

Kotlin In-Depth

A Guide to a Multipurpose Programming
Language for Server-Side, Front-End,

Android, and
Multiplatform Mobile

Aleksei Sedunov

www.bpbonline.com

http://www.bpbonline.com/

FIRST EDITION 2022
Copyright © BPB Publications, India
ISBN: 978-93-91030-63-6

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any
form or by any means or stored in a database or retrieval system, without the prior written permission
of the publisher with the exception to the program listings which may be entered, stored and executed
in a computer system, but they can not be reproduced by the means of publication, photocopy,
recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
publisher cannot be held responsible for any loss or damage arising from any information in this
book.
All trademarks referred to in the book are acknowledged as properties of their respective owners but
BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com

http://www.bpbonline.com/

Dedicated to
Tatiana,

my guiding light
and the incessant source of inspiration

About the Author
Aleksei Sedunov has been working as a Java developer since 2008. After
joining JetBrains in 2012, he’s been actively participating in the Kotlin
language development focusing on IDE tooling for the IntelliJ platform.
Currently, he’s working in a DataGrip team, a JetBrains Database IDE,
carrying on with using Kotlin as the main development tool.

About the Reviewers
Sanjay Kakadiya is currently working as a Sr Software developer of the e-
commerce Android app. He completed his Bachelor of Engineering in IT
from Gujarat University in 2012 and has more than 9 years of experience in
mobile application development using Java, React Native, and Kotlin. He
has been a co-organizer of the Ahmedabad Web and Mobile Developers
Meetup group since 2015. He is a Kotlin and Java addict. He is obsessed
with the elegant and functional style code. He mainly focuses on the mobile
apps architecture.
Sanjay has created and improvised dozens of successful applications for
clients in areas of social networking, education, video streaming,
entertainment, self-help, fitness, lifestyle, and commerce.

Touhidul Islam is currently working as a mobile engineer at Toptal. He has
a good grasp at data structure and algorithms and an eye for better
architecture. Although, he has professional software experience in both
cross-platform mobile and back-end technologies, he shines on native
Android development. He has hands-on experience working at startups
from his early career and one of the software developed by him earns about
40% of the revenue for that company. He later joined a big tech company
developing pixel-perfect customer-facing mobile software and led the
development there. He is currently working with Australia’s one of the
leading service provider companies to revolutionize how people interact
with service providers.

Acknowledgements
Above all others, I would like to give my gratitude to the entire Kotlin team
at JetBrains which has created such a beautiful language and continues to
relentlessly work on its improvement – especially Andrey Breslav who’s
been leading the language design from the very first day.
I’m really grateful to everyone at BPB Publications for giving me this
splendid opportunity for writing this book and lending a tremendous
support in improving the text before it gets to the readers. Many thanks to
Sanjay Kakadiya and Touhidul Islam for their great help as technical
reviewers for the second edition.
Last but not least, I’d like to thank my beloved family for their support
throughout the work on the book.

Preface
Since its first release in 2016 (and even long before that), Kotlin has been
gaining popularity as a powerful and flexible tool in a multitude of
development tasks being equally well-equipped for dealing with mobile,
desktop, and server-side applications and finally, getting its official
acknowledgment from Google in 2017 and 2018 as a primary language for
Android development. This popularity is well-justified since language
pragmatism, the tendency to choose the best practice among known
solutions was one of the guiding principles of its design.
With the book you’re holding in your hands, I’d like to invite you to the
beautiful world of Kotlin programming where you can see its benefits for
yourself. After completing this book, you’ll have all the necessary
knowledge to write in Kotlin on your own.
The first volume deals with the fundamentals of Kotlin language such as its
basic syntax, procedural, object-oriented, and functional programming
aspects as well as the Kotlin Standard Library. The book is divided into 9
chapters as follows:
Chapter 1 explains key ideas behind the language design, gives an
overview of the Kotlin ecosystem and tooling, and guides the reader
through the first steps required to set up a Kotlin project in various
environments.
Chapter 2 introduces the reader to the Kotlin syntax, explains how to use
variables, and describes simple data types such as integers or Boolean
values as well as their built-in operations. It also addresses the basics of
more complex data structures such as strings and arrays.
Chapter 3 discusses the syntax of Kotlin functions and explains the uses of
various control structures supported by Kotlin such as binary/multiple
choice, iteration, and error handling. Additionally, it addresses the matter of
using packages for code structuring.
Chapter 4 introduces the reader to the basic aspects of object-oriented
programming in Kotlin. It explains how to create and initialize a class
instance and how to control member access, describe the use of object

declarations and non-trivial kinds of properties, and brings up the concept
of type nullability.
Chapter 5 explains the functional aspects of Kotlin and introduces the
reader to the idea of higher-order and anonymous functions, addresses the
uses of inline functions, and explains how one can add features to existing
types using extension functions and properties.
Chapter 6 explains the use of special kinds of classes tailored at specific
programming tasks: data classes for simple data holders, enumerations for
representing a fixed set of instances, and inline classes for creating
lightweight wrappers.
Chapter 7 explores object-oriented features introduced in Chapters 4 and 6
focusing on the idea of a class hierarchy. It explains how to define
subclasses, how to use abstract classes and interfaces, and how to restrict
hierarchies using sealed classes.
Chapter 8 describes a major part of the Kotlin standard library which is
concerned with various collection types and their operations as well as
utilities simplifying file access and stream-based I/O.
Chapter 9 introduces the idea of generic declarations and explains how to
define and use generic classes, functions, and properties in Kotlin. It also
explains the notion of variance and how it can be used to improve flexibility
of your generic code.
The second volume introduces you to the more advanced Kotlin features
such as reflection, domain-specific languages and coroutines, discusses
Java/Kotlin interoperability issues, and explains how Kotlin can be used in
various development areas, including testing, Android applications, and
Web. It’s divided into the following 8 chapters:
Chapter 10 addresses the use of annotations which allow you to
accompany the Kotlin code with various metadata and explains the basics
of Reflection API which provides access to runtime representation of Kotlin
declarations.
Chapter 11 describes some advanced features which help developer in
composing flexible APIs in the form of the domain-specific languages:
operator overloading, delegated properties, and builder-style DSLs based on
the higher-order functions.

Chapter 12 discusses common issues of combining Java and Kotlin code
within the same codebase and explains the specifics of using Java
declarations in Kotlin code and vice versa.
Chapter 13 introduces the reader to the Kotlin coroutines library which
introduces a set of building blocks for programming asynchronous
computations. Additionally, it describes some utilities simplifying the use of
Java concurrency API in Kotlin code.
Chapter 14 discusses the KotlinTest, a popular testing framework aimed
specifically at the Kotlin developers. It describes various specification
styles, explains the use of assertion API, and addresses more advanced
issues like using fixtures and test configurations.
Chapter 15 serves as an introduction to using Kotlin for development on
the Android platform. It guides the reader through setting up an Android
Studio project and explains basic aspects of Android development using an
example of a simple calculator application.
Chapter 16 explains the basic features of the Ktor framework aimed at
development of connected applications which make heavy use of Kotlin
features and asynchronous computations.
Chapter 17 describes how to build a microservice application using Spring
Boot and Ktor frameworks.

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/04dc29
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Kotlin-In-Depth. In case there's an
update to the code, it will be updated on the existing GitHub repository.
We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at www.bpbonline.com and as a print book

https://rebrand.ly/04dc29
https://github.com/bpbpublications/Kotlin-In-Depth
https://github.com/bpbpublications
mailto:errata@bpbonline.com
http://www.bpbonline.com/

customer, you are entitled to a discount on the eBook copy. Get in
touch with us at: business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

mailto:business@bpbonline.com
http://www.bpbonline.com/

Piracy
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book.
Thank you!
For more information about BPB, please visit www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents
1. Kotlin - Powerful and Pragmatic

Structure
Objectives
What is Kotlin?

Safe
Multiparadigm
Concise and expressive
Interoperable
Multiplatform
Kotlin ecosystem
Coroutines
Testing frameworks
Android development
Web development
Desktop applications
Getting started with Kotlin
Setting up an IntelliJ project
Using REPL
Interactive editors
Setting up an Eclipse project

Conclusion
Points to remember
Questions

2. Language Fundamentals
Structure
Objectives
Basic syntax

Comments
Defining a variable
Identifiers
Mutable variables

Expressions and operators
Primitive types

Integer types
Floating-point types
Arithmetic operations
Bitwise operations
Char type
Numeric conversions
Boolean type and logical operations
Comparison and equality

Strings
String templates
Basic string operations

Arrays
Constructing an array
Using arrays

Conclusion
Points to remember
Multiple choice questions

Answers
Questions

3. Defining Functions
Structure
Objective
Functions

Function anatomy
Trailing commas
Positional vs named arguments
Overloading and default values
Varargs
Function scope and visibility

Packages and imports
Packages and directory structure
Using import directives

Conditionals
Making decisions with if statements

Ranges, progressions, and in operation
when statements and multiple choice

Loops
while/do-while loop
Iterables and for loop
Changing loop control-flow: break and continue
Nested loops and labels
Tail-recursive functions

Exception handling
Throwing an exception
Handling errors with try statements

Conclusion
Points to remember
Multiple choice questions

Answers
Questions
Key terms

4. Working with Classes and Objects
Structure
Objectives
Defining a class

A class anatomy
Constructors
Member visibility
Nested classes
Local classes

Nullability
Nullable types
Nullability and smart casts
Not-null assertion operator
Safe call operator
Elvis operator

Properties: Beyond simple variables
Top-level properties
Late initialization
Using custom accessors

Lazy properties and delegates
Objects and companions

Object declarations
Companion objects
Object expressions

Conclusion
Points to remember
Multiple choice questions

Answers
Questions
Key terms

5. Leveraging Advanced Functions and Functional Programming
Structure
Objective
Functional programming in Kotlin

Higher-order functions
Functional types
Lambdas and anonymous functions
Callable references
Inline functions and properties
Non-local control flow

Extensions
Extension functions

Extension properties
Companion extensions
Lambdas and functional types with the receiver
Callable references with receiver
Scope functions
run / with
run without context
let
apply / also
Extensions as class members

Conclusion
Points to remember
Questions

Key terms

6. Using Special-Case Classes
Structure
Objective
Enum classes

Exhaustive when expressions
Declaring enums with custom members
Using common members of enum classes

Data classes
Data classes and their operations
Destructuring declarations

Inline classes
Defining an inline class
Unsigned integers

Conclusion
Points to remember
Questions
Key terms

7. Exploring Collections and I/O
Structure
Objective
Collections

Collection types
Iterables
Collections, lists, and sets
Sequences
Maps
Comparables and comparators
Creating a collection
Basic operations
Accessing collection elements
Collective conditions
Aggregation
Filtering
Transformation

Extracting subcollections
Ordering

Files and I/O streams
Stream utilities
Creating streams
URL utilities
Accessing file content
File system utilities

Conclusion
Points to remember
Multiple choice questions

Answers
Questions

8. Understanding Class Hierarchies
Structure
Objective
Inheritance

Declaring a subclass
Subclass initialization
Type Checking and Casts
Common methods

Abstract classes and interfaces
Abstract classes and members
Interfaces
Sealed classes
Delegation

Conclusion
Points to remember
Multiple choice questions

Answers
Questions

9. Generics
Structure
Objective
Type parameters

Generic declarations
Bounds and constraints
Type erasure and reification

Variance
Variance: Distinguishing producers and consumers
Variance at the declaration site
Use-site variance with projections
Star projections

Type aliases
Conclusion
Points to remember
Questions

10. Annotations and Reflection
Structure
Objectives
Annotations

Defining and using annotation classes
Built-in annotations

Reflection
Reflection API overview
Classifiers and types
Callables

Conclusion
Questions

11. Domain-Specific Languages
Structure
Objective

Operator overloading
Unary operations
Increments and decrements
Binary operations
Infix operations
Assignments
Invocations and indexing
Destructuring

Iteration
Delegated properties

Standard delegates
Creating custom delegates
Delegate representation

Higher-order functions and DSLs
Fluent DSL with infix functions
Using type-safe builders
@DslMarker

Conclusion
Questions

12. Java Interoperability
Structure
Objective
Using Java code from Kotlin

Java methods and fields
Unit vs void
Operator conventions
Synthetic properties
Platform types
Nullability annotations
Java/Kotlin type mapping
Single abstract method interfaces
Working with Java records
Using the Java-to-Kotlin converter

Using the Kotlin code from Java
Accessing properties
File facades and top-level declarations
Objects and static members
Changing the exposed declaration name
Generating overloads
Declaring exceptions
Inline functions
Type aliases
Exposing Kotlin classes as Java records

Conclusion

Questions

13. Concurrency
Structure
Objective
Coroutines

Coroutines and suspending functions
Coroutine builders
Coroutine scopes and structured concurrency
Coroutine context

Coroutine control-flow
Job lifecycle
Cancellation
Timeouts
Coroutine dispatching
Exception handling

Concurrent communication
Channels
Producers
Tickers
Flows
Actors

Using Java concurrency
Starting a thread
Synchronization and locks

Coroutine debugger
Conclusion
Questions

14. Testing with Kotlin
Structure
Objective
KotlinTest specifications

Getting started with KotlinTest
Specification styles

Assertions
Matchers

Inspectors
Handling exceptions
Testing non-deterministic code
Property-based testing

Fixtures and configurations
Providing a fixture
Test configuration

Conclusion
Questions

15. Android Applications
Structure
Objective
Getting started with Android

Setting up an Android Studio project
Gradle build scripts
Activity
Using an emulator

Activities
Designing an application UI
Implementing an activity class
View binding
Preserving the activity state

Conclusion
Questions

16. Web Development with Ktor
Structure
Objective
Introducing Ktor
Server features

Routing DSL
Handling calls
HTML DSL
Sessions support

Client features
Requests and responses

Cookies
Conclusion
Questions

17. Building Microservices
Structure
Objectives
The microservice architecture
Introducing Spring Boot

Setting up a project
Deciding on the Services API
Implementing a random generator service
Implementing a password generator service

Microservices with Ktor
Using the JSON serialization feature
Implementing a password generator service

Conclusion
Questions

Index

CHAPTER 1
Kotlin - Powerful and Pragmatic

This chapter is meant to explain the major features which make Kotlin an
excellent and efficient language for modern application development and
the reasons why you might want to learn it. We’ll learn the basic ideas
which stand behind the Kotlin design and get an overview of Kotlin
libraries and frameworks for different application areas such as Android
applications, concurrency, testing and web development. In conclusion,
we’ll guide you through the steps required to set up a Kotlin project in two
popular development environments, IntelliJ IDEA and Eclipse, and
introduce you to the interactive Kotlin shell.

Structure
We will cover the following topics:

What is Kotlin?
Major components of the Kotlin ecosystem
Setting up a Kotlin project in IDE and online editors

Objectives
At the end of the chapter, you’ll get an understanding of the basic Kotlin
principles and the Kotlin ecosystem as well as what simple a Kotlin
program looks like and you will be able to set up a project in common
IDEs.

What is Kotlin?
Kotlin is a multiplatform and multiparadigm programming language
emphasizing safety, conciseness, and interoperability. Conceived in late
2010, it had reached its first release in February 2016 and has been steadily
becoming an increasingly popular and promising tool in many development

areas such as Android development, desktop applications, or server-side
solutions. The company which stands behind the language and has been
investing in its development ever since is JetBrains which is famous for its
excellent software engineering tools such as IntelliJ IDEA. By August
2020, Kotlin had reached version 1.4, acquiring massive community, well-
developed ecosystems, and extensive tooling. Having overgrown an original
intent of creating a better Java alternative, it now embraces multiple
platforms, including Java Virtual Machine, Android, JavaScript, and native
applications. In 2017, Google announced Kotlin an officially supported
language of the Android platform which gave a tremendous boost to the
language popularity. Nowadays, a lot of companies – among them Google,
Amazon, Netflix, Pinterest, Uber, and many others – are using Koltin for
production development, and the number of open positions for Kotlin
developers is growing steadfast.
It all became possible thanks to the efforts devoted to the careful language
design and putting into action the primary traits which make Kotlin such an
excellent development tool. The language philosophy has mainly arisen
based on the problems it was intended to solve back in 2010. By that time,
JetBrains had already accumulated an extensive Java code base for products
centered around its IntelliJ platform which was arguably the most known
IntelliJ IDEA, had also included a set of minor IDEs dedicated to different
technologies such as WebStorm, PhpStorm, RubyMine, etc. The
maintenance and growth of such codebase, however, was being hampered
by Java itself due to its slow evolution and lack of many useful features
which at that moment had already been available in such languages as Scala
and C#. Having researched the JVM languages available at that moment,
the company concluded that no existing language proved satisfiable for
their needs and decided to invest resources into implementation of their
own language. The new language was eventually named Kotlin as a tribute
to an island near Saint-Peteresburg, Russia where most of its development
team was located.
So what are those traits which have been shaping the language from the
very beginning? In fact, we’ve already given the answer in its definition.
The reason behind Kotlin is a need for a multiparadigm language
emphasizing safety, conciseness, and interoperability. Let’s look at these
traits in more detail.

Safe
For a programming language, being safe means being able to prevent a
programmer’s errors. In practice, designing the language with respect to
safety is a matter of tradeoff since error prevention typically comes at a
cost. You give the compiler more detailed information about your program
or allow it to spend more time reasoning about it correctness (probably
both). One of Kotlin design goals was to find a sort of golden mean;
contriving a language with more stronger safety guarantees than Java, but
not so strong to frustrate a developer’s productivity. And although the
Kotlin solution is by no means absolute, it has repeatedly proved to be an
efficient choice in practice.
We’ll discuss various aspects of Kotlin safety as we go through the book.
Here, we’d like to point out some major features:

Type inference which allows the developer to omit explicit declaration
types in most cases (Java 10 introduced this for local variables)
Nullable types regulate the usage of null and help to prevent infamous
NullPointerException
Smart casts which simplify type casting reducing the chance of casting
errors at runtime

Multiparadigm
Initially, the meaning behind Kotlin multiparadigmality implied the support
of functional programming in addition to the conventional object-oriented
paradigm typical for many mainstream programming languages such as
Java. The functional programming is based around the idea of using
functions as values: passing them as parameters or returning from other
functions, declaring locally, storing in variables, etc. Another aspect of the
functional paradigm is an idea of immutability which means that objects
you manipulate can’t change their state once created and functions can’t
produce side effects.
The major benefit of this approach is improved programming flexibility.
Being able to create a new kind of abstraction, you can write more
expressive and concise code, thus increasing your productivity. Note that
although functional programming principles can be employed in many

languages (Java’s anonymous classes, for example, were an obvious choice
before introduction of lambdas), not every language has necessary syntactic
facilities encouraging the writing of such code. Kotlin, on the contrary,
included necessary features right from the start. They include, in particular,
functional types smoothly integrating functions into the language type
systems and lambda expressions meant to create functionally-typed values
from code blocks. The standard library as well as external frameworks
provides an extensive API facilitating the functional style. Nowadays, many
of that also apply to Java which had introduced functional programming
support starting with Java 8. But its expressiveness still somewhat falls
behind Kotlin’s.
We’ll cover the basics of functional programming in Chapter 5, Leveraging
Advanced Functions and Functional Programming, but its applications and
examples will accompany us throughout the book.
Over its growth, the language also began to exhibit two more programming
paradigms. Thanks to the ability to design APIs in the form of domain-
specific languages (DSLs) Kotlin can be used in a declarative style. In fact,
many Kotlin frameworks provide their own DSLs for specific tasks with no
need to sacrifice type-safety or expressive power of the general-purpose
programming language. For example, the exposed framework includes a
DSL for defining database schema and manipulating its data, whereas
kotlinx.html gives a concise and type-safe alternative to HTML template
languages. In Chapter 11, Domain-Specific Languages, we’ll discuss these
examples in more detail as well as learn how to create our own DSLs.
One more paradigm, namely, concurrent programming, entered the
language with the introduction of coroutines. Although, concurrency
support by itself is present in many languages, including Java, the Kotlin
features a rich set of programming patterns which enable a new
programming approach. We’ll cover the basics of this approach in Chapter
13, Concurrency.
All in all, the presence of multiple paradigms greatly increases the
language’s expressive power, making it a more flexible and multi-purposed
tool.

Concise and expressive

Developer productivity is largely tied with the ability to quickly read and
understand the code, be it some other developer’s work or maybe your own
after a significant time has passed. In order to understand what a specific
piece of code does, you need to also understand how it’s related to other
parts of your program. That’s why reading the existing code generally takes
more time than writing a new one and that’s why language conciseness and
the ability to clearly express a programmer’s intents without much
information noise is a crucial aspect of language efficiency as a
development tool.
The designers of Kotlin did their best to make language as concise as
possible, eliminating a lot of notorious Java boilerplate such as field getters
and setters, anonymous classes, explicit delegation, and so on. On the other
hand, they made sure the conciseness is not overtly abused – unlike Scala;
for example, Kotlin doesn’t allow the programmer to define custom
operators, but only redefine existing ones since the former tends to
obfuscate the operation meaning. In the course of the book, we’ll see
numerous implications of this decision and how useful it turned to be.
Another aspect of Kotlin’s conciseness is tightly related to the DSLs (see
Chapter 11, Domain-Specific Languages which greatly simplify the
description of specific programming domains with a minimum of syntactic
noise.

Interoperable
Java interoperability was a major point in Kotlin design since the Kotlin
code wasn’t mean to exist in isolation, but to cooperate as smoothly as
possible with the existing codebase. That’s why Kotlin designers made sure
that not only the existing Java code can be used from Kotlin, but that Kotlin
code can also be used from Java with little to no effort. The language also
includes a set features specifically meant to tune interoperability between
Java and Kotlin.
As the language overgrew, the JVM and spread to other platforms,
interoperability guarantees were extended as well to cover interaction with
JavaScript code for the JS platform and C/C++/Objective C/Swift code for
native applications.

We’ll devote Chapter 12, Java Interoperability, to discuss the Java
interoperability issues and how Kotlin and Java can be mixed together in
the same project.

Multiplatform
Multiplatformity wasn’t an original intent of Kotlin designers, but rather
manifested itself as a result of language evolution and adaptation to the
needs of the development community. While JVM and Android remain a
primary target of Kotlin development, nowadays the supported platforms
also cover the following:

JavaScript, including browser and Node.js applications as well as
JavaScript libraries
Native applications and libraries for macOS, Linux and Windows

Since 1.3 Kotlin supports multiplatform development with major uses cases
being sharing the code between Android and iOS applications and creating
multiplatform libraries for JVM/JS/Native world.

Kotlin ecosystem
Throughout its evolution, Kotlin has given rise to a rich set of libraries and
frameworks covering most of software development aspects. Here, we will
try to give you an overview of available tools which hopefully will serve as
a guide in this ocean of possibilities. Note, however, that as the ecosystem
is continuously growing, the state-of-the-art presented in this book at the
moment that is being written will inevitably fall out of date, so don’t
hesitate looking for it by yourself. A good starting point is a community-
updated list of libraries and frameworks available on the Awesome Kotlin
website at https://interlink.
It’s also worth noting that thanks to well-conceived Java interoperability
Kotlin applications may benefit from a whole lot of existing Java libraries.
In some cases, they have specific Kotlin extensions allowing one to write
more idiomatic code.

Coroutines

Thanks to the concept of suspendable computations, Kotlin is able to
support concurrency-related programming patterns such as aync/await,
futures, promises, and actors. The Coroutines framework provide a
powerful, elegant, and easily scalable solution to concurrency problems in
the Kotlin application whether it is a server-side, mobile, or desktop one.
The major features of the coroutines include, among others:

A lightweight alternative to threads
Flexible thread dispatching mechanism
Suspendable sequences an iterators
Sharing memory via channels
Using actors to share mutable state via message sending

We’ll cover the basics of the coroutine API in Chapter 13, Concurrency,
which deals with concurrency issues in Kotlin.

Testing frameworks
Apart from familiar Java testing frameworks such as JUnit, TestNG, and
Mockito which can be with little effort employed in a Kotlin application,
the developers can enjoy the power of Kotlin-tailored frameworks
providing useful DSLs for testing purposes; be it test definitions or mocking
your objects. In particular, we’d like to point out the following:

Mockito-Kotlin, an extension for the popular Mockito framework
simplifying object mocking in Kotlin.
Spek, a behavior-driven testing framework supporting Jasmine- and
Gherkin-styled definition of test cases.
KotlinTest, a ScalaTest-inspired framework which supports flexible
test definitions and assertions.

In Chapter 14, Testing with Kotlin, we’ll pay more attention to the features
provided by Spek and Mockito and consider how to use them in your
projects.

Android development

Android is one of the major and most actively growing application areas of
Kotlin. This has become especially relevant after Google’s announced the
Kotlin a first-class Android language implying, in particular, that Android
tooling is now being designed and developed with due regard to the Kotlin
features as well. Apart from the excellent programming experience brought
by the Android Studio plugin, Android developers can benefit from the
smooth interoperability with many popular frameworks such as Dagger,
ButterKnife, and DBFlow. Among Kotlin-specific Android tools, we’d like
to pay attention to Anko and Kotlin Android Extensions:

Kotlin Android Extensions is a compiler plugin whose main feature is
data-binding which allows you to use XML-defined views as if they’re
implicitly defined in your code, thus avoiding the infamous
findViewById() calls. It supports view caching and the ability to
automatically generate Parcelable implementations for user-defined
classes. Thanks to this there is no need to employ external frameworks
like ButterKnife in pure Kotlin projects.
Anko is a Kotlin library which simplifies the development of Android
applications. In addition to numerous helpers, it includes a domain-
specific language (Anko Layouts) for composing dynamical layouts
accompanied by the UI preview plugin for Android Studio as well
database query DSL based around Android SQLite.

We’ll cover some of these features in Chapter 15, Android Applications,
which introduces the reader to Kotlin-powered Android development.

Web development
Web/Enterprise application developers can also benefit from using Kotlin.
Popular frameworks such as Spring 5.0 and Vert.x 3.0 include Kotlin-
specific extensions which allow you to use their functionality in more
Kotlin-idiomatic way. You can employ pure Kotlin solutions using a variety
of frameworks:

Ktor a JetBrains framework for creating an asynchronous server and
client applications.
kotlinx.html a domain-specific language for building HTML
documents.

Kodein a dependency injection framework.

We’ll discuss specifics of building web applications and microservices
using Ktor and Spring in Chapter 16, Web Development with Ktor and
Chapter 17, Building Microservices, respectively.

Desktop applications
Developers of desktop applications for the JVM platform can employ
TornadoFX, a JavaFX-based framework. It provides helpful domain-
specific languages for building GUI and style description via CSS, support
FXML markup, and MVC/MVP architecture. It also comes with an IntelliJ
plugin simplifying the generation of TornadoFX projects, views, and other
components.

Getting started with Kotlin
Now, you should have an idea of the Kotlin ecosystem, and the only thing
we need to discuss before we can start exploring the language is how to set
up a working environment.

Setting up an IntelliJ project
Although Kotlin by itself, like most programming languages, is not tied to a
particular IDE or text editor, the choice of development tools has a great
impact on the developer’s productivity. As of now, the JetBrains IntelliJ
platform provides the most powerful and comprehensive support of the
Kotlin development lifecycle. Right from the start, Kotlin IDE has been
developed in tight integration with the language itself which helps it to stay
up-to-date with Kotlin changes. For these reasons, we recommend using it
for your own projects and employ it for the examples in the book.
Since IntelliJ IDEA 15 Kotlin support is bundled into the IDE distribution,
you won’t need to install any external plugins to facilitate Kotlin
development. For this book, we’ve been using IntelliJ IDEA 2020.3
released in the late December, 2020.
If you don’t have an IDEA installed, you can download the latest version
from www.jetbrains.com/idea/download and follow the installation
instructions from https://www.jetbrains.com/help/idea/install-and-set-

http://www.jetbrains.com/idea/download
https://www.jetbrains.com/help/idea/install-and-set-up-product.html

up-product.html. IDEA comes in two editions: Community which is free
and open-source and Ultimate which is a commercial product. The major
difference is that the Ultimate edition includes a set of features related to
the development of web and enterprise applications as well as database
tools. You can find a more detailed list of changes at the download page.
For this book, we won’t need the Ultimate features, so IDEA Community is
more than enough.
If you haven’t opened a project in IntelliJ before, you’ll see a welcome
screen on startup where you can click on the Create New Project option to
go directly to the project wizard dialog box. Otherwise, IntelliJ opens the
recently edited project(s); in this case, choose File | New | Project in the
application menu.
Project types are grouped into categories you can see in the left pane. The
exact set of categories and projects depends on the plugin installed, but for
now, we’re interested in the Kotlin category which is available out-of-the
box thanks to the bundled Kotlin plugin. When you click on it, you’ll see
the list of available project templates (Figure 1.1):

https://www.jetbrains.com/help/idea/install-and-set-up-product.html

Figure 1.1: New project wizard (step 1)

As of version 1.4.21 (which we’ve used when writing this book), the Kotlin
plugin supports creating of projects targeting JVM, JavaScript, native
applications as well several cases of multiplatform projects such as mobile
applications targeting both Android and iOS. The platform determines both
the type of compiler artifacts (bytecode for the JVM, .js files for JavaScript,
and platform-specific executables for Kotlin/Native) and a set of available
dependencies your project can use; a project targeting JavaScript, for
example, can’t access classes from the Java class library. As we go ahead,
our primary interest will be the JVM applications, so for this example, we’ll
choose the corresponding option in the JVM group.
The wizard also allows you to choose a particular build system for
automating common tasks related to the project lifecycle: compilation,
testing, packaging, publication, and so on. Detailed treatment of a particular
build system specifics goes beyond the scope of the book and has little
effect on our code examples apart from the project file structure. So in this
tutorial, we’ll just choose IntelliJ as the default option before proceeding
with project creation.
Besides that, you’ll need to provide the project name and location which is
a root directory for the project-related content, including its source files.
Note that IntelliJ suggests the location automatically based on the project
name you’ve typed, but you can change it if necessary.
Since our project targets the JVM platform, we also have to specify a
default JDK to use for the project compilation. That would allow our
project to use classes from the Java standard library as well as compile Java
sources in mixed-language projects. In Chapter 12, Java Interoperability,
we’ll cover such projects in more detail and also discuss how to introduce
Kotlin support to the existing Java projects.
We recommend using JDK 8 or higher. For this example, we’ve chosen the
latest (as of the book’s writing) release version of Oracle OpenJDK 15.
Usually, IntelliJ auto-detects the JDK installed on your machine, but if that
doesn’t happen or none of preconfigured JDKs in the Project SDK list suit
your purposes, you can add a new one by choosing Add JDK options
specifying the path to some preinstalled JDK instance, or Download JDK to
have IDE download one of the popular JDK implementations (such as
OpenJDK or Corretto) for you.

One more thing worth mentioning is a Kotlin runtime library the IntelliJ has
preconfigured for our project. By default, the project will reference a library
in the IDE plugin directory which means it’s upgraded automatically
whenever you update the plugin itself. If you, however, want your project to
depend on a particular version of Kotlin runtime, only updating it manually
out of necessity, you may change that behavior. To do that, expand the
Kotlin Runtime group, click on the Create button and choose the Copy to
option specifying the directory name where the library needs to be kept.
Clicking on the Next button will bring the second step of the project wizard
where you can specify additional options such as minimum JVM version on
which your application is supposed to run, a test framework, and a
predefined template the IDE will use to generate the initial project structure
(for example; a console or Ktor-based web application). The example of
step 2 is shown in Figure 1.2:

Figure 1.2: New project wizard (step 2)

In the final step, click on the Finish button and you will get IntelliJ to
generate and open an empty project. By default, IntelliJ presents it in a two-
panel view: Project tool window on the left and the editor area occupying
most of the remaining area. The editor is initially empty since we haven’t

opened a single file yet, so we’ll first focus on the Project window and use
it to create a new Kotlin file.
If the Project tool window is absent, you can bring it by clicking on the
Project button (usually, it’s on the left-hand side of the window border) or
using the shortcut Alt+1 (Meta+1).
The Project window shows the hierarchical structure of your project. Let’s
expand the root nodes and see what it contains (Figure 1.3). Currently,
we’re mostly interested in the following three items:

src directory which serves as a content root containing project
source files.
out directory where the compiler puts the generated bytecode (absent
initially but created automatically on project compilation).
External Libraries which list all libraries the project depends on.

Figure 1.3: Project structure tool window

Now, right-click on the src/main/kotlin directory and select the New |
Kotlin File/Class command. In the dialog box that follows, type a file
name main.kt. Make sure that the Kind field is set to File and click on OK.
You’ll see the Project window updated to show a new file which is at the

same time opened in the editor. Note that Kotlin source files must have the
.kt extension.
At last, we’re ready to write an actual code. Let’s type the following in the
editor window (Figure 1.3):
fun main() {

println(“Hello, KotlinVerse!”)
}

The preceding code defines the main function which serves as an entry-
point for the Kotlin application. The function body consists of a single
statement, a call to the standard library function println() writing its
argument to the program’s standard output with a new line added at the end.

Figure 1.4: “Hello, World“ program

Java developers will surely recognize a similarity between this code and the
following Java program:
public class Main {
public static void main(String[] args) {
System.out.println(“Hello, World!”)

}
}

In fact, JVM’s version of the Kotlin println() function is just a call to
System.out.println(). Since the JVM entry-point must be a static class
method, you might be wondering how the Kotlin application is started
without defining a single class. The answer is that although we haven’t
defined a class explicitly, the Kotlin compiler will create one behind the
scenes, putting there the JVM’s entry-point which in turn would call our
main() function. We’ll get back to these so called facade classes in Chapter
12, Java Interoperability because they constitute a major aspect of
Kotlin/Java interoperability.
Also, note that unlike the JVM entry-point which is supposed to take an
array of command-line arguments as its parameter, our main() function has

no parameters at all. This comes in handy for the cases when command-line
arguments are not used. If necessary, however, you can still define the
entry-point taking these arguments:
fun main(args: Array<String>) {
println(args)

}

Parameterless main() is in fact a comparatively recent feature introduced in
Kotlin 1.3. In earlier language versions, the only acceptable entry point was
the one taking the String<Array> argument just like its Java counterpart.
This feature took further development in Kotlin 1.4 where the compiler
produces a warning if the main() parameter is not really used in the
function’s body (see Figure 1.5):

Figure 1.5: Unused parameter in the main() function

You might’ve noticed a small green triangle on the left-hand side of the
main() definition. This line marker indicates that function main(), being an
entry-point, is executable. Clicking on that marker brings up a menu which
allows you to run or debug its code. Let’s choose the Run MainKt option
and see what happens (Figure 1.6).
MainKt, by the way, is the name of the compiler-generated facade class we
mentioned earlier. On choosing the Run command, IntelliJ compiles our
code and executes the program. The Run tool window which is opened on
program startup gets automatically linked to its standard I/O streams
serving as a built-in console. If you’ve done everything correctly, the
program will print Hello, KotlinVerse to the console and terminate
successfully.

Figure 1.6: Running a program

If you look inside the out directory, you will see the .class files generated by
the Kotlin compiler from our source program.
Congratulations! You now have an understanding of how to set up and run a
Kotlin project in the IntelliJ IDEA environment, and you are ready to delve
into the language fundamentals. KotlinVerse, here we go!

Using REPL
Kotlin plugin for IntelliJ provides an interactive shell which allows you to
evaluate program instructions on-the-fly. This can be used for quick testing
of your code or experimenting with library functions. It is also quite handy
for those who are just learning the Kotlin language. This feature is called
REPL. The meaning behind this name is “Read/Evaluate/Print Loop”
because that’s what the shell does. The reading code the user has typed,
evaluates it, prints the result (if any), and loops the whole thing over. In
order to access the REPL, select Tools | Kotlin | Kotlin REPL.
You can type the Kotlin code in the REPL window just like you do it in the
editor. The major difference is that each piece of code is compiled and
executed right after you enter it. Once the code is typed, you need to press
Ctrl + Enter (Command + Return) telling the IDE to process your input.
Let’s try it out with:

println(“Hello from REPL”)

As far as you can see, IntelliJ responds with printing “Hello from REPL” to
the console which in this case is shared with the REPL window.
The printing of the preceding string is in fact a side effect of the println()
function which by itself doesn’t return any result to the calling program. If
we, however, attempt to evaluate some expression which does have some
meaningful result, the output is slightly different. Let’s try entering 1+2*3
(Figure 1.7):

Figure 1.7: Kotlin REPL

The REPL gives us the expression result which is 7. Note the difference in
font and = icon as opposed to the println() example. This is to signify that
7 is an actual result of the code you’ve typed. To sum it up, we advise you
to get acquainted with this tool and use it throughout the book (and beyond)
to experiment with any features you feel necessary.

Interactive editors
Apart from the REPL shell available in IntelliJ, it’s worth mentioning a
similar, but more powerful online tool which lies somewhere in between a
REPL and a full-fledged IDE. The tool in question is the Kotlin
Playground. To give it a try open https://play.kotlinlang.org in your browser
(Figure 1.8).
The Kotlin Playground is basically an online environment which allows you
to explore the language with no need for an actual IDE yet having some of

https://play.kotlinlang.org/

its intelligent features at your disposal, including code editor, syntax and
error highlighting, code completion, and console program runner.

Figure 1.8: The Kotlin Playground

The Playground site also includes a bunch of examples and exercises to
familiarize the developer with major Kotlin features. The exercises, also
known as Kotlin koans, take a form of failing test cases which must be
fixed in order to pass (Figure 1.9):

Figure 1.9: Kotlin Koans

We strongly recommend going through these examples as a valuable
complement to the book itself.
Kotlin support is also available in popular data science notebooks such as
Jupyter and Apache Zeppelin. These notebooks provide an interactive code
editor where you can execute commands on the fly and see their results.

They come very handy in data science and machine learning applications,
especially in the context of visualization and exploratory research.
Apache Zeppelin, in particular, comes with a bundled Kotlin plugin starting
from 0.9.0.
Jupyter plugin, on the hand, must be installed manually (as explained in
https://github.com/Kotlin/kotlin-jupyter ReadMe).

Setting up an Eclipse project
Kotlin tooling is not limited to IntelliJ. Thanks to the Eclipse plugin, the
developers who prefer that IDE can use Kotlin as well. Although language
support in Eclipse is not as extensive as IntelliJ’s, it still provides a lot of
code assistance features for the developer’s benefit such as code
highlighting, completion, program execution and debugging, basic
refactorings, and more.
If you don’t have Eclipse, it can be freely downloaded at
www.eclipse.org/downloads. After running the installer, choose “Eclipse
IDE for Java Developers (or “Enterprise Java Developers”) and follow
the instructions. For that tutorial, we’ve used Eclipse 4.18 released in
December of 2020.
Unlike IntelliJ IDEA, Eclipse doesn’t come with bundled Kotlin support
meaning that the plugin must be installed from the Eclipse Marketplace
before we can get to writing the code. To do that, select Help | Eclipse
Marketplace and search for the Kotlin plugin (Figure 1.10).
After you click on the Install button, the IDE will download and install
the plugin. Make sure to accept license agreements and restart Eclipse in
order to complete the installation.

https://github.com/Kotlin/kotlin-jupyter
http://www.eclipse.org/downloads

Figure 1.10: Installing Kotlin plugin from Eclipse Marketplace

Now, we can get to setting up a project. First, we switch IDE to Kotlin
perspective using the Window | Perspective | Open Perspective |
Other command and choose Kotlin in the dialog box that follows. Apart
from the layout change, this perspective makes some Kotlin actions
accessible directly from the application menu. So in order to create a
project, we need to choose File | New | Kotlin Project to specify a
new project name and click on Finish (Figure 1.11).

Figure 1.11: Creating Koltin project

We’re almost there! By expanding the KotlinVerse node in the Package
Explorer view, you can see the components of our newly created project.
The Java Runtime Environment (JRE) library, the Kotlin Standard Library
and, as of yet empty, the src directory where the source files are kept. Now,
let’s create our first Kotlin file. Right-click on the src directory and choose
New | Kotlin File. Type the file name and click on Finish (Figure 1.12):

Figure 1.12: Creating Kotlin file

Eclipse automatically opens a new file in the editor window. Let’s type
“Hello, World” program you can recognize from our earlier example
(Figure 1.13):

Figure 1.13: "Hello, World" in Eclipse

That’s it! To run the program, you may use the Run | Run command:
Eclipse will compile your file to the JVM bytecode, start resulting program
and redirect its output to the Console view.

Conclusion

In this chapter, we learned the major aspects of Kotlin language such as
safety, conciseness, and support of functional and object-oriented
programming paradigms. Together with support of multiple development
platforms such as JVM, Android, JavaScript, and native applications, well-
designed interoperability with Java or other platform-specific code,
extensive ecosystem of tools, libraries and frameworks and fast-growing
community makes Kotlin an excellent language definitely worth learning.
We also looked at common tools you can use for getting started with Kotlin
programming, including IntelliJ IDEA, Eclipse IDE, and Kotlin
Playground. Now, we are ready to move ahead. In the next chapter, we’ll
focus on the anatomy of some basic syntactic structures like variables and
expressions as well as get acquainted with basic Kotlin types.

Points to remember
Kotlin is a multiparadigm and multiplatform language with a focus on
safety, conciseness, and interoperability.
Kotlin has an extensive IDE support (mainly provided by the IntelliJ
plugin).
Kotlin has a large ecosystem covering virtually all aspects of
development process.

Questions
1. Explain the meaning of the basic principles underlying the design of

Kotlin language.
2. List Kotlin project setup steps for IntelliJ IDEA and Eclipse IDEs.
3. What interactive editors are available for working with Kotlin code?
4. Describe major libraries and frameworks comprising the Kotlin

ecosystem.

CHAPTER 2
Language Fundamentals

In this chapter, you’ll learn the basic syntactic elements of the Kotlin
program and how to define and use variables. You’ll get an understanding
of Kotlin types which are used to represent numeric, character, and boolean
values as well as their built-in operations and get acquainted with more
complex structures such as strings and arrays. Along the way, we’ll also
point out major differences from the Java syntax and type system which
should ease the migration to Kotlin.

Structure
Basic syntax
Primitive types
Strings
Arrays

Objectives
Introduce the reader to the fundamentals of the Kotlin syntax such as
variables and expressions as well as built-in data structures represented by
strings and array types.

Basic syntax
We’ll start by explaining basic aspects of the Kotlin syntax such as rules
governing placement of comments, identifiers, and simple variable
definitions as well as building complex expressions from simple ones.

Comments

Like Java, Kotlin supports three varieties of comments that you can use to
document your code:

Single-line comments which start with // and continue till the end of
line.
Multi-line comments delimited by /* and */.
KDoc multi-line comments delimited by /** and */.

KDoc comments are used to generate rich text documentation similar to
Javadoc:
/*
multi-line comment
/* nested comment */
*/

println(“Hello”) // single-line comment

Java vs. Kotlin: Unlike Java, multi-line comments in Kotlin can be nested.

Defining a variable
The simplest form of a variable definition in Kotlin takes the following
form:
val timeInSeconds = 15

Let’s consider the elements which make it up:

The val keyword (from value)
The variable identifier which is a name you give to a new variable and
use it to refer to it later in the code
An expression which defines the variable’s initial value and follows
after the = sign

Java vs. Kotlin: You might’ve noticed that we didn’t put a semicolon (;) at
the end of the variable definition. This is not a mistake. In Kotlin, you can
omit the semicolon at the end of the line. In fact, this is a recommended
code style; putting one statement per line, you’ll virtually never need to use
semicolons in your code.
IDE Tips: IntelliJ enforces this code style by showing a warning for each
unnecessary semicolon.

Suppose we want to write a program which asks the user for two integer
numbers and outputs their sum. Here is how it might look like in Kotlin:
fun main() {
val a = readLine()!!.toInt()
val b = readLine()!!.toInt()
println(a + b)

}

Let’s look more closely at what it does:

1. readLine() is a call expression which tells the program to execute the
readLine, a standard Kotlin function which reads a single line from
the standard input and returns it as a character string.

2. !! is a not-null assertion operator which throws an exception if the
readLine() result is null. Unlike Java, Kotlin tracks if a type can
contain nulls and will not allow us to call the toInt() function unless
we make sure that nulls are ruled out. For now, we can simply ignore
it since readLine() never returns null when reading from the console.
In the next chapter, we’ll discuss the issue of the type nullability in
more detail.

3. We then call the toInt() function on the result of the readLine() call.
toInt is a method defined in the Kotlin’s String class which converts
the character string on which it’s called into the integer value. If the
string in question does not correspond to a valid integer, toInt() fails
with a runtime error which in this case just terminates our program.
For now, we won’t worry about that assuming that all user inputs are
valid and postpone the issue of error handling till the next chapter.

4. The result of the toInt() call is assigned to the variable a we define in
the same line.

5. Similarly, we define the second variable b which is assigned an integer
entered on the second line.

6. Finally, we compute the sum of two integers, a + b, and pass the
result to the println() function call which prints it to the standard
output.

The preceding variables that we have introduced are called local since
they’re defined in the body of a function (in our case, it’s main()). Apart
from that, Kotlin allows definition of properties which are similar to

variables, but in general, we can perform some computations on reading or
writing. For example, as we’ll see later, all strings in Kotlin have the
property length which contains the number of characters.
If you’re familiar with Java, you’ve probably noticed that we didn’t specify
the type of our variables, and yet the program successfully compiles and
runs (Figure 2.1). The reason is a so called type inference; a language
feature which in most cases allows the compiler to deduce type information
from the context. In this case, the compiler already knows that the toInt()
function returns a value of the type Int, and since we assign the toInt()
result to our variable, it assumes that the variable must also be of type Int.
Thanks to the type inference, Kotlin remains a strongly-typed language, yet
saving the developer from cluttering the code with unnecessary type
annotations. Throughout the book, we’ll see various examples of how the
type inference can simplify programming in Kotlin.
Java vs. Kotlin: Java 10 has introduced a similar feature for local variables
in version 10. Now, you can write, say:
var text = “Hello”; // String is inferred automatically
In Kotlin, however, the type inference is not limited to local variables and
has much wider applications that we’ll see in the upcoming chapters.

Figure 2.1: Running summation program in IntelliJ

You can also specify the type explicitly when necessary. To do that, you
need to put the type specification after the variable identifier separating
them with a colon (:):
val n: Int = 100
val text: String = “Hello!”

Note that in this case, the initial value must belong to the variable type. The
following code will produce the compilation error:
val n: Int = “Hello!” // Error: assigning String value to Int variable
IDE Tips: IntelliJ allows you to see the compiler-inferred type for any
expression or variable. To do it, select the expression of interest in editor or
simply put the caret at the variable identifier and press Ctrl + Shift + P
(Command + Shift+ P):

Figure 2.2: Running summation program in IntelliJ

On top of this, you can add or remove explicit types using simple actions.
Just place the editor caret at the variable identifier, press Alt + Enter, and
choose Specify type explicitly or Remove explicit type
specification, respectively (the latter also works on the type specification
itself).
It’s possible to omit an initial value and initialize a variable later, in a
separate statement. This could be helpful if computing an initial value can’t
be put into a single expression. In this case, you’ll have to specify the
variable type explicitly:
val text: String
text = “Hello!”

Note that a variable must be initialized before you can read its value. If the
compiler can’t guarantee that a variable is definitely initialized before use, it
will report an error:
val n: Int
println(n + 1) // Error: variable n is not initialized

Identifiers
Identifiers are names you give to the entities defined in the program, like
variables or functions. Kotlin identifiers come in two flavors. The first one
is quite similar to a Java identifier and can be an arbitrary string of
characters conforming to the following rules:

It may only contain letters, digits, underscore characters (_), and may
not start with a digit.
It may not consist entirely of underscores: names like _, __, ___,
and so on are reserved and can’t be used as identifiers.
It may not coincide with a hard keyword.

Hard keywords (like val or fun) are considered keywords regardless of
where they are put in the code. Soft keywords (like import), on the other
hand, are parsed as keywords only in the specific context, outside which
they can be used as normal identifiers. You can find the complete list of
hard and soft keywords at kotlinlang.org/docs/reference/keyword-
reference.html.
Letters and digits, like in Java, are not limited to ASCII, but include
national alphanumeric characters as well. It is, however, considered a good
practice to use names based on the English words.
Java vs. Kotlin: Note that unlike Java, dollar signs ($) are not allowed in
Kotlin identifiers.
The second form, a quoted identifier, is an arbitrary non-empty character
string enclosed inside backquotes (`):
val `fun` = 1
val `name with spaces` = 2

Quoted identifiers may not contain new lines and backquotes themselves.
On top of that, they must satisfy platform-specific requirements. In the
Kotlin/JVM code, for example, such identifiers may not contain any of the
following characters since they are reserved by the JVM itself: . ; [] /
< > : \.

For better readability, this feature shouldn’t be abused, though. It primarily
exists for Java interoperability because Java declaration names might
coincide with Kotlin keywords (fun, for example, is a keyword in Kotlin,

http://kotlinlang.org/docs/reference/keyword-reference.html

but not in Java) and the Kotlin code should be able to use them if necessary.
One more use case is naming of test case methods which we’ll see in
Chapter 14, Testing with Kotlin.

Mutable variables
The variables we’ve considered so far are in fact immutable; in other words,
you can’t reassign their value once they’re initialized. In this regard they
resemble final variables in Java. You should aim at declaring all variables
immutable as much as practical since using immutable variables and
avoiding functions with side effects facilitates the functional style and
simplifies the reasoning about your code.
If necessary, however, you can still define a mutable variable by using the
var keyword (from variable) instead of val. The basic syntax remains the
same, but now we can change the variable’s value as many times as we like.
The operation (=) we use to change the variable’s value is called the
assignment. We’ve already seen its use for initialization of immutable
variables:
var sum = 1
sum = sum + 2
sum = sum + 3

Note that the variable type specified or inferred at its declaration stays the
same whether it’s mutable or not. Assigning the value of a wrong type is a
compile-time error:
var sum = 1
sum = “Hello” // Error: assigning String value to Int variable

Additionally, Kotlin supports so called augmented assignments which
combine changing the variable’s value with one of the binary operators: +,
−, *, /, %. For example:
val result = 3
result *= 10 // result = result * 10
result += 6 // result = result + 6

Such assignments are available whenever the corresponding binary
operators make sense for a given variable.
Java vs. Kotlin: As opposed to Java, Kotlin assignments are statements,
rather than expressions and do not return any value. This, in turn, means

that in Kotlin, you can’t form an assignment chain similar to Java’s a = b =
c. Such assignments are forbidden in Kotlin because they are considered
error-prone and are rarely useful. This includes augmented assignments as
well.
There are two more operations concerned with changing a variable’s value:
increment (++) and decrement (−−). Their most obvious usage is increasing
or decreasing a numeric variable by 1. Like in Java, these operations come
in the prefix and postfix form:
var a = 1
println(a++) // a is 2, 1 is printed
println(++a) // a is 3, 3 is printed
println(--a) // a is 2, 2 is printed
println(a--) // a is 1, 2 is printed

These examples demonstrate that while both the prefix and the postfix
operations modify the variable, the former’s result is a new value, while the
latter returns the variable’s value before changing it.

Expressions and operators
Kotlin expressions we’ve used in the preceding examples can be divided
into the following categories:

Literals representing specific values of particular types (like 12 or
3.56)
Variable/property references and function calls (a, readLine(),
“abc”.length, “12”.toInt())
Prefix and postfix unary operations (-a, ++b, c--)
Binary operations (a + b, 2 * 3, x < 1)

Every expression has a definite type which describes a possible range of
values and allowed operations. For example, literal 1 has a type Int, while
the readLine()!! call is of the type String.
Also, note that variable references and function calls may have a dot-
separated receiver expression, like in readLine()!!.toInt(). This means
that we are using the toInt() function defined for the type String (which
is of the type readLine()!!) in the context of readLine()!!.

Unary and binary operations have different precedence which determines
the order of evaluation; for example, in 2 + 3*4 expression, we first
evaluate 3*4 and then add the result to 2, thus getting 14. The order can be
changed with parentheses, so (2 + 3)*4 will be equal to 5*4 or 20 instead.
The precedence of operators we will consider in this chapter can be
summarized in the following table:

Category Operations Examples

Postfix ++ –- . a*b++

++b--

a*b.foo()

// a*(b++)

// ++(b--)

// a*(b.foo())

Prefix + - ++ –- ! +a*b

++a*b

!a || b

// (+a)*b

// (++a)*b

// (!a) || b

Multiplicative * / % a*b + c

a – b%c

// (a*b) + c

// a - (b*c)

Additive + - a + b and c // (a + b) and c

Infix Named operators a < b or b < c
a == b and b == c

// (a < (b or b)) < c

// (a == b) and (b ==
c)

Comparison < > <= >= a < b == b < c

a < b && b < c

// (a < b) == (b < c)

// (a < b) && (b < c)

Equality == != a == b || b != c // (a == b) || (b != c)

Conjunction && a || b && c

a && b || c

// a || (b && c)

// (a && b) || c

Disjunction ||

Assignment = += -= *= /=
%=

a = b*c

a *= a + b

// a = (b*c)

// a *= (a + b)

Table 2.1: Operation precedence

Binary operators with the same priority are evaluated from left to right. For
example:
a.foo().bar() // (a.foo()).bar()

a*b%c // (a*b)%c

(a == 1) or (b < 1) and (c > 1) // ((a == 1) or (b < 1)) and

(c > 1)

Over the course of the book, we’ll introduce additional operations refining
this table.

Primitive types
In this section, we’ll consider Kotlin types which describe simple values
like numbers, characters, and booleans. If you’re familiar with Java, you
can think of them as counterparts of Java primitive types, but the analogy is
not perfect. In Java, you have a clear distinction between primitive types
like int whose values are stored directly in the preallocated memory of the
method and class-based reference types like String whose values are just
references to dynamically allocated data of the corresponding class. In
Kotlin, the distinction is somewhat blurred since the same type say, Int –
can be represented as either primitive or reference one depending on the
context. Java includes special boxing classes which can be used to wrap
primitive values, but Kotlin performs boxing implicitly when necessary.
Java vs. Kotlin: As opposed to Java, all Kotlin types are ultimately based
on some class definition. This, in particular, means that even primitive-like
types, such as Int, have some member functions and/or properties. You can,
for example, write 1.5.toInt() to call the toInt() operation on 1.5, a
value of the type Double, which converts it to an integer number.
Types can form hierarchies based on a notion of subtyping; in essence,
when we say that type A is a subtype of B, we mean that any value of A can
be used in any context which requires a value of B. For example, all Kotlin
types that disallow null values are direct or indirect subtypes of a built-in
type Any, so the following code is correct although it forces a value of 1 to
become boxed:
val n: Any = 1 // Ok: Int is a subtype of Any

Integer types
There are four basic Kotlin types that represent integer numbers (Table 2.2):

Type Size (in bytes) Range Java Counterpart

Byte 1 –128 .. 127 byte

Short 2 –32768 .. 32767 short

Int 4 int

–231 .. 231 − 1

Long 8 –263 .. 263 − 1 long

Table 2.2: Integer types

The simplest form of a literal expressing some value of an integer type is
just a decimal number:
val n = 12345

Since Kotlin 1.1 you can, like in Java 7+, put underscores inside numeric
literals for better readability. This comes in handy when literals are rather
big:
val n = 34_721_189

A literal itself has either type Int or Long depending on its size. You can,
however, assign literals to variables of smaller types as well, provided they
fit into the expected range:
val one: Byte = 1 // OK

val tooBigForShort: Short = 100_000 // Error: too big

for Short

val million = 1_000_000 // OK: Int is

inferred

val tooBigForInt: Int = 10_000_000_000 // Error: too big

for Int

val tenBillions = 10_000_000_000 // OK: Long is

inferred

val tooBigForLong = 10_000_000_000_000_000_000 // Error: too

big for Long

Adding the L suffix forces the literal type to become Long:
val hundredLong = 100L // OK: Long is inferred

val hundredInt: Int = 100L // Error: assigning Long to Int

You can also specify literals in the binary or hexadecimal numeral system
prefixing them with 0b and 0x, respectively:
val bin = 0b10101 // 21
val hex = 0xF9 // 249

Note that the numeric literal may not start with zero unless it is 0 itself.
Some programming languages (including Java) use zero-prefixed literals to
denote octal numbers which are not supported in Kotlin as it is rarely useful
and often a misleading feature. For this reason, zero-prefixed numbers are

forbidden so that developers accustomed to the octal notation are not
confused:
val zero = 0 // OK
val zeroOne = 01 // Error

Negative numbers like –10 are not technically literals, but are unary-minus
expressions applied to literals:
val neg = -10
val negHex = -0xFF

Each integer type defines a pair of constants that contains its minimum
(MIN_VALUE) and maximum (MAX_VALUE) values. To use them, just qualify
the constant with the type name:
Short.MIN_VALUE // -32768

Short.MAX_VALUE // 32767
Int.MAX_VALUE + 1 // -2147483648 (integer overflow)

Floating-point types
Like Java, Kotlin provides support for IEEE 754 floating-point numbers
with types Float and Double. Their Java counterparts, as you might’ve
guessed, are float and double, respectively.
The simplest form of a floating-point literal is a decimal number which
consists of integer and fractional parts separated by a dot:
val pi = 3.14
val one = 1.0

The integer part may be empty in which case it’s assumed to be zero. The
fractional part, however, is mandatory:
val quarter = .25 // 0.25
val one = 1. // Error
val two = 2 // No error, but that’s integer literal

Kotlin also supports scientific notation where you can follow a decimal
number with an exponent part signifying the power of ten:
val pi = 0.314E1 // 3.14 = 0.314*10
val hundredPpi = 0.314E3 // 314.0 = 0.314*1000
val piOver100 = 3.14E-2 // 0.0314 = 3.14/100
val thousand = 1E3 // 1000.0 = 1*1000

Note that in scientific notation, the fractional part is optional.
Java vs. Kotlin: Unlike Java 6+, Kotlin doesn’t support hexadecimal
literals for Float and Double types.
By default, literals have the Double type. Tagging them with f or F forces
the type to Float: (in this case, the fractional part is also optional):
val pi = 3.14f
val one = 1f

Java vs. Kotlin: In Java you can tag a literal with d or D forcing its type to
be Double (like 1.25d). Kotlin, however, has no such suffix: Double type is
only assigned by default.
Note that Float literals are not automatically converted to Double types.
The following code will lead to a compile-time error:
val pi: Double = 3.14f // Error

Float and Double define a set constants that represent some special values
of the following types:

MIN_VALUE, MAX_VALUE: The smallest/the largest positive finite value
representable by the type.
NEGATIVE_INFINITY, POSITIVE_INFINITY: The negative/positive
infinite value, which is respectively the smallest/the largest value of
the type.
NaN: “Not a number” value for uncertainties like 0/0.

println(Float.MIN_VALUE) // 1.4E-45
println(Double.MAX_VALUE) //
1.7976931348623157E308
println(Double.POSITIVE_INFINITY) // Infinity
println(1.0/Double.NEGATIVE_INFINITY) // -0.0
println(2 - Double.POSITIVE_INFINITY) // -Infinity
println(3 * Float.NaN) // NaN

Arithmetic operations
All numeric types support basic arithmetic operations:

Operation Meaning Example Result

+ (unary) the same value +2 2

− (unary) opposite value -2 -2

+ addition 2 + 32.5 + 3.2 5
5.7

− subtraction 1 – 33.4 – 1.8 -2
1.6

* multiplication 3 * 4
3.5 * 1.5

12
5.25

/ division 7/4
-7/4
7/(-4)
(-7)/(-4)
6.5/2.5
-6.5/2.5
6.5/(-2.5)
(-6.5)/(-2.5)

1
-1
-1
1
2.6
-2.6
-2.6
2.6

% remainder 7%4
-7%4
7%(-4)
(-7)%(-4)
6.5%2.5
-6.5%2.5
6.5%(-2.5)
(-6.5)%(-2.5)

3
-3
3
-3
1.5
-1.5
1.5
-1.5

Table 2.3: Arithmetic operations

The behavior of arithmetic operations is consistent with Java. Note that
integer division operations give a result rounded to zero, while the
remainder has the same sign as the numerator. Floating-point operations are
carried out according to the IEEE 754 specification.
Numeric types support ++/−− operations which amount to
increasing/decreasing the value by 1.
The result of unary +/− operations has the same type as their argument with
an exception for Byte and Short where it results in an Int:
val byte: Byte = 1
val int = 1
val long = 1L
val float = 1.5f
val double = 1.5

-byte // -1: Int

-int // -1: Int

-long // -1: Long

-float // -1.5: Float

-double // -1.5: Double

Each of the binary arithmetic operation comes in multiple variants covering
all possible combinations of numeric types. Since there are 6 numeric types,
it means 6*6 = 36 versions for each operation. It allows you to combine
different numeric types in arithmetic expressions without an explicit
conversion. The result of such an operation is taken to be a “bigger” one
between its arguments where “bigger” means the following:
Double > Float > Long > Int > Short > Byte

For most types, it essentially means a larger set of values, but that’s not
always the case: the obvious example is conversion from Long to Float
which can lead to loss of precision. Note that the result type is never smaller
than Int even when arguments have the Byte or Short type.
Going ahead with our previous example, we get:
byte + byte // 2: Byte

int + byte // 2: Int

int + int // 2: Int

int + long // 2: Long

long + double // 2.5: Double

float + double // 3.0: Double

float + int // 2.5: Float

long + double // 2.5: Double

Bitwise operations
Int and Long support a range of bit-level operations:

Operation Meaning Examples Java
Counterpart

shl shift left // 13: 0...00001101
13 shl 2 // = 52: 0...00110100
 // -13: 1...11110011
(-13) shl 2 // = -52: 1...11001100

<<

shr shift right // 13: 0...00001101
13 shr 2 // = 3: 0...00000011
 // -13: 1...11110011
(-13) shr 2 // = -4: 1...11111100

>>

ushr shift right
unsigned

 // 13: 0...00001101
13 ushr 2 // = 3: 0...00000011
 // -13: 1...11110011
(-13) ushr 2
 // = 1073741820: 001...111100

>>>

and bitwise
AND

 // 13: 0...00001101
 // 19: 0...00010011
13 and 19 // = 1: 0...00000001
 // -13: 1...11110011
 // 19: 0...00010011
-13 and 19 // = 19: 0...00010011

&

or bitwise OR // 13: 0...00001101
 // 19: 0...00010011
13 or 19 // = 31: 0...00011111
 // -13: 1...11110011
 // 19: 0...00010011
-13 and 19 // = -13: 1...11110011

|

xor bitwise XOR // 13: 0...00001101
 // 19: 0...00010011
13 xor 19 // = 30: 0...00011110
 // -13: 1...11110011
 // 19: 0...00010011
-13 xor 19 // = -32: 1...11100000

^

inv bitwise
inversion

 // 13: 0...00001101
13.inv() // = -14: 1...11110010
 // -13: 1...11110011
(-13).inv() // = 12: 0...00001100

~

Table 2.4: Bitwise operations

Note that inv is not a binary operation, but a simple method which is
invoked using the dot notation.
Since Kotlin 1.1, and, or, xor, and inv are also available on Byte and
Short.

Java vs. Kotlin: If you’re familiar with Java, you might know about the
bitwise operators: &, |, ^, ~, <<, >> and >>>. These operators are not
currently supported in Kotlin; you have to use and, or, xor, inv, shl,
shr, and ushr, respectively which have exactly the same semantics on
JVM.

Char type
The Char type represents a single 16-bit Unicode character. A literal of this
type is just a character itself surrounded by single quotes:
val z = ‘z’

val alpha = ‘α’

For special characters like newlines, Kotlin provides a set of escape
sequences: \t (tab), \b (backspace), \n (newline), \r (carriage return), \’
(single quote), \” (double quote), \\ (backslash), \$ (dollar sign):
val quote = ‘\’’
val newLine = ‘\n’

You can also put arbitrary Unicode characters into the literal using the \u
sequence followed by the 4-digit hexadecimal character code:
val pi = ‘\u03C0’ // π

Although internally the Char value is just a character code, the Char itself is
not considered a numeric type in Kotlin. It does, however, support a limited
set of arithmetic operations concerned with moving around the Unicode
character set. This is what you can do with characters:

Add/remove an integer with +/− operators which give a character
shifted by the corresponding number of steps.
Subtract two characters by getting a number of steps between them.
Increment/decrement a character with ++/−− operators.

Let’s consider some examples:
var a = ‘a’

var h = ‘h’

/* 5th character after ‘a’ */ println(a + 5) // f

/* 5th character before ‘a’ */ println(a – 5) // \

/* distance between ‘a’ and ‘h’ */ println(h – a) // 7

/* get character preceding ‘h’ */ println(--h) // g

/* get character following ‘a’ */ println(++a) // b

Java vs. Kotlin: Note that while in Java, results of all arithmetic operations
on characters are implicitly converted to int, Char operations in Kotlin
(except the difference of two characters) give Char as their result.

Numeric conversions
Each numeric type defines a set of operations to convert its value to any
other numeric types as well as Char. Operations have self-explanatory
names corresponding to the target type: toByte(), toShort(), toInt(),
toLong(), toFloat(), toDouble(), and toChar(). The same set of
operations is available for Char values.
Java vs. Kotlin: Unlike Java, values of smaller-range types cannot be used
in the context where the larger type is expected; you can’t, for example,
assign an Int values to the Long variable. The following code will produce
a compilation error:
val n = 100 // Int

val l: Long = n // Error: can’t assign Int to Long

The reason behind this is implicit boxing we’ve mentioned earlier. Since in
general, values of Int (or any other numeric type) are not necessarily
represented as primitives, such widening conversions could potentially
amount to producing a value of different boxing type, thus violating
equality and leading to subtle errors. If the preceding code was considered
correct, the following instruction
println(l == n)

would print false which is rather an unexpected result. In Java, there is a
similar issue related to boxing types:
Integer n = 100;

Long l = n; // Error: can’t assign Integer to Long

Conversion between integer types is lossless when the target type has a
larger range. Otherwise, it basically truncates extra most significant bits and
reinterprets the remainder as a target type. The same also goes for a
conversion to/from the Char type:
val n = 945

println(n.toByte()) // -79

println(n.toShort()) // 945

println(n.toChar()) // α

println(n.toLong()) // 945

Conversions involving floating-point types can, in general, lead to precision
loss regardless of the target type: say, converting a very big Long value to
Float can zero some lower digits. Converting floating-point numbers to
integers is basically the same as rounding to zero:
println(2.5.toInt()) // 2

println((-2.5).toInt()) // -2

println(1_000_000_000_000.toFloat().toLong()) // 999999995904

Starting from Kotlin 1.4, toByte() and toShort() conversions are
considered deprecated for floating-point types because their usage often
leads to unpredictable results due to small range of target values. Now, such
calls produce a compiler warning:
println(2.5.toByte()) // use of deprecated toByte()

Note that indirect conversion via other types is considered acceptable:
println(2.5.toInt().toByte())

Boolean type and logical operations
Kotlin has a Boolean type representing a logical operation which can be
either true or false:
val hasErrors = false;

val testPassed = true;

Like in Java, Kotlin’s Boolean is distinct from numeric types and can’t be
converted to numbers (and vice versa) neither implicitly, nor with some
kind of built-in operations like toInt(). The developer is supposed to use
comparison operations and conditionals (see below) to build Boolean
values from non-Boolean ones.
Operations supported by Boolean include:

! – Inversion
or, and, xor: Eager disjunction/conjunction and exclusive
disjunction
||, &&: Lazy disjunction/conjunction

Lazy operations have essentially the same semantics as their Java
counterparts. Operation || does not evaluate its right argument if the first
one is true. Similarly, the operation && doesn’t evaluate its right arguments
if the first one is false. This can be useful if evaluating the right argument
entails some side effects.
Java vs. Kotlin: Unlike Java, Kotlin doesn’t have & and | operators. Their
role is performed by and / or, respectively.
Let’s consider some examples using equality/inequality operations == and
!= (more on them in the next section):
println((x == 1) or (y == 1)) // true

println((x == 0) || (y == 0)) // false

println((x == 1) and (y != 1)) // true

println((x == 1) and (y == 1)) // false

println((x == 1) xor (y == 1)) // true

println((x == 1) xor (y != 1)) // false

println(x == 1 || y/(x - 1) != 1) // true

println(x != 1 && y/(x - 1) != 1) // false

In the previous two examples, using lazy operations is essential since an
attempt to evaluate the right argument when x == 1 will result in a runtime
error due to division by zero.
Note the precedence difference between eager/lazy conjunction and
disjunction. Eager operations and, or, xor are named infix operators and
thus have the same precedence and dominate the && operation which, in
turn, dominates ||. For example, the following expression:
a || b and c or d && e

is evaluated as:
a || (((b and c) or d) && e)

In doubtful cases, we suggest using parentheses to clarify the meaning
behind your code.

Comparison and equality
All types we’ve considered so far support the standard set of comparison
operations: == (equals), != (not equals), < (less than), <= (less than or

equals), > (greater than), >= (greater than or equals):
val a = 1
val b = 2
println(a == 1 || b != 1) // true
println(a >= 1 && b < 3) // true
println(a < 1 || b < 1) // false
println(a > b) // false

In general, equality operations == and != are applicable to values of any
type. There is, however, an exception for numeric types, Char and Boolean.
Consider the following code:
val a = 1 // Int
val b = 2L // Long
println(a == b) // Error: comparing Int and Long
println(a.toLong() == b) // Ok: both types are Long

Basically, for such types, Kotlin only permits == and != when both
arguments are of the same type; you can’t, for example, apply == when one
argument is Int while another is Long. This is explained by the same
reasoning we’ve seen for assignments; the equality check would produce
different results depending on whether values are boxed, and since boxing
in Kotlin is implicit, it could lead to confusion if permitted for any pair of
types.
Operations <, <=, >, >=, however, allow you to compare any numeric
types; just like arithmetic operations, they are overloaded to cover all
possible cases. So you can write, for example:
1 <= 2L || 3 > 4.5

Note that Char and Boolean values also support comparison operations, but
they can be compared only with a value of the same type:
false == true // false

false < true // true

false > 1 // Error: comparing Boolean and Int

‘a’ < ‘b’ // true

‘a’ > 0 // Error: comparing Int and Char

Note that false is assumed to be less than true, and Char values are
ordered by their character code.

Java vs. Kotlin: Unlike Kotlin, in Java where boxed and unboxed values
are represented by different types (such as long vs. Long), primitive
numeric types (including char) can be freely compared with each other
using ==/!= as well as </<=/>/>= operators. Boolean values in Java,
however, are not ordered and can only be checked for equality.
In the context of floating-point types, comparison operations follow the
IEEE 754 standard. This, in particular, assumes a specific treatment of NaN
values:
println(Double.NaN == Double.NaN) // false
println(Double.NaN != Double.NaN) // true
println(Double.NaN <= Double.NaN) // false
println(Double.NaN < Double.POSITIVE_INFINITY) // false
println(Double.NaN > Double.NEGATIVE_INFINITY) // false

Basically, NaN is not equal to anything, including itself is neither
considered lesser nor greater than any other value, including infinities.
These rules, however, are only put in action when the compiler knows
statically that the value of interest has a floating-point type. In more generic
cases, which involve, for example, storing numbers in a collection, the
compiler falls back to using equality and comparison rules imposed by the
boxed type. On JVM, this is equivalent to comparing instances of
Double/Float wrapper types:
val set = sortedSetOf(Double.NaN, Double.NaN,

Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY, 0.0)

println(set) // [-Infinity, 0.0, Infinity, NaN]

The preceding code creates a tree sorted internally by natural ordering of
the element type (on JVM, this is basically a TreeSet) and prints its items.
The output shows that in this case:

NaN is equals to itself, since only one such value was added to the set
NaN is considered the largest value of Double (even greater than
positive infinity)

In the upcoming chapters, we’ll discuss the concepts of equality and
ordering in more detail.

Strings

The String type represents strings of characters. Like in Java, Kotlin
strings are immutable; in other words, you can’t change characters once a
String object is created, you can only read them or create new strings
based on the existing one. In this section, we’ll consider how to construct
new strings and perform some basic manipulations with them.

String templates
The simplest way to define a string literal, as we’ve already seen in this
chapter, is to enclose its content in double quotes just like in Java:
val hello = “Hello, world!”

If the string needs to contain some special symbols like newline characters,
you need to use one of the escape sequences (see the section):
val text = “Hello, world!\nThis is \”multiline\” string”
println(“\u03C0 \u2248 3.14”) // π ≈ 3.14

These literals are basically the same as in Java. In addition to them, Kotlin
provides a much more powerful way to define a string which comes in
useful when you want to compose it from various expressions. Suppose, for
example, we want to welcome the user with a message saying hello and
print the current date and time:
import java.util.Date
fun main() {

val name = readLine()
println(“Hello, $name!\n Today is ${Date()}”)

}

Basically, you can replace any part of the string with a valid Kotlin
expression by putting it inside ${ }. If the expression is a simple variable
reference, like the name in our example, you may just prefix it with a dollar
sign. Such a literal is called a string template.
Note that expressions in string templates may take any values; they are
automatically converted to strings using the toString() method available
for any Kotlin type.
If you run the program and enter some name (say, John), you’ll see
something like this:
Hello, John!
Today is Sat Dec 28 14:44:42 MSK 2019

The result may vary depending on your locale.
The import directive we’ve used in the first line allows us to refer to the
JDK class Date by its simple name instead of java.util.Date. In the next
chapter, we’ll discuss the issue of imports and packages in more detail.
One more variety of string literals is called a raw string. It allows you to
write strings without escape sequences. Such a literal is enclosed by triple
quotes and may contain arbitrary characters, including newlines:
val message = “””

Hello, $name!
Today is ${Date()}

“””.trimIndent()

The trimIndent() is a standard Kotlin function which removes the
common minimal indent.
In rare cases, when you still want to put some special character sequence
into a raw string (like triple quotes), you have to embed them into ${ }:
val message = “””

This is triple quote:’${“\”\”\””}’
“””.trimIndent()

In JVM-targeted applications, strings are represented by instances of the
JVM String class.

Basic string operations
Every String instance has the length and lastIndex properties which
contain the number of characters and the last character index, respectively:
“Hello!”.length // 6
“Hello!”.lastIndex // 5 since indices start from zero

You can also access individual characters using the indexing operator with
the zero-based index inside brackets. On JVM, the passing invalid index
will produce StringIndexOutOfBoundsException similar to Java:
val s = “Hello!”
println(s[0]) // H
println(s[1]) // e
println(s[5]) // !
println(s[10]) // invalid index

You can concatenate strings using the operator +. The second argument may
in fact be any value which is automatically converted to a string by calling
its toString() function. In most cases, though, we suggest using string
templates instead as they usually are more concise:
val s = “The sum is: ” + sum // can be replaced by “The sum is
$sum”

Strings can be compared for equality with operators == and !=. These
operators compare the string content, so even two different instances are
considered equal if they contain the same sequence of characters:
val s1 = “Hello!”
val s2 = “Hel” + “lo!”
println(s1 == s2) // true

Java vs. Kotlin: In Java, == and != operators check the referential equality,
so you have to use the equals() method to compare the actual string
content. In Kotlin, == is basically a more convenient synonym for equals()
so usually there is no need to call equals() directly. Keeping null-checking
aside, the preceding code is equivalent to Java’s s1.equals(s2). What
about referential equality in Kotlin? For that, you can use === and !==
operators.
Strings are lexicographically ordered, so you can compare them using
operators <, >, <=, and >=:
println(“abc” < “cba”) // true

println(“123” > “34”) // false

String also supports conversion functions for numeric types and Boolean:
toByte(), toShort(), toInt(), toLong(), toFloat(), toDouble(),
toBoolean(). Note that numeric conversions will produce a run-time error
if the string doesn’t contain a well-formed number.
Here is a list of some additional useful functions String is able to offer:

isEmpty
isNotEmpty

Check if string is
empty

“Hello”.isEmpty() // false
“”.isEmpty() // true
“Hello”.isNotEmpty() // true

substring Extract substring “Hello”.substring(2) // “llo”
“Hello”.substring(1, 3) // “el”

startsWith
endsWith

Check prefix/suffix “Hello”.startsWith(“Hel”) // true
“Hello”.endsWith(“lo”) // true

indexOf() Get first occurrence
index of character or
substring

// search from start
“abcabc”.indexOf(‘b’) // 1
“abcabc”.indexOf(“ca”) // 2
“abcabc”.indexOf(“cd”) // -1
// search from given index
“abcabc”.indexOf(‘b’, 2) // 4
“abcabc”.indexOf(“ab”, 2) // 3

Table 2.5: Useful string functions

Throughout the book (Chapter 7, Exploring Collections and I/O in
particular), we’ll see more examples of the Kotlin String API. For more
information, we advise you to visit the documentation page at
kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/index.html.

Arrays
An array is a built-in Kotlin data structure which allows you to store a
fixed number of same-typed values and refer to them by an index. They are
conceptually similar to arrays in Java which are in fact used as their
representation in Kotlin/JVM applications. In this section, we’ll consider
how to define an array and access its data.

Constructing an array
The most general Kotlin type implementing an array structure is Array<T>
where T is a common type of its elements. In Chapter 1, Kotlin - Powerful
and Pragmatic, we’ve already see an example of the main() function
accepting a parameter of type Array<String> which holds command-line
arguments passed to the program. If the number of elements is known in
advance, we can create an array using one of the standard functions:
val a = emptyArray<String>() // Array<String> (zero
elements)
val b = arrayOf(“hello”, “world”) // Array<string> (2
elements)
val c = arrayOf(1, 4, 9) // Array<Integer> (3
elements)

These functions are generic which means they refer to unknown element
types which must be specified in the call. Thanks to type inference,
however, the compiler can figure out the unknown type in the second and

third calls using arguments we pass. If we, for example, create an array
from a series of integer numbers, it obviously has the Array<Integer> type.
In the first call, however, the compiler has no such information, so we have
do specify the element type in angular brackets of the call expression. For
now, we’ll just take this syntax for granted and postpone the detailed
discussion of generic types and functions till Chapter 9, Generics.
There is a more flexible way to create an array by describing how to
compute an element with a given index. The following code generates an
array containing squares of integers from 1 to whatever the user has
entered:
val size = readLine()!!.toInt()
val squares = Array(size) { (it + 1)*(it + 1) }

The construct inside braces, also called lambda, defines an expression to
compute an element value based on its index which is represented by an
automatically declared variable it. Since array indices range from 0 to size
- 1, its elements will take form 1, 4, 9, and so on. For now, we’ll just use
this syntax as is and come back to lambdas in Chapter 5, Leveraging
Advanced Functions and Functional Programming.
Using Array<Int> is working, but it is an impractical solution since it will
force the boxing of numbers. For this reason, Kotlin provides a more
efficient storage with specialized array types such as ByteArray,
ShortArray, IntArray, LongArray, FloatArray, DoubleArray,
CharArray, and BooleanArray. On JVM, these types are represented by
Java primitive arrays such as int[] or boolean[]. Each of them is
accompanied by functions similar to arrayOf() and Array():
val operations = charArrayOf(‘+’, ‘-’, ‘*’, ‘/’, ’%’)
val squares = IntArray(10) { (it + 1)*(it + 1) }

Java vs. Kotlin: Unlike Java, Kotlin doesn’t have a new operator, so a
construction of the Array instance looks like an ordinary function call.
Also, note that in Kotlin, you have to explicitly initialize array elements on
its creation.

Using arrays
Array types are quite similar to Strings. In particular, they have the size
(analogous to String’s length) and lastIndex properties and their

elements can be accessed by the indexing operator. Using an invalid index
will produce IndexOutOfBoundsException at runtime:
val squares = arrayOf(1, 4, 9, 16)

squares.size // 4

squares.lastIndex // 3

squares[3] // 16

squares[1] // 4

Unlike string characters, though, array elements can be changed:
squares[2] = 100 // squares: 1, 4, 100, 16

squares[3] += 9 // squares: 1, 4, 100, 25

squares[0]-- // squares: 0, 4, 100, 25

Note that like in Java, an array variable itself stores a reference to actual
data. For this reason, assigning array variables basically shares the same set
of data between variables:
val numbers = squares

numbers[0] = 1000 // mutates data shared between squares and

numbers

println(squares[0]) // prints 1000

If you want to create a separate array, use the copyOf() function which can
also produce an array of different sizes if necessary:
val numbers = squares.copyOf()

numbers[0] = 1000 // squares is not affected

squares.copyOf(2) // truncated: 1, 4

squares.copyOf(5) // padded with zeros: 1, 4, 9, 16, 0

Note that arrays with different types can’t be assigned to each other. The
following code will fail with a compilation error:
var a = arrayOf(1, 4, 9, 16)

a = arrayOf(“one”, “two”) // Error: can’t assign

Array<String> to Array<Int>

Java vs. Kotlin: In Java, you can assign an array of a subtype to an array of
its super type. Since arrays are mutable, this can lead to problems at
runtime:
Object[] objects = new String[] { “one”, “two”, “three” };

objects[0] = new Object(); // fails with ArrayStoreException

For this reason, the Kotlin array type is not considered a subtype of any
other array type (apart of itself) and such assignments are prohibited. So
even though String is a subtype of Any, Array<String> is not a subtype of
Array<Any>:
val strings = arrayOf(“one”, “two”, “three”)

val objects: Array<Any> = strings // Error

In fact, that’s a specific case of a powerful variance concept which we’ll
cover in Chapter 9, Generics.
Although the array length can’t change after it’s created, you can produce a
new array by adding extra elements with the + operation:
val b = intArrayOf(1, 2, 3) + 4 // add single element: 1, 2,

3, 4

val c = intArrayOf(1, 2, 3) + intArrayOf(5, 6) // add another

array: 1, 2, 3, 5, 6

Unlike strings, == and != operators on arrays compare references rather than
elements themselves:
intArrayOf(1, 2, 3) == intArrayOf(1, 2, 3) // false

If you want to compare array content, you should use the contentEquals()
function:
intArrayOf(1, 2, 3).contentEquals(intArrayOf(1, 2, 3)) // true

IDE Tips: IntelliJ issues a warning when you try to compare arrays using
== or != and suggests to replace it with the contentEquals() call instead.
Some standard functions which may be helpful when using arrays are given
in Table 2.6:

isEmpty
isNotEmpty

Check if array is empty intArrayOf(1, 2).isEmpty() // false
intArrayOf(1, 2).isNotEmpty() // true

indexOf Get first index of an array
item

intArrayOf(1, 2, 3).indexOf(2) // 1
intArrayOf(1, 2, 3).indexOf(4) // -1

Table 2.6: Useful array functions

In the upcoming chapter, we’ll consider additional array functions. They
will mostly be introduced in Chapter 7, Exploring Collections and I/O,
which deals with the Kotlin collections API.

Conclusion

In this chapter, we got a first taste of Kotlin. We learned about variables and
type inference and acquired an understanding of basic types as well as
fundamental operations on numbers, characters, and booleans as well as
constructing and manipulating more complex data in the form of strings and
arrays. We also saw examples of how the Kotlin design helps to avoid
common programming mistakes known in the Java world. Having built this
foundation, we’re ready to make the next step. In the next chapter, we’ll
learn Kotlin control structures and how to structure your code with
functions and packages.

Points to remember
1. Kotlin identifiers may contain arbitrary characters when enclosed in

backquotes.
2. Kotlin comments may be nested into each other.
3. Variables in Kotlin can be declared as either mutable or immutable.
4. Kotlin primitive types are pretty much similar to their Java

counterparts although specifics of supported operations may vary.
5. Unlike Java, char values are not considered numbers but support some

numeric operations.
6. Strings, like arrays, support indexing operators.
7. String literals can contain embedded expressions and support both

single- and multi-line form.
8. Kotlin has special types for arrays of primitive elements (e.g.

IntArray).

Multiple choice questions
1. Choose all options which represent a valid Kotlin identifier.

A. foo
B. `123`
C. 1foo
D. fOo!

2. What does the following program print?

fun main() {

val a = 1

val b = “2”

val c = 3

println(“$a, ${b + c}, $b + $c”)

}

A. 1, 23, 5
B. 1, 5, 5
C. 1, 23, 2 + 3
D. 1, 5, 2 + 3

3. Which of these are Kotlin integer types?

A. Long
B. Double
C. Char
D. Byte

4. Which keyword marks the variable as final?

A. var
B. let
C. final
D. val

5. Choose all expressions which evaluate to true.

A. “234” < “768”
B. “hello”[2] == ‘e’
C. “test” == “te” + “st”
D. “147392”.substring(2, 5).toInt() < 500

6. Which of the following expressions can be used to create an array of
integer squares from 1 to 49?

A. intArrayOf(1, 4, 9, 16, 25, 36, 49)
B. Array<Int>(7) { (it + 1)*(it + 1) }

C. byteArrayOf(1, 4, 9, 16, 25, 36, 49)
D. IntArray(7) { (it + 1)*(it + 1) }

7. What operation can be used to compare arrays for equality element-
wise?

A. deepEquals
B. ==
C. ===
D. contentEquals

Answers
1. A, B
2. C
3. A, D
4. D
5. A, C
6. A, B, C, D
7. D

Questions
1. Explain differences between quoted and non-quoted identifiers.
2. How do you define mutable and immutable variables?
3. What kinds of expressions are supported in Kotlin?
4. Describe Kotlin numeric types and their operations.
5. What operations are supported for Boolean values?
6. Which primitive values can be compared with each other? What are

restrictions of equality operators?
7. Describe string template syntax. What are the differences between

single-line and multi-line string templates?
8. Describe different ways to create arrays in Kotlin.
9. What operations are available on values of array types?

CHAPTER 3
Defining Functions

The central topic of this chapter is the concept of a `function. We’ll learn
the basic function anatomy and address some important issues such as using
named arguments, default values, and vararg-style functions. We’ll also
introduce you to the imperative control structure of the Kotlin language.
We’ll discuss how to implement binary and multiple choice with if and
when statements, discuss various forms of iteration, and error handling.
We’ll see that many of these constructs are very similar to the ones
employed by Java (and, in fact, many other programming languages
supporting an imperative paradigm) and learn the major differences which
will ease migration to Kotlin for developers with Java experience. One
more topic of interest is the structuring of your program with packages
which group related declarations and using import directives for cross-
package references.

Structure
In this chapter, we’ll cover the following topics:

Function definitions
Packages and imports
Conditionals
Loops
Exception handling

Objective
Our aim for this chapter is to get you acquainted with the fundamentals of
imperative programming in Kotlin using conditional, iterative, and error-
handling control structures as well as the means to structure your code
using functions and packages.

Functions
Similar to Java’s methods, a Kotlin function is a reusable block of code
which accepts some input data (called parameters) and may return an output
value to its calling code. In this section, we’ll see how to define functions
and take a look at their anatomy.

Function anatomy
Let’s start with a simple example and define a function which computes an
area of a circle with a given radius:
import kotlin.math.PI

fun circleArea(radius: Double): Double {
return PI*radius*radius

}

fun main() {
print(“Enter radius: “)
val radius = readLine()!!.toDouble()
println(“Circle area: ${circleArea(radius)}”)

}

Note that we’ve used a standard constant PI which denotes an approximate
value of π. The import directive at the start allows us to refer to PI by its
simple name.
Now, let’s look more closely at what makes up the circleArea definition:

The fun keyword (from function) tells a compiler that what follows is
a function definition.
The function name, circleArea, which is like a variable name, can be
an arbitrary identifier.
The comma-separated parameter list enclosed in parentheses tells a
compiler which data can be passed to our function upon its call.

The return type, Double, is a type of value returned to the function caller.
The function body is enclosed in a block {} and describes the
implementation of our function.

Note that parentheses in a function definition and its call are mandatory
even if the function has no parameters:
fun readInt(): Int {

return readLine()!!.toInt()

}

fun main() {

println(readInt())

}

Similar to Java, the function result is specified by the return statement
which also terminates its execution by passing the control back to the caller.
Any code placed after the return statement is effectively “dead”, that is,
never gets executed.
Java vs. Kotlin: As opposed to Java, the unreachable code in Kotlin is not
a compile-time error. The compiler will, however, report a warning, and the
IDE provides highlighting which clearly marks which portion of your code
is “dead” (Figure 3.1):

Figure 3.1: Unreachable code highlighting

In Kotlin, similar to Java, you have a block statement which is basically a
group of statements enclosed in {}. Statements are separated by either a
new line (which is the preferred style) or semicolons and are executed
sequentially.
We’ve already employed blocks when writing a body of the function, but in
fact, they’re used whenever you need to perform multiple statements in a

context which syntactically requires just one – like a body of a loop or a
branch of some conditional statement. Blocks are also used to improve code
readability; for example, a loop body is often enclosed in a block even
when it consists of a single statement.
A block can contain definitions of local variables and functions: the scope
of such declarations is limited to the block itself.
Parameter definition is basically an implicit local variable which is
automatically initialized to the value passed in its call before executing the
body.
Java vs. Kotlin: Unlike Java’s method parameters which are mutable by
default and must be marked with the final modifier to forbid further
changes in the method body, Kotlin parameters are immutable. In other
words, changing the parameter value inside a function body is a
compilation error:
fun increment(n: Int): Int {

return n++ // Error: can’t change immutable variable
}

Note also that marking the parameter with the val or var keyword is
forbidden. The reason behind this is that parameter assignments is
considered error-prone while using parameters as immutable values lead to
more clean and understandable code.
Kotlin follows “call by value” semantics which means that parameter
values are copied from the respective call arguments. In particular, it means
that changes to some variables passed as call arguments, like radius in the
main function above), passed after the method call, do not affect the value
of the parameter inside the called function. However, when the parameter is
a reference – for example, has an array type – what gets copied is only the
reference itself while the data behind it becomes shared between the
function and its caller. So even though parameters themselves can’t change
inside the function, the data they reference in general may be mutable. For
example:
fun increment(a: IntArray): Int {

return ++a[0]
}

fun main() {
val a = intArrayOf(1, 2, 3)

println(increment(a)) // 2

printl(a.contentToString) // [2, 2, 3]

}

Note that unlike variables parameters always have explicit types since a
compiler can’t infer it from the function definition.
The return type, on the contrary, can be inferred given types of function
parameters but still must be specified explicitly. The rationale behind this
decision is that functions often have more than one exit point where their
result is determined and it may be difficult for a programmer to understand
what kind of value is returned just by looking at the function definition. In
this sense, explicit return types serve as a kind of documentation which
immediately tells you about values the function can produce.
This rule, however, has two exceptions which allow you to omit the return
type in some cases. The first one is a function of the so called Unit type
which is a Kotlin counterpart for Java’s void and basically signifies a
function which doesn’t need a meaningful return value. The actual return
value of such a function is a constant Unit which is also the single value of
the built-in Unit type. If you skip the return type in your function
definition, the Kotlin compiler automatically assumes that you’re declaring
a Unit function. In other words, the following definitions are equivalent:
fun prompt(name: String) {

println(“***** Hello, $name! *****”)

}

and

fun prompt(name: String): Unit {
println(“***** Hello, $name! *****”)

}

We’ve already seen such functions through the example of main(). Note
that Unit functions do not need the return statement to specify their result,
since it’s always the same. You can, however, use the return statement to
terminate the function execution before it reaches the end of its body
(return Unit is valid, but redundant in this case).
Another exception is so called expression-body functions. If the function
can be implemented by a single expression, we can drop the return keyword
and braces and write it in the following form:
fun circleArea(radius: Double): Double = PI*radius*radius

This syntax is similar to the one of variable definitions where you specify
the initializing expression after the = symbol. Like variables, expression-
body functions allow you to omit the result type:
fun circleArea(radius: Double) = PI*radius*radius // Double is
inferred

Expression-body functions are considered simple enough to spare the
explicit type specification. But this feature should be used with care:
complex expressions are often worth to be written in a usual block form for
better readability.
Note that if you try placing {} the block after the = sign to define a block-
body function, you’ll get a not quite expected result since the block in such
a position is interpreted as a lambda (basically, a simplified syntax for
anonymous function). In particular, the following definition:
fun circleArea(radius: Double) = { PI*radius*radius }

corresponds to a function which returns another function computing the
circle area for a fixed value of radius, while the definition
fun circleArea(radius: Double) = {

return PI*radius*radius // expected function, but returning

Double

}

will produce a compile-time error due to the type mismatch and the fact that
return, as we’ll see in Chapter 5, Leveraging Advanced Functions and
Functional Programming, is by default forbidden in lambdas.

Trailing commas
Since Kotlin 1.4, it’s possible to leave trailing commas when listing
elements such as arguments in a function call or parameters in a function
header:
fun volume(length: Int, width: Int, height: Int,) =
length*width*height

val numbers = intArrayOf(1, 2, 3, 4, 5,)

The main rationale behind this feature revolves around a multi-line syntax
for expression/declaration lists. For example, in the case of a call such as:
val numbers = intArrayOf(

1,

2,

3,

4,

5,

)

The presence of a trailing comma simplifies swapping individual lines since
you don’t have add/remove commas by hand.
Note that the trailing comma is considered incorrect if it’s not preceded by a
list element. This is demonstrated by the following example:
val names = arrayOf<String>(,) // error
val numbers = intArrayOf(1, 2, 3, ,) // error

This syntax is in fact supported for any list of comma-separated syntactic
elements such as parameters of a class constructor, variables inside a
destructuring declarations, or enum entries. We’ll cover them in the
upcoming chapters.

Positional vs named arguments
By default, call arguments are mapped to parameters by their position. The
first argument corresponds to the first parameter, the second to the second,
and so on. In Kotlin, such arguments are called positional:
fun rectangleArea(width: Double, height: Double): Double {

return width*height

}

fun main() {

val w = readLine()!!.toDouble()

val h = readLine()!!.toDouble()

println(“Rectangle area: ${rectangleArea(w, h)}”)

}

Apart from positional arguments known in Java and many other languages,
Kotlin supports the so called named arguments which are mapped to
parameters by explicit names rather than positions. For example, we could
have written the call to rectangleArea() as follows:
rectangleArea(width = w, height = h)

or even like this:

rectangleArea(height = h, width = w)

With the named argument, the style actual argument order is irrelevant, so
both calls have exactly the same semantics as rectangleArea(w, h).
You can also mix positional and named arguments in the same call. In
Kotlin 1.3 and earlier versions, such a mix was a subject to the following
rule; once you’ve used a named argument in a call, all subsequent
arguments in the same call must also be named. Consider, for example, a
function which swaps two characters in a string (the original string is, of
course, unaffected since the String values are immutable):
fun swap(s: String, from: Int, to: Int): String {

val chars = s.toCharArray() // convert to array
// Swap array elements:

val tmp = chars[from]
chars[from] = chars[to]

chars[to] = tmp

return chars.toString() // Convert back to
}

fun main() {
println(swap(“Hello”, 1, 2)) // Hlelo

println(swap(“Hello”, from = 1, to = 2)) // Hlelo

println(swap(“Hello”, to = 3, from = 0)) // lelHo

println(swap(“Hello”, 1, to = 3)) // Hlleo

println(swap(from = 1, s = “Hello”, to = 2)) // Hlelo

// Incorrect mixing of positional and named arguments

println(swap(s = “Hello”, 1, 2)) // Compilation

error

println(swap(s = “Hello”, 1, to = 2)) // Compilation

error

}

Starting from Kotlin 1.4, this limitation is relaxed. Now, you can mix both
argument kinds in any possible way provided all positional arguments are
placed in the correct order with respect to each other as well as named
arguments. As a result, both of the lines:

println(swap(s = “Hello”, 1, 2))

println(swap(s = “Hello”, 1, to = 2))

from our earlier example are considered valid in Kotlin 1.4 while the
following calls:

println(swap(1, s = “Hello”, 2))

println(swap(1, “Hello”, to = 2))

produce a compilation error due to violation of the order between s and
from.
This improvement becomes quite handy when a call contains multiple
literals so that you can’t immediately guess which parameter they
correspond to just by looking at the call text. Consider the following
example:
fun format(num: Int, radix: Int, pad: Int, prefix: String):
String {

var s = num.toString(radix)
if (pad > 0 && s.length < pad) {

s = “0”.repeat(pad - s.length) + s

}

return prefix + s
}

fun main() {
println(format(255, 16, 8, “0x”))

println(format(13, 2, 8, “0b”))

}

The format() function takes four arguments; three of which are integers. If
you look at a particular call the main() body, you’ll likely guess that the
first argument is a number to be formatted while the last one is a prefix but
still might mistake radix for pad and vice versa. Using 1.4 argument
mixing, you can accompany them with explicit names thus improving your
code readability:
fun main() {

println(format(255, radix = 16, pad = 8, “0x”))

println(format(13, radix = 2, pad = 8, “0b”))

}

IDE Tips: Even when a call argument is written in a positional form, you
can still see the name of a corresponding parameter using the so called inlay
hint. This IntelliJ IDEA feature is automatically enabled for Java and Kotlin
files (although you can switch it off if needed) as shown in Figure 3.2:

Figure 3.2: Inlay hints inside function call

IDE Tips: There is a special intention action that allows you to convert the
positional argument into a named form. To use it, you just need to press Alt
+ Enter on the argument of interest and choose “Add ‘…=’ to argument”
(see Figure 3.3 for example):

Figure 3.3: Adding argument names

Overloading and default values
Kotlin functions, like Java methods, can be overloaded. In other words, you
can define multiple functions sharing the same name. The overloaded
function must have different parameter types so that the compiler can
distinguish them while analyzing a call. For example, the following
definitions comprise a valid overloading:
fun readInt() = readLine()!!.toInt()

fun readInt(radix: Int) = readLine()!!.toInt(radix)

while the following do not since they only differ in return types:
fun plus(a: String, b: String) = a + b
fun plus(a: String, b: String) = a.toInt() + b.toInt()

When choosing the function for a given Kotlin compiler, it follows an
algorithm which is quite similar to the Java overload resolution:

1. Collect all functions which can be called with given arguments
according to the parameter count and types.

2. Remove all less specific functions. A function is less specific if all its
parameter types are supertypes of the corresponding parameters of
some other function in the candidate list. This step is repeated until no
less specific functions remain.

3. If the candidate list is reduced to a single function, it’s considered the
call target, otherwise the compiler reports an error.

Consider the following function definitions:
fun mul(a: Int, b: Int) = a*b // 1
fun mul(a: Int, b: Int, c: Int) = a*b*c // 2
fun mul(s: String, n: Int) = s.repeat(n) // 3
fun mul(o: Any, n: Int) = Array(n) { o } // 4

and the results of the overload resolution for some calls:
mul(1, 2) // Choosing 1 between 1 and 4 since Int is a

subtype of Any

mul(1, 2L) // Error: no overload accepts (Int, Long)

mul(1L, 2) // Choosing 4 as it’s the only acceptable overload

mul(“0”, 3) // Choosing 3 between 3 and 4 since String is a

subtype of Any

If you want to call an overload which is otherwise considered less specific,
you can explicitly cast some argument(s) to their supertypes using the as
operation:
mul(“0” as Any, 3) // Choosing 4 as it’s the only acceptable

overload

We’ll come back to the as operation in Chapter 8, Understanding Class
Hierarchies where we’ll take a closer look at subtyping and inheritance in
Kotlin.
In Java, overloaded methods often perform the same operation and differ
only in the set of their parameters that allows the user to omit one or more
arguments in a function call assuming that they take some default values.
Looking at the pair of the readInt() functions defined at the beginning of
this section, we see that both of them parse the input String into an integer
number with the second one being more general and allowing you to parse
numbers in some range of numeral systems, while the first parses only

decimals. In fact, we could have rewritten the first function in terms of the
second one as follows:
fun readInt() = readInt(10)

In Kotlin, you don’t need to use overloaded functions in such cases. Thanks
to the more elegant solution; you just need to specify default values for
parameters of interest in a similar way to how you specify a variable
initializer:
fun readInt(radix: Int = 10) = readLine()!!.toInt(radix)

Now, you can call this function with either zero or one argument:
val decimalInt = readInt()
val decimalInt2 = readInt(10)
val hexInt = readInt(16)

Note that if some non-default parameters come after default ones, the only
way to call such functions with default parameter(s) omitted is to use
named arguments:
fun restrictToRange(

from: Int = Int.MIN_VALUE,

to: Int = Int.MAX_VALUE,

what: Int

): Int = Math.max(from, Math.min(to, what))

fun main() {
println(restrictToRange(10, what = 1))

}

It is, however, considered a good style to put parameters with default values
at the end of the parameter list.
Default values somewhat complicate the overloading resolution since some
functions may be called with different number of arguments. Consider the
definitions:
fun mul(a: Int, b: Int = 1) = a*b // 1
fun mul(a: Int, b: Long = 1L) = a*b // 2
fun mul(a: Int, b: Int, c: Int = 1) = a*b*c // 3

and the corresponding calls:
mul(10) // Error: can’t choose between 1 and 2

mul(10, 20) // Choosing 1 between 1 and 3 as having fewer

parameters

mul(10, 20, 30) // Choosing 3 as the only acceptable candidate

You can see that function 3 is considered less specific than 2 for the two-
argument call, mul(10, 20) since it basically extends the second signature
by adding a third parameter c. If we, however, change, the first definition
to:
fun mul(a: Number, b: Int = 1) = a*b
mul(10, 20) will resolve to the third function while the second one will be
considered less specific due to Number being a supertype of Int.

Varargs
We’ve already seen several examples of functions like arrayOf() which
accept a variable number of arguments. This feature is also available for
functions you define in your own code. All you need to use it is place the
vararg modifier before the parameter definition:
fun printSorted(vararg items: Int) {

items.sort()

println(items.contentToString())

}

fun main() {
printSorted(6, 2, 10, 1) // [1, 2, 6, 10]

}

Inside the function itself such a parameter is available as an appropriate
array type; for example, in case of our printSorted() it’s IntArray.
You can also pass an actual array instance instead of the variable argument
list prefixing it with a spread operator *:
val numbers = intArrayOf(6, 2, 10, 1)

printSorted(*numbers)

printSorted(numbers) // Error: passing IntArray instead of Int

Note that spread creates an array copy so changes to elements of items
parameter do not affect values of the numbers elements:
fun main() {

val numbers = intArrayOf(6, 2, 10, 1)

printSorted(*numbers) // [1, 2, 6, 10]

println(a.contentToString()) // [6, 2, 10, 1]

}

The copying, however, is shallow. If array elements are themselves
references, copying those references lead to sharing the data between the
function and its caller:
fun change(vararg items: IntArray) {

items[0][0] = 100

}

fun main() {
val a = intArrayOf(1, 2, 3)

val b = intArrayOf(4, 5, 6)

change(a, b)

println(a.contentToString()) // [100, 2, 3]

println(b.contentToString()) // [4, 5, 6]

}

Declaring more than one parameter as vararg is forbidden. Such a
parameter, however, can accept any mix of command-separated ordinary
parameters and spreads; on the call, they are merged into a single array
preserving the original order:
printSorted(6, 1, *intArrayOf(3, 8), 2) // [1, 2, 3, 6, 8]

If the vararg parameter is not the last one, values for parameters coming
after it can only be passed with the named arguments notation. Similar to
default values, it’s considered a good style to place the vararg parameter at
the end of the parameter list. vararg itself can’t be passed as a named
argument unless you’re using the spread operator:
printSorted(items = *intArrayOf(1, 2, 3))
printSorted(items = 1, 2, 3) // Error

Note that parameters having default values do not mix very well with
vararg. Placing defaults before vararg will force first values of the
vararg argument to be interpreted as values of preceding defaults unless
you pass vararg in a named form which defeats the purpose of using
vararg in the first place:
fun printSorted(prefix: String = “”, vararg items: Int) { }
fun main() {

printSorted(6, 2, 10, 1) // Error: 6 is taken as value of

prefix

printSorted(items = *intArrayOf(6, 2, 10, 1)) // Correct

}

Placing defaults after the vararg parameter, on the other hand, will require
you to use the named form for the defaults:
fun printSorted(vararg items: Int, prefix: String = “”) { }
fun main() {

printSorted(6, 2, 10, 1, “!”) // Error: “” is taken as part

of vararg

printSorted(6, 2, 10, 1, prefix = “!”) // Correct

}

varargs also affect overload resolution in a sense that function with vararg
parameter, all other things being equal, is considered less specific than a
function having a fixed number of parameters of the same type:
fun printSorted(vararg items: Int) { } // 1
fun printSorted(a: Int, b: Int, c: Int) { } // 2
fun main() {

printSorted(1, 2, 3) // Choosing 2 between 1 and 2 as non-

vararg function

printSorted(1, 2) // Choosing 1 as the only acceptable

candidate

}

Function scope and visibility
Kotlin functions can be broken down into three categories depending on
where they’re defined:

top-level functions are declared directly in a file.
member functions are declared in some type.
local functions are declared inside another function.

In this chapter, we’ll focus on top-level and local functions while the
member functions are postponed till Chapter 4, Working with Classes and
Objects where we’ll deal with the concept of a Kotlin class.
So far, we’ve only defined top-level functions like main(). By default, these
functions are considered public; in other words, they can be used anywhere
in the project and not just in their enclosing file. Let’s, for example, create
two Kotlin files, main.kt and util.kt in the same directory. We can see

that the main() function defined in the main.kt file calls the readInt()
function defined in util.kt (Figure 3.2a):

Figure 3.2a: Calling public function from another file

In some cases, you might want to hide implementation details from other
parts of your project, thus narrowing the function scope, or the set of places
in code where it can be used. To do that, you may prefix the top-level
function definition with either of the keywords private or internal which
are called visibility modifiers.
Marking a function as private makes it accessible only in the containing
file. For example, if we make readInt() private, we can still use it inside
util.kt, but not from main.kt (Figure 3.3a):

Figure 3.3a: Calling private function from another file

Using the internal modifier allows you to restrict function usages to its
containing module. A Kotlin module is basically a group of files which are
compiled together. Its specific meaning depends on the build system you
use to assemble your project, but in case of IntelliJ IDEA, it corresponds to

a single IDE module. So making a function internal allows you to use from
any other file in the same module, but not from other modules of your
project.
You can also use the public modifier, but that’s considered redundant since
top-level functions are public by default.
A local function, like a local variable, is declared inside another function.
The scope of such a function is limited to the enclosing code block:
fun main() {

fun readInt() = readLine()!!.toInt()

println(readInt() + readInt())

}

fun readIntPair() = intArrayOf(readInt(), readInt()) // Error

Local functions are able to access declarations available in enclosing
functions, including their parameters:
fun main(args: Array<String>) {

fun swap(i: Int, j: Int): String {

val chars = args[0].toCharArray()

val tmp = chars[i]

chars[i] = chars[j]

chars[j] = tmp

return chars.toString()

}

println(swap(0, chars.lastIndex))

}

Note that local functions and variables may not have any visibility
modifiers.
Java vs Kotlin: Java language and JVM in general require all methods to
be members of some class. So, you’re probably wondering how Kotlin top-
level and local functions can be compiled on the JVM platform. In Chapter
1, Kotlin - Powerful and Pragmatic, we’ve already seen that from the JVM
view-point, the top-level main() function is in fact a static member of a
special facade class generated per Kotlin file. For the local functions, the
Kotlin compiler performs a similar trick which involves a declaration of a
special class (you can compare it with a local class in Java) which contains
the local function as its member and captures its context-like variables and
parameters of the enclosing function. Note that this implies some

performance overhead as your program may need to create a new instance
of such a class on every call of the local function. We’ll come back to this
issue in Chapter 5, Leveraging Advanced Functions and Functional
Programming while discussing lambdas.

Packages and imports
A Kotlin package is a way to group-related declaration. Any package has a
name and may be nested into some other package. This concept is very
similar to its Java counterpart, but has its own specifics which we’ll
highlight in the upcoming sections.

Packages and directory structure
Similar to Java, you can specify the package name at the start of a Kotlin
file making the compiler to put all top-level declarations listed in the file
into the corresponding package. If package is not specified, the compiler
assumes that your file belongs to the default root package which has an
empty name.
Package directive starts with a package keyword and contains a dot-
separated list of identifiers comprising qualified name of the package which
is basically a path to the current package in the project’s package hierarchy
starting from the root. For example, the following file:
package foo.bar.util
fun readInt() = readLine()!!.toInt()

belongs to the package util which is contained in the package bar which, in
turn, is contained in the package foo, while the file:
package numberUtil
fun readDouble() = readLine()!!.toDouble()

is put into the package numberUtil which is contained just in the package
hierarchy root.
Multiple files share the same package if they have the same package
directives; in this case, the package will include all contents of these files
combined.
Top-level declarations which comprise a package include types, functions,
and properties. We’ve already acquainted ourselves with a top-level

function definition and will see how to define types and properties in the
upcoming chapter. Within the same package, you can refer to its
declarations using their simple names. This is what we’ve been doing so far
in our examples since all our files were implicitly put into the same root
package. Figure 3.4 shows you a similar example with the non-default
package name:

Figure 3.4: Calling a function from the same package

What if a declaration you want to use belongs to a different package? In this
case, you can still refer to it using its qualified name which is basically a
simple name prefixed with a qualified name of the enclosing package
(Figure 3.5):

Figure 3.5: Using a qualified name to call a function from a different package

In general, this approach is not practical because it produces hard-to-read
code with excessively long names. For that reason, Kotlin provides an
import mechanism. By placing an import directive with a qualified
declaration name once at the beginning of your file, you can refer to it using
a simple name (Figure 3.6).
IDE Tips: The IntelliJ plugin takes care of many tedious operations with
imports. In particular, if you try to use some declaration which is located in
another package but refer to it with a simple name only, IDE will
automatically bring up a popup suggesting to import it from relevant
packages. It also highlights unused imports and allows you to optimize the
entire import list by removing unused ones and sorting remaining directives
with an Optimize Imports command available by the Ctrl + Alt + O
(Command + Alt + O) shortcut.
Note that the package hierarchy is a separate structure inferred purely from
the package directives in the source files. It may coincide with a directory
structure of the source file tree, but that’s not necessary. For example,
source files may reside in the same directory but belong to different
packages and vice versa.
Java vs Kotlin: In Java, on the contrary, the package structure must be a
direct reflection of the source tree directories in the compilation root. Any

mismatch is treated as a compilation error.

Figure 3.6: Using import directive

It is, however, recommended to keep the directory and package structure
matched as it simplifies the navigation between different parts of your
project.
IDE Tips: By default, the IntelliJ plugin enforces the package/directory
matching and displays a warning whenever it’s violated. You’ve probably
noticed that package directives in Figure 3.6 are highlighted. That’s because
the package directives we’ve put do not match the directory paths. By
pressing Alt + Enter within the highlighted area, you can either change the
directive itself, or move the containing file into the corresponding directory.

Using import directives
We’ve already seen how import directives allow you to avoid using
qualified names and simplify your code. In this section, we’ll look more
closely at what kinds of import directives are available in Kotlin and how
they differ from their Java counterparts.

The simplest form that we’ve already seen in the earlier examples allows
you to import some specific declaration by specifying its qualified name:
import java.lang.Math // JDK class
import foo.bar.util.readInt // top-level function

The import directive is not limited to top-level declarations such as classes
or functions. It can also be used to import various member declarations such
as nested classes or enum constants. In Chapter 4, Working with Classes
and Objects, and Chapter 6, Using Special-Case Classes, we’ll address this
issue in more detail.
import kotlin.Int.Companion.MIN_VALUE

fun fromMin(steps: Int) = MIN_VALUE + n // refer to MIN_VALUE

by simple name

Java vs Kotlin: Unlike Java, Kotlin doesn’t have a separate construct
which imports type members similar to Java’s “import static”. All
declarations in Kotlin are imported using the general import directive
syntax.
In some declarations residing in different packages, may have the same
name. What if you need to use them in a single file? Suppose we have two
readInt() functions in packages app.util.foo and app.util.bar,
respectively. Trying to import them both won’t solve the problem:
import app.util.foo.readInt
import app.util.bar.readInt
fun main() {

val n = readInt() // Error: can’t choose between two

variants of readInt()

}

You can always use the qualified name to distinguish between the too, but
Kotlin gives you a better solution which is called an import alias. This
feature allows you to introduce a new name for an imported declaration
which has an effect in the scope of the entire file:
import foo.readInt as fooReadInt
import bar.readInt as barReadInt
fun main() {

val n = fooReadInt()
val m = barReadInt()

}

Another form of an import directive allows you to import all declarations
from a given scope:
import kotlin.math.* // import all declarations from
kotlin.math.package

Note that such “on-demand” import has a lower priority than an import
directive referring to some specific declarations. If we consider our example
with two readInt() functions but change one of the import directives to
on-demand, the specific one takes over:
import app.util.foo.readInt
import app.util.bar.*
fun main() {

val n = readInt() // No ambiguity: resolves to

app.util.foo.readInt

}

Conditionals
Conditional statements allow you to choose one of the two or more actions
depending on the value of some condition. In Kotlin, they are represented
by if and when statements which can be roughly compared to Java’s if and
switch.

Making decisions with if statements
Using the if statement, you can select between two alternatives depending
on the value of some boolean expression. It has the same syntax as a similar
statement in Java:
fun max(a: Int, b: Int): Int {

if (a > b) return a
else return b

}

Basically, it performs the first statement when the condition in parentheses
is true and the second one (else-branch) otherwise. Else-branch may be
absent in which case the statement does nothing if the condition is false.
Each of the two branches may be a block statement which allows you to
execute multiple statements within the same alternative:
fun main(args: Array<String>) {

if (args.isNotEmpty()) {
val message = “Hello, ${args[0]}”

println(message)

} else {

println()

}

}

Note that the condition must be an expression of the Boolean type.
The key difference from the if statement in Java is that Kotlin’s if
statement can also be used as an expression. For example, we could have
written our max function in a simpler form as follows:
fun max(a: Int, b: Int) = if (a > b) a else b

This is also true when one or both of the branches are blocks; in which case
the value of the entire conditional statement coincides with the last
expression in the corresponding block:
fun main() {

val s = readLine()!!

val i = s.indexOf(“/”)

// Split line like 10/3 into 10 and 3 and perform the

division

val result = if (i >= 0) {

val a = s.substring(0, i).toInt()

val b = s.substring(i + 1).toInt()

(a/b).toString()

} else “”

println(result)

}

Note that when if is used as an expression both branches must be present.
The following code won’t compile since it misses an else-branch:
val max = if (a > b) a

Java vs Kotlin: Kotlin doesn’t have the conditional ? operator, which you
might’ve used in Java. This is, however, mostly mitigated by the fact that if
can be used as both a statement and an expression.
Sometimes, it can be helpful to use return in an if expression. The return
statement can be used as an expression of a special type Nothing which

denotes a non-existing value. Basically, if some expression has the Nothing
type, it indicates some break in the sequential control-flow of the program
since such an expression never reaches any definite value. In case of
return, it means termination of the enclosing function. One useful aspect
of the Nothing type is that it’s considered a subtype of every Kotlin type
and thus its expressions may be used in any context where an expression is
expected. Suppose we’re given a qualified package name and want to know
how it would look like if its simple name was changed:
fun renamePackage(fullName: String, newName: String): String {

val i = fullName.indexOf(‘.’)

val prefix = if (i >= 0) fullName.substring(0, i + 1) else

return newName

return prefix + newName

}

fun main() {

println(renamePackage(“foo.bar.old”, “new”)) // foo.bar.new

}

Note that the value of newName in return newName is not the value of the
return expression, but rather a resulting value of the enclosing function. The
return expression itself has no value just like any expression of the type
Nothing. Keep in mind the difference between Unit and Nothing: as
opposed to Nothing, Unit has a single instance which is generally used to
denote the absence of any useful value, rather than an absence of any value
at all.

Ranges, progressions, and in operation
Kotlin includes several built-in types which represent some interval of
ordered values. They are particularly useful for iteration over numeric
ranges using the for loop. In Kotlin, these types are collectively known as
ranges.
The simplest way to construct a range is to use .. operation on numeric
values:
val chars = ‘a’..’h’ // all characters from ‘a’ to ‘h’
val twoDigits = 10..99 // all two-digit integers from 10 to
99

val zero2One = 0.0..1.0 // all floating-point numbers in the
range from 0 to 1

Using the in operation, you can check whether a given value fits into the
range. This is basically equivalent to a pair of comparison:
val num = readLine()!!.toInt()
println(num in 10..99) // num >= 10 && num <= 99

There is also an opposite operation !in which allows you to write
expressions like !(a in b) in a simplified form:
println(num !in 10..99) // !(num in 10.99)

In fact, the .. operation is available for all comparable types, including
numeric, Char, Boolean, and String. Basically, whenever you can use <=
or >=, you can also use .. to construct a range:
println(“def” in “abc”..”xyz”) // true

println(“zzz” in “abc”..”xyz”) // false

Ranges produced by the .. operation are closed which means they include
both start and end points. There is another operation which allows you to
create semi-closed ranges with excluded end points. This operation is only
available for integer types and basically produces a range with a smaller
end point:
val twoDigits = 10 until 100 // same as 10..99, 100 is
excluded

Note that built-in ranges are empty if if their end point is strictly less than
the start one.
println(5 in 5..5) // true

println(5 in 5 until 5) // false

println(5 in 10..1) // false

In general, that’s not true if the comparison on a given type is ill-behaved.
In particular, if it’s not transitive, there is a possibility that x in a..b might
be true even when a > b.
There is also a related concept of progression which is an ordered sequence
of integer or Char values separated by some fixed step. Every range over
these types is an ascending progression with step 1, but progressions in
general give you additional options. For example, you can define the
descending progression using the downTo operation:
println(5 in 10 downTo 1) // true

println(5 in 1 downTo 10) // false: progression is empty

You can also specify a custom progression step:
1..10 step 3 // 1, 4, 7, 10

15 down 9 step 2 // 15, 13, 11, 9

The progression step must be positive, so if you want to construct a
descending sequence, you should use step together with the downTo
operation as seen in the preceding example.
Progression elements are generated by successively adding steps to its
starting point, so if the end point does not actually correspond to one of the
progression values, it’s automatically adjusted to the nearest progression
element:
1..12 step 3 // 1, 4, 7, 10: the same as 1..10 step 3

15 down 8 step 2 // 15, 13, 11, 9: the same as 15 downTo 9

step 2

Using ranges, you can extract a portion of a string or an array. Mind the
difference between the substring() function taking a closed integer range
and the one taking a pair of indices where the end-point is excluded:
“Hello, World”.substring(1..4) // ello

“Hello, World”.substring(1 until 4) // ell

“Hello, World”.substring(1, 4) // ell: like

substring(1 until 4)

IntArray(10) { it*it }.sliceArray(2..5) // 4, 9, 16, 25

IntArray(10) { it*it }.sliceArray(2 until 5) // 4, 9, 16

Range and progression types are defined in the Kotlin standard library as a
set of classes like IntRange, FloatRange, CharProgression,
IntProgression, and so on. You can find an exhaustive list of the classes
together with their functions and properties on the documentation page for
the kotlin.ranges package at
kotlinlang.org/api/latest/jvm/stdlib/kotlin.ranges/. In general, using ranges
instead of comparisons involve a slight overhead since ranges are
dynamically allocated objects. The compiler, however, tries to avoid
creating actual objects when possible. For example, in the following
program, no IntRange instance is created; instead, it just compares 5 with
entered values:
fun main() {

val a = readLine()!!.toInt()

val b = readLine()!!.toInt()

println(5 in a..b)

}

So in terms of performance, it’s equivalent to a pair of comparisons: a <= 5
&& 5 <= b. Another major use case of range/progression optimization is a
for loop.
IDE Tips: The IntelliJ plugin includes a JVM bytecode viewer which can
be useful to explore a low-level semantics of the Kotlin code. To open it,
choose Tools | Kotlin | Show Kotlin Bytecode in the IDE menu. The
viewer updates to reflect the bytecode of the current Kotlin file in the editor
and automatically preselects the portion of bytecode corresponding to the
caret position in the source code.
If you’re not particularly familiar with the JVM bytecode, you can click on
the Decompile button transforming it into a Java code. Note that due to
specifics of bytecode generated by the Kotlin compiler, such a decompiled
code can be formally incorrect, but it still can give you a good
understanding of the original Kotlin code’s inner workings.
Ranges are not the only types supporting the in/!in operation. You can use
for other types describing some kind of container such as strings or arrays:
val numbers = intArrayOf(3, 7, 2, 1)
val text = “Hello!”
println(2 in numbers) // true
println(9 !in numbers) // true
println(4 in numbers) // false
println(‘a’ in text) // false
println(‘H’ in text) // true
println(‘h’ !in text) // true

In terms of precedence, the range operation .. fits between additive and
infix ones while in/!in are placed between infix and comparisons. In other
words, the relevant portion of the table from Chapter 2, Language
Fundamentals, will now look like this:

Additive + - a + b..c - d // (a + b)..(c - d)

Range .. a..b step c // (a..b) step c
a in b..c // a in (b..c)

Infix Named operators a < b or b < c // (a < (b or b)) < c

a == b and b == c c // (a == b) and (b == c)
a in b or a in c c // (a in (b or a)) in c

Named check in !in a < b in c // a < (b in c)
a !in b > c // (a !in b) > c

Comparison < > <= >= a < b == b < c // (a < b) == (b < c)
a < b && b < c // (a < b) && (b < c)

Operations until, downTo, and step have the same precedence as any
other named infix operation (and, or, xor, and so on).

when statements and multiple choice
Since if statements can choose between two options, one way to implement
a multiple choice is combining several if statements into a cascade-like
structure which sequentially checks all conditions of interest. Suppose we
want to convert a decimal number between 0 and to the corresponding
hexadecimal digit:
fun hexDigit(n: Int): Char {

if (n in 0..9) return ‘0’ + n
else if (n in 10..15) return ‘A’ + n – 10
else return ‘?’

}

Kotlin, though, provides you a more concise construct to select among
multiple alternatives which is called a when statement. Using this construct,
you can rewrite the preceding function in the following form:
fun hexDigit(n: Int): Char {

when {
n in 0..9 -> return ‘0’ + n
n in 10..15 -> return ‘A’ + n – 10
else -> return ‘?’

}

}

Basically, the when statement is a block which is preceded by the when
keyword and consists of zero or more branches of the general form
condition -> statement as well as an optional else-branch. The statement
execution proceeds according to the following rule. The program
subsequently evaluates conditions in the order they’re written until it finds

the one which evaluates to true. If such a condition is found, the program
executes the statement-part of the corresponding branch. If all conditions
evaluate to false, the program executes the else-branch (if there is one).
IDE Tips: The IntelliJ plugin provides an intention action for automatic
conversion between nested ifs and when. To access it, press Alt + Enter
with the caret placed in the if/when keyword and choose “Replace ‘if’ with
‘when’” or “Replace ‘when’ with ‘if’” action, respectively.
Similar to if, a when statement can be used as an expression. In this case,
else-branch is mandatory since when should be able to provide some
definite value for each possible case:
fun hexDigit(n: Int) = when {

n in 0..9 -> ‘0’ + n

n in 10..15 -> ‘A’ + n – 10

else -> ‘?’

}

Java vs Kotlin: Kotlin’s when is similar to Java’s switch statement which
can also select multiple options. The crucial difference, however, is that
when allows you to check arbitrary conditions while switch can only
choose among values of a given expression. Besides this, the switch
statement in Java follows the so called fall-through semantics. When some
condition is matched, the program executes its statements as well as
statements in subsequent branches unless the execution is explicitly stopped
by the break statement. Kotlin’s when executes only statements in the
matched branch and never “falls through” the entire when block.
The when statement has another form which is suitable for multiple checks
that involve equality and in operations. Consider the following function:
fun numberDescription(n: Int): String = when {

n == 0 -> “Zero”

n == 1 || n == 2 || n == 3 -> “Small”

n in 4..9 -> “Medium”

n in 10..100 -> “Large”

n !in Int.MIN_VALUE until 0 -> “Negative”

else -> “Huge”

}

Since all conditions of the expression above are either equality, in or !in
operation with the same left operand, n, we can express the same logic by

making n the subject expression of when and rewriting it in the following
form:
fun numberDescription(n: Int, maxLarge: Int = 100): String =

when (n) {

0 -> “Zero”

1, 2, 3 -> “Small”

in 4..9 -> “Medium”

in 10..max -> “Large”

!in Int.MIN_VALUE until 0 -> “Negative”

else -> “Huge”

}

IDE Tips: The IntelliJ plugin can transform one form of the when
expression into another by eliminating and introducing subject expressions
when necessary. You can access these actions by placing the caret on the
when keyword and pressing Alt + Enter; you can then choose a command
depending on the statement form; either “Introduce ... as subject of ‘when’”,
or “Eliminate argument of ‘when’”.
This form of the when statement is distinguished by a subject expression
which is written in parentheses after the when keyword. A branch of such a
statement can start with either in/!in, an arbitrary expression or the else
keyword (there is also is/!is branch which we’ll refer to Chapter 8,
Understanding Class Hierarchies). The execution is similar to the first form
of when:

1. First, the subject expression is evaluated; suppose its value is subj.
2. The program successively evaluates conditions of branches until it

finds the one which is true. The in/!in branch is treated as the
in/!in expression with subj as its left operand, while the free-form
expression e is interpreted as the equality operation subj == e.

3. If such a condition is found, the program executes the corresponding
statement, the else-statement is executed if it’s present.

The subject form allows you to write multiple conditions in a single branch,
separating them by commas (1, 2, 3 -> “Small” branch in the preceding
example). During condition evaluations, these commas are effectively
treated as logical OR (||).

Note that expressions in the branches of the subject when are not
necessarily boolean; they may have an arbitrary type as long as the
corresponding operations (== or in/!in) are applicable.
Java vs Kotlin: Since Java 12, switch has acquired an expression form
which is very similar to the subject form of Kotlin’s when. It, however, has
some limitations. In particular, switch doesn’t support range checks (unlike
in/!in operation in Kotlin) and can be applied only to limited set of types:
integers, enums, and strings. Note also that when branches can use arbitrary
expressions and are not limited to constants.
Since Kotlin 1.3, when statements allow you to bind the subject expression
to a variable using the following syntax:
fun readHexDigit() = when(val n = readLine()!!.toInt()) { //
define n

n in 0..9 -> ‘0’ + n
n in 10..15 -> ‘A’ + n – 10
else -> ‘?’

}

Such a variable can only be used inside the when block and can not be
declared as var.

Loops
Kotlin supports three control structures which repeat the same sequence of
instructions for a given set of data or till some condition is satisfied. while
and do-while loops have the same structure corresponding to Java
statements, and the for loop is very similar to Java’s for-each. All loops in
Kotlin are statements rather than expressions and so do not have any value
as such, only side effects.

while/do-while loop
Suppose we want to compute a sum of integers entered by a user. Let’s
agree that zero will serve as a stop-value after which we cease reading the
input and report the result:
fun main() {

var sum = 0
var num = 0

do {
num = readLine()!!.toInt()

sum += num

} while (num != 0)
println(“Sum: $sum”)

The do-while loop is evaluated according to the following rules:

1. Execute the loop body between do and while keywords.
2. Evaluate the condition coming after the while keyword and if it’s true,

go back to step 1; otherwise proceed to the statement after loop.

Note that the loop body is always executed at least once since the condition
is checked afterwards.
There is another form of loop which also executes its body while the
condition holds true, but checks whether the condition before running
instructions in the body. It means that if the condition is false on entering
the loop, its body will never execute.
Suppose we want to write the program that generates some number and
then asks the user to guess it giving hints if the guess was wrong (like: “too
small” or “too big”) and stop when the guess is right:
import kotlin.random.*
fun main() {

val num = Random.nextInt(1, 101)
var guess = 0
while (guess != num) {

guess = readLine()!!.toInt()

if (guess < num) println(“Too small”)
else if (guess > num) println(“Too big”)

}

println(“Right: it’s $num”)

}

The number is generated using the Random.nextInt() function from the
standard library.
These examples clearly demonstrate that the while/do-while statements in
Kotlin are essentially the same as in Java.

Iterables and for loop
Kotlin for loop allows you to iterate over collection-like values which can
contain or produce multiple elements. We can, for example, use a for loop
to sum array elements:
fun main() {

val a = IntArray(10) { it*it } // 0, 1, 4, 9, 16, …
var sum = 0
for (x in a) {

sum += x

}

println(“Sum: $sum”) // Sum: 285

}

The loop consists of the following three parts:

iteration variable definition (x)
a container expression (a) which produces values to iterate over
a loop body statement ({sum += x}) which is executed on each
iteration

The iteration variable is accessible only inside the loop body and is
automatically assigned a new value at the start of each iteration. Note that a
loop variable is not marked with the val or var keywords like you do with
an ordinary variable and is implicitly immutable. In other words, you can’t
change its value inside the loop body. In the simplest case, the loop variable
definition is a simple identifier. You can specify its type, though, but that’s
rarely needed in practice:
for (x: Int in a) {

sum += x

}

Java vs Kotlin: The Kotlin for loop is quite similar to Java’s for-each
loop which gives you a simple syntax for iteration over any Iterable
instance; be it an array, list, set, or a user-defined type. Kotlin, however,
doesn’t have a counterpart for the ordinary Java for loop which requires
you to explicitly declare, initialize, check, and update an iteration variable.
In Kotlin, such iterations are just special cases of the for loop statement
you’ve seen earlier.

You can use a for loop to iterate over string characters. Let’s, for example,
write our own function which parses a binary string representation of a
positive number to Int:
fun parseIntNumber(s: String, fallback: Int = -1): Int {
var num = 0
if (s.length !in 1..31) return fallback
for (c in s) {
if (c !in ‘0’..’1’) return fallback
num = num*2 + (c - ‘0’)

}

return num
}

When a string in question doesn’t represent a valid number or doesn’t fit
into, the function returns some fallback value.
Java vs Kotlin: In Java, direct iteration on String is not possible, so you
have to use some workaround like iterating over its indices or converting
the string to character array first.
What about ordinary iteration over numeric intervals? For that purpose, you
use a progression we’ve introduced in the previous section. Suppose we
want to double all array elements with even indices:
val a = IntArray(10) { it*it } // 0, 1, 4, 9, 16, ...
for (i in 0..a.lastIndex) { // 0, 1, 2, 3, ...

if (i % 2 == 0) { // 0, 2, 4, 6, ...

a[i] *= 2

}

}

We can simplify this loop even further using the progression with the
custom step:
for (i in 0..a.lastIndex step 2) { // 0, 2, 4, 6, ...

a[i] *= 2

}

Strings and arrays have the indices property which contains a range of
character or item indices:
val a = IntArray(10) { it*it } // 0, 1, 4, 9, 16, ...
for (i in a.indices step 2) { // 0, 2, 4, 6, ...

a[i] *= 2

}

The real beauty of the for loop comes from the fact that the compiler
doesn’t just support some limited set of disparate use cases like numeric
ranges or collections, etc., but provides a unified mechanism which allows
you to iterate over all kinds of values. The only thing required of the
container expression is the iterator() function which returns an Iterator
object capable of extracting element values. We’ll postpone detailed
discussions of iterators till Chapter 7, Exploring Collections and I/O, but
for now, it suffices to know that many standard Kotlin types already have
built-in iterators. That’s why for loops work just as well for progressions,
arrays, and strings. As we’ll see further, using an extension mechanism
allows you to attach an iterator to any type you like, thus extending the
range of possible expressions to iterate.
Java vs Kotlin: Java for-each loop is similar in a sense that it can be
applied to any subtype of Iterable. Kotlin for loop convention is more
flexible, though, as it doesn’t require a container to be of any particular
type; all a for loop needs is the presence of the iterator() function.

Changing loop control-flow: break and continue
Sometimes, it’s convenient to alter an ordinary control-flow of the loop; for
example, it may be convenient to check an exit condition not at the start or
end of a loop iteration, but somewhere in the middle. For that purpose,
Kotlin includes a pair of expressions:

break which immediately terminates iterating, forcing the execution to
continue from the next statement after the loop.
continue which stops the current iteration and jumps to the condition
check.

In other words, these statements have the same semantics as their Java
counterparts. Consider, for example, our “Guess the number” program. We
could have used a break statement to write it like this:
import kotlin.random.*
fun main() {

val num = Random.nextInt(1, 101)
while (true) {

val guess = readLine()!!.toInt()
if (guess < num) println(“Too small”)
else if (guess > num) println(“Too big”)
else break

}

println(“Right: it’s $num”)

}

Note that the loop condition became unnecessary since all exit checks now
happen in its body. Thanks to that we can also move the guess variable into
the loop.
Java vs Kotlin: Like return, break, and continue statements in Kotlin
can be used as expressions of the type Nothing. We could, for example,
have rewritten the preceding program to calculate the message text before
printing:
import kotlin.random.*

fun main() {
val num = Random.nextInt(1, 101)
while (true) {

val guess = readLine()!!.toInt()
val message =
if (guess < num) “Too small”
else if (guess > num) “Too big”

else break

println(message)

}

println(“Right: it’s $num”)

}

This feature shouldn’t be abused, though, as in more complex expressions,
it might in fact hinder the understanding of your code.
Suppose that we want to count a number of times each English letter occurs
in a given string. In the following example, we use a continue expression
to stop the current iteration when a character is not a letter before trying to
access an array:
fun countLetters(text: String): IntArray {

val counts = IntArray(‘z’ - ‘a’ + 1)
for (char in text) {

val charLower = char.toLowerCase()
if (charLower !in ‘a’..’z’) continue
counts[charLower - ‘a’]++

}

return counts

}

Java vs Kotlin: In Java, a break is also used to stop the execution of the
remaining branches in a switch statement. Since when expressions don’t
follow a fall-through semantics, break statements do not serve the same
purpose in Kotlin.
In the pre-1.4 Kotlin version, using simple break or continue expressions
inside when was prohibited; the intention being to protect developers from
potentially confusing code, especially when migrating to Kotlin from a Java
codebase. On top of that continue was reserved for an optional fallback
semantics to be implemented in some further language version. If would
have replaced the if cascade from our “Guess the number” game with a
single when expression, the compiler would have reported an error:
val message = when {

guess < num -> “Too small”

guess > num -> “Too big”

else -> break // Error
}

The workaround was to employ a labeled break/continue which is
generally used with nested loop statements that we’ll cover in the next
section.
Since 1.4, this restriction has been lifted and now both break and continue
can be used freely inside when expressions as shown in Figure 3.7:

Figure 3.7: Using break inside when-expression

The fallback semantics mirroring that of Java switch statement currently
remains a matter of further language design.

Nested loops and labels
When using nested loop statements, simple break/continue expressions
that we’ve seen in the previous section are always applied to the nearest
enclosing loop. In some cases, you might want them to affect the control-
flow of the outer loop. To do that, Kotlin provides a statement labeling
which is similar to Java’s albeit with a slightly different syntax.
Suppose we want to write a function which searches a given subarray in an
array of integer similar to how indexOf() does for strings:
fun indexOf(subarray: IntArray, array: IntArray): Int {

outerLoop@ for (i in array.indices) {
for (j in subarray.indices) {
if (subarray[j] != array[i + j]) continue@outerLoop

}

return i
}

return -1
}

Here, we attach the label to the outer loop and use continue@outerLoop to
terminate the current iteration of the outer loop which looks for subarray
offset as soon we see the first mismatch between subarray and array
elements. At this point, we know that it makes no sense to check the

remaining subarray items and the search must continue starting from the
next offset.
In Kotlin, you can attach the label to any statement, but break and
continue specifically require those labels to be attached to the loop. If it’s
not the case, the compiler reports an error. The label name as that of the
variable or function can be an arbitrary identifier.
Java vs Kotlin: Note the syntactic difference between the label definition
and usage in Kotlin and Java:
loop@ while(true) break@loop // Kotlin
loop: while(true) break loop // Java

Labeling, among others, allows you to use break/continue inside when
expressions which are in turn nested into a loop body. Thanks to that we can
write the “Guess the number” program from the previous section as
follows:
import kotlin.random.*
fun main() {

val num = Random.nextInt(1, 101)
loop@ while (true) {

val guess = readLine()!!.toInt()
val message = when {
guess < num -> “Too small”

guess > num -> “Too big”

else -> break@loop // Correct
}

println(message)

}

println(“Right: it’s $num”)

}

Tail-recursive functions
Kotlin supports an optimized compilation for the so-called tail-recursive
functions. Suppose we want to write a function that implements a binary
search in an integer array. Assuming that the array is pre-sorted in the
ascending order, let’s write this search in a recursive form:
tailrec fun binIndexOf(

x: Int,

array: IntArray,

from: Int = 0,

to: Int = array.size

): Int {

if (from == to) return -1
val midIndex = (from + to - 1) / 2
val mid = array[midIndex]
return when {

mid < x -> binIndexOf(x, array, midIndex + 1, to)

mid > x -> binIndexOf(x, array, from, midIndex)

else -> midIndex
}

}

This definition concisely expresses an algorithm idea, but in general has a
performance overhead and risks stack overflow compared to the more
cumbersome non-recursive version. In Kotlin, however, you can tell a
compiler to automatically translate a tail-recursive function into non-
recursive code by adding the tailrec modifier. As a result, you get the best
of both worlds: a concise recursive function with no extra performance
penalties. The preceding function, in particular, would be equivalent to the
code:
fun binIndexOf(

x: Int,

array: IntArray,

from: Int = 0,

to: Int = array.size

): Int {

var fromIndex = from
var toIndex = to
while (true) {

if (fromIndex == toIndex) return -1
val midIndex = (fromIndex + toIndex - 1) / 2
val mid = array[midIndex]
when {
mid < x -> fromIndex = midIndex + 1

mid > x -> toIndex = midIndex

else -> return midIndex

}

}

}

To be eligible for such a transformation, the function must not perform any
action after a recursive call. That’s the meaning behind tail-recursive. If this
requirement is not satisfied but the function is still marked as tailrec, the
compiler will issue a warning and the function will be compiled as a
recursive one. For example, the following summation function is not tail-
recursive because the sum(array, from + 1, to) call is followed by
addition:
tailrec fun sum(array: IntArray, from: Int = 0, to: Int =
array.size): Int {

// Warning: not a tail-recursive call

return if (from < to) return array[from] + sum(array, from +
1, to) else 0

}

The compiler will also report a warning if the function is marked as
tailrec but contains no recursive calls:
tailrec fun sum(a: Int, b: Int): Int {

return a + b // Warning: no tail-recursive calls
}

Exception handling
Exception handling in Kotlin is very similar to Java’s approach. A
function may terminate either normally which means that it returns some
value – possibly a trivial one of type Unit – or abnormally by throwing an
exception object when some error occurs. In the latter case, an exception
can be either caught and handled by its caller or propagated further up the
call stack. Let’s now consider exception-related control structures.

Throwing an exception
To signal an error condition, you can use a throw expression with an
exception object just like in Java. Let’s revise our earlier parseIntNumber()
function to throw an exception when its input is ill-formed rather than
return some fallback value:

fun parseIntNumber(s: String): Int {
var num = 0
if (s.length !in 1..31) throw NumberFormatException(“Not a
number: $s”)

for (c in s) {
if (c !in ‘0’..’1’) throw NumberFormatException(“Not a
number: $s”)

num = num*2 + (c - ‘0’)

}

return num
}

Java vs Kotlin: Unlike Java, creating a class instance (in this case, it’s an
exception) doesn’t require any special keywords like Java’s new. In Kotlin,
a constructor invocation NumberFormatException(“Not a number: $s”)
looks like an ordinary function call.
When an exception is thrown, the following actions are taken:

1. The program looks for an exception handler which can catch a given
exception. If such a handler is found, it gains a control.

2. Is no handler is found in the current function, its execution is
terminated, the function is popped out the stack, and the whole search
is repeated in the context of its caller (if any). We can say that
exception is propagated to the caller.

3. If the exception propagates uncaught to the entry point, the current
thread gets terminated.

You can see that exception handling steps in Kotlin are basically the same
as in Java.
Java vs Kotlin: In Kotlin, throw is an expression of type Nothing like
break and continue we’ve seen in one of the earlier sections. For example:
fun sayHello(name: String) {

val message =
if (name.isNotEmpty()) “Hello, $name”
else throw IllegalArgumentException(“Empty name”)

println(message)

}

Handling errors with try statements
To handle an exception in Kotlin, you can use a try statement which has
essentially the same syntax as in Java. Consider the following function
which returns some default value when it can’t parse an input string to a
number:
import java.lang.NumberFormatException

fun readInt(default: Int): Int {
try {

return readLine()!!.toInt()
} catch (e: NumberFormatException) {

return default
}

}

The code which may throw an exception (in our case, it’s toInt() call) is
wrapped in the try block. The first form of the try statement also includes
at least one catch block which handles an exception of the appropriate type
(for example, NumberFormatException). The exception to handle is
represented by the exception parameter which you can use anywhere inside
the catch block. When the code inside the try block throws some
exception, its execution terminates and the program chooses the first catch
block which is able to handle it; if no such block is found, the exception
propagates.
Java vs Kotlin: In Java 7 or later, a single catch block can handle multiple
exceptions using the syntax of the sort: catch (FooException |
BarException e) {}. In Kotlin, such handlers are not supported yet.
Since catch blocks are checked in order of their declaration, placing a
block which can handle some exception type before a block which can
handle one of its supertype is useless since any exception of that subtype
will be caught by the preceding block. For example, since
NumberFormatException is a subtype of Exception, the second catch
block in the following function is effectively “dead”:
import java.lang.NumberFormatException

fun readInt(default: Int): Int {
try {

return readLine()!!.toInt()

} catch (e: Exception) {
return 0

} catch (e: NumberFormatException) {
return default // dead code

}

}

Java vs Kotlin: Note that in Java, a similar statement will produce a
compile-time error since Java explicitly forbids such kind of unreachable
code.
The major difference between try statements in Java and Kotlin is that
Kotlin’s try can be used as an expression. The value of such an expression
is either the value of the try block (if no exceptions are thrown), or the
value of a catch block which manages to handle an exception:
import java.lang.NumberFormatException

fun readInt(default: Int) = try {
readLine()!!.toInt()

} catch (e: NumberFormatException) {
default

}

Java vs Kotlin: Unlike Java, Kotlin doesn’t distinguish between checked
and unchecked exceptions. The rationale is that in large projects that require
explicit specification of possible exceptions in fact decrease the
productivity and produce excessive boilerplate code.
Another form of the try statement uses the finally block which allows
you to perform some actions just before the program leaves the try block:
import java.lang.NumberFormatException
fun readInt(default: Int) = try {

readLine()!!.toInt()

} finally {
println(“Error”)

}

This block is useful to clean up some resources which might have been
allocated before/in the try block; for example, to close a file or network
connection. You may also use the catch and finally blocks within a single
try statement.

Note that the value of the finally block doesn’t affect the value of the
entire try statement when it’s used as an expression.
Java vs Kotlin: You’re probably familiar with a try-with-resources
statement which is introduced in Java 7 and allows you to perform
automatic cleanup of resources like file streams and network connections.
Although Kotlin doesn’t have a special construct for that purpose, it does
provide the library function use() which solves the same task. We’ll look
at it more closely in Chapter 7, Exploring Collections and I/O.

Conclusion
Let us summarize what we’ve done in this chapter. We acquired the
knowledge of fundamental control structures which constitute the
algorithmic basis of imperative programming. We learned how to define
and use functions facilitating the reuse of common pieces of program code.
Finally, we discussed how to structure your program by grouping related
functions into packages. Now, you have all the necessary knowledge for
exploiting imperative and procedural paradigms within the Kotlin language.
In the next chapter, we will move towards object-oriented programming.
We’ll look at how to define classes and objects, get an understanding of
class initialization, and learn to declare and use properties.

Points to remember
1. When calling a function, you can choose between positional and

named arguments or combine them.
2. Function parameters may have default values that you can omit in

calls.
3. Functions with variable number of arguments can be introduced with

the vararg modifier.
4. Kotlin functions may be local.
5. Kotlin has a built-in support for tail-recursive functions.
6. Package hierarchy in Kotlin is independent from the directory

structure.

7. Most control flow statements (except loops) can be used as
expressions.

Multiple choice questions
1. Given the function definition below, choose correct ways to call it in

Kotlincode:
fun foo(a: Int, b: Int, c: Int = 1) {}

A. foo(1, 2)
B. foo(b = 1, 2, 3)
C. foo(a = 1, c = 2, 3)
D. foo(a = 1, 2)

2. Which of the following is a/are valid function definition(s)?

A. fun foo(vararg n: Int) {}
B. fun foo(a: Int, vararg n: Int) {}
C. fun foo(vararg n: Int, a: Int) {}
D. fun foo(vararg a: Int, vararg n: Int) {}

3. Choose valid statements about relations between ranges and
progressions.

A. Every range is a progression
B. Progressions are supported only for integers and chars
C. Ranges always include both endpoints
D. Progressions always include both endpoints

4. Which statement can be used to prematurely exit from a when-branch?

A. break
B. continue
C. return
D. throw

5. Which operations can be used in a when-statement with subject
expression?

A. equality
B. inequality (!=)
C. comparisons (<, >, <=, >=)
D. in/!in

6. Which of the following can be iterated over using the for-loop?

A. Arrays
B. Strings
C. Ranges
D. Progressions

7. Which exceptions are considered unchecked in Kotlin?

A. Only descendants of RuntimeException or Error
B. Only descendants of RuntimeException
C. All descendants of Exception
D. All descendants of Throwable

Answers
1. A, D
2. A, B, C
3. A, C
4. C, D
5. A, D
6. A, B, C, D
7. D

Questions
1. Explain the difference between positional and named arguments.
2. Describe the semantics of default values in function arguments.
3. How do you define a function with a variable number of arguments?

What vararg restrictions are imposed by Kotlin?

4. What is package hierarchy? Explain how one can refer to declarations
from another package.

5. What are import aliases? Give an example of how they can be used to
resolve ambiguities.

6. Explain difference between ranges and progressions.
7. Describe the syntax of when-expressions. What is a subject

expression?
8. Compare various kinds of loop statements in Kotlin.
9. Explain the behavior of break/continue.

10. What’s the purpose of the tailrec modifier?
11. Explain the basics of exception handling. Does Kotlin have checked

exceptions?

Key terms
1. Positional argument: An argument identified by its index in a call

argument list.
2. Named argument: An argument identified by its explicit name in an

argument list.
3. Default value: An expression whose value is passed to the function

when the corresponding argument is omitted in a call.
4. Vararg-function: A function with a parameter that can take an arbitrary

number of arguments.
5. Local function: A function defined inside another function body.
6. Import alias: An optional part of the import directive that allows you

to refer to imported declaration using specified, rather than its own,
name.

7. Range: An object representing a closed interval of numeric/char
values.

8. Progression: An object representing a sequence of evenly spaced
integer/char values.

CHAPTER 4
Working with Classes and Objects

In this chapter, we will get a taste of object-oriented programming in Kotlin
and see how to define our own types using classes. We’ll address major
topics such as initialization of class instances, using visibility for hiding
implementation details, implementing singletons with object declarations,
and utilizing different kinds of properties for various effects beyond a
simple storage of data: lazy computations, deferred initialization, custom
read/write behavior, etc. In this chapter, you’ll also get to know a concept of
a nullable type that allows the Kotlin compiler to distinguish between
values which can be null and those which cannot.

Structure
In this chapter, we will cover the following topics:

Defining a class
Nullability
Properties: beyond simple variables
Objects and companions

Objectives
By the end of the chapter, the reader will be introduced to the basics of
object-oriented programming in Kotlin using classes and objects, handle
nullable values, and get an understanding of how to use different varieties
of properties.

Defining a class
A class declaration introduces a new type with a custom set of operations.
The readers familiar with Java or some other object-oriented programming
language such as C++ will surely find class declaration familiar. In this

section, we will discuss a basic class structure, initialization of newly
allocated instances, the issue of visibility, and special kinds of classes
declared inside other classes or function bodies.
By default, a class declaration defines a referential type: in other words, the
values of such type are references pointing to actual data of a particular
class instance. Similarly, Java instances themselves are created explicitly
with a special constructor call and freed automatically by a garbage
collector after the program loses all references to them. Kotlin 1.3 had
introduced a concept of an inline class which allows you to define non-
referential types as well. We will address this topic in Chapter 6, Using
Special-Case Classes.

A class anatomy
Similarly to Java, a class is defined using a class keyword with a name
followed by a class body which is a block containing definitions of
members. Let’s define a class which holds some information about a
person:
class Person {

var firstName: String = “”

var familyName: String = “”

var age: Int = 0

fun fullName() = “$firstName $familyName”

fun showMe() {

println(“${fullName()}: $age”)

}

}

This definition tells us that every instance of the Person class will have
properties firstName, familyName, age, and two functions fullName()
and showMe(). The simplest property variety is basically a variable
associated with a particular class instance. You can compare it with a class
field in Java. In more general cases, a property may involve arbitrary
computations. Their values may be generated on-the-fly rather than stored
in a class instance, or computed lazily, taken from a map, and so on. The
common feature of all properties is a reference syntax which allows us to
use them like a variable:

fun showAge(p: Person) = println(p.age) // reading from a
property

fun readAge(p: Person) {
p.age = readLine()!!.toInt() // assignment to a property

}

Note that since the property is associated with a particular class instance,
we have to qualify it with an expression (like p in the preceding code). It’s
called a receiver and signifies an instance which you can use to access a
property. The same also goes for member functions which are often called
methods:
fun showFullName(p: Person) = println(p.fullname()) // calling
a method

The receiver can be thought of as an additional variable available for all
class members. Inside a class, you can refer to it using the this expression.
In most cases, it’s assumed by default, so you don’t have to write it
explicitly to access members of the same class. For example, our first
example could have been written as follows:
class Person {

var firstName: String = “”
var familyName: String = “”
var age: Int = 0
fun fullName() = “${this.firstName} ${this.familyName}”
fun showMe() {

println(“${this.fullName()}: ${this.age}”)

}

}

Sometimes, though, this is necessary; for example, you can use to
distinguish between a class property and a methods parameter with the
same name:
class Person {

var firstName: String = “”
var familyName: String = “”
fun setName(firstName: String, familyName: String) {

this.firstName = firstName
this.familyName = familyName

}

}

Java vs. Kotlin: Unlike Java’s fields, Kotlin properties do not violate
encapsulation since you’re free to change their implementation; for
example, add a custom getter or setter – without the need to change the
client code. In other words, the firstName reference remains valid
regardless of how the property is implemented. In the following section,
we’ll see how such custom properties are defined.
Note that the underlying field used by the property is always encapsulated
and can’t be accessed outside the class definition and in fact, outside the
property definition itself.
A class instance must be explicitly created before you can access its
method. This is accomplished by a constructor call which has a form of an
ordinary function call. The difference is that you can use a class name
instead of a function’s:
fun main() {

val person = Person() // Create a Person instance
person.firstName = “John”

person.familyName = “Doe”

person.age = 25

person.showMe() // John Doe: 25

}

When you use a constructor call, the program first allocates a heap memory
for a new instance and then executes a constructor code which initializes an
instance state. In the preceding example, we were relying on a default
constructor which doesn’t take any parameters; hence, no arguments in a
constructor call. In the next section, we’ll see how to define custom
constructors which allows running your own initialization code.
Kotlin classes are public by default which means they can be used in any
part of your code. Similar to top-level functions, you may also mark top-
level classes as private or internal limiting their visibility scope to the
containing file or compilation module, respectively.
Java vs. Kotlin: In Java, on the contrary, class visibility is by default
limited to the containing package. You have to mark its definition with the
explicit public modifier to make it visible everywhere.

Note also that in Kotlin, you don’t need to name your source file exactly as
a public class it contains. You may also define multiple public classes in a
single file. If a file contains exactly one class, though, the file and the class
usually do have the same name, but in Kotlin, it’s more like a matter of
code style than a strict requirement (as opposed to Java).
Class properties may be immutable just like local variables. In such cases,
however, we need a way to provide some actual values for them during
initialization lest all instances get stuck with the same values, as shown in
the following code:
class Person {

// all instances will have the same value of firstName

val firstName = “John”
}

This may be accomplished by using a custom constructor which brings us
to the next topic.

Constructors
A constructor is a special function which initializes a class instance and is
invoked upon its creation. Consider the following class:
class Person(firstName: String, familyName: String) {

val fullName = “$firstName $familyName”
}

Note the parameter list we’ve added after the class keyword. These
parameters are passed to the class when the program creates its instance and
can be used to initialize properties and perform some other work:
fun main() {

val person = Person(“John”, “Doe”) // Create new Person
instance

println(person.fullName) // John Doe

}

Java vs. Kotlin: Note that Kotlin doesn’t use a special keyword (like Java’s
new) to denote a constructor call.
The parameter list in the class header is called a primary constructor
declaration. The primary constructor doesn’t have a single body like a
function; instead, its body consists of property initializers as well as

initialization blocks taken in the order they appear in the class body. The
initialization block is a block statement prefixed with the init keyword.
Such blocks can be used for non-trivial initialization logic which you need
on class instantiation. For example, the following class will print a message
each time its primary constructor is called:
class Person(firstName: String, familyName: String) {

val fullName = “$firstName $familyName”
init {

println(“Created new Person instance: $fullName”)

}

}

A class may contain multiple init blocks. In that case, they are executed
sequentially together with property initializers.
Note that the initialization block may not contain the return statements:
class Person(firstName: String, familyName: String) {

val fullName = “$firstName $familyName”
init {

if (firstName.isEmpty() && familyName.isEmpty()) return
// Error

println(“Created new Person instance: $fullName”)

}

}

So far we’ve always specified a property initial value in its initializer. In
some cases, though, you may need more complex initialization logic which
can’t be fit into a single expression. For that reason, Kotlin permits to
initialize properties inside the init blocks:
class Person(fullName: String) {

val firstName: String
val familyName: String
init {

val names = fullName.split(“ ”)
if (names.size != 2) {
throw IllegalArgumentException(“Invalid name:
$fullName”)

}

firstName = names[0]

familyName = names[1]

}

}

fun main() {
val person = Person(“John Doe”)
println(person.firstName) // John

}

In the preceding example, the init block splits fullName into an array of
space-separated substrings and then uses them to initialize the firstName
and familyName properties.
The compiler ensures that every property is definitely initialized. If it can’t
guarantee that every execution path in the primary constructor either entails
initialization of all member properties or throws an exception, you get a
compilation error:
class Person(fullName: String) {

// Error: properties may be uninitialized

val firstName: String
val familyName: String
init {

val names = fullName.split(“ ”)
if (names.size == 2) {
firstName = names[0]

familyName = names[1]

}

}

}
Primary constructor parameters may not be used outside property
initializers and init blocks. For example, the following code is wrong since
firstName is not available inside the member function:
class Person(firstName: String, familyName: String) {

val fullName = “$firstName $familyName”
fun printFirstName() {

println(firstName) // Error: first name is not available

here

}

}

A possible solution would be to add member properties holding values of
constructor parameters:
class Person(firstName: String, familyName: String) {

val firstName = firstName // firstName refers to constructor
parameter

val fullName = “$firstName $familyName”
fun printFirstName() {

println(firstName) // Ok: firstName refers to member

property here

}

}

Kotlin, however, provides out-of-the-box solution which allows you to
combine the property and constructor parameter in a single definition:
class Person(val firstName: String, familyName: String) {

val fullName = “$firstName $familyName” // firstName refers
to parameter

fun printFirstName() {
println(firstName) // firstName refers to member property

}

}

fun main() {
val person = Person(“John”, “Doe”)
println(person.firstName) // firstName refers to property

}

Basically, when you mark the primary constructor parameter with the val or
var keyword, you also define a property which is automatically initialized
with a parameter value. When you refer to such a definition in a property
initializer or the init block, it means the constructor parameter; in any
other context, it’s a property.
IDE Tips: The IntelliJ plugin can detect the code when you initialize the
member property by the value of the constructor parameter and convert it to
the val/var parameter (as shown in Figure 4.1):

Figure 4.1: Converting property to val/var parameter

Note that using the val/var parameters, you can define a class which
possesses non-trivial members but has an empty body:
class Person(val firstName: String, val familyName: String =

“”) {

}

In such cases, Kotlin allows you to omit the body entirely. In fact, that’s a
recommended code style enforced by the IntelliJ plugin:
class Person(val firstName: String, val familyName: String =
“”)

Similar to functions, you can use default values and vararg for constructor
parameters:
class Person(val firstName: String, val familyName: String =
“”) {

fun fullName() = “$firstName $familyName”
}

class Room(vararg val persons: Person) {
fun showNames() {
for (person in persons) println(person.fullName())

}

}

fun main() {
val room = Room(

Person(“John”),

Person(“Jane”, “Smith”)

)

room.showNames()

}

In some cases, you need to provide multiple constructors which initialize a
class instance in different ways. Many of them are covered by a single
primary constructor with default parameters, but sometimes, that’s not
enough. In Kotlin, this problem can be solved by secondary constructors.
The secondary constructor syntax is similar to that of a function definition
with the constructor keyword in place of a function name:
class Person {

val firstName: String
val familyName: String
constructor(firstName: String, familyName: String) {

this.firstName = firstName
this.familyName = familyName

}

constructor(fullName: String) {
val names = fullName.split(“ ”)
if (names.size != 2) {
throw IllegalArgumentException(“Invalid name:
$fullName”)

}

firstName = names[0]

familyName = names[1]

}

}

Although a secondary constructor can’t be given a return type, it has a form
of an effectively Unit-typed function. In particular, you can use return
statements inside its body (as opposed to the init blocks).
If the class doesn’t have a primary constructor, then every secondary
constructor invokes the property initializers and init blocks before
executing its own body. This ensures that the common initialization code
runs exactly once on class instantiation regardless of which secondary
constructor is called.
An alternative option is to make a secondary constructor call another
secondary constructor using a constructor delegation call:
class Person {

val fullName: String
constructor(firstName: String, familyName: String):

this(“$firstName $familyName”)
constructor(fullName: String) {
this.fullName = fullName

}

}

A constructor delegation call is written after the colon (:) separating it from
the constructor parameter list and looks like an ordinary call with the
keyword this in place of the function name.
When a class has a primary constructor, all secondary constructors (if any)
must delegate either to it, or to some other secondary constructor. We can,
for example, turn one secondary constructor from our example to a primary
one:
class Person(val fullName: String) {

constructor(firstName: String, familyName: String):
this(“$firstName $familyName”)

}

Note that secondary constructors may not declare property-parameters
using the val/var keywords:
class Person {

constructor(val fullName: String) // Error
}

There is also a separate issue of using secondary constructors in
combination with the class inheritance to call superclass constructors. We’ll
deal with it in Chapter 8, Understanding Class Hierarchies.

Member visibility
Class members may have different visibility which determines their usage
scope. This is a major part of class definition since visibilities allow you to
enforce encapsulation of implementation-specific details effectively hiding
them from the outside code. In Kotlin, a class member visibility is
represented by one of the following modifier keywords:

public: A member may be used anywhere; this is assumed by default,
so usually there is no need to use the public keyword explicitly.

internal: A member is accessible only within the compilation
module containing its class.
protected: A member is accessible within the containing class and all
of its subclasses; we’ll postpone the detailed discussion of this case till
Chapter 8, Understanding Class Hierarchies which deals with class
inheritance;
private: A member is accessible only within the containing class
body.

The meaning of these modifiers is in fact quite similar to the ones we’ve
seen for top-level functions and properties.
Java vs. Kotlin: In Java, the default visibility is package-private which
means that a member is accessible anywhere within the containing package.
If you want a member to be public, you have to explicitly mark it with the
public modifier. In Kotlin, on the other hand, class members (and, in fact,
all non-local declarations) are public by default. Note also that currently
Kotlin doesn’t have a direct counterpart for Java’s package-private
visibility.
In the preceding code, the properties firstName and familyName are
declared as private and thus inaccessible to the main() function. The
fullName() function, on the other hand, is public:
class Person(private val firstName: String, private val
familyName: String) {

fun fullName() = “$firstName $familyName”

}

fun main() {

val person = Person(“John”, “Doe”)

println(person.firstName) // Error: firstName is not

accessible here

println(person.fullName()) // Ok

}

The visibility modifiers are supported for functions, properties – both
declared in the class body and as primary constructor parameters – as well
as primary and secondary constructors. If you want to specify visibility for
a primary constructor, you have to also add the explicit constructor
keyword:

class Empty private constructor() {

fun showMe() = println(“Empty”)

}

fun main() {

Empty().showMe() // Error: can’t invoke private constructor

}

Note that the class Empty can’t be instantiated since its only constructor is
private and so it is not available outside the class body. In the ‘Objects’
section, we’ll see how constructor hiding can be used together with so
called companion objects to create factory methods.

Nested classes
Apart from functions, properties, and constructors, Kotlin classes may
include other classes as its members. Such classes are called nested. Let’s
consider the following example:
class Person (val id: Id, val age: Int) {

class Id(val firstName: String, val familyName: String)
fun showMe() = println(“${id.firstName} ${id.familyName},
$age”)

}

fun main() {
val id = Person.Id(“John”, “Doe”)
val person = Person(id, 25)
person.showMe()

}

Note that outside the containing class body, references to nested classes
must be prefixed with the outer class name, like Person.Id in the preceding
code.
Like other members, nested classes may have different visibilities. Being
members of their containing class, they may also access its private
declarations:
class Person (private val id: Id, private val age: Int) {

class Id(private val firstName: String, private val

familyName: String) {

fun nameSake(person: Person) = person.id.firstName ==

firstName

}

fun showMe() = println(“${id.firstName} ${id.familyName},

$age”)

}

Java vs. Kotlin: Unlike Java, the outer class may not access private
members of its nested classes.
The nested class may be marked as inner to be able to access the current
instance of its outer class:
class Person(val firstName: String, val familyName: String) {

inner class Possession(val description: String) {

fun showOwner() = println(fullName())

}

fun fullName() = “$firstName $familyName”

}

fun main() {

val person = Person(“John”, “Doe”)

val wallet = person.Possession(“Wallet”) // Possession

constructor call

wallet.showOwner() // John Doe

}

Note how the call of the inner class constructor is qualified with an outer
class instance: person.Possession(“Wallet”). Similar to other member
references, qualification may be omitted if the instance in question is this:
class Person(val firstName: String, val familyName: String) {

inner class Possession(val description: String) {

fun showOwner() = println(fullName())

}

val myWallet = Posession(“Wallet”)

// the same this.Possession(“Wallet”)

}

In general, this always means the innermost class instance, so inside an
inner class body it refers to the current instance of an inner class itself.
When you need to reference the outer instance from an inner class body,
you may use a qualified form of this expression:
class Person(val firstName: String, val familyName: String) {

inner class Possession(val description: String) {

fun getOwner() = this@Person
}

}

The identifier coming after the @ symbol is a name of the outer class.
Java vs. Kotlin: Nested classes in Kotlin and Java are very similar. The
major difference is a default behavior in the absence of additional
modifiers. While Java classes are inner by default and must be explicitly
marked as static if you do not want their objects to be associated with
instances of the outer class. Kotlin classes are not. In other words, take a
look at the following Kotlin code:
class Outer {

inner class Inner

class Nested

}

is basically equivalent to the Java declaration:

public class Outer {

public class Inner {

}

public static class Nested {

}

}

Local classes
Similarly to Java, Kotlin classes can be declared inside the function body.
Such local classes can only be used inside the enclosing code block:
fun main() {

class Point(val x: Int, val y: Int) {
fun shift(dx: Int, dy: Int): Point = Point(x + dx, y +
dy)

override fun toString() = “($x, $y)”
}

val p = Point(10, 10)
println(p.shift(-1, 3)) // (9, 13)

}

fun foo() {
println(Point(0, 0)) // Error: can’t resolve Point

}

Similarly to the local function, Kotlin local classes can access declarations
from the enclosing code. In particular, they capture local variables which
can be accessed and even modified inside the local class body:
fun main() {

var x = 1
class Counter {

fun increment() {
x++

}

}

Counter().increment()

println(x) // 2

}

Java vs. Kotlin: Unlike Kotlin, Java doesn’t allow modification of captured
variables. Moreover, all such variables must be explicitly marked as final
when used inside the anonymous class. Note, however, that the ability to
change captured variables in Kotlin comes with a certain price. In order to
share variables between the anonymous object and its enclosing code, the
Kotlin compiler boxes their values inside special wrapper objects. The
Java’s equivalent of the preceding Counter example would look as follows:
import kotlin.jvm.internal.Ref.IntRef;
class MainKt {

public static void main(String[] args) {
final IntRef x = new IntRef(); // create wrapper
x.element = 1;

final class Counter {
public final void increment() {
x.element++; // modify shared data

}

}

(new Counter()).increment();
System.out.println(x.element); // read shared data

}

}

Note that immutable variables have no such overhead since they do not
require any wrappers.
Unlike nested classes, local classes can’t have visibility modifiers. Their
scope is always limited by the enclosing block.
Local classes may contain all the members permitted in any other classes
such as functions, properties, constructors, or nested classes. Note, however,
that their nested classes must always be marked as inner:
fun main(args: Array<String>) {

class Foo {
val length = args.length
inner class Bar {
val firstArg = args.firstOrNull()

}

}

}

Allowing non-inner classes would lead to somewhat counterintuitive
behavior where the outer class can access the local state (such as the
preceding args variable) while its nested class, being non-inner, can not.

Nullability
Similar to Java, referential values in Kotlin include the special constant
null which represents a null reference, that is, a reference which doesn’t
correspond to any allocated object. Null doesn’t behave like any other
reference. In Java, you can assign the null to a variable of any referential
type, but can’t use any methods or properties defined for the corresponding
type as any attempt to access null members results in
NullPointerException (NPE for short). The worst part is that such errors
only reveal themselves at runtime as the compiler can’t detect them using
the static type information.
A significant advantage of the Kotlin type system is its ability to make clear
distinction between referential types which allow null values and those
which do not. This feature shifts the problem to compilation time and helps
you to mostly avoid the notorious NullPointerException.
In this section, we’ll discuss types which are used to represent nullable
values and basic operations you can use to deal with nulls. In Chapter 12,

Java Interoperability, we’ll also address nullability issues related to Java-
Kotlin interoperability.

Nullable types
One of the major features of the Kotlin type system is its ability to
distinguish between types which do include null values and those which do
not. In Java, all reference types are assumed to be nullable. In other words,
the compiler can’t guarantee that a particular variable of a reference type
can’t hold null.
In Kotlin, however, all references types are non-nullable by themselves, so
you can’t store a null in a variable of, say, the String type. Consider the
following function which checks whether a given string contains only letter
characters:
fun isLetterString(s: String): Boolean {

if (s.isEmpty()) return false
for (ch in s) {

if (!ch.isLetter()) return false
}

return true
}

If we try to pass null for the s parameter, we’ll get a compilation error:
fun main() {

println(isLetterString(“abc”)) // Ok

println(isLetterString(null)) // Error

}

The reason is that the argument in the second call has a nullable type, but
String doesn’t accept nulls, so the call is forbidden. You don’t need to
write any additional checks in the isLetterString() itself to ensure that
no null is passed or worry that it may throw NPE on trying to dereference
its parameter. The Kotlin compiler prevents such errors at compilation time.
Java vs. Kotlin: In Java, on the other hand, passing null into the following
function is completely acceptable from the compiler’s point of view, but
produces a NullPointerException at runtime:
class Test {

static boolean isLetterString(String s) {

for (int i = 0; i < s.length; i++) {
if (!Character.isLetter(s.charAt(i))) return false;

}

return true;
}

public static void main(String[] args) {
// Compiles but throw an exception at runtime

System.out.println(isEmpty(null))

}

}

What if you need to write a function which may accept the null value? In
this case, you mark the parameter type as nullable by placing the ? sign
after it:
fun isBooleanString(s: String?) = s == “false” || s == “true”

Types like String? are called nullable types in Kotlin. In terms of the type
system, every nullable type is a supertype of its base type which enlarges its
original set of values by including null. That, in particular, means that the
nullable variable can be always assigned a value of the corresponding non-
nullable type, but the opposite is, of course, false:
fun main() {

println(isBooleanString(null)) // Correct
val s: String? = “abc” // Correct
val ss: String = s // Error

}

Note that the last assignment in the preceding example is incorrect. Even
though the variable s doesn’t hold the null value at runtime, the compiler
has to be conservative since it can only use a static type information which
tells it that the variable s is nullable because we’ve explicitly marked it as
such.
At runtime, non-nullable values do not actually differ from the nullable
ones. The distinction exists on the compilation level only. The Kotlin
compiler doesn’t use any wrappers (such as the Optional class introduced
in Java 8) to represent non-nullable values so no additional runtime
overheads are involved.
Primitive types like Int or Boolean also have nullable versions. Bear in
mind, though, that such types always represent boxed values:

fun main() {
val n: Int = 1 // primitive value
val x: Int? = 1 // reference to a boxed value

}

The smallest nullable type is Nothing? which doesn’t contain any other
value apart from the null constant. This is a type of the null itself and a
subtype of any other nullable type. The largest nullable type Any? is also the
largest type in the whole Kotlin type system and is considered a supertype
of any other type, nullable or not.
Nullable types don’t retain methods and properties available for their base
types. The reason is that usual operations such as calling a member function
or reading a property don’t make sense for the null value. If we change the
isLetterString() function by replacing its parameter type with String?
but leave everything else untouched, we’ll get a compilation error as now
all usages of s in the function body becomes incorrect:
fun isLetterString(s: String?): Boolean {

// Error: isEmpty() is not available on String?

if (s.isEmpty()) return false
// Error: iterator() is not available on String?

for (ch in s) {
if (!ch.isLetter()) return false

}

return true
}

Note that you can’t use the for loop to iterate over the nullable String since
String? doesn’t have an iterator() method.
In fact, nullable types may have their own methods and properties thanks to
the Kotlin extension mechanism. In Chapter 5, Leveraging Advanced
Functions and Functional Programming, we’ll address this issue in more
detail. One example is a string concatenation which also works for values of
String? type:
fun exclaim(s: String?) {

println(s + “!”)

}

fun main() {
exclaim(null) // null!

}

So how do we fix the code like the isLetterString() function to correctly
process nullable values? To do the job, Kotlin suggests several options
which we’ll cover in the following sections.

Nullability and smart casts
The most straightforward way to process a nullable value is to compare it
with null using some kind of a conditional statement:
fun isLetterString(s: String?): Boolean {

if (s == null) return false
// s is non-nullable here

if (s.isEmpty()) return false
for (ch in s) {

if (!ch.isLetter()) return false
}

return true
}

Although we haven’t changed the type of s itself, adding the check against
null somehow makes the code compileable. This is possible thanks to a
helpful Kotlin feature which is called a smart cast. Basically, whenever you
make an equality check against null, the compiler knows that in one
control-flow branch the value of interest is exactly null, while in another it’s
definitely not null. It then uses this information to refine the value type,
implicitly casting it from nullable to non-nullable, hence the name ‘smart
cast’. In the preceding example, the compiler understands that since the
branch corresponding to s == null being true ends with a return statement,
the code coming after if (s == null) return false never executes when
s is null. As a result, the variable s is assumed to have the non-nullable type
String in the remaining piece of the function body.
Smart casts are not limited to nullability. In Chapter 8, Understanding
Class Hierarchies, we’ll see how they enable safe type casting in the
context of class hierarchies.
IDE Tips: The IntelliJ plugin has a special highlighting for variable
references affected by smart casts. Thanks to it, you can easily distinguish

such variables just by looking at your code. It also shows the refined type in
the reference tooltip (see Figure 4.2 for an example):

Figure 4.2: Smart cast highlighting

Smart casts also work inside other statements or expressions concerned
with condition checking such as when expressions and loops:
fun describeNumber(n: Int?) = when (n) {

null -> “null”
// n is non-nullable in the following branches

in 0..10 -> “small”
in 11..100 -> “large”
else -> “out of range”

}

or right-hand sides of || and && operations:
fun isSingleChar(s: String?) = s != null && s.length == 1

Note that in order to perform, a smart cast compiler has to ensure that the
variable in question doesn’t change its value between the check and the
usage. In particular, immutable local variables we’ve seen so far permit
smart casts without limitations since they can’t change the value after
initialization. Mutable variables, however, may prevent smart casts when
modified between the null check and the usage:
var s = readLine() // String?
if (s != null) {

s = readLine()

// No smart cast below as variable has changed its value

println(s.length) // Error

}

Mutable properties never permit smart casts since in general they may be
changed by other code at any time. In Chapter 8, Understanding Class
Hierarchies, we’ll discuss these rules and their exceptions in more detail.

Not-null assertion operator
We’ve already come across the !! operator in our earlier examples
involving the readLine() function. !!, also called a not-null assertion, is a
postfix operator which throws a KotlinNullPointerException (on JVM,
it’s a subclass of the well-known NullPointerException) when its
argument is null and return it unchanged when it’s not. The resulting type is
a non-nullable version of the original type. Basically, it reproduces the
behavior of the Java program which throws an exception on attempt to
dereference the null value:
val n = readLine()!!.toInt()

In general, this operation should be avoided because null values usually
require some reasonable response instead of simply throwing an exception.
Sometimes, though, its usage is justified. Consider, for example, the
following program:
fun main() {

var name: String? = null
fun initialize() {

name = “John”

}

fun sayHello() {
println(name!!.toUpperCase())

}

initialize()

sayHello()

}

In this case, not-null assertion is an appropriate solution since we know that
the sayHello() function is called after the name is assigned a non-nullable
value. The compiler, however, can’t recognize that such usage is safe and
won’t refine the variable type to String inside sayHello(), so one solution
is to ignore its alerts and use non-null assertion. Note, however, that even in
cases like this it often makes sense to use less blunt tools for dealing with

nulls or even rewriting the control-flow of your code in such a way that the
compiler can employ smart casts.
Using not-null assertion on a non-nullable receiver is not considered an
error. Such code, though, is redundant and should be avoided.
IDE Tips: The IntelliJ plugin comes with an inspection which highlights
and suggests to remove redundant usages of the !! operator.
Like any other postfix operator, not-null assertion has the highest possible
precedence.

Safe call operator
We’ve already mentioned that values of the nullable types do not allow you
to call methods available for the corresponding non-nullable type. There is,
however, a special safe-call operation which allows you to circumvent this
restriction. Let’s consider one of our earlier examples:
fun readInt() = readLine()!!.toInt()

This function works fine as long as your program uses the console as its
standard I/O. If, however, we’ve started the program piping some file as the
standard input, it could’ve failed with KotlinNullPointerException if the
file in question was empty. Using the safe call operator, we can rewrite it
into the following form:
fun readInt() = readLine()?.toInt()
which is basically equivalent to the code:

fun readInt(): Int? {
val tmp = readLine()
return if (tmp != null) tmp.toInt() else null

}

In other words, the safe call operator behaves like an ordinary call when its
receiver (left-hand operand) is not null. When its receiver is null, however,
it doesn’t perform any calls and simply returns null. Similar to || and &&
operations, safe calls follow a lazy semantics. They do not evaluate call
arguments if the receiver is null. In terms of precedence, ? takes the same
level as an ordinary call operator (.).
The pattern ‘do something meaningful when the receiver is not null or
return the null otherwise’ happens quite often in practice, so safe calls can
greatly simplify your code by relieving you from unnecessary if

expressions and temporary variable declarations. One useful idiom is to
chain safe calls into something like this:
println(readLine()?.toInt()?.toString(16))

Note that since the safe call operator may return null, its type is always the
nullable version of the corresponding non-safe call. We have to take this
into account on the call site of our new readInt() function:
fun readInt() = readLine()?.toInt()
fun main() {

val n = readInt() // Int?
if (n != null) {

println(n + 1)

} else {
println(“No value”)

}

}

Like not-null assertions, safe calls can be applied to non-nullable receivers.
Such code, however, is completely redundant as it behaves exactly like a
simple dot-call (.).
IDE Tips: The IntelliJ plugin automatically highlights redundant usages of
the ? operator and suggests to replace them with ordinary calls.

Elvis operator
One more useful tool for dealing with nullable values is a null coalescing
operator ?: which allows you to provide some default value in place of null.
It’s usually called the Elvis operator due to its resemblance to an emoticon
of Elvis Presley. Let’s consider the following example:
fun sayHello(name: String?) {

println(“Hello, ” + (name ?: “Unknown”))

}

fun main() {
sayHello(“John”) // Hello, John

sayHello(null) // Hello, Unknown

}

In other words, the result of this operator is the left argument when it’s not
null and the right one otherwise. Basically, the preceding sayHello()

function is equivalent to the code:
fun sayHello(name: String?) {

println(“Hello, ” + (if (name != null) name else “Unknown”))
}

The Elvis operator is useful in combination with safe calls to substitute a
default value when the receiver is null. In the following code, we substitute
a zero when the program’s standard input is empty:
val n = readLine()?.toInt() ?: 0

One more handy pattern is to use the control-flow breaking statement like
return or throw as a right argument of Elvis. This serves as an abbreviation
of the corresponding if expression:
class Name(val firstName: String, val familyName: String?)
class Person(val name: Name?) {

fun describe(): String {
val currentName = name ?: return “Unknown”
return “${currentName.firstName}
${currentName.familyName}”

}

}

fun main() {
println(Person(Name(“John”, “Doe”)).describe()) // John Doe

println(Person(null).describe()) // Unknown
}

Figure 4.3: Replacing if expression with Elvis operator

IDE Tips: The IntelliJ plugin has a special inspection which detects null-
checking if expressions that can be replaced with the Elvis operator
(Figure 4.3).

In terms of precedence, the Elvis operator occupies an intermediate place
between infix operations like or and in/!in operators yielding, in
particular, to comparison/equality operators, ||, && and assignments.

Properties: Beyond simple variables
In the first section, we’ve introduced you to an idea of property as a
variable bound to a particular class instance or file facade similar to the
Java field. In general, however, Kotlin properties possess far richer
capabilities which go beyond simple variables offering you the means to
control how the property value is read or written. In this section, we will
have a closer look at non-trivial property semantics.

Top-level properties
Similar to classes or functions, properties may be declared at the top-level.
In this case, they serve as a sort of global variables or constants:
val prefix = “Hello, ” // top-level immutable property
fun main() {

val name = readLine() ?: return
println(“$prefix$name”)

}

Such properties may have one of top-level visibilities
(public/internal/private). They also may be used in import directives:
// util.kt

package util
val prefix = “Hello, ”
// main.kt

package main
import util.prefix
fun main() {

val name = readLine() ?: return
println(“$prefix$name”)

}

Late initialization

Sometimes, the requirement to initialize class properties on its instantiation
may be unnecessarily strict. Some properties can only be initialized later,
after the class instance is already created, but before its actual use. They
might be, for example, specified in some initialization method like unit test
setup or assigned via dependency injection. One solution would be to assign
some default value (e.g. null) which basically means ‘uninitialized state’ in
the constructor and provide an actual value when necessary. Consider, for
example, the following code:
import java.io.File
class Content {

var text: String? = null
fun loadFile(file: File) {

text = file.readText()

}

}

fun getContentSize(content: Content) = content.text?.length ?:
0

We assume that loadFile() is called elsewhere to load the string content
from some file. The drawback of this example is that we have to deal with
the nullable type while the actual value is supposed to be always initialized
before access and thus non-null. Kotlin provides a built-in support for this
kind of pattern via the lateinit keyword. Let’s apply it to our example:
import java.io.File
class Content {

lateinit var text: String
fun loadFile(file: File) {

text = file.readText()

}

}

fun getContentSize(content: Content) = content.text.length
The property with a lateinit marker works just like an ordinary property
short of a single difference. On attempt to read its value the program will
check whether the property is initialized and throw
UninitializedPropertyAccessException if it’s not. This behavior is
somewhat similar to an implicit !! operator.

There are some requirements a property must satisfy in order to be eligible
for late initialization. First, it must be declared as mutable (var) since its
value may be changed in different parts of your code. Second, it must have
a non-nullable type and may not represent a primitive value like Int or
Boolean. The reason is that internally the lateinit property is represented
as a nullable variable with null reserved to mean ‘uninitialized’. Finally, the
lateinit property may not have an initializer since such a construct would
have defeated the purpose of declaring it lateinit in the first place.
Kotlin 1.2 has introduced a couple of lateinit-related improvements. In
particular, it’s now possible to use late initialization for top-level properties
and local variables:
lateinit var text: String
fun readText() {

text = readLine()!!

}

fun main() {
readText()

println(text)

}

Another improvement is an ability to check whether a lateinit property is
initialized before trying to access its value. We’ll discuss how to do it in
Chapter 10, Annotations and Reflection which deals with the Kotlin
reflection API.

Using custom accessors
The properties we’ve seen so far had essentially behaved like ordinary
variables stored either in an instance of some Kotlin class, or in the context
of a file (which on JVM is also represented as an instance of a special
facade class). The real power of Kotlin properties, however, comes from
their ability to combine a variable- and a function-like behavior in a single
declaration. This is to be achieved with custom accessors which are special
functions invoked when the property value is accessed for reading or
writing.
In the following example, we define custom getter, i.e., an accessor which
is used to read a property value:
class Person(val firstName: String, val familyName: String) {

val fullName: String
get(): String {
return “$firstName $familyName”

}

}

The getter is placed at the end of the property definition and basically looks
like a function albeit with a keyword get instead of a name. Whenever such
a property is read, the program automatically invokes its getter:
fun main() {

val person = Person(“John”, “Doe”)
println(person.fullName) // John Doe

}

Similar to functions, accessors support an expression-body form:
val fullName: String

get() = “$firstName $familyName”

Note that the getter may not have any parameters while its return type, if
present, must be the same as the type of the property itself:
val fullName: Any

get(): String { // Error
return “$firstName $familyName”

}

Since Kotlin 1.1, you can just omit the explicit property type and rely on the
type inference instead:
val fullName

get() = “$firstName $familyName” // String is inferred

The value of the fullName property we’ve introduced earlier is computed
on each access. Unlike firstName and familyName, it doesn’t have a
backing field and thus doesn’t occupy memory in a class instance. In other
words, it’s basically a function which simply has a property form. In Java,
we’d usually introduce a method like getFullName() for the same purpose.
The rule regarding backing fields is as follows: the backing field is
generated when a property has at least one default accessor or a custom
accessor which explicitly mentions the field. Since immutable properties
have only one accessor, a getter, and in our example, it doesn’t reference the
backing field directly, the fullName property will have no backing field.

What about the direct field reference? It’s useful when you want your
property to be based on some stored value, but still needs to customize
access. For example, we could use it to log property reads:
class Person(val firstName: String, val familyName: String,
age: Int) {

val age: Int = age
get(): Int {
println(“Accessing age”)

return field
}

}

The backing field reference is represented by the field keyword and is
valid only inside an accessor’s body.
When a property doesn’t use a backing field, it can’t have an initializer
because the initializer is basically a value assigned directly to the backing
field on initialization of a class instance. That’s why we didn’t add the
initializer for the fullName definition above: being a computed property it
doesn’t need one.
Since the property with a customer getter behaves like a parameterless
function albeit with a slightly different syntax, this poses a question how
you should choose between both constructs in a particular case. The official
Kotlin coding conventions recommend using a property instead of a
function when the computation doesn’t result in throwing an exception, the
value is cheap enough or cached, and different invocations produce the
same result unless the state of the containing class instance is not changed.
Mutable properties defined with the var keyword have two accessors: a
getter for reading and a setter for writing. Let’s consider the following
example:
class Person(val firstName: String, val familyName: String) {
var age: Int? = null
set(value) {

if (value != null && value <= 0) {
throw IllegalArgumentException(“Invalid age: $value”)

}

field = value
}

}

fun main() {
val person = Person(“John”, “Doe”)
person.age = 20 // calls custom setter

println(person.age) // 20, uses default getter

}

A property setter must have a single parameter of the same type as the
property itself. The parameter type is usually omitted since it’s always
known in advance. The convention parameter name is called value, but it’s
possible to choose a different one if you like.
Note that the property initializer does not trigger a setter call since the
initializer value is assigned to the backing field directly.
Since mutable properties have two accessors, they always possess a backing
field unless both accessors are custom and do not reference it via the field
keyword. For example, the age property has a backing field due to the
default getter and direct mention in the setter, while the following property
does not:
class Person(var firstName: String, var familyName: String) {
var fullName: String
get(): String = “$firstName $familyName”
set(value) {
val names = value.split(“ “) // Split string space-
separated words

if (names.size != 2) {
 throw IllegalArgumentException(“Invalid full name:
‘$value’”)

}

firstName = names[0]

familyName = names[1]

}

}

Property accessors may have their own visibility modifiers. They can be
useful if you, say, want to forbid changing your property outside their
containing class, thus making it effectively immutable for the outside world.
If you don’t need a non-trivial implementation of an accessor, you can
abbreviate it by a single get/set keyword:

import java.util.Date
class Person(name: String) {

var lastChanged: Date?
private set // can’t be changed outside Person class

var name: String = name
set(value) {
lastChanged = Date()

field = value
}

}

Java vs. Kotlin: From the JVM point of view, a Kotlin property in general
corresponds to one or two accessor methods (like getFullName() and
setFullName()) possibly backed by a private field. Although the method
itself is not available in the Kotlin code, it can be called from the Java
classes and comprise a major point in Java/Kotlin interoperability. In
Chapter 12, Java Interoperability, we’ll discuss this issue in more detail.
Private properties, on the other hand, by default have no accessor methods
generated since they can’t be used outside the containing class or file.
Access to such properties is optimized to refer to their backing fields
directly.
Custom accessors are not allowed for the lateinit properties since their
accessors are always generated automatically. They are also not supported
for properties declared as primary constructor parameters, but that can be
solved by using the ordinary non-property parameter and assigning its value
to a property in the class body just like we did with the val age earlier.

Lazy properties and delegates
In a previous section, we’ve seen how to implement late initialization using
the lateinit modifier. In many cases, though, we’d like to defer the value
computation until its first access. In Kotlin, this can be achieved with lazy
properties. Let’s consider the following example:
import java.io.File
val text by lazy {

File(“data.txt”).readText()

}

fun main() {

while (true) {
when (val command = readLine() ?: return) {
“print data” -> println(text)

“exit” -> return
}

}

}

The text property mentioned earlier is defined as lazy. We specify how it’s
initialized in the block coming after the by lazy clause The value itself is
not computed until we first access it in the main() function when the user
types an appropriate command. After initialization, the property value is
stored in a field and all successive attempts to access it will just read the
stored value. If we have, for example, define a property with a simple
initializer:
val text = File(“data.txt”).readText()

The file would be read right at the program start while the property with a
getter like this:
val text get() = File(“data.txt”).readText()

Would reread the file every time the program tries to access the property
value.
You can also specify the property type explicitly, if necessary:
val text: String by lazy { File(“data.txt”).readText() }

This syntax is in fact a special case of the so called delegated property
which allows you to implement a property via a special delegate object
which handles reading/writing and keeps all related data if necessary. The
delegate is placed after the by keyword and can be an arbitrary expression
which returns the object conforming to specific convention. In our example,
lazy {} is not a built-in language construct, but rather just a call to a
standard library function with a lambda supplied (we’ve already seen a
similar example in Chapter 2, Language Fundamentals while discussing
the creation of array instances).
Kotlin provides some delegate implementations out of the box. Apart from
enabling lazy computations, standard delegates allow you to create
observable properties which notify a listener before/after every change of
their value and to back properties by a map instead of storing them in

separate fields. In this section, we’ll give you a basic taste of delegates in
the context of lazy properties and defer their comprehensive treatment till
Chapter 7, Exploring Collections and I/O and Chapter 11, Domain-Specific
Languages where we’ll consider standard delegates available in the Kotlin
library and the means to design your own delegates, respectively.
Note that unlike lateinit properties, lazy properties may not be mutable.
They don’t change the value once initialized:
var text by lazy { “Hello” } // Error

By default, lazy properties are thread-safe. In a multi-threaded environment,
the value is computed by a single thread and all threads trying to access a
property will ultimately get the same result.
Since Kotlin 1.1, you can use delegates for local variables. This, in
particular, allows you to define a lazy variable in a function body:
fun longComputation(): Int {...}
fun main(args: Array<String>) {

val data by lazy { longComputation() } // lazy local
variable

val name = args.firstOrNull() ?: return
println(“$name: $data”) // data is only accessed when name

is not null

}

Note that delegated properties currently do not support smart casts. Since
delegates may have an arbitrary implementation, they are treated similarly
to properties with custom accessors. It also means that you can use smart
casts with local delegated variables:
fun main() {

val data by lazy { readLine() }
if (data != null) {

// Error: no smart cast, data is nullable here

println(“Length: ${data.length}”)

}

}

Lazy properties/local variables are not an exception. Currently, you can’t
apply smart casts to them even though their values do not actually change
after initialization.

Objects and companions
In this section, we will discuss the concept of object declarations. An object
declaration in Kotlin is a kind of mix between a class and a constant which
allows you to create singletons – classes which have exactly one instance.
We’ll also look at object expressions which play a role similar to Java’s
anonymous classes.

Object declarations
Kotlin has a built-in support of the Singleton pattern which basically
ensures that some class can only have a single instance. In Kotlin, you
declare a singleton similar to a class, but using the object keyword instead:
object Application {

val name = “My Application”
override fun toString() = name
fun exit() { }

}

Such object declaration can be used as both a class and a value representing
its instance. For example:
fun describe(app: Application) = app.name // Application as a
type

fun main() {
println(Application) // Application as a

value

}

Note that using an object as a type is usually meaningless since such a type
has exactly one instance so you can just as well refer to that instance itself.
Object definitions are thread-safe. The compiler ensures that even if you
concurrently access the singleton from different execution threads, there is
still exactly one shared instance and initialization code is run only once.
The initialization itself happens lazily on the loading of the singleton class
which usually happens when the program first refers to the object instance.
Java vs. Kotlin: In Java, singletons have to be emulated using ordinary
class declarations which are usually achieved using a combination of
private constructors and some static states. Such ‘object declarations’ can

have different features depending on the implementation details; the most
common being lazy vs. eager and thread-safe vs. non-thread-safe
singletons. Looking at the JVM bytecode of Application object, we see that
it basically amounts to the following Java class:
public final class Application {

private static final String name = “My Application”;
public static final Application INSTANCE;
private Application() { }
public final String getName() {
return name;

}

public final void exit() { }
static {
INSTANCE = new Application();
name = “My Application”;

}

}

Note that the INSTANCE variable is not accessible in the Kotlin code itself,
but can be used in Java classes referring to the Kotlin’s singleton. In
Chapter 12, Java Interoperability, we’ll consider this issue in more detail.
Similar to classes, object declarations can include member functions and
properties as well as initializer blocks, but may not have primary or
secondary constructors. An object instance is always created implicitly so
constructor calls make no sense for objects.
Classes in the object body can’t be marked as inner. Instances of inner
classes are always associated with the corresponding instance of their
enclosing class, but object declarations have only one instance which makes
the inner modifier effectively redundant. That’s the reason why it is
forbidden.
Object members can be imported and later referred by their simple names
similar to top-level declarations. Suppose, for example, that the Application
object is defined in a separate file:
import Application.exit
fun main() {

println(Application.name) // using qualified reference

exit() // using simple name

}

You may not, however, import all the object members at once using an on-
demand import:
import Application.* // Error

The reason behind such a restriction is that object definitions, like any other
classes, include common methods such as toString() or equals() which
can be imported too if on-demand was allowed.
Like classes, objects can be nested into other classes or even into other
objects. Such declarations are also singletons which have exactly one
instance per entire application. If you need a separate instance per enclosing
class, you should use an inner class instead. You can’t, however, put objects
inside functions as well as local or inner classes because such definitions in
general would depend on some enclosing context and thus couldn’t be
singletons. Locally-scoped objects can be created using an object
expression which we’ll consider later in this chapter.
Java vs. Kotlin: In the Java world, you can often come across a so called
utility class. It’s essentially a class which doesn’t have instances (usually by
means of a private constructor) and instead serves as a kind of grouping for
related methods. This pattern proves to be useful in Java, but it’s generally
discouraged in Kotlin, although you can certainly declare utility-style
classes if that’s what you want. The reason is that, unlike Java, Kotlin has
top-level declarations which can be grouped together using packages thus
freeing you from the need to use special classes and reducing the
boilerplate.

Companion objects
Similar to nested classes, nested objects can access private members of the
enclosing the class given its instance. A useful implication of this is an
ability to easily implement the Factory design pattern. There are cases when
using the constructor directly is unwanted. You can’t, for example, return
null or instances of different types (conforming to the class type) depending
on some pre-checks since a constructor call always returns an instance of its
class or throws an exception. A possible solution is to mark a constructor as
private, making it inaccessible outside the class, and define a nested object

with a function which serves as a factory method and calls class constructor
when necessary:
class Application private constructor(val name: String) {

object Factory {
fun create(args: Array<String>): Application? {
val name = args.firstOrNull() ?: return null
return Application(name)

}

}

}

fun main(args: Array<String>) {
// Direct constructor call is not permitted

// val app = Application(name)

val app = Application.Factory.create(args) ?: return
println(“Application started: ${app.name}”)

}

Note that in this case, we have to refer to the object name every time we
call the factory method unless it’s imported using the import
Application.Factory.create directive. Kotlin allows you to solve this
problem by turning the Factory object into the companion. A companion
object is basically a nested object marked with a companion keyword. Such
an object behaves just like any other nested object with one exception; you
can refer to its members by the name of its enclosing class without
mentioning the name of companion object itself. Using companions, we can
make our previous example slightly more concise:
class Application private constructor(val name: String) {

companion object Factory {
fun create(args: Array<String>): Application? {
val name = args.firstOrNull() ?: return null
return Application(name)

}

}

}

fun main(args: Array<String>) {
val app = Application.create(args) ?: return
println(“Application started: ${app.name}”)

}

Although it’s considered redundant, you can still refer to the companion
object members using its name:
val app = Application.Factory.create(args) ?: return

Figure 4.4: Redundant companion reference

IDE Tips: IntelliJ automatically warns you about unnecessary references to
the companion and suggests removing them from the code (Figure 4.4):
For a companion object, you can also skip the name in the definition itself.
This is the recommended approach:
class Application private constructor(val name: String) {

companion object {
fun create(args: Array<String>): Application? {
val name = args.firstOrNull() ?: return null
return Application(name)

}

}

}

When the companion name is omitted, the compiler assumes the default
name Companion.
Note that the companion name must be mentioned explicitly when you
import its members:
import Application.Companion.create // OK
import Application.create // Error

A class may not have more than one companion:
class Application {

companion object Factory
companion object Utils // Error: only one companion is
allowed

}

It’s also an error to use the companion modifier for a top-level object or an
object nested into another object. In the former case, you lack a class
definition to bind the companion to, while in the latter companion is
basically redundant.
Java vs. Kotlin: Companion objects in Kotlin may be considered a
counterpart of Java’s static context. Like statics, companion members share
the same global state and can access any member of an enclosing class
regardless of its visibility. The crucial difference, however, is that their
global state is an object instance. This gives much more flexibility than
Java’s statics as companion objects may have supertypes and passed around
like any other object. In Chapter 8, Understanding Class Hierarchies and
Chapter 11, Domain-Specific Languages, we’ll see how companion objects
can be combined with inheritance and language conventions to produce
more expressive code.
Note also that the init blocks in companion objects can be used similar to
Java static initializers.

Object expressions
Kotlin has a special kind of expression which creates a new object without
an explicit declaration. This object expression is very similar to a Java
anonymous class. Consider the following example:
fun main() {

fun midPoint(xRange: IntRange, yRange: IntRange) = object {
val x = (xRange.first + xRange.last)/2
val y = (yRange.first + yRange.last)/2

}

val midPoint = midPoint(1..5, 2..6)
println(“${midPoint.x}, ${midPoint.y}”) // (3, 4)

}

An object expression looks just like an object definition without a name and
being an expression can be, for example, assigned to a variable like in the
preceding example. Note that unlike classes and object expressions, named
objects can’t be declared inside functions:
fun printMiddle(xRange: IntRange, yRange: IntRange) {

// Error

object MidPoint {

val x = (xRange.first + xRange.last)/2
val y = (yRange.first + yRange.last)/2

}

println(“${MidPoint.x}, ${MidPoint.y}”)

}

The rationale behind this decision is that object definitions are supposed to
represent singletons while local objects, if they were allowed, in general
would have to be created anew upon every call of the enclosing function.
Since we’ve defined no explicit type for the object returned by the
midPoint() function, you might be wondering what the return type is. The
answer is a so called anonymous object type which represents a class with
all the members defined in the object expression and a single instance. This
type is not denotable in the language itself. It’s just an internal
representation of the object expression type used by the Kotlin compiler.
We can still use expressions of anonymous type similar to any other class
instances; for example, to access its members as evidenced by the
println() call as mentioned earlier.
IDE Tips: If we try to look at the object expression type using the ‘Show
Expression Type’ action (Ctrl + Shift + P/Cmd+Shift+P), IntelliJ will show
us the “<anonymous object>” placeholder (Figure 4.5):

Figure 4.5: Anonymous object type

This example also demonstrates that a function with an object expression
body has anonymous return type and the same is also true for local
variables and properties:
fun main() {

val o = object { // anonymous object type is inferred
val x = readLine()!!.toInt()
val y = readLine()!!.toInt()

}

println(o.x + o.y) // can access x and y here

}

Note, however, that anonymous types are only propagated to local or
private declarations. If we, for example, were to declare the midPoint()
function as a top-level one, we would get a compile-time error on attempt to
access object members:
fun midPoint(xRange: IntRange, yRange: IntRange) = object {

val x = (xRange.first + xRange.last)/2
val y = (yRange.first + yRange.last)/2

}

fun main() {
val midPoint = midPoint(1..5, 2..6)
println(“${midPoint.x}, ${midPoint.y}”)

// Error: x and y are unresolved

}

Now the return type of the midPoint() function is not an anonymous type
of our object expression, but rather it’s a denotable supertype. Since our
object has no explicit supertype, it’s assumed to be Any. That’s why
midPoint.x reference becomes unresolved.
Similar to local functions and classes, object expressions can capture
variables from the enclosing code. Mutable captured variables can be
modified in the object’s body. In this case, a compiler creates necessary
wrappers to share the data similar to the local classes:
fun main() {

var x = 1
val o = object {

fun change() {
x = 2

}

}

o.change()

println(x) // 2

}

Note that unlike object declarations which are initialized lazily, object
expressions are initialized immediately after their instance is created. For
example, the following code will print “x = 2” since at the point, the x

variable is read, the initialization code in the object expression has already
been executed:
fun main() {

var x = 1
val o = object {

val a = x++;
}

println(“o.a = ${o.a}”) // o.a = 1

println(“x = $x”) // x = 2

}

Just like Java’s anonymous classes, object expressions are most useful when
combined with class inheritance. They give you a concise way to describe a
small modification based on the existing class without explicit subclass
definition. We’ll consider them in Chapter 8, Understanding Class
Hierarchies.

Conclusion
In conclusion, let us summarize the things we’ve learned in this chapter. We
now have a basic understanding of how to define and use custom types
based on Kotlin classes, how to properly initialize class instances, and use
singleton objects. We’ve learned to use different kinds of properties to
program custom read/write behavior. Finally, we’re now able to employ
powerful type nullability mechanism for improving our program safety.
We’ll revisit object-oriented aspects of Kotlin in the upcoming chapters. In
particular, Chapter 6, Using Special-Case Classes will deal with special
classes covering common programming patterns, while Chapter 8,
Understanding Class Hierarchies will address the issue of inheritance and
building class hierarchies.
In the next chapter, we’ll switch to a different topic and get to know another
major paradigm powering Kotlin development: the functional
programming. We will introduce you to lambdas, discuss higher-order
functions, and show how to use extension functions and properties for
adding new features to existing types.

Points to remember

Kotlin class definitions may contain constructors, member
functions/properties as well as nested classes
Unlike Java, Kotlin supports the simplified constructor syntax
embedded in the class header.
Properties combine simplicity of variable definitions with
expressiveness of functions.
The language allows the developer to explicitly distinguish between
nullable and non-nullable types.
Kotlin supports singletons in a form of object declarations.

Multiple choice questions
1. What is the default visibility level for Kotlin declarations placed at the

top-level or in a class body?

A. public
B. internal
C. protected
D. private

2. Choose all INCORRECT statements:

A. Secondary constructors always delegate to the primary one.
B. A class may have multiple secondary constructors.
C. A class is allowed to have no primary constructor.
D. A primary constructor is forbidden if a class has at least one

secondary constructor.

3. Choose all correct statements regarding lateinit properties:

A. They might be nullable.
B. They may not be of primitive type.
C. They must be private.
D. They must be immutable.

4. What is a correct way to instantiate the Inner class in the following
example?

class Outer(val n: Int = 0) {

inner class Inner(val m: Int = 0)

}

A. val x = Outer.Inner(1)
B. val x = Outer(1).Inner(2)
C. val x = Outer().Inner
D. val x = Inner()

5. Which of the following denotes a valid Kotlin type that permits
nullable values?

A. String?
B. Integer??
C. Array<Int>?
D. ByteArray

6. Choose all pieces of code which compile when placed instead of the
following comment:
fun sum(a: Int?, b: Int?): Int?

// todo

}

A. return a+b
B. return if (a != null && b != null) a + b else null
C. return if (a != null || b != null) a + b else null
D. return (a ?: 0) + (b ?: 0)

7. What is a valid way to access foo property in the following code?
class MyClass {

companion object MyComp {

val foo = 123

}

}

A. MyComp.foo
B. MyClass.foo
C. MyClass.MyComp.foo

D. MyClass.Companion.foo

Answers
1. A
2. A, D
3. B
4. B
5. A, C
6. B, D
7. B, C

Questions
1. Describe the basic class structure in Kotlin. How does it compare to

Java classes?
2. What is a primary constructor?
3. What is a secondary constructor? How would you decide which

constructor(s) a class should contain and whether secondary
constructors are necessary?

4. What are the supported member visibilities in Kotlin? How do they
differ from the visibilities in Java?

5. What’s difference between inner and non-inner nested classes in
Kotlin? Compare them with Java’s counterparts.

6. Can you define a class inside a function body? What are the
limitations?

7. What’s the gist of the late initialization mechanism? What’s the
advantage of using lateinit compared to a nullable property?

8. What are custom property accessors? Compare them with the
conventional getter and setter methods in Java. Can you define an
effectively read-only which behaves like a val for the class client?
What about an effectively write-only property?

9. How can you achieve lazy computation with delegated properties?
Compare lazy and lateinit properties.

10. What is object declaration? Compare Kotlin objects with common
singleton implementation used in the Java development.

11. What are limitations of object declarations as compared to classes?
12. What’s the difference between an ordinary object and a companion

one?
13. Compare Kotlin companion objects with Java’s statics. What is the

Kotlin’s counterpart of Java’s anonymous classes? How do you use
one?

Key terms
1. Primary constructor: A constructor defined in a class header.
2. Secondary constructor: A constructor defined in a class body together

with other members of that class.
3. Nested class: A class defined in the body of another class.
4. Local class: A class defined in the body of a function or property

accessor.
5. Nullable type: A type whose instances may hold the null value.
6. Not-null assertion operator (!!): A built-in Kotlin operator which

smart-casts given a value to a non-nullable type throwing an exception
if it happens to be null.

7. The Elvis operator (?:): A variety of branching expression which
allows to substitute some replacement values if a given expression is
null.

8. Property: A declaration which may be accessed using variable
references syntax but allows a developer to customize read and write
operations.

9. Property delegate: A special object which implements the property
read/write semantics.

10. Object declaration: A declaration which introduces both a class and its
singleton value.

11. Companion object: A nested object declaration whose members may
be accessed by a simplified syntax via its containing class name.

12. Object expression: An expression which introduces a class instance
without explicit declaration.

CHAPTER 5
Leveraging Advanced Functions and

Functional Programming
In this chapter, we’ll address some advanced issues related to using
functions and properties. The first section is devoted to the fundamentals of
functional programming in Kotlin. We’ll introduce you to a concept of a
higher-order function, describe how to construct functional values using
lambdas, anonymous functions and callable references, and show how
inline functions can help you to use functional programming with almost
zero runtime overheads. In the second section, we’ll consider a matter of
extension functions and properties which allow you to add new features to
existing types without their modification.

Structure
In this chapter, we will cover the following topics:

Functional programming in Kotlin
Extensions

Objective
After reading this chapter, you will learn to make use of functional Kotlin
features with higher-order functions, lambdas, and callable references as
well as employ extension functions and properties for enriching existing
types.

Functional programming in Kotlin
In this section, we will introduce you to the Kotlin features enabling the
support of the functional paradigm. Functional programming is based
around the idea of presenting the program code as a composition of

functions manipulating immutable data. Functional languages allow treating
functions like first-class values which means that they have the same basic
capabilities as the value of any other type. In particular, they can be
assigned to/read from variables as well as passed to/returned from
functions. This enables definition of so called higher-order functions which
manipulate other functional values like a data providing flexible mechanism
for code abstraction and composition.

Higher-order functions
In the previous chapter, we saw some examples of using lambdas to
perform computations. For example, the array constructor call takes a
lambda which computes an array element given its index:
val squares = IntArray(5) { n -> n*n } // 0, 1, 4, 9, 16

In this section, we will take a more detailed look at lambdas and higher-
order functions.
Suppose that we want to define a function which computes a sum of
elements in an integer array:
fun sum(numbers: IntArray): Int {

var result = numbers.firstOrNull()
?: throw IllegalArgumentException(“Empty array”)

for (i in 1..numbers.lastIndex) result += numbers[i]
return result

}

fun main() {
println(sum(intArrayOf(1, 2, 3))) // 6

}

What if we want to generify this function to cover other kinds of aggregates
like a product or min/max value? We can keep the basic iteration logic in
the function itself and extract the computation of intermediate values into a
functional parameter which can be supplied at the call site:
fun aggregate(numbers: IntArray, op: (Int, Int) -> Int): Int {

var result = numbers.firstOrNull()
?: throw IllegalArgumentException(“Empty array”)

for (i in 1..numbers.lastIndex) result = op(result,
numbers[i])

return result

}

fun sum(numbers: IntArray) =
aggregate(numbers, { result, op -> result + op })

fun max(numbers: IntArray) =
aggregate(numbers, { result, op -> if (op > result) op else

result })

fun main() {
println(sum(intArrayOf(1, 2, 3))) // 6

println(sum(intArrayOf(1, 2, 3))) // 3

}

What distinguishes the op parameter is a functional type (Int, Int) ->
Int describing values which can be called like functions. In our example,
the op parameter can accept functional values which accept a pair of Int
values and return some Int values as their result.
At the call site in the sum() and max() functions, we pass a lambda
expression which denotes such a functional value. It’s basically a definition
of a local function without a name which uses a kind of simplified syntax.
For example, in the following expression:
{ result, op -> result + op }

result and op play the role of function parameters while the expression
after -> computes the result. No explicit return statement is necessary in
this case, and parameter types are inferred automatically from the context.

Let’s now examine these features in more detail.

Functional types
The functional type describes values which can be used like functions.
Syntactically, such a type is similar to a function signature and contains the
following two components:

A list of parentheses-enclosed argument types which determine which
data can be passed to the functional value.
A return type which determines the type of result returned by the value
of functional type.

Note that the return type must be always specified explicitly even if it’s the
Unit.

For example, the type (Int, Int) -> Boolean represents a function which
takes a pair of integers as its input and returns a boolean values as a result.
Note that unlike the function definition, the return type and argument list in
a function type notation are separated by the -> character instead of a colon
(:).
The value of the functional type can be invoked just like an ordinary
function: op(result, numbers[i]). An alternative way is to use an
invoke() method which takes the same arguments:
result = op.invoke(result, numbers[i])

Java vs. Kotlin: In Java 8+, any interface with a single abstract method
(SAM) may be considered a functional type given appropriate context and
instantiated with a lambda expression or method reference. In Kotlin,
however, functional values always have a type of the form (P1, …, Pn) ->
R and cannot be implicitly cast to an arbitrary SAM interface. So while the
following code is valid in Java:
import java.util.function.Consumer;
public class Main {

public static void main(String[] args) {
Consumer<String> consume = s -> System.out.println(s);

consume.accept(“Hello”);

}

}

The similar code in Kotlin will not compile:
import java.util.function.Consumer
fun main() {

// Error: type mismatch

val consume: Consumer<String> = { s -> println(s) }

consume.accept(“Hello”)

}

Kotlin, however, does support simplified conversion between function
types and SAM interfaces declared in Java for the sake of Kotlin/Java
interoperability. We’ll see examples of this conversion in Chapter 12, Java
Interoperability.
Since version 1.4, Kotlin supports explicit conversion between Kotlin SAM
interfaces and functional types. For this to work, you need to accompany
interface declaration with the fun keyword:

fun interface IntOp { // SAM interface
fun op(value: Int): Int

}

interface NotQuiteIntOp { // Ordinary interface: no ‘fun’
keyword

fun op(value: Int): Int
}

fun main() {
val square: IntOp = IntOp { it*it } // Ok
val cube: NotQuiteIntOp = NotQuiteIntOp { it*it*it } // Error

}

The parameter list may be empty if functions represented by a functional
type do not take any parameters:
fun measureTime(action: () -> Unit): Long {

val start = System.nanoTime()
action()

return System.nanoTime() - start
}

Note that parentheses around parameter types are mandatory even if the
function type has a single parameter or none at all:
val inc: (Int) -> Int = { n -> n + 1 } // Ok
val dec: Int -> Int = { n -> n - 1 } // Error

Values of functional types are not limited to function parameters. In fact,
they may be used on equal terms with any other type. For example, you can
store the functional value in a variable:
fun main() {

val lessThan: (Int, Int) -> Boolean = { a, b -> a < b }
println(lessThan(1, 2)) // true

}

Note that if you omit a variable type, the compiler won’t have enough
information to infer types of lambda parameters:
val lessThan = { a, b -> a < b } // Error

In such a case, you’ll have to specify parameter types explicitly:
val lessThan = { a: Int, b: Int -> a < b } // Ok

Just like any other type, a functional type may be nullable. In this case, we
enclose the original type in parentheses before adding a question mark:
fun measureTime(action: (() -> Unit)?): Long {

val start = System.nanoTime()
action?.invoke()

return System.nanoTime() - start
}

fun main() {
println(measureTime(null))

}

If we don’t do that, the effect would be different: () -> Unit? will describe
functions which return the value of Unit?.
Functional types may be nested in which case they represent higher-order
functions themselves:
fun main() {

val shifter: (Int) -> (Int) -> Int = { n -> { i -> i + n } }
val inc = shifter(1)
val dec = shifter(-1)
println(inc(10)) // 11

println(dec(10)) // 9

}

Note that -> is right-associative, so (Int) -> (Int) -> Int actually
means (Int) -> ((Int) -> Int), i.e., a function which takes an Int and
returns another function which maps an Int to an Int. If we want it to mean
the function which takes an Int-to-Int function and returns an Int, we
have to use parentheses:
fun main() {

val evalAtZero: ((Int) -> (Int)) -> Int = { f -> f(0) }
println(evalAtZero { n -> n + 1 }) // 1

println(evalAtZero { n -> n - 1 }) // -1

}

A functional type may include optional names for its parameters. They can
be used for documentation purpose to clarify the meaning of a functional
value represented by this type:
fun aggregate(

numbers: IntArray,

op: (resultSoFar: Int, nextValue: Int) -> Int

): Int {...}

IDE Tips: IntelliJ IDEA allows you to see these parameters’ name using
the “Parameter Info” feature which gives you hints about a function
signature when you press Ctrl + P (Cmd+P) inside its call (Figure 5.1):

Figure 5.1: Viewing functional parameter names with “Parameter Info”

Lambdas and anonymous functions
How do we construct a particular value of a functional type? One way is to
use a lambda expression which basically describes a function without
giving it a name. Let’s, for example, define two more functions which
compute the sum and maximum value using the aggregate() defined
earlier:
fun sum(numbers: IntArray) =

aggregate(numbers, { result, op -> result + op })

fun max(numbers: IntArray) =
aggregate(numbers, { result, op -> if (op > result) op else

result })

fun main() {
println(sum(intArrayOf(1, 2, 3))) // 6

println(sum(intArrayOf(1, 2, 3))) // 3

}

The expression
{ result, op -> result + op }

is called a lambda expression. Similarly to a function definition, it consists
of

Parameter list: result, op

A list of expressions or statements which comprises the lambda body:
result + op

Unlike the function definition, you can’t specify a return type. It’s inferred
automatically from the lambda body. Also, the last expression in the body is
treated as a lambda result, so you don’t need to use an explicit return
statement at the end.
Note that the lambda parameter list is not enclosed in parentheses.
Parentheses around lambda parameters are reserved for the so called
destructuring declarations which we’ll cover in Chapter 6, Using Special-
Case Classes.
When lambda is passed as the last argument, it can be placed outside
parentheses. This is in fact the recommended code style we’ve already seen
in the examples of array construction calls and lazy properties:
fun sum(numbers: IntArray) =

aggregate(numbers) { result, op -> result + op }

fun max(numbers: IntArray) =
aggregate(numbers) { result, op -> if (op > result) op else

result }

IDE Tips: The IntelliJ plugin warns you about the cases when lambda can
be passed outside an ordinary argument list and can automatically perform
the necessary code changes.
When lambda has no arguments, an arrow symbol -> can be omitted:
fun measureTime(action: () -> Unit): Long {

val start = System.nanoTime()
action()

return System.nanoTime() - start
}

val time = measureTime { 1 + 2 }

Kotlin also has a simplified syntax for lambdas with a single parameter. In
such cases, we can omit both the parameter list and an arrow and refer to
the parameter by the predefined name it:
fun check(s: String, condition: (Char) -> Boolean): Boolean {

for (c in s) {
if (!condition(c)) return false

}

return true
}

fun main() {
println(check(“Hello”) { c -> c.isLetter() }) // true

println(check(“Hello”) { it.isLowerCase() }) // false

}

IDE Tips: The IntelliJ plugin allows you to convert lambda with it into a
lambda with an explicit parameter and vice versa. These actions are
available via Alt + Enter menu when the caret is positioned on either the
parameter reference, or parameter definition (Figure 5.2):

Figure 5.2: Converting explicit parameter to it

Since Kotlin 1.1, you can put underscore symbols (_) in place of unused
lambda parameters:
fun check(s: String, condition: (Int, Char) -> Boolean):
Boolean {

for (i in s.indices) {
if (!condition(i, s[i])) return false

}

return true
}

fun main() {
println(check(“Hello”) { _, c -> c.isLetter()

}) // true

println(check(“Hello”) { i, c -> i == 0 || c.isLowerCase()

}) // true

}

Another way to specify a functional value is to use an anonymous function:
fun sum(numbers: IntArray) =

aggregate(numbers, fun(result, op) = result + op)

.

An anonymous function has almost the same syntax as an ordinary function
definition, albeit with a few differences:

An anonymous function doesn’t have a name, so the fun keyword is
immediately followed by a parameter list.
Similar to lambdas, you can omit explicit specification of parameter
types if they can be inferred from the context.
Unlike a function definition, an anonymous function is an expression,
so it can be, for example, passed to a function as an argument or
assigned to a variable (this is the parallel similar difference between
object definitions and anonymous object expressions).

Unlike lambdas, anonymous functions allow you specify the return type. In
this regard, they follow the same rules as function definitions. The return
type is optional (and can be inferred) if a function has an expression body,
and must be explicit (unless it’s the Unit) when using a block body:
fun sum(numbers: IntArray) =

aggregate(numbers, fun(result, op): Int { return result + op
})

Note that unlike lambdas, anonymous functions can’t be passed outside the
argument list.
IDE Tips: The IntelliJ plugin include actions for automatic conversion
between lambdas and anonymous functions. To access it, you need to place
an editor caret on lambda’s opening brace or the fun keyword and press Alt
+ Enter (Figure 5.3):

Figure 5.3: Converting a lambda expression to an anonymous function

Similar to local functions, lambdas and anonymous functions can access
their closure, or variables defined in their containing declaration. In
particular, they can change mutable variables from the outer scope:
fun forEach(a: IntArray, action: (Int) -> Unit) {

for (n in a) {
action(n)

}

}

fun main() {
var sum = 0
forEach(intArrayOf(1, 2, 3, 4)) {

sum += it

}

println(sum) // 10

}

Java vs. Kotlin: Java lambdas, on the contrary, may not modify any outer
variables. This is similar to the case of modifying outer variables from local
classes and anonymous objects we’ve discussed in Chapter 4, Working with
Classes and Objects.

Callable references
In the previous section, we’ve seen how to construct a new functional value
using lambdas and anonymous functions. But what if we already have a
function definition and want to, for example, pass it as a functional value
into some higher-order function? We can, of course, wrap it in a lambda
expression like this:
fun check(s: String, condition: (Char) -> Boolean): Boolean {

for (c in s) {

if (!condition(c)) return false

}

return true

}

fun isCapitalLetter(c: Char) = c.isUpperCase() && c.isLetter()

fun main() {

println(check(“Hello”) { c -> isCapitalLetter(c) }) // false

}

In Kotlin, however, there is a much more concise way to use an existing
function definition as an expression of a functional type. This is achieved
through the use of callable references:
fun main() {

println(check(“Hello”, ::isCapitalLetter)) // false
}

The expression ::isCapitalLetter denotes a function value which
behaves exactly like the isCapitalLetter() function it refers.
IDE Tips: The IntelliJ plugin provides a pair of actions which can
transform lambda expressions to callable references (if possible) and vice
versa. These actions can be accessed via Alt + Enter menu (Figure 5.4):

Figure 5.4: Converting lambda to a callable reference

The simplest kind of a callable reference is based on a top-level or local
function. To compose such a reference, you just need to prefix function
name with the :: operator:
fun evalAtZero(f: (Int) -> Int) = f(0)

fun inc(n: Int) = n + 1

fun main() {

fun dec(n: Int) = n - 1

println(evalAtZero(::inc)) // 1

println(evalAtZero(::dec)) // -1

}

The callable reference may only mention a function by its simple name, so
if a top-level function is located in another package, it must be imported
first.
Applying the :: operator to a class name, you get a callable reference to its
constructor:
class Person(val firstName: String, val familyName: String)
fun main() {

val createPerson = ::Person

createPerson(“John”, “Doe”)

}

Another form of the :: operator introduced in Kotlin 1.1 is called a bound
callable reference. You can use it to refer to a member function in a context
of a given class instance:
class Person(val firstName: String, val familyName: String) {

fun hasNameOf(name: String) = name.equals(firstName,
ignoreCase = true)

}

fun main() {
val isJohn = Person(“John”, “Doe”)::hasNameOf
println(isJohn(“JOHN”)) // true

println(isJohn(“Jake”)) // false

}

There is also a third form which allows you to refer to a member function
without binding it to a particular instance. We’ll discuss it in the section
“Callable Reference with Receiver”.
Note that callable references by themselves are not able to distinguish
between overloaded functions. You have to provide an explicit type if the
compiler is not able to choose a particular overload:
fun max(a: Int, b: Int) = if (a > b) a else b
fun max(a: Double, b: Double) = if (a > b) a else b
val f: (Int, Int) -> Int = ::max // Ok
val g = ::max // Error: ambiguous reference

The ability to specify a particular function signature in a callable reference
may be added in a future version of Kotlin. For that reason, using
parentheses after the callable reference is currently reserved to
accommodate a possible refinement of syntax. If you want to use a callable
reference in a call, you have to enclose it in parentheses:
fun max(a: Int, b: Int) = if (a > b) a else b
fun main() {

println((::max)(1, 2)) // 2

println(::max(1, 2)) // Error: this syntax is reserved for

future use

}

The callable reference can also be constructed for Kotlin properties. Such
references, however, are not functional values by themselves, but rather
reflection objects containing the property information. Using the getter
property, we can access the functional value corresponding to the getter
function. For a var declaration, the setter property similarly allows you to
refer to setter:
class Person(var firstName: String, var familyName: String)
fun main() {

val person = Person(“John”, “Doe”)
val readName = person::firstName.getter // bound
reference to getter

val writeFamily = person::familyName.setter // bound
reference to setter

println(readName()) // John

writeFamily(“Smith”)

println(person.familyName) // Smith

}

Callable references to local variables are currently not supported, but may
be added in a future version.
Java vs. Kotlin: Readers familiar with Java would probably recognize the
similarity between Kotlin callable references and method references
introduced in Java 8. Although their semantics is indeed very similar, there
are some important differences. First, callable references are more varied
due to the fact that Kotlin supports declarations which have no direct
counterparts in Java such as top-level and local functions as well as
properties. Second, while Kotlin callable references are first-class
expressions, Java’s method references only make sense in the context of
some functional interface. They don’t have a definite type of their own. On
top of that, a callable reference is not just a functional value but also a
reflection object which you can use to obtain the function or property
attributes at runtime. In Chapter 10, Annotations and Reflection, we’ll
address the reflection API in more detail.

Inline functions and properties
Using higher-order functions and functional values is fraught with certain
performance overheads, since each function is represented as an object.

Moreover, when a lambda or an anonymous function in question uses
variables from outer scope, it has to be created anew each time you pass it
into a higher-order call to reflect a change of context. Invocations of
functional values have to be dispatched through virtual calls which choose
the function implementation at runtime as the compiler in general has no
way to infer it statically.
Kotlin, however, provides a solution which can reduce runtime penalties of
using functional values. The basic idea is to inline a higher-order function at
its usage replacing a call with a copy of its body. To distinguish such a
function, you need to mark with the inline modifier.
Suppose, for example, the function which searches a value in an integer
array given a predicate, it must satisfy:
inline fun indexOf(numbers: IntArray, condition: (Int) ->
Boolean): Int {

for (i in numbers.indices) {
if (condition(numbers[i])) return i

}

return -1
}

fun main() {
println(indexOf(intArrayOf(4, 3, 2, 1)) { it < 3 }) // 2

}

Since the indexOf() function is inlined, the compiler will substitute its
body instead of the function call. It means that the main() function will be
basically equivalent to the code:
fun main() {

val numbers = intArrayOf(4, 3, 2, 1)
var index = -1
for (i in numbers.indices) {

if (numbers[i] < 3) {
index = i

break
}

}

println(index)

}

Although inline functions can increase the size of the compiled code, when
used reasonably they can boost performance especially when a function in
question is relatively small. Many higher-order functions provided by the
Kotlin standard library we’ll see in Chapter 7, Exploring Collections and
I/O are inline.
Note that unlike some programming languages supporting function inlining
(such as C++), the inline modifier in Kotlin is not an optimization hint
which may be ignored depending on the compiler decision. Kotlin functions
marked with inline are always inlined when it’s possible, and when
inlining can’t be performed, usage of the inline modifier is considered a
compilation error.
The preceding example demonstrates that the inline modifier affects not
just a function it’s applied to, but also functional values which serve as its
parameters. This in turn restricts what possible manipulations with such
lambdas inside an inline function. Since inlined lambdas won’t exist as a
separate entity at runtime, they can’t be, for example, stored in a variable or
passed to a non-inline function. There are only two things we can do with
an inlinable lambda; call it or pass as an inlinable argument into another
inline function:
var lastAction: () -> Unit = {}
inline fun runAndMemorize(action: () -> Unit) {

action()

lastAction = action // Error

}

For the same reason, it’s not allowed to inline values of a nullable
functional type:
inline fun forEach(a: IntArray, action: ((Int) -> Unit)?) { //
Error

if (action == null) return
for (n in a) action(n)

}

In such cases, we can forbid inlining of a particular lambda argument by
marking it with the noinlne modifier:
inline fun forEach(a: IntArray, noinline action: ((Int) ->
Unit)?) {

// Error

if (action == null) return
for (n in a) action(n)

}

Note that when a function has no inlinable parameters, it’s usually not
worth inlining at all since substituting its body at call site will unlikely
make a significant difference at runtime. For that reason, the Kotlin
compiler marks such functions with a warning.
What if we try to use private members in a public inline function? Since the
body of the inline function is substituted instead of a call, it might allow
some external code to break encapsulation. To avoid this, Kotlin forbids
references to private members which may be leaked to the external code:
class Person(private val firstName: String, private val
familyName: String) {

inline fun sendMessage(message: () -> String) {
println(“$firstName $familyName: ${message()}”) // Error

}

}

Note that if we’d marked the sendMessage() function or its containing
class with the private modifier, the code would’ve compiled since
references to private members in the sendMessage() body wouldn’t have
leaked outside the Person class.
Starting from version 1.1, Kotlin supports inlining of property accessors.
This may be useful for improving the performance of reading/writing a
property by eliminating a function call:
class Person(var firstName: String, var familyName: String) {

var fullName
inline get() = “$firstName $familyName” // Inline getter
set(value) { ... } // Non-inline
setter

}

Apart from inlining individual accessors, you can also mark a property
itself with the inline modifier. In this case, the compiler will inline both
getter and setter (if the property is mutable):
class Person(var firstName: String, var familyName: String) {

inline var fullName // Inline getter and setter
get() = “$firstName $familyName”

set(value) { ... }
}

Note that inlining is only supported for properties without the backing field.
Also similar to functions, you may not refer to private declarations if your
property is public:
class Person(private val firstName: String, private val
familyName: String) {

inline var age = 0 // Error: property has a backing field
// Error: firstName and familyName are private

inline val fullName get() = “$firstName $familyName”
}

Non-local control flow
Using higher-order functions raises some issues with instructions that break
the normal control flow such as the return statement. Consider the
following code:
fun forEach(a: IntArray, action: (Int) -> Unit) {

for (n in a) action(n)
}

fun main() {
forEach(intArrayOf(1, 2, 3, 4)) {

if (it < 2 || it > 3) return
println(it) // Error

}

}

The intention was to return from lambda before printing a number if doesn’t
fit into a range. However, this code won’t compile. This happens because a
return statement by default is related to the nearest enclosing function
defined with fun, get or set keywords. So in our example, we’re trying to
return from the main() function instead. Such a statement, also known as
non-local return, is forbidden because on JVM, there is no efficient way
that would allow a lambda to force the return of its enclosing function. One
way to solve the problem is to use the anonymous function instead:
fun main() {

forEach(intArrayOf(1, 2, 3, 4), fun(it: Int) {

if (it < 2 || it > 3) return

println(it)

})

}

If we do want to return from a lambda itself, we need to qualify the return
statement with a context name similar to the labelled break and continue.
In general, the context name can be introduced by labeling a function literal
expression:
val action: (Int) -> Unit = myFun@ {

if (it < 2 || it > 3) return@myFun
println(it)

}

When lambda is passed as an argument to a higher-order function, however,
it’s possible to use that function’s name as a context without introducing an
explicit label:
forEach(intArrayOf(1, 2, 3, 4)) {

if (it < 2 || it > 3) return@forEach
println(it)

}

Qualified returns are available in ordinary functions as well. You can use a
function name as a context although usually such a qualification is
redundant:
fun main(args: Array<String>) {

if (args.isEmpty()) return@main
println(args[0])

}

When lambda is inlined, we can use return statements to return from the
enclosing function. This is possible because the lambda body is substituted
into the call site together with a body of corresponding higher-order
function, so the return statement would be treated as if it was placed
directly in the body of main():
inline fun forEach(a: IntArray, action: (Int) -> Unit) { ... }
fun main() {

forEach(intArrayOf(1, 2, 3, 4)) {

if (it < 2 || it > 3) return // Return from main
println(it)

}

}

There is a special case with calling inlinable lambda not directly in the body
of a function it’s passed to, but in a separate execution context like a local
function or a method of local class. Even though such lambdas are inlined,
they are not able to force the return of the caller function since even after
inlining, they would occupy different frames of the execution stack. For
reasons such usages of functional parameters are forbidden by default:
private inline fun forEach(a: IntArray, action: (Int) -> Unit)
= object {

fun run() {
for (n in a) {
action(n) // Error

}

}

}

To allow them, we need to mark a functional parameter with a crossinline
modifier which leaves the functional value inlined but forbids using non-
local returns inside a corresponding lambda:
private inline fun forEach(

a: IntArray, crossinline action: (Int) -> Unit

) = object {

fun run() {

for (n in a) {

action(n) // Ok

}

}

}

fun main() {

forEach(intArrayOf(1, 2, 3, 4)){

if (it < 2 || it > 3) return // Error

println(it)

}

}

Non-local control flow issues may also arise when using break and continue
statements since they can target a loop enclosing the lambda. Currently,

they are not supported even if the lambda in question is inlined, although
such support may be added in a future language version:
while (true) {

forEach(intArrayOf(1, 2, 3, 4)) {

if (it < 2 || it > 3) break // Error

println(it)

}

}

Extensions
The need to extend an existing class is quite common in practice. As a
program evolves, a developer may want to add new functions and
properties to classes thus extending their API. But sometimes, simply
adding new code to a class is not an option since a class in question may be
a part of some library and its modification will require significant efforts if
feasible at all. Putting all possible methods into a single class may also be
impractical as not all of them are used together and therefore worth
decoupling into several program units.
In Java, such extra methods are often packed into utility classes. A common
example is java.util.Arrays and java.util.Collections classes which
contain methods extending capabilities of Collection interfaces. The
problem with such classes is that they often produce unnecessary
boilerplate. For example, a typical usage of utility methods in Java may
look like this:
int index = Collections.indexOfSubList(

Arrays.asList(“b”, “c”, “a”),

Arrays.asList(“a”, “b”)

)

Apart from clattering the source code, such calls do not allow you to make
use of autocompletion available for class members in major IDEs such as
IntelliJ and Eclipse.
That’s the primary motivation behind Kotlin extensions which allow you to
use functions and properties defined outside a class as if they were its
members. Supporting the “open/closed” design principle, they allow you to
extend existing classes without modifying them.

Extension functions
The Extension function is basically a function which can be called as if it
were a member of some class. When you define such a function, you put a
type of its receiver before its name separating them with a dot. Suppose we
want to enrich the String type with a function which truncates the original
string so that its length does not exceed the given threshold:
fun String.truncate(maxLength: Int): String {

return if (length <= maxLength) this else substring(0,
maxLength)

}

Once defined, this function can be used just like any member of the String
class:
fun main() {

println(“Hello”.truncate(10)) // Hello

println(“Hello”.truncate(3)) // Hel

}

Note that inside the extension function body, the receiver value can be
accessed via this expression similar to class members. Members and
extensions of the receiver can also be accessed implicitly without this just
like we’ve done with a substring() function call in the truncate()
definition.
It’s worth pointing out that extension functions by themselves are not able
to break through the receiver type encapsulation. For example, since the
extension function is defined outside the class, it can’t access its private
members:
class Person(val name: String, private val age: Int)
fun Person.showInfo() = println(“$name, $age”) // Error: can’t
access age

The extension function, however, may be declared inside a class body
making it a member and extension at the same time. Such function is
allowed to access private members just like any other function in the class
body:
class Person(val name: String, private val age: Int) {

fun Person.showInfo() = println(“$name, $age”)
// Ok: age is accessible

}

We’ll see how to use such functions later in this chapter.
IDE Tips: The IntelliJ plugin can convert a class member to an extension.
This can be achieved with the “Convert member to extension” action
available in Alt+Enter menu when the caret is positioned on the member
name (Figure 5.5):

Figure 5.5: Converting member function to extension

Extension functions can be used in bound callable references similar to
class members:
class Person(val name: String, val age: Int)
fun Person.hasName(name: String) = name.equals(this.name,
ignoreCase = true)

fun main() {
val f = Person(“John”, 25)::hasName
println(f(“JOHN”)) // true

println(f(“JAKE”)) // false

}

What if you have the function with the same signature defined both as a
class member and as an extension? Consider the following code:
class Person(val firstName: String, val familyName: String) {

fun fullName() = “$firstName $familyName”
}

fun Person.fullName() = “$familyName $firstName”
fun main() {

println(Person(“John”, “Doe”).fullName()) // ???

}

In this example, we have two fullName() functions defined on the Person
class which differ in whether they put familyName first or last. When faced
with such ambiguity on the call site, the compiler always chooses the
member function, so the preceding code will print “John Doe”. It will also
issue a warning telling you that the extension function fullName() is
shadowed by a member of the Person class and thus can’t be called. IDE
provides an appropriate highlighting as well (Figure 5.6):

Figure 5.6: “Shadowed extension” warning

Favoring members over extensions prevents accidental modification of
existing class behavior which otherwise could have led to hard-to-find
errors. If it weren’t the case we could have, for example, defined:
package bad

fun Person.fullName() = “$familyName $firstName”

Then, the meaning of Person(“John”, “Doe”).fullName() call would
depend on whether
import bad.fullName

is present in its containing file. This also protects members of built-in and
JDK classes.
Note that the extension shadowing has a flipside. If you define an extension
function first and then add the corresponding member to the class, the
original call will change its meaning. This is, however, considered
acceptable since class members comprising its primary API are supposed to
change less frequently than its extension functions. This also simplifies
interoperability with a Java code which doesn’t have extensions at all.
Extension functions may be local. In particular, they may be nested into
other extension functions. In such cases, this expression means the receiver
of the innermost function. If you need to refer to the receiver of the outer

function, instead you may use a qualified form of this which specifies the
function name explicitly. This is also true for members of local classes or
anonymous objects declared inside an extension function body:
private fun String.truncator(max: Int) = object {

val truncated
get() = if (length <= max) this@truncator else
substring(0, max)

val original
get() = this@truncator

}

fun main() {
val truncator = “Hello”.truncator(3)
println(truncator.original) // Hello

println(truncator.truncated) // Hel

}

The syntax is basically the same as we’ve seen in the case of inner classes.
When the top-level extension function is defined in another package, it
must always be imported before you can make a call. For example:
// util.kt

package util
fun String.truncate(maxLength: Int): String {

return if (length <= maxLength) this else substring(0,
maxLength)

}

// main.kt

package main
import util.truncate
fun main() {

println(“Hello”.truncate(3))

}

The reason is that such a function can’t be invoked by a qualified name
since the qualifier position is taken by the receiver expression. The non-
extension function, however:
fun truncate(s: String maxLength: Int): String {

return if (s.length <= maxLength) s else s.substring(0,
maxLength)

}

could’ve been called as util.truncate(“Hello”, 3) without an import
directive.
Java vs. Kotlin: You might’ve been wondering how extension functions are
represented on the JVM. The answer is actually quite simple: extension
functions are compiled into methods with an additional parameter which
represent the receiver expression. If we look at the bytecode generated for
the truncate() function above, we’ll see that it’s basically equivalent to the
following Java code:
public final class UtilKt {

public static String truncate(String s, int maxLength) {

return s.length() <= maxLength

? s

: s.substring(0, maxLength)

}

}

which corresponds to the non-extension Kotlin function:
fun truncate(s: String, maxLength: Int) =

if (s.length <= maxLength) s else s.substring(0, maxLength)

In other words, extension functions are essentially a syntactic sugar over
ordinary functions which allow you to call them like class members.
IDE Tips: The IntelliJ plugin includes an action which automatically
converts an extension function to a non-extension one by changing its
receiver to a parameter. To do it, you need to place a caret at the receiver
type, choose “Convert receiver to parameter” from the Alt + Enter menu
and enter a new parameter name (Figure 5.7). There is also an opposite
action, “Convert parameter to receiver” which transforms an arbitrary
function parameter to its receiver. The latter action is available via Alt +
Enter when a caret is positioned on the parameter name.

Figure 5.7: “Convert receiver to parameter” action

It’s worth noting that an extension function, unlike member functions and
properties, can be defined for a nullable receiver type. Since nullable types
do not have their own members, this mechanism allows you to enrich them
by introducing extension functions “from outside”. Such extensions can
then be invoked without the safe call operator:
// Nullable receiver

fun String?.truncate(maxLength: Int): String {

if (this == null) return null

return if (length <= maxLength) this else substring(0,

maxLength)

}

fun main() {

val s = readLine() // nullable String

println(s.truncate(3)) // ?. is not necessary here

}

Note that if the extension receiver has a nullable type, it’s the responsibility
of the extension function to handle a null value.

Extension properties
Similarly to functions, Kotlin allows you to define extension properties
which can be accessed just like any member property. The syntax is also
similar. To define an extension property, you prefix its name with a receiver
type. Let’s take a look at the following example:
val IntRange.leftHalf: IntRange

get() = start..(start + endInclusive)/2
fun main() {

println((1..3).leftHalf) // 1..2

println((3..6).leftHalf) // 3..4

}

The preceding code defined an extension property leftHalf for the
IntRange type. It computes the left half of the original range.
The crucial difference between the member and extension property is that
the latter can’t have a backing field since there is no reliable way to add
some extra state to a class instance. It means that extension properties can
neither have initializers, nor use the field keyword inside their accessors.
They also can’t be lateinit since such properties rely on backing fields. For
the same reason, an extension property must always have an explicit getter
and, if mutable, an explicit setter:
val IntArray.midIndex

get() = lastIndex/2
var IntArray.midValue

get() = this[midIndex]
set(value) {

this[midIndex] = value
}

fun main() {
val numbers = IntArray(6) { it*it } // 0, 1, 4, 9, 16, 25
println(numbers.midValue) // 4

numbers.midValue *= 10

println(numbers.midValue) // 40

}

Extension properties, however, can use delegates. Bear in mind, though,
that the delegate expression can’t access the property receiver so in general,
there is no point in declaring the lazy property as an extension since it
would have the same value for each instance of the receiver type:
val String.message by lazy { “Hello” }
fun main() {

println(“Hello”.message) // Hello

println(“Bye”.message) // Hello

}

Object definitions can be considered an exception since they have only one
instance:
object Messages

val Messages.HELLO by lazy { “Hello” }
fun main() {

println(Messages.HELLO)

}

In general, it’s possible to create a delegate which is able to access the
property receiver. We’ll see how to do it in Chapter 11, Domain-Specific
Languages.

Companion extensions
In Chapter 4, Working with Classes and Objects, we’ve introduced an idea
of the companion object which is a special nested object whose members
can be accessed by the name of its containing class. This useful feature
covers extensions as well.
In the following example, we define an extension function for the
companion object of the built-in IntRange class. The function can then be
invoked via the class name:
fun IntRange.Companion.singletonRange(n: Int) = n..n
fun main() {

println(IntRange.singletonRange(5)) // 5..5

println(IntRange.Companion.singletonRange(3)) // 3..3

}

It’s, of course, possible, to call such a function using the full companion
name as well, like in IntRange.Companion.singletonRange(3). The same
idea also works for extension properties:
val String.Companion.HELLO

get() = “Hello”
fun main() {

println(String.HELLO)

println(String.Companion.HELLO)

}

Note that the definition of extensions on the companion object is only
possible if a class in question has explicit declaration of the companion
even if it’s empty:
class Person(val firstName: String, val familyName: String) {

companion object

}

val Person.Companion.UNKNOWN by lazy { Person(“John”, “Doe”) }

We can’t, on the other side, define an extension for the companion object of
Any since it doesn’t exist:
// Error: Companion is undefined

fun Any.Companion.sayHello() = println(“Hello”)

Lambdas and functional types with the receiver
Similar to functions and properties, Kotlin allows you to utilize extension
receivers for lambdas and anonymous functions. Such functional values are
described by a special variety of functional types with the receiver. Let’s
rewrite our aggregate() example to use a functional value with the
receiver instead of a two-argument function:
fun aggregate(numbers: IntArray, op: Int.(Int) -> Int): Int {

var result = numbers.firstOrNull()
?: throw IllegalArgumentException(“Empty array”)

for (i in 1..numbers.lastIndex) result =
result.op(numbers[i])

return result
}

fun sum(numbers: IntArray) = aggregate(numbers) { op -> this +

op }

The receiver type is specified before the parameter type list and is separated
with a dot:
Int.(Int) -> Int

In this case, any lambda passed as an argument gets an implicit receiver
which we can access using this expression:
{ op -> this + op }

Similarly, we can use an extension syntax for anonymous functions. The
receiver type is specified just before function’s parameter list:
fun sum(numbers: IntArray) = aggregate(numbers, fun Int.(op:
Int) = this + op)

Unlike extension function definitions, a functional value with the receiver
can be called as a non-extension function with the receiver placed before all
succeeding arguments. We could’ve written, for example:

fun aggregate(numbers: IntArray, op: Int.(Int) -> Int): Int {
var result = numbers.firstOrNull()

?: throw IllegalArgumentException(“Empty array”)
for (i in 1..numbers.lastIndex) {

result = op(result, numbers[i]) // Non-extension call

}

return result
}

Basically, non-literal values of a functional type with the receiver are freely
interchangeable with values of the corresponding type where the receiver is
used as the first parameter as if they have the same type. This is possible
because such values have essentially the same runtime representation:
val min1: Int.(Int) -> Int = { if (this < it) this else it }
val min2: (Int, Int) -> Int = min1
val min3: Int.(Int) -> Int = min2

Note, however, that while it’s possible to invoke a functional value with the
receiver as either an extension or non-extension (with the receiver placed as
the first argument), functional values without receivers can be invoked
using a non-extension syntax only:
fun main() {

val min1: Int.(Int) -> Int = { if (this < it) this else it }
val min2: (Int, Int) -> Int = min1
println(3.min1(2)) // Ok: calling min1 as extension

println(min1(1, 2)) // Ok: calling min1 as non-extension

println(3.min2(2)) // Error: Can’t call min2 as extension

println(min2(1, 2)) // Ok: Calling min2 as non-extension

}

Lambdas with the receiver give you a powerful tool which can be used for
building DSL-like API. We’ll address this issue in Chapter 11, Domain-
Specific Languages.

Callable references with receiver
In Kotlin, you can also use callable references which define functional
values with receivers. Such references may be based on either the class
member, or extension declarations. Syntactically, they are similar to bound

callable references, but qualified by a receiver type instead of an
expression:
fun aggregate(numbers: IntArray, op: Int.(Int) -> Int): Int {

var result = numbers.firstOrNull()
?: throw IllegalArgumentException(“Empty array”)

for (i in 1..numbers.lastIndex) result =
result.op(numbers[i])

return result
}

fun Int.max(other: Int) = if (this > other) this else other
fun main() {

val numbers = intArrayOf(1, 2, 3, 4)
println(aggregate(numbers, Int::plus)) // 10

println(aggregate(numbers, Int::max)) // 4

}

In the preceding code, Int::plus refers to the member function plus()
(which does exactly the same as + operator) of the built-in class Int, while
Int::max refers to the extension function defined in the containing file. The
syntax is the same in both cases.
Thanks to implicit casting between extension and non-extension functional
types we’ve mentioned in the previous section, it’s also possible to use non-
receiver callable references in the context where the functional type with
the receiver is expected. For example, we could’ve passed a two-argument
callable reference ::max for a parameter of type Int.(Int) -> Int:
fun aggregate(numbers: IntArray, op: Int.(Int) -> Int): Int {

var result = numbers.firstOrNull()
?: throw IllegalArgumentException(“Empty array”)

for (i in 1..numbers.lastIndex) result =
result.op(numbers[i])

return result
}

fun max(a: Int, b: Int) = if (a > b) a else b
fun main() {

println(aggregate(intArrayOf(1, 2, 3, 4), ::max))

}

The converse is true as well. Callable references with the receiver can be
used when the expected functional type is a non-receiver one. In a slightly
modified example, callable references to member and extension functions
are used as values of a two-argument functional type (Int, Int) -> Int:
fun aggregate(numbers: IntArray, op: (Int, Int) -> Int): Int {

var result = numbers.firstOrNull()
?: throw IllegalArgumentException(“Empty array”)

for (i in 1..numbers.lastIndex) result = op(result,
numbers[i])

return result
}

fun Int.max(other: Int) = if (this > other) this else other
fun main() {

println(aggregate(intArrayOf(1, 2, 3, 4), Int::plus)) // 10

println(aggregate(intArrayOf(1, 2, 3, 4), Int::max)) // 4

}

Note that callable references are not supported for extensions functions
declared as class members as currently there is no way to specify multiple
receiver types for a :: expression.

Scope functions
The Kotlin standard library includes a set of functions which allow you to
introduce a temporary scope where you can refer to the value of given
context expression. Sometimes, this can be helpful to avoid an explicit
introduction of local variables in containing the scope to hold an expression
value and simplify the code. These functions are usually called scope
functions.
The basic effect is a simple execution of a lambda you will provide as an
argument. The difference comes from the combination of the following
aspects:

Whether the context expression is passed as a receiver or an ordinary
argument.
Whether the lambda is an extension or not.
Whether the function returns the value of lambda or the value of the
context expression.

Overall there are five standard scope functions: run, let, with, apply,
also. In this section, we’ll discuss how to use them to simplify your code.
All scope functions are inline and thus do not entail any performance
overhead.
Note that scope functions should be used with care as abusing them can
make your code less readable and more prone to errors. In general, it’s
worth avoiding the nested scope functions as you might get easily confused
about the meaning of this or it.

run / with
The run() function is an extension which accepts an extension lambda and
returns its result. The basic use pattern is a configuration of an object state
followed by a computation of a result value:
class Address {

var zipCode: Int = 0
var city: String = “”
var street: String = “”
var house: String = “”
fun post(message: String): Boolean {

“Message for ${zipCode, $city, $street, $house}:

$message”

return readLine() == “OK”
}

}

fun main() {
val isReceived = Address().run {

// Address instance is available as this
zipCode = 123456

city = “London”

street = “Baker Street”

house = ”221b”

post(“Hello!”) // return value

}

if (!isReceived) {
println(“Message is not delivered”)

}

}

Without a run, we’d have to introduce a variable for the Address instance
thus making it available for the rest of the function body which may be
undesirable if we need that instance for a single post() action. Using
functions like run() gives you more fine-grained control over visibility of
local declarations.
Note that the result may also be of the type Unit:
fun Address.showCityAddress() = println(“$street, $house”)
fun main() {

Address().run {

zipCode = 123456

city = “London”

street = “Baker Street”

house = ”221b”

showCityAddress()

}

}

The with() function is very similar to run(): the only difference is that
with() is not an extension, so the context expression is passed as an
ordinary argument rather than the receiver. The common use of this
function is a grouping of calls to member functions and properties of the
context expression under the same scope:
fun main() {

val message = with (Address(“London”, “Baker Street”,
“221b”)) {

“Address: $city, $street, $house”

}

println(message)

}

In the preceding example, we’re making use of the fact that the members of
this instance can be accessed without the qualifier. Without the scope
function, we’d have to write the following:
fun main() {

val addr = Address(“London”, “Baker Street”, “221b”)
val message = “Address: ${addr.city}, ${addr.street},
${addr.house}”

println(message)

}

Thus, introducing an additional variable and explicitly qualifying all
members of Address with a particular instance addr.

run without context
The Kotlin standard library also provides an overloaded version of run()
which doesn’t have a context expression and just returns the value of
lambda. The lambda itself has neither the receiver, nor parameters.
The primary use case for this function is using a block in some context
which requires an expression. Consider, for example, the following code:
class Address(val city: String, val street: String, val house:
String) {

fun asText() = “$city, $street, $house”
}

fun main() {
val address = Address(“London”, “Baker Street”, “221b”)
println(address.asText())

}

What if we want to read address components from the standard input? We
could’ve introduced a separate variable for each of them:
fun main() {

val city = readLine() ?: return
val street = readLine() ?: return
val house = readLine() ?: return
val address = Address(city, street, house)
println(address.asText())

}

But that would place them in the same scope as any other local variable of
main() while variables like city only make sense in the context of creating
a particular Address instance. Inlining all the variables and getting
something like:
fun main() {

val address = Address(readLine() ?: return,

readLine() ?: return,

readLine() ?: return)

println(address.asText())

}

is rather a bad choice since we are looking at such code we can immediately
tell what each readLine() is supposed to mean. The idiomatic solution is
given by run():
fun main() {

val address = run {
val city = readLine() ?: return
val street = readLine() ?: return
val house = readLine() ?: return
Address(city, street, house)

}

println(address.asText())

}

Since run is an inline function, we can use return statements inside its
lambda to exit the outer function as if it’s some built-in control structure.
Note that using a block statement by itself doesn’t work since such a block
is treated as lambda. That’s the reason the run() function is added to the
standard library:
fun main() {

val address = {
val city = readLine() ?: return

// Error: return is not allowed

val street = readLine() ?: return
// Error: return is not allowed

val house = readLine() ?: return
// Error: return is not allowed

Address(city, street, house)

}

println(address.asText()) // Error: no asText() method

}

let
The let function is similar to run but accepts a single-argument lambda
instead of an extension one. The value of context expression is thus

represented by the lambda argument. The return value of let is the same as
that of its lambda. This function is often used to avoid introduction of a new
variable in the outer scope:
class Address(val city: String, val street: String, val house:
String) {

fun post(message: String) {}
}

fun main() {
Address(“London”, “Baker Street”, “221b”).let {

// Address instance is accessible via it parameter

println(“To city: ${it.city}”)

it.post(“Hello”)

}

}

Similar to other lambdas, you can introduce a custom parameter name for
the purpose of readability or disambiguation:
fun main() {

Address(“London”, “Baker Street”, “221b”).let { addr ->

// Address instance is accessible via addr parameter

println(“To city: ${addr.city}”)

addr.post(“Hello”)

}

}

A common use case of let is a concise way to pass a nullable value to a non-
nullable function with a safety check. In the previous chapter, we’ve learned
about a safe call operator that allows you to invoke a function with a
nullable receiver. But what if the value in question must be passed as an
ordinary parameter. Consider the following example:
fun readInt() = try {

readLine()?.toInt()

} catch (e: NumberFormatException) {
null

}

fun main(args: Array<String>) {
val index = readInt()
val arg = if (index != null) args.getOrNull(index) else null
if (arg != null) {

println(arg)

}

}

The getOrNull() function returns an array item if the given index is valid
and null otherwise. Since its parameter is non-nullable, we can’t pass a
result of readInt() function to getOrNull(): hence the if check which
enables smart cast to a non-nullable type. We can, however, simplify the
code by using let:
val arg = index?.let { args.getOrNull(it) }

The let call is only executed when the index is not null, so the compiler
knows that its parameter is non-nullable inside lambda.

apply / also
The apply() function is an extension which takes an extension lambda and
return the value of its receiver. A common use of this function is a
configuration of object state which, as opposed to run(), is not followed by
immediate computation of some result value:
class Address {

var city: String = “”
var street: String = “”
var house: String = “”
fun post(message: String) { }

}

fun main() {
val message = readLine() ?: return
Address().apply {

city = “London”

street = “Baker Street”

house = ”221b”

}.post(message)

}

There is also a similar function also() which takes a single-argument
lambda instead:
fun main() {

val message = readLine() ?: return
Address().also {

it.city = “London”

it.street = “Baker Street”

it.house = ”221b”

}.post(message)

}

Extensions as class members
In a previous section, we’ve discussed a possibility of declaring an
extension function as a class member. Let’s now take a closer look at such
extensions.
When you define an extension function or property inside a class, such a
definition automatically gets two receivers as opposed to a single one for
ordinary members and top-level extensions. The instance of the receiver
type mentioned in the extension definition is called an extension receiver,
while the instance of the class containing the extension is called the
dispatch receiver. Both receivers can be denoted by this expression
qualified with either the containing class name (for dispatch receiver), or
the name of the extension (for the extension receiver). Unqualified this
expression, as usually, refer to the receiver of the nearest enclosing
declaration, so usually it’s the same as the extension receiver unless you use
it inside some local declaration such as class, nested extension function or a
lambda with the receiver.
Let’s consider an example which illustrates both kinds of receivers:
class Address(val city: String, val street: String, val house:
String)

class Person(val firstName: String, val familyName: String) {
fun Address.post(message: String) {

// implicit this: extension receiver (Address)

val city = city
// unqualified this: extension receiver (Address)

val street = this.city
// qualified this: extension receiver (Address)

val house = this@post.house
// implicit this: dispatch receiver (Person)

val firstName = firstName
// qualified this: dispatch receiver (Person)

val familyName = this@Person.familyName
println(“From $firstName, $familyName at $city, $street,

$house:”)

println(message)

}

fun test(address: Address) {
// Dispatch receiver: implicit

// Extension receiver: explicit

address.post(“Hello”)

}

}

When we invoke the post() function inside test(), the dispatch receiver
is supplied automatically since test() is a member of the Person class. The
extension receiver, on the other hand, is passed explicitly as the address
expression.
Similarly, we can call the post() function when the current instance of the
Person class is supplied in a different way: for example, as an extension
receiver or an instance of the outer class:
class Address(val city: String, val street: String, val house:
String)

class Person(val firstName: String, val familyName: String) {
fun Address.post(message: String) { }
inner class Mailbox {

fun Person.testExt(address: Address) {
address.post(“Hello”)

}

}

}

fun Person.testExt(address: Address) {
address.post(“Hello”)

}

What if we have a receiver of the Address type instead? Suppose we want
to call the post() inside the Address class body:
class Address(val city: String, val street: String, val house:
String) {

fun test(person: Person) {

person.post(“Hello”) // Error: method post() is not

defined

}

}

class Person(val firstName: String, val familyName: String) {
fun Address.post(message: String) { }

}

This doesn’t work because the dispatch receiver of the type Person must be
already in scope. The problem can be solved by using one of the scope
functions which can wrap the post() call inside an extension lambda with a
Person receiver:
class Address(val city: String, val street: String, val house:
String) {

fun test(person: Person) {
with(person) {

// Implicit dispatch and extension receivers

post()

}

}

}

class Person(val firstName: String, val familyName: String) {
fun Address.post(message: String) { }

}

This trick can also be used to call post() outside the Address or Person
class as well their extensions:
class Address(val city: String, val street: String, val house:
String)

class Person(val firstName: String, val familyName: String) {
fun Address.post(message: String) { }

}

fun main() {
with(Person(“John”, “Watson”)) {

Address(“London”, “Baker Street”, “221b”).post(“Hello”)

}

}

These examples demonstrate that rules regarding functions and properties
with double receivers can become quite confusing. For that reason, it’s
generally recommended to restrict their scope to the containing declaration:
class Address(val city: String, val street: String, val house:
String)

class Person(val firstName: String, val familyName: String) {
// Can’t be used outside Person class

private fun Address.post(message: String) { }

fun test(address: Address) = address.post(“Hello”)

}

One particularly confusing and error-prone case that’s worth avoiding is
when both dispatch and extension receivers have the same type:
class Address(val city: String, val street: String, val house:
String) {

fun Address.post(message: String) { }
}

An interesting example of the double-receiver member is an extension
declared inside an object (in particular, a companion object). Such
extensions may be imported and used similarly to top-level ones:
import Person.Companion.parsePerson
class Person(val firstName: String, val familyName: String) {

companion object {
fun String.parsePerson(): Person? {
val names = split(“ “)
return if (names.size == 2) Person(names[0], names[1])
else null

}

}

}

fun main() {
// instance of Person.Companion is supplied implicitly

println(“John Doe”.parsePerson()?.firstName) // John

}

In most cases, though, using top-level extensions is more preferable since it
leads to a more simple and readable code.

Conclusion
Let’s sum up the basic things we have picked in this chapter. We’ve learned
to use functional types and higher-order functions to abstract and compose
pieces of code in the form of functions. We’ve also seen various forms of
constructing a functional value and discussed the capabilities of function
inlining. Finally, we have gone through the major uses cases of extension
functions and properties which allow you to add new features to existing
types.
In the next chapter, we’re going to revisit the object-oriented programming
and discuss special varieties of classes aimed at simplifying common
programming patterns like enumerations and data classes.

Points to remember
Kotlin supports first-class values of functional types which can be
stored in variables as well as passed into and returned from another
functions.
Functional values can be constructed in two ways: by defining new
function via the lambda/anonymous function syntax or by using an
existing function/class method in the form of a callable reference.
Kotlin functions and properties can be inlined meaning that their body
gets substituted in place of their calls.
Existing types can be enhanced by adding extension functions and
properties.
The standard library includes a set of functions which allow you to
introduce a new scope where given context expression can be used as
either parameter, or receiver.

Questions
1. What’s a higher-order function?
2. Describe the syntax of lambda expression. How do they compare with

lambdas in Java?
3. What is a functional type? What’s the difference between functional

types in Kotlin and functional interfaces in Java?

4. Compare functional types with the receiver and the ones without.
5. What are the differences between lambdas and anonymous functions?

When would you prefer an anonymous function over lambda?
6. Describe the pros and cons of inline functions. What are the

limitations?
7. What is a callable reference? Describe callable reference forms. How

do they compare with method references in Java?
8. Describe the behavior of return statements inside lambdas and

anonymous functions. What is a qualified return statement?
9. Compare inlining modes of functional parameters: default, noinline,

crossinline.
10. How to define an extension function? Do extensions modify the

classes they apply to?
11. How would you use a companion object extension?
12. What are limitations of extension properties?
13. Describe the forms of this expression. What are the uses of qualified

this?
14. What are the specifics of declaring extension functions inside classes?
15. What are the scope functions? How would you decide which scope

function better fits for the particular task at hand?

Key terms
Functional value: An object which can be invoked like a function (via
its invoke() method).
Lambda: A functional value expression in the form of a code block
with optional arguments and return type.
Callable reference: An expression which wraps the existing function
or method into a functional value which can be stored and passed
around like any other object.
Inline function: A function whose body is substituted in a place of a
call instead of performing a call itself

Non-local return: A return statement which can terminate enclosing
function from inside a lambda that is passed as its argument.
Extension function/property: A function/property which is defined
with an explicit receiver of some type and can be invoked as if it were
a member of that type.

CHAPTER 6
Using Special-Case Classes

In this chapter, we will discuss special kinds of classes designed to simplify
the implementation of some common programming patterns. Namely, we’ll
address the usage of enums to describe types with a restricted set of
instances, the concise representation of data with data classes, and
experimental lightweight wrappers with almost zero runtime overhead.

Structure
Enum classes
Data classes
Inline classes

Objective
After reading this chapter, you will learn to use special varieties of classes
such as enums and data classes to solve common programming tasks. Get a
basic understanding of inline classes and their usage on the example of
unsigned integer types.

Enum classes
An enum (short of “enumeration”) class is a special variety of class which
can represent a limited set of predefined constants. The simplest form is just
a list of constant names enclosed inside the enum class body:
enum class WeekDay {

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY,

SUNDAY

}

fun WeekDay.isWorkDay() =
!(this == WeekDay.SATURDAY || this == WeekDay.SUNDAY)

fun main() {
println(WeekDay.MONDAY.isWorkDay()) // true

println(WeekDay.SATURDAY.isWorkDay()) // false

}

Enums allow more type-safe representations of limited value sets as
compared to, say, integers or strings since you don’t have to check whether
a value in the question is out of possible range. The compiler ensures that
any variable of a particular enum type can take only one of the values
specified in its body.
Java vs. Kotlin: Kotlin enums are defined with a pair of keyword enum
class as opposed to just enum in Java. The enum keyword itself is soft and
can be used as an identifier in any other context.
Note that compile-time constants enum values are usually written in upper
case.
Enums are somewhat similar to object declarations in a sense that they
define a set of global constants representing instances of a particular type.
Similarly to objects, they are not permitted in contexts where there is no
guarantee that such a definition can be available as a global constant. You
can’t, for example, put an enum definition into an inner class or function
body:
fun main() {

enum class Direction { NORTH, SOUTH, WEST, EAST } // Error
}

Exhaustive when expressions
Just like values of any other type, enum variables may be compared against
particular values using a when expression. There is, however, an additional
benefit when using enums; you can omit an else branch if the when
expression is exhaustive, i.e., it contains branches for all possible values of
an enum type:
enum class Direction {

NORTH, SOUTH, WEST, EAST

}

fun rotateClockWise(direction: Direction) = when (direction) {
Direction.NORTH -> Direction.EAST

Direction.EAST -> Direction.SOUTH

Direction.SOUTH -> Direction.WEST

Direction.WEST -> Direction.NORTH

}

The exhaustive form of the when expression decreases the chance of writing
a code which may break on a context change like adding a new enum value.
Suppose that we’ve added an else branch instead:
fun rotateClockWise(direction: Direction) = when (direction) {

Direction.NORTH -> Direction.EAST

Direction.EAST -> Direction.SOUTH

Direction.SOUTH -> Direction.WEST

Direction.WEST -> Direction.NORTH

else -> throw IllegalArgumentException(“Invalid direction:
$direction”)

}

This code works fine until we add new values for the Direction enum:
enum class Direction {

NORTH, SOUTH, WEST, EAST,

NORTH_EAST, NORTH_WEST, SOUTH_EAST, SOUTH_WEST

}

Now, a call like rotateClockWise(Direction.NORTH_EAST) will throw an
exception. If we, however, use an else free form, an error can be captured
at compile-time as the compiler can complain about the non-exhaustive
when expression in the rotateClockWise() body.
Java vs. Kotlin: Note that unlike Java’s switch statement which requires
you to use unqualified names of enum values in case clauses, Kotlin enum
constants used in a when expression must be qualified with the name of the
enum class unless imported. Compare the preceding rotateClockWise()
function with a similar Java method:
public Direction rotateClockWise(Direction d) {

switch (d) {
case NORTH: return Direction.EAST;
case EAST: return Direction.SOUTH;
case SOUTH: return Direction.WEST;
case WEST: return Direction.NORTH;

}

throw new IllegalArgumentException(“Unknown value: “ + d);
}

We can void explicit qualification of enum constants by importing them at
the beginning of the containing file:
import Direction.*
enum class Direction {

NORTH, SOUTH, WEST, EAST

}

fun rotateClockWise(direction: Direction) = when (direction) {
NORTH -> EAST

EAST -> SOUTH

SOUTH -> WEST

WEST -> NORTH

}

Internally exhaustive when expressions include an implicit else branch
which throws a special exception of the NoWhenBranchMatchedException
class when no branch matches a subject expression.
IDE Tips: The IntelliJ plugin can detect unnecessary else branches and
suggest you to drop them if the when expression is exhaustive as shown in
Figure 6.1 (as shown on the Error: Reference source not found):

Figure 6.1: Redundant else branch in an exhaustive when expression

Declaring enums with custom members

Similarly to other classes, enums may have their own members. Besides
that, you can define your own extension functions and properties as
evidenced by the preceding example.
The enum class may include any definitions permitted for an ordinary class,
including functions, properties, primary and secondary constructors,
initialization blocks, inner/non-inner nested classes, and objects (whether
companion or not). Any such declarations in an enum class body must be
placed after the enum constant list. The constant list itself in this case must
be terminated by a semicolon (it’s one of those rare cases when a semicolon
in Kotlin can’t be omitted). The members declared in an enum class body
are available for all its constants:
enum class WeekDay {

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY,

SUNDAY;

val lowerCaseName get() = name.toLowerCase()

fun isWorkDay() = !(this == SATURDAY || this == SUNDAY)

}

fun main() {
println(WeekDay.MONDAY.isWorkDay()) // true

println(WeekDay.WEDNESDAY.lowerCaseName) // wednesday

}

When an enum class has a constructor, you need to place an appropriate call
in the definition of each enum constant:
enum class RainbowColor(val isCold: Boolean) {

RED(false), ORANGE(false), YELLOW(false),
GREEN(true), BLUE(true), INDIGO(true), VIOLET(true);
val isWarm get() = !isCold

}

fun main() {
println(RainbowColor.BLUE.isCold) // true

println(RainbowColor.RED.isWarm) // true

}

The enum constants may also have a body with their own definitions. Note,
however, that an anonymous type introduced by such constants (we’ve
already mentioned them in Chapter 4, Working with Classes and Objects)

are not exposed to the outside code which means that you can’t access
members introduced in the enum constant body outside the body itself:
enum class WeekDay {

MONDAY { fun startWork() = println(“Work week started”) },
TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY

}

fun main() = WeekDay.MONDAY.startWork() // Error

Such members are generally helpful when they are used to provide the
implementation of virtual methods in the enum class itself or some
supertype. We’ll defer such examples till Chapter 8, Understanding Class
Hierarchies.
Note that currently all nested classes defined in an enum constant body
must be inner.

Using common members of enum classes
All enum classes in Kotlin are implicit subtypes of the kotlin.Enum class
which contains a set of common functions and properties available for any
enum value. Besides a few API differences, this class is quite similar to its
Java counterpart, java.lang.Enum. On the JVM, it’s indeed represented by
the Java’s Enum.
Any enum value has a pair of properties, ordinal and name which contain
the zero-based index of its definition in the enum class body and value
name, respectively:
enum class Direction {

NORTH, SOUTH, WEST, EAST;

}

fun main() {
println(Direction.WEST.name) // WEST

println(Direction.WEST.ordinal) // 2

}

Values of a particular enum class are comparable with each other according
to the order of their definition in the enum body. Similarly to Java, the
enum equality is based on their identity:
fun main() {

println(Direction.WEST == Direction.NORTH) // false

println(Direction.WEST != Direction.EAST) // true

println(Direction.EAST < Direction.NORTH) // false

println(Direction.SOUTH >= Direction.NORTH) // true

}

The comparison operations on enum values basically work on their indices
as given by the ordinal property.
Java vs. Kotlin: Even though both Java and Kotlin enums implicitly
implement the Comparable interface, you can’t apply the operator such as <
or > to enum values in Java.
Each enum class also has a set of implicit methods which can be invoked on
a class name similarly to members of a companion object. The valueOf()
method returns a enum value given its name or throws an exception if a
name is not valid:
fun main() {

println(Direction.valueOf(“NORTH”)) // NORTH

println(Direction.valueOf(“NORTH_EAST”)) // Exception:

Invalid name

}

The values() method gives you an array of all enum values in the order of
their definition. Note that the array is created anew on each call so changes
to one of them do not affect others:
enum class WeekDay {

MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY,

SUNDAY

}

private val weekDays = WeekDay.values()val WeekDay.nextDay

get() = weekDays[(ordinal + 1) % weekDays.size]Since Kotlin 1.1
you can use generic top-level functions enumValues() and enumValueOf()
instead of values() and valueOf() methods respectively:
fun main() {

val weekDays = enumValues<WeekDay>()
println(weekDays[2]) // WEDNESDAY

println(enumValueOf<WeekDay>(“THURSDAY”)) // THURSDAY

}

Data classes
Kotlin provides a useful feature to declare classes with a primary goal of
storing some data. This feature, called data classes, allows you to
automatically use generated implementations of some basic operations like
equality or conversion to String. With data classes, you can also take
advantage of destructuring declarations which give you an option to extract
class properties putting them into separate local variables with a single and
concise language construct. In this section, we’ll consider the possibilities
of data classes.

Data classes and their operations
Consider, for example, the following class:
class Person(val firstName: String, val familyName: String,

val age: Int)

What if we want to compare its instances by equality? Similarly to Java, the
value of referential types is by default considered equal if they have the
same identity, i.e., refer to the same object. The values of instance fields are
not taken into account:
fun main() {

val person1 = Person(“John”, “Doe”, 25)
val person2 = Person(“John”, “Doe”, 25)
val person3 = person1
println(person1 == person2) // false, different identities

println(person1 == person3) // true, the same identity

}

If we need a custom equality for the out class, we usually implement it with
the equals() method (more on this in Chapter 7, Exploring Collections and
I/O and Chapter 8, Understanding Class Hierarchies) accompanied with
the corresponding hashCode() method which allows you to use class
instances as keys in collections like HashMap. For a certain variety of
classes, called data classes, Kotlin can generate these methods
automatically based on a list of class properties. Let’s modify our example
slightly:
data class Person(
val firstName: String,

val familyName: String,
val age: Int

)

fun main() {
val person1 = Person(“John”, “Doe”, 25)
val person2 = Person(“John”, “Doe”, 25)
val person3 = person1
println(person1 == person2) // true

println(person1 == person3) // true

}

Now, both comparisons yield true since the compiler automatically
provides implementation of the equality operation which compares values
of the properties declared in the primary constructor. This also applies to the
hash code which depends on the same set of properties.
Note that comparisons of property values are based on their equals()
method too, so how deep the equality goes depends on the type of the
properties involved. Consider the following example:
data class Person(
val firstName: String,
val familyName: String,
val age: Int

)

data class Mailbox(val address: String, val person: Person)
fun main() {

val box1 = Mailbox(“Unknown”, Person(“John”, “Doe”, 25))
val box2 = Mailbox(“Unknown”, Person(“John”, “Doe”, 25))
println(box1 == box2) // true

}

Since String, Person, and MailBox implement content-based equality, the
comparison of MailBox instances depend on its own address property as
well as the properties of the corresponding Person instance. If we, however,
drop the data modifier before the Person class, the result will change since
the person properties will be compared by their identity:
class Person(
val firstName: String,
val familyName: String,

val age: Int
)

data class Mailbox(val address: String, val person: Person)
fun main() {

val box1 = Mailbox(“Unknown”, Person(“John”, “Doe”, 25))
val box2 = Mailbox(“Unknown”, Person(“John”, “Doe”, 25))
println(box1 == box2) // false: Person instances have

different identities

}

The hashCode() method similarly returns an object hash code which
depends on hash codes of all properties declared in the primary constructor.
Aside of the equals()/hashCode() generation data classes provide an
implementation of the toString() method which converts a class instance
to string:
fun main() {

val person = Person(“John”, “Doe”, 25)
println(person) // Person(firstName=John, familyName=Doe,

age=25)

}

Note that only properties declared as parameters of the primary constructor
are used in the equality/hash code/String conversion. Any other properties
do not affect the result:
data class Person(val firstName: String, val familyName:
String) {

var age = 0
}

fun main() {
val person1 = Person(“John”, “Doe”).apply { age = 25 }
val person2 = Person(“John”, “Doe”).apply { age = 26 }
println(person1 == person2) // true

}

Any data class implicitly provides the copy() function which allows you to
create a copy of the current instance with a possible change of some
properties. It has the same signature as the data class primary constructor,
but accompanies each parameter with a default equal to the current value of

the corresponding property. The copy() function is usually invoked with a
named argument syntax for better code readability:
fun Person.show() = println(“$firstName $familyName: $age”)
fun main() {

val person = Person(“John”, “Doe”, 25)
person.show() // John

Doe: 25

person.copy().show() // John

Doe: 25

person.copy(familyName = “Smith”).show() // John

Smith: 25

person.copy(age = 30, firstName = “Jane”).show() // Jane

Doe: 30

}

The ability to easily copy an instance encourages the usage of immutable
data classes. Although the var properties are allowed, it’s often reasonable
to design data classes as immutable. Using immutable data simplifies
reasoning about your code and makes it less error-prone, especially in
multi-threaded projects. Immutability is a prerequisite for a proper usage of
object as a map key; violating immutability in such cases may lead to quite
unexpected behavior as we’ll see in Chapter 7, Exploring Collections and
I/O.
The Kotlin standard library includes two general-purpose data classes
which can be used to hold a pair or a triplet of values:
fun main() {

val pair = Pair(1, “two”)
println(pair.first + 1) // 2

println(“${pair.second}!”) // two!

val triple = Triple(“one”, 2, false)
println(“${triple.first}!”) // one!

println(triple.second – 1) // 1

println(!triple.third) // true

}

Pairs can also be constructed using the infix operation to:
val pair = 1 to “two”
println(pair.first + 1) // 2

println(“${pair.second}!”) // two!

Note that in most cases, using custom data classes is more reasonable since
they allow you to choose meaningful names for both a class and its
properties, thus improving the code readability.
Java vs. Kotlin: Kotlin data classes are very similar to the concept of
record classes which had been introduced in Java 14 for the same purpose
of reducing boilerplate when writing simple data holder classes. Starting
from Kotlin 1.5 both kinds of classes can easily interoperate in the JVM-
targeted codebases (see Chapter 12, Java Interoperability for details).
Apart from the autogenerated functions we’ve seen earlier, data classes give
you a useful ability to extract their constituent properties into separate
variables within a single definition. In the following section, we’ll consider
how to do it using destructuring declarations.

Destructuring declarations
Consider the following example:
import kotlin.random.Random
data class Person(
val firstName: String,
val familyName: String,
val age: Int

)

fun newPerson() = Person(
readLine()!!,

readLine()!!,

Random.nextInt(100)

)

fun main() {
val person = newPerson()
val firstName = person.firstName
val familyName = person.familyName
val age = person.age
if (age < 18) {

println(“$firstName $familyName is under-age”)

}

}

We will extract values of the Person properties and use them in a
subsequent computation. But since Person is a data class, we will use a
much more concise syntax to define the corresponding local variables:
val (firstName, familyName, age) = person

This is a destructuring declaration which generalizes a local variable
syntax by allowing you to use a parentheses-enclosed list of identifiers
instead of a single variable name. Each name corresponds to a separate
variable definition which is initialized by a corresponding property from a
data class instance written after the = sign.
Note that properties are mapped to the variables according to their position
in the data class constructor rather than their name. So while the code:
val (firstName, familyName, age) = Person(“John”, “Doe”, 25)
println(“$firstName $familyName: $age”)

produces the expected result “John Doe: 25”, the following lines:
val (familyName, firstName, age) = Person(“John”, “Doe”, 25)

println(“$firstName $familyName: $age”)

will give you “Doe John: 25”.
IDE Tips: For this specific case, when variable names in the destructuring
declaration match the data class properties but are written in a wrong order,
the IntelliJ plugin reports a warning which may help to locate a source of a
possible bug. It’s recommended that you either rename a variable so that it
does match the property, or change its position in the destructuring
declaration (see an example on the Error: Reference source not found) as
shown in Figure 6.2:

Figure 6.2: Wrong ordering of variables in destructuring declaration

A destructuring declaration as a whole may not have a type. It’s possible,
however, to specify explicit types for a component variable whenever it’s
necessary:

val (firstName, familyName: String, age) = Person(“John”,
“Doe”, 25)

A destructuring declaration may include fewer components than there are
properties in a data class. In this case, missing properties at the end of the
constructor are not extracted:
val (firstName, familyName) = Person(“John”, “Doe”, 25)
println(“$firstName $familyName”) // John Doe

val (name) = Person(“John”, “Doe”, 25)

println(name) // John

What if you need to skip some properties that come at the beginning or in
the middle? Since Kotlin 1.1, you can replace unused components with the
_ symbol similar to unused parameters of a lambda expression:
val (_, familyName) = Person(“John”, “Doe”, 25)
println(familyName) // Doe

Replacing val with var you get a set of mutable variables:
var (firstName, familyName) = Person(“John”, “Doe”, 25)
firstName = firstName.toLowerCase()

familyName = familyName.toLowerCase()

println(“$firstName $familyName”) // john doe

Note that the val/var modifier applies to all components of destructuring
declarations, so you may either declare all variables mutable, or declare
them all immutable without intermediate options.
Destructuring can also be used in the for loops:
val pairs = arrayOf(1 to “one”, 2 to “two”, 3 to “three”)
for ((number, name) in pairs) {

println(“$number: $name”)

}

Since Kotlin 1.1, it’s possible to destructure a lambda parameter:
fun combine(person1: Person,

person2: Person,

folder: ((String, Person) -> String)): String {

return folder(folder(“”, person1), person2)
}

fun main() {
val p1 = Person(“John”, “Doe”, 25)

val p2 = Person(“Jane”, “Doe”, 26)
// Without destructuring:

println(combine(p1, p2) { text, person -> “$text

${person.age}” })

// With destructuring:

println(combine(p1, p2) { text, (firstName) -> “$text

$firstName” })

println(combine(p1, p2) { text, (_, familyName) -> “$text

$familyName” })

}

Note that unlike the ordinary lambda parameter list, destructured
parameters are enclosed in parentheses.
Since destructuring declarations are currently only supported for local
variables, they can’t be declared in a class body or at the top level in a file:
data class Person(
val firstName: String,
val familyName: String,
val age: Int

)

val (firstName, familyName) = Person(“John”, “Doe”, 25) //
Error

Note that as of now, destructuring declarations can’t be nested:
data class Person(
val firstName: String,
val familyName: String,
val age: Int

)

data class Mailbox(val address: String, val person: Person)

fun main() {

val (address, (firstName, familyName, age)) =
Mailbox(“Unknown”, Person(“John”, “Doe”, 25)) // Error

}

While data classes provide destructuring support out of the box, in general
it may be implemented for any Kotlin type. In Chapter 11, Domain-Specific
Languages, we’ll discuss how to do it using the operator overloading
conventions.

Inline classes
Creating wrapper classes is quite common in programming practice; after
all, this is a gist of the well-known Adapter design pattern. Suppose, for
example, we want our program to have a concept of currency. Although
money quantity is essentially a number, we’d prefer not to mix it with other
numbers which may have a very different meaning. So we will introduce
some wrapper classes and utility functions:
class Dollar(val amount: Int) // amount in cents

class Euro(val amount: Int) // amount in cents

fun Dollar.toEuro() = …
fun Euro.toDollar() = …

The problem with such an approach is a runtime overhead which comes
from the necessity to create an extra object whenever we’re introducing a
new monetary amount. The problem becomes even more significant when
the wrapped value is a primitive as we have in the case of our currency
classes since direct manipulation of numeric values doesn’t require any
object allocation at all. Using wrapper classes instead of primitives prevent
many optimizations and take a toll on the program performance.
To solve such issues, Kotlin 1.3 has introduced a new variety of classes
which is called an inline class.

Defining an inline class
To define an inline class, you need to add the inline keyword before its
name:
inline class Dollar(val amount: Int) // amount in cents
inline class Euro(val amount: Int) // amount in cents

Such a class must have a single immutable property declared in the primary
constructor. At runtime, a class instance will be represented as a value of
this property without creating any wrapper objects. That’s the origin of the
term “inline class”; similarly, inline functions whose bodies are substituted
instead of their calls, the data contained in an inline class is substituted
instead of its usages.
Inline classes may have their own properties and functions:
inline class Dollar(val amount: Int) {

fun add(d: Dollar) = Dollar(amount + d.amount)

val isDebt get() = amount < 0
}

fun main() {
println(Dollar(15).add(Dollar(20)).amount) // 35

println(Dollar(-100).isDebt) // true

}

Inline class properties, however, may not have any state. The reason is that
such a state would have to be inlined together with a property in the
primary constructor, and currently, the Kotin compiler supports only single-
property inlining. This means that no backing fields, no lateinit, or
delegated (including lazy) properties are possible. Inline class properties
may have only explicit accessors like the isDebt in our example.
It’s possible to define the var properties in the inline class body, although it
usually makes a little sense because the inline class may not have a mutable
state.
Another restriction is an inability to use initialization blocks. This is
explained by the fact that the inline class constructor may not execute any
custom code since at runtime, the constructor call to Dollar(15) must
behave just like a simple mention of number 15.
In Chapter 2, Language Fundamentals, we’ve mentioned that primitive
values may be implicitly boxed if the program tries to use them in some
context which requires a reference to a real object such as assigning them to
a variable of the nullable type. The same also applies to inline classes; for
the sake of the optimization compiler, we will prefer using unwrapped
values whenever possible. When it’s not an option, however, the compiler
will fall back to using your class as if it wasn’t an inline one. For a good
approximation of the compiler behavior, you may use the following rule of
thumb: an inline class instance can be inlined whenever it’s used as exactly
the value of the corresponding type without casting to something else.
Consider the following example:
fun safeAmount(dollar: Dollar?) = dollar?.amount ?: 0
fun main() {

println(Dollar(15).amount) // inlined

println(Dollar(15)) // not inlined: used as Any?

println(safeAmount(Dollar(15))) // not inlines: used as

Dollar?

}

One more point worth noting is an experimental status of inline classes. At
the moment, the design of this language feature is not finalized and may
change in a future version. For this reason, any definition of inline classes
in Kotlin 1.3 is by default accompanied with a compiler warning. This
warning may be suppressed by passing a special command-line argument
XXLanguage:+InlineClasses to the Kotlin compiler.
IDE Tips: When using IntelliJ, you can automatically enable or disable
inline classes (or any other experimental language features such as unsigned
integers) in your project by choosing an appropriate action from the
Alt+Enter menu on the highlighted element as shown in Figure 6.3 (as
shown on the Error: Reference source not found):

Figure 6.3: Enabling inline classes in IntelliJ project

Unsigned integers
Since version 1.3, the Kotlin standard library includes a set of unsigned
integer types implemented on top of the built-in signed types using inline
classes. Just like inline classes in general, these types comprise an
experimental feature, so currently their usages produce a warning unless
you explicitly permit them in your project as shown in Figure 6.4 (see the
Error: Reference source not found):

Figure 6.4: Enabling unsigned types support in the IntellJ Project

The name of each unsigned type is similar to the name of each signed
counterpart with an extra U letter (Table 6.1):

Type Size (in bytes) Range

UByte 1 0 .. 255

UShort 2 0 .. 65535

UInt 4 0 .. 232 − 1

ULong 8 0 .. 264 − 1

Table 6.1: Unsigned Integer types

To denote an unsigned value, you can add u or U suffix to an integer literal.
The type of the literal is determined by its expected type such as the type of
variable initialized by this value. If no expected type is specified, the literal
type is supposed to be either UInt, or ULong depending on its size:
val uByte: UByte = 1u // explicit UByte

val uShort: UShort = 100u // explicit UShort

val uInt = 1000u // UInt inferred automatically

val uLong: ULong = 1000u // explicit ULong

val uLong2 = 1000uL // explicit ULong due to L suffix

Signed and unsigned types are compatible with each other, though, so you
can’t, for example, assign an unsigned value to a variable of a signed type
and vice versa:
val long: Long = 1000uL // Error

Unsigned and signed types can be converted into another using one of the
toXXX() methods:
println(1.toUByte()) // 1, Int -> UByte

println((-100).toUShort()) // 65436, Int -> UShort

println(200u.toByte()) // -56, UInt -> Byte

println(1000uL.toInt()) // 1000, ULong -> Int

Unsigned type API is quite similar to that of signed integer types. In
particular, any pair of unsigned values can be combined by arithmetic

operators +, -, *, /, %:
println(1u + 2u) // 3

println(1u - 2u) // 4294967295

println(3u * 2u) // 6

println(5u / 2u) // 2

println(7u % 3u) // 1

You can’t, however, combine signed values with unsigned ones:
println(1u + 2) // Error

println(1 + 2u) // Error

Also, unlike signed types, unsigned integers do not support the unary minus
operation. This makes sense since they can’t denote negative values:
println(-1u) // Error

Unsigned values can be used in increment/decrement expressions and
augmented assignments:
var uInt: UInt = 1u

++uInt

uInt -= 3u

And support basic bitwise operations such as inversion, AND, OR and
XOR:
val ua: UByte = 67u // 01000011

val ub: UByte = 139u // 10001011

println(ua.inv()) // 10111100: 188

println(ua or ub) // 11001011: 203

println(ua xor ub) // 11001000: 200

println(ua and ub) // 00000011: 3

UInt and ULong also supports left and right bitwise shifts:
val ua = 67u // 0..0001000011

println(ua shr 2) // 0..0000010000: 16

println(ua shl 2) // 0..0100001100: 268

Note that the bit count is specified as a value of the ordinary Int rather than
UInt. Also, there is no separate ushr operation for unsigned right shifts
because for unsigned integers, it behaves exactly like shr.
Similar to ordinary integers, unsigned values can be compared using the <,
>, <=, >=, == and != operations:
println(1u < 2u) // true

println(2u >= 3u) // false

println(2u + 2u == 1u + 3u) // true

The Kotlin standard library also includes a set of auxiliary types which
represent arrays of unsigned integers: UByteArray, UShortArray,
UIntArray, ULongArray. These are also inline classes backed by the
corresponding array classes like IntArray. Unsigned array types can be
constructed in a similar way to arrays we’ve faced so far:
val uBytes = ubyteArrayOf(1u, 2u, 3u)
val squares = UIntArray(10) { it*it }

There are also unsigned counterparts for range and progression types which
can be constructed using the .. operator as well as operations like until or
downTo:
1u .. 10u // 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

1u .. 10u step 2 // 1, 3, 5, 7, 9

1u until 10u // 1, 2, 3, 4, 5, 6, 7, 8, 9

10u downTo 1u // 10, 9, 8, 7, 6, 5, 4, 3, 2, 1

10u downTo 1u step 3 // 10, 7, 4, 1

Conclusion
This chapter has introduced us to some special varieties of classes aimed at
solving particular programming problems. We learned to use enums to
describe limited sets of objects with common functions and properties and
seen how to employ data classes to concisely define simple holders of data
as well as use destructuring for extraction of data classes properties. Finally,
we took a look at possibilities of experimental inline classes introduced in
Kotlin 1.3 for the purpose of creating lightweight wrappers and examined
unsigned integer types based on the Kotlin inline classes.
In the next chapter, we will focus on the Kotlin standard library. In
particular, we will cover basic collection types, give more extensive
treatments to arrays and strings, and consider I/O and networking
capabilities as well as some useful utility functions.

Points to remember

The enum class is a built-in way to restrict class instances to a fixed
set of constants.
Data classes provide a concise syntax to define a simple data holder.
Destructuring declarations allow extraction of multiple values from a
given object within a single variable definition.
Inline classes allow you to define zero-overhead wrappers. The
Standard library, in particular, uses them to implement unsigned
integers.

Questions
1. What is an enum class? What built-in operations are available for

enums?
2. What’s the specifics of using when expressions with enum classes?
3. How can you define an enum class with custom functions or

properties?
4. What is a data class? Which operations are generated automatically for

any data class? How to copy a data class instance?
5. What is a destructuring declaration? Where can you use one?
6. What’s the purpose of inline classes? What requirements a class must

satisfy in order to be inline?
7. Describe Kotlin unsigned types and their built-in operations. What are

their specifics as compared to signed integers?

Key terms
Enum class: A special class representing some limited set of constants
with their own methods and properties.
Data class: A class providing automatic implementation of common
methods for data holder objects such as equality, hash code, copying,
and destructuring.
Destructuring declaration: A multi-variable definition that is
initialized by a value supporting destructuring methods such as
component1(), component2(), etc.

Inline class: A wrapper class whose values at runtime are represented
by values of a wrapped type.

CHAPTER 7
Exploring Collections and I/O

In this chapter, we’ll take a look at two major components of the Kotlin
standard library. The first part will be devoted to the collections API. Then,
we’ll discuss common collection types together with their basic operations
and give a comprehensive treatment of various manipulations with
collections and their data such as element access utilities, testing collection
predicates, filtering and extracting collection parts, aggregation,
transformation, and ordering. In the second part, we’ll focus on I/O API and
talk about utilities which simplify both creation of I/O streams and access to
their data as well some common file system operations.

Structure
Collections
Files and I/O streams

Objective
Get an understanding of Kotlin collection types and learn to use its standard
library for concise and idiomatic manipulations with collection data as well
as use I/O stream API extensions.

Collections
A collection is an object designed to store a group of elements. In Chapter
2, we discussed one example of such objects, namely, arrays which allow
you to keep a fixed number of elements belonging to some common type.
The Kotlin standard library, though, provides far richer collection
capabilities, including both various classes based on different data
structures (such as arrays, linked lists, hash tables, and so on) as well
comprehensive API for manipulating collections and their data: filtering,

aggregation, transformation, ordering, etc. In this section, we’ll give a
detailed account of what a collection library can offer to Kotlin developers.
It’s worth noting that almost all collection-manipulating operations are
inline functions so the ease of their use doesn’t involve any performance
penalties related to function calls and lambdas.

Collection types
Collection types in Kotlin can be divided into four basic categories: arrays,
iterables, sequences, and maps. Since arrays have already been a major
topic in Chapter 2, In this section, we’ll focus on the remaining three
categories.
Similar to arrays, collection types are generic. When specifying a type of
particular collection, you also need to specify a type of its elements; for
example, List<String> means a list of strings, while Set<Int> means a set
of Int values.
The outline of basic collection types can be represented by the following
diagram (Figure 7.1):

Figure 7.1: Kotlin collection types

Iterables
An iterable, represented by the Iterable<T> type, represents a collection
which is generally both eager and stateful. The statefulness means that such
collection stores contain elements in its instance rather than keeping some
generator function which can retrieve them lazily. Eagerness, on the other
hand, means that collection elements are initialized at the moment of its
creation instead of being computed lazily at some later point.
The Iterable type itself is rather similar to its Java counterpart. It provides
a single iterator() method which returns an object capable of traversing
its elements. This allows you to use Kotlin’s for loop with any iterable:
val list = listOf(“red”, “green”, “blue”) // Create new list

for (item in list) {

print(item + “ ”)

} // Prints red green blue

Java vs Kotlin: The Kotlin’s Iterator type is basically the same as Java’s. It
contains two methods: hasNext() which checks whether the iterator has
reached the end of collection, and next() which returns the next collection
element. The only difference is the absence of the remove() method which
is moved to MutableIterator instead.
A major feature of Kotlin iterables, as compared to Java, is a distinction
between mutable and immutable collections. The content of immutable
collections can’t change after they are created, while mutable collections
can generally be updated at any time by adding or removing elements. Note
that collection mutability has nothing to do with mutability of a variable
keeping a reference to collection instance. It means the ability to change the
data this reference points to. You can, for example, keep a mutable
collection in an immutable variable; in this case, you can’t change the
variable making it refer to some other collection, but can, for example, add
or remove collection elements:
val list = ArrayList<String>()

list.add(“abc”) // Ok: changing collection data

list = ArrayList<String>() // Error: can’t reassign immutable

variable

The basic type of mutable iterable is represented by the MutableIterable
interface which can create a MutableIterator.

A useful feature of immutable collection types is their covariance. It means
that if T is a subtype of U, then Iterable<T> is a subtype of Iterable<U>.
This is also true for other collection-related types like Iterator,
Collection, List, Set, and Map. This, in particular, allows you write the
following code:
fun processCollection(c: Iterable<Any>) {…}

fun main() {

val list = listOf(“a”, “b”, “c”) // List<String>

processCollection(list) // Ok: passing List<String>

as List<Any>

}

This, however, does not work for a mutable collection. Otherwise, we could
have written the code which, for example, adds an integer to a list of string.
fun processCollection(c: MutableCollection<Any>) { c.add(123)

}

fun main() {

val list = arrayListOf(“a”, “b”, “c”) // ArrayList<String>

processCollection(list) // !!!

}

In Chapter 9, Generics, we’ll address the issue of covariance in more detail.

Collections, lists, and sets
An important subcategory of iterables is represented by the Collection
interface and its mutable subtype, MutableCollection. This is a basic class
for many standard implementations of iterables. Collection inheritors, in
turn, typically belong to one of the following kinds:

A list (represented by interfaces List and MutableList) is an ordered
collection of elements with index-based element access. Common
implementations of lists are ArrayList with fast random access by
index and LinkedList which can quickly add or remove elements but
requires the linear time to find the existing element by its index.
A set is a collection of unique elements. Element ordering varies
depending on the implementation:

HashSet is based on the hash table implementation and orders
elements according to their hash codes. In general, such ordering

depends on particular implementations of the hashCode() method
so can be considered unpredictable.
LinkedHashSet is also based on the hash table but retains the
insertion order. In other words, elements are iterated in the same
order as they’ve been inserted into the set.
TreeSet is an implementation based on binary search trees
which maintain stable element ordering according to some
comparison rule which may be implemented by elements
themselves (if they implement the Comparable interface), or
provided in the form of separate Comparator object.

On the JVM platform, concrete classes implementing these interfaces are
represented by corresponding JDK collections. Well-known Java classes
like HashMap or ArrayList are seamlessly integrated into the Kotlin library.
Java vs Kotlin: In the Kotlin code, there is usually no need to use classes
from the java.util package. Most standard collections like ArrayList can
be referred via aliases in the kotlin.collections package which is
automatically imported to all Kotlin files.

Sequences
Similar to iterables, sequences provide the iterator() method which can
be used to traverse their content. The intent behind them, however, is
different since a sequence is supposed to be lazy. Most of sequence
implementations do not initialize their elements at the moment of
instantiation and compute them only on demand. Many sequence
implementations are also stateless which means that they keep only a
constant amount of data required to lazily generated collection elements.
Iterables, on the other hand, usually spend an amount of memory
proportional to the number of elements.
Unlike iterables, most of the sequence implementations are internal and are
not intended to be used directly. Instead, new sequences are created by
special functions which we’ll discuss in the upcoming sections.
Java vs Kotlin: Readers familiar with Java might recognize the similarity
between sequences and streams introduced in Java 8. Since the Kotlin 1.2
standard library provides asSequence() extension function which can be
used to wrap Java stream into a Kotlin sequence.

Maps
A map is a set of key-value pairs where keys are unique. Although the map
is not a subtype of Collection by itself, its content may be presented as
such. You can, in particular, get a set of all keys, a collection of all values,
and a set of key-value pairs represented by Map.Entry, and
MutableMap.MutableEntry interfaces.
Since maps contain two different kinds of elements (keys and values), their
types have two parameters; for example, Map<Int, String> is a map with
associate Int keys with String values.
Standard implementations of maps include HashMap, LinkedHashMap, and
TreeMap which have properties similar to that of corresponding
implementations of Set.
AbstractMap and AbstractMutableMap classes can be used as
placeholders for implementing your own maps.

Comparables and comparators
Similarly to Java, Kotlin supports the Comparable and Comparator types
which can be used in some collection operations. Comparable instances
possess a natural ordering. Each of them has the compareTo() function
which can be used to compare it with other instances of the same type. So
by making your type of an inheritor of Comparable, you can automatically
allow operations like < and > and, on top of it, you can apply ordering
operations for a collection with the corresponding element type. Suppose
we want our Person class to have the natural order based on the full name.
The implementation would look like this:
class Person(

val firstName: String,

val familyName: String,

val age: Int

) : Comparable<Person> {

val fullName get() = “$firstName $familyName”

override fun compareTo(other: Person) =

fullName.compareTo(other.fullName)

}

The convention about the compareTo() function is the same as in Java. It
returns a positive number when the current instance is greater than other, a
negative number when it’s smaller, and zero when both instances are equal.
An implementation of compareTo() is supposed to be compatible with the
equals() function.
In many cases, a given class can be compared in multiple ways. For
example, we can order a collection of Person instances by their first or
family names only, by age, or by various combinations of these properties.
For this reason, the Kotlin library provides a concept of comparator.
Similarly to Java, an instance of the Comparator<T> class provides the
compare() function which takes two instances of a type T and returns the
comparison result following the same convention as compareTo(). In
Kotlin, comparators can be concisely constructed based on a comparison
lambda:
val AGE_COMPARATOR = Comparator<Person> { p1, p2 ->

p1.age.compareTo(p2.age)

}

Alternatively, you can use the compareBy() or compareByDescending()
function to provide a comparable value to be used instead of the original
object:
val AGE_COMPARATOR = compareBy<Person> { it.age }
val REVERSE_AGE_COMPARATOR = compareByDescending<Person> {
it.age }

The comparator instance can then be passed into some ordering-aware
function like sorted() or maxOrNull(). You can find examples in the
upcoming sections on aggregating functions and collection ordering.

Creating a collection
In Chapter 2, Language Fundamentals, we saw how to create array
instances using either constructors or standard functions like arrayOf().
Many standard collection classes may be constructed in a similar way. For
example, such classes ArrayList or LinkedHashSet can be created by an
ordinary constructor call just like in Java:
val list = ArrayList<String>()
list.add(“red”)

list.add(“green”)

println(list) // [red, green]

val set = HashSet<Int>()

set.add(12)

set.add(21)

set.add(12)

println(set) // [12, 21]

val map = TreeMap<Int, String>()

map[20] = “Twenty”

map[10] = “Ten”

println(map) // {10=Ten, 20=Twenty}

We also have functions similar to arrayOf() which take a variable
argument list and produce an instance of some standard collection class:

emptyList()/emptySet(): This is an instance of the immutable
empty list/set (similar to the emptyXXX() methods of the JDK
Collections class).
listOf()/setOf(): This creates a new immutable list/set backed by
the argument array (for lists, it’s basically the same as Java’s
Arrays.asList()).
listOfNotNull(): This creates a new immutable list with nulls
filtered out.
mutableListOf()/mutableSetOf(): This creates a default
implementation of the mutable list/set (internally, it’s ArrayList and
LinkedHashSet, respectively).
arrayListOf(): This creates a new ArrayList.
hashSetOf()/linkedSetOf()/sortedSetOf(): This creates a new
instance of HashSet/LinkedHashSet/TreeSet, respectively.

Let’s consider some examples:
val emptyList = emptyList<String>()
println(emptyList) // []

emptyList.add(“abc”) // Error: add is unresolved

val singletonSet = setOf(“abc”)
println(singletonSet) // [abc]

singletonSet.remove(“abc”) // Error: remove is unresolved

val mutableList = mutableListOf(“abc”)
println(mutableList) // [abc]

mutableList.add(“def”)

mutableList[0] = “xyz”

println(mutableList) // [xyz, def]

val sortedSet = sortedSetOf(8, 5, 7, 1, 4)
println(sortedSet) // [1, 4, 5, 7, 8]

sortedSet.add(2)

println(sortedSet) // [1, 2, 4, 5, 7, 8]
Similar functions are also provided for constructing maps:

emptyMap(): This is an instance of the immutable empty map.
mapOf(): This creates a new immutable map (internally, it’s a
LinkedHashMap).
mutableMapOf(): This creates a default implementation of the
mutable map (internally, it’s LinkedHashMap).
hashMapOf()/linkedMapOf()/sortedMapOf(): This creates a new
instance HashMap/LinkedHashMap/TreeMap.

Note that the preceding map functions take a variable argument list of the
Pair objects which can be concisely constructed by the to infix operation:
val emptyMap = emptyMap<Int, String>()
println(emptyMap) // {}

emptyMap[10] = “Ten” // Error: set is unresolved

val singletonMap = mapOf(10 to “Ten”)
println(singletonMap) // {10=Ten}

singletonMap.remove(“abc”) // Error: remove is unresolved

val mutableMap = mutableMapOf(10 to “Ten”)
println(mutableMap) // {10=Ten}

mutableMap[20] = “Twenty”

mutableMap[100] = “Hundred”

mutableMap.remove(10)

println(mutableMap) // {20=Twenty, 100=Hundred}

val sortedMap = sortedMapOf(3 to “three”, 1 to “one”, 2 to
“two”)

println(sortedMap) // {1=one, 2=two, 3=three}

sortedMap[0] = “zero”

println(sortedMap) // {0=zero, 1=one, 2=two, 3=three}

Alternatively, you can create a mutable map and fill it using the set()
method or indexing operator to avoid the creation of excessive Pair
instances.
Lists can also be constructed that are similar to arrays by specifying their
size and a function which maps the index to the element value:
println(List(5) { it*it }) // [0, 1, 4, 9, 16]

val numbers = MutableList(5) { it*2 }

println(numbers) // [0, 2, 4, 6, 8]

numbers.add(100)

println(numbers) // [0, 2, 4, 6, 8, 100]

The simplest way to create a sequence of known elements is to use a
sequenceOf() function which takes a vararg. Alternatively, you can
convert an existing collection such as an array, iterable, or a map into the
sequence by calling the asSequence() function:
println(sequenceOf(1, 2, 3).iterator().next()) //

1

println(listOf(10, 20, 30).asSequence().iterator().next()) //

10

println(

mapOf(1 to “One”, 2 to “Two”).asSequence().iterator().next()

) //

1=One

Note that calling asSequence() on map gives you a sequence of map
entries.
Another option is to create a sequence based on some generator function.
This case is implemented by a pair of generateSequence() functions. The
first one takes a parameterless function which computes the next sequence
element. Sequence generation proceeds until this function returns null. For
example, the following code creates a sequence which reads the program
input until it encounters a non-number or the input is exhausted:
val numbers = generateSequence { readLine()?.toIntOrNull() }

The second generateSequence() function takes an initial value and single-
parameter function which generates a new sequence element based on the
previous one. Just like in the first case, the generation stops when this
function returns null:
// Infinite sequence (with overflow): 1, 2, 4, 8,...

val powers = generateSequence(1) { it*2 }
// Finite sequence: 10, 8, 6, 4, 2, 0

val evens = generateSequence(10) { if (it >= 2) it - 2 else
null }

Since Kotlin 1.3, one more way to construct a sequence is to use a special
builder which allows you to provide sequence elements in parts. The
builder is implemented by the sequence() function which accepts an
extension lambda with the SequenceScope receiver type. This type
introduces a set of functions which can be used to append elements to a new
sequence:

yield(): This adds a single element.
yieldAll(): This adds all elements of the specified iterator, iterable,
or sequence.

Note that elements are added lazily. The yield()/yieldAll() calls are
executed only when the corresponding chunk of sequence is requested.
Consider the following example:
val numbers = sequence {

yield(0)

yieldAll(listOf(1, 2, 3))

yieldAll(intArrayOf(4, 5, 6).iterator())

yieldAll(generateSequence(10) { if (it < 50) it*3 else null

})

}

println(numbers.toList()) // [0, 1, 2, 3, 4, 5, 6, 10, 30, 90]

The sequence builder implemented by the
sequence()/yield()/yieldAll() functions is in fact an example of
suspendable computations, a powerful Kotlin feature which gets especially
useful in multi-threaded applications. We’ll defer its detailed treatment till
Chapter 13, Concurrency.

The final group of functions we’d like to mention in this section deals with
collection conversion; for example, they allow you to create a list based on
the content of array or turn a sequence into a set:
println(

listOf(1, 2, 3, 2, 3).toSet()

) // [1, 2, 3]

println(

arrayOf(“red”, “green”, “blue”).toSortedSet()

) // [blue, green, red]

println(

mapOf(1 to “one”, 2 to “two”, 3 to “three”).toList()

) // [(1, one), (2, two), (3, three)]

println(

sequenceOf(1 to “one”, 2 to “two”, 3 to “three”).toMap()

) // {1=one, 2=two, 3=three}

You can find a complete list of the conversion functions in the standard
library reference at kotlinlang.org/api/latest/jvm/stdlib. Conversion
functions follow certain conventions, namely, functions whose name starts
with “to” (such as toList() or toMap()) create a separate copy of the
original collection, while those which start with “as” (such as asList())
create a view which reflects any changes in the original collection.
IDE Tips: Do not hesitate using the IDE completion (available by Ctrl +
Space/Cmd + Space) to help you with choosing the conversion function or
any other method (see example in Figure 7.2):

Figure 7.2: Using completion to choose conversion function

New collections may also be created on the basis of existing ones through
operations like filtering, transforming, or sorting. We’ll cover such cases in

the upcoming sections.

Basic operations
In this section, we’ll take a look at basic operations available for Kotlin
collection types.
One common operation supported by all collections is iteration. Arrays,
iterables, sequences, and maps support the iterator() function. Although,
the instance of the Iterator object returned by this function can definitely be
used to traverse collection elements, this is rarely needed in practice since
Kotlin provides more concise ways to do the same job.
In particular, the presence of the iterator() function allows us to use the
for loop with any collection as we’ve already seen in the “Iterables” section.
One thing worth pointing out is that for maps, the iterator returns instances
of Map.Entry. In Kotlin, map entries support destructuring which allows
writing map iteration as follows:
val map = mapOf(1 to “one”, 2 to “two”, 3 to “three”)

for ((key, value) in map) {

println(“$key -> $value”)

}

The preceding code would print the following:
1 -> one

2 -> two

3 -> three

This also goes for lambdas which accept a map entry as their parameter.
An alternative is to use the forEach() extension function which executes a
supplied lambda for each collection element:
intArrayOf(1, 2, 3).forEach { println(it*it) }

listOf(“a”, “b”, “c”).forEach { println(“’$it’”) }

sequenceOf(“a”, “b”, “c”).forEach { println(“’$it’”) }

mapOf(1 to “one”, 2 to “two”, 3 to “three”).forEach { (key,

value) ->

println(“$key -> $value”)

}

If you want to additionally take element indices into account, there is a
more general forEachIndexed() function:

listOf(10, 20, 30).forEachIndexed { i, n -> println(“$i:

${n*n}”) }

Basic features of the collection type include:

The size property which gives you a number of elements.
The isEmpty() function which returns true if the collection has no
elements.
The contains()/containsAll() functions which check whether the
collection contains a specific element or all elements of another
collection.

A call to the contains() function may be replaced by the in operator:
val list = listOf(1, 2, 3)

println(list.isEmpty()) // false

println(list.size) // 3

println(list.contains(4)) // false

println(2 in list) // true

println(list.containsAll(listOf(1, 2))) // true

Note that the behavior of contains()/containsAll() depends on the
proper implementation of the equals() method. If you use instances of
your own classes as collection elements, make sure to implement content-
based equality when necessary.
The MutableCollection introduces methods for adding and removing
elements. Consider the following example:
val list = arrayListOf(1, 2, 3)

list.add(4) // Add single: [1, 2, 3, 4]

list.remove(3) // Remove single: [1, 2, 4]

list.addAll(setOf(5, 6)) // Union: [1, 2, 4, 5,

6]

list.removeAll(listOf(1, 2)) // Difference: [4, 5, 6]

list.retainAll(listOf(5, 6, 7)) // Intersection: [5, 6]

list.clear() // Remove all: []

You can also use += and –= operators instead of
add()/remove()/addAll()/removeAll() calls:
list += 4

list -= 3

list += setOf(5, 6)

list -= listOf(1, 2)

Both mutable and immutable collections support the + and – operators
which produce a new collection leaving the original untouched:
println(listOf(1, 2, 3) + 4) // [1, 2, 3, 4]

println(listOf(1, 2, 3) - setOf(2, 5)) // [1, 3]

You can also use += and –= with the immutable collection but with a very
different semantics. For the immutable collection, they act as abbreviations
for assignments and thus can be applied only to mutable variables:
val readOnly = listOf(1, 2, 3)

readOnly += 4 // Error: can’t assign to val

var mutable = listOf(1, 2, 3)

mutable += 4 // Correct

Such code, however, should be avoided in general since it implicitly creates
a new collection object on each assignment which may affect a program
performance.
IDE Tips: The IntelliJ plugin warns you about such assignments suggesting
you to use mutable collection instead of immutable one (see Figure 7.3):

Figure 7.3: Replacing immutable collection with mutable

The list introduces some methods to access its elements by an index similar
to arrays:
val list = listOf(1, 4, 6, 2, 4, 1, 7)
println(list.get(3)) // 2

println(list[2]) // 6

println(list[10]) // Exception

println(list.indexOf(4)) // 1

println(list.lastIndexOf(4)) // 4

println(list.indexOf(8)) // -1

Note that the indexing notation is generally more preferable than a call to
the get() method. When the list is mutable, its elements may also be
changed by an index:
val list = arrayListOf(1, 4, 6, 2, 4, 1, 7)
list.set(3, 0) // [1, 4, 6, 0, 4, 1, 7]

list[2] = 1 // [1, 4, 1, 0, 4, 1, 7]

list.removeAt(5) // [1, 4, 1, 0, 4, 7]

list.add(3, 8) // [1, 4, 1, 8, 0, 4, 7]

The subList() function creates a wrapper over a particular segment of the
list specified by start (inclusive) and end (exclusive) indices. The view
shares data with the original collection and in the case of the mutable list
reflects changes in its data:
val list = arrayListOf(1, 4, 6, 2, 4, 1, 7)

val segment = list.subList(2, 5) // [6, 2, 4, 1]

list[3] = 0

println(segment[1]) // 0

segment[1] = 8

println(list[3]) // 8

Sets do not introduce any additional operations by themselves. Their
implementation of common Collection methods, however, ensures that no
duplicates are added to a set.
The methods of Map allow you to retrieve a value by a key as well as
provide access to the full key set and value collection. Let’s consider an
example:
val map = mapOf(1 to “I”, 5 to “V”, 10 to “X”, 50 to “L”)

println(map.isEmpty()) // false

println(map.size) // 4

println(map.get(5)) // V

println(map[10]) // X

println(map[100]) // null

println(map.getOrDefault(100, “?”)) // ?

println(map.getOrElse(100) { “?” }) // ?

println(map.containsKey(10)) // true

println(map.containsValue(“C”)) // false

println(map.keys) // [1, 5, 10, 50]

println(map.values) // [I, V, X, L]

println(map.entries) // [1=I, 5=V, 10=X, 50=L]

MutableMap introduces basic modification methods as well support of +
and – operators:
val map = sortedMapOf(1 to “I”, 5 to “V”)

map.put(100, “C”) // {1=I, 5=V, 100=C}

map[500] = “D” // {1=I, 5=V, 100=C, 500=D}

map.remove(1) // {5=V, 100=C, 500=D}

map.putAll(mapOf(10 to “X”)) // {5=V, 10=X, 100=C, 500=D}

map += 50 to “L” // {5=V, 10=X, 50=L, 100=C,

500=D}

map += mapOf(2 to “II”,

3 to “III”) // {2=II, 3=III, 5=V, 10=X, 50=L, 100=C,

500=D}

map -= 100 // {2=II, 3=III, 5=V, 10=X, 50=L,

500=D}

map -= listOf(2, 3) // {5=V, 10=X, 50=L, 500=D}

The comment about += and –= operators with respect to mutable and
immutable collection is also valid for maps. Note also that while + operators
take key-value pairs, – operators take keys.

Accessing collection elements
Apart from basic collection operations, the Kotlin standard library contains
a set of extension functions that simplify access to individual collection
elements which we’ll discuss in this section.
The first()/last() functions return, respectively the first and the last
element of a given collection throwing a NoSuchElementException if the
collection is empty. There are also “safe” versions called
firstOrNull()/lastOrNull() which return null when no elements are
found:
println(listOf(1, 2, 3).first()) // 1

println(listOf(1, 2, 3).last()) // 3

println(emptyArray<String>().first()) // Exception

println(emptyArray<String>().firstOrNull()) // null

val seq = generateSequence(1) { if (it > 50) null else it * 3

}

println(seq.first()) // 1

println(seq.last()) // 81

These functions may also be passed a predicate in which case they will look
for the first or the last element matching the corresponding condition:
println(listOf(1, 2, 3).first { it > 2 }) // 3

println(listOf(1, 2, 3).lastOrNull { it < 0 }) // null

println(intArrayOf(1, 2, 3).first { it > 3 }) // Exception

The single() function returns the element of a singleton collection. If the
collection is empty or contains more than one element, single() throws an
exception. Its safe counterpart, singleOrNull(), returns null in both cases:
println(listOf(1).single()) // 1

println(emptyArray<String>().singleOrNull()) // null

println(setOf(1, 2, 3).singleOrNull()) // null

println(sequenceOf(1, 2, 3).single()) // Exception

The elementAt() function allows you to retrieve the collection element by
its index. It generalizes the get() function of lists and can be applied to any
array, iterable, or sequence. Bear in mind, though, that applying this
function to a non-random access list will in general take time proportional
to the value of the index.
In the case of an invalid index, elementAt() throws an exception. There are
also variants which provide a safer behavior when the index violates
collection bounds: elementAtOrNull() which simply returns null and
elementAtOrElse() which returns the value of the supplied lambda:
println(listOf(1, 2,

3).elementAt(2)) // 3

println(sortedSetOf(1, 2,

3).elementAtOrNull(-1)) // null

println(arrayOf(“a”, “b”, “c”).elementAtOrElse(1) { “???” })

// b

val seq = generateSequence(1) { if (it > 50) null else it * 3

}

println(seq.elementAtOrNull(2)) /

/ 9

println(seq.elementAtOrElse(100) { Int.MAX_VALUE

}) // 81

println(seq.elementAt(10)) //

Exception

One more thing to mention here is the support of destructuring of arrays and
lists which allows you to extract up to first 5 elements. Note, however, that
destructuring will throw an exception if you try to extract more elements
than there is in a collection:
val list = listOf(1, 2, 3)
val (x, y) = list // 1, 2
val (a, b, c, d) = list // Exception

Collective conditions
Checking whether some collection satisfies certain conditions is a quite
common task. For this reason, the Kotlin library includes a set of functions
implementing basic checks such as testing given the predicate against
collection elements.
The all() function returns true if all collection elements satisfy a given
predicate. This function can be applied to any collection object, including
arrays, iterables, sequences, and maps. In the case of maps, the predicate
parameter is a map entry:
println(listOf(1, 2, 3, 4).all { it < 10 }) // true

println(listOf(1, 2, 3, 4).all { it % 2 == 0 }) // false

println(

mapOf(1 to “I”, 5 to “V”, 10 to “X”)

.all { it.key == 1 || it.key % 5 == 0 }

) // true

// 1, 3, 9, 27, 81

val seq = generateSequence(1) { if (it < 50) it*3 else null }
println(seq.all { it % 3 == 0 }) // false

println(seq.all { it == 1 || it % 3 == 0 }) // true

The none() function tests the opposite condition. It returns true when there
is no collection element satisfying a predicate:
println(listOf(1, 2, 3, 4).none { it > 5 }) // true

println(

mapOf(1 to “I”, 5 to “V”, 10 to “X”).none { it.key % 2 == 0

}

) // false

// 1, 3, 9, 27, 81

val seq = generateSequence(1) { if (it < 50) it*3 else null }
println(seq.none { it >= 100 }) // true

One more function of this kind is any() which returns true when a predicate
is satisfied by at least one collection element:
println(listOf(1, 2, 3, 4).any { it < 0 }) // false

println(listOf(1, 2, 3, 4).any { it % 2 == 0 }) // true

println(

mapOf(1 to “I”, 5 to “V”, 10 to “X”).any { it.key == 1 }

) // true

// 1, 3, 9, 27, 81

val seq = generateSequence(1) { if (it < 50) it*3 else null }
println(seq.any { it % 3 == 0 }) // true

println(seq.any { it > 100 }) // false

For an empty collection, the all() and none() functions return true while
any() returns false. All the three functions can be expressed in terms of one
another using the relationships reminiscent of the De Morgan’s law:
c.all { p(it) } == c.none { !p(it) }

c.none { p(it) } == !c.any { p(it) }

Keep in mind that all(), none(), and any() may run forever when applied
to an infinite sequence. For example, the following code will never
terminate:
// 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0,...

val seq = generateSequence(0) { (it + 1) % 5 }

println(seq.all { it < 5 })

The any() and none() functions also have overloads which do not take any
parameters and simply check whether the collection in question is empty:
println(emptyList<String>().any()) // false

println(emptyList<String>().none()) // true

println(listOf(1, 2, 3).any()) // true

println(listOf(1, 2, 3).none()) // false

These overloads generalize the isNotEmpty()/isEmpty() functions which
are available for arrays, instances of Collection and Map types, but not for

arbitrary iterables or sequences.

Aggregation
Aggregation is a computation of a single value based on the collection
content such as summing up collection elements or finding a maximum
value. The Kotlin library provides a set of functions which can be used for
this purpose. In the previous section, we covered a group of functions
which test some collective conditions such as any() or all(). They can be
considered a special kind of aggregates computing a Boolean value.
Aggregate functions in general shouldn’t be applied to infinite sequences as
they (with an exception of count() below) will never return in such a case.
The aggregation functions can be divided into three basic groups. The first
one includes functions which computes commonly used aggregates such as
sum, min, or max. Let’s take a closer look at what they can do.
The count() function gives you the number of elements in a collection. It
can be applied to any collection object, including arrays, iterables,
sequences, and maps and thus generalizes the size property available for
arrays, maps, and Collection instances.
Note that count() throws an exception if the number of elements exceeds
Int.MAX_VALUE. This, in particular, happens when count() is invoked on an
infinite sequence:
// 0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0,...

val seq = generateSequence(0) { (it + 1) % 5 }

// Throws an exception after iterating through Int.MAX_VALUE

elements

println(seq.count())

The count() function has an overload which takes a predicate applied to
collection elements. In this case, it returns the number of collection
elements satisfying a given condition:
println(listOf(1, 2, 3, 4).count { it < 0 }) // 0

println(listOf(1, 2, 3, 4).count { it % 2 == 0 }) // 2

println(

mapOf(1 to “I”, 5 to “V”, 10 to “X”).count { it.key == 1 }

) // 1

// 1, 3, 9, 27, 81

val seq = generateSequence(1) { if (it < 50) it*3 else null }

println(seq.count { it % 3 == 0 }) // 4

println(seq.count { it > 100 }) // 0

The sum() function computes an arithmetic sum for a numeric array,
iterable, or sequence:
println(listOf(1, 2, 3, 4).sum()) // 10

println(doubleArrayOf(1.2, 2.3, 3.4).sum()) //

6.9

// Summing 1, 3, 9, 27, 81

println(generateSequence(1) { if (it < 50) it*3 else null

}.sum()) // 121

The type of return value depends on the element type of the original
collection similar to an ordinary + operation; for example, summing up the
collection of bytes will get you an Int, while applying sum() to, say, a
LongArray will result in a value of Long.
Summation can also be applied to a collection of arbitrary element type
provided it can be converted to a number. This can be achieved with
sumBy() and sumByDouble() which takes a conversion function as a
parameter. The difference is that sumBy() converts the collection elements
to Int values (or UInt when applied to a collection of unsigned integers),
while sumByDouble() converts them to Double:
println(listOf(1, 2, 3, 4).sumByDouble { it/4.0 }) // 2.5

println(arrayOf(“1”, “2”, “3”).sumBy { it.toInt() }) // 6

// X, XX, XXX, XXXX, XXXXX

val seq = generateSequence(“X”) { if (it.length >= 5) null

else it + “X” }

println(seq.sumBy { it.length }) // 15

The average() function similarly computes an arithmetic average of a
numeric array, iterable, or sequence. The result is always a value of Double:
println(listOf(1, 2, 3, 4).average()) // 2.5

println(doubleArrayOf(1.2, 2.3, 3.4).average()) //

2.3000000000000003

// Averaging 1, 3, 9, 27, 81

val seq = generateSequence(1) { if (it < 50) it*3 else null }

println(.average()) // 24.2

When the collection is empty, the average() always returns Double.NaN.
For a non-empty collection, c.average() is essentially the same as
c.sum().toDouble()/c.count(). Similarly to the count() function, the
average() will throw an exception if the collection contains more than
Int.MAX_VALUE elements.
The minOrNull() and maxOrNull() functions compute, respectively the
smallest and the largest value for an array/iterable/sequence of a
comparable values:
println(intArrayOf(5, 8, 1, 4, 2).minOrNull())

// 1

println(intArrayOf(5, 8, 1, 4, 2).maxOrNull())

// 8

println(listOf(“abc”, “w”, “xyz”, “def”, “hij”).minOrNull())

// abc

println(listOf(“abc”, “w”, “xyz”, “def”, “hij”).maxOrNull())

// xyz

// 1, -3, 9, -27, 81

val seq = generateSequence(1) { if (it < 50) -it * 3 else null

}

println(seq.minOrNull())

// -27

println(seq.maxOrNull())

// 81

Similarly to summation, min/max can be computed for collections of non-
comparable elements by providing a function which converts them to
comparables. This behavior is implemented in the minByOrNull() and
maxByOrNull() functions:
class Person(val firstName: String, val familyName: String,

val age: Int) {

override fun toString() = “$firstName $familyName: $age”

}

fun main() {

val persons = sequenceOf(

Person(“Brook”, “Watts”, 25),

Person(“Silver”, “Hudson”, 30),

Person(“Dane”, “Ortiz”, 19),

Person(“Val”, “Hall”, 28)

)

println(persons.minByOrNull { it.firstName }) // Brook

Watts: 25

println(persons.maxByOrNull { it.firstName }) // Val Hall:

28

println(persons.minByOrNull { it.familyName }) // Val Hall:

25

println(persons.maxByOrNull { it.familyName }) // Brook

Watts: 28

println(persons.minByOrNull { it.age }) // Dane

Ortiz: 19

println(persons.maxByOrNull { it.age}) // Silver

Hudson: 30

}

Alternatively, you can use minWith()/maxWith() which accepts a
comparator instance instead of a conversion function. In the following
example, we will use different comparators to impose ordering by the full
name with the first name coming either first, or last:
class Person(val firstName: String, val familyName: String,
val age: Int) {

override fun toString() = “$firstName $familyName: $age”
}

val Person.fullName get() = “$firstName $familyName”
val Person.reverseFullName get() = “$familyName $firstName”

val FULL_NAME_COMPARATOR = Comparator<Person> { p1, p2 ->
p1.fullName.compareTo(p2.fullName)

}

val REV_FULL_NAME_COMPARATOR = Comparator<Person> { p1, p2 ->
p1.reverseFullName.compareTo(p2.reverseFullName)

}

fun main() {
val seq = sequenceOf(

Person(“Brook”, “Hudson”, 25),

Person(“Silver”, “Watts”, 30),

Person(“Dane”, “Hall”, 19),

Person(“Val”, “Ortiz”, 28)

)

println(seq.minWithOrNull(FULL_NAME_COMPARATOR))

// Brook Hudson: 25

println(seq.maxWithOrNull(FULL_NAME_COMPARATOR))

// Val Ortiz: 28

println(seq.minWithOrNull(REV_FULL_NAME_COMPARATOR))

// Dane Hall: 19

println(seq.maxWithOrNull(REV_FULL_NAME_COMPARATOR))

// Silver Watts: 30

}

All variants of min/max aggregates return null when applied to an empty
collection.
The min/max functions we mentioned earlier were in fact introduced in
Kotlin 1.4 as a replacement for older ones: min()/max(),
minBy()/maxBy(), and minWith()/maxWith(). The reason for the change
was a somewhat inconsistent naming of original functions since they return
null on the empty collection and nullable collection function in the Kotlin
standard library tend to have the OrNull suffix in their name. The older
variants like min() and max() can still be used in Kotlin 1.4 but the
compiler will now issue a warning as they are considered deprecated.
The second group of aggregate functions deals with combining collection
elements into strings. The basic function is joinToString() which in its
simplest form doesn’t take any parameters:
println(listOf(1, 2, 3).joinToString()) // 1, 2, 3

By default, the elements are converted to String using their toString()
method and concatenated together with space-commas which serve as
separators. In many cases, though, you’d need a custom conversion which
can be supplied by a lambda parameter. Suppose we want to present our
values in the binary numeral system:
println(listOf(1, 2, 3).joinToString { it.toString(2) }) // 1,

10, 11

Apart from that it’s possible to specify the following optional parameters:

separator: A string inserted between elements (“, ” by default).
prefix and postfix: A string inserted at the beginning and at the end
of the resulting string, respectively (both empty by default).

limit: A maximum number of elements to show (-1 by default which
means the number is not limited).
truncated: When limit is non-negative, it specifies a string which is
added instead of skipped elements (“...” by default).

The joinToString() is available for any array, iterable, and sequence. Here
is an example illustrating different options:
val list = listOf(1, 2, 3)
println(list.joinToString(prefix = “[“, postfix = “]”)) // [1,

2, 3]

println(list.joinToString(separator = “|”)) //

1|2|3

println(list.joinToString(limit = 2)) // 1,

2, ...

println(list.joinToString(

limit = 1,

separator = “ “,

truncated = “???”

)) // 1

???

The Kotlin library also includes a more general function joinTo() which
appends characters to an arbitrary Appendable instance such as
StringBuilder instead of producing a new string:
import java.lang.StringBuilder
fun main() {

val builder = StringBuilder(“joinTo: “)
val list = listOf(1, 2, 3)
println(list.joinTo(builder, separator = “|”)) // joinTo:

1|2|3

}

The third group we will cover in this section allows you to implement your
own custom aggregates based on functions which combine a pair of values.
This group is represented by the fold()/reduce() functions and their
varieties.
The reduce() function takes a two-parameter function where the first
parameter contains an accumulated value and the second one contains the

current collection element. The aggregation proceeds as follows:

1. Initialize an accumulator to the value of the first element.
2. For each successive element, combine the current value of the

accumulator with an element and assign the result back to the
accumulator.

3. Return the value of the accumulator.

If the collection is empty, the reduce() throws an exception since the
accumulator can’t be initialized.
Let’s consider an example. In the following code, we will use reduce() to
compute a product of numbers and concatenation of strings:
println(intArrayOf(1, 2, 3, 4, 5).reduce { acc, n -> acc * n

}) // 120

println(listOf(“a”, “b”, “c”, “d”).reduce { acc, s -> acc + s

}) // abcd

If the aggregation rule depends on the element indices, you may use a
reduceIndexed() function which passes the current index as the first
parameter of the aggregator operation. Suppose we want to modify the
preceding example to sum only elements on odd positions:
println(intArrayOf(1, 2, 3, 4, 5)

.reduceIndexed { i, acc, n -> if (i % 2 == 1) acc * n else

acc })

// 8

println(listOf(“a”, “b”, “c”, “d”)

.reduceIndexed { i, acc, s -> if (i % 2 == 1) acc + s else

acc })

// abd

Note that the first element is processed regardless of our constraint. If you
want to choose the initial value by yourself, you can use the
fold()/foldIndexed() functions instead of reduce()/reduceIndexed().
On top of it, they allow you to use the accumulator of a type which differs
from that of collection elements:
println(

intArrayOf(1, 2, 3, 4).fold(“”) { acc, n -> acc + (‘a’ + n -

1) }

) // abcd

println(

listOf(1, 2, 3, 4).foldIndexed(“”) { i, acc, n ->

if (i % 2 == 1) acc + (‘a’ + n - 1) else acc

}

) // bd

Unlike reduce(), fold() doesn’t fail on an empty collection since the
initial value is supplied by the programmer.
The reduce()/reduceIndexed() and fold()/foldIndexed() are available
for any array, iterable, or sequence. Each of these functions has a
counterpart which processes elements in a reverse order starting from the
last one. Such functions have a “Right” word in their name and are
available only for arrays and lists since these objects provide an easy way to
traverse them backward:
println(

arrayOf(“a”, “b”, “c”, “d”).reduceRight { s, acc -> acc + s

}

) // dcba

println(

listOf(“a”, “b”, “c”, “d”).reduceRightIndexed { i, s, acc ->

if (i % 2 == 0) acc + s else acc

}

) // dca

println(

intArrayOf(1, 2, 3, 4).foldRight(“”) { n, acc -> acc + (‘a’

+ n - 1) }

) // dcba

println(

listOf(1, 2, 3, 4).foldRightIndexed(“”) { i, n, acc ->

if (i % 2 == 0) acc + (‘a’ + n - 1) else acc

}

) // ca

Keep the difference in the parameter order for lambdas passed to the “left”
and “right” varieties of fold/reduce. In the “left” version, the accumulator
comes before the current element, while in the “right” version, the order is
reversed.

Filtering
The Kotlin standard library provides a bunch of extension functions that can
be used to filter collections leaving out elements which do not satisfy given
conditions. A filtering operation does not modify an original collection. It
either produces an entirely new one or puts all accepted elements into some
existing mutable collection distinct from the original one.
The most basic filtering operation is given by the filter() function. Its
predicate takes the current element as its single parameter and returns true
if that element is accepted and false otherwise. The function is applicable
to arrays, iterables, maps, and sequences with the return type determined as
follows:

filtering Array<T> or Iterable<T> gives you a List<T>
filtering a Map<K, V> gives you a Map<K, V>
filtering a Sequence<T> gives you a Sequence<T>

This function is also applicable to primitive array types such as IntArray
with the result being a List with a corresponding boxed element type such
as List<Int>. Keep this in mind as applying filter() to such arrays will
force boxing of filtered elements.
Let’s consider an example of applying filter() to various collection
objects:
// List: [green, blue, green]

println(listOf(“red”, “green”, “blue”, “green”).filter {

it.length > 3 })

// List: [green, blue]

println(setOf(“red”, “green”, “blue”, “green”).filter {

it.length > 3 })

// List: [green, blue, green]

println(arrayOf(“red”, “green”, “blue”, “green”).filter {

it.length > 3 })

// List: [2, 4]

println(byteArrayOf(1, 2, 3, 4, 5).filter { it % 2 == 0 })

// Map: {X=10, L=50}

println(

mapOf(“I” to 1, “V” to 5, “X” to 10, “L” to 50).filter {

it.value > 5 }

)

// Sequence

val seq = generateSequence(100) {

if (it != 0) it/3 else null

}.filter { it > 10 }

// Converted to list: [100, 33, 11]

println(seq.toList())

Note that in the case of a map, the predicate parameter takes a value of the
corresponding map entry. If you want to filter only by the key or value, you
may use either the filterKeys() or filterValues() function:
val map = mapOf(“I” to 1, “V” to 5, “X” to 10, “L” to 50)

println(map.filterKeys { it != “L” }) // {X=10, V=5, X=10}

println(map.filterValues { it >= 10 }) // {X=10, L=50}

The filterNot() function allows you to filter by the negative condition; in
other words, a collection element is accepted when the corresponding
predicate returns false:
// [red]

println(listOf(“red”, “green”, “blue”).filterNot { it.length >

3 })

// {I=1, V=5}

println(

mapOf(“I” to 1, “V” to 5, “X” to 10, “L” to 50).filterNot {

it.value > 5 }

)

Note that filterKeys() and filterValues() do not have a negative
version like filterNot().
If your filtering condition depends on the element index as well as its value,
you can use a filterIndexed() function whose lambda takes an additional
index parameter. This function is available for arrays, iterables, and
sequences, but not for maps:
val list = listOf(“red”, “green”, “blue”, “orange”)

// [green, blue]

println(list.filterIndexed { i, v -> v.length > 3 && i <

list.lastIndex })

val seq = generateSequence(100) { if (it != 0) it/3 else null

}

// [33, 11, 3, 1]

println(seq.filterIndexed { i, v -> v > 0 && i > 0 }.toList())

The standard library also includes filtering functions based on some
common conditions which often arise in practice. One of them is
filterNotNull() which filters out null values. It always produces a
collection with the non-nullable element type:
val list = listOf(“red”, null, “green”, null, “blue”)

// Error: it is nullable here

list.forEach { println(it.length) }

// Ok: it is non-nullable

list.filterNotNull().forEach { println(it.length) }

IDE Tips: IntelliJ includes an out-of-the-box inspection which warns you
about redundant filterNotNull() calls when the collection is question
already has a non-nullable element type. You can easily drop the extra filter
through Alt+Enter menu (as shown in Figure 7.4):

Figure 7.4: Removing useless filter

Another common case is covered by the filterIsInstance() function
which leaves only elements conforming to the specific type. The collection
returned by this function has the same element type you specify in its call:
val hotchpotch = listOf(1, “two”, 3, “four”, 5, “six”)
val numbers = hotchpotch.filterIsInstance<Int>()
val strings = hotchpotch.filterIsInstance<String>()
println(numbers.filter { it > 2 }) // [3, 5]

println(strings.filter { it != “two” }) // [four, six]

The filtering functions we’ve seen so far produce new immutable
collections on each call. What if we need to put the filtering results into
some existing mutable collection? In this case, we can use special versions
of filter functions which take additional parameters for the target collection
where they put accepted values. The names of these functions have “To”
added to them:
val allStrings = ArrayList<String>()
// Added: green, blue

listOf(“red”, “green”, “blue”).filterTo(allStrings) {

it.length > 3 }

// Added: one, two, three

arrayOf(“one”, null, “two”, null,

“three”).filterNotNullTo(allStrings)

// abcde, bcde, cde, de, e,

val seq = generateSequence(“abcde”) {
if (it.isNotEmpty()) it.substring(1) else null

}

// Added: abcde, bcde, cde

seq.filterNotTo(allStrings) { it.length < 3 }

// [green, blue, one, two, three, abcde, bcde, cde]

println(allStrings)

“To” versions are available for filter(), filterNot(), filterIndexed(),
filterIsInstance(), and filterNotNull() functions. Note that an
attempt to use the original collection as a target would in general lead to
Concurrent ModificationException due to adding elements during the
collection traversal:
val list = arrayListOf(“red”, “green”, “blue”)
list.filterTo(list) { it.length > 3 } // Exception

Apart from various kinds of filtering, the Kotlin standard library includes
the partition() function which splits the original collection into a pair
where the first collection gets elements satisfying a given predicate, while
the second gets those which do not. Consider the following example:
val (evens, odds) = listOf(1, 2, 3, 4, 5).partition { it % 2
== 0 }

println(evens) // [2, 4]

println(odds) // [1, 3, 5]

Unlike filter() and its varieties, partition() always returns a pair of
lists even when applied to a sequence:
val seq = generateSequence(100) { if (it == 0) null else it/3
}

val (evens, odds) = seq.partition { it % 2 == 0 }
println(evens) // [100, 0]

println(odds) // [33, 11, 3, 1]

Note that partition() is not supported for maps.

Transformation
Various transformation functions included in the Kotlin standard library
give you the ability to produce a new collection by changing each element
of the existing one according to a given rule and then combining the results
in some way. These functions can be divided into three basic categories:
mapping, flattening, and associating.
Mapping transformation applies a given function to each element of the
original collection. The results then become elements of the new collection.
The basic function of this kind is map() which can be applied to any
collection object, including arrays, iterables, sequences, and maps. The
result is a sequence when applied to a sequence and a list otherwise:
println(setOf(“red”, “green”, “blue”).map { it.length }) //

[3, 5, 4]

println(listOf(1, 2, 3, 4).map { it*it }) //

[1, 4, 9, 16]

println(byteArrayOf(10, 20, 30).map { it.toString(16) }) //

[a, 14, 1e]

// 50, 16, 5, 1, 0

val seq = generateSequence(50) { if (it == 0) null else it / 3

}

println(seq.map { it*3 }.toList()) // [150, 48, 15, 3, 0]

You can also use the mapIndexed() function if your transformation needs to
take element indices into account:
// [(0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25)]

println(List(6) { it*it }.mapIndexed { i, n -> i to n })

The map() and mapIndexed() functions also have variants which
automatically filter out null values in the resulting collection. Semantically,
they are similar to calling filterNotNull() after map() or mapIndexed():
println(

arrayOf(“1”, “red”, “2”, “green”, “3”).mapNotNull {

it.toIntOrNull() }

) // [1, 2, 3]

println(

listOf(“1”, “red”, “2”, “green”, “3”).mapIndexedNotNull { i,

s ->

s.toIntOrNull()?.let { i to it }

}

) // [(0, 1), (2, 2), (4, 3)]

IDE Tips: IntelliJ can detect and simplify redundant usages of
mapNotNull()/mapIndexedNotNull() suggesting to replace them by
map()/mapIndexed() calls (see Figure 7.5 for example). It also warns you
about the explicit combination of map() and filterNotNull() calls which
can be simplified to mapNotNull(). You can see an example in Figure 7.6:

Figure 7.5: Simplifying redundant call to mapNotNull()

Figure 7.6: Merging map-filterNotNull chained call

The map() function can be applied to maps in which case the transformation
takes map entries as its input and produces a list. Additionally, you can use
mapKeys()/mapValues() functions which transform only the keys or values,
respectively and return a new map:
val map = mapOf(“I” to 1, “V” to 5, “X” to 10, “L” to 50)
println(map.map { “${it.key} ${it.value}” }) //[I 1, V 5, X

10, L 50]

println(map.mapKeys { it.key.toLowerCase() }) //{i=1, v=5,

x=10, l=50}

println(map.mapValues { it.value.toString(16) }) //{I=1, V=5,

X=a, L=32}

Each of the mapXXX() functions also comes with a version which puts the
resulting element into some existing mutable collection rather than creating
a new one. Similarly to filters, these functions contain “To” in their names:
val result = ArrayList<String>()
listOf(1, 2, 3).mapTo(result) { it.toString() }

arrayOf(“one”, “two”, “three”).mapIndexedTo(result) { i, s ->

“${i + 1}: s” }

sequenceOf(“100”, “?”, “101”, “?”, “110”).mapNotNullTo(result)

{

it.toIntOrNull(2)?.toString()

}

println(result) // [1, 2, 3, 1: s, 2: s, 3: s, 4, 5, 6]

The flattening operations transform each element of the original collection
into a new collection and then glue the resulting collection together. This
kind of transformation is implemented by the flatMap() function which
produces a sequence when applied to a sequence and a list when applied to
any other collection:
// [a, b, c, d, e, f, g, h, i]

println(setOf(“abc”, “def”, “ghi”).flatMap { it.asIterable()

})

// [1, 2, 3, 4]

println(listOf(1, 2, 3, 4).flatMap { listOf(it) })

// [1, 1, 2, 1, 2, 3]

Array(3) { it + 1 }.flatMap { 1..it }

The flatten() function can be applied to any collection whose elements
are collection themselves to glue them into a single collection. It can be
considered a simplified version of flatMap() with trivial transformation:
println(

listOf(listOf(1, 2), setOf(3, 4), listOf(5)).flatten()

) // [1, 2, 3,

4, 5]

println(Array(3) { arrayOf(“a”, “b”) }.flatten()) // [a, b, a,

b, a, b]

println(

sequence {

yield(sequenceOf(1, 2))

yield(sequenceOf(3, 4))

}.flatten().toList()

) // [1, 2, 3,

4]

Figure 7.7: Replacing trivial flatMap() call with flatten()

IDE Tips: The IntelliJ plugin can detect trivial calls to flatMap suggesting
to replace them with flatten (see Figure 7.7).
Similarly to map(), the flatMap() has a version which appends resulting
elements to an existing collection:
val result = ArrayList<String>()

listOf(listOf(“abc”, “def”), setOf(“ghi”))

.flatMapTo(result) { it }

sequenceOf(sequenceOf(1, 2), sequenceOf(3, 4))

.flatMapTo(result) { it.map { “$it” } }

println(result) // [abc, def, ghi, 1, 2, 3, 4]

One more transformation kind we’d like to cover in this section is an
association which allows you to build maps based on a given transformation
function and using the original collection elements as either map keys, or
map values. The first case is implemented by the associateWith()
function which generates map values using the original collection as a
source of keys:
println(

listOf(“red”, “green”, “blue”).associateWith { it.length }

) // {red=3, green=5, blue=4}

println(

generateSequence(1) { if (it > 50) null else it*3 }
.associateWith { it.toString(3) }

) // {1=1, 3=10, 9=100, 27=1000, 81=10000}

Note that associateWith() function is not applicable to arrays.
The associateBy() function similarly treats collection elements as values
and uses the supplied transformation function to produce map keys. Not
that if there are multiple values corresponding to a single key, only one is
retained in the resulting map:
// {3=red, 5=green, 4=blue}

println(listOf(“red”, “green”, “blue”).associateBy { it.length

})

// {1=15, 2=25, 3=35}

println(intArrayOf(10, 15, 20, 25, 30, 35).associateBy { it/10

})

// {1=1, 10=3, 100=9, 1000=27, 10000=81}

println(

generateSequence(1) { if (it > 50) null else it*3 }
.associateBy { it.toString(3) }

)

Finally, the associate() function transforms the collection element to
produce both a key and value:
println(

listOf(“red”, “green”, “blue”)

.associate { it.toUpperCase() to it.length }

) // {RED=3, GREEN=5, BLUE=4}

println(

intArrayOf(10, 15, 20, 25, 30, 35).associate { it to it/10 }

) // {10=1, 15=1, 20=2, 25=2, 30=3, 35=3}

println(

generateSequence(1) { if (it > 50) null else it*3 }

.associate {

val s = it.toString(3)

“3^${s.length - 1}” to s

}

) // {3^0=1, 3^1=10, 3^2=100, 3^3=1000, 3^4=10000}

A similar effect can also be achieved by associateBy() overloads which
take a separate transformation function for keys and values:
println(

listOf(“red”, “green”, “blue”).associateBy(

keySelector = { it.toUpperCase() },

valueTransform = { it.length }

)

) // {RED=3, GREEN=5, BLUE=4}

Association functions also have “To” variants (such as associateByTo())
which put produced entries into an existing mutable map.

Extracting subcollections
In the filtering section, we discussed a set of functions which allow you to
extract a part of the original collection retaining only elements satisfying a
certain condition. In this section, we’ll consider functions which serve a
similar purpose but extract collection parts based on other criteria.
In the Basic operations section, we mentioned the subList() function
which gives you a view of a list segment. The slice() function performs a
similar task but uses the integer range instead of a pair of integers to
represent segment bounds. The slice() can be applied to arrays as well as
lists:
// 0, 1, 4, 9, 16, 25

println(List(6) { it*it }.slice(2..4)) // [4, 9, 16]

// 0, 1, 8, 27, 64, 125

println(Array(6) { it*it*it }.slice(2..4)) // [8, 27, 64]

In the case of list, it works similar to the subList() method producing a
wrapper of the original collection which reflects a given segment. In the
case of an array, the result is a new list containing array elements with
specified indices.
If you want to extract an array segment as another array, you can use
sliceArray() instead:
val slice = Array(6) { it*it*it
}.sliceArray(2..4).contentToString()

There is also a more general version of slice()/sliceArray() which takes
an iterable of integers and uses them as indices. In other words, it allows
you to extract an arbitrary subsequence of the original list or array:
println(List(6) { it*it }.slice(listOf(1, 2, 3))) // [1, 4, 9]

println(Array(6) { it*it*it }.slice(setOf(1, 2, 3))) // [1, 8,

27]

println(

Array(6) { it*it*it }.sliceArray(listOf(1, 2,

3)).contentToString()

) // [1, 8, 27]

The take()/takeLast() functions are used to extract a given number of
iterable or array elements starting from the first or the last one, respectively:
println(List(6) { it*it }.take(2)) // [0, 1]

println(List(6) { it*it }.takeLast(2)) // [16, 25]

println(Array(6) { it*it*it }.take(3)) // [0, 1, 8]

println(Array(6) { it*it*it }.takeLast(3)) // [27, 64, 125]

The take() function can also be applied to a sequence in which case it
returns a new sequence containing the first element of the original one:
val seq = generateSequence(1) { if (it > 100) null else it*3 }
println(seq.take(3).toList()) // [1, 3, 9]

The drop()/dropLast() functions can be considered a complement to
take()/takeLast(). They return the remaining elements when a given
number of the first/last ones is removed:
println(List(6) { it*it }.drop(2)) // [4, 9, 16, 25]

println(List(6) { it*it }.dropLast(2)) // [0, 1, 4, 9]

println(Array(6) { it*it*it }.drop(3)) // [27, 64, 125]

println(Array(6) { it*it*it }.dropLast(3)) // [0, 1, 8]

val seq = generateSequence(1) { if (it > 100) null else it*3 }

println(seq.drop(3).toList()) // [27, 81, 243]

The take/drop operations also come in versions which take a predicate on
collection elements rather than a number. These versions take/drop
elements only up to the first one violating a given condition:
val list = List(6) { it * it }
println(list.takeWhile { it < 10 }) // [0, 1, 4, 9]

println(list.takeLastWhile { it > 10 }) // [16, 25]

println(list.dropWhile { it < 10 }) // [16, 25]

println(list.dropLastWhile { it > 10 }) // [0, 1, 4, 9]

val seq = generateSequence(1) { if (it > 100) null else it*3 }

println(seq.takeWhile { it < 10 }.toList()) // [1, 3, 9]

println(seq.dropWhile { it < 10 }.toList()) // [27, 81, 243]

The chunked() functions introduced in Kotlin 1.2 allow you to split an
iterable or sequence into lists (called chunks) whose size does not exceed a
given threshold. The simplest form of chunked() takes just a maximum
chunk size:
// 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

val list = List(10) { it*it }
println(list.chunked(3)) // [[0, 1, 4], [9, 16, 25], [36, 49,

64], [81]]

// 1, 3, 9, 27, 81, 243, 729

val seq = generateSequence(1) { if (it > 300) null else it*3 }
println(seq.chunked(3).toList()) // [[1, 3, 9], [27, 81, 243],

[729]]

Note that chunked() returns a list of chunks when applied to an iterable,
and a sequence of chunks when applied to a sequence.
The more general version allows you to specify a function which transforms
each chunk into an arbitrary value. The result is a list or sequence
composed of transformation results. The following code replaces each
chunk from the preceding example by the sum of its elements:
// 0, 1, 4, 9, 16, 25, 36, 49, 64, 81

val list = List(10) { it*it }
println(list.chunked(3) { it.sum() }) // [5, 50, 149,

81]

// 1, 3, 9, 27, 81, 243, 729

val seq = generateSequence(1) { if (it > 300) null else it*3 }

println(seq.chunked(3) { it.sum() }.toList()) // [13, 351,

729]

The windowed() function also introduced in Kotlin 1.2 allows you to
extract all segments of a given slide visible through a kind of “sliding
window”. Like chunked(), it produces a list of lists when applied to an
iterable and a sequence of lists when applied to a sequence:
// 0, 1, 4, 9, 16, 25

val list = List(6) { it*it }
// [[0, 1, 4], [1, 4, 9], [4, 9, 16], [9, 16, 25]]

println(list.windowed(3))

// 1, 3, 9, 27, 81, 243

val seq = generateSequence(1) { if (it > 100) null else it*3 }
// [[1, 3, 9], [3, 9, 27], [9, 27, 81], [27, 81, 243]]

println(seq.windowed(3).toList())

Similarly to chunked(), you can supply a transformation function which
aggregates elements of each window:
// 0, 1, 4, 9, 16, 25

val list = List(6) { it*it }

println(list.windowed(3) { it.sum() }) // [5, 14, 29,

50]

// 1, 3, 9, 27, 81, 243

val seq = generateSequence(1) { if (it > 100) null else it*3 }
println(seq.windowed(3) { it.sum() }.toList()) // [13, 39,

117, 351]

Additionally, you can specify optional parameters which affect the sliding
window behaviour:

step: The distance between indices of the first element in a pair of
adjacent windows (1 by default).
partialWindows: This includes windows of smaller size at the end of
the collection (false by default).

Let’s see an example using these options:
// 0, 1, 4, 9, 16, 25

val list = List(6) { it*it }

// Only elements with even indices (0 and 2) produce windows:

// [[0, 1, 4], [4, 9, 16]]

println(list.windowed(3, step = 2))

// Added two partial windows at the end:

// [[0, 1, 4], [1, 4, 9], [4, 9, 16], [9, 16, 25], [16, 25],

[25]]

println(list.windowed(3, partialWindows = true))

There is also a separate function for building two-element windows:
zipWithNext(). Unlike windowed(), it produces lists and sequences of
pairs rather than lists:
// 0, 1, 4, 9, 16, 25

val list = List(6) { it*it }
// [(0, 1), (1, 4), (4, 9), (9, 16), (16, 25)]

println(list.zipWithNext())

// 1, 3, 9, 27, 81, 243

val seq = generateSequence(1) { if (it > 100) null else it*3 }
// [(1, 3), (3, 9), (9, 27), (27, 81), (81, 243)]

println(seq.zipWithNext().toList())

Accordingly, its aggregation version uses a function which takes a pair of
collection elements instead of a list:
// [0, 4, 36, 144, 400]

println(List(6) { it*it }.zipWithNext { a, b -> a * b })

Ordering
The standard library includes functions which sort collection elements
according to a given ordering. The simplest of them is the sorted()
function which can be applied to any array/iterable/sequence of comparable
values to sort them based on their natural ordering. The sortDescending()
function is similar but sorts elements in reverse:
println(intArrayOf(5, 8, 1, 4, 2).sorted()) // [1, 2, 4, 5, 8]

println(

intArrayOf(5, 8, 1, 4, 2).sortedDescending()

) // [8, 5, 4, 2, 1]

println(

listOf(“abc”, “w”, “xyz”, “def”, “hij”).sorted()

) // [abc, def, hij,

w, xyz]

println(

listOf(“abc”, “w”, “xyz”, “def”, “hij”).sortedDescending()

) // [xyz, w, hij,

def, abc]

// 1, -3, 9, -27, 81

val seq = generateSequence(1) { if (it < 50) -it * 3 else null
}

println(seq.sorted().toList()) // [-27, -3, 1, 9,

81]

println(seq.sortedDescending().toList()) // [81, 9, 1, -3,

-27]

These functions return Sequence when applied to a sequence. Note, though,
that the sequence returned is stateful and sorts the entire collection at the
first attempt to access its elements.
When applied to an array or iterable, the result is always a List. For arrays,
you can use a similar pair of sortedArray()/sortedArrayDescending()
functions which return an array instead of the list.
If collection elements are not comparable, you can still sort them by using
one of sorted() alternatives which allows you to specify a custom
ordering: sortedBy()/sortedWith(). The convention is similar to the one
we’ve seen for the minOrNull()/maxOrNull() aggregation functions.
sortedBy() takes a function which converts collection elements to
comparables, while sortedWith() takes a comparator. There is also a
reversed version of sortedBy() which is called sortedByDescending():
class Person(val firstName: String, val familyName: String,
val age: Int) {

override fun toString() = “$firstName $familyName: $age”
}

val Person.fullName get() = “$firstName $familyName”
val Person.reverseFullName get() = “$familyName $firstName”
val FULL_NAME_COMPARATOR = Comparator<Person> { p1, p2 ->

p1.fullName.compareTo(p2.fullName)

}

val REVERSE_FULL_NAME_COMPARATOR = Comparator<Person> { p1, p2
->

p1.reverseFullName.compareTo(p2.reverseFullName)

}

fun main() {
val persons = listOf(

Person(“Brook”, “Hudson”, 25),

Person(“Silver”, “Watts”, 30),

Person(“Dane”, “Hall”, 19),

Person(“Val”, “Ortiz”, 28)

)

println(persons.sortedWith(FULL_NAME_COMPARATOR))

println(persons.sortedWith(FULL_NAME_COMPARATOR))

println(persons.sortedWith(REVERSE_FULL_NAME_COMPARATOR))

println(persons.sortedWith(REVERSE_FULL_NAME_COMPARATOR))

println(persons.sortedBy { it.age })

println(persons.sortedByDescending { it.age })

}

All sorting functions we’ve seen so far put sorted elements into a new
collection leaving the original one untouched. In the case of arrays and
mutable lists, though, we can modify the original collection instead and sort
its elements in place. This is implemented by the sort() and
sortDescending() functions:
val array = intArrayOf(4, 0, 8, 9, 2).apply { sort() }
println(array.contentToString()) // [0, 2, 4, 8, 9]

val list = arrayListOf(“red”, “blue”, “green”).apply { sort()
}

println(list) // [blue, green, red]

A separate group of functions can be used to reverse elements in iterables
and arrays. The basic case is handled by the reversed() function which
returns a new list with the original elements reversed:
println(intArrayOf(1, 2, 3, 4, 5).reversed()) // [5, 4,

3, 2, 1]

println(listOf(“red”, “green”, “blue”).reversed()) // [blue,

green, red]

For arrays, you can also use the reversedArray() function which produces
a new array instead of a list.
The reverse() function can be used to reverse elements of a mutable list or
array without creating a new collection (note the similarity with sort() vs
sorted()/sortedArray()):

val array = intArrayOf(1, 2, 3, 4, 5).apply { reverse()
}.contentToString()

println(array) // [5, 4, 3, 2, 1]

val list = arrayListOf(“red”, “green”, “blue”).apply {
reverse() }

println(list) // [blue, green, red]

The asReversed() function is similar to reversed() in the sense that it
returns a new list. The list produced is, however, just a wrapper over the
original. Both lists share the same data which makes asReversed() more
efficient in terms of memory usage. When applied to a mutable list, it
returns a mutable wrapper. Changes in either list are automatically reflected
in the other (unlike the collection produced by the reversed() function):
val list = arrayListOf(“red”, “green”, “blue”)
val reversedCopy = list.reversed()
val reversedMirror = list.asReversed()
list[0] = “violet”

println(list) // [violet, green, blue]

println(reversedCopy) // [blue, green, red]

println(reversedMirror) // [blue, green, violet]

Note that asReversed() is available only for lists.
One more function we’d like to mention in this section is shuffled().
When applied to an iterable, it produces a new list with original elements
rearranged in a random order:
println(listOf(1, 2, 3, 4, 5).shuffled())

Mutable lists can be similarly modified in place using shuffle():
arrayListOf(1, 2, 3, 4, 5).shuffle()

Note that sequences and arrays do not support either of these functions.

Files and I/O streams
In this section, we’ll address the part of the Kotlin standard library which
deals with input/output operations. The features we will cover are based
around the existing Java API for files, I/O streams, and URLs. In this
regard, the Kotlin standard library provides a set of useful extension
functions and properties which simplify a usage of I/O-related classes
already present in the JDK.

Stream utilities
The Kotlin standard library includes a bunch of helper extensions for Java
I/O streams. These functions simplify access to the stream content and
implement some more complex patterns such as copying and automatic
stream finalization. In this section, we’ll take a closer look at these features.
The following functions allow you to retrieve the entire stream content:
fun InputStream.readBytes(): ByteArray

fun Reader.readText(): String

fun Reader.readLines(): Line<String>

Keep in mind the difference between the latter two functions and the
readLine() method of the BufferedReader. While readLine() retrieves a
single line from the stream, readText()/readLines() read the stream till
the end and returns its entire content as either a single string, or a list of
individual lines. Consider the following example:
import java.io.*
fun main() {

FileWriter(“data.txt”).use { it.write(“One\nTwo\nThree”) }

// One

FileReader(“data.txt”).buffered().use {

println(it.readLine()) }

// One Two Three

FileReader(“data.txt”).use {

println(it.readText().replace(‘\n’, ‘ ‘)) }

// [One, Two, Three]

println(FileReader(“data.txt”).readLines())

}

Note that unlike readText(), the readLines() function automatically
closes its stream on completion.
Kotlin allows direct iteration over buffered streams, although the API is a
bit different for binary and text data. In the case of BufferedOutputStream,
we have the iterator() function which, in particular, allows us to use such
streams in the for loop to iterate over individual bytes:
FileInputStream(“data.bin”).buffered().use {

var sum = 0
for (byte in it) sum += byte

}

BufferedReader, on the other hand, provides the lineSequence() function
which gives you a sequence over its lines:
FileReader(“data.bin”).buffered().use {

for (line in it.lineSequence()) println(line)

}

Similar capabilities, albeit in a more indirect form, are available for an
arbitrary Reader instance. The forEachLine() and useLines() functions
allow you to iterate over individual lines. When using them you don’t have
to worry about closing the stream since they perform it automatically:
import java.io.*
fun main() {

FileWriter(“data.txt”).use { it.write(“One\nTwo\nThree”) }

// One, Two, Three

FileReader(“data.txt”).useLines { println(it.joinToString())

}

// One/Two/Three

FileReader(“data.txt”).forEachLine { print(“$it/”) }

}

The difference is that the lambda of forEachLine() accepts the current line
and is invoked upon each iteration, while the lambda of useLines() takes a
sequence over all lines.
It’s also possible to transfer data between streams using the copyTo()
function which has two overloaded versions for binary and text streams:
fun InputStream.copyTo(

out: OutputStream,

bufferSize: Int = DEFAULT_BUFFER_SIZE

): Long

fun Reader.copyTo(out: Writer, bufferSize: Int =
DEFAULT_BUFFER_SIZE): Long

The return value gives you an actual number of bytes or characters copied.
The following sample demonstrates the usage of copyTo():
import java.io.*
fun main() {

FileWriter(“data.txt”).use { it.write(“Hello”) }

val writer = StringWriter()

FileReader(“data.txt”).use { it.copyTo(writer) }

println(writer.buffer) // Hello

val output = ByteArrayOutputStream()
FileInputStream(“data.txt”).use { it.copyTo(output) }

println(output.toString(“UTF-8”)) // Hello

}

One more function that we will consider in this section provides a safe way
to work with streams and other resources which need explicit finalization.
The use() function can be invoked on any instance of java.io.Closeable
type (and java.lang.AutoCloseable since Kotlin 1.2). It then executes a
supplied lambda, properly finalizes the resource (whether an exception is
thrown or not), and then returns the result of the lambda:
val lines = FileReader(“data.bin”).use { it.readLines() }

Java vs Kotlin: This function serves the same purpose as try-with-
resources statement introduced in Java 7.
The preceding code is roughly equivalent to the explicit try block:
val reader = FileReader(“data.bin”)
val lines = try {

reader.readLines()

} finally {

reader.close()

}

IDE Tips: IntelliJ can automatically detect such try blocks and suggest
converting them into the use() function calls via the Alt+Enter menu on the
try keyword (as shown in Figure 7.8):

Creating streams
The standard library includes a set of functions that simplify the creation of
Java I/O streams. In this section, we’ll take a look at the basic cases.

Figure 7.8: Converting explicit try block into use() call

Using bufferedReaders()/bufferedWriter() extensions, you can create a
BufferedReader/BufferedWriter instance for a particular File object:
import java.io.File
fun main() {

val file = File(“data.txt”)
file.bufferedWriter().use { it.write(“Hello!”) }

file.bufferedReader().use { println(it.readLine()) } //

Hello!

}

file.writer(charset = Charsets.US_ASCII).use {

it.write(“Hello!”) }

There is also a similar pair of reader()/writer() extension functions
which create a FileReader/FileWriter object without bufferization.
The printWriter() function creates a PrintWriter instance suitable for
formatted output.
The reader/writer-related functions allow you to optionally specify
encoding charset (defaulting to UTF-8), and the buffered versions have an
extra optional parameter for the buffer size. The default buffer size is given
by DEFAULT_BUFFER_SIZE constant which currently corresponds to 8
kilobytes:
file.bufferedReader(

charset = Charsets.US_ASCII,

bufferSize = 100

).use { println(it.readLine()) }

The Charsets object contains a set of constants for some standard charsets
such as US-ASCII or different UTF variants.
If you want to work with a binary file, you can similarly use
inputStream()/outputStream() functions to create an appropriate stream
instance:
import java.io.File
fun main() {

val file = File(“data.bin”)
file.outputStream().use { it.write(“Hello!”.toByteArray()) }

file.inputStream().use { println(String(it.readAllBytes()))

} // Hello!

}

Several functions give you the ability to create I/O streams based on the
content of a String or ByteArray. The byteInputStream creates an
ByteArrayInputStream with a string as its source:
println(“Hello”.byteInputStream().read().toChar())

 // H

println(“Hello”.byteInputStream(Charsets.US_ASCII).read().toCh

ar()) // H

The reader() function similarly creates a StringReader instance:
println(“One\nTwo”.reader().readLines()) // [One, Two]

The inputStream() function constructs a ByteArrayInputStream using a
ByteArray as its source:
println(byteArrayOf(10, 20, 30).inputStream().read())

It’s also possible to use a portion of the byte array using the overloaded
version of inputStream() which takes an offset and a portion size:
val bytes = byteArrayOf(10, 20, 30, 40, 50)
println(bytes.inputStream(2, 2).readBytes().contentToString())

// [30, 40]

The standard library also includes some extensions simplifying stream
piping. The following set of functions can be used to construct a Reader, a
BufferedReader, or a BufferedInputStream based on the general
instance of the InputStream class:
fun InputStream.reader(charset: Charset = Charsets.UTF_8):

InputStreamReader

fun InputStream.bufferedReader(
charset: Charset = Charsets.UTF_8

): BufferedReader

fun InputStream.buffered(
bufferSize: Int = DEFAULT_BUFFER_SIZE

): BufferedInputStream

Similar functions (named writer(), bufferedWriter(), and buffered())
are also available for OutputStream piping it to a Writer, a
BufferedWriter, or a BufferedOutputStream. The following example
gives you a taste of them:
import java.io.FileInputStream
import java.io.FileOutputStream
fun main() {

val name = “data.txt”

FileOutputStream(name).bufferedWriter().use {

it.write(“One\nTwo”) }

val line = FileInputStream(name).bufferedReader().use {

it.readLine() }

println(line) // One

}

The buffered() function is also defined for Reader and Writer:
fun Reader.buffered(bufferSize: Int = DEFAULT_BUFFER_SIZE):

BufferedReader

fun Writer.buffered(bufferSize: Int = DEFAULT_BUFFER_SIZE):

BufferedWriter

URL utilities
The Kotlin library provides a couple of helper functions for retrieving data
over network connections associated with URL objects:
fun URL.readText(charset: Charset = Charsets.UTF_8): String
fun URL.readBytes(): ByteArray

The readText() function reads the entire content of an input stream
corresponding to the URL instance using the specified charset. The
readBytes() function similarly retrieves the content of a binary stream as
an array of bytes.

Since both functions load the entire stream content blocking the calling
thread till completion, they shouldn’t be used to download large files.

Accessing file content
The Kotlin standard library allows you to access file content using special
functions without explicitly mentioning I/O streams. These functions are
helpful in such cases as reading/writing an entire file, appending data to
existing file, or processing file line-by-line.
The following functions allow you to manipulate the text content:

readText(): This reads the entire content of a file as a single string.
readLines(): This reads the entire content of a file splitting it by line
separators and returning a list of strings.
writeText(): This sets the file content to a given String rewriting it if
necessary.
appendText(): This adds a specified string to the content of a given
file.

The usage of these functions is demonstrated by the following example:
import java.io.File
fun main() {

val file = File(“data.txt”)

file.writeText(“One”)

println(file.readText()) // One

file.appendText(“\nTwo”)

println(file.readLines()) // [One, Two]

file.writeText(“Three”)

println(file.readLines()) // [Three]

}

Each of the text-related functions may accept an optional parameter of the
Charset type specifying text encoding.
For the binary files, you can use similar functions which work with byte
arrays instead of strings:
import java.io.File
fun main() {

val file = File(“data.bin”)

file.writeBytes(byteArrayOf(1, 2, 3))

println(file.readBytes().contentToString()) // [1, 2, 3]

file.appendBytes(byteArrayOf(4, 5))

println(file.readBytes().contentToString()) // [1, 2, 3, 4,

5]

file.writeBytes(byteArrayOf(6, 7))

println(file.readBytes().contentToString()) // [6, 7]

}

Another group of functions allows you to process file content in blocks
without reading it entirely. This is helpful for handling large files which
can’t be efficiently put in memory as a whole.
The forEachLine() function allows you to process text content line-by-line
without reading an entire file:
import java.io.File
fun main() {

val file = File(“data.txt”)
file.writeText(“One\nTwo\nThree”)

file.forEachLine { print(“/$it”) } // /One/Two/Three

}

The useLines() function passes a line sequence to the given lambda which
can compute some result which is then returned by the useLines():
import java.io.File
fun main() {

val file = File(“data.txt”)
file.writeText(“One\nTwo\nThree”)

println(file.useLines { lines -> lines.count { it.length > 3

} }) // 1

}

Similar to other text-related file functions, you can pass the optional
Charset parameter to forEachLine() and useLines().
To process a binary file, you can use the forEachBlock() function. Its
lambda accepts a ByteArray buffer and an integer which tells how many
bytes were read on the current iteration. The following code, for example,
outputs the sum of all bytes in the data.bin file:
import java.io.File
fun main() {

val file = File(“data.bin”)
var sum = 0

file.forEachBlock { buffer, bytesRead ->

(0 until bytesRead).forEach { sum += buffer[it] }

}

println(sum)

}

By default, the buffer size is implementation-dependent, but you can
specify it as an optional blockSize parameter. Note that the buffer size
can’t be smaller than some implementation-specific threshold. In Kotlin 1.3,
the default and minimum buffer sizes are 4096 and 512 bytes, respectively.

File system utilities
In this section, we’ll discuss the standard library functions which simplify
file system operations such as copying and removing files as well as
traversing the directory structure.
The deleteRecursively() function allows you to delete a given file
together with all its children, including nested directories. The result is true
if the deletion completes successfully and false otherwise. In the latter case,
the deletion may be partial; for example, if some nested directories can’t be
deleted. This function serves as a counterpart for the mkdirs() method
present in the Java API:
import java.io.File
fun main() {

File(“my/nested/dir”).mkdirs()

val root = File(“my”)

println(“Dir exists: ${root.exists()}”) //

true

println(“Simple delete: ${root.delete()}”) //

false

println(“Dir exists: ${root.exists()}”) //

true

println(“Recursive delete: ${root.deleteRecursively()}”) //

true

println(“Dir exists: ${root.exists()}”) //

false

}

The copyTo() function copies its receiver to another file and returns the
copy:
import java.io.File
fun main() {

val source = File(“data.txt”)
source.writeText(“Hello”)

val target = source.copyTo(File(“dataNew.txt”))

println(target.readText()) // Hello

}

By default, the target file is not overwritten, so if it already exists the
copyTo() function throws FileAlreadyExistsException. You can,
however, specify the optional overwrite parameter to enforce the copying:
import java.io.File
fun main() {

val source = File(“data.txt”).also { it.writeText(“One”) }
val target = File(“dataNew.txt”).also { it.writeText(“Two”)
}

source.copyTo(target, overwrite = true)

println(target.readText()) // One

}

The copyTo() function can be applied to directories as well, but it doesn’t
copy its files and subdirectories and simply creates an empty directory
corresponding to the target path. If you want to copy the directory together
with its content, there is a separate copyRecursively() function:
import java.io.File
fun main() {

File(“old/dir”).mkdirs()

File(“old/dir/data1.txt”).also { it.writeText(“One”) }

File(“old/dir/data2.txt”).also { it.writeText(“Two”) }

File(“old”).copyRecursively(File(“new”))

println(File(“new/dir/data1.txt”).readText()) // One

println(File(“new/dir/data2.txt”).readText()) // Two

}

Similar to copyTo(), this function allows you to specify the overwriting
policy using the overwrite parameter (false by default). Additionally, you

can set an action which is invoked on IOException when copying a
particular file. This can be done using the optional onError parameter
which accepts a lambda of the type (File, IOException) ->
OnErrorAction. The result value determines how the copyRecursively()
function would deal with a problematic file:

SKIP: This skips the file and continues the copying.
TERMINATE: This stops the copying.

Being the last parameter, the onError lambda can be passed outside
parentheses:
File(“old”).copyRecursively(File(“new”)) { file, ex ->

OnErrorAction.SKIP }

The default action is to rethrow an IOException back to the caller.
The walk() function implements traversal of the directory structure
according to the depth-first search algorithm. The optional parameter
specifies the traversal direction:

TOP_DOWN: This visits parent before children (default value).
BOTTOM_UP: This visits children before parent.

The return value is a sequence of File instances. The following example
demonstrates the usage of different traversal modes:
import java.io.File
import kotlin.io.FileWalkDirection.*
fun main() {

File(“my/dir”).mkdirs()

File(“my/dir/data1.txt”).also { it.writeText(“One”) }

File(“my/dir/data2.txt”).also { it.writeText(“Two”) }

println(File(“my”).walk().map { it.name }.toList())

println(File(“my”).walk(TOP_DOWN).map { it.name }.toList())

println(File(“my”).walk(BOTTOM_UP).map { it.name }.toList())

}

You can also use the walkTopDown() and walkBottomUp() functions instead
of walk(TOP_DOWN) and walk(BOTTOM_UP) calls, respectively.
The sequence returned by the walk() function belongs to the special
FileTreeWalk class. Apart from the common sequence functionality, this

class allows you to specify additional traversal options. The maxDepth()
function sets a maximum depth of the traversed subtree:
println(File(“my”).walk().maxDepth(1).map { it.name

}.toList()) // [my, dir]

The onEnter() and onLeave() functions set up actions performed when the
traversal enters and leaves a directory. The onEnter() accepts a (File) ->
Boolean lambda whose return value determines whether a directory (and its
children) should be visited at all. The onLeave() accepts (File) -> Unit
lambda. The onFail() function allows you to specify an action which is
called on IOException when trying to access the directory’s children. The
action takes the form of (File, IOException) -> Unit lambda which
accepts the problematic directory and a corresponding exception.
Since all four functions return the current instance of FileTreeWalk, they
can be chained as shown in the following example:
println(

File(“my”)

.walk()

.onEnter { it.name != “dir” }

.onLeave { println(“Processed: ${it.name}”) }

.map { it.name }

.toList()

The preceding code would print:
Processed: my
[my]

The dir directory would be filtered out by the onEnter() action.
The default actions are as follows: always return true for onEnter(), do
nothing for onLeave(), and throw an exception for onFail(). The
maximum tree depth is Int.MAX_VALUE by default making it effectively
unconstrained.
The createTempFile()/createTempDir() functions can be used to create
a temporary file or directory, respectively:
val tmpDir = createTempDir(prefix = “data”)
val tmpFile = createTempFile(directory = tmpDir)

Both functions have the same set of parameters:
fun createTempDir(

prefix: String = “tmp”,

suffix: String? = null,

directory: File? = null

): File

The createTempFile() is essentially the same as the JDK method
File.createTempFile().

Conclusion
In this chapter, we learned that a major part of the Kotlin standard library is
aimed at manipulation of collections. We learned different collection types
such as arrays, iterables, sequences, and maps, discussed their basic API
and operations covering various collection use cases such as accessing
elements and subcollections, filtering, aggregation, transformations, and
sorting. In the second part of this chapter, we took a look at I/O utilities
aimed at simplifying creation of streams, access to their data and common
file system operation such as deleting and copying.
In the next chapter, we will revisit the subject of object-oriented
programming and discuss how the concepts of class inheritance and
delegation can be used in Kotlin applications.

Points to remember
Kotlin distinguishes between mutable and immutable collection types.
Apart from stored collections, Kotlin supports sequences which are
generated and consumed on-demand.
The standard library contains a multitude of top-level and extension
functions implementing major operations on collection data, including
but not limited to filtering, aggregation, grouping, transformation, and
ordering.

Multiple choice questions
1. Which of the following types exist in both mutable and immutable

versions?

A. Set

B. Map
C. Sequence
D. Iterable

2. What’s the result of the += operator in the following example?
var list = ArrayList<String>()
list += “test”

A. list.add(“test”)
B. list = list + “test”
C. compilation error
D. runtime exception

3. What’s the result of the -= operator in the following example?
val list = ArrayList<String>()
 list -= “test”

A. list.remove(“test”)
B. list = list - “test”
C. compilation error
D. runtime exception

4. Which of the following functions can be used to check whether a
sequence is empty?

A. isEmpty()
B. size()
C. any()
D. all()

5. Which of the following sorting functions accepts a comparator?

A. sorted()
B. sortedWith()
C. sortedBy()
D. sort()

6. What is the result of the following expression?

intArrayOf(1, 2, 3, 4, 5)

.map { it*it }

.filter { it < 10 }

.reduce { acc, n -> 2*acc - n }

A. -12
B. 13
C. 14
D. -13

7. What is the result of the following expression?
intArrayOf(1, 2, 3, 4, 5).joinToString(

prefix = “{“,

separator = “1”,

postfix = “}”

) { “${it - 1}” }

A. {10111213141}
B. {112131415}
C. {011121314}
D. {11121314151}

8. Which of the following functions returns the content of the text file as
a single string?

A. read()
B. readLines()
C. readBytes()
D. readText()

Answers
1. A, B, D
2. C
3. A
4. C
5. C

6. D
7. C
8. D

Questions
1. Give an outline of collection types in Kotlin. What are the key

differences from the Java collections library?
2. Which basic operations are provided by collection types?
3. Describe various ways to iterate over collection elements.
4. What common functions can be used to access collection elements?
5. What common aggregates are available in the Kotlin library?
6. Describe the fold/reduce operations.
7. What is the purpose of all()/any()/none() functions?
8. Describe collection filtering functions.
9. How one can extract a subcollection?

10. What standard transformations can be applied to collections? Describe
features of mapping, flattening, and association.

11. Describe collection ordering utilities provided by the Kotlin standard
library.

12. Describe stream creation and conversion utilities.
13. What functions can be used to access content of the File or I/O

stream?
14. Describe file system utility function.

CHAPTER 8
Understanding Class Hierarchies

This chapter continues with the discussion of object-oriented aspects of
Kotlin introduced in Chapter 4, Working with Classes and Objects and
Chapter 6, Using Special-Case Classes. We’ll introduce the concept of
class inheritance and explain how to define subclasses. We’ll also consider
designing complex class hierarchies using abstract classes, interfaces, and
class delegation. The features of interest also include sealed classes which
implement the concept of algebraic data types suited for the definition of
restricted class type hierarchies and type checking enabling powerful Kotlin
smart casts.

Structure
In this chapter, we will cover the following topics:

Inheritance
Abstract classes and interfaces

Objective
We will get an understanding of how inheritance and overriding works in
Kotlin and learn to use Kotlin object-oriented capabilities to build class
hierarchies.

Inheritance
In order to represent “is-a” relationship between domain concepts, most
object-oriented languages use a concept of inheritance. When class A (a
subclass or a derived class) inherits class B (a superclass or a base class) all
instances of A are automatically considered instances of B. As a
consequence class A gets all members and extensions defined for B. This

relation is transitive. If class B, in turn, inherits some class C, A is also
considered a subclass (albeit indirect) of C.
In Kotlin, similar to Java, classes support only single inheritance which
means that any class may not have more than one superclass. If you don’t
specify a superclass explicitly, the compiler automatically assumes that
your class inherits from built-in class Any. Thus, all classes in a given
program form a well-defined inheritance tree which is usually called a class
hierarchy.
In the upcoming sections, we’ll discuss the basics of class inheritance in
Kotlin, how to define a subclass, how superclass members are inherited and
overridden, and which common methods are available for any object via the
Any class.

Declaring a subclass
To inherit from a given class, you need to add its name preceded by the :
symbol after the primary constructor in your class definition:
open class Vehicle {

var currentSpeed = 0

fun start() {

println(“I’m moving”)

}

fun stop() {

println(“Stopped”)

}

}

open class FlyingVehicle : Vehicle() {

fun takeOff() {

println(“Taking off”)

}

fun land() {

println(“Landed”)

}

}

class Aircraft(val seats: Int) : FlyingVehicle()

Java vs. Kotlin: In Kotlin there are now special keywords like extends and
implements in Java. Instead inheritance is always denoted by colon symbol

(:).
Note the parentheses are added after Vehicle and FlyingVehicle in the
definitions of their subclasses. This is in fact a call to the superclass
constructor where you put necessary arguments to the super class
initialization code.
You’ve probably noticed the open keyword near the Vehicle and
FlyingVehicle definitions. This modifier marks the corresponding classes
as open for inheritance thus allowing them to serve as superclasses. The
Aircraft, on the other hand, has no such modifier and by default is
considered final. If you attempt to inherit from a final class, the compiler
will report an error:
class Airbus(seats: Int) : Aircraft(seats) // Error: Aircraft

is final

Java vs Kotlin: Mind the difference between the default class behavior in
Java and Kotlin. In Java, any class is open by default and must be explicitly
marked as final if you want to forbid inheriting from it. In Kotlin, however,
the default is final. If you want some class to be inheritable, you must
declare it as open.
As evidenced in practice, classes which are not specifically designed with
inheritance in mind may suffer from the so called “fragile base class”
problem when changes in a base class lead to an incorrect behavior in
subclasses because the superclass no longer satisfies their assumptions. For
that reason, it’s highly recommended to carefully design and document
inheritable classes making such assumptions explicit.
Instances of subclasses are also instances of their superclasses and also
inherit super class members:
val aircraft = Aircraft(100)
val vehicle: Vehicle = aircraft // implicit cast to supertype
vehicle.start() // calling Vehicle method

vehicle.stop() // calling Vehicle method

aircraft.start() // calling Vehicle method

aircraft.takeOff() // calling FlyingVehicle

method

aircraft.land() // calling FlyingVehicle

method

aircraft.stop() // calling Vehicle method

println(aircraft.seats) // accessing Aircraft own

property

Some classes do not support inheritance to the full extent. In particular, data
classes are always final and can’t be declared as open:
open data class Person(val name: String, val age: Int) //
Error

Initially, it was also forbidden to inherit the data class from another class,
but this limitation was removed in Kotlin 1.1.
Inline classes, on the other hand, currently can neither extend other classes
nor serve as superclasses themselves:
class MyBase

open inline class MyString(val value: String) //

Error

inline class MyStringInherited(val value: String): MyBase() //

Error

Objects (including companions) can be freely inherited from open classes:
open class Person(val name: String, val age: Int) {

companion object : Person(“Unknown”, 0)

}

object JohnDoe : Person(“John Doe”, 30)

You can’t, however, inherit from an object or declare it open since each
object is supposed to have only one instance.
A powerful feature of inheritance is a so called ad-hoc polymorphism which
allows you to provide different implementations of a superclass member for
particular subclasses and choose them depending on the actual instance
class at runtime. In Kotlin, this can be achieved by overriding a member of
the superclass. Consider the following classes:
open class Vehicle {

open fun start() {

println(“I’m moving”)

}

fun stop() {

println(“Stopped”)

}

}

class Car : Vehicle() {

override fun start() {

println(“I’m riding”)

}

}

class Boat : Vehicle() {

override fun start() {

println(“I’m sailing”)

}

}

The Vehicle class provides common implementation of the start()
method which is then overridden by its inheritors, Car and Boat. Note that
the start() method in the Vehicle class is marked as open which makes it
overridable in subclasses, while its implementations in Car and Boat are
marked with the override keyword. Now, calls on values of the type
Vehicle are dispatched depending on their runtime class. If you run the
following code:
fun startAndStop(vehicle: Vehicle) {

vehicle.start()

vehicle.stop()

}

fun main() {

startAndStop(Car())

startAndStop(Boat())

}

You’ll get:

I’m riding

Stopped

I’m sailing

Stopped

The stop() method, on the other hand, is final since it’s not explicitly
marked as open. It can’t be overridden and is simply inherited by
subclasses.
Java vs Kotlin: It’s worth pointing out two major differences between
overriding in Kotlin and Java. First, similarly to classes, Kotlin functions
and properties are final by default and must be explicitly marked with the

open keyword to permit overriding in subclasses, while in Java, methods
are implicitly open so if you want to forbid their overriding you have to do
it with the explicit final modifier. Second, overridden members in Kotlin
must be always accompanied by the override keyword; failing to do so
produces a compilation error. In Java, on the other hand, explicit marking of
overriding methods is optional, although it’s considered a good practice to
use the @Override annotation. Enforcing explicit marking of overridden
members in Kotlin helps to prevent the “accidental override” problem
where you can add a member which just happens to match some super class
and overrides its implementation leading to unexpected program behavior
and hard-to-fine bugs.
It’s worth pointing out an important difference between members and
extensions. While class members can be overridden (provided they are not
final) and thus chosen based on the runtime class of a particular instance,
extensions are always resolved statically. In other words, when calling an
extension compiler always chooses it on the base of a statically known
receiver type. Consider the following example:
open class Vehicle {

open fun start() {
println(“I’m moving”)

}

}

fun Vehicle.stop() {
println(“Stopped moving”)

}

class Car : Vehicle() {
override fun start() {

println(“I’m riding”)

}

}

fun Car.stop() {

println(“Stopped riding”)

}

fun main() {
val vehicle: Vehicle = Car()

vehicle.start() // I’m riding

vehicle.stop() // Stopped moving

}

It’s clear that a program calls start() defined in the Car class because it’s
resolved dynamically depending on the runtime type of the vehicle
variable (which is Car). The stop(), however, is chosen depending on the
static type of vehicle (which is Vehicle), so the function called is
Vehicle.stop().
Note that the signature of an overridden member must match with that of its
superclass version:
open class Vehicle {

open fun start(speed: Int) {
println(“I’m moving at $speed”)

}

}

class Car : Vehicle() {

override fun start() { // Error: wrong signature
println(“I’m riding”)

}

}

You can, however, replace the return type with its supertype:
open class Vehicle {

open fun start(): String? = null
}

open class Car : Vehicle() {

final override fun start() = “I’m riding a car”

}

If you declare the overridden member final, it won’t be overridden further
in subclasses:
open class Vehicle {

open fun start() {

println(“I’m moving”)

}

}

open class Car : Vehicle() {

final override fun start() {

println(“I’m riding a car”)

}

}

class Bus : Car() {

override fun start() { // Error: start() is final in Car

println(“I’m riding a bus”)

}

}

Properties can be overridden too. Apart from placing their implementations
in the subclass body, you also have an option to override them as primary
constructor parameters:
open class Entity {

open val name: String get() = “”

}

class Person(override val name: String) : Entity()

Immutable properties can be overridden by mutable ones:

open class Entity {
open val name: String get() = “”

}

class Person() : Entity() {
override var name: String = “”

}

Similar to Java, Kotlin has a special access modifier which restricts the
member scope to its inheritors. Such members are marked with the
protected keyword:
open class Vehicle {

protected open fun onStart() { }
fun start() {

println(“Starting up...”)

onStart()

}

}

class Car : Vehicle() {
override fun onStart() {

println(“It’s a car”)

}

}

fun main() {
 val car = Car()

car.start() // Ok

car.onStart() // Error: onStart is not available here

}

Java vs Kotlin: Mind the difference between the protected modifier in
Kotlin and Java. While both languages permit to access protected members
from inheritor classes, Java also allows you to use them from any code
located in the same package. In Kotlin, that’s forbidden. Currently, it
doesn’t have an access modifier which restricts the declaration scope to a
containing package.
Sometimes, an overridden version of a function or property needs to access
its original version to reuse its code. In this case, you can prefix your
member reference with the super keyword (the syntax is similar to this,
but you can access an inherited member instead of the current one):
open class Vehicle {

open fun start(): String? = “I’m moving”
}

open class Car : Vehicle() {
override fun start() = super.start() + “ in a car”

}

fun main() {
println(Car().start()) // I’m moving in a car

}

IDE Tips: The IntelliJ plugin includes a special action which can help you
to generate stubs for overriding members. To access it, you can use the Ctrl
+ O/Cmd + O shortcut inside a class body. The IDE then displays a dialog
box where you can choose superclass members to override (as shown in
Figure 8.1):

Figure 8.1: “Override Members” dialog

Subclass initialization
In Chapter 4, Working with Classes and Objects, we discussed how
constructors are used to initialize an instance state of a particular class.
When creating an instance of the subclass, your program also needs to call
the initialization code defined in its superclasses. The superclass
initialization must come first since it may create an environment used by a
subclass code. In Kotlin, this order is enforced automatically. When your
program attempts to create an instance of some class A, it gets a chain of its
superclasses and then calls their constructors starting from the hierarchy
root (that is, the Any class) and finishing with a constructor of A. Let’s take a
look at an example demonstrating the order of initialization:
open class Vehicle {

init {

println(“Initializing Vehicle”)

}

}

open class Car : Vehicle() {

init {

println(“Initializing Car”)

}

}

class Truck : Car() {

init {

println(“Initializing Truck”)

}

}

fun main() {

Truck()

}

When this is run, this program will print the following:
Initializing Vehicle

Initializing Car

Initializing Truck

Confirming the preceding idea that initialization proceeds from the
superclass to the subclass.
We’ve already mentioned that parentheses that come after the superclass
name in the subclass definition in fact constitute a call to its constructor. So
far, we didn’t have to pass some arguments there since super classes in our
examples have been using default constructors. What if we need to provide
them with some data too? The simplest case is when a superclass has
exactly one constructor:
open class Person(val name: String, val age: Int)

class Student(name: String, age: Int, val university: String)

:

Person(name, age)

fun main() {

Student(“Euan Reynolds”, 25, “MIT”)

}

In the preceding example, the primary constructor of the Student class
passes three of its parameters to the constructor of the Person superclass
using a so called delegating call: Person(firstName, familyName, age).
Similar to ordinary constructor calls, delegating calls are equally applicable
to both primary and secondary constructors:

open class Person {

val name: String

val age: Int

constructor(name: String, age: Int) {

this.name = name

this.age = age

}

}

class Student(name: String, age: Int, val university: String)

:

Person(name, age)

What if we want to use a secondary constructor in the Student class? In this
case, delegating a call is specified after the constructor signature:
open class Person(val name: String, val age: Int)
class Student : Person {

val university: String
constructor(name: String, age: Int, university: String) :

super(name, age) {

this.university = university

}

}

The super keyword tells the compiler that our secondary constructor
delegates to the corresponding constructor of the superclass. This syntax
resembles a delegation to another constructor of the same class which is
denoted by this keyword instead (see Chapter 4, Working with Classes and
Objects). Another difference as compared to the call in the primary
constructor is the absence of parentheses after the superclass name: Person
instead of Person(); the reason is that our class does not have a primary
constructor and delegating is put into a secondary one instead.
Java vs Kotlin: Unlike Java, calls between constructors – whether they
belong to the same class, or class and its superclass – are never put into the
constructor body. In Kotlin, you use a delegating call syntax for that.
Note that if a class do has a primary constructor, its secondary constructor
may not delegate to the superclass:
open class Person(val name: String, val age: Int)

class Student() : Person { // Error: call to Person
constructor is expected

val university: String
constructor(name: String, age: Int, university: String) :

super(name, age) {
// Error: can’t invoke Person constructor here

this.university = university
}

}

A more interesting case is when a superclass has different constructors and
we want its subclass to support more than one of them. In this case, the use
of secondary constructors becomes the only option:
open class Person {

val name: String

val age: Int

constructor(name: String, age: Int) {

this.name = name

this.age = age

}

constructor(firstName: String, familyName: String, age: Int)

:

this(“$firstName $familyName”, age)

}

class Student : Person {

val university: String

constructor(name: String, age: Int, university: String) :

super(name, age) {

this.university = university

}

constructor(

firstName: String,

familyName: String,

age: Int,

university: String

) :

super(firstName, familyName, age) {

this.university = university

}

}

fun main() {

Student(“Euan”, “Reynolds”, 25, “MIT”)

Student(“Val Watts”, 22, “ETHZ”)

}

In fact, the preceding use case was one of the primary reasons to add a
secondary constructor to the language. This becomes especially important if
you take into account the interoperability with Java code which doesn’t
distinguish between primary and secondary constructors.
One more issue we’d like to point out in this section is a so called “leaking
this” problem. Consider the following code:
open class Person(val name: String, val age: Int) {

open fun showInfo() {
println(“$name, $age”)

}

init {
showInfo()

}

}

class Student(
name: String,

age: Int,

val university: String
) : Person(name, age) {

override fun showInfo() {
println(“$name, $age (student at $university)”)

}

}

fun main() {
Student(“Euan”, “Reynolds”, 25, “MIT”)

}

If you run this program, the output will look like this:
Euan Reynolds, 25 (student at null)

Why does the university variable happen to be null? The reason is that the
method showInfo() is invoked in the superclass initializer. It’s a virtual

function, so the program will call its overriding version in the Student class,
but since Person initializer runs before that of Student, the university
variable is not yet initialized at the moment of the showInfo() call. The
reason this situation is called “leaking this” is because the super class
“leaks” the current instance to code which in general may depend on the
uninitialized part of the instance state. A more explicit example would look
like this:
open class Person(val name: String, val age: Int) {

override fun toString() = “$name, $age”
init {

println(this) // potentially dangerous
}

}

class Student(
name: String,

age: Int,

val university: String
) : Person(name, age) {

override fun toString() = super.toString() + “(student at
$university)”

}

fun main() {
Student(“Euan Reynolds”, 25, “MIT”)

// Euan Reynolds, 25 (student at null)

}

The issue of “Leaking this” poses a rare case when a variable of a non-
nullable type in Kotlin may in fact turn out null.
IDE Tips: The IntelliJ plugin includes an inspection which flags such calls
and this usages as potentially unsafe displaying an appropriate warning (as
shown in Figure 8.2):

Figure 8.2: Warning on non-final function call inside constructor

Type Checking and Casts
Since a variable of some class may refer to any instance of its subtypes at
runtime, it’s useful to have a means to check whether a particular instance
corresponds to a more specific type and cast it to that type when necessary.
Consider, for example, the following code:
val objects = arrayOf(“1”, 2, “3”, 4)

From the compiler’s point of view, objects is an array of Any since Any is a
minimal common supertype which covers all its elements. But what if we
want to use some String- or Int-specific operations? Applying them to
array elements directly won’t work since they have Any type and thus do not
support more specific functions or properties:
for (obj in objects) {
println(obj*2) // Error: * is not supported for Any

}

Kotlin provides a solution in the form of type checking and casting
operators. The is operator returns true if its left operand has a given type.
Let’s change our example slightly:
for (obj in objects) {

println(obj is Int)

}

When we run the program, it prints the following:
false

true

false

true

The null value as expected is considered an instance of any nullable type,
but doesn’t belong to non-nullable ones:
println(null is Int) // false
println(null is String?) // true

Kotlin also supports inverted operation which is expressed by !is operator:
val o: Any = “”
println(o !is Int) // true

println(o !is String) // false

Note that is/!is operators are only applicable when the static type of their
left operand is a supertype of the type at the right. The following check
produced a compilation error since it’s meaningless to test an Int value
against String when the compiler knows statically that String is not an Int
subtype:
println(12 is String) // Error

Both is and !is operators have the same precedence as in and !in.
Java vs Kotlin: The is operator is very similar to Java’s instanceof. Bear
in mind, however, that they diverge in their treatment of null. While
instanceof always returns false when applied to null. The result of the is
operator depends on whether its right-hand type is nullable or not.
In Chapter 4, Working with Classes and Objects, we introduced a concept
of smart casts which allowed us to automatically refine a variable’s type
from a nullable to non-nullable one after comparing it with null. This useful
feature is supported for is/!is checks as well. For example:
val objects = arrayOf(“1”, 2, “3”, 4)
var sum = 0
for (obj in objects) {

if (obj is Int) {
sum += obj // type of obj is refined to Int here

}

}

println(sum) // 6

The is/!is checks and smart casts are also supported in the when
expressions where you can use them as a special kind of condition similar
to in/!in:
val objects = arrayOf(“1”, 2, “3”, 4)
var sum = 0
for (obj in objects) {

when (obj) {
is Int -> sum += obj // obj has Int type here
is String -> sum += obj.toInt() // obj has String type
here

}

}

println(sum) // 10

Java vs Kotlin: Starting from the JDK 14, Java supports its own smart
casts in the form of an experimental pattern matching feature. Currently, it
supports instanceof matching which can be compared to is/!is checks
in Kotlin. It’s worth noting, however, that while Kotlin smart casts refine
the type information of an existing variable, Java pattern matching require a
programmer to declare a separate variable to hold the cast result. Compare,
for example, the following statement in Kotlin:
if (obj is String) {

println(obj.length) // obj has ‘String’ type here

}

With a similar Java code:
if (obj instanceof String s) { // obj type is unchanged

System.out.println(s.length()); // s has ‘String’ type

}

Earlier, we’ve already mentioned that a compiler permits a smart cast only
when it can ensure that the variable type does not change before its check
and the usage. Now, we can express the smart cast rules more precisely.
First, smart casts are not allowed for properties and variables with custom
accessors since a compiler can’t guarantee that its return value won’t

change after the check. This also includes properties and local variables
which use delegates:
class Holder {

val o: Any get() = “”
}

fun main() {
val o: Any by lazy { 123 }
if (o is Int) {

println(o*2) // Error: smart cast is not

possible

}

val holder = Holder()
if (holder.o is String) {

println(holder.o.length) // Error: smart cast is not

possible

}

}

Open member properties also fall into this category since they can be
overridden in subtypes and given a custom accessor:
open class Holder {

open val o: Any = “”

}

fun main() {

val holder = Holder()

if (holder.o is String) {

println(holder.o.length) // Error: smart cast is not

possible

}

}

Mutable local variables can’t be smart cast when their value is explicitly
changed between the check and the read, or if they are modified in some
lambda (the latter means that their value may change when lambda is
invoked which in general is unpredictable):
fun main() {

var o: Any = 123
if (o is Int) {

println(o + 1) // Ok: smart cast to Int

o = “”

println(o.length) // Ok: smart cast to String

}

if (o is String) {
val f = { o = 123 }
println(o.length) // Error: smart cast is not possible

}

}

Mutable properties, on the other hand, can’t use smart casts since their
value can be changed at any time by some other code.
It’s worth noting that immutable local variables without delegates always
support smart casts which is one more argument for preferring them over
mutable ones.
When smart casts are not available, though, we can use explicit operators to
coerce a given value to some type. Kotlin supports two operators of this
kind: as and its safe version as?. The difference lies in their treatment of
values which do not conform to the target type: while as throws an
exception, as? simply returns null:
val o: Any = 123
println((o as Int) + 1) // 124

println((o as? Int)!! + 1) // 124

println((o as? String ?: “”).length) // 0

println((o as String).length) // Exception

Check the difference between expressions like o as String? and o as?
String. They have the same value when o is a value of String? (including
null), but behave differently when it’s not:
val o: Any = 123
println(o as? String) // null
println(o as String?) // Exception

Also, note that attempt to cast null to non-nullable type produces an
exception at runtime:
println(null as String) // Exception

Java vs Kotlin: The as operator is similar to the Java cast expression
except the null treatment. In Java, casting always leave null unchanged,
while in Kotlin, the result depends on the nullability of the target type.

Common methods
The kotlin.Any class is a root of the Kotlin class hierarchy. Every other
class is its direct or indirect inheritor. When you don’t specify an explicit
superclass in your class definition, the compiler automatically assumes that
it’s Any. The members of this class are therefore available for all values.
Let’s take a look at how it’s defined:
open class Any {

public open operator fun equals(other: Any?): Boolean

public open fun hashCode(): Int

public open fun toString(): String

}

The operator keyword here means that the equals() method can be invoked
in an operator form (via == or !=). We’ll discuss the operator syntax later in
Chapter 11, Domain-Specific Languages..
These methods define basic operations which can be performed on any non-
nullable value:

structural equality (== and !=)
computation of hash code which is used by some collection types like
HashSet or HashMap
default conversion to String

Java vs Kotlin: Readers familiar with Java will surely recognize Any
definition as a somewhat minimalistic version of java.lang.Object. In
fact, on the JVM runtime values of Any are represented as Object instances.
In Chapter 6, Using Special-Case Classes, we’ve already discussed an
example of using referential equality in which the compiler automatically
provides for any data class. Now, we’ll see how to implement the custom
equality operation for an arbitrary Kotlin class. Consider the following
code:
class Address(

val city: String,
val street: String,
val house: String

)

open class Entity(

val name: String,
val address: Address

)

class Person(
name: String,

address: Address,

val age: Int
): Entity(name, address)

class Organization(
name: String,

address: Address,

val manager: Person
) : Entity(name, address)

By default, these classes implement only referential equality inherited from
the Any class. So if we try, for example, to use them as collection elements,
we may face a problem since two instances with equal properties are not
considered equal themselves:
fun main() {

val addresses = arrayOf(
Address(“London”, “Ivy Lane”, “8A”),

Address(“New York”, “Kingsway West”, “11/B”),

Address(“Sydney”, “North Road”, “129”)

)

println(addresses.indexOf(Address(“Sydney”, “North Road”,

“129”)))

// -1

}

The problem can be fixed by overriding the equals() method and
implementing content-based equality. A simple implementation would look
like this:
override fun equals(other: Any?): Boolean {

if (other !is Address) return true
return city == other.city &&

street == other.street &&

house == other.house

}

Now, the index() call from the preceding example finds our Address
object and returns 2.
Note that the equals() method is commonly used in its operator form ==
or !=. These operators may also be applied to nullable values. When the left
operand is null, they simply compare the right one with null referentially.
The original referential equality is implemented by === and !== operators;
their behavior, unlike that of == and !=, can’t be overridden in the user
code:
val addr1 = Address(“London”, “Ivy Lane”, “8A”)

val addr2 = addr1 // the same

instance

val addr3 = Address(“London”, “Ivy Lane”, “8A”) // different,

but equal

println(addr1 === addr2) // true

println(addr1 == addr2) // true

println(addr1 === addr3) // false

println(addr1 == addr2) // true

Java vs Kotlin: In Java, on the opposite, == and != operators implement
referential equality, while content-based is expressed by an explicit call to
equals(). The latter must also be guarded against a possible null value of
its receiver object to avoid NPE.
Just like in Java, a custom implementation of the equals() method must be
accompanied by a corresponding hashCode(). Both implementations must
be related so that any pair of equal objects (from the equals() point of
view) always have the same hash code. This is because some collections
(such as HashSet) use hashCode() to find a value in the hash table first and
then use the equals() method to filter through all candidates with the
same hash code. If equal objects have different hash codes, such collections
will filter them out even before calling equals(). A possible hashCode()
implementation which is compatible with the preceding equals() method
can look like this:
override fun hashCode(): Int {

var result = city.hashCode()
result = 31 * result + street.hashCode()

result = 31 * result + house.hashCode()

return result

}

IDE Tips: The IntelliJ plugin warns you about classes which provide
implementation of equals(), but not hashCode(), or vice versa. It also
allows you to add the missing method by automatically generating some
reasonable implementation (see Figure 8.3):
The general requirements for equals() implementations are basically the
same as in Java:

No non-null object must be equal to null
Each object must be equal to itself
Equality must be symmetric: a == b must entail b == a
Equality must be transitive: a == b and b == c must entail a == c

Figure 8.3: Using IDE inspection to generate missing hashCode() method

IDE Tips: The IntelliJ plugin can automatically generate implementations
of the equals() and hashCode() methods based on the class properties.
These methods are quite similar to the ones provided for data classes and
would give reasonable equality behavior in most situations. In the
remaining cases, you may use them as a good starting point for writing your
own implementations.

To generate methods, choose “equals() and hashCode()” in the
“Generate” menu which is displayed by the Alt + Insert shortcut inside a
class definition (see Figure 8.4):

Figure 8.4: “Generate” menu

When a class in question is an open one, the IDE will suggest you to
generate methods which also support instances of its subclasses. If you
agree, then instances of different subclasses may happen to be equal which
is not always desirable. In our example, we won’t use this option since we
want instances of Person and Organization to be distinct from each other.
You can then proceed with choosing properties which should be used in
generated methods (as shown in Figure 8.5). Note that only properties
chosen for equals() can be used in hashCode(). This ensures that both
methods are compatible in a sense that equal objects always have the same
hash code:

Figure 8.5: Choosing properties for equals() method implementation

Applying this action to the Entity class will produce the following code:
open class Entity(

val name: String,
val address: Address

) {

override fun equals(other: Any?): Boolean {
if (this === other) return true
if (javaClass != other?.javaClass) return false
other as Entity
if (name != other.name) return false
if (address != other.address) return false
return true

}

override fun hashCode(): Int {
var result = name.hashCode()
result = 31 * result + address.hashCode()

return result
}

}

Properties are compared by delegating to their own implementation of
equals() and hashCode(). Array types comprise an exception. Since they

do not have their own content-based equality implementation, the generated
code will use contentEquals() and contentHashCode() (or
contentDeepEquals()/contentDeepHashCode() when applied to
properties of multidimensional array types).
If the superclass has its own non-trivial implementation of
equals()/hashCode(), the corresponding implementation in the superclass
will automatically include a call to its super counterpart. For example,
applying “Generate equals()/hashCode()” to the Person class, we get the
following code:
class Person(

name: String,

address: Address,

val age: Int
): Entity(name, address) {

override fun equals(other: Any?): Boolean {
if (this === other) return true
if (javaClass != other?.javaClass) return false
if (!super.equals(other)) return false
other as Person
if (age != other.age) return false
return true

}

override fun hashCode(): Int {
var result = super.hashCode()
result = 31 * result + age

return result
}

}

Similar to Java, all Kotlin classes have a toString() method which
provides the default String representation of a given instance. By default,
such a representation is composed of a class name and an object’s hash
code, so in most cases it’s worth overriding to get more readable
information:
class Address(

val city: String,
val street: String,
val house: String

) {

override fun toString() = “$city, $street, $house”
}

open class Entity(
val name: String,
val address: Address

)

class Person(
name: String,

address: Address,

val age: Int
): Entity(name, address) {

override fun toString() = “$name, $age at $address”
}

class Organization(
name: String,

address: Address,

val manager: Person?
) : Entity(name, address) {

override fun toString() = “$name at $address”
}

fun main() {
// Euan Reynolds, 25 at London, Ivy Lane, 8A

println(Person(“Euan Reynolds”, Address(“London”, “Ivy

Lane”, “8A”), 25))

// Thriftocracy, Inc. at Perth, North Road, 129

println(

Organization(

“Thriftocracy, Inc.”,

Address(“Perth”, “North Road”, “129”),

null
)

)

}

Figure 8.6: Choosing properties to use in toString()

IDE Tips: IntelliJ also allows you to generate a simple toString()
implementation similar to the equals()/hashCode() methods. To do it, you
just need to select the “toString()” option in the “Generate” menu (see
Figure 8.6) and then choose properties you want to use in toString(). You
may choose to generate the resulting string as either a single string
template, or concatenation expression. If the superclass already has some
nontrivial toString() implementation, you may additionally choose
whether to add a super.toString() call. The example of this dialog is
shown in Figure 8.6:
Here is the result of applying the “Generate toString()” action to our
Person class:
class Person(

val name: String,
val age: Int,
address: Address

): Entity(address) {

override fun toString(): String {
return “Person(name=’$name’, age=$age)
${super.toString()}”

}

}

The Kotlin standard library also includes the toString() extension which
is defined for Any? type. This function simply delegates to the receiver’s

toString() member when it’s not null and returns “null” string otherwise.
This allows you to use toString() on both nullable and non-nullable
values.

Abstract classes and interfaces
So far all superclasses we’ve seen can have their own instances. Sometimes,
however, this is undesirable because classes may also represent abstract
concepts which do not have instances by themselves and are only
instantiated through more specific cases. For example, our earlier example
involved the Entity class subclassed by Person and Organization. While
it makes sense to have objects representing particular persons and
organizations, an entity by itself is an abstract notion, so it’s basically
meaningless to create an instance of “just” Entity rather than one of its
specific subclasses. In the upcoming sections, we’ll deal with Kotlin aspects
which allow us to define and use such abstract types.

Abstract classes and members
Similar to Java, Kotlin supports abstract classes which can’t be instantiated
directly but instead serve only as super types for other classes. In order to
mark the class as abstract, you use a corresponding modifier keyword:
abstract class Entity(val name: String)
// Ok: delegation call in subclass

class Person(name: String, val age: Int) : Entity(name)
val entity = Entity(“Unknown”) // Error: Entity can’t be
instantiated

Abstract classes, as you can see in the preceding example, may have their
own constructors. The difference from non-abstract classes is that the
abstract class constructor may only be invoked as a part of delegation call in
the subclass definition. In the following code, the secondary constructor
delegates to the constructor of the abstract class:
abstract class Entity(val name: String)
class Person : Entity {

constructor(name: String) : super(name)
constructor(

firstName: String,

familyName: String

) : super(“$firstName $familyName”)
}

Another feature of abstract classes allows you to declare abstract members.
An abstract member defines a basic shape of a function or property such as
its name, parameters and return type, but omits any implementation details.
When a non-abstract class inherits such members from its abstract parent,
they must be overridden and given an implementation:
import kotlin.math.PI
abstract class Shape {

abstract val width: Double
abstract val height: Double
abstract fun area(): Double

}

class Circle(val radius: Double) : Shape() {
val diameter get() = 2*radius
override val width get() = diameter
override val height get() = diameter
override fun area() = PI*radius*radius

}

class Rectangle(
override val width: Double,
override val height: Double

) : Shape() {

override fun area() = width*height

}

fun Shape.print() {
println(“Bounds: $width*$height, area: ${area()}”)

}

fun main() {
// Bounds: 20.0*20.0, area: 314.1592653589793

Circle(10.0).print()

// Bounds: 3.0*5.0, area: 15.0

Rectangle(3.0, 5.0).print()

}

Since abstract members are not supposed to have an implementation by
themselves, their definitions are subject to some limitations. In particular:

Abstract properties may not have initializers, explicit accessors, or by
clauses.
Abstract functions may not have a body.
Both abstract properties and functions must explicitly specify their
return type since it can’t be inferred automatically.

Note that abstract members are implicitly open, so you don’t need to
explicitly mark them as such.
IDE Tips: On top of the “Override Members” action we’ve seen in the
“Overriding Class Members” section, IntelliJ has a similar action which is
called “Implement Members”. The action is available by either the Ctrl + I
shortcut and produces a dialog similar to that of “Override Members”, but
lists only those members that are yet to be implemented (see the example for
the Circle class in Figure 8.7):

Figure 8.7: “Implement Members” dialog

An alternative option is to use one of the quick fixes available from the Alt
+ Enter menu invoked on the class name or keyword (note red highlighting
in Figure 8.7). These quick fixes allow you, among other things, to
implement abstract properties as constructor parameters (see the Rectangle
class for an example), or simply mark the current class as abstract.

Interfaces
Kotlin interfaces are conceptually pretty much similar to their Java
counterparts, especially after the introduction of default methods in Java 8.
So basically an interface is a type which can contain methods and properties

(both abstract and non-abstract), but can’t define neither instance state nor
constructors.
Unlike classes, an interface definition is introduced by the interface
keyword:
interface Vehicle {

val currentSpeed: Int
fun move()
fun stop()

}

Interface members are abstract by default, so if you don’t provide an
implementation (like in the preceding code), the abstract modifier is
automatically assumed. You can, of course, write it explicitly, but that is
considered redundant.
Interfaces can be supertypes for both classes and other interfaces. When a
non-abstract class inherits an interface, it must provide implementations for
all abstract members (and may optionally override non-abstract ones).
Similar to class-to-class inheritance, implementations of interface members
must be marked with the override keyword:
interface FlyingVehicle : Vehicle {

val currentHeight: Int
fun takeOff()
fun land()

}

class Car : Vehicle {
override var currentSpeed = 0

private set
override fun move() {

println(“Riding...”)

currentSpeed = 50

}

override fun stop() {
println(“Stopped”)

currentSpeed = 0

}

}

class Aircraft : FlyingVehicle {

override var currentSpeed = 0
private set

override var currentHeight = 0
private set

override fun move() {
println(“Taxiing...”)

currentSpeed = 50

}

override fun stop() {
println(“Stopped”)

currentSpeed = 0

}

override fun takeOff() {
println(“Taking off...”)

currentSpeed = 500

currentHeight = 5000

}

override fun land() {
println(“Landed”)

currentSpeed = 50

currentHeight = 0

}

}

Note an absence of () after the supertype name in the definitions of all
three types. This is explained by the fact that, unlike classes, interfaces have
no constructors and thus no code to call upon the subclass initialization.
Java vs Kotlin: Note that in Kotlin, all possible cases of inheritance (class
from class, interface from interface, and class from interface) are denoted
by the same symbol (:) as opposed to Java which requires you to use the
implements keyword when the class inherits from an interface and
extends in all other cases.
Similarly to Java, Kotlin interfaces are not allowed to inherit from classes.
The Any class can be considered an exception of sort since it’s implicitly
inherited by each Kotlin class and interface.
Interface functions and properties may also have implementations:
interface Vehicle {

val currentSpeed: Int
val isMoving get() = currentSpeed != 0
fun move()
fun stop()
fun report() {

println(if (isMoving) “Moving at $currentSpeed” else

“Still”)

}

}

These implementations are considered implicitly open and thus can be
overridden by inheritors. Marking interface member as final is a
compilation error:
interface Vehicle {

final fun move() {} // Error
}

You may, however, use extension functions and properties as an alternative
to final members:
fun Vehicle.relativeSpeed(vehicle: Vehicle) =

currentSpeed - vehicle.currentSpeed

Similarly to classes, interface methods can be overridden by inheriting
interfaces:
interface Vehicle {

fun move() {
println(“I’m moving”)

}

}

interface Car : Vehicle {
override fun move() {

println(“I’m riding”)

}

}

IDE Tips: The “Override Members” and “Implement Members” actions we
discussed in the previous sections are also available inside interface bodies.
Since interfaces are not allowed to define the state, they can’t contain
properties with backing fields. In particular, properties with initializers and
delegates are forbidden:

interface Vehicle {
val currentSpeed = 0 // Error
val maxSpeed by lazy { 100 } // Error

}

The interface itself is also implicitly abstract. Unlike abstract classes,
however, interfaces are forbidden to define any constructors:
interface Person(val name: String) // Error

interface Vehicle {

constructor(name: String) // Error

}

Just like in Java, Kotlin interfaces support multiple inheritances. Let’s
consider an example:
interface Car {

fun ride()

}

interface Aircraft {

fun fly()

}

interface Ship {

fun sail()

}

interface FlyingCar : Car, Aircraft

class Transformer : FlyingCar, Ship {

override fun ride() {

println(“I’m riding”)

}

override fun fly() {

println(“I’m flying”)

}

override fun sail() {

println(“I’m sailing”)

}

}

Both the FlyingCar interface and Transformer class inherit from more than
one interface at once, thus getting all their members. In the case of the non-

abstract Transformer class, we also have to implement all inherited
members.
An interesting issue arises when a single type inherits from more than one
different interface which has members with the same signatures. In this
case, they are effectively merged into a single member which is then
inherited by a subtype. Suppose that our Car and Ship interfaces do not
have a common supertype other than Any:
interface Car {

fun move()

}

interface Ship {

fun move()

}

class Amphibia : Car, Ship {

override fun move() {

println(“I’m moving”)

}

}

In the preceding code, both variants of the move() method are abstract, so
we have to implement it in the non-abstract Amphibia class. However, even
if some of them do have implementations, the compiler will still force us to
provide an explicit implementation to resolve a possible ambiguity:
interface Car {

fun move() {

println(“I’m riding”)

}

}

interface Ship {

fun move()

}

class Amphibia : Car, Ship {

override fun move() {

super.move() // Calling inherited implementation from Car

}

}

fun main() {

Amphibia().move() // I’m riding

}

When more than one supertype provides an implementation of such a
“merged” member, the super-call itself becomes ambiguous. In this case,
you may have an extended form of super qualified with a supertype name:
interface Car {

fun move() {
println(“I’m riding”)

}

}

interface Ship {
fun move() {

println(“I’m sailing”)

}

}

class Amphibia : Car, Ship {
override fun move() {

super<Car>.move()
// Call inherited implementation in Car interface

super<Ship>.move()
// Call inherited implementation in Ship interface

}

}

fun main() {
/*

I’m riding

I’m sailing

*/

Amphibia().move()

}

Java vs Kotlin: Java 8 uses the qualified form of super for the same
purpose: Ship.super.move().
Since version 1.1, the Kotlin compiler can generate non-abstract interface
members in the form of Java 8 default methods. In Chapter 12, Java
Interoperability, we’ll discuss such interoperability issues in more detail.
The limitations concerning the use of state and constructors in interfaces are
in fact explained by their support of multiple inheritances. The primary goal

was to avoid the infamous “diamond inheritance problem”. Consider the
following classes:
interface Vehicle {

val currentSpeed: Int
}

interface Car : Vehicle
interface Ship : Vehicle
class Amphibia : Car, Ship {

override var currentSpeed = 0
private set

}

If an instance state was allowed, the Vehicle interface may define
currentSpeed as a state variable. As a result, the Amphibia class would
inherit two copies of currentSpeed: one from the Car and another from
Ship (both of which would inherit it from Vehicle). The Kotlin design
prevents the problem at the expense of disallowing state in interfaces. A
restriction on the constructor definition is related to the importance of
having a predictable initialization order of program state. Allowing them for
interfaces would require you to extend initialization order rules (see the
“Subclass Initialization” section) to cover multiple inheritance which can
become quite cumbersome to follow, especially if some interfaces occur
more than once in the supertype graph (like Vehicle in the preceding
example).

Sealed classes
Sometimes, the concepts we want to represent in a program may come in a
fixed set of variants. In Chapter 6, Using Special-Case Classes, we
introduced an idea of the enum class which allows you to represent a
predetermined set of constants with the same common type. For example,
we can use it to represent a result of some computation as being either
success or error:
enum class Result {

SUCCESS, ERROR

}

fun runComputation(): Result {
try {

val a = readLine()?.toInt() ?: return Result.ERROR
val b = readLine()?.toInt() ?: return Result.ERROR
println(“Sum: ${a + b}”)

return Result.SUCCESS
} catch (e: NumberFormatException) {

return Result.ERROR
}

}

fun main() {
val message = when (runComputation()) {

Result.SUCCESS -> “Completed successfully”

Result.ERROR -> “Error!”

}

println(message)

}

In some cases, however, different variants may have their own attributes.
For example, a state of successful completion may be accompanied by a
produced result, while a state of error may carry some information about its
cause. Similar to examples we’ve already discussed in this chapter such
concepts can be modeled with a class hierarchy where the root abstract
class expresses the concept in general and its subclasses serve as
representations of particular variants. Let’s refine our example and add
some members to Success and Error cases:
abstract class Result {

class Success(val value: Any) : Result() {

fun showResult() {

println(value)

}

}

class Error(val message: String) : Result() {

fun throwException() {

throw Exception(message)

}

}

}

fun runComputation(): Result {

try {

val a = readLine()?.toInt()

?: return Result.Error(“Missing first argument”)

val b = readLine()?.toInt()

?: return Result.Error(“Missing second argument”)

return Result.Success(a + b)

} catch (e: NumberFormatException) {

return Result.Error(e.message ?: “Invalid input”)

}

}

fun main() {

val message = when (val result = runComputation()) {

is Result.Success -> “Completed successfully:

${result.value}”

is Result.Error -> “Error: ${result.message}”

else -> return

}

println(message)

}

But this implementation is not flawless. It doesn’t allow you to express the
fact that the set of Result variants is restricted to Success and Error. In
particular, nothing prevents some client code from adding a new subclass,
say:
class MyStatus: Result()

It’s also the reason why we have to add the else clause to the when
expression. The compiler can’t ensure that the result variable will always
hold an instance of either Success, or Error and forces us to deal with
remaining cases as well.
In Kotlin, this problem can be overcome courtesy of sealed classes. Let’s
change our class definition by adding the sealed modifier:
sealed class Result {

class Success(val value: Any) : Result() {...}

class Error(val message: String) : Result() {...}

}

When the class is marked as sealed, its inheritors may be declared in either
its body as nested classes and objects, or as top-level classes in the same file

(the latter option was introduced in Kotlin 1.1). Outside these scopes, the
sealed class is effectively final and can’t be inherited from.
The latter rule will be partially relaxed in Kotlin 1.5 where sealed class
inheritors may be put into different files provided they all share the same
package as shown in Figure 8.8:

Figure 8.8: Placing sealed class hierarchy in multiple files (Kotlin 1.5 only)

Note that the sealed class is also abstract, so you can’t create its instance
directly. The idea is that any instance of a sealed class must be created
through one of its subclasses:
val result = Result() // Error: can’t instantiate an abstract

class

In fact, sealed class constructors are private by default, and declaring them
with some other visibility modifier is considered a compile-time error
Similar to enums, sealed classes support the exhaustive form of the when
expression that allows us to avoid redundant else branches:
val message = when (val result = runComputation()) {

is Result.Success -> “Completed successfully:
${result.value}”

is Result.Error -> “Error: ${result.message}”
}

Note that inheritance restriction only covers direct subclasses of a sealed
class. The subclasses itself may have their own inheritors provided they are
not final:
// Result.kt

sealed class Result {
class Success(val value: Any) : Result()
open class Error(val message: String) : Result()

}

// util.kt

class FatalError(message: String): Result.Error(message)

Since Kotlin 1.1, sealed classes may extend other classes as well. This, in
particular, allows them classes to have subclasses which are also sealed:
sealed class Result

class Success(val value: Any) : Result()

sealed class Error : Result() {

abstract val message: String

}

class ErrorWithException(val exception: Exception): Error() {

override val message: String get() = exception.message ?: “”

}

class ErrorWithMessage(override val message: String): Error()

Thanks to the data class inheritance also introduced in 1.1, it’s possible to
use data classes as parts of sealed class hierarchy. This allows us to
combine advantages given by both data and sealed classes. Consider, for
example, classes which represent the syntactic tree of simple arithmetic
expressions:
sealed class Expr

data class Const(val num: Int): Expr()

data class Neg(val operand: Expr): Expr()

data class Plus(val op1: Expr, val op2: Expr): Expr()

data class Mul(val op1: Expr, val op2: Expr): Expr()

fun Expr.eval(): Int = when (this) {

is Const -> num

is Neg -> -operand.eval()

is Plus -> op1.eval() + op2.eval()

is Mul -> op1.eval() * op2.eval()

}

fun main() {

// (1 + 2) * 3

val expr = Mul(Plus(Const(1), Const(2)), Const(3))

// Mul(op1=Plus(op1=Const(num=1), op2=Const(num=2)),

op2=Const(num=3))

println(expr)

println(expr.eval()) // 9

// 2 * 3

val expr2 = expr.copy(op1 = Const(2))

// Mul(op1=Const(num=2), op2=Const(num=3))

println(expr2)

println(expr2.eval()) // 6

}

Note that the sealed modifier can’t be applied to interfaces in Kotlin 1.4
and prior versions. As a result, subclasses comprising a sealed hierarchy
can’t inherit from some other class since multiple class inheritance is
forbidden in Kotlin.
The situation is going to change after the release of Kotlin 1.5 which,
among other things, adds support of sealed interfaces. From the developer’s
point of view, sealed interfaces work similar to their class counterparts and
effectively give you the ability to apply sealed hierarchies in those cases
when using classes that are not appropriate; for example, if multiple
inheritance is needed.
To demonstrate this improvement, let’s rewrite our expression types with
the interface as a root type:
sealed interface Expr

data class Const(val num: Int): Expr

data class Neg(val operand: Expr): Expr

data class Plus(val op1: Expr, val op2: Expr): Expr

data class Mul(val op1: Expr, val op2: Expr): Expr

Just like with sealed classes such a hierarchy supports exhaustiveness
checks in when expressions.
Java vs Kotlin: Java 15 has introduced an experimental feature of sealed
classes/interfaces which is expected to reach a stable state in the upcoming
Java 16 release. The key difference from a similar Kotlin concept is that
sealed classes/interfaces in Java must explicitly list the allowed direct
inheritors in the hierarchy root declarations (unless those inheritors are
defined in the same compilation unit) as well as a requirement to explicitly
mark direct inheritors as either final, sealed, or non-sealed.
Note that exhaustiveness checks similar to the ones supported by Kotlin
when expressions is not implemented yet and is planned for a later version
of JDK.
A sealed class implementation may also be an object. Suppose we want to
refine our Result example to distinguish successful state without the
produced value:
sealed class Result {

object Completed : Result()

class ValueProduced(val value: Any) : Result()

class Error(val message: String) : Result()

}

When all direct inheritors are objects, a sealed class effectively behaves like
an enum.
IDE Tips: If you want to refactor an enum class into a sealed one, the
IntelliJ plugin can give a good starting point thanks to the corresponding
intention action available via Alt + Enter menu (see Figure 8.9). As a result
enum constants are converted into singletons implementing an abstract
sealed class.

Figure 8.9: Converting enum class to sealed class hierarchy

On top of it, IntelliJ supports a reverse transformation. If all direct
inheritors of a sealed class are represented by object declarations, you can
turn it into a sealed class replacing its implementations by enum constants
(as shown in Figure 8.10):

Figure 8.10: Converting sealed class to enum

Delegation
In the preceding section, we saw that Kotlin classes are final by default. The
goal is to encourage the though-out design of inheritable classes and
prevent accidental inheritance from classes which are not supposed to have
subclasses. This helps to mitigate the “fragile base class” problem we
discussed earlier.
What if still need to extend or change behavior of some existing class but
can’t inherit from it? In this case, we can use the well-known delegation
pattern which allows us to reuse the existing classes. If we want to create an
implementation of some interface, we can take an instance of the existing

implementation, wrap it inside an instance of our class, and delegate our
methods to it when necessary.
Let’s consider an example. Suppose we have the following types:
interface PersonData {

val name: String
val age: Int

}

open class Person(
override val name: String,
override val age: Int

): PersonData

data class Book(val title: String, val author: PersonData) {
override fun toString() = “’$title’ by ${author.name}”

}

fun main() {
val valWatts = Person(“Val Watts”, 30)
val introKotlin = Book(“Introduction to Kotlin”, valWatts)
println(introKotlin) // ‘Introduction to Kotlin’ by Val

Watts

}

Suppose that we want writers to have pen names allowing them to pose as
another person.
class Alias(

private val realIdentity: PersonData,
private val newIdentity: PersonData

) : PersonData {

override val name: String
get() = newIdentity.name

override val age: Int
get() = newIdentity.age

}

We now can use this class to create person aliases:
fun main() {

val valWatts = Person(“Val Watts”, 30)
val johnDoe = Alias(valWatts, Person(“John Doe”, 25))
val introJava = Book(“Introduction to Java”, johnDoe)

println(introJava) // ‘Introduction to Java’ by John Doe

}

The problem of such an approach is the amount of boilerplate code you
have to generate to delegate all necessary methods and properties to another
object. Luckily for us Kotlin has a built-in support for delegates. All you
have to do is specify a delegate instance after the by keyword following a
superinterface name:
class Alias(

private val realIdentity: PersonData,
private val newIdentity: PersonData

) : PersonData by newIdentity

Now, all members the Alias inherits from the PersonData interface are
implemented by delegating to corresponding calls on the newIdentity
instance. We may also override some of them to change the implementation
behavior:
class Alias(

private val realIdentity: PersonData,
private val newIdentity: PersonData

) : PersonData by newIdentity {

override val age: Int get() = realIdentity.age
}

fun main() {
val valWatts = Person(“Val Watts”, 30)
val johnDoe = Alias(valWatts, Person(“John Doe”, 25))
println(johnDoe.age) // 30

}

In general, the delegate expression can be anything you can use in the class
initialization. When necessary, the compiler automatically creates a field to
store the delegate value. So we can, for example, drop val on newIdentity
making it a simple parameter:
class Alias(

private val realIdentity: PersonData,
newIdentity: PersonData

) : PersonData by newIdentity

But we can’t delegate it to a property defined in the class body:
class Alias(

private val realIdentity: PersonData
): PersonData by newIdentity { // Error: newIdentity is not

available here

val newIdentity = Person(“John Doe”, 30)
}

Combining the delegation with object expressions can be useful to create an
implementation with slightly different behavior than the original object:
fun PersonData.aliased(newIdentity: PersonData) =

object : PersonData by newIdentity {
override val age: Int get() = this@aliased.age

}

fun main() {
val valWatts = Person(“Val Watts”, 30)
val johnDoe = valWatts.aliased(Person(“John Doe”, 25))
println(“${johnDoe.name}, ${johnDoe.age}”) // John Doe, 30

}

Note that a class may only delegate an implementation of interface
members. The following code, for example, produces an error since Person
is a class:
class Alias(

private val realIdentity: PersonData,

private val newIdentity: PersonData

) : Person by newIdentity // Error: only interfaces can be

delegated to

The bottom line is as follows: class delegation allows you to combine
advantages of composition and inheritance with minimal boilerplate, thus
encouraging you to follow the well-known “composition over inheritance”
principle.

Conclusion
In this chapter, we got an insight into the powerful inheritance mechanism
of the Kotlin type system. We discussed how to define subclasses, how
class initialization fits into the picture of class hierarchy, and learned how to
use member overriding for changing the base class behavior in subclasses.
We also learned to employ tools aimed at representation of abstract
concepts such as abstract classes and interfaces. Finally, we explored

features implementing two useful inheritance-related patterns, namely,
sealed classes and delegation.
In the next chapter, we’ll focus on the topic of generics, a special feature of
the Kotlin type system giving you the ability to parameterize your
declarations with unknown types which are provided later at the use site.

Points to remember
1. Kotlin classes and class members are final by default. In order to make

them open/overridable, you need to explicitly declare them as such.
2. Checking the variable type with the is operation automatically refines

its compile-time type in the respective scope, thus avoiding the need
of manual type casting.

3. Explicit type casting has a safe form (as?) which returns null when
cast fails rather than throwing an exception.

4. Sealed classes have predetermined set of direct inheritors.
5. Delegation allows you to implement some interface by automatically

redirecting its member calls to a given object.

Multiple choice questions
1. Choose all valid statements regarding interfaces.

A. They may inherit multiple interfaces.
B. They may inherit multiple classes.
C. They are not allowed to have constructors except the primary

one.
D. They are allowed to contain non-abstract members.

2. Choose all valid statements regarding abstract classes.

A. They can be implemented using by-delegation.
B. They may inherit multiple interfaces.
C. They are final by default.
D. They may inherit multiple classes.

3. Choose valid places where direct inheritors of a sealed class can be
declared as of Kotlin 1.5.

A. Inside a sealed class body
B. In the same file as the sealed class
C. In the same package as the sealed class
D. Anywhere

4. What method is responsible for structural equality (==/!=)?

A. isEqual()
B. equals()
C. ==()
D. eq()

5. Given that the following class definition is valid what statements are
guaranteed to be true about Super?
class MyClass : Super {

constructor(): super(123)

}

A. Super is an interface
B. Super has a non-default constructor
C. Super is abstract
D. Super is not final

Answers
1. A, D
2. B, D
3. A, B, C
4. B
5. B, D

Questions

1. How to define a subclass in Kotlin? What conditions must a class
satisfy in order to be inheritable?

2. Point out the major differences between class inheritance in Java and
Kotlin.

3. How the class instance is initialized when its class is an inheritor?
How the superclass initialization is enforced in Java? Compare both
approaches.

4. Describe the purpose of is/as/as? operators. How can they be
compared to Java type checks and casts?

5. Name the common methods defined in the Any class. Describe basic
guidelines for their implementations.

6. What is an abstract class and an abstract class member? What rules
govern abstract class/member implementations?

7. What are the differences between abstract classes and interfaces?
Compare interfaces in Kotlin and Java.

8. What are the specifics of interface inheritance? Describe differences
between member overriding for classes and interfaces.

9. What is a sealed class hierarchy? How would you implement such
hierarchy in Java?

10. Describe how class delegation works in Kotlin.

CHAPTER 9
Generics

In this chapter, we will discuss generics, a powerful feature of the Kotlin
type system that allows you to write a code which manipulates data of some
unknown types. We’ll see how to define and use generics declarations,
address issues of type erasure and reification concerned with generics
representation at runtime, and focus on an important concept of variance
which can help you with improving flexibility of generics by means of
extending a subtyping relation to different substitutions of the same generic
type. We will also highlight a related topic, that is, a concept of type alias
which will allow you to introduce alternative names for existing types.

Structure
Type parameters
Variance
Type aliases

Objective
After reading this chapter, you will learn the basics of generic declarations
in Kotlin and their difference from Java as well as get an understanding of
how to use reified type parameters and variance to design more flexible
generic APIs.

Type parameters
In the preceding chapters, we’ve already seen quite a few examples of using
generic types such as arrays and various collection classes as well as
generic functions and properties like map(), filter(), sorted(), and so
on. In this section, we will discuss how you can generify your own code to

improve its flexibility and make use of more advanced features of the
Kotlin type system.

Generic declarations
In order to make a declaration generic, we need to add one or more type
parameters to it. Such parameters can then be used inside the declaration in
place of ordinary types. When declaration is used; for example, when we
construct an instance of a class or call a function, we need to supply actual
types instead of type parameters:
val map = HashMap<Int, String>()
val list = arrayListOf<String>()

Sometimes, these type arguments can be omitted since the compiler can
infer them from context:
// use explicit type to infer type arguments of HashMap class

val map: Map<Int, String> = HashMap()

// use argument types of arrayListOf() call to infer its type

arguments

val list = arrayListOf(“abc”, “def”)

Java vs. Kotlin: Mind the difference between passing type arguments to
generic functions in Kotlin vs generic methods in Java. While Java requires
angle brackets to be put right after the dot, like in Collections.
<String>emptyList(), in Kotlin such arguments are passed after the
function name emptyList<String>. When calling a class constructor,
though, the syntax is similar; new ArrayList<String>() in Java vs
ArrayList<String>() in Kotlin.
Also note that Java supports automatic inference of type arguments when
calling a class constructor, but unlike Kotlin uses a so-called diamond
operator:
Map<Int, String> map = new HashMap<>() // not new HashMap()

!!!

The reason is a necessity to maintain a backward compatibility with the
older code written before generics were added in Java 5.
Let’s see how to create generic declarations of our own. Suppose we want
to define a class representing a tree which can store values of a given type:
class TreeNode<T>(val data: T) {

private val _children = arrayListOf<TreeNode<T>>()
var parent: TreeNode<T>? = null

private set
val children: List<TreeNode<T>> get() = _children
fun addChild(data: T) = TreeNode(data).also {

_children += it

it.parent = this
}

override fun toString() =
_children.joinToString(prefix = “$data {“, postfix = “}”)

}

fun main() {
val root = TreeNode(“Hello”).apply {

addChild(“World”)

addChild(“!!!”)

}

println(root) // Hello {World {}, !!! {}}

}

Type parameters of a class are written inside angle brackets which are put
right after the class name. Type parameters may have arbitrary names, but
the conventional code style is to use capital letters like T, U, V, and so on.
Inside a class type, parameters can be used to define types of variables,
properties, or functions or as argument types for other generic declarations.
Java vs Kotlin: When a generic class or an interface is used to specify a
data type, it must be accompanied by corresponding type arguments. Unlike
Java, you can’t have a variable of type TreeNode. You need to specify a
type argument for T, like TreeNode<String> or TreeNode<U> where U is
some other type parameter.
When you call a generic class constructor, explicit type arguments are often
unnecessary since in many cases, the compiler can infer them from the
context. That’s why we do not need to specify <String> in
TreeNode(“Hello”) call above. An important exception is the delegation
call to the super class constructor. Let’s change our example a bit:
open class DataHolder<T>(val data: T)
// Passing actual type as supertype argument

class StringDataHolder(data: String) : DataHolder<String>
(data)

// Passing type parameter as supertype argument

class TreeNode<T>(data: T) : DataHolder<T>(data) { ... }

Unlike the ordinary constructor call, a compiler does not infer type
arguments in delegation calls, so you always have to provide them
explicitly. Compare the two cases:
// Error: need to explicitly specify DataHolder<String>

class StringDataHolder(data: String) : DataHolder(data)

// Ok: DataHolder<String> is inferred automatically

fun stringDataHolder(data: String) = DataHolder(data)

Note that type parameters are not inherited. You pass them to supertype
similarly to constructor parameters, so T in TreeNode and T in DataHolder
are separate declarations. In fact, we could’ve used different names for
them:
class TreeNode<U>(data: U) : DataHolder<U>(data) { ... }

Functions and properties defined in generic classes may access their type
parameters as demonstrated by the preceding addChild() and children
definitions. Additionally, you can make a property or a function generic by
adding type parameters of its own:
fun <T> TreeNode<T>.addChildren(vararg data: T) {

data.forEach { addChild(it) }

}

fun <T> TreeNode<T>.walkDepthFirst(action: (T) -> Unit) {

children.forEach { it.walkDepthFirst(action) }

action(data)

}

val <T> TreeNode<T>.depth: Int
get() = (children.asSequence().map { it.depth }.maxOrNull()
?: 0) + 1

fun main() {
val root = TreeNode(“Hello”).apply {

addChildren(“World”, “!!!”)

}

println(root.depth) // 2

}

Note that the type parameter list is placed after the fun keyword rather than
the declaration name as opposed to a generic class. Similar to generic class
constructors, you may omit the explicit type argument in generic function
calls when they can be inferred from the context. IntelliJ IDEA provides a
quickfix action to drop redundant type parameters as shown on Figure 9.1:

Figure 9.1: Redundant type arguments

Only extension properties may have their own type parameters. The reason
is that the non-extension property effectively represents a single value.
Therefore, it can’t be used to read/write values of different types depending
on supplied type arguments:
var <T> root: TreeNode<T>? = null // Error: T must be used in
receiver type

For the same reason, it’s not forbidden to add type parameters to object
declarations:
object EmptyTree<T> // Error: type parameters are not allowed
for objects

Property references do not support type arguments so for generic properties
they are always inferred using the receiver type. For that reason, declaring
the generic property with type parameters which are not actually used in its
receiver is a compile-time error:
// Error: explicit type arguments are forbidden here

val minDepth = TreeNode(“”).depth<String>
// Error: T is not used in receiver type

val <T> TreeNode<String>.upperCaseData get() =
data.toUpperCase()

Bounds and constraints

By default, type parameters do not impose any restrictions on their values
and behave as if they are synonymous to Any? type. Sometimes, though,
implementation of the generic class, function, or property requires some
additional information about the data they manipulate. Expanding our
TreeNode example; suppose that we want to define a function which
computes an average value among all tree nodes. Such an operation is
applicable to numeric trees so we want the type element to be a subtype of
Number. In order to do this, we declare a type parameter with Number as
upper bound:
fun <T : Number> TreeNode<T>.average(): Double {

var count = 0

var sum = 0.0

walkDepthFirst {

count++

sum += it.toDouble()

}

return sum/count

}

When the type parameter has an upper bound, the compiler will check
whether corresponding type arguments are subtypes of that bound. By
default, the upper bound is assumed to be Any? so if you don’t specify it
explicitly, a type parameter may accept any Kotlin type. The following calls
are valid since Int and Double are subtypes of Number:
val intTree = TreeNode(1).apply {

addChild(2).addChild(3)

addChild(4).addChild(5)

}

println(intTree.average()) // 3.0

val doubleTree = TreeNode(1.0).apply {
addChild(2.0)

addChild(3.0)

}

println(doubleTree.average()) // 2.0

Calling average() on tree of strings, however, produces a compilation
error:
val stringTree = TreeNode(“Hello”).apply {

addChildren(“World”, “!!!”)

}

println(stringTree.average()) // Error: String is not subtype

of Number

Note that using the final class as an upper bound is meaningless since there
are no other types which can be substituted for such type parameter. In this
case, the compiler reports a warning:
// Can be replaced by a non-generic function

// fun TreeNode<Int>.sum(): Int {...}
fun <T : Int> TreeNode<T>.sum(): Int { // Warning

var sum = 0
walkDepthFirst { sum += it }

return sum
}

A type parameter bound may refer the type parameter itself in which case
it’s called recursive. For example, if our tree contains instances of a
comparable interface, we may find a node with the maximum value:
fun <T : Comparable<T>> TreeNode<T>.maxNode(): TreeNode<T> {

val maxChild = children.maxByOrNull { it.data } ?: return
this
return if (data >= maxChild.data) this else maxChild

}

fun main() {
// Double is subtype of Comparable<Double>

val doubleTree = TreeNode(1.0).apply {
addChild(2.0)

addChild(3.0)

}

println(doubleTree.maxNode().data) // 3.0

// String is subtype of Comparable<String>

val stringTree = TreeNode(“abc”).apply {
addChildren(“xyz”, “def”)

}

println(stringTree.maxNode().data) // xyz

}

Bounds can also refer to preceding type parameters. We can make use of
that fact to write a function which appends tree elements to a mutable list:

fun <T, U : T> TreeNode<U>.toList(list: MutableList<T>) {

walkDepthFirst { list += it }

}

Since U is a subtype of T, the preceding function may accept lists of more
general elements. For example, we can append trees of Int and Double to a
list of Number (which is their common supertype):
fun main() {

val list = ArrayList<Number>()
TreeNode(1).apply {

addChild(2)

addChild(3)

}.toList(list)

TreeNode(1.0).apply {

addChild(2.0)

addChild(3.0)

}.toList(list)

}

Java vs Kotlin: The upper bounds of Kotlin type parameters are quite
similar to their Java counterparts; the major difference being the syntax: T
extends Number in Java vs. T : Number in Kotlin.
A particularly common case is constraining the type parameter to be not
null. To do this, we need to use the non-nullable type as its upper bound:
fun <T: Any> notNullTreeOf(data: T) = TreeNode(data)

The type parameter syntax allows you to specify only one upper bound. In
some cases, though, we may need to impose multiple restrictions on a
single type parameter. This can be achieved by using a slightly more
elaborate syntax of type constraint. Suppose that we have a pair of
interfaces:
interface Named {

val name: String

}

interface Identified {

val id: Int

}

And we want to define a registry of objects which have both a name and an
identifier:

class Registry<T> where T : Named, T : Identified {
val items = ArrayList<T>()

}

The where clause is added before the declaration body and lists type
parameters with their bounds.
Now that we’ve got a taste of the generics syntax, we can move to the next
topic which deals with generics representation at runtime.

Type erasure and reification
In the preceding examples, we’ve seen that type parameters can be used to
specify types of variables, properties, and functions inside generic
declarations. There are cases, however, when type parameters can’t replace
actual types. Consider, for example, the following code:
fun <T> TreeNode<Any>.isInstanceOf(): Boolean =

data is T && children.all { it.isInstanceOf<T>() } // Error

The intention is to write a function which checks whether the given tree
node and all its children conform to the specific type T. The compiler,
however, reports an error on data is T expression, and the reason is so-
called type erasure.
The readers familiar with Java will probably recognize similar limitation of
Java generics. It comes from the fact that generics only appeared in Java 5,
so newer versions of the compiler and virtual machine had to maintain the
existing representation of types for the purpose of backward compatibility
with the older code. As a result, the JVM information about type arguments
is effectively erased from code (thus the type erasure term), and types like
List<String> or List<Number> merge into the same type List.
In Kotlin, generics are available from the version 1.0 but due to JVM being
its major platform, it suffers from the same type erasure problem. At
runtime, the generic code can’t distinguish between different versions of its
parameter types, so checks like data is T above basically makes no sense:
The isInstance()function just has no way to know what T means when it’s
called. For the same reason, it’s meaningless to use the is operator for the
generic type with arguments; although in this case, the compiler will report
either an error, or a warning depending on whether type arguments
correspond to type parameters:

val list = listOf(1, 2, 3) // List<Int>

list is List<Number> // Warning: List<Int> is a subtype of

List<Number>

list is List<String> // Error: List<Int> is not a subtype of

List<String>

What if we need to just check that our value is a list without clarifying its
element type? We can’t just write list is List because generic types in
Kotlin must always be accompanied by type arguments. A correct check
looks like this:
list is List<*>

map is Map<*, *>

where * basically means some unknown type and replaces a single type
argument. This syntax is in fact a special case of so-called projections
which we’ll discuss a bit later.
In some cases, though, the compiler has enough information to ensure that
type check is valid and doesn’t report warnings/errors. In following
example, the check basically is concerned about the relationship between
List and Collection interfaces rather than their particular types such as
List<Int> and Collection<Int>:
val collection: Collection<Int> = setOf(1, 2, 3)
if (collection is List<Int>) {

println(“list”)

}

Note that casts to generic types with non-* arguments are permitted but
always produce a warning since their behavior involves a certain risk.
While they allow you to work around limitations of generics, they also may
defer the actual type error till runtime. For example, both the following
expressions are compiled with warning, but the first completes normally,
while the second one throws an exception:
val n = (listOf(1, 2, 3) as List<Number>)[0] // OK
val s = (listOf(1, 2, 3) as List<String>)[0] // Exception

The exception in the latter case happens only when the value of a list
element (which has type Int) is assigned to the variable of (statically
known) type String.

In Java, you mostly have to rely on casts or use reflection to work around
type erasure. Both approaches have their drawbacks since casts may mask a
problem and leaf to error afterwards, while using the reflection API may
impact performance. Kotlin, however, offers you a third option which
doesn’t suffer from neither of these weaknesses.
Reification means that the type parameter information is retained at
runtime. How a compiler does circumvent type erasure? The answer is that
reified type parameters are only available for inline functions. Since the
function body is inlined at the call site where type arguments are provided,
the compiler always knows which actual type corresponds to type
parameters in a particular inlined call.
To make the parameter reified, we need to mark it with a corresponding
keyword. Let’s use this feature to fix our isInstanceOf() function. Since
inline functions can’t be recursive, we’ll have to rewrite its implementation
to some extent:
fun <T> TreeNode<T>.cancellableWalkDepthFirst(

onEach: (T) -> Boolean

): Boolean {

val nodes = Stack<TreeNode<T>>()
nodes.push(this)
while (nodes.isNotEmpty()) {

val node = nodes.pop()
if (!onEach(node.data)) return false
node.children.forEach { nodes.push(it) }

}

return true
}

inline fun <reified T> TreeNode<*>.isInstanceOf() =
cancellableWalkDepthFirst { it is T }

In the preceding code, we’ve extracted the actual tree traversal logic into a
separate non-inline function cancellableWalkDepthFirst() to prevent
inlining of the loop itself. Now, when we call this function, say, in the
following way:
fun main() {

val tree = TreeNode<Any>
(“abc”).addChild(“def”).addChild(123)

println(tree.isInstanceOf<String>())

}

The compiler will inline isInstanceOf() substituting the actual type
String instead of T, and the code that gets executed will look like this:
fun main() {

val tree = TreeNode<Any>
(“abc”).addChild(“def”).addChild(123)

println(tree.cancellableWalkDepthFirst { it is String })

}

As opposed to approaches used in Java, reified type parameters give you
both safe (no unchecked casts) and fast (thanks to inlining) solution. Note,
however, that using the inline function tends to increase the size of the
compiled code, but this issue can be mitigated by extracting heavy portions
of code into separate non-inline functions (like we did with
cancellableWalkDepthFirst()). Also since reified type parameters are
only supported for inline functions, you can’t use them with classes or
properties.
Reified type parameters still have their own limitations which distinguish
them from full-fledged types. In particular, it’s currently not possible to call
the constructor or access companion members via reified type parameters:
inline fun <reified T> factory() = T() // Error

Also, you can’t substitute the non-reified type parameter instead of a reified
one:
fun <T, U> TreeNode<*>.isInstanceOfBoth() =

isInstanceOf<T>() && isInstanceOf<U>()

The reason is type erasure again. Since we can’t know actual types
substituted for T and U in isInstanceOfBoth(), we have to make way to
safely inline either of isInstanceOf() calls.
This concludes our basic discussion of Kotlin generics. Now, we’ll move to
a more advanced topic of variance which allows you to improve flexibility
of generics by controlling the producer/consumer aspects of type behavior.

Variance
Variance is an aspect of the generic type which describes how its particular
substitutions are related to each other in terms of subtyping. In the previous

chapters, we’ve already seen examples of generic types with different
variance. Arrays and mutable collections, for example, do not preserve
subtyping of their arguments. Even though, String is a subtype of Any,
Array<String> is not considered a subtype of Array<Any> (neither
Array<Any> is considered a subtype of Array<String>). Immutable
collections, like List or Set, on the other hand, do preserve subtyping, so
List<String> is a subtype of List<Any>:
val objects: List<Any> = listOf(“a”, “b”, “c”) // Correct

Reasonable use of variance may improve flexibility of your API without
having to trade off its type safety. In the following sections, we’ll discuss
the meaning of variance and how it’s used with Kotlin generics.

Variance: Distinguishing producers and
consumers
Generics classes and interfaces can give rise to an unlimited set of types
produced by substituting different type arguments instead of their type
parameters. By default, all substitutions of a particular type are not
considered subtypes of each other regardless of relationships between their
arguments. In this case, we say that the generic type is invariant (relative to
some of its type parameters). For example, the built-in Array class, mutable
collection classes as well as our TreeNode class are all invariant. The
following example shows that TreeNode<String> is not considered a
subtype of TreeNode<Any>:
val node: TreeNode<Any> = TreeNode<String>(“Hello”) // Error

Some types, like immutable collections, on the other hand preserve
subtyping of their arguments. In the following section, we’ll discuss
language features which allow you to control how subtyping affects your
own generic classes, but first we need to understand why some generic
classes can preserve inheritance while others cannot.
The distinction is based on the way a type handles the values of its type
parameter (say, T). All generic types may be divided into three categories:

1. Producers which have only operations which return values of T but
never take them as input.

2. Consumers whose operations only take values of T as input but never
return them.

3. All remaining types which do not fall into either of the groups above.

It turns out that in general, types from the last group (ones that are neither
producers, nor consumers) can’t preserve subtyping without breaking type
safety. To understand why it happens, let’s consider an example with our
TreeNode class. Suppose for a moment that subtyping is permitted and we
can assign TreeNode<String> to TreeNode<Any>. Consider the following
code:
val stringNode = TreeNode<String>(“Hello”)
val anyNode: TreeNode<Any> = stringNode
anyNode.addChild(123)

val s = stringNode.children.first() // ???

Now, the problem is clear. Since you can add a child of any type to
TreeNode<Any>, assigning stringNode to anyNode makes it possible to add
the Int child to an original tree of String! If such an assignment is
allowed, the program would fail with the exception when trying to cast
stringNode.children.first() to String. In other words, we’d have
violated the contract of TreeNode<String> by putting the integer value into
one of its children nodes.
Java vs Kotlin: Readers familiar with Java would recognize a similarity
with infamous ArrayStoreException which may happen due to array
assignments. That’s in fact the reason why in Kotlin, as opposed to Java,
array types do not preserve subtyping.
When we consider type A subtype of type B, we assume that values of A can
be used in any context which requires a value of B. This is clearly not the
case here. The type TreeNode<Any> has an ability to add child nodes of any
type, while TreeNode<String> don’t; it only can add children of type
String. That’s the reason why TreeNode<String> can’t be a subtype of
TreeNode<Any>.
Why immutable collections like List<T> are different? The reason is that
they do not have operations like addChild(): their members only produce
values of T but never consume them. So the basic contract of List<Any> is
its ability to retrieve values of Any. Similarly, the contract of List<String>
is its ability to retrieve values of String. But since String is a subtype of

Any, that automatically makes List<String> capable to retrieve values of
Any as well. In other words, subtyping of List<String> and List<Any>
does not endanger type safety, and the compiler permits us to make use of
this property. We can say that such types are covariant with respect to their
type argument. All producer-like types can be made covariant in Kotlin.
Many built-in immutable types like Pair, Triple, Iterable, Iterator,
and so on are covariant. On top of that, functional types are covariant with
respect to their return types:
val stringProducer: () -> String = { “Hello” }
val anyProducer: () -> Any = stringProducer
println(anyProducer()) // Hello

Note that covariance is not the same as immutability. Covariance (with
respect to T) just forbids taking values of T as input, so it’s possible to have
a mutable type which still can be made covariant. Consider, for example, a
putative list which can only delete its elements by index but can’t add new
ones:
interface NonGrowingList<T> {

val size: Int
fun get(index: Int): Int
fun remove(index: Int)

}

It’s clearly mutable but behaves covariantly: for example,
NonGrowingList<String> is capable of everything the
NonGrowingList<Any> can.
The reverse is also true. Types representing immutable objects may behave
non-covariantly. For example:
interface Set<T> {

fun contains(element: T): Boolean
}

The preceding type might be immutable, but it’s not a producer and thus
can’t preserve subtyping. While Set<Any> can take any value as its input,
Set<String> can take only strings.
What about consumer-like types? They obviously can’t preserve subtyping
in keeping with the preceding arguments. It turns out, though, that they
preserve subtyping in the opposite direction. To understand what it means,

let’s consider two substitutions of the Set<T> type such as Set<Int> and
Set<Number>. The contract of Set<T> can be reduced to the ability to handle
elements of T by the contains() function. So Set<Number> can handle any
Number and Set<Int> can handle any Int. But Int is a subtype of Number,
so Set<Number> can handle any Int as well. In other words, Set<Number>
behaves like a subtype of Set<Int>. In Kotlin, you can, in fact, enable this
subtyping by declaring T contravariant.
Function types, for example, are contravariant with respect to their
argument types:
val anyConsumer: (Any) -> Unit = { println(it) }
val stringConsumer: (String) -> Unit = anyConsumer
stringConsumer(“Hello”) // Hello

So for a given generic type X<T,...>, we have the following options in
terms of variance with respect to T:

X behaves like a producer; in this case, we can declare T covariant so
that X<A> will be a subtype of X whenever A is a subtype of B.
X behaves like a consumer; we then can me T contravariant: X<A> will
be a subtype of X whenever B is a subtype of A.
In all remaining cases, T has to remain invariant.

In the following section, we’ll see how variance is expressed in Kotlin.

Variance at the declaration site
In Kotlin, variance of a type parameter can be specified in two ways: either
in declaration itself, or on its usage site when substituting particular type
arguments. In this section, we’ll focus on the first approach which is called
declaration-site variance.
By default, type parameters are considered invariant which means that their
generic types do not preserve subtyping of corresponding type arguments
(as well its reversed version). Consider, for example, the simplified version
of List type with array-based immutable implementation:
interface List<T> {

val size: Int
fun get(index: Int): T

}

class ListByArray<T>(private vararg val items: T) : List<T> {
override val size: Int get() = items.size
override fun get(index: Int) = items[index]

}

Suppose we define a function which takes a pair of lists and returns their
concatenation delegating to either of the original List instances:
fun <T> concat(list1: List<T>, list2: List<T>) = object :
List<T> {

override val size: Int
get() = list1.size + list2.size

override fun get(index: Int): T {
return if (index < list1.size) {
list1.get(index)

} else {
list2.get(index - list1.size)

}

}

}

Now, everything goes smoothly until we try to use this function to combine
lists of related types, say, List<Number> and List<T>:
val numbers = ListByArray<Number>(1, 2.5, 3f)
val integers = ListByArray(10, 30, 30)
val result = concat(numbers, integers) // Error

The reason is an invariance of parameter T: due to that List<Int> is not
considered a subtype of List<Int> (and vice versa), so we can’t pass a
List<Int> variable into a function which expects List<Number>.
This is, however, too restrictive. A quick glance at the List interface
reveals that it actually behaves like a producer type. Its operations only
return values of T but never take them as input. In other words, this type can
be safely made covariant. To do this, we mark parameter T with the out
keyword:
interface List<out T> {

val size: Int

fun get(index: Int): T

}

Now, the concat() call works as expected because the compiler
understands that List<Int> is a subtype of List<Number>.
The producer part is crucial here because the compiler wouldn’t let us
define the parameter as covariant otherwise. Let’s consider a mutable
version of List:
interface MutableList<T> : List<T> {

fun set(index: Int, value: T)
}

Trying to make T in MutableList covariant will lead to a compilation error:
interface MutableList<out T> : List<T> {

fun set(index: Int, value: T) // Error: T occurs in ‘in’
position

}

It happens because of the set function which takes an input value of T, thus
acting as its consumer. The basic rule is as follows: a type parameter may
only be declared covariant if all its occurrences happen to be in ‘out’
positions where the ‘out’ position basically mean usages where its values is
produced rather than consumed such as the return type of a property or
function, or covariant type argument of generic type. For example, the
following type is valid since all usages of parameter T are in ‘out’ positions:
interface LazyList<out T> {

// usage as return type

fun get(index: Int): T
// usage as out type argument in return type

fun subList(range: IntRange): LazyList<T>
// return part of functional type is ‘out’ position as well

fun getUpTo(index: Int): () -> List<T>
}

The ‘in’ positions similarly cover the usages where values are consumed
like arguments of function calls and contravariant type arguments.
Note that constructor parameters are exempted from these checks because a
constructor is called before an instance of generic type exists (it’s called to
create it in the first place). For this reason, we can make the ListByArray
implementation covariant as well:
class ListByArray<out T>(private vararg val items: T) :
List<T> { ... }

Similarly, we can use the in keyword to declare the type parameter
contravariant. This is possible when its generic type acts as a consumer, that
is, the type parameter itself has no usages in ‘in’ positions. For example:
class Writer<in T> {

// usages as function argument

fun write(value: T) {
println(value)

}

// combining out List argument with in position as function

argument

// gives in position again

fun writeList(values: Iterable<T>) {
values.forEach { println(it) }

}

}

fun main() {
val numberWriter = Writer<Number>()
// Correct: Writer<Number> can also handle integers

val integerWriter: Writer<Int> = numberWriter
integerWriter.write(100)

}

The TreeNode class from our earlier example can’t be made neither
covariant, nor contravariant since its type parameter has usages in both ‘in’
(for example, the addChild() function) and ‘out‘ positions (like data or
children properties). We have no other options apart from leaving it as
invariant as it was originally. Suppose if we want to make a copy of a tree
with all its children? Then, our TreeNode instance acts solely as a producer
since the only members we need for that task are data and children
properties. Can we somehow convince the Kotlin compiler that TreeNode is
used covariantly in such case? In fact, the answer is yes, and the language
tool we need for that is a use-site variance also called a projection.

Use-site variance with projections
Another way to specify a variance is to place the out/in keyword before a
type argument in a particular usage of generic type. This construct, also

called a projection is useful for types which are invariant in general, but can
be used as either producers, or consumers depending on the context.
Suppose if we want to implement a function which adds a copy of existing
tree to another tree as a child. Let’s start with invariant definition:
fun <T> TreeNode<T>.addSubtree(node: TreeNode<T>): TreeNode<T>
{

val newNode = addChild(node.data)
node.children.forEach { newNode.addSubtree (it) }

return newNode
}

This function works well when both trees have the same type:
fun main() {

val root = TreeNode(“abc”)
val subRoot = TreeNode(“def”)
root.addSubtree(subRoot)

println(root) // abc {def {}}

}

But what if we want to, say, add a tree of Int to a tree of Number? This
operation is actually well-defined since Int is a subtype of Number and
adding Int-based nodes to a Number tree does not violate any assumptions
about its type. But since TreeNode<T> is invariant and we’ve specified that
both trees have the same element type T, the compiler won’t let us do it:
val root = TreeNode<Number>(123)
val subRoot = TreeNode(456.7) // Error

The TreeNode<T> type has to remain invariant since it contains both
members which can return values of T (like data property) and those which
take T values as their input (like addChild() function), so we can’t use
declaration-site variance here. However, in the context of the addSubtree()
function, a tree we pass as an argument is used exclusively as a producer.
This allows us to achieve our goal by marking the necessary type argument
as out:
fun <T> TreeNode<T>.addSubtree(node: TreeNode<out T>):
TreeNode<T> {

val newNode = addChild(node.data)
node.children.forEach { newNode.addSubtree(it) }

return newNode

}

fun main() {
val root = TreeNode<Number>(123)
val subRoot = TreeNode(456.7)
root.addSubtree(subRoot)

println(root) // 123 {456.7 {}}

}

Alternatively, we could’ve introduced the additional type parameter
bounded by the first one to represent elements of the added tree:
fun <T, U : T> TreeNode<T>.addSubtree(node: TreeNode<U>):
TreeNode<T> {

val newNode = addChild(node.data)
node.children.forEach { newNode.addSubtree(it) }

return newNode

}

Using out-projection, we can avoid extra type parameters and solve our
problem in a more concise way.
The TreeNode<out T> is called a projected type. The projection out T
means that we do not know the actual type argument of TreeNode: only that
it must be a subtype of T. You can think of TreeNode<out T> as a version of
TreeNode<T> which only exposes operations that act as producers with
respect to T. For example, we can use properties such data, children,
depth, or functions like walkDepthFirst() since they do not take values of
T as their input. Consumer operations like addChild() member or
addChildren() extension are available but not actually usable as any
attempt to call them on out-projected type produces a compilation error:
fun processOut(node: TreeNode<out Any>) {

node.addChild(“xyz”) // Error: addChild() is projected out

}

The in-projections can be used similarly to enforce the usage of the type as
a consumer. For example, we could’ve written our tree-adding function in
the following form:
fun <T> TreeNode<T>.addTo(parent: TreeNode<in T>) {

val newNode = parent.addChild(data)
children.forEach { it.addTo(newNode) }

}

Now, the receiver is a tree being added while a parameter represents its new
parent. Thanks to in-projection such a function can add TreeNode<T> to a
tree containing elements of any supertype of T:
fun main() {

val root = TreeNode<Number>(123)
val subRoot = TreeNode(456.7)
subRoot.addTo(root)

println(root) // 123 {456.7 {}}

}

Java vs Kotlin: Kotlin projections play essentially the same role as Java
extends/super wildcards. For example, TreeNode<out Number> and
TreeNode<in Number> are equivalent to Java’s TreeNode<? extends
Number> and TreeNode<? super Number>, respectively.
Note that using projections when the corresponding type argument has
declaration-site variance is basically meaningless. When the projection
matches the parameter variance, the compiler reports a warning since using
the projection in such case in redundant. On the other hand, when
projections do not match, the compiler considers this a compilation error.
For example:
interface Producer<out T> {

fun produce(): T
}

interface Consumer<in T> {
fun consume(value: T)

}

fun main() {
val inProducer: Producer<in String>

// Error: conflicting projection

val outProducer: Producer<out String> // out is redundant
val inConsumer: Consumer<in String> // in is redundant
val outConsumer: Consumer<out String>

// Error: conflicting projection

}

Similarly to Java wildcards, projections give you a possibility to use
invariant types in a more flexible way by representing types constrained by
either a producer, or consumer role. On top of it, Kotlin has a special way to

denote a generic whose argument can be replaced by any possible type: a
star projection.

Star projections
Star projections denoted by * are used to indicate that the argument type
can be anything within its bounds. Since Kotlin only supports upper bounds
for type parameters, this amounts to saying that the type argument can be
any subtype of the corresponding bounding type. Let’s consider an
example:
// Can be any list since its element type is only bounded by

Any?

val anyList: List<*> = listOf(1, 2, 3)

// Can be any object comparable with itself (due to T :

Comparable<T> bound)

val anyComparable: Comparable<*> = “abcde”

In other words, a star projection effectively behaves like an out projection
applied to a type parameter bound.
Java vs Kotlin: Star projection can be considered a Kotlin counterpart of
Java’s ? wildcard, so TreeNode<*> in Kotlin has basically the same meaning
as TreeNode<?> in Java.
In the section on type erasure and refinement, we’ve seen that star-projected
types can be used in type-checking operations:
val any: Any = “”

any is TreeNode<*>

Since the type parameter of TreeNode is bounded by Any?, we can also
write this using an explicit out projection:
any is TreeNode<out Any?> // Ok

If we, however, try to replace Any? with some other type, the compiler will
report an error since such a check is impossible due to type erasure:
any is TreeNode<out Number> // Error

It’s important to keep in mind the difference between * and using the type
parameter bound as a non-projection argument, like in TreeNode<*> vs.
TreeNode<Any?>. While TreeNode<Any?> is a tree which can contain the
value of any type, TreeNode<*> represents the tree whose nodes are
characterized by the same common type T, but that T is unknown to us. For

this reason, we can’t use TreeNode operations which behave like
consumers of T values. Since we don’t know the actual type, we also don’t
know what values are acceptable for them. That’s exactly the meaning of
the out projection we’ve discussed in the previous section.
To put it short, star projections allow you to concisely represent the generic
type when particular arguments are not relevant or simply not known.
Note that when the type parameter has more than one bound, * can’t be
replaced with an explicit out projection because the type intersection is not
denotable in the Kotlin source code:
interface Named {

val name: String

}

interface Identified {

val id: Int

}

class Registry<T> where T : Named, T : Identified

// the bound is intersection of Named and Identified

var registry: Registry<*>? = null

Another difference between * and explicit out is that * are allowed for type
parameters with the declaration-site variance. In this case, the compiler
doesn’t report warnings/errors:
interface Consumer<in T> {

fun consume(value: T)
}

interface Producer<out T> {
fun produce(): T

}

fun main() {
val starProducer: Producer<*> // the same as Producer<Any?>
val starConsumer: Consumer<*> // the same as
Consumer<Nothing>

}

When applied to a type argument in the contravariant position (like in
Consumer<*>), star projection in fact produces a type argument of Nothing.
Thus, we can’t pass anything to the consume() function because Nothing
has no values.

Type aliases
In conclusion, we will discuss a language feature which is not directly
related to generics but comes very handy when you have to deal with
complex generic types: the type aliases.
The idea of type aliases added in Kotlin 1.1 is allowing you to introduce
alternative names for existing types. The primary goal of such a construct is
to provide short names for otherwise long types such as generic or
functional ones. Type alias definition is introduced with the typealias
keyword which is followed by an alias name and its definition separated by
the = symbol:
typealias IntPredicate = (Int) -> Boolean

typealias IntMap = HashMap<Int, Int>

Now, we can use the preceding names instead of the right-hand sides of
their definitions:
fun readFirst(filter: IntPredicate) =

generateSequence { readLine()?.toIntOrNull()

}.firstOrNull(filter)

fun main() {
val map = IntMap().also {

it[1] = 2

it[2] = 3

}

}

One more useful case is providing short names for nested classes:
sealed class Status {

object Success : Status()

class Error(val message: String) : Status()

}

typealias StSuccess = Status.Success

typealias StError = Status.Error

Similar to classes, type aliases may have type parameters which allow us to
introduce aliases for generic types:
typealias ThisPredicate<T> = T.() -> Boolean
typealias MultiMap<K, V> = Map<K, Collection<V>>

You may also restrict their scope by using visibility modifiers:

private typealias MyMap = Map<String, String>
// visible in current file only

As of now (Kotlin 1.3) type aliases may only be introduced at top-level. For
example, it’s not possible to declare them inside functions or as class
members:
fun main() {

typealias A = Int // Error
}

Another restriction is that you can’t declare bounds or constraints for type
parameters of generic type alias:
typealias ComparableMap<K : Comparable<K>, V> = Map<K, V> //
Error

The important thing to note is that type aliases never introduce new types,
just give an additional way to refer to existing ones. This, in particular,
means that type aliases are completely interchangeable with their original
types:
typealias A = Int
fun main() {

val n = 1

val a: A = n

val b: Int = a

}

As you already know, type aliases are not the only way to introduce new
names for existing types, so it’s useful to understand major differences
between language features which can be used for similar purposes.
Import aliases, for example, give you an ability to introduce alternative
names as a part of import directives. Unlike type aliases, they also support
functions and properties, but do not allow you to introduce generic aliases.
Besides, their scope is always limited to the containing file, while public
type aliases have more wider scope.
It’s also possible to introduce a new type name by inheriting from, say, a
generic or functional type. This option allows you to define generic types as
well as control the new name visibility. The major difference with type
aliases is that such definitions create a new type, namely, a subtype of the
original one, so their compatibility is one-way:

class MyMap<T> : HashMap<T, T>()
fun main() {

val map: Map<String, String> = MyMap()
// Ok, MyMap is subtype of Map

val myMap: MyMap<String> = map // Error
}

While you can’t inherit from a final class, you can introduce an alias for it.
Inline classes are also similar to type aliases in a sense that may have the
same runtime representation as their original type. The crucial difference,
however, is that inline classes introduce new types which are not
compatible with their originals. For example, a value of UInt can’t be
assigned to variable of Int (and vice versa) without an explicit conversion.

Conclusion
This chapter has brought us to the concept of generics which give you an
additional tool for designing abstractions in the Kotlin code. Now, you
should be able to design your own generic APIs as well use more advanced
concepts like reified type parameters and variance for writing more concise,
efficient, and type-safe code. Among other things, we’ve introduced a
useful feature of type aliasing that allows you to introduce alternative type
names and simplify handling of complicated generic and functional types.
In the next chapter, we will take a closer look at two interrelated topics. The
first one would be annotations which allow you specify various metadata
for your program elements. In Kotlin, annotations, among others, are used
for fine-tuning of interoperability with code which we’ll also cover in
Chapter 12, Java Interoperability. The second major topic of Chapter 10,
Annotations and Reflection, would be a reflection which gives you an API
to introspect a program structure and dynamically invoke your code.

Points to remember
1. Kotlin classes, functions and properties may have type parameters

which allow them to be applicable to data of multiple different types.
Such declarations are called generic. When used generic declarations

are supplied with specific types in place of corresponding type
parameters

2. Type parameters may have bounds which restrict their possible types
to subtypes of some given base type.

3. The variance determines whether two particular instantiations of a
generic type are related to each other via subtyping. The major use
case for variance is distinguishing producer and consumer types at the
type system level.

4. In Kotlin variance may be specified both in the declaration of generic
class/interface/alias (declaration-site variance) as well as at its
particular usage (use-site variance)

5. Type aliases allow the user to introduce alternative names for existing
types. They might be generic similar to classes and interfaces.

Questions
1. How can you define a generic class, function, or property in Kotlin?
2. Describe how to specify constraints for type parameters. How are they

compared to Java’s?
3. What is type erasure? Describe limitations of type parameters vs.

ordinary types.
4. How can you circumvent type erasure using reified type parameters?

What are their limitations?
5. What is a variance? Why variance is important for a generic code?
6. Describe how declaration-site variance is used in Kotlin.
7. Compare use-site variance in Kotlin with Java wildcards.
8. Describe the purpose of star projections.
9. Describe type alias syntax. How can they be compared with related

languages features such as import aliases and inheritance?

CHAPTER 10
Annotations and Reflection

In this chapter, we will cover two major topics. The first part will be
devoted to annotations which allow you to bind metadata to Kotlin
declarations and later access them at runtime. We’ll explain how to define
and apply your own annotations and look at some built-in annotations
which affect the compilation of the Kotlin source code.
The second will introduce us to the Reflection API which defines a set of
types comprising runtime representation of Kotlin declarations. We’ll
discuss how to obtain reflection objects, access their attributes, and use
callables to dynamically invoke functions and properties.

Structure
In this chapter, we will cover the following topics:

Annotations
Reflection

Objectives
After reading this chapter, you will learn to apply annotations in the Kotlin
source code as well as declare your own annotation classes. You will get an
understanding of how to use the Kotlin Reflection API to obtain runtime
information about Kotlin declarations and dynamically invoke functions
and properties.

Annotations
Annotation is a special kind of Kotlin class which allows you to define
custom metadata and bind them to elements of your source code:
declarations, expressions, or whole files. Similar to their Java counterparts,
Kotlin annotations can be accessed at runtime. This ability is used

extensively by various frameworks and processing tools which rely on
annotations for configuration and code instrumentation purposes.

Defining and using annotation classes
The syntax of annotation usage is rather similar to that of Java. The most
basic case is annotating a declaration when you put a @-prefixed annotation
name into its modifier list. For example, when using a test framework such
as Junit, you can mark test methods using the annotation @Test:
class MyTestCase {

@Test

fun testOnePlusOne() {
assert(1 + 1 == 2)

}

}

Java vs Kotlin: Unlike Java, some Kotlin annotations may also be applied
to expressions. For example, the built-in @Suppress annotation can be used
to suppress compiler warnings for a particular expression in the source file:
val s = @Suppress(“UNCHECKED_CAST”) objects as List<String>

If you have multiple annotations for the same source file element, you may
group them inside square brackets:
@[Synchronized Strictfp] // the same as @Synchronized

@Strictfp

fun main() { }

If you want to apply an annotation to a primary constructor, you need to use
an explicit constructor keyword:
class A @MyAnnotation constructor ()

In Chapter 4, Working with Classes and Objects, we already used a similar
syntax to make a primary constructor private.
To define an annotation, you need to declare a class marked with a special
annotation modifier:
annotation class MyAnnotation

@MyAnnotation fun annotatedFun() { }

Java vs Kotlin: Keep in mind the difference between the annotation
definition in Kotlin and Java. While Java annotations have a syntactic form
of an interface, Kotlin annotations comprise a special kind of classes.

Unlike ordinary classes, annotation classes may not have members,
secondary constructors, or initializers:
annotation class MyAnnotation {

val text = “???” // Error

}

Since Kotlin 1.3 you can, however, add nested classes, interfaces, and
objects (including companions) to the annotation body:
annotation class MyAnnotation {

companion object {

val text = “???”

}

}

If you want to add custom attributes to your annotation, you may do so via
constructor parameters. When such an annotation is used, you need to
provide actual values for parameters similar to a class constructor call:
annotation class MyAnnotation(val text: String)
@MyAnnotation(“Some useful info”) fun annotatedFun() { }

Note that annotation parameters must always be marked as val.
Java vs Kotlin: Java annotation attributes are specified in the form of
parameterless methods. In Kotlin, however, you need to use constructor
parameters which also play the role of properties.
Similar to ordinary constructors, you may use default values and varargs:
annotation class Dependency(vararg val componentNames: String)
annotation class Component(val name: String = “Core”)
@Component(“I/O”)

class IO
@Component(“Log”)

@Dependency(“I/O”)

class Logger
@Component

@Dependency(“I/O”, “Log”)

class Main

Even though every Kotlin annotation is a kind of class, you can’t instantiate
them the way you do it with ordinary classes:
annotation class Component(val name: String = “Core”)

val ioComponent = Component(“IO”) // Error

Annotations can only be constructed using the preceding @ syntax. To
retrieve an actual annotation instance (if it’s preserved at runtime), you may
use the Reflection API which we’ll discuss in the upcoming sections.
Annotation classes can’t have explicit supertypes and can’t be inherited.
They automatically inherit from the Any class and empty the Annotation
interface which serves as a common supertype for all annotation classes.
Since annotations arguments are evaluated at compilation time, you may
not place arbitrary computations there. Furthermore, a compiler limits the
range of possible types you may use for annotation parameters:

primitive types such as Int, Boolean, or Double
String

enums
other annotations
class literals
arrays of the types above

Note also that such parameters may not be nullable because JVM does not
allow you to store nulls in annotation attributes.
When you use another annotation as an argument, you don’t need to put the
@ prefix before its name. Instead, you need to write an annotation like an
ordinary constructor call. Let’s rework our previous example a bit:
annotation class Dependency(vararg val componentNames: String)
annotation class Component(

val name: String = “Core”,
val dependency: Dependency = Dependency()

)

@Component(“I/O”)

class IO
@Component(“Log”, Dependency(“I/O”))

class Logger
@Component(dependency = Dependency(“I/O”, “Log”))

class Main

Annotation parameters may have an explicit array type, without using a
vararg. When using such an annotation, you may construct an array using
the standard arrayOf() function:
annotation class Dependency(val componentNames: Array<String>)
@Component(dependency = Dependency(arrayOf(“I/O”, “Log”)))

class Main

Since Kotlin 1.2, you may also use a more concise syntax by enclosing
array elements inside square brackets:
annotation class Dependency(val componentNames: Array<String>)
@Component(dependency = Dependency([“I/O”, “Log”]))

class Main

Such array literals are currently only supported inside annotations.
The class literal gives you a representation of a class as a reflection object
of type KClass. This type serves as a Kotlin counterpart of the Class type
used in the Java language. The class literal consists of a class name
followed by ::class. Let’s modify our component/dependency example to
use class literals instead of names:
import kotlin.reflect.KClass
annotation class Dependency(vararg val componentClasses:
KClass<*>)

annotation class Component(
val name: String = “Core”,
val dependency: Dependency = Dependency()

)

@Component(“I/O”)

class IO
@Component(“Log”, Dependency(IO::class))

class Logger
@Component(dependency = Dependency(IO::class, Logger::class))

class Main

Java vs Kotlin: Note that instances of java.lang.Class may not be used
in Kotlin annotations. During the JVM-targeted compilation, however,
Kotlin class literals are automatically converted into Java’s.
There are cases when a single declaration in a Kotlin source file
corresponds to multiple language elements which may have annotations.
For example, if we have the following class:

class Person(val name: String)

Then, val name: String serves as a shorthand declaration for a constructor
parameter, a class property with getter, and a backing field which is used to
store a property value. Since each of those elements may have their own
annotations, Kotlin allows you to specify a particular annotation target at its
use site.
The use-site target is represented by a special keyword which is placed
before the annotation name and is separated by: character. For example, if
we want to place some annotation on a property getter, we use the get
keyword:
class Person(@get:A val name: String)

Most of the use-site targets are related to various components of a property.
Such targets can be applied to any top-level or class property as well as the
val/var parameter of a primary constructor:

property: This represents a property itself.
field: This represents the backing field (applicable only to properties
which do have a backing field).
get: This represents the property getter.
set: This represents the property setter (applicable only to mutable
properties).
param: This represents the constructor parameter (applicable only to
val/var parameters).
setparam: This represents the parameter of a property setter
(applicable only to mutable properties).
delegate: This represents the field which stores the delegate object
(applicable only to a delegated property, see Chapter 11, Domain-
Specific Languages, for details).

The get/set targets allow you to annotate property accessors even when
they are not explicitly present in your code (like the val parameter in the
preceding example). The same goes for the setparam target which has the
same effect as the annotation setter parameter directly.
Annotations with the use-site target can be also be grouped using the []
syntax. In this case, the target is applied to all of them. So the definition:

class Person(@get:[A B] val name: String)

Is basically equivalent to:
class Person(@get:A @get:B val name: String)

The receiver target applies the annotation to a receiver parameter of the
extension function or property:
class Person(val firstName: String, val familyName: String)
fun @receiver:A Person.fullName() = “$firstName $familyName”

Finally, the file target means that the annotation is applied to the entire
file. Such annotations must be placed at the beginning of the Kotlin file,
before import and package directives:
@file:JvmName(“MyClass”)
fun main() {

println(“main() in MyClass”)

}

At runtime file, annotations are kept in the file facade class which contains
top-level functions and properties. In Chapter 12, Java Interoperability,
we’ll discuss a group of file-level annotations (like the @JvmName) which
affect how such facade classes are visible from the Java code.
Now, we’ll look at some built-in annotations which have a special meaning
in the context of the Kotlin code.

Built-in annotations
Kotlin includes several built-in annotations which have special meaning in
the context of a compiler. Some of them can be applied to annotation
classes themselves and allow you to specify options which affect the usage
of target annotations. Most of them serve as counterparts for similar meta-
annotations available in Java language.
The @Retention controls how annotation is stored. Similar to Java’s
@Retention interface, you can choose among the three options represented
by the AnnotationRetention enum:

SOURCE: The annotation exists at compile-time only and is not stored
in the compiler’s binary output.
BINARY: The annotation is stored in the compiler’s output, but remains
invisible for the Reflection API.

RUNTIME: The annotation is stored in the compiler’s binary output and
can be accessed via reflection.

By default, Kotlin annotations have the RUNTIME retention, so you don’t
have to worry about their availability via the Reflection API. Note that
expression annotations currently can’t be preserved at runtime, so both the
BINARY and RUNTIME retentions are forbidden for them:
@Target(AnnotationTarget.EXPRESSION)

annotation class NeedToRefactor // Error: must have SOURCE
retention

In such a case, you have to specify the SOURCE retention explicitly:
@Target(AnnotationTarget.EXPRESSION)

@Retention(AnnotationRetention.SOURCE)

annotation class NeedToRefactor // Ok

Java vs Kotlin: Keep in mind the difference between the default retention
policies in Java and Kotlin. In case of Java, it’s RetentionPolicy.CLASS
(an equivalent of Kotlin’s AnnotationRetention.BINARY) which means
that Java annotations are not available via reflection unless you explicitly
change their retention to RUNTIME.
The @Repeatable specifies that the annotation can be applied to the same
element more than once:
@Repeatable

@Retention(AnnotationRetention.SOURCE)

annotation class Author(val name: String)
@Author(“John”)

@Author(“Harry”)

class Services

By default, annotations are not repeatable, and if you try to apply a non-
repeatable annotation multiple times, the compiler will report an error:
@Deprecated(“Deprecated”)

@Deprecated(“Even more deprecated”) // Error: non-repeatable

annotation

class OldClass

Note also that currently repeatable annotations can’t be kept at runtime and
so must have the explicit SOURCE retention.

The @MustBeDocumented specifies that the annotation must be included in
the documentation since it’s considered part of the public API. This
annotation plays the same role as Java’s @Documented and is supported by
Dokka, the standard Kotlin documentation engine (similar to how
@Documented is supported by the Javadoc tool).
The @Target indicates which kinds of language elements are supported by
the annotation. Possible kinds are specified as a vararg of constants from
the AnnotationTarget enum:

CLASS: Any class, interface, or object, including annotation classes
themselves
ANNOTATION_CLASS: Any annotation class; this effectively allows you
to define your own meta-annotations.
TYPEALIAS: Any type alias definition
PROPERTY: Any property, including val/var parameters of a primary
constructors (but not local variables)
FIELD: Backing field of a property

LOCAL_VARIABLE: Local variables only (excluding parameters)
VALUE_PARAMETER: Parameters of constructors, functions, and property
setters
CONSTRUCTOR: Primary and secondary constructors only
FUNCTION: Functions, including lambdas and anonymous functions (but
not constructors or property accessors)
PROPERTY_GETTER/PROPERTY_SETTER: Property getters/setters only
FILE: The annotation can be applied to an entire file.
TYPE: Any type specification like the type of a variable, parameter, or the
return value of a function
EXPRESSION: Any expression

The TYPE_PARAMETER constant is reserved for a future use but currently is
not supported. As a consequence, you yet can’t apply annotations to type
parameters of generic declarations.
When @Target is not specified, the annotation can be applied to any
language element except type alias, type parameter, type specification,
expression, and file. So if you want your annotation to be applicable to, say,
file, you have to specify it explicitly.

Java vs Kotlin: The AnnotationTarget class is quite similar to the
ElementType enum found in the JDK. Keep in mind the difference, though
between their TYPE constants. In Kotlin, AnnotationType.TYPE refers to
type specification (which corresponds to ElementType.TYPE_USAGE in
Java), while ElementType.TYPE means actual declaration of a class or
interface (similar to AnnotationTarget.CLASS).
Note also that, unlike Java, Kotlin doesn’t support package-level
annotations (thus no counterpart for ElementType.PACKAGE). You can,
however, define annotation at the level of a source file. In Chapter 12, Java
Interoperability, we’ll see how file annotations can be used to tune Java-
Kotlin interoperability.
The following annotations are equivalent to the corresponding Java
modifiers:

@Strictfp: This restricts the precision of floating-point operations
for better portability between different platforms.
@Synchronized: This forces the annotated function or property
accessor to acquire/release the monitor before/after executing the
body.
@Volatile: This makes updates of the annotated backing field
immediately visible to other threads.
@Transient: This indicates that the annotated field is ignored by the
default serialization mechanism.

Since @Synchronized and @Volatile are related to concurrency support,
we’ll defer their detailed treatment till Chapter 13, Concurrency.
The @Suppress annotation allows you to suppress some compiler warnings
specified by their internal names. This annotation may be applied to any
target, including expressions and files. For example, you can use them to
disable spurious warnings related to casts when you’re certain that your
code is valid:
val strings = listOf<Any>(“1”, “2”, “3”)
val numbers = listOf<Any>(1, 2, 3) // No warning:
val s = @Suppress(“UNCHECKED_CAST”) (strings as List<String>)
[0]

// Unchecked cast warning:

val n = (numbers as List<Number>)[1]

The annotation affects all code inside the element it’s applied to. You can,
for example, suppress all warnings inside a particular function:
@Suppress(“UNCHECKED_CAST”)

fun main() {
val strings = listOf<Any>(“1”, “2”, “3”)
val numbers = listOf<Any>(1, 2, 3)
val s = (strings as List<String>)[0] // No warning
val n = (numbers as List<Number>)[1] // No warning
println(s + n) // 12

}

Or inside the entire file if you use @Suppress with file use-site target:
@file:Suppress(“UNCHECKED_CAST”)
val strings = listOf<Any>(“1”, “2”, “3”)
val numbers = listOf<Any>(1, 2, 3)
fun takeString() = (strings as List<String>)[0] // No warning
fun takeNumber() = (numbers as List<Number>)[1] // No warning
@Suppress(“UNCHECKED_CAST”)

fun main() {
println(takeString() + takeNumber()) // 12

}`

IDE Tips: There is no need to look up warnings names or memorize them
as IntelliJ can insert @Suppress annotations automatically. To do that, press
Alt + Enter while your caret is placed within the warning region (see Figure
10.1) and choose one of “Suppress...” actions from the “Annotator”
submenu. These actions are applicable to warnings reported by IDE
inspections as well.

Figure 10.1: Suppressing compiler warning

Another useful annotation, @Deprecated, is pretty much similar to its Java
counterpart. When you mark some declaration as deprecated, the client
code is discouraged from using it. In IDE, usages of deprecated declarations
are displayed in strike-through font (as shown in Figure 10.2). When using
@Deprecated, you need to specify a message which usually clarifies why
this declaration is deprecated and/or what user should use instead:

Figure 10.2: Deprecated declaration

Unlike Java, @Deprecated in Kotlin provides additional features. First, you
can specify a string with a replacement expression. In this case, deprecated
usage can automatically be changed into the desired form by using the
corresponding quick-fix from the Alt + Enter menu (a shown in Figure
10.3). Suppose that we want to replace readNum() with readInt() above.
Then, we can write:
@Deprecated(

“Use readInt() instead”, // Message

ReplaceWith(“readInt()”) // Replacement expression

)

fun readNum() = readLine()!!.toInt()

Figure 10.3: Using quick-fix to replace a deprecated usage

Note that ReplaceWith is an annotation too. That’s why you can place it
inside the @Deprecated usage. @ReplaceWith, however, can’t be used by
itself. If you look at its definition:
@Target()

@Retention(BINARY)

@MustBeDocumented

public annotation class ReplaceWith(
val expression: String,
vararg val imports: String

)

You see that it has no supported targets. It can only be constructed as a part
of another annotation like @Deprecated.
The additional vararg parameter of ReplaceWith allows you to specify a list
of necessary imports to add on the replacement. This is useful if the
replacement code refers to declarations from the non-default/non-current
package.
Another feature is an ability to choose the severity of deprecation which is
represented by the DeprecationLevel enum:

WARNING: Usages of deprecated declarations are reported as warnings;
this is the default behavior.
ERROR: Usages of deprecated declarations are reported as compilation
errors.
HIDDEN: Deprecated declaration can’t be accessed at all.

Using deprecation levels allows you to implement the smooth deprecation
policy which is especially relevant for team development. First, you
deprecate the declaration with the default level, so that its existing usages

are reported as warnings. This gives developers time to replace them
without breaking the compilation of the code. Then, you raise the
deprecation error to ERROR, thus prohibiting newly introduced usages of the
deprecated code. When you ensure that no one’ going to use this code
again, you may safely drop it from your code base.
Figure 10.4 shows an example of using ERROR level to forbid using the
readNum() function:

Figure 10.4: Deprecating declaration with ERROR level

Some built-in annotations like @Throws, @JvmName, or @NotNull are used
for tuning Java/Kotlin interoperability. We’ll cover them in Chapter 12,
Java Interoperability.

Reflection
The Reflection API is a set of types, functions, and properties which gives
you an access to runtime representations of classes, functions, and
properties. This is especially useful when your code has to work with
classes which are not available at compile time but still conform to some
common contract. For example, you may load classes dynamically as
plugins and call their members knowing their signature.

In the following section, we’ll discuss what elements comprise the Kotlin
Reflection API and give examples of their use.
Java vs Kotlin: Note that Kotlin Reflection is not self-sufficient. In some
cases like class search and loading, we have to rely on the facilities
provided by the Java Reflection API. When it comes to manipulating
Kotlin-specific aspects of your code (like properties or objects), using the
Kotlin API gives you a more concise and idiomatic way to access them at
runtime.

Reflection API overview
The Reflection classes reside in the kotlin.reflect package and can be
loosely divided into two basic groups: callables which deal with the
representation of properties and functions (including constructors) and
classifiers which provide a runtime representation of classes and type
parameters. Figure 10.5 gives an overview of basic reflection types:

Figure 10.5: Basic Reflection types

All reflection types are descendants of KAnnotatedElement which allows
you to access annotations defined for a particular language element such as

a function, property, or class. KAnnotatedElement has a single property
which returns a list of annotation instances:
public val annotations: List<Annotation>
Let’s revisit our earlier example with @Componet/@Dependency
annotations:

import kotlin.reflect.KClass

annotation class Dependency(vararg val componentClasses:

KClass<*>)

annotation class Component(
val name: String = “Core”,
val dependency: Dependency = Dependency()

)

@Component(“I/O”)

class IO
@Component(“Log”, Dependency(IO::class))
class Logger
@Component(dependency = Dependency(IO::class, Logger::class))
class Main

Suppose that we want to retrieve annotations associated with the Main
class. We can do so by using the annotations property on its class literal:
fun main() {

val component = Main::class.annotations
.filterIsInstance<Component>()

.firstOrNull() ?: return
println(“Component name: ${component.name}”)

val depText = component.dependency.componentClasses
.joinToString { it.simpleName ?: “” }

println(“Dependencies: $depText”)

}

If you run the preceding code, you will get:
Component name: Core

Dependencies: IO, Logger

In the following sections, we’ll consider the API of more specific types
related to classifiers and callables.

Classifiers and types

In terms of Kotlin Reflection, a classifier is a declaration which defines a
type. Such declarations are represented by the KClassifier interface which
currently has two more specific varieties:

KClass<T> which represents a declaration of some class, interface, or
object with the compile-time type T.
KTypeParameter which represents a type parameter of some generic
declaration.

Note that type aliases currently have no representation in the Reflection
API. This, in particular, means that even though you may apply annotations
to type aliases, such an annotation can’t be retrieved at runtime. Type alias
support is expected to be added in future releases of Kotlin.
Since KClassifier doesn’t define members of its own, let’s go straight to
the specifics of classes and type parameters.
There are two basic ways to obtain an instance of KClass. The first it to use
a class literal syntax we’ve already seen in the sections about annotations:
println(String::class.isFinal) // true

Apart from classes, this syntax is also supported for reified type parameters.
In Chapter 9, Generics, we mentioned that type parameters of generic inline
functions may be reified which means that the compiler substitutes actual
types instead of them when the inlining function body at its call site. Let’s
define the following cast() function:
inline fun <reified T> Any.cast() = this as? T

Now, when we call this function, for example:
val obj: Any = “Hello”

println(obj.cast<String>())

The compiler will actually generate a code:
val obj: Any = “Hello”
println(obj as? String)

You may also use the ::class syntax for an arbitrary expression to obtain a
runtime class of its resulting value:
println((1 + 2)::class) // class kotlin.Int

println(“abc”::class) // class kotlin.String

Another way to get a KClass is to use the kotlin extension property to
convert an instance of the java.lang.Class. This is especially useful to

find a class dynamically by its qualified name. Since Kotlin Reflection
doesn’t have its own class search API yet, it has to rely on a platform-
specific one:
val stringClass = Class.forName(“java.lang.String”).kotlin
println(stringClass.isInstance(“Hello”)) // true

The opposite conversion is given by the java extension property:
println(String::class.java) // class java.lang.String

Let’s now look at the KClass API. The first group of the KClass members
allows you to determine if a class of interest has a particular modifier:
val isAbstract: Boolean
val isCompanion: Boolean
val isData: Boolean
val isFinal: Boolean
val isInner: Boolean
val isOpen: Boolean
val isSealed: Boolean

Another property from the same group, visibility, gives you a visibility
level of a class declaration as an instance of the KVisibility enum:
enum class Kvisibility {

PUBLIC,

PROTECTED,

INTERNAL,

PRIVATE

}

Note that visibility may be null if it can’t be denoted in the Kotlin source
code. For example, when KClass represents a local class.
The next group of properties allows you to retrieve a class name:
val simpleName: String?
val qualifiedName: String?

The simpleName property returns a simple name which was used in its
source code. When the class has no name (for example, a class representing
an object expression), the result is null.
The qualifiedName property similarly gives you a qualified name of a class
which includes a full name of the containing package. When the class is
local or nested into the local, the result is null since such classes can’t be

used from the top level and thus have no qualified name. The same goes for
classes which have no name in the source code.
You can also use the jvmName extension property which gives you a
qualified name of a class from the Java’s point of view. This name may
differ from the one given by qualifiedName. Some built-in Kotlin types do
not have their own JVM representation and rely on existing Java classes
instead. The Any class, for example, does not exist as a separate Java class;
for Java code, it’s basically the same as java.lang.Object:
println(Any::class.qualifiedName) // kotlin.Any

println(Any::class.jvmName) // java.lang.Object

The isInstance() function allows you to check whether a given object is
an instance of a class represented by its receiver. This function works
similarly to the is operator when applied to a non-nullable type:
println(String::class.isInstance(“”)) // true

println(String::class.isInstance(12)) // false

println(String::class.isInstance(null)) // false

The next group of the KClass properties provides access to its member
declarations:

constructors: This is a collection of both primary and secondary
constructors as instances of the KFunction type.
members: This is a collection of member functions and properties
represented by the KCallable instances, including all members
inherited from supertypes.
nestedClasses: This is a collection of nested classes and objects,
including companions.
typeParameters: This is a list of type parameters represented by the
KTypeParameter type (when the class in question is not generic, the
list is empty).

For example, in the following code, we use reflection to dynamically create
an instance of the Person class and then call its fullName() function:
class Person(val firstName: String, val familyName: String) {

fun fullName(familyFirst: Boolean): String = if
(familyFirst) {

“$familyName $firstName”

} else {
“$firstName $familyName”

}

}

fun main() {
val personClass = Class.forName(“Person”).kotlin
val person = personClass.constructors.first().call(“John”,
“Doe”)

val fullNameFun = personClass.members.first { it.name ==
“fullName” }

println(fullNameFun.call(person, false)) // John Doe
}

When KClass represents object declarations, the constructors property
always returns you an empty collection. To obtain an actual instance, you
may use the objectInstance property:
object O {

val text = “Singleton”

}

fun main() {

println(O::class.objectInstance!!.text) // Singleton

}

When KClass does not represent an object, objectInstance is null.
Finally, for a sealed class (isSealed == true), you can also get a list of all
direct inheritors via the sealedSubclasses property.
One more piece of information you can get from a KClass is supertype
information provided by the supertypes property which returns a list of the
KType instances. We’ll get to the KType API a bit later, but for now let’s
consider a simple example:
open class GrandParent
open class Parent : GrandParent()
interface IParent
class Child : Parent(), IParent
fun main() {

println(Child::class.supertypes) // [Parent, IParent]
}

Note that the supertypes property returns only immediate supertypes (thus
GrandParent is absent in the preceding output), so if you want to access
indirect ones, you’ll have to perform an inheritance graph traversal.
Another classifier variety is represented by the KTypeParameter interface.
Compared to KClass, it’s rather simple and provides only four properties:
val isReified: Boolean
val name: String
val upperBounds: List<KType>
val variance: KVariance

The upperBounds give you a list of upper bound types similar to the
supertypes property of KClass. The list is never empty as every type
parameter has a bound (which is Any? by default). There may also be more
than one bound if the type parameter is used in the type constraint. For
example:
interface MyMap<K : Any, out V>
fun main() {

val typeParameters = MyMap::class.typeParameters
// K : [kotlin.Any], V : [kotlin.Any?]

println(typeParameters.joinToString { “${it.name} :

${it.upperBounds}” })

}

The variance property returns a constant of the KVariance enum which
represents declaration-site variance of a type parameter:
enum class KVariance { INVARIANT, IN, OUT }

Now, let’s look at how types are represented in Kotlin Reflection through
the KType interface. A Kotlin type is characterized by the following aspects:

Nullability given by the isMarkedNullable property which
distinguishes, say, List<String> and List<String>?.
Classifier (given by the samename property) which refers to the class,
interface, or object declaration defining the type; for example, the
List part of List<String>.
List of type arguments given by the arguments property: <String> for
List<String>, <Int, Boolean> for Map<Int, Boolean> and so on.

The type argument is represented by the KTypeProjection interface which
contains information about the type itself as well its use-site variance:
val type: kotlin.reflect.KType?
val variance: kotlin.reflect.KVariance?

Both properties return null for the star projection *.
This wraps up our overview of classifier types. In the following section,
we’ll focus on the callable part of the Reflection API.

Callables
The notion of a callable unites properties and functions which you can call
to obtain some result. In the Reflection API, they are represented by a
generic interface KCallable<out R> where R denotes either the return type
of a function or a type of a property.
One way to get an instance of KCallable is to use callable references we’ve
discussed in Chapter 5, Leveraging Advanced Functions and Functional
Programming:
fun combine(n: Int, s: String) = “sn”
fun main() {

println(::combine.returnType) // kotlin.String

}

You can also access member functions and properties via the corresponding
KClass instance. Note, however, that the Reflection API currently doesn’t
allow you to obtain top-level callables this way.
Let’s now take a look at common members defined in KCallable itself.
Similar to KClass, we have a group of properties which allow you to check
the presence of certain modifiers:
val isAbstract: Boolean
val isFinal: Boolean
val isOpen: Boolean
val isSuspend: Boolean
val visibility: KVisibility?

We haven’t yet come across the suspend modifier corresponding to the
isSuspend property. This modifier is used to define callables which support
suspendable computations. In Chapter 13, Concurrency, we’ll discuss this
issue in more detail.

The next group of properties represents a signature of a property or a
function:
val name: String
val typeParameters: List<KTypeParameter>
val parameters: List<KParameter>
val returnType: KType

Note that for members and extensions, the first parameter is reserved for a
receiver. When callable is a member and extension at the same time, the
second parameter is reserved as well. For example:
import kotlin.reflect.KCallable
val simpleVal = 1
val Int.extVal get() = this
class A {

val Int.memberExtVal get() = this
}

fun main() {
fun printParams(callable: KCallable<*>) {

println(

callable.parameters.joinToString(prefix = “[“, postfix =

“]”) {

it.type.toString()

}

)

}

// []

printParams(::simpleVal)

// [kotlin.Int]

printParams(Int::extVal)

// [A, kotlin.Int]

printParams(A::class.members.first { it.name ==
“memberExtVal” })

}

The KParameter interface contains information about the
function/constructor parameter or receiver(s) of a member/extension
declaration:
val index: Int
val isOptional: Boolean

val isVararg: Boolean
val name: String?
val type: KType

The isOptional property returns true when the parameter has a default
value; the value itself is currently not available via reflection. Note also that
the parameter name may be null if its name is not available or simply
wasn’t present in the source code. The latter goes for parameters
representing receiver values.
The kind property indicates whether KParameter corresponds to the
ordinary value, or dispatch/extension receiver. It can return one of the
constants defined in the KParameter.Kind enum:

INSTANCE: This is the dispatch receiver of the member declaration.
EXTENSION_RECEIVER: This is the extension receiver of the extension
declaration.
VALUE: This is an ordinary parameter.

KCallable also defines the call() member which allows you to
dynamically invoke the backing callable:
fun call(vararg args: Any?): R

In the case of a function-based callable, the call() invokes the function
itself; if the callable corresponds to a property, the getter is used instead.
We’ve already seen an example of using call() to invoke the constructor
and member function. Let’s take a look at the property example as applied
to the same Person class:
fun main() {

val person = Person(“John”, “Doe”)
val personClass = person::class
val firstName = personClass.members.first { it.name ==
“firstName” }

println(firstName.call(person)) // John

}

An alternative callBy() function allows you to pass arguments in the form
of a map:
fun callBy(args: Map<KParameter, Any?>): R

Let’s now move to more specialized callable kinds. The KProperty
interface adds checks for property-specific modifiers:
val isConst: Boolean
val isLateinit: Boolean

You may also access the property getter as an instance of the KFunction
type:
val myValue = 1
fun main() {

println(::myValue.getter()) // 1

}

The KMutableProperty extends KProperty by adding a setter:
var myValue = 1
fun main() {

::myValue.setter(2)

println(myValue) // 2

}

The KProperty also has subtypes KProperty0, KProperty1, and
KProperty2 representing properties without the receiver, with a single
receiver (either dispatch, or extension) and with a pair of receivers (member
extension), respectively. These subtypes refine types of getters by making
them implement the corresponding functional type. That feature allowed us
to use ::myValue.getter as a function in the preceding example. Similar
subtypes with refined setters are defined for KMutableProperty as well.
The final reflection type we will consider is the KFunction which quite
expectedly represents functions and constructors. The only members added
to this interface are related to function-specific modifiers checks:
val isInfix: Boolean
val isInline: Boolean
val isOperator: Boolean
val isSuspend: Boolean

The isInfix and isOperator checks are related to operator functions
which we’ll cover in Chapter 11, Domain-Specific Languages.
Note that KFunction by itself doesn’t implement any functional type since
it can represent functions with different arity. Specific implementations of
KFunction, however, may also implement some functional type. We’ve

already seen that using the example of accessors defined in
KProperty0/KProperty1/KProperty2. Another important case is callable
references which always conform to the proper functional type. For
example:
import kotlin.reflect.KFunction2
fun combine(n: Int, s: String) = “sn”
fun main() {

val f: KFunction2<Int, String, String> = ::combine
println(f(1, “2”)) // 12

}

You can see that the callable reference in this example has a
KFunction2<Int, String, String> type which is a subtype of (Int,
String) -> String. Note, however, that unlike KProperty0 and similar
types, KFunction0/KFunction1/… only exists during compilation. At
runtime they’re represented by synthetic classes similar to the one created
for lambdas.
One more thing worth noting is the ability to access callables with restricted
visibility. In some cases, you may need to, say, reflectively call a private
function. In Java, an attempt to do this may produce an exception, so in
general you have to make the reflection object “accessible” by calling
setAccessible(true) beforehand. In Kotlin, you can use the
isAccessible property for the same purpose:
import kotlin.reflect.KProperty1
import kotlin.reflect.jvm.isAccessible
class SecretHolder(private val secret: String)
fun main() {

val secretHolder = SecretHolder(“Secret”)
val secretProperty = secretHolder::class.members

.first { it.name == “secret” } as
KProperty1<SecretHolder, String>

secretProperty.isAccessible = true
println(secretProperty.get(secretHolder))

}

Conclusion

This chapter has brought us to the topic of annotations and reflection. We
discussed how to annotate pieces of the Kotlin code and obtain associated
metadata at runtime, explored major built-in annotations, and explained
how to define your own annotation classes. We also introduced you to the
Kotlin Reflection API. Now, you’re familiar with how to access attributes
of both classifiers and callables and use them in a dynamic fashion.
In the next chapter, we will address the subject of designing your own APIs
in a way that resembles domain-specific languages bringing an air of
declarative programming into your codebase.

Questions
1. How to define a new annotation? Compare the Kotlin annotation

syntax with that of Java.
2. How annotations are used in Kotlin code?
3. Which built-in annotations are available in Kotlin?
4. What is an annotation use-site target? How is it related to targets

specified by @Target meta-annotation?
5. What are the basic types comprising the Kotlin Reflection API?
6. Describe the class literal and callable reference syntax.
7. Describe the KClass API. How to convert between KClass and Java’s

class instances?
8. Describe the KCallable API.

CHAPTER 11
Domain-Specific Languages

Domain-specific language (DSL) is a language tailored at a specific
function or domain. Such languages are heavily used in software
development to deal with various tasks such as describing software
configurations, test specification, workflow rules, UI design, data
manipulation, and so on. The main advantage of DSLs is their simplicity.
Instead of relying on low-level constructs of general-purpose languages
such as Java, you can use domain-specific primitive thus dealing with a task
in its own terms. The approach, however, has some drawbacks as it can be
difficult to embed the DSL code into a general-purpose program because
they are written in different languages. As a result DSL programs are
usually stored outside their host code or simply embedded into string
literals which complicate compile-time validation and code assistance in
IDE.
Kotlin, however, can offer you a solution. In this chapter, we’ll address a set
of features which allow you to design DSLs that can be seamlessly
combined with a rest of the Kotlin code. The basic idea is to design a
special API which can be used in way resembling domain-specific
language. So while your code may look like it’s written in some different
language, it still remains a valid Kotlin code. In other words, you get both
advantages of the domain-specific approach and the power of compiled
languages, including strong type-safety guarantees.

Structure
In this chapter, we will cover the following topics:

Operator overloading
Delegated properties
Higher-order functions and DSLs

Objective
After reading this chapter, you will learn advanced features of Kotlin which
help the developer to design API in the form of domain-specific languages.

Operator overloading
Operator overloading is a languages feature which allows you to assign
custom meaning to built-in Kotlin operators like +, -, *, /, and so on. In the
previous chapters, we saw how + semantics vary depending on the type of
values it applies to: arithmetic sum for numbers, concatenation for strings,
appending an element for collection, and so on. This is possible because + is
overloaded, i.e., has many different implementations.
In Kotlin, operators are in general just a syntactic sugar over calls to
functions with a specific signature. In order to implement an operator, you
just need to define an extension or member function following a certain
convention and mark it with the operator keyword. For example, by
defining the following:
operator fun String.times(n: Int) = repeat(n)

We extend the * operator (corresponding to the times() function) to the
String/Int pairs which in turn allows us to write:
println(“abc” * 3) // abcabcabc

Since operators are backed by some functions, we can always replace them
by ordinary calls. For example, the preceding code has the same meaning
as:
println(“abc”.times(3))

Even the built-in operations like addition can be written in this form,
although in case of primitive types operations like addition or subtraction
are optimized by compiler to avoid actual function calls for the sake of
performance:
val x = 1.plus(2) // the same as 1 + 2

IDE Tips: The IntelliJ plugin can convert the explicit call of operator
function into the corresponding unary/binary expression. To do that, you
just need to press Alt + Enter on the operator token or function name and
choose an appropriate conversion action. Figure 11.1 shows an example of
such a conversion which replaces the times() call with binary *.

Figure 11.1: Converting explicit call to operator form

In the following section, we’ll talk about conventions related to various
Kotlin operators and consider some examples of their implementation.

Unary operations
Overloadable unary operators include prefix +, - and !. When you use such
operators, the compiler automatically unfolds them into a call of an
appropriate function (Table 11.1):

Expression Meaning

+e e.unaryPlus()

-e e.unaryMinus()

!e e.not()

Table 11.1: Unary operator conventions

The functions may be either members or extensions defined for the type of
the argument expression. They may not have any parameters and their result
type becomes the type of the whole unary expression.
Consider, for example, an enum class which represents basic RGB colors as
well as their combinations:
enum class Color {

BLACK, RED, GREEN, BLUE, YELLOW, CYAN, MAGENTA, WHITE

}

Using the not() convention, we can introduce the ! operator as a shorthand
for complementary colors:
enum class Color {

BLACK, RED, GREEN, BLUE, YELLOW, CYAN, MAGENTA, WHITE;

operator fun not() = when (this) {

BLACK -> WHITE

RED -> CYAN

GREEN -> MAGENTA

BLUE -> YELLOW

YELLOW -> BLUE

CYAN -> RED

MAGENTA -> GREEN

WHITE -> BLACK

}

}

fun main() {

println(!Color.RED) // CYAN

println(!Color.CYAN) // RED

}

By defining operator functions as extensions, you can support respective
operations for expressions of arbitrary types. For example:
operator fun <T> ((T) -> Boolean).not(): (T) -> Boolean = {
!this(it) }

Using the preceding function, we can now apply the ! operator to any
single-parameter predicate:
fun isShort(s: String) = s.length <= 4
fun String.isUpperCase() = all { it.isUpperCase() }
fun main() {

val data = listOf(“abc”, “abcde”, “ABCDE”, “aBcD”, “ab”)
println(data.count(::isShort)) // 3

println(data.count(!::isShort)) // 2

println(data.count(String::isUpperCase)) // 1

println(data.count(!String::isUpperCase)) // 4

}

Increments and decrements

Increment (++) and decrement (––) operators can be overloaded by
providing parameterless functions inc() and dec() for the corresponding
operand type. Return value of these functions must correspond to “next”
and “previous” value, respectively according to some ordering. The way
inc()/dec() are used depends on whether the operator is written in its
prefix or postfix form similar to how ++/-- work for numbers. For
example, suppose we have an enum class listing rainbow colors:
enum class RainbowColor {

RED, ORANGE, YELLOW, GREEN, BLUE, INDIGO, VIOLET;

}

Let’s define inc()/dec() according to the preceding ordering looping
around first and last elements so that the next of VIOLET is RED and the prior
of RED is VIOLET:
enum class RainbowColor {

RED, ORANGE, YELLOW, GREEN, BLUE, INDIGO, VIOLET;

operator fun inc() = values[(ordinal + 1) % values.size]
operator fun dec() = values[(ordinal + values.size - 1) %
values.size]

companion object {
 private val values = enumValues<RainbowColor>()
}

}

Now, let’s consider how increment and decrement would work for this
class. As we’ve already seen in Chapter 2, Language Fundamentals, the
postfix form of ++/-- operators updates a variable but returns its value
before change. This is also true for overloaded operators. For example, the
code:
var color = RainbowColor.INDIGO
println(color++)

Would mean:
var color = RainbowColor.INDIGO
val _oldColor = color
color = color.inc()

println(_oldColor) // INDIGO

In the case of prefix form, the result of the increment/decrement expression
is equal to the updated value, so this fragment:

var color = RainbowColor.INDIGO
println(color++)

Would actually translate into:
var color = RainbowColor.INDIGO
color = color.inc()

println(color) // VIOLET

Note that the presence of assignment like color = color.inc() implies
two things:

++ and -- are only applicable to mutable variables
The return type of inc()/dec() functions must be a subtype of their
receiver type

Binary operations
Kotlin allows you to overload most binary operators. Similar to unary ones,
you need to provide a corresponding operator function. The major
difference is that binary operator functions take their left operand as the
receiver while the right operand is passed as an ordinary argument.
The Table 11.2 lists conventional names for arithmetical operators, .. and
in/!in:

Expression Meaning

a + b a.plus(b)

a – b a.minus(b)

a * b a.times(b)

a / b a.div(b)

a % b a.rem(b)

a .. b a.rangeTo(b)

a in b b.contains(a)

a !in b !b.contains(a)

Table 11.2: Binary operator conventions

Initially, the % operation was a shorthand for the mod() operator function
which is currently superseded by rem(). As of now, the mod() convention is
still available but deprecated.

For example, let’s consider a simple prototype implementation of rational
numbers supporting basic arithmetic operations:
import kotlin.math.abs
class Rational private constructor(

val sign: Int,
val num: Int,
val den: Int

) {

operator fun unaryMinus() = Rational(-sign, num, den)
operator fun plus(r: Rational): Rational {

val gcd = gcd(den, r.den)
val newDen = den/gcd*r.den
val newNum = newDen/den*num*sign +
newDen/r.den*r.num*r.sign

val newSign = newNum.sign()
return Rational(newSign, abs(newNum), newDen)

}

operator fun minus(r: Rational) = this + (-r)
operator fun times(r: Rational): Rational {

return of(sign*r.sign*num*r.num, den*r.den)
}

operator fun div(r: Rational): Rational {
return of(sign*r.sign*num*r.den, den*r.num)

}

override fun toString(): String {
return “${sign*num}” + if (den != 1) “/$den” else “”

}

companion object {
private fun Int.sign() = when {
this > 0 -> 1
this < 0 -> -1
else -> 0

}

private tailrec fun gcd(a: Int, b: Int): Int {
return if (b == 0) a else gcd(b, a % b)

}

fun of(num: Int, den: Int = 1): Rational {

if (den == 0) throw ArithmeticException(“Denominator is
zero”)

val sign = num.sign() * den.sign()
val numAbs = abs(num)
val denAbs = abs(den)
val gcd = gcd(numAbs, denAbs)
return Rational(sign, numAbs/gcd, denAbs/gcd)

}

}

}

Using operator conventions, we can build arithmetic operations out of the
Rational instances:
fun r(num: Int, den: Int = 1) = Rational.of(num, den)
fun main() {

// 1/2 - 1/3

println(r(1, 2) - r(1, 3)) // 1/6

// 2/3 + (1/3)/2

println(r(2, 3) + r(1, 3)/r(2)) // 5/6

// 3/4 * 8/9 / (2/3)

println(r(3, 4)*r(8, 9)/r(2, 3)) // 1

// (1/10)*2 - 2/6

println(r(1, 10)*r(2) - r(2, 6)) // -2/15

}

We can also introduce some additional operator functions which would
allow us to mix the Rational objects with values of other types such as Int.
For example:
operator fun Rational.plus(n: Int) = this + Rational.of(n)
operator fun Int.plus(r: Rational) = r + this
operator fun Rational.minus(n: Int) = this - Rational.of(n)
operator fun Int.minus(r: Rational) = Rational.of(this) - r
fun main() {

// -1/3 + 2

println(r(-1, 3) + 2) // 5/3

// 1 - (1/4)*(1/2)

println(1 - r(1, 4)*r(1, 2)) // 7/8

}

To demonstrate usage of the .. operation, let’s define the RationalRange
class representing a closed interval between two rational numbers:
class RationalRange(val from: Rational, val to: Rational) {

override fun toString() = “[$from, $to]”
}

Now, we can define the rangeTo() function which would construct an
instance of RationalRange:
operator fun Rational.rangeTo(r: Rational) =
RationalRange(this, r)

fun main() {
println(r(1, 4)..r(1)) // [1/4, 1]

}

The in/!in operations are expressed by the contains() operator function.
Note that unlike all other binary operations arguments of contains() are
swapped as compared to its operator form. Let’s enhance the
RationalRange class with an ability to check whether the given number
belongs to the range:
private fun Rational.isLessOrEqual(r: Rational): Boolean {

return num*r.den <= r.num*den
}

class RationalRange(val from: Rational, val to: Rational) {
override fun toString() = “[$from, $to]”
operator fun contains(r: Rational): Boolean {

return from.isLessOrEqual(r) && r.isLessOrEqual(to)
}

operator fun contains(n: Int) = contains(r(n))
}

fun main() {
// 1/2 in [1/4, 1]

println(r(1, 2) in r(1, 4)..r(1)) // true

// 1 not in [5/4, 7/4]

println(1 !in r(5, 4)..r(7, 4)) // true

}

One more group of overloadable operators deals with comparisons like <
and >. These operators do not correspond to separate functions. Instead, you
can use a single compareTo() function to implement a full set of

comparisons for a given combination of operand types. This function
returns an Int value which signifies the comparison result. All comparison
operations are implemented on top of it according to Table 11.3:

Expression Meaning

a < b a.compareTo(b) < 0

a <= b a.compareTo(b) <= 0

a > b a.compareTo(b) > 0

a >= b a.compareTo(b) >= 0

Table 11.3: Comparison operator conventions

Now, we can get rid of the isLessThan() function above replacing it with a
more general compareTo() implementation:
operator fun Rational.compareTo(r: Rational): Int {

val left = num * r.den
val right = r.num * den
return when {

left < right -> -1

left > right -> 1

else -> 0
}

}

operator fun Rational.compareTo(n: Int) = compareTo(r(n))
operator fun Int.compareTo(r: Rational) = -r.compareTo(this)
class RationalRange(val from: Rational, val to: Rational) {

override fun toString() = “[$from, $to]”
operator fun contains(r: Rational) = r >= from && r <= to
operator fun contains(n: Int) = contains(r(n))

}

fun main() {
println(1 > r(1, 3)) // false

println(r(3/4) <= r(7/8)) // true

}

One more binary convention we’ve already used in previous chapters is
concerned with equality. When you use == or !=, the compiler
automatically reduces the operator to the equals() call. Note that the
equals() implementation does not need an explicit operator modifier since

it’s inherited from the base version declared in Any class. For the same
reason equals() can only be implemented as a member and even if you
have the equals() extension, it won’t be used as ==/!= implementation
since extensions are always shadowed by member declarations with the
same signature.
Note that Kotlin doesn’t allow you to overload && and ||: they are built-in
operations supported only for Boolean values. The same goes for Kotlin
identity equality operations === and !==.
What if you want to implement a binary operation with a custom name?
Although Kotlin doesn’t allow you to introduce new operators, you can use
ordinary identifiers as names for infix operations. We’ll see how to do it in
the next section.

Infix operations
We’ve already seen operations like to or until which can be used as infix
operations:
val pair1 = 1 to 2 // infix call
val pair2 = 1.to(2) // ordinary call

To enable such calls, you need to mark a function with the infix modifier.
Similar to binary operators, the function of interest must be either a member
or an extension and have a single parameter. For example, that’s how
standard to function is defined:
infix fun <A, B> A.to(that: B): Pair<A, B> = Pair(this, that)

Let’s refine our earlier predicate example a bit by introducing infix
operations for a predicate conjunction and disjunction:
infix fun <T> ((T) -> Boolean).and(other: (T) -> Boolean): (T)
-> Boolean {

return { this(it) && other(it) }
}

infix fun <T> ((T) -> Boolean).or(other: (T) -> Boolean): (T)
-> Boolean {

return { this(it) || other(it) }
}

Now, we can use them to combine functional literals in a more concise way:
fun main() {

val data = listOf(“abc”, “abcde”, “ABCDE”, “aBcD”, “ab”)
println(data.count(::isShort and String::isUpperCase)) //

0

println(data.count(::isShort or String::isUpperCase)) //

4

println(data.count(!::isShort or String::isUpperCase)) //

2

println(data.count(!(::isShort and String::isUpperCase))) //

5

}

Keep in mind that all infix operations have the same precedence. For
example, complex expressions involving and/or operations we’ve defined
earlier would parse differently than similar expressions with built-in || and
&& boolean operators. Say, the following expression:
!::isShort or String::isEmpty and String::isUpperCase

Would mean
(!::isShort or String::isEmpty) and String::isUpperCase

While the Boolean expression
!s.isShort() || s.isEmpty() && s.isUpperCase()

Would be equivalent to
!s.isShort() || (s.isEmpty() && s.isUpperCase())

Due to && having higher precedence than ||.

Assignments
The next group of binary operations deals with augmented assignments like
+=. In Chapter 7, Exploring Collections and I/O, we’ve seen that these
operations behave differently for mutable and immutable collections.
Namely, applying += to a variable of an immutable collection type would
create a new collection object and assign it to the variable, thus changing
its value. The variable must be defined as mutable in this case:
var numbers = listOf(1, 2, 3)
numbers += 4

println(numbers) // [1, 2, 3, 4]

When using += on a mutable collection, however, we modify collection
content while preserving an original object identity:

val numbers = mutableListOf(1, 2, 3)
numbers += 4

println(numbers) // [1, 2, 3, 4]

Note that if we put a mutable collection into a mutable variable, then +=
would produce an error since the compiler can’t decide which convention to
follow:
var numbers = mutableListOf(1, 2, 3)
// Should we update a variable or collection content?

numbers += 4 // Error

println(numbers)

Both conventions can be supported for arbitrary types thanks to their
respective operator functions. The behavior of augmented assignments
depends on the following factors (see Table 11.4):

Presence of the corresponding binary operator function: plus() for
+=, minus() for -= and so on.
Presence of the custom assignment function: plusAssign() for +=,
minusAssign() for -= and so on
Mutability of assignment left-hand side.

Expression Meaning

Simple assignment reduction Custom assignment function

a += b a = a.plus(b) a.plusAssign(b)

a -= b a = a.minus(b) a.minusAssign(b)

a *= b a = a.times(b) a.timesAssign(b)

a /= b a = a.div(b) a.divAssign(b)

a %= b a = a.rem(b) a.remAssign(b)

Table 11.4: Assignment operator conventions

Let’s consider possible cases. When the left-hand side has a corresponding
binary operator (for example, plus()) but not a custom assignment
function, the augmented assignment is reduced to a simple one. This is what
happens with primitive types and immutable collections. We can also use
such assignments for our Rational objects since they already support
binary operations like + and -. For example:

var r = r(1, 2) // ½
// The same as r = r + r(1, 3)

r += r(1, 3) // 1/2 + 1/3

println(r) // 5/6

Note that assignment left-hand side must be a mutable variable in this case.
When a left-hand side has only a custom assignment function (for example,
plusAssign() but not plus()), then an augmented assignment is reduced to
its call. To illustrate this convention, let’s revisit the TreeNode class we
introduced in Chapter 9, Generics, and change its API a bit:
class TreeNode<T>(val data: T) {

private val _children = arrayListOf<TreeNode<T>>()
var parent: TreeNode<T>? = null

private set
operator fun plusAssign(data: T) {

val node = TreeNode(data)
_children += node

node.parent = this
}

operator fun minusAssign(data: T) {
val index = _children.indexOfFirst { it.data == data }
if (index < 0) return
val node = _children.removeAt(index)
node.parent = null

}

override fun toString() =

_children.joinToString(prefix = “$data {“, postfix = “}”)

}

Now, we can use += and -= operator on instances of TreeNode to add and
remove tree elements:
val tree = TreeNode(“root”)
tree += “child 1”

tree += “child 2”

println(tree) // root {child 1 {}, child 2 {}}

tree -= “child 2”

println(tree) // root {child 1 {}}

Note that custom assignment functions must have the Unit return type.

When the left-hand side has both a custom assignment and a simple binary
operation, the result depends on the left-hand side mutability:

It the left-hand side is immutable, then the compiler chooses the
custom assignment function because a simple assignment is not
applicable.
If the left-hand side is a mutable variable, the compiler reports an error
because it resolves ambiguity: whether a += b is supposed to mean a
= a + b or a.plusAssign(b).

The preceding behavior is demonstrated by Kotlin mutable collection
classes such as lists or sets because they have both the plus()/minus()
functions inherited from immutable collections and their own
plusAssign()/minusAssign().

Invocations and indexing
Invocation convention allows you to use values in call expressions similar
to functions. To do this, you just need to define the invoke() function with
necessary parameters. Values of functional types automatically get
invoke() as their member, but you can also add invocation support to an
arbitrary type. For example, by defining the following function:
operator fun <K, V> Map<K, V>.invoke(key: K) = get(key)

We can use any Map instance as a function which returns a value by its key:
val map = mapOf(“I” to 1, “V” to 5, “X” to 10)
println(map(“V”)) // 5

println(map(“L”)) // null

A useful case is to add the invoke() function to a companion object turning
it into a factory. For example, if we augment out the Rational class with an
extension:
operator fun Rational.Companion.invoke(num: Int, den: Int = 1)
=

of(num, den)

We can construct the Rational instances by referring to its class name:
val r = Rational(1, 2)

The preceding code looks like a direct constructor call but in fact reduces to
the invocation chain: invoke() → of() → private constructor of Rational.

A similar convention allows you to use the indexing operator [] similar to
how it applies to strings, arrays, lists, and maps. The underlying call
depends on whether the indexing expression is used as a value or a left-
hand side of assignment. In the first case, the compiler assumes reading
access and reduces the indexing operator to the call of the get() function
with the same set of arguments.
val array = arrayOf(1, 2, 3)
println(array[0]) // the same as println(array.get(0))

When the indexing expression is used as an assignment left-hand side,
however, the compiler reduces it to the call of the set() function which on
top of indices takes the assigned value as its last argument:
val array = arrayOf(1, 2, 3)
array[0] = 10 // the same as array.set(0, 10)

Indices are not necessarily integers; in fact, they may be arbitrary values.
For example, the indexing operator for maps takes the key value as its
argument.
Let’s for example add both get()/set() operators to our TreeNode class to
access its children:
class TreeNode<T>(var data: T) {

private val _children = arrayListOf<TreeNode<T>>()
var parent: TreeNode<T>? = null

private set
operator fun plusAssign(data: T) {

val node = TreeNode(data)
_children += node

node.parent = this
}

operator fun minusAssign(data: T) {
val index = _children.indexOfFirst { it.data == data }
if (index < 0) return
val node = _children.removeAt(index)
node.parent = null

}

operator fun get(index: Int) = _children[index]
operator fun set(index: Int, node: TreeNode<T>) {

node.parent?._children?.remove(node)

node.parent = this
_children[index].parent = null
_children[index] = node

}

}

fun main() {
val root = TreeNode(“Root”)
root += “Child 1”

root += “Child 2”

println(root[1].data) // Child 2

root[0] = TreeNode(“Child 3”)

println(root[0].data) // Child 3

}

A more sophisticated case is using the indexing operator in an augmented
assignment. The resulting code depends on the meaning of the assignment
operator for the type of left-hand side which is effectively the return type of
the get() operator function. For example, if we consider an array of the
Rational objects which do not have the plusAssign() function, the code
becomes as follows:
val array = arrayOf(r(1, 2), r(2, 3))
array[0] += Rational(1, 3)

Would mean:
val array = arrayOf(r(1, 2), r(2, 3))
array[0] = array[0] + r(1, 3)

Or, reducing everything to function calls:
val array = arrayOf(r(1, 2), r(2, 3))
array.set(0, array.get(0) + r(1, 3))

If we, however, use an array of TreeNode objects which have the
plusAssign() function, but no plus(), a similar fragment:
val array = arrayOf(TreeNode(“Root 1”), TreeNode(“Root 2”))
array[0] += TreeNode(“Child 1”)

Would translate to:
val array = arrayOf(TreeNode(“Root 1”), TreeNode(“Root 2”))
array.get(0).plusAssign(TreeNode(“Child 1”))

Note that the get() function is required in both cases.

Destructuring
We’ve already seen how to use destructuring declarations for instances of
data classes to declare multiple variables at once and initialize them to the
values of corresponding data class properties. By using operator
overloading, you can enable this feature for arbitrary types. All you need is
to define a parameterless member/extension function componentN() where
N is a 1-based number. Then, each entry in a destructuring declaration
initialized by an instance of the corresponding receiver type is assigned a
value returned by the component function with the respective index.
To demonstrate this convention, let’s define component functions for the
RationalRange class we introduced in an earlier section:
operator fun RationalRange.component1() = from
operator fun RationalRange.component2() = to

Now, we can apply destructuring to our RationalRange instances:
fun main() {

val (from, to) = r(1, 3)..r(1, 2)

println(from) // 1/3

println(to) // 1/2

}

Data classes are no different in this regard. It’s just that their component
functions are autogenerated by the compiler rather than written explicitly.
The Kotlin standard library includes some extension component functions
as well. That’s what allows you to destructure map entries:
val map = mapOf(“I” to 1, “V” to 5, “X” to 10)
for ((key, value) in map) {

println(“$key = $value”)

}

Or extract the first elements of a list or an array:
val numbers = listOf(10, 20, 30, 40, 50)
val (a, b, c) = numbers
println(“$a, $b, $c”) // 10, 20, 30

Iteration
In Chapter 3, Defining Functions, we introduced the for loop statement
which can be applied to various objects, including strings, ranges, and

collections. Their common feature which allows us to use the for loop is a
presence of the iterator() function which returns the corresponding
Iterator instance. By defining this function as either a member or an
extension, you can support iteration via for statement for any type you like.
As an example, let’s support iteration for the TreeNode class we introduced
in an earlier section:
operator fun <T> TreeNode<T>.iterator() = children.iterator()

Now, we can use the TreeNode instances in a for loop without explicit
references to its children member. For example, the program:
fun main() {

val content = TreeNode(“Title”).apply {
addChild(“Topic 1”).apply {

addChild(“Topic 1.1”)

addChild(“Topic 1.2”)

}

addChild(“Topic 2”)

addChild(“Topic 3”)

}

for (item in content) {
println(item.data)

}

}

Would print:

Topic 1

Topic 2

Topic 3

This concludes our discussion of operator overloading in Kotlin. In the next
section, we’ll talk about delegation mechanism which allows you to
introduce new kinds of properties into the Kotlin code.

Delegated properties
Delegated properties give you a way to implement the custom property
access logic hidden behind a simple syntactic facade. We’ve already seen an
example of lazy delegate which defers property computation till its first
access:
val result by lazy { 1 + 2 }

Conciseness of property delegates makes them a helpful tool in designing
both simple-to-use APIs and domain-specific languages.
Similarly to operators we’ve discussed in previous sections, implementation
of delegated property is based on a set of conventions which allows you to
define how a property is read or written and control construction of delegate
object itself. In this section, we’ll talk about these conventions in more
detail as well as address some ready-to-use delegates provided by the Kotlin
standard library.

Standard delegates
The Kotlin standard library includes a bunch of ready-to-use delegate
implementations which cover many common uses cases. In Chapter 4,
Working with Classes and Objects, we’ve already seen an example of such
a delegate representing a lazy property:
val text by lazy { File(“data.txt”).readText() }

In fact, the lazy() function has three versions which allow you to fine-tune
the behavior of the lazy property in a multi-threaded environment. By
default, it creates a thread-safe implementation which uses synchronization
to guarantee that the lazy value is always initialized by a single thread; in
this case, the delegate instance also serves as a synchronization object.
When necessary, you can also specify your own synchronization object
using another lazy() version:
private val lock = Any()
val text by lazy(this) { File(“data.txt”).readText() }

You can also choose between 3 basic implementations by passing a value of
the LazyThreadSafetyMode enum:

SYNCHRONIZED: Property access is synchronized so that only one
thread can initialize its value (this implementation is used by default).
PUBLICATION: Property access is synchronized in such a way that the
initializer function can be invoked multiple times, but only the result
of its first call becomes the property value.
NONE: Property access is not synchronized; in a multi-threaded
environment, property behavior is effectively undefined.

The major difference between SYNCHRONIZED and PUBLICATION becomes
apparent if the initializer function has side effects. For example, if we have
a property like this:
val myValue by lazy {

println(“Initializing myValue”)

123

}

The message gets printed at least once because the SYNCHRONIZED mode
(which is used by default) ensures that the initializer is not called multiple
times. If we, however, change the safety mode to PUBLICATION:
val myValue by lazy(LazyThreadSafetyMode.PUBLICATION) {

println(“Initializing myValue”)

123

}

The property values remains the same but the message is printed as many
times as there are threads trying to initialize myValue.
The NONE mode provides the fastest implementation and is useful when you
can guarantee that initializer is never called by more than one thread. A
common case is a lazy local variable:
fun main() {

val x by lazy(LazyThreadSafetyMode.NONE) { 1 + 2 }
println(x) // 3

}

Note that if the initializer throws an exception, the property remains
uninitialized, so the delegate will try to reinitialize it on the next access
attempt.
Some standard delegates can be constructed by members of the
kotlin.properties.Delegates object. The notNull() function provides a
delegate which allows you to defer property initialization:
import kotlin.properties.Delegates.notNull
var text: String by notNull()
fun readText() {

text = readLine()!!

}

fun main() {
readText()

println(text)

}

The semantics of the notNull() delegate is basically the same as that of
lateinit properties. Internally, the null value is used as a marker of the
uninitialized property so if it still happens to be null when you try to read
from it, the delegate throws NPE. In most situations, it’s worth using lateinit
properties instead of notNull() since lateinit has a more concise syntax and
better performance. An exception is a case of primitve types which are not
supported by lateinit:
import kotlin.properties.Delegates.notNull
var num: Int by notNull() // Can’t use lateinit here
fun main() {

num = 10

println(num) // 10

}

The observable() function allows you to define a property which sends a
notification when its value is changed. It takes an initial value a lambda
which is invoked after each change:
import kotlin.properties.Delegates.observable
class Person(name: String, val age: Int) {

var name: String by observable(name) { property, old, new ->
println(“Name changed: $old to $new”)

}

}

fun main() {
val person = Person(“John”, 25)
person.name = “Harry” // Name changed: John to Harry

person.name = “Vincent” // Name changed: Harry to Vincent

person.name = “Vincent” // Name changed: Vincent to Vincent

}

Note that the notification is sent even if the new value is the same as the old
one. The lambda should check this by itself if necessary.
The vetoable() function constructs a similar delegate but takes a lambda
which returns Boolean and is called before actual modification. If this
lambda returns false, the property value remains unchanged:
import kotlin.properties.Delegates.vetoable

var password: String by vetoable(“password”) { property, old,
new ->

if (new.length < 8) {
println(“Password should be at least 8 characters long”)

false
} else {

println(“Password is Ok”)

true
}

}

fun main() {
password = “pAsSwOrD” // Password is accepted

password = “qwerty” // Password should be at least 8

characters long

}

If you want to combine both pre- and post-change notifications, you may
implement your own delegate by subclassing ObservableProperty and
overriding beforeChange()/afterChange() functions.
The standard library also allows you to store/retrieve the property value
using a map where the property name serves as a key. You can do it by
using the map instance as a delegate:
class CartItem(data: Map<String, Any?>) {

val title: String by data
val price: Double by data
val quantity: Int by data

}

fun main() {
val item = Cartitem(mapOf(

“title” to “Laptop”,

“price” to 999.9,

“quantity” to 1

))

println(item.title) // Laptop

println(item.price) // 999.9

println(item.quantity) // 1

}

When you access a property, its value is taken from a map and cast down to
the expected type. Map delegates should be used with care because they
break type safety. In particular, access to a property value will fail with cast
exception if it doesn’t contain a value of the expected type.
Using this feature, you can also define mutable variables backed by a
mutable map:
class CartItem(data: MutableMap<String, Any?>) {

var title: String by data
var price: Double by data
var quantity: Int by data

}

What if standard delegates are not enough? In this case, you can implement
your own by following language conventions. We’ll see how to do it in the
next section.

Creating custom delegates
To create your own property delegate, you need a type which defines
special operator function(s) which implement reading and writing of the
property value. The reader function must be named getValue and have two
parameters:

1. receiver: This contains the receiver value and must be of the same
type as a receiver of the delegated property (or its supertype).

2. property: This contains a reflection object representing a property
declaration; it must be of type KProperty<*> or its supertype.

Parameter names are not actually important, only their types matter. The
return type of the getValue() function must be the same as the type of the
delegated property (or its subtype).
Let’s, for example, create a delegate which memorizes the property value
associating it with a particular receiver to create a kind of cache:
import kotlin.reflect.KProperty
class CachedProperty<in R, out T : Any>(val initializer: R.()
-> T) {

private val cachedValues = HashMap<R, T>()

operator fun getValue(receiver: R, property: KProperty<*>):

T {

return cachedValues.getOrPut(receiver) {

receiver.initializer() }

}

}

fun <R, T : Any> cached(initializer: R.() -> T) =

CachedProperty(initializer)

class Person(val firstName: String, val familyName: String)

val Person.fullName: String by cached { “$firstName

$familyName” }

fun main() {

val johnDoe = Person(“John”, “Doe”)

val harrySmith = Person(“Harry”, “Smith”)

// First access for johnDoe receiver, computed and stored to

cache

println(johnDoe.fullName)

// First access for harrySmith receiver, computed and stored

to cache

println(harrySmith.fullName)

// Repeated access for johnDoe receiver, taken from cache

println(johnDoe.fullName)

// Repeated access for harrySmith receiver, taken from cache

println(harrySmith.fullName)

}

Since fullName is a top-level property, its delegate becomes part of the
global state, and the property value is only initialized once for a particular
receiver (if we set multi-threading issues aside).
The ReadOnlyProperty interface from the kotlin.properties package
can serve a good starting point for creating custom read-only delegates.
This interface defines an abstract version of the getValue() operator
which you’ll need to implement in your own class:
interface ReadOnlyProperty<in R, out T> {

operator fun getValue(thisRef: R, property: KProperty<*>): T
}

For a read-write delegate which can be applied to var properties, you also
need to define the corresponding setValue() function which is invoked

upon each property assignment. This function must have a Unit return type
and take three parameters:

receiver: This has the same meaning as getValue().
property: This has the same meaning as getValue().
newValue: This has a new value of a property which must have the
same type as a property itself (or its supertype).

In the following example, we define a delegate class which implements a
final version of the lateinit property which doesn’t allow you to initialize it
more than once:
import kotlin.reflect.KProperty
class FinalLateinitProperty<in R, T : Any> {

private lateinit var value: T
operator fun getValue(receiver: R, property: KProperty<*>):
T {

return value
}

operator fun setValue(receiver: R, property: KProperty<*>,
newValue: T) {

if (this::value.isInitialized) throw
IllegalStateException(

“Property ${property.name} is already initialized”

)

value = newValue

}

}

fun <R, T : Any> finalLateInit() = FinalLateinitProperty<R, T>
()

var message: String by finalLateInit()
fun main() {

message = “Hello”

println(message) // Hello

message = “Bye” // Exception: Property message is already

initialized

}

The Kotlin standard library also includes a mutable version of the
ReadOnlyProperty interface which is called ReadWriteProperty. You can
similarly implement this interface in your delegate class:
public interface ReadWriteProperty<in R, T> {

operator fun getValue(thisRef: R, property: KProperty<*>): T
operator fun setValue(thisRef: R, property: KProperty<*>,
value: T)

}

Note that the getVersion()/setVersion() functions may be defined as
either members or extensions. The latter option allows you to turn virtually
any object into some kind of delegate. Delegation to Map/MutableMap
instances, in particular, is implemented by the extension function from the
Kotlin standard library:
inline operator fun <V, V1 : V> Map<in String, V>.getValue(

thisRef: Any?,

property: KProperty<*>

): V1 {...}

Since Kotlin 1.1, you can control delegate instantiation via the
provideDelegate() function. By default, the delegate instance is defined
by an expression coming after the by keyword in a property declaration.
Alternatively, you can pass an intermediate instance which serves as a kind
of delegate factory with the provideDelegate() function. Similar to
getValue(), this function takes the property receiver and reflection object
as parameters instead of retrieving the property value returns an actual
delegate object. This can be useful when the delegate needs the property
metadata for proper initialization.
Suppose that we want to introduce the @NoCache annotation which prevents
property caching. In this case, we’d like our CachedProperty
implementation to throw an exception early, during property initialization
rather than deferring failure till the moment the property is accessed. We
can achieve it by adding the delegate provider which validates the target
property before creating the delegate:
@Target(AnnotationTarget.PROPERTY)

annotation class NoCache
class CachedPropertyProvider<in R, out T : Any>(val
initializer: R.() -> T) {

operator fun provideDelegate(
receiver: R,

property: KProperty<*>

): CachedProperty<R, T> {

if (property.annotations.any { it is NoCache }) {
throw IllegalStateException(“${property.name} forbids
caching”)

}

return CachedProperty(initializer)
}

}

class CachedProperty<in R, out T : Any>(val initializer: R.()
-> T) {

private val cachedValues = HashMap<R, T>()
operator fun getValue(receiver: R, property: KProperty<*>):
T {

return cachedValues.getOrPut(receiver) {
receiver.initializer() }

}

}

fun <R, T : Any> cached(initializer: R.() -> T) =
CachedPropertyProvider(initializer)

Now, when we attempt to use caching delegate on a property with the
@NoCache annotation, the provider will fail with an error:
class Person(val firstName: String, val familyName: String)
@NoCache val Person.fullName: String by cached {

if (this != null) “$firstName $familyName” else “”
}

fun main() {
val johnDoe = Person(“John”, “Doe”)
println(johnDoe.fullName) // Exception

}

Just like delegate accessors, provideDelegate() may be implemented as
either a member or extension function.

Delegate representation

Wrapping up our discussion of delegated properties, let’s talk about how
delegates are represented and can be accessed at runtime.
At runtime, the delegate is stored in a separate field while the property itself
gets automatically generated accessors which invoked corresponding
methods of the delegate instance. For example, the code:
class Person(val firstName: String, val familyName: String) {

var age: Int by finalLateInit()
}

Is effectively equivalent to the following:

class Person(val firstName: String, val familyName: String) {
private val `age$delegate` = finalLateInit<Person, Int>()
var age: Int

get() = `age$delegate`.getValue(this, this::age)
set(value) {
`age$delegate`.setValue(this, this::age, value)

}

}

With the exception that the delegate field age$delegate can’t be used in
Kotlin code explicitly.
Reflection API allows you to access the delegate value using the
corresponding property object via its getDelegate() member. The
signature varies depending on the number of receivers. For example:
import kotlin.reflect.jvm.isAccessible
class Person(val firstName: String, val familyName: String) {

val fullName by lazy { “$firstName $familyName” }
}

fun main() {
val person = Person(“John”, “Doe”)
// KProperty0: all receivers are bound

println(

person::fullName

.apply { isAccessible = true }

.getDelegate()!!::class.qualifiedName
) // kotlin.SynchronizedLazyImpl

// KProperty1: single receiver

println(

Person::fullName

.apply { isAccessible = true }

.getDelegate(person)!!::class.qualifiedName
) // kotlin.SynchronizedLazyImpl

}

Note the need to use isAccessible = true to access the private field
where the delegate instance is stored.
What if our property is defined as an extension? In this case, the delegate
instance is shared among all possible receivers and we can
getExtensionDelegate() to obtain it without specifying a particular
receiver instance:
val Person.fullName: String by cached { “$firstName
$familyName” }

fun main() {
println(

Person::fullName

.apply { isAccessible = true }

.getExtensionDelegate()!!::class.qualifiedName
) // CachedProperty

}

Higher-order functions and DSLs
In this section, we’ll demonstrate how to design a domain-specific language
using type-safe builders. This task won’t require any new knowledge and
instead will just rely on what we’ve already learned about higher-order
functions in Kotlin.

Fluent DSL with infix functions
Our first example will demonstrate how to use infix functions for creating
fluent APIs. We’ll create a simple DSL for querying collection data using
SQL-inspired syntax.
Namely, we’d like to be able to write code like the following (readers
familiar with C# would probably recognize similarity with LINQ):
val numbers = listOf(2, 8, 9, 1, 3, 6, 5)

val query = from(numbers) where { it > 3 } select { it*2 }
orderBy { it }

println(query.items.toList())

So, basically we want our query to consist of the following:

1. The from clause which specifies an original collection.
2. Followed by an optional where clause which specifies the filtering

condition.
3. Followed by an optional select clause which maps original data to

output values.
4. When select is present, we can also use an optional orderBy clause

which specifies an ordering key.

So how do we implement such an API? First, let’s define some classes
representing intermediate structures of a query. Since most of them
represent a kind of data set be it an original collection or result of filtering,
we’ll introduce a common interface with an ability to return the resulting
sequence of items:
interface ResultSet<out T> {

val items: Sequence<T>
}

Now, we can define classes representing query components:
class From<out T>(private val source: Iterable<T>) :
ResultSet<T> {

override val items: Sequence<T>
get() = source.asSequence()

}

class Where<out T>(
private val from: ResultSet<T>,
private val condition: (T) -> Boolean

) : ResultSet<T> {

override val items: Sequence<T>
get() = from.items.filter(condition)

}

class Select<out T, out U>(
private val from: ResultSet<T>,
private val output: (T) -> U

) : ResultSet<U> {

override val items: Sequence<U>
get() = from.items.map(output)

}

class OrderBy<out T, in K : Comparable<K>>(
private val select: ResultSet<T>,
private val orderKey: (T) -> K

) : ResultSet<T> {

override val items: Sequence<T>
get() = select.items.sortedBy(orderKey)

}

Now that we have our building blocks, we can define a set infix functions to
link them together according to our DSL requirements:
// where may follow from

infix fun <T> From<T>.where(condition: (T) -> Boolean) =
Where(this, condition)

// select may follow either from or where

infix fun <T, U> From<T>.select(output: (T) -> U) =
Select(this, output)

infix fun <T, U> Where<T>.select(output: (T) -> U) =

Select(this, output)
// orderBy may follow select

infix fun <T, K : Comparable<K>> Select<*,
T>.orderBy(orderKey: (T) -> K) =

OrderBy(this, orderKey)

The last piece is the from() function which starts a query:
fun <T> from(source: Iterable<T>) = From(source)

Now, the original example is as follows:
val numbers = listOf(2, 8, 9, 1, 3, 6, 5)
val query = from(numbers) where { it > 3 } select { it*2 }
orderBy { it }

println(query.items.toList())

Will compile and correctly print:
[10, 12, 16, 18]

Note that type-safety ensures rejection of queries which doesn’t conform to
our intended syntax. For example, the code:

val query = from(numbers) where { it > 3 } where { it < 10 }

Won’t compile since only one where clause is allowed. If we’d wanted to
permit multiple where clauses, however, we’d just need to add one more
infix function:
infix fun <T> Where<T>.where(condition: (T) -> Boolean) =

Where(this, condition)

Now, let’s look at more complex examples with nested structures.

Using type-safe builders
A common case in designing a DSL is a representation of hierarchical
structures where some domain objects can be nested inside others. In
Kotlin, you have a powerful solution which allows you to express such
structures in a somewhat declarative way by combining builder functions
with extension lambdas. Let’s see how they can be implemented by an
example of simple component layout DSL.
Our goal will be an API which would allow you to describe a program UI in
the following manner:
fun main() {

val form = dialog(“Send a message”) {
borderLayout {

south = panel {

+button(“Send”)

+button(“Cancel”)

}

center = panel {

verticalBoxLayout {

+filler(0, 10)

+panel {

horizontalBoxLayout {

+filler(5, 0)

+label(“Message: “)

+filler(10, 0)

+textArea(“”)

+filler(5, 0)

}

}

+filler(0, 10)

 }

}

}

}

form.size = Dimension(300, 200)

form.isVisible = true
}

So basically, we want our DSL to do the following:

Describe a hierarchical structure of UI components.
Support standard layout managers like BorderLayout or BoxLayout.
Provide helper functions to create and initialize common components
like buttons, text fields, panels, and windows.

Figure 11.2 displays the window produced from the preceding code:

Figure 11.2: Window generated by layout DSL

How do we implement such a language? First, let’s see which kinds of
objects are involved in UI description:

Simple components like button or text field which do not have nested
structure.
Containers like panels or windows: you may attach some layout to
them or add nested components directly via the + operator.
Layouts which allow you to specify child components of the
corresponding container. The specifics depend on a particular layout;
for example, border layout binds children to predetermined areas
(NORTH, SOUTH, and so on.) while box layout allows you to add
components sequentially placing them in a row or column.

Functions like button() are the simplest part since just wrap component
constructors without any extra processing:
fun label(text: String) = JLabel(text)
fun button(text: String) = JButton(text)
fun textArea(text: String) = JTextArea(text)

The more interesting case is the panel() function which takes a lambda
with definitions of nested components. In order to maintain a container
state, we’ll introduce the ContainerBuilder class which allows you to add
nested components and define layouts:
class ContainerBuilder(private val container: Container) {

operator fun Component.unaryPlus() = apply {
container.add(this) }

fun borderLayout(body: BorderLayoutBuilder.() -> Unit) {
BorderLayoutBuilder(container).body()

}

fun horizontalBoxLayout(body: BoxLayoutBuilder.() -> Unit) {
BoxLayoutBuilder(container, BoxLayout.LINE_AXIS).body()

}

fun verticalBoxLayout(body: BoxLayoutBuilder.() -> Unit) {
BoxLayoutBuilder(container, BoxLayout.PAGE_AXIS).body()

}

}

Now, we can define the panel() and dialog() functions:

fun panel(body: ContainerBuilder.() -> Unit) = JPanel().apply
{

ContainerBuilder(this).body()

}

fun dialog(
title: String,

body: ContainerBuilder.() -> Unit

): JDialog = JDialog().apply {

this.title = title
pack()

defaultCloseOperation = JDialog.DISPOSE_ON_CLOSE

ContainerBuilder(contentPane).body()

}

You can see these functions take a lambda which serves as an extension on
the ContainerBuilder class. This allows us to directly call members of
ContainerBuilder inside a lambda since this receiver is assumed
implicitly. For example, the portion:
panel {

horizontalBoxLayout {

+filler(5, 0)

...

}

}

Really means:
panel {

this.horizontalBoxLayout {
// dispatch receiver of BoxLayoutBuilder is implicit

filler(5, 0).unaryPlus()

...

}

}

What about layouts? We can define their builders in a similar way
remembering an API difference between various layouts. For example:
class BoxLayoutBuilder(private val container: Container,
direction: Int) {

init {

container.layout = BoxLayout(container, direction)

}

operator fun Component.unaryPlus() = apply {
container.add(this) }
fun filler(width: Int, height: Int) =

Box.createRigidArea(Dimension(width, height))

}

We’ve added unaryPlus() to BoxLayoutBuilder because we want to add
its children sequentially like we do with a container like panel. In case of
BorderLayoutBuilder, we’ll need a set of properties like north, south,
west, and so on which retain the value of the added component and add it to
the container when changed. We can pack this logic into a variety of
observable delegates:
fun constrained(

container: Container,

constraint: Any?

) = observable<Component?>(null) { _, _, value ->

container.add(value, constraint)

}

class BorderLayoutBuilder(container: Container) {
init {

container.layout = BorderLayout()

}

var north by constrained(container, BorderLayout.NORTH)
var south by constrained(container, BorderLayout.SOUTH)
var west by constrained(container, BorderLayout.WEST)
var east by constrained(container, BorderLayout.EAST)
var center by constrained(container, BorderLayout.CENTER)

}

Many Kotlin DSLs are implemented in a similar manner. In the upcoming
chapters, we’ll take a closer look at some languages targeted at common
tasks: test specification, description of UI in Android application, request
handling rules in a web application, and type-safe generation of HTML. For
now, though, we have one more topic to discuss, and that’s how to control
the scope of builder functions.

@DslMarker
When using a hierarchical DSL like the one we discussed in the previous
section, you may find that members of outer blocks are leaking into nested
scopes. For example, using our layout DSL we could’ve written:
val myPanel = panel {

borderLayout {

borderLayout {

}

}

}

This is certainly unintended because we didn’t want the layout-introducing
function to be available on layouts themselves. Still the preceding code is
correct and both the borderLayout() calls in fact have the same receiver,
namely, the instance of ContainerBuilder passed to the outermost lambda.
The problem is that each of these receivers is available not only in its
declaration scope, but in all nested scoped as well. If we’d made the
receivers explicit, the out code would look like:
val myPanel = panel {

this@panel.borderLayout {
this@panel.borderLayout {
}

}

}

Now, it’s clear that both receivers are the same.
So even though the leakage of implicit receivers into nested scopes do not
break type safety, it certainly can be misleading and thus lead to error-prone
code, especially if code in question is a DSL which usually has a lot of
nested extension lambdas. For that reason, Kotlin 1.1 introduced the
@DslMarker annotation which helps DSL designers to restrict visibility of
implicit receivers.
@DslMarker is a meta-annotation which you can use to annotate your own
annotation class meant to serve as a marker of particular DSL. Let’s
introduce @LayoutDsl for this purpose:
@DslMarker

annotation class LayoutDsl

Now, we use @LayoutDsl to annotate classes which are used as receivers in
DSL blocks. In our case, that’s ContainerBuilder, BorderLayoutBuilder,
and BoxLayoutBuilder:
@LayoutDsl

class ContainerBuilder(private val container: Container) {...}
@LayoutDsl

class BorderLayoutBuilder(container: Container) {...}
@LayoutDsl

class BoxLayoutBuilder(private val container: Container,
direction: Int) {...}

If classes in question have a common supertype, you may annotate that
supertype instead. DSL marker annotations automatically affect all
subtypes.
Now that the compiler knows that these classes belong to the same DSL, it
won’t allow you to use corresponding receivers in nested scopes. For
example, our original fragment now produces a compilation error:
val myPanel = panel {

borderLayout {

borderLayout { // Error: DSL scope violation

}

}

}

Note that @DslMarker only forbids leakage of implicit receivers. But you
still can use an explicit one if necessary:
val myPanel = panel {

borderLayout {

this@panel.borderLayout { // Correct

}

}

}

Conclusion
This chapter has introduced us to the advanced features of Kotlin language
which help to design internal domain-specific languages, thus combining
simplicity of usage with type safety ensured by the Kotlin compiler. We
learned conventions which allow a developer to define overloaded

operators, explored standard implementations of delegated properties and
discussed how you can create your own. Finally, we saw how functional
programming together with type-safe builders can help to design
hierarchical DSLs.
In the next chapter, we will discuss the issue of Java/Kotlin interoperability.
We’ll see how Kotlin declarations can be used from Java code and vice
versa, how to fine-tune your Kotlin-based API for Java clients and how
Kotlin tooling can help to automatically convert Java code into a Kotlin.

Questions
1. What operator overloading conventions are available in Kotlin?
2. Describe standard delegate implementations.
3. What conventions are used for property delegates? Given an example

of custom delegate implementation.
4. How can you access a delegate value at runtime?
5. Describe how to design domain-specific language using higher-order

functions.
6. Explain the meaning of @DslMarker annotation.

CHAPTER 12
Java Interoperability

In this chapter, we will introduce you to various topics concerned with
interoperability between Java and Kotlin code. This aspect plays a major
role in mixed projects where the Java code has to coexist with Kotlin.
Thanks to good JVM interoperability, you can easily add Kotlin into
existing projects or gradually convert the Java code with little to no changes
in its surroundings.
We’ll look at how Kotlin and Java types map into each other, how Kotlin
declarations are presented from Java’s point of view and vice versa, and
look at language features which can help you to customize Java/Kotlin
interoperability.

Structure
In this chapter, we will cover the following topics:

Using the Java code from Kotlin
Using the Kotlin code from Java

Objective
After reading this chapter, you will learn how Kotlin declarations and types
are represented from the Java point of view (and vice versa) and how both
languages can be mixed in a single codebase.

Using Java code from Kotlin
Since Kotlin is designed with JVM as one of its primary targets, using Java
code in Kotlin is pretty straightforward. There are, however, some issues
mainly arising from the fact some Kotlin features are not available in Java.
For example, Java doesn’t incorporate null-safety into its type system:
while Kotlin types always explicitly specify whether they are nullable or

not. Java types usually lack such information. In this section, we’ll discuss
how such issues can be resolved from both Java and Kotlin sides.

Java methods and fields
In most cases using Java methods, Kotlin poses no concerns as they are
exposed as ordinary Kotlin functions. Fields when they are not encapsulated
are similarly available like Kotlin properties with trivial accessor(s). Still
it’s worth bearing in mind some nuances stemming from language specifics.

Unit vs void
Kotlin has no void keyword representing an absence of return value, so
every void method in Java is visible as the Unit function in Kotlin. If you
call such a function and use the call result somewhere (for example, assign
it to a variable) the compiler will generate a reference to the Unit object.

Operator conventions
Some Java methods such as Map.get() may satisfy Kotlin operator
conventions. In Kotlin, you can use them in the operator form even though
they do not have the operator keyword. For example, since the Method
class from the Java Reflection API has the invoke() method, we can use it
like a function:
val length = String::class.java.getDeclaredMethod(“length”)
println(length(“abcde”)) // 5

Infix calls, however, are not supported for Java methods.

Synthetic properties
Even though Java has no properties as such, using getters as setters is quite
common. For that reason, Kotlin exposes getter/setter pairs as synthetic
properties which the Kotlin code can access which are similar to ordinary
Kotlin properties. An accessor must follow certain conventions, namely:

The getter must be a parameterless method and have a name starting
with “get”.
The setter must have a single argument and a name starting with “set”.

For example, if you have a Java class:
public class Person {

private String name;
private int age;
public Person(String name, int age) {

this.name = name;
this.age = age;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public int getAge() {
return age;

}

public void setAge(int age) {
this.age = age;

}

}

You can use its instances as if they have a pair of mutable properties name
and age:
fun main() {

val person = Person(“John”, 25)
person.name = “Harry”

person.age = 30

println(“${person.name}, ${person.age}”) // Harry, 30

}

This convention also works when there is only a getter method. In this case,
a resulting property is immutable. When a Java class has a setter method,
but no getter, however, no property is exposed since write-only properties
are not currently supported in Kotlin.
As an alternative, a getter name may start with “is”. In this case, a synthetic
property will have the same name as the getter. Suppose we extend the
preceding Person class by adding a boolean field with accessors:

public class Person {
...

private boolean isEmployed;
public boolean isEmployed() {

return isEmployed;
}

public void setEmployed(boolean employed) {
isEmployed = employed;

}

}

Kotlin code can call these accessors using the isEmployed property.
IDE Tips: You can also use ordinary method calls instead of synthetic
properties, but this is considered redundant. By default, the IntelliJ plugin
warns about such calls suggesting you to replace them by the synthetic
property access (see Figure 12.1):

Figure 12.1: Converting explicit setter call to property assignment

Note that the synthetic property syntax is only available for methods
declared in a non-Kotlin code. You can’t use them for get/set methods
defined in Kotlin source files.

Platform types
Since Java doesn’t distinguish between nullable and non-nullable types, the
Kotlin compiler in general can’t make any assumptions about nullability of
objects coming from a Java code. Exposing them as nullable, however, is
impractical because you’d have to deal with a lot of bogus nullability
checks in the Kotlin code. For that reason, the Kotlin compiler relaxes null-
safety when it comes to Java types and doesn’t expose them as types with

definite nullability. In Kotlin, objects originating from the Java code belong
to special platform types which basically constitute type ranges between
nullable and non-nullable versions. Null-safety guarantees provided by such
types are basically the same as in Java; you can use their values in both
nullable and non-nullable context, but such usage may fail at runtime with
NullPointerException.
Suppose we have a Java class:
public class Person {

private String name;
private int age;
public Person(String name, int age) {

this.name = name;
this.age = age;

}

public String getName() { return name; }
public void setName(String name) { this.name = name; }
public int getAge() { return age; }
public void setAge(int age) { this.age = age; }
}

And use it from a Kotlin code:
fun main() {

val person = Person(“John”, 25)

println(person.name.length) // 4

}

In the preceding code, person.name has a platform type because the
compiler doesn’t know if it can be nullable. Nevertheless, the code
compiles but nullability check is deferred to runtime when a program tries
to access the length property. If we change it to the following:
fun main() {

val person = Person(null, 25)
println(person.name.length) // Exception

}

The program would still compile, but fail at runtime.
Note that platform types may not be written explicitly in a Kotlin source
code. They are only constructed by a compiler. You can, however, see them
in the IntelliJ IDEA plugin. For example, if you apply the “Show

expression type” action (Ctrl + Shift + P/Cmd + Shift + P) to the
person.name expression, you’ll see that its type is String! (see Figure
12.2). This notation means that values of this type can pose as both values
of String? and String:

Figure 12.2: Platform type representation in IDE

If you assign an expression of a platform type to a variable or return it from
a function without specifying an explicit type, it propagates. For example:
import java.math.BigInteger
fun Int.toBigInt() = BigInteger.valueOf(toLong()) //
BigInteger! return type

val num = 123.toBigInt() // BigInteger! type

If you specify a type explicitly, you might force the platform type into
either nullable or non-nullable:
import java.math.BigInteger
// BigInteger (non-nullable) return type

fun Int.toBigInt(): BigInteger = BigInteger.valueOf(toLong())
val num = 123.toBigInt() // BigInteger (non-nullable) type

IDE Tips: The IntelliJ plugin can warn you about the implicit propagation
of platform types and suggest either specifying the type explicitly, or adding
the not-null assertion !! (as shown in Figure 12.3):

Figure 12.3: Getting rid of platform type propagation

If we force the platform type into a non-nullable one, the compiler will
generate an assertion. This ensures that the program will fail during the
assignment rather than at some later moment when the assigned value is
accessed.
Kotlin also uses platform types to represent Java collection types. The
reason is similar to that of nullable types. Unlike Kotlin, Java doesn’t
distinguish between mutable or immutable collections. So in Kotlin, each
Java-originating instance of the standard collection type such as List, Set,
or Map looks like some range between the mutable and mutable version. In
IDE, such types are represented by adding a (Mutable) prefix (see, for
example, Figure 12.4):

Figure 12.4: Mutable platform types

Nullability annotations
In the Java world, a common solution to a null-safety problem is using
special type annotations. Modern development environments like IntelliJ
IDEA can make use of such annotations reporting potential violations of
nullability contracts. Some of them are supported by the Kotlin compiler as
well. In this case, a respective type is exposed as either a nullable or non-
nullable (depending on the annotation used) and platform type is not used.
For example, if we annotate the Person class from our earlier example:
import org.jetbrains.annotations.NotNull;

public class Person {

@NotNull private String name;

private int age;

public Person(@NotNull String name, int age) {

this.name = name;

this.age = age;

}

@NotNull

public String getName() { return name; }

public void setName(@NotNull String name) { this.name =

name; }

public int getAge() { return age; }

public void setAge(int age) { this.age = age; }

}

Types in the Kotlin code will reflect these changes as shown in Figure 12.5:

Figure 12.5: Exposing Java type annotated with @NotNull

Some of the nullability annotations supported by the Kotlin compiler
include (you can find a more comprehensive list in the Kotlin
documentation at kotlinlang.org):

JetBrains @Nullable and @NotNull (from
org.jetbrains.annotations package)
Multiple varieties of @Nullable and @NonNull annotations from
Android SDK
JSR-305 nullability annotations such as @Nonnull (from
javax.annotation package)

IDE Tips: The JetBrains annotations library is not added to project
dependencies automatically but can be easily configured when necessary. If
the @Nullable/@NotNull annotation is not available, you can press Alt +
Enter on the unresolved annotation reference and choose the Add
‘annotations’ to classpath action as shown in Figure 12.6:

Figure 12.6: Configuring JetBrains annotations library

Note that since Java 8, you can also annotate type parameters of generic
declarations provided that the nullability annotation supports the
ElementType.TYPE_USE target. For example, JetBrains
@Nullable/@NotNull annotations support this target starting from version
15 so we can write:
public class Person {

...

@NotNull private Set<@NotNull Person> friends = new
HashSet<>();

public @NotNull Set<@NotNull Person> getFriends() {
return friends;

}

}

In Kotlin, the return type of the getFriends() method would look like
(Mutable)Set<Person>:

Figure 12.7: Non-nullable type parameter

When type parameters are not annotated, for example:
public class Person {

...

@NotNull private Set<Person> friends = new HashSet<>();
public @NotNull Set<Person> getFriends() { return friends; }

}

The Kotlin compiler has to use platform types for them, so the type of
person.friends in the preceding Kotlin sample code would be
(Mutable)Set<Person!> instead.

Java/Kotlin type mapping
Some types have a similar meaning in Kotlin and Java. For example, Java
primitive types like int or boolean correspond to built-in types of Kotlin
(Int, Boolean) while java.util.List corresponds to a platform type
(Mutable)List. The Kotlin compiler is able to map Java types to their
Kotlin counterparts when processing usages of Java declarations in the
Kotlin code and vice versa while compiling the Kotlin code for JVM. In
this section, we’ll discuss the basic rules of Java/Kotlin type mapping.
First, Java primitive types as well as their boxed versions map to
corresponding basic types in Kotlin:

Java Type Kotlin Type

byte/Byte Byte

short/Short Short

int/Integer Int

long/Long Long

char/Character Char

float/Float Float

double/Double Double

Table 12.1: Correspondence between Java and Kotlin primitive types

This mapping also works in reverse; on JVM, values of basic Kotlin types
are represented by either JVM primitive types, or corresponding boxing
classes depending on how that value is used. Value of Int?, say, would be
represented by an instance of java.lang.Integer since null may not be
stored as a value of Java’s int.
Some non-primitive built-in classes from java.lang packages are mapped
into corresponding classes from the kotlin package (and vice versa). The

names of classes are the same in both cases; the only exception being
Object which is mapped into Kotlin’s Any:

Object

Cloneable

Comparable

Enum

Annotation

CharSequence

String

Number

Throwable

Note that static members of mapped Java classes (for example,
Long.valueOf()) are not accessible directly on companions of their Kotlin
counterparts. To use them, you need to mention the qualified name of the
corresponding Java class:
val n = java.lang.Long.bitCount(1234)

Standard collection types in Kotlin (both mutable and immutable) are
mapped into corresponding collection types from the the java.util
package. Reverse mapping as we’ve discussed above produces platform
types because standard Java collections use the same API for both mutable
and immutable implementations. The mapped types are as follows:

Iterable/Iterator/List Iterator
Collection

Set

List

Map/Map.Entry

Mapping between generic types involve some less trivial transformation
due to differences in the generics syntax.

Extends wildcards in Java correspond to covariant projections in
Kotlin; for example, TreeNode<? extends Person> maps to
TreeNode<out Person>.

Super wildcards similarly map to contravariant projections:
TreeNode<? super Person> vs. TreeNode<in Person>.
Raw types in Java are represented by types with star projections; say,
TreeNode becomes TreeNode<*>.

Java arrays of primitive types (like int[]) are mapped into corresponding
specialized array classes (for example, IntArray) to avoid boxing/unboxing
operations. Any other array is represented as an instance of special platform
type Array<(out) T> (which may also be a nullably platform: for example,
Array<(out) String>!) which combines Array<T> and Array<out T>.
This, in particular, allows you to pass an array of subtypes into Java
methods expecting an array of supertypes. For example, the following code
passes an array of String as a value of the Object[] parameter:
import java.util.*
fun main() {

val strings = arrayOf(“a”, “b”, “c”)
println(Arrays.deepToString(strings))

}

Such behavior is consistent with Java semantics where array types are
covariant. Kotlin arrays are invariant so this trick doesn’t work with Kotlin
methods unless you restrict the Array type to its out-projection as in
Array<out Any>.

Single abstract method interfaces
If you have a Java interface with a single abstract method (SAM interface
for short), it essentially behaves like a Kotlin functional type. Similar to
Java 8+ which supports automatic conversion of lambdas into an
appropriate SAM type instance, Kotlin allows you to use lambdas in
context where the Java SAM interface is expected. This is called a SAM
conversion. Consider, for example, the JDK ExecutorService class whose
API allows you to register some tasks for asynchronous computations. Its
execute() method takes a Runnable object and since Runnable has a form:
public interface Runnable {

public void run();
}

It’s qualified as a SAM interface in Kotlin. This allows the Kotlin code to
call execute() methods by simply passing a lambda:
import java.util.concurrent.ScheduledThreadPoolExecutor
fun main() {

val executor = ScheduledThreadPoolExecutor(5)
executor.execute {

println(“Working on asynchronous task...”)

}

executor.shutdown()

}

Instead of much more verbose:

import java.util.concurrent.ScheduledThreadPoolExecutor
fun main() {

val executor = ScheduledThreadPoolExecutor(5)
executor.execute(object : Runnable {

override funrun() {
println(“Working on asynchronous task...”)

}

})

executor.shutdown()

}

IDE Tips: The IntelliJ plugin can warn you about unnecessary object
expressions like the preceding one and automatically transform them into
implicit SAM conversions (as shown in Figure 12.8):

Figure 12.8: Converting object expression to lambda

Sometimes a compiler doesn’t have enough context information to choose a
proper conversion. Say, Java ExecutorService has a set of submit()
methods which take an object representing some computation to execute it
in future. A computation may be an instance of either the Runnable, or
Callable interface which looks like this:
public interface Callable<V> {

V call() throws Exception;
}

Both Runnable and Callable are SAM interfaces but if we pass a lambda
to one of submit() methods in a Kotlin code, the compiler will choose a
Runnable version as having the most specific signature:
import java.util.concurrent.ScheduledThreadPoolExecutor
fun main() {

val executor = ScheduledThreadPoolExecutor(5)
val future = executor.submit { 1 + 2 }

// implicitly converted to Runnable

println(future.get()) // null

executor.shutdown()

}

What if we want to pass a Callable instance instead? In this case, we have
make the conversion more explicit by specifying a target type:
import java.util.concurrent.Callable
import java.util.concurrent.ScheduledThreadPoolExecutor
fun main() {

val executor = ScheduledThreadPoolExecutor(5)
val future = executor.submit(Callable { 1 + 2 })
println(future.get()) // 3

executor.shutdown()

}

Such an expression is called a SAM constructor.
Note that SAM conversions only work for interfaces, but not for classes
even if they have a single abstract method. It also doesn’t work with Kotlin
interfaces: unlike Java, Kotlin has proper functional types so implicit
conversion is virtually unnecessary.

Working with Java records

First introduced as a preview feature in Java 14, record classes aim to
reduce the amount of boilerplate code required for simple data holder
classes. As such they can be considered as Java counterparts for Kotlin data
classes.
Let’s consider an example. Suppose we have a Java record class:
public record Person(String firstName, String familyName, int
age) {

}

And a Kotlin file located in the same package:
fun main() {

val p1 = Person(“John”, “Doe”, 25)
val p2 = Person(“John”, “Doe”, 25)
println(p1 == p2) // true

println(p1.age()) // 25

println(p2)// Person[firstName=John, familyName=Doe, age=25]

}

It’s not difficult to see that all auto-generated record methods such as
constructor, getters as well as toString()/equals()/hashCode()
implementations work just as expected.
Starting from version 1.5, Kotlin will allow you to access record getters as
if they were properties:
fun main() {

val person = Person(“John”, “Doe”, 25)
println(person.firstName) // John

println(person.familyName) // Doe

println(person.age) // 25

}

Note that records currently possess some limitations as opposed to Kotlin
data classes:

They do not support the copy() method which allows you to create
new instances based on the existing one with (possibly) different
values.
You cannot use a data class instance in a Kotlin de-structuring
declaration unless the record class in question has the componetN()

methods by itself or you’ve explicitly defined them as extension
functions in the Kotlin code.

These constraints might be relaxed in further versions of JDK and Kotlin
compilers.

Using the Java-to-Kotlin converter
The IntelliJ plugin includes an automatic tool which can convert the Java
source file into an equivalent Kotlin code. Together with Java/Kotlin
interoperability, this feature allows you to gradually migrate to the existing
Java codebase.
To convert a file, you just need to press Ctrl + Alt + Shift + K or choose the
“Convert Java File to Kotlin File” action from the Code menu. The IDE
will then process your file, convert it into Kotlin, and update external
usages when necessary.
You can also select one or several files in the Project View panel and apply
the same shortcut to convert them in a single batch.
The automatic converter aims at producing idiomatic Kotlin code so
although it doesn’t always produce an ideal result, this tool can be used as a
good starting point when migrating to the existing codebase.

Using the Kotlin code from Java
One of the Kotlin design guidelines is a smooth interoperability with an
existing Java codebase. In most cases, the Kotlin code can be easily used
from the Java side without much concern. Nevertheless, Kotlin possesses a
number of features which don’t have direct counterparts in Java. In this
section, we’ll talk about these nuances as well as discuss how you can fine-
tune Kotlin code exposition from the Java’s point of view.

Accessing properties
Since neither Java nor JVM have a concept of property, you can’t access
Kotlin properties directly from the Java code. In compiled JVM bytecode,
however, each property is represented by accessor methods which are

available to Java clients similar to ordinary methods. Accessor signatures
are derived from the property definition:

The getter is a parameterless method with a return type corresponding
to the original property type; its name is computed by uppercasing the
first letter of the property name and prefixing it with “get”.
The setter is a void method which takes a single parameter
corresponding to a new value; its name is computed similar to the
getter with “get” replaced by “set”.

For example, the following Kotlin class:
class Person(var name: String, val age: Int)

Would look like the following (from Java’s point of view):
public class Person {

@NotNull

public String getName() {...}
public void setName(@NotNull String value) {...}
public int getAge() {...}

}

So a Java client code can access its properties by calling accessor methods:
public class Main {

public static void main(String[] args) {
Person person = new Person(“John”, 25);
System.out.println(person.getAge()); // 25

person.setName(“Harry”);

System.out.println(person.getName()); // Harry

}

}

When a property name starts with “is”, the Kotlin compiler uses another
naming scheme. To be exact:

The getter has the same name as its property.
The setter name is computed by replacing “is” prefix with “set”.

For example, if we add the isEmployed property to our Person class:
class Person(var name: String, val age: Int, var isEmployed:
Boolean)

A Java code accessing a new property would look like this:
public class Main {

public static void main(String[] args) {
Person person = new Person(“John”, 25, false);
person.setEmployed(true);

System.out.println(person.isEmployed()); // true

}

}

Note that the “is” convention is purely name-based; it has nothing to do
with a Boolean type (although, it’s strongly recommended to use “is”
names for the Boolean properties only).
If the Kotlin property requires a backing field, the compiler will generate it
alongside accessor method(s). By default, however, this field is private and
can’t be accessed directly by the code outside property accessors. In some
cases, though, you may need to expose that property to Java clients. This
can be achieved by annotating the property with @JvmField. For example, if
we modify our Person class by annotating its constructor parameters:
Class Person(@JvmField var name: String, @JvmField val age:
Int)

We can access generated fields from the Java source code:
public class Main {

public static void main(String[] args) {
Person person = new Person(“John”, 25);
System.out.println(person.age); // 25

person.name = “Harry”;

System.out.println(person.name); // Harry

}

}

In this case, accessor methods are not generated and the backing field has
the same visibility level as the property itself. Note that @JvmField can’t be
used if the property has non-trivial accessors:
class Person(val firstName: String, val familyName: String) {

@JvmField // Error: property has a custom getter

Val fullName get() = “$firstName $familyName”
}

@JvmField is also not applicable to open or abstract properties since their
overrides may in general have custom accessors:
open class Person(val firstName: String, val familyName:
String) {

@JvmField // Error: property is open
open val description: String get() = “$firstName
$familyName”

}

When applied to a property of some named object, @JvmField behaves a
little differently generating a static field instead of an instance one. For
example, it we have a Kotlin object:
object Application {

@JvmField

val name = “My Application”
}

The code can access the name property by referring to the
Application.name field directly:
public class Main {

public static void main(String[] args) {
System.out.println(Application.name);

}

}

The same also goes for properties with the const modifier:
object Application {

const val name = “My Application”
}

Another way to expose the backing field is to use a lateinit property:
class Person(val firstName: String, val familyName: String) {

lateinit var fullName: String
fun init() {
fullName = “$firstName $familyName”

}

}

In this case, both accessors and backing field has the same visibility as the
property itself:

public class Main {
public static void main(String[] args) {

Person person = newPerson(“John”, “Doe”);

person.init();

// direct field access

System.out.println(person.fullName); // John Doe

// accessor call

System.out.println(person.getFullName()); // John Doe

}

}

In objects, lateinit generates a static field similar to the @JvmField
annotation. Its accessors, however, remain instance methods, so the Java
code using the object:
object Application {

lateinit var name: String
}

would look like the following:
public class Main {

public static void main(String[] args) {
// Accessor call (non-static)

Application.INSTANCE.setName(“Application1”);

// Direct property access (static)

Application.stdin = “Application2”

}

}

Note that @JvmField can’t be used for the lateinit properties.

File facades and top-level declarations
In Kotlin, you can often make use of top-level declarations which are
placed directly in a package rather than inside of some other declaration.
Java and JVM platform in general, however, require that methods must
always belong to a particular class. To satisfy this requirement, the Kotlin
compiler puts top-level functions and properties into an automatically
generated class which is called a file facade. By default, the facade name is
based on the name of the source file with extra “Kt” suffix. For example,
the file:

// util.kt

class Person(val firstName: String, val familyName: String)
val Person.fullName
get() = “$firstName $familyName”
fun readPerson(): Person? {

val fullName = readLine() ?: return null
val p = fullName.indexOf(‘ ‘)
return if (p >= 0) {

Person(fullName.substring(0, p), fullName.substring(p +

1))

} else {
Person(fullName, “”)

}

}

Will produce the following facade class:
public class UtilKt {

@NotNull

public static String getFullName(@NotNull Person person)
{...}

@Nullable

public static Person readPerson() {...}
}

Note that the facade class doesn’t contain classes since they are allowed at
top-level in both JVM and Java.
Since generated methods are static, you don’t need to instantiate facade
class when using it from the Java code:
public class Main {

public static void main(String[] args) {
Person person = UtilKt.readPerson();

if (person == null) return;
System.out.println(UtilKt.getFullName(person));

}

}

The Kotlin compiler allows you to tune some aspects of the generated
facade. First, you can change its name by adding the file-level @JvmName
annotation:

@file:JvmName(“MyUtils”)
сlass Person(val firstName: String, val familyName: String)
val Person.fullName
get() = “$firstName $familyName”

Now, its Java usages will need to use the specified MyUtils name:
public class Main {

public static void main(String[] args) {
Person person = new Person(“John”, “Doe”);
System.out.println(MyUtils.getFullName(person));

}

}

Another useful ability is to merge top-level declarations from multiple files
into a single class. To do it, you need to annotate files of interest with
@JvmMultifileClass and specify the target class name with @JvmName. In
this case, the Kotlin compiler will automatically combine files with the
same facade class name. For example, suppose that all declarations from
our example are written in separate files:
// Person.kt

сlass Person(valfirstName: String, valfamilyName: String)
// utils1.kt

@file:JvmMultifileClass
@file:JvmName(“MyUtils”)
val Person.fullName
get() = “$firstName $familyName”
// utils2.kt

@file:JvmMultifileClass
@file:JvmName(“MyUtils”)
fun readPerson(): Person? {

val fullName = readLine() ?: return null
val p = fullName.indexOf(‘ ‘)
return if (p >= 0) {

Person(fullName.substring(0, p), fullName.substring(p +

1))

} else {
Person(fullName, “”)

}

}

Thanks to @JvmMultifile and @JvmName, we can still access both
declarations as members of the MyUtils class:
public class Main {

public static void main(String[] args) {
Person person = MyUtils.readPerson();

if (person == null) return;
System.out.println(MyUtils.getFullName(person));

}

}

Note that facade classes are not available to the Kotlin code and are only
usable by other JVM clients.

Objects and static members
On JVM, Kotlin object declarations are compiled into ordinary classes with
the static INSTANCE field. For example, if we have the Kotlin declaration:
object Application {

val name = “My Application”

fun exit() { }
}

The Java code can use access its members using Application.INSTANCE:
public class Main {

public static void main(String[] args) {
System.out.println(Application.INSTANCE.getName());

Application.INSTANCE.exit();

}

}

We’ve already seen that using @JvmField on an object property turns it into
a static field from Java’s point of view. Sometimes, it can be useful to make
object functions or property accessors available as static methods. To do
that, you can use the @JvmStatic annotation:
Import java.io.InputStream
object Application {

@JvmStatic

var stdin: InputStream = System.`in`

@JvmStatic

Fun exit() { }
}

In the Java code, such functions and properties can be invoked without
mentioning a particular instance:
import java.io.ByteArrayInputStream;
public class Main {

public static void main(String[] args) {
Application.setStdin(

new ByteArrayInputStream(“hello”.getBytes())
);

Application.exit();

}

}

Changing the exposed declaration name
We’ve already seen how @JvmName can be used to specify the name of the
facade class for top-level declarations. In fact, this annotation is applicable
not only to files, but also to functions and property accessors. It allows you
to change the name of the corresponding JVM methods.
The primary use case of this feature is an ability to resolve signature clashes
between declarations which are valid in Kotlin but forbidden in Java.
Suppose that we have the following Kotlin code:
class Person(val firstName: String, val familyName: String)
val Person.fullName
get() = “$firstName $familyName” // Error
fun getFullName(person: Person): String { // Error

return “${person.familyName}, ${person.firstName}”
}

This code will produce a compilation error; even though the Kotlin client
can easily distinguish between the function and property, on JVM both
declarations will produce a method with a signature:
@NotNull

public static String getFullName(@NotNull Person person) {...}

Thus, leading to ambiguity. Using @JvmName, you can change the
conflicting name thus resolving the problem:
@JvmName(“getFullNameFamilyFirst”)

fun getFullName(person: Person): String { // Error
return “${person.familyName}, ${person.firstName}”

}

Now, the Java client will be able to call this function using the
getFullNameFamilyFirst name, while the Kotlin code will use the
original getFullName.
We can similarly specify the JVM name for properties by annotating either
particular accessor(s):
Val Person.fullName

@JvmName(“getFullNameFamilyLast”)

get() = “$firstName $familyName”

Or to property itself (with appropriate use-site target):
@get:JvmName(“getFullNameFamilyLast”)
val Person.fullName

get() = “$firstName $familyName”
@JvmName, in particular, allows you to circumvent the standard naming
scheme used for property accessors:
class Person(@set:JvmName(“changeName”) var name: String, val
age: Int)

When seen from the Java code, the class Person will now have the
changeName() method instead of setName():
public class Main {

public static void main(String[] args) {
Person person = newPerson(“John”, 25);

person.changeName(“Harry”);

System.out.println(person.getName());

}

}

@JvmName is also useful when the Kotlin function’s name coincides with the
Java keyword which makes it unusable from the Java source code. For
example:
class Person(val firstName: String, val familyName: String) {

@JvmName(“visit”)

fun goto(person: Person) {
println(“$this is visiting $person”)

}

override fun toString() = “$firstName $familyName”
}

The goto() function is not callable in Java since goto is a reserved
keyword. Providing custom JVM name fixes the problem.

Generating overloads
When the Kotlin function has parameters with a default value, a number of
arguments in its call may vary since some of them may be skipped:
// util.kt

fun restrictToRange(
what: Int,

from: Int = Int.MIN_VALUE,

to: Int = Int.MAX_VALUE

): Int {

return Math.max(from, Math.min(to, what))
}

fun main() {
println(restrictToRange(100, 1, 10)) // 10

println(restrictToRange(100, 1)) // 100

println(restrictToRange(100)) // 100

}

Java, however, has no concept of default values so the preceding function
will look like this:
public int restrictToRange(int what, int from, int to) {...}

And any Java clients would be forced to explicitly pass all arguments:
public class Main {

public static void main(String[] args) {
System.out.println(UtilKt.restrictToRange(100, 1, 10));

System.out.println(UtilKt.restrictToRange(100, 1)); //

Error

System.out.println(UtilKt.restrictToRange(100)); //

Error

}

}

Kotlin gives you a solution with the @JvmOverloads annotation:
@JvmOverloads

fun restrictToRange(
what: Int,

from: Int = Int.MIN_VALUE,

to: Int = Int.MAX_VALUE

): Int {

return Math.max(from, Math.min(to, what))
}

The effect of @JvmOverloads is to generate additional overloads for an
original Kotlin function:

The first one has all parameters of an original except the last
parameter with a default value.
The second one has all parameters of an original except the last and
the second-to-last parameters with a default value and so on.
The last overloaded version has only parameters without default
values.

For example, the restrictToRange() function now has three overloads
from Java’s point of view:
public int restrictToRange(int what, int from, int to) {...}

// base version

public int restrictToRange(int what, int from) {…}

public int restrictToRange(int what) {...}

Additional overloads will call an original function providing explicit values
for omitted arguments. Now, our original Java usages become valid as all
three overloads are correctly resolved:
public class Main {

public static void main(String[] args) {
System.out.println(UtilKt.restrictToRange(100, 1, 10));

// 10

System.out.println(UtilKt.restrictToRange(100, 1)); //

100

System.out.println(UtilKt.restrictToRange(100)); //

100

}

}

Note that although overloaded versions produced by the @JvmOverloads
annotation are added to compiled binaries, they are not available in the
Kotlin code. These overloads are meant to be used for Java interoperability
only.

Declaring exceptions
In Chapter 3, Defining Functions, we mentioned that Kotlin doesn’t
distinguish between checked and unchecked exceptions. Your functions and
properties may throw arbitrary exceptions without any extra code. Java, on
the other hand, requires to explicitly list checked exceptions which are not
caught in the method body. This may lead to problems if the Java code
wants to handle a checked exception which may be thrown by calling a
Kotlin declaration. For example, suppose that we have a Kotlin function:
// util.kt

Fun loadData() = File(“data.txt”).readLines()

And use it from the Java side:
public class Main {

public static void main(String[] args) {
for (String line :UtilKt.loadData()) {
System.out.println(line);

}

}

}

If data.txt can’t be read, loadData() throws IOException which remains
unhandled. As a result, the main() method will fail silently. If we try to add
an exception handler to main(), we face another problem:
Import java.io.IOException;
public class Main {

public static void main(String[] args) {
try {
for (String line :UtilKt.loadData()) {
System.out.println(line);

}

} catch (IOException e) { // Error

System.out.println(“Can’t load data”);

}

}

}

Compilation fails because Java forbids handling of checked exceptions
which are not declared inside the corresponding try block. The problem is
that from Java’s point of view, our loadData() function looks like this:
@notNull

public List<String>loadData() {...}

And so it doesn’t provide any information about possibly thrown
exceptions. The solution is to use the special @Throws annotation where
you can specify exception classes:
// util.kt

@Throws(IOException::class)
fun loadData() = File(“data.txt”).readLines()

Now, we can properly handle its call within Java’s try-catch block. Calling
it outside the exception handler and any method with explicit throws the
IOException clause will lead to a compilation error as expected:
public class Main {

public static void main(String[] args) {
// Error: Unhandled IOException

for (String line :UtilKt.loadData()) {

System.out.println(line);

}

}

}

Bear in mind that the Kotlin compiler doesn’t validate the consistency of
@Throws annotations between base and overriding members. For example,
we can write:
import java.io.File
import java.io.IOException
abstract class Loader {
abstract fun loadData(): List<String>

}

Class FileLoader(val path: String) : Loader() {
@Throws(IOException::class)

override fun loadData() = File(path).readLines()
}

Such a class hierarchy can’t be declared in the Java source code since the
language specification forbids adding extra checked exceptions in
overriding methods.

Inline functions
Since Java has no notion of inline functions, Kotlin functions marked with
inline modifiers are exposed as ordinary methods. You can call them in the
Java code, but their bodies are not inlined in this case.
A special case is a generic inline function with reified type parameter(s). As
of now, type reification can’t be implemented without inlining so calling
such functions from the Java code is not possible. For example, if we define
a generic cast() function:
inline fun<reifiedT : Any>Any.cast(): T? = this as? T

It will be exposed as a private member of the facade class, thus forbidding
any external access:
public class Main {

public static void main(String[] args) {
UtilKt.<Integer>cast(“”); // Error: cast is private

}

}

Type aliases
Kotlin type aliases can’t be used in the Java code. Any declaration referring
to type aliases will use ts underlying type when seen from the Java code.
For example, from the JVM’s view the following definitions would produce
the Person class with the Name alias replaced by String
typealias Name = Stringclass Person(val firstName: Name, val

familyName: Name)

:

// Java code:

public class Main {
public static void main(String[] args) {

Person person = new Person(“John”, “Doe”);

System.out.println(person.getFamilyName()); // Doe

}

}

Exposing Kotlin classes as Java records
Starting from Kotlin 1.5, you make use of the special @JvmRecord
annotation which exposes the Kotlin data class as a Java record. Consider
the following code:
@JvmRecord

data classPerson(

val firstName: String,

val familyName: String,

val age: Int

)

From Java’s point of view, it has essentially the same effect as a similar
declaration of the Java record with an extra set of Kotlin-specific methods
like copy() and componentN():
public record Person(String firstName, String familyName, int
age) {

}

This, in particular, allows the Java code to access data class properties via
record-style getters.
class Main {

public static void main(String[] args) {
var person = new Person(“John”, “Doe”, 25);
System.out.println(person.firstName());// John

System.out.println(person.familyName());// Doe

System.out.println(person.age());// 25

}

}

Keep in mind that common-convention getters (for example,
getFirstName() or getAge()) are not generated when using @JvmRecord:
System.out.println(person.getAge());// ERROR

Conclusion

This chapter has introduced us to the topic of how to mix Kotlin and Java
code within a common codebase. We looked at how Kotlin and Java
declarations are exposed to each other, which common problems can arise
when you attempt to use Java declarations in the Kotlin code and vice versa
and addressed their basic solutions as well as the means to tune language
interoperability on the JVM platform.
In the next chapter, we will focus on the concurrent applications. We’ll see
how Java concurrent primitives can be used in Kotlin and discuss various
aspects of coroutines, a powerful language feature which allows you to
program suspendable computations.

Questions
1. What is a synthetic property? What are the rules regarding the use of

Java accessor methods in Kotlin?
2. What is a platform type? What kinds of platform types are supported

in Kotlin?
3. How nullability annotations in the Java code affect Kotlin types?
4. Describe how Kotlin types are mapped to Java and vice versa.
5. Explain how SAM conversions and constructors work in Kotlin.
6. How Kotlin properties can be accessed from Java code?
7. In which cases, backing fields of Kotlin properties are available to the

Java code?
8. What is a file facade? Describe how Kotlin top-level functions and

properties can be used in Java.
9. How do you merge multiple Kotlin files into a single facade class?

10. Describe usages of the @JvmName annotation.
11. Describe how instances of Kotlin object declarations are exposed to

the Java code.
12. How do you make object members available as static methods in

Java?
13. What is an effect of using @JvmOverloads?
14. How would you declare possible checked exceptions for a Kotlin

function?

CHAPTER 13
Concurrency

In this chapter, we will focus on the major topic of writing concurrent code.
Our main goal will be to get an understanding of coroutines, one of the
distinguishing features of Kotlin, first introduced in version 1.1 and
achieving the release status in Kotlin 1.3.
We’ll start with the discussion of basic ideas underlying Kotlin coroutines
such as suspending functions and structured complexity and gradually move
to more advanced issues of concurrent control-flow: how the coroutine state
can be changed throughout its lifecycle, how cancellation and exception
work, and how concurrent tasks get assigned to threads.
We will also cover techniques such as channels and actors which allow your
code to implement communication between concurrent tasks and to share
some mutable data in a thread-safe manner.
Finally, we’ll also discuss some utilities simplifying the usage of Java
concurrency API in Kotlin code: creating threads, using synchronization
and locks.

Structure
In this chapter, we will cover the following topics:

Coroutines
Concurrent communication
Using Java concurrency

Objective
After reading this chapter, the reader will be able to use concurrency
primitives provided by the Kotlin coroutines library for building scalable
and responsive code.

Coroutines
Kotlin programs can easily use Java concurrent primitives to achieve
thread-safety. Using them, however, still poses a certain problem because
most concurrent operations are blocking; in other words, a thread which
uses operations such as Thread.sleep(), Thread.join(), or
Object.wait() will be blocked until it completes. Blocking and resuming
thread execution requires computationally intensive context switching at the
system level which may negatively impact the program performance. On
top of that, each thread consumes a considerable amount of system
resources so maintaining a large number of concurrent threads may be
impractical or even not possible at all.
A more efficient approach involves asynchronous programming: we can
supply a lambda which needs to be called back when the requested
operation is completed. The original thread in the meantime can go on with
some useful work (like processing client requests or handling UI events)
instead of just waiting in a blocked state. The major problem of such an
approach is a drastic increase of code complexity as we can’t use an
ordinary imperative control-flow.
In Kotlin, you can have the best of both worlds thanks to a powerful
mechanism of coroutines which allows you to write code in a familiar
imperative style and yet have it automatically transformed into an efficient
asynchronous computation by a compiler. This mechanism is based on the
concept of suspending functions which are able to preserve their context
and can be suspended and resumed at certain points of their execution.
It’s worth noting that most of the coroutines’ power is provided by a
separate library which must be explicitly configured in your project. The
version used in the book is given by the following Maven coordinates:
org.jetbrains.kotlinx:kotlinx-coroutines-core:1.4.2.
IDE Tips: If you’re using IntelliJ IDEA without relying on any particular
build system like Maven or Gradle, you can add the coroutines library by
following the given steps:

1. Press F4 on the root node in the Project View panel or right-click on
it and choose Open Module Settings.

2. Click on the Libraries item on the left, then click on + button on the
top toolbar and choose the From Maven... option.

3. Type Maven coordinates of the library (for example,
org.jetbrains.kotlinx:kotlinx-coroutines-core:1.4.2) and
click on OK (as shown in Figure 13.1).

4. The IDE will then download the library with the necessary
dependencies and suggest you to add it to modules of your project.
Confirm it by clicking on OK.

In the following sections, we’ll talk about basic concepts introduced by the
coroutines library and see how they can be used for the purpose of
concurrent programming.

Figure 13.1: Downloading Kotlin coroutines library

Coroutines and suspending functions
The basic language primitive underlying the entire coroutines library is a
suspending function. This is generalization of an ordinary function which
has an ability to suspend its execution on certain points in its body retaining
all the necessary context and then resuming on demand. In Kotlin, such
functions are marked by the suspend modifier:
suspend fun foo() {

println(“Task started”)

delay(100)

println(“Task finished”)

}

The preceding delay() function we’ve used is a suspending function
defined in the coroutines library. Its purpose is similar to the
Thread.sleep(); however, instead of blocking the current thread, it

suspends the calling function leaving the thread free for execution of other
tasks (such as switching to other suspending functions).
Suspending functions may call both suspending and ordinary functions. In
the former case, such a call becomes a suspension point where the caller
execution may be temporarily stopped and resumed later, while the latter
proceeds just like a normal function call which returns after the invoked
function has finished. Kotlin, however, forbids you to call suspending
functions from an ordinary one:
fun foo() {

println(“Task started”)

delay(100) // Error: delay is a suspend function

println(“Task finished”)

}

IDE Tips: When using the IntelliJ plugin, you can easily identify the
suspending call by a special icon on the left-hand side of the corresponding
line as shown in Figure 13.2:

Figure 13.2: Suspending calls in IDE

If only suspending functions are allowed to make suspending calls, how do
we invoke a suspending function at all? The most obvious way to is to mark
the main() function itself as suspend:
import kotlinx.coroutines.delay
suspend fun main() {

println(“Task started”)

delay(100)

println(“Task finished”)

}

When you run the preceding code above, it prints the following:
Task started

Task finished

With a 100 ms delay in between as expected.
In more realistic cases, however, when we need some control over the
lifecycle and behavior of concurrent tasks, suspending functions are
executed in a specific scope which defines a set of concurrent tasks with a
shared lifecycle and context. Various functions which are used to launch
coroutines and commonly known as coroutine builders serve as extensions
on CoroutineScope instances. One of its basic implementations is given by
the GlobalScope object: it allows you to create standalone coroutines which
can further spawn their own nested tasks. Now, we’ll take a look at three
common coroutine builders: launch(), async() and runBlocking().

Coroutine builders
The launch() function starts a coroutine and returns a Job object which you
can use to track its state and cancel the underlying task when needed. The
function takes a suspending lambda of type CoroutineScope.() -> Unit
which comprises the body of a new coroutine. Let’s consider a simple
example:
import kotlinx.coroutines.*

import java.lang.System.*

fun main() {

val time = currentTimeMillis()

GlobalScope.launch {

delay(100)

println(“Task 1 finished in ${currentTimeMillis() - time}

ms”)

}

GlobalScope.launch {

delay(100)

println(“Task 2 finished in ${currentTimeMillis() - time}

ms”)

}

Thread.sleep(200)

}

If you run the preceding code, you’ll see something like this:
Task 2 finished in 176 ms
Task 1 finished in 176 ms

A thing worth noting is that both tasks complete at virtually the same time
relative to the program start which means that they are really executed in
parallel. A particular order is not guaranteed, though, so any of the two
tasks may become the first depending on the circumstances. The Coroutines
library also includes means for enforcing execution ordering when that’s
necessary: we’ll discuss them in the upcoming sections devoted to
concurrent communication.
The main() function itself uses Thread.sleep() to temporarily block the
main thread execution: this should give coroutine threads enough time to
complete since by default, they are run in the daemon mode and would be
shut down early once the main() thread terminates.
Keep in mind that while using thread-blocking functions like sleep() is
possible inside suspending function as well, you’re strongly discouraged
from doing this because such code defeats the entire purpose of coroutines.
For that reason, we’ve used suspending delay() inside our concurrent
tasks.
IDE Tips: The IntelliJ plugin warns you about potentially blocking function
calls like Thread.sleep() or Thread.join() inside the coroutine code.
Note that coroutines are substantially more lightweight than threads. In
particular, you can easily afford a huge number of concurrently running
coroutines since each of them usually only has to keep a relatively compact
state and do not need a full-fledged context switching when being
suspended or resumed.
The launch() builder is suited for cases when the concurrent task is not
supposed to compute some result: that’s why it takes a Unit-typed lambda.
If we do need a result, however, there is another builder function which is
called async(). This function returns an instance of Deferred, a special Job
subtype which provides access to the computation result through the
await() method. When invoked, await() suspends until the computation is
either completed (thus, producing a result), or cancelled. In the latter case,

await() fails with an exception. You can consider them a non-blocking
counterpart of Java futures. For example:
import kotlinx.coroutines.*
suspend fun main() {

val message = GlobalScope.async {
delay(100)

“abc”

}

val count = GlobalScope.async {

delay(100)

1 + 2

}

delay(200)

val result = message.await().repeat(count.await())

println(result)

}

In this case, we’ve also marked the main() function with suspend to
directly call the await() methods of both deferred tasks. The output
unsurprisingly looks as follows:
abcabcabc

By default, both launch() and async() builders run coroutines in a shared
pool of background threads while the calling thread itself is left unblocked.
That’s why we had to insert sleep() into our launch() example as the
main thread had little work to do besides waiting for the completion of our
tasks. The runBlocking() builder, on the other hand creates a coroutine
which by default executes in the current thread and blocks until it
completes. When coroutine returns successfully, the return value of the
suspend lambda becomes the value of the entire runBlocking() call. When
the coroutine is cancelled, runBlocking() throws an exception. Conversely,
when a blocked thread is interrupted, the coroutine started by
runBlocking() gets cancelled as well. For example:
import kotlinx.coroutines.*
fun main() {

GlobalScope.launch {

delay(100)

println(“Background task:

${Thread.currentThread().name}”)

}

runBlocking {

println(“Primary task: ${Thread.currentThread().name}”)

delay(200)

}

}

Running this program will produce something like this:
Primary task: main

Background task: DefaultDispatcher-worker-2
You can see that the coroutine inside runBlocking() is executed in the
main thread while the one created by launch() gets assigned to a
background thread from a shared pool.
Due to its blocking nature, the runBlocking() shouldn’t be used inside
other coroutines. It’s intended as a kind of bridge between blocking and
non-blocking code and can be used, for example, as a top-level builder in
the main function or tests.

Coroutine scopes and structured concurrency
So far, our example coroutines were running in the global scope which
effectively means that their lifetime is limited only by that of the entire
application. In some cases, though, we may want to ensure that the
coroutine execution is restricted to a particular operation. This is possible
thanks to the parent-child relationship between concurrent tasks: when you
start one coroutine in the context of another, the latter becomes a child of
the former. The lifecycles of parent and child are related so that the parent
coroutine may complete only after completion of all its children.
This feature is called a structured concurrency. It can be compared to using
blocks and subroutines to constrain a scope of local variables. Let’s look at
some examples:
import kotlinx.coroutines.*
fun main() {

runBlocking {

println(“Parent task started”)

launch {

println(“Task A started”)

delay(200)

println(“Task A finished”)

}

launch {

println(“Task B started”)

delay(200)

println(“Task B finished”)

}

delay(100)

println(“Parent task finished”)

}

println(“Shutting down...”)

}

The preceding code starts a top-level coroutine which then launches a pair
of children by calling launch on the current instance of CoroutineScope
(which is passed as a receiver to the suspending lambda). If you run this
program, you’ll see the following result:
Parent task started

Task A started

Task B started

Parent task finished

Task A finished

Task B finished

Shutting down...

You can see that the main body of the parent coroutine represented by
suspend lambda of the runBlocking() call finishes before its children due
to having a smaller delay of 100 ms. The coroutine itself is not completed at
this point and just waits in a suspended state until the completion of both
the children. After that, the parent coroutine completes as well and since
we’re using the runBlocking() builder here, it also unblocks the main
thread allowing it to print the final message.
You can also introduce a custom scope by wrapping a code block inside the
coroutineScope() call. Similarly to runBlocking(), this function returns
the value of its lambda and doesn’t complete until its children reach
completion. The main different between coroutineScope() and

runBlocking() is that the former is a suspending function which doesn’t
block the current thread:
import kotlinx.coroutines.*
fun main() {

runBlocking {

println(“Custom scope start”)

coroutineScope {

launch {

delay(100)

println(“Task 1 finished”)

}

launch {

delay(100)

println(“Task 2 finished”)

}

}

println(“Custom scope end”)

}

}

Note that the “Custom scope end” message is printed last because the
preceding coroutineScope() call suspends until both the children finish
their execution.
In general, parent-child relationships can form complex coroutine
hierarchies which define a shared scope for processing of exceptions and
cancellation requests. We’ll revisit this topic in the following sections when
talking about coroutine jobs and cancelling.

Coroutine context
Each coroutine has an associated context which is represented by the
CoroutineContext interface and can be accessed by the
coroutineContext property of the enclosing scope. The context is an
immutable collection of key-value pairs which contains various data
available to the coroutine. Some of them have a special meaning for the
coroutine machinery and affect how a coroutine gets executed at runtime.
The following elements are of particular interest:

job which represents the cancellable task performed by the coroutine.
dispatcher which controls how coroutines are associated with
threads.

In general, the context can store any data implementing
CoroutineContext.Element. To access a particular element, you can use
the get() method or indexing operator supplying a corresponding key:
GlobalScope.launch {

// obtains current job and prints “Task is active: true”

println(“Task is active:

${coroutineContext[Job.Key]!!.isActive}”)

}

By default, coroutines created by standard builders like launch() or
async() inherit their context from the current scope. When necessary, you
can supply a different one by using the context parameter of the
corresponding builder function. To create a new context, you may use the
plus() function/+ operator which merges data from two contexts together
and the minusKey() function which removes an element with a given key:
import kotlinx.coroutines.*
private fun CoroutineScope.showName() {

println(“Current coroutine:

${coroutineContext[CoroutineName]?.name}”)

}

fun main() {
runBlocking {

showName() // Current coroutine: null

launch(coroutineContext + CoroutineName(“Worker”)) {

showName() // Current coroutine: Worker

}

}

}

You can also switch context during the coroutine execution using the
withContext() function which takes a new context and a suspending
lambda. This can be useful, for example, if you want to run some block of
code inside a different thread. We’ll take a look at an example of such
thread-jumping in a section about coroutine dispatchers.

Coroutine control-flow
In this section, we’ll consider the specifics of how control is transferred
within the coroutine framework that covers topics such as cancellation,
exception handling, and assigning coroutines to threads.

Job lifecycle
A job is an object which represents a lifecycle of a concurrent task. Using
jobs, you can track task states and cancel them when necessary. Possible
states of a job are shown in Figure 13.3. Let’s take a closer look at what
these states mean and how the job transition moves from one state into
another.

Figure 13.3: Job states

An active state means that a job has been started but hasn’t yet come to
completion. This state is usually used by default: in other words, job is
implicitly started after it’s created. Some coroutine builders like launch()
and async() allow you to choose the initial state by specifying an argument
of the CoroutineStart type:

CoroutineStart.DEFAULT is the default behavior where the job is
started immediately.
CoroutineStart.LAZY means that the job has not started
automatically; in this case, it’s placed into a new state and awaits
starting.

A job in the new state can be started by calling its start() or join()
method after which it transitions to the active state. For example:
import kotlinx.coroutines.*
fun main() {

runBlocking {

val job = launch(start = CoroutineStart.LAZY) {

println(“Job started”)

}

delay(100)

println(“Preparing to start...”)

job.start()

}

}

The preceding program defers the child coroutine start until the root one
prints its message. The output looks as follows:
Preparing to start...

Job startd

While in the active state, a job can be repeatedly suspended and resumed by
the coroutines machinery. It can also start new jobs which become its
children thus forming a tree-like dependency structure between concurrent
computations. You can determine a list of non-completed children jobs by
using the children property. For example:
import kotlinx.coroutines.*
fun main() {

runBlocking {

val job = coroutineContext[Job.Key]!!

launch { println(“This is task A”) }

launch { println(“This is task B”) }

// 2 children running

println(“${job.children.count()} children running”)

}

}

When the coroutine finishes the execution of the suspending lambda block,
its job changes its state to completing which basically means “waiting for
children completion”. Job retains this state until all of its children complete
after which it transitions to the completed state.

You can use Job’s join() method to suspend the current coroutine until
the job in question is completed. The following program ensures that the
root coroutine message is printed after both its children finish their
execution:
import kotlinx.coroutines.*

fun main() {
runBlocking {

val job = coroutineContext[Job.Key]!!
val jobA = launch { println(“This is task A”) }
val jobB = launch { println(“This is task B”) }
jobA.join()

jobB.join()

println(“${job.children.count()} children running”)

}

}

The resulting output is as follows:
This is task A

This is task B

0 children running

As expected, there are no active children at the point
job.children.count() is evaluated.
Cancelling and cancelled states reflect the status of a job whose execution is
being/was cancelled either due to unhandled exception, or an explicit call to
the cancel() method.
The current state of a job can be tracked by its properties: isActive,
isCancelled, and isComplete. Their meaning can be summarized in the
following table and you can also find it in the documentation to the Job
interface:

Job State isActive isCompleted isCancelled

New false false false

Active true false false

Completing true false false

Cancelling false false true

Cancelled false true true

Completed false true false

Table 13.1: Determining current state by Job properties

Note that isCompleted returns true for both completed and cancelled jobs,
you can distinguish between the two by checking the isCancelled property.
Completed and completing states, on the other hand, are indistinguishable
from the outside of job itself.

Cancellation
Jobs can be cancelled by calling their cancel() method. This provides a
standard mechanism for terminating computations which are no longer
necessary. The cancellation is cooperative; in other words, a cancellable
coroutine itself must check whether its cancellation is requested and
respond appropriately. Consider the following program:
import kotlinx.coroutines.*
suspend fun main() {

val squarePrinter = GlobalScope.launch(Dispatchers.Default)
{

var i = 1
while (true) {
println(i++)

}

}

delay(100) // let child job run for some time

squarePrinter.cancel()

}

The code starts a coroutine which constantly prints integer numbers, allows
it to run for about 100 milliseconds, and then tries to cancel. However, if
you run the program, you’ll find that squarePrinter continues to execute.
The reason is that it doesn’t cooperate in cancellation. One way to fix this is
to repeatedly check whether the coroutine was cancelled before doing the
next piece of work:
import kotlinx.coroutines.*
suspend fun main() {

val squarePrinter = GlobalScope.launch(Dispatchers.Default)
{

var i = 1
while (isActive) {
println(i++)

}

}

delay(100) // let child job run for some time

squarePrinter.cancel()

}

The isActive extension property checks whether the current job is in the
active state. On CoroutineScope (which is passed as a receiver to the
coroutine suspend lambda), it simply delegates it to the isActive property
of the current job. Now, when the parent coroutine calls the cancel()
method, the squarePrinter state is changed to cancelling and the next
check of the isActive condition forces loop termination. When the
coroutine finishes its execution, the state is changed to cancelled. If you run
the preceding code, you’ll see that it terminates after running approximately
100 milliseconds.
Another solution is to replace the state check with a call to some suspending
function which can respond to cancellation by throwing
CancellationException. This exception is used internally by the coroutine
library as a control-flow token signalling that job cancelling is in progress.
This is true for all suspending functions defined in the coroutines library
such as delay() or join(). One more example is yield() which suspends
a given job freeing its thread for other coroutines (similarly to how
Thread.yield() may suspend the current thread by giving other threads an
extra chance to run):
import kotlinx.coroutines.*
suspend fun main() {

val squarePrinter = GlobalScope.launch(Dispatchers.Default)
{

var i = 1
while (true) {
yield()

println(i++)

}

}

delay(100) // let child job run for some time

squarePrinter.cancel()

}

When a parent coroutine is cancelled, it automatically cancels the execution
of all its children and the process continues until all hierarchy is cancelled.
Consider the following example:
import kotlinx.coroutines.*
fun main() {

runBlocking {

val parentJob = launch {
println(“Parent started”)

launch {

println(“Child 1 started”)

delay(500)

println(“Child 1 completed”)

}

launch {

println(“Child 2 started”)

delay(500)

println(“Child 2 completed”)

}

delay(500)

println(“Parent completed”)

}

delay(100)

parentJob.cancel()

}

}

The program launches a coroutine which then starts a pair of children. All
three tasks are supposed to be delayed for 500 ms before printing the
completion message. The parent job, however, is cancelled after 100 ms. As
a result, neither it nor its children reach completion and the program output
looks as follows:
Parent started

Child 1 started

Child 2 started

Timeouts
In some cases, we can’t wait for completion of a task indefinitely and need
to set up some timeout. The coroutines library has a special withTimeout()
function exactly for this purpose. For example, the following code starts a
coroutine which suspends while the file is being read:
import kotlinx.coroutines.*
import java.io.File
fun main() {

runBlocking {

val asyncData = async { File(«data.txt»).readText() }
try {

val text = withTimeout(50) { asyncData.await() }
println(“Data loaded: $text”)

} catch (e: Exception) {
println(“Timeout exceeded”)

}

}

}

If the file gets read within 50 milliseconds, withTimeout() just returns the
result if its block. Otherwise, it throws TimeoutCancellationException
(which is a subclass of CancellationException) and the reading coroutine
is cancelled.
There is also a similar function withTimeoutOrNull() which doesn’t throw
an exception when the timeout is exceeded and simply returns null instead.

Coroutine dispatching
While coroutines give you a thread-independent way to implement
suspendable computations, they still need to be associated with some
thread(s) when run. The coroutine library includes a special component
whose task is to control which thread is used to execute a particular
coroutine. This component is called a coroutine dispatcher.
Dispatcher is a part of coroutine context so you can specify it in coroutine
builder functions like launch() and runBlocking(). Since dispatcher is
also a singleton context by itself, you can simply pass it as a context
parameter:

import kotlinx.coroutines.*

fun main() {
runBlocking {

// running coroutine using global thread pool dispatcher

launch(Dispatchers.Default) {

println(Thread.currentThread().name)

// DefaultDispatcher-worker-1

}

}

}

Coroutine dispatchers are somewhat similar to Java executors which
distribute threads between a set of parallel tasks. In fact, you can easily
convert the existing implementation of the Executor into a respective
coroutine dispatcher by using the asCoroutineDispatcher() extension
function. In the following example, we create a pool-based executor service
with the custom thread factory which assigns names like WorkerThread1,
WorkerThread2, … to executor threads. Then, we convert it into a
dispatcher and use it to start several coroutines in parallel. Note that we
explicitly set up worker threads as daemons so that they won’t prevent the
program termination after all coroutines complete:
import kotlinx.coroutines.*
import java.util.concurrent.ScheduledThreadPoolExecutor
import java.util.concurrent.atomic.AtomicInteger
fun main() {

val id = AtomicInteger(0)
val executor = ScheduledThreadPoolExecutor(5) { runnable ->

Thread(

runnable,

“WorkerThread-${id.incrementAndGet()}”

).also { it.isDaemon = true }

}

executor.asCoroutineDispatcher().use { dispatcher ->

runBlocking {

for (i in 1..3) {
launch(dispatcher) {

println(Thread.currentThread().name)

delay(1000)

}

}

}

}

}

The delay forces the executor to create separate threads so the preceding
code would print the following:
WorkerThread-1

WorkerThread-2

WorkerThread-3

Although the specific thread order may vary.
Note that when invoked on an instance of ExecutorService, asCoroutine
Dispatcher() returns ExecutorCoroutineDispatcher which also
implements the Closeable interface. You need to use the close() method
to shut down the underlying executor service and free system resources
allocated to maintain its threads or wrap dispatcher usages inside the use()
function block like we did in the preceding example.
The coroutines library also comes with a set of out-of-the box dispatcher
implementations. Some of them can be accessed via the Dispatchers
object:

Dispatchers.Default: This is a shared tread pool whose size is by
default equal to the number of available CPU cores or 2 (whatever is
greater). This implementation is generally suited for CPU-bound
computations where the task performance is limited primarily by the
CPU speed.
Dispatchers.IO: This is a similar implementation based on a thread
pool which is optimized for running potentially blocking I/O-intensive
tasks such as reading/writing files. This dispatcher shares the thread
pool with the default implementation adding or terminating extra
threads when necessary.
Dispatchers.Main: This is a dispatcher which operates exclusively in
the UI event thread where the user input is processed.

It’s also possible to create a dispatcher based on a private thread pool or
even a single thread by using either the newFixedThreadPoolContext(), or

newSingleThreadPoolContext() function. For example, we can rewrite our
Executor-based sample as follows:
import kotlinx.coroutines.*
@Suppress(«EXPERIMENTAL_API_USAGE»)

fun main() {
newFixedThreadPoolContext(5, “WorkerThread”).use {

dispatcher ->

runBlocking {

for (i in 1..3) {
launch(dispatcher) {

println(Thread.currentThread().name)

delay(1000)

}

}

}

}

}

Note that we’ve used the @Suppress annotation because
newFixedThreadPool Context() and newSingleThreadPoolContext() are
currently marked as obsolete API and are expected to be replaced by newer
functions based on a shared thread pool.
When the dispatcher is not specified explicitly (like we did in earlier
examples), it’s automatically inherited from the scope you use to start a
coroutine. Consider the following example:
import kotlinx.coroutines.*
fun main() {

runBlocking {

println(“Root: ${Thread.currentThread().name}”)

launch {

println(“Nested, inherited:

${Thread.currentThread().name}”)

}

launch(Dispatchers.Default) {

println(“Nested, explicit:

${Thread.currentThread().name}”)

}

}

}

We start a top-level coroutine which runs in the main thread and launches
two nested coroutines: one whose context (and coroutine dispatcher as a
result) is inherited from the parent coroutine and another where the
dispatcher is specified explicitly. Thus, the preceding code would print the
following:
Root: main

Nested, explicit: DefaultDispatcher-worker-1

Nested, inherited: main

In the absence of a parent coroutine, the dispatcher is implicitly assumed to
be Dispatchers.Default except for the runBlocking() builder which is
confined to the current thread.
The coroutine does not need to have the same dispatcher throughout its
entire lifetime. Since the dispatcher is a part of coroutine context, it can be
overridden by using the withContext() function:
import kotlinx.coroutines.*

@Suppress(«EXPERIMENTAL_API_USAGE»)

fun main() {
newSingleThreadContext(“Worker”).use { worker ->

runBlocking {

println(Thread.currentThread().name) // main

withContext(worker) {

println(Thread.currentThread().name) // Worker

}

println(Thread.currentThread().name) // main

}

}

}

This technique comes in handy when we want to confine an execution of a
particular routine fragment to a single thread.

Exception handling
When it comes to exception handling, various coroutine builders follow one
of the two basic strategies. The first one implemented by builders like

launch() is to propagate exception to the parent coroutine. In this case, the
execution proceeds as follows:

1. The parent coroutine is cancelled with the same exception as a cause.
This causes it to cancel all the remaining children.

2. When the children are cancelled, the parent passes an exception to
further up the coroutine tree.

The process continues until it reaches a coroutine with a global scope. After
that, it’s handled by CoroutineExceptionHandler. Consider, for example,
the following program:
import kotlinx.coroutines.*

fun main() {
runBlocking {

launch {

throw Exception(“Error in task A”)
println(“Task A completed”)

}

launch {

delay(1000)

println(“Task B completed”)

}

println(“Root”)

}

}

The top-level coroutine starts a pair of nested tasks with the first one
throwing an exception. This causes cancellation of the root task and both of
its children and since no custom handler is provided, the program falls back
to the default behavior represented by Thread.uncaughtExceptionHandler.
As a result it would print the following:
Root

Exception in thread “main” java.lang.Exception: Error in task

A

Followed by the exception stack trace.
CoroutineExceptionHandler defines a single method which takes the
current coroutine context and a thrown exception:

fun handleException(context: CoroutineContext, exception:
Throwable)

The simplest way to construct a handler is to use the
CoroutineExceptionHandler() function which takes a two-argument
lambda:
val handler = CoroutineExceptionHandler { _, exception ->

println(“Caught $exception”)

}

To configure its instance for processing exceptions, you can put it into
coroutine context. Since the handler is a trivial context by itself, you can
just pass it as a context argument into the coroutine builder:
import kotlinx.coroutines.*
suspend fun main() {

val handler = CoroutineExceptionHandler { _, exception ->
println(“Caught $exception”)

}

GlobalScope.launch(handler) {

launch {

throw Exception(“Error in task A”)
println(“Task A completed”)

}

launch {

delay(1000)

println(“Task B completed”)

}

println(“Root”)

}.join()

}

Now, the program prints the following:
Root

Caught java.lang.Exception: Error in task A

Thus, overriding the default behavior.
When no handler instance is defined in context, the coroutines library will
invoke all global handlers configured via the JVM ServiceLoader
mechanism as well as uncaughtExceptionHandler for the current thread.

Note that CoroutineExceptionHandler can only be specified for a
coroutine launched in the global scope and is used only for its children.
That’s why we had to replace runBlocking() with GlobalScope.launch()
and mark the main() function with suspend to make use of suspending
join() call. If we’ve retained runBlocking() from our original example,
but supplied it with a handler:
import kotlinx.coroutines.*

fun main() {
val handler = ...

runBlocking(handler) {

...

}

}

The program would still use the default exception handler since our
coroutines wouldn’t be run in the global scope.
Another way to handle exception, used by the async() builder, is to
preserve the thrown exception and rethrow it later when the corresponding
await() is called. Let’s modify our example slightly:
import kotlinx.coroutines.*
fun main() {

runBlocking {

val deferredA = async {
throw Exception(“Error in task A”)

println(“Task A completed”)

}

val deferredB = async {
println(“Task B completed”)

}

deferredA.await()

deferredB.await()

println(“Root”)

}

}

Now, the output looks as follows:
Exception in thread “main” java.lang.Exception: Error in task

A

The reason is that the exception is re-thrown by deferredA.await() so the
program fails to reach the println(“Root”) statement.
Note async-like builders which rethrow an exception when you access
coroutine data do not rely on CoroutineExceptionHandler. So even if you
have its instance preconfigured in the coroutine context, it has no effect
(just as we’ve seen in the runBlocking() example); the program will still
fall back to the default handler.
What if we want to process exceptions thrown by the nested coroutines at
the level of their parent without relying on global handlers? Let’s see what
happens if we attempt to process an rethrown exception using the try-catch
block:
import kotlinx.coroutines.*

fun main() {
runBlocking {

val deferredA = async {
throw Exception(“Error in task A”)

println(“Task A completed”)

}

val deferredB = async {
println(“Task B completed”)

}

try {

deferredA.await()

deferredB.await()

} catch (e: Exception) {

println(“Caught $e”)

}

println(“Root”)

}

}

If you run this code, you’ll see that the handle is indeed activated, but the
program still fails with an exception:
Caught java.lang.Exception: Error in task A

Root

Exception in thread “main” java.lang.Exception: Error in task

A

The reason is that the exception is rethrown automatically to cancel the
parent coroutine when its child (task A in this case) fails. To override this
behavior, we can use a so called supervisor job.
With supervisor jobs, the cancellation propagates only in the downward
direction; if you cancel a supervisor, it automatically cancels all its children,
but if a child is cancelled instead, the supervisor and its remaining children
remain active.
To turn the parent coroutine into a supervisor, we define a new scope using
the supervisorScope() function instead of coroutineScope(). Let’s
modify the previous example:
import kotlinx.coroutines.*
fun main() {

runBlocking {

supervisorScope {

val deferredA = async {
throw Exception(“Error in task A”)

println(“Task A completed”)

}

val deferredB = async {
println(“Task B completed”)

}

try {
deferredA.await()

} catch (e: Exception) {
println(“Caught $e”)

}

deferredB.await()

println(“Root”)

}

}

}

Now, the exception is not rethrown after processing and both task B and
root coroutine reach completion:
Task B completed

Caught java.lang.Exception: Error in task A

Root

Note that the supervisor behavior extends to normal cancellations as well:
calling cancel() on one of its children jobs doesn’t cause cancellation of its
siblings or supervisor itself.

Concurrent communication
In this section, we’ll talk about more advanced features of the coroutines
library which allow you to efficiently share data between multiple
concurrent tasks while retaining thread-safety. To be exact, we’ll focus on
channels which provide a mechanism for passing data streams between
coroutines and actors which allow you to safely share the mutable state
without any synchronizations and locks.

Channels
Channels offer you a convenient way to share an arbitrary data stream
between coroutines. The basic operations on any channel represented by the
Channel interface is sending data elements by the send() method and
receiving them by the receive() method, respectively. When these
methods can’t complete their work – for example, when the channel’s
internal buffer is full and you try to send data to it – they suspend the
current coroutine and resume them later when it’s possible. That’s the major
difference between channels and blocking queues which play a similar role
in Java’s concurrency API but work by blocking calling the thread.
Channels can be constructed by the generic Channel() function which takes
an integer value describing the channel capacity. One of the basic
implementations is a channel with an internal buffer of a limited size. When
the buffer is full, a call to send() is suspended until at least one element is
received. Similarly, a call to receiver() suspends when the buffer is empty
until at least one element gets sent. Let’s consider a small example:
import kotlinx.coroutines.channels.Channel
import kotlinx.coroutines.*
import kotlin.random.Random
fun main() {

runBlocking {

val streamSize = 5
val channel = Channel<Int>(3)

launch {

for (n in 1..streamSize) {
delay(Random.nextLong(100))

val square = n*n

println(“Sending: $square”)

channel.send(square)

}

}

launch {

for (i in 1..streamSize) {
delay(Random.nextLong(100))

val n = channel.receive()
println(“Receiving: $n”)

}

}

}

}

The first coroutine produces a stream of integer squares and sends them to
the channel which can hold up to 3 elements while the second one
concurrently receives generated numbers. We’ve inserted random delays to
provoke occasional suspension when either of coroutines don’t catch up
with its counterpart leading to an empty/full channel buffer. A possible
result may look like this:
Sending: 1

Receiving: 1

Sending: 4

Receiving: 4

Sending: 9

Sending: 16

Receiving: 9

Sending: 25

Receiving: 16

Receiving: 25

Although, the output may vary depending on actual delays and other
circumstances, channels ensure that all values are received in the same
order as they are being sent.

The Channel() function can also take some special values which produce
channels with different behavior. These values are represented by constants
in the companion object of the Channel interface:

Channel.UNLIMITED (= Int.MAX_VALUE): This is a channel with
unlimited capacity whose internal buffer grows on demand. Such
channels never suspend on send(), but can suspend on receiver()
when the buffer is empty.
Channel.RENDEZVOUS (= 0): This is a rendezvous channel which has
no internal buffer. Any call to send() suspends until some other
coroutine invokes receive(). Similarly, the receive() call is
suspended until someone invokes send(). This channel is created by
default when you omit capacity argument.
Channel.CONFLATED (= -1): This is a conflated channel which stores
at most one element which is overwritten by send() so that any
unread sent values are lost. In this case, the send() method never
suspends.

Any positive value less than UNLIMITED produces a channel with a limited-
size buffer.
The Rendezvous channel ensures that producer and consumer coroutines
are activated in turns. For example, if we change our earlier example by
setting the channel capacity to zero, we’ll always get a stable operation
order regardless of delays:
Sending: 1

Receiving: 1

Sending: 4

Receiving: 4

Sending: 9

Receiving: 9

Sending: 16

Receiving: 16

Sending: 25

Receiving: 25

Conflated channels can be used if you don’t need every element in a stream
and can afford discarding some of them if the consume routine doesn’t

catch up with the producer. Let’s modify our first example by setting the
consumer delay to be twice as much as producer’s:
import kotlinx.coroutines.channels.Channel

import kotlinx.coroutines.*
fun main() {

runBlocking {

val streamSize = 5
val channel = Channel<Int>(Channel.CONFLATED)
launch {

for (n in 1..streamSize) {
delay(100)

val square = n*n

println(“Sending: $square”)

channel.send(square)

}

}

launch {

for (i in 1..streamSize) {
delay(200)

val n = channel.receive()7
println(“Receiving: $n”)

}

}

}

}

As a result, only about half of produced values are received and processed.
A possible output may look as follows:
Sending: 1

Receiving: 1

Sending: 4

Sending: 9

Receiving: 9

Sending: 16

Sending: 25

Receiving: 25

If you run the preceding program, you’ll also see that it doesn’t terminate
after printing the last line. The reason is that our receiver expects to get at
least 5 values since we’re iterating from 1 to streamSize. But since only
about streamSize/2 values are actually received, this condition can never
be satisfied. What we need in this situation is some kind of signal which
would mean that the channel is closed and won’t send any further data. The
Channel API allows you to do that by calling the close() method on the
producer side. On the consumer side, we can replace the fixed-number loop
with an iteration over the channel data:
import kotlinx.coroutines.channels.Channel

import kotlinx.coroutines.*
fun main() {

runBlocking {

val streamSize = 5
val channel = Channel<Int>(Channel.CONFLATED)
launch {

for (n in 1..streamSize) {
delay(100)

val square = n*n
println(“Sending: $square”)

channel.send(square)

}

channel.close()

}

launch {

for (n in channel) {
println(“Receiving: $n”)

delay(200)

}

}

}

}

Now, the program terminates after the data exchange is complete.
On the consumer side, you can also use the consumeEach() function to read
all channel content instead of explicit iteration:
channel.consumeEach {

println(“Receiving: $n”)

delay(200)

}

After the channel is closed, any attempt to call send() will fail with
ClosedSendChannel Exception. Calls to receive() will return unread
elements until the channel is exhausted after which they will throw
ClosedSendChannelException as well.
Channel communication does not necessarily involve just a single producer
and a single consumer. For example, the same channel can be concurrently
read by multiple coroutines. This is called fanning out:
import kotlinx.coroutines.channels.Channel
import kotlinx.coroutines.*
import kotlin.random.Random
fun main() {

runBlocking {

val streamSize = 5
val channel = Channel<Int>(2)
launch {

for (n in 1..streamSize) {
val square = n*n
println(“Sending: $square”)

channel.send(square)

}

channel.close()

}

for (i in 1..3) {
launch {

for (n in channel) {

println(“Receiving by consumer #$i: $n”)

delay(Random.nextLong(100))

}

}

}

}

}

Data stream generated by a producer coroutine is split between 3
consumers. A possible output can look like as follows:
Sending: 1

Sending: 4

Sending: 9

Receiving by consumer #1: 1

Receiving by consumer #2: 4

Receiving by consumer #3: 9

Sending: 16

Sending: 25

Receiving by consumer #3: 16

Receiving by consumer #1: 25

Similarly, we can fan in by collecting the output of multiple producers in
the same channel and feeding it into a single consumer coroutine. In a more
general case, any number of producers and consumers can communicate via
multiple channels. In general, the channel behavior is fair with respect to
multiple coroutines in a sense that a coroutine which gets to invoke
receive() first, gets the next element.

Producers
There is a special producer() coroutine builder which allows you to
construct concurrent data stream similar to the sequence() function we’ve
discussed earlier when talking about the Collection API. This builder
introduces ProducerScope which provides the send() method similar to a
channel:
import kotlinx.coroutines.channels.*

import kotlinx.coroutines.*
fun main() {

runBlocking {

val channel = produce {
for (n in 1..3) {

val square = n*n
println(“Sending: $square”)

send(square)

}

}

launch {

channel.consumeEach { println(“Receiving: $it”) }

}

}

}

Note that you do not need to explicitly close a channel in this case; the
producer() builder will do it automatically on coroutine termination.
In terms of exception handling, produce() follows the policy of
async()/await(): an exception thrown inside produce() is preserved and
rethrown in the first coroutine which invokes the channel’s receive().

Tickers
The coroutines library has a special variety of a rendezvous channel which
is called a ticker. This channel produces a stream of Unit values with a
given delay between subsequent elements. To construct it, you can use the
ticker() function which allows you to specify the following:

delayMillis: Delay in milliseconds between ticker elements
initialDelayMillis: Delay before producing the first element; by
default, it’s the same as delayMillis
context: Coroutine context in which the ticker is supposed to run
(empty by default)
mode: A value of TickerMode enum which determines a mode of
ticker behavior:

TickerMode.FIXED_PERIOD: This ticker will choose a delay to
maintain a constant period between element generations as much
as possible.
TickerMode.FIXED_RATE: This ticker will simply make a
specified delay before sending each element regardless of how
much time has passed since the last receive.

To see the difference between ticker modes, let’s consider the following
code:
import kotlinx.coroutines.*

import kotlinx.coroutines.channels.*

fun main() = runBlocking {
val ticker = ticker(100)
println(withTimeoutOrNull(50) { ticker.receive() })

println(withTimeoutOrNull(60) { ticker.receive() })

delay(250)

println(withTimeoutOrNull(1) { ticker.receive() })

println(withTimeoutOrNull(60) { ticker.receive() })

println(withTimeoutOrNull(60) { ticker.receive() })

}

When run, it produces the following output:
null

kotlin.Unit

kotlin.Unit

kotlin.Unit

null

Let’s see how its execution proceeds step-by-step:

1. We try to receive the ticker signal within 50 ms timeout. Since the
ticker delay is 100 ms, withTimeOutOrNull() returns null as no signal
was sent yet.

2. Then, we try receiving the signal within the next 60 ms. This time
we’ll almost certainly get a non-null result because at least 100 ms
will pass since the ticker starts. Once the receive() is called the ticker
will resume.

3. Then, the consumer coroutine is suspended for about 250 ms. 100 ms
later the ticker sends another signal and suspends waiting for it to be
received. After that, both coroutines remain in a suspended state for
150 ms.

4. The consumer coroutine resumes and tries to request the signal. Since
the signal was already sent, receive() returns immediately (thus, we
can set a small timeout of 1 ms) allowing the ticker coroutine to
resume. Now, the ticker will measure the time elapsed since the last
signal was sent and find that it’s about 250 ms. This interval contains
two whole delays (200 ms) and a remainder of about 50 ms. The ticker
then adjusts its own waiting time before the next signal to be 100 – 50

= 50 ms so that the signal is sent when the whole delay (100 ms) is
passed.

5. The consumer tries to receive the single within 60 ms timeout and
most certainly succeed since the next signal should be sent in less than
50 ms.

6. The last attempt to receive the signal happens almost immediately so
the ticker will wait for the whole delay (100 ms) again. As a result, the
last call to receive() returns null because the signal won’t be
received within 60 ms timeout.

If we set the ticker mode to FIXED_RATE, however, the result will change:
null

kotlin.Unit

kotlin.Unit

null

kotlin.Unit

At first, the execution proceeds in almost the same way. The difference
comes after the consumer coroutine resumes after making a long delay of
250 ms. The third receive() also returns immediately since the ticker has
already sent its signal within that 250 ms period but now, it won’t take the
elapsed time into account and simply wait for another 100 ms. As a result,
the fourth call to receive() returns null because the signal is not sent yet
after 60 ms. At the moment of the fifth call, however, this interval rises
above 100 ms and the signal is received.
Note that the ticker-related API is currently considered experimental and
may be replaced in future versions of the coroutines library.

Flows
Similar to producers, flows provide a way to share a sequence of data
among different coroutines allowing the data itself to be both generated and
consumed asynchronously. Let’s consider our Producer example with
square generation and represent it in terms of flows:
import kotlinx.coroutines.flow.*
import kotlinx.coroutines.*
fun main() {

runBlocking {

val flow = flow {
for (n in 1..3) {
val square = n*n

println(“Sending: $square”)

emit(square)

}

}

launch {

flow.collect { println(“Receiving: $it”) }

}

}

}

So both concepts are pretty much equivalent in terms of their basic API:

You can use the flow() builder instead of produce() to construct a
concurrent flow instance.
You can use the emit() method of an implicit FlowCollector to
generate individual flow items instead of sending them to a channel
via send().
You can use the collect() function to consume flow items inside
another coroutine instead of the channel’s consumeEach().

However, there is not much point adding a separate framework concept if it
only differs from the existing one by the names of classes and methods
involved in its API. In fact, introduction of flows enriches the coroutines
library with a new asynchronous computation pattern somewhat erasing the
boundaries between coroutines and Kotlin sequences. So let’s look at how
flow features can be used in various use cases.
First, unlike producers, flows are multi-use which means that they are
started anew for each collect() call. This can be compared to behavior of
sequences generated by the sequence() builder (which also makes use of
the coroutines machinery). If we modify the example by adding one more
collector coroutine, both the collectors will see an entire sequence of items:
import kotlinx.coroutines.flow.*
import kotlinx.coroutines.*
fun main() {

runBlocking {

val flow = flow {
for (n in 1..3) {
val square = n*n

println(“Sending: $square”)

emit(square)

}

}

launch {

flow.collect { println(“Receiving #1: $it”) }

}

launch {

flow.collect { println(“Receiving #2: $it”) }

}

}

}

The result will look like this (with a possible change in order between
collectors #1 and #2):
Sending: 1

#1 Receiving: 1

Sending: 4

#1 Receiving: 4

Sending: 9

#1 Receiving: 9

Sending: 1

#2 Receiving: 1

Sending: 4

#2 Receiving: 4

Sending: 9

#2 Receiving: 9

In the case of our channel/producer example, an asynchronous data
generation is launched by the coroutine builder itself and is shared between
all consumers. So adding a second consumer coroutine would produce
something as follows:
Sending: 1

#1 Receiving: 1

Sending: 4

Sending: 9

#1 Receiving: 4

#2 Receiving: 9

In other words, each value would be sent and received exactly once.
Besides creating flows by a builder function, you can also transform a fixed
set of values or a collection into a flow using the flowOf() or asFlow()
function, respectively:
// 3-value flow

val fixedFlow = flowOf(“abc”, “def”, “ghi”)
// sequence emitted as flow

val seqFlow = generateSequence(1) { 2*it }.take(10).asFlow()

Another useful feature of flows is the ability to transform them using the
API similar to that of Kotlin collections. In particular, flows can be filtered
and transformed by the familiar pair of the flowOf()/filter() functions:
runBlocking {

val flow = (1..10).asFlow().filter { it % 2 == 0 }.map {
it*it }

launch {

flow.collect { println(“Collected: $it”) }

}

}

Note that lambdas passed into these functions are suspendable just like a
flow body so filtering and mapping do not block the coroutine thread as
collection operators do.
More complex transformations can be implemented with the transform()
function that replaces each item of an original flow with an arbitrary sub-
flow generated by the emit() calls. In the following example, transform()
produces a flow where even numbers are filtered out while odd ones are
emitted twice:
runBlocking {

val flow = (1..5).asFlow().transform {
if (it % 2 == 0) return@transform
emit(it)

emit(it)

}

launch {

flow.collect { println(“Collected: $it”) }

}

}

Running the preceding code, we get the following:
Collected: 1

Collected: 1

Collected: 3

Collected: 3

Collected: 5

Collected: 5

It’s possible to truncate the flow data to a given number of items using
take(). The special feature of this operation as opposed to ordinary
collection is forced cancellation of the flow coroutine on reaching the
maximum size. You can also explicitly cancel a flow by calling cancel()
inside a collector coroutine:
runBlocking {

val flow = (1..5).asFlow()
launch {

flow.collect {

if (it > 3) cancel() // stop flow after collecting 3

println(“Collected: $it”)

}

}

}

Similar to collections whose elements might be collections themselves, it’s
possible to create a flow of flows. This can happen, if values from some
asynchronous sequence trigger new computation which results in its own
flow. Consider an example:
import kotlinx.coroutines.flow.*
import kotlinx.coroutines.*
fun main() {

runBlocking {

val flow = (1..4).asFlow().map { den ->
(1 until den).asFlow().map { num ->

delay(50) // imitate delays

“$num/$den”

}

}

launch {

val startTime = System.currentTimeMillis()
flow.collect { subFlow ->

subFlow.collect { println(it) }

}

val endTime = System.currentTimeMillis()
println(“Collection time: ${endTime - startTime} ms”)

}

}

}

The program result (with a possible variation in its running time) will look
like this:
1/2

1/3

2/3

1/4

2/4

3/4

Collection time: 392 ms

It often comes in handy to replace such a nested flow with its flattened
version. In case of ordinary collections, we have functions like flatten()
and flatMap() to do the job so it seems reasonable to have an equivalent
functionality for flows as well. Indeed, the coroutines library not only
supports flow flattening but also allows you to choose different modes of
combining nested items into a resulting flow.
The most straightforward mode which parallels ordinary collection
concatenation is implemented by flattenConcat(). In this case, the
collector processes each nested flow entirely before switching to the next
one effectively duplicating the effect of a nested loop shown in the previous
example:
launch {

flow.flattenConcat().collect { println(it) }

}

The second option is given by flattenMerge() which takes items from
multiple nested flows emitting them as soon as possible. In general, this

leads to original flows being mixed. For example, if we replace our
previous collector with:
launch {

flow.flattenMerge().collect { println(it) }

}

The print trace might look like this (note the smaller running time as
compared with the concatenation mode):
1/2

1/3

1/4

2/3

2/4

3/4

Collection time: 236 ms

The merge mode decreases the collection time and so might be preferable
when you don’t need to preserve an original ordering of nested flows.
The number of simultaneously collected flows can be specified by the
optional argument which by default equals to the DEFAULT_CONCURRENCY
constant.
Both versions of flattenXXX() have corresponding flatMapXXX()
functions which combines the effects of map() and flattenXXX(). For
example:
val flow = (1..4).asFlow().flatMapMerge { den ->

(1 until den).asFlow().map { num ->

delay(50)

“$num/$den”

}

}

One more flattening mode implemented by the flatMapLatest() function
(it has no flatten() counterpart) cancels each nested flow as soon as the
next one is started. In our example, the most likely result will look as
follows:
1/4

2/4

3/4

Collection time: 240 ms

Since all four nested flows are started almost simultaneously (assumed a
system with at least 4 CPU cores) and only the last one is retained by the
collector.
Note that the flatten() and flatMap() functions are available as well but
are explicitly declared as error-deprecated. This enforces the explicit
naming of the flattening mode in the code and improves its readability.
A related task is combining two separate flows by applying some
transformation to the element pairs. One of its possible implementation is
given by the zip() function that pairs corresponding elements of both
flows and transforms them with a given lambda. The resulting flow
collection suspends until both elements are emitted so if original flows are
generated with different rates, the collector is forced to always wait for the
slower one. Consider the following code:
import kotlinx.coroutines.*
import kotlinx.coroutines.flow.*
fun main() {

runBlocking {

val fast = (‘a’..’c’).asFlow().transform {
delay(50)

emit(it)

}

val slow = (1..3).asFlow().transform {
delay(100)

emit(it)

}

launch {

(fast.zip(slow) { i, j -> “$i/$j” }).collect {

println(it) }

}

}

}

When run, it prints each pair of corresponding elements only once:
a/1

b/2

c/3

An alternative mode is implemented by the combine() function which pairs
most recent items of both flows. It doesn’t need to wait for the slower flow
but in return breaks the strict correspondence between original elements. If
we replace zip() with combine() in our previous example, the likely result
could look like this:
a/1

b/1

c/1

c/2

c/3

Note that some elements in the combine() output may be missing or
duplicated while retaining the individual orderings of original flows (a, b, c
and 1, 2, 3).
All in all, the Kotlin flows provide you with a rich declarative-style API
that greatly simplifies manipulation of asynchronous data sequences.

Actors
A common way to implement a thread-safe access to a shared mutable state
is given by the actor model. An actor is an object which comprises some
internal state and means to concurrently communicate with other actor by
sending messages. Actors listen for incoming messages and can respond to
them by modifying their own state, sending more messages and starting
new actors. The actor’s state is private so other actors can’t use it directly –
it can only be accessed by sending a message thus relieving you from the
need to use lock-based synchronization.
Keep in mind that the actor API is currently is subject to change and will be
replaced with a new one in the future versions of the coroutines library.
In Kotlin, the coroutines library actors can be created by using the actor()
coroutine builder. It introduces a special scope (ActorScope) which
combines the basic coroutine scope with a receiver channel you can to
access incoming messages. This builder is somewhat similar to launch()
since it also starts a job which isn’t meant to produce the result by itself and
follows the same exception handling policy as launch() coroutine builders
similarly relying on CoroutineExceptionHandler.

To demonstrate the basic usage of the actor API, let’s consider a simple
example of the actor which maintains a bank account and can
withdraw/deposit a given amount of money. First, we need to define a set of
classes which represent incoming messages:
sealed class AccountMessage
class GetBalance(val amount: CompletableDeferred<Long>) :
AccountMessage()

class Deposit(val amount: Long) : AccountMessage()
class Withdraw(

val amount: Long,
val isPermitted: CompletableDeferred<Boolean>

) : AccountMessage()

Using sealed class, hierarchy will allow us to employ exhaustive when
expressions for instances of the AccountMessage class.
Note that the GetBalance instance has a property of the
CompletableDeferred type. Our actor will use this property to send the
current account balance back to the coroutine which requests it using the
GetBalance message. Similarly, the Withdraw class has the isPermitted
property which will receive true if withdraw is successful and false
otherwise.
Now, we can implement the actor responsible for maintaining the account
balance. The basic logic is simple: we continuously poll the incoming
channel and perform one of the possible actions depending on the received
message:
fun CoroutineScope.accountManager(

initialBalance: Long

) = actor<AccountMessage> {

var balance = initialBalance
for (message in channel) {

when (message) {
is GetBalance -> message.amount.complete(balance)
is Deposit -> {
balance += message.amount

println(“Deposited ${message.amount}”)

}

is Withdraw -> {

val canWithdraw = balance >= message.amount
if (canWithdraw) {
balance -= message.amount

println(“Withdrawn ${message.amount}”)

}

message.isPermitted.complete(canWithdraw)

}

}

}

}

The actor() builder can be thought of as a counterpart of produce(); both
rely on channels for communication but while actors use them for receiving
data, producers create channels for sending data to their consumers. By
default, actors use rendezvous channels, but you can change it by specifying
the capacity argument in the actor() function call.
Note the use of the complete() method on CompletableDeferred; that’s
how we send the request result back to the actor client.
Now, let’s add a pair of coroutines which communicate without the actor:
private suspend fun SendChannel<AccountMessage>.deposit(

name: String,

amount: Long

) {

send(Deposit(amount))

println(“$name: deposit $amount”)

}

private suspend fun SendChannel<AccountMessage>.tryWithdraw(
name: String,

amount: Long

) {

val status = CompletableDeferred<Boolean>().let {
send(Withdraw(amount, it))

if (it.await()) “OK” else “DENIED”
}

println(“$name: withdraw $amount ($status)”)

}

private suspend fun
SendChannel<AccountMessage>.printBalance(name: String) {

val balance = CompletableDeferred<Long>().let {
send(GetBalance(it))

it.await()

}

println(“$name: balance is $balance”)

}

fun main() {
runBlocking {

val manager = accountManager(100)
withContext(Dispatchers.Default) {

launch {

manager.deposit(“Client #1”, 50)

manager.printBalance(“Client #1”)

}

launch {

manager.tryWithdraw(“Client #2”, 100)

manager.printBalance(“Client #2”)

}

}

manager.tryWithdraw(“Client #0”, 1000)

manager.printBalance(“Client #0”)

manager.close()

}

}

To send the actor a message, we use the send() method provided by the
corresponding channel. Here is an example of the possible output:
Client #1: deposit 50

Deposited 50

Withdrawn 100

Client #2: withdraw 100 (OK)

Client #2: balance is 50

Client #1: balance is 50

Client #0: withdraw 1000 (DENIED)

Client #0: balance is 50

Although the operation order may vary (especially when it comes to parallel
execution), the results remain consistent. We don’t need any
synchronization primitives like locks or critical sections since there is no
publicly accessible mutable state.
One more thing worth noting is that actor builders() are currently
considered an experimental API which is subject to possible changes in
future.

Using Java concurrency
Besides Kotlin-specific coroutines library, you can also make use of JDK
concurrency API when targeting the JVM platform. In this section, we’ll
discuss some helper functions provided by the Kotlin standard library to
simplify common concurrency-related tasks such as creating threads and
synchronization.

Starting a thread
To start a general-purpose thread, you can use the thread() function which
allows you to specify both a thread runnable in the form of Kotlin lambda
as well as a set of basic thread properties:

start: Whether thread should be started immediately after creation
(true by default)
isDaemon: Whether thread should be started in daemon mode (false
by default). Daemon threads do not prevent JVM termination and thus
are shut down automatically on termination of the main thread.
contextClassLoader: Custom class loader which is used by thread
code to load classes and resources (null by default).
name: Custom thread name. By default, it’s null which means that the
name is chosen automatically (in a form of “Thread-1”, “Thread-2”,
etc.).
priority: Thread priority which ranges from Thread.MIN_PRIORITY
(= 1) to Thread.MAX_PRIORITY (= 10) and affects how much CPU
time the thread will get as compared to others. By default, it’s equal to
-1 which means that priority is chosen automatically.

block: A function value of type () -> Unit which is run in the new
thread.

For example, the following program starts a thread which prints a message
every 150 milliseconds:
import kotlin.concurrent.thread
fun main() {

println(“Starting a thread...”)

thread(name = “Worker”, isDaemon = true) {

for (i in 1..5) {
println(“${Thread.currentThread().name}: $i”)

Thread.sleep(150)

}

}

Thread.sleep(500)

println(“Shutting down...”)

}

Since a new thread is started as a daemon, however, it only manages to print
its message four times because JVM terminates once the main thread
finishes execution after 500 ms of sleep. As a result, the program output
looks as follows:
Starting a thread...

Worker: 1

Worker: 2

Worker: 3

Worker: 4

Shutting down...

Another group of functions is related to Java timers which allow you to
concurrently execute some periodic action at the specific time. The timer()
function schedules a timer which runs some tasks with a fixed delay relative
to the time of its last execution. As a result, when some execution takes
more time, all subsequent runs are postponed. In this sense, it can be
compared to a Kotlin ticker working in the FIXED_RATE mode. When
configuring a timer with a timer() call, you can specify the following
options:

name: Name of the timer thread (null by default)

daemon: Whether the time thread is executed in daemon mode (false
by default)
startAt: The Date object describing when the first time event should
happen.
period: Desired number of milliseconds between successive timer
executions.
action: TimeTask.() -> Unit lambda which is run on each timer’s
execution.

Alternatively, you can use another timer() overload with the
initialDelay parameter which specifies the moment of the first event as
delay from the current time (defaulting to zero).
Let’s rewrite our previous example using timers:
import kotlin.concurrent.timer

fun main() {
println(“Starting a thread...”)

var counter = 0

timer(period = 150, name = “Worker”, daemon = true) {

println(“${Thread.currentThread().name}: ${++counter}”)

}

Thread.sleep(500)

println(“Shutting down...”)

}

There is also a similar pair of fixedRateTimer() functions which sets up a
timer with a fixed delay between starts of subsequent executions. It can be
compared to a ticker in the FIXED_PERIOD mode which tries to compensate
additional delays to ensure a constant period of timer events in the long run.

Synchronization and locks
Synchronization is a common primitive which ensures that a specific code
fragment is executed in a single thread. When such a fragment is already
being executed in some threads, any other threads trying to enter it are
forced to wait. In Java, there are two ways of introducing synchronization
into your code. First, you can wrap it inside a special synchronized block
specifying some object which acts as a lock. In Kotlin, the syntax is quite

similar, although you use a standard library function with a lambda rather
than the built-in language structure:
import kotlin.concurrent.thread
fun main() {

var counter = 0
val lock = Any()
for (i in 1..5) {

thread(isDaemon = false) {

synchronized(lock) {

counter += i

println(counter)

}

}

}

}

Although the order of individual additions may vary, thus giving different
intermediate results, synchronization ensures that the total sum is always
equal to 15. A possible output may look like this:
1
4
8
13
15
In general, the synchronized() function returns the value of its lambda.
For example, we can use it to retrieve one of intermediate counter values at
the moment of call:
import kotlin.concurrent.thread
fun main() {

var counter = 0
val lock = Any()
for (i in 1..5) {...}
val currentCounter = synchronized(lock) { counter }
println(“Current counter: $currentCounter”)

}

While the result may vary, it is always equal to some intermediate values
produced by one of the five adder threads.
Another way you can use in Java is to mark a method with the synchronized
modifier; in this case, the entire method body is considered synchronized
with respect to the current instance of the containing class or Class instance
itself (if the method in question is static). In Kotlin, you can use the
@Synchronized annotation for the same purpose:
import kotlin.concurrent.thread
class Counter {

private var value = 0
@Synchronized fun addAndPrint(value: Int) {

value += value

println(value)

}

}

fun main() {
val counter = Counter()
for (i in 1..5) {

thread(isDaemon = false) { counter.addAndPrint(i) }
}

}

The standard library also includes the withLock() function which allows
you to execute some lambda under a given Lock object (from the
java.util.concurrent.locks package) similar to the synchronized block.
In this case, you don’t need to worry about releasing your lock on exception
because this is handled withLock(). As an example, let’s apply it to our
Counter class:
class Counter {

private var value = 0
private val lock = ReentrantLock()
fun addAndPrint(value: Int) {

lock.withLock {

value += value

println(value)

}

}

}

On top of it, there are read() and write() functions which execute the
given action under the read/write locks of the ReentrantReadWriteLock
object. The write() function also extends on the ReentrantReadWriteLock
semantics by supporting the automatic upgrade of the existing read lock to
write one.
Java vs. Kotlin: Note that wait(), notify(), and notifyAll() methods
defined by Java’s Object class are not available for Kotlin’s Any. If
necessary you can, however, use them by explicitly casting a value to
java.lang.Object:
(obj as Object).wait()

Keep in mind that wait(), like any other blocking method, shouldn’t be
used inside suspending functions.

Coroutine debugger
Starting from Kotlin 1.4, the IntelliJ IDEA plugin comes with a built-in
coroutine debugging support which greatly simplifies an otherwise tedious
task of tracking the execution of coroutine-powered asynchronous code.
Now, the Debug tool window has an additional Coroutines tab which lists
all currently running and suspended coroutines grouped by their context
dispatchers as shown in Figure 13.4. This tree also gives you basic
information about each coroutine such as its name, thread, and current state:

Figure 13.4: Coroutine tree in IntelliJ debugger

By expanding a particular coroutine in the tree, you get access to its full
stack trace, including variables stored in all intermediate frames. Just like
with synchronous code debugging, you can use the coroutine stack trace to
find corresponding places in your code, and local variables can be watched
and changed in the usual way (see Figure 13.5). Besides that each coroutine
node contains a separate creation stack trace that you can use to track the
code where your respective coroutine is started:
Coroutine debugging is currently available in Kotlin/JVM IntelliJ IDEA
projects with a coroutines library of version 1.3.8 or newer.

Figure 13.5: Viewing coroutine variables

Conclusion
In this chapter, we learned the fundamentals of coroutine-based
concurrency in Kotlin. We looked at how concurrent code can be made of
suspending functions and coroutine builders and how to manage coroutine
lifetime using contexts and scopes. We also discussed the cooperative
cancellation and exception handling mechanisms and examined the
lifecycle of concurrent tasks. We learned how to use channel- and actor-
based communication for efficient sharing of data between multiple
concurrent tasks.
As an extra topic, we looked at some helpful functions the Kotlin standard
library provides to utilize concurrency API available on the JVM platform
in a better way.

In the next chapter, we’ll focus on the subject of testing. We’ll discuss
several Kotlin-aware frameworks and see how Kotlin features and DSLs
can help us in writing various kinds of test cases.

Questions
1. What is a suspending function? How does its behavior differ from that

of an ordinary function?
2. How do you create coroutines with launch() and async() builders?

What’s their difference?
3. Explain the purpose of the runBlocking() builder.
4. What is a structured concurrency?
5. Describe the lifecycle of a coroutine job. How job cancellation is

propagated in a coroutine tree?
6. What is a coroutine dispatcher? Describe common dispatcher

implementations provided by coroutines library.
7. How can you change a dispatcher from inside the coroutine?
8. Describe exception handling mechanisms used by the coroutines

library. What is a purpose of CoroutineExceptionHandler?
9. What is a supervisor job? How can you use it to handle exceptions

thrown by nested coroutines?
10. What is a channel? What kinds of channels are supported by

coroutines library?
11. How can you build a channel with the produce() function?
12. Describe the behavior of ticker channels.
13. Give an overview of the Flow API and its concurrent computation

patterns.
14. Describe an idea of the actor model. How can you use actors in Kotlin

coroutines library?
15. Which utilities do the Kotlin standard library provides for creating

threads?
16. How can you use thread synchronization and locks in Kotlin code?

CHAPTER 14
Testing with Kotlin

Testing frameworks constitutes a major part of the software development
ecosystem. They help creating of reusable test code which helps to maintain
the software quality throughout the development lifecycle. Thanks to a
well-designed Java interoperability, Kotlin developers can benefit from
numerous testing tools targeting the JVM platform such as JUnit, TestNG,
Mockito, and others.
The Kotlin ecosystem, however, has given rise to some frameworks which
specifically targets Kotlin developers by utilizing powerful features of the
language to create concise and expressive test code. In this chapter, we’ll
focus on the KotlinTest, a powerful open-source testing framework
developed at http://github.com/kotlintest/kotlintest. We’ll take a look at
the following three main topics:

How to use organize test code using KotlinTest specification styles?
How to express various test assertions using matchers, inspectors, and
autogenerated data sets for property-based testing, and so on?
How to ensure correct initialization and finalization of a test
environment as well as provide a test configuration?

We’ll start with explaining how to configure KotlinTest for use in IntelliJ
IDEA projects.

Structure
The following topics will be covered in this chapter:

KotlinTest specifications
Assertions
Fixtures and configurations

http://github.com/kotlintest/kotlintest

Objective
After reading this chapter, the reader will learn to write test specifications
using features provided by the KotlinTest framework.

KotlinTest specifications
In this section, we’ll talk about how to configure KotlinTest for use in
IntelliJ IDEA projects and different test layouts provided by this testing
framework. All examples presented in the chapter will use KotlinTest 3.3.

Getting started with KotlinTest
In order to use KotlinTest, we need to add the project dependencies. We’ve
already seen how to add an external dependency to the IntelliJ IDEA
project in Chapter 13, Concurrency, when discussing the Kotlin coroutines
library. Adding the test framework is basically similar. First, we need to add
a library in the Project Structure dialog using its Maven coordinates
io.kotlintest:kotlintest-runner-junit5:3.3.0 (see Figure 14.1).
If you’re using a build automation system like Maven or Gradle, you can
configure KotlinTest by adding its dependency to the corresponding
buildfile.

Figure 14.1: Adding KotlinTest library

After that, the IDE will suggest you to add a new library to the modules of
your project. The next step is to set a dependency scope. Switch to the
Modules view on the left-hand side, select a module of interest, and open
the Dependencies tab. You’ll see the newly added library added to
dependencies with its scope set to Compile. It means that the library will be
included in the classpath of both production and test sources during their
compilation and running in the IDE. Since we need KotlinTest only for
testing purposes, the scope should be changed to Test (Figure 14.2):

Figure 14.2: Choosing test dependency scope

The final preparation step is to configure a directory to contain our test
source code. If you don’t have it already, create a new directory (say, test)
right next to src, which holds production sources by right clicking on the
module root in the Project view and choosing New | Directory. Now, we
need to tell IDE that it will be our test source root. To do this, right click on
the newly added directory and choose Mark Directory as | Test Sources
Root. The test directory will change its color to green showing that IDEA
will now treat its content as source files for our tests.
It’s also worth installing a special plugin which improves the IntelliJ
integration with KotlinTest. You can do it via the Plugins tab in the
Settings dialog (File | Settings) by searching for kotlintest (Figure
14.3). After clicking on Install and downloading and installing, you’ll
need to restart the IDE:

Figure 14.3: Installing KotlinTest plugin for IntelliJ IDEA

Now, we can start writing a code just like we did earlier. Let’s create a new
file in the test directory and write a simple test specification:
import io.kotlintest.shouldBe

import io.kotlintest.specs.StringSpec

class NumbersTest : StringSpec({

“2 + 2 should be 4” { (2 + 2) shouldBe 4 }

“2 * 2 should be 4” { (2 * 2) shouldBe 4 }

})

We’ll explain the meaning behind this definition in a moment, but even now
you’ll surely be able to recognize a pair of simple tests named 2 + 2
should be 4 and 2 * 2 should be 4 after checking some arithmetic
identities. To run the test, notice the triangular markers on the left. By
clicking on one of them, you can execute either the corresponding test or a
whole specification (Figure 14.4):

Figure 14.4: Running KotlinTest specification in IntelliJ

Now, we are ready to begin our discussion of the KotlinTest feature. Our
first topic will be related to various specification styles you can use to

organize your test cases.

Specification styles
KotlinTest supports multiple specification styles; each of them affects how
your test code is organized. You can easily mix different styles in your
project and even define your own by creating an implementation of the
AbstractSpec class or one of its more specific subclasses like
AbstractStringSpec. In this section, we’ll take a look at the styles which
are available right out of the box once you add KotlinTest to your project.
To define a test case, you need to inherit from one of the specification
classes. Then, you can add tests either in a class initializer, or in a lambda
which is passed to the superclass constructor. The way you define tests
themselves is style-specific and in most cases, involve some DSL-like API.
Let’s consider a simple example using the StringSpec class:
import io.kotlintest.shouldBe

import io.kotlintest.specs.StringSpec

class NumbersTest :StringSpec({

“2 + 2 should be 4” { (2 + 2) shouldBe 4 }

“2 * 2 should be 4” { (2 * 2) shouldBe 4 }

})

With StringSpec, individual tests are defined by suspending lambdas
placed after a string with a test description. As you might’ve guessed, this is
just an operator form for the String.invoke() function defined by
StringSpec. In this example, the actual verification code uses the shouldBe
infix function which throws an exception when its arguments are not equal.
This function is a part of matchers DSL which we’ll cover in the next
section.
Note that StringSpec imposes a flat test case structure where all tests in a
particular class are defined on the same level. If you try to place one test
block inside another, the framework will fail with an exception at runtime.
A more complex layout is given by the WordSpec class. In the simplest
form, it allows you to define a two-level hierarchy where tests are defined,
which are similar to StringSpec, are grouped by the calls of the should()
function:
import io.kotlintest.shouldBe

import io.kotlintest.specs.WordSpec

class NumbersTest2 : WordSpec({

“1 + 2” should {

“be equal to 3” { (1 + 2) shouldBe 3 }

“be equal to 2 + 1” { (1 + 2) shouldBe (2 + 1) }

}

})

Additionally, you can define one more level of grouping by wrapping
should() calls inside When() or `when`():
import io.kotlintest.shouldBe

import io.kotlintest.specs.WordSpec

class NumbersTest2 :WordSpec({

“Addition” When {

“1 + 2” should {

“be equal to 3” { (1 + 2) shouldBe 3 }

“be equal to 2 + 1” { (1 + 2) shouldBe (2 + 1) }

}

}

})

What if we want a hierarchy with an arbitrary number of levels? The
FunSpec class wraps the test code inside the test() function calls which
take a test description and a suspending lambda to run. Unlike StringSpec,
this style supports grouping of tests by context blocks:
import io.kotlintest.shouldBe

import io.kotlintest.specs.FunSpec

class NumbersTest :FunSpec({

test(“0 should be equal to 0”) { 0 shouldBe 0 }

context(“Arithmetic”) {

context(“Addition”) {

test(“2 + 2 should be 4”) { (2 + 2) shouldBe 4 }

}

context(“Multiplication”) {

test(“2 * 2 should be 4”) { (2 * 2) shouldBe 4 }

}

}

})

Both test and context blocks may be used at any level except inside test
block themselves.
IDE Tips: When they run in the IDE, the results of such multi-level tests are
also presented in a hierarchical view corresponding to the specification
blocks. Figure 14.5 shows the result of running the preceding test code in
IntelliJ IDEA:

Figure 14.5: Multi-level test results in IntelliJ IDEA

The ExpectSpec is basically the same but uses expect() instead of test()
and additionally, forbids placing tests at the top level (that is, all tests must
be put within some context() block).
The DescribeSpec uses the describe()/context() blocks for the purpose
of grouping with actual tests placed inside it():
import io.kotlintest.shouldBe

import io.kotlintest.specs.DescribeSpec

class NumbersTest : DescribeSpec({

describe(“Addition”) {

context(“1 + 2”) {

it(“should give 3”) { (1 + 2) shouldBe 3 }

}

}

})

The ShouldSpec produces a layout similar to FunSpec with context blocks
used for grouping and test blocks placed at the leaf level. The differences
are purely syntactic. To define a context block, you will use the invoke()
calls on the description string (similar to test blocks of StringSpec), while
test blocks themselves are defined by the should() function calls:
import io.kotlintest.shouldBe

import io.kotlintest.specs.ShouldSpec

class NumbersTest : ShouldSpec({

should(“be equal to 0”) { 0 shouldBe 0 }

“Addition” {

“1 + 2” {

should(“be equal to 3”) { (1 + 2) shouldBe 3 }

should(“be equal to 2 + 1”) { (1 + 2) shouldBe (2 + 1) }

}

}

})

One more specification of a similar kind can be constructed via the
FreeSpec class. Like StringSpec, it uses invoke() on strings to define
tests while contexts are introduced by the minus operator:
import io.kotlintest.shouldBe

import io.kotlintest.specs.FreeSpec

class NumbersTest : FreeSpec({

“0 should be equal to 0” { 0shouldBe 0 }

“Addition” - {

“1 + 2” - {

“1 + 2 should be equal to 3” { (1 + 2) shouldBe 3 }

“1 + 2 should be equal to 2 + 1” { (1 + 2) shouldBe (2 + 1)

}

}

}

})

KotlinTest also supports BDD (behavior-driven-development) specification
styles inspired by the Gherkin language. In the FeatureSpec, hierarchy
roots are introduced by feature blocks which in turn contain scenario blocks
implementing a particular test. The and() calls may be used to group
scenarios (and other groups) within a particular feature:
import io.kotlintest.shouldBe

import io.kotlintest.specs.FeatureSpec

class NumbersTest : FeatureSpec({

feature(“Arithmetic”) {

val x = 1

scenario(“x is 1 at first”) { x shouldBe 1 }

and(“increasing by”) {

scenario(“1 gives 2”) { (x + 1) shouldBe 2 }

scenario(“2 gives 3”) { (x + 2) shouldBe 3 }

}

}

})

A similar style is implemented by BehaviorSpec which introduces three
basic levels denoted by functions given()/Given(), when()/When(), and
then()/Then(). Additional levels of grouping may be introduced by
and()/And() calls which can combine several when/then blocks:
import io.kotlintest.shouldBe

import io.kotlintest.specs.BehaviorSpec

class NumbersTest : BehaviorSpec({

Given(“Arithmetic”) {

When(“x is 1”) {

val x = 1

And(“increased by 1”) {

Then(“result is 2”) { (x + 1) shouldBe 2 }

}

}

}

})

Note how using of these blocks can produce a test description which is very
close to natural language (“when x is 1 and increased by 1 then result is 2”).
The final spec style we will consider is AnnotationSpec. This style doesn’t
use DSL-like test specification but instead relies on @Test annotations you
need to apply to test class methods, which are similar to test frameworks
like JUnit or TestNG:
import io.kotlintest.shouldBe

import io.kotlintest.specs.AnnotationSpec

class NumbersTest : AnnotationSpec() {

@Test fun `2 + 2 should be 4`() { (2 + 2) shouldBe 4 }

@Test fun `2 * 2 should be 4`() { (2 * 2) shouldBe 4 }

}

You can also disable a particular test by annotating it with @Ignore.

Assertions

Matchers
In the previous samples of code demonstrating the use of various
specification styles, we’ve used the shouldBe function which asserts simple
equality of its arguments. This is just one example of numerous matchers
provided by the KotlinTest library.
Matchers are defined as extension functions which can be invoked either in
a form of an ordinary call or as an infix operator. All matcher names start
with shouldBe. This convention facilitates readable names like
shouldBeGreaterThanOrEqual in the test code. A full list of built-in
matchers can be found in the KotlinTest documentation; we won’t focus on
particular examples here because most of the matcher functions have self-
explanatory names and can be used in an intuitive way. In this section, we’ll
be interested in more advanced issues such as extending testing frameworks
with your own matchers.
To define a custom matcher, you need to implement the Matcher interface
and override its test() method:
abstract fun test(value: T): Result
The Result object describes the outcome of matching. It’s a data class
which contains the following properties:

passed: Checks whether the assertion is satisfied (true) or not (false).
failureMessage: A message which is shown when the assertion fails
and tells what should happen in order to make it pass.
negatedFailureMessage: This is used when you invoke the negated
version of the matcher and it fails.

Let’s, for example, create a matcher which checks whether a given number
is odd:

import io.kotlintest.Matcher

import io.kotlintest.Result

fun beOdd() = object : Matcher<Int> {

override fun test(value: Int): Result {

return Result(

value % 2 != 0,

“$value should be odd”,

“$value should not be odd”

)

}

}

Now, we can use this matcher for our assertions by passing it to a built-in
extension function should()/shouldNot():
import io.kotlintest.*

import io.kotlintest.specs.StringSpec

class NumberTest :StringSpec({

“5 is odd” { 5 should beOdd() }

“4 is not odd” { 4 shouldNot beOdd() }

})

Note that we’ve chosen the beOdd name with an intention to get a human-
readable name for the resulting assertion (should be odd/should not be odd).
Any implementation of the Matcher interface automatically supports
and/or/invert operations which combine matchers following the logic of
boolean operations. We can use them to build assertions based on complex
predicates such as in the following example which combines beOdd() with
a built-in positive() matcher:
“5 is positive odd” { 5 should (beOdd() and positive()) }

One more operation supported by matchers is combine() which allows you
to generalize the existing matcher to a new type by providing the
conversion function. The following function reuses the beOdd() matcher to
assert that a given collection has odd length:
fun beOddLength() = beOdd().compose<Collection<*>> { it.size }

Note that while all matchers can be called via the should()/shouldNot()
function, many built-in ones are also accompanied by specialized functions
whose names start with should. For example, the following assertions are
equivalent:

5 should beLessThan(10)

5 shouldBeLessThan(10)

Inspectors
Apart from matchers, KotlinTest also supports a related concept of
inspectors. Inspector is an extension function for some collection class
which allows you to verify that a given assertion holds for some group of its
elements:

forAll()/forNone(): Checks whether all/none elements satisfy an
assertion.
forExactly(n): Checks whether exactly n elements satisfy an
assertion; there is also a special forOne() function which handles the
case n = 1.
forAtLeast(n)/forAtMost(n): Checks whether at least/at most n
elements satisfy an assertion; when n = 1 you can also use specialized
inspectors forAtLeastOne()/forAtMostOne() or forAny() which is
the same as forAtLeastOne().
forSome(): Checks whether some but not all elements satisfy an
assertion.

Let’s consider an example of using these inspectors:
import io.kotlintest.inspectors.*

import

io.kotlintest.matchers.numerics.shouldBeGreaterThanOrEqual

import io.kotlintest.shouldBe

import io.kotlintest.specs.StringSpec

class NumberTest : StringSpec({

val numbers = Array(10) { it + 1 }

“all are non-negative” {

numbers.forAll { it shouldBeGreaterThanOrEqual 0 }

}

“none is zero” { numbers.forNone { it shouldBe 0 } }

“a single 10” { numbers.forOne { it shouldBe 10 } }

“at most one 0” { numbers.forAtMostOne { it shouldBe 0 } }

“at least one odd number” {

numbers.forAtLeastOne { it % 2 shouldBe 1 }

}

“at most five odd numbers” {

numbers.forAtMost(5) { it % 2 shouldBe 1 }

}

“at least three even numbers” {

numbers.forAtLeast(3) { it % 2 shouldBe 0 }

}

“some numbers are odd” { numbers.forAny { it % 2 shouldBe 1 }

}

“some but not all numbers are even” {

numbers.forSome { it % 2 shouldBe 0 }

}

“exactly five numbers are even” {

numbers.forExactly(5) { it % 2 shouldBe 0 }

}

})

Handling exceptions
KotlinTest has a special shouldThrow() assertion which checks whether
some code fails due to a specific exception. This is a convenient alternative
of catching exceptions with an explicit try/catch block. On being
successful, shouldThrow() returns caught exception which you can inspect
afterwards:
import io.kotlintest.matchers.string.shouldEndWith

import io.kotlintest.shouldThrow

import io.kotlintest.specs.StringSpec

class ParseTest : StringSpec({

“invalid string” {

val e = shouldThrow<NumberFormatException>{ “abc”.toInt() }

e.messageshouldEndWith “\”abc\””

}

})

A useful exception-related feature of the KotlinTest is its ability to
temporarily suppress exceptions thrown by failed assertions. This is called
soft assertion and may be useful if your test consists of several assertions
and you want to see all that failed. Normally, this doesn’t happen because

tests terminate after the first thrown exception. KotlinTest allows you to
work around this behavior using the assertSoftly blocks. AssertionError
exceptions are automatically caught inside the block and accumulated
allowing all assertions to run (unless they fail with some other exception).
When the block is finished, assertSoftly packs all accumulated
exceptions (if there are any) into a single AssertionError and throws it
back to the caller. Let’s consider an example:
import io.kotlintest.assertSoftly

import io.kotlintest.inspectors.forAll

import io.kotlintest.specs.StringSpec

class NumberTest : StringSpec({

val numbers = Array(10) { it + 1 }

“invalid numbers” {

assertSoftly {

numbers.forAll { it shouldBeLessThan 5 }

numbers.forAll { it shouldBeGreaterThan 3 }

}

}

})

Without assertSoftly(), the second forAll() assertion won’t even be
checked after the first one fails. Now, both assertions are executed and the
test fails with an exception:
io.kotlintest.tables.MultiAssertionError:

The following 9 assertions failed

...

As you can see the resulting message lists all individual failures.

Testing non-deterministic code
When having to deal with a non-deterministic code, which sometimes
passes only after several attempts, you can use a convenient alternative to
timeouts and multiple invocations. The eventually() function verifies that
the given assertion is satisfied at least once within a specified period of
time:
import io.kotlintest.*

import io.kotlintest.specs.StringSpec

import java.io.File

class StringSpecWithConfig : StringSpec({

eventually(10.seconds) {

// Check that file eventually contains a single line

// (within 10 seconds)

File(“data.txt”).readLines().size shouldBe 1

}

})

The continually() function similarly verifies that nested assertions are
satisfied upon its call and remains within a specified interval:
import io.kotlintest.*

import io.kotlintest.specs.StringSpec

import java.io.File

class StringSpecWithConfig : StringSpec({

// Check that file contains a single line

// and line count doesn’t change for at least 10 seconds

continually(10.seconds) {

File(“data.txt”).readLines().size shouldBe 1

}

})

Property-based testing
KotlinTest is capable of property-based testing where you specify some
predicates and have KotlinTest verify them against automatically generated
random test data. This technique is useful when we want to check whether
some condition holds over a large set of values which is hard to prepare and
maintain manually.
For example, suppose that we define a function which computes the
minimum of two numbers:
infix fun Int.min(n: Int) = if (this < n) this else n

You want to ensure that its result is always less or equal to each argument.
To do this, we wrap the respective assertion inside the assertAll() call:
import io.kotlintest.matchers.beLessThanOrEqualTo

import io.kotlintest.properties.assertAll

import io.kotlintest.should

import io.kotlintest.specs.StringSpec

class NumbersTest: StringSpec({

«min» {

assertAll{ a: Int, b: Int ->

(a min b).let {

it should (beLessThanOrEqualTo(a) and

beLessThanOrEqualTo(b))

}

}

}

})

When you run this code, KotlinTest will generate a stream of Int pairs and
test all of them against our assertion. By default, the test dataset consists of
1000 items, but you can specify its size explicitly as an argument of
assertAll().
There is also the assertNone() function which checks whether none of the
generated items satisfy the given assertion.
As an alternative, we can use the forAll()/forNone() function which take
a lambda with the Boolean return type and verifies that all/none generated
items have corresponding predicates that evaluate to true:
import io.kotlintest.properties.forAll

import io.kotlintest.specs.StringSpec

class NumbersTest: StringSpec({

“min” {

forAll{ a: Int, b: Int ->

(a min b).let { it <= a && it <= b }

}

}

})

KotlinTest have default generators for many common types such as Int,
Boolean, and String. By default, it uses the runtime information of lambda
parameter types to choose the generator automatically. Sometimes, though,
this may be unwanted or even not possible if a type in question is simply
not supported. In this case, we need to specify the generator explicitly as an
instance of the Gen interface. Its companion object contains a bunch of
helpful methods you can use to construct various implementations of
generators. In particular (the rest can be as usually found in the
documentation):

choose(min, max): Generate random integers in the range from min
to max (excluding max).
positiveIntegers()/negativeIntegers()/nats(): Generate stream
of random positive/negative/non-negative integers.
from(collection): Take random elements of a given list or array.

You may also define your own generator. One way to do it is to use the
Gen.create() function which builds a generator based on a specified
lambda. In Chapter 11, Domain-Specific Languages, we’ve defined a class
for representation of rational numbers. Let’s now check whether subtracting
any rational from itself produces a zero. To do this, we need to implement a
custom generator:
import io.kotlintest.properties.*

import io.kotlintest.specs.StringSpec

import kotlin.random.Random

class NumbersTest: StringSpec({

“Subtraction” {

forAll(genRationals()) { a: Rational ->

(a - a).num == 0

}

}

}) {

companion object {

private fun genRationals(): Gen<Rational> {

return Gen.create {

val num = Random.nextInt()

val den = Random.nextInt()

Rational.of(num, if (den != 0) den else 1)

}

}

}

}

An alternative way is to inherit from the Gen<T> interface directly. In this
case, you need to provide an implementation of two methods:

constants(): Returns a collection of T value which are always
included into the generated stream; these values are meant for various

corner cases (say, default generator for integers uses Int.MIN_VALUE,
0 and Int.MAX_VALUE for this purpose).
random(): Returns a sequence of random elements of type T.

For example, we can rewrite our Rational generator to the following
object:
object RationalGen : Gen<Rational> {

override fun constants(): Iterable<Rational> {

return listOf(Rational.of(0), Rational.of(1),

Rational.of(-1))

}

override fun random(): Sequence<Rational> {

return generateSequence {

val num = Random.nextInt()

val den = Random.nextInt()

Rational.of(num, if (den != 0) den else 1)

}

}

}

It’s also possible to use a fixed test data set rather than using random values
provided by the framework or custom generator. For this, you need to use
the forall() function which takes a vararg of row objects:
import io.kotlintest.data.forall

import io.kotlintest.specs.StringSpec

import io.kotlintest.tables.row

class NumbersTest: StringSpec({

“Minimum” {

forall(

row(1, 1),

row(1, 2),

row(2, 1)

) { a: Int, b: Int ->

(a min b).let { it <= a && it <= b }

}

}

})

Note the difference in naming: forall vs. forAll.

On top of this, you can pack multiple rows into a single table object which
also has a specific set of headers. The headers are then used to provide
context information when the test fails. For example:
import

io.kotlintest.matchers.numerics.shouldBeGreaterThanOrEqual

import io.kotlintest.specs.StringSpec

import io.kotlintest.tables.*

class NumbersTest : StringSpec({

“Minimum” {

forAll(

table(

headers(“name”, “age”),

row(“John”, 20),

row(“Harry”, 25),

row(“Bob”, 16)

)

) { name, age ->

age shouldBeGreaterThanOrEqual 18

}

}

})

Running the preceding test will produce an error with the following
message:
Test failed for (name, Bob), (age, 16) with error 16 should be

>= 18

This option is supported by both forAll() and forNone() overloads. Note,
however, that unlike forAll()/forNone() used for generator-based testing,
these functions take a lambda with the Unit return type. That’s why we’ve
used matcher functions instead of simply returning a Boolean value.

Fixtures and configurations

Providing a fixture
It’s often the case that tests need some kind of code which initializes the
necessary environment and resources (also known as test fixture) before

actual test invocation and finalizes them afterwards. In KotlinTest, you can
use the TestListener interface to embed your code into various stages of
the test case lifecycle. Let’s see what methods it has:

beforeProject()/afterProject(): Invoked upon test engine
start/finish.
beforeSpecClass(): Invoked once (regardless of how many times a
given specification class is instantiated) before any tests corresponding
to a given specification class are started.
afterSpecClass(): Invoked after all such tests are finished.
beforeSpec(): Invoked after instantiating a specification but before
running its tests; afterSpec() is invoked after all tests for a given
specification instance are finished.
beforeTest()/afterTest(): Invoked before/after running a
particular test block.

In order to have some effect, a listener instance must be registered in a
particular specification class by overriding its listener() method:
import io.kotlintest.*

import io.kotlintest.extensions.*

import io.kotlintest.specs.FunSpec

object MyListener :TestListener {

override fun beforeSpecClass(spec: Spec, tests:

List<TopLevelTest>) {

println(“Before spec class: ${spec.description()}”)

}

override fun beforeSpec(spec: Spec) {

println(“Before spec: ${spec.description()}”)

}

override fun beforeTest(estcase: TestCase) {

println(“Before test: ${estcase.name}”)

}

override fun afterTest(estcase: TestCase, result: TestResult)

{

println(“After test: ${estcase.name}”)

}

override fun afterSpec(spec: Spec) {

println(“After spec: ${spec.description()}”)

}

override fun afterSpecClass(spec: Spec,

results: Map<TestCase, TestResult>) {

println(“After spec class: ${spec.description()}”)

}

}

class NumbersTest :FunSpec() {

init {

context(“Increment”) {

test(“2+2”) {

2 + 2 shouldBe 4

}

test(“2 * 2”) {

2 * 2 shouldBe 4

}

}

}

override fun listeners() = listOf(MyListener)

}

Running the preceding code will produce the following output:

Before spec class: Description(parents=[], name=NamesTest)

Before spec: Description(parents=[], name=NamesTest)

Before test: IncrementBefore test: 2+2

After test: 2+2

Before test: 2 * 2

After test: 2 * 2

After test: Increment

After spec: Description(parents=[], name=NamesTest)

After spec class: Description(parents=[], name=NamesTest)

Note that in our example, beforeSpec()/afterSpec() are invoked only
once just like beforeSpecClass()/afterSpecClass() because only one
instance of NumbersTest is created. This is not always the case as you can
configure the framework to create a new specification per each test (see
isolation mode discussion in the Test configuration section).
The key difference between beforeSpec() and beforeTest() (as well as
between afterSpec() and afterTest()) is that beforeSpec() is invoked

only if the test in question is enabled. In the following section, we’ll see
how you can switch off individual tests using configurations.
If you want to provide an implementation of the
beforeProject()/afterProject() methods, you need to register a global
listener using the ProjectConfig singleton. This singleton must inherit
from the AbstractProjectConfig class and be placed in the
io.kotlintest.provided package:
package io.kotlintest.provided

import io.kotlintest.*

import io.kotlintest.extensions.*

object ProjectListener : TestListener {

override fun beforeProject() { println(“Before project”) }

override fun afterProject() { println(“After project”) }

}

object ProjectConfig : AbstractProjectConfig() {

override fun listeners(): List<TestListener> {

return listOf(ProjectListener)

}

}

One more useful feature of KotlinTest is its ability to automatically close
resources which implement the AutoCloseable interface. For this to work,
you need to register a resource on its allocation with the autoClose() call:
import io.kotlintest.shouldBe

import io.kotlintest.specs.FunSpec

import java.io.FileReader

class FileTest : FunSpec() {

val reader = autoClose(FileReader(“data.txt”))

init {

test(“Line count”) {

reader.readLines().isNotEmpty() shouldBe true

}

}

}

Test configuration

KotlinTest gives you a set of options to configure a testing environment. In
particular, specification classes provide the config() function which can be
used to set various test execution parameters. Its usage depends on a chosen
specification style but in general, it replaces an ordinary test block. Let’s
consider some examples:
import io.kotlintest.shouldBe

import io.kotlintest.specs.*

import java.time.Duration

class StringSpecWithConfig : StringSpec({

“2 + 2 should be 4”.config(invocations = 10) { (2 + 2)

shouldBe 4 }

})

class ShouldSpecWithConfig : ShouldSpec({

“Addition” {

“1 + 2” {

should(“be equal to 3”).config(threads = 2, invocations =

100) {

(1 + 2) shouldBe 3

}

should(“be equal to 2 + 1”).config(timeout = 1.minutes) {

(1 + 2) shouldBe (2 + 1)

}

}

}

})

class BehaviorSpecWithConfig : BehaviorSpec({

Given(“Arithmetic”) {

When(“x is 1”) {

val x = 1

And(“increased by 1”) {

then(“result is 2”).config(invocations = 100) {

(x + 1) shouldBe 2

}

}

}

}

})

You can find more detailed information in the documentation on a particular
specification style.
Let’s see what parameters we can control using the config() function:

invocations: This is the number of times to execute a test; a test is
considered passed only if all invocations succeed. This option may be
useful for non-deterministic tests which may fail only occasionally.
threads: This is the number of threads to use when running a test.
This parameter is only meaningful when invocations are greater than 1
otherwise there is nothing to parallelize.
enabled: Whether a test should be run; setting to false disables test
execution.
timeout: A duration object representing maximum time for test to
run. If the test execution time exceeds this timeout, it’s terminated and
considered failed. Like the invocation count, this option is useful for
non-deterministic tests.

Note that the threads option affects only parallelizing of individual tests
within a test case. If you want to run multiple test cases in parallel as well,
you need to use the AbstractProjectConfig which we discussed earlier.
Just override its parallelism() method and return a desired number of
concurrent threads:
package io.kotlin.provided

import io.kotlintest.AbstractProjectConfig

object ProjectConfig : AbstractProjectConfig() {

override fun parallelism(): Int = 4

}

Apart from configuring each test individually, you may also specify a
common configuration for all tests of a particular test case by overriding the
defaultTestCaseConfig property:
import io.kotlintest.TestCaseConfig

import io.kotlintest.shouldBe

import io.kotlintest.specs.StringSpec

class StringSpecWithConfig : StringSpec({

“2 + 2 should be 4” { (2 + 2) shouldBe 4 }

}) {

override valdefaultTestCaseConfig: TestCaseConfig

get() = TestCaseConfig(invocations = 10, threads = 2)

}

Default configuration options are inherited by tests unless you specify their
own configuration explicitly.
One more feature of KotlinTest we’d like to point out in conclusion is the
ability to choose how a test case instance is shared between its tests. This is
called an isolation mode. By default, the test case is instantiated only once
and its instance is used to run all its tests. Although this is good from the
performance point of view, there are some scenarios when such a policy is
undesired; if the test case has a mutable state which is read and modified by
individual tests. In such cases, you may want to instantiate the test each
time you start a test or test group. To achieve this, you just need to override
the isolationMode() method of your test case class. This method returns a
value of IsolationMode enum which defines three options:

SingleInstance: A single instance of the test case is created; this is
the default behavior.
InstancePerTest: A new instance of the test case is created each
time a context or test block is executed.
InstancePerLeaf: The test is instantiated before executing an
individual test block.

Let’s consider an example. Suppose we have the following FunSpec-style
test case:
import io.kotlintest.shouldBe

import io.kotlintest.specs.FunSpec

class IncTest :FunSpec() {

var x = 0

init {

context(« Increment ») {
println(« Increment »)
test(“prefix”) {

println(“prefix)

++x shouldBe 1

}

test(“postfix”) {

println(“postfix)

x++ shouldBe 0

}

}

}

}

If you run it, you’ll see that the second test fails. This happens because the x
variable retains a value assigned in the prefix block. If we change the
isolation mode to InstancePerTest by adding the following code:
override fun isolationMode() = IsolationMode.InstancePerTest

Both tests will pass since each of them will get its own IncTest instance.
The messages printed to the standard output will look like the following:
Running context

Running context

prefix

Running context

postfix

This happens because IncTest is instantiated three times. First time to
execute the context block itself, second to execute the prefix test which also
runs the context block the second time, and the third for the postfix text
(which again requires to run context block first). As a result, the context
block is also executed three times.
If we change the isolation mode to InstancePerLeaf, the context blocks
won’t be executed by themselves but only as a part of running individual
tests. As a result, IncTest will be instantiated only two times (once for
prefix and once for postfix) and the output will look like the following:
Running context

prefix

Running context

postfix

This concludes our overview of the KotlinTest framework. For more
detailed information about the features we’ve mentioned (as well as those
we haven’t), the reader is advised to follow the documentation available at
https://github.com/kotlintest/kotlintest.

Conclusion

https://github.com/kotlintest/kotlintest

In this chapter, we learned about the basics of writing test specifications in
KotlinTest, a popular open-source testing framework designed specifically
for Kotlin-powered applications. We discussed how to organize our test
code using out-of-the-box specification style, how to write expressive and
easy-to-read tests with matchers and inspectors, how to describe test data
sets and make use of automatic property testing. We also explained the use
of KotlinTest set up/tear down facilities and basic test configurations. Now,
you have all the necessary knowledge to write your own test specifications
and to learn more advanced features of KotlinTest and other testing
frameworks.
In the next chapter, we’ll talk about using Kotlin to build applications for
the Android platform. We’ll explain how to configure a project in Android
Studio, discuss basic UI and activity lifecycle, and introduce you to various
useful features provided by Android extensions and Anko frameworks.

Questions
1. Give an overview of popular testing frameworks with Kotlin support.
2. Describe specification styles supported by KotlinTest.
3. What is a matcher? How can you combine and transform matchers for

writing complex assertions?
4. Explain how to implement custom KotlinTest matcher.
5. Describe the shouldThrow() function. What is a soft assertion?
6. Describe collection inspectors available in KotlinTest.
7. Explain the meaning of eventually() and continually() functions.
8. How can you implement initialization and finalization of test

resources using listeners?
9. How to specify a configuration for individual tests and specifications?

How to define a global configuration?
10. Explain the difference between test case isolation modes.

CHAPTER 15
Android Applications

In this chapter, we’ll talk about using Kotlin in the development of
applications targeting the Android platform. Thanks to the excellent
programming experience given by the language and official support from
Google, this niche of Kotlin has become one of the most flourishing in its
entire ecosystem. A comprehensive discussion of the Android platform
fundamentals, however, does beyond doubt deserve a separate book, so our
task here will be quite modest: to serve as a kind of introduction to the
Android world provoking further investigation and learning.
The topic is divided into two parts. In the first half, we’ll talk about the
basic features of Android Studio: how to set up a new project, how Gradle
is used for project configuration and build, what is an Android activity, and
how to run applications using the Android device emulator. The second half
will be centered on the development of a sample calculator application and
discussion of more advanced issues such as using Android view binding
and preserving the activity state.

Structure
The following topics will be covered in this chapter:

Getting started with Android
Activities

Objective
After reading this chapter, the reader will get a basic understanding of using
Android Studio and Kotlin for development of applications for the Android
platform.

Getting started with Android

In this section, we’ll introduce the reader to Android Studio IDE and
demonstrate a basic project structure using the example of a simple «Hello,
World»-like application.

Setting up an Android Studio project
We’ll start with the basic steps required to configure a project in Android
Studio, the official Android IDE developed by Google. Android Studio is
based on the JetBrains IntelliJ platform and thus is very similar to the
IntelliJ IDEA we’ve referred to in the previous chapters. Unlike IDEA
itself, it comes with a set of features specifically targeting at the
development of Android applications. Like IntelliJ IDEA, Android Studio
has out-of-the-box support of the Kotlin language.
If you don’t have an Android Studio installed yet, you can download the
latest version from https://developer.android.com/studio and follow
installer instructions from
https://developer.android.com/studio/install.html
After starting, Android Studio will present you a welcome screen where
you can click on a Start a new Android Studio project link to start a
project wizard. If you’ve already opened a project before, Android Studio
won’t show you a welcome screen and load that project instead. In this
case, you can use the File | New | New Project… command from the IDE
menu.
The first step of the wizard will ask you to choose a template for the first
activity in your project (Figure 15.1). An activity is basically a
representation of a single thing a user will be able to do using your
application such as editing notes, showing the current time or in the case of
our first application, simply presenting a welcome message to the user.
Let’s choose Empty Activity for now to get Android Studio generate a
stub activity for us and click on Next.

https://developer.android.com/studio
https://developer.android.com/studio/install.html

Figure 15.1: Choosing activity for a new Android project

The next step of the project wizard requires you to enter basic project
information such as its name, common package for project classes, root
directory, and default language (see Figure 15.2 for example). You may also
choose a minimal version of Android SDK your application will support.
The higher the version, the more powerful API you get at your disposal, but
at the same time, the less fraction of devices your application can run on.
You can see a comparison chart of different API versions by clicking on the
“Help me choose” link. For our simple example, we can just leave an option
suggested by default:

Figure 15.2: Choosing basic project configuration

After you click on Finish, Android Studio will automatically generate the
necessary project files, including activity class and a basic set of application
resources such as the UI layout and configuration files. It will then proceed
with configuring the new project (notice the Building Gradle project info
progress bar).
Figure 15.3 shows the structure of a new project as shown by the IDE
Project view. Note that by default this view is presented in the Android
mode which displays project source files grouping them by corresponding
modules and source roots (such as ordinary sources files, generated files,
and resources):

Figure 15.3: A sample project structure

A separate node in the Android view, Gradle Scripts contains files
describing project configuration. Let’s look at them in more detail.

Gradle build scripts
Android Studio relies on Gradle, a popular build system which automates
tasks such as managing project dependencies, compilation, testing, and
packaging. Project configuration is described in the build.gradle files
using a domain-specific language and is written in Groovy which is
reminiscent of both Java and Kotlin code (in fact, Groovy is one of the
languages that had inspired the Kotlin design). We won’t delve into the
details of Groovy or Gradle here and instead just highlight some important
points related to using Kotlin in Android applications. The project template

used by the Android Studio wizard automatically generates the following
files:

The project-level build.gradle located in the project root directory:
This file contains the common configuration of the entire project.
settings.gradle (also in the project root) that specifies which
modules are included in the project and may optionally contain some
additional configuration commands.
local.properties and gradle.properties contain a set of key-value
pairs which define properties used in the Gradle scripts such as the
path to the Android SDK directory or JVM arguments passed when
starting the Gradle process.
module-level build.gradle located in the root directory of the app
module: This contains module-specific configuration.

Let’s take a look at the root build.gradle file:
buildscript {

ext.kotlin_version = ‘1.4.21’

repositories {

google()

jcenter()

}

dependencies {

classpath ‘com.android.tools.build:gradle:4.1.2’

classpath “org.jetbrains.kotlin:kotlin-gradle-

plugin:$kotlin_version”

// NOTE: Do not place your application dependencies here;

they belong

// in the individual module build.gradle files

}

}

allprojects {

repositories {

google()

jcenter()

}

}

task clean(type: Delete) {

delete rootProject.buildDir

}

This script basically does the following:

Defines the kotlin_version property which contains a version of the
Kotlin standard library and can be referred to by other scripts.
Tells Gradle to use the com.android.tools.build:gradle and
org.jetbrains.kotlin:kotlin-gradle-plugin plugins when
building projects. The first one adds support of Android modules
while the second allows you to build projects with the Kotlin source
code.
Configures a default list of repositories to download dependency
artifacts such as binaries and sources of libraries.
Adds the clean task which is used to delete previous compilation
results before project rebuild.

The settings.gradle file is quite simple and by default contains a single
include command which tells Gradle which modules make up our project:
include ‘:app’

Let’s now look at build.gradle which defines the configuration of our
Android module:
plugins {

id ‘com.android.application’

id ‘kotlin-android’

}

android {

compileSdkVersion 29

buildToolsVersion “30.0.3”

defaultConfig {

applicationId “com.example.helloworld”

minSdkVersion 27

targetSdkVersion 29

versionCode 1

versionName “1.0”

testInstrumentationRunner

“androidx.test.runner.AndroidJUnitRunner”

}

buildTypes {

release {

minifyEnabled false
proguardFiles

getDefaultProguardFile(‘proguard-android-

optimize.txt’),

‘proguard-rules.pro’

}

}

compileOptions {

sourceCompatibility JavaVersion.VERSION_1_8

targetCompatibility JavaVersion.VERSION_1_8

}

kotlinOptions {

jvmTarget = ‘1.8’

}

}

dependencies {

implementation “org.jetbrains.kotlin:kotlin-

stdlib:$kotlin_version”

implementation ‘androidx.core:core-ktx:1.2.0’

implementation ‘androidx.appcompat:appcompat:1.1.0’

implementation ‘com.google.android.material:material:1.1.0’

implementation

‘androidx.constraintlayout:constraintlayout:1.1.3’

testImplementation ‘junit:junit:4.+’

androidTestImplementation ‘androidx.test.ext:junit:1.1.1’

androidTestImplementation ‘androidx.test.espresso:espresso-

core:3.2.0’

}

The first thing it does is to enable Android and Kotlin-specific plugins
which are added in the root build file. Then, comes the android block that
contains various Android-specific configuration parameters such as
application ID, version number, minimal supported version of Android
SDK, and so on.

Finally, the dependencies block lists all external dependencies of our
module. Each dependency has a definite configuration which is specified
first and followed by the dependency description (usually in the form of
Maven coordinates like androidx.core:core-ktx:1.0.2). A configuration
determines when and where this dependency is used; for example,
implementation dependencies are added to the compilation classpath and
packaged to the build output, but not available during compilation of
dependent modules, while testImplementation dependencies are added to
the compilation classpath of modules tests and used during test execution.
As shown in the preceding code, the Kotlin standard library gets
automatically added to new module dependencies.

Activity
Let’s now look at source files under the java root. Despite the somewhat
misleading name, this directory can contain both Java and Kotlin files. Find
MainActivity.kt and open it in the editor window. You’ll see something
like the following code:
package com.example.helloworld
import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
class MainActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)

}

}

This is the activity class which Android Studio has generated based on the
template you’ve chosen in the project wizard. All activity classes are
derived from the Activity class which is a part of Android SDK. The
generated class inherits from a more specific AppCompatActivity which
adds support of a toolbar where you can show the application name and
various interactive UI components.
The onCreate() method is invoked by the Android OS on creating the
activity instance so it’s a common place for an initialization code. In
particular, this method sets up an activity view:
setContentView(R.layout.activity_main)

The R class is automatically generated during the compilation of the
Android project. It contains identifiers of all resources put in the res
directory. R.layout.activity_main, in particular, corresponds to the
activity_main.xml file in the res/layout. This is called the layout XML
file which contains the description of UI components making up an activity
view. If you open it in the editor, Android Studio will present you a UI
designer tool you can use to edit the UI by dragging-and-dropping
components and changing their properties in the Attributes window. For
example, let’s choose a TextView in the center and change its text size to
36. You can see the result in Figure 15.4:

Figure 15.4: UI Designer

If you click on the Text tab at the bottom of the designer window, the editor
will turn to a textual view where you can edit the layout like any other
XML file. After changing the text size, the XML file will look like this:
<?xml version=”1.0” encoding=”utf-8”?>

<androidx.constraintlayout.widget.ConstraintLayout

xmlns:android=”http://schemas.android.com/apk/res/android

”

xmlns:tools=”http://schemas.android.com/tools”

xmlns:app=”http://schemas.android.com/apk/res-auto”

android:layout_width=”match_parent”

android:layout_height=”match_parent”

tools:context=”.MainActivity”>

<TextView

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”

android:text=”Hello World!”

app:layout_constraintBottom_toBottomOf=”parent”

app:layout_constraintLeft_toLeftOf=”parent”

app:layout_constraintRight_toRightOf=”parent”

app:layout_constraintTop_toTopOf=”parent”

android:textSize=”36sp”/>

</androidx.constraintlayout.widget.ConstraintLayout>

In the following sections, we’ll see an example of a more complex UI
layout of a calculator application. For now, let’s see how this “Hello,
World” sample may look like on an Android device.

Using an emulator
Now, we can try to run our simple application using the Android device
emulator. If you haven’t used an emulator yet, the first step is to configure a
virtual device. To do that, choose the Tools | AVD Manager command from
the Android Studio menu and click on the Create Virtual Device… button
in the Android Virtual Device Manager dialog box.
In the dialog box that follows (see Figure 15.5), you can choose a phone
model. For our example, the default choice should be OK so you can just
click on Next:
The System Image dialog box allows you to choose an Android OS image
to be used with an emulator. You need to download a chosen image before
its first use by clicking on a corresponding Download link (Figure 15.6).
When the download is complete, click on Next: In the final Verify
Configuration dialog box of the virtual device configuration wizard, you
can specify a new device name and choose its default orientation. Clicking
on Finish will bring you back to the virtual device manager. Notice the
newly added device in the list and close the AVD window.

Figure 15.5: Choosing virtual device configuration

Figure 15.6: Choosing Android OS image for a virtual device

Let’s use our new emulator to run the main activity. To do that, choose the
Run | Run ‘app’ command or click on the Run tool button (see Figure 15.7
for an example):

Figure 15.7: Using Run command

The Android Studio will bring up a dialog box to choose a virtual device.
Choose the one you’ve just configured and click on OK. The IDE will then
launch an emulator, boot its operating system, and start the main activity of
our application. Although the emulator appearance may vary, the result will
be similar to the one you see in Figure 15.8:

Figure 15.8: Running application on Android emulator

You can interact with the emulator similarly with how you do it with a
physical smartphone or tablet. The side panel gives you an access to some
basic functions like device rotation, volume control, taking screenshots, and
so on. It’s also possible to debug applications deployed on an emulator; for
that you need to start the application in the debug mode using the Debug
command instead of Run.
Now that we’ve got a basic understanding of our project structure, let’s see
how to make our application a bit more interactive.

Activities
The remaining part of the chapter will be centered on an example of a
calculator application. In the course of this section, we’ll see how to define
the UI activity using the XML layout, how view binding can help you
simplify UI-related code as well as take a glimpse at the activity lifecycle
and get to know how and you can preserve its state and when you may need
to do it.

Designing an application UI
We’ll take our “Hello, World” example as a starting point for out
calculator application. First, let’s change application title in the
strings.xml resource file:
<resources>

<string name=”app_name”>Calculator</string>

</resources>

Now, let’s open activity_main.xml which contains the UI definition of the
main activity. Click on the Text tab below to bring up a text representation
of the underlying file and edit it to match the following:
<?xml version=”1.0” encoding=”utf-8”?>

<RelativeLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

xmlns:tools=”http://schemas.android.com/tools”

android:id=”@+id/relative1”

android:layout_width=”match_parent”

android:layout_height=”match_parent”

tools:context=”.MainActivity”>

<TableLayout android:layout_width=”match_parent”

android:layout_height=”match_parent”

android:stretchColumns=”3”>

<TextView android:id=”@+id/txtResult”

android:layout_width=”match_parent”

android:layout_height=”wrap_content”

android:textSize=”40sp”/>

<TableRow android:layout_width=”match_parent”

android:layout_height=”match_parent”>

<Button android:id=”@+id/btn7”

android:text=”7”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”/>

<Button android:id=”@+id/btn8”

android:text=”8”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”/>

<Button android:id=”@+id/btn9”

android:text=”9”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”/>

<Button android:id=”@+id/btnPlus”

android:text=”+”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”

android:layout_gravity=”end|center_vertical”/>

</TableRow>

<TableRow android:layout_width=”match_parent”

android:layout_height=”match_parent”>

<Button android:id=”@+id/btn4”

android:text=”4”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”/>

<Button android:id=”@+id/btn5”

android:text=”5”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”/>

<Button android:id=”@+id/btn6”

android:text=”6”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”/>

<Button android:id=”@+id/btnMinus”

android:text=”-”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”

android:layout_gravity=”end|center_vertical”/>

</TableRow>

<TableRow android:layout_width=”match_parent”

android:layout_height=”match_parent”>

<Button android:id=”@+id/btn1”

android:text=”1”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”/>

<Button android:id=”@+id/btn2”

android:text=”2”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”/>

<Button android:id=”@+id/btn3”

android:text=”3”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”/>

<Button android:id=”@+id/btnTimes”

android:text=”*”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”

android:layout_gravity=”end|center_vertical”/>

</TableRow>

<TableRow android:layout_width=”match_parent”

android:layout_height=”match_parent”>

<Button android:id=”@+id/btn0”

android:text=”0”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”/>

<Button android:id=”@+id/btnPoint”

android:text=”.”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”/>

<Button android:id=”@+id/btnSign”

android:text=”+/-”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”/>

<Button android:id=”@+id/btnDivide”

android:text=”/”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”

android:layout_gravity=”end|center_vertical”/>

</TableRow>

<TableRow android:layout_width=”match_parent”

android:layout_height=”match_parent”>

<Button android:id=”@+id/btnBackspace”

android:text=”<-”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”/>

<Button android:id=”@+id/btnClear”

android:text=”C”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”/>

<Space android:layout_width=”wrap_content”

android:layout_height=”wrap_content”/>

<Button android:id=”@+id/btnCalc”

android:text=”=”

android:layout_width=”wrap_content”

android:layout_height=”wrap_content”

android:layout_gravity=”end|center_vertical”/>

</TableRow>

</TableLayout>

</RelativeLayout>

Figure 15.9 shows a preview of the calculator UI:

Figure 15.9: Calculator UI preview

Discussing the format of the XML layout is out of the scope of this book, so
we won’t delve into details here, but just point out some basics. The layouts
are basically containers which arrange nested views in a certain way (you
can compare them to Swing containers with a specific LayoutManager).
Since the calculator UI assumes largely regular positioning of elements, we
use the table layout which assigns nested components to rows and columns.
The components themselves are defined by such tags as Button (a simple
button with a text) and TextView (a component which displays read-only
text similar to Swing’s JLabel).
Note the android:id attributes: they are assigned to each view element that
presents or takes some data from the user. This attribute allows you to
reference the corresponding element in Java or Kotlin code. We’ll see how
to do it in the next section where we’ll discuss the activity class.

Implementing an activity class
Let’s get to the implementation of the activity class which adds some
behavior to the UI. We won’t go into the details of calculator business logic
allowing the readers to explore it by themselves and instead highlight some
Android-specific points.
Among other things, we want to access the current value typed into the
calculator’s display: the txtResult component. To do that, we use the
findViewById() function passing a text view ID. We don’t need to put an
actual string from the XML layout, though, because such IDs can be
referred to using the R class we’ve already seen in the “Hello, World”
example:
private val txtResult by lazy { findViewById<TextView>
(R.id.txtResult) }

Using the view reference, we can then access its members; for example, the
setOnClickListener() method allows us to specify an action invoked
when a user clicks a button:
findViewById<Button>(R.id.btn0).setOnClickListener {

appendText(“0”) }

While reading/writing the text property of a TextView component gives
access to its text content:
private fun clearText() {

txtResult.text = “0”

}

Here is the full source code of the calculator’s MainActivity
class:

package com.example.helloworld
import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle
import android.widget.Button
import android.widget.TextView
import android.widget.Toast
import java.lang.ArithmeticException
import java.math.BigDecimal
import java.math.RoundingMode
class MainActivity : AppCompatActivity() {

enum class OpKind {

ADD, SUBTRACT, MULTIPLY, DIVIDE

}

companion object {
fun OpKind.compute(a: BigDecimal, b: BigDecimal) = when
(this) {
OpKind.ADD -> a + b

OpKind.SUBTRACT -> a - b

OpKind.MULTIPLY -> a * b

OpKind.DIVIDE -> a.divide(b, 10, RoundingMode.HALF_EVEN)

}

}

private val txtResult by lazy { findViewById<TextView>
(R.id.txtResult)}

private var lastResult: BigDecimal = BigDecimal.ZERO
private var lastOp: OpKind? = null
private var waitingNextOperand: Boolean = false
override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)
setContentView(R.layout.activity_main)

findViewById<Button>(R.id.btn0).setOnClickListener {

appendText(“0”)}

findViewById<Button>(R.id.btn1).setOnClickListener {

appendText(“1”)}

findViewById<Button>(R.id.btn2).setOnClickListener {

appendText(“2”)}

findViewById<Button>(R.id.btn3).setOnClickListener {

appendText(“3”)}

findViewById<Button>(R.id.btn4).setOnClickListener {

appendText(“4”)}

findViewById<Button>(R.id.btn5).setOnClickListener {

appendText(“5”)}

findViewById<Button>(R.id.btn6).setOnClickListener {

appendText(“6”)}

findViewById<Button>(R.id.btn7).setOnClickListener {

appendText(“7”)}

findViewById<Button>(R.id.btn8).setOnClickListener {

appendText(“8”)}

findViewById<Button>(R.id.btn9).setOnClickListener {

appendText(“9”)}

findViewById<Button>(R.id.btnPoint).setOnClickListener {

appendText(“.”)

}

findViewById<Button>(R.id.btnSign).setOnClickListener {

val currentText = txtResult.text.toString()
txtResult.text = when {
currentText.startsWith(“-”) ->

currentText.substring(1, currentText.length)

currentText != “0” ->

“-$currentText”

else ->
return @setOnClickListener

}

}

findViewById<Button>

(R.id.btnBackspace).setOnClickListener {

val currentText = txtResult.text.toString()
val newText = currentText.substring(0,
currentText.length - 1)

txtResult.text =

if (newText.isEmpty() || newText == “-”) “0” else
newText

}

findViewById<Button>(R.id.btnClear).setOnClickListener {

clearText() }

findViewById<Button>(R.id.btnPlus).setOnClickListener {

calc(OpKind.ADD)

}

findViewById<Button>(R.id.btnMinus).setOnClickListener {

calc(OpKind.SUBTRACT)

}

findViewById<Button>(R.id.btnTimes).setOnClickListener {

calc(OpKind.MULTIPLY)

}

findViewById<Button>(R.id.btnDivide).setOnClickListener {

calc(OpKind.DIVIDE)

}

findViewById<Button>(R.id.btnCalc).setOnClickListener {

calc(null)
}

clearText()

}

private fun clearText() {
txtResult.text = “0”

}

private fun appendText(text: String) {
if (waitingNextOperand) {
clearText()

waitingNextOperand = false
}

val currentText = txtResult.text.toString()
txtResult.text = if (currentText == “0”) text else
currentText + text

}

private fun calc(nextOp: OpKind?) {
if (waitingNextOperand) {
lastOp = nextOp

return

}

val currentValue = BigDecimal(txtResult.text.toString())
val newValue = try {
lastOp?.compute(lastResult, currentValue) ?:

currentValue

} catch (e: ArithmeticException) {
lastOp = null
waitingNextOperand = true
Toast.makeText(

applicationContext,

“Invalid operation!”,

Toast.LENGTH_SHORT

).show()

return

}

if (nextOp != null) {
lastResult = newValue

}

if (lastOp != null) {
txtResult.text = newValue.toPlainString()

}

lastOp = nextOp

waitingNextOperand = nextOp != null
}

}

Now, we can try to run the calculator and see it in action. Figure 15.10
shows an example of using our application in the Android emulator:

Figure 15.10: Calculator application in action

View binding

A frequent use of findViewById() can clatter your code, especially if you
want to keep references to view components in class properties like we’ve
done with txtResult. In the Java world, some libraries like Butterknife or
Android Data Binding are able to work around this problem by
automatically injecting view references into given class fields, but require
you to manually annotate each field of interest by specifying the
corresponding ID. The more concise solution is given by a newer view
binding mechanism that we’ll consider in this section.
Basically, view binding allows a compiler to automatically generate special
classes which correspond to layout files and contain references to all views
with an explicit ID. By using such classes in the activity code, you can get
access to the required components and their properties without boilerplate
calls of findViewById(). Let’s see now how they can be applied to our
calculator application.
First, we need to enable view binding in our project. To do that, we add the
corresponding option to the build.gradle file of our main module:
android {

...

buildFeatures {

...

viewBinding true // enable view binding
}

}

When you make changes in one of the Gradle build files, the IDE will
detect them and present you a warning at the top of the file editor (as shown
in Figure 15.11):

Figure 15.11: Android Studio suggesting Gradle synchronization

After you click on the Sync Now link, Android Studio will synchronize its
internal project model with a new Gradle-provided configuration turning on
the binding class generation and also make them available in various code
insight features such as automatic completion and code navigation.
Next, we add a property to hold the binding instance to our activity class:
private lateinit var binding: ActivityMainBinding

And initialize it in the onCreate() method:
override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)

// Initialize binding instance based on layout file

binding = ActivityMainBinding.inflate(layoutInflater)

setContentView(binding.root)

...

}

The root property refers to the root component of the layout file (in our
case, it’s RelativeLayout) while any other component can be accessed by
the property with the same name as its ID. For example, now we can
simplify the line:
findViewById<Button>(R.id.btn0).setOnClickListener {

appendText(“0”) }

to:

binding.btn0.setOnClickListener { appendText(“0”) }

Note that those properties already have proper types (such as Button for
btn0) which also makes your code more type-safe as compared with the
findViewById() version.
As a result, the onCreate() method of our calculator activity transforms
into:
override fun onCreate(savedInstanceState: Bundle?) {

super.onCreate(savedInstanceState)
binding = ActivityMainBinding.inflate(layoutInflater)

setContentView(binding.root)

binding.btn0.setOnClickListener { appendText(“0”) }

binding.btn1.setOnClickListener { appendText(“1”) }

binding.btn2.setOnClickListener { appendText(“2”) }

binding.btn3.setOnClickListener { appendText(“3”) }

binding.btn4.setOnClickListener { appendText(“4”) }

binding.btn5.setOnClickListener { appendText(“5”) }

binding.btn6.setOnClickListener { appendText(“6”) }

binding.btn7.setOnClickListener { appendText(“7”) }

binding.btn8.setOnClickListener { appendText(“8”) }

binding.btn9.setOnClickListener { appendText(“9”) }

binding.btnPoint.setOnClickListener { appendText(“.”) }

binding.btnSign.setOnClickListener { ... }

binding.btnBackspace.setOnClickListener { … }

binding.btnClear.setOnClickListener { clearText() }

binding.btnPlus.setOnClickListener { calc(OpKind.ADD) }

binding.btnMinus.setOnClickListener { calc(OpKind.SUBTRACT)

}

binding.btnTimes.setOnClickListener { calc(OpKind.MULTIPLY)

}

binding.btnDivide.setOnClickListener { calc(OpKind.DIVIDE) }

binding.btnCalc.setOnClickListener { calc(null) }

clearText()

}

While the following explicit txtResult property:

private val txtResult by lazy { findViewById<TextView>

(R.id.txtResult) }

Becomes just a synonym for the corresponding binding property:

private val txtResult get() = binding.txtResult

Properties lacking the explicit ID in the layout file are not exposed via the
binding class. On top of that, you can suppress autogeneration of bindings
for a particular layout by adding tools:viewBindingIgnore=true to the
root XML element:
<RelativeLayout

xmlns:android=”http://schemas.android.com/apk/res/android”

xmlns:tools=”http://schemas.android.com/tools”

android:id=”@+id/relative1”

android:layout_width=”match_parent”

android:layout_height=”match_parent”

tools:context=”.MainActivity”

tools:viewBindingIgnore=”true”>

...

</RelativeLayout>

In earlier versions of Android Studio and Kotlin plugin, the preferred
approach to access view components was provided by the Kotlin Android
Extensions library. Rather than generating binding classes, this library
served as a compiler plugin adding synthetic extension properties for each
view component with an explicit ID and transforming references to such
properties into the findViewById() calls. Currently, this library can still be

used in Android projects but is considered deprecated in favor of view
binding.

Preserving the activity state
If you experiment a bit with a calculator we created in the previous
sections, you may find out a visible flaw in its behavior. Let’s type some
number and then imitate the device rotation. To do that, you can just click
on one of the Rotate left/Rotate right buttons on the emulator side
panel. The result is shown in Figure 15.12:

Figure 15.12: Activity reset on device rotation

You can see that an original number has changed to zero. In fact, the entire
state of our activity has reset to the one we’ve provided in the initialization
code. The reason of such a behavior is the change of device configuration
(such as rotating its screen) forces the system to destroy our activity and
recreate it from scratch. A similar case is when an activity is not visible to
the user and the system runs out of resources necessary to execute the

application with higher priority; as a result, Android may shut down the
lesser-priority process together with its activities.
But what if we need to retain some state between different instantiations of
the same activity regardless of whether it was forcibly destroyed/recreated
by the system? Android provides a solution in the form of a so called
bundle which is basically a set of key/value pairs you can use to store any
serializable data. As you must’ve noticed, the onCreate() method takes a
Bundle parameter which contains data preserved from the previous activity
run. To fill the bundle, we need to override another Activity method,
onSaveInstanceState().
For example, to fix the calculator behavior, we need to preserve the activity
state which in our case is composed of a text shown on the calculator
display and values of instance variables lastResult, lastOp and
waitingNextOperand. The first step is to override the
onSaveInstanceState() method where we write relevant values into a
Bundle object:
override fun onSaveInstanceState(outState: Bundle) {

super.onSaveInstanceState(outState)
outState.putString(“currentText”, txtResult.text.toString())

outState.putSerializable(::lastResult.name, lastResult)

outState.putSerializable(::lastOp.name, lastOp)

outState.putBoolean(::waitingNextOperand.name,

waitingNextOperand)

}

Now, even if the activity is temporarily destroyed due to a configuration
change or the need to free device resources for other processes and
recreated at some later time, the system preserves the bundle and passes it
to the onCreate() method for initialization. The second step is to add a
code which reads from a bundle into our onCreate() implementation:
override fun onCreate(savedInstanceState: Bundle?) {

...

clearText()

savedInstanceState?.let {

txtResult.text = it.getString(“currentText”)

lastResult = it.getSerializable(::lastResult.name) as

BigDecimal

lastOp = it.getSerializable(::lastOp.name) as OpKind?

waitingNextOperand =

it.getBoolean(::waitingNextOperand.name)

}

}

An argument passed to onCreate() may be null. This happens when the
bundle is absent; for example, if the activity has started for the first time.
Note that only serializable values may be stored in a bundle. If you need to
preserve some non-serializable object, you need to either make it implement
the Serializable interface, or refrain from writing it to bundle directly and
take an alternative approach such as converting it to some serializable data
holder or preserving the original object by parts.
One more thing worth mentioning is that bundles are only suited for
preserving relatively small amounts of transient data because their
serialization occupies the main thread and consumes the memory of the
system process. For other cases, it’s recommended that you use the local
storage such as user preferences or the SQLite database.
The onCreate() and onSaveInstanceState() methods are special cases of
the so-called lifecycle callbacks which are invoked by the Android OS
when an activity transitions to a new state from the lifecycle’s view. For
example, the Resumed state is associated with an activity running in the
foreground, the Paused corresponds to an activity which is moved to the
background but remains visible to the user, while the Stopped state means
that an activity becomes completely invisible.
The overridden versions of lifecycle callbacks must invoke inherited
implementations as well because they contain a common code necessary for
the proper functioning of the activity.
IDE Tips: Android Studio includes an inspection which reports an error if
you override the lifecycle callback without calling the inherited method (as
shown in Figure 15.13):

Figure 15.13: Error on absent super call

Conclusion
In this chapter, you learned how to use basic features of the Android Studio
IDE and created your first Android application using Kotlin language. We
introduced you to a concept of Android activity, got a taste of the UI layout
description, and demonstrated how view binding can help you in writing
UI-related Kotlin code.
In the next chapter, we will touch upon the topic of developing Web
applications using the Ktor framework. We’ll talk about basic Ktor features,
project setup, and using a routing mechanism for handling client requests.
We will also take a look at DSL aimed at generation of HTML content.

Questions
1. Describe the project setup in Android Studio.
2. Describe the use of Gradle for project configuration in Android

Studio. How do you add a new dependency?
3. How do you configure a virtual device for running applications?
4. What is an activity? How do you describe an UI of an Android

application?
5. Explain the view binding mechanism. What are the advantages of

view binding as compared to accessing view components using
findViewById()?

6. How do you save/restore an activity state when it gets temporarily
destroyed?

CHAPTER 16
Web Development with Ktor

In this chapter, we’ll take a look at basic possibilities of Ktor, a Kotlin
framework with a purpose to simplify the development of connected
systems composed of various client and server applications such as
browsers, mobile clients, web applications, and services. Being an
extension of the Coroutines library, Ktor offers you powerful and easy-to
use facilities for asynchronous communication. This is certainly not meant
to be an exhaustive treatment of Ktor capabilities, so in the scope of our
book, we’ll limit this discussion to a small set of features related to web
applications, especially their server-side part: dispatching client requests,
obtaining request data, and composing various kinds of responses. The
readers are encouraged to continue their acquaintance with Ktor from its
official website https://ktor.io and other resources.

Structure
In this chapter, we will cover the following topics:

Setting up a Ktor project
Server features
Client features

Objective
After reading this chapter, the reader will learn the basic features of using
Ktor for client- and server-side development of web applications.

Introducing Ktor
In this section, we’ll take a quick glance at Ktor and walk through the basic
steps required for setting up a project in IntelliJ IDEA. To simplify the

https://ktor.io/

process, you can make use of a special IntelliJ plugin which adds Ktor
support to the project wizard, as shown in Figure 16.1:

Figure 16.1: Installing the Ktor plugin for IntelliJ IDEA

Note that unlike most plugins for Web/J2EE-development, Ktor doesn’t
require the Ultimate edition and can be used in the IDEA Community as
well. After installing the plugin and restarting the IDE, choose File | New
| Project… and select the Ktor option in the New Project dialog box.
Besides the basic client/server functionality, Ktor provides a set of
pluggable features which require dependencies on additional artifacts
and/or some configuration code. The Ktor project wizard allows you to
choose features to be included to generate code for both client- and server-
side applications (see Figure 16.2):

Figure 16.2: Ktor project wizard

For our example, we’ll choose the HTML DSL option in the Server
column which gives us the ability to generate the HTML markup using a
simple Kotlin DSL.
Besides specific features, Ktor also allows you to choose a project build
system (such as Gradle or Maven), type of an HTTP server engine
(Netty/Jetty/Tomcat/Coroutine-based) and a framework version. Our project
will be Gradle-based and use Ktor 1.2.3 with Netty engine. After making
sure that all options are set correctly, click on Next.
In the dialog box that follows, the IDE will ask you to fill basic information
necessary for building project artifacts (group/artifact ID and version). You
can leave these values as is and click on Next.
In the last step, choose a project name and location and click on Finish.
The IDE will then proceed with the generation of project sources and open
a new project on completion. After that, you’ll be presented with the
Import Module from Gradle dialog where you can set up basic options
for Gradle/IntelliJ interoperability. For now, let’s choose the Use default
gradle wrapper option and leave all other settings as is. After you click on
OK, the IDE will start the process of synchronization with the Gradle

project model. Once it completes, you’ll be able to see the following files in
the IDE Project View (Figure 16.3):

Figure 16.3: Structure of a sample Ktor project

Note the application.conf file in the resources folder. This file contains
the configuration of your server application in a HOCON (Human-
Optimized Config Object Notation) format. In our case, it specifies the
server port number and a list of modules composing our application:
ktor {

deployment {

port = 8080

port = ${?PORT}

}

application {

modules = [ch16.demo.ApplicationKt.module]

}

}

Detailed information about HOCON and supported configuration options
can be found on the Ktor site at
https://ktor.io/servers/configuration.html.
The Ktor module is basically an extension function of the Application
class which is responsible for configuring features, handling client requests,
and other server tasks. Modules to load must be specified by their qualified
names in the server configuration file. Our sample project contains a single
module implemented in the Application.kt:
package ch16.demo
import io.ktor.application.*
import io.ktor.client.HttpClient
import io.ktor.client.engine.apache.Apache
import io.ktor.html.respondHtml
import io.ktor.http.ContentType
import io.ktor.response.respondText
import io.ktor.routing.*
import kotlinx.html.*
fun main(args: Array<String>): Unit =

io.ktor.server.netty.EngineMain.main(args)

@Suppress(“unused”) // Referenced in application.conf

@kotlin.jvm.JvmOverloads

fun Application.module(testing: Boolean = false) {
routing {

get(“/”) {

call.respondText(

“HELLO WORLD!”,

contentType = ContentType.Text.Plain

)

}

get(“/html-dsl”) {

https://ktor.io/servers/configuration.html

call.respondHtml {

body {

h1 { +”HTML” }

ul {

for (n in 1..10) {
li { +”$n” }

}

}

}

}

}

}

}

The main() function which is also defined in this file simply starts the
chosen HTTP server engine (in our case, it’s Netty) which then reads
application.conf and loads the server module represented by the
Application.module() function.
The module body contains the routing block which sets up rules for
handling client requests based on their URL path. In particular, when a
client application (for example, web browser) accesses the root path of our
server, Ktor invokes the following handler:
call.respondText(

“HELLO WORLD!”,

contentType = ContentType.Text.Plain

)

This code generates the HTTP response with a plain-text message for the
body. If you compile and start the server application and then open
localhost:8080 in some browser, you’ll see something similar to Figure
16.4:

Figure 16.4: Accessing root path of "Hello, World" application in browser

Similarly, the /html-dsl path shows an example of generating a server
response using the HTML DSL library. This DSL allows you to present the
HTML markup in the form of nested blocks corresponding to different
HTML tags. As you’ve probably guessed, the following handler generates
the HTML page with level-1 heading and a bullet list of numbers:
call.respondHtml {

body {

h1 { +”HTML” }

ul {

for (n in 1..10) {

li { +”$n” }

}

}

}

}

Figure 16.5 shows the result of rendering the DSL code into an HTML
page:

Figure 16.5: HTML response associated with /html-dsl path

In the upcoming section, we’ll take a closer look at both HTML DSL and
routing rules as well as some other server features of Ktor.
The IDE-generated project also includes a sample server test. Let’s open the
ApplicationTest class:
package ch16.demo

import io.ktor.http.*

import io.ktor.server.testing.*

import kotlin.test.*

class ApplicationTest {

@Test

fun testRoot() {

withTestApplication({ module(testing = true) }) {

handleRequest(HttpMethod.Get, “/”).apply {

assertEquals(HttpStatusCode.OK, response.status())

assertEquals(“HELLO WORLD!”, response.content)

}

}

}

}

This code configures the test application for running with a given set of
modules (note the use testing = true argument which allows the module
code to distinguish test and production environments) and then checks the
results of handling the simple HTTP request to the root path. You can use
this class as a starting point for writing your own tests covering various
aspects of the server behavior.
As an alternative to an IntelliJ plugin, you can make use of the online
project generator available at https://start.ktor.io. The generator UI allows
you to specify the same basic options, including a set of client/server
features you’d like to use in your application. After you click on the Build
button, the backend will suggest you to download an archive file containing
a generated project. Figure 16.6 shows an example:

Figure 16.6: Ktor project wizard at start.ktor.io

This concludes our introduction to the basic project setup. In the upcoming
sections, we’ll focus on specific features provided by both client- and
server-sides of the Ktor framework.

Server features

https://start.ktor.io/

In this section, we’ll consider a few topics regarding the development of
web server applications. Most of the Ktor functionalities are organized as a
set of pluggable features which can be configured by the call of the
install() method which takes a feature object and an optional
configuration block. For example, to enable compression of the outgoing
content, you can add the following code to the module function:
install(Compression)

If you want to specify additional (feature-specific) options such as choose a
compression method, you may do so in the configuration block:
install(Compression) {

gzip()

}

The examples in this chapter use an embedded HTTP server which allows
them to run as a standalone program. In many cases, though, you may need
to deploy the Ktor application in the context of some web/application
container such as Apache Tomcat, Docker, or Google App Engine. To
install your application, you’ll need to assemble an archive which contains
application classes together with all its dependencies and prepare container-
specific configuration files. A discussion on container-specific details is
beyond the scope of this book, but you can find detailed instructions on the
official Ktor site at https://ktor.io/servers/deploy.html.

Routing DSL
The routing feature allows you to implement a structured handling of HTTP
requests based on the hierarchical system of pattern matchers. The routing
configuration is expressed by a special DSL inside the feature installation
block:
fun Application.module() {

install(Routing) {

// routine description

get(“/”) { call.respondText(“This is root page”) }

}

}

Or a routing() block which serves as a shorthand for the corresponding
install() call:
fun Application.module() {

https://ktor.io/servers/deploy.html

routing {

get(“/”) { call.respondText(“This is root page”) }

}

}

The simplest routing scenario is given by the get() function which tells the
server to execute a given handler for any HTTP GET request with a given
URL path prefix. For example, the preceding code responds with a plain
text string to the GET request at the site root while requests to any other
path on the same site or with any other HTTP verb will result in 404 (see an
example in Figure 16.7):

Figure 16.7: Results of get("/") routing

Ktor supports similar routing functions for all HTTP verbs, including
post(), put(), delete(), patch(), head(), and options().
Paths mentioned in routing functions may use parameters which match the
specific segment of the request path and can be retrieved later from the
application call. To introduce a parameter, you just need to enclose its name
in braces. For example, consider the following:
routing {

get(“/hello/{userName}”) {

call.respondHtml {

body {

h1 { +”Hello, ${call.parameters[“userName”]}” }

}

}

}

}

The routing will match any URL which starts with /hello/ and contains
exactly two segments. Note that the parameter by itself can match just one
segment so paths like /hello or /hello/John/Doe will remain unmatched
(as shown in Figure 16.8):

Figure 16.8: Matching by a single-segment path parameter

If the parameter value is not really used, you can replace it by a * character
(wildcard):
routing {

get(“/hello/*”) {

call.respondHtml {

body {

h1 { +”Hello, World” }

}

}

}

}

The preceding routing accepts the same set of paths as the previous one
without capturing any parameters.
If you want to introduce an optional parameter which may match an empty
path segment, just add ? to its name, as shown here:
routing {

get(“/hello/{userName?}”) {

val userName = call.parameters[“userName”] ?: “Unknown”

call.respondHtml {

body {

h1 { +”Hello, $userName” }

}

}

}

}

Figure 16.9: Optional matching

The routing will accept both /hello/John and /hello URLs as shown in
Figure 16.9:
The tailcard… placed after the parameter name will match all URL
segments at the path end. In this case, you can make use of getAll()
methods of the the Parameters class to obtain all captured segments split
into a List. Let’s for example create a simple service which performs basic
arithmetic operations on integer numbers and accepts input data in the form
of URL paths such as /calc/+/123/456:
routing {

get(“/calc/{data...}”) {

val data = call.parameters.getAll(“data”) ?: emptyList()
call.respondHtml {

body {

h1 {

if (data.size != 3) {
+”Invalid data”

return @h1
}

val (op, argStr1, argStr2) = data
val arg1 = argStr1.toBigIntegerOrNull()
val arg2 = argStr2.toBigIntegerOrNull()
if (arg1 == null || arg2 == null) {
+”Integer numbers expected”

return @h1
}

val result = when (op) {
“+” -> arg1 + arg2

“-” -> arg1 - arg2

“*” -> arg1 * arg2

“/” -> arg1 / arg2

else -> null
}

+(result?.toString() ?: “Invalid operation”)

}

}

}

}

}

You can see some of its results in Figure 16.10. Note that tailcard accepts
zero-length path tails so /calc is handled as well. The special {…} tailcard
accepts the path tail but similarly to * doesn’t capture any parameters.

Figure 16.10: Tailcard matching

Note that tailcards must be placed at the end of the routing path, since it’ll
remain unmatched otherwise.
Besides get()-like functions which match the entire URL path, Ktor allows
you to define a routing tree matching subsequent portions of the URL
and/or various request data. Consider the following example:
routing {

method(HttpMethod.Get) {

route(“user/{name}”) {

route(“sayHello”) {

handle {

call.respondText(“Hello, ${call.parameters[“name”]}”)

}

}

route(“sayBye”) {

handle {

call.respondText(“Bye, ${call.parameters[“name”]}”)

}

}

}

}

}

When the server receives an HTTP request, it starts looking for a matching
routing rule starting from the tree root. In our case, the root node is
method(HttpMethod.Get) which matches any request with the GET verb. If
the client request satisfies this condition, the server goes down the tree and
checks the route(“user/{name}”) rule which accepts URLs with a given
path prefix. If the path fits, the server goes deeper and checks one of the
route(“sayHello”) and route(“sayBye”) rules which check the
remaining portion of the URL path. At the lowest level, we have the
handle() blocks which generate the response provided that all rules on the
corresponding branch are matched.
Note that the HTTP verb can be specified in the route() call without the
explicit use of the method() function. The get() function we’ve seen
earlier is basically a shorthand for the top-level route() block with a
handler. For example, the code:
routing {

get(“/hello/{userName}”) {

call.respondText(“Hello, ${call.parameters[“userName”]}”)

}

}

Is equivalent to:

routing {

route(“/hello/{userName}”, HttpMethod.Get) {

handle {

call.respondText(“Hello,

${call.parameters[“userName”]}”)

}

}

}

The route() and method() are not the only matchers at your disposal.
There are additional builders as well:

header(name, value): This accepts requests with a specific header.
param(name, value): This accepts requests with a specific
parameter value.
param(name): This accepts requests which have a parameter with a
specific name and captures its value.
optionalParam(name): This accepts an optional parameter with a
given name.

In the following example, we choose a response based on the value of the
action parameter:
routing {

route(“/user/{name}”, HttpMethod.Get) {

param(“action”, “sayHello”) {

handle {

call.respondHtml {

body { h2 { +”Hello, ${call.parameters[“name”]}” } }

}

}

}

param(“action”, “sayBye”) {

handle {

call.respondHtml {

body { h2 { +”Bye, ${call.parameters[“name”]}” } }

}

}

}

}

}

Figure 16.11 demonstrates the results:

Figure 16.11: Matching by request parameter

The Ktor API allows you to create your own matchers, thus extending
routing DSL. To do this, you need to provide an implementation of the
RouteSelector class and add the corresponding builder function.

Handling calls
In this and the next sections, we’ll demonstrate basic capabilities of
request/response processing in Ktor. We’ve already seen various examples
of a simple response generation via responseText() or respondHtml()
inside a routing handler. Consider, for example, the following code:
routing {

get(“/”) { call.respondText(“This is root page”) }

}

The call property available inside this handler is an instance of
ApplicationCall which basically combines an incoming request with a
response to be composed. A common case is building a response based on a
text which is handled by the responseText() function. In the preceding
example, we’re sending a simple plain-text body, but you can also specify
the body MIME type by using the contentType parameter as in the
following code:
call.respondText(“<h2>HTML Text</h2>”, ContentType.Text.Html

Which sends an HTML-based response. As an alternative, the response text
can be provided by a suspending lambda:
call.respondText(ContentType.Text.CSS) { “p { color: red; }” }

You can also compose the body text using PrintWriter:
call.respondTextWriter(ContentType.Text.Html) {

write(“<head><title>Sample page</title><title>”)

write(“<body><h2>Sample page</h2></body>”)

}

To send an arbitrary binary data, you can use the respondBytes() function
which takes ByteArray instead of a String:
get(“/”) {

val data = “<h2>HTML Text</h2>”.toByteArray()
call.respondBytes(data, ContentType.Text.Html)

}

The respondFile() function can be used to transfer a file from the server
to a client:
get(“/{fileName}”) {

val rootDir = File(“contentDir”)
val fileName = call.parameters[“fileName”]!!
call.respondFile(rootDir, fileName)

}

In addition to the body, you can set a response header data by using the
call.response property:

status(code: HttpStatusCode): This sets the HTTP response
status.
header(name: String, value: String): This appends the given
header to the HTTP response.

Ktor supports automatic redirection responses with status 301 (“moved
permanently”) or 302 (“moved temporarily”):
routing {

get(“/”) {

call.respondRedirect(“index”)

}

get(“index”) {

call.respondText(“Main page”)

}

}

To access a request parameter, you can use the request.queryParameters
object which serves as a kind of map from parameter names to their values:
routing {

// e.g. /sum?left=2&right=3 responds with 5

get(“/sum”) {

val left =
call.request.queryParameters[“left”]?.toIntOrNull()

val right =
call.request.queryParameters[“right”]?.toIntOrNull()

if (left != null && right != null) {
call.respondText(“${left + right}”)

} else {
call.respondText(“Invalid arguments”)

}

}

}

When a parameter is used more than one time, the get() function only
returns its first value. The getAll() function, on the contrary, returns a
complete list of parameter values in the form of List<String>:
routing {

// e.g. /sum?arg=1&arg=2&arg=3 responds with 6

get(“/sum”) {

val args = call.request.queryParameters.getAll(“arg”)
if (args == null) {
call.respondText(“No data”)

return @get
}

var sum = 0
for (arg in args) {
val num = arg.toIntOrNull()
if (num == null) {
call.respondText(“Invalid arguments”)

return @get
}

sum += num

}

call.respondText(“$sum”)

}

}

Similarly, you can use request.headers.get() and
reqiest.headers.getAll() to obtain values of the request header data.

HTML DSL
The HTML DSL library together with the Ktor HTML builder allow you
to generate a response based on the HTML content. This gives an
alternative to techniques like JSP which embed executable code into the UI
markup. With HTML DSL, you have both a concise syntax and all the
benefits of a Kotlin code, including type safety and powerful IDE code
insight. In this section, we won’t discuss any details of the DSL library and
simply focus on an example using it to compose HTML forms. For more
information, we relegate the reader to the HTML DSL website at
https://github.com/Kotlin/kotlinx.html.
Let’s create a simple web application for generating random numbers. Our
server will present a page with a form where a user can enter the desired
range and a number of values to generate as shown on the Figure 16.12.
The server will also perform a basic validation of input data ensuring that:

all values are valid integers
“From” bound is less than or equal to “To” bound
the “How many” field contains a positive number

When some of the preceding requirements are violated on the form
submission, the server will return the form back to the client with error
message(s) beside the corresponding text field(s).
Here is the complete text of our server application:
package com.example
import io.ktor.application.*
import io.ktor.html.respondHtml
import io.ktor.routing.*
import kotlinx.html.*
import kotlin.random.Random
fun main(args: Array<String>): Unit =

io.ktor.server.netty.EngineMain.main(args)

private const val FROM_KEY = “from”
private const val TO_KEY = “to”
private const val COUNT_KEY = “count”
private const val GENERATE_KEY = “generate”
private suspend fun ApplicationCall.randomGeneratorForm() {

https://github.com/Kotlin/kotlinx.html

respondHtml {

val parameters = request.queryParameters
val isGenerate = parameters.contains(GENERATE_KEY)
var from: Int? = null
var to: Int? = null
var count: Int? = null
val errors = HashMap<String, String>()
if (isGenerate) {
from = parameters[FROM_KEY]?.toIntOrNull()

to = parameters[TO_KEY]?.toIntOrNull()

count = parameters[COUNT_KEY]?.toIntOrNull()

if (from == null) {
errors[FROM_KEY] = “An integer is expected”

}

if (to == null) {
errors[TO_KEY] = “An integer is expected”

} else if (from != null && from > to) {
errors[TO_KEY] = “’To’ may not be less than ‘From’”

}

if (count == null || count <= 0) {
errors[COUNT_KEY] = “A positive integer is expected”

}

}

fun FlowContent.appendError(key: String) {
if (!isGenerate) return
errors[key]?.let { strong { +” $it” } }

}

head { title(“Random number generator”) }

body {

h1 { +”Generate random numbers” }

form(action = “/”, method = FormMethod.get) {

p { +”From: “ }

p {

numberInput(name = FROM_KEY) {

value = from?.toString() ?: “1”

}

appendError(FROM_KEY)

}

p { +”To: “ }

p {

numberInput(name = TO_KEY) {

value = to?.toString() ?: “100”

}

appendError(TO_KEY)

}

p { +”How many: “ }

p {

numberInput(name = COUNT_KEY) {

value = count?.toString() ?: “10”

}

appendError(COUNT_KEY)

}

p { hiddenInput(name = GENERATE_KEY) { value = “” } }

p { submitInput { value = “Generate” } }

}

if (isGenerate && errors.isEmpty()) {
h2 { +”Results:” }

p {

repeat(count!!) {

+”${Random.nextInt(from!!, to!! + 1)} “

}

}

}

}

}

}

@Suppress(“unused”) // Referenced in application.conf

fun Application.module() {
routing {

get(“/”) { call.randomGeneratorForm() }

}

}

Note the form() block inside the body(): this call defines an HTML form
and introduces a scope where you can add input components such as text

fields and buttons. The action argument specifies the target URL where the
form data is sent to.
HTML DSL provides a whole set of functions for creating all basic kinds of
input components such as:

input(): A general-purpose text field.
passwordInput(): A text field for entering passwords.
numberInput(): A text field for numeric values with next/prior
buttons.
dateInput()/timeInput()/dateTimeInput(): Specialized text fields
for entering date and time.

fileInput(): A text field with the browse button for uploading a local
file.

The submitInput() call creates a Submit button which packs the form data
into an HTTP request and sends it to the server.
If you look at the source of the page rendered in a browser, you’ll be
presented a markup similar to the following code:
<!DOCTYPE html>

<html>

<head>

<title>Random number generator</title>

</head>

<body>

<h1>Generate random numbers</h1>

<form action=”/” method=”get”>

<p>From: </p>

<p><input type=”number” name=”from” value=”200”></p>

<p>To: </p>

<p>

<input type=”number” name=”to” value=”100”>

 ‘To’ may not be less than ‘From’

</p>

<p>How many: </p>

<p>

<input type=”number” name=”count” value=”-10”>

 A positive integer is expected

</p>

<p><input type=”hidden” name=”generate” value=””></p>

<p><input type=”submit” value=”Generate”></p>

</form>

</body>

</html>

It’s not hard to see a direct correspondence between HTML tags and DSL
blocks in the server code. Just like with the Anko layout, we can easily
refactor and reuse this UI code which would’ve been noticeable harder if
we’d decided to keep it as a HTML file resorting to JSP or some template
engine like Velocity to provide dynamic content.

Figure 16.12: Showing error messages

Error: Reference source not found shows generation results after submitting
the form in a browser:

Figure 16.13: Form with generation results

The HTML DSL can also be used separately from the Ktor HTML builder
library. In this case, you’ll need to include a dependency on the DSL artifact
itself. In Gradle, for example, this amounts to adding into the corresponding
dependencies block:
compile “org.jetbrains.kotlinx:kotlinx-html-jvm:0.6.12”

If your project doesn’t use an external build system like Gradle or Maven,
you can add HTML DSL support by configuring a new library in the
Project Structure dialog box (similar to how we’ve done it with the
Coroutines library in Chapter 13, Concurrency).
Besides HTML, Ktor supports some popular template engines such as
Velocity, Thymeleaf, and Mustache. You can find detailed information and
examples on the Ktor website.

Sessions support
Ktor comes with a built-in support of the session mechanism which allows
a web application to persist some data between different HTTP requests and

identify a particular client or user. User preferences, shopping cart items,
and authorization data are common cases of information which can be kept
in a session.
To use a session, you need to install a corresponding feature and specify
how you want to store its data. For example, to keep a session inside a
client cookie you can write:
install(Sessions) {

cookie<MyData>(“my_data”)

}

The MyData here is a class which represents a session data: its instances
can be accessed on the server side using ApplicationCall and
automatically serialized/deserialized when communicating with the client.
The default serializer can handle classes with properties of simple types like
Int or String but you can override it by creating your own implementation
of SessionSerializer and providing it in the install() block. The my_data
value serves as a cookie key which distinguishes MyData instances from
other sessions installed in the server.
Let’s consider an example which renders a simple HTML page and can
track the number of times it’s been visited by a particular client:
package ch16.sessionDemo
import io.ktor.application.*
import io.ktor.html.*
import io.ktor.response.*
import io.ktor.routing.*
import io.ktor.sessions.*
import kotlinx.html.*
fun main(args: Array<String>): Unit =

io.ktor.server.netty.EngineMain.main(args)

data class Stat(val viewCount: Int)
private const val STAT_KEY = “STAT”
private suspend fun ApplicationCall.rootPage() {

val stat = sessions.getOrSet { Stat(0) }
sessions.set(stat.copy(viewCount = stat.viewCount + 1))

respondHtml {

body {

h2 { +”You have viewed this page ${stat.viewCount}

time(s)” }

a(“/clearStat”) { +”Clear statistics” }

}

}

}

@Suppress(“unused”) // Referenced in application.conf

fun Application.module() {
install(Sessions) {

cookie<Stat>(STAT_KEY)

}

routing {

get(“/”) {

call.rootPage()

}

get(“/clearStat”) {

call.sessions.clear(STAT_KEY)

call.respondRedirect(“/”)

}

}

}

It’s reasonable to keep session instances immutable because the server
usually runs in a multi-threaded environment so keeping session states in
mutable objects can lead to error-prone code. Instead you can read and
replace the session as a whole by using the get()/set() functions. The
getOrSet() allows you to initialize the session it doesn’t yet exist.
If you run the application and open localhost:8080 in your browser, you’ll
see that the view count increases each time a page is refreshed. Figure 16.11
shows results of four updates in a row:

Figure 16.14: Using session data to track page view count

Clicking on the Clear statistics link forces the server to remove the
session data, thus resetting the count back to zero. Note the
responseRedirect() call at the end of /clearStat handler; it’s needed to
render the page again after the session is cleared.
As an alternative to cookies, you may also store sessions in the header of
HTTP requests and responses:
install(Sessions) {

header<MyData>(“my_data”)

}

Ktor sessions can be stored at either the client or server side. By default,
all session data is transferred to the client who keeps them and sends it
back with a next request. This may pose a security issue since the built-in
serializer represents the session data as a plain text. To overcome this
problem, Ktor provides a session transformer mechanism which
implements additional encoding/decoding of the transferred data.

One of the built-in transformers, SessionTransportTransformerMessage
Authentication accompanies the session data with their hash computed
according to a specific algorithm (SHA256 by default). In a simplest case,
you just need to provide a secret key:
install(Sessions) {

cookie<Stat>(STAT_KEY, SessionStorageMemory()) {

val key = Random.Default.nextBytes(16)

transform(SessionTransportTransformerMessageAuthenticatio

n(key))

}

}

The original session data remains unchanged so the third party can still
view them on the client-side. They, however, won’t be able to change the
session data without the server’s consent because that would invalidate the
digest and computing a new one relies on the knowledge of a secret key.
A stronger security guarantee is given by
SessionTransportTransformerEncrypt which encrypts the session data
preventing their read by a third party. To configure this transformer, you’ll
need to provide both an encryption and authentication key (the latter is used
to create a digital signature of the session data):
install(Sessions) {

cookie<Stat>(STAT_KEY) {

val encryptionKey = Random.Default.nextBytes(16)
val signKey = Random.Default.nextBytes(16)
transform(SessionTransportTransformerEncrypt(encryptionKe

y, signKey))

}

}

It’s also possible to add your own transformer by the implementing Session
TransportTransformer interface.
By default, both the cookie() and header() blocks configure client-side
sessions. In this case, all session data is stored on the client-side and
transferred to/from the server with each request/response. Alternatively, you
can configure a session storage which tells Ktor to store the session body on
the server side and transfer only session IDs:
install(Sessions) {

cookie<Stat>(STAT_KEY, SessionStorageMemory())

}

SessionStorageMemory is a built-in implementation which keeps the
session data in a server memory. Note that memory consumption grows
with a number of active clients so server-side sessions are worth being kept
as compact as possible.

This concludes an overview of basic features available to server
applications of Ktor. In the next section, we’ll focus on the other side of
communication and look at using Ktor for programming HTTP clients.

Client features
Ktor is not limited to writing server applications and can be used to greatly
simplify the development of asynchronous clients communicating with
various services. In this section, we’ll focus on a small subset of its features
centered on the HttpClient class which allows you to communicate with
web servers using the HTTP protocol.

Requests and responses
The simplest way to issue an HTTP request via HttpClient is to use its
generic get() method and pass a target URL. The method type arguments
determine what kind of object is returned by the client to represent the
server response. For example, to obtain a response body as a single piece of
text you may use get<String>():
import io.ktor.client.HttpClient
import io.ktor.client.request.get
import kotlinx.coroutines.runBlocking
enum class DayOfWeek {

SUNDAY,

MONDAY,

TUESDAY,

WEDNESDAY,

THURSDAY,

FRIDAY,

SATURDAY

}

fun main() {
runBlocking {

HttpClient().use {

val url =
“http://worldtimeapi.org/api/timezone/Europe/London.txt”

val result = it.get<String>(url)
val prefix = “day_of_week:”

val from = result.indexOf(prefix)
if (from < 0) return @runBlocking
val to = result.indexOf(‘\n’, from + 1)
if (to < 0) return @runBlocking
val dow =
result.substring(from + prefix.length,

to).trim().toInt()

println(“It’s ${DayOfWeek.values().getOrNull(dow)} in

London!”)

}

}

}

Besides string representation, we can access the response body using the
binary form by converting it to a byte array:
val bytes = client.get<ByteArray>(url)

Or obtaining an asynchronous ByteReadChannel:
val channel = client.get<ByteReadChannel>(url)

Request-making methods of HttpClient are suspending functions and thus
must be called in some coroutine context. That’s why we’ve used the
runBlocking() in the preceding examples. In general, you’re free to use
any of asynchronous computation primitives offered by the Kotlin
coroutines.
Note also that HttpClient requires explicit finalization via the close()
method. When its scope is limited, though, we can hide its call behind the
use() block which is similar to how we do it with any other instance of the
Closeable type.
As you’ve probably guessed the get() method directly corresponds to the
HTTP GET. The Ktor client provides similar shorthands for all methods
supported by the HTTP 1.x/2.x standard: post(), put(), delete(),
patch(), head(), options().
These methods accept an optional lambda of HttpRequestBuilder.() ->
Unit type where you can configure additional request parameters such as
adding headers or body. To add a header, you can use the headers method
defined in HttpRequestBuilder:
client.get<ByteArray>(url) {

header(“Cache-Control”, “no-cache”)

}

Or the methods of HeadersBuilder available via the headers property or its
namesake block:
client.get<ByteArray>(url) {

headers {

clear()

append(“Cache-Control”, “no-cache”)

append(“My-Header”, “My-Value”)

}

}

HttpClient provides a simplified way to supply the User-Agent header
which allows the server to identify the client software (such as a web
browser and its particular version). To do that, you just need to install the
UserAgent feature and specify the header value using the agent property:
val client = HttpClient(Apache) {

install(UserAgent) {

agent = “Test Browser”

}

}

You can also use one of the predefined User-Agent settings:

BrowserUserAgent(): This includes popular browsers like Chrome or
Safari.
CurlUserAgent(): This corresponds to the Curl agent.

The preceding functions replace the entire feature installation block. For
example:
val client = HttpClient() {

BrowserUserAgent()

}

To supply a request body, (for example, for a POST request) you can use
the body property of HttpRequestBuilder. The simplest case is writing a
String representation:
client.get<String>(url) {

body = “my_key1=my_value1&my_key2=my_value2”

}

Alternatively, you can supply any implementation of OutgoingContent
such as TextContent which is similar to writing a String but additionally
allows you to specify a MIME type, ByteArrayContent which is useful to
pass binary data, LocalFileContent which allows you to transfer a file,
and so on. Additionally, by installing the JsonFeature, you can enable
automatic serialization of arbitrary objects in a JSON form.
The submitForm() function implements a common scenario by imitating
the behavior of HTML forms. For example, the following code submits the
form data for the server application we’ve demonstrated in the “HTML
DSL” section:
val result = client.submitForm<String>(

url = “http://localhost:8080”,

encodeInQuery = true,

formParameters = parametersOf(

“from” to listOf(“0”),

“to” to listOf(“100”),

“count” to listOf(“10”),

“generate” to emptyList()

)

)

The parameters are passed as a set of key-value pairs while the
encodeInQuery argument determines their representation as a part of
request data:

true: HTTP GET with parameters encoded in the request URL
false: HTTP POST where parameters passed in the request body

The Ktor client comes with an out-of-the-box support of HTTP redirects.
This feature is installed by default so whenever server sends back a
response with a redirect status, the client automatically follows a new
location.

Cookies
If the HTTP server uses cookies to preserve some data between client calls
– in particular to maintain a user session – the client has to arrange proper
storage of such data and provide them with HTTP requests. Ktor simplifies

this task by providing the ready-to-use cookies feature. To demonstrate its
usage, let’s write a simple client for the view counter application we
discussed in the server section (see Figure 16.14):
package com.example
import io.ktor.client.HttpClient
import io.ktor.client.engine.apache.Apache
import io.ktor.client.features.cookies.HttpCookies
import io.ktor.client.request.get
import kotlinx.coroutines.*
fun main() {

HttpClient(Apache) {

install(HttpCookies)

}.use { client ->

runBlocking {

repeat (5) {

val htmlText = client.get<String>

(“http://localhost:8080”)

val from = htmlText.indexOf(“<h2>”)

val to = htmlText.indexOf(“</h2>”)

if (from < 0 || to < 0) return @runBlocking

val message = htmlText.substring(from + “<h2>”.length,

to)

println(message)

delay(500)

}

}

}

}

As you can see our client retrieves the root-path (/) response, finds a header
enclosed inside a <h2> tag, and prints it to the standard output. Note the
install(HttpCookies) call which configures HttpClient to handle
cookies. Since the request/response cycle is repeated five times (each time
with an updated cookie), the output will look as follows:
You have viewed this page 0 time(s)

You have viewed this page 1 time(s)

You have viewed this page 2 time(s)

You have viewed this page 3 time(s)

You have viewed this page 4 time(s)

By default, the HTTP client starts with empty cookies and uses data
provided by the server passing them together with a next request. This
corresponds to a typical browser behavior. Sometimes, though, you may
need to send a request with a preconfigured set of cookies without getting
them from the server – say, to use them in a test case which verifies a server
response. In this case, you may change a cookies storage policy by
changing the storage property to ConstantCookiesStorage and supplying a
set of Cookie objects. The client will then ignore any new cookies sent back
by the server and add the same data to each request. To see this feature in
action, we’ll need to run a plain-text version of our server without any
cookies transformations. Now, change client definition to the following:
val client = HttpClient(Apache) {

install(HttpCookies) {

storage = ConstantCookiesStorage(Cookie(“STAT”,

“viewCount=%23i2”))

}

}

It’s not hard to see that this cookie forces the viewCount variable to take the
value of 2. As a result, when we rebuild and run the client application the
server will simply repeat the same response five times:
You have viewed this page 2 time(s)

You have viewed this page 2 time(s)

You have viewed this page 2 time(s)

You have viewed this page 2 time(s)

You have viewed this page 2 time(s)

The default behavior where cookies are automatically taken from the server
is given by the AcceptAllCookiesStorage class. You can add your own
storage policy by implementing the CookiesStorage interface.

Conclusion
This chapter has introduced us to the basic features of the Ktor framework
aimed at creating of connected client/server applications. We got an
understanding of the basic Ktor project structure and its common features
provided for both server- and client-side applications such as handling
requests and responses, describing routing rules, and using sessions. The

material in this chapter will help you to get a grip on basic ideas in
preparation for a more thorough investigation what Ktor can offer to
Java/Kotlin developers. We recommend you to start with an official Ktor
site (https://ktor.io) and give a special consideration to the “Samples”
section at https://ktor.io/samples.
In the next chapter, we’ll continue with the connectivity topic and talk about
using Kotlin for development of microservices. We’ll discuss the basics of
the microservice architecture and look at how Kotlin can help us in creating
them on the platform of Ktor and Spring Boot.

Questions
1. Describe the basic steps of Ktor project configuration.
2. How do you generate an HTML-based content in Ktor? Explain the

basic features of the HTML domain-specific language.
3. How do you extract client-supplied data from HTTP requests?
4. Explain basic ways to generate an HTTP response in Ktor.
5. Describe Ktor routing DSL.
6. How can you add a session support to your web application? Explain

differences between client and server sessions.
7. Describe how to build and send an HTTP request using Ktor.
8. How can you access the body and headers of HTTP response using the

Ktor client?
9. Describe the client-side use of cookies in Ktor.

https://ktor.io/
https://ktor.io/samples

CHAPTER 17
Building Microservices

The microservice architecture provides you with a way of building applications
which consists of multiple interconnected components aimed at performing
fine-grained domain-specific tasks. This architecture contrasts with a more
traditional technique of creating a monolithic application which is deployed as
a whole. Microservices facilitate modular development by allowing you to
physically separate pieces of functionality and ease development, testing, and
deployment/update of individual application parts.
In this chapter, we’ll explain the basics of microservice architecture as well as
its defining principles and look at how Kotlin can help you in the microservice
implementation using the example of Spring Boot and Ktor frameworks. The
Spring framework is a commonly used tool in the Java world which has a
special focus on the Kotlin support in its recent versions while Ktor, we’ve
already discussed in the previous chapter, is specifically targeted at the
development of various types of connected applications and makes heavy use
of Kotlin features. Having worked through the chapter, you will be able to
compose simple services and have the necessary foundation for further
learning of more specific microservice frameworks.

Structure
In this chapter, we will cover the following topics:

The microservice architecture
Introducing Spring Boot
Microservices with Ktor

Objectives
After reading this chapter, the reader will be able to understand the
fundamental principles of the microservice architecture and learn the basics of
creating microservices with Spring Boot and Ktor frameworks.

The microservice architecture
The big idea of the microservice architecture is to replace a monolithic
application – deployed and delivered as a whole – by a set of lightweight
loosely-coupled services; each having a specific task and communicating with
other services using well-defined protocols.
To give a more specific example, suppose that we want to build an online
store-like application which provides users with basic set of features like
browsing goods catalog and making orders. By following a monolithic
application approach, we might come up with a design similar to the one
shown in Figure 17.1:

Figure 17.1: A monolithic application example

This is a common three-level architecture which includes separate layers for
the application UI (be it a desktop, web, or mobile client), business logic, and
data storage/retrieval. The back-end part of the application which is

responsible for implementing its domain-specific workflows can be
decomposed into more specific modules such as providing access to the
catalog, maintaining user’s shopping cart, placement/tracking/cancellation of
orders, payments as well as authentication, and user profile management. Note
that although modules themselves might be loosely-coupled, they are not
usually distributed or deployed independently making the server application a
monolith.
This approach, however, can pose certain problems as the application grows.
Any change in the codebase be it an implementation of some new feature or a
bug fix requires you to update/redeploy the entire application which increases
its startup time and introduces an opportunity for new bugs. This also hinders
the application scalability. With a monolithic approach, you have to deal with
scaling the entire application which is significantly more complicated than
scaling specific modules or functions. One more issue to consider is reliability
since running all back-end modules under the same process makes your
application more vulnerable to possible memory leaks and other kinds of bugs.
A Service-oriented architecture (SOA) mitigates these problems by means of
decomposing a monolithic application into a set of self-contained services
which can be developed, updated, and deployed largely independently.
Microservices can be considered a step in the SOA evolution with the focus on
making services as small and simple as possible; although in practice, both
terms are often used as synonyms.
If we try to break down our original monolithic application design, we might
end up with something resembling Figure 17.2:

Figure 17.2: A microservice architecture

You can see that the original modules are replaced with services which perform
the same functions and communicate with each other using some kind of
network protocol like HTTP. Now, individual services can be developed,
updated, and configured more or less independently from each other. They
may also use separate databases which might even be managed by a different
DBMS.
Although microservices lack a rigorous definition, all their practical
implementations are based on a common set of principles:

Each microservice is focused on performing some domain-specific task
such as managing goods catalog or user’s shopping cart in our e-
commerce application example.
Microservices communicate using some well-defined protocol which
effectively establishes their API. A common case involves using HTTP

combined with XML and JSON formats for transferring complex data as
well as RPC (remote procedure call)-based protocols.
Microservices can be independently versioned, deployed, and updated.
Microservices are language-and framework-agnostic, which means that,
in general, you can implement them in any programming language you
deem fit for the purpose and use any development framework of your
choice. All that matters is a communication protocol your service will use
for interacting with others.

This should give you a basic understanding of what a microservice architecture
is and in what cases you might want to employ it in your application. Later,
we’ll demonstrate how a microservice programming may look in the context of
the Kotlin language. It will provide a foundation for your own investigation of
more specific technological stacks and frameworks such as Spring, Netflix, or
Ktor.

Introducing Spring Boot
Spring is one of the most frequently used Java framework which provides a
rich set of facilities for building various applications with a primary focus on
the J2EE platform. In this chapter, we’ll talk about using a powerful
Spring/Kotlin combination for development of microservices using the
example of a Spring Boot project. In general, Spring Boot is a collection of
utilities simplifying the setting up of various Spring project types and the
framework configuration. Similarly, we’ll start with guiding you through basic
steps required for creating a Spring Boot microservice.

Setting up a project
One of the easiest ways of starting a Spring application is to use a special web
tool called Spring Initializr to automatically generate a project skeleton based
on the chosen application type. To make use of this tool, open
https://start.spring.io in your browser (see Figure 17.3):

https://start.spring.io/

Figure 17.3: Using Spring Initializr to generate a new project

This page allows us to choose a set of basic options which determine the type
of project the Initializr will generate:

A build system type (Maven/Gradle) that will be used to configure and
build a project from sources; for example, we’ll use Gradle as it gives
you a more flexible and concise way to adjust the project configuration.
The primary language of a new project which initializer will use to
generate a sample source code (Kotlin in our case). This will also affect
the project configuration as using Kotlin, for example, will require some
additional dependencies in Maven/Gradle build files.
Version of Spring Boot to use: We’ll choose the latest release version of
Spring at the time of writing the book, which is 2.1.8.
Project group and artifact ID which define its Maven coordinates for
artifact publication.

Additionally, you may use the Dependencies field to specify some common
packages to be included into our project. Since our services will use HTTP,
we’ll need the web support. Type Web in the field and choose the Spring Web
option in the suggestion list.
After choosing all the necessary options, click on the Generate the project
button and download a ZIP file containing an initializer-created project. To
open the project in an IntelliJ IDEA, you need to do the following:

1. Unpack the archive to some local directory.

2. Call the File | New | Project from Existing Source… menu
command and specify the path to the unpacked project root as well as a
build system kind (Gradle).

3. Wait until the IDE finishes its synchronization with the Gradle build
model after which you’ll see a project structure similar to the one in
Figure 17.4:

Figure 17.4: Structure of a sample Spring Boot project

Similarly, in a project generated by the Ktor wizard, the build.gradle.kts
file will contain the definition of project dependencies. Note down the .kts
extension. It means that the buildfile is written in Kotlin rather than Groovy.

For this reason, the script follows a slightly different syntax than the ones
we’ve seen in Ktor and Android examples:
import org.jetbrains.kotlin.gradle.tasks.KotlinCompile

plugins {

id(“org.springframework.boot”) version “2.1.7.RELEASE”

id(“io.spring.dependency-management”) version “1.0.8.RELEASE”

kotlin(“jvm”) version “1.3.41”

kotlin(“plugin.spring”) version “1.3.41”

}

group = “com.example”

version = “0.0.1-SNAPSHOT”

java.sourceCompatibility = JavaVersion.VERSION_1_8

repositories {

mavenCentral()

}

dependencies {

implementation(“org.springframework.boot:spring-boot-starter-

web”)

implementation(“com.fasterxml.jackson.module:jackson-module-

kotlin”)

implementation(“org.jetbrains.kotlin:kotlin-reflect”)

implementation(“org.jetbrains.kotlin:kotlin-stdlib-jdk8”)

testImplementation(

“org.springframework.boot:spring-boot-starter-test”

)

}

tasks.withType<KotlinCompile> {

kotlinOptions {

freeCompilerArgs = listOf(“-Xjsr305=strict”)

jvmTarget = “1.8”

}

}

You might want to make some adjustments such as upgrading the Kotlin
version to a more recent one before proceeding. Just like with any other Gradle
project, IDEA will suggest you to resynchronize a project model on any
change in the build.gradle file (unless you have auto import switched on, in
which case synchronization starts up automatically).

The application.properties file contains various properties (in a simple
key=value format) affecting the Spring behavior. By default, it’s empty but
later, we’ll use it to change the port our service will listen.
The entry point of our project is defined in the DemoApplication.kt file which
contains the definition of the DemoApplication class and the main() function
delegating the application start-up to the framework:
package com.example.demo

import

org.springframework.boot.autoconfigure.SpringBootApplication

import org.springframework.boot.runApplication

@SpringBootApplication

class DemoApplication

fun main(args: Array<String>) {

runApplication<DemoApplication>(*args)

}

The runApplication() function will create the DemoApplication instance as
well as automatically instantiate and wire all services required for our
application. For a web application with a default configuration like ours, it also
starts a bundled Tomcat server which is going to handle client requests
dispatching them to the Spring-supplied servlet. The DemoApplication
instance will serve as a global context which can be injected into other
application components when necessary. Note the @SpringBootApplication
annotation; this is handy shortcut which allows you to configure a given class
as a Spring application context.
After the application is started (you use the Run command from IDEA main
menu to do this), we can access it using an HTTP client such as a web browser.
Since our application doesn’t contain the actual request processing code yet,
the Spring servlet will response with a standard error page on every request we
make. Figure 17.5 shows you an example:

Figure 17.5: Default response page provided by the Spring framework

Note that Spring uses the 8080 port to listen to the client requests unless it’s
explicitly changed in the application.properties file.
IDE Tips: There are plugins which add the Spring support to IntelliJ IDEA
and, in particular, allow one to generate various Spring-powered projects
similar to the Initializr tool. Note, however, that these plugins are not available
in the IDEA Community Edition. IDEA Ultimate, on the other hand, has them
bundled out of the box.
In the upcoming sections, we’ll use this project stub as a base for creating
sample microservices. But the first thing we have to do before getting to the
actual coding is to define what our services will do and how they will
communicate with their clients. To demonstrate a common practice of
implement microservices as small web applications, we’ll use HTTP as a base
of our example communication protocol.

Deciding on the Services API
In this chapter, we’ll walk you through a simple example of designing a pair of
communicating services. The first service will be similar to a random number
generator we’ve demonstrated in Chapter 16, Web Development with Ktor, but
will have a more formalized input and output to be usable in the form of API.
When given a request with the URL of the form:
/random/int/from/X/to/Y/quantity/N

It will produce a list of N random numbers in the range between X and Y (both
inclusive). The result will be given as a JSON object with a pair of fields:

status: A string which contains an error message or null in case of
successful completion.
values: An array of generated integers (empty when the status signifies
an error).

Possible cases of error status:

Non-integer values for X, Y or N
Non-positive N
Y<X

Let’s give some examples of the expected service output for a given URL:

URL example Service response

/random/int/from/10/to/20/quantity/5 {“status”:null,
“values”:[16,17,18,17,12]}

/random/int/from/20/to/10/quantity/5 {“status”:”Range may not be empty”,
“values”:[]}

/random/int/from/10/to/20/quantity/-1 {“status”:”Quantity must be positive”,
“values”:[]}

/random/int/from/1X/to/20/quantity/5 {“status”:”Range start must be an integer”,
“values”:[]}

Table 17.1: Examples of number generator output

Another function of our service will be generation of floating-point numbers.
We’ll use a URL of the following form:
/random/float/quantity/N

This URL will get the service to produce N double precision numbers in the
range between 0 and 1 (excluding 1).
The second service will provide a similar API for generating random
passwords. Given a URL of the form:
/password/length/L/quantity/N

It will produce N alphanumeric strings each having length L. The password
generator will use the same output format; the only difference being that the
values field will be an array of strings rather than numbers.

URL example Service response

/password/length/8/quantity/5 {“status”:null,
“values”:[“B0zDWtvG”,”JrSkXl7X”,
“oDwR7cp2”,”X8sRfzDW”,”nUcRXzn1”]}

/password/length/bbb/quantity/5 {“status”:
“Length must be an integer”, “values”:[]}

/password/length/-1/quantity/ccc {“status”:
“Length must be positive”, “values”:[]}

/password/length/8/quantity/-5 {“status”:
“Quantity must be positive”,”values”:[]}

Table 17.2: Examples of password generator output

To demonstrate service communication, we’ll make a password generator
which depends on the numeric one. When requested for a new password(s), it
will call the number generator first to produce a series of random indices
which are then turned to characters and joined together to produce strings.
Now that it’s clear how our service API will look, we can get to the actual
implementation. We’ll start with the random number generator since it’s going
to be used by another service.

Implementing a random generator service
Let’s set up a new Spring Boot project for our generator service following the
steps from the Setting up a project section. The service entry point will become
largely unchanged. In our case, it’ll be enough to rename the application class
and package:
package com.example.randomGen

import

org.springframework.boot.autoconfigure.SpringBootApplication

import org.springframework.boot.runApplication

@SpringBootApplication

class RandomGenerator

fun main(args: Array<String>) {

runApplication<RandomGenerator>(*args)

}

Before writing the actual business logic of the service itself, we need to define
classes which hold up the data we’re going to pass around in a JSON form.

Since our service input consists of primitive values passed in the URL path, the
only structured data is its output. That’s exactly the job for a Kotlin data class:
package com.example.randomGen

data class GeneratorResult<T>(

val status: String?,

val values: List<T>

)

fun <T> errorResult(status: String) =

GeneratorResult<T>(status, emptyList())

fun <T> successResult(values: List<T>) =

GeneratorResult<T>(null, values)

The pair of utility functions, errorResult() and successResult(), will come
in handy to simplify the construction of GeneratorResult in the service code.
The core logic of service is implemented in the so-called controller class which
handles processing of client requests. To convert a given class into the Spring
controller, you just need to annotate it with @RestController. Spring will
automatically load the class and create its instance during component scanning.
We won’t discuss the scan process in detail here, but you can find them in the
Spring framework documentation (see, for example, the @ComponentScan
annotation).
The stub of our controller class will therefore look like this:
package com.example.randomGen

import org.springframework.web.bind.annotation.*

@RestController

class RandomGeneratorController

To define a request handler, we mark the controller’s methods with special
annotation which associate them with specific request attributes. For example,
the @RequestMapping annotation allows you to bind a method to requests with
a particular URL:
@RequestMapping(“/hello”)

fun hello() = “Hello, World”

Similarly, in Ktor, you can use wildcards like * and parameter names to define
path templates. In the following example, the last portion of the URL path gets
automatically bound to the method parameter marked with the @PathVariable
annotation:
@RequestMapping(“/hello/{user}”)

fun hello(@PathVariable user: String) = “Hello, $user”

Method parameter names may differ from variables you use in the path
template; in this case, you need to specify the path parameter as the
@PathVariable argument:
@RequestMapping(“/sum/{op1}/{op2}”)

fun hello(

@PathVariable(“op1”) op1Str: String,

@PathVariable(“op2”) op2Str: String

): Any {

val op1 = op1Str.toIntOrNull() ?: return “Invalid input”

val op2 = op2Str.toIntOrNull() ?: return “Invalid input”

return op1 + op2

}

Apart from the URL path, the @RequestMapping annotation allows you to
associate handlers based on various request data such as the HTTP method
(GET, POST, and so on), content of headers and request parameters. Similarly,
there are some alternatives to @PathVariable you can use to bind method
parameters to request parameters (@RequestParam), request headers
(@RequestHeader), session data (@SessionAttributes), and so on. The
mapping options are quite similar to the routing mechanism of the Ktor;
although in the case of Ktor, it’s specified as a piece of ordinary Kotlin code
rather than some metadata in an annotation form. We won’t delve into the
details here but interested readers can find relevant documentation on the
Spring site at docs.spring.io.
When several methods of the controller share a common path prefix, it may be
convenient to add @RequestMapping to the controller class as well. In this case,
paths mentioned in the method-level annotations are defined relative to the
class one. For example, instead of writing:
@RestController

class SampleController {

@RequestMapping(“/say/hello/{user}”)

fun hello(@PathVariable user: String) = “Hello, $user”

@RequestMapping(“/say/goodbye/{user}”)

fun goodbye(@PathVariable user: String) = “Goodbye, $user”

}

We can extract the common /say part into the SampleConroller’s

annotation:

@RestController

@RequestMapping(“/say”)

class RandomGeneratorController {

@RequestMapping(“hello/{user}”)

fun hello(@PathVariable user: String) = “Hello, $user”

@RequestMapping(“goodbye/{user}”)

fun goodbye(@PathVariable user: String) = “Goodbye, $user”

}

Keeping this in mind, let’s implement the controller method which will take
care of /random/int paths according to our service API:
@RequestMapping(“/int/from/{from}/to/{to}/quantity/{quantity}”)

fun genIntegers(

@PathVariable(“from”) fromStr: String,

@PathVariable(“to”) toStr: String,

@PathVariable(“quantity”) quantityStr: String

): GeneratorResult<Int> {

val from = fromStr.toIntOrNull()

?: return errorResult(“Range start must be an integer”)

val to = toStr.toIntOrNull()

?: return errorResult(“Range end must be an integer”)

val quantity = quantityStr.toIntOrNull()

?: return errorResult(“Quantity must be an integer”)

if (quantity <= 0) return errorResult(“Quantity must be

positive”)

if (from > to) return errorResult(“Range may not be empty”)

val values = (1..quantity).map { Random.nextInt(from, to + 1) }

return successResult(values)

}

Handling of floating-point numbers corresponding to the /random/float paths
can be done in a similar way. The full source text of this service can be found
at https://github.com/bpbpublications/Kotlin-In-Depth/ch17/number-
gen-service.
If we start our application and try to access the service via a browser, we’ll get
an expected response. You can see an example of getting a list of random
numbers in Figure 17.6:

https://github.com/bpbpublications/Kotlin-In-Depth/ch17/number-gen-service

Figure 17.6: An example of success response

You can also make sure that our service can correctly handle common errors in
client requests. For example, Figure 17.7 shows the result you get when
requesting numbers in the range from 50 to 20:

Figure 17.7: Generator responding with an error

As expected, the service responds with an error indicating that the specified
interval is empty since its upper bound is less than the lower one.

Implementing a password generator service
Now, we can easily implement a second password-generating service using the
first as the starting point. Let’s create a similar Spring Boot project placing our
code into the com.example.passwordGen package.
The crucial difference from the random number generator is that the second
service will have to communicate with the first one. Spring comes with out-of-
the-box RestTemplate class which simplifies making requests to other web
applications and retrieves their responses. For example, the code:
val url =

“http://localhost:8080/random/int/from/0/to/10/quantity/5”

val restTemplate = RestTemplate()

val result = restTemplate.getForObject(url,

GeneratorResult::class.java) as GeneratorResult<Int>

Will return a result containing a list of five random integers in the range
between 0 and 10.
Let’s now use this idea to transform numbers into password characters. Here is
the full text of a password generator controller class:
package com.example.passwordGen

import org.springframework.web.bind.annotation.*

import org.springframework.web.client.RestTemplate

private val chars = (‘a’..’z’) + (‘A’..’Z’) + (‘0’..’9’)

@Suppress(“unused”)

@RestController

@RequestMapping(“/password”)

class PasswordGeneratorController {

@RequestMapping(“/length/{length}/quantity/{quantity}”)

fun genPasswords(

@PathVariable(“length”) lengthStr: String,

@PathVariable(“quantity”) quantityStr: String

): GeneratorResult<String> {

val length = lengthStr.toIntOrNull()

?: return errorResult(“Length must be an integer”)

val quantity = quantityStr.toIntOrNull()

?: return errorResult(“Quantity must be an integer”)

if (quantity <= 0) return errorResult(“Quantity must be

positive”)

val prefix = “http://localhost:8080/random/int”

val url =

“$prefix/from/0/to/${chars.lastIndex}/quantity/$length”

val restTemplate = RestTemplate()

val passwords = (1..quantity).map {

val result = restTemplate.getForObject(

url, GeneratorResult::class.java

) as GeneratorResult<Int>

String(result.values.map { chars[it] }.toCharArray())

}

return successResult(passwords)

}

}

Note that the password generator service will need the definition of the
GeneratorResult class to represent both its own response and the number

generator. For a simple case like this, we can just copy this definition to our
second project. In more complex scenarios with a multitude of classes to
represent the request/response data, it may be worth using some code sharing;
we could’ve, for example, set up a multi-module project which includes both
services and a separate module for the shared classes or extracted shared code
into a separate project whose output is published into some artifact repository
and then used as a dependency in both services.
Since both our services are running as standalone applications, they’ll have to
listen on different ports. So, before running the password generator service,
make sure that its port doesn’t conflict with the first one. For this example,
we’ll set it to 8081 by changing application.properties to:
server.port=8081

Now, we can start the second service and try to make use of its functionality by
querying a URL of the form
localhost:8081/password/length/12/quantity/10. When processing such
a URL, our password service will make multiple requests to the random
number generator and use its response to compose a list of passwords. Figure
17.8 shows an example result of accessing the password service via a browser:

Figure 17.8: An example of a password generator response

Note that the password service makes a sequence of requests which are then
processed synchronously:
val passwords = (1..quantity).map {

val result = restTemplate.getForObject(

url, GeneratorResult::class.java

) as GeneratorResult<Int>

String(result.values.map { chars[it] }.toCharArray())

}

In other words, the service thread becomes blocked each time you call the
getForObject() methods and is unable to do any useful work until it gets all
expected responses. This may hinder the service scalability when a number of

simultaneous requests grow, so in general we might need to use some
asynchronous programming technique such as the Kotlin Coroutines library or
reactive frameworks like RxJava or Akka.
With Ktor, as we’ll see in the following section, this problem is largely
mitigated by the fact that the framework is already built on top of the
Coroutines library and provides out-of-the-box support of asynchronous
computations via suspending functions. Let’s see how our password generator
service might look like when implemented using Ktor facilities.

Microservices with Ktor
In the previous chapter, we introduced you to the Ktor framework which
simplifies the development of connected client/server applications. In the
remaining sections, we will extend our knowledge by showing you how Ktor
can be used to easily implement a microservice.
The section is composed of two parts. In the first one, we’ll introduce one
more Ktor feature which deals with JSON-based object serialization both on
the client and server sides. This feature allows you to automatically convert
Kotlin objects into the corresponding JSON description on sending as well as
restore them from JSON on receiving, which is similar to how the Spring
framework does that in our earlier example.
In the second part, we’ll re-implement the password generator service using
the Ktor API. This will allow you to compare Ktor features with their Spring
counterparts (for example, routing DSL vs request mapping annotations) and
also serve as a demonstration of how microservices powered by different
frameworks are able to seamlessly communicate with each other.

Using the JSON serialization feature
In the previous chapter, we saw examples of sending plain text responses using
Ktor’s respondText() function. Although, we certainly can use it for
composing JSON, Ktor provides an easier solution with the
ContentNegotiation feature which allows you to configure converters for
serializing arbitrary objects. In general, to use it for a particular MIME type,
you need to register the corresponding implementation of the
ContentConverter interface which handles send/receive operations. Ktor
comes with an out-of-the-box support of three basic serialization mechanisms:

Jackson library (https://github.com/FasterXML/jackson)

https://github.com/FasterXML/jackson

google-gson library (https://github.com/google/gson)

kotlinx.serialization

(https://github.com/Kotlin/kotlinx.serialization)

In our example, we’ll use the Jackson-based implementation. Since the
corresponding converter belongs to a separate io.ktor:ktor-jackson artifact,
make sure you include the necessary dependency in the build.gradle file:
compile “io.ktor:ktor-jackson:$ktor_version”

After that, you can configure the JSON serialization using the
ContentNegotiation installation block:
fun Application.module() {

...

install(ContentNegotiation) {

jackson()

}

...

}

The preceding jackson() function associates JacksonConverter with the
application/json content type and sets the default behavior of output
formatting. Serialization covers both request and response data. For example,
we can send some objects into the response and they are automatically
converted into the JSON text format:
call.respond(successResult(listOf(“12345678”)))

Similarly, we can deserialize JSON objects received with a client’s request
turning them into ordinary Kotlin objects:
data class PasswordSpec(val length: Int, val quantity: Int)

...

val spec = call.receive<PasswordSpec>()

In our case, though, we’ll be receiving JSON data as a response from another
service after making the corresponding request; we also have to configure
serialization for our HttpClient instance. Ktor supports the same three
serializer implementations for client applications as well. We just need to add
respective dependencies to the service build.gradle:
compile “io.ktor:ktor-client-json:$ktor_version”

compile “io.ktor:ktor-client-jackson:$ktor_version”

To enable serialization on the client-side, we then install the

JsonFeature:

val client = HttpClient(Apache) {

https://github.com/google/gson
https://github.com/Kotlin/kotlinx.serialization

...

install(JsonFeature)

...

}

By default, the particular serializer implementation is chosen automatically
based on the included artifact. When necessary, we can also specify it
explicitly by assigning an instance of JsonSerializer to the serializer
property:
val client = HttpClient(Apache) {

...

install(JsonFeature) {

serializer = JacksonSerializer()

}

...

}

Having configured JsonFeature, we can automatically read our objects from
HTTP responses using the get() function:
val url =

“http://localhost:8080/random/int/from/0/to/10/quantity/5”

val result = client.get<GeneratorResult<Int>>(url)

Now that we have automatic serialization at our disposal, let’s see how we can
use it together with other Ktor features for the actual microservice
implementation.

Implementing a password generator service
To demonstrate the difference between the Ktor and Spring approach, we’ll re-
implement the password generator service. Most of the code will expectedly
remain the same as both the implementations will follow the same business
logic.
To access our first service, we’ll use HttpClient instead of RestTemplate:
val prefix = “http://localhost:8080/random/int”

val url = “$prefix/from/0/to/${chars.lastIndex}/quantity/$length”

val passwords = (1..quantity).map {

val result = client.get<GeneratorResult<Int>>(url)

String(result.values.map { chars[it] }.toCharArray())

}

Note that unlike our Spring-based example, this code is asynchronous; the
HttpClient.get() is a suspending function invoked in a Ktor-supplied
coroutine context. As a result, the service threads are not blocked and our
server can process further requests while waiting for a response from the
random number generator.
The Ktor routing DSL will replace the request dispatching based on the
Spring’s @RestController/@RequestMapping annotations:
route(“/password”) {

get(“/length/{length}/quantity/{quantity}”) { ... }

}

As you can see, the path syntax is basically the same but the use of the DSL
allows one to largely eliminate a boilerplate code.
To put our Ktor version of password generator, here is the complete text of the
server application module:
package com.example

import com.fasterxml.jackson.databind.SerializationFeature

import io.ktor.application.*

import io.ktor.client.HttpClient

import io.ktor.client.engine.apache.Apache

import io.ktor.client.features.json.*

import io.ktor.client.request.get

import io.ktor.features.ContentNegotiation

import io.ktor.jackson.jackson

import io.ktor.response.respond

import io.ktor.routing.*

fun main(args: Array<String>): Unit =

io.ktor.server.netty.EngineMain.main(args)

private val chars = (‘a’..’z’) + (‘A’..’Z’) + (‘0’..’9’)

@Suppress(“unused”) // Referenced in application.conf

fun Application.module() {

install(ContentNegotiation) {

jackson {

enable(SerializationFeature.INDENT_OUTPUT)

}

}

val client = HttpClient(Apache) {

install(JsonFeature) {

serializer = JacksonSerializer()

}

}

suspend fun ApplicationCall.genPasswords():

GeneratorResult<String> {

val length = parameters[“length”]?.toIntOrNull()

?: return errorResult(“Length must be an integer”)

val quantity = parameters[“quantity”]?.toIntOrNull()

?: return errorResult(“Quantity must be an integer”)

if (quantity <= 0) return errorResult(“Quantity must be

positive”)

val prefix = “http://localhost:8080/random/int”

val url =

“$prefix/from/0/to/${chars.lastIndex}/quantity/$length”

val passwords = (1..quantity).map {

val result = client.get<GeneratorResult<Int>>(url)

String(result.values.map { chars[it] }.toCharArray())

}

return successResult(passwords)

}

routing {

route(“/password”) {

get(“/length/{length}/quantity/{quantity}”) {

call.respond(call.genPasswords())

}

}

}

}

Since our original Spring Boot implementation was listening to the port 8081,
we need to make necessary changes in the Ktor version as well by adjusting its
application.conf file:
ktor {

deployment {

port = 8081

port = ${?PORT}

}

application {

modules = [com.example.ApplicationKt.module]

}

}

Now, if you start both the number and password generator services and open
your browser at localhost:8081/password/length/12/quantity/10, you’ll
see a very similar result to the one shown in Figure 17.8 (albeit with a different
list of passwords). Note that even though the number generator is based on
Spring, the password generator now uses Ktor; both services are easily
communicating regardless of their implementational differences.

Conclusion
In this chapter, we got a basic understanding of how you can implement a
microservice-based application in Kotlin using either Spring or Ktor
frameworks. We explained the key ideas of the microservice architecture,
walked you through the setup steps of a simple Spring Boot project, and
discussed the usage of Spring REST controllers and templates for the purpose
of microservice implementation. We also described how to configure and use
JSON serialization in Ktor, a feature which is especially useful for web
applications providing some formalized API. Starting from these basics, you
can now refine your knowledge by referring to additional resources. We
recommend you to begin with guides from the spring.io
(https://spring.io/guides) as well as Ktor samples we’ve already mentioned in
the previous chapter at https://ktor.io/samples.

Questions
1. Explain basic principles of the microservice model.
2. Describe basic steps for setting up a Spring Boot project.
3. What is a Spring controller class? Explain how request data are mapped

to controller methods.
4. Compare Spring request mapping with Ktor routing.
5. How do you configure JSON serialization in Ktor?
6. Give an example of microservice implementation using both Spring Boot

and Ktor.

https://spring.io/guides
https://ktor.io/samples

Index
Symbols
@DslMarker 439-441

A
abstract classes 317

members 317-320
accessor signatures 458
activity class

implementing 583-588
activity state

preserving 592-595
actor 523

implementing 524, 525
message, sending 526

ad-hoc polymorphism 290
aggregation functions

average() 248
count () 246, 247
joinToString() 250, 251
maxOrNull() 248
maxWith() 249
minOrNull() 248
minWith() 249
reduce() 251, 252
reduceIndexed() 252, 253
sum() 247
toString() 250

Android 568
Android Studio project

activity class 574-576
emulator, using 576-578
Gradle build scripts 570-574
setting up 568-570

Anko 7
annotations 372

built-in annotations 378
defining 372-374
using 374-378

anonymous function 164
anonymous object type 148
Apache Zeppelin notebooks 17
application UI

designing 579-583
arithmetic operations 33-35
array 47

constructing 47, 48
using 48-50

asReversed() function 269
assertions

exceptions, handling 549-551
inspectors 548
matchers 546-548
non-deterministic code, testing 551
property-based testing 552-556

assignment 27
assignment operator 412-414
augmented assignments 27

B
basic syntax

comments 22
expressions 28
identifiers 25, 26
mutable variables 26-28
operators 28, 29
variable, defining 22-25

before actual modification 423
binary operator conventions 405
bitwise operations 35-37
block statement 58
Boolean type 39-41
break expression 85, 91-93
buffered() function 276
built-in annotations

@Deprecated 382, 383
@JvmName 384
@MustBeDocumented 379
@NotNull 384
@Repeatable 379
@ReplaceWith 383
@Retention 378
@Strictfp 380
@Suppress 381
@Synchronized 381
@Target 379
@Throws 384
@Transient 381
@Volatile 381

C

callable references 166-169
inline functions 169-172

callables 385, 392
call expression 23
channel communication 505
Char type 37, 38
chunked() function 264
circleArea function 57
class

anatomy 106-109
constructor 109-116
defining 106
local classes 120-122
nested classes 117-119

class hierarchy 288
classifier 386, 387
classifiers 385
class inheritance 288

common methods 308-317
subclass, declaring 288-296
subclass initialization 297-303
type checking and casting 303-308

class member visibility
internal 116
private 116
protected 116
public 116, 117

client features, Ktor
cookies 630-632
requests 626-630
responses 626-630

collection 228
aggregation 246-253
basic operations 238-243
collective conditions 244-246
comparables 232, 233
comparators 232, 233
creating 233-238
elements, accessing 243, 244
filtering 253-257
iterables 229, 230
list 230
set 230
sorting 267-270
subcollections, extracting 262-266
types 228

companion extensions 184, 185
companion objects 144-147
comparison operations 41-43
comparison operator conventions 409

concurrent communication, coroutines 505
actors 523-527
channels 505-511
flows 514-522
producers 511, 512
tickers 512-514

conditional statements 77
break statement 85
for loop 80
if statement 77-80
in operation 82
progression 81, 82
ranges 80
switch statement 85
when statement 83-87

constructor 109-116
constructor delegation call 115
consumers 356
continue expression 91-93
copyTo() function 272
coroutine builders 481-484
coroutine control-flow 488

cancellation 491-494
coroutine dispatching 494-499
exception handling 499-504
job states 488-491
timeouts 494

coroutine debugger 532, 533
coroutine dispatcher 495, 496
CoroutineExceptionHandler 499
coroutines 478, 479

context 486, 487
features 6
scopes 484-486
structured concurrency 484-486
suspending functions 479-481

custom accessors
using 135

custom matcher
defining 546

D
data classes 210

destructuring declaration 215-218
operations 210-214

decrement operator 403
delegated properties 140, 420

custom delegates, creating 425-429
standard delegates 420-424

delegate representation 429-431
delegation 335-338
deleteRecursively() function 279
desktop applications 8
destructuring declaration 162, 215-218
developer productivity 4, 5
dispatch receiver 196
domain-specific language (DSL) 399

designing, type-safe builders used 434-439
@DslMarker 439-441
fluent DSL, creating with infix functions 431-434

do-while loop 87, 88
drop() function 264
dropLast() function 264

E
Eclipse project

setting up 17-19
Elvis operator 130-132
enum classes 204

common members, using 209, 210
declaring, with custom members 207, 208
exhaustive when expressions 205-207

environment setup, Kotlin
Eclipse project, setting up 17-19
IntelliJ project, setting up 8- 14
interactive editors 16, 17
REPL, using 15, 16

equality operations 41-43
exception handling 97

exception, throwing 98
with try statements 99-101

exceptions, declaring 471-473
exhaustive when expressions 205, 206
exposed declaration name

changing 467, 468
expression-body functions 60
expressions 28
extension function 177-182
extension properties 182-184
extension receiver 196
extensions 176

also() function 195
apply() function 195
as class members 196-199
callable references, using with receiver 187, 188
companion extensions 184, 185
functional types, with receiver 185-187
lambdas, with receiver 185-187

let function 193, 194
run() function 189, 190
run() function, without context 191-193
scope functions 189
with() function 191

F
facade class 463-465
fan in 511
fanning out 510
file content

accessing 276-279
file facade 462
files 270
file system utilities 279-283

deleteRecursively() function 279
filtering operation 253

filter() function 254
filterIndexed() function 255
filterIsInstance() function 256
filterKeys() 255
filterNot() function 255
filterNotNull() 255
filterValues() 255
partition() function 257

fixture
providing 556-559

floating-point types 31-33
flows 514-522
forEachLine() function 271
for loop 88-91
functional languages 156
functional programming 156

anonymous function 164, 165
callable references 166-169
functional types 157-161
higher-order functions 156, 157
lambdas 161-163
non-local control flow 173-176

function body 57
functions 55

anatomy 56-60
default values 66, 67
defining 56
local functions 70
member functions 70
overloading 64-66
positional, versus named arguments 61-64
scope 70-72

top-level functions 70
trailing commas 60, 61
varargs 67-69
visibility 70-72

H
hard keywords 26
higher-order functions 431
HTML DSL library 615-622

I
identifiers 25
immutable variables 26
import directives

using 76, 77
increment operator 403
indexing operator 415-417
infix functions

used, for creating fluent DSL 431-434
infix operations 410, 411
inheritance 288

ad-hoc polymorphism 290
in/!in operation 82, 83
initialization block 110
inline classes 218, 219

defining 219
enabling, in IntelliJ project 221
properties 220
unsigned integers 221-224

inline functions 473
properties 169-172

inner classes 143
inputStream() function 274, 275
inspectors 548
integer types 30, 31
IntelliJ IDEA 2
IntelliJ project

setting up 8-14
interactive editors 16
interfaces 320

functions and properties 322, 323
inheriting 323-326
limitations 327, 328
members 320

internal modifier 71
invariant 355
invocation 415
I/O streams 270

creating 273-276
utilities 270-273

iterables 229
iteration 419

J
Java concurrency

locks 529-532
synchronization 529-531
thread, starting 527-529
using 527

Java interoperability
fields 444
Java code, using 444
Java methods, using 444
nullability annotations 449-452
operator conventions 444
platform types 447-449
synthetic properties 444-446
unit, versus void 444

Java records
working with 457

Java-to-Kotlin converter
using 458

Java type mapping 452-454
job 488

active state 488
cancelled state 490
cancelling state 490
completed state 489
current state 490
new state 488

Jupyter notebooks 17
JVM primitive types 452-454

K
Kodein 8
Kotlin 2

Android development 7
conciseness 4
coroutines 6
desktop applications 8
ecosystem 6
expressiveness 4, 5
interoperability 5
loops 87
multiparadigm 3, 4
multiplatform 5

safety features 3
testing frameworks 6, 7
web development 7, 8
website link 6
working environment, setting up 8

Kotlin Android Extensions 7
kotlin.Any class 308
Kotlin classes

exposing, as Java records 474, 475
Kotlin code

using, from Java 458
Kotlin function 56
Kotlin koans 16
Kotlin module 71
Kotlin Playground 16
KotlinTest 7, 538

installing 539, 540
specification styles 540-546
testing environment, configuring 560-564
using 538, 539

kotlinx.html 8
Ktor 8, 598

client features 626
for web development 597
installing 598
project wizard 598, 599
project wizard, at start.ktor.io 605
sample project structure 600-604
server features 605, 606

Ktor module 601

L
lambda expression 48, 162
language fundamentals

arrays 47
basic syntax 22
primitive types 29
strings 43

lineSequence() function 271
list 230
local classes 120-122
logical operations 39-41
loops 87

break expression 91-93
continue expression 91-93
control-flow 91, 92
do-while loop 87, 88
for loop 88-91
label 95

nested loops 94, 95
while loop 87, 88

M
map 231, 232
matchers 546

creating 547, 548
microservice architecture 636-638
microservices

principles 638, 639
microservices, with Ktor 653

JSON serialization feature, using 654, 655
password generator service, implementing 656-658

Mockito-Kotlin 7
mutable variable 26

N
named arguments 62
nested classes 117-119
nested loop statements 94, 95
non-deterministic code

testing 551
non-local control flow 173-175

issues 176
not-null assertion operator 23, 128, 129
nullability 122

Elvis operator 130-132
not-null assertion operator 128, 129
nullable types 123-126
safe call operator 129, 130
smart casts 126, 127

nullability annotations 449-452
nullable types 123-125
null reference 122
numeric conversions 38, 39

O
object expression 144-150
objects 141-466

companion objects 144-147
object declarations 141-144
object expression 147-150

operator overloading 400, 401
assignments operators 412-414
binary operations 404-410
decrement (--) operator 403, 404
destructuring 418

increment (++) operator 403, 404
indexing operator 415-417
infix operations 410, 411
invocations 415
iteration 419
unary operations 401, 402

operators 28, 29
outputStream() function 274
overloads

generating 469, 470

P
package 72

directory structure 72
import directive, using 75-77
qualified name, using 73, 74

package directive 73
parameter definition 58
platform types 447-449
positional arguments 61
primary constructor declaration 110
primitive types 29, 30

arithmetic operations 33-35
bitwise operations 35-37
Boolean type 39, 40
Char type 37, 38
comparison operations 41-43
equality operations 41-43
floating-point types 31-33
integer types 30, 31
logical operations 39-41
numeric conversions 38, 39

printWriter() function 274
producers 355, 511, 512
progression 81, 82
properties 132

accessing 458-462
custom accessors, using 135-137
delegated properties 140, 141
lateinit property 133, 134
lazy properties 139
property accessors 138
top-level properties 132

property-based testing 552-556
public modifier 71

R
ranges 80-82

raw string 44
readBytes() function 276
reader() function 274, 275
readLine() function 270
readText() function 270, 276
Reflection API 384

callables 392-397
classifier types 385-392
overview 385, 386

REPL
using 15, 16

return type 57
reversed() function 269
routing feature 606-612
RPC (remote procedure call)-based protocols 638

S
safe call operator 129, 130
SAM constructor 456
SAM conversion 454
sealed classes 328-335
secondary constructor 114-116
sequences 231
server features, Ktor

calls, handling 613-615
HTML DSL 615-622
routing DSL 606-612
sessions support 622-626

service-oriented architecture (SOA) 637
session mechanism 622
set 230

HashSet 230
LinkedHashSet 230
TreeSet 231

shuffled() function 270
single abstract method interfaces 454-456
slice() function 263
smart casts 126, 127
sortDescending() function 267, 269
sortedBy() function 268
sorted() function 267
sortedWith() function 268
special-case classes

data classes 210
enum classes 204
inline classes 218

Spek 7
Spring 639
Spring Boot 639

password generator service, implementing 650-653
project, setting up 639-644
random generator service, implementing 646-650
Services API 644-646

star projections 365, 366
static methods 466
strings 43

functions 46
operations 45, 46
templates 43-45

structured concurrency 484
subList() method 263
subtyping 30
supervisor job 503
switch statement 85

T
tailcard matching 610
tail-recursive functions 95-97
take() function 263, 264
takeLast() function 263
testing frameworks 6

KotlinTest 7
Mockito-Kotli 7
Spek 7

ticker 512
modes 513, 514

top-level declarations 462
transformation functions 257

associateBy() function 261, 262
associateByTo() function 262
associate() function 262
associateWith() function 261
flatMap() function 260
flatten() function 260
map() 258, 259
mapIndexed() 258
mapKeys() 259
mapValues() 259

trimIndent() function 44
try statement

using, for error handling 99-101
type aliases 367-369, 473
type inference 24
type parameters 344

bounds 348-350
constraint 351
generic declarations 344-347
reification 353, 354

type erasure 351-353
type-safe builders

used, for designing DSL 434-439

U
unary operators 401, 402
URL utilities 276
use() function 273
useLines() function 271
utility class 144

V
vararg modifier 67, 68
variance 355

at declaration site 358-361
producers, versus consumers 355-358
use-site variance, with projections 361-364

view binding 589-592
visibility modifiers 70

W
web development 7
when statement 83-87
while loop 87, 88
widening conversions 38
windowed() function 265
withTimeout() function 494
withTimeoutOrNull() function 494
writer() function 274

Z
zipWithNext() function 266

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Reviewers
	Acknowledgements
	Preface
	Errata
	Table of Contents
	1. Kotlin - Powerful and Pragmatic
	Structure
	Objectives
	What is Kotlin?
	Safe
	Multiparadigm
	Concise and expressive
	Interoperable
	Multiplatform
	Kotlin ecosystem
	Coroutines
	Testing frameworks
	Android development
	Web development
	Desktop applications
	Getting started with Kotlin
	Setting up an IntelliJ project
	Using REPL
	Interactive editors
	Setting up an Eclipse project

	Conclusion
	Points to remember
	Questions

	2. Language Fundamentals
	Structure
	Objectives
	Basic syntax
	Comments
	Defining a variable
	Identifiers
	Mutable variables
	Expressions and operators

	Primitive types
	Integer types
	Floating-point types
	Arithmetic operations
	Bitwise operations
	Char type
	Numeric conversions
	Boolean type and logical operations
	Comparison and equality

	Strings
	String templates
	Basic string operations

	Arrays
	Constructing an array
	Using arrays

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions

	3. Defining Functions
	Structure
	Objective
	Functions
	Function anatomy
	Trailing commas
	Positional vs named arguments
	Overloading and default values
	Varargs
	Function scope and visibility

	Packages and imports
	Packages and directory structure
	Using import directives

	Conditionals
	Making decisions with if statements
	Ranges, progressions, and in operation
	when statements and multiple choice

	Loops
	while/do-while loop
	Iterables and for loop
	Changing loop control-flow: break and continue
	Nested loops and labels
	Tail-recursive functions

	Exception handling
	Throwing an exception
	Handling errors with try statements

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	4. Working with Classes and Objects
	Structure
	Objectives
	Defining a class
	A class anatomy
	Constructors
	Member visibility
	Nested classes
	Local classes

	Nullability
	Nullable types
	Nullability and smart casts
	Not-null assertion operator
	Safe call operator
	Elvis operator

	Properties: Beyond simple variables
	Top-level properties
	Late initialization
	Using custom accessors
	Lazy properties and delegates

	Objects and companions
	Object declarations
	Companion objects
	Object expressions

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions
	Key terms

	5. Leveraging Advanced Functions and Functional Programming
	Structure
	Objective
	Functional programming in Kotlin
	Higher-order functions
	Functional types
	Lambdas and anonymous functions
	Callable references
	Inline functions and properties
	Non-local control flow

	Extensions
	Extension functions

	Extension properties
	Companion extensions
	Lambdas and functional types with the receiver
	Callable references with receiver
	Scope functions
	run / with
	run without context
	let
	apply / also
	Extensions as class members

	Conclusion
	Points to remember
	Questions
	Key terms

	6. Using Special-Case Classes
	Structure
	Objective
	Enum classes
	Exhaustive when expressions
	Declaring enums with custom members
	Using common members of enum classes

	Data classes
	Data classes and their operations
	Destructuring declarations

	Inline classes
	Defining an inline class
	Unsigned integers

	Conclusion
	Points to remember
	Questions
	Key terms

	7. Exploring Collections and I/O
	Structure
	Objective
	Collections
	Collection types
	Iterables
	Collections, lists, and sets
	Sequences
	Maps
	Comparables and comparators
	Creating a collection
	Basic operations
	Accessing collection elements
	Collective conditions
	Aggregation
	Filtering
	Transformation
	Extracting subcollections
	Ordering

	Files and I/O streams
	Stream utilities
	Creating streams
	URL utilities
	Accessing file content
	File system utilities

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions

	8. Understanding Class Hierarchies
	Structure
	Objective
	Inheritance
	Declaring a subclass
	Subclass initialization
	Type Checking and Casts
	Common methods

	Abstract classes and interfaces
	Abstract classes and members
	Interfaces
	Sealed classes
	Delegation

	Conclusion
	Points to remember
	Multiple choice questions
	Answers

	Questions

	9. Generics
	Structure
	Objective
	Type parameters
	Generic declarations
	Bounds and constraints
	Type erasure and reification

	Variance
	Variance: Distinguishing producers and consumers
	Variance at the declaration site
	Use-site variance with projections
	Star projections

	Type aliases
	Conclusion
	Points to remember
	Questions

	10. Annotations and Reflection
	Structure
	Objectives
	Annotations
	Defining and using annotation classes
	Built-in annotations

	Reflection
	Reflection API overview
	Classifiers and types
	Callables

	Conclusion
	Questions

	11. Domain-Specific Languages
	Structure
	Objective
	Operator overloading
	Unary operations
	Increments and decrements
	Binary operations
	Infix operations
	Assignments
	Invocations and indexing
	Destructuring
	Iteration

	Delegated properties
	Standard delegates
	Creating custom delegates
	Delegate representation

	Higher-order functions and DSLs
	Fluent DSL with infix functions
	Using type-safe builders
	@DslMarker

	Conclusion
	Questions

	12. Java Interoperability
	Structure
	Objective
	Using Java code from Kotlin
	Java methods and fields
	Unit vs void
	Operator conventions
	Synthetic properties
	Platform types
	Nullability annotations
	Java/Kotlin type mapping
	Single abstract method interfaces
	Working with Java records
	Using the Java-to-Kotlin converter

	Using the Kotlin code from Java
	Accessing properties
	File facades and top-level declarations
	Objects and static members
	Changing the exposed declaration name
	Generating overloads
	Declaring exceptions
	Inline functions
	Type aliases
	Exposing Kotlin classes as Java records

	Conclusion
	Questions

	13. Concurrency
	Structure
	Objective
	Coroutines
	Coroutines and suspending functions
	Coroutine builders
	Coroutine scopes and structured concurrency
	Coroutine context

	Coroutine control-flow
	Job lifecycle
	Cancellation
	Timeouts
	Coroutine dispatching
	Exception handling

	Concurrent communication
	Channels
	Producers
	Tickers
	Flows
	Actors

	Using Java concurrency
	Starting a thread
	Synchronization and locks

	Coroutine debugger
	Conclusion
	Questions

	14. Testing with Kotlin
	Structure
	Objective
	KotlinTest specifications
	Getting started with KotlinTest
	Specification styles

	Assertions
	Matchers
	Inspectors
	Handling exceptions
	Testing non-deterministic code
	Property-based testing

	Fixtures and configurations
	Providing a fixture
	Test configuration

	Conclusion
	Questions

	15. Android Applications
	Structure
	Objective
	Getting started with Android
	Setting up an Android Studio project
	Gradle build scripts
	Activity
	Using an emulator

	Activities
	Designing an application UI
	Implementing an activity class
	View binding
	Preserving the activity state

	Conclusion
	Questions

	16. Web Development with Ktor
	Structure
	Objective
	Introducing Ktor
	Server features
	Routing DSL
	Handling calls
	HTML DSL
	Sessions support

	Client features
	Requests and responses
	Cookies

	Conclusion
	Questions

	17. Building Microservices
	Structure
	Objectives
	The microservice architecture
	Introducing Spring Boot
	Setting up a project
	Deciding on the Services API
	Implementing a random generator service
	Implementing a password generator service

	Microservices with Ktor
	Using the JSON serialization feature
	Implementing a password generator service

	Conclusion
	Questions

	Index

