Process” or a Process1, and we can represent this type
as a particular instance of the generalized Process type. We’ll see how this works in sec-
tion 15.3.3.

 First, note that several operations are defined for Process regardless of the choice
of F. We can still define append, map, and filter for Process, and the definitions are
almost identical to before. Here’s append, which we define in terms of a new, more
general function called onHalt:

fun onHalt(f: (Throwable) -> Process<F, O>): Process<F, O> =
when (this) {

is Halt -> tryP { f(this.err) }        
is Emit -> Emit(this.head, tail.onHalt(f))
is Await<*, *, *> ->

awaitAndThen(req, recv) { p: Process<F, O> ->    
p.onHalt(f)

}
}

Exception that indicates 
normal termination. This allows 
us to use the Kotlin exception 
mechanism for control flow.Exception that indicates

forceful termination. We’ll
see how this is used later.

Contains try and 
catch in the tryP 
function call

The call to awaitAndThen works around
type erasure caused by matching and

allows continuation to recv.
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fun append(p: () -> Process<F, O>): Process<F, O> =
this.onHalt { ex: Throwable ->

when (ex) {
is End -> p()     
else -> Halt(ex)   

}
}.fix()

Looking at append, we see that a call to onHalt(f) replaces the ex throwable inside
Halt(ex) at the end of p with f(this.err). This call allows us to extend a process
with further logic and provides access to the reason for termination. The definition
uses the helper function tryP, which safely contains evaluation of a Process, catching
any exceptions and converting them to Halt:

fun <F, O> tryP(p: () -> Process<F, O>): Process<F, O> =
try {

p()
} catch (e: Throwable) {

Halt(e)
}

Handling this exception is vital for resource safety. Our goal is to catch and deal with
all exceptions, rather than placing that burden on our library users. Luckily, there are
only a few key combinators that can cause exceptions. As long as we ensure that these
combinators are handled safely, we’ll guarantee the resource safety of all programs
that use Process. The append function is defined in terms of onHalt. As long as the
first Process terminates as expected, we continue with the second process; otherwise,
we re-raise the error.

 We also use the helper function awaitAndThen, which serves a dual purpose. Its
first purpose is to give an alternative to the Await constructor for better type inference
(read: hack!). In the case where we’re matching an Await, runtime type erasure
causes the loss of type information in req and recv. This constructor helps reintro-
duce the lost types. It also provides a way to hook a continuation fn onto the end of
the recv function inside the newly constructed Await:

fun <F, A, O> awaitAndThen(
req: Kind<Any?, Any?>,
recv: (Either<Throwable, Nothing>) -> Process<out Any?, out Any?>,
fn: (Process<F, A>) -> Process<F, O>

): Process<F, O> =
Await(

req as Kind<F, Nothing>,
recv as (Either<Throwable, A>) -> Process<F, A> andThen fn

).fix()

Moving right along, we define flatMap using append, which is another combinator
where we must ensure safety from any thrown exceptions—we don’t know whether f

Consults p only on 
normal termination

Keeps the current error if 
something went wrong
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will throw an exception, so we again wrap the call to f in tryP. Other than that, the
definition looks very similar to what we wrote previously:

fun <O2> flatMap(f: (O) -> Process<F, O2>): Process<F, O2> =
when (this) {

is Halt -> Halt(err)
is Emit -> tryP { f(head) }.append { tail.flatMap(f) }
is Await<*, *, *> ->

awaitAndThen(req, recv) { p: Process<F, O> ->
p.flatMap(f)

}
}

Likewise, the definition of map closely resembles the same pattern:

fun <O2> map(f: (O) -> O2): Process<F, O2> =
when (this) {

is Halt -> Halt(err)
is Emit -> tryP { Emit(f(head), tail.map(f)) }
is Await<*, *, *> ->

awaitAndThen(req, recv) { p: Process<F, O> ->
p.map(f)

}
}

Let’s see what else we can express with this new Process type. The F parameter gives
us a lot of flexibility.

15.3.1 Sources for stream emission

In section 15.2, we had to write a separate function to drive a process forward while
reading from a file. Our new design allows us to directly represent an effectful source
using a Process<ForIO, O>. One problem with this new design is that there are some
problems with resource safety. We will discuss this shortly.

 To see how Process<ForIO, O> is indeed a source of O values, consider what the
Await constructor looks like when we substitute IO for the F kind:

data class Await<ForIO, A, O>(
val req: IO<A>,
val recv: (Either<Throwable, A>) -> Process<ForIO, O>

) : Process<ForIO, O>()

Thus, any requests of the “external” world can be satisfied just by running or flatMap-
ping over the IO action req passed to unsafePerformIO, as we learned in chapter 13.
If this action returns an A successfully, we invoke the recv function with this result, or
a Throwable if req throws one. Either way, the recv function can fall back to another
process or clean up any resources as appropriate. Here’s a simple interpreter of an
I/O Process that follows this approach and recursively collects all the values emitted
into a sequence.
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fun <O> runLog(src: Process<ForIO, O>): IO<Sequence<O>> = IO {

val E = java.util.concurrent.Executors.newFixedThreadPool(4)

tailrec fun go(cur: Process<ForIO, O>, acc: Sequence<O>): Sequence<O> =
when (cur) {

is Emit ->
go(cur.tail, acc + cur.head)

is Halt ->
when (val e = cur.err) {

is End -> acc
else -> throw e

}
is Await<*, *, *> -> {

val re = cur.req as IO<O>                            
val rcv = cur.recv

as (Either<Throwable, O>) -> Process<ForIO, O>   
val next: Process<ForIO, O> = try {

rcv(Right(unsafePerformIO(re, E)).fix())
} catch (err: Throwable) {

rcv(Left(err))
}
go(next, acc)

}
}

try {
go(src, emptySequence())

} finally {
E.shutdown()

}
}

This example usage enumerates all the lines in a file as a sequence of strings:

val p: Process<ForIO, String> =
await<ForIO, BufferedReader, String>(        

IO { BufferedReader(FileReader(fileName)) }
) { ei1: Either<Throwable, BufferedReader> ->

when (ei1) {
is Right -> processNext(ei1)
is Left -> Halt(ei1.value)   

}
}

private fun processNext(
ei1: Right<BufferedReader>

): Process<ForIO, String> =
await<ForIO, BufferedReader, String>(

IO { ei1.value.readLine() }
) { ei2: Either<Throwable, String?> ->

when (ei2) {
is Right ->

Listing 15.4 Recursive interpreter that cleans up resources

Recasts req and
recv to overcome

runtime type
erasure of Await
type parameters

The simplified await 
constructor takes req 
and recv to overcome 
type erasure.

Termination 
received from 
processNext
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if (ei2.value == null) Halt(End)       
else Emit(ei2.value, processNext(ei1))

is Left -> {
await<ForIO, Nothing, Nothing>(

IO { ei1.value.close() }
) { Halt(ei2.value) }  

}
}

}

We can now execute runLog(p) to get all the lines in fileName as an IO<Sequence
<String>>. The minute details of this code aren’t as important as the principals we
are trying to convey. What is important is that we’re making sure the file is closed
regardless of how the process terminates. In section 15.3.2, we’ll discuss how to ensure
that all such processes close the resources they use (after all, they’re resource-safe) and
discover a few generic combinators for ensuring such resource safety.

EXERCISE 15.10

It’s possible to define the runLog function more generally for any Monad that allows
the catching and raising of exceptions. For instance, the Task type mentioned in
chapter 13 adds this capability to the IO type. Define this more general version of run-
Log. Note that this interpreter can’t be tail-recursive and relies on the underlying
monad for stack safety.

fun <F, O> Process<F, O>.runLog(
MC: MonadCatch<F>

): Kind<F, Sequence<O>> =

SOLUTION_HERE()

interface MonadCatch<F> : Monad<F> {
fun <A> attempt(a: Kind<F, A>): Kind<F, Either<Throwable, A>>
fun <A> fail(t: Throwable): Kind<F, A>

}

15.3.2 Ensuring resource safety in stream transducers

Process<ForIO, O> can be used to talk to external resources like files and database
connections. Still, we must take care to ensure resource safety—we want all file han-
dles to be closed, database connections released, and so on, especially if exceptions
occur. Let’s look at what we need to do to close such resources.

 We already have most of the machinery in place. The Await constructor’s recv
argument can handle errors, choosing to clean up if necessary. We are also catching
exceptions in flatMap and other relevant combinators to ensure that we gracefully

The readLine function on 
BufferedReader returns 
null when it reaches the 
end of the file.

Handles forcible 
termination or termination 
due to an error
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pass them to recv. All we require is to ensure that the recv function calls the neces-
sary cleanup code.

 To put this discussion in more concrete terms, suppose we have lines: Process
<ForIO, String> representing the lines of some large file. This process is a source or
producer, and it implicitly references a file handle resource. Regardless of how we con-
sume the producer, we want to ensure that this file resource is closed correctly.

 When should we close this file handle? At the very end of our program? Ideally,
we’d rather close the file once we know we’re done reading from lines. The process-
ing is complete when we reach the last line of the file—at that point, there are no
more values to produce, and it is safe to close the file. This observation gives us our
first simple rule to follow:

A producer should free any underlying resources as soon as it knows it has no further
values to produce, whether due to normal exhaustion or an exception.

Although this rule is a great starting point, it isn’t sufficient because the consumer of a
process may decide to terminate consumption early. Consider runLog { lines("names
.txt") pipe take(5) }. The take(5) process will halt early after only five elements
are consumed, possibly before the file has been completely exhausted. In this case, we
want to make sure before halting that any necessary closing of resources happens
before the overall process completes. Note that runLog can’t be responsible for clos-
ing the resource since it has no idea that the Process it’s interpreting is internally
composed of two other Process values, one of which requires finalization.

 And so, we have a second simple rule to follow:

Any process d that consumes values from another process p must ensure that cleanup
actions of p are performed before d halts.

This rule sounds somewhat error prone, but luckily we get to deal with this concern in
a single place: the pipe combinator. We’ll show how that works in section 15.3.3 when
we look at how to encode single-input processes using our general Process type.

 So, to summarize, a process p may terminate due to the following:

 Producer exhaustion, signaled by End when the underlying source has no fur-
ther values to emit

 Forcible termination, signaled by Kill, due to the consumer of p indicating it’s
finished consuming, possibly before the producer p is exhausted

 Abnormal termination due to some e: Throwable in either the producer or the
consumer

And no matter the cause, we want to close the underlying resource(s) in each case.
 Now that we have our guidelines, how do we go about implementing this? We

need to ensure that the recv function in the Await constructor always runs the “cur-
rent” set of cleanup actions when it receives a Left. Let’s introduce a new combinator,
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co
norm

to
inv

when
onComplete, which lets us append logic to a Process that will execute regardless of
how the first Process terminates. The definition is similar to append, with one
minor twist:

fun onComplete(p: () -> Process<F, O>): Process<F, O> =   
this.onHalt { e: Throwable ->

when (e) {
is End -> p().asFinalizer()   
else -> p().asFinalizer().append { Halt(e) }

}
}.fix()

The p process always runs when this halts, but we take care to re-raise any errors that
occur instead of swallowing them after running the cleanup action. The asFinalizer
helper function converts a “normal” Process to one that will invoke itself when given
Kill. Its definition is subtle, but we use it to ensure that in p1.onComplete(p2), p2 is
always run, even if the consumer of the stream wishes to terminate early:

private fun asFinalizer(): Process<F, O> =
when (this) {

is Emit -> Emit(this.head, this.tail.asFinalizer())
is Halt -> Halt(this.err)
is Await<*, *, *> -> {

await<F, O, O>(this.req) { ei ->
when (ei) {

is Left ->
when (val e = ei.value) {

is Kill -> this.asFinalizer()
else -> this.recv(Left(e))

}
else -> this.recv(ei)

}
}

}
}

Putting all these pieces together, we can use the onComplete combinator to create a
resource-safe Process<ForIO, O> backed by the lines of a file. We define it in terms of
the more general combinator, resource. This function draws on another function
called eval to promote the Kind<F, A> to Process<F, A>. We will return to this func-
tion shortly:

fun <R, O> resource(
acquire: IO<R>,
use: (R) -> Process<ForIO, O>,
release: (R) -> Process<ForIO, O>

): Process<ForIO, O> =
eval(acquire)                 

.flatMap { use(it).onComplete { release(it) } }   

Like append, but 
always runs p, 
even if this halts 
with an error

Helper to
nvert the

al Process
 one that

okes itself
 given Kill

Uses an eval 
function to 
promote 
Kind<F, A> to 
Process<F, A>

It is now possible 
to flatMap over 
the promoted 
Process<F, A>.
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EXERCISE 15.11

Implement the generic combinator eval to promote some Kind<F, A> to a Process
that emits only the result of that Kind<F, A>. Also, implement evalDrain, which pro-
motes a Kind<F, A> to a Process while emitting no values. Note that implementing
these functions doesn’t require knowing anything about F.

fun <F, A> eval(fa: Kind<F, A>): Process<F, A> =

SOLUTION_HERE()

fun <F, A, B> evalDrain(fa: Kind<F, A>): Process<F, B> =

SOLUTION_HERE()

Finally, we reach our goal of implementing lines:

fun lines(fileName: String): Process<ForIO, String> =
resource(

IO { BufferedReader(FileReader(fileName)) },
{ br: BufferedReader ->

val iter = br.lines().iterator()

fun step() = if (iter.hasNext()) Some(iter.next()) else None

fun lns(): Process<ForIO, String> {
return eval(IO { step() }).flatMap { ln: Option<String> ->

when (ln) {
is Some -> Emit(ln.get, lns())
is None -> Halt<ForIO, String>(End)

}
}

}

lns()
},
{ br: BufferedReader -> evalDrain(IO { br.close() }) }

)

The resource combinator, using onComplete, frees up our underlying resource regard-
less of termination of the process. The only thing we need to ensure is that pipe and
other consumers of lines gracefully terminate when consumption is complete. We’ll
address this next when we redefine single-input processes and implement the pipe
combinator for our generalized Process type. 
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15.3.3 Applying transducers to a single-input stream

We now have excellent, resource-safe sources, but we don’t yet have any way to apply
transformations to them. Fortunately, our Process type can also represent the single-
input processes we introduced at the beginning of section 15.2. If you recall, the pro-
cess Process1 always assumes the environment or context of a single stream of values
that allows us to apply such transformations. To represent Process1<I, O>, we employ
a shim called Is that allows the Process to make requests for elements of type I. Let’s
look at how we can achieve this. The encoding of this kind doesn’t offer much new in
addition to what we’ve learned so far, although some aspects need more explaining.
We express Is as follows:

@higherkind        
class Is<I> : IsOf<I>

This shim gives us the means of producing a contextual layer that is missing to express
Process1 in terms of Process. It also provides a way to dictate what the type parame-
ter I for this context will be. We can fabricate an instance of Is<I> by instantiating the
class. We’ll look at how we can use this to create a Process shortly, but first, we’ll look
at defining a type alias for Process1. We use the surrogate type of Is<I>, ForIs, to
substitute I in Process<I, O> when declaring this type alias:

typealias Process1<I, O> = Process<ForIs, O>

Let’s kick the tires using the new Is higher kind to express the request to the Await
type:

data class Await<F, A, O>(
val req: Kind<F, A>,
val recv: (Either<Throwable, A>) -> Process<F, O>

) : Process<F, O>()

From the definition of the higher kind Is<I>, we can see that req is compliant as a
Kind<F, A>. Since we can’t express what I is in the context of Kind<F, A>, we use the
surrogate type ForIs in the place of F. Therefore, I and A should be the same type, so
recv will accept an I as its argument. In turn, we can only use Await to request I values
when used in conjunction with Is. This reasoning might not be easy to get your head
around, but it is crucial to understand it before moving on with this example.

 Our Process1 alias supports all the same operations as our old single-input
Process. Let’s look at a couple of them now. We first introduce a few helper functions
to construct Process instances. Most notably, the await1 constructor applies the
Is<I> shim as a request. This forces the propagation of the I type as the right side of
Either<Throwable, I> in the recv function:

fun <I, O> await1(
recv: (I) -> Process1<ForIs, O>,
fallback: Process1<ForIs, O> = halt1<ForIs, O>()

Generates all necessary boilerplate, 
including ForIs and fix()
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gra
thi

err
): Process1<I, O> =
Await(Is<I>()) { ei: Either<Throwable, I> ->   

when (ei) {
is Left ->

when (val err = ei.value) {
is End -> fallback
else -> Halt(err)

}
is Right -> Try { recv(ei.value) }

}
}

fun <I, O> halt1(): Process1<ForIs, O> =
Halt<ForIs, O>(End).fix1()               

fun <I, O> emit1(
head: O,
tail: Process1<ForIs, O> = halt1<ForIs, O>()

): Process1<ForIs, O> =
Emit<ForIs, O>(

head,
tail.fix1()                          

).fix1()                                 

Using these helpers, our definitions of combinators like lift and filter look almost
identical to before, except they now return a Process1:

fun <I, O> lift(f: (I) -> O): Process1<ForIs, O> =
await1({ i: I ->

Emit<I, O>(f(i)).fix1()
}).repeat()

fun <I> filter(f: (I) -> Boolean): Process1<ForIs, I> =
await1<I, I>({ i ->

if (f(i)) Emit<ForIs, I>(i).fix1()
else halt1<ForIs, I>()

}).repeat()

Let’s look at process composition next. The implementation of pipe looks similar to
before, but we make sure to run the latest cleanup action of the left process before the
right process halts.

infix fun <O2> pipe(p2: Process1<O, O2>): Process<F, O2> =
when (p2) {

is Halt ->
this.kill<O2>()     

.onHalt { e2 ->
Halt<F, O2>(p2.err).append { Halt(e2) }   

}
is Emit ->

Emit(p2.head, this.pipe(p2.tail.fix1()))
is Await<*, *, *> -> {

Listing 15.5 Composition using pipe to allow resource cleanup

Propagating 
Is<I>() as req 
forces I in recv.

Uses a fix1() extension 
method to correct 
all instances of 
ProcessOf<I, O> to 
Process1<I, O>

Employs a kill helper function to 
feed Kill to the outermost Await

Before halting,
cefully terminates
s, using append to
preserve the first

or, if any occurred
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val rcv =
p2.recv as (Either<Throwable, O>) -> Process<F, O2>   

when (this) {
is Halt ->

Halt<F, O2>(this.err) pipe
rcv(Left(this.err)).fix1()   

is Emit ->
tail.pipe(Try { rcv(Right(head).fix()) }.fix1())

is Await<*, *, *> ->
awaitAndThen<F, O, O2>(req, recv) { it pipe p2 }

}
}

}

We use a kill helper function when implementing pipe. It feeds the Kill exception
to the outermost Await of a Process while ignoring the remainder of its output.

fun <O2> kill(): Process<F, O2> =
when (this) {

is Await<*, *, *> -> {
val rcv =

this.recv as (Either<Throwable, O>) -> Process<F, O2>
rcv(Left(Kill)).drain<O2>()       

.onHalt { e ->
when (e) {

is Kill -> Halt(End)   
else -> Halt(e)

}
}

}
is Halt -> Halt(this.err)
is Emit -> tail.kill()

}

fun <O2> drain(): Process<F, O2> =
when (this) {

is Halt -> Halt(this.err)
is Emit -> tail.drain()
is Await<*, *, *> ->

awaitAndThen<F, O2, O2>(req, recv) { it.drain() }
}

Note that we define pipe for any Process<F, O> type, so this operation works for
transforming a Process1 value and an effectful Process<ForIO, O>. It also works with
the two-input Process types we’ll discuss next in section 15.3.4.

 Finally, we can add convenience functions on Process for attaching various
Process1 transformations to the output with pipe. For instance, here’s filter,
defined for any Process<F, O>:

fun filter(f: (O) -> Boolean): Process<F, O> =
this pipe Process.filter(f)

Listing 15.6 Using the kill helper function

Restores types
lost by type

erasure
If this has halted, 
does the appropriate 
cleanup

Uses drain to locate the 
process with the cause of 
error err produced by rcv

Converts the Kill 
exception back to 
normal termination
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We can add similar convenience functions for take, takeWhile, and so on. See the
chapter code for how this is done. 

15.3.4 Multiple input streams

Up to this point, we have dealt with developing a process for simple single-input
streams. However, the design we’ve come up with is flexible enough to do far more
than such menial tasks. In this section, we delve into the simultaneous processing and
transformation of multiple streams.

 Imagine the following scenario where we want to “zip” together two files contain-
ing temperatures in degrees Fahrenheit, f1.txt and f2.txt, add the corresponding tem-
peratures together, convert the result to Celsius, apply a five-element moving average,
and output the results one at a time to celsius.txt.

 We can address this sort of scenario with our general Process type. Much like
effectful sources and Process1 were just specific instances of our generalized Process,
another type called Tee, which combines two input streams in some way, can also be
expressed as a Process. The name Tee comes from the letter T, which approximates a
diagram merging two inputs (the top of the T) into a single output (see figure 15.2).

Once again, we craft an appropriate choice of F to handle this situation.

@higherkind
sealed class T<I1, I2, X> : TOf<I1, I2, X> {

companion object {   
fun <I1, I2> left() = L<I1, I2>()
fun <I1, I2> right() = R<I1, I2>()

}

abstract fun get(): Either<(I1) -> X, (I2) -> X>

class L<I1, I2> : T<I1, I2, I1>() {    
override fun get(): Either<(I1) -> I1, (I2) -> I1> =

Listing 15.7 Shim class T that provides a compatibility layer

Tee<I1,I2,O> Process<F,I2>Process<F,I1>
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>

Figure 15.2 Tee is a process 
that is capable of combining two 
processes into one.

Companion object exposes 
convenience functions to get 
a left or right instance

Class declaration 
for the left side 
of T
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Left { l: I1 -> l }
}

class R<I1, I2> : T<I1, I2, I2>() {    
override fun get(): Either<(I1) -> I2, (I2) -> I2> =

Right { r: I2 -> r }.fix()
}

}

As you can see, this looks similar to our Is type from earlier, except that we now have
two possible values, Left and Right, and we get an Either<(I1) -> X, (I2) -> X> to
distinguish between the two types of requests during matching statements. We can
now define a type alias called Tee based on T, allowing processes that accept two differ-
ent types of input:

typealias Tee<I1, I2, O> = Process<ForT, O>

As before, we define a few convenience functions for building these particular types
of Process.

fun <I1, I2, O> awaitL(
fallback: Tee<I1, I2, O> = haltT<I1, I2, O>(),
recv: (I1) -> Tee<I1, I2, O>

): Tee<I1, I2, O> =
await<ForT, I1, O>(

T.left<I1, I2>()     
) { e: Either<Throwable, I1> ->    

when (e) {
is Left -> when (val err = e.value) {

is End -> fallback
else -> Halt(err)

}
is Right -> Try { recv(e.value) }

}
}

fun <I1, I2, O> awaitR(
fallback: Tee<I1, I2, O> = haltT<I1, I2, O>(),
recv: (I2) -> Tee<I1, I2, O>

): Tee<I1, I2, O> =
await<ForT, I1, O>(

T.right<I1, I2>()     
) { e: Either<Throwable, I2> ->   

when (e) {
is Left -> when (val err = e.value) {

is End -> fallback
else -> Halt(err)

}
is Right -> Try { recv(e.value) }

}
}

Listing 15.8 Convenience functions to produce Tee instance types

Class declaration 
for the right side 
of T
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shim instance as a 
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Either to be I2
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fun <I1, I2, O> emitT(
h: O,
tl: Tee<I1, I2, O> = haltT<I1, I2, O>()

): Tee<I1, I2, O> =
Emit(h, tl)

fun <I1, I2, O> haltT(): Tee<I1, I2, O> =
Halt(End)

With that out of the way, let’s define some Tee combinators. Zipping is considered a
special case of Tee in which we read from one side and then the other, and then emit
a pair. Note that we get to be explicit about the order in which we read from the two
inputs. This capability can be important when a Tee is talking to streams with external
effects:

fun <I1, I2, O> zipWith(f: (I1, I2) -> O): Tee<I1, I2, O> =
awaitL<I1, I2, O> { i1: I1 ->

awaitR<I1, I2, O> { i2: I2 ->
emitT<I1, I2, O>(

f(i1, i2)
)

}
}.repeat()

fun <I1, I2> zip(): Tee<I1, I2, Pair<I1, I2>> =
zipWith { i1: I1, i2: I2 -> i1 to i2 }

This transducer will halt as soon as either input is exhausted, just like the zip function
on List. There are lots of other Tee combinators we could write. Nothing requires
that we read values from each input in lockstep. We could read from one input until
some condition is met and then switch to the other, read 5 values from the left and
then 10 values from the right, read a value from the left and then use it to determine
how many values to read from the right, and so on.

 What if we want to combine two processes into a single one? We can achieve this by
feeding a Tee with these two processes, which in turn emits a new combined process.
We can define a function on the Process companion object called tee that takes two
Process instances as arguments, along with a Tee. This technique is analogous to what
we saw in pipe and works much the same. This new combinator should work for any
Process type.

fun <F, I1, I2, O> tee(
p1: Process<F, I1>,
p2: Process<F, I2>,
t: Tee<I1, I2, O>

): Process<F, O> =
when (t) {

is Halt ->
p1.kill<O>()       

Listing 15.9 tee helper method that combines two Processes

If t halts, 
gracefully kills 
off both inputs
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.onComplete { p2.kill() }

.onComplete { Halt(t.err) }
is Emit ->

Emit(t.head, tee(p1, p2, t.tail))   
is Await<*, *, *> -> {

val side = t.req as T<I1, I2, O>
val rcv =

t.recv as (Either<Nothing, Any?>) -> Tee<I1, I2, O>

when (side.get()) {         
is Left -> when (p1) {

is Halt ->
p2.kill<O>().onComplete { Halt(p1.err) }  

is Emit ->
tee(p1.tail, p2, Try { rcv(Right(p1.head)) })   

is Await<*, *, *> ->
awaitAndThen<F, I2, O>(    

p1.req, p1.recv
) { tee(it, p2, t) }

}
is Right -> when (p2) {    

is Halt -> p1.kill<O>().onComplete { Halt(p2.err) }
is Emit ->

tee(p1, p2.tail, Try { rcv(Right(p2.head)) })
is Await<*, *, *> -> {

awaitAndThen<F, I2, O>(
p2.req, p2.recv

) { tee(p1, it, t) }
}

}
}

}
}

Our new tee combinator takes its two process instances, Process<F, I1> for the left
and Process<F, I2> for the right, which it consumes, and a Tee they will feed. As the
Tee awaits new elements, it produces them as a new combined process, Process<F,
O>. There isn’t much new to be seen here as this code works much the same as the
pipe combinator that we covered in listing 15.5. The only difference is that it deter-
mines new requests to be from the left or right side and then deals with them accord-
ingly, as we’ve done previously. 

15.3.5 Sinks for output processing

Up to now, we’ve looked at passing input to sources, as well as processing single and mul-
tiple streams. We haven’t spent any time on how to perform output using our Process
type, so let’s go there next. We’ll often want to send the output of a Process<ForIO, O>
to a sink. Such a sink could, for example, send a Process<IO, String> to an output file.
Somewhat surprisingly, we can represent a sink as a process that emits functions:

typealias Sink<F, O> = Process<F, (O) -> Process<F, Unit>>

Emits any leading 
values and then 
recurses

Checks whether the request 
is for the left or right side

The Tee requests input
from the left, which is

halted, so halt the
entire process.

Values are
available, so feed
them to the Tee. No values are currently 

available; wait for a value, 
and then continue with the 
tee operation.

Requests from the
right Process; we get a
witness that recv takes

an O2. Further, this
case is analogous

to left.
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It makes sense if you think about it. A Sink<F, O> provides a sequence of functions to
call with the input type O. The function itself returns Process<F, Unit>. Let’s look at a
Sink that writes some strings to a file, to make this a bit clearer:

fun fileW(file: String, append: Boolean = false): Sink<ForIO, String> =
resource(

acquire = IO { FileWriter(file, append) },   
use = { fw: FileWriter ->

constant { s: String ->
eval(IO {

fw.write(s)
fw.flush()

})
}      

},
release = { fw: FileWriter ->

evalDrain(IO { fw.close() })   
}

)

fun <A> constant(a: A): Process<ForIO, A> =     
eval(IO { a }).flatMap { Emit(it, constant(it)) }

That was pretty easy. And notice what’s missing: there’s no exception-handling code
here. The combinators we’re using guarantee that the FileWriter will be closed if
exceptions occur or when whatever is feeding the Sink signals completion.

 We can now use tee to implement a variant of zipWith that zips two Processes
together, given a function. We then provide a new combinator called to as a method
on Process, which pipes the output of the process to a Sink. Internally, to uses a new
function called join to concatenate nested processes (more about join in a minute):

fun <F, I1, I2, O> zipWith(
p1: Process<F, I1>,
p2: Process<F, I2>,
f: (I1, I2) -> O

): Process<F, O> =
tee(p1, p2, zipWith(f))

fun <F, O> Process<F, O>.to(sink: Sink<F, O>): Process<F, Unit> =
join(

zipWith(this, sink) { o: O, fn: (O) -> Process<F, Unit> ->
fn(o)

}
)

EXERCISE 15.12

The definition of to uses a new combinator called join. Any Process that wishes to
concatenate a nested Process can use this handy function. Implement join using

Acquires the 
FileWriter

Uses the
FileWriter with

a constant
stream of
functions

Evaluates and drains 
the FileWriter by 
closing the resource

Generates an 
infinite, constant 
stream
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existing primitives. This combinator should be quite familiar to you from previous
chapters:

fun <F, O> join(p: Process<F, Process<F, O>>): Process<F, O> =

SOLUTION_HERE()

Using to, we can now write programs like the following:

fun converter(inputFile: String, outputFile: String): Process<ForIO, Unit> =
lines(inputFile)

.filter { !it.startsWith("#") }

.map { line -> fahrenheitToCelsius(line.toDouble()).toString() }

.pipe(intersperse("\n"))

.to(fileW(outputFile))

.drain()

Here we are using the helper function drain that we covered earlier in listing 15.6,
which discards all Process output. When run via runLog, converter opens both the
input and output files and incrementally transforms the input stream while ignoring
commented lines. 

15.3.6 Hiding effects in effectful channels

We are often faced with situations where we’re required to perform some I/O, be it
accessing a file, connecting to a database, or another kind of external interaction.
Since this is such a typical scenario, we can look at immortalizing this concept through
a pattern. We call it a Channel, and this section shows what they are and how to imple-
ment them.

 Recall the to function for piping output to a Sink, introduced in section 15.3.5.
We can generalize to to allow responses other than Unit. The implementation is iden-
tical! It turns out that the operation has a more general type than we gave it. Let’s
rename this more general version of to to through:

fun <F, I, O> Process<F, I>.through(
p2: Process<F, (I) -> Process<F, O>>

): Process<F, O> =
join(zipWith(this, p2) { o: I, f: (I) -> Process<F, O> -> f(o) })

We can take it a step further, as hinted earlier, and introduce a type alias to establish
this as a pattern:

typealias Channel<F, I, O> = Process<F, (I) -> Process<F, O>>

Channel is useful when a pure pipeline must execute an I/O action as one of its
stages. A typical example might be an application that needs to execute database que-
ries. It would be nice if our database queries could return a Process<IO, Row>, where
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Row is a representation of a database row. Following such an approach would allow the
program to process the result set of a query using all the fancy stream transducers
we’ve built up so far.

 Here’s an example of a signature for a simple query executor, which uses Map
<String, Any> as an untyped row representation:

fun query(
conn: IO<Connection>

): Channel<ForIO, (Connection) -> PreparedStatement, Map<String, Any>>

We could most certainly have written a Channel<PreparedStatement, Source<Map
<String, Any>>>, so why didn’t we? The reason is simple: we don’t want code that uses
our Channel to have a concern about how to obtain a Connection. The Connection is
needed to build a PreparedStatement. That dependency is managed entirely by the
Channel itself, which also takes care of closing the connection when it’s finished exe-
cuting queries. The Channel gives us an elegant solution for encapsulating effects
such as I/O processing without leaking its inherent concerns beyond the process’s
boundaries. 

15.3.7 Dynamic resource allocation

Real-world programs may need to allocate resources dynamically while transforming
an input stream. This section demonstrates how easy such seemingly complex tasks
are while using the Process library that we’ve developed so far. For example, we may
encounter scenarios like the following:

 Dynamic resource allocation—Read a file called fahrenheits.txt containing a list of
filenames. Concatenate these referenced files into a single logical stream, con-
vert this stream to Celsius, and output the joined stream to celsius.txt.

 Multi-sink output—Similar to dynamic resource allocation, but rather than pro-
ducing a single output file, produce an output file for each input file found in
fahrenheits.txt. Name each output file by appending .celsius onto the respec-
tive input filename.

Can these capabilities be incorporated into our definition of Process in a way that
preserves resource safety? Of course, they can! We already have the power to do
such things using the flatMap combinator that we previously defined for an arbi-
trary Process type.

 For instance, flatMap plus our existing combinators let us write the first scenario
as follows:

val convertAll: Process<ForIO, Unit> =
fileW("celsius.txt").take(1).flatMap { out ->

lines("fahrenheit.txt")
.flatMap { infile ->

lines(infile)
.map { fahrenheitToCelsius(it.toDouble()) }
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.flatMap { out(it.toString()) }
}

}.drain()

The code is self-explanatory and reads like a sequence of imperative steps. This code
is also entirely resource-safe—all file handles are closed automatically by the runner as
soon as they’ve completed, even in the presence of exceptions. Any exceptions
encountered are thrown to the runLog function on invocation.

 We can achieve our second goal of writing to multiple files just by switching the
order of the calls to flatMap:

val convertMultiSink: Process<ForIO, Unit> =
lines("fahrenheit.txt")

.flatMap { infile ->
lines(infile)

.map { fahrenheitToCelsius(it.toDouble()) }

.map { it.toString() }

.to(fileW("${infile}.celsius"))
}.drain()

And of course, as expected, we can attach transformations, mapping, filtering, and so
on at any point in the process:

val convertMultisink2: Process<ForIO, Unit> =
lines("fahrenheit.txt").flatMap { infile ->

lines(infile)
.filter { !it.startsWith("#") }
.map { fahrenheitToCelsius(it.toDouble()) }
.filter { it > 0 }      
.map { it.toString() }
.to(fileW("${infile}.celsius"))

}.drain()

With all the machinery in place, it is now straightforward to wire together such imper-
ative-style code that is entirely resource-safe, all the while maintaining readability and
ease of use. 

15.4 Application of stream transducers in the real world
The ideas presented in this chapter are widely applicable. We can cast a surprising num-
ber of programs in terms of stream processing—once you’re aware of the abstraction,
you start seeing it everywhere. Let’s look at some domains where this is applicable:

 File I/O—We’ve already demonstrated how to use stream processing for file
I/O. Although we’ve focused on line-by-line reading and writing for the exam-
ples in this chapter, we can also use the library for processing files with binary
content.

 Message processing, state machines, and actors—We often organize large systems as
a system of loosely coupled components that communicate via passed messages.

Discards 
temperatures 
below zero
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We often express such systems in terms of actors, which communicate via
explicit messages sent and received. We can express components in these archi-
tectures as stream processors. This approach lets us describe vastly complex
state machines and behaviors using a high-level, compositional API.

 Servers and web applications—We can think of a web application as converting a
stream of HTTP requests to a stream of HTTP responses. Functional web appli-
cation frameworks are a perfect fit for stream processing.

 UI programming—We can view individual UI events such as mouse clicks and key-
presses as streams, and the UI as one extensive network of stream processors
determining how the UI responds to user interaction.

 Big data, distributed systems—Stream-processing libraries can be distributed and
parallelized for processing large amounts of data. The crucial insight here is that
the nodes of a stream-processing network don’t all need to live on the same
machine but can easily be distributed across a network. 

Summary
 Programs should be responsible for transparently closing all I/O resources they

use, to prevent leaking such valuable, scarce resources.
 Stream transducers (or processors) allow for high-level functional composabil-

ity, which lets us express complex transformations in a more straightforward,
safe, and declarative way.

 We can model a stream transducer as a state machine to await, emit, and halt at
discreet points when consuming and transforming a stream of data.

 It is possible to combine multiple processes by way of composition to express
complex transformations with greater ease.

 We should make the context of a process parameterized and its protocol exten-
sible to allow for more flexible stream transducers.

 It is possible to use various sources, transformations, tees, and sinks to express
complex stream transducer dataflows.

 We can use channels to encapsulate external effects in stream transducer data-
flows, to prevent leaking inherent concerns beyond the process boundary.
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Final words
We began this book with a simple premise: that we assemble our programs using only
pure functions. This sole premise and its consequences led us to explore an entirely
new approach to programming that is both coherent and principled. In this final
chapter, we constructed a library for stream processing and incremental I/O. We
demonstrated that it is possible to retain the compositional style developed through-
out this book, even for programs that interact with the outside world. The journey
that we set out on, to use functional programming to architect large and small pro-
grams in this way, is now complete.

 Functional programming is a deep subject, and we’ve only scratched the surface.
By now, you should have everything you need to continue the journey on your own
and make functional programming part of your daily work. Good design is always dif-
ficult, but expressing your code in a functional style will become effortless over time.
As you apply FP principles to more problems, you’ll discover new patterns and more
powerful abstractions.

 Enjoy the journey, keep learning, and good luck!



appendix A
Exercise hints and tips

This appendix contains hints and tips to get you thinking in the right direction for
the more challenging exercises in this book. Trivial exercises have been omitted
from this appendix, but full solutions for all exercises can be found in appendix B.

A.1 Chapter 3: Functional data structures

Exercise 3.1

Try matching on the list’s element type. Consider carefully how you would deal with
an empty list.

Exercise 3.2

The same applies here as for exercise 3.1.

Exercise 3.3

Use matching and recursion to solve this problem. Consider all the following sce-
narios in your solution:

■ What should the function do if the n argument is 0?
■ What should it do if the list is empty?
■ What if the list is not empty and n is nonzero?

Exercise 3.4

Use pattern matching and recursion. What should the function do if the list is empty?
What if it’s not empty?
380
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Exercise 3.5

Consider using simple recursion here, even though it is naive and will result in stack
overflows on larger lists. We will revisit this later once we have developed better tools
for dealing with such situations.

Exercise 3.6

Look at the program trace from the previous example. Based on the trace, is it possi-
ble the function supplied could choose to terminate the recursion early?

Exercise 3.7

The first step in the trace should be represented as

Cons(1, foldRight(List.of(2, 3), z, f))

Now follow on with each subsequent call to foldRight.

Exercise 3.12

It is certainly possible to do both directions. For foldLeft in terms of foldRight, you
should build up, using foldRight, some value that you can use to achieve the effect of
foldLeft. This won’t necessarily be the B of the return type but could be a function of
signature (B) -> B, also known as Identity in category theory.

Exercise 3.14

The foldRight function that we previously defined will work here.

Exercise 3.15

Use foldRight without resorting to recursion.

Exercise 3.16

Again, use foldRight without resorting to recursion.

Exercise 3.17

Once more, use foldRight without resorting to recursion.

Exercise 3.18

One more time, foldRight is your friend!

Exercise 3.19

Use a combination of existing functions that we have already defined.
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Exercise 3.23

As an extra hint, the exercise file suggests starting by implementing the following
function:

tailrec fun <A> startsWith(l1: List<A>, l2: List<A>): Boolean =

SOLUTION_HERE()

Implementing hasSubsequence will be much easier using startsWith.
 It’s good to specify some properties about these functions up front. For example,

do you expect these assertions to be true?

xs.append(ys).startsWith(xs) shouldBe true
xs.startsWith(Nil) shouldBe true
xs.append(ys.append(zs)).hasSubsequence(ys) shouldBe true
xs.hasSubsequence(Nil) shouldBe true

You will find that if the answer to any one of these is “yes,” that implies something
about the answer to the rest of them.

Exercise 3.28

The signature for fold is

fun <A, B> fold(ta: Tree<A>, l: (A) -> B, b: (B, B) -> B): B

See if you can define this function, and then reimplement the functions you’ve
already written for Tree.

NOTE When you implement the mapF function, you might run into a type
mismatch error in a lambda saying that the compiler found a Branch where it
requires a Leaf. To fix this, you will need to include explicit typing in the
lambda arguments. 

A.2 Chapter 4: Handling errors without exceptions

Exercise 4.3

Use the flatMap method and possibly the map method.

Exercise 4.4

Break the list out using matching where there will be a recursive call to sequence in
the Cons case. Alternatively, use the foldRight method to take care of the recursion
for you.

Exercise 4.5

The traverse function can be written with explicit recursion, or use foldRight to do
the recursion for you. Implementing sequence using traverse may be more trivial
than you think.
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Exercise 4.6

The map2 function that we wrote earlier for Option will follow the same pattern for
Either.

Exercise 4.7

The signatures of traverse and sequence are as follows, respectively:

fun <E, A, B> traverse(
xs: List<A>,
f: (A) -> Either<E, B>

): Either<E, List<B>> =

SOLUTION_HERE()

fun <E, A> sequence(es: List<Either<E, A>>): Either<E, List<A>> =

SOLUTION_HERE()

In your implementation, you can match on the list and use explicit recursion or use
foldRight to perform the recursion for you.

Exercise 4.8

There are a number of variations on Option and Either. If you want to accumulate
multiple errors, a simple approach is a new data type that lets you keep a list of errors
in the data constructor that represents failures. 

A.3 Chapter 5: Strictness and laziness

Exercise 5.1

Although a simple recursive solution will work, a stack overflow could occur on larger
streams. An improved solution is to do this as a tail-recursive function with a list rever-
sal at the end.

Exercise 5.2

Many Stream functions can start by matching on the Stream and considering what to
do in each of the two cases. These particular functions should first consider whether
they need to look at the stream at all.

Exercise 5.4

Use foldRight to implement this.

Exercise 5.6

Let None: Option<A> be the first argument to foldRight. Follow the types from there.

Exercise 5.9

The example function ones is recursive. How could you define from recursively?
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Exercise 5.10

Chapter 2 discussed writing loops functionally using a recursive helper function. Con-
sider using the same approach here.

Exercise 5.11

Review the techniques you used in exercise 4.1 for working with Option.

Exercise 5.14

Try to avoid using explicit recursion. Use zipAll and takeWhile.

Exercise 5.15

Try unfold with this as the starting state. You may want to handle emitting the empty
Stream at the end as a special case.

Exercise 5.16

The function can’t be implemented using unfold, since unfold generates elements of
the Stream from left to right. It can be implemented using foldRight, though. 

A.4 Chapter 6: Purely functional state

Exercise 6.2

Use nonNegativeInt to generate a random integer between 0 and Int.MAX_VALUE,
inclusive. Then map that to the range of doubles from 0 to 1.

Exercise 6.5

This is an application of map over nonNegativeInt or nextInt.

Exercise 6.6

Start by accepting an RNG. Note that you have a choice about which RNG to pass to
which function, and in what order. Think about what you expect the behavior to be
and whether your implementation meets that expectation.

Exercise 6.7

You need to recursively iterate over the list. Remember that you can use foldLeft or
foldRight instead of writing a recursive definition. You can also reuse the map2
function you just wrote. As a test case for your implementation, you should expect
sequence(List.of(unit(1), unit(2), unit(3)))(r).first to return List(1, 2, 3).

Exercise 6.8

The implementation using flatMap will be almost identical to the failed one where
you tried to use map.
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Exercise 6.9

mapF: your solution will be similar to nonNegativeLessThan.
 map2F: your solution to map2 for the Option data type should give you some ideas.

Exercise 6.10

Use the specialized functions for Rand as inspiration. Recall that if you have an f : (S) ->
Pair(A,S), you can create a State<S,A> just by writing State(f). The function can
also be declared inline with a lambda:

State { s: S ->
...
Pair(a,s2)

}

A.5 Chapter 7: Purely functional parallelism

Exercise 7.1

The function shouldn’t require that the two Par inputs have the same type.

Exercise 7.2

What if run were backed by a java.util.concurrent.ExecutorService? You may
want to spend some time looking through the java.util.concurrent package to see
what other useful things you can find.

Exercise 7.3

To respect timeouts, you’d need a new Future implementation that recorded the
amount of time spent evaluating one future and then subtracted that time from the
available time allocated for evaluating the other future.

Exercise 7.5

One possible implementation is very similar in structure to a function we’ve imple-
mented previously for Option.

Exercise 7.7

There is a problem with fixed-size thread pools. What happens if the thread pool is
bounded to be of exactly size 1?

A.6 Chapter 8: Property-based testing

Exercise 8.4

Consider using the nonNegativeInt method from chapter 6 to implement this
generator.

 Also, for the challenge: what if the range of nonNegativeInt is not a multiple of
stopExclusive - start?
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Exercise 8.5

For this exercise, you can draw heavily on the State API that we developed in chap-
ter 6. We had a method that could provide random Boolean values that might come
in handy for the boolean() generator. Could you also reuse State.sequence()
somehow?

Exercise 8.6

Try using the previous implementation of listOfN from exercise 8.5 in addition to
flatMap in your solution.

Exercise 8.9

Determining which property was responsible for the failure can be achieved by allow-
ing Prop values to tag or label the messages that are propagated on failure.

Exercise 8.12

Consider using the listOfN function you wrote earlier.

Exercise 8.13

You can use listOfN one more time.

Exercise 8.16

Use the Gen<Par<Int>> generator from the previous exercise. 

A.7 Chapter 9: Parser combinators

Exercise 9.1

Consider mapping over the result of product.

Exercise 9.2

Multiplication of numbers is always associative, so (a * b) * c is the same as a * (b * c).
Is this property analogous to parsers? What is there to say about the relationship
between map and product?

Exercise 9.7

Try to use flatMap and succeed.

Exercise 9.9

For the tokens of your grammar, it is a good idea to skip any trailing whitespace to
avoid having to deal with whitespace everywhere. Try introducing a combinator for
this called token. When sequencing parsers with product, it is common to want to
ignore one of the parsers in the sequence; consider introducing combinators for this
purpose called skipL and skipR.



387Chapter 10: Monoids
Exercise 9.10

Here are two options: you could return the most recent error in the or chain, or you
could return whichever error occurred after getting farthest into the input string.

Exercise 9.12

You may want string to report the immediate cause of failure (whichever character
didn’t match) as well as the overall string being parsed. 

A.8 Chapter 10: Monoids

Exercise 10.2

More than one implementation meets the monoid laws in this instance. Consider
implementing a dual helper function for Monoid, allowing for the combination for
monoids in reverse order to deal with this duality.

Exercise 10.3

We are limited in the number of ways we can combine values with op since it should
compose functions of type (A) -> A for any choice of A. There is more than one possi-
ble implementation for op, but only one for zero.

Exercise 10.4

You will need to generate three values of type A for testing the law of associativity.

Exercise 10.5

It is possible to map and then concatenate, although doing so is very inefficient. A sin-
gle foldLeft can be used instead.

Exercise 10.6

The type of the function that is passed to foldRight is (A, B) -> B, which can be cur-
ried to (A) -> (B) -> B. This is a strong hint that you should use the endofunction
monoid, (B) -> B, to implement foldRight. The implementation of foldLeft is sim-
ply the dual of this operation. Don’t be too concerned about efficiency in these imple-
mentations.

Exercise 10.7

The sequences of lengths 0 and 1 are special cases that should be dealt with separately.

Exercise 10.8

Consider the case of a partial answer. You need to know if what you have seen so far is
ordered when you’ve only seen some of the elements. For an ordered sequence, every
new element seen should not fall within the range of elements seen already.
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Exercise 10.9

Try creating a data type that tracks the interval of the values in a given segment as well
as whether an “unordered segment” has been found. When merging the values for
two segments, think about how these two pieces of information should be updated.

Exercise 10.13

The foldable List already has foldLeft and foldRight implementations that can be
reused.

Exercise 10.19

Consider using mapMergeMonoid along with another monoid that was developed ear-
lier in the chapter to achieve this binning. 

A.9 Chapter 11: Monads and functors

Exercise 11.1

The unit and flatMap combinators have already been implemented in various ways
for these types. Simply call them from your Monad implementation.

Exercise 11.2

Since State is a binary type constructor, you need to partially apply it with the S type
argument much as you would with a partially applied function. Thus, it is not just one
monad, but an entire family of monads, one for each type S. Consider devising a way to
capture the type S in a type-level scope and provide a partially applied State type in
that scope. This should be possible using Arrow’s Kind2 interface.

Exercise 11.3

These implementations should be very similar to those from previous chapters, only
with more general types. Consider fold operations combined with the use of unit and
map2 on Monad for your solutions.

Exercise 11.4

There is more than one way to write this function. For example, try filling a
List<Kind<F, A>> of length n combined with another combinator on the Monad inter-
face. Alternatively, use simple recursion to build the enclosed list.

Exercise 11.6

Start by pattern matching on the argument. If the list is empty, your only choice is to
return unit(Nil).

Exercise 11.7

Follow the types to the only possible implementation.
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Exercise 11.8

Consider what effect it would have if you assumed A to be Unit.

Exercise 11.9

Replace each occurrence of compose with flatMap, and then apply value v of type A to
both sides of each equation.

Exercise 11.10

You should again consider both the None and Some cases and expand the left and right
sides of the equation for each. The monadic unit can be expressed as { a: A ->
Some(a) }, or the briefer { Some(it) } if you prefer.

Exercise 11.13

Consider expressing your solution using the following type declarations when rework-
ing the laws:

val f: (A) -> Kind<F, A>
val g: (A) -> Kind<F, A>
val x: Kind<F, A>
val y: Kind<F, Kind<F, Kind<F, A>>>
val z: (Kind<F, Kind<F, A>>) -> Kind<F, Kind<F, A>>

Use identity functions where possible to arrive at a reworked solution.

Exercise 11.16

Implement ForId, IdOf, and a fix() extension function to provide a higher-kinded
type so you can express Monad<ForId>.

Exercise 11.18

What would you expect getState to return right after you call setState? And what
about the other way round?

Exercise 11.19

This monad is very similar to the State monad, except that it is “read-only.” You can
“ask” from it but not “set” the R value that flatMap carries along. 

A.10 Chapter 12: Applicative and traversable functors

Exercise 12.2

To implement map2 in terms of apply, try using f.curried(), and then follow the types.

Exercise 12.3

Look at your implementation of map2 in terms of apply, and try to follow the same
pattern.
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Exercise 12.5

The flatMap combinator can be implemented using a when expression.

Exercise 12.6

Implement map2 using a when expression. If both sides are failures, ensure that their
order is preserved.

Exercise 12.7

Implement map2 in terms of flatMap and then in terms of compose. Start with each
identity law in turn, and then substitute equals for equals and apply the monad laws
until you get an equation that is obviously true.

Exercise 12.8

See how you can use the provided Product kind as a shim for the Pair that you are
expecting.

Exercise 12.9

Use the provided Composite shim to produce the correct output.

Exercise 12.10

This operation hinges on the implementation of the flatMap primitive of the Monad
interface.

Exercise 12.11

Try to use the foldable extensions provided by Arrow on map entries.

Exercise 12.12

The treeTraversable can depend on the listTraversable for its functionality. Lift-
ing to, and operating on, Kind<G, A> can be done using an Applicative<G> instance
in scope.

Exercise 12.13

What you really need here is a pass-through Applicative. Implement an idApplicative
instance that does exactly that when used in conjunction with the Id data type.

Exercise 12.15

You need to use a stack. Fortunately, a List is the same thing as a stack, and you
already know how to turn any traversable into a list!

Exercise 12.16

This implementation is very similar to toList except, instead of accumulating into a
list, you are accumulating into a B using the f function.
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Exercise 12.17

Use the Product kind as a shim to implement fuse.

Exercise 12.18

Follow the types. There is only one implementation that typechecks.

Exercise 12.19

You might need to acquire an Applicative<G> from an external scope for use when
calling Traversable<F>. This has already been provided for you. 

A.11 Chapter 13: External effects and I/O

Exercise 13.1

The Free data type is marked as @higherkind and so has a generated FreePartialOf<F>.
This can be used to handle the partially applied type when defining the FreeMonad
instance. Refer back to the StateMonad in chapter 11 for an example of how this can
be achieved.

Exercise 13.2

Apply the knowledge gained from section 13.3.1 for dealing with tail-call elimination
through reification.

Exercise 13.4

To define translate, use runFree with Free<Function0, A> as the target monad.
Then use the specialized runTrampoline function written earlier. 

A.12 Chapter 14: Local effects and mutable state

Exercise 14.1

This can be solved by using fold along with the write combinator in STArray.

Exercise 14.2

Think of this in terms of the quicksort function from listing 14.1, written as proce-
dural code with a for-comprehension. The boilerplate for writing the for-comprehen-
sion using Arrow fx has already been provided.

Exercise 14.3

Follow the same pattern we used to write STArray. 

A.13 Chapter 15: Stream processing and incremental I/O

Exercise 15.3

Introduce a local helper function that accepts the current sum and count.
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Exercise 15.5

Let the types guide your implementation. Try eating your own dog food!

Exercise 15.6

The zip combinator can feed input into two processes. The implementation can be
tricky as you need to ensure that the input reaches both p1 and p2. Also consider
introducing a helper function to feed options to a process.

Exercise 15.7

Use the zip function implemented in exercise 15.6.

Exercise 15.9

Use the processFile function to solve this problem.

Exercise 15.10

Delegate all monadic behavior to the provided MonadCatch instance.

Exercise 15.11

Use the drain instance method on Process to prevent emission of values.

Exercise 15.12

You can flatMap it!



appendix B
Exercise solutions

B.1 Before you proceed to the solutions
This appendix contains all the solutions to the exercises in the book. Please make
the best attempt possible to do the exercises prior to skipping here to get the
answers. The book is written in such a way that doing the exercises is a crucial part
of your learning experience. Each exercise builds on the knowledge gained from
the previous one. Please only use this appendix to verify your answers or to help you if you
are absolutely stuck.

B.2 Getting started with functional programming

Exercise 2.1

fun fib(i: Int): Int {
tailrec fun go(cnt: Int, curr: Int, nxt: Int): Int =

if (cnt == 0)
curr

else go(cnt - 1, nxt, curr + nxt)
return go(i, 0, 1)

}

Exercise 2.2

val <T> List<T>.tail: List<T>
get() = drop(1)

val <T> List<T>.head: T
get() = first()

fun <A> isSorted(aa: List<A>, order: (A, A) -> Boolean): Boolean {
tailrec fun go(x: A, xs: List<A>): Boolean =

if (xs.isEmpty()) true
393
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else if (!order(x, xs.head)) false
else go(xs.head, xs.tail)

return aa.isEmpty() || go(aa.head, aa.tail)
}

Exercise 2.3

fun <A, B, C> curry(f: (A, B) -> C): (A) -> (B) -> C =
{ a: A -> { b: B -> f(a, b) } }

Exercise 2.4

fun <A, B, C> uncurry(f: (A) -> (B) -> C): (A, B) -> C =
{ a: A, b: B -> f(a)(b) }

Exercise 2.5

fun <A, B, C> compose(f: (B) -> C, g: (A) -> B): (A) -> C =
{ a: A -> f(g(a)) }

B.3 Functional data structures

Exercise 3.1

fun <A> tail(xs: List<A>): List<A> =
when (xs) {

is Cons -> xs.tail
is Nil ->

throw IllegalStateException("Nil cannot have a `tail`")
}

Exercise 3.2

fun <A> setHead(xs: List<A>, x: A): List<A> =
when (xs) {

is Nil ->
throw IllegalStateException(

"Cannot replace `head` of a Nil list"
)

is Cons -> Cons(x, xs.tail)
}

Exercise 3.3

tailrec fun <A> drop(l: List<A>, n: Int): List<A> =
if (n == 0) l
else when (l) {

is Cons -> drop(l.tail, n - 1)
is Nil -> throw IllegalStateException(

"Cannot drop more elements than in list"
)

}
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Exercise 3.4

tailrec fun <A> dropWhile(l: List<A>, f: (A) -> Boolean): List<A> =
when (l) {

is Cons ->
if (f(l.head)) dropWhile(l.tail, f) else l

is Nil -> l
}

Exercise 3.5

fun <A> init(l: List<A>): List<A> =
when (l) {

is Cons ->
if (l.tail == Nil) Nil
else Cons(l.head, init(l.tail))

is Nil ->
throw IllegalStateException("Cannot init Nil list")

}

Exercise 3.6

No, this is not possible! Before you ever call your function, f, you evaluate its argument,
which in the case of foldRight means traversing the list all the way to the end. You need
non-strict evaluation to support early termination; we discuss this in chapter 5.

Exercise 3.7

fun <A, B> foldRight(xs: List<A>, z: B, f: (A, B) -> B): B =
when (xs) {

is Nil -> z
is Cons -> f(xs.head, foldRight(xs.tail, z, f))

}

val f = { x: Int, y: List<Int> -> Cons(x, y) }
val z = Nil as List<Int>

val trace = {
foldRight(List.of(1, 2, 3), z, f)
Cons(1, foldRight(List.of(2, 3), z, f))
Cons(1, Cons(2, foldRight(List.of(3), z, f)))
Cons(1, Cons(2, Cons(3, foldRight(List.empty(), z, f))))
Cons(1, Cons(2, Cons(3, Nil)))

}

Replacing z and f with Nil and Cons, respectively, when invoking foldRight results in
xs being copied.

Exercise 3.8

fun <A> length(xs: List<A>): Int =
foldRight(xs, 0, { _, acc -> 1 + acc })
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Exercise 3.9

tailrec fun <A, B> foldLeft(xs: List<A>, z: B, f: (B, A) -> B): B =
when (xs) {

is Nil -> z
is Cons -> foldLeft(xs.tail, f(z, xs.head), f)

}

Exercise 3.10

fun sumL(xs: List<Int>): Int =
foldLeft(xs, 0, { x, y -> x + y })

fun productL(xs: List<Double>): Double =
foldLeft(xs, 1.0, { x, y -> x * y })

fun <A> lengthL(xs: List<A>): Int =
foldLeft(xs, 0, { acc, _ -> acc + 1 })

Exercise 3.11

fun <A> reverse(xs: List<A>): List<A> =
foldLeft(xs, List.empty(), { t: List<A>, h: A -> Cons(h, t) })

Exercise 3.12 (Hard)

fun <A, B> foldLeftR(xs: List<A>, z: B, f: (B, A) -> B): B =
foldRight(

xs,
{ b: B -> b },
{ a, g ->

{ b ->
g(f(b, a))

}
})(z)

fun <A, B> foldRightL(xs: List<A>, z: B, f: (A, B) -> B): B =
foldLeft(xs,

{ b: B -> b },
{ g, a ->

{ b ->
g(f(a, b))

}
})(z)

//expanded example
typealias Identity<B> = (B) -> B

fun <A, B> foldLeftRDemystified(
ls: List<A>,
acc: B,
combiner: (B, A) -> B

): B {
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val identity: Identity<B> = { b: B -> b }

val combinerDelayer: (A, Identity<B>) -> Identity<B> =
{ a: A, delayedExec: Identity<B> ->

{ b: B ->
delayedExec(combiner(b, a))

}
}

val chain: Identity<B> = foldRight(ls, identity, combinerDelayer)

return chain(acc)
}

foldLeft processes items in the reverse order from foldRight. It’s cheating to use
reverse here because that’s implemented in terms of foldLeft!

 Instead, as shown in the expanded example, wrap each operation in a simple iden-
tity function to delay evaluation until later, and stack (nest) the functions so the order
of application can be reversed. Alias the type of this particular identity/delay function
Identity<B> so you aren’t writing (B) -> B everywhere.

 Next, declare a simple value of Identity that will simply act as a pass-through of its
value. This function will be the identity value for the inner foldRight.

 For each item in the ls list (the a parameter), make a new delay function that will
use the combiner function (passed in as a parameter to foldLeftRDemystified)
when it is evaluated later. Each new function becomes the input to the previous
delayedExec function.

 You then pass the original list ls plus the simple identity function and the new
combinerDelayer to foldRight as the chain function. This creates the functions for
delayed evaluation with a combiner inside each one but does not invoke any of those
functions.

 Finally, the chain function is invoked, which causes each element to be evaluated
lazily. 

Exercise 3.13

fun <A> append(a1: List<A>, a2: List<A>): List<A> =
foldRight(a1, a2, { x, y -> Cons(x, y) })

Exercise 3.14 (Hard)

fun <A> concat(xxs: List<List<A>>): List<A> =
foldRight(

xxs,
List.empty(),
{ xs1: List<A>, xs2: List<A> ->

foldRight(xs1, xs2, { a, ls -> Cons(a, ls) })
})
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fun <A> concat2(xxs: List<List<A>>): List<A> =
foldRight(

xxs,
List.empty(),
{ xs1, xs2 ->

append(xs1, xs2)
})

Exercise 3.15

fun increment(xs: List<Int>): List<Int> =
foldRight(

xs,
List.empty(),
{ i: Int, ls ->

Cons(i + 1, ls)
})

Exercise 3.16

fun doubleToString(xs: List<Double>): List<String> =
foldRight(

xs,
List.empty(),
{ d, ds ->

Cons(d.toString(), ds)
})

Exercise 3.17

fun <A, B> map(xs: List<A>, f: (A) -> B): List<B> =
foldRightL(xs, List.empty()) { a: A, xa: List<B> ->

Cons(f(a), xa)
}

Exercise 3.18

fun <A> filter(xs: List<A>, f: (A) -> Boolean): List<A> =
foldRight(

xs,
List.empty(),
{ a, ls ->

if (f(a)) Cons(a, ls)
else ls

})

Exercise 3.19

fun <A, B> flatMap(xa: List<A>, f: (A) -> List<B>): List<B> =
foldRight(

xa,
List.empty(),
{ a, lb ->
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append(f(a), lb)
})

fun <A, B> flatMap2(xa: List<A>, f: (A) -> List<B>): List<B> =
foldRight(

xa,
List.empty(),
{ a, xb ->

foldRight(f(a), xb, { b, lb -> Cons(b, lb) })
})

Exercise 3.20

fun <A> filter2(xa: List<A>, f: (A) -> Boolean): List<A> =
flatMap(xa) { a ->

if (f(a)) List.of(a) else List.empty()
}

Exercise 3.21

fun add(xa: List<Int>, xb: List<Int>): List<Int> =
when (xa) {

is Nil -> Nil
is Cons -> when (xb) {

is Nil -> Nil
is Cons ->

Cons(xa.head + xb.head, add(xa.tail, xb.tail))
}

}

Exercise 3.22

fun <A> zipWith(xa: List<A>, xb: List<A>, f: (A, A) -> A): List<A> =
when (xa) {

is Nil -> Nil
is Cons -> when (xb) {

is Nil -> Nil
is Cons -> Cons(

f(xa.head, xb.head),
zipWith(xa.tail, xb.tail, f)

)
}

}

Exercise 3.23

tailrec fun <A> startsWith(l1: List<A>, l2: List<A>): Boolean =
when (l1) {

is Nil -> l2 == Nil
is Cons -> when (l2) {

is Nil -> true
is Cons ->

if (l1.head == l2.head)
startsWith(l1.tail, l2.tail)
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else false
}

}

tailrec fun <A> hasSubsequence(xs: List<A>, sub: List<A>): Boolean =
when (xs) {

is Nil -> false
is Cons ->

if (startsWith(xs, sub))
true

else hasSubsequence(xs.tail, sub)
}

Exercise 3.24

fun <A> size(tree: Tree<A>): Int =
when (tree) {

is Leaf -> 1
is Branch -> 1 + size(tree.left) + size(tree.right)

}

Exercise 3.25

fun maximum(tree: Tree<Int>): Int =
when (tree) {

is Leaf -> tree.value
is Branch -> maxOf(maximum(tree.left), maximum(tree.right))

}

Exercise 3.26

fun depth(tree: Tree<Int>): Int =
when (tree) {

is Leaf -> 0
is Branch -> 1 + maxOf(depth(tree.left), depth(tree.right))

}

Exercise 3.27

fun <A, B> map(tree: Tree<A>, f: (A) -> B): Tree<B> =
when (tree) {

is Leaf -> Leaf(f(tree.value))
is Branch -> Branch(

map(tree.left, f),
map(tree.right, f)

)
}

Exercise 3.28

fun <A, B> fold(ta: Tree<A>, l: (A) -> B, b: (B, B) -> B): B =
when (ta) {

is Leaf -> l(ta.value)
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is Branch -> b(fold(ta.left, l, b), fold(ta.right, l, b))
}

fun <A> sizeF(ta: Tree<A>): Int =
fold(ta, { 1 }, { b1, b2 -> 1 + b1 + b2 })

fun maximumF(ta: Tree<Int>): Int =
fold(ta, { a -> a }, { b1, b2 -> maxOf(b1, b2) })

fun <A> depthF(ta: Tree<A>): Int =
fold(ta, { 0 }, { b1, b2 -> 1 + maxOf(b1, b2) })

fun <A, B> mapF(ta: Tree<A>, f: (A) -> B): Tree<B> =
fold(ta, { a: A -> Leaf(f(a)) },

{ b1: Tree<B>, b2: Tree<B> -> Branch(b1, b2) })

B.4 Handling errors without exceptions

Exercise 4.1

fun <A, B> Option<A>.map(f: (A) -> B): Option<B> =
when (this) {

is None -> None
is Some -> Some(f(this.get))

}

fun <A> Option<A>.getOrElse(default: () -> A): A =
when (this) {

is None -> default()
is Some -> this.get

}

fun <A, B> Option<A>.flatMap(f: (A) -> Option<B>): Option<B> =
this.map(f).getOrElse { None }

fun <A> Option<A>.orElse(ob: () -> Option<A>): Option<A> =
this.map { Some(it) }.getOrElse { ob() }

fun <A> Option<A>.filter(f: (A) -> Boolean): Option<A> =
this.flatMap { a -> if (f(a)) Some(a) else None }

Alternative approaches:

fun <A, B> Option<A>.flatMap_2(f: (A) -> Option<B>): Option<B> =
when (this) {

is None -> None
is Some -> f(this.get)

}

fun <A> Option<A>.orElse_2(ob: () -> Option<A>): Option<A> =
when (this) {

is None -> ob()
is Some -> this

}
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fun <A> Option<A>.filter_2(f: (A) -> Boolean): Option<A> =
when (this) {

is None -> None
is Some ->

if (f(this.get)) this
else None

}

Exercise 4.2

Using mean method from listing 4.2:

fun mean(xs: List<Double>): Option<Double> =
if (xs.isEmpty()) None
else Some(xs.sum() / xs.size())

fun variance(xs: List<Double>): Option<Double> =
mean(xs).flatMap { m ->

mean(xs.map { x ->
(x - m).pow(2)

})
}

Exercise 4.3

fun <A, B, C> map2(
oa: Option<A>,
ob: Option<B>,
f: (A, B) -> C

): Option<C> =
oa.flatMap { a ->

ob.map { b ->
f(a, b)

}
}

Exercise 4.4

fun <A> sequence(
xs: List<Option<A>>

): Option<List<A>> =
xs.foldRight(Some(Nil),

{ oa1: Option<A>, oa2: Option<List<A>> ->
map2(oa1, oa2) { a1: A, a2: List<A> ->

Cons(a1, a2)
}

})

Exercise 4.5

fun <A, B> traverse(
xa: List<A>,
f: (A) -> Option<B>

): Option<List<B>> =
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when (xa) {
is Nil -> Some(Nil)
is Cons ->

map2(f(xa.head), traverse(xa.tail, f)) { b, xb ->
Cons(b, xb)

}
}

fun <A> sequence(xs: List<Option<A>>): Option<List<A>> =
traverse(xs) { it }

Exercise 4.6

fun <E, A, B> Either<E, A>.map(f: (A) -> B): Either<E, B> =
when (this) {

is Left -> this
is Right -> Right(f(this.value))

}

fun <E, A> Either<E, A>.orElse(f: () -> Either<E, A>): Either<E, A> =
when (this) {

is Left -> f()
is Right -> this

}

fun <E, A, B, C> map2(
ae: Either<E, A>,
be: Either<E, B>,
f: (A, B) -> C

): Either<E, C> =
ae.flatMap { a -> be.map { b -> f(a, b) } }

Exercise 4.7

fun <E, A, B> traverse(
xs: List<A>,
f: (A) -> Either<E, B>

): Either<E, List<B>> =
when (xs) {

is Nil -> Right(Nil)
is Cons ->

map2(f(xs.head), traverse(xs.tail, f)) { b, xb ->
Cons(b, xb)

}
}

fun <E, A> sequence(es: List<Either<E, A>>): Either<E, List<A>> =
traverse(es) { it }

Exercise 4.8

There are a number of variations on Option and Either. If you want to accumulate
multiple errors, a simple approach is a new data type that lets you keep a list of errors
in the data constructor that represents failures:
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sealed class Partial<out A, out B>

data class Failures<out A>(val get: List<A>) : Partial<A, Nothing>()
data class Success<out B>(val get: B) : Partial<Nothing, B>()

There is a very similar type called Validated in the Arrow library. You can implement
map, map2, sequence, and so on for this type in such a way that errors are accumulated
when possible (flatMap is unable to accumulate errors—can you see why?). This idea
can even be generalized further: you don’t need to accumulate failing values into a
list; you can accumulate values using any user-supplied binary function. It’s also possi-
ble to use Either<List<E>,_> directly to accumulate errors, using different imple-
mentations of helper functions like map2 and sequence. 

B.5 Strictness and laziness

Exercise 5.1

Unsafe! Naive solution could cause a stack overflow.

fun <A> Stream<A>.toListUnsafe(): List<A> = when (this) {
is Empty -> NilL
is Cons -> ConsL(this.head(), this.tail().toListUnsafe())

}

Use tailrec in combination with reverse for a safer implementation.

fun <A> Stream<A>.toList(): List<A> {
tailrec fun go(xs: Stream<A>, acc: List<A>): List<A> = when (xs) {

is Empty -> acc
is Cons -> go(xs.tail(), ConsL(xs.head(), acc))

}
return reverse(go(this, NilL))

}

Exercise 5.2

fun <A> Stream<A>.take(n: Int): Stream<A> {
fun go(xs: Stream<A>, n: Int): Stream<A> = when (xs) {

is Empty -> empty()
is Cons ->

if (n == 0) empty()
else cons(xs.head, { go(xs.tail(), n - 1) })

}
return go(this, n)

}

fun <A> Stream<A>.drop(n: Int): Stream<A> {
tailrec fun go(xs: Stream<A>, n: Int): Stream<A> = when (xs) {

is Empty -> empty()
is Cons ->

if (n == 0) xs
else go(xs.tail(), n - 1)

}
return go(this, n)

}
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Exercise 5.3

fun <A> Stream<A>.takeWhile(p: (A) -> Boolean): Stream<A> =
when (this) {

is Empty -> empty()
is Cons ->

if (p(this.head()))
cons(this.head, { this.tail().takeWhile(p) })

else empty()
}

Exercise 5.4

fun <A> Stream<A>.forAll(p: (A) -> Boolean): Boolean =
foldRight({ true }, { a, b -> p(a) && b() })

Exercise 5.5

fun <A> Stream<A>.takeWhile(p: (A) -> Boolean): Stream<A> =
foldRight({ empty() },

{ h, t -> if (p(h)) cons({ h }, t) else t() })

Exercise 5.6 (Hard)

fun <A> Stream<A>.headOption(): Option<A> =
this.foldRight(

{ Option.empty() },
{ a, _ -> Some(a) }

)

Exercise 5.7

fun <A, B> Stream<A>.map(f: (A) -> B): Stream<B> =
this.foldRight(

{ empty<B>() },
{ h, t -> cons({ f(h) }, t) })

fun <A> Stream<A>.filter(f: (A) -> Boolean): Stream<A> =
this.foldRight(

{ empty<A>() },
{ h, t -> if (f(h)) cons({ h }, t) else t() })

fun <A> Stream<A>.append(sa: () -> Stream<A>): Stream<A> =
foldRight(sa) { h, t -> cons({ h }, t) }

fun <A, B> Stream<A>.flatMap(f: (A) -> Stream<B>): Stream<B> =
foldRight(

{ empty<B>() },
{ h, t -> f(h).append(t) })

Exercise 5.8

fun <A> constant(a: A): Stream<A> =
Stream.cons({ a }, { constant(a) })
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Exercise 5.9

fun from(n: Int): Stream<Int> =
cons({ n }, { from(n + 1) })

Exercise 5.10

fun fibs(): Stream<Int> {
fun go(curr: Int, nxt: Int): Stream<Int> =

cons({ curr }, { go(nxt, curr + nxt) })
return go(0, 1)

}

Exercise 5.11

fun <A, S> unfold(z: S, f: (S) -> Option<Pair<A, S>>): Stream<A> =
f(z).map { pair ->

cons({ pair.first },
{ unfold(pair.second, f) })

}.getOrElse {
empty()

}

Exercise 5.12

fun fibs(): Stream<Int> =
Stream.unfold(0 to 1, { (curr, next) ->

Some(curr to (next to (curr + next)))
})

fun from(n: Int): Stream<Int> =
Stream.unfold(n, { a -> Some(a to (a + 1)) })

fun <A> constant(n: A): Stream<A> =
Stream.unfold(n, { a -> Some(a to a) })

fun ones(): Stream<Int> =
Stream.unfold(1, { Some(1 to 1) })

Exercise 5.13

fun <A, B> Stream<A>.map(f: (A) -> B): Stream<B> =
Stream.unfold(this) { s: Stream<A> ->

when (s) {
is Cons -> Some(f(s.head()) to s.tail())
else -> None

}
}

fun <A> Stream<A>.take(n: Int): Stream<A> =
Stream.unfold(this) { s: Stream<A> ->

when (s) {
is Cons ->
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if (n > 0)
Some(s.head() to s.tail().take(n - 1))

else None
else -> None

}
}

fun <A> Stream<A>.takeWhile(p: (A) -> Boolean): Stream<A> =
Stream.unfold(this,

{ s: Stream<A> ->
when (s) {

is Cons ->
if (p(s.head()))

Some(s.head() to s.tail())
else None

else -> None
}

})

fun <A, B, C> Stream<A>.zipWith(
that: Stream<B>,
f: (A, B) -> C

): Stream<C> =
Stream.unfold(this to that) { (ths: Stream<A>, tht: Stream<B>) ->

when (ths) {
is Cons ->

when (tht) {
is Cons ->

Some(
Pair(

f(ths.head(), tht.head()),
ths.tail() to tht.tail()

)
)

else -> None
}

else -> None
}

}

fun <A, B> Stream<A>.zipAll(
that: Stream<B>

): Stream<Pair<Option<A>, Option<B>>> =
Stream.unfold(this to that) { (ths, tht) ->

when (ths) {
is Cons -> when (tht) {

is Cons ->
Some(

Pair(
Some(ths.head()) to Some(tht.head()),
ths.tail() to tht.tail()

)
)

else ->
Some(
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Pair(
Some(ths.head()) to None,
ths.tail() to Stream.empty<B>()

)
)

}
else -> when (tht) {

is Cons ->
Some(

Pair(
None to Some(tht.head()),
Stream.empty<A>() to tht.tail()

)
)

else -> None
}

}
}

Exercise 5.14 (Hard)

fun <A> Stream<A>.startsWith(that: Stream<A>): Boolean =
this.zipAll(that)

.takeWhile { !it.second.isEmpty() }

.forAll { it.first == it.second }

Exercise 5.15

fun <A> Stream<A>.tails(): Stream<Stream<A>> =
Stream.unfold(this) { s: Stream<A> ->

when (s) {
is Cons ->

Some(s to s.tail())
else -> None

}
}

Exercise 5.16 (Hard)

fun <A, B> Stream<A>.scanRight(z: B, f: (A, () -> B) -> B): Stream<B> =
foldRight({ z to Stream.of(z) },

{ a: A, p0: () -> Pair<B, Stream<B>> ->
val p1: Pair<B, Stream<B>> by lazy { p0() }
val b2: B = f(a) { p1.first }
Pair<B, Stream<B>>(b2, cons({ b2 }, { p1.second }))

}).second

B.6 Purely functional state

Exercise 6.1

fun nonNegativeInt(rng: RNG): Pair<Int, RNG> {
val (i1, rng2) = rng.nextInt()
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return (if (i1 < 0) -(i1 + 1) else i1) to rng2
}

Exercise 6.2

fun double(rng: RNG): Pair<Double, RNG> {
val (i, rng2) = nonNegativeInt(rng)
return (i / (Int.MAX_VALUE.toDouble() + 1)) to rng2

}

Exercise 6.3

fun intDouble(rng: RNG): Pair<Pair<Int, Double>, RNG> {
val (i, rng2) = rng.nextInt()
val (d, rng3) = double(rng2)
return (i to d) to rng3

}

fun doubleInt(rng: RNG): Pair<Pair<Double, Int>, RNG> {
val (id, rng2) = intDouble(rng)
val (i, d) = id
return (d to i) to rng2

}

fun double3(rng: RNG): Pair<Triple<Double, Double, Double>, RNG> {
val doubleRand = doubleR()
val (d1, rng2) = doubleRand(rng)
val (d2, rng3) = doubleRand(rng2)
val (d3, rng4) = doubleRand(rng3)
return Triple(d1, d2, d3) to rng4

}

Exercise 6.4

fun ints(count: Int, rng: RNG): Pair<List<Int>, RNG> =
if (count > 0) {

val (i, r1) = rng.nextInt()
val (xs, r2) = ints(count - 1, r1)
Cons(i, xs) to r2

} else Nil to rng

Exercise 6.5

fun doubleR(): Rand<Double> =
map(::nonNegativeInt) { i ->

i / (Int.MAX_VALUE.toDouble() + 1)
}

Exercise 6.6

fun <A, B, C> map2(ra: Rand<A>, rb: Rand<B>, f: (A, B) -> C): Rand<C> =
{ r1: RNG ->

val (a, r2) = ra(r1)
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val (b, r3) = rb(r2)
f(a, b) to r3

}

Exercise 6.7

Using a simpler recursive strategy could blow the stack:

fun <A> sequence(fs: List<Rand<A>>): Rand<List<A>> = { rng ->
when (fs) {

is Nil -> unit(List.empty<A>())(rng)
is Cons -> {

val (a, nrng) = fs.head(rng)
val (xa, frng) = sequence(fs.tail)(nrng)
Cons(a, xa) to frng

}
}

}

A better approach using foldRight:

fun <A> sequence2(fs: List<Rand<A>>): Rand<List<A>> =
foldRight(fs, unit(List.empty()), { f, acc ->

map2(f, acc, { h, t -> Cons(h, t) })
})

fun ints2(count: Int, rng: RNG): Pair<List<Int>, RNG> {
fun go(c: Int): List<Rand<Int>> =

if (c == 0) Nil
else Cons({ r -> 1 to r }, go(c - 1))

return sequence2(go(count))(rng)
}

Exercise 6.8

fun <A, B> flatMap(f: Rand<A>, g: (A) -> Rand<B>): Rand<B> =
{ rng ->

val (a, rng2) = f(rng)
g(a)(rng2)

}

fun nonNegativeIntLessThan(n: Int): Rand<Int> =
flatMap(::nonNegativeInt) { i ->

val mod = i % n
if (i + (n - 1) - mod >= 0) unit(mod)
else nonNegativeIntLessThan(n)

}

Exercise 6.9

fun <A, B> mapF(ra: Rand<A>, f: (A) -> B): Rand<B> =
flatMap(ra) { a -> unit(f(a)) }

fun <A, B, C> map2F(
ra: Rand<A>,
rb: Rand<B>,
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f: (A, B) -> C
): Rand<C> =

flatMap(ra) { a ->
map(rb) { b ->

f(a, b)
}

}

Exercise 6.10

data class State<S, out A>(val run: (S) -> Pair<A, S>) {

companion object {
fun <S, A> unit(a: A): State<S, A> =

State { s: S -> a to s }

fun <S, A, B, C> map2(
ra: State<S, A>,
rb: State<S, B>,
f: (A, B) -> C

): State<S, C> =
ra.flatMap { a ->

rb.map { b ->
f(a, b)

}
}

fun <S, A> sequence(fs: List<State<S, A>>): State<S, List<A>> =
foldRight(fs, unit(List.empty<A>()),

{ f, acc ->
map2(f, acc) { h, t -> Cons(h, t) }

}
)

}

fun <B> map(f: (A) -> B): State<S, B> =
flatMap { a -> unit<S, B>(f(a)) }

fun <B> flatMap(f: (A) -> State<S, B>): State<S, B> =
State { s: S ->

val (a: A, s2: S) = this.run(s)
f(a).run(s2)

}
}

Exercise 6.11
import arrow.core.Id
import arrow.core.Tuple2
import arrow.core.extensions.id.monad.monad
import arrow.mtl.State
import arrow.mtl.StateApi
import arrow.mtl.extensions.fx
import arrow.mtl.runS
import arrow.mtl.stateSequential
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val update: (Input) -> (Machine) -> Machine =
{ i: Input ->

{ s: Machine ->
when (i) {

is Coin ->
if (!s.locked || s.candies == 0) s
else Machine(false, s.candies, s.coins + 1)

is Turn ->
if (s.locked || s.candies == 0) s
else Machine(true, s.candies - 1, s.coins)

}
}

}

fun simulateMachine(
inputs: List<Input>

): State<Machine, Tuple2<Int, Int>> =
State.fx(Id.monad()) {

inputs
.map(update)
.map(StateApi::modify)
.stateSequential()
.bind()

val s = StateApi.get<Machine>().bind()
Tuple2(s.candies, s.coins)

}

B.7 Purely functional parallelism

Exercise 7.1

fun <A, B, C> map2(
sum: Par<A>,
sum1: Par<B>,
function: (A, B) -> C

): Par<C> = Par(function(sum.get, sum1.get))

Exercise 7.2

class Par<A>(val get: A) {
companion object {

fun <A> unit(a: A): Par<A> = Par(a)

fun <A, B, C> map2(
a1: Par<A>,
a2: Par<B>,
f: (A, B) -> C

): Par<C> = Par(f(a1.get, a2.get))

fun <A> fork(f: () -> Par<A>): Par<A> = f()

fun <A> lazyUnit(a: () -> A): Par<A> = Par(a())
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fun <A> run(a: Par<A>): A = a.get
}

}

Exercise 7.3

fun <A, B, C> map2(a: Par<A>, b: Par<B>, f: (A, B) -> C): Par<C> =
{ es: ExecutorService ->

val fa = a(es)
val fb = b(es)
TimedMap2Future(fa, fb, f)

}

data class TimedMap2Future<A, B, C>(
val pa: Future<A>,
val pb: Future<B>,
val f: (A, B) -> C

) : Future<C> {

override fun isDone(): Boolean = TODO("Unused")

override fun get(): C = TODO("Unused")

override fun get(to: Long, tu: TimeUnit): C {
val timeoutMillis = TimeUnit.MILLISECONDS.convert(to, tu)

val start = System.currentTimeMillis()
val a = pa.get(to, tu)
val duration = System.currentTimeMillis() - start

val remainder = timeoutMillis - duration
val b = pb.get(remainder, TimeUnit.MILLISECONDS)
return f(a, b)

}

override fun cancel(b: Boolean): Boolean = TODO("Unused")

override fun isCancelled(): Boolean = TODO("Unused")
}

Exercise 7.4

fun <A, B> asyncF(f: (A) -> B): (A) -> Par<B> =
{ a: A -> lazyUnit { f(a) } }

Exercise 7.5

Two implementations are provided. The first is a more naive approach that uses sim-
ple recursion to achieve its goals.

val <T> List<T>.head: T
get() = first()

val <T> List<T>.tail: List<T>
get() = this.drop(1)

val Nil = listOf<Nothing>()
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fun <A> sequence1(ps: List<Par<A>>): Par<List<A>> =
when (ps) {

Nil -> unit(Nil)
else -> map2(

ps.head,
sequence1(ps.tail)

) { a: A, b: List<A> ->
listOf(a) + b

}
}

The second, and probably better, approach also uses recursion but employs a splitting
technique in combination with map2 to parallelize the processing.

fun <A> sequence(ps: List<Par<A>>): Par<List<A>> =
when {

ps.isEmpty() -> unit(Nil)
ps.size == 1 -> map(ps.head) { listOf(it) }
else -> {

val (l, r) = ps.splitAt(ps.size / 2)
map2(sequence(l), sequence(r)) { la, lb ->

la + lb
}

}
}

Exercise 7.6

fun <A> parFilter(sa: List<A>, f: (A) -> Boolean): Par<List<A>> {
val pars: List<Par<A>> = sa.map { lazyUnit { it } }
return map(sequence(pars)) { la: List<A> ->

la.flatMap { a ->
if (f(a)) listOf(a) else emptyList()

}
}

}

Exercise 7.7 (Hard)

Keep reading the chapter. The issue is explained in the next paragraph.

Exercise 7.8 (Hard)

For a thread pool of size 2, fork(fork(fork(x))) will deadlock, and so on. Another,
perhaps more interesting, example is fork(map2(fork(x), fork(y))). In this case,
the outer task is submitted first and occupies a thread waiting for both fork(x) and
fork(y). The fork(x) and fork(y) tasks are submitted and run in parallel, except
that only one thread is available, resulting in deadlock.

Exercise 7.9 (Hard/Optional)

We give a fully fleshed-out solution in the Task data type in the code for chapter 13. 
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Exercise 7.10

fun <A> choiceN(n: Par<Int>, choices: List<Par<A>>): Par<A> =
{ es: ExecutorService ->

choices[n(es).get()].invoke(es)
}

fun <A> choice(cond: Par<Boolean>, t: Par<A>, f: Par<A>): Par<A> =
{ es: ExecutorService ->

choiceN(
map(cond, { if (it) 1 else 0 }),
listOf(f, t)

)(es)
}

Exercise 7.11

fun <K, V> choiceMap(key: Par<K>, choices: Map<K, Par<V>>): Par<V> =
{ es: ExecutorService ->

choices[key(es).get()]!!.invoke(es)
}

Exercise 7.12

fun <A, B> chooser(pa: Par<A>, choices: (A) -> Par<B>): Par<B> =
{ es: ExecutorService ->

choices(pa(es).get())(es)
}

Exercise 7.13

fun <A> join(a: Par<Par<A>>): Par<A> =
{ es: ExecutorService -> a(es).get()(es) }

fun <A, B> flatMapViaJoin(pa: Par<A>, f: (A) -> Par<B>): Par<B> =
join(map(pa, f))

fun <A> joinViaFlatMap(a: Par<Par<A>>): Par<A> =
flatMap(a, { it })

B.8 Property-based testing

Exercise 8.1

■ The sum of the empty list is 0.
■ The sum of a list whose elements are all equal to x is just the list’s length multi-

plied by x. You might express this as sum(List(n){x}) == n * x.
■ For any list l, sum(l) == sum(l.reverse()) since addition is commutative.
■ Given a list List(x,y,z,p,q), sum(List(x,y,z,p,q)) == sum(List(x,y)) +

sum(List(z,p,q)) since addition is associative. More generally, you can partition
a list into two subsequences whose sum is equal to the sum of the overall list.

■ The sum of 1,2,3…n is n*(n+1)/2.
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Exercise 8.2

■ The maximum of a single-element list is equal to that element.
■ The maximum of a list is greater than or equal to all elements of the list.
■ The maximum of a list is an element of that list.
■ The maximum of the empty list is unspecified and should throw an error or

return None.

Exercise 8.3

interface Prop {
fun check(): Boolean
fun and(p: Prop): Prop {

val checked = this.check() && p.check()
return object : Prop {

override fun check() = checked
}

}
}

An anonymous instance of Prop is returned that is based on this and the property p
that is passed in.

Exercise 8.4

This solution handles only integers, but the random values will not distribute evenly
over stopExclusive - start if the range covered by nonNegativeInt is not a multiple
of stopExclusive - start.

fun choose(start: Int, stopExclusive: Int): Gen<Int> =
Gen(State { rng: RNG -> nonNegativeInt(rng) }

.map { start + (it % (stopExclusive - start)) })

This version uses the double function to get a random value distributed evenly over
the range from 0 to 1 and then applies it in a way similar to the version above.

fun chooseUnbiased(start: Int, stopExclusive: Int): Gen<Int> =
Gen(State { rng: RNG -> double(rng) }

.map { start + (it * (stopExclusive - start)) }

.map { it.toInt() })

Exercise 8.5

fun <A> unit(a: A): Gen<A> = Gen(State.unit(a))

fun boolean(): Gen<Boolean> =
Gen(State { rng -> nextBoolean(rng) })

fun <A> listOfN(n: Int, ga: Gen<A>): Gen<List<A>> =
Gen(State.sequence(List(n) { ga.sample }))
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This solution draws heavily on the State API developed in chapter 6. We have hinged
the solution on the State.sequence() function, which is able to convert a List
<State<S, A>> into a State<A, List<A>>. When applying the list containing n and the
wrapped sample to this state transition, you get back a new State that can subse-
quently be wrapped up again as a new Gen.

Exercise 8.6

data class Gen<A>(val sample: State<RNG, A>) {

companion object {
fun <A> listOfN(gn: Gen<Int>, ga: Gen<A>): Gen<List<A>> =

gn.flatMap { n -> listOfN(n, ga) }
}

fun <B> flatMap(f: (A) -> Gen<B>): Gen<B> =
Gen(sample.flatMap { a -> f(a).sample })

}

Exercise 8.7

fun <A> union(ga: Gen<A>, gb: Gen<A>): Gen<A> =
boolean().flatMap { if (it) ga else gb }

Exercise 8.8

fun <A> weighted(
pga: Pair<Gen<A>, Double>,
pgb: Pair<Gen<A>, Double>

): Gen<A> {
val (ga, p1) = pga
val (gb, p2) = pgb
val prob =

p1.absoluteValue /
(p1.absoluteValue + p2.absoluteValue)

return Gen(State { rng: RNG -> double(rng) })
.flatMap { d ->

if (d < prob) ga else gb
}

}

Exercise 8.9

data class Prop(val run: (TestCases, RNG) -> Result) {
fun and(other: Prop) = Prop { n, rng ->

when (val prop = run(n, rng)) {
is Passed -> other.run(n, rng)
is Falsified -> prop

}
}

fun or(other: Prop) = Prop { n, rng ->
when (val prop = run(n, rng)) {
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is Falsified ->
other.tag(prop.failure).run(n, rng)

is Passed -> prop
}

}

private fun tag(msg: String) = Prop { n, rng ->
when (val prop = run(n, rng)) {

is Falsified -> Falsified(
"$msg: ${prop.failure}",
prop.successes

)
is Passed -> prop

}
}

}

We have introduced a tag method to add metadata about a left failure when an or
condition is encountered and computation must continue. You mark or tag the prop-
erty with the failure message if it is Falsified before proceeding to the right side of
the or condition. This is very simple but does the trick for now.

Exercise 8.10

data class Gen<A>(val sample: State<RNG, A>) {
fun unsized(): SGen<A> = SGen { _ -> this }

}

Exercise 8.11

data class SGen<A>(val forSize: (Int) -> Gen<A>) {

operator fun invoke(i: Int): Gen<A> = forSize(i)

fun <B> map(f: (A) -> B): SGen<B> =
SGen<B> { i -> forSize(i).map(f) }

fun <B> flatMap(f: (A) -> Gen<B>): SGen<B> =
SGen<B> { i -> forSize(i).flatMap(f) }

}

Exercise 8.12

fun listOf(): SGen<List<A>> =
SGen { i -> Gen.listOfN(i, this) }

Exercise 8.13

fun <A> nonEmptyListOf(ga: Gen<A>): SGen<List<A>> =
SGen { i -> Gen.listOfN(max(1, i), ga) }

fun maxProp() =
Prop.forAll(nonEmptyListOf(smallInt)) { ns: List<Int> ->
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L
be 
val mx = ns.max()
?: throw IllegalStateException("max on empty list")

!ns.exists { it > mx }
}

Exercise 8.14

val maxProp = forAll(SGen.listOf(smallInt)) { ns ->
val nss = ns.sorted()
nss.isEmpty() or                      

(nss.size == 1) or      
nss.zip(nss.prepend(Int.MIN_VALUE))

.foldRight(true) { p, b ->
                    val (pa, pb) = p
                    b && (pa >= pb)
                } and                 

nss.containsAll(ns) and    
!nss.exists { !ns.contains(it) }    

}

Exercise 8.15

val pint2: Gen<Par<Int>> =
Gen.choose(0, 20).flatMap { n ->

Gen.listOfN(n, Gen.choose(-100, 100)).map { ls ->
ls.foldLeft(unit(0)) { pint, i ->

fork {
map2(pint, unit(i)) { a, b ->

a + b
}

}
}

}
}

Exercise 8.16

forAllPar(pint) { x ->
equal(fork { x }, x)

}

Exercise 8.17

l.takeWhile(f) + l.dropWhile(f) == l

val l = listOf(1, 2, 3, 4, 5)
val f = { i: Int -> i < 3 }
val res0 = l.takeWhile(f) + l.dropWhile(f)

assert(res0 == l)

You want to enforce that takeWhile returns the longest prefix whose elements satisfy
the predicate. There are various ways to state this, but the general idea is that the

ist may
empty.

List may have only 
a single element.

List must be ordered 
in ascending order.

List must contain
all elements of the

unsorted list.
List may not contain any 
elements that are not in 
the unsorted list.
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remaining list, if nonempty, should start with an element that does not satisfy the
predicate. 

B.9 Parser combinators

Exercise 9.1

override fun <A, B, C> map2(
pa: Parser<A>,
pb: () -> Parser<B>,
f: (A, B) -> C

): Parser<C> =
(pa product pb).map { (a, b) -> f(a, b) }

override fun <A> many1(p: Parser<A>): Parser<List<A>> =
map2(p, { p.many() }) { a, b -> listOf(a) + b }

Exercise 9.2 (Hard)

(a product b) product c
a product (b product c)

The product combinator is associative, so both expressions are more or less equal.
The only difference here is how the pairs are nested. The (a product b) product c
parser returns a Pair<Pair<A, B>, C>, while the a product (b product c) combinator
returns a Pair<A, Pair<B, C>>. You can easily introduce some new functions called
unbiasL and unbiasR to flatten these structures out into Triples.

fun <A, B, C> unbiasL(p: Pair<Pair<A, B>, C>): Triple<A, B, C> =
Triple(p.first.first, p.first.second, p.second)

fun <A, B, C> unbiasR(p: Pair<A, Pair<B, C>>): Triple<A, B, C> =
Triple(p.first, p.second.first, p.second.second)

This now allows you to express the law of associativity as follows:

((a product b) product c).map(::unbiasL) ==
(a product (b product c)).map(::unbiasR)

We often write this bijection between two sides as ~= (see http://mng.bz/6mwy), as
demonstrated in the following expression:

(a product b) product c ~= a product (b product c)

Another interesting observation is the relationship between map and product. It is pos-
sible to map either before or after taking the product of two parsers without affecting
the behavior:

a.map(::f) product b.map(::g) ==
(a product b).map { (a1, b1) -> f(a1) to g(b1) }

http://mng.bz/6mwy
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For instance, if a and b are both Parser<String>, and f and g both compute the
length of a string, it doesn’t matter if we map over the results of a and b to compute
their respective lengths before or after applying the product.

Exercise 9.3

fun <A> many(pa: Parser<A>): Parser<List<A>> =
map2(pa, many(pa)) { a, la ->

listOf(a) + la
} or succeed(emptyList())

Exercise 9.4

fun <A> listOfN(n: Int, pa: Parser<A>): Parser<List<A>> =
if (n > 0)

map2(pa, listOfN(n - 1, pa)) { a, la ->
listOf(a) + la

}
else succeed(emptyList())

Exercise 9.5

fun <A> defer(pa: () -> Parser<A>): Parser<A> = pa()

fun <A> many(pa: Parser<A>): Parser<List<A>> =
map2(pa, defer { many(pa) }) { a, la ->

listOf(a) + la
} or succeed(emptyList())

This approach could work, but arguably it causes more confusion than it’s worth. For
this reason, we will not introduce it and will keep our combinators free from lazily ini-
tialized parsers.

Exercise 9.6

val parser: Parser<Int> = regex("[0-9]+")
.flatMap { digit: String ->

val reps = digit.toInt()
listOfN(reps, char('a')).map { _ -> reps }

}

Exercise 9.7

fun <A, B> product(
pa: Parser<A>,
pb: Parser<B>

): Parser<Pair<A, B>> =
pa.flatMap { a -> pb.map { b -> a to b } }

fun <A, B, C> map2(
pa: Parser<A>,
pb: Parser<B>,
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f: (A, B) -> C
): Parser<C> =

pa.flatMap { a -> pb.map { b -> f(a, b) } }

Exercise 9.8

fun <A, B> map(pa: Parser<A>, f: (A) -> B): Parser<B> =
pa.flatMap { a -> succeed(f(a)) }

Exercise 9.9 (Hard)

abstract class Parsers<PE> {

// primitives

internal abstract fun string(s: String): Parser<String>

internal abstract fun regex(r: String): Parser<String>

internal abstract fun <A> slice(p: Parser<A>): Parser<String>

internal abstract fun <A> succeed(a: A): Parser<A>

internal abstract fun <A, B> flatMap(
p1: Parser<A>,
f: (A) -> Parser<B>

): Parser<B>

internal abstract fun <A> or(
p1: Parser<out A>,
p2: () -> Parser<out A>

): Parser<A>

// other combinators

internal abstract fun char(c: Char): Parser<Char>

internal abstract fun <A> many(p: Parser<A>): Parser<List<A>>

internal abstract fun <A> many1(p: Parser<A>): Parser<List<A>>

internal abstract fun <A> listOfN(
n: Int,
p: Parser<A>

): Parser<List<A>>

internal abstract fun <A, B> product(
pa: Parser<A>,
pb: () -> Parser<B>

): Parser<Pair<A, B>>

internal abstract fun <A, B, C> map2(
pa: Parser<A>,
pb: () -> Parser<B>,
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f: (A, B) -> C
): Parser<C>

internal abstract fun <A, B> map(pa: Parser<A>, f: (A) -> B): Parser<B>

internal abstract fun <A> defer(pa: Parser<A>): () -> Parser<A>

internal abstract fun <A> skipR(
pa: Parser<A>,
ps: Parser<String>

): Parser<A>

internal abstract fun <B> skipL(
ps: Parser<String>,
pb: Parser<B>

): Parser<B>

internal abstract fun <A> sep(
p1: Parser<A>,
p2: Parser<String>

): Parser<List<A>>

internal abstract fun <A> surround(
start: Parser<String>,
stop: Parser<String>,
p: Parser<A>

): Parser<A>
}

abstract class ParsersDsl<PE> : Parsers<PE>() {

fun <A> Parser<A>.defer(): () -> Parser<A> = defer(this)

fun <A, B> Parser<A>.map(f: (A) -> B): Parser<B> =
this@ParsersDsl.map(this, f)

fun <A> Parser<A>.many(): Parser<List<A>> =
this@ParsersDsl.many(this)

infix fun <A> Parser<out A>.or(p: Parser<out A>): Parser<A> =
this@ParsersDsl.or(this, p.defer())

infix fun <A, B> Parser<A>.product(p: Parser<B>): Parser<Pair<A, B>> =
this@ParsersDsl.product(this, p.defer())

infix fun <A> Parser<A>.sep(p: Parser<String>): Parser<List<A>> =
this@ParsersDsl.sep(this, p)

infix fun <A> Parser<A>.skipR(p: Parser<String>): Parser<A> =
this@ParsersDsl.skipR(this, p)

infix fun <B> Parser<String>.skipL(p: Parser<B>): Parser<B> =
this@ParsersDsl.skipL(this, p)

infix fun <T> T.cons(la: List<T>): List<T> = listOf(this) + la
}
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abstract class JSONParsers : ParsersDsl<ParseError>() {

// {
// "Company name" : "Microsoft Corporation",
// "Ticker": "MSFT",
// "Active": true,
// "Price": 30.66,
// "Shares outstanding": 8.38e9,
// "Related companies": [ "HPQ", "IBM", "YHOO", "DELL", "GOOG" ]
// }

val JSON.parser: Parser<JSON>
get() = succeed(this)

val String.rp: Parser<String>
get() = regex(this)

val String.sp: Parser<String>
get() = string(this)

fun thru(s: String): Parser<String> =
".*?${Pattern.quote(s)}".rp

val quoted: Parser<String> =
"\"".sp skipL thru("\"").map { it.dropLast(1) }

val doubleString: Parser<String> =
"[-+]?([0-9]*\\.)?[0-9]+([eE][-+]?[0-9]+)?".rp

val double: Parser<Double> = doubleString.map { it.toDouble() }

val lit: Parser<JSON> =
JNull.parser or

double.map { JNumber(it) } or
JBoolean(true).parser or
JBoolean(false).parser or
quoted.map { JString(it) }

val value: Parser<JSON> = lit or obj() or array()

val keyval: Parser<Pair<String, JSON>> =
quoted product (":".sp skipL value)

val whitespace: Parser<String> = """\s*""".rp

val eof: Parser<String> = """\z""".rp

fun array(): Parser<JArray> =
surround("[".sp, "]".sp,

(value sep ",".sp).map { vs -> JArray(vs) })

fun obj(): Parser<JObject> =
surround("{".sp, "}".sp,

(keyval sep ",".sp).map { kvs -> JObject(kvs.toMap()) })
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fun <A> root(p: Parser<A>): Parser<A> = p skipR eof

val jsonParser: Parser<JSON> =
root(whitespace skipL (obj() or array()))

}

Exercise 9.10

In the event of an error, this returns that error after consuming the most characters:

fun <A> furthest(pa: Parser<A>): Parser<A>

In the event of an error, this returns the error that occurred most recently:

fun <A> latest(pa: Parser<A>): Parser<A>

Exercise 9.11

abstract class Parser : ParserDsl<ParseError>() {
override fun string(s: String): Parser<String> =

{ state: State ->
when (val idx =

firstNonMatchingIndex(state.input, s, state.offset)) {
is None ->

Success(s, s.length)
is Some ->

Failure(
state.advanceBy(idx.t).toError("'$s'"),
idx.t != 0

)
}

}

private fun firstNonMatchingIndex(
s1: String,
s2: String,
offset: Int

): Option<Int> {
var i = 0
while (i < s1.length && i < s2.length) {

if (s1[i + offset] != s2[i])
return Some(i)

else i += 1
}
return if (s1.length - offset >= s2.length) None

else Some(s1.length - offset)
}

private fun State.advanceBy(i: Int) =
this.copy(offset = this.offset + i)

override fun regex(r: String): Parser<String> =
{ state: State ->

when (val prefix = state.input.findPrefixOf(r.toRegex())) {
is Some ->

Success(prefix.t.value, prefix.t.value.length)
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is None ->
Failure(state.toError("regex ${r.toRegex()}"))

}
}

private fun String.findPrefixOf(r: Regex): Option<MatchResult> =
r.find(this).toOption().filter { it.range.first == 0 }

override fun <A> succeed(a: A): Parser<A> = { Success(a, 0) }

override fun <A> slice(p: Parser<A>): Parser<String> =
{ state: State ->

when (val result = p(state)) {
is Success ->

Success(state.slice(result.consumed), result.consumed)
is Failure -> result

}
}

private fun State.slice(n: Int) =
this.input.substring(this.offset..this.offset + n)

}

Exercise 9.12

override fun string(s: String): Parser<String> =
{ state: State ->

when (val idx =
firstNonMatchingIndex(state.input, s, state.offset)) {
is None ->

Success(s, s.length)
is Some ->

Failure(
state.advanceBy(idx.t).toError("'$s'"),
idx.t != 0

)
}

}

Exercise 9.13

override fun <A> run(p: Parser<A>, input: String): Result<A> =
p(Location(input))

Exercise 9.14

data class ParseError(
val stack: List<Pair<Location, String>> = emptyList()

) {

fun push(loc: Location, msg: String): ParseError =
this.copy(stack = listOf(loc to msg) + stack)

fun label(s: String): ParseError =
ParseError(latestLoc()
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.map { it to s }

.toList())

private fun latest(): Option<Pair<Location, String>> =
stack.lastOrNone()

private fun latestLoc(): Option<Location> = latest().map { it.first }

/*
* Display collapsed error stack - any adjacent stack elements with the
* same location are combined on one line. For the bottommost error, we
* display the full line, with a caret pointing to the column of the
* error.
* Example:
* 1.1 file 'companies.json'; array
* 5.1 object
* 5.2 key-value
* 5.10 ':'
* { "MSFT" ; 24,
* ^
*/

override fun toString(): String =
if (stack.isEmpty()) "no error message"
else {

val collapsed = collapseStack(stack)
val context =

collapsed.lastOrNone()
.map { "\n\n" + it.first.line }
.getOrElse { "" } +
collapsed.lastOrNone()

.map { "\n" + it.first.col }

.getOrElse { "" }

collapsed.joinToString { (loc, msg) ->
"${loc.line}.${loc.col} $msg"

} + context
}

/* Builds a collapsed version of the given error stack -
* messages at the same location have their messages merged,
* separated by semicolons.
*/

private fun collapseStack(
stk: List<Pair<Location, String>>

): List<Pair<Location, String>> =
stk.groupBy { it.first }

.mapValues { it.value.joinToString() }

.toList()

.sortedBy { it.first.offset }
}
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B.10 Monoids

Exercise 10.1

fun intAddition(): Monoid<Int> = object : Monoid<Int> {

override fun combine(a1: Int, a2: Int): Int = a1 + a2

override val nil: Int = 0
}

fun intMultiplication(): Monoid<Int> = object : Monoid<Int> {

override fun combine(a1: Int, a2: Int): Int = a1 * a2

override val nil: Int = 1
}

fun booleanOr(): Monoid<Boolean> = object : Monoid<Boolean> {

override fun combine(a1: Boolean, a2: Boolean): Boolean = a1 || a2

override val nil: Boolean = false
}

fun booleanAnd(): Monoid<Boolean> = object : Monoid<Boolean> {

override fun combine(a1: Boolean, a2: Boolean): Boolean = a1 && a2

override val nil: Boolean = true
}

Exercise 10.2

fun <A> optionMonoid(): Monoid<Option<A>> = object : Monoid<Option<A>> {

override fun combine(a1: Option<A>, a2: Option<A>): Option<A> =
a1.orElse { a2 }

override val nil: Option<A> = None
}

fun <A> dual(m: Monoid<A>): Monoid<A> = object : Monoid<A> {

override fun combine(a1: A, a2: A): A = m.combine(a2, a1)

override val nil: A = m.nil
}

fun <A> firstOptionMonoid() = optionMonoid<A>()

fun <A> lastOptionMonoid() = dual(firstOptionMonoid<A>())
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Notice that you have a choice in how you implement op. You can compose the options
in either order. Both implementations satisfy the monoid laws, but they are not equiv-
alent. This is true in general—that is, every monoid has a dual where the op combines
things in the opposite order. Monoids like booleanOr and intAddition are equivalent
to their duals because their op is commutative as well as associative.

Exercise 10.3

fun <A> endoMonoid(): Monoid<(A) -> A> =
object : Monoid<(A) -> A> {

override fun combine(a1: (A) -> A, a2: (A) -> A): (A) -> A =
{ a -> a1(a2(a)) }

override val nil: (A) -> A
get() = { a -> a }

}

fun <A> endoMonoidComposed(): Monoid<(A) -> A> =
object : Monoid<(A) -> A> {

override fun combine(a1: (A) -> A, a2: (A) -> A): (A) -> A =
a1 compose a2

override val nil: (A) -> A
get() = { it }

}

Exercise 10.4

fun <A> monoidLaws(m: Monoid<A>, gen: Gen<A>) =
forAll(

gen.flatMap { a ->
gen.flatMap { b ->

gen.map { c ->
Triple(a, b, c)

}
}

}
) { (a, b, c) ->

m.combine(a, m.combine(b, c)) == m.combine(m.combine(a, b), c) &&
m.combine(m.nil, a) == m.combine(a, m.nil) &&

m.combine(m.nil, a) == a
}

class AssociativitySpec : WordSpec({
val max = 100
val count = 100
val rng = SimpleRNG(42)
val intGen = Gen.choose(-10000, 10000)

"law of associativity" should {
"be upheld using existing monoids" {

monoidLaws(intAdditionMonoid, intGen)
.check(max, count, rng) shouldBe Passed



430 APPENDIX B Exercise solutions
monoidLaws(intMultiplicationMonoid, intGen)
.check(max, count, rng) shouldBe Passed

}
}

})

Exercise 10.5

fun <A, B> foldMap(la: List<A>, m: Monoid<B>, f: (A) -> B): B =
la.foldLeft(m.nil, { b, a -> m.combine(b, f(a)) })

Exercise 10.6

fun <A, B> foldRight(la: Sequence<A>, z: B, f: (A, B) -> B): B =
foldMap(la, endoMonoid()) { a: A -> { b: B -> f(a, b) } }(z)

When curried, the function type (A, B) -> B is (A) -> (B) -> B. And of course (B) -> B
is a monoid for any B (via function composition).

fun <A, B> foldLeft(la: Sequence<A>, z: B, f: (B, A) -> B): B =
foldMap(la, dual(endoMonoid())) { a: A -> { b: B -> f(b, a) } }(z)

Folding to the left is the same, except you flip the arguments to the function f to put
the B on the correct side. Then you also have to “flip” the monoid so it operates from
left to right.

Exercise 10.7

fun <A, B> foldMap(la: List<A>, m: Monoid<B>, f: (A) -> B): B =
when {

la.size >= 2 -> {
val (la1, la2) = la.splitAt(la.size / 2)
m.combine(foldMap(la1, m, f), foldMap(la2, m, f))

}
la.size == 1 ->

f(la.first())
else -> m.nil

}

Exercise 10.8 (Hard/Optional)

fun <A> par(m: Monoid<A>): Monoid<Par<A>> = object : Monoid<Par<A>> {

override fun combine(pa1: Par<A>, pa2: Par<A>): Par<A> =
map2(pa1, pa2) { a1: A, a2: A ->      

m.combine(a1, a2)
}

override val nil: Par<A>
get() = unit(m.nil)   

}

Uses map2 from chapter 
7 to combine two Par 
instances

Uses unit from chapter 
7 to wrap zero in Par
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fun <A, B> parFoldMap(
la: List<A>,
pm: Monoid<Par<B>>,
f: (A) -> B

): Par<B> =
when {

la.size >= 2 -> {
val (la1, la2) = la.splitAt(la.size / 2)
pm.combine(parFoldMap(la1, pm, f), parFoldMap(la2, pm, f))

}
la.size == 1 ->

unit(f(la.first()))
else -> pm.nil

}

parFoldMap(
listOf("lorem", "ipsum", "dolor", "sit"),
par(stringMonoid),  
{ it.toUpperCase() }

)(es).invoke { cb -> result.set(cb) }   

Exercise 10.9 (Hard/Optional)

typealias TrackingState = Triple<Int, Int, Boolean>

val m = object : Monoid<Option<TrackingState>> {
override fun combine(

a1: Option<TrackingState>,
a2: Option<TrackingState>

): Option<TrackingState> =
when (a1) {

is None -> a2
is Some ->

when (a2) {
is None -> a1
is Some -> Some(

Triple(
min(a1.t.first, a2.t.first),
max(a1.t.second, a2.t.second),
a1.t.third &&

a2.t.third &&
a1.t.second <= a2.t.first

)
)

}
}

override val nil: Option<TrackingState> = None
}

fun ordered(ints: Sequence<Int>): Boolean =
foldMap(ints, m) { i: Int -> Some(TrackingState(i, i, true)) }

.map { it.third }

.getOrElse { true }

Promotes Monoid<A> to 
Monoid<Par<A>> using par

Applies the executor service 
and invokes a callback 
function on Future 
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Exercise 10.10

fun wcMonoid(): Monoid<WC> = object : Monoid<WC> {
override fun combine(a1: WC, a2: WC): WC =

when (a1) {
is Stub -> when (a2) {

is Stub ->
Stub(a1.chars + a2.chars)

is Part ->
Part(a1.chars + a2.ls, a2.words, a2.rs)

}
is Part -> when (a2) {

is Stub ->
Part(a1.ls, a1.words, a1.rs + a2.chars)

is Part ->
Part(

a1.ls,
a1.words + a2.words +

(if ((a1.rs + a2.ls).isEmpty()) 0 else 1),
a2.rs

)
}

}

override val nil: WC
get() = Stub("")

}

Exercise 10.11

fun wordCount(s: String): Int {

fun wc(c: Char): WC =
if (c.isWhitespace()) Part("", 0, "")
else Stub("$c")

fun unstub(s: String): Int = min(s.length, 1)

val WCM = wcMonoid()
return when (val wc = foldMap(s.asSequence(), WCM) { wc(it) }) {

is Stub -> unstub(wc.chars)
is Part -> unstub(wc.rs) + wc.words + unstub(wc.rs)

}
}

Exercise 10.12

interface Foldable<F> {

fun <A, B> foldRight(fa: Kind<F, A>, z: B, f: (A, B) -> B): B =
foldMap(fa, endoMonoid()) { a: A -> { b: B -> f(a, b) } }(z)

fun <A, B> foldLeft(fa: Kind<F, A>, z: B, f: (B, A) -> B): B =
foldMap(fa, dual(endoMonoid())) { a: A -> { b: B -> f(b, a) } }(z)
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fun <A, B> foldMap(fa: Kind<F, A>, m: Monoid<B>, f: (A) -> B): B =
foldRight(fa, m.nil, { a, b -> m.combine(f(a), b) })

}

Exercise 10.13

object ListFoldable : Foldable<ForList> {

override fun <A, B> foldRight(
fa: ListOf<A>,
z: B,
f: (A, B) -> B

): B =
fa.fix().foldRight(z, f)

override fun <A, B> foldLeft(
fa: ListOf<A>,
z: B,
f: (B, A) -> B

): B =
fa.fix().foldLeft(z, f)

}

Exercise 10.14

object TreeFoldable : Foldable<ForTree> {
override fun <A, B> foldMap(

fa: TreeOf<A>,
m: Monoid<B>,
f: (A) -> B

): B =
when (val t = fa.fix()) {

is Leaf ->
f(t.value)

is Branch ->
m.combine(foldMap(t.left, m, f), foldMap(t.right, m, f))

}
}

Exercise 10.15

object OptionFoldable : Foldable<ForOption> {
override fun <A, B> foldMap(

fa: OptionOf<A>,
m: Monoid<B>,
f: (A) -> B

): B =
when (val o = fa.fix()) {

is None -> m.nil
is Some -> f(o.get)

}
}
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Exercise 10.16

fun <A> toList(fa: Kind<F, A>): List<A> =
foldLeft(fa, List.empty(), { la, a -> Cons(a, la) })

Exercise 10.17

fun <A, B> productMonoid(
ma: Monoid<A>,
mb: Monoid<B>

): Monoid<Pair<A, B>> =
object : Monoid<Pair<A, B>> {

override fun combine(a1: Pair<A, B>, a2: Pair<A, B>): Pair<A, B> =
ma.combine(a1.first, a2.first) to

mb.combine(a1.second, a2.second)

override val nil: Pair<A, B>
get() = ma.nil to mb.nil

}

Exercise 10.18

fun <A, B> functionMonoid(b: Monoid<B>): Monoid<(A) -> B> =
object : Monoid<(A) -> B> {

override fun combine(f: (A) -> B, g: (A) -> B): (A) -> B =
{ a: A -> b.combine(f(a), g(a)) }

override val nil: (A) -> B =
{ a -> b.nil }

}

Exercise 10.19

object ListFoldable : Foldable<ForList> {

override fun <A, B> foldRight(
fa: ListOf<A>,
z: B,
f: (A, B) -> B

): B =
fa.fix().foldRight(z, f)

fun <A> bag(la: List<A>): Map<A, Int> =
foldMap(la, mapMergeMonoid<A, Int>(intAdditionMonoid)) { a: A ->

mapOf(a to 1)
}

}
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B.11 Monads and functors

Exercise 11.1

object Monads {

fun parMonad() = object : Monad<ForPar> {

override fun <A> unit(a: A): ParOf<A> = Par.unit(a)

override fun <A, B> flatMap(
fa: ParOf<A>,
f: (A) -> ParOf<B>

): ParOf<B> =
fa.fix().flatMap { f(it).fix() }

}

fun optionMonad() = object : Monad<ForOption> {

override fun <A> unit(a: A): OptionOf<A> = Some(a)

override fun <A, B> flatMap(
fa: OptionOf<A>,
f: (A) -> OptionOf<B>

): OptionOf<B> =
fa.fix().flatMap { f(it).fix() }

}

fun listMonad() = object : Monad<ForList> {

override fun <A> unit(a: A): ListOf<A> = List.of(a)

override fun <A, B> flatMap(
fa: ListOf<A>,
f: (A) -> ListOf<B>

): ListOf<B> =
fa.fix().flatMap { f(it).fix() }

}

fun listKMonad() = object : Monad<ForListK> {

override fun <A> unit(a: A): ListKOf<A> = ListK.just(a)

override fun <A, B> flatMap(
fa: ListKOf<A>,
f: (A) -> ListKOf<B>

): ListKOf<B> =
fa.fix().flatMap(f)

}

fun sequenceKMonad() = object : Monad<ForSequenceK> {

override fun <A> unit(a: A): Kind<ForSequenceK, A> =
SequenceK.just(a)
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override fun <A, B> flatMap(
            fa: Kind<ForSequenceK, A>,
            f: (A) -> Kind<ForSequenceK, B>
        ): Kind<ForSequenceK, B> =
            fa.fix().flatMap(f)

}
}

Exercise 11.2

data class State<S, out A>(val run: (S) -> Pair<A, S>) : StateOf<S, A>

sealed class ForState private constructor() {
companion object

}

typealias StateOf<S, A> = Kind2<ForState, S, A>

fun <S, A> StateOf<S, A>.fix() = this as State<S, A>

typealias StatePartialOf<S> = Kind<ForState, S>

interface StateMonad<S> : Monad<StatePartialOf<S>> {

override fun <A> unit(a: A): StateOf<S, A>

override fun <A, B> flatMap(
fa: StateOf<S, A>,
f: (A) -> StateOf<S, B>

): StateOf<S, B>
}

Exercise 11.3

fun <A> sequence(lfa: List<Kind<F, A>>): Kind<F, List<A>> =
lfa.foldRight(

unit(List.empty<A>()),
{ fa: Kind<F, A>, fla: Kind<F, List<A>> ->

map2(fa, fla) { a: A, la: List<A> -> Cons(a, la) }
}

)

fun <A, B> traverse(
la: List<A>,
f: (A) -> Kind<F, B>

): Kind<F, List<B>> =
la.foldRight(

unit(List.empty<B>()),
{ a: A, acc: Kind<F, List<B>> ->

map2(f(a), acc) { b: B, lb: List<B> -> Cons(b, lb) }
}

)
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Exercise 11.4

fun <A> replicateM(n: Int, ma: Kind<F, A>): Kind<F, List<A>> =
when (n) {

0 -> unit(List.empty())
else ->

map2(ma, replicateM(n - 1, ma)) { m: A, ml: List<A> ->
Cons(m, ml)

}
}

fun <A> _replicateM(n: Int, ma: Kind<F, A>): Kind<F, List<A>> =
sequence(List.fill(n, ma))

Exercise 11.5

For List, the replicateM function will generate a list of lists. It will contain all the lists
of length n with elements selected from the input list.

 For Option, it will generate either Some or None based on whether the input is Some
or None. The Some case will contain a list of length n that repeats the element in the
input Option.

 replicateM repeats the ma monadic value n times and gathers the results in a sin-
gle value where the monad F determines how values are actually combined.

Exercise 11.6 (Hard)

fun <A> filterM(
ms: List<A>,
f: (A) -> Kind<F, Boolean>

): Kind<F, List<A>> =
when (ms) {

is Nil -> unit(Nil)
is Cons ->

flatMap(f(ms.head)) { succeed ->
if (succeed) map(filterM(ms.tail, f)) { tail ->

Cons(ms.head, tail)
} else filterM(ms.tail, f)

}
}

■ For Par, filterM filters a list while applying the functions in parallel.
■ For Option, it filters a list but allows the filtering function to fail and abort the

filter computation.
■ For Gen, it produces a generator for subsets of the input list, where the function

f picks a “weight” for each element in the form of a Gen<Boolean>.

Exercise 11.7

fun <A, B, C> compose(
f: (A) -> Kind<F, B>,
g: (B) -> Kind<F, C>
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): (A) -> Kind<F, C> =
{ a: A -> flatMap(f(a)) { b: B -> g(b) } }

Exercise 11.8 (Hard)

fun <A, B> flatMap(fa: Kind<F, A>, f: (A) -> Kind<F, B>): Kind<F, B> =
compose<Unit, A, B>({ _ -> fa }, f)(Unit)

Exercise 11.9

val f: (A) -> Kind<F, A>
val x: Kind<F, A>
val v: A

The right identity law can be reduced as follows:

compose(f, { a: A -> unit(a) })(v) == f(v)
{ b: A -> flatMap(f(b), { a: A -> unit(a) }) }(v) == f(v)
flatMap(f(v)) { a: A -> unit(a) } == f(v)
flatMap(x) { a: A -> unit(a) } == x

The left identity law can be reduced as follows:

compose({ a: A -> unit(a) }, f)(v) == f(v)
{ b: A -> flatMap({ a: A -> unit(a) }(b), f) }(v) == f(v)
{ b: A -> flatMap(unit(b), f) }(v) == f(v)
flatMap(unit(v), f) == f(v)

The final proofs can therefore be expressed as

flatMap(x) { a -> unit(a) } == x
flatMap(unit(v), f) == f(v)

Exercise 11.10

flatMap(None) { a: A -> Some(a) } == None
None == None

flatMap(Some(v)) { a: A -> Some(a) } == Some(v)
Some(v) == Some(v)

flatMap(Some(None)) { a -> Some(a) } == Some(None)
Some(None) == Some(None)

flatMap(Some(Some(v))) { a -> Some(a) } == Some(Some(v))
Some(Some(v)) == Some(Some(v))

Exercise 11.11

fun <A> join(mma: Kind<F, Kind<F, A>>): Kind<F, A> =
flatMap(mma) { ma -> ma }
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Exercise 11.12

fun <A, B> flatMap(fa: Kind<F, A>, f: (A) -> Kind<F, B>): Kind<F, B> =
join(map(fa, f))

fun <A, B, C> compose(
f: (A) -> Kind<F, B>,
g: (B) -> Kind<F, C>

): (A) -> Kind<F, C> =
{ a -> join(map(f(a), g)) }

Exercise 11.13 (Hard/Optional)

We first look at the associative law expressed in terms of flatMap based on the previ-
ously established premise:

flatMap(flatMap(x, f), g) ==
flatMap(x) { a -> flatMap(f(a), g) }

You can replace f and g with identity functions and x with a higher kind y, to express
this differently:

flatMap(flatMap(y, z)) { b -> b } ==
flatMap(y) { a -> flatMap(z(a)) { b -> b } }

flatMap(flatMap(y, z)) { it } ==
flatMap(y) { a -> flatMap(a) { it } }

You also know from exercise 11.12 that join is a flatMap combined with an identity
function:

flatMap(join(y)) { it } ==
flatMap(y) { join(it) }

join(join(y)) ==
flatMap(y) { join(it) }

You also learned in exercise 11.11 that flatMap can be expressed as a map and join,
thus eliminating the final flatMap:

join(join(y)) ==
join(map(y) { join(it) })

Finally, replace occurrences of join(y) with unit(x), which in both cases amounts to
Kind<F, A>:

join(unit(x)) ==
join(map(x) { unit(it) })
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Exercise 11.14 (Hard/Optional)

For Par, the join combinator means something like “make the outer thread wait for
the inner one to finish.” What this law is saying is that if you have threads starting
threads three levels deep, joining the inner threads and then the outer ones is the
same as joining the outer threads and then the inner ones.

 For Parser, the join combinator is running the outer parser to produce a Parser
and then running the inner Parser on the remaining input. The associative law is say-
ing, roughly, that only the order of nesting matters, since that’s what affects the order
in which the parsers are run.

Exercise 11.15 (Hard/Optional)

The left identity law for Gen: If you take the values generated by unit(a) (which are
always a) and apply f to them, that’s exactly the same as the generator returned by f(a).

 The right identity law for Gen: If you apply unit to the values inside generator a,
that does not in any way differ from a itself.

 The left identity law for List: Wrapping a list in a singleton List and then flatten-
ing the result is the same as doing nothing.

 The right identity law for List: If you take every value in a list, wrap each one in a
singleton List, and then flatten the result, you get the list you started with.

Exercise 11.16

data class Id<out A>(val a: A) : IdOf<A> {
companion object {

fun <A> unit(a: A): Id<A> = Id(a)
}

fun <B> flatMap(f: (A) -> Id<B>): Id<B> = f(this.a)
fun <B> map(f: (A) -> B): Id<B> = unit(f(this.a))

}

class ForId private constructor() {
companion object

}

typealias IdOf<A> = Kind<ForId, A>

fun <A> IdOf<A>.fix() = this as Id<A>

fun idMonad() = object : Monad<ForId> {
override fun <A> unit(a: A): IdOf<A> =

Id.unit(a)

override fun <A, B> flatMap(fa: IdOf<A>, f: (A) -> IdOf<B>): IdOf<B> =
fa.fix().flatMap { a -> f(a).fix() }

override fun <A, B> map(fa: IdOf<A>, f: (A) -> B): IdOf<B> =
fa.fix().map(f)

}
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Exercise 11.17

fun replicateIntState(): StateOf<Int, List<Int>> =
intMonad.replicateM(5, stateA)

fun map2IntState(): StateOf<Int, Int> =
intMonad.map2(stateA, stateB) { a, b -> a * b }

fun sequenceIntState(): StateOf<Int, List<Int>> =
intMonad.sequence(List.of(stateA, stateB))

replicateM for State repeats the same state transition a number of times and returns
a list of the results. It’s not passing the same starting state many times, but chaining
the calls together so that the output state of one is the input state of the next.

 map2 works similarly in that it takes two state transitions and feeds the output state
of one to the input of the other. The outputs are not put in a list but are combined
with a function f.

 sequence takes an entire list of state transitions and does the same kind of thing as
replicateM: it feeds the output state of the first state transition to the input state of
the next, and so on. The results are accumulated in a list.

Exercise 11.18

getState<Int>().flatMap { a -> setState(a) } == unit<Int, Unit>(Unit)

setState<Int>(1).flatMap { _ -> getState<Int>() } == unit<Int, Int>(1)

Exercise 11.19 (Hard)

sealed class ForReader private constructor() {
companion object

}

typealias ReaderOf<R, A> = Kind2<ForReader, R, A>

typealias ReaderPartialOf<R> = Kind<ForReader, R>

fun <R, A> ReaderOf<R, A>.fix() = this as Reader<R, A>

interface ReaderMonad<R> : Monad<ReaderPartialOf<R>>

data class Reader<R, A>(val run: (R) -> A) : ReaderOf<R, A> {

companion object {
fun <R, A> unit(a: A): Reader<R, A> = Reader { a }

}

fun <B> map(f: (A) -> B): Reader<R, B> =
this.flatMap { a: A -> unit<R, B>(f(a)) }

fun <B> flatMap(f: (A) -> Reader<R, B>): Reader<R, B> =
Reader { r: R -> f(run(r)).run(r) }
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fun <A> ask(): Reader<R, R> = Reader { r -> r }
}

fun <R> readerMonad() = object : ReaderMonad<R> {
override fun <A> unit(a: A): ReaderOf<R, A> =

Reader { a }

override fun <A, B> flatMap(
fa: ReaderOf<R, A>,
f: (A) -> ReaderOf<R, B>

): ReaderOf<R, B> =
fa.fix().flatMap { a -> f(a).fix() }

}

The action of flatMap here is to pass the r argument along to both the outer Reader
and the result of f, the inner Reader. This is similar to how State passes along a state,
except that in Reader, the “state” is read-only.

 The meaning of sequence here is that if you have a list of functions, you can turn it
into a function that takes one argument and passes it to all the functions in the list,
returning a list of the results.

 The meaning of join is simply to pass the same value as both arguments to a
binary function.

 The meaning of replicateM is to apply the same function a number of times to
the same argument, returning a list of the results. Note that if this function is pure
(which it should be), this can be exploited by applying the function only once and
replicating the result instead of calling the function many times. This means the
Reader monad can override replicateM to provide a very efficient implementation. 

B.12 Applicative and traversable functors

Exercise 12.1

fun <A> sequence(lfa: List<Kind<F, A>>): Kind<F, List<A>> =
traverse(lfa) { it }

fun <A> replicateM(n: Int, ma: Kind<F, A>): Kind<F, List<A>> =
sequence(List.fill(n, ma))

fun <A, B> product(
ma: Kind<F, A>,
mb: Kind<F, B>

): Kind<F, Pair<A, B>> =
map2(ma, mb) { a, b -> a to b }

Exercise 12.2 (Hard)

interface Applicative<F> : Functor<F> {

fun <A, B> apply(
fab: Kind<F, (A) -> B>,
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fa: Kind<F, A>
): Kind<F, B> =          

map2(fa, fab) { a, f -> f(a) }

fun <A> unit(a: A): Kind<F, A>

override fun <A, B> map(
fa: Kind<F, A>,
f: (A) -> B

): Kind<F, B> =    
apply(unit(f), fa)

fun <A, B, C> map2(
fa: Kind<F, A>,
fb: Kind<F, B>,
f: (A, B) -> C

): Kind<F, C> =     
apply(apply(unit(f.curried()), fa), fb)

}

Exercise 12.3

fun <A, B, C, D> map3(
fa: Kind<F, A>,
fb: Kind<F, B>,
fc: Kind<F, C>,
f: (A, B, C) -> D

): Kind<F, D> =
apply(apply(apply(unit(f.curried()), fa), fb), fc)

fun <A, B, C, D, E> map4(
fa: Kind<F, A>,
fb: Kind<F, B>,
fc: Kind<F, C>,
fd: Kind<F, D>,
f: (A, B, C, D) -> E

): Kind<F, E> =
apply(apply(apply(apply(unit(f.curried()), fa), fb), fc), fd)

Exercise 12.4

fun <A> sequence(lsa: List<Stream<A>>): Stream<List<A>>

This will transpose the list. That is, you start with a list of rows, each row a stream of
potentially infinite values of the same value. In return, you get back a stream of lists,
where each list represents a column of values at a given index position of the original
streams.

 As an example, consider a List of Streams (rows) with each stream filled perpetu-
ally with a single value, as in the following.

 
 

Defines apply in 
terms of map2 
and unit

Defines map in 
terms of apply 
and unit

Defines map2 
in terms of 
apply and unit
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After sequence, you have a Stream of Lists (columns) with each list containing the
values held by all the original streams at the next incremental stream index.

Exercise 12.5

fun <E> eitherMonad() = object : EitherMonad<E> {

override fun <A> unit(a: A): EitherOf<E, A> = Right(a)

override fun <A, B> flatMap(
fa: EitherOf<E, A>,
f: (A) -> EitherOf<E, B>

): EitherOf<E, B> =
when (val ei = fa.fix()) {

is Right -> f(ei.value)
is Left -> ei

}
}

Exercise 12.6

fun <E> validation() =
object : Applicative<ValidationPartialOf<E>> {

override fun <A, B> apply(
fab: ValidationOf<E, (A) -> B>,
fa: ValidationOf<E, A>

): ValidationOf<E, B> =
map2(fab, fa) { f, a -> f(a) }

override fun <A> unit(a: A): ValidationOf<E, A> =
Success(a)

List of Stream col 1 col 2 col 3 col 4

Stream 1: 1 1 1 1

Stream 2: 2 2 2 2

Stream 3: 3 3 3 3

Stream 4: 4 4 4 4

Stream of List idx 1 idx 2 idx 3 idx 4

List 1: 1 2 3 4

List 2: 1 2 3 4

List 3: 1 2 3 4

List 4: 1 2 3 4
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override fun <A, B> map(
fa: ValidationOf<E, A>,
f: (A) -> B

): ValidationOf<E, B> =
apply(unit(f), fa)

override fun <A, B, C> map2(
fa: ValidationOf<E, A>,
fb: ValidationOf<E, B>,
f: (A, B) -> C

): ValidationOf<E, C> {
val va = fa.fix()
val vb = fb.fix()
return when (va) {

is Success -> when (vb) {
is Success -> Success(f(va.a, vb.a))
is Failure -> vb

}
is Failure -> when (vb) {

is Success -> va
is Failure -> Failure(

va.head,
va.tail + vb.head + vb.tail

)
}

}
}

}

Exercise 12.7 (Hard)

Start with both applicative identity laws expressed in terms of map2 as per section 12.5.1:

map2(unit(Unit), fa) { _, a -> a }

map2(fa, unit(Unit)) { a, _ -> a }

Let’s begin with the left identity law:

map2(unit(Unit), fa) { _, a -> a }

Considering that the declaration of map2 in terms of flatMap is

flatMap(fa) { a -> map(fb) { b -> f(a, b) } }

you can start by replacing map2 with its flatMap equivalent:

flatMap(unit(Unit)) { u -> map(fa) { a -> a } } == fa

You can replace map(fa) { a -> a } by applying the functor law:

flatMap(unit(Unit)) { fa } == fa
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You can then express flatMap in terms of compose by lifting each kind into its Kleisli
equivalent of (A) -> Kind<F, A>:

compose({ _: A -> unit(Unit) }, { _ -> fa }) == { _: A -> fa }

But you also know that the left identity law expressed in terms of compose states the
following:

compose(unit, ka) == ka

Therefore, compose({ _ -> unit(Unit) }, { _ -> fa }) simplifies to { _ -> fa }:

{ _: A -> fa } == { _: A -> fa }

Finally, apply any value of A to both sides to get

fa == fa

Now that we have established equality on the left, let’s shift our attention to the right
identity law:

map2(fa, unit(Unit)) { a, _ -> a }

This side follows along the same lines, except that it is symmetrical:

flatMap(fa) { a -> map(unit(Unit)) { u -> a } } == fa

flatMap(fa) { a -> unit(a) } == fa

compose({ _: A -> fa }, { _: A -> unit(Unit) }) == { _: A -> fa }

Use the right identity law expressed in terms of compose:

compose(ka, unit) == ka

And finally, you can conclude equality by once again applying any value of A to the
functions on both sides:

{ _: A -> fa } == { _: A -> fa }

fa == fa

Exercise 12.8

fun <F, G> product(
AF: Applicative<F>,
AG: Applicative<G>

): Applicative<ProductPartialOf<F, G>> =
object : Applicative<ProductPartialOf<F, G>> {

override fun <A, B> apply(
fgab: ProductOf<F, G, (A) -> B>,
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fga: ProductOf<F, G, A>
): ProductOf<F, G, B> {

val (fab, gab) = fgab.fix().value
val (fa, ga) = fga.fix().value
return Product(AF.apply(fab, fa) to AG.apply(gab, ga))

}

override fun <A> unit(a: A): ProductOf<F, G, A> =
Product(AF.unit(a) to AG.unit(a))

}

Exercise 12.9

fun <F, G> compose(
AF: Applicative<F>,
AG: Applicative<G>

): Applicative<CompositePartialOf<F, G>> =
object : Applicative<CompositePartialOf<F, G>> {

override fun <A> unit(a: A): CompositeOf<F, G, A> =
Composite(AF.unit(AG.unit(a)))

override fun <A, B, C> map2(
fa: CompositeOf<F, G, A>,
fb: CompositeOf<F, G, B>,
f: (A, B) -> C

): CompositeOf<F, G, C> {
val value = AF.map2(

fa.fix().value,
fb.fix().value

) { ga: Kind<G, A>, gb: Kind<G, B> ->
AG.map2(ga, gb) { a: A, b: B ->

f(a, b)
}

}
return Composite(value)

}
}

Exercise 12.10

You would need to write flatMap in terms of Monad<F> and Monad<G>, which in itself
doesn’t compile:

fun <A, B> flatMap(
mna: CompositeOf<F, G, A>,
f: (A) -> CompositeOf<F, G, B>

): CompositeOf<F, G, B> =
mf.flatMap(mna.fix().value) { na: Kind<G, A> ->

mg.flatMap(na) { a: A ->
f(a)

}
}
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Here, all you have is f, which returns an F<G<B>>. For it to have the appropriate type
to return from the argument to G.flatMap, you’d need to be able to swap the F and G
types. In other words, you’d need a distributive law. Such an operation is not part
of the Monad interface.

Exercise 12.11

fun <K, V> sequence(mkv: Map<K, Kind<F, V>>): Kind<F, Map<K, V>> =
mkv.entries.foldLeft(unit(emptyMap())) { facc, (k, fv) ->

map2(facc, fv) { acc, v -> acc + (k to v) }
}

Exercise 12.12 (Hard)

fun <A> optionTraversable() = object : Traversable<ForOption> {

override fun <G, A, B> traverse(
fa: OptionOf<A>,
AG: Applicative<G>,
f: (A) -> Kind<G, B>

): Kind<G, OptionOf<B>> =
when (val o = fa.fix()) {

is Some -> AG.map(f(o.get)) { Some(it) }
is None -> AG.unit(None)

}
}

fun <A> listTraversable() = object : Traversable<ForList> {

override fun <G, A, B> traverse(
fa: ListOf<A>,
AG: Applicative<G>,
f: (A) -> Kind<G, B>

): Kind<G, ListOf<B>> =
fa.fix().foldLeft(

AG.unit(List.empty<B>())
) { acc: Kind<G, List<B>>, a: A ->

AG.map2(acc, f(a)) { t, h -> Cons(h, t) }
}

}

fun <A> treeTraversable() = object : Traversable<ForTree> {

override fun <G, A, B> traverse(
fa: TreeOf<A>,
AG: Applicative<G>,
f: (A) -> Kind<G, B>

): Kind<G, TreeOf<B>> {
val fta = fa.fix()
return AG.map2(

f(fta.head),
listTraversable<A>().traverse(fta.tail, AG) { ta: Tree<A> ->

traverse(ta, AG, f)
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}
) { h: B, t: ListOf<TreeOf<B>> ->

Tree(h, t.fix().map { it.fix() })
}

}
}

Exercise 12.13 (Hard)

First, define an Applicative<ForId> as follows:

fun idApplicative(): Applicative<ForId> =
object : Applicative<ForId> {

override fun <A> unit(a: A): IdOf<A> = Id(a)

override fun <A, B, C> map2(
fa: IdOf<A>,
fb: IdOf<B>,
f: (A, B) -> C

): IdOf<C> =
fa.fix().map2(fb, f.tupled())

override fun <A, B> map(
fa: IdOf<A>,
f: (A) -> B

): IdOf<B> =
fa.fix().map(f)

}

Use it to implement the map function:

interface Traversable<F> : Functor<F> {

fun <G, A, B> traverse(
fa: Kind<F, A>,
AG: Applicative<G>,
f: (A) -> Kind<G, B>

): Kind<G, Kind<F, B>> =
sequence(map(fa, f), AG)

fun <G, A> sequence(
fga: Kind<F, Kind<G, A>>,
AG: Applicative<G>

): Kind<G, Kind<F, A>> =
traverse(fga, AG) { it }

override fun <A, B> map(fa: Kind<F, A>, f: (A) -> B): Kind<F, B> =
traverse(fa, idApplicative()) { Id(f(it)) }.fix().extract()

}

Exercise 12.14

This is because foldRight, foldLeft, and foldMap don’t give us any way to construct a
value of the Foldable type. To map over a structure, you need the ability to create a
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new structure (such as Nil and Cons in the case of a List). Traversable can extend
Functor precisely because a traversal preserves the original structure. Here’s an exam-
ple of a Foldable that is not a functor:

data class Iterator<A>(val a: A, val f: (A) -> A, val n: Int) {
fun <B> foldMap(fn: (A) -> B, m: Monoid<B>): B {

tailrec fun iterate(len: Int, nil: B, aa: A): B =
if (len <= 0) nil else iterate(len - 1, fn(aa), f(a))

return iterate(n, m.nil, a)
}

}

This class conceptually represents a sequence of A values generated by repeated func-
tion application starting from a seed value. But can you see why it’s not possible to
define map for this type?

Exercise 12.15

fun <A> reverse(ta: Kind<F, A>): Kind<F, A> =
mapAccum(ta, toList(ta).reversed()) { _, ls ->

ls.first() to ls.drop(1)
}.first

Exercise 12.16

fun <A, B> foldLeft(fa: Kind<F, A>, z: B, f: (B, A) -> B): B =
mapAccum(fa, z) { a, b ->

Unit to f(b, a)
}.second

Exercise 12.17

fun <G, H, A, B> fuse(
ta: Kind<F, A>,
AG: Applicative<G>,
AH: Applicative<H>,
f: (A) -> Kind<G, B>,
g: (A) -> Kind<H, B>

): Pair<Kind<G, Kind<F, B>>, Kind<H, Kind<F, B>>> =
traverse(ta, AG product AH) { a ->

Product(f(a) to g(a))
}.fix().value

Exercise 12.18 (Hard)

fun <F, G> compose(
TF: Traversable<F>,
TG: Traversable<G>

): Traversable<CompositePartialOf<F, G>> =
object : Traversable<CompositePartialOf<F, G>> {

override fun <H, A, B> traverse(
fa: CompositeOf<F, G, A>,
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AH: Applicative<H>,
f: (A) -> Kind<H, B>

): Kind<H, CompositeOf<F, G, B>> =
AH.map(

TF.traverse(fa.fix().value, AH) { ga: Kind<G, A> ->
TG.traverse(ga, AH) { a: A -> f(a) }

}
) { Composite(it) }

}

Exercise 12.19 (Hard/Optional)

fun <G, H, A> composeM(
MG: Monad<G>,
MH: Monad<H>,
AH: Applicative<H>,
TH: Traversable<H>

): Monad<CompositePartialOf<G, H>> =
object : Monad<CompositePartialOf<G, H>> {

override fun <A> unit(a: A): CompositeOf<G, H, A> =
Composite(MG.unit(MH.unit(a)))

override fun <A, B> flatMap(
cgha: CompositeOf<G, H, A>,
f: (A) -> CompositeOf<G, H, B>

): CompositeOf<G, H, B> =
Composite(           

MG.join(   
MG.map(cgha.fix().value) { ha ->      

MG.map(                
TH.sequence(            

MH.map(                   
AH.apply(   

AH.unit(f), 
ha

)
) { cghbc ->

cghbc.fix().value     
}, applicative()     

)
) { MH.join(it) }      

}
)

)
}

B.13 External effects and I/O

Exercise 13.1

fun <F> freeMonad() = object : Monad<FreePartialOf<F>> {
override fun <A, B> map(

fa: FreeOf<F, A>,
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stance to join the
adjacent outer

ind<G, ?> layers,
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Uses the Monad<G> 
to map over the 
CompositeOf<G, H, A> 
value passed into flatMap,
discarding the shim and 
resulting in Kind<H, B> 
injected into the function 
block

Uses the Monad<G> instance to map so
the Monad<H> instance join can be applied
to the inner Kind<H, ?> layers, resulting in

Kind<G, Kind<H, B>>

Uses the
raversable<H>

instance to
sequence the

top two layers,
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ind<G, Kind<H,
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this value, stripping off
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Kind<H, Kind<G,
Kind<H, B>>>

Uses the Applicative<H> 
instance to apply this 
lifted function to Kind<H, 
A>, resulting in Kind<H, 
CompositeOf<G, H, B>>

Lifts function f in a 
Kind<H, ?>, giving 
Kind<H, (A) -> 
CompositeOf<G, H, B>>
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f: (A) -> B
): FreeOf<F, B> =

flatMap(fa) { a -> unit(f(a)) }

override fun <A> unit(a: A): FreeOf<F, A> =
Return(a)

override fun <A, B> flatMap(
fa: FreeOf<F, A>,
f: (A) -> FreeOf<F, B>

): FreeOf<F, B> =
fa.fix().flatMap { a -> f(a).fix() }

}

Exercise 13.2

tailrec fun <A> runTrampoline(ffa: Free<ForFunction0, A>): A =
when (ffa) {

is Return -> ffa.a
is Suspend -> ffa.resume.fix().f()
is FlatMap<*, *, *> -> {

val sout = ffa.sub as Free<ForFunction0, A>
val fout = ffa.f as (A) -> Free<ForFunction0, A>
when (sout) {

is FlatMap<*, *, *> -> {
val sin = sout.sub as Free<ForFunction0, A>
val fin = sout.f as (A) -> Free<ForFunction0, A>
runTrampoline(sin.flatMap { a ->

fin(a).flatMap(fout)
})

}
is Return -> sout.a
is Suspend -> sout.resume.fix().f()

}
}

}

Exercise 13.3 (Hard)

@Suppress("UNCHECKED_CAST")
tailrec fun <F, A> step(free: Free<F, A>): Free<F, A> =

when (free) {
is FlatMap<*, *, *> -> {

val y = free.sub as Free<F, A>
val g = free.f as (A) -> Free<F, A>
when (y) {

is FlatMap<*, *, *> -> {
val x = y.sub as Free<F, A>
val f = y.f as (A) -> Free<F, A>
step(x.flatMap { a -> f(a).flatMap(g) })

}
is Return -> step(g(y.a))
else -> free

}
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}
else -> free

}

@Suppress("UNCHECKED_CAST")
fun <F, A> run(free: Free<F, A>, M: Monad<F>): Kind<F, A> =

when (val stepped = step(free)) {
is Return -> M.unit(stepped.a)
is Suspend -> stepped.resume
is FlatMap<*, *, *> -> {

val x = stepped.sub as Free<F, A>
val f = stepped.f as (A) -> Free<F, A>
when (x) {

is Suspend<F, A> ->
M.flatMap(x.resume) { a: A -> run(f(a), M) }

else -> throw RuntimeException(
"Impossible, step eliminates such cases"

)
}

}
}

Exercise 13.4 (Hard/Optional)

fun <F, G, A> translate(
free: Free<F, A>,
translate: Translate<F, G>

): Free<G, A> {
val t = object : Translate<F, FreePartialOf<G>> {

override fun <A> invoke(
fa: Kind<F, A>

): Kind<FreePartialOf<G>, A> = Suspend(translate(fa))
}
return runFree(free, t, freeMonad()).fix()

}

fun <A> runConsole(a: Free<ForConsole, A>): A {
val t = object : Translate<ForConsole, ForFunction0> {

override fun <A> invoke(ca: ConsoleOf<A>): Function0Of<A> =
Function0(ca.fix().toThunk())

}
return runTrampoline(translate(a, t))

}

B.14 Local effects and mutable state

Exercise 14.1

fun <S, A> STArray<S, A>.fill(xs: Map<Int, A>): ST<S, Unit> =
xs.entries.fold(ST { Unit }) { st, (k, v) ->

st.flatMap { write(k, v) }
}
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Exercise 14.2

fun <S> partition(
arr: STArray<S, Int>,
l: Int,
r: Int,
pivot: Int

): ST<S, Int> =
ST.fx {

val vp = arr.read(pivot).bind()
arr.swap(pivot, r).bind()
val j = STRef<S, Int>(l).bind()
(l until r).fold(noop<S>()) { st, i: Int ->

st.bind()
val vi = arr.read(i).bind()
if (vi < vp) {

val vj = j.read().bind()
arr.swap(i, vj).bind()
j.write(vj + 1)

} else noop()
}.bind()
val x = j.read().bind()
arr.swap(x, r).bind()
x

}

fun <S> qs(arr: STArray<S, Int>, l: Int, r: Int): ST<S, Unit> =
if (l < r)

partition(arr, l, r, l + (r - l) / 2).flatMap { pi ->
qs(arr, l, pi - 1).flatMap {

qs(arr, pi + 1, r)
}

} else noop()

fun <S> noop() = ST<S, Unit> { Unit }

Exercise 14.3

abstract class STMap<S, K, V> @PublishedApi internal constructor() {
companion object {

inline operator fun <S, reified K, reified V> invoke():
ST<S, STMap<S, K, V>> =
ST {

object : STMap<S, K, V>() {
override val map: MutableMap<K, V> = mutableMapOf()

}
}

fun <S, K, V> fromMap(map: Map<K, V>): ST<S, STMap<S, K, V>> =
ST {

object : STMap<S, K, V>() {
override val map: MutableMap<K, V> = map.toMutableMap()

}
}

}
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protected abstract val map: MutableMap<K, V>

val size: ST<S, Int> = ST { map.size }

fun get(k: K): ST<S, V> = object : ST<S, V>() {
override fun run(s: S): Pair<V, S> =

map.getOrElse(k, noElementFor(k)) to s
}

fun getOption(k: K): ST<S, Option<V>> = object : ST<S, Option<V>>() {
override fun run(s: S): Pair<Option<V>, S> =

Option.of(map[k]) to s
}

fun put(k: K, v: V): ST<S, Unit> = object : ST<S, Unit>() {
override fun run(s: S): Pair<Unit, S> {

map[k] = v
return Unit to s

}
}

fun remove(k: K): ST<S, Unit> = object : ST<S, Unit>() {
override fun run(s: S): Pair<Unit, S> {

map.remove(k)
return Unit to s

}
}

fun clear(): ST<S, Unit> = object : ST<S, Unit>() {
override fun run(s: S): Pair<Unit, S> {

map.clear()
return Unit to s

}
}

private fun noElementFor(k: K): () -> Nothing =
{ throw NoSuchElementException("no value for key: $k") }

fun freeze(): ST<S, ImmutableMap<K, V>> =
ST { map.toImmutableMap() }

}

B.15 Stream processing and incremental I/O

Exercise 15.1

fun <I> take(n: Int): Process<I, I> =
Await { i: Option<I> ->

when (i) {
is Some ->

if (n > 0) Emit(i.get, take(n - 1))
else Halt()

is None -> Halt<I, I>()
}

}.repeat()
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fun <I> drop(n: Int): Process<I, I> =
Await { i: Option<I> ->

when (i) {
is Some ->

if (n > 0) drop(n - 1)
else Emit<I, I>(i.get)

is None -> Halt<I, I>()
}

}.repeat()

fun <I> takeWhile(p: (I) -> Boolean): Process<I, I> =
Await { i: Option<I> ->

when (i) {
is Some ->

if (p(i.get)) Emit(i.get, takeWhile(p))
else Halt()

is None -> Halt<I, I>()
}

}

fun <I> dropWhile(p: (I) -> Boolean): Process<I, I> =
Await { i: Option<I> ->

when (i) {
is Some ->

if (p(i.get)) dropWhile(p)
else Emit(i.get, dropWhile { false })

is None -> Halt()
}

}.repeat()

Exercise 15.2

fun <I> count(): Process<I, Int> {
fun go(n: Int): Process<I, Int> =

Await { i: Option<I> ->
when (i) {

is Some -> Emit(n + 1, go(n + 1))
is None -> Halt<I, Int>()

}
}

return go(0).repeat()
}

Exercise 15.3

fun mean(): Process<Double, Double> {
fun go(sum: Double, count: Int): Process<Double, Double> =

Await { d: Option<Double> ->
when (d) {

is Some -> Emit(
(d.get + sum) / count,
go(d.get + sum, count + 1)

)
is None -> Halt<Double, Double>()
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}
}

return go(0.0, 1)
}

Exercise 15.4

fun sum(start: Double): Process<Double, Double> =
loop(0.0) { i: Double, acc: Double -> (acc + i) to (acc + i) }

fun <I> count(): Process<I, Int> =
loop(0) { _, n: Int -> (n + 1) to (n + 1) }

Exercise 15.5 (Hard)

infix fun <I, O, O2> Process<I, O>.pipe(
g: Process<O, O2>

): Process<I, O2> =
when (g) {

is Halt -> Halt()
is Emit -> Emit(g.head, this pipe g.tail)
is Await -> when (this) {

is Emit -> this.tail pipe g.recv(Some(this.head))
is Halt -> Halt<I, O>() pipe g.recv(None)
is Await -> Await { i -> this.recv(i) pipe g }

}
}

Exercise 15.6

fun mean(): Process<Double, Double> =
zip(sum(), count()).map { (sm, cnt) -> sm / cnt }

fun <A, B, C> zip(
p1: Process<A, B>,
p2: Process<A, C>

): Process<A, Pair<B, C>> =
when (p1) {

is Halt -> Halt()
is Await -> Await { oa -> zip(p1.recv(oa), feed(oa, p2)) }
is Emit -> when (p2) {

is Emit -> Emit(p1.head to p2.head, zip(p1.tail, p2.tail))
else -> throw RuntimeException("impossible")

}
}

fun <A, B> feed(oa: Option<A>, p1: Process<A, B>): Process<A, B> =
when (p1) {

is Halt -> Halt()
is Await -> p1.recv(oa)
is Emit -> Emit(p1.head, feed(oa, p1.tail))

}
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Exercise 15.7 (Optional)

fun <I, O> Process<I, O>.zipWithIndex(): Process<I, Pair<Int, O>> =
zip(count<I>().map { it - 1 }, this)

Exercise 15.8

fun <I> exists(f: (I) -> Boolean): Process<I, Boolean> =
Await { i: Option<I> ->

when (i) {
is Some ->

Emit<I, Boolean>(
f(i.get),
exists { f(i.get) || f(it) }

)
is None -> Halt<I, Boolean>()

}
}

Exercise 15.9 (Optional)

fun toCelsius(fahrenheit: Double): Double =
(5.0 / 9.0) * (fahrenheit - 32.0)

fun convert(infile: File, outfile: File): File =
outfile.bufferedWriter().use { bw ->

val fn = { of: File, celsius: Double ->
bw.write(celsius.toString())
bw.newLine()
of

}
processFile(

infile,
lift { df -> toCelsius(df.toDouble()) },
outfile,
fn

).run()
}

Exercise 15.10

fun <F, O> Process<F, O>.runLog(MC: MonadCatch<F>): Kind<F, Sequence<O>> {

fun go(cur: Process<F, O>, acc: Sequence<O>): Kind<F, Sequence<O>> =
when (cur) {

is Emit ->
go(cur.tail, acc + cur.head)

is Halt ->
when (val e = cur.err) {

is End -> MC.unit(acc)
else -> throw e

}
is Await<*, *, *> -> {

val re: Kind<F, O> = cur.req as Kind<F, O>



459Stream processing and incremental I/O
val rcv: (Either<Throwable, O>) -> Process<F, O> =
cur.recv as (Either<Throwable, O>) -> Process<F, O>

MC.flatMap(MC.attempt(re)) { ei ->
go(tryP { rcv(ei) }, acc)

}
}

}

return go(this, emptySequence())
}

interface MonadCatch<F> : Monad<F> {
fun <A> attempt(a: Kind<F, A>): Kind<F, Either<Throwable, A>>
fun <A> fail(t: Throwable): Kind<F, A>

}

Exercise 15.11

fun <F, A> eval(fa: Kind<F, A>): Process<F, A> =
await<F, A, A>(fa) { ea: Either<Throwable, Nothing> ->

when (ea) {
is Right<A> -> Emit(ea.value, Halt(End))
is Left -> Halt(ea.value)

}
}

fun <F, A, B> evalDrain(fa: Kind<F, A>): Process<F, B> =
eval(fa).drain()

fun <F, A, B> Process<F, A>.drain(): Process<F, B> =
when (this) {

is Halt -> Halt(this.err)
is Emit -> this.tail.drain()
is Await<*, *, *> ->

awaitAndThen<F, A, B>(
this.req,
{ ei: Either<Throwable, Nothing> -> this.recv(ei) },
{ it.drain() }

)
}

Exercise 15.12

fun <F, O> join(p: Process<F, Process<F, O>>): Process<F, O> =
p.flatMap { it }



appendix C
Higher-kinded types

Higher-kinded types are an advanced language feature that languages like Kotlin
and Java do not support. Although this might change in the future, the Arrow team
has provided an interim workaround. This solution might not be as intuitive as
those found in other languages, but it is still workable. That said, the Arrow team
has gone to great lengths to make this feature as easy to use as possible.

C.1 A compiler workaround
Let’s look at the Foldable interface as an example of a higher-kinded type. We
declare a new instance of this interface that is a ListFoldable, a Foldable of the
List type. Let’s express this exact situation with a snippet of pseudocode:

interface Foldable<F<A>> {
//some abstract methods

}

object ListFoldable : Foldable<List<A>> {
//some method implementations with parameterized A

}

On closer inspection, this is not as simple as we expected. We are dealing with a type
constructor that is a Foldable of F<A>, which in our case is a List<A> but could also
be a Stream<A>, Option<A>, or something else depending on the implementation.
Notice the two levels of generics: F and A or, more concretely, List<A> in our imple-
mentation.

NOTE This nesting of kinds can’t be expressed in Kotlin and will cause a
compilation failure.
460
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Arrow has solved this inability to express F<A> through the use of an interface called
Kind<F, A>, along with counterparts of arity up to 22 levels of nested higher kinds. There
is nothing special about this interface, and we could easily have written it ourselves:

interface Kind<out F, out A>

In addition, we need some boilerplate code to go with the Kind interface. We begin by
introducing a surrogate type. In the case of our Foldable example, we require a surrogate
placeholder named ForList. This can be used to express Foldable<List<A>> as
Foldable<ForList>, thus doing away with the illegal nested generic type A that broke
compilation. The ForList type is a reference to a dummy class that is defined as follows:

class ForList private constructor() {
companion object

}

In specialized implementations such as ListFoldable, we often refer to the higher kind
in the methods we define. In the case of foldRight, we would use ForList while keep-
ing the nested type A generic. In other words, we would refer to Kind<ForList, A>:

fun <A, B> foldRight(fa: Kind<ForList, A>, z: B, f: (A, B) -> B): B

This is ugly, so let’s add some syntactic sugar to smooth it over. This can be achieved
using a handy type alias ListOf:

typealias ListOf<A> = Kind<ForList, A>

We also need to extend our List data type (introduced in chapter 3) from ListOf to
allow downcasting from ListOf to List. This is required because we often need to
refer to the concrete type when we access methods on that type:

sealed class List<out A> : ListOf<A>

NOTE This boilerplate code is required for every data type to be used as a
higher kind. This example assumes List, but what if we were dealing with the
Option type? Instead of ForList and ListOf, we are expected to provide
ForOption and OptionOf.

We now have almost everything in place to express our higher-kinded type as some-
thing that extends Foldable<ForList> for a Foldable of the List type:

object ListFoldable : Foldable<ForList> {

}

Let’s use this to express some of the foldable functionality inherited from the Fold-
able<F> interface. For instance, let’s consider the foldRight method with the follow-
ing declaration:
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interface Foldable<F> {
fun <A, B> foldRight(fa: Kind<F, A>, z: B, f: (A, B) -> B): B

}

It takes a type of Kind<F, A> representing an F<A>, which is the abstract form of what
we will override in our implementation. Our implementation will have a method with
a signature as follows:

fun <A, B> foldRight(fa: ListOf<A>, z: B, f: (A, B) -> B): B

Notice that we are now using ListOf<A> instead of Kind<F, A>, which is a type alias for
Kind<ForList, A>!

 The last piece of the puzzle involves the ability to cast from this higher- kinded type
back down to a concrete implementation. We do this by introducing an extension
method called fix on ListOf to turn it back into a concrete List. This, combined
with how we extended the List data type from ListOf, allows us to cast both ways:

fun <A> ListOf<A>.fix() = this as List<A>

We can now operate on the ListOf<A> instance as List<A> using fix when imple-
menting methods such as foldRight in Foldable. In this particular case, we choose to
call the foldRight method on the concrete List to achieve our purpose:

object ListFoldable : Foldable<ForList> {

override fun <A, B> foldRight(
fa: ListOf<A>,
z: B,
f: (A, B) -> B

): B =
fa.fix().foldRight(z, f)

}

In doing so, we have managed to implement a higher-kinded type of List in the
Kotlin language—thanks to some fairly straightforward boilerplate code! We don’t
even need a third-party library like Arrow if we provide our own Kind interface. We
can easily do the same for any other type of Foldable that works with Option, Stream,
or another type.

 Still, this is a fair amount of boilerplate to work around a language constraint. It
would be very painful if we had to write this code ourselves for every single data type.
Instead, the Arrow team has been kind enough to add a new annotation through Arrow
Meta that generates all this boilerplate on our behalf. Annotating the following ListK
data type with @higherkind makes the annotation processor generate the boilerplate:

@higherkind
sealed class ListK<out A> : ListKOf<A> {

fun <B> foldRight(z: B, f: (A, B) -> B): B = TODO()
}
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class ForListK private constructor() { companion object }
typealias ListKOf<A> = arrow.Kind<ForListK, A>

@Suppress("UNCHECKED_CAST", "NOTHING_TO_INLINE")
inline fun <A> ListKOf<A>.fix(): ListK<A> =

this as ListK<A>

Finally, we can write the following code without anything else required:

object ListKFoldable : Foldable<ForListK> {
override fun <A, B> foldRight(

fa: ListKOf<A>,
z: B,
f: (A, B) -> B

): B = fa.fix().foldRight(z, f)
}

All we need to do is add an annotation to our data type and extend a type alias, and all
the code will be generated for us. This couldn’t be easier. Job done!

C.2 Partially applied type constructors
As seen in the earlier chapters of this book, it is possible to have a partially applied func-
tion. We can do the same for higher-kinded types, resulting in partially applied type con-
structors. A good example is the state monad described in section 11.5.2.

 Consider the State<S, A> class. If we were to define IntState, it would require us
to fix the S to Int, thus resulting in State<Int, A>. Further, if we wanted to define a
Monad of IntState, we would need to write Int-specific method implementations for
this State<Int, A> monad variant. We would also need to do this for every other type
of state monad. This could be a very painful and time-consuming exercise. Instead of
hardcoding these types, we can resort to using the Kind2<F, A, B> type alias, a sibling
of the Kind<F, A> described earlier. This alias is merely a nested variant of the Kind we
already know:

typealias Kind2<F, A, B> = Kind<Kind<F, A>, B>

Having this at our disposal, we can declare a StateOf<S, A> that has two type parame-
ters, S and A. We can use this in overridden method signatures like flatMap and unit
when referring to our higher-kinded type. Here is this new type alias along with its sur-
rogate type:

sealed class ForState private constructor() {
companion object

}

typealias StateOf<S, A> = Kind2<ForState, S, A>
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Next, we need to introduce the partially applied type declaration required for assem-
bling S variants of different types of the state monad:

typealias StatePartialOf<S> = Kind<ForState, S>

Armed with two variants of the type declaration, one partially applied and the other
unapplied, we can declare our state monad for different permutations of S and A
while implementing combinators only once at an abstract level:

interface StateMonad<S> : Monad<StatePartialOf<S>> {      

override fun <A> unit(a: A): StateOf<S, A> =  
State { s -> a to s }

override fun <A, B> flatMap(
fa: StateOf<S, A>,                        
f: (A) -> StateOf<S, B>

): StateOf<S, B> =
fa.fix().flatMap { a -> f(a).fix() }    

}

We now use the partially applied type declaration to determine type S of the given
state monad. For instance, it could be a stringStateMonad or an intStateMonad, with
S being the interchangeable type of the state monad family. Dropping down to the
method level, we resort to using the unapplied type declaration, with S taking on its
partially applied value and A having the flexibility to change depending on method
use and context.

 This can now be used to partially apply a type when defining an instance of State-
Monad. In the example, we apply Int or String to give us state monads of the type fam-
ily we require:

val intStateMonad: StateMonad<Int> = object : StateMonad<Int> {}

val stringStateMonad: StateMonad<String> = object : StateMonad<String> {}

This approach simply expands on the one taken when dealing with a single type
parameter, now using the Kind2 type to express partial application. 

C.3 Boilerplate code generation with Arrow Meta
Up to this point, all the code can be written by hand without needing a third-party
library like Arrow. Even though some might think this is a good idea, writing such
code is mundane and time consuming. Why spend time writing such code if Arrow
can generate it for you?

Uses the StatePartialOf<S> partially applied
type declaration at the interface level

Uses the StateOf<S, A> 
unapplied type declaration 
at the method level

Implements flatMap at 
the abstract level without 
the knowledge of S
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 This section explains how you can use Arrow to generate all the boilerplate while
having a very low impact on your code base. All that is required are two simple
changes to your data type:

■ Add a @higherkind annotation to your class declaration.
■ Extend your data type class from a generated alias.

As an example, consider the ListK data type again:

@higherkind
sealed class ListK<out A> : ListKOf<A> {

fun <B> foldRight(z: B, f: (A, B) -> B): B = TODO()
}

In addition, some changes need to be made to your build. We will only cover Gradle
builds here, as they are by far the most common, although it is also possible to achieve
this with Maven.

 We will use Arrow Meta to perform the code generation. It comes in the form of a
compiler plugin that is driven from kapt, the Kotlin Annotation Processing Tool. We
begin by enabling kapt in our build.gradle file under the plugins block, ensuring
that the version matches that of the kotlin JVM plugin:

plugins {
kotlin("jvm") version "1.3.21"
...
kotlin("kapt") version "1.3.21"

}

Next, add a kapt build dependency for Arrow Meta to the dependencies block with
the appropriate Arrow version declared:

dependencies {
...
kapt("io.arrow-kt:arrow-meta:$arrowVersion")

}

The last change in this file requires a kapt configuration block where various configu-
rations can be set for kapt:

kapt {
useBuildCache = false

}

The final bit of configuration is to help IntelliJ IDEA find the generated sources and
goes in the gradle folder at the base of the project. Create a new file called generated-
kotlin-sources.gradle with the following content:

apply plugin: 'idea'

idea {
module {

sourceDirs += files(
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'build/generated/source/kapt/main',
'build/generated/source/kapt/debug',
'build/generated/source/kapt/release',
'build/generated/source/kaptKotlin/main',
'build/generated/source/kaptKotlin/debug',
'build/generated/source/kaptKotlin/release',
'build/tmp/kapt/main/kotlinGenerated')

generatedSourceDirs += files(
'build/generated/source/kapt/main',
'build/generated/source/kapt/debug',
'build/generated/source/kapt/release',
'build/generated/source/kaptKotlin/main',
'build/generated/source/kaptKotlin/debug',
'build/generated/source/kaptKotlin/release',
'build/tmp/kapt/main/kotlinGenerated')

}
}

Having this in place gives you some new tasks that you can call directly or use indi-
rectly from within your build:

■ kaptGenerateStubsKotlin 
■ kaptGenerateStubsTestKotlin 
■ kaptKotlin 
■ kaptTestKotlin 

These tasks may be called directly but are already wired up to be executed at sensible
stages of the build process.

 You can generate the stubs by issuing the following command:

$ ./gradlew compileKotlin

This generates code as .kt files in the build folder in the following location:

build/generated
└── source

├── kapt
│ ├── main
│ └── test
└── kaptKotlin

├── main
│ └── higherkind
│ ├── higherkind.chapter12.Composite.kt
│ ├── higherkind.chapter12.Fusion.kt
│ ├── higherkind.chapter12.List.kt
│ ├── higherkind.chapter12.Product.kt
│ └── higherkind.chapter12.Tree.kt
└── test

The generated code is based on all classes that bear the @higherkind annotation. 



appendix D
Type classes

D.1 Polymorphism
Object-oriented languages use the type system to represent inheritance hierarchies
by subtyping classes or interfaces. The use of subtypes is a technique that brings a
level of flexibility when we design our programs. Subtyping also goes by the name
polymorphism. The word polymorphic implies that something may take on multiple
forms. In the context of computer science, it can be defined as follows:

Polymorphism provides a single interface to entities of different types or a single symbol
to represent multiple different types.

Functional programming also has a concept called polymorphism, but we are less
concerned with classes to bring flexibility to our design. Instead of classic polymor-
phism, we use ad hoc polymorphism, and we achieve this by using type classes. To
understand what a type class is, let’s first come to grips with ad hoc polymorphism.
In ad hoc polymorphism, polymorphic functions can be applied to arguments of
different types; “ad hoc” here means polymorphism that is not a fundamental fea-
ture of the type system.

 From this definition, we can say that ad hoc polymorphism is a polymorphism
that does not rely on the class hierarchy to bring about flexible design but instead
uses polymorphic functions applied to arguments of different types.

 Now that we understand what ad hoc polymorphism means, let’s take a closer
look at what a type class is and how we can use it to achieve a design that is both
functional and flexible. 
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D.2 Using type classes to express ad hoc polymorphism
A type class is a type system construct that can be applied to implement ad hoc poly-
morphism. More specifically, ad hoc polymorphism is achieved by adding constraints
to type variables in parametrically polymorphic types. (The term parametric polymorphic
type may be interpreted as the generic types found in languages such as Java.) Such a
constraint typically involves a type class T and a type variable a, which means a can
only be instantiated to a type whose members support the overloaded operations asso-
ciated with T.

 That sounds a bit theoretical, so let’s use some concrete terms to make it clear.
Consider that the monad is a type class that represents T. It specifies a set of behaviors
that make it a monad. Most notably, it can create a new instance of Kind<F, A> using
its unit function and lets us flatMap over instances of Kind<F, A> when provided with
a transforming function that itself emits a Kind<F, B>:

interface Monad<F> : Functor<F> {

fun <A> unit(a: A): Kind<F, A>

fun <A, B> flatMap(fa: Kind<F, A>, f: (A) -> Kind<F, B>): Kind<F, B>

override fun <A, B> map(fa: Kind<F, A>, f: (A) -> B): Kind<F, B> =
flatMap(fa) { a -> unit(f(a)) }

}

This is no different from what we discovered in chapter 11. It describes the behavior
but doesn’t give us an actual implementation that will work with a specific F: for exam-
ple, an Option<A>. What we need is a type variable a—in this case, a monad instance for
Option called optionMonad:

typealias OptionMonad = Monad<ForOption>

val optionMonad = object : OptionMonad {

override fun <A> unit(a: A): OptionOf<A> =
if (a == null) None else Some(a)

override fun <A, B> flatMap(
fa: OptionOf<A>,
f: (A) -> OptionOf<B>

): OptionOf<B> =
when (val ffa = fa.fix()) {

is None -> None
is Some -> f(ffa.get)

}
}

This monad instance provides Monad overrides for each of the monad behaviors spe-
cific to the target class of F that is Option in our example.
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 Next, we need to ensure that the type variable is instantiated and in scope to be ref-
erenced in our program. We can bring it in scope in any usual way, including injecting
it into our component:

class CryptoCurrencyWallet(
private val bitcoinAmount: Option<BigDecimal>,
private val ethereumAmount: Option<BigDecimal>,
private val OM: OptionMonad

) {
val totalBoth: Option<BigDecimal> =

OM.flatMap(bitcoinAmount) { ba: BigDecimal ->
OM.map(ethereumAmount) { ea: BigDecimal ->

ba.plus(ea)
}

}.fix()
}

The example program models a contrived cryptocurrency wallet that has two optional
fields of popular cryptocurrency amounts. The fabricated totalBoth function is used
to calculate the sum of the currencies if they are both present and return them as
Some<BigDecimal> or None if either one is empty.

 But what is the advantage of following this approach of providing a monad
instance? It all boils down to the principle of separation of concerns. An Option
should not need to know about the intricacies of how monads work. In other
words, Option should not need to declare its own unit and flatMap methods. We
should delegate this responsibility to a collaborator that knows about the monadic
behavior specific to Option. We provide this by way of the OptionMonad instance
that we injected as OM. 

D.3 Type classes foster a separation of concerns
The final result is an Option data type that models optional values and a type class
OptionMonad that models the monadic behavior of the Option. These two are com-
pletely decoupled and share no common inheritance hierarchy.

 Our Option can now be reduced to something as simple as this:

@higherkind
sealed class Option<out A> : OptionOf<A> {

companion object      
}

data class Some<out A>(val get: A) : Option<A>()
object None : Option<Nothing>()

We can make one final improvement on our design to do away with the anonymous
instantiation of the Monad interface. We can make it cleaner and more testable by pro-
viding a class or interface that embodies the monadic behavior for a given data type.
For example, consider the following OptionMonad interface:

The companion object is 
declared to allow us to 
add extension methods.
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interface OptionMonad : Monad<ForOption> {

override fun <A> unit(a: A): OptionOf<A> =
if (a == null) None else Some(a)

override fun <A, B> flatMap(
fa: OptionOf<A>,
f: (A) -> OptionOf<B>

): OptionOf<B> =
when (val ffa = fa.fix()) {

is None -> None
is Some -> f(ffa.get)

}
}

We now rely on whatever means we choose (our injection mechanism of choice or an
extension method) to instantiate the class and provide it as a dependency to our compo-
nent. Here’s one approach of providing the type class by way of an extension method:

fun <A> Option.Companion.monad(): OptionMonad = object : OptionMonad {}

Let’s rewrite our cryptocurrency wallet example using our new type class:

class ImprovedCryptoCurrencyWallet(
private val bitcoinAmount: Option<BigDecimal>,
private val ethereumAmount: Option<BigDecimal>

) {

private val OM = Option.monad<BigDecimal>()

val totalBoth: Option<BigDecimal> =
OM.flatMap(bitcoinAmount) { ba: BigDecimal ->

OM.map(ethereumAmount) { bp: BigDecimal ->
ba.plus(bp)

}
}.fix()

}
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