

Kirupa Chinnathambi

Third Edition

JavaScript™

Editor-in-Chief
Mark Taub

Director, ITP Product
Management
Brett Bartow

Acquisitions Editor
Kim Spenceley

Development Editor
Chris Zahn

Managing Editor
Sandra Schroeder

Project Editor
Mandie Frank

Copy Editor
Bart Reed

Indexer
Ken Johnson

Proofreader
Barbara Mack

Technical Editor
Trevor McCauley

Editorial Assistant
Cindy Teeters

Designer
Chuti Prasertsith

Compositor
codeMantra

Graphics
Vived Graphics

JavaScript™ Absolute Beginner’s Guide,
Third Edition
Copyright © 2023 by Pearson Education, Inc.

All rights reserved. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms, and the appropriate contacts within
the Pearson Education Global Rights & Permissions Department, please visit
www.pearson.com/permissions.

No patent liability is assumed with respect to the use of the information con-
tained herein. Although every precaution has been taken in the preparation
of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

ISBN-13: 978-0-13-795916-7

ISBN-10: 0-13-795916-8

Library of Congress Control Number: 2022914516

ScoutAutomatedPrintCode

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Pearson cannot attest to the accu-
racy of this information. Use of a term in this book should not be regarded as
affecting the validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The author and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

Special Sales
For information about buying this title in bulk quantities, or for special sales
opportunities (which may include electronic versions; custom cover designs;
and content particular to your business, training goals, marketing focus, or
branding interests), please contact our corporate sales department at
corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact
governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact
intlcs@pearson.com.

http://www.pearson.com/permissions
mailto:corpsales@pearsoned.com
mailto:governmentsales@pearsoned.com
mailto:intlcs@pearson.com

Pearson’s Commitment to Diversity,
Equity, and Inclusion

Pearson is dedicated to creating bias-free content that reflects the diversity of all
learners. We embrace the many dimensions of diversity, including but not lim-
ited to race, ethnicity, gender, socioeconomic status, ability, age, sexual orienta-
tion, and religious or political beliefs.

Education is a powerful force for equity and change in our world. It has the
potential to deliver opportunities that improve lives and enable economic mobil-
ity. As we work with authors to create content for every product and service, we
acknowledge our responsibility to demonstrate inclusivity and incorporate
diverse scholarship so that everyone can achieve their potential through learn-
ing. As the world’s leading learning company, we have a duty to help drive
change and live up to our purpose to help more people create a better life for
themselves and to create a better world.

Our ambition is to purposefully contribute to a world where

• Everyone has an equitable and lifelong opportunity to succeed through
learning

• Our educational products and services are inclusive and represent the rich
diversity of learners

• Our educational content accurately reflects the histories and experiences
of the learners we serve

• Our educational content prompts deeper discussions with learners and
motivates them to expand their own learning (and worldview)

While we work hard to present unbiased content, we want to hear from you
about any concerns or needs with this Pearson product so that we can investi-
gate and address them.

• Please contact us with concerns about any potential bias at https://
www.pearson.com/report-bias.html.

https://www.pearson.com/report-bias.html
https://www.pearson.com/report-bias.html

Credits
Figures 1.2a-c, 11.2-11.8, Chapter 35 – Screenshots of
Chrome browser: Google LLC

Figures 1.2d, Chapter 43 - Screenshot of smileys: Twitter, Inc.

Figure 1.2e: GitHub, Inc.

Figures 1.2f, 34.1: Netflix, Inc.

Figures 1.5-1.8, Chapter 36 - Screenshot of an Excel sheet: Microsoft

Figures 5.1, 9.7, Chapter 41 - Screenshot of JavaScript file:
Dropbox, Inc.

Figure 11.1: Randall Munroe

Chapter 43 – Screenshots of using an emoji and Character Viewer on
Mac: Apple Inc

Many illustrations and screenshots use emojis from Twitter’s Twemoji
set: https://twemoji.twitter.com/

Cover Image: rozdesign/Shutterstock

https://twemoji.twitter.com/Cover
https://twemoji.twitter.com/Cover

Contents at a Glance

Introduction .. 1

 1 Hello, World!...5

Part I The Basic Stuff

 2 Values and Variables ...15

 3 Functions...23

 4 Conditional Statements: if, else, and switch.......................................39

 5 Looping with for, while, and do…while! ...57

 6 Commenting Your Code…FTW!...71

 7 Timers ...79

 8 Variable Scope ..85

 9 Closures ..95
10 Where Should Your Code Live? ..109
11 Console Logging Basics ..123

Part II It’s an Object-Oriented World

12 Of Pizza, Types, Primitives, and Objects...135
13 Arrays ..145
14 Strings ...161
15 Combining Strings and Variables ..173
16 When Primitives Behave Like Objects ..179
17 Numbers ...185
18 Getters and Setters...201
19 A Deeper Look at Objects..211
20 Using Classes ..231
21 Extending Built-in Objects..247
22 Arrow Functions ..259
23 Making Sense of this and More..265
24 Booleans and the Stricter === and !== Operators..........................277
25 Null and Undefined...283
26 All About JSON (JavaScript Object Notation)....................................287

Part III Working with the DOM

27 JS, the Browser, and the DOM ...303
28 Finding Elements in the DOM..315
29 Modifying DOM Elements ..321
30 Styling Our Content..337
31 Using CSS Custom Properties...345

vi

32 Traversing the DOM..353
33 Creating and Removing DOM Elements ..363
34 Quickly Adding Many Elements into the DOM................................381
35 In-Browser Developer Tools..397

Part IV Dealing with Events

36 Events..417
37 Event Bubbling and Capturing ...429
38 Mouse Events..443
39 Keyboard Events ...457
40 Page Load Events and Other Stuff ...467
41 Loading Script Files Dynamically ..481
42 Handling Events for Multiple Elements ...491

Part V Totally Useful Topics that Only Make Sense Now

43 Using Emojis in HTML, CSS, and JavaScript501
44 Making HTTP/Web Requests in JavaScript511
45 Accessing the Webcam...529
46 Array and Object Destructuring..539
47 Storing Data Using Web Storage ...549
48 Variable and Function Hoisting...559
49 Working with Sets ...565
50 Conclusion ..577

Glossary .. 581

Index... 585

Reader Services
Register your copy of JavaScript™ Absolute Beginner’s Guide™ ,
Third Edition at informit.com for convenient access to downloads,
updates, and corrections as they become available. To start the reg-
istration process, go to informit.com/register and log in or create an
account*. Enter the product ISBN, 9780137959167, and click Sub-
mit. Once the process is complete, you will find any available bonus
content under Registered Products.

*Be sure to check the box that you would like to hear from us
in order to receive exclusive discounts on future editions of this
product.

vivivi

http://informit.com
http://informit.com/register

vii

Table of Contents
Introduction...1

Parlez-Vous JavaScript?... 2

Contacting Me/Getting Help ... 2

1 Hello, World! ... 5

What Is JavaScript? ... 7
What JavaScript Looks Like... 8

Hello, World! .. 9
The HTML Document .. 9

Statements, Expressions, and Functions...12

I The Basic Stuff

2 Values and Variables.. 15

Using Variables ..16

More Variable Stuff..18
Naming Variables ...18
More on Declaring and Initializing Variables...19

3 Functions ... 23

What Is a Function?...26

A Simple Function ...26

Creating a Function That Takes Arguments ...30

Creating a Function That Returns Data...35
The Return Keyword ..35
Exiting the Function Early..36
Function Expressions ...36

4 Conditional Statements: if, else, and switch ... 39

The If/Else Statement..40
Meet the Conditional Operators ..43
Creating More Complex Expressions...46
Variations on the If/Else Statement ..47

viii

Switch Statements ...49
Using a Switch Statement..49
Similarity to an If/Else Statement ...53

Deciding Which to Use ...55

5 Looping with for, while, and do…while!.. 57

The for Loop ..59

The Starting Point..62
The Step ..62
The Condition (aka How Long to Keep Looping)...63
Putting It All Together..64

Some for Loop Examples ...64
Breaking a Loop ...65
Skipping an Iteration..65
Going Backwards..66
You Don’t Have to Use Numbers ...66
Oh No He Didn’t! ...66

The Other Loops ...67
The while Loop ...67
The do…while Loop...68

6 Commenting Your Code…FTW!... 71

What Are Comments?...72
Single-Line Comments...73
Multiline Comments ...74

Commenting Best Practices ...76

7 Timers.. 79

Delaying with setTimeout...80
Looping with setInterval ..81
Animating Smoothly with requestAnimationFrame..83

8 Variable Scope... 85

Global Scope ...86

Local Scope..88

Miscellaneous Scoping Shenanigans ..89
Block Scoping ...89
How JavaScript Processes Variables...93
Closures ...94

ix

9 Closures... 95

Functions Within Functions ..96

When the Inner Functions Aren’t Self-Contained ..100

10 Where Should Your Code Live? ... 109

Approach #1: All the Code Lives in Your HTML Document113

Approach #2: The Code Lives in a Separate File ..114
The JavaScript File ...114
Referencing the JavaScript File ..115

So, Which Approach to Use? ...118
Yes, My Code Will Be Used on Multiple Documents!..................................118
No, My Code Is Used Only Once on a Single HTML Document!120

11 Console Logging Basics... 123

Meet the Console..124

Displaying the Console...126

If You Want to Follow Along ..127

Console Logging 101..128
Meet the log Method ..128
Going Beyond Predefined Text ..130
Displaying Warnings and Errors..131

II It’s an Object-Oriented World

12 Of Pizza, Types, Primitives, and Objects ... 135

Let’s First Talk About Pizza..136

From Pizza to JavaScript!..139

What Are Objects? ..141

The Predefined Objects Roaming Around in JavaScript142

13 Arrays .. 145

Creating an Array ..146

Accessing Array Values ...147

Adding Items ...149

Removing Items ...151

x

Finding Items ...152

Merging Arrays ..152

Mapping, Filtering, and Reducing Arrays ...153

The Old School Way ...153

Modifying Each Array Item with map..154
Filtering Items ...156

Getting One Value from an Array of Items...157
More on the Callback Function Arguments ..159

A Short Foray into Functional Programming..160

14 Strings ... 161

The Basics...162

String Properties and Methods ..163
Accessing Individual Characters ...163
Combining (aka Concatenating) Strings ..165
Getting Substrings Out of Strings ..166
Splitting a String with split ..168
Finding Something Inside a String ...169
Uppercasing and Lowercasing Strings ...171

15 Combining Strings and Variables... 173

Our Setup ...174
Using the + Operator (aka String Concatenation)..175
Template Literals (aka String Interpolation) ...175

16 When Primitives Behave Like Objects ... 179

Strings Aren’t the Only Problem ..180

Let’s Pick on Strings Anyway ..180

Why This Matters...182

17 Numbers.. 185

Using a Number...186

Operators ...187
Doing Simple Math ..187

Incrementing and Decrementing ...188

Hexadecimal and Octal Values ..190

xi

Special Values—Infinity and NaN ..190
Infinity ..190
NaN..191

The Math Object ...191
The Constants...192
Rounding Numbers ..193
Trigonometric Functions ..194
Powers and Square Roots..195
Getting the Absolute Value...196

Random Numbers ...196

18 Getters and Setters ... 201

A Tale of Two Properties...202

Meet Getters and Setters ...205
Shout Generator ...206
Logging Activity..206
Property Value Validation ..207

19 A Deeper Look at Objects... 211

Meet the Object ..212
Creating Objects ..213
Adding Properties ..213
Removing Properties..217
What Is Going on Behind the Scenes? ..218

Creating Custom Objects ...222

The this Keyword ...226

20 Using Classes... 231

The Class Syntax and Object Creation ...232
Creating an Object...232
Meet the Constructor...234
What Goes Inside the Class ..236

Extending Objects...240

21 Extending Built-in Objects... 247

Say Hello to prototype Again, Sort Of!...249

Using a Subclassing Approach...253

Extending Built-in Objects Is Controversial ..255
You Don’t Control the Built-in Object’s Future ...256
Some Functionality Should Not Be Extended or Overridden.....................256

xii

22 Arrow Functions .. 259

What Are Arrow Functions?..260
Starting with the Basics..260
Of Arguments and Parenthesis ...261
To Curly Bracket or Not to Curly Bracket ..261

Putting It All Together...263

23 Making Sense of this and More... 265

The this Keyword 101 ...266
When this Just Ain’t Right ...268
Using a Redefined Version of the this Keyword..271
Arrow Functions and Their Lexical Scope ...273
One Method to Bind Them All ...274

24 Booleans and the Stricter === and !== Operators 277

The Boolean Object ..278

The Boolean Function...278

Strict Equality and Inequality Operators ...281

25 Null and Undefined ... 283

Null..284

Undefined...284

26 All About JSON (JavaScript Object Notation)... 287

What Is JSON?...288

Looking Inside a JSON Object ..292
Property Names..292
The Values ...293

Reading JSON Data ..297
Parsing JSON-Looking Data into Actual JSON ..299

Writing JSON Data?..300

III Working with the DOM

27 JS, the Browser, and the DOM.. 303

What HTML, CSS, and JavaScript Do ...304

HTML Defines the Structure ...304

xiii

Prettify My World, CSS! ..306

It’s JavaScript Time!...307

Meet the Document Object Model...309
The window Object..311
The Document Object ...312

28 Finding Elements in the DOM... 315

Meet the querySelector Family..316
querySelector..317
querySelectorAll ...317

It Really Is the CSS Selector Syntax...318

29 Modifying DOM Elements ... 321

DOM Elements Are Objects, Sort Of!...322

Let’s Actually Modify DOM Elements..324
Changing an Element’s Text Value ...326
Attribute Values ..328
Basics of Attribute Access ...328
Custom Attributes ..330

30 Styling Our Content .. 337

Why Would We Set Styles Using JavaScript?...338

A Tale of Two Styling Approaches ...338
Setting the Style Directly ...339
Adding and Removing Classes Using JavaScript ...340
Going Further ...343

31 Using CSS Custom Properties ... 345

What Are CSS Custom Properties/Variables?...346

Setting Complex Values Easily...348

32 Traversing the DOM .. 353

Finding Your Way Around...354
Dealing with Siblings and Parents ..356
Let’s Have Some Kids!..357

Putting It All Together...358
Checking If a Child Exists ..359
Accessing All the Child Elements...359
Walking the DOM...360

xiv

33 Creating and Removing DOM Elements.. 363

Creating Elements ...364

Removing Elements ..372

Cloning Elements ..374

34 Quickly Adding Many Elements into the DOM 381

General Approach ...383
Example...383

Getting Started ..384
The innerHTML Approach ...388
The DocumentFragment Approach ...391
Removing Elements (Emptying an Entire Subtree).......................................395

35 In-Browser Developer Tools... 397

Meet the Developer Tools..398
Inspecting the DOM ..400
Debugging JavaScript ...405
Meet the Console...411
Inspecting Objects ...412
Logging Messages ...414

IV Dealing with Events

36 Events.. 417

What Are Events? ..418

Events and JavaScript ...420
Listening for Events..420
Reacting to Events ...422

A Simple Example ...423

The Event Arguments and the Event Type...426

37 Event Bubbling and Capturing .. 429

Event Goes Down, Event Goes Up ...430

Meet the Phases ..434

xv

Who Cares? ..437

Event, Interrupted ...438

38 Mouse Events .. 443

Meet the Mouse Events..444
Clicking Once and Clicking Twice ..444
Mousing Over and Mousing Out..446
The Very Click-Like Mousing Down and Mousing Up Events448
The Event Heard Again…and Again…and Again!449
The Context Menu ...450

The MouseEvent Properties ...451
The Global Mouse Position...451
The Mouse Position Inside the Browser ..452
Detecting Which Button Was Clicked ..453

Dealing with the Mouse Wheel ...454

39 Keyboard Events ... 457

Meet the Keyboard Events...458

Using These Events ...459

The Keyboard Event Properties ...460

Some Examples ...461
Checking That a Particular Key Was Pressed ..461
Doing Something When the Arrow Keys Are Pressed462
Detecting Multiple Key Presses ..462

40 Page Load Events and Other Stuff.. 467

The Things That Happen During Page Load ...468
Stage Numero Uno ..469
Stage Numero Dos...469
Stage Numero Three ...470

The DOMContentLoaded and load Events..471

Scripts and Their Location in the DOM ..473

Script Elements: async and defer ..477
async ..477
defer...477

xvi

41 Loading Script Files Dynamically ... 481

The Basic Technique ...482

Running Our Dynamically Loaded Script First ...486

Running Dependent Code After Our Script File Has Loaded..........................488

42 Handling Events for Multiple Elements ... 491

How to Do All This ..493
A Terrible Solution..494
A Good Solution...495
Putting It All Together..498

V Totally Useful Topics that Only Make Sense Now

43 Using Emojis in HTML, CSS, and JavaScript .. 501

What Are Emojis Exactly? ...502

Emojis in HTML..503
Using the Emoji Directly ..504
Specifying the Emoji Codepoint...505

44 Making HTTP/Web Requests in JavaScript.. 511

The Example ..513

Meet Fetch ...514
Diving into the Code ...514
Wrapping Up the Example..518

Meet XMLHttpRequest ...520
Creating the Request ...521
Sending the Request..522
Asynchronous Stuff and Events...523
Processing the Request ...523
Processing the Request…for Realz!..526

45 Accessing the Webcam.. 529

The Example ..530

Overview of How This Works ...531

Adding the Code...532

Examining the Code ...535

xvii

46 Array and Object Destructuring .. 539

Destructuring Examples..541
General Overview Using Arrays ..541
Destructuring with Objects ...544

47 Storing Data Using Web Storage .. 549

How Web Storage Works ...550
What Exactly Goes on Inside ..550
Web Storage Data Is Tied to Your Domain ...552

Getting Your Code On..552
Adding Data..552
Retrieving Data ...554
Removing Data ...555
Dealing with File Size...556
Detecting Support for Web Storage ..556
What About Session Storage? ..557

48 Variable and Function Hoisting ... 559

JavaScript and Compiler Behavior ..560
Variable Declarations ...561
Function Declarations ..562
Some Hoisting Quirks ..562

49 Working with Sets ... 565

Creating a Set, Part I ...566

Adding Items to a Set...567

How Checking for Duplicates Works...567

Creating a Set, Part 2..569

Checking the Size of Our Set...570

Deleting Items from a Set ..571

Checking If an Item Exists ..572

Looping Through Items in a Set ..572

Entries, Keys, and Values ..573

50 Conclusion ... 577

Glossary .. 581

Index ... 585

xviii

About the Author
Kirupa Chinnathambi has spent most of his life trying to teach others to love web
development as much as he does. In 1999, before blogging was even a word,
he started posting tutorials on kirupa.com. In the years since then, he has written
hundreds of articles, written a few books (none as good as this one, of course!),
and recorded a bunch of videos you can find on YouTube. When he isn’t writing
or talking about web development, he spends his waking hours helping make
developers happy and productive as a Product Manager at Google. In his non-
waking hours, he is probably sleeping, joining Meena in running after their
daughter Akira, protecting himself from Pixel (aka a T-rex in an unassuming cat’s
body)…or writing about himself in the third person.

You can find him on Twitter, Facebook, LinkedIn, and the interwebs at large. Just
search for his name in your favorite search engine.

About the Technical Editor
Trevor McCauley: friend.

Dedication
To Meena!

(Who still laughs at the jokes found in these pages despite having read them a bazillion
times!)

http://kirupa.com

xix

Acknowledgments
As I found out, getting a book like this out the door is no small feat. It involves a
bunch of people in front of (and behind) the camera who work tirelessly to turn my
ramblings into the beautiful pages you are about to see. To everyone at Pearson
who made this possible, thank you!

With that said, there are a few people I’d like to explicitly call out. First, I’d like to
thank Mark Taber for giving me this opportunity so many years ago, Kim Spenceley
for carrying forward Mark’s work in the second and third editions, Chris Zahn for
meticulously ensuring everything is human-readable, Bart Reed for his excellent
copyediting, Mandie Frank for keeping the project on track, and Loretta Yates for
helping make the connections that made all of this happen. The technical content
of this book has been reviewed in great detail by my long-time friends and online
collaborators, Kyle Murray (1st edition), Trevor McCauley (1st, 2nd, and 3rd editions),
Steve Mills (3rd edition), and Dillion Megida (3rd edition). I can’t thank them
enough for their thorough (and frequently, humorous!) feedback. I would also like
to give a special shout-out to Tommy Kwong, who took the time to voluntarily
share his feedback that went into improving this book.

Lastly, I’d like to thank my parents for having always encouraged me to pursue
creative hobbies like painting, writing, playing video games, and writing code.
I wouldn’t be half the rugged indoorsman I am today without their support. ☺

We Want to Hear from You!
As the reader of this book, you are our most important critic and commentator.
We value your opinion and want to know what we’re doing right, what we could
do better, what areas you’d like to see us publish in, and any other words of
wisdom you’re willing to pass our way.

We welcome your comments. You can email or write to let us know what you did
or didn’t like about this book—as well as what we can do to make our
books better.

Please note that we cannot help you with technical problems related to the topic
of this book.

When you write, please be sure to include this book’s title and author as well as
your name and email address. We will carefully review your comments and share
them with the author and editors who worked on the book.

Email: community@informit.com

mailto:community@informit.com

This page intentionally left blank

I N T R O D U C T I O N

Have you ever tried learning to read, speak, or write in a language

different from the one you grew up with? If you were anything like me,

your early attempts probably looked something like the following:

2 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Unless you are Jason Bourne (or Roger Federer), you barely survived learning your
first language. This is because learning languages is hard. It doesn’t matter if you are
learning your first language or a second or third. Being good at a language to a point
where you are useful in a non-comical way takes a whole lotta time and effort.

It requires starting with the basics. It requires a boatload of practice and patience.
It’s one of those few areas where there really aren’t any shortcuts for becoming
proficient.

Parlez-Vous JavaScript?
Successfully learning a programming language is very similar to how you would
approach learning a real-world language. You start off with the basics. Once
you’ve gotten good at that, you move on to something a bit more advanced. This
whole process just keeps repeating itself, and it never really ends. None of us ever
truly stops learning. It just requires starting somewhere.

To help you with the “starting somewhere” part, that is where this book comes
in. This book is filled from beginning to end with all sorts of good (and hilarious, I
hope!) stuff to help you learn JavaScript.

Now, I hate to say anything bad about a programming language behind its back,
but JavaScript is often pretty dull and boring, as you can see here:

There is no other way to describe it. Despite how boring JavaScript might most
certainly be, it doesn’t mean that learning it has to be boring as well. As you make

INTRODUCTION 3

your way through the book, hopefully you will find the very casual language and
illustrations both informative and entertaining. Infotaining, as some might say!

All this casualness and fun is balanced out by deep coverage of all the interest-
ing and useful things you need to know about JavaScript. The goal is to get so
familiar with JavaScript that you are able to figure out what techniques to use and
when. By the time you reach the last chapter, you will be prepared to face almost
any JavaScript-related challenge head-on without breaking a sweat.

Contacting Me/Getting Help
Putting aside the casualness for a moment, my primary goal for writing this book
is to help you learn JavaScript. As you make your way through the content, it is
natural to get stuck or have questions why something works the way it does…or
doesn’t. That’s part of the learning process. For those moments when you’ve hit a
brick wall, please don’t hesitate to contact me. The easiest way to reach me is by
posting on the forums at https://forum.kirupa.com.

You won’t just get to contact me; your question will also reach some awesomely
knowledgeable and friendly developers from the 200k member community who
will be happy to chime in as well.

And with that, flip the page—it’s time to get started!

https://forum.kirupa.com

This page intentionally left blank

1
HELLO, WORLD!
The Hypertext Markup Language (HTML) is all about displaying things, and

Cascading Style Sheets (CSS) is all about making things look good. Using

the two of them, you can create some pretty nifty-looking stuff, such as the

weather app you can see at http://bit.ly/kirupaWeather. Figure 1.1 shows

what this weather app looks like.

I N T H I S C H A P T E R
• Learn why JavaScript is awesome

• Get your feet wet by creating a simple example

• Preview what to expect in subsequent chapters

http://bit.ly/kirupaWeather

6 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 1.1

An example of a layout designed entirely using CSS

Despite how nifty sites built using only CSS and HTML look, they are pretty static.
They don’t adapt or react to what we are doing. It’s almost like watching a great
Seinfeld episode over and over again. It’s fun for a while, but it gets boring evend -
tually. The web today isn’t static. The sites we use often, such as those shown in
Figure 1.2, have a certain level of interactivity and personalization that goes well
beyond what HTML and CSS by themselves can provide.

FIGURE 1.2

Examples of various websites that rely heavily on JavaScript for their proper functioning

CHAPTER 1 HELLO, WORLD! 7

To make our content come alive, we will need some outside help. What we need
is JavaScript!

What Is JavaScript?
JavaScript is a modern-day programming language that is a peer of HTML and
CSS. In a nutshell, it allows us to add interactivity to our documents. Here’s a short
list of just some of the things we can do with JavaScript:

• Listen for events like a mouse click and then do something.

• Modify the HTML and CSS of our page after the page has loaded.

• Make things move around the screen in interesting ways.

• Create awesome games that work in the browser.

• Communicate data between the server and the client.

• Interact with a webcam, microphone, and other devices.

• Do things on a backend server via a framework such as Node or Deno.

This flexibility has made JavaScript one of the most popular programming
languages ever, as you can see in Figure 1.3.

FIGURE 1.3

Chart of popular programming languages, where you can see that JavaScript is on top!

This growth in popularity isn’t showing any signs of slowing down. We can find
JavaScript powering apps running on a variety of devices well beyond what
existed when JavaScript was first introduced many years ago (see Figure 1.4).

8 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 1.4

JavaScript can power apps running on a variety of devices.

This proliferation is partly helped by modern web frameworks like React, Vue,
Next.js, Nuxt, and more, which build powerful abstractions on top of JavaScript
that make creating rich and complex web apps easy, productive, and fun!

What JavaScript Looks Like
The way we write JavaScript is sort of like composing a formal letter—sort of. We
put together words that often resemble everyday English to tell our browser what
to do. The following example shows some old-fashioned, fresh outta-the-oven
JavaScript:

let defaultName = "JavaScript";

function sayHello(name) {

if (name == null) {

 alert("Hello, " + defaultName + "!");

CHAPTER 1 HELLO, WORLD! 9

} else {

 alert("Hello, " + name + "!");

}

}

Don’t worry if you don’t know what any of that means. Just pay attention to what
the code looks like. Notice that we see a lot of English words such as function,
if, else, alert, and name. In addition to the English words, we also have a lot of
bizarre symbols and characters from the parts of our keyboard that we probably
rarely use. We’ll be using them plenty really soon, and we’ll also fully understand
what everything in this code does as well.

Anyway, that’s enough background information for now. At this point, you might
be expecting me to provide a history of JavaScript and the people and companies
behind making it work, but I’m not going to bore you with stuff like that. Instead,
I want you to get your hands dirty by writing some JavaScript. By the end of this
chapter, I want you to have created something simple that displays some text in
your browser.

Hello, World!
Right now, you might feel a bit unprepared to start writing code. This is especially
true if you aren’t all that familiar with programming in general. As you’ll soon find
out, JavaScript isn’t nearly as annoying and complicated as it might seem to be.
We’re going to build our example together, so let’s get started.

TIP To start writing JavaScript, you need to have basic familiar-
ity with building a web page, using a code editor, and adding
some HTML and CSS. If you aren’t too familiar with these basics,
I encourage you not only to finish the example in this chapter
but also to read the optional “Building Your First Interactive Web
Page” chapter at https://bit.ly/firstFullApp.

The HTML Document
The first thing we need is an HTML document. This document will host the
JavaScript we will be writing. Next, launch your favorite code editor. If you don’t
have one, I encourage you to use Visual Studio Code, which is the code editor
you will be seeing used throughout this book. After you’ve launched your favorite
code editor, go ahead and create a new file. In Visual Studio Code, you will see a
tab labeled Untitled-1, similar to the screenshot in Figure 1.5.

https://bit.ly/firstFullApp

10 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 1.5

The Untitled-1 tab in Visual Studio Code

Save this newly created file by going to File | Save. You will be asked to give this
file a name and specify where you would like to save it. Give this file the name
hello_world.htm and save it to your Desktop. After you have saved this file, add
the following HTML into it:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>An Interesting Title Goes Here</title>

 <style>

 </style>

</head>

<body>

 <script>

 </script>

CHAPTER 1 HELLO, WORLD! 11

</body>

</html>

After you’ve added this HTML, save your document to confirm these changes. It’s
time to take a look at what our page looks like in a browser.

In either File Explorer or Finder, navigate to your Desktop folder and double-click
hello_world.htm. You will see your default browser appearing and displaying the
name of this file. You should see something that looks like what is shown in Figure 1.6.

FIGURE 1.6

Titled tab in Visual Studio Code

If everything worked out well, you should see a blank page! No, there isn’t any-
thing wrong here. While our page has content, there is nothing visible going on.
That’s fine because we’ll fix that shortly. The key to making this fix is for you to go
back to your code editor and focus on the <script> tag that you see toward the
bottom of your HTML:

<script>

</script>

12 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

This tag acts as a container where you can place any JavaScript you want to run
inside it. What we want to do is display the words hello, world! in a dialog that
appears when you load your HTML page. To make this happen, inside your script
region, add the following line:

<script>

alert("hello, world!");

</script>

Save your HTML file and run it in your browser. What do you see once your page
has loaded? You should see a dialog appear that looks like Figure 1.7.

FIGURE 1.7

Your “hello, world!” dialog should look like this.

If this is your first attempt at writing JavaScript, congratulations! Now, let’s look at
what you just did.

Statements, Expressions, and Functions
We (well, mostly you) just wrote a very simple JavaScript statement. A statement
is a logical set of instructions that tell your browser what to do. A typical applica-
tion will have many, MANY statements. In our case, we just have one:

alert("hello, world!");

You can tell something is a statement by looking at the last character in it. It is
usually a semicolon (;), just like what you see here.

Inside a statement, you will see all sorts of funky JavaScript jargon. Our code,
despite being just one line, is no exception. You have this weird thing called alert
that makes an appearance. This is an example of a common English word that
behaves similarly in the JavaScript world. It is responsible for getting your atten-
tion by displaying some text.

CHAPTER 1 HELLO, WORLD! 13

To be more precise, the word alert is something known as a function. You will use
functions all the time; a function is a reusable chunk of code that does something.
The “something” it does could be defined by you, defined by some third-party
library you are using, or it could be defined by the JavaScript framework itself. In
our case, the code that gives your alert function the magical ability to display a
dialog with a message you pass to it lives deep inside the browser. All you really
need to know is that if you want to use the alert function, simply call it and pass in
the text you want it to display. Everything else is taken care of for you.

Getting back to our example, the text you want to display is hello, world!, and
notice how I am specifying it. I wrap the words inside quotation marks:

<script>

alert("hello, world!");

</script>

Whenever you are dealing with text (more commonly known as strings), you will
always wrap them inside a single quote or a double quote. I know that seems
weird, but every programming language has its own quirks. This is one of the
many quirks you will see as you further explore JavaScript. We’ll look at strings in
greater detail shortly; for now, just enjoy the view.

Let’s go one step further. Instead of displaying hello, world!, change the text you
are displaying to show your first and last names instead. Here is an example of
what my code looks like when I use my name:

<script>

alert("Kirupa Chinnathambi!");

</script>

If you run your application, you will see your name appear in the dialog
(see Figure 1.8).

FIGURE 1.8

The dialog box now displays your name.

14 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Pretty straightforward, right? You can replace the contents of your string with
all sorts of stuff—the name of your pet, your favorite TV show, and so on—and
JavaScript will display it.

NOTE We bucketed a lot of the code we see in JavaScript
as being statements. While that is true, there is a special type of
statement called an expression. An expression defines a line of
code that returns or generates a value. We’ll cover expressions in
later chapters, but I wanted to make you aware of them now, just
as a heads-up.

OLUTE MINIMUM
In this chapter, you created a simple example that helped get you familiar with
writing JavaScript code. As part of this process, I threw a lot of concepts and
terms at you. I certainly don’t expect you to know or remember all of them now. In
future chapters, we are going to pick each interesting part of what you’ve seen so
far and elaborate on it in more detail. After all, I’m pretty sure you eventually want
to do things in JavaScript that go beyond displaying some text in a ridiculously
annoying way using the alert dialog.

Going forward, at the end of each chapter, you may even see a set of links to
external resources written by me or others. These resources will give you more
details or a different perspective on what you learned, along with opportunities
to put your learning into practice with more involved examples. Think of what you
see in this book as a jumping-off point for greater and more awesome things.

Additional resources:

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

2
VALUES AND VARIABLES
In JavaScript, every piece of data we provide or use is considered to con-

tain a value. In our example from the previous chapter, we might think of

hello, world! as just some words we pass in to the alert function:

alert("hello, world!");

I N T H I S C H A P T E R
• Learn how to use values to store data

• Organize your code with variables

• Get a brief look at variable naming conventions

16 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

To JavaScript, however, these words have a specific representation under the cov-
ers. They are considered values. We may not have thought much about that when
we were typing those words, but when we are in JavaScript Country, every piece
of data we touch is considered a value.

Now, why is knowing this important? It is important because we will be working
with values a whole lot. Working with them in a way that doesn’t drive you insane
is a good thing. There are just two things we need to simplify our life working with
values:

• We need to identify them easily.

• We need to reuse them throughout our application without unnecessarily
duplicating them.

Those two things are provided by what we are going to be spending the rest of
our time on: variables. Let’s learn all about them here.

Using Variables
A variable is an identifier for a value. Instead of typing hello, world!, every time
we want to use that phrase in our application, we can assign that phrase to a vari-
able and use that variable whenever we need to use hello, world! again. This will
make more sense in a few moments—I promise!

There are several ways to use variables. For most cases, the best way is by relying
on the let keyword followed by the name you want to give your variable, like so:

let myText

In this line of code, we declare a variable called myText. Right now, our variable
has simply been declared. It doesn’t contain anything of value. It is merely an
empty shell.

Let’s fix that by initializing our variable to a value like, say, hello, world!, as shown
here:

let myText = "hello, world!";

At this point, when this code runs, our myText variable will have the value hello,
world! associated with it. Let’s put all of this together as part of a full example.
If you still have hello_world.htm open from earlier, replace the contents of your

CHAPTER 2 VALUES AND VARIABLES 17

<script> tag with the following, or you can create a new HTML file and add the
following contents into it:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8"">

 <title>An Interesting Title Goes Here</title>

 <style>

 </style>

</head>

<body>

 <script>

let myText = "hello, world!";

alert(myText);

 </script>

</body>

</html>

Notice that we are no longer passing in the hello, world! text to the alert
function directly. Instead, we are now passing in the variable name myText
instead. The end result is the same. When this script runs, an alert with hello,
world! will be shown. What this change allows us to do is have one place in our
code where hello, world! is being specified. If we wanted to change hello, world!
to The dog ate my homework!, all we would have to do is just make one change
to the phrase specified by the myText variable:

let myText = "The dog ate my homework!";

alert(myText);

18 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Throughout our code, wherever we reference the myText variable, we will now
see the new text appear. Although this is hard to imagine as being useful for
something as simple as what we have right now, for larger applications, the
convenience of having just one location where we can make a change that gets
reflected everywhere is a major time-saver. You’ll see more less-trivial cases of the
value variables provide in subsequent examples.

More Variable Stuff
What we learned in the previous section will take us far in life. At least, it will in the
parts of our life that involve getting familiar with JavaScript. We won’t dive too much
further into variables here—we’ll do all of that as part of future chapters where the
code is more complex and the importance of variables is more obvious. With that
said, there are a few odds and ends we should cover before calling it a day.

Naming Variables
We have a lot of freedom in naming our variables however we see fit. Ignoring
what names we should give things based on philosophical/cultural/stylistic prefer-rr
ences, from a technical point of view, JavaScript is very lenient on what characters
can go into a variable name.

This leniency isn’t infinite, so we should keep the following points in mind when
naming our variables:

• Variables can be as short as one character, or they can be as long as you
want—think thousands and thousands of characters.

• Variables can start with a letter, underscore, or dollar sign ($). They can’t start
with a number.

• Outside of the first character, our variables can be made up of any combina-
tion of letters, underscores, numbers, and $ characters. We can also mix and
match lowercase and uppercase letters to our heart’s content.

• Spaces are not allowed.

Here are some examples of valid variable names:

let myText;

let $;

let r8;

let _counter;

let $field;

CHAPTER 2 VALUES AND VARIABLES 19

let thisIsALongVariableName_butItCouldBeLonger;

let __$abc;

let OldSchoolNamingScheme;

To see if a variable name is valid, check out the really awesome and simple
JavaScript Variable Name Validator at https://bit.ly/namevalidator.

Outside of valid names, there are other things to focus on as well, such as naming
conventions, how many people commonly name variables, and other things you
identify with a name. We will touch on these items in other chapters.

More on Declaring and Initializing Variables
One of the things you will learn about JavaScript is that it is a very forgiving and
easy-to-work-with language.

Declaring a Variable Is Optional
For example, we don’t have to use the let keyword to declare a variable. We
could just do something like the following:

myText = "hello, world!";

alert(myText);

Notice the myText variable is being used without formally being declared with the
let keyword. While not recommended, this is completely fine. The end result is that
we have a variable called myText. The only thing is that by declaring a variable this
way, we are declaring it globally. Don’t worry if the last sentence makes no sense.
We’ll look at what globally means when talking about variable scope later.y

Declaring and Initializing on Separate Lines Is Cool
There is one more thing to call out, and that is this: The declaration and initializa-
tion of a variable do not have to be part of the same statement. We can break
them up across multiple statements:

let myText;

myText = "hello, world!";

alert(myText);

https://bit.ly/namevalidator

20 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In practice, we will find ourselves breaking up our declaration and initialization of
variables all the time.

Changing Variable Values and the const Keyword
Lastly, we can change the value of a variable declared via let to whatever we
want, whenever we want:

let myText;

myText = "hello, world!";

myText = 99;

myText = 4 * 10;

myText = true;

myText = undefined;

alert(myText);

If you have experience working with languages that are more strict and don’t
allow variables to store a variety of data types, this leniency is one of the features
people both love and hate about JavaScript. With that said, JavaScript does pro-
vide a way for you to restrict the value of a variable from being changed after you
initialize it. That restriction comes in the form of the const keyword, which we can
declare and initialize our variables with:

const siteURL = "https://www.google.com";

alert(siteURL);

By relying on const, we can’t change the value of siteURL to something other
than https://www.google.com. JavaScript will complain if we try to do that. There
are some gotchas with using the const keyword, but it does a great job overall in
preventing accidental modifications of a variable. We’ll cover those pesky gotchas
in bits and pieces when the time is right.

TIP Jump Ahead—Variable Scoping
Now that you know how to declare and initialize variables, a very
important topic is that of visibility. You need to know when and
where a variable you declared can actually be used in your code.
The catch-all phrase for this is variable scope. If you are curious
to know more about it, you can jump ahead and read Chapter 8,
“Variable Scope.”

https://www.google.com"
https://www.google.com

CHAPTER 2 VALUES AND VARIABLES 21

THE ABSOLUTE MINIMUM
Values store data, and variables act as an easy way to refer to that data. There are
a lot of interesting details about values, but those are details you do not need to
learn right now. Just know that JavaScript enables you to represent a variety of
values such as text and numbers without a lot of fuss.

To make your values more memorable and reusable, you declare variables. You
declare variables using the let keyword and a variable name. If you want to
initialize the variable to a default value, you follow all of that up with an equal
sign (=) and the value you want to initialize your variable with.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

3
FUNCTIONS
So far, all the code we’ve written really contained no structure. It was just…

there:

alert("hello, world!");

I N T H I S C H A P T E R
• Learn how functions help you better organize and

group your code

• Understand how functions make your code reusable

• Discover the importance of function arguments and
how to use them

24 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

There is nothing wrong with having code like this. This is especially true if our
code is made up of a single statement. Most of the time, though, that will never
be the case. Our code will rarely be this simple when we are using JavaScript in
the real world for real-worldly things.

To highlight this, let’s say we want to display the distance something has traveled
(see Figure 3.1).

FIGURE 3.1

Distance traveled

If you remember from school, distance is calculated by multiplying the speed
something has traveled by how long it took (see Figure 3.2).

FIGURE 3.2

Calculating distance

The JavaScript version of that sort of looks like this:

let speed = 10;

let time = 5;

alert(speed * time);

We have two variables, named speed and time, and they each store a number.
The alert function displays the result of multiplying the values stored by the
speed and time variables. This is a pretty literal translation of the distance equa-
tion we just saw.

CHAPTER 3 FUNCTIONS 25

Let’s say we want to calculate the distance for more values. Using only what we’ve
seen so far, our code would look like this:

let speed = 10;

let time = 5;

alert(speed * time);

let speed1 = 85;

let time1 = 1.5;

alert(speed1 * time1);

let speed2 = 12;

let time2 = 9;

alert(speed2 * time2);

let speed3 = 42;

let time3 = 21;

alert(speed3 * time3);

I don’t know about you, but as the legendary JavaScript developer and occasional
basketball player Charles Barkley would say, this just looks turrible. Our code is
unnecessarily verbose and repetitive. Like we saw earlier when we were learning about
variables, repetition makes our code harder to maintain, and it also wastes our time.

This entire problem can be solved very easily by using what we’ll be seeing a lot
of here, functions:

function showDistance(speed, time) {

alert(speed * time);

}

showDistance(10, 5);

showDistance(85, 1.5);

showDistance(12, 9);

showDistance(42, 21);

Don’t worry too much about what this code does just yet. Just know that this
smaller chunk of code does everything all those many lines of code did earlier, but
without all the negative side effects. We’ll learn all about functions and how they
do all the sweet things they do, starting…right…now!

26 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

What Is a Function?
At a very basic level, a function is nothing more than a wrapper for some code. A
function provides the following benefits:

• It groups statements together.

• It makes our code reusable.

We will rarely write or use code that doesn’t involve functions, so it’s important
that we get familiar with them and learn all about how well they work.

A Simple Function
The best way to learn about functions is to just dive right in and start using them,
so let’s start off by creating a very simple function. Creating a function isn’t very
exciting. It just requires understanding some minor syntactical quirks, like using
weird parentheses and brackets.

Here is an example of what a very simple function looks like:

function sayHello() {

alert("hello!");

}

Just having a function defined isn’t enough, though. Our function needs to be
called, and we can do that by adding the following line afterwards:

function sayHello() {

alert("hello!");

}

sayHello();

To see all this for yourself, create a new HTML document (call it functions_
sayhello.htm) and add the following code to it:

<!DOCTYPE html>

<html>

<head>

CHAPTER 3 FUNCTIONS 27

meta charset="utf-8">

 <title>Say Hello!</title>

 <style>

 </style>

</head>

<body>

 <script>

function sayHello() {

alert("hello!");

 }

sayHello();

 </script>

</body>

</html>

If you have typed all this in and then preview your page in your browser, you will
see hello! displayed. The only thing you need to know right now is that our code
works. Let’s look at why the code works next by breaking the sayHello function
into individual chunks and viewing each in greater detail.

First, we see the function keyword leading things off, as shown in Figure 3.3.

FIGURE 3.3

The function keyword

28 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

This keyword tells the JavaScript engine that lives deep inside your browser to
treat this entire block of code as something having to do with functions.

After the function keyword, we specify the actual name of the function, followed
by some opening and closing parentheses, as you can see in Figure 3.4.

FIGURE 3.4

The function name and parentheses

Rounding out our function declaration are the opening and closing brackets that
enclose any statements we may have inside (see Figure 3.5).

FIGURE 3.5

The opening and closing brackets

CHAPTER 3 FUNCTIONS 29

The final thing is the contents of our function—the statements that make our func-
tion actually functional (see Figure 3.6).

FIGURE 3.6

The function’s content

In our case, the content is the alert function, which displays a dialog with the
word hello! in it.

The last thing to look at is the function call (see Figure 3.7). The function
call is typically the name of the function we want to call (or l invoke) followed
again by the parentheses. Without our function call, the function we created
doesn’t do anything. It is the function call that wakes our function up and makes it
do things.

30 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 3.7

The function call

Now, what we have just seen is a very simple function. In the next couple sections,
we are going to build on what we’ve just learned and look at increasingly more
realistic examples of using functions.

Creating a Function That Takes Arguments
The previous sayHello example was quite simple:

function sayHello() {

alert("hello!");

}

sayHello();

We call a function, and the function does something. That simplification by itself
is not out of the ordinary. All functions work just like that. What is different is
the details on how functions get invoked, where they get their data from, and
so on. The first such detail we are going to look at involves functions that take
arguments.

CHAPTER 3 FUNCTIONS 31

Let’s start with a simple and familiar example:

alert("my argument");

What we have here is our alert function. We’ve seen it a few (or a few dozen)
times already. What this function does is take what is known as an argument for
figuring out what to actually display when it gets called. Calling the alert func-
tion with an argument of my argument results in the display shown in Figure 3.8.

FIGURE 3.8

Displaying the argument

The argument is the stuff between our opening and closing parentheses when call-
ing the alert function. The alert function is just one of many functions available
to us that take arguments, and many of the functions we create will take argu-
ments as well.

For example, earlier in this chapter we briefly looked at a function that takes
arguments—our showDistance function:

function showDistance(speed, time) {

 alert(speed * time);

}

32 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

See, we can tell when a function takes arguments by looking at the function
declaration itself:

function showDistance(speed, time) {

alert(speed * time);

}

What used to be empty parentheses following the function name will now contain
some information about the quantity of arguments our function needs, along with
some hints on what values our arguments will take.

For example, we can infer that the showDistance function takes two arguments.
The first argument corresponds to the speed, and the second argument corre-
sponds to the time.

We specify our arguments to the function as part of the function call:

function showDistance (speed, time) {

alert (speed * time);

}

showDistance(10, 5);

In our case, we call showDistance and specify the values we want to pass to our
function inside the parentheses, as shown in Figure 3.9.

FIGURE 3.9

Values we want to pass to the function

CHAPTER 3 FUNCTIONS 33

Because we are providing more than one argument, we can separate the indi-
vidual arguments by a comma. Oh, and before I forget to mention it, the order in
which we specify our arguments matters.

Let’s look at all of this in greater detail, starting with the diagram in Figure 3.10.

FIGURE 3.10

A diagram of the function call

When the showDistance function gets called, it passes in a 10 for the speed
argument, and it passes in a 5 for the distance argument. That mapping, as
shown in the diagram, is entirely based on order.

Once the values you pass in as arguments reach our function, the names we
specified for the arguments are treated just like variable names, as shown in
Figure 3.11. We can use these variable names to easily reference the values stored
by the arguments inside our function without any worry in the world.

34 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 3.11

The argument names work like variables.

NOTE Mismatched Number of Arguments

If a function happens to take arguments and we don’t provide
any arguments as part of our function call, provide too few
arguments, or provide too many arguments, things can still work.
We can code our function defensively against these cases, and in
future chapters we will touch on that a bit.

In general, to make the code we are writing clearer, we should provide
the required number of arguments for the function we are calling.

CHAPTER 3 FUNCTIONS 35

Creating a Function That Returns Data
The last function variant we will look at is one that returns some data back to
whatever called it. Here is what we want to do. We have our showDistance
function, and we know that it looks as follows:

function showDistance(speed, time) {

alert(speed * time);

}

Instead of having our showDistance function calculate the distance and display
it as an alert, we want to store that value for some future use. We want to do
something like this:

let myDistance = showDistance(10, 5);

The myDistance variable will store the results of the calculation the
showDistance function performs.

The Return Keyword
We return data from a function by using the return keyword. Let’s create a new
function called getDistance that looks identical to showDistance, with the
only difference being what happens when the function runs to completion:

function getDistance(speed, time) {

 let distance = speed * time;

 return distance;

}

Notice that we are still calculating the distance by multiplying speed and time.
Instead of displaying an alert, we instead return the distance (as stored by the
distance variable).

To call the getDistance function, we can just call it as part of initializing a
variable:

let myDistance = getDistance(10, 5);

36 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

When the getDistance function is called, it gets evaluated and returns a numeri-
cal value that then becomes assigned to the myDistance variable. That’s all there
is to it.

Exiting the Function Early
Once our function hits the return keyword, it stops everything it is doing at that
point, returns whatever value you specified to the caller, and exits:

function getDistance(speed, time) {

let distance = speed * time;

return distance;

if (speed < 0) {

 distance *= -1;

 }

}

Any code that appears after our return statement will not get reached. It will be
as if that code never even existed.

In practice, we will use the return statement to terminate a function after it has
done what we wanted it to do. That function could return a value to the caller, like
we saw in the previous examples, or that function could simply just exit:

function doSomething() {

let foo = "Nothing interesting";

 return;

}

Using the return keyword to return a value is optional. The return keyword
can be used in a standalone manner, like we see here, to just exit the function. If
a function does not specify anything to return, a default value of undefined is
returned.

Function Expressions
The functions we’ve seen so far are of the function declaration (or statement
or definition) variety. There is another common way to work with functions, and

CHAPTER 3 FUNCTIONS 37

that is the function expression way. In this approach, our functions are typically
unnamed and associated with a variable. This makes more sense with an example,
so here we go:

const area = function(width, height) {

return width * height;

}

alert(area(4, 5)); // displays "20"

We have a function called area, and we use it just like we would any function
we’ve seen so far. The main visual difference is in how we write the function body.
Getting into specifics, what we have here is an anonymous function assigned to
the variable area. As we can imagine, it is anonymous because this function has s
no name. However, it doesn't have to be that way. We can totally name the func-
tion as part of a function expression, as shown here:

const area = function areaHelper(width, height) {

 return width * height;

}

alert(area(4, 5)); // still displays "20"

In this case, we still have a function assigned to the variable area. What is dif-
ferent is that our function has a name, and that name is areaHelper! This name
isn’t exposed outside of the function body itself. This means that the only way to
call this function is via the area variable. If that is the case, why would we bother
naming our function? There are two reasons:

• Debugging our code is easier when we encounter a named function.

• For more advanced scenarios, we may want to recursively call our function.
The only way to do that is by referencing the function by name. (For an exam-
ple of a recursive function, go here: https://bit.ly/kirupaHanoi)

What makes function expressions interesting is that they open the door for some
really cool techniques we would otherwise not be able to do.

TIP Immediately Invoked Function Expression (IIFE)
A function doesn’t have to be invoked separately from when it gets
defined. We can define a function that gets executed immediately,
and such a function is known as an immediately invoked function

https://bit.ly/kirupaHanoi

38 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
Functions are among a handful of things we will use in almost every single
JavaScript application. They provide the much sought-after capability to help
make our code reusable. Whether we are creating our own functions or using the
many functions that are built into the JavaScript language, we will simply not be
able to live without them.

What we have seen so far are examples of how functions are commonly used.
There are some advanced traits that functions possess that I did not cover here.
Those uses will be covered in the future—a distant future when we reach
Chapters 9, 22, and 49. For now, everything you’ve learned will take you quite far
when it comes to understanding how functions are used in the real world.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

expression, or IIFE for short. The way we define an IIFE is by wrap-
ping our function expression in a bunch of extra parentheses. Take
a look at the following example:

(function() {

let greeting = "Hello";

alert(greeting);

})();

When this code runs, the word Hello is displayed in an alert
dialog. What makes this unique is that we can’t access the
greeting variable at all. It is locked and kept private inside the
IIFE, so this is a good way to have our code do something without
having its internals publicly accessible.

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

4
CONDITIONAL STATEMENTS:
IF, ELSE, AND SWITCH
From the moment you wake up, whether you realize it or not, you start

making decisions. Turn the alarm off. Turn the lights on. Look outside to

see what the weather is like. Brush your teeth. Put on your robe and wizard

hat. Check your calendar. Basically…well, you get the point. By the time

you step outside your door, you consciously or subconsciously will have

made hundreds of decisions, with each one having a certain effect on what

you ended up doing.

I N T H I S C H A P T E R
• Use the popular if/else statement to help make a

decision in code

• Learn about switch statements and when to use
them

40 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

For example, if the weather looks cold outside, you might decide to wear a
hoodie or a jacket. You can model this decision as shown in Figure 4.1.

FIGURE 4.1

Modeling decisions

At each stage of making a decision, you ask yourself a question that can be
answered as true or false. The answer to that question determines your next step
and ultimately whether you wear a t-shirt, hoodie, or jacket. Going broader, every
decision you and I make can be modeled as a series of true and false statements.
This may sound a bit chilly (ha!), but that’s generally how we, others, and pretty
much all living things go about making choices.

This generalization especially applies to everything our computer does. This may
not be evident from the code we’ve written so far, but we are going to fix that. In
this tutorial, we will cover what are known as conditional statements. These are
the digital equivalent of the decisions we make, where our code does something
different depending on whether something is true or false.

The If/Else Statement
The most common conditional statement we will use in our code is the if/else
statement, or just the if statement. The way this statement works is shown in
Figure 4.2.

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 41

FIGURE 4.2

How the if statement worksf

To make sense of this, let’s take a look at a simple example of an if/else state-
ment in action. Create a new HTML document and add the following markup and
code to it:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>If / Else Statements</title>

</head>

<body>

 <script>

let safeToProceed = true;

if (safeToProceed) {

alert("You shall pass!");

 } else {

alert("You shall not pass!");

 }

42 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

script>

</body>

</html>

Save this document with the name if_else.htm and preview it in your browser. If
everything worked as expected, you will see an alert with the text You shall pass!
displayed (see Figure 4.3).

FIGURE 4.3

You will see this alert.

Here’s the code from our example that’s responsible for making this work:

let safeToProceed = true;

if (safeToProceed) {

alert("You shall pass!");

} else {

alert("You shall not pass!");

}

Our expression (the thing following the keyword if that ultimately evaluates to
true or false) is the variable safeToProceed. This variable is initialized to true,
so the true part of our if statement kicked in.

Now, go ahead and change the value of the safeToProceed variable from true
to false:

let safeToProceed = false;

if (safeToProceed) {

alert("You shall pass!");

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 43

} else {

alert("You shall not pass!");

}

This time when you run this code, you will see an alert with the text You shall not
pass! because our expression now evaluates to false (see Figure 4.4).

FIGURE 4.4

The alert you get when the expression evaluates as false

So far, all of this probably seems really boring. A large part of the reason for this is
because we haven’t turned up the complexity knob to focus on more realistic
scenarios. We’ll tackle that next by taking a deeper look at conditions.

Meet the Conditional Operators
In most cases, our expression will rarely be a simple variable that is set to true
or false like it is in our earlier example. Our expression will involve what are
known as conditional operators, which help us to compare between two or more
expressions to establish a true or false outcome.

The general format of such an expression is shown in Figure 4.5.

FIGURE 4.5

General format of a conditional operator expression

44 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The operator (aka a conditional operator) defines a relationship between two
expressions. The end goal is to return a true or a false so that our if statement
knows which block of code to execute. The key to making all this work is the
conditional operators themselves. They are shown in Table 4.1.

TABLE 4.1 Operators

Operator When It Is True

== If the first expression evaluates to something that is equal to the second expression

>= If the first expression evaluates to something that is greater than or equal to the
second expression

> If the first expression evaluates to something that is greater than the second
expression

<= If the first expression evaluates to something that is less than or equal to the
second expression

< If the first expression evaluates to something that is less than the second
expression

!= If the first expression evaluates to something that is not equal to the second
expression

&& If the first expression and the second expression both evaluate to true

|| If either the first expression or the second expression evaluate to true

Let’s take our general understanding of conditional operators and make it more
specific by looking at another example, such as the following, with our relevant
if-related code highlighted:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Are you speeding?</title>

</head>

<body>

 <script>

let speedLimit = 55;

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 45

function amISpeeding(speed) {

if (speed >= speedLimit) {

alert("Yes. You are speeding.");

 } else {

alert("No. You are not speeding. What's wrong with you?");

 }

 }

 amISpeeding(53);

 amISpeeding(72);

 </script>

</body>

</html>

Let’s take a moment to understand what exactly is going on. We have a
variable called speedLimit that is initialized to 55. We then have a function
called amISpeeding that takes an argument named speed. Inside this function,
we have an if statement whose expression checks if the passed-in speed value
is greater than or equal to (hello >= conditional operator!) the value stored by the
speedLimit variable:

function amISpeeding(speed) {

if (speed >= speedLimit) {

alert("Yes. You are speeding.");

 } else {

alert("No. You are not speeding. What's wrong with you?");

 }

}

The last thing our code does is actually call the amISpeeding function by passing
in a few values for speed:

amISpeeding(53);

amISpeeding(72);

When we call this function with a speed of 53, the speed >= speedLimit
expression evaluates to false. The reason is that 53 is not greater than or equal to

46 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

the stored value of speedLimit, which is 55. This will result in an alert showing
that you aren’t speeding.

The opposite happens when we call amISpeeding with a speed of 72. In this
case, we are speeding and the condition evaluates to true. An alert telling us that
we are speeding will also appear.

Creating More Complex Expressions
The thing we need to know about these expressions is that they can be as simple or
as complex as we can make them. They can be made up of variables, function calls, or
raw values. They can even be made up of combinations of variables, function calls, or
raw values, all separated using any of the operators from Table 4.1. The only thing we
need to ensure is that our expression ultimately evaluates to true or false.

Here is a slightly more involved example:

let xPos = 300;

let yPos = 150;

function sendWarning(x, y) {

if ((x < xPos) && (y < yPos)) {

alert("Adjust the position");

 } else {

alert("Things are fine!");

 }

}

sendWarning(500, 160);

sendWarning(100, 100);

sendWarning(201, 149);

Notice what our condition inside sendWarning’s if statement looks like:

function sendWarning(x, y) {

 if ((x < xPos) && (y < yPos)) {

 alert("Adjust the position");

 } else {

 alert("Things are fine!");

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 47

 }

}

There are three comparisons being made here. The first one is whether x is less
than xPos. The second one is whether y is less than yPos. The third comparison
is seeing if the first statement and the second statement both evaluate to true
to allow the && operator to return a true as well. We can chain together many
series of conditional statements, depending on what we are doing. The tricky
thing, besides learning what all the operators do, is to ensure that each condition
and sub-condition is properly insulated using parentheses.

All of what I am describing here and in the previous section falls under the
umbrella of Boolean logic. If you are not familiar with this topic, I recommend
you glance through the excellent QuirksMode article on this exact topic: https://
www.quirksmode.org/js/boolean.html.

Variations on the If/Else Statement
We are almost done with the if statement. The last things we are going to look at
are some of its relatives.

The if-only Statement
The first one is the solo if statement that doesn’t have its else companion:

if (weight > 5000) {

alert("No free shipping for you!");

}

In this case, if the expression evaluates to true, then great. If the expression evalu-
ates to false, our code just skips over the alert and moves on to wherever it needs
to go next. The else block is completely optional when working with if state-
ments. To contrast with the if-only statement, we have the next relative.

The Dreaded If/Else-If/Else Statement
Not everything can be neatly bucketed into a single if or if/else statement. For
those kinds of situations, we can chain if statements together by using the else
if keyword. Instead of explaining this further, let’s just look at an example:

if (position < 100) {

alert("Do something!");

https://www.quirksmode.org/js/boolean.html
https://www.quirksmode.org/js/boolean.html

48 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

} else if ((position >= 200) && (position < 300)) {

alert("Do something else!");

} else {

alert("Do something even more different!");

}

If the first if statement evaluates to true, our code branches into the first alert.
If the first if statement is false, our code evaluates the else if statement to
see if the expressions in it evaluate to a true or false. This repeats until our code
reaches the end. In other words, our code simply navigates down through each if
and else if statement until one of the expressions evaluates to true.

if (condition) {

 ...

} else if (condition) {

 ...

} else if (condition) {

 ...

} else if (condition) {

 ...

} else if (condition) {

 ...

} else if (condition) {

 ...

} else {

 ...

}

If none of the statements have an expression that evaluates to true, the code
inside the else block (if it exists) executes. If there is no else block, the code
will just go on to the next set of code that lives beyond all these if statements.
Between the more complex expressions and if/else if statements, you can
represent pretty much any decision that your code might need to evaluate.

Phew! You have now learned all there is to know about the if statement. It’s time
to move on to a whole different species of conditional statement—the switch
statement.

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 49

Switch Statements
if, else, and else if statements, the need for

yet another way of dealing with conditionals may seem unnecessary. However,
people who wrote code on room-sized machines and probably hiked uphill in
the snow (with wolves chasing them) disagreed, so we have what are known as
switch statements. What are they? We are going to find out!

Using a Switch Statement
Let’s cut to the chase and look at the code first. The basic structure of a switch
statement is as follows:

switch (expression) {

case value1:

 statement;

break;

case value2:

 statement;

break;

case value3:

 statement;

break;

 default:

 statement;

break;

}

The thing to never forget is that a switch statement is nothing more than a
conditional statement that tests whether something is true or false. That
something is a variation of whether the result of evaluating the expression
equals a case value. Let’s make this explanation actually make sense by looking
at a better example:

let color = "green";

switch (color) {

case "yellow":

50 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

alert("yellow color");

break;

case "red":

alert("red color");

break;

case "blue":

alert("blue color");

break;

case "green":

alert("green color");

break;

case "black":

alert("black color");

break;

 default:

alert("no known color specified");

break;

}

In this simple example, we have a variable called color whose value is set to
green:

let color = "green";

The color variable is also what we specify as our expression to the switch
statement:

switch (color) {

case "yellow":

alert("yellow color");

break;

case "red":

alert("red color");

break;

case "blue":

alert("blue color");

break;

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 51

case "green":

alert("green color");

break;

case "black":

alert("black color");

break;

 default:

alert("no known color specified");

break;

}

Our switch statement contains a collection of case blocks. Only one of these
blocks will get hit, with its code getting executed. The way this chosen one gets
picked is by matching a block’s case value with the result of evaluating the
expression. In our case, because our expression evaluates to a value of green, the
code inside the case block whose case value is also green gets executed:

switch (color) {

case "yellow":

alert("yellow color");

break;

case "red":

alert("red color");

break;

case "blue":

alert("blue color");

break;

case "green":

alert("green color");

break;

case "black":

alert("black color");

break;

 default:

alert("no known color specified");

break;

}

52 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Note that only the code inside the green case block gets executed. That is
thanks to the break keyword that ends that block. When our code hits the break,
it exits the entire switch block and continues executing the code that lies below
it. If you did not specify the break keyword, you will still execute the code inside
the green case block. The difference is that you will then move to the next case
block (the black one, in our example) and execute any code that is there. Unless k
you hit another break keyword, your code will just move through every single
case block until it reaches the end.

With all of this said, if you were to run this code, you would see an alert window
that looks like Figure 4.6.

FIGURE 4.6

Alert window

You can alter the value for the color variable to another valid value to see the other
case blocks execute. Sometimes, no case block’s value will match the result of evalu-
ating an expression. In those cases, your switch statement will just do nothing. If youh
wish to specify a default behavior, add a default block, like so:

switch (color) {

case "yellow":

alert("yellow color");

break;

case "red":

alert("red color");

break;

case "blue":

alert("blue color");

break;

case "green":

alert("green color");

break;

case "black":

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 53

alert("black color");

break;

 default:

alert("no known color specified");

break;

}

Note that the default block looks a bit different from your other case
statements. It actually doesn’t contain the word case.

Similarity to an If/Else Statement
Earlier, we saw that a switch statement is used for evaluating conditions—just like h
the if/else statement we spent a bulk of our time on in this chapter. Given that this
is a major accusation, let’s explore this in further detail by first looking at how an if
statement would look if it were to be literally translated into a switch statement.h

Let’s say we have an if statement that looks like the following:

let number = 20;

if (number > 10) {

alert("yes");

} else {

alert("nope");

}

Because the value of our number variable is 20, our if statement will evaluate to
true. Seems pretty straightforward. Now, let’s turn this into a switch statement:

switch (number > 10) {

case true:

alert("yes");

break;

case false:

alert("nope");

break;

}

54 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Notice that our expression is number > 10. The case value for the case blocks
is set to true or false. Because number > 10 evaluates to true, the code inside
the true case block gets executed. While our expression in this case wasn’t as
simple as reading a color value stored in a variable like in the previous section, our
view of how switch statements work still hasn’t changed. Our expressions can be
as complex as we would like. If they evaluate to something that can be matched
inside a case value, then everything is golden…like a fleece!

Now, let’s look at a slightly more involved example. This time, we will convert our
earlier switch statement involving colors into equivalent if/else statements.
Here’s the switch statement we used earlier:

let color = "green";

switch (color) {

case "yellow":

alert("yellow color");

break;

case "red":

alert("red color");

break;

case "blue":

alert("blue color");

break;

case "green":

alert("green color");

break;

case "black":

alert("black color");

break;

 default:

alert("no color specified");

break;

}

CHAPTER 4 CONDITIONAL STATEMENTS: IF, ELSE, AND SWITCH 55

This switch statement converted into a series of if/else statements would look
like this:

let color = "green";

if (color == "yellow") {

alert("yellow color");

} else if (color == "red") {

alert("red color");

} else if (color == "blue") {

alert("blue color");

} else if (color == "green") {

alert("green color");

} else if (color == "black") {

alert("black color");

} else {

alert("no color specified";

}

As we can see, if/else statements are very similar to switch statements, and
vice versa. The default block becomes an else block. The relationship between
the expression and the case value in a switch statement is combined into if/
else conditions in an if/else statement.

Deciding Which to Use
In the previous section, we saw how interchangeable switch statements and h if/else
statements are. When we have two ways of doing something very similar, it is only natural
to want to know when it is appropriate to use one over the other. In a nutshell, use which-
ever one you prefer. There are many arguments on the web about when to use switch
versus an if/else, and the one thing is that they are all inconclusive.

My personal preference is to go with whatever is more readable. If you look at the
comparisons earlier between switch and if/else statements, you’ll notice that
if you have a lot of conditions, the switch statement tends to look a bit cleaner.
It is certainly less verbose and a bit more readable. What your cutoff mark is for
deciding when to switch (ha!) between using a switch statement and an if/
else statement is entirely up to you. I tend to draw the line at around four or five
conditions.

56 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
While creating true artificial intelligence goes beyond the scope of this book, you
can write code to help your application make choices. This code will almost always
take the form of an if/else statement where you provide the browser with a set
of choices it needs to make:

let loginStatus = false;

if (name == "Admin") {

 loginStatus = true;

}

These choices are fed by conditions that need to evaluate to true or false.

In this chapter, we learned the mechanics of how to work with if/else statements
and their (sort of) related cousin, the switch statement. In future chapters, you’ll
see that we’ll use these statements very casually, as if we’ve known them for years,
so you’ll be very familiar with how to write these statements by the time you reach
the end of this book.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

Next, a switch statement works best when you are evaluating an expression and
matching the result to a value. If you are doing something more complex involving
weird conditions, value checking, and so on, you probably want to use something
different. That could involve something even more different than an if/else
statement, by the way! We will touch on those different somethings later.s

To wrap all this up, the earlier guidance still stands: use whatever you like. If you are
part of a team with coding guidelines, follow them instead. Whatever you do, just be
consistent. It makes your life—as well as the life of anybody else who will be working
with your code—a little bit easier. For what it’s worth, I’ve personally never been in a
situation where I had to use a switch statement. Your mileage may vary.h

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

5
LOOPING WITH FOR,
WHILE, AND DO…WHILE!
When we are coding something, there will be times when we want to

repeat an action or run some code multiple times. For example, let’s say

we have a function called saySomething that we want to repeatedly call

10 times.

I N T H I S C H A P T E R
• Learn how to have some code run repeatedly

• Work with for, while, and do…while loops

58 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

One way we could do this is by simply calling the function 10 times using copy
and paste:

saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

saySomething();

This works and accomplishes what we set out to do, but…we shouldn’t do
something like this. After all, duplicating code is never a good idea. If we had a
nickel for every time you read that so far in this book, we’d have about four or five
nickels (#killing_it).

Now, even if we do decide to duplicate some code a few times manually, this
approach doesn’t really work in practice. The number of times we will need to
duplicate our code will vary based on some external factors, such as the number
of items in a collection of data, some result from some web service, the number of
letters in a word, and various other things that will keep changing. It won’t always
be a fixed number like 10. Often, the number of times we want to repeat some
code could be very, VERY large. We don’t want to copy and paste something a
few hundred or thousand times in order to repeat it. That would be terrible.

What we need is a generic solution for repeating code with control over how
many times the code repeats. In JavaScript, this solution is provided in the form of
something known as a loop. There are three kinds of loops we can use to repeat
some code:

• for loops

• while loops

• do…while loops

Each of these three loop variations allows us to specify the code we want to
repeat (or loop) and a way to stop the repetition when a condition is met. In the
following sections, you’ll learn all about them.

CHAPTER 5 LOOPING WITH FOR, WHILE, AND DO…WHILE!

NOTE Something Beyond alert!
We’ve been using the alert function these past few chapters
to get our code to display something onscreen. In this chapter,
we’re going to look at one more way of displaying something on
the screen that is a bit less intrusive. We’re going to be using the
document.write function:

document.write("Show this on screen!");

This function will print the text you provide to the page displayed
in your browser without displaying a dialog that requires you to
dismiss it every time it appears. You’ll see why we want something
that is more lightweight when you learn more about loops and
how we may want to print many things to the screen.

The for Loop
One of the most common ways to create a loop is by using the for statement to
create what’s known as a for loop. A for loop allows us to repeatedly run some
code until an expression we specify returns false. To help clarify this definition,
let’s look at an example.

If we had to translate our earlier saySomething example using for, it would look
like this:

for (let i = 0; i < 10; i++) {

 saySomething();

}

function saySomething() {

 document.writeln("hello!");

}

If you want to follow along more actively and see this code for yourself, enter the
following code inside some <script> tags in an HTML document:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Loops!</title>

60 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 <style>

 </style>

</head>

<body>

 <script>

for (let i = 0; i < 10; i++) {

 saySomething();

 }

function saySomething() {

document.writeln("hello!");

 }

 </script>

</body>

</html>

Once your document is ready, save it and then preview it in your browser. After
the page has loaded, what you would see is shown in Figure 5.1.

FIGURE 5.1

hello! is repeated across the page.!

CHAPTER 5 LOOPING WITH FOR, WHILE, AND DO…WHILE!

The word hello! will be repeated 10 times across your page. This is made possible
thanks to the for loop, so we are going to thank it back by learning all about how
it works. First, here is our star:

for (let i = 0; i < 10; i++) {

 saySomething();

}

This is a for loop. It probably looks very different from other statements you’ve
seen so far, and that’s because…well, it is very different. To understand the
differences, let’s generalize a for loop into the form shown in Figure 5.2.

FIGURE 5.2

A general, high-level for loopr

This high-level view corresponds to the actual values from our example
(see Figure 5.3).

FIGURE 5.3

The actual values

62 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

These three differently colored regions each play a very important role in how your
loop functions. In order to use a for loop well, we must know what each region
accomplishes, so we will spend the next few minutes diving deeper into each
section.

The Starting Point
In the first region, we define the starting point for our loop. A common thing to
put here is some code to declare, and then we initialize a variable, similar to what
we did in Figure 5.4.

FIGURE 5.4

Declaring and initializing a variable

What we are telling JavaScript is to start our loop with the variable i initialized
to 0.

The Step
We are going to skip ahead to the step region next (see Figure 5.5).

In this stage, we specify how our starting point will evolve. For our example, what
we are saying is that each time our loop runs, the value of i will be increased
by 1. That is captured by the cryptic looking i++. We’ll cover what the ++ means
later when we look at how numbers and math in JavaScript work, but another way
of representing this would be to say i = i + 1.

CHAPTER 5 LOOPING WITH FOR, WHILE, AND DO…WHILE!

FIGURE 5.5

The step

The Condition (aka How Long to Keep Looping)
Going back to the stage we skipped, we have the condition part of our loop,
which determines when the loop will stop running (see Figure 5.6).

FIGURE 5.6

The condition part of the loop

In our example, the condition is that our i variable is less than the value of 10:

• If our i variable is less than 10, this expression evaluates to true and our loop
continues to run.

• If our i variable becomes equal to or greater than 10, the condition is false,
and our loop terminates.

64 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Putting It All Together
Okay, now that we have looked at each part of our for loop in greater detail, let’s
use our newly gained knowledge to run through it all at once to see what is going
on. Our full example, repeated from earlier, is as follows:

for (let i = 0; i < 10; i++) {

 saySomething();

}

function saySomething() {

 document.writeln("hello!");

}

When our for loop is initially hit at the starting point, the i variable is created
and initialized to 0. Next, we go to the condition part of the loop, which deter-rr
mines whether or not our loop should keep running. The condition checks whether
the value of i is less than 10. Is 0 less than 10? Yes it is, so this condition evaluates
to true and the code contained inside the loop runs. Once this is done, the step
part of our loop kicks in. In this stage, the i variable is incremented by 1 to have a
value of 1. At this point, our loop has run through one cycle, commonly referred to
as an iteration. Time to start the next iteration.

For the next iteration, the loop starts all over again, except the variable i isn’t
reinitialized. Its value is 1 from the previous iteration, so that carries over. For the
condition, we recheck whether the new value is less than 10, which it is. The code
inside our loop (basically the saySomething function) and the step part of the
loop where i increments by 1 then happen. The value of i is then incremented by
1 to a value of 2, and this iteration is done for the day, leaving the door open for
the next iteration!

This process repeats iteration after iteration until the condition i < 10 evaluates
to false. Because the loop started with i being 0 and it is set to terminate when
the value of i is less than 10, and because i increments by 1 in each iteration, this
loop (and any code contained in it) will run 10 times before stopping. Phew!

Some for Loop Examples
In the previous section, we dissected a simple for loop and labeled all its inner
workings. The thing about for loops and most everything in JavaScript is that a

CHAPTER 5 LOOPING WITH FOR, WHILE, AND DO…WHILE!

simple example doesn’t always cover everything we might need. The best solution
is to look at some more examples of for loops, and that’s what we are going to
be doing in the next few sections.

Breaking a Loop
Sometimes, we may want to end our loop before it reaches completion. The way
we end a loop is by using the break keyword. Here is an example:

for (let i = 0; i < 100; i++) {

document.writeln(i);

if (i == 45) {

break;

 }

}

When the value of i equals 45, the break keyword stops the loop from continu-
ing further. Although this example is a bit contrived, when we do run into a real-
world case for ending our loop, we’ll now know what to do.

Skipping an Iteration
There will be moments when we want our loop to skip its current iteration and
move on to the next one. That is cleverly handled by the continue keyword:

let floors = 28;

for (let i = 1; i <= floors; i++) {

if (i == 13) {

 // no floor here

 continue;

 }

document.writeln("At floor: " + i + "
");

}

66 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Unlike break, where our loop just stops and goes home, continue tells our
loop to stop and move on to the next iteration. We will often find ourselves using
continue when handling errors where we just want the loop to move on to the
next item.

Going Backwards
There is no reason why our starting point has to have a variable initialized to 0 and s
then increment that variable upward:

for (let i = 25; i > 0; i--) {

 document.writeln("hello");

}

You can just as easily start high and then decrement until your loop condition
returns false.

You may have heard that doing something like this increases your loop’s per-rr
formance. The jury is still out on whether decrementing is actually faster than
incrementing, but feel free to experiment and see if you notice any performance
benefits.

You Don’t Have to Use Numbers
When filling out your for loop, you don’t have to only use numbers:

for (let i = "a"; i != "aaaaaaaa"; i += "a") {

 document.writeln("hmm...");

}

You can use anything you want as long as your loop will eventually hit a point
where it can end. Notice that in this example we are using the letter a as our cur-rr
rency for running this loop. At each iteration, the value of i is incremented with
the letter a, and the loop stops when i equals aaaaaaaa.

Oh No He Didn’t!
Oh yes! Yes, I did. I went there, took a picture, posted it on Facebook, and came
back:

CHAPTER 5 LOOPING WITH FOR, WHILE, AND DO…WHILE!

let i = 0;

let yay = true;

for (; yay;) {

if (i == 10) {

 yay = false;

 } else {

 i++;

document.writeln("weird");

 }

}

You don’t have to fill out the three sections of your for loop in order to make
it work. As long as, in the end, you manage to satisfy the loop’s terminating
condition, you can do whatever you want, just like the preceding example shows.

The Other Loops
Living in the shadow of the beloved for loop are the while and do…while loop
variants. In the interest of completeness, let’s quickly look at both of them.

The while Loop
The while loop repeats some code until its condition (another expression) returns
false. Take a look at the following example:

let count = 0;

while (count < 10) {

document.writeln("looping away!");

 count++;

}

68 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In this example, the condition is represented by the count < 10 expression.
With each iteration, our loop increments the count value by 1:

let count = 0;

while (count < 10) {

document.writeln("looping away!");

 count++;

}

Once the value of count becomes 10, the loop stops because the count < 10
expression will return false. If you look at everything the while loop does, it does
look like a great imitation of the for loop. Whereas the for loop formally requires
you to define the starting, condition, and step stages, the while loop expects you
to define those stages yourself in your own way.

The do…while Loop
Now, we get to the Meg Griffin of the loop variants. That would be the do…
while loop, whose purpose is even less defined than while. Whereas the while
loop had its conditional expression first before the loop would execute, the do…
while loop has its conditional expression at the end.

Here is an example:

let count = 0;

do {

document.writeln("I don't know what I am doing here!
");

 count++;

} while (count < 10);

CHAPTER 5 LOOPING WITH FOR, WHILE, AND DO…WHILE!

THE ABSOLUTE MINIMUM
So, there you have it—a look at for loops and how we can use them, along with
very basic coverage of the while and do…while loops. Right now, we may not
see ourselves using loops a whole lot. As we start getting into more involved situ-
ations involving collections of data, elements in your Document Object Model
(DOM), text manipulation, and other stuff, we’ll be using loops a whole lot more.
Basically, keep all the information you’ve seen here really close by!

Additional resources:

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

The main difference between a while loop and a do…while loop is that the
contents of a while loop could never get executed if its conditional expression is
false from the very beginning:

while (false) {

document.writeln("Can't touch this!");

}

With a do…while loop, because the conditional expression is evaluated only
after one iteration, your loop’s contents are guaranteed to run at least once:

do {

document.writeln("This code will run once!");

} while (false);

That can come in handy in some situations. Now, before we wrap things up, there
is just one last bit of information I need to tell you before we move on. The break
and continue statements we saw earlier as part of the awesome for loop work
similarly when used inside the while and do…while loop variants.

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

6
I N T H I S C H A P T E R
• Learn how to comment your code

• Figure out the best practices around commenting

COMMENTING YOUR
CODE…FTW!
Everything we write in our code editor might seem like it is intended for

our browser’s eyes only:

let xPos = -500;

function boringComputerStuff() {

 xPos += 5;

if (xPos > 1000) {

 xPos = -500;

 }

}

boringComputerStuff();

72 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

As we will soon find out, that isn’t the case. There is another audience for our
code, and that audience is made up of human beings.

Our code is often used or scrutinized by other people. This is especially true if
you and I are working on a team with other JavaScript developers. We’ll often be
looking at their code, and they’ll often be looking at our code. To make all this
code look as efficient as possible, we need to ensure our code makes sense when
someone other than us is looking at it. Even if you are working solo, this applies to
you as well. That brilliant function that makes sense to you today might be gibber-rr
ish when you look at it next week.

There are many ways of solving this problem. One of the best ways is by using
something known as comments. In this short chapter, you will learn what
comments are, how to specify them in JavaScript, and some good practices on
how to use them.

What Are Comments?
Comments are the things we write as part of our code to communicate something
to other humans:

// This is for not inviting me to your birthday party!

let blah = true;

function sweetRevenge() {

while (blah) {

 // Infinite dialog boxes! HAHAHA!!!!

alert("Hahahaha!");

 }

}

sweetRevenge();

In this example, the comments are marked by the // characters, and they provide
some questionably useful information about the code being described.

The thing to keep in mind about comments is that they don’t run and get exe-
cuted like all the other code you write. JavaScript ignores your comments. It
doesn’t like you. It doesn’t care what you have to say, so you don’t have to worry
about proper syntax, punctuation, spelling, and everything else you need to keep
in mind when writing normal code. Comments exist only for us to help understand
what a piece of code is doing.

CHAPTER 6 COMMENTING YOUR CODE…FTW! 73

There is one other purpose comments serve. We can use comments to mark lines
of code that we don’t want executed:

function insecureLogin(input) {

if (input == "password") {

 // let key = Math.random() * 100000;

 // processLogin(key);

 }

 return false;

}

In this example, the following two lines can be seen in our code editor, but they
won’t run:

// let key = Math.random() * 100000;

// processLogin(key);

We’ll often find ourselves using the code editor as a scratchpad, and comments
are a great way to keep track of things we’ve tried in making our code work
without affecting how your application ultimately runs.

Single-Line Comments
There are several ways to specify comments in our code. One way is by specifying
single-line comments using the // characters followed by what we want to
communicate. This is the comment variation we’ve seen several times already.

We can specify these comments in their own dedicated line:

// Return the larger of the two arguments

function max(a, b) {

if (a > b) {

return a;

 } else {

return b;

 }

}

74 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

We can also specify these comments on the same line as a statement:

let zorb = "Alien"; // Annoy the planetary citizens

Where you specify comments is entirely up to you. Choose a location that seems
appropriate for the comment you are writing.

Since I enjoy sounding like a broken record, I’ll point this out one more time: our
comments don’t run as part of our application. Only you, me, and possibly Dupree
can see them. If that last line made no sense, what you are telling me is that you
did not see one of the greatest comedies of our generation. I highly encourage
you to put this book down and take a few hours to rectify that.

Multiline Comments
The problem with single-line comments is that we have to specify the // characters
in front of every single line we want to comment. That can get really tiring—
especially if we are writing a long comment or commenting out a large chunk of
code.

For those situations, we have another way of specifying comments. We have the /*
and */ characters to specify the beginning and ending of what are known as
multiline comments:

/*

let mouseX = 0;

let mouseY = 0;

canvas.addEventListener("mousemove", setMousePosition, false);

function setMousePosition(e) {

 mouseX = e.clientX;

 mouseY = e.clientY;

}

*/

Instead of adding // characters in front of each line like an animal, we can use the
/* and */ characters to save us a lot of time and frustration.

CHAPTER 6 COMMENTING YOUR CODE…FTW! 75

In most applications, we’ll use a combination of single-line and multiline com-
ments, depending on what we are trying to document. This means we need to be
familiar with both of these commenting approaches.

TIP JSDoc-Style Comments
When we are writing some code that we want used by others, we
probably want an easier way to communicate what our code does
beyond having people rummage through source code. That easier
way exists, and it is made possible by a tool known as JSDoc!
With JSDoc, we slightly modify how we write our comments:

/**/
* Shuffles the contents of your ArrayShuffles the contents of your Array..
*

 * @@this {{Array}}
* @returns {Array} The current array with the

contents fully shuffled.
*/ /

Array..prototype..shuffle = function () { () {
let inputinput = this;;

for ((let ii = input..length - 1; i; i >= 0; i; i--) {) {

let randomIndex = Math.floor(Math.random() *
(i + 1));

let itemAtIndex itemAtIndex = input[randomIndex]; input[randomIndex];

input[randomIndex] input[randomIndex] = input[i]; input[i];
input[i] input[i] = itemAtIndex; itemAtIndex;

} }
return input; input;

}}

Once we have commented our files, we can use the JSDoc tool to
export the relevant parts of our comments into an easily brows-
able set of HTML pages. This allows us to spend more time writ-
ing JavaScript while giving our users an easy way to understand
what our code does and how to use various parts of it.

If you want to learn more on how to use JSDoc, check out the
awesome “Getting Started” page at https://jsdoc.app/about-
getting-started.html for more details.

https://jsdoc.app/about-getting-started.html
https://jsdoc.app/about-getting-started.html

76 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Commenting Best Practices
Now that we have a good idea of what comments are and the several ways we
can write them in JavaScript, let’s talk a bit about how to properly use comments
to help make our code easy to read:

• Always comment code as you are writing it. Writing comments is dread-
fully boring, but it is an important part of writing code. It is much more time
efficient for us (and others) to understand what our code does from reading a
comment as opposed to deciphering line after line of JavaScript.

• Don’t defer comment writing for later. Deferring comment writing for a later
time is the grown-up equivalent of procrastinating on a chore. If we don’t
comment our code as we are writing it, we’ll probably just skip commenting
entirely. That’s not a good thing.

• Use more English and less JavaScript. Comments are one of the few
places when writing JavaScript where we can freely use English (or whatever
language you prefer communicating in). Don’t complicate the comments
unnecessarily with code. Be clear. Be concise. Use words.

• Embrace whitespace. When scanning large blocks of code, we want to ensure
our comments stand out and are clear to follow. That involves being liberal
with the spacebar and Enter/Return key. Take a look at the following example:

function selectInitialState(state) { selectInitialState(state) {

let selectContent se ectCo te t = document..querySelector(("#stateList"););

let stateIndex state de = null;;

 /*/

For the returned state, we would like to ensure thato t e etu ed state, e ou d e to e su e t at

 we select it in our UI. This means we iterate throughe se ect t ou U . s ea s e te ate t oug

 every state in the drop-down until we find a match.e e y state t e d op do u t e d a atc .

 When a match is found, we ensure it gets selected.e a atc s ou d, e e su e t gets se ected.

 *//

for ((let i = 0; i; < selectContent..length; i; ++) {) {

let stateInSelect state Se ect = selectContent.options[i].innerText;se ectCo te t.opt o s[]. e e t;

if (stateInSelect (state Se ect == state) {state) {

 stateIndex state de = i;;

 }}

CHAPTER 6 COMMENTING YOUR CODE…FTW! 77

} }

selectContent.selectedIndex = stateIndex;state de ;

}}

Notice that the comment is appropriately spaced to distinguish it from the rest
of the code. If your comments are strewn about in arbitrary locations where
they are difficult to identify, that just unnecessarily slows you and whoever is
reading your code down.

• Don’t comment obvious things. If a line of code is self-explanatory, we
shouldn’t waste time explaining what it does unless there is some subtle
behavior we need to call out as a warning. Instead, we should invest that time
in commenting the less obvious parts of our code.

The best practices we see here will take us far in ensuring we write properly com-
mented code. If you are working on a larger project with other people, I can
assure you that your team already has some established guidelines on what proper
commenting looks like. Take some time to understand those guidelines and follow
them. You’ll be happy. Your team will be happy.

THE ABSOLUTE MINIMUM
Comments are often viewed as a necessary evil. After all, would you rather take
a few minutes documenting what you clearly already know, or would you rather
implement the next cool piece of functionality? The way I like to describe writ-
ing comments is as follows: It is a long-term investment. The value and benefit of
comments is often not immediately obvious. It becomes obvious when you start
having other people looking over your code, and it becomes obvious when you
have to revisit your own code after you’ve forgotten all about it and how it works.
Don’t sacrifice long-term time-savings for a short-term kick. Invest in single-line (//)
and multiline (/* and */) comments now, before it’s too late.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

7
I N T H I S C H A P T E R
• Learn how to delay when your code runs

• Figure out several ways to run your code repeatedly
without blocking your entire app

TIMERS
By default, our code runs synchronously. That is a fancy of way of saying

that when a statement needs to execute, it executes immediately. There

are no ifs, ands, or buts about it. The concept of delaying execution or s

deferring work to later isn’t a part of JavaScript’s default behavior. We

kind of saw this when looking at loops earlier. The loop runs at lightning

speed with no delay between each iteration. That is great for making quick

calculations, but that isn’t great if we want to make an update at a more

measured (that is, slower) pace.

80 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

All of this doesn’t mean the ability to stop work from running instantaneously
doesn’t exist! If we swerve just slightly off the main road, there are three functions
that allow us to mostly do just that, and more: setTimeout, setInterval, and
requestAnimationFrame. In this chapter, we will look at what each of these
functions do.

Delaying with setTimeout
The setTimeout function allows us to delay executing some code. The way we
use it is quite nice. This function allows us to specify what code to execute and
how many milliseconds to wait before the code we specified executes. Putting
that into JavaScript, we use something like this:

let timeoutID = setTimeout(someFunction, delayInMilliseconds);

As an example, if we wanted to call a function called showAlert after 5 seconds,
the setTimeout declaration would look as follows:

function showAlert() {

alert("moo!");

}

let timeoutID = setTimeout(showAlert, 5000);

Cool, right? Now, let’s talk about something less interesting that we need to cover
for the sake of completeness. That something has to do with the timeoutID vari-
able that is initialized to our setTimeout function. It isn’t there by accident. If
we ever wanted to access this setTimeout timer again, we need a way to refer-rr
ence it. By associating a variable with our setTimeout declaration, we can easily
accomplish that.

Now, you may be wondering why we would ever want to reference a timer once
we’ve created it. There aren’t too many reasons. The only reason I can think of
would be to cancel the timer. For setTimeout, that is conveniently accomplished
using the clearTimeout function and passing the timeout ID as the argument:

clearTimeout(timeoutID);

If you are never planning on canceling your timer, you can just use setTimeout
directly without having it be part of the variable initialization.

CHAPTER 7 TIMERS 81

With the technicalities out of the way, let’s talk about when we would commonly
use it in the real world: user interface (UI) development. When we are doing
something related to the UI, deferring some action to a later time is strangely too
common. Here are some examples that I ran into just in the past month:

• A menu slides in, and after a few seconds of the user no longer playing with
the menu, the menu slides away.

• A long-running operation is unable to complete, and a setTimeout function
interrupts that operation to return control back to the user.

• My favorite usage is using the setTimeout function to detect whether users
are active or idle: https://bit.ly/detectActivity

If you do a search for setTimeout on Google, you’ll see many more real-world
cases where setTimeout proves very useful.

Looping with setInterval
The next timer function we are going to look at is setInterval. The setInt-
erval function is similar to setTimeout in that it also allows us to execute code
after a specified amount of time. What makes it different is that it doesn’t just
execute the code once. It keeps on executing the code in a loop forever.

Here is how we would use the setInterval function:

let intervalID = setInterval(someFunction, delayInMilliseconds);

Except for the function name, the way we use setInterval is identical to set-
Timeout. The first argument specifies the inline code or function we would like to
execute. The second argument specifies how long to wait before our code loops
again. Optionally, you can also initialize the setInterval function to a variable
to store an interval ID—an ID that you can later use to do exciting things like can-
cel the looping. Yay!

Okay! Now that we’ve gone through all that, here is an example of the code at
work, looping a function called drawText with a delay of 2 seconds between
each loop:

<!DOCTYPE html>

<html>

<head>

https://bit.ly/detectActivity

82 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 <meta charset="utf-8">

 <title>Show me some text!</title>

</head>

<body>

 <script>

let thingToPrint = "";

function drawText() {

 thingToPrint += "#";

document.writeln(thingToPrint);

 }

setInterval(drawText, 2000);

 </script>

</body>

</html>

If we wish to cancel the looping, we can use the appropriately named
clearInterval function:

clearInterval(intervalID);

Its usage is similar to its clearTimeout equivalent. We pass in the ID of the
setInterval timer instance that we optionally retrieved while setting up our
setInterval in the first place.

For the longest time, setInterval was the primary function you had for creating
animations in JavaScript. To get 30 or 60 frames a second, for example, you would
do something like the following by playing with the delay time value:

// 1000 divided by 60 is the millisecond value for 60fps

setInterval(moveCircles, 1000 / 60);

To see setInterval in action in some other realistic examples, check
out the bottom of the “Creating a Sweet Content Slider” article (http://bit.ly/

http://bit.ly/

CHAPTER 7 TIMERS 83

sliderTutorial) as well as the “Creating an Analog Clock Using the Canvas” article
(https://bit.ly/analogClock2). They both feature setInterval quite prominently!

Animating Smoothly with requestAnimationFrame
Now we get to one of my favorite functions ever: requestAnimationFrame.
The requestAnimationFrame function is all about synchronizing our code with
a browser repaint event. Here’s what this means: Our browser is busy juggling a
billion different things at any given time. These things include fiddling with layout,
reacting to page scrolls, listening for mouse clicks, displaying the result of key-
board taps, executing JavaScript, loading resources, and more. At the same time
our browser is doing all of this, it is also redrawing the screen at 60 frames per
second…or at least trying its very best to.

When we have code that is intended to animate something to the screen, we want to
ensure our animation code runs properly without getting lost in the shuffle of every-
thing else our browser is doing. Using the setInterval technique mentioned earlier
doesn’t guarantee that frames won’t get dropped when the browser is busy optimiz-
ing for other things. To avoid our animation code from being treated like any other
generic JavaScript, we have the requestAnimationFrame function. This function
gets special treatment by the browser. This special treatment allows it to time its exe-
cution perfectly to avoid dropped frames, avoid unnecessary work, and generally steer
clear of other side effects that plague other looping solutions.

The way we use this function starts off a bit similar to setTimeout and
setInterval:

let requestID = requestAnimationFrame(someFunction);

The only real difference is that we don’t specify a duration value. The duration is
automatically calculated based on the current frame rate, whether the current tab
is active or not, whether the device is running on battery or not, and a whole host
of other factors that go beyond what we can control or understand.

Anyway, this usage of the requestAnimationFrame function is merely the text-
book version. In real life, we’ll rarely make a single call to requestAnimation-
Frame like this. Key to all animations created in JavaScript is an animation loop,
and it is this loop that we want to throw requestAnimationFrame at. The result
of that throw looks something like the following:

function animationLoop() {

 // animation-related code

https://bit.ly/analogClock2

84 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 requestAnimationFrame(animationLoop)

}

// start off our animation loop!

animationLoop();

Notice that our requestAnimationFrame specifies that the animationLoop
function gets called the next time the browser decides to repaint. It looks like the
requestAnimationFrame function calls animationLoop directly, which isn’t
the case. That isn’t a bug in the code. While this kind of circular referencing would
almost guarantee a frozen/hung browser, requestAnimationFrame’s imple-
mentation avoids that. Instead, it ensures the animationLoop function is called
just the right amount of times needed to ensure things get drawn to the screen to
create smooth and fluid animations. It does so without freezing up the rest of your
application functionality.

THE ABSOLUTE MINIMUM
If you think that timers fall under a more niche category compared to some
of the other more essential things like the if/else statements and loops we
looked at earlier, you would probably be right in thinking that. You can build many
awesome apps without ever having to rely on setTimeout, setInterval, or
requestAnimationFrame. That doesn’t mean it isn’t essential to know about
them, though. There will be a time when you’ll need to delay when your code exe-
cutes, loop your code continuously, or create a sweet animation using JavaScript.
When that time arrives, you’ll be prepared…or at least know what to google for.

I’ve mentioned this a bunch of times so far, but JavaScript can be frustrating.
Timers doubly so. If you ever run into any issues, I and other developers who have
battled timers for a long time are here for you. The following resources can help.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

8
I N T H I S C H A P T E R
• Understand global scope

• Familiarize yourself with the various techniques
available for using local scope

• Learn about some quirks that might cause your
code to behave unpredictably

VARIABLE SCOPE
Let’s revisit something relating to variables we saw a few chapters ago.

Each variable we declare has a certain level of visibility that determines

when we can actually use it. In human-understandable terms, just because

we declare a variable doesn’t mean that it can be accessed from anywhere

in our code. There are some basic things we need to understand, and this

whole area of understanding falls under a topic known as variable scope.

86 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In this chapter, I’m going to be explaining variable scope by looking at common
cases that we’ve (mostly) already seen. This is a pretty deep topic, but we are just
going to scratch the surface here. We’ll see variable scope creep up in many sub-
sequent tutorials where we will build on what we learn here.

Global Scope
We are going to start our exploration of scope at the very top with what is known
as global scope. In real life, when we say that something can be heard globally,
it means that we can be anywhere in the world and still be able to hear that…
something:

In JavaScript, much the same applies. If we say, for example, a variable is available
globally, it means that any code on our page has access to read and modify
this variable. We make something apply globally by declaring it in our code
completely outside of a function.

To illustrate this, let’s take a look at the following example:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Variable Scope</title>

</head>

<body>

CHAPTER 8 VARIABLE SCOPE 87

 <script>

let counter = 0;

alert(counter);

 </script>

</body>

</html>

Here, we are simply declaring a variable called counter and initializing it to 0.
By virtue of this variable being declared directly inside the <script> tag without
being placed inside a function, the counter variable is considered to be global.
What this distinction means is that our counter variable can be accessed by any
code that lives in our document.

The following code highlights this:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Variable Scope</title>

</head>

<body>

 <script>

let counter = 0;

function returnCount() {

return counter;

 }

 alert(returnCount());

 </script>

</body>

</html>

88 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In this example, the counter variable is declared outside of the returnCount
function. Despite that, the returnCount function has full access to the counter
variable. When the code runs, the alert function calls the returnCount
function, which returns the value of the counter variable.

At this point, you are probably wondering why I am pointing this out. After all,
we’ve been using global variables all this time without really noticing it. All I am
doing here is formally introducing you to a guest that has been hanging around
your party for a while.

Local Scope
Now, it gets a little interesting when we look at things that aren’t globally
declared. This is where understanding scope really starts paying dividends. As we
saw earlier, a variable declared globally is accessible inside a function:

let counter = 0;

function returnCount() {

return counter;

}

However, the opposite doesn’t hold true. A variable declared inside a function will
not work when accessed outside of the function:

function setState() {

let state = "on";

}

setState();

alert(state) // undefined

In this example, the state variable is declared inside the setState function, and
accessing the state variable outside of that function doesn’t work. The reason is
that the scope for our state variable is local to the setState function itself. A
more generic way of describing this is to say that our state variable is just local.

NOTE Using Variables Without Declaring Them
If we initialize the state variable without formally declaring it,
the scoping behavior is drastically different:

CHAPTER 8 VARIABLE SCOPE 89

function setState() {

state state = "on";;

}}

setState();setState();

alert(state) //// "on"

In this case, even though our state variable makes its appearance
inside the setState function first, not declaring it first with either
let or const (or var, which is an older way of declaring variables)
makes this variable live globally. In general, you don’t want to
declare a variable like this. Always prefix it with a let or const.

Miscellaneous Scoping Shenanigans

everything with variable scope as they stand now. In the following sections, I am
going to highlight some quirks you need to be familiar with.

Block Scoping
Our code is made up of blocks—lots and lots of blocks. What exactly is a block?
A block is a collection of JavaScript statements almost always wrapped by curlyk
braces. For example, let’s take a look at the following code:

let safeToProceed = false;

function isItSafe() {

 if (safeToProceed) {

 alert("You shall pass!");

 } else {

 alert("You shall not pass!");

 }

}

isItSafe();

90 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Counting the pair of curly braces, we see that there are three blocks. One block is
the region contained by the isItSafe function itself:

let safeToProceed = false;

function isItSafe() {

 .

 .

 .

}

isItSafe();

The second block is the if statement region:

let safeToProceed = false;

function isItSafe() {

if (safeToProceed) {

.

 .

 .

 }

}

The third block is the region covered by the else statement:

let safeToProceed = false;

function isItSafe() {

if (safeToProceed) {

 alert("You shall pass!");

 } else {

.

 .

 .

 }

}

CHAPTER 8 VARIABLE SCOPE 91

Any variable declared inside a block using let or const is local to that block and
any child blocks contained inside it. To better understand this, take a look at the
following code, which is a variation of the isItSafe function from earlier:

function isThePriceRight(cost) {

let total = cost + 1;

if (total > 3) {

alert(total);

 } else {

alert("Not enough!");

 }

}

isThePriceRight(4);

We declared the total variable as part of the function block. We are accessing this vari-
able inside the if block. What do you think will happen? The total variable is totally
(ha!) accessible here, because the if block is a child of the function block. To put it in
the lingo of our times, the total variable is considered in scope of the alert function.

What about the following situation?

function isThePriceRight(cost) {

let total = cost + 1;

if (total > 3) {

let warning = true;

alert(total);

 } else {

alert("Not enough!");

 }

alert(warning);

}

isThePriceRight(4);

We have a variable called warning declared inside our if block, and we have an
alert function that tries to print the value of warning. In this case, because we
are trying to access the warning variable in a block that is outside the one the

92 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

variable was originally declared in, our alert function won’t actually display the
value of true. Given where our alert function is, the warning variable is consid-
ered to be out of scope.

NOTE Declaring Variables with the var Keyword!
A few paragraphs ago, I casually mentioned that variables were once
declared with the var keyword. The let and const keywords are
new additions to help you declare variables, and wherever you may
have used var in the past, you should use let instead. We never
discussed why let is preferable, and I said that we’ll discuss it fur-
ther when looking at variable scope. Well, here we are!

Variables declared with var scope to functions. They don’t scope to blocks like
our if/else ones. If we modify the example from earlier to have our warning
variable be declared using var instead of let, our code will look as follows:

function isThePriceRight(cost) {

let total = cost + 1;

if (total > 3) {

var warning = true;

alert(total);

 } else {

alert("Not enough!");

 }

alert(warning);

}

isThePriceRight(4);

Earlier, the alert function for warning wouldn’t display anything because the
warning variable was out of scope when declared with let. With var, that isn’t
the case. You will see true displayed. This is because of the major difference
between let and var. Variables declared with var are scoped at the function
level: so as long as somewhere inside the function the variable is declared, that
variable is considered to be in scope. Variables declared with let, as we saw ear-rr
lier, are scoped to the block level.

The level of leniency provided by var in the scoping department is a little too
much, and this leniency makes it easy to make variable-related mistakes. For this
reason, my preference is for us to use let when it comes to declaring variables.

CHAPTER 8 VARIABLE SCOPE 93

How JavaScript Processes Variables
If you thought the earlier block-scoping logic was weird, wait till you see this one.
Take a look at the following code:

let foo = "Hello!";

alert(foo);

When this code runs, we can reasonably state that the value of Hello! will be dis-
played. We would reasonably be right. What if we made the following modifica-
tion, where we move the variable declaration and initialization to the end?

alert(foo);

let foo = "Hello!";

In this situation, our code will error out. The foo variable is being accessed with-
out being referenced. If we replace the let with a var, here is what our code
would look like:

alert(foo);

var foo = "Hello!";

When this code runs, the behavior is different from what we saw earlier. We will
see undefined displayed. What exactly is going on here?

When JavaScript encounters a scope (global, function, and so on), one of the first
things it does is scan the full body of the code for any declared variables. When it
encounters any variables, it initializes them by default with undefined for var. For
let and const, it leaves the variables completely uninitialized. Lastly, it moves
any variables it encounters to the top of the scope—the nearest block for let and
const, the nearest function for var.

Let’s dive in to see what this means. Our code initially looks like this:

alert(foo);

let foo = "Hello!";

When JavaScript makes a pass at this, the code gets turned into the following:

let foo;
alert(foo);

foo = "Hello!";

94 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The foo variable, despite being declared at the bottom of our code, gets kicked
up to the top. This is more formally known as hoisting. The thing about let and
const is that when they get hoisted, they are left uninitialized. If we try to access
an uninitialized variable, our code will throw an error and stop. If we modify our
earlier example to use var, here is the way JavaScript would see things:

var foo = undefined;

alert(foo);

foo = "Hello!";

The variable still gets hoisted, but it gets initialized to undefined. This ensures our
code still runs.

Here is the main takeaway from all of this: be sure to declare and initialize your vari-
ables before actually using them. While JavaScript has some affordances for dealing
with cases where we don’t do that, those affordances are just awfully confusing.

Closures
No conversation about variable scope can be wrapped up without discussing
closures—that is, until right now. I am not going to explain closures here because it is
a slightly more advanced topic that we will cover separately in the next chapter.

THE ABSOLUTE MINIMUM
Where our variables live has a major impact on where they can be used. Variables
declared globally are accessible to our entire application. Variables declared
locally will only be accessible to whatever scope they are found in. Within the
range of global and local variables, JavaScript has a lot going on up its sleeve.

This chapter provided an overview of how variable scope can affect our code, and
we’ll see some of these concepts presented front and center in upcoming chapters.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

9
I N T H I S C H A P T E R
• Understand what closures are

• Tie together everything you’ve learned about func-
tions, variables, and scope

CLOSURES
By now, you probably know all about functions and all the fun things they

do. An important part of working with functions, in JavaScript, and (possi-

bly) life in general, is understanding the topic known as closures. Closures

touch upon a gray area where functions and variable scope intersect.

96 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Now, I am not going to say any more about closures because this is something
best explained by seeing code. Any words I add right now to define or describe
what closures are will only serve to confuse things. In the following sections, we’ll
start off in familiar territory and then slowly venture into hostile areas where clo-
sures can be found.

Functions Within Functions
The first thing we are going to do is really drill down into what happens when you
have functions within functions…and then the inner function gets returned. As part
of that, let’s quickly review functions.

Take a look at the following code:

function calculateRectangleArea(length, width) {

return length * width;

}

let roomArea = calculateRectangleArea(10, 10);

alert(roomArea);

The calculateRectangleArea function takes two arguments and returns the
multiplied value of those arguments to whatever called it. In this example, the
whatever called it part is played by the roomArea variable.

After this code has run, the roomArea variable contains the result of multiplying
10 and 10, which is simply 100 (see Figure 9.1).

FIGURE 9.1

The result of roomArea

As you know, what a function returns can pretty much be anything. In this case, we
returned a number. You can very easily return some text (aka a string), the unde-
fined value, a custom object, and so on. As long as the code that is calling the
function knows what to do with what the function returns, you can do pretty much

CHAPTER 9 CLOSURES 97

whatever you want. You can even return another function. Return another func-
tion?!! Yes, let me elaborate on this.

Here is an example of a function returning a function:

function youSayGoodBye() {

alert("Good Bye!");

function andISayHello() {

alert("Hello!");

 }

return andISayHello;

}

We can have functions that contain functions inside them. In this example, we
have our youSayGoodBye function that contains an alert and another function
called andISayHello (see Figure 9.2).

FIGURE 9.2

A function within a function

98 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The interesting part is what the youSayGoodBye function returns when it gets
called. It returns the andISayHello function:

function youSayGoodBye() {

alert("Good Bye!");

function andISayHello() {

alert("Hello!");

 }

return andISayHello;

}

Let’s go ahead and play this example out. To call this function, initialize a variable
that points to youSayGoodBye:

let something = youSayGoodBye();

The moment this line of code runs, all of the code inside your youSayGoodBye
function will get run as well. This means that, you will see a dialog (thanks to the
alert) that says Good Bye! (see Figure 9.3).

FIGURE 9.3

The Good Bye! dialog!

As part of running to completion, the andISayHello function will be created and
then returned as well. At this point, our something variable only has eyes for one
thing, and that thing is the andISayHello function (see Figure 9.4).

CHAPTER 9 CLOSURES 99

FIGURE 9.4

The something variable and the g andISayHello functiono

The youSayGoodBye outer function, from the something variable’s point of view,
simply goes away. Because the something variable now points to a function, you
can invoke this function by just calling it using the open and close parentheses like
you normally would:

let something = youSayGoodBye();

something();

When you do this, the returned inner function (that is, andISayHello) will exe-
cute. Just like before, you will see a dialog appear, but this dialog will say Hello!,
as shown in Figure 9.5, which is what the alert inside this function specified.

FIGURE 9.5

Hello!

All of this should probably be a review. The only thing you may have found new is
realizing once a function returns a value, it is no longer around. The only thing that
remains is the returned value.

100 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Okay, we are getting close to the promised hostile territory. In the next section, we
will extend what we’ve just seen by taking a look at another example with a slight
twist.

When the Inner Functions Aren’t Self-Contained
In the previous example, our andISayHello inner function was self-contained
and didn’t rely on any variables or state from the outer function:

function youSayGoodBye() {

alert("Good Bye!");

function andISayHello() {

alert("Hello!");

 }

return andISayHello;

}

In real scenarios, we will very rarely run into a case like this. We will often have
variables and data that are shared between the outer function and the inner func-
tion. To highlight this, take a look at the following example:

function stopWatch() {

let startTime = Date.now();

function getDelay() {

let elapsedTime = Date.now() - startTime;

alert(elapsedTime);

 }

return getDelay;

}

CHAPTER 9 CLOSURES 101

This example shows a very simple way of measuring the time it takes to do
something. Inside the stopWatch function, we have a startTime variable that is
set to the value of Date.now():

function stopWatch() {

let startTime = Date.now();

function getDelay() {

let elapsedTime = Date.now() - startTime;

alert(elapsedTime);

 }

return getDelay;

}

We also have an inner function called getDelay:

function stopWatch() {

 let startTime = Date.now();

 function getDelay() {

 let elapsedTime = Date.now() - startTime;

 alert(elapsedTime);

 }

 return getDelay;

}

The getDelay function displays a dialog containing the difference in time
between a new call to Date.now() and the startTime variable declared earlier.

Back in the outer stopWatch function, the last thing that happens is that it returns
the getDelay function before exiting. As we can see, the code here is very similar
to the earlier example. We have an outer function, we have an inner function, and
we have the outer function returning the inner function.

102 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Now, to see the stopWatch function at work, add the following lines of code:

let timer = stopWatch();

// do something that takes some time

for (let i = 0; i < 1000000; i++) {

let foo = Math.random() * 10000;

}

// invoke the returned function

timer();

The full markup and code for this example looks like this:

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>Closures</title>

 <style>

 </style>

</head>

<body>

 <script>

 function stopWatch() {

 var startTime = Date.now();

 function getDelay() {

 var elapsedTime = Date.now() - startTime;

 alert(elapsedTime);

 }

 return getDelay;

CHAPTER 9 CLOSURES 103

 }

let timer = stopWatch();

 // do something that takes some time

for (let i = 0; i < 1000000; i++) {

let foo = Math.random() * 10000;

 }

 // invoke the returned function

timer();

 </script>

</body>

</html>

If you run this example, you’ll see a dialog displaying the number of milliseconds
it took between your timer variable getting initialized, your for loop running to
completion, and the timer variable getting invoked as a function (see Figure 9.6).

FIGURE 9.6

The timer variable invoked as a functionr

104 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Explained in a different way, we have a stopwatch that we invoke, we begin some
long-running operation, and then we invoke the stopwatch again to see how long
the long-running operation took.

Now that we can see our little stopwatch example working, let’s go back to the
stopWatch function and see what exactly is going on. As mentioned earlier, a lot
of what we see is similar to the youSayGoodBye/andISayHello example. There is
a twist that makes this example different, and the important part to note is what
happens when the getDelay function is returned to the timer variable.

Figure 9.7 is an incomplete visualization of what this looks like.

FIGURE 9.7

The stopWatch outer function is no longer active, and the timer variable is bound to the r
getDelay function.y

The stopWatch outer function is no longer in play, and the timer variable is
bound to the getDelay function. Now, here is the twist. The getDelay function
relies on the startTime variable that lives in the context of the outer stopWatch
function:

function stopWatch() {

let startTime = Date.now();

function getDelay() {

let elapsedTime = Date.now() - startTime;

alert(elapsedTime);

 }

return getDelay;

}

CHAPTER 9 CLOSURES 105

When the outer stopWatch function goes away when getDelay is returned to
the timer variable, what happens in the following line?

function getDelay() {

let elapsedTime = Date.now() - startTime;

alert(elapsedTime);

}

In this context, it would make sense if the startTime variable is actually unde-
fined, right? But the example totally worked, so something else is going on here.
That something else is the shy and mysterious closure. Here is a look at what hap-
pens to make our startTime variable actually store a value and not be undefined.

The JavaScript runtime that keeps track of all your variables, memory usage, refer-rr
ences, and so on is really clever. In this example, it detects that the inner function
(getDelay) is relying on variables from the outer function (stopWatch). When that
happens, the runtime ensures that any variables in the outer function that are needed
are still available to the inner function, even if the outer function goes away.

To help you visualize this properly, Figure 9.8 shows what the timer variable looks
like.

FIGURE 9.8

The timer variabler

It is still referring to the getDelay function, but the getDelay function also has
access to the startTime variable that existed in the outer stopWatch function.
This inner function, because it enclosed relevant variables from the outer function
into its bubble (aka scope), is known as a closure (see Figure 9.9).

106 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 9.9

A closure defined diagrammatically

To define the closure more formally, we could say that it is a newly created func-
tion that also contains its variable context (see Figure 9.10).

FIGURE 9.10

A more formal definition of a closure

To review this one more time using our existing example, the startTime variable
gets the value of Date.now the moment the timer variable gets initialized and
the stopWatch function runs. When the stopWatch function returns the inner
getDelay function, the stopWatch function goes away. What doesn’t go away
are any shared variables inside stopWatch that the inner function relies on. Those
shared variables are not destroyed. Instead, they are enclosed by the inner func-
tion (aka the closure).

CHAPTER 9 CLOSURES 107

THE ABSOLUTE MINIMUM
By looking at closures through examples first, you really missed out on a lot of boring
definitions, theories, and hand waving. In all seriousness, closures are very common
in JavaScript. You will encounter them in many subtle and not-so-subtle ways.

If there is only one thing you take out of all of this, remember the following: The
most important thing closures do is allow functions to keep on working even if their
environment drastically changes or disappears. Any variables that were in scope
when the function was created are enclosed and protected to ensure the function
still works. This behavior is essential for a very dynamic language like JavaScript,
where you often create, modify, and destroy things on the fly. Happy days!

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

10
I N T H I S C H A P T E R
• Learn about the various places your code can live

• Understand the pros and cons of the various
approaches

WHERE SHOULD YOUR
CODE LIVE?
Let’s take a break from our regularly scheduled…programming (ha!). So far,

all of the code we have written has been contained fully inside an HTML

document:

110 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

<!DOCTYPE html>

<html>

<head>

 <meta charset="utf-8">

 <title>An Interesting Title Goes Here</title>

 <style>

body {

 background-color: #EEE;

 }

h1 {

 font-family: sans-serif;

 font-size: 36px;

 }

p {

 font-family: sans-serif;

 }

 </style>

</head>

<body>

 <h1>Are you ready for this?</h1>

 <p>Are you ready for seeing (or already having seen!)
 the most amazing dialog ever?</p>

 <script>

alert("hello, world!");

 </script>

</body>

</html>

CHAPTER 10 WHERE SHOULD YOUR CODE LIVE? 111

We are going to take a step back and revisit whether having this arrangement
between HTML, CSS, and JS in the same document/file makes sense for all
situations. To simplify how we talk about our document structure, let’s replace the
code view with a more, let’s say, artistic view, involving some really nicely designed
boxes (see Figure 10.1).

FIGURE 10.1

Our representation of a web page

In this world, the only thing that protects our HTML document from JavaScript is
just a couple of <script> tags. Now, our JavaScript does not have to live inside
our HTML document. We have another way we can use that involves a separate
file where all our JavaScript will instead live (see Figure 10.2).

112 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 10.2

Our JS now lives in its own separate file!

In this approach, we don’t have any real JavaScript that lives inside our HTML
document. We still have our <script> tag, but this tag simply points to the
JavaScript file instead of containing line after line of actual JavaScript code.

The thing to note is that these approaches are not mutually exclusive. We can mix
both approaches into an HTML document and have a hybrid approach, where we
have an external JavaScript file as well as lines of JavaScript code fully contained
inside our HTML document (see Figure 10.3).

To make things more interesting, we also have variations on the two approaches,
such as having multiple <script> sections in an HTML document, having
multiple JS files, and so on. In the following sections, we’ll look at both of these
approaches in greater detail and discuss when you would choose to use one
approach over the other.

By the end of all this, you will have a good understanding of the pros and cons of
each approach so that you can do the right thing with the JavaScript in your web
pages and applications.

Onward!

CHAPTER 10 WHERE SHOULD YOUR CODE LIVE? 113

FIGURE 10.3

A mixed approach where our JS content lives in several different places

Approach #1: All the Code Lives in Your
HTML Document

The first approach we will look at is the one we’ve been using so far. This is the
approach where all of our JavaScript lives inside a <script> tag alongside the
rest of our HTML document:

<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <script>

function showDistance(speed, time) {

alert(speed * time);

 }

 showDistance(10, 5);

114 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 showDistance(85, 1.5);

 showDistance(12, 9);

 showDistance(42, 21);

 </script>

</body>

</html>

When our browser loads the page, it goes through and parses every line of HTML
from top to bottom. When it hits the <script> tag, it will go ahead and execute
all the lines of JavaScript as well. Once it has finished executing our code, it
will continue to parse the rest of our document. This means the location of the
<script> tag in our page is important. We will discuss that later when looking at
Chapter 40, “Page Load Events and Other Stuff.”

Approach #2: The Code Lives in a Separate File
The second approach is one where our main HTML document doesn’t contain
any JavaScript content. Instead, all of our JavaScript lives in a separate document.
There are two parts to this approach. The first part deals with the JavaScript file.
The second part deals with referencing this JavaScript file in the HTML. Let’s look
at both of these parts in greater detail.

The JavaScript File
The key to making this approach work is the separate file that contains our
JavaScript code. It doesn’t matter what we name this file, but its extension is
typically .js. For example, my JavaScript file is called example.js.

Inside this file, the only thing we will have is JavaScript:

function showDistance(speed, time) {

alert(speed * time);

}

showDistance(10, 5);

showDistance(85, 1.5);

showDistance(12, 9);

showDistance(42, 21);

CHAPTER 10 WHERE SHOULD YOUR CODE LIVE? 115

Everything we would normally put inside a <script> tag in the HTML will go here.
Nothing else will go into this file. Putting anything else, such as arbitrary pieces of
HTML and CSS, isn’t allowed, and our browser will complain.

Referencing the JavaScript File
Once we have our JavaScript file created, the second (and final) step is to refer-rr
ence it in the HTML page. This is handled by our <script> tag. More specifically,
it is handled by our <script> tag’s src attribute, which points to the location of
our JavaScript file:

<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <script src="example.js"></script>

</body>

</html>

116 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In this example, if our JavaScript file is located in the same directory as our HTML,
we can use a relative path and just reference the filename directly. If our JavaScript
file lives in another folder, we would alter our path accordingly:

<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <script src="some/other/folder/example.js"></script>

</body>

</html>

In this case, our script file is nested inside three folders with the names some,
other, and folder. We can completely avoid relative paths and use an absolute
path as well:

<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <script src="https://www.kirupa.com/js/example.js"></script>

</body>

</html>

Either a relative path or absolute path will work just fine. For situations where the
path between our HTML page and the script we are referencing will vary (such as
inside a template, a server-side include, a third-party library, and so on), we’ll be
safer using an absolute path.

CHAPTER 10 WHERE SHOULD YOUR CODE LIVE? 117

SCRIPTS, PARSING, ANPP D LOCATION IN THE DOCUMENT
A few sections earlier, I briefly described how scripts get executed. Your browser
parses your HTML page starting at the top and then moves down line by line. When
a <script> tag gets hit, your browser starts executing the code that is contained
inside the tag. This execution is also done line by line, starting at the top. Everything
else that your page might be doing takes a backseat while the execution is going
on. If the <script> tag references an external JavaScript file, your browser first
downloads the external file before starting to execute its contents.

This behavior, where your browser linearly parses your document, has some inter-rr
esting side effects that affect where in your document you want to place your
<script> tags. Technically, your <script> tags can live anywhere in your HTML
document. There is a preferred place you should specify your scripts, though.
Because of how your browser parses the page and blocks everything while your
scripts are executing, you want to place your <script> tags toward the bot-
tom of your HTML document after all your HTML elements.

If your <script> tag is toward the top of your document, your browser will block
everything else while the script is running. This could result in users seeing a par-rr
tially loaded and unresponsive HTML page if you are downloading a large script
file or executing a script that is taking a long time to complete. Unless you really
have a good need to force your JavaScript to run before your full document is
parsed, ensure your <script> tags appear toward the end of your document, as
shown in almost all the earlier examples. There is one other advantage to placing
your scripts at the bottom of your page, but I will explain that much later when
talking about the Document Object Model (DOM) and what happens during a
page load.

118 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

So, Which Approach to Use?
We have two main approaches around where our code should live
(see Figure 10.4).

FIGURE 10.4

The two main approaches we have for dealing with our JS content

The approach you end up choosing depends on your answer to the follow-
ing question: Is the identical code going to be used across multiple HTML
documents?

Yes, My Code Will Be Used on Multiple Documents!
If the answer is yes, you probably want to put the code in an external file and then
reference it across all the HTML pages you want it executing in. The first reason
you want to do this is to avoid having code repeated across multiple pages (see
Figure 10.5).

CHAPTER 10 WHERE SHOULD YOUR CODE LIVE? 119

FIGURE 10.5

Having duplicated code is a problem!

Duplicate code makes maintenance a nightmare, where a change to your script
will require you updating every single HTML document with the exact change.
If you are employing some sort of templating or server-side-includes (SSI) logic,
where there is only one HTML fragment containing your script, then maintenance
is less of an issue.

The second reason has to do with file size. When you have your script duplicated
across many HTML pages, each time a user loads one of those HTML pages, they
are downloading your script all over again. This is less of a problem for smaller
scripts, but once you have more than a few hundred lines of code, the size starts
adding up.

When you factor all your code into a single file, you don’t have the issues I just
outlined (see Figure 10.6).

120 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 10.6

All your code in one place

Your code is easily maintainable because you update your code inside the one file
only. Any HTML document that references this JavaScript file automatically gets
the most recent version when it loads. By having all your code in one file, your
browser will download the code only once and deliver the cached version of the
file on subsequent accesses.

No, My Code Is Used Only Once on a Single HTML Document!
If you answered no to the earlier question around whether your code is going to
be used across multiple HTML documents, you can do whatever you want. You
can still choose to put your code into a separate file and reference it in your HTML
document, but the benefits of doing that are less than what you saw earlier with
the example involving many documents.

Placing your code entirely inside your HTML document is also fine for this situa-
tion. Most of the examples you will see in this book have all the code within the
HTML document itself. Our examples aren’t really going to be used across mul-
tiple pages, and they aren’t going to be so large where readability is improved by
putting all the code in a separate location.

CHAPTER 10 WHERE SHOULD YOUR CODE LIVE? 121

THE ABSOLUTE MINIMUM
As you can see, even something as seemingly simple as determining where your
code should live ends up taking many pages of explanation and discussion.
Welcome to the world of HTML and JavaScript, where nothing is really black and
white. Anyway, getting back to the point of this article, a typical HTML document
will contain many script files loaded from an external location. Some of those files
will be your own; some, however, will be created by a third party and included into
your document.

Also, do you remember the hybrid approach, where your HTML document
contains both a reference to a separate JavaScript file as well as actual code within
the document? Well, that approach is pretty common as well. Ultimately, the
approach you end up using is entirely up to you. Hopefully, this chapter gave you
a taste of the information needed to make the right choice. In Chapter 40 we take
a deeper look at what you saw here by looking at page loading–related events
and certain special attributes that complicate things. However, don’t worry about
them for now.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

11
I N T H I S C H A P T E R
• Learn how to go beyond alerts for displaying results

• Understand how the console works

• Learn the variety of logging solutions you have at
your fingertips

CONSOLE LOGGING
BASICS
When we are writing code, we will often find ourselves in one of two situa-

tions. One situation is where we wonder if the code we just wrote is going

to run at all. In the other situation, we know our code runs, but it isn’t run-

ning correctly. There is something wrong…somewhere.

124 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In both of these situations, what we need is some extra visibility into what our
code is doing. A timeless approach for bringing this visibility involves the alert
function:

let myButton = document.querySelector("#myButton");

myButton.addEventListener("click", doSomething, false);

function doSomething(e) {

alert("Is this working?");

}

Using the alert function isn’t bad. It works fine for simple situations, but as our
code starts to do more, relying on this function doesn’t work as well. For starters,
we’ll probably go insane from dismissing the large number of dialogs that keep
popping up while our code is running! We’ll also want an easy way to persist the
messages we are seeing. The fleeting nature of our alert dialogs makes any sort
of long-term logging like that difficult.

In this chapter, we’re going to look at one of the greatest inventions of all time
that makes it easy to help us figure out what our code is doing. We are going to
be learning about something known as the console.

Meet the Console
Even if you think you write the most perfect JavaScript, you’ll be spending a fair
amount of time in what is known as the console. If you’ve never used the console
before, it is part of our browser’s developer tools, where all sorts of text and stuff
gets printed for us to see and (occasionally) interact with.

The console will look a little bit like what is shown in Figure 11.1.

CHAPTER 11 CONSOLE LOGGING BASICS 125

FIGURE 11.1

Meet the console.

At a very high level, the console helps with a bunch of things:

• We can read messages we have told our code to log and display.

• We can modify our application state by setting (or overwriting) variables and
values.

• We can inspect the value of any DOM element, applied style, or code that is
accessible and in scope.

• We can use it as a virtual code editor and write/execute some code, just for
kicks.

In this chapter, we won’t focus on all the things our console is capable of doing.
Instead, we’re just going to take it easy and gradually get comfortable with using
the console to just display messages. We will cover all the crazy console-related
things eventually, so don’t worry.

126 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Displaying the Console
The first thing we are going to do is get our console up and running. The console
is a part of our browser’s developer tools. The way we bring up the developer
tools is by fiddling with our browser’s menus or by using the handy keyboard
shortcuts. From inside the browser, press Ctrl+Shift+I in Windows or command+
option+I on a Mac to bring up the developer tools.

Depending on your browser and platform, each of your developer tools will look
a little different. The important thing is to find the Console tab and make sure the
console gets displayed.

When we bring up the console in Chrome, we’ll see something like what’s shown
in Figure 11.2.

FIGURE 11.2

The Chrome console

I’ll be using screenshots from Chrome when discussing the console. The thing
I want to highlight is that it doesn’t matter which browser you use. The console
looks and functions pretty much the same on all browsers. Just bring up the con-
sole in your favorite browser and get ready to use it in the following sections.

CHAPTER 11 CONSOLE LOGGING BASICS 127

If You Want to Follow Along
Now, you can just read the following sections and learn a whole bunch of console-
related things without lifting a finger. If that is what you would like to do, then skip
all of this and jump to the next section.

On the other hand, if you want to get your hands a bit dirty and see some of the
console shenanigans for yourself on your screen, create a new HTML document
and add the following HTML, CSS, and JavaScript into it:

<!DOCTYPE html>

<html>

<head>

 <title>Console Stuff</title>

 <style>

 #container {

 padding: 50px;

 }

 #myButton {

 font-family: sans-serif;

 font-size: 24px;

 font-weight: lighter;

 background-color: #FFF;

 border: 3px #333 solid;

 padding: 15px;

 }

 #myButton:hover {

 background-color: aliceblue;

 }

 </style>

</head>

<body>

 <div id="container">

 <button id="myButton">click me</button>

128 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 </div>

 <script>

let myButton = document.querySelector("#myButton");

myButton.addEventListener("click", doSomething, false);

function doSomething(e) {

alert("Is this working?");

 }

 </script>

</body>

</html>

What we have here is a really simple HTML page with a button that you can click.
When you click the button, an alert dialog (the same one we described earlier) will
appear. In the following sections, we’ll modify this example to help bring some of
the console-related things to life!

Console Logging 101
The first thing we are going to do is tell our console to display things onscreen.
This is no different from what we did with the alert statement earlier, and it is
almost just as easy. The key to all this is the Console API, which contains a bunch
of properties and methods that allow us to display things to our console in a
variety of ways. The first and probably most popular of these properties and
methods is the log method.

Meet the log Method
At its most basic level, the log method is used as follows:

console.log("Look, ma! I'm logging stuff.")

CHAPTER 11 CONSOLE LOGGING BASICS 129

We call it via the console object and pass in the text we want to display. To see
this in action, we can replace the alert from our example with the following:

function doSomething(e) {

console.log("Is this working?");

}

When you run this code, take a look at your console after clicking the click me
button. If everything worked out properly, you will see the text “Is this working?”
displayed, as shown in Figure 11.3.

FIGURE 11.3

The click me button and some text displayed!

If you keep clicking the button, you’ll see more instances of “Is this working?”
getting logged, as shown in Figure 11.4.

130 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 11.4

Each button click will end up getting represented in our console.

The specifics of how all this looks will depend on the developer tools you are
using. You will probably just see a counter to the left of your initial message
getting incremented, as shown in the screenshot. You may see the text “Is this
working?” being duplicated on each line as well. Don’t be alarmed if what you see
doesn’t exactly match what you see in my screenshots. The important detail is that
your call to console.log works and is logging messages for you to see in the
console. Also, these messages aren’t read-only. You can select them. You can copy
them. You can even print them and frame them on the wall behind you.

Going Beyond Predefined Text
Now that we’ve covered the basics, let’s go a bit deeper. When using the console,
we aren’t limited to only printing some predefined text. For example, a common
thing we might do is print the value of something that exists only by evaluating an
expression or accessing a value. To see what I mean by this, make the following
change to the doSomething function:

function doSomething(e) {

console.log("We clicked on: " + e.target.id);

}

CHAPTER 11 CONSOLE LOGGING BASICS 131

What we are doing here is telling our console to display the text “We clicked
on” in addition to the id value of the element we clicked. If you preview these
changes in your browser, click the click me button again and check out what is
shown in the console (see Figure 11.5).

FIGURE 11.5

The id of the button you clicked is displayed!d

The id value of the button you clicked is displayed in addition to the predefined
text. Now, getting the id value of an element is probably not the most exciting
thing you might want to print, but you can print pretty much anything that would
look good when represented as text. That’s powerful!

Displaying Warnings and Errors
It is time to look beyond the log method! Our console object provides us with
the warn and error methods, which allow us to display messages formatted as
warnings and errors, respectively, as shown in Figure 11.6.

132 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 11.6

The way we use these two methods is no different from how we used the log
method. Just pass in whatever you want to display. You can see an example of
how to use these methods in the following snippet:

let counter = 0;

function doSomething(e) {

 counter++;

console.log("Button clicked " + counter + " times!");

if (counter == 3) {

showMore();

 }

}

function showMore() {

CHAPTER 11 CONSOLE LOGGING BASICS 133

console.warn("This is a warning!");

console.error("This is an error!");

}

When this code runs and our button is clicked three times, the showMore function
gets called. Inside that function, all we have is our console warning and error:

function showMore() {

console.warn("This is a warning!");

console.error("This is an error!");

}

Now, there is something cool about warnings and errors that goes beyond just
their appearance compared to their more boring log counterparts. You can
expand them in the console and see the full stack trace of all the functions our
code took before hitting them, as shown in Figure 11.7.

FIGURE 11.7

Seeing more details for our errors!

134 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

For large pieces of code with a lot of branching, this is really useful. The warn and
error methods provide an excellent way for us to better understand the twisted
paths our code took into getting into whatever state it ended up in!

NOTE There Are More Console Methods
The warn and error methods are just two of the many methods
the console provides for displaying our data in a specially
formatted way.

THE ABSOLUTE MINIMUM
The console provides us with one of the best tools we have for understanding
what our code is doing. Displaying messages is only one part of what the
console allows us to do. Within our narrow focus of just displaying messages,
there is a whole lot more that we can cover beyond what we’ve seen so far.
We’ll cover more things the console does later in the book, but the few console
techniques we’ve seen here will take you and me far in helping us find and squash
bugs in our code.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

12
I N T H I S C H A P T E R
• Understand what all this fuss about objects is about

• Learn about the basic types you’ll run into in
JavaScript

• Find out that pizza has an educational value beyond
just being deliciously awesome

OF PIZZA, TYPES,
PRIMITIVES, AND OBJECTS
It’s time to get serious. Srsly! In the past few chapters, we’ve been working

with all kinds of values. We’ve worked with strings (text), numbers, bool-

eans (aka true and false), functions, and various other built-in things that

are part of the JavaScript language.

136 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Following are some examples to jog your memory:

let someText = "hello, world!";

let count = 50;

let isActive = true;

Unlike other languages, JavaScript makes it really easy to specify and use these
built-in things. We don’t even have to think about or plan ahead to use any of
them. Despite how simple using these different kinds of built-in things is, there is
a lot of detail hidden from us. Knowing this detail is important because it will not
only help us more easily make sense of our code, it may even help us to more
quickly pinpoint what is going wrong when things aren’t working the way they
should.

Now, as you can probably guess, built-in-things isn’t the proper way to describe s
the variety of values you can use in JavaScript. There is a more formal name for
the variety of values you can use in your code, and that name is types. In this
chapter, you are going to get a gentle introduction to what types are.

Let’s First Talk About Pizza
No, I haven’t completely lost it. Since I am always eating something (or thinking
about eating something), I am going to try to explain the mysterious world of
types by first explaining the much simpler world of pizza.

In case you haven’t had pizza in a while, Figure 12.1 shows you what a typical
pizza looks like.

CHAPTER 12 OF PIZZA, TYPES, PRIMITIVES, AND OBJECTS

FIGURE 12.1

An example of an amazing two-dimensional pizza!

A pizza doesn’t just magically appear looking like this. It is made up of other ingre-
dients—some simple and some not so simple.

138 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The simple ingredients are easy to spot. These would be your mushrooms and
jalapenos. The reason these ingredients are considered simple is because you
can’t break them apart any further.

They aren’t prepared. They aren’t made up of other simple ingredients. Just like
The Dude, they abide.

CHAPTER 12 OF PIZZA, TYPES, PRIMITIVES, AND OBJECTS

The not-so-simple, complex ingredients would be your cheese, sauce, crust, and
pepperoni. These are more complex for all the reasons the simple ones are, um,
simple. These complex ingredients are made up of other ingredients.

Unfortunately for all of us, there is no one simple ingredient called cheese or pep-
peroni out there. We need to combine, prepare, and add more ingredients to
make up some of the complex ingredients we see here. There is a subtle wrinkle
to point out about complex ingredients. Their composition isn’t limited to just
simple ingredients. Complex ingredients can themselves be made up of other
complex ingredients. How scandalous!

From Pizza to JavaScript!
While this may be hard to believe, everything we learned about pizzas in the pre-
vious section was there for a purpose. The description of the simple and complex
ingredients very neatly applies to types in JavaScript. Each individual ingredient
could be considered a counterpart to a type that you can use (see Figure 12.2).

140 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 12.2

A list of the simple types in JavaScript

Just like the cheese, sauce, pepperoni, mushrooms, and jalapenos in our version
of a pizza, the types in JavaScript are string, number, boolean, null, unde-
fined, bigint, symbol, and Object. Some of these types may be very familiar
to us already, and some of them may not be. While we will look at all these types
in much greater detail in future chapters, Table 12.1 provides a very brief summary
of what they do.

TABLE 12.1 Types

Type What It Does

string The basic structure for working with text.

number As you can guess, it allows you to work with numbers.

boolean Comes alive when you are using true and false.

null Represents the digital equivalent of nothing…or moo.

undefined While sort of similar to null, this is returned when a value should exist but
doesn’t—like when you declare a variable but don’t assign anything to it.

bigint Allows you to work with really large or really small numbers that go beyond
what a typical “number” might support.

symbol Something unique and immutable (can’t be changed) that you can optionally
use as an identifier for Object properties.

Object Acts a shell for other types, including other objects.

CHAPTER 12 OF PIZZA, TYPES, PRIMITIVES, AND OBJECTS

Now, although each of the types is pretty unique in what it does, they can all be
put into one of two groupings. Just like with our pizza’s simple and complex ingre-
dients, our types can be simple or complex as well. Except, in JavaScript terminol-
ogy involving types, simple and complex are more formally known as primitive
and object, respectively. Another way of saying this is that our types in JavaScript
are either known as primitive types (or just primitives) and object types (or just
objects).

Our primitive types are string, number, boolean, null, bigint, symbol, and
undefined. Any values that fall under their umbrella can’t be divided any further.
They are the jalapenos and mushrooms of the JavaScript world. Primitives are
pretty easy too. There is no depth to them, and we pretty much get what we see
when we encounter one.

Our object types, represented by Object in Table 12.1, are a bit more mysterious,
so the last thing we want to cover before unleashing the details about all these
types is what objects in JavaScript actually are.

What Are Objects?
The concept of objects in a programming language like JavaScript maps nicely to
its real-world equivalents. In the real world, we are literally surrounded by objects.
Your computer is an object. A book on a shelf is an object. A potato is (argu-
ably) an object. Your alarm clock is an object. A poster you got on eBay is also an
object. I could go on forever, but (for everyone’s sake) I’m going to stop here.

Some objects, such as a paperweight, don’t do much.

They just sit there. Other objects, like a television, go above and beyond the call
of mere existence and do a lot of things.

A typical television takes input. It allows you to turn it on or off, change the chan-
nel, adjust the volume, and do all sorts of television-y things.

142 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The thing to realize is that objects come in different shapes, sizes, and useful-
ness. Despite the variations, objects are all the same at a high level. They are an
abstraction. They provide an easy way for you to use them without having to
worry about what goes on under the covers. Even the simplest of objects hide a
certain level of complexity that you and I don’t have to worry about.

For example, it doesn’t matter what goes on inside a TV, how the wires are con-
nected, or what type of glue is used to hold everything together. Those are unnec-
essary details. All that we care about is that the TV does what it is told. When we
want it to change the channel, the channel should change. When we adjust the
volume, the volume should adjust. Everything else is just noise.

Basically, think of an object as a black box. There are some predefined/docu-
mented things it does. How it does them is something we can’t easily see. How
it does its magic is also something we don’t really care about, as long as it works.
We’ll change that notion later when we learn to actually create the insides of an
object, but let’s relish this simple and happy world for now.

The Predefined Objects Roaming Around in
JavaScript

Besides the built-in types we saw earlier, we also have a handful of predefined
objects in JavaScript that we can use out of the box. These objects allow us to
work with everything from collections of data to dates to even text and numbers.
Table 12.2 lists these objects and what they do.

CHAPTER 12 OF PIZZA, TYPES, PRIMITIVES, AND OBJECTS

TABLE 12.2 Objects

Type What It Does

Array Helps store, retrieve, and manipulate a collection of data.

Boolean Acts as a wrapper around the boolean primitive; still very much in love with
true and false.

Date Allows you to more easily represent and work with dates.

Function Allows you to invoke some code, among other esoteric things.

Math The nerdy one in the group. It helps you better work with numbers.

Number Acts as a wrapper around the number primitive.

RegExp Provides a lot of functionality for matching patterns in text.

String Acts as a wrapper around the string primitive.

The way we use these built-in objects is a little bit different from how we use prim-
itives. Each object has its own quirk about how we can use it as well. Explaining
each object and how it is meant to be used is something I will save for later, but
here is a very short snippet of commented code to show you what is possible:

// an array

let names = ["Jerry", "Elaine", "George", "Kramer"];

let alsoNames = new Array("Dennis", "Frank", "Dee", "Mac");

// a round number

let roundNumber = Math.round("3.14");

// today's date

let today = new Date();

// a boolean object

let booleanObject = new Boolean(true);

// infinity

let unquantifiablyBigNumber = Number.POSITIVE_INFINITY;

// a string object

let hello = new String("Hello!");

144 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

One thing you may find puzzling is the existence of the object form of the string,
boolean, symbol, bigint, and number primitives. On the surface, the object form
and primitive form of these types look very similar. Here is an example:

let movie = "Pulp Fiction";

let movieObj = new String("Pulp Fiction");

console.log(movie);

console.log(movieObj);

What you see printed will be identical. Below the surface, though, both movie
and movieObj are very different. One is literally a primitive of type string, and
the other is of type Object. This leads to some interesting (and possibly incom-
prehensible) behavior that I will gradually touch upon as we explore the handful of
built-in types we’ve seen so far.

THE ABSOLUTE MINIMUM
If this feels like a movie or TV series that abruptly ended just as things were get-
ting interesting, I don’t blame you for thinking that way. Also, what’s up with
single seasons of TV shows pausing in the middle and continuing a “Part 2” a few
months later? Anyway, I digress. The main takeaway is that our primitives make up
the most basic types we can use in our code. Our objects are a bit more complex
and are made up of other primitives or objects. We’ll see more of that in upcom-
ing chapters when we dive deeper. Beyond that, we learned the names for the
common built-in types and some basic background material about them.

In subsequent chapters, we are going to get a deeper look at all these types and
the nuances of working with them. Think of this chapter as the gentle on-ramp
that suddenly drops you and me onto the rails of a crazy rollercoaster.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

13
ARRAYS
Let’s imagine you are jotting down a list on a piece of paper. Let’s call

the piece of paper groceries. Now, on the paper, you write a numbered

list starting with zero with all the items that belong there, as shown in

Figure 13.1.

I N T H I S C H A P T E R
• Use arrays to handle lists of data

• Learn how to perform common tasks using the
various array properties

146 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 13.1

A list of items that resembles a grocery list

By simply creating a list of things, what you have right now is a real-world example
of an array! The piece of paper, called groceries, would be your array. The items
that you need to purchase are known as the array values.

In this chapter, you will learn all about what I like to go grocery shopping for. You may
indirectly get an introduction to the very common built-in type, the array, as well.

Creating an Array
The popular way all the cool kids create arrays these days is to use opening and
closing brackets. Here is our groceries variable that is initialized to an empty
array:

let groceries = [];

CHAPTER 13 ARRAYS 147

We have our variable name on the left, and we have a pair of brackets on the right
that initializes this variable as an empty array. This bracket-y approach for creating
an array is better known as the array literal notation.

Now, we will commonly want to create an array with some items inside it from the
very beginning. To create these non-empty arrays, we place the items we want
inside the brackets and separate them by commas, like so:

let groceries = ["Milk", "Eggs", "Frosted Flakes", "Salami",
"Juice"];

Notice that our groceries array now contains Milk, Eggs, Frosted Flakes,
Salami, and Juice. At this point, I need to emphasize how important the com-
mas are. Without the commas, we’ll just have one giant item instead of a series of
individual items. All right, now that we’ve learned how to declare an array, let’s go
deeper and look at how we can actually use it to store and work with data.

Accessing Array Values
One of the nice things about an array is that we not only have easy access to it,
but we also have easy access to each of the array values, similar to highlighting an
item in our grocery list (see Figure 13.2).

FIGURE 13.2

Arrays enable you to access individual items selectively.

148 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The only thing we need to know is what the procedure is for accessing an indi-
vidual item.

Inside an array, each item is assigned a number, starting with zero. In Figure 13.2,
Milk is given the value 0, k Eggs the value 1, Frosted Flakes the value 2, and so on.
The formal term for these numbers is the index value.

Let’s say that our groceries array is declared as follows:

let groceries = ["Milk", "Eggs", "Frosted Flakes", "Salami",
"Juice"];

If we wanted to access an item from the array, all we need to do is pass in the
index value of the item we are interested in:

groceries[1]

The index value is passed into our array using square brackets. In this example,
we are referring to the Eggs value because the index position 1 refers to it. If we
passed in a 2, we would return Frosted Flakes. We can keep passing in index val-
ues until we have no more values left.

The range of numbers we can use as our index values is one less than our array’s
length. The reason is that, as shown in the figures earlier, our index values start
at zero. If our array only has five items, trying to display groceries[6] or
groceries[5] will result in a message of undefined.

Let’s go one step further. In most real-world scenarios, we will want to go through
our array programmatically, as opposed to accessing each item individually.

We can take what I explained in the previous paragraph and use a for loop to
accomplish this:

for (let i = 0; i < groceries.length; i++) {

let item = groceries[i];

}

Notice the range of our loop starts at zero and ends just one before our array’s full
length (as returned by the length property). This works because, like I mentioned
earlier, our array index values go from zero to one short of the value returned for
the array’s length. And, yes, the length property returns a count of all the items
in our array!

CHAPTER 13 ARRAYS 149

Adding Items
Rarely will we leave our array in the state we initialized it in originally. We will want
to add items to it. To add items to our array, we will use the push method:

groceries.push("Cookies");

The push method is called directly on our array, and we pass in the data we want
to add to it. When we use the push method, our newly added data will always
find itself at the end of the array.

For example, after running the code on our initial array, we will see Cookies
added to the end of our groceries array (see Figure 13.3).

FIGURE 13.3

Our array is now larger with the addition of Cookies at the end.s

If we want to add data to the beginning of our array, we use the unshift method:

groceries.unshift("Bananas");

150 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

When data is added to the beginning of our array, the index value for all of the
existing items increases to account for the newly inserted data (see Figure 13.4).

FIGURE 13.4

Our newly added item is inserted at the beginning.

The reason is that the first item in our array will always have an index value of 0.
This means that the space originally occupied by the item currently at 0 needs to
push itself and everything below it out to make room for the new data.

Both the push and unshift methods, besides adding the elements to the array
when we use them, return the new length of the array as well:

console.log(groceries.push("Cookies")); // returns 6

Not sure why that is useful, but keep it under your hat in case you do need it.
If you have a good use case for this, definitely let me know by posting on the
forums at https://forum.kirupa.com!

https://forum.kirupa.com

CHAPTER 13 ARRAYS 151

Removing Items
To remove an item from the array, we can use the pop and shift methods. The
pop method removes the last item from the array and returns it:

let lastItem = groceries.pop();

The shift method does the same thing on the opposite end of the array. Instead
of the last item being removed and returned, the shift method removes and
returns the first item from the array:

let firstItem = groceries.shift();

When an item is removed from the beginning of the array, the index positions of
all remaining elements are decremented by one to fill in the gap (see Figure 13.5).

FIGURE 13.5

What happens when an item is removed from our array

152 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

One thing to note: When we are adding items to our array using unshift or
push, the returned value from that method call is the new length of our array. That
is not what happens when we call the pop and shift methods, though! When we
are removing items using shift and pop, the value returned by the method call
is the removed item itself!

Finding Items
To find items inside our array, you have a handful of built-in methods: indexOf,
lastIndexOf, includes, find, findIndex, and filter. For the sake of simplic-
ity, we will focus on indexOf and lastIndexOf for now. These two methods work
by scanning our array and returning the index position of the matching element.

The indexOf method returns the first occurrence of the item you are searching for:

let groceries =["Milk", "Eggs", "Frosted Flakes", "Salami",

 "Juice"];

let resultIndex = groceries.indexOf("Eggs",0);

console.log(resultIndex); // 1

Notice that the resultIndex variable stores the result of calling indexOf on
our groceries array. To use indexOf, we pass in the element we are looking for
along with the index position to start from:

groceries.indexOf("Eggs", 0);

The value returned by indexOf in this case will be 1.

The lastIndexOf method is similar to indexOf in how we use it, but it differs a bit
on what it returns when an element is found. Whereas indexOf finds the first occur-rr
rence of the element we are searching for, lastIndexOf finds the last occurrence of
the element we are searching for and returns that element’s index position.

When we search for an element that does not exist in our array, both indexOf
and lastIndexOf return a value of −1.

Merging Arrays
The last thing we are going to do is look at how to create a new array that is made
up of two separate arrays. Let’s say we have two arrays called good and bad:

CHAPTER 13 ARRAYS 153

let good = ["Mario", "Luigi", "Kirby", "Yoshi"];

let bad = ["Bowser", "Koopa Troopa", "Goomba"];

To combine both of these arrays into one array, we use the concat method on
the array we want to make bigger and pass the array we want to merge into it as
the argument. What will get returned is a new array whose contents are made up
of both good and bad:

let goodAndBad = good.concat(bad);

console.log(goodAndBad);

In this example, because the concat method returns a new array, the
goodAndBad variable ends up becoming an array that stores the results of our
concatenation operation. The order of the elements inside goodAndBad is good
first and bad second.

Mapping, Filtering, and Reducing Arrays
So far, we looked at several ways to add items, remove items, and other basic
bookkeeping tasks. Some of the other things arrays bring to the table are really
simple ways for you to manipulate the data contained inside them. These simple
ways are brought to you via the map, filter, and reduce methods.

The Old School Way
Before we talk about map, filter, and reduce, and how they make access-
ing and manipulating data inside an array a breeze, let’s look at the non-breezy ’
approach first. This is an approach that typically involves a for loop, keeping track
of where in the array you are, and you shedding a certain amount of tears.

To see this in action, let’s say we have an array of names:

let names = ["marge", "homer", "bart", "lisa", "maggie"];

This aptly named names array contains a list of names that are currently lowercased.
What we want to do is capitalize the first letter in each word to make these names
look proper. Using the for loop approach, this can be accomplished as follows:

let names = ["marge", "homer", "bart", "lisa", "maggie"];

154 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

let newNames = [];

for (let i = 0; i < names.length; i++) {

let name = names[i];

let firstLetter = name.charAt(0).toUpperCase();

newNames.push(firstLetter + name.slice(1));

}

console.log(newNames);

Notice that we go through each item, capitalize the first letter, and add the prop-
erly capitalized name to a new array called newNames. There is nothing magical or
complicated going on here, but you’ll often find yourself taking the items in your
array, manipulating (or accessing) the items for some purpose, and returning a new
array with the manipulated data. It’s a common enough task with a lot of boiler-rr
plate code that you will keep replicating unnecessarily. In large codebases, making
sense of what is going on in a loop adds unnecessary overhead. That’s why map,
filter, and reduce were introduced. You get all the flexibility of using a for
loop without the unwanted side effects and extra code. Who wouldn’t want that?

Modifying Each Array Item with map
The first of the array methods we will look at for manipulating our array data is
map. We will use the map method to take all the items in our array and modify
them into something else that is an entirely new array (see Figure 13.6).

FIGURE 13.6

Our original array and new array!

CHAPTER 13 ARRAYS 155

How you use it looks like this:

let newArray = originalArray.map(someFunction);

This single line looks nice and friendly, but it hides a lot of complexity. Let’s
demystify it a bit. The way map works is as follows: You call it on the array that you
wish to affect (originalArray), and it takes a function (someFunction) as the
argument. This function will run on each item in the array—allowing you to write
code to modify each item as you wish. The end result is a new array whose con-
tents are the result of someFunction having run and potentially modified each
item in the original array. Sounds simple enough, right?

Using map, let’s revisit our earlier problem of taking the lowercased names from
the array and capitalizing them properly. We’ll look at the full code first and then
focus on the interesting details next. The full code is as follows:

let names = ["marge", "homer", "bart", "lisa", "maggie"];

function capitalizeItUp(item) {

let firstLetter = item.charAt(0).toUpperCase();

return firstLetter + item.slice(1);

}

let newNames = names.map(capitalizeItUp);

console.log(newNames);

Take a moment to see how this code works. The interesting part is the capi-
talizeItUp function that is passed in as the argument to the map method. This
function runs on each item, and notice that the array item you are currently on is
passed in to this function as an argument. You can reference the current item argu-
ment via whatever name you prefer. We are referencing this argument using the
boring name of item:

function capitalizeItUp(item) {

 let firstLetter = item.charAt(0).toUpperCase();

 return firstLetter + item.slice(1);

}

156 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Inside this function, we can write whatever code we want to manipulate the cur-rr
rent array item. The only thing we need to do is return the new array item value:

function capitalizeItUp(item) {

let firstLetter = item.charAt(0).toUpperCase();

return firstLetter + item.slice(1);

}

That’s all there is to it. After all this code runs, map returns a new array with all the
capitalized items in their correct locations. The original array is never modified, so
keep that in mind.

TIP Meet the Callback Functions
Our capitalizeItUp function is also known more generically by
another name. That name is callback function. A callback function
is a function that has two things done to it:

• It is passed in as an argument to another function.

• It is called from inside the other function.

You will see callback functions referenced all the time, such as
when we look at filter and reduce next. If this is the first time you
are hearing about them, you now have a better idea of what they
are. If you’ve heard of them before, then good for you!

Filtering Items

given criterion (see Figure 13.7).

FIGURE 13.7

We start with many items but end up with fewer items.

CHAPTER 13 ARRAYS 157

For example, let’s say we have an array of numbers:

let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];

Right now, our numbers array has both even numbers as well as odd numbers.
Let’s say we want to ignore all of the odd numbers and only look at the even ones.
The way we can do that is by using our array’s filter method and filtering out all
the odd numbers so only the even numbers remain.

The way we use the filter method is similar to what we did with map. It takes
one argument, a callback function, and this function will determine whether or not
each array item will be filtered out. This will make more sense when we look at
some code. Take a look at the following:

let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];

let evenNumbers = numbers.filter(function (item) {

 return (item % 2 == 0);

});

console.log(evenNumbers);

We create a new array called evenNumbers that will store the result of filter
running on our numbers array. The contents of this array will be the even numbers
only thanks to our callback function checking each item to see whether the result
of item % 2 is 0 (in other words, it is checking whether the remainder is 0 when
you divide by 2). If the callback function returns true, the item is carried over to
the filtered array. If the callback function returns false, the item is ignored.

One thing to note here is that our callback function isn’t an explicitly named func-
tion like our capitalizeItUp function from earlier. It is simply an anonymous
one, but it still gets the job done. You’ll see this anonymous form commonly
where a callback function needs to be specified, so become familiar with this style
of defining a function.

Getting One Value from an Array of Items
The last array method we will look at is reduce. This is a bizarre one. With both
map and filter, we went from one array with a starting set of values to another
array with a different set of values. With the reduce method, we will still start with
an array, but what we will end up with is a single value (see Figure 13.8).

158 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 13.8

From many to…one!

This is definitely one of those cases where we need an example to explain what is
going on.

Let’s reuse our numbers array from earlier:

let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12];

What we want to do is add up all the values here. This is the kind of thing the
reduce method was built for, where we reduce all the values in our array into a
single item. Take a look at the following code:

let total = numbers.reduce(function(total, current) {

 return total + current;

}, 0);

console.log(total);

We call reduce on our numbers array, and we pass it two arguments:

• The callback function

• Initial value

We start our summing at an initial value of 0, and our callback function is responsi-
ble for adding up each item in the array. Unlike earlier where our callback function
took only the current array item as its argument, the callback function for reduce
is slightly more involved. You need to deal with two arguments here:

• The first argument contains the total value of all the actions you’ve done so far.

• The second argument is the familiar current array item.

CHAPTER 13 ARRAYS 159

By using these two arguments, we can easily construct all sorts of scenarios involv-
ing keeping track of something. In our example, since all we want is the sum of all
items in the array, we are summing up the total with the value of current. The
end result will be 78.

More on the Callback Function Arguments
For our callback functions, we’ve only specified one argument representing the
current array item for map and filter. We specified two arguments representing
the total value as well as the current item for reduce. Our callback functions have
two optional arguments you can specify:

• The current index position of your current array item

• The array you are calling map, filter, or reduce on

For map and filter, these would be the second and third arguments you specify.
For reduce, it would be the third and fourth arguments. You may go your entire
life without ever having to specify these optional arguments, but if you ever run
into a situation where you need them, you now know where to find them.

We are almost done here. Let’s look at an example that shows the output of
reduce to be something besides a number. Take a look at the following:

let words = ["Where", "do", "you", "want", "to", "go", "today?"];

let phrase = words.reduce(function (total, current, index) {

if (index == 0) {

return current;

 } else {

return total + " " + current;

 }

}, "");

console.log(phrase);

In this example, we are combining the text-based content of our words array to cre-
ate a single value that ends up showing Where do you want to go today? Notice
what is going on in our callback function. Besides doing the work to combine each
item into a single word, we are specifying the optional third argument that represents
our current item’s index position. We use this index value to special case the first word
to deal with whether or not we insert a space character at the beginning.

160 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

A Short Foray into Functional Programming
As the last few sections have highlighted, the map, filter, and reduce methods
greatly simplify how we work with arrays. There is another HUGE thing that these
three methods scratch the surface of. That thing is something known as functional
programming. Functional programming is a way of writing our code where we use
functions that:

• Can work inside other functions

• Avoid sharing or changing state

• Return the same output for the same input

There are more nitpicky details that I could list here, but this is a good start. Any-
way, you can see how functional programming principles apply to the various
callback functions we’ve used so far. Our callback functions match these three
criteria perfectly because they are functions that can be dropped into or out of
any situation as long as the arguments still work. They definitely don’t modify any
state, and they work fully inside the map, filter, and reduce methods. Func-
tional programming is a fun topic that needs a lot more coverage than what we’ve
looked at in the last few sentences, so we’ll leave things be for now and cover it in
greater detail in future chapters.

THE ABSOLUTE MINIMUM
That is almost all there is to know about arrays…well, at least the things you will
use them for most frequently. At the very least, you will have learned how to use
them to create a grocery list!

Additional resources:

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

Deeper look at arrays: https://bit.ly/kirupaArrays

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata
https://bit.ly/kirupaArrays

14
STRINGS
I have a hunch that you are a human being. As a human, you probably

relate really well with words. You speak them. You write them. You also tend

to use a lot of them in the things you program. As it turns out, JavaScript

likes words a whole lot as well. The letters and funny looking symbols that

make up your (and my) language have a formal name. They are known

as strings. Strings in JavaScript are nothing more than a series of charac-

ters. Despite how boring that sounds, accessing and manipulating these

characters is a skill that we must be familiar with. That’s where this chapter

comes in.

I N T H I S C H A P T E R
• Understand how text is treated in JavaScript

• Learn how to perform common string operations

• Look at the various string properties

162 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Basics
When we work with strings in our code, we just need to make sure to enclose
them in single or double quotes. Here are some examples:

let text = "this is some text";

let moreText = 'I am in single quotes!';

console.log("this is some more text");

Besides just listing strings, we’ll often combine a couple of strings together. We
can easily do that by using the + operator:

let initial = "hello";

console.log(initial + " world!");

console.log("I can also " + "do this!");

In all these examples, we are able to see the string. The only reason I point out some-
thing this obvious is that, when we can see the contents of the string as literally as we do,
these strings are more appropriately known as string literals. That doesn’t change the
fact that the resulting structure is still a built-in primitive type called a string (you know…
a simple pizza ingredient from Chapter 12, “Of Pizza, Types, Primitives, and Objects”).

Figure 14.1 helps us to visualize what the text and moreText strings look like.

FIGURE 14.1

A visualization of strings

CHAPTER 14 STRINGS 163

We just have our two variables pointing to some literal chunks of text. There isn’t
anything else going on. If you are wondering why I wasted this space in visualizing
something so obvious, the visualizations will get more complex once we move into
Object territory. You’ll see hints of that in this chapter itself.

Anyway, all of this isn’t particularly important…yet. The only important thing to
keep in mind is that we need to wrap our string literals in either double quotation
marks (") or single quotation marks (') to designate them as a region of text. If we
don’t do that, bad things happen, and our code probably won’t run.

That’s all there is to the basics. The fun stuff comes from using all the functionality
JavaScript provides for working with strings. We’ll look at that and more in the fol-
lowing sections.

String Properties and Methods
When we are working with strings, the underlying String object implementation con-
tains a lot of properties that make working with text (usually) easier. In the following
sections, instead of going over every property and boring both of us to death, I’ll just
focus on the important ones in the context of common tasks you and I will be doing.

Accessing Individual Characters
While a string looks like one cohesive unit, it is actually made up of a series of
characters. We can access each character in several ways. The most common way
is by using the array/bracket notation and passing in a number that corresponds to
the index position of the character:

let vowels = "aeiou";

console.log(vowels[2]);

In this example, we will see the i character because it is the item at the second
index position. To better visualize what just happened, take a look at Figure 14.2.

164 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 14.2

Our vowels mapped with index positions

Here is something we should keep in mind when the word index is thrown around. x
Just like with arrays, index positions with strings start at 0 and move up from there.
That is why our index position is 2, but the count of the element at that position
is actually 3. This gets less weird the more you work with JavaScript and other lan-
guages that don’t contain the words Visual and Basic where indexes start from 1.

To go one step further, we can access all characters in our string by just looping
through the index positions. The start of the loop will be 0, and the end of your
loop will be determined by the length of our string. The length of our string (aka
the count of the number of characters) is returned by the length property. Yes,
this is nearly identical to arrays!

Here is an example of the preceding paragraph in action:

let vowels = "aeiou";

for (let i = 0; i < vowels.length; i++) {

console.log(vowels[i]);

}

While we may not be looping through a string all the time, it is very common to
use the length property to get a count of the number of characters in our string.

If we don’t get along with the array/bracket notation, we also have the charAt
method, which returns a character at a specified index position:

CHAPTER 14 STRINGS 165

Combining (aka Concatenating) Strings
To combine two strings together, we can just use the + or += operator and just
add the strings like we would a series of numbers:

let stringA = "I am a simple string.";

let stringB = "I am a simple string, too!";

console.log(stringA + " " + stringB);

Notice that, in the third line, we add stringA and A stringB together. Between
them, we specify an empty space character (" ") to ensure there is a space
between each of the individual strings. We can mix and match string literals with
string primitives and string objects and still get our text all combined together.

let vowels = "aeiou";

console.log(vowels.charAt(2));

The end result is identical to what we see using the array notation. I wouldn’t use
this method unless you care about really old browsers like Internet Explorer 7. (Do
you even remember Internet Explorer 7?)

WAIT…WHAT?
If you are wondering where in the world string primitives have the ability to access
properties only available to String objects, suspend your curiosity for a few more
chapters until we get to Chapter 16, “When Primitives Behave Like Objects,”
where we’ll look at this in much greater detail.

166 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

For example, this is all valid:

let textA = "Please";

let textB = new String("stop!");

let combined = textA + " make it " + textB;

console.log(combined);

Despite all the mixing going on, the type of the combined variable is simply a
string primitive.

For combining strings, we also have the concat method. We can call this method
from any string and specify a sequence of string primitives, literals, and objects
that we want to combine into one megastring:

let foo = "I really";

let blah = "why anybody would";

let blarg = "do this";

let result = foo.concat(" don't know", " ", blah, " ", blarg);

console.log(result);

For the most part, just use the + and += approach for combining strings. It is
faster than the concat approach. With everything else being equal, who wouldn’t
want some extra speed in their code?

One thing to point out is that there is a much more modern way to combine
strings, especially if what we are trying to do is combine strings and variables
together. We’ll look at that in the next chapter.

Getting Substrings Out of Strings
Sometimes what we are interested in is a sequence of characters somewhere
in the middle of our string. The two properties that help satisfy this interest are
slice and substr. Let’s say we have the following string:

let theBigString = "Pulp Fiction is an awesome movie!";

CHAPTER 14 STRINGS 167

Let’s mess with this string for a bit.

The slice Method
The slice method allows us to specify the start and end positions of the part of
the string that we want to extract:

let theBigString = "Pulp Fiction is an awesome movie!";

console.log(theBigString.slice(5, 12));

In this example, we extract the characters between index positions 5 and 12. The
end result is that the word Fiction is returned.

The start and end position values do not have to be positive. If you specify a
negative value for the end position, the end position for your string is what is left
when you count backwards from the end:

let theBigString = "Pulp Fiction is an awesome movie!";

console.log(theBigString.slice(0, -6));

If we specify a negative start position, our start position is the count of whatever
we specify starting from the end of the string:

let theBigString = "Pulp Fiction is an awesome movie!";

console.log(theBigString.slice(-14, -7));

We just saw three variations of how the slice method can be used. I’ve never
used anything but the first version with a positive start and end position, and you’ll
probably be in a similar boat.

The substr Method
The next approach we will look at for splitting up a string is the substr method.
This method takes two arguments as well:

let newString = substr(start, length);

168 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The first argument is a number that specifies our starting position, and the second
argument is a number that specifies the length of our substring. This makes more
sense when we look at some examples:

let theBigString = "Pulp Fiction is an awesome movie!";

console.log(theBigString.substr(0, 4)); // Pulp

We start the substring at the 0 position and count four characters up. That is why
Pulp is returned. If we want to just extract the word Fiction, this is what our code
would look like:

let theBigString = "Pulp Fiction is an awesome movie!";

console.log(theBigString.substr(5, 7)); // Fiction

If we don’t specify the length, the substring that gets returned is the string that
goes from the start position to the end:

let theBigString = "Pulp Fiction is an awesome movie!";

console.log(theBigString.substr(5)); // Fiction is an awesome

movie!

There are a few more variations of values we can pass in for substr, but these are
the big ones.

Splitting a String with split
That which you can concatenate, you can also split apart. I am pretty sure a wise
person once said that. Another way we can split apart a string is by using the
split method. Calling this method on a string returns an array of substrings.
These substrings are separated by a character or regular expression (aka RegEx)
that we use to determine where to split apart our string.

Let’s look at a simple example where this makes more sense:

let inspirationalQuote = "That which you can concatenate, you can

also split apart.";

CHAPTER 14 STRINGS 169

let splitWords = inspirationalQuote.split(" ");

console.log(splitWords.length); // 10

In this example, we are splitting the inspirationalQuote text on the space
character. Every time a space character is encountered, we break our string and
make the text prior to the space an array item. This repeats until we reach the end
of the string. What we see at the end is an array of strings whose contents are the
individual pieces of text we had separated by a space earlier.

Here is another example:

let days = "Monday,Tuesday,Wednesday,Thursday,Friday,

Saturday,Sunday";

let splitWords = days.split(",");

console.log(splitWords[6]); // Sunday

We have the days variable, which stores a string of days separated only by a
comma. If we wanted to separate out each day, we could use the split method
with the separator character being the comma. The end result is an array of seven
items, where each item is the day of the week from the original string.

You’ll be surprised at how often you find yourself using the split method to
break apart a sequence of characters, which can be as simple as a sentence or
something more complex like data returned from a web service.

Finding Something Inside a String
If we ever need to find a character or characters inside a string, we can use the
indexOf, lastIndexOf, and match methods. Let’s look at the indexOf method
first.

What the indexOf method does is take the character(s) we are looking for as its
argument. If what we are looking for is found, it returns the index position in the
string where the first occurrence…occurs. If no matches are found, this method
gifts you with a −1. Let’s look at an example:

let question = "I wonder what the pigs did to make these birds so

angry?";

console.log(question.indexOf("pigs")); // 18

170 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

We are trying to see if pigs exist in our string. Because what we are looking for
does exist, the indexOf method lets us know that the first occurrence of this word
can be found at the 18th index position. If we look for something that doesn’t
exist, like the letter z in this example, a –1 gets returned:

let question = "I wonder what the pigs did to make these birds so

angry?";

console.log(question.indexOf("z")); // -1

The lastIndexOf method is very similar to indexOf. As you can sorta maybe
guess by the name, lastIndexOf returns the last occurrence of what you are
looking for:

let question = "How much wood could a woodchuck chuck if a

woodchuck could chuck wood?";

console.log(question.lastIndexOf("wood")); // 65

There is one more argument you can specify to both indexOf and lastIn-
dexOf. In addition to providing the characters to search for, you can also specify
an index position on your string to start your search from:

let question = "How much wood could a woodchuck chuck if a

woodchuck could chuck wood?";

console.log(question.indexOf("wood", 30)); // 43

The last thing to mention about the indexOf and lastIndexOf methods is that
you can match any instance of these characters appearing in your string. These
functions do not differentiate between whole words and a substring of a larger set
of characters. Be sure to take that into account.

Before we wrap this up, let’s look at the match method. With the match method,
you have a little more control. This method takes a RegEx as its argument:

let phrase = "There are 3 little pigs.";

let regexp = /[0-9]/;

CHAPTER 14 STRINGS 171

THE ABSOLUTE MINIMUM
Strings are one of the handful of basic data types you have available in JavaScript,
and you just saw a good overview of the many things you can do using them. One
issue that I skirted around is where your string primitives seem to mysteriously
have all these properties that are common only to objects. We’ll look at that in the
next chapter!

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

let numbers = phrase.match(regexp);

console.log(numbers[0]); // 3

What gets returned is also an array of matching substrings, so you can use your
array ninja skills to make working with the results a breeze. Learning how to work
with regular expressions is something that goes beyond what we’ll look at in this
book, but the following documentation on MDN is a great starting point:
https://bit.ly/kirupaRegEx

Uppercasing and Lowercasing Strings
Finally, let’s end this coverage on strings with something easy that doesn’t require any-
thing complicated. To uppercase or lowercase a string, we can use the appropriately
named toUpperCase and toLowerCase methods. Let’s look at an example:

let phrase = "My name is Bond. James Bond.";

console.log(phrase.toUpperCase()); // MY NAME IS BOND. JAMES BOND.

console.log(phrase.toLowerCase()); // my name is bond. james bond.

See, told you this was easy!

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata
https://bit.ly/kirupaRegEx

This page intentionally left blank

15
I N T H I S C H A P T E R
• Learn how to create complex strings by combining

variables

• Learn about template literals

COMBINING STRINGS AND
VARIABLES
Ah, yes, it’s time for us to look at the ancient art of combining strings

and variables, where we generate a string made up of literal (static) text

values along with variables whose values are defined as a result of some

JavaScript operation. This is an important topic for us to look at because

we will find ourselves combining strings and variables quite often—whether

it is for printing messages to the console, specifying a key to some object,

generating a complex CSS property value, or trying to accomplish a boat-

load of other things.

174 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In the following sections, we’ll look at the two best approaches we have in
JavaScript for combining strings and variables. This is going to be a hoot!

Our Setup
To help highlight the two approaches, let’s work with an example. For this exam-
ple, we are going to have a function called sayGreeting, and it will take three
arguments: one argument for the greeting, one argument for whom the greeting
is targeted to, and one argument for an emoji to display. This function’s signature
will loosely look as follows.

If we call our sayGreeting function with the arguments Hello hello hello, Police
Officer Panda, and , what this function will return is a string that looks like this:

Hello hello hello, Police Officer Panda! How are you?

Notice that some of the words in the greeting are based on the arguments we
passed in. Some of the words are provided by the function itself. And with this, it’s
time to look at what exactly goes on inside our sayGreeting function.

NOTE Emojis in Code? What?!!
What you are going to see in the next few sections are examples of
code where we have emojis as a part of what we type. This is totally
supported, just like adding text or numbers. The easiest way to add
an emoji is to copy/paste from your computer’s emoji picker or from
an emoji website like emojipedia (https://emojipedia.org/).

https://emojipedia.org/

CHAPTER 15 COMBINING STRINGS AND VARIABLES 175

Using the + Operator (aka String Concatenation)
An approach as old as time for combining strings is what we looked at in the pre-
vious chapter, where we combined (concatenated) each string fragment using
the + operator. Take a look at the following:

function sayGreeting(greeting, who, emoji) {

 let message = greeting + ", " + who + "! How are you? " + emoji;

 return message;

}

let batman = sayGreeting("Good morning", "Batman", " ");

console.log(batman); // Good morning, Batman! How are you?

Notice how we combine the values of the greeting, who, and emoji arguments
with some of our predefined text to generate the final message:

function sayGreeting(greeting, who, emoji) {

 let message = greeting + ", " + who + "! How are you? " + emoji;

 return message;

}

Each literal text value is separated using quotation marks. We use the + opera-
tor to stitch together these literal text values and variables together into one final
string, which is stored by message. The spaces and punctuation marks that make
up our final greeting are explicitly (maybe awkwardly?) defined as well.

Now, what we have here is a fairly simple example. For more complex strings
made up of a bunch of variables and literal values, the number of + operators and
quotation marks can become quite large and unwieldy. If we are printing text that
itself has quotation marks and special characters, we need to take extra care to
escape them to ensure the final string is still valid. With this concatenation-based
approach, this isn’t the sort of stuff we write and have working properly on the first
try…at least not for me!

Template Literals (aka String Interpolation)
A more modern approach involves using what are known as template literals.
With template literals, instead of using the + operator to combine each string

176 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

fragment, we define the full string up front and mark the areas where we need
to substitute a value dynamically. This will make more sense with an example, so
what we have here is another version of our sayGreeting function, this time
using template literals:

function sayGreeting(greeting, who, emoji) {

 let message = `${greeting}, ${who}! How are you? ${emoji}`;

 return message;

}

let panda = sayGreeting("Hello hello hello", "Police Officer

anda", " ");

console.log(panda); // Hello hello hello, Police Officer Panda! How

are you?

Notice what is going on here. First, we define the full string, but we don’t des-
ignate it as a string by wrapping it using quotation marks. Instead, we use the
mysterious backtick character (`), which is to the left of the number 1 key on most
keyboards.

CHAPTER 15 COMBINING STRINGS AND VARIABLES 177

The backtick characters tell JavaScript that everything inside them should be
treated as a string. Next, for the places where we need to insert or substitute a
dynamic string value, we designate those placeholders by using the ${expres-
sion} syntax. At runtime, the value of ${expression} is turned into a string
whose value is whatever we put inside it. Typically, what we would have for our
expression are just the variables, but our expression can be any combination of
JavaScript elements, like function calls, string methods, and more. We’ll keep
things simple and focus just on variables here, so putting this all together, our
code for generating our message looks like this:

function sayGreeting(greeting, who, emoji) {

 let message = `${greeting}, ${who}! How are you? ${emoji}`;

 return message;

}

All of this is accomplished without the error-prone process of breaking up our
string using + operators and inserting a series of opening and closing quotation
marks around our literal string values. Because we are working with our final string
output and using placeholders, this approach is also more readable. This makes
substituting some text values from a large and complex string a piece of !

THE ABSOLUTE MINIMUM
We have two (good) approaches for combining literal strings with variables:

• String concatenation using the + operator

• String interpolation using template literals

The all-important question is, which one should you use? Unless you are dealing
with something really trivial, I would shy away from using the string concatenation
approach. It gets really error prone when you have many series of string fragments
you need to deal with. Also, getting all the quotation marks and spaces right is
too time consuming. Combining strings using the template literal approach is
quite good for almost any scenario because of how readable the code is. This
readability comes in quite handy for simple cases as well as more complex cases.

178 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

What we also have in JavaScript are a handful of other ways to combine strings
with variables. We have the concat method that lives on the String object, we
have Array.join, and a few more esoteric approaches. These approaches aren’t
very good, so I won’t bore you with details about them. If you really want to know
more, ask on the forums!

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

16
I N T H I S C H A P T E R
• Get a deeper understanding of how primitives and

objects work

• Understand that even primitives have object-like
traits

• Wonder how JavaScript ever got to be so popular

WHEN PRIMITIVES BEHAVE
LIKE OBJECTS
In Chapter 14, “Strings,” and less so in Chapter 12, “Of Pizza, Types,

Primitives, and Objects,” we got a sneak peek at something that is prob-

ably pretty confusing. I’ve stated many times that primitives are very plain

and simple. Unlike objects, they don’t contain properties that allow you

to fiddle with their values in interesting (or boring) ways. Yet, as clearly

demonstrated by all the stuff we can do with strings, our primitives seem

to have a mysterious dark side to them. Look at the following example:

let greeting = "Hi, everybody!!!";

let shout = greeting.toUpperCase(); // where did
toUpperCase come from?

180 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

As we can see from this brief snippet, our greeting variable, which stores a prim-
itive value in the form of text, seems to have access to the toUpperCase method.
How is this even possible? Where did that method come from? Why are we here?
Answers to confusing existential questions like this will make up the bulk of what
you will see in this chapter. Also, I apologize for writing that previous sentence in
passive voice. Happen again it won’t.

Strings Aren’t the Only Problem
Because of how fun and playful they are (kind of like a Golden Retriever), it’s easy to
pick on strings as the main perpetrator of this primitive/object confusion. As it turns
out, many of the built-in primitive types are involved in this racket as well. Table 16.1
displays some popular built-in Object types with most of the guilty parties (t symbol
and bigint will be sitting this one out) that also exist as primitives highlighted.o

TABLE 16.1 Object Types with Those That Are Primitives Highlighted

Type What It Does

Array Helps store, retrieve, and manipulate a collection of data.

Boolean Acts as a wrapper around the boolean primitive; still very much in love with
true and false.

Date Allows you to more easily represent and work with dates.

Function Allows you to invoke some code, among other esoteric things.

Math The nerdy one in the group. It helps you better work with numbers.

Number Acts as a wrapper around the number primitive.

RegExp Provides a lot of functionality for matching patterns in text.

String Acts as a wrapper around the string primitive.

Whenever we are working with boolean, number, or string primitives, we have
access to properties their Object equivalent exposes. In the following sections,
you’ll see what exactly is going on.

Let’s Pick on Strings Anyway
Just as you were taught by your parents growing up, we typically use a string in
the literal form:

let primitiveText = "Homer Simpson";

CHAPTER 16 WHEN PRIMITIVES BEHAVE LIKE OBJECTS 181

As we saw in Table 16.1, strings also have the ability to be used as objects. There
are several ways to create a new object, but the most common way to create an
object for a built-in type like our string is to use the new keyword followed by the
word String:

let name = new String("Batman");

The String in this case isn’t just any normal word. It represents what is known
as a constructor function, whose sole purpose is to be used for creating objects.
Just like there are several ways to create objects, there are several ways to create
String objects as well. The way I see it, knowing about one way that you really
shouldn’t be creating them with is enough.t

Anyway, the main difference between the primitive and object forms of a string is
the sheer amount of additional baggage the object form carries with it.
Figure 16.1 helps us visualize our String object called name.

FIGURE 16.1

A deeper look at what our String object looks likeg

We have our name variable containing a pointer to the text, Homer Simpson. We also
have all the various properties and methods that go with the String object—things
you may have used, like indexOf, toUpperCase, and so on. You’ll get a massive
overview of what exactly this diagram represents when we look at objects in greater
detail, so don’t worry too much about what you see here. Just know that the object
form of any of the primitives carries with it a lot of functionality.

182 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Why This Matters
Let’s return to our earlier point of confusion. Our string is a primitive. How can
a primitive type allow us to access properties on it? The answer has to do with
JavaScript being really weird. Let’s say we have the following string:

let game = "Dragon Age: Origins";

The game variable is very clearly a string primitive that is assigned to some literal text.
If we wanted to access the length of this text, we would do something like this:

let game = "Dragon Age: Origins";

console.log(game.length);

As part of evaluating game.length, JavaScript will convert our primitive string into
an object. For a brief moment, our lowly primitive will become a beautiful object in
order to figure out what the length actually is. The thing to keep in mind is that all h
of this is temporary. Because this temporary object isn’t grounded or tied to anything
after it serves its purpose, it goes away, and we are left with the result of the length
evaluation (a number) and the game variable still being a string primitive.

This transformation only happens for primitives. If we ever explicitly create a
String object, then what we create is permanently kept as an object. Let’s say we
have the following:

let gameObject = new String("Dragon Age:Origins");

In this case, our gameObject variable very clearly points to something whose
type is Object. This variable will continue to point to an Object type unless we
modify the string or do something else that causes the reference to be changed.
The primitive morphing into an object and then morphing back into a primitive is
something unique to primitives. Our objects don’t partake in such tomfoolery.

We can easily verify everything I’ve said by examining the type of our data. That is
done by using the typeof keyword. Here is an example of me using it to confirm
everything I’ve just told you about:

let game = "Dragon Age: Origins";

console.log("Length is: " + game.length);

CHAPTER 16 WHEN PRIMITIVES BEHAVE LIKE OBJECTS 183

let gameObject = new String("Dragon Age:Origins");

console.log(typeof game); // string

console.log(typeof game.length); // number

console.log(typeof gameObject); // object

Now, aren’t you glad you learned all this?

THE ABSOLUTE MINIMUM
Hopefully this brief explanation helps you to reconcile why our primitives behave
like objects when they need to. At this point, you might have a different question
around why anybody would have designed a language that does something this
bizarre. After all, if a primitive turns into an object when it needs to do something
useful, why not just let it stay an object always? The answer has to do with mem-
ory consumption.

As we saw from our discussion on how much more baggage the object form of a
primitive carries when compared to just a primitive, all of those pointers to addi-
tional functionality cost resources. The solution in JavaScript is a compromise. All
literal values like text, numbers, and booleans are kept as primitives if they are
declared and/or used as such. Only when they need to, are they converted to their
respective Object forms. To ensure our app continues to keep a low-memory
footprint, these converted objects are quickly discarded (aka garbage collected)
once they’ve served their purpose.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

17
I N T H I S C H A P T E R
• Make sense of numbers

• Learn about the variety of numerical values you will
encounter

• Meet the Math object and the various mathematical
things you can do

NUMBERS
A large part of your time in JavaScript will be spent dealing with numbers.

Even if you aren’t working with numbers directly, you’ll indirectly encounter

them when doing even the most basic of tasks, such as keeping count of

something, working with arrays, and so on.

186 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In this chapter, I will introduce you to numbers in JavaScript by looking at how
we can use them to accomplish many common tasks. Along the way, we will dive
a little bit beyond the basics to broadly explore some interesting number-related
things you might find useful.

Using a Number
In order to use a number, all you have to do is…well, use it. Here is a simple
example of me declaring a variable called stooges, which is initialized to the
number 3:

let stooges = 3;

That is it. There are no hoops to jump through. If you wanted to use more
complex numbers, just use them as if nothing is different:

let pi = 3.14159;

let color = 0xFF;

let massOfEarth = 5.9742e+24;

In this example, I am using a decimal value, a hexadecimal value, and a really
large value using exponents. In the end, your browser will automatically do the
right thing. Note that the “right thing” doesn’t just exist in the positive space. You
can use negative numbers easily as well. To use negative numbers, just place a
minus sign (−) character before the number you want to turn into a negative value:

let temperature = -42;

What you’ve seen in this section makes up the bulk of how you will actually use
numbers. In the next couple of sections, we’ll go a little bit deeper and look at
some of the other interesting things you can do with numbers.

TIP Trivia: Numbers in JavaScript
If you are curious why working with numbers is so easy, the reason
is because JavaScript isn’t big on numerical types. You don’t have to
declare a number as being of type int, double, byte, float, and so on,
like you may have had to do in other languages. The only exception
is if you need a really large or really small number, and that is when

CHAPTER 17 NUMBERS 187

bigint comes in. We won’t talk about bigint in this book, but you can
learn more about it here: https://bit.ly/kirupaBigInt

Oh, also, in JavaScript, all numbers are converted into 64-bit
floating point numbers.

Operators
No introduction to numbers would be complete (or even started) without showing
you how to use mathematical operators in code to implement things you learned
in first-grade math class.

Let’s look at the common operators in this section.

Doing Simple Math
In JavaScript, we can create simple mathematical expressions using the +, -, *, /,
and % operators to add, subtract, multiply, divide, and find the remainder (modu-
lus) of numbers, respectively. If you can use a calculator, you can do simple math
in JavaScript.

Here are some examples that put these operators to use:

let total = 4 + 26;

let average = total / 2;

let doublePi = 2*3.14159;

let subtractItem = 50 - 25;

let remainder = total % 7;

let more = (1 + average * 10) / 5;

In the last line of this example, notice that I am defining a particular order of oper-rr
ations by using parentheses around the expression I want to evaluate as a group.
Again, all of this is just calculator stuff.

JavaScript evaluates expressions in the following order:

1. Parentheses

2. Exponents

3. Multiply

4. Divide

5. Add

6. Subtract

https://bit.ly/kirupaBigInt

188 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

There are various mnemonic devices out there to help you remember this. The
one I grew up with since elementary school is “Please Excuse My Dear Aunt
Sally.”

Incrementing and Decrementing
A common task we will do with numbers involves incrementing or decrementing a
variable by a certain amount. Here is an example of incrementing the variable i
by 1:

let i = 4;

i = i + 1;

We don’t have to increment or decrement by just 1. We can use any arbitrary
number:

let i = 100;

i = i - 2;

All of this doesn’t just have to just be addition or subtraction. We can perform
other operations as well:

let i = 100;

i = i / 2;

You should start to see a pattern here. Regardless of what operator we are using,
you’ll notice that we are cumulatively modifying our i variable. Because of how
frequently we will use this pattern, we have some operators that simplify it a bit
(see Table 17.1).

TABLE 17.1 Operators for Simplifying Incrementing and Decrementing

Expression What It Does

i++ Increments i by 1 (i = i + 1)

i-- Decrements i by 1 (i = i - 1)

i += n Increments i by n (i = i + n)

i -= n Decrements i by n (i = i - n)

CHAPTER 17 NUMBERS 189

Expression What It Does

i *= n Multiplies by n (i = i * n)

i /= n Divides i by n (i = i / n)

i %= n Finds the remainder of i when divided by n (i = i % n)

i **= n Exponential operator, where i is raised to the power of n

If I use these operators on the three examples from earlier, the code will look as
follows:

i++;

i -= 2;

i /= 2;

Before we wrap this up, there is one quirk you should be aware of. It has to do
with the -- and ++ operators for incrementing or decrementing a value by 1. It
matters whether the ++ and -- operators appear before or after the variable they
are incrementing or decrementing

Let’s look at this example:

let i = 4;

let j = i++;

After executing these two lines, the value of i will be 5, just like you would
expect. The value of j will be 4. Notice that in this example, the operator appears
after the variable.

If we place the operator in front of the variable, the results are a bit different:

let i = 4;

let j = ++i;

The value of i will still be 5, but here is the kicker—the value of j will also be 5.

What changed between these two examples is the position of the operator. The
position of the operator determines whether the incremented value will be
returned or the pre-incremented value will be returned. Now, aren’t you glad
you learned that?

190 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Hexadecimal and Octal Values
Beyond using normal decimal values, you can use hexadecimal (base 16) and octal
(base 8) values as well. When working with octal values, make sure to start your
number with 0:

let leet = 0o2471;

For hexadecimal values, you need start your number with 0x:

let leet = 0x539;

In many situations, we’ll find ourself dealing with octal and hexadecimal values in
the form of strings. If they are strings, we cannot manipulate them as we would
normal numbers. We need to convert the string to a number first.

The way we do that is by using the parseInt function:

let hexValue = parseInt('FFFFFF', 16);

let octalValue = parseInt('011', 8);

The parseInt function takes our hexadecimal or octal value followed by the base
we are converting from.

Special Values—Infinity and NaN
The last thing we will look at are two global properties you will encounter that
aren’t numerical values. These values are Infinity and NaN.

Infinity
We can use the Infinity and -Infinity values to define infinitely large or
small numbers:

let myLoveForYou = Infinity * 2;

The chances of us having to use Infinity are often very slim. Instead, we will
probably see it returned as part of something else our code does. For example,
we will see Infinity returned if you divide by zero.

CHAPTER 17 NUMBERS 191

NaN
The NaN keyword stands for “Not a Number,” and it gets returned when we do
some numerical operation that is invalid. For example, NaN gets returned in the
following case:

let nope = 1920 / "blah";

The reason is that we cannot divide a number and a string. There are noncontrived
cases where we will see this value returned, and we’ll look at some later.

Going from a String to a Number
Sometimes, not often, you will have numbers that are buried inside strings. The
Number method is great for this case, and the following shows it at use:

let calculation = "14" + 4;

console.log(calculation); // "144"

let newCalculation = Number("14") + 4;

console.log(newCalculation); // 18

Notice that we are adding a string version of 14 to the number 4. In the naïve case
as highlighted by our calculation variable, the final answer is 144. By using
the Number method and passing in our string form of 14 as an argument, the
resulting value is a numerical 14. This causes the addition with 4 to result in 18, as
shown by the newCalculation variable.

There are a few more quirks and co-starring appearances by parseInt and
parseFloat in this gripping drama, and you can go deeper on this topic here at
https://bit.ly/stringToNumber.

The Math Object
Numbers are used in a variety of mathematical expressions, and they often go beyond
simple addition, subtraction, multiplication, and division operations. Our math classes
back in the day would have been a whole lot easier if that’s all there was to it. To help
us more easily do complicated numerical things, we have the Math object. This object h
provides us with a lot of functions and constants that will come in handy, and we are
going to very briefly look at some of the things this object does.

https://bit.ly/stringToNumber

192 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

NOTE This Is Boring!
I am not going to lie to you. Looking at all the stuff the Math
object provides is pretty boring. Unless you really want to know
about all of this now, I would prefer you just very quickly skim
through the following sections and refer back as needed. The
Math object isn’t going anywhere (it has no friends), so it will be
waiting for you at a later time.

The Constants
To avoid you having to explicitly define mathematical constants like pi, Euler’s con-
stant, natural log, and so on, the Math object defines many common constants for
you (see Table 17.2).

TABLE 17.2 Constants

Usage What It Stands For

Math.E Euler’s constant

Math.LN2 Natural logarithm of 2

Math.LN10 Natural logarithm of 10

Math.LOG2E Base 2 logarithm of E

Math.LOG10E Base 10 logarithm of E

Math.PI 3.14159 (That’s all I remember, and I’m too lazy to look up the rest!)

Math.SQRT1_2 Square root of 1/2

Math.SQRT2 Square root of 2

Of all of these constants, the one I’ve used the most is Math.PI.

You will use Math.PI in everything from drawing circles on your screen to specify-
ing trigonometric expressions. In fact, I can’t ever remember having used any of
these other constants outside of Math.PI. Here is an example of a function that
returns the circumference given the radius:

function getCircumference(radius) {

return 2 * Math.PI * radius;

}

console.log(getCircumference(2));

CHAPTER 17 NUMBERS 193

You would use Math.PI or any other constant just as you would any named
variable.

Rounding Numbers
Your numbers will often end up containing a ridiculous amount of precision:

let position = getPositionFromCursor(); // 159.3634493939

To help you round these numbers up to a reasonable integer value, you have the
Math.round(), Math.ceil(), and Math.floor() functions, which take a
number as an argument (see Table 17.3).

TABLE 17.3 Rounding Functions

Function What It Does

Math.round() Returns a number that is rounded to the nearest integer. You round up
if your argument is greater than or equal to .5. You stay at your current
integer if your argument is less than .5.

Math.ceil() Returns a number that is greater than or equal to your argument.

Math.floor() Returns a number that is less than or equal to your argument.

194 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The easiest way to make sense of Table 17.3 is to see these three functions in
action:

Math.floor(.5); // 0

Math.ceil(.5); // 1

Math.round(.5); // 1

Math.floor(3.14); // 3

Math.round(3.14); // 3

Math.ceil(3.14); // 4

Math.floor(5.9); // 5

Math.round(5.9); // 6

Math.ceil(5.9); // 6

These three functions always round you to an integer. If you want to round to a
precise set of digits, we can call the toFixed method on a number and provide the
number of digits of precision we want to round to:

let pi = 3.14159;

console.log(pi.toFixed(2)); // 3.14

console.log(pi.toFixed(3)); // 3.142

console.log(pi.toFixed(4)); // 3.1416

If you try to provide more digits of precision than the number you are trying to
round can handle, that’s all good. The number is returned as-is.

Trigonometric Functions
My favorite of the functions, the Math object gives you handy access to almost all
of the trigonometric functions you will need, as shown in Table 17.4.

CHAPTER 17 NUMBERS 195

TABLE 17.4 Trigonometric Functions

Function What It Does

Math.cos() Gives you the cosine for a given argument

Math.sin() Gives you the sine for a given argument

Math.tan() Gives you the tan for a given argument

Math.acos() Gives you the arccosine (isn’t that such a cool name?) for a given
argument

Math.asin() Gives you the arcsine for a given argument

Math.atan() Gives you the arctan for a given argument

To use any of these, just pass in a number as the argument:

Math.cos(0); // 1

Math.sin(0); // 0

Math.tan(Math.PI / 4); // 1

Math.cos(Math.PI); // 1

Math.cos(4 * Math.PI); // 1

These trigonometric functions take arguments in the form of radian values. If your
numbers are in the form of degrees, be sure to convert them to radians first.

Powers and Square Roots
Continuing down the path of defining the Math object functions, you have
Math.pow(), Math.exp(), and Math.sqrt(), as explained in Table 17.5.

TABLE 17.5 Functions for Powers and Square Roots

Function What It Does

Math.pow() Raises a number to a specified power

Math.exp() Raises the Euler’s constant to a specified number

Math.sqrt() Returns the square root of a given argument

196 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Let’s look at some examples:

Math.pow(2, 4); //equivalent of 2^4 (or 2 * 2 * 2 * 2)

Math.exp(3); //equivalent of Math.E^3

Math.sqrt(16); //4

Note that Math.pow() takes two arguments. This might be the first built-in func-
tion we’ve looked at that takes two arguments. This little detail is somehow mildly
exciting.

Getting the Absolute Value
If you want the absolute value of a number, simply use the Math.abs() function:

Math.abs(37); //37

Math.abs(-6); //6

That’s all I got for this.

Random Numbers
To generate a somewhat random number between 0 and a smidgen less than 1,
you have the Math.random() function. This function doesn’t take any arguments,
but you can simply use it as part of a mathematical expression:

let randomNumber = Math.random() * 100;

Each time your Math.random function is called, you will see a different number
returned. A general approach for calculating a random number is as follows:

Math.floor(Math.random() * (1 + High - Low)) + Low

The value for High is the largest random number you would like to generate. The
value for Low is the smallest random number you would like to generate instead.
When you run this code, you will get a number that randomly falls somewhere
between the bounds specified by High and Low.

CHAPTER 17 NUMBERS 197

Here are some examples:

// Random number between 0 and 10 (inclusive)

let foo = Math.floor(Math.random() * 11);

console.log(foo);

// Random number between 0 and 100 (inclusive)

let bar = Math.floor(Math.random() * 101);

console.log(bar);

// Random number between 5 and 25 (inclusive)

let zorb = Math.floor(Math.random() * 21) + 5;

console.log(zorb);

To make things simple, here is a function you can use instead:

function getRandomNumber(low, high) {

 let r = Math.floor(Math.random() * (high - low + 1)) + low;

 return r;

}

Just call getRandomNumber and pass in the lower and upper bounds as
arguments:

// Random number between 0 and 10 (inclusive)

let foo = getRandomNumber(0, 10);

console.log(foo);

// Random number between 0 and 100 (inclusive)

let bar = getRandomNumber(0, 100);

console.log(bar);

// Random number between 5 and 25 (inclusive)

let zorb = getRandomNumber(5, 25);

console.log(zorb);

198 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

That’s all there is to generating a random number that falls within a range that you
specify. Now, here is something that you may find interesting. When using Math.
random, the number that gets returned isn’t cryptographically secure. That isn’t
a concern most of the time, but it does matter if you are doing something that
requires generating a random number where extra security is a requirement. To
learn a bit more about this, visit: https://bit.ly/cryptoRandom

NOTE Visualizing Frequency of Random
Numbers
One of the more difficult parts of random numbers is wrapping
our heads around the idea that a range of numbers gets chosen
randomly and nearly equally after enough tries. To help us visual-
ize this, take a look at the handy dandy Random Number Fre-
quency Visualizer at https://bit.ly/randomNumberVisualizer.

We are picking a random number between 1 and 5 inclusively.
This visualizer plots the frequency that each of these numbers get
hits across 1400 runs. Unless something is really off, you will see
all of the numbers being hit fairly evenly.

https://bit.ly/cryptoRandom
https://bit.ly/randomNumberVisualizer

CHAPTER 17 NUMBERS 199

THE ABSOLUTE MINIMUM
That’s all there is to it for this introductory chapter on numbers and the Math
object in JavaScript. As you can see, it doesn’t get much easier than this.
JavaScript provides a very no-frills approach to working with them, and this
chapter gave you a slight peek at the edges in case you need to go there.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

18
I N T H I S C H A P T E R
• Learn the difference between data properties and

accessor properties

• Learn about getters and setters

• Identify when to use an accessor property versus a
data property

GETTERS AND SETTERS
The properties we have been working with so far are known as data

properties. We give these properties a name and assign a value to them:

let foo = {

 a: "Hello",

 b: "Monday";

}

202 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

To read back the value, all we do is just access it directly:

console.log(foo.a);

Writing a value to this property is sorta what we would expect as well:

foo.a = "Manic";

Outside of setting and reading a value, there really isn’t much more we can do.
That is the sad tale of a data property. Now, as part of reading and writing proper-rr
ties, what if we had the ability to do the following?

• Maintain our existing syntax for reading and writing property values

• Gain the ability to run some custom code behind the scenes

That would be pretty cool, right? As it turns out, we have the ability to do all of
this. It is brought to you by another friendly and hardworking property variant
known as an accessor property! In the following sections, we’ll learn all about
them and run into the real stars of this show—the mysterious getters and setters.

A Tale of Two Properties
On the surface, accessor properties and data properties look very similar. With a
data property, you can read and write to a property:

theObj.storedValue = "Unique snowflake!"; // setting

console.log(theObj.storedValue); // reading

With an accessor property, you can pretty much do the exact same thing:

myObj.storedValue = "Also a unique snowflake!"; // setting

console.log(myObj.storedValue); // reading

We can’t tell by looking at how a property is used whether it is a data property or
an accessor property. To tell the difference, we have to go where the property is
actually defined. Take a look at the following code, where we have a few proper-rr
ties defined inside our zorb object:

CHAPTER 18 GETTERS AND SETTERS 203

let zorb = {

 message: "Blah",

get greeting() {

return this.message;

 },

set greeting(value) {

this.message = value;

 }

};

First up is message, a regular old data property:

let zorb = {

 message: "Blah",

get greeting() {

return this.message;

 },

set greeting(value) {

this.message = value;

 }

};

We know this is a data property because it is just a property name and a value.
There isn’t anything else going on here. Now, here is where things get a little
exciting. The next property we have is greeting, and it doesn’t look like any
property we’ve seen in the past:

let zorb = {

 message: "Blah",

get greeting() {

204 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

return this.message;

 },

set greeting(value) {

this.message = value;

 }

};

Instead of a simple name and value arrangement like we saw with message, the
greeting property is broken up into two functions preceded by either a s get or
set keyword:

let zorb = {

 message: "Blah",

get greeting() {

return this.message;

 },

set greeting(value) {

this.message = value;

 }

};

These keyword and function pairs are commonly known as getters and setters,
respectively. What makes them special is that we don’t access greeting as a
function. We access it just like we would any old property:

zorb.greeting = "Hola!";

console.log(zorb.greeting);

The real interesting stuff happens at the getter and setter level, so we will dive
deeper into them next.

CHAPTER 18 GETTERS AND SETTERS 205

Meet Getters and Setters
Based on what we know so far, getter and r setter are just fancy names for functions r
that behave like properties. When we try to read an accessor property (zorb.
greeting), the getter function gets called:

let zorb = {

 message: "Blah",

get greeting() {

return this.message;

 },

set greeting(value) {

this.message = value;

 }

};

Similarly, when we set a new value to our accessor property (zorb.greeting =
"Hola!"), the setter function gets called:

let zorb = {

 message: "Blah",

get greeting() {

return this.message;

 },

set greeting(value) {

this.message = value;

 }

};

The full power of getters and setters lies in the code we can execute when reading
or writing a property. Because we are dealing with functions under the covers,
we can run any code we want. In our zorb example, we used our greeting
getter and setter to closely mimic what a data property would do. We can set a

206 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

value, and we can read back the value we just set. Pretty boring, right? It doesn’t
have to be that way, though, and the following examples kick up the interesting-
ness of our getters and setters a bunch of notches.

Shout Generator
Here is an example where whatever message we specify gets turned into all caps:

var shout = {

 _message: "HELLO!",

get message() {

return this._message;

 },

set message(value) {

this._message = value.toUpperCase();

 }

};

shout.message = "This is sparta!";

console.log(shout.message);

Notice that, as part of setting the value for the message property, we store the
entered value in all caps thanks to the toUpperCase method all String objects
carry around. All this ensures that, when we try to read back the message we had
stored, we see the fully capitalized version of whatever we entered.

Logging Activity
In our next example, we have our superSecureTerminal object, which logs all
usernames:

var superSecureTerminal = {

 allUserNames: [],

 _username: "",

 showHistory() {

console.log(this.allUserNames);

CHAPTER 18 GETTERS AND SETTERS 207

 },

get username() {

return this._username;

 },

set username(name) {

this._username = name;

this.allUserNames.push(name);

 }

}

This logging is handled inside the username setter, where each username we
provide gets stored in the allUserNames array, and the showHistory function
displays the stored usernames to the screen. Before we move on, let’s actually put
this code to the test. We are going to access superSecureTerminal differently
from what we have done in the past. We are going to take some of our object-
creation knowledge and do the following:

var myTerminal = Object.create(superSecureTerminal);

myTerminal.username = "Michael Gary Scott";

myTerminal.username = "Dwight K. Schrute";

myTerminal.username = "Creed Bratton";

myTerminal.username = "Pam Beasley";

myTerminal.showHistory();

We are creating a new object called myTerminal that is based on the
superSecureTerminal object. From here, we can do everything with the
myTerminal object and call it business as usual.

Property Value Validation
The last example we will look at is one where our setters do some validation on
the values sent to them:

let person = {

 _name: "",

208 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 _age: "",

get name() {

return this._name;

 },

set name(value) {

if (value.length > 2) {

this._name = value;

 } else {

console.log("Name is too short!");

 }

 },

get age() {

return this._age;

 },

set age(value) {

if (value < 5) {

console.log("Too young!");

 } else {

this._age = value;

 }

 },

get details() {

return "Name: " + this.name + ", Age: " + this.age;

 }

}

Notice that we check for an acceptable input in both our name and age proper-rr
ties. If the name we provide is fewer than two characters, we show an alert. If the
age is less than five, we show an alert as well. Being able to check whether a value
we assign to a property is good or not is probably one of the best features that
getters and setters bring to the table.

CHAPTER 18 GETTERS AND SETTERS 209

THE ABSOLUTE MINIMUM
Should we all stop creating regular data properties and go with the fancier acces-
sor properties? Not really. It depends on your current needs and potential future
needs. If a property you know will never really need the extra flexibility that getters
and setters provide, you can just keep them as data properties. If you ever need
to revisit that, going from a data property to an accessor property is something
that happens entirely behind the scenes. You and I have the ability to change that
without altering how the property itself will be used. Cool, right?

Additional resources:

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

19
I N T H I S C H A P T E R
• Understand at a deeper level how objects work

• Learn to create custom objects

• Demystify the prototype property

• Do some inheriting

A DEEPER LOOK AT
OBJECTS
In the “What Are Objects?” section of Chapter 12, “Of Pizzas, Types,

Primitives, and Objects,” you received a very high-level overview of what

objects in JavaScript are and how to think about them. That was good

enough to cover the basics and some of the built-in types, but we need to

go a little deeper. This chapter will make that earlier chapter seem like the

tip of a ginormous iceberg.

212 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In this chapter, we are going look at objects again, but in greater detail, and touch
on some more advanced topics such as using the Object object, creating our
own custom objects, inheritance, prototypes, and the this keyword. If all that I’ve
listed so far makes no sense, it will after we’ve reached the end of this chapter. I
guarantee it.

Meet the Object
At the very bottom of the food chain, we have the Object type, which lays the
groundwork for custom objects as well as built-in types like Function, Array,
and RegExp. Pretty much everything except null and undefined is directly
related to an Object or can become one, as needed.

As we saw from the introduction to objects forever ago, the functionality that
Object brings to the table is pretty minimal. It allows us to specify a bunch of
named key and value pairs that we lovingly call properties. This isn’t all that dif-
ferent from what we see in other languages with data structures like hash tables,
associative arrays, and dictionaries.

Anyway, all of this is pretty boring. Instead, let’s learn more about objects by
getting our hands dirty working with them directly.

CHAPTER 19 A DEEPER LOOK AT OBJECTS 213

Creating Objects
The first thing we will look at is how to create an object. There are several ways
to go about this, but all the cool kids are creating objects these days by using the
funny-looking (yet compact) object literal syntax:

let funnyGuy = {};

That’s right. Instead of typing in new Object() like our great-grandparents did,
we can just initialize our object by typing { }. When this line gets executed, we will
have created an object called funnyGuy whose type is Object.

There is a little more to creating objects than what we’ve just seen with the object
literal syntax, but we’ll cover all that in due time.

Adding Properties
Once we have an object, there are several paths we can take to add properties
to it. The path we will take is a simple and effective one that uses the array-like
bracket notation with our new property name acting as the index.

Let’s continue with where we left off with our funnyGuy object:

let funnyGuy = {};

214 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Let’s say we want to add a new property called firstName and give it a value of
Conan. The way we would add this property is by using dot notation syntax, as
follows:

funnyGuy.firstName = "Conan";

That’s all there is to it. Once we have added this property, we can access it using
the same syntax:

let funnyFirstName = funnyGuy.firstName;

Now, before we move on, since we are already here (and probably paid for a few
more hours of parking), let’s add another property called lastName and give it
the value of O’Brien:

funnyGuy.lastName = "O'Brien";

NOTE There Is Also a Bracket Notation
For setting and reading properties, we used what is known as the
dot notation approach. There is an alternate approach for setting
and reading properties that uses brackets instead of the dot:

let funnyGuy = {};

funnyGuy["firstName"] = "Conan";

funnyGuy["lastName"] = "O'Brien";

Whether you prefer dots or brackets is up to you (or your team
if you are working with a bunch of people), but there is one area
for which brackets are uniquely qualified: dealing with properties
whose names we need to generate dynamically. In the case of
firstName and lastName, we hardcoded these property names.
Take a look at the following snippet:

let myObject = {};

CHAPTER 19 A DEEPER LOOK AT OBJECTS 215

for (let i = 0; i < 5; i++) {

let propertyName = "data" + i;

 myObject[propertyName] = Math.random() * 100;

}

We have an object called myObject. Notice how we are set-
ting properties on it. We don’t have a hardcoded list of property
names, Instead, we create the property name by relying on the
index values from our array. Once we have figured out the prop-
erty name, we then use that data to create a property for myOb-
ject. The property names we will generate are data0, data1,
data2, data3, and data4. This ability to dynamically specify a
property name as part of setting or reading from an object is
something the bracket syntax easily makes possible.

At this point, we are in good shape. Our complete funnyGuy code will look
like this:

let funnyGuy = {};

funnyGuy.firstName = "Conan";

funnyGuy.lastName = "O'Brien";

When this code runs, we will have created our funnyGuy object and set two
properties on it called firstName and lastName.

What we have just seen is how to create an object and set properties on it in
separate steps. If we know what properties we want to set from the beginning, we
can combine some steps together:

let funnyGuy = {

 firstName: "Conan",

 lastName: "O'Brien"

};

The end result of this code is identical to what we saw earlier where we created
our funnyGuy object first and set the properties afterwards.

216 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

There is yet another detail about adding properties we should look at. By now, we
have looked at a variety of different objects that have properties whose values are
made of up numbers, strings, and so on. Did you know that a property value can
be another object itself? That’s right! Take a look at the following colors object
whose content property stores an object:

let colors = {

 header: "blue",

 footer: "gray",

 content: {

 title: "black",

 body: "darkgray",

 signature: "light blue"

 }

};

The way you specify an object inside an object is as direct as specifying a property
and using the bracket syntax for setting the property value to an object. If we want
to add a property to a nested object, we can combine everything we’ve seen so
far to do this.

Let’s say we want to add a property called frame to the nested content object.
Here’s how we would do this:

colors.content.frame = "yellow";

We start with our colors object, move to our content object, and then specify
the property and value we want. If you prefer to use the bracket notation for
accessing the content property, you can do this instead:

colors["content"]["frame"] = "yellow";

If you want to mix things up between the dot and bracket notations, this also
works:

colors.content["frame"] = "yellow";

CHAPTER 19 A DEEPER LOOK AT OBJECTS 217

Before we wrap this up, I mentioned at the beginning that you have several paths
you can take to add properties to an object. We looked at one such path. A
more complex path you could take involves the Object.defineProperty and
Object.defineProperties methods. These methods allow you to set a prop-
erty and its value, but they also allow you to specify whether a property can be
enumerated, whether a property can be customized, and much more. It’s definitely
overkill for what we will want to do 99 percent of the time, but know this: if overkill
is what you want, then these two methods deliver. The MDN documentation at
https://mzl.la/3AlOVBN does a good job providing examples of how you can use
these methods to add one or more properties to an object.

Removing Properties
If you thought adding properties to an object was fun, removing properties from
an object is a bit boring. It is also simpler. Let’s continue to work with our colors
object:

let colors = {

 header: "blue",

 footer: "gray",

 content: {

 title: "black",

 body: "darkgray",

 signature: "light blue"

 }

};

What we want to do is remove the footer property. We have two ways of doing
this, depending on whether we want to access the footer property using the
bracket notation or whether we want to access it using the dot notation:

delete colors.footer;

// or

delete colors["footer"];

https://mzl.la/3AlOVBN

218 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The key to making all this work is the delete keyword. Simply use the delete
keyword and follow it up with the property you’d like to remove. That’s all there is
to it.

Now, this wouldn’t be JavaScript if I didn’t mention a caveat. This one has to do
with performance. If you will be deleting a lot of properties on a frequent basis
across a large number of objects, delete is much slower than just setting the
value of the property to something like undefined:

colors.footer = undefined;

// or

colors["footer"] = undefined;

The flipside is that setting a property to undefined means the property still exists
in memory. You’ll need to calculate the tradeoffs (speed versus memory) in your
situation and optimize for the one that makes the most sense for you.

What Is Going on Behind the Scenes?
We saw how to create objects and make some typical modifications to them.
Because objects really are the core of what makes JavaScript do all the things it
does, it is important for us to have a deeper understanding of what is happening.
This isn’t just for the sake of trivial knowledge, though it will be fun to impress
your friends and family over dinner with what you have learned. A large part of
working with JavaScript is building objects based on other objects and doing
other traditional object-oriented things. All of those things will make more sense
when we have a better idea of what really goes on when we are working with
objects.

Let’s start with our funnyGuy object again:

let funnyGuy = {};

Now, what can we do with an empty object? We have no properties defined on
it. Is our funnyGuy object truly alone and isolated with nothing at all going for
it? As it turns out, the answer is a resounding nope. The reason has to do with
how objects we create in JavaScript are automatically interlinked with the bigger
Object and all the functionality it brings to the table. The best way to make sense

CHAPTER 19 A DEEPER LOOK AT OBJECTS 219

of this interlinking is to visualize it. Take a really, REALLY deep breath and look at
Figure 19.1.

FIGURE 19.1

What our seemingly simple funnyGuy object actually has going on!y

This diagram maps out what really happens behind the scenes when we create our
empty funnyGuy object.

In this view, we still start off with our funnyGuy object. That part is still the same.
What is different is everything else. See, our funnyGuy is simply an empty object.
It has no properties that we defined for it. It does have properties that come
defined out of the box, and these properties link our funnyGuy object to the
underlying Object type without us having to do any work. This link allows us to
call traditional Object properties on funnyGuy like the following:

let funnyGuy = {};

funnyGuy.toString(); // [object Object]

220 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

To hammer the point home, this link is what allows toString to work when called
on our seemingly empty funnyGuy object. Now, calling this link a link isn’t accuk -
rate. Our link is actually known as a prototype (and often represented as [[Proto-
type]]) that ends up pointing to another object. Another object can have its own r
[[Prototype]] that points to yet another object, and so on. All of this linking is
known as the prototype chain. Traveling across the prototype chain is a big part
of what JavaScript does when trying to find a property you are calling. Figure 19.2
shows us what is actually happening when we call toString on our funnyGuy
object.

FIGURE 19.2

Walking the prototype chain to find the property we are looking for

With the prototype chain, even if our object doesn’t have a particular property that we
are looking for defined, JavaScript will walk through the chain and see if every stop
along the way has that property defined instead. Now, our funnyGuy object’s proy -
totype chain includes just itself and Object.prototype. It isn’t a complex chain at
all. As we work with more complex objects, the prototype chain will get very long and
more complex. We’ll dip our toes into this complexity shortly.

NOTE Object Isn’t a Part of the Prototype Chain
In our previous visualizations, we see our Object having a dedi-
cated entry with lines going between properties on it and the
Object.prototype. The thing to note is that Object is not a
part of the prototype chain. It plays a role in how objects imple-
ment the relationship between their constructor and a poorly

CHAPTER 19 A DEEPER LOOK AT OBJECTS 221

named prototype property (not related to our [[Prototype]]), and
we’ll touch on the Object’s role later. For completeness,
I will continue to show Object’s role in future visualizations of our
objects, but do note that it doesn’t play a role in our prototype
chain traversal.

Next, as we can see, our funnyGuy object right now is very basic. Let’s add the
firstName and lastName properties from earlier to make things a bit more
interesting:

let funnyGuy = {

 firstName: "Conan",

 lastName: "O'Brien"

};

With these two properties thrown into the mix, our earlier visualization will now
look as shown in Figure 19.3.

FIGURE 19.3

Say hello to the firstName and lastName properties.

The firstName and lastName properties are a part of the funnyGuy object and
visualized as such as well. With this initial coverage of the object out of the way,
it’s time for us to go into a bit more detail.

222 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Creating Custom Objects
Working with the generic Object and putting properties on it serves a useful pur-rr
pose, but its awesomeness fades away really quickly when we are creating many
objects that are basically the same thing. Take a look at the following snippet:

let funnyGuy = {

 firstName: "Conan",

 lastName: "O'Brien",

getName: function () {

return "Name is: " + this.firstName + " " + this.lastName;

 }

};

let theDude = {

 firstName: "Jeffrey",

 lastName: "Lebowski",

getName: function () {

return "Name is: " + this.firstName + " " + this.lastName;

 }

};

let detective = {

 firstName: "Adrian",

 lastName: "Monk",

getName: function () {

return "Name is: " + this.firstName + " " + this.lastName;

 }

};

This snippet builds on our funnyGuy object and introduces two new objects that
are very similar to it: theDude and detective. Our visualization of all this will
now look as shown in Figure 19.4.

CHAPTER 19 A DEEPER LOOK AT OBJECTS 223

FIGURE 19.4

Each new object we created extends from Object.prototype.

At first glance, there seems to be quite a bit of duplication going on. Each of our
new objects carries with it its own copy of the firstName, lastName, and get-
Name properties. Now, not all duplication is bad. Yes, that does go against what I
had stated earlier, but hear me out. In the case of objects, we need to figure out
what properties make sense to be duplicated and which ones don’t. From our
example, the firstName and lastName properties will typically have a unique
value per object. Keeping these duplicated on each object makes sense. The
getName property, though, acts as a helper and doesn’t contain anything one
particular object will want to uniquely customize:

getName: function () {

return "Name is: " + this.firstName + " " + this.lastName;

}

224 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Duplicating this one doesn’t make sense, so we should look at making getName
more generally available without the duplication. How can we go about doing
this?

Well, it turns out there is a clean way to do this by creating an intermediate
parent object that contains the generic properties. Our child objects can inherit
from this parent object instead of inheriting from Object directly. To get more
specific, we are going to create a new person object that contains getName. Our
funnyGuy, theDude, and detective objects will inherit from person. This
arrangement will ensure that the properties we need duplicated get duplicated
and the properties we need shared get shared. To help all of this cryptic text make
sense, Figure 19.5 highlights what we are trying to do.

FIGURE 19.5

Adding an intermediate person object with our (now shared) getName property

Notice that person is now a part of the prototype chain, happily nestled between
Object.prototype and our child objects. How do we go about doing this? One
approach we saw earlier is to rely on Object.create. When using Object.
create, we can specify an object to create our object from. Here’s an example:

let myObject = Object.create(fooObject);

When we do this, what happens behind the scenes is the following: our myObject
object’s prototype will be fooObject. It becomes a part of the prototype chain.
Now that we have taken a detour and expanded our understanding of Object.

CHAPTER 19 A DEEPER LOOK AT OBJECTS 225

create with what we’ve seen in this chapter, let’s go back to our original problem
of how we get funnyGuy, theDude, and detective to inherit from our person
object.

Here’s the code for doing all this:

let person = {

getName: function () {

return "The name is " + this.firstName + " " + this.lastName;

 }

};

let funnyGuy = Object.create(person);

funnyGuy.firstName = "Conan";

funnyGuy.lastName = "O'Brien";

let theDude = Object.create(person);

theDude.firstName = "Jeffrey";

theDude.lastName = "Lebowski";

let detective = Object.create(person);

detective.firstName = "Adrian";

detective.lastName = "Monk";

Because of how the prototype chain works, we can call getName on any of
our funnyGuy, theDude, and detective objects, and the right things would
happen:

detective.getName(); // The name is Adrian Monk

If we decide to enhance our person object, we can do so just once and have any
objects that inherit from it benefit from our enhancement without any repetition.
Let’s say that we add a getInitials method that returns the first letter of the
first name and last name:

let person = {

 getName: function () {

226 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

return "The name is " + this.firstName + " " + this.lastName;

 },

 getInitials: function () {

if (this.firstName && this.lastName) {

return this.firstName[0] + this.lastName[0];

 }

 }

};

We add this getInitials method to our person object. To use this method, we
can call it on any object that extends person, like our funnyGuy:

funnyGuy.getInitials(); // CO

This ability to create intermediate objects to help divide up the functionality in our
code is a powerful thing. It allows us to be more efficient in how we create objects
and what functionality we provide on each one. Neat, right?

The this Keyword
One thing you may have noticed in our previous snippets is the use of the this
keyword, especially when we used it in our person object to refer to properties
created on its children instead. Let’s go back to our person object and, more
specifically, the getName property:

let person = {

getName: function () {

return "The name is " + this.firstName + " " + this.lastName;

 },

 getInitials: function () {

if (this.firstName && this.lastName) {

return this.firstName[0] + this.lastName[0];

 }

 }

};

CHAPTER 19 A DEEPER LOOK AT OBJECTS 227

When we call getName, depending on which object we called it from, we’ll see
the appropriate name returned. For example, let’s say we do the following:

let spaceGuy = Object.create(person);

spaceGuy.firstName = "Buzz";

spaceGuy.lastName = "Lightyear";

console.log(spaceGuy.getName()); // Buzz Lightyear

When we run this, we’ll see Buzz Lightyear printed to our console. If we look at
the getName property again, there is absolutely no existence of the firstName
and lastName properties on the person object. When a property doesn’t exist,
we walk down the prototype chain from parent to parent, as shown in Figure 19.6.

FIGURE 19.6

The prototype chain for our person object

228 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In our case, the only stop on the chain would be Object.prototype. There are
no firstName and lastName properties on Object.prototype either. How is
it that this getName method happens to work and return the right values?

The answer has to do with the this keyword that precedes firstName and
lastName as part of the return statement in getName:

let person = {

 getName: function () {

 return "The name is " + this.firstName + " " + this.lastName;

 },

 getInitials: function () {

 if (this.firstName && this.lastName) {

 return this.firstName[0] + this.lastName[0];

 }

 }

};

The this keyword refers to the object to which our getName method is bound. That
object is, in this case, spaceGuy, because that is the object we are using as the entry
point to all this prototype navigation goodness, as highlighted in Figure 19.7.

FIGURE 19.7

The this keyword refers to spaceGuy!

CHAPTER 19 A DEEPER LOOK AT OBJECTS 229

At the point where the getName method is evaluated and the firstName and
lastName properties have to be resolved, the lookup starts at whatever the this
keyword is pointing to. This means our lookup starts with the spaceGuy object—
an object that, as it turns out, actually contains the firstName and lastName
properties! That is why we get the correct result when the code for getName (and
getInitials as well) is called.

Knowing what the this keyword refers to is something barrels of ink have been
spilled on, and covering it fully goes a bit beyond what we want to talk about.
The good thing is that what you’ve seen here will you get you pretty far.

THE ABSOLUTE MINIMUM
Because so much fuss is made about JavaScript’s object-oriented-ness, it is only
natural that a topic that covers it would be as wide and deep as what you’ve seen
here. A bulk of what you saw here dealt with inheritance directly or indirectly,
where objects are derived and based on other objects. Unlike other, more class-
ical languages that use classes as templates for objects, JavaScript has no such
concept of a class in a strict sense. JavaScript uses what is known as a prototypi-
cal inheritance model. You don’t instantiate objects from a template. Instead, you
create objects either from scratch or, more commonly, by copying/cloning another
object. JavaScript sits in this gray area where it doesn’t fit the mold of a class-ical
language like Java or C#, but it does have many class-like constructs. This fuzzi-
ness gives JavaScript just enough credibility to comfortably sit at a table where
other class-ical languages may congregate while still allowing it to rub shoulders
with non-classical languages at the same time.

In this chapter, I tried to reinforce JavaScript’s new functionality for working with
objects and extending them for your own needs. There is still more to cover, so
take a break and we’ll touch upon some more interesting topics starting with the
next chapter that extend what you’ve seen in more powerful, expressive, and awe-
some ways.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

20
I N T H I S C H A P T E R
• Learn what classes in the JavaScript world are

• Create objects more easily by using the class syntax

• Understand the role the constructor and related
class constructs play

USING CLASSES
When it comes to working with objects, we have covered a lot of ground so

far. We saw how to create them, we learned about prototypical inheritance,

and we even looked at the dark art of extending objects. In doing all of

this, we worked at a very low level and were exposed to how the object-fla-

vored sausage is made. That’s great for really understanding what is going

on. That’s not so great when making sense of complex object happenings

in your app. To simplify all of this, with the ES6 version of JavaScript, you

have support for these things called classes.

232 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

If you have a background in other object-oriented programming languages, you
are probably familiar with that term. Don’t worry if you are not. In the world of
JavaScript, classes are nothing special. They are nothing more than just a handful
of new keywords and conventions that simplify what we have to type when work-
ing with objects. In the following sections, we’ll get a taste of what all that means.

The Class Syntax and Object Creation
We are going to learn about the class syntax the same way our grandparents did—by
writing code. Because there is a lot of ground to cover, we won’t try to bite off every-
thing at once. We’ll start by focusing on how to use the class syntax when creating
objects. As you’ll see, there is a lot going on there that will keep us plenty busy!

Creating an Object
You can think of a class as a template that objects refer to when they are being
created. Let’s say that we want to create a new class called Planet. The most basic
version of that class will look as follows:

class Planet {

}

We use a keyword called class followed by the name we want to give our class.
The body of our class will live inside curly brackets—that is, { and }. As you can
see, our class is currently empty. That’s not very exciting, but it is okay for now. We
want to start off simple.

To create an object based on this class, all you need to do is the following:

let myPlanet = new Planet();

We declare the name of our object and use the new keyword to create (aka instan-
tiate) our object based on the Planet class. If we had to visualize what is happen-
ing under the hood, Figure 20.1 shows what you would see.

CHAPTER 20 USING CLASSES 233

FIGURE 20.1

What myPlanet is made up of behind the scenes

This looks a bit different from what we saw when creating objects using Object.
create(). The difference has to do with us creating our myPlanet object by
using the new keyword. When we create objects with the new keyword, the follow-
ing things happen:

1. Our new object is simply of type Planet.

2. Our new object’s [[Prototype]] is our new function or class’s w prototype
property.

3. A constructor function gets executed that deals with initializing our newly cre-
ated object.

234 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

I won’t bore you too much with additional details, but there is one important item
we are going to dive into further—the so-called constructor mentioned in the
third item.

Meet the Constructor
The constructor is a function (or method) that lives inside your class’s body. It is
responsible for initializing the newly created object, and it does that by running
any code contained inside it during object creation. This isn’t an optional detail.
All classes must contain a constructor function. If your class doesn’t contain one
(kinda like our Planet class right now), JavaScript will automatically create an
empty constructor for you.

Let’s go ahead and define a constructor for our Planet class. Take a look at the
following modification:

class Planet {

constructor(name, radius) {

this.name = name;

this.radius = radius;

 }

}

To define a constructor, we use the special constructor keyword to create what
is basically a function. Just like a function, you can also specify any arguments you
would like to use. In our case, we specify a name and radius value as arguments
and use them to set the name and radius properties on our object:

class Planet {

constructor(name, radius) {

this.name = name;

this.radius = radius;

 }

}

You can definitely do a lot more (or a lot less!) interesting things from inside your
constructor, but the main thing to keep in mind is that this code will run every sin-
gle time we are creating a new object using our Planet class. Speaking of which,
here is how you call our Planet class to create an object:

CHAPTER 20 USING CLASSES 235

let myPlanet = new Planet("Earth", 6378);

console.log(myPlanet.name); // Earth

Notice that the two arguments we need to set on our constructor are actually set
directly on the Planet class itself. When our myPlanet object gets created, the
constructor is run and the name and radius values we passed in get set on our
object. Figure 20.2 shows what this looks like.

FIGURE 20.2

We can see our myPlanet object containing the name and radius properties.

While we are learning about the class syntax and the details surrounding it,
never forget that all of this is just frosting—delicious syntactic sugar designed to

236 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

make your life easy. If we didn’t use the class syntax, we could have done some-
thing like this instead:

function Planet(name, radius) {

this.name = name;

this.radius = radius;

};

let myPlanet = new Planet("Earth", 6378);

console.log(myPlanet.name); // Earth

The end result is almost identical to what we gained with the class syntax. How
we got there is the only thing that is different. Don’t let this comparison give you
the wrong impression, though. Other helpful uses of the class syntax won’t be as
easy to convert using the more traditional approaches, as we’ve seen here.

What Goes Inside the Class
Our class objects look a lot like functions, but they have some quirks. We saw that
one of the things that goes into the body of our class is this special constructor
function. The only other things that can go inside our class are other functions/
methods, getters, and setters. That’s it. No variable declarations and initializa-
tions are welcome.

To see all of this at work, let’s add a getSurfaceArea function that prints the sur-rr
face area of our planet to the console. Go ahead and make the following change:

class Planet {

constructor(name, radius) {

this.name = name;

this.radius = radius;

 }

 getSurfaceArea() {

let surfaceArea = 4 * Math.PI * Math.pow(this.radius, 2);

console.log(surfaceArea + " square km!");

return surfaceArea;

 }

}

CHAPTER 20 USING CLASSES 237

You call getSurfaceArea off our created object to see it in action:

let earth = new Planet("Earth", 6378);

earth.getSurfaceArea();

When this code runs, you’ll see something like 511 million square kilometers
printed out. That’s good. Since we mentioned the other things that can go inside
our class body are getters and setters, let’s throw those in as well. We’ll use them
to help us represent our planet’s gravity:

class Planet {

constructor(name, radius) {

this.name = name;

this.radius = radius;

 }

 getSurfaceArea() {

let surfaceArea = 4 * Math.PI * Math.pow(this.radius, 2);

console.log(surfaceArea + " square km!");

return surfaceArea;

 }

set gravity(value) {

console.log("Setting value!");

this._gravity = value;

 }

get gravity() {

console.log("Getting value!");

return this._gravity;

 }

}

let earth = new Planet("Earth", 6378);

earth.gravity = 9.81;

238 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

earth.getSurfaceArea();

console.log(earth.gravity) // 9.81

That’s all there is to it. One cool thing about adding these things to our class body
is that they all will not live on the created object. They will live on the prototype
(Planet.prototype) instead, as shown by Figure 20.3.

FIGURE 20.3

We don’t have to do anything special to target the prototype object.

CHAPTER 20 USING CLASSES 239

WHY DO THE FUNCTIONS INSIDE OUR CLASS LOOK
WEIRD?

One thing you may have noticed is that the appearance of our functions inside the
class body looks a bit odd. They are missing the function keyword, for example.
That weirdness (for once) is actually not related to classes. When defining func-
tions inside an object, you have a shorthand syntax you can use.

For example, instead of writing something like
let blah = {

zorb: function() {

 // something interesting

 }

};

you can abbreviate the zorb function definition as follows:
let blah = {

zorb() {

 // something interesting

 }

};

It is this abbreviated form you will see and use when specifying functions inside
your class body.

That is a good thing because we don’t want every object to unnecessarily carry
around a copy of the class’s internals when a shared instance would work just fine!
Given that, you can see this represented in the diagram in Figure 20.3. Our grav-
ity getter and setter, along with our getSurfaceArea function, live entirely on
our prototype!

240 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Extending Objects
The last thing we will look at has to do with extending objects in this class-based
world. To help with this, we are going to be working with a whole new type of
planet known as the Potato Planet.

The Potato Planet contains everything a regular planet brings to the table, but it is
made up entirely of potatoes…as opposed to the silly molten rocks and gas that
the other planets are made up of. What we are going to do is define our Potato
Planet as a class. Its functionality will largely mirror that of the Planet class, but
we will have some additional doodads like a potatoType argument in the con-
structor and the getPotatoType method that prints to the console the value of
potatoType.

A not-so-good approach would be to define our Potato Planet class as follows:

class PotatoPlanet {

constructor(name, radius, potatoType) {

this.name = name;

this.radius = radius;

CHAPTER 20 USING CLASSES 241

this.potatoType = potatoType;

 }

 getSurfaceArea() {

let surfaceArea = 4 * Math.PI * Math.pow(this.radius, 2);

console.log(surfaceArea + " square km!");

return surfaceArea;

 }

 getPotatoType() {

var thePotato = this.potatoType.toUpperCase() + "!!1!!!";

console.log(thePotato);

return thePotato;

 }

set gravity(value) {

console.log("Setting value!");

this._gravity = value;

 }

get gravity() {

return this._gravity;

 }

}

We now have our PotatoPlanet class, and it contains not just the new potato-
related things but also all the functionality of our Planet class as well. This approach
isn’t great because we are duplicating code. Now, instead of duplicating our code,
what if we had a way of extending the functionality our Planet class provides
with the few additional pieces of functionality that our PotatoPlanet would
need? Wouldn’t that be a better approach? Well, as luck would have it, we do
have such a way via the extends keyword. By having our PotatoPlanet class
extend our Planet class, we can do something like the following:

class Planet {

 constructor(name, radius) {

 this.name = name;

242 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

this.radius = radius;

 }

 getSurfaceArea() {

let surfaceArea = 4 * Math.PI * Math.pow(this.radius, 2);

console.log(surfaceArea + " square km!");

return surfaceArea;

 }

set gravity(value) {

console.log("Setting value!");

this._gravity = value;

 }

get gravity() {

return this._gravity;

 }

}

class PotatoPlanet extends Planet {

constructor(name, width, potatoType) {

super(name, width);

this.potatoType = potatoType;

 }

 getPotatoType() {

let thePotato = this.potatoType.toUpperCase() + "!!1!!!";

console.log(thePotato);

return thePotato;

 }

}

CHAPTER 20 USING CLASSES 243

PotatoPlanet class. We are using the
extends keyword and specifying the class we will be extending from, which is
Planet:

class PotatoPlanet extends Planet {

 .

 .

 .

 .

}

From there, the other thing to keep in mind has to do with the constructor. If
we are going to be extending a class without needing to modify the constructor,
we can totally skip specifying the constructor inside our class:

class PotatoPlanet extends Planet {

 sayHello() {

 console.log("Hello!");

 }

}

In our case, since we are modifying what the constructor does by adding a prop-
erty for the type of potato, we define our constructor again with one important
addition:

class PotatoPlanet extends Planet {

constructor(name, width) {

super(name, width);

this.potatoType = potatoType;

 }

 getPotatoType() {

244 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

var thePotato = this.potatoType.toUpperCase() + "!!1!!!";

console.log(thePotato);

return thePotato;

 }

}

We make an explicit call to the parent (Planet) constructor by using the super
keyword and passing in the relevant arguments needed. This super call ensures
that whatever the Planet part of our object needs as part of its functioning is
triggered.

To use our PotatoPlanet, we would create our object and populate its proper-rr
ties or call methods on it just like we would for any plain, non-extended object.
Here is an example of us creating an object of type PotatoPlanet appropriately
called spudnik:

let spudnik = new PotatoPlanet("Spudnik", 12411, "Russet");

spudnik.gravity = 42.1;

spudnik.getPotatoType();

The cool thing is that spudnik has access not only to functionality we defined as
part of our PotatoPlanet class; all of the functionality provided by the Planet
class we are extending is also available as well. We can see why that is the case by
revisiting a more complex version of our prototype/object relationship diagram, as
seen in Figure 20.4.

If we follow the prototype chain, we go from our spudnik object to the Potato-
Planet.prototype to Planet.prototype to, finally, Object.prototype.
Our spudnik object has access to any property or method defined at any of
these prototype stops, which is why it can call things on Object or on Planet
without skipping a beat, even though PotatoPlanet doesn’t define a whole lot
on its own. This is the powerful awesomeness of extending objects.

CHAPTER 20 USING CLASSES 245

FIGURE 20.4

What extending an object looks like

246 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
The class syntax makes working with objects really easy. You may have caught
some glimpses of that here, but you’ll start to see more of it later in the book. The
thing about the class syntax is that it allows us to focus more on what we want to
do as opposed to fiddling with how exactly to do it. While working with Object.
create and the prototype properties gives us a lot of control, that control has
often been unnecessary for the majority of our cases. By working with classes,
we trade complexity in favor of simplicity. That’s not a bad thing when the simple
solution also turns out to be the right one…most of the time!

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

21
I N T H I S C H A P T E R
• Extend your objects’ functionality

• Learn more about the prototype chain

EXTENDING BUILT-IN
OBJECTS
As you know very well by now, JavaScript comes from the factory with a

good supply of built-in objects. These objects provide some of the core

functionality for working with text, numbers, collections of data, dates, and

a whole lot more. As you become more familiar with JavaScript and start

doing more interesting and clever things, you’ll often find that you want to

go further than what the built-in objects allow.

248 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Let’s take a look at an example of when something like this might occur. Here is an
example of how we can shuffle the contents of an array:

function shuffle(input) {

for (let i = input.length - 1; i >= 0; i--) {

let randomIndex = Math.floor(Math.random() *

(i + 1));

let itemAtIndex = input[randomIndex];

 input[randomIndex] = input[i];

 input[i] = itemAtIndex;

 }

return input;

}

We use this shuffle function by simply calling it and passing in the array whose
contents we want shuffled:

let shuffleArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

shuffle(shuffleArray);

// and the result is...

console.log(shuffleArray);

After this code has run, the end result is that the contents of our array are now
rearranged. Now, this functionality is pretty useful. In fact, I would say this shuffling
ability is so useful that it should be a part of the Array object and be as easily
accessible as push, pop, slice, and the other doodads the Array object offers.

If the shuffle function were a part of the Array object, we could simply use it
as follows:

let shuffleArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

shuffleArray.shuffle();

This is an example of us extending a built-in object (Array(() with some functionality thatyy
we defined (shuffle). In this chapter, we are going to look at how exactly to accomplish
this, why it all works, and why extending built-in objects is pretty controversial.

CHAPTER 21 EXTENDING BUILT-IN OBJECTS 249

Say Hello to prototype Again, Sort Of!
Extending a built-in object with new functionality sounds complicated, but it is
really simple once you understand what needs to be done. To help with this, we
are going to look at a combination of sample code and diagrams all involving the
very friendly Array object:

let tempArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

If we were to diagram the full hierarchy of the tempArray object, it would look as
shown in Figure 21.1.

FIGURE 21.1

The tangled web of objects (and possibly lies!) that live just beneath the surface

250 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

On the left, we have our tempArray object that is an instance of Array.
prototype, which in turn is an instance of the basic Object.prototype.
Now we want to extend what our array is capable of with our shuffle function.
This means we need to figure out a way to get our shuffle function inserted
into our Array.prototype, as shown in Figure 21.2.

FIGURE 21.2

Where we want our shuffle function to live!

Here is the part where the quirkiness of JavaScript shines through. We don’t have
access to the code that makes up all of the array functionality. We can’t find the
function or object that makes up the Array and insert our shuffle function into

CHAPTER 21 EXTENDING BUILT-IN OBJECTS 251

it like we might for a custom object that we defined. Our built-in objects, such as
the Array, are defined deep inside our browser’s volcanic underbelly where no
human being can go. We need to take another approach.

That other approach involves casually sneaking in and attaching our functionality
to the Array object’s prototype property. That would look something like this:

Array.prototype.shuffle = function () {

let input = this;

for (let i = input.length - 1; i >= 0; i--) {

let randomIndex = Math.floor(Math.random() * (i + 1));

let itemAtIndex = input[randomIndex];

 input[randomIndex] = input[i];

 input[i] = itemAtIndex;

 }

return input;

}

Notice that our shuffle function is declared on Array.prototype! As part of
this attachment, we made a minor change to how the function works. The function
no longer takes an argument for referencing the array we need shuffled:

function shuffle(input) {

 .

 .

 .

 .

 .

}

Instead, because this function is now a part of the Array, the this keyword
inside the function body points to the array that needs shuffling:

Array.prototype.shuffle = function () {

 let input = this;

252 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 .

 .

 .

 .

}

Taking a step back, once we run this code, our shuffle function will find itself
shoulder to shoulder with all the other built-in methods the Array object exposes
through Array.prototype, as highlighted in Figure 21.3.

FIGURE 21.3

Great success! The shuffle function is now where it belongs.

CHAPTER 21 EXTENDING BUILT-IN OBJECTS 253

If we wanted to access the shuffle capabilities, we can now do so using the
approach we initially desired:

let numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];

numbers.shuffle();

Best of all, any new arrays we create will also have access to the shuffle
functionality by default thanks to how prototype inheritance works.

Using a Subclassing Approach
Instead of adding more capabilities directly to our object’s prototype, we have a
more modern approach, building on what we saw in the previous chapter, where
we can create a new object that extends the behavior of another object. This is
something known as subclassing, where our custom object has any custom meth-
ods/properties we define in addition to everything the base object provides. The
behavior that works for extending custom objects works almost identically for
built-in objects as well.

Continuing our look at extending our Array from the previous section, take a look
at the following example of some sweet subclassing in action:

class AwesomeArray extends Array {

 swap(index_A, index_B) {

 let input = this;

 let temp = input[index_A];

 input[index_A] = input[index_B];

 input[index_B] = temp;

 }

}

We are defining a class called AwesomeArray that subclasses our Array by
using the extends keyword. Inside AwesomeArray, we define our swap method
that, as its name implies, swaps the value of two items in the array. We can use

254 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

this swap method by creating an AwesomeArray object and then just calling
swap on it, like so:

class AwesomeArray extends Array {

 swap(index_A, index_B) {

 let input = this;

 let temp = input[index_A];

 input[index_A] = input[index_B];

 input[index_B] = temp;

 }

}

let myData = new AwesomeArray("a", "b", "c", "d", "e", "f", "g");

myData.swap(0, 1);

console.log(myData); // ["b", "a", "c", "d", "e", "f", "g"]

In the above code, notice how we create our AwesomeArray object called
myData. We create it by using the new keyword and calling the AwesomeArray
constructor. Because AwesomeArray is still an Array behind the scenes, we
can perform our usual array-like operations. For example, to initialize our array
with some default values, we pass in our initial values as arguments to our
AwesomeArray constructor:

let myData = new AwesomeArray("a", "b", "c", "d", "e", "f", "g");

This is just like what we can do with regular arrays. Now, what we can’t do is use
the bracket syntax that we have been using a bunch of times. We can’t do this and
expect our myData object to be an AwesomeArray:

let myData = ["a", "b", "c", "d", "e", "f", "g"];

The reason is that this syntax is designed to work only with the built-in Array type. If we y
were to use the bracket-based approach for creating our array, we would end up creat-
ing a traditional Array instead of an y AwesomeArray with they swap method we defined.
Using the explicit constructor-based approach for creating an object is our best solution
for ensuring our array is awesome—an AwesomeArray. Overloading the bracket operator

CHAPTER 21 EXTENDING BUILT-IN OBJECTS 255

is sorta kinda possible using some cutting-edge JavaScript features like proxies, but that’s
a rabbit hole I won’t take you down today.

There is one more thing to cover when it comes to subclassing our array. A hand-
ful of array methods (map, filter, and so on) return an array as part of their
regular operation. The array that gets returned respects the type of the array it
was invoked from. This means calling map on our AwesomeArray type will return
an array that is also an AwesomeArray:

class AwesomeArray extends Array {

 swap(index_A, index_B) {

 let input = this;

 let temp = input[index_A];

 input[index_A] = input[index_B];

 input[index_B] = temp;

 }

 }

let myData = new AwesomeArray("a", "b", "c", "d", "e", "f", "g");

let newData = myData.map((letter) => letter.toUpperCase());

console.log(newData); // ["A", "B", "C", "D", "E", "F", "G"]

console.log(newData.constructor.name) // AwesomeArray

We can verify this by checking the value of newData.constructor (where new-
Data.constructor === AwesomeArray will bey true) or by just printing its name
to our console like we did in the preceding snippet. This ability for our subclassed
array to still maintain its subclassiness when dealing with methods that return arrays
is very desirable. It means we can still party in our subclassed world while still taking
advantage of powerful methods that exist in the base Array object at the same time.y

Extending Built-in Objects Is Controversial
Given how easy it is to extend a built-in object’s functionality by declaring meth-
ods and properties using the prototype property, it’s easy to think that every-
body loves the ability to do all of this. As it turns out, extending built-in objects
is a bit controversial. The reasons for this controversy revolve around the topics
discussed in the following sections.

256 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

You Don’t Control the Built-in Object’s Future
There is nothing preventing a future implementation of JavaScript from including
its own version of shuffle that applies to Array objects. At this point, you have
a collision where your version of shuffle and the browser’s version of shuffle
are in conflict with each other—especially if their behavior or performance charac-
teristics differ wildly. Ruh-roh!

Some Functionality Should Not Be Extended or Overridden
Nothing prevents you from using what you’ve learned here to modify the
behavior of existing methods and properties. For example, this is me changing
how the slice behavior works:

Array.prototype.slice = function () {

let input = this;

 input[0] = "This is an awesome example!";

. return input;

}

let tempArray = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

tempArray.slice();

// and the result is...

console.log(tempArray);

While this is a terrible example, it does show how easy it was for me to break
existing functionality.

FURTHER READING
To see a more comprehensive discussion and for further reading around this
controversy, check out this StackOverflow thread: http://stackoverflow.com/
questions/8859828/.

http://stackoverflow.com/questions/8859828/
http://stackoverflow.com/questions/8859828/

CHAPTER 21 EXTENDING BUILT-IN OBJECTS 257

THE ABSOLUTE MINIMUM: WHAT SHOULD YOU DO?
My answer to what you need to do is simple: Use your best judgment! The two
cases I outlined are only a few of the numerous issues that people raise when
extending built-in objects is discussed. For the most part, all of the objections are
valid. The question you need to ask is, “Are these objections valid for my particu-
lar scenario?” My guess is that they probably won’t be.

From personal experience, I have never had any issues extending built-in objects
with my own functionality. I wrote this shuffle function years ago, and no
browser as of now has even hinted at implementing its own version. I am certainly
not complaining! What’s more, for any functionality I do add, I test to make sure
that it works well across the browsers I am currently targeting. As long as your
testing is somewhat comprehensive (probably the latest one or two versions of the
major browsers), you should be good to go.

If you are worried about future-proofing your app, name any properties or meth-
ods in such a way that only your app would use them. For example, the chances
of Array.prototype.kirupaShuffle or AwesomeArray being introduced by
any future browser release is pretty close to zero.

Anyway, now that we’ve sufficiently covered some detailed topics around objects
in this and the previous chapters, let’s go back to looking at some of the other
types you will run into before we move on to some really exciting stuff.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

22
I N T H I S C H A P T E R
• Learn about arrow functions and their abbreviated

syntax

• Learn when arrow functions make a whole lot of
sense to use

ARROW FUNCTIONS
Before we move on, let’s address the elephant in the room. Arrow function

is probably the coolest name for some technical thing ever. It makes the

names for all the other JavaScript concepts we’ve seen so far (and will see

in the future) seem downright dreadful. With this important observation

out of the way, let’s get down to business and learn about what arrow func-

tions are and what makes them an upgrade over the traditional functions

we have seen.

260 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

What Are Arrow Functions?
The best way to understand arrow functions is to dive right in, start looking at
examples, and observe their behavior. On the surface, arrow functions are nothing
more than an abbreviated syntax on a typical function expression. There is a whole
lot more to arrow functions than just that, but we’ll start there and gradually go
deeper.

Starting with the Basics
Let’s say we have a traditional function like the following:

let laugh = function () {

 return "Hahahaha!";

}

console.log(laugh()); // "Hahahaha!"

This function is called laugh, and it returns the text Hahahaha! when called. If we
turn this into an arrow function, it will take on this more concise form:

let laugh = () => "Hahahaha!";

console.log(laugh()); // "Hahahaha!"

Notice what just happened:

1. We got rid of the function keyword.

2. We specified an arrow (=>) that lives between the parentheses and the func-
tion body.

3. We removed the curvy brackets because we don’t need them if our arrow
function is just a single statement. Going further, if our single statement is an
expression that returns a value (which is what we have), we can remove the
return keyword as well.

Summarizing what just happened, we went from three lines of function-related
code to just a single line. The behavior between our more verbose traditional
function and the more concise arrow function is identical, where calling laugh
prints Hahahaha! to the console in both cases.

CHAPTER 22 ARROW FUNCTIONS 261

Of Arguments and Parenthesis
Building on what we just saw, if our function takes a single argument, we can
remove the opening/closing parentheses when defining our arrow function:

let laugh = name => "Hahahaha! " + name + "!";

console.log(laugh("Zoidberg")); // "Hahahaha! Zoidberg!"

Notice that our laugh function takes the argument name, and it returns the
combination of name and Hahahaha!. This is the most concise form of an arrow
function, where we remove all of the syntactical fluff when we have just a single
argument. If we add more arguments to our function, the parentheses around the
arguments will come back:

let laugh = (first, last) => "Hahahaha! " + first + " " + last +

"!";

console.log(laugh("John", "Zoidberg")); // "Hahahaha! John

Zoidberg!"

The main thing to keep in mind is that the way the parentheses behave is identical
to how you would treat them with traditional functions. We can specify as many
arguments as we want with a comma separating each individual argument. We can
even specify default values for the arguments.

To Curly Bracket or Not to Curly Bracket
I mentioned earlier that we can omit the curly brackets if our function has only a
single statement. If our function specifies multiple statements, the curly brackets
have to be back:

let anotherExample = () => {

 console.log("Hello");

 console.log("Everybody");

}

anotherExample();

262 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

If our function with multiple statements is returning a value, we have to ensure the
return keyword is used as well:

let anotherExample = () => {

 let a = "Hello ";

 let b = "Everybody");

 return a + b;

}

anotherExample();

When we think about it, this makes a whole lot of sense. If we have multiple state-
ments, it is hard to know which statement contains the value we want to return.
Having an explicit return avoids that confusion.

NOTE Preferences May Vary!
Here’s the thing: You or your team may not particularly enjoy tog-
gling between showing brackets and using return or not based
on what exactly the function is doing or how many statements are
in it. There is nothing wrong with always displaying curly brackets
and using a return:

let laugh = () => {

 return "Hahahaha!";

}

laugh();

Here is an example of our laugh function from earlier where we
display both the curly brackets and the return keyword despite
the function body having just a single expression that returns a
value. This function totally works and isn’t wrong at all.

CHAPTER 22 ARROW FUNCTIONS 263

Putting It All Together
Just for good measure, let’s review what we have just seen and explore one last
example:

let calculateDiameter = (radius = 1) => {

 let pi = 3.14159;

 let diameter = 2 * pi * radius;

 return diameter;

};

console.log(calculateDiameter(4)); // 25.13272

console.log(calculateDiameter()); // 6.28318

We have a function called calculateDiameter, and it takes a single argument
called radius (which has a default value of 1 that is used when we don’t specify
an argument). Calling the calculateDiameter function with (or without) a
radius argument returns the correct value.

The biggest takeaway for us with arrow functions is this: almost anything you can t
do with traditional functions, you can do with arrow functions as well. Now, there
are a few big differences, hence the emphasis on almost. Arrow functions and tra-
ditional functions have different scoping behavior, and arrow functions have a few
limitations we should be aware of. We’ll get to the bottom of what’s up with all
this in the next chapter when looking at some quirks involving the this keyword.

264 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM: WHAT SHOULD YOU DO?
It is time to answer the inflation-adjusted million-dollar question: When should we
use arrow functions? There are several answers here. If you enjoy the abbreviated
syntax arrow functions have compared to traditional functions, use them as much
as you want. If you are someone who finds this abbreviated arrow functions syntax
to lack the clarity of the more verbose traditional functions, you don't ever have to
use it. My personal take is to be somewhere in the middle, like Malcolm!

Arrow functions are great for situations where we need to provide an anonymous
function as part of an event handler, timer, and so on:

let myButton = document.querySelector("#myButton");

myButton.addEventListener("click", () => console.log("Click!"));

The reason is partly for the abbreviated syntax, but the other reason is mostly
because of the more sensible treatment of this. What’s that? Well, we’ll cover
that topic in the next chapter, so stay tuned.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

23
I N T H I S C H A P T E R
• Get a broader overview of the this keyword

• Explore solutions for ensuring this points to the
right object by looking at approaches that involve
arrow functions, redefining this, and using the
bind method

MAKING SENSE OF THIS
AND MORE
In English, there are many situations where you need to refer to yourself:

I am hungry.

This teleportation device belongs to me.

I don’t know who microwaved the mustard.

I digress.

In JavaScript, things aren’t too different. We will write or encounter code

where we need to refer to the current object in a very general way. The

way we get a reference to this object is by the appropriately named this

keyword. We’ve seen this keyword a few times already, but now it’s time’

for us to look deeper into what this actually is and how to work around

some quirks where what we think our current object should be and what

this actually references don’t match.

266 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The this Keyword 101
When our JavaScript code runs, it always runs inside some context. We saw a
bit of this when we looked at variable scopes earlier in the book. Depending on
where our code is defined, it could run fully localized inside a function. It could run
globally at the Window scope. Our code could also be constrained to a particular
object, such as inside a class or object definition. We can figure out in which con-
text our code is operating by referring to the this keyword.

For example, let’s say we print the value of this from our global context:

console.log(this); // Window

What we will see printed to our console is our Window object. Now, let’s say we
are inside an Object and print the value of this from inside a property:

let myObject = {

 whatIsThis: function () {

 console.log(this);

 }

};

myObject.whatIsThis(); // Object

The value of this references the myObject object it is contained inside. If we didn’t
have a way to use this, there are many things we simply couldn’t do. For example, let’s
say we want to reference a property within our object, as shown here:

let myObject = {

 name: "Iron Man",

 whatIsThis: function () {

 console.log(name); // won't work!

 }

};

myObject.whatIsThis(); // undefined

CHAPTER 23 MAKING SENSE OF THIS AND MORE 267

We can’t do that. However, if we rely on this, we can totally pull it off:

let myObject = {

 name: "Iron Man",

 whatIsThis: function () {

 console.log(this.name); // yay!

 }

};

myObject.whatIsThis(); // "Iron Man"

Most recently, we saw the this keyword being used extensively when working
with classes. Take a look at the following example:

class Fruit {

 constructor(name) {

 this.name = name;

 }

 getName() {

 return this.name;

 }

}

let apple = new Fruit("Apple");

console.log(apple.getName()); // "Apple"

let orange = new Fruit("Orange");

console.log(orange.getName()); // "Orange"

When we use the this keyword as part of creating objects using the class syn-
tax, this references the object instance it is bound to, such as Apple or Orange.
Because this behaves this way inside our class definition, the appropriate name
value gets returned.

268 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

When this Just Ain’t Right
Now that we have looked at cases where this behaves exactly like we would
expect, brace yourself. This is going to be a sordid tale involving variable scopes
and the value of this. These are two topics that, on the best of days, can make
anyone’s head spin. The best way to understand the quirks of how this behaves
is to look at an example:

let counter = {

 initial: 100,

 interval: 1000,

 startCounting: function () {

 setInterval(function () {

 this.initial++;

 console.log(this.initial);

 }, this.interval);

 }

}

counter.startCounting();

We have an object called counter, and it has the initial, interval, and
startCounting properties. The property that we want to focus on is startCount-
ing, and it represents a function whose body is a setInterval function:

let counter = {

 initial: 100,

 interval: 1000,

 startCounting: function () {

 setInterval(function () {

 this.initial++;

 console.log(this.initial);

 }, this.interval);

 }

}

counter.startCounting();

CHAPTER 23 MAKING SENSE OF THIS AND MORE 269

When someone calls startCounting, the idea is for us to increment the value of
initial at a rate specified by the interval property.

Thinking out loud, when we call counter.startCounting(), the value of initial
is initially (ha!) 100. After 1000 milliseconds (as specified by the interval prop-
erty) elapses, the value of initial is incremented by 1 to be 101. After another
1000 milliseconds, the value of initial becomes 102. You get the picture.

Now, if we test this code, what do you think we are going to see? What will the
console.log statement inside our interval loop show when it prints the value
of initial every 1000 milliseconds? As it turns out, what we will see is not a nice t
set of numbers increasing by 1, starting from 100. Instead, what we will see is NaN
being printed over and over again, as shown in Figure 23.1.

FIGURE 23.1

The value of our call to this.initial doesn't look right!

Why is this the case? We can see more details if we add a few more console.
log statements to see what the value of this is inside the startCounting and
setInterval functions:

let counter = {

 initial: 100,

 interval: 1000,

270 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 startCounting: function () {

 console.log("startCounting:");

 console.log(this);

 setInterval(function () {

 console.log("setTimeout:");

 console.log(this);

 this.initial++;

 console.log(this.initial);

 }, this.interval);

 }

}

counter.startCounting();

If we run this code, we’ll see our additional information being printed to the con-
sole. The value of this under startCounting will refer to the counter object,
as shown in Figure 23.2.

FIGURE 23.2

Our first call to this refers to the startCounting functiong

The value of this inside our setTimeout function will refer to the Window
object, as shown in Figure 23.3.

FIGURE 23.3

The value of this inside setTimeout refers to Window. That doesn't look right, does it?

CHAPTER 23 MAKING SENSE OF THIS AND MORE 271

Here is where things are problematic. You may think that setInterval would inherit
the value of this from its outer environment, as defined by startCounting,
but that isn’t the case. The reason is that traditional functions don’t behave in this
seemingly logical way. They define their own value for this, and that is always
going to refer to the context in which they are being used.

Our anonymous function inside our setTimeout doesn’t get created when
our counter object is initialized. It gets created only when we call the
startCounting method:

counter.startCounting();

This call lives in the context of the Window object. When startCounting is
invoked and the anonymous function is created, the this.initial call is looking
for the value of initial on the Window object. That property doesn’t exist there,
and that is why trying to increment this nonexistent variable gives us a NaN.

Using a Redefined Version of the this Keyword
One approach to get us out of this gully is to store the value of this and pass the
stored this value into our anonymous function. Take a look at the following:

let counter = {

 initial: 100,

 interval: 1000,

 startCounting: function () {

 let that = this;

 setInterval(function () {

 that.initial++;

 console.log(that.initial); // works

 }, this.interval);

 }

}

counter.startCounting();

Notice that we introduced a that variable in the startCounting context to
store a local reference to this. Inside our anonymous function, we use that
where we earlier used this. Because that is properly storing a version of this

272 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

that is tied to our counter object, our use of that.initial properly resolves
to the correct value. If we run this code, we’ll see the output of initial properly
incrementing when we examine our console, as shown in Figure 23.4.

FIGURE 23.4

The value increments correctly! Yay.

All of these mentions of this and that in this explanation can be a bit confusing,
but we are just redefining the value of this into a local variable. You don’t have
to use the variable name that either. You can call it anything you want:

let counter = {

 initial: 100,

 interval: 1000,

 startCounting: function () {

 let baconAndEggs = this;

 setInterval(function () {

 baconAndEggs.initial++;

 console.log(baconAndEggs.initial); // undefined

 }, this.interval);

CHAPTER 23 MAKING SENSE OF THIS AND MORE 273

 }

}

counter.startCounting();

I won’t say that this variable name for the redefined this makes our code run bet-
ter, but it certainly does make it run as part of a complete breakfast!

Arrow Functions and Their Lexical Scope
We just saw one approach of addressing this problem by storing the value of
this and using this stored value in place of the actual this. There is an
arguably better approach. Let’s say we replace our anonymous function inside
our setInterval with an arrow function:

let counter2 = {

 initial: 100,

 interval: 1000,

 startCounting: function () {

 setInterval(() => {

 this.initial++;

 console.log(this.initial); // works

 }, this.interval);

 }

}

counter2.startCounting();

When we run this code, what gets printed this time around is 100, 101, 102,
and so on, just like we want. No mess. No fuss. No this and that confusion.
Why does an arrow function work here while traditional functions require extra
gymnastics?

The reason is that arrow functions do not define their ownt this value. Instead,
they inherit the value of this from where their code is defined in the document. d
Another way of saying this is that the this value inside arrow functions is deter-rr
mined by its surrounding scope, more formally called the lexical scope. This is
in contrast to traditional functions whose this value comes from the context in
which they are used. This is a subtle difference with a huge (and beneficial) change
in behavior.

274 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

NOTE Some Other Things Arrow Functions
Don’t Have
Beyond not having their own this value (which they inherit from
their surroundings), arrow functions have no constructor or prototype
properties. They also don’t support the bind, call, and apply
methods. If you have existing code that relies on these properties
and methods, your best bet is to stay with traditional functions or
learn how to use arrow functions and adapt your code accordingly.

One Method to Bind Them All
We have seen several cases so far where the value of this inside a function isn’t
quite what it needs to be. Instead of letting the environment dictate the this
value, what if we had a magical way to just tell a function (very sternly, yet kindly)
what its value of this should be? That magical way happens to be something
the bind method provides. The way bind works is a bit mysterious, but what we
need are just two things to use it:

• A function whose value of this we want to set

• The star of this section, the bind method itself

If we had to illustrate this, we would see something that looks as follows in Figure 23.5.

FIGURE 23.5

Meet the function and the bind method, the two key pieces of our solution here!d

What we do next is where the magic part comes in: We take our regular function,
call bind from it, and provide the value of this that we want our regular function
to use. The syntax looks a bit like the following:

let boundFunction = myRegularFunction.bind(valueOfThis);

boundFunction();

CHAPTER 23 MAKING SENSE OF THIS AND MORE 275

When called, bind creates a new function known as a bound (or exotic) function,
where it wraps our regular function and injects the value of this that it needs to
have to behave correctly:

Getting back to our example from earlier, here is how we use bind to ensure our
setInterval gets the correct value for this:

let counter3 = {

 initial: 100,

 interval: 1000,

 startCounting: function () {

 setInterval(function() {

 this.initial++;

 console.log(this.initial); // works

 }.bind(this), this.interval);

 }

}

counter3.startCounting();

When we run this code, we’ll see our console printing 100, 101, 102, and so on,
just like we expect. As the highlighted line shows, we have our anonymous func-
tion tagged with the bind method, and the argument we pass to bind is the
value of this from the same context our setInterval is defined in. This ensures
that any code inside our anonymous function that references this (such as this.
initial++) gets the value of this from what we passed in via bind, as opposed
to inferring the Window object from its environment…which we don’t want!

276 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM: WHAT SHOULD YOU DO?
One of the most frustrating parts of writing or reading JavaScript is figuring out
what in the world this is referring to at any given time. Unlike other JavaScript
quirks that have managed to be replaced by better solutions over the years, there
are no signs that we’ll ever stop using this. The best we can do is take the time
to better understand how this works and prepare ourselves for what surprises
this will have in store in the future!

Using console.log helps us to figure out what the value of this is at any given
time, and the techniques we've seen in this chapter will help us make this be
whatever we want it to be! Really cool, right?

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

24
I N T H I S C H A P T E R
• Learn more about what goes on behind true and

false

• Understand what boolean objects and functions do

• Find out the difference between simple inequality
operators and strict inequality operators

BOOLEANS AND THE
STRICTER === AND !==
OPERATORS
While it’s polite to say that all types are interesting and fun to be around,

you and I both know that is a lie. Some types are just boring. The boolean

type is one such example. Here is the reason why: Whenever we initialize a

variable using either true or false, we create a boolean:

let sunny = false;

let traffic = true;

278 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Congratulations. If you just know this, you are 80 percent of the way there in fully under-rr
standing how booleans operate. Of course, 80 percent isn’t really adequate when you
think about it. It’s like eating a hot dog without any condiments. It’s like watching a live
concert and leaving before the encore set. It’s like leaving a sentence mid….

In this chapter, we are going to cover the other 20 percent, which is made up of
various boolean quirks, the boolean object, the Boolean function, and the impor-rr
tant === and !== operators.

The Boolean Object
Booleans are meant to be used as primitives. I’m going to be extra lazy and just
reuse the example you saw a few moments earlier to show you what a boolean
primitive would look like:

let sunny = false;

let traffic = true;

Like you’ve seen so many times already, behind every primitive there is an
Object-based representation lurking in the shadows. The way you create a new
boolean object is by using the new keyword, the Boolean constructor name, and
an initial value:

let boolObject = new Boolean(false);

let anotherBool = new Boolean(true);

The initial value you can pass in to the Boolean constructor is commonly true and
false, but you can pretty much pass anything in there that will result in the final
evaluation being true or false. I will detail what kinds of values will predictably
result in a true or false outcome in a little bit, but here is the obligatory warning
from the Surgeon General about this approach: Unless you really, REALLY want a
boolean object, you should stick with primitives.

The Boolean Function
There is one major advantage the Boolean constructor provides, and that advan-
tage revolves around being able to pass in any arbitrary value or expression as
part of creating your boolean object:

let boolObject = new Boolean(< arbitrary expression >);

CHAPTER 24 BOOLEANS AND THE STRICTER === AND !== OPERATORS 279

This is really advantageous because you may find yourself wanting to evaluate a
boolean expression where the data you end up with isn’t a clean true or false.
This is especially common when you are dealing with external data or code, and
you have no control over which of the various false-y or true-y values you get.
Here is a contrived example:

let isMovieAvailable = getMovieData()[4];

The value for isMovieAvailable is probably a true or false. When it comes to
processing data, you often have no guarantee that something at some point will
break or change what gets returned. Just like in real life, simply hoping that
things will work is never adequate without you taking some actionable steps. The
Boolean function is one such step.

Now, creating your own function to deal with the ambiguity may be overkill, but
the downside with the Boolean constructor is that you are obviously left with a
boolean object—which isn’t desirable. Fortunately, there is a way to get the flex-
ibility of the Boolean constructor with the lightweight nature of a boolean primi-
tive extremely easily. That way is led by the Boolean function:

let bool = Boolean(true);

The Boolean function allows you to pass in arbitrary values and expressions while
still returning a primitive boolean value of true or false. The main difference in
how you use it compared to the constructor approach is that you don’t have the
new keyword. W00t! Anyway, let’s take a few moments and look at the variety of
things you can pass in to the Boolean function, and note that all of this will also
apply to what you can pass in to the Boolean constructor you saw in the previous
section as well.

The values you can pass in to return false are null, undefined, empty/nothing, 0,
an empty string, and (of course) false:

let bool;

bool = Boolean(null);

bool = Boolean(undefined);

bool = Boolean();

280 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

= Boolean(0);

bool = Boolean("");

bool = Boolean(false);

In all of these examples, the bool variable will return false. To return true, we can
pass in a value of true or ANYTHING that results in something other than the vari-
ous false values we saw earlier:

let bool;

bool = Boolean(true);

bool = Boolean("hello");

bool = Boolean(new Boolean()); // Inception!!!

bool = Boolean("false"); // "false" is a string

bool = Boolean({});

bool = Boolean(3.14);

bool = Boolean(["a", "b", "c"]);

In these examples, the bool variable will return a true. That may seem bizarre
given some of the statements, so let’s look at a few of the subtle things in
play here. If what we are evaluating is an object, such as new Boolean(new
Boolean()), the evaluation will always be true. The reason is that the mere
existence of an object will trigger the true switch, and calling new Boolean()
results in a new object. Extending this logic a bit, it means the following if
statement actually results in a true as well:

let boolObject = new Boolean(false);

if (boolObject) {

console.log("Bool, you so crazy!!!");

}

It doesn’t matter that the object we are evaluating is secretly a false in disguise…
or a String object, an Array, and so on. The rules for primitives are simpler. If
we are passing in a primitive (or something that evaluates to a primitive), anything
other than null, undefined, 0, an empty string, NaN, or false will result in a result
of true.

CHAPTER 24 BOOLEANS AND THE STRICTER === AND !== OPERATORS 281

Strict Equality and Inequality Operators
The last thing we are going to look at is combining what we know about types
and booleans to add a twist to the various conditional operators we saw earlier.
So, we know about == and != and have probably seen them in use a few times.
These are the equality and inequality operators that let us know if two things are
either equal or unequal. Here is the plot twist: They exhibit a subtle and deviant
behavior we may not be aware of.

Here is an example:

function theSolution(answer) {

if (answer == 42) {

console.log("You have nothing more to learn!");

 }

}

theSolution("42"); //42 is passed in as a string

In this example, the expression answer == 42 will evaluate to true. This works despite
the 42 we passed in being a string and the 42 we are checking against being a number.
What is going on here? In what kind of a world is a string and a number equal? With the
== and != operators, this is expected behavior. The value for the two things we are com-
paring is 42. To make this work, JavaScript forces the two different yet similar values to be
the same under the hood. This is formally known as type coercion.

The problem is that this behavior can be undesirable—especially when this is hap-
pening without us knowing about it. To avoid situations like this, we have stricter
versions of the equality and inequality operators, and they are === and !==,
respectively. These operators check for both value and typer and do not perform
any type coercion. They basically force us to write code where the burden on
ensuring true equality or inequality falls squarely on us. That is a good thing.

Let’s fix our earlier example by replacing the == operator with the === operator:

function theSolution(answer) {

if (answer === 42) {

console.log("You have nothing more to learn!");

 }

}

282 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

theSolution("42"); //42 is passed in as a string

This time around, the conditional expression will evaluate to false. In this stricter
world, a string and number are of different types despite the values being similar.
Because no type coercion takes place, the final result is false.

The general word on the street is to always use the stricter forms of the equality
and inequality operators. If anything, using them will help us to spot errors in our
code—errors that might otherwise turn out very difficult to identify.

CAUTION If we are comparing two different objects, the
strict equality operator (and the not-so-strict equality operator)
won’t work as we might expect. For example, all of the following
cases will be false:

console.log(new String("A") == new String("A"));

console.log([1, 2, 3] == [1, 2, 3]);

console.log({ a: 1 } == { a: 1 });

Keep that in mind when you are comparing the equality or
inequality of two separate, individual objects.

THE ABSOLUTE MINIMUM
Booleans make up one of the most frequently used types in our code. They play
a key role in allowing our code to branch out into different directions despite the
simplicity they exhibit on the surface. While I can count on one hand the num-
ber of times I had to use the Boolean function or even the stricter equality and
inequality operators, there aren’t enough hands with fingers for me to count the
number of times I’ve encountered these strange things in the wild.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

25
I N T H I S C H A P T E R
• Learn about when values don’t exist

• Understand what to do with null and undefined

NULL AND UNDEFINED
One of the great mysteries of the world revolves around making sense of

null and undefined. Most code you see is littered with them, and you’ve

probably run into them yourself a few times. As mysteries go, making sense

of null and undefined isn’t particularly bizarre. It is just dreadfully bor-rr

ing…like the most boring (yet important) thing about JavaScript you’ll ever

have to learn.

284 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Null
Let’s start with null. The null keyword is a primitive that fills a special role in the
world of JavaScript. It is an explicit definition that stands for no value. If you’ve
ever browsed through code others have written, you’ll probably see null appear
a number of times. It is quite popular because the advantage of null lies in its
definitiveness. Instead of having variables contain stale values or mysterious
undefined values, setting it to null is a clear indication that you want the value
to not exist.

This advantage is important when you are writing code and want to initialize or
clear a variable to something that represents nothing.

Here is an example:

let name = null;

if (name === null) {

 name = "Peter Griffin";

} else {

 name = "No name";

}

The null primitive isn’t a naturally occurring resource. It is something you con-
sciously assign, so you will often see it used as part of variable declarations or
passed in as arguments to function calls. Using null is easy. Checking for its exis-
tence is pretty easy as well:

if (name === null) {

 // do something interesting...or not

}

The only thing to note is that you should use the === operator instead of the
lowly == one. While the world won’t end if you use ==, it’s good practice to check
for both type and value when working with null.

Undefined
Here is where things get a little interesting. To represent something that isn’t defined,
you have the undefined primitive. You seed undefined in a few cases. The most d

CHAPTER 25 NULL AND UNDEFINED 285

when accessing the value of a function that doesn’t actually return anything.

Here is a code snippet that points out undefined in a few of its natural habitats:

let myVariable;

console.log(myVariable); // undefined

function doNothing() {

 // watch paint dry

 return;

}

let weekendPlans = doNothing();

console.log(weekendPlans); // undefined

let person = {

 firstName: "Isaac",

 lastName: "Newton"

}

console.log(person.title); // undefined

In your code, you probably won’t be assigning undefined to anything. Instead,
you will spend time checking to see if the value of something is undefined.
You have several ways to perform this check. The first is a naive way that usually
(almost always) works:

if (myVariable === undefined) {

 // do something

}

The downside of this approach has to do with what undefined actually is.
Brace yourself—undefined is a global variable that happens to be automati-
cally defined for us, and this means we can potentially overwrite it to something
like true or whatever else we want to set it to. If undefined ever gets over-rr
written, it would break our code if we just check with === or even ==. To avoid

286 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

any shenanigans around this, the safest way to perform a check for undefined
involves typeof and the === operator:

let myVariable;

if (typeof myVariable === "undefined") {

console.log("Define me!!!");

}

This ensures that you will perform a check for undefined and always return the
correct answer.

NOTE Null == Undefined, But Null !==
Undefined
Continuing the == and === weirdness, if you ever check for null
== undefined, the answer will be true. If you use === and have
null === undefined, the answer in this case will be false.

The reason is that == does type coercion, where it arm-twists
types to conform to what JavaScript thinks the value should be.
Using ===, you check for both type and value. This is a more
comprehensive check that detects that undefined and null are
indeed two different things.

A hat tip to senocular (aka Trevor McCauley) for pointing this out!

THE ABSOLUTE MINIMUM
There is a reason why I saved these built-in types for last. Both null and unde-
fined are the least exciting of the bunch, but they are also often misunderstood.
Knowing how to use null and detecting for it and undefined are very important
skills to get right. Not getting them right will lead to very subtle errors that are
going to be hard to pinpoint.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

26
I N T H I S C H A P T E R
• Learn what JSON is and why it is so popular

• Understand how to represent objects using JSON

• Learn how to read JSON data

ALL ABOUT JSON
(JAVASCRIPT OBJECT
NOTATION)
When it comes to storing, retrieving, or transmitting data, you can use a

bunch of file formats and data structures. You’ve probably used text files,

Word documents, Excel spreadsheets, ZIP files, and so on to deal with

the various kinds of data you handle. On the web front, one format reigns

supreme over all others. It runs faster. It jumps higher. It has a shinier (and

furrier) coat of fur. That format is known as JSON—short for JavaScript

Object Notation.

288 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In this chapter, you are going to learn all about what makes JSON objects awe-
some. We’ll look in detail at what goes inside them and how you can read values
from them as part of your own implementations.

What Is JSON?
In JavaScript, you have a way of defining objects using the object literal syntax:

let funnyGuy = {

 firstName: "Conan",

 lastName: "O'Brien",

getName: function () {

return "Name is: " + this.firstName + " " + this.lastName;

 }

};

let theDude = {

 firstName: "Jeffrey",

 lastName: "Lebowski",

getName: function () {

return "Name is: " + this.firstName + " " + this.lastName;

 }

};

let detective = {

 firstName: "Adrian",

 lastName: "Monk",

getName: function () {

return "Name is: " + this.firstName + " " + this.lastName;

 }

};

CHAPTER 26 ALL ABOUT JSON (JAVASCRIPT OBJECT NOTATION) 289

If you aren’t familiar with this syntax, I highly recommend you read more about it
in Chapter 19, “A Deeper Look at Objects.” It will make understanding and work-
ing with JSON objects significantly easier!

On the surface, the object literal syntax looks like a bunch of brackets and colons
and weird curly braces that define your object’s properties and values. Despite
how weird it looks, under the covers, it is fairly descriptive. Many of the com-
mon data types you would want to use are available. You can neatly represent
their properties and values as key and value pairs separated by a colon. Equally
as important as all the other stuff I just mentioned, this syntax allows you to have
structure and nested values. Overall, it is a pretty sweet way of representing
JavaScript objects…in a literal representation!

The JSON format borrows heavily from this object literal syntax. Here is an exam-
ple of some honest-to-goodness real JSON data returned by the WeatherUnder-rr
ground API for displaying the weather in my hometown of Seattle:

{

 "response": {

 "version": "0.1",

"termsofService": "http://www.wunderground.com/weather/api/d/

erms.html",

 "features": {

 "conditions": 1

 }

 },

 "current_observation": {

"image": {

"url": "http://icons.wxug.com/graphics/wu2/logo_130x80.png",

"title": "Weather Underground",

"link": "http://www.wunderground.com"

 },

 "display_location": {

"full": "Seattle, WA",

"city": "Seattle",

"state": "WA",

 "state_name": "Washington",

"country": "US",

290 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 "country_iso3166": "US",

"zip": "98101",

"magic": "1",

"wmo": "99999",

"latitude": "47.61167908",

"longitude": "-122.33325958",

"elevation": "63.00000000"

 },

 "observation_location": {

"full": "Herrera, Inc., Seattle, Washington",

"city": "Herrera, Inc., Seattle",

"state": "Washington",

"country": "US",

 "country_iso3166": "US",

"latitude": "47.616558",

"longitude": "-122.341240",

 "elevation": "121 ft"

 },

 "estimated": {},

"station_id": "KWASEATT187",

"observation_time": "Last Updated on August 28, 9:28 PM PDT",

"observation_time_rfc822": "Fri, 28 Aug 2015 21:28:12 -0700",

 "observation_epoch": "1440822492",

"local_time_rfc822": "Fri, 28 Aug 2015 21:28:45 -0700",

 "local_epoch": "1440822525",

 "local_tz_short": "PDT",

"local_tz_long": "America/Los_Angeles",

 "local_tz_offset": "-0700",

"weather": "Overcast",

 "temperature_string": "68.0 F (20.0 C)",

"temp_f": 68.0,

"temp_c": 20.0,

 "relative_humidity": "71%",

 "wind_string": "Calm",

 "wind_dir": "NNW",

CHAPTER 26 ALL ABOUT JSON (JAVASCRIPT OBJECT NOTATION) 291

 "wind_degrees": 331,

 "wind_mph": 0.0,

 "wind_gust_mph": "10.0",

 "wind_kph": 0,

 "wind_gust_kph": "16.1",

 "pressure_mb": "1008",

 "pressure_in": "29.78",

 "pressure_trend": "-",

 "dewpoint_string": "58 F (15 C)",

 "dewpoint_f": 58,

 "dewpoint_c": 15,

 "heat_index_string": "NA",

 "heat_index_f": "NA",

 "heat_index_c": "NA",

 "windchill_string": "NA",

 "windchill_f": "NA",

 "windchill_c": "NA",

 "feelslike_string": "68.0 F (20.0 C)",

 "feelslike_f": "68.0",

 "feelslike_c": "20.0",

 "visibility_mi": "10.0",

 "visibility_km": "16.1",

 "solarradiation": "--",

"UV": "0",

 "precip_1hr_string": "0.00 in (0 mm)",

 "precip_1hr_in": "0.00",

 "precip_1hr_metric": " 0",

 "precip_today_string": "0.00 in (0 mm)",

 "precip_today_in": "0.00",

 "precip_today_metric": "0",

"icon": "cloudy",

"icon_url": "http://icons.wxug.com/i/c/k/nt_cloudy.gif",

 "nowcast": ""

 }

}

292 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

the JSON data here and the object literal syntax you saw earlier. There are some
major differences you need to be aware of as well, but we’ll look at all that boring
stuff later. First, let’s take a deeper look at what exactly makes up a JSON object.

Looking Inside a JSON Object
A JSON object is nothing more than a combination of property names and their
values. That seems pretty simple, but there are some important details we need to
go over in this section.

Property Names
Property names are the identifiers you will use to access a value. Visually, they are
the items to the left of the colon character:

{

 "firstName": "Kirupa",

"lastName": "Chinnathambi",

 "special": {

"admin": true,

 "userID": 203

 },

 "devices": [

 {

"type": "laptop",

"model": "Macbook Pro 2015"

 },

 {

"type": "phone",

"model": "iPhone 6"

 }

]

}

In this JSON snippet, the property names are firstName, lastName, special,
admin, userID, devices, type, and model. Notice how the property names are

CHAPTER 26 ALL ABOUT JSON (JAVASCRIPT OBJECT NOTATION) 293

defined. They are string values wrapped in quotation marks. The quotation mark
is an important detail that you don’t have to specify in the object literal case for
property names, so don’t forget to include them when working in the JSON world!

The Values
Each property name maps to a value, and the types of values you can have are as
follows:

• Numbers

• Strings

• Booleans (true or false)

• Objects

• Arrays

• Null

Let’s map these various types to the example we just looked at.

Strings
The string values are the following highlighted lines:highlighted

{

 "firstName": "Kirupa",

"lastName": "Chinnathambi",

 "special": {

"admin": true,

 "userID": 203

 },

 "devices": [

 {

"type": "laptop",

"model": "Macbook Pro"

 },

 {

"type": "phone",

"model": "iPhone XS"

294 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 }

]

}

The double quotation marks are a dead giveaway that these values are strings.
Besides your usual letters and numbers and symbols, you can also include escape
characters like \', \", \\, \/, and so on to define characters in your string that would
otherwise get parsed as some JSON operation.

Numbers
Our lone representative of the number family is the value for the userID property:

{

 "firstName": "Kirupa",

"lastName": "Chinnathambi",

 "special": {

"admin": true,

 "userID": 203

 },

 "devices": [

 {

"type": "laptop",

"model": "Macbook Pro"

 },

 {

"type": "phone",

"model": "iPhone XS"

 }

]

}

You can specify both decimal values (for example, 0.204, 1200.23, 45) as well as
exponential values (for example, 2e16, 3e+4, 1.5e-2). There are some quirks you
need to be aware of, though. You can’t prefix your number with a 0 followed by
another number. For example, a value of 03.14 isn’t allowed.

CHAPTER 26 ALL ABOUT JSON (JAVASCRIPT OBJECT NOTATION) 295

Booleans
Boolean values are easy:

{

 "firstName": "Kirupa",

"lastName": "Chinnathambi",

 "special": {

"admin": true,

 "userID": 203

 },

 "devices": [

 {

"type": "laptop",

"model": "Macbook Pro"

 },

 {

"type": "phone",

"model": "iPhone XS"

 }

]

}

The values can either be true or false. One thing to note—the capitalization is
important. Both true and false have to be lowercase. Using sentence casing (True
or False) or going with all caps (TRUE or FALSE) is forbidden.

Objects
This is where things get a little interesting:

{

 "firstName": "Kirupa",

"lastName": "Chinnathambi",

 "special": {

"admin": true,

296 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 "userID": 203

 },

 "devices": [

 {

"type": "laptop",

"model": "Macbook Pro"

 },

 {

"type": "phone",

"model": "iPhone XS"

 }

]

}

Objects contain a collection of property names and values, and they are sepa-
rated from the rest of your content with curly brackets. See? Wasn’t that a little
interesting?

Arrays
Our devices property represents an array:

{

 "firstName": "Kirupa",

"lastName": "Chinnathambi",

 "special": {

"admin": true,

 "userID": 203

 },

 "devices": [

 {

"type": "laptop",

"model": "Macbook Pro"

 },

 {

"type": "phone",

CHAPTER 26 ALL ABOUT JSON (JAVASCRIPT OBJECT NOTATION) 297

"model": "iPhone XS"

 }

]

}

Arrays store an ordered collection of zero or more values that you can iterate
through, and they are separated by the bracket notation. Inside an array, you can
use any of the JSON types we’ve seen so far, including other arrays!

Null
The last data type is also the most boring one:

{

 "foo": null

}

Your JSON values can be null. This represents an empty value.

Reading JSON Data
I admit it. The previous section was extremely dull, but there is some good news!
Given how boring what you just saw was, this section is by comparison going to
seem a whole lot more exciting than it really is. Yay!

Anyway, almost all your interactions with JSON will revolve around reading data.
When it comes to reading JSON data, the main thing to keep in mind is that it
is very similar to reading values stored inside a typical JavaScript object. You can
either dot into the value you want (property.propertyFoo) or you can use the
array approach (property["propertyFoo"]) and access the value that way.

To help explain all this, let’s use the following example:

let exampleJSON = {

"firstName": "Kirupa",

"lastName": "Chinnathambi",

"special": {

"admin": true,

298 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

"userID": 203

 },

"devices": [

 {

"type": "laptop",

"model": "Macbook Pro"

 },

 {

"type": "phone",

"model": "iPhone XS"

 }

]

};

To read the value stored by firstName, you can do either of the following:

exampleJSON.firstName;

exampleJSON["firstName"];

Both lines will return a value of Kirupa. There is no right or wrong answer to
whether you want to use the dot notation approach or the array approach to
access the value you are interested in. Use whatever you are comfortable with,
but my personal preference is to use dot notation. Passing in property names as
strings makes me queasy, so I will only use the dot notation approach in the code
snippets that you will be seeing.

Similar to what you saw earlier, to access the value stored by lastName, you can
do this:

exampleJSON.lastName;

For simple properties that store simple values, life is pretty simple. The only very,
VERY minor complication you’ll run into is when working with more complex val-
ues made up of objects and arrays. To read a value stored inside an object, just
keep dotting into each property until you reach the property that stores the value
you are interested in.

CHAPTER 26 ALL ABOUT JSON (JAVASCRIPT OBJECT NOTATION) 299

Here is what trying to access the value stored by the userID property will look like:

exampleJSON.special.userID;

Arrays are no different, but you will eventually have to switch into array notation
once you get to the property that stores your array values. If we wanted to access
the model value of the first device in the devices array, we can type something
that looks as follows:

exampleJSON.devices[0].model;

Because the devices property refers to an array, you can also perform stereotypical
array-like operations, such as the following:

let devicesArray = exampleJSON.devices;

for (let i = 0; i < devicesArray.length; i++) {

let type = devicesArray[i].type;

let model = devicesArray[i].model;

 // do something interesting with this data!

}

To reiterate what you saw in the previous section, your JSON values can be either
strings, numbers, objects, arrays, booleans, or nulls. Everything that JavaScript
supports for a given data type that you encounter inside your JSON object, you
can easily take advantage of.

Parsing JSON-Looking Data into Actual JSON
In our example, we had our JSON data defined neatly inside the exampleJSON
variable. There is no doubt in anybody’s mind that what we’re dealing with is a real
JS object that is represented using JSON semantics.

With real-world scenarios, that won’t always be the case. Your JSON data could
be coming from a variety of different sources, and not all of them will return the
JSON data into this workable format we just saw. Many will return JSON data as
raw text. You will have something that looks like a JSON object, but you can’t

300 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

interact with the data like you would when you are working with a real JSON
object.

To deal with this, you have the JSON.parse method that takes your “fake” JSON
data as its argument:

function processRequest(e) {

if (xhr.readyState == 4 && xhr.status == 200) {

let response = JSON.parse(xhr.responseText);

selectInitialState(response.region);

 }

}

As you can see from our highlighted line, this method takes whatever JSON-
looking data you end up with and converts it into a real JSON object that you can
work with more easily. Whenever I am working with JSON data from an external
source, I always use JSON.parse just to be safe.

Writing JSON Data?
We just had a section devoted entirely to reading values from JSON data. It would
seem logical to also have a section that is focused on writing JSON data. As it
turns out, writing JSON data just isn’t all that popular unless you are saving JSON
data to a file or doing something with web services. If you are doing either of
these tasks, statistically you are doing development on Node or writing code in a
programming language other than JavaScript.

For frontend development, I can’t think of too many cases where information on
writing JSON would be useful. If you run into the rare situation where you need
to do something other than reading JSON data, my recommendation is for you to
use Google!

CHAPTER 26 ALL ABOUT JSON (JAVASCRIPT OBJECT NOTATION) 301

THE ABSOLUTE MINIMUM
At one point in time, this chapter would have been focused on XML. Even today,
XML is still widely popular as a file format for storing or communicating informa-
tion. Only in a world where the web browser is king (in other words, the world
we live in) is JSON extremely popular. Outside of websites, web applications,
and REST-based web services, dealing with data in the JSON format isn’t all that
popular. You should keep that in mind when running into older, less-web-centric
situations!

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

27
JS, THE BROWSER, AND
THE DOM
So far, we’ve looked at JavaScript in isolation. We learned a lot about its

basic functionality, but we did so with little to no connection with how it ties

to the real world—a world that is represented by your browser, swimming

with little HTML tags and CSS styles. This chapter will serve as an introduc-

tion to this world, and subsequent chapters will dive in much deeper.

I N T H I S C H A P T E R
• Learn how JavaScript and the rest of your page

interact

• Understand what the fuss about the Document
Object Model (DOM) is all about

• Figure out the fuzzy boundaries between HTML,
CSS, and JavaScript

304 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In the following sections, you will learn about the mysterious data structure and pro-
gramming interface known as the Document Object Model (DOM). You’ll learn what
it is, why it is useful, and how it ties in to everything you’ll be doing in the future.

What HTML, CSS, and JavaScript Do
Before we dive in and start answering the meaning of life…err, the DOM, let’s
quickly look at some things you probably already know. For starters, the stuff you
put into your HTML documents revolves around Hypertext Markup Language
(HTML), Cascading Style Sheets (CSS), and JavaScript. We treat these three things
as equal partners in building up what you see in your browser (Figure 27.1).

FIGURE 27.1

A typical web page is made up of HTML, CSS, and JavaScript.

Each partner has an important role to play, and the role each one plays is very
different.

HTML Defines the Structure
Your HTML defines the structure of your page and typically contains the content
you see:

<!DOCTYPE html>

<html>

CHAPTER 27 JS, THE BROWSER, AND THE DOM 305

<head>

 <meta content="sea otter, kid, stuff" name="keywords">

 <meta content="Sometimes, sea otters are awesome!"

name="description">

 <title>Example</title>

 <link href="foo.css" rel="stylesheet" />

</head>

<body>

 <div id="container">

 <h1>What This Sea Otter Did to This Little Kid Will Make You

LOL!</h1>

 <p class="bodyText">

 Nulla tristique, justo eget semper viverra,

 massa arcu congue tortor, ut vehicula urna mi

 in lorem. Quisque aliquam molestie dui, at tempor

 turpis porttitor nec. Aenean id interdum urna.

 Curabitur mi ligula, hendrerit at semper sed,

 feugiat a nisi.

 </p>

 <div class="submitButton">

 more

 </div>

 </div>

 <script src="stuff.js"></script>

</body>

</html>

306 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

HTML by itself, kinda like Meg Griffin in Family Guy, is pretty boring. If you don’t
know who Meg is and are too lazy to google her, Figure 27.2 is an approximation
of what she looks like.

FIGURE 27.2

An artistic interpretation of Meg Griffin

Anyway, you don’t want your HTML documents to be boring. To transform your
content from something plain and drab to something appealing, you have CSS.

Prettify My World, CSS!
CSS is your primary styling language. It allows you to give your HTML elements
some much-needed aesthetic and layout appeal:

body {

font-family: "Arial";

background-color: #CCCFFF;

}

#container {

margin-left: 30%;

}

CHAPTER 27 JS, THE BROWSER, AND THE DOM 307

#container img {

padding: 20px;

}

#container h1 {

font-size: 56px;

font-weight: 500;

}

#container p.bodyText {

font-size: 16px;

line-height: 24px;

}

.submitButton {

display: inline-block;

border: 5px solid #669900;

background-color: #7BB700;

padding: 10px;

width: 150px;

font-weight: 800;

}

For the longest time, between HTML and CSS, you had everything you needed to
create an awesome-looking and functioning page. You had structure and layout.
You had navigation. You even had simple interactions such as mouseovers. Life
was good.

It’s JavaScript Time!
For all the great things HTML and CSS had going for them, they were both
limited in how much interactivity they provided. People wanted to do more on a
web document than just passively sit back and observe what is going on. They
wanted their web documents to do more. They wanted their documents to help
them play with media; remember where they left off; do things with their mouse
clicks, keyboard taps, and finger presses; use fancy navigation menus; see spiffy
(yes, I used the word spiffy) programmatic animations; interact with their webcams/yy
microphones; not require a page reload/navigation for any kind of action; and a
whole lot more.

308 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

It certainly helped that web developers and designers (that is, you and me) were
itching for a way to help create these kinds of things as well.

To fill in this gap between what HTML and CSS provided and what people wanted,
you had third-party components like Java and Flash that thrived for many years.
It wasn’t until recently that this trend changed. There were many technical and
political reasons for this shift, but one reason was that JavaScript for many years
just wasn’t ready. It didn’t have what it took either in the core language or in what
browsers supported to be effective.

That’s no longer the case today. JavaScript is now a perfectly capable language
that allows you to add the kinds of interactive things people are looking for. All of
these capabilities are accessed by the real star of all this, the DOM.

CHAPTER 27 JS, THE BROWSER, AND THE DOM 309

Meet the Document Object Model
What your browser displays is a web document. More specifically, to summarize
the entirety of the previous sections, what you see is a collision of HTML, CSS, and
JavaScript working together to create what gets shown. Digging one step deeper,
under the covers, there is a hierarchical structure that your browser uses to make
sense of everything going on.

This structure is known (again) as the Document Object Model. Friends just call it
the DOM. Figure 27.3 shows a very simplified view of what the DOM for our
earlier example would look like.

FIGURE 27.3

Our DOM for all the HTML you saw earlier looks sorta like this!

Despite the simplicity, there are several things to drill in on that apply to all DOM
structures in general. Your DOM is actually made up many kinds of things beyond
just HTML elements. All of those things that make up your DOM are more generi-
cally known as nodes.

These nodes can be elements (which shouldn’t surprise you), attributes, text con-
tent, comments, document-related stuff, and various other things you simply never
think about. That detail is important to someone, but that “someone” shouldn’t

310 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

be you and me. Almost always, the only kind of node we will care about is the ele-
ment kind because that is what we will be dealing with 99 percent of the time. At
the boring/technical level, nodes still play a role in our element-centric view.

Every HTML element you want to access has a particular type associated with it,
and all of these types extend from the Node base that makes up all nodes, as
shown in Figure 27.4.

FIGURE 27.4

The arrangement of how the elements we typically see are structured

Your HTML elements are at the end of a chain that starts with Node and continues
with Element and HTMLElement, before ending with a type (HTMLDivElement,
HTMLHeadingElement, and so on) that matches the HTML element itself. The
properties and methods you will see for manipulating HTML elements are intro-
duced at some part of this chain.

CHAPTER 27 JS, THE BROWSER, AND THE DOM 311

Now, before we run toward using the DOM to modify HTML elements, let’s first
talk about two special objects that get in the way before the road clears up for
what we want to do.

The window Object
In the browser, the root of your hierarchy is the window object, which
contains many properties and methods that help you work with your browser
(see Figure 27.5).

FIGURE 27.5

The window is a pretty big deal up in these here parts.w

Some of the things you can do with the help of the window object include access-
ing the current URL, getting information about any frames in the page, using local
storage, seeing information about your screen, fiddling with the scroll bar, setting
the status bar text, and all sorts of things that are applicable to the container your
web page is displayed in.

312 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Document Object
Now, we get to the document object highlighted in Figure 27.6. Here is where
things get interesting, and it is also where you and I will be focusing a lot of our
time.

FIGURE 27.6

The document object is also kinda sorta a big deal.

The document object is the gateway to all the HTML elements that make up what
gets shown. The thing to keep in mind (and one that makes more sense as we
look at future chapters) is that the document object does not simply represent a
read-only version of the HTML document. It is a two-way street, where you can
read as well as manipulate your document at will.

Any change you make to the DOM via JavaScript is reflected in what gets shown
in the browser. This means you can dynamically add elements, remove them,
move them around, modify attributes on them, set inline CSS styles, and per-rr
form all sorts of other shenanigans. Outside of the very basic HTML needed via
a <script> tag to get some JavaScript to run in an HTML document, you can

CHAPTER 27 JS, THE BROWSER, AND THE DOM 313

construct a fully functioning page using nothing but JavaScript if you feel like it.
Used properly, this is a pretty powerful feature.

Another import aspect of the document object has to do with events. I will go
into more detail on this topic shortly, but if you want to react to a mouse click/
hover, check a check box, detect when a key was pressed, and so on, you will be
relying on functionality the document object provides for listening to and reacting
to events.

There are a few more big buckets of functionality the DOM provides, but I’ll
highlight them as we get to them in the coming chapters.

THE ABSOLUTE MINIMUM
The DOM is the single most important piece of functionality you have for working
with your HTML documents. It provides the missing link that ties your HTML and
CSS with JavaScript. It also provides access one level up to your browser.

Now, knowing about the DOM is just part of the fun. Actually using its functional-
ity to interact with your web document is the much larger and funner other part. r
When you are ready, turn (or flip) to the next chapter, where we will go further into
the DOM.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

28
I N T H I S C H A P T E R
• Learn how to find elements in the DOM

• Use the CSS selector syntax for cleverer element
discovery

FINDING ELEMENTS IN THE
DOM
As we saw in the previous chapter, our DOM is nothing more than a tree-

like structure made up of all the elements that exist in our HTML document

(see Figure 28.1).

FIGURE 28.1

Yep. Looks like a tree-like structure alright!

316 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

That detail is only sort of important. What is important is that you have all of these
HTML elements floating around that you want to access and read data from or
modify. There are many ways to find these HTML elements. After all, these ele-
ments are arranged in a tree-like structure, and if there is one thing computer
scientists like to do, it is figuring out crazy ways to run up and down a tree to find
something.

I won’t subject you to that torture…just yet. In this chapter, you are going to learn
how to use two built-in functions called querySelector and querySelectorAll
to solve a good chunk of all your DOM searching needs.

Meet the querySelector Family
To help explain the awesomeness that querySelector and querySelectorAll
bring to the table, take a look at the following HTML:

<div id="main">

 <div class="pictureContainer">

 <img class="theImage" src="smiley.png" height="300"

width="150" />

 </div>

 <div class="pictureContainer">

 <img class="theImage" src="tongue.png" height="300" width="150"

/>

 </div>

 <div class="pictureContainer">

 </div>

 <div class="pictureContainer">

 </div>

</div>

In this example, we have one div with an id of main, and then we have four div
and img elements, each with a class value of pictureContainer and theImage,
respectively. In the next few sections, we’ll set the querySelector and
querySelectorAll functions loose on this HTML and see what happens.

CHAPTER 28 FINDING ELEMENTS IN THE DOM 317

querySelector
The querySelector function basically works as follows:

let element = document.querySelector("CSS selector");

The querySelector function takes an argument, and this argument is a string that
represents the CSS selector for the element we wish to find. What gets returned by
querySelector is the first element it finds—even if other elements exist—that could
get targeted by the selector. This function is pretty stubborn like that.

Taking the HTML from our earlier example, if we wanted to access the div whose
id is main, we would write the following:

let element = document.querySelector("#main");

Because main is the id, the selector syntax for targeting it would be #main. Simi-
larly, let’s specify the selector for the pictureContainer class:

let element = document.querySelector(".pictureContainer");

What gets returned is the first div whose class value is v pictureContainer. The other
div elements with the class value of v pictureContainer will simply be ignored.r

The selector syntax is not modified or made special because you are in JavaScript.
The exact syntax you would use for selectors in your stylesheet or style region can
be used!

querySelectorAll
The querySelectorAll function returns all elements it finds that match what-
ever selector you provide:

let elements = document.querySelectorAll("CSS selector");

With the exception of the number of elements returned, everything I’ve described
about querySelector applies to querySelectorAll as well. That important detail

318 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

changes how you end up actually using the querySelectorAll function. What gets
returned is not a single element. Instead, what gets returned is an array-like
container of elements!

Continuing to use the HTML from earlier, here is what our JavaScript would look
like if we wanted to use querySelectorAll to help us display the src attribute
of all the img elements that contain the class value theImage:

let images = document.querySelectorAll(".theImage");

for (let i = 0; i < images.length; i++) {

let image = images[i];

 console.log(image.getAttribute("src"));

}

See? This is pretty straightforward. The main thing you need to do is remember
how to work with arrays, which you should be a pro at by now. The other (slightly
weirder) thing is the mysterious getAttribute function. If you aren’t familiar with
getAttribute and how to read values from elements, that’s totally okay. We’ll
look at all that in Chapter 29, “Modifying DOM Elements.” For now, just know that
it allows you to read the value of any HTML attribute the HTML element in ques-
tion may be sporting.

It Really Is the CSS Selector Syntax
The thing that surprised me when I first used querySelector and querySelec-
torAll is that it actually takes the full range of CSS selector syntax variations as
its argument. You don’t have to keep it simple like I’ve shown you so far.

If you wanted to target all the img elements without having to specify the class
value, here is what our querySelectorAll call could look like:

let images = document.querySelectorAll("img");

CHAPTER 28 FINDING ELEMENTS IN THE DOM 319

If you wanted to target only the image whose src attribute is set to meh.png, you
can do the following:

let images = document.querySelectorAll("img[src='meh.png']");

Note that I just specified an attribute selector as my argument to r querySelectorAll.
Pretty much any complex expression you can specify for a selector in your CSS
document is fair game for specifying as an argument to either querySelector or
querySelectorAll.

There are some caveats that you should be aware of, however. First, not all
pseudo-class selectors are allowed. A selector made up of :visited, :link ,
::before, and ::after is ignored and no elements are found.

Second, how crazy you can get with the selectors you provide depends on the
browser’s CSS support. Internet Explorer 8 supports querySelector and
querySelectorAll. It doesn’t support CSS3. Given that situation, using any-
thing more recent than the selectors defined in CSS2 will not work when used
with querySelector and querySelectorAll on IE8. Chances are, this doesn’t
apply to you because you are probably supporting more recent versions of brows-
ers where this IE8 issue isn’t even on the radar.

Finally, the selector you specify only applies to the descendants of the starting
element you are beginning your search from. The starting element itself is not
included. Not all querySelector and querySelectorAll calls need to be
made from a document.

320 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
The querySelector and querySelectorAll functions are extremely useful in
complex documents where targeting a particular element is often not straightfor-rr
ward. By relying on the well-established CSS selector syntax, we can cast as small
or as wide a net over the elements we want. If I want all image elements, I can use
querySelectorAll("img"). If I only want the immediate img element contained
inside its parent div, I can use the following:

querySelector("div + img")

Now, that’s pretty awesome!

Before we wrap up, there is one more thing I’d like to chat with you about.
Missing in all of this element-finding excitement were the getElementById,
getElementsByTagName, and getElementsByClassName functions. Back in the
day, these were the functions you would have used to find elements in your DOM.
These functions still exist today, but our reasons for using them are very, VERY lim-
ited. One good reason is if you are looking for a list of DOM nodes that are live as
opposed to static. To go into detail on what this means, check out https://bit.ly/dom_
live_nodes for a tip from Trevor McCauley, the technical editor for this book!

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

Tutorial on CSS attribute selectors: http://bit.ly/kirupaAttribute

https://bit.ly/dom_live_nodes
https://bit.ly/dom_live_nodes
https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata
http://bit.ly/kirupaAttribute

29
I N T H I S C H A P T E R
• Understand how JavaScript can be used to modify

the DOM

• Meet the HTML element

• Learn how to modify attributes and text values

MODIFYING DOM
ELEMENTS
At this point, you kinda sorta know what the DOM is. You also saw how to

find elements using querySelector and querySelectorAll. What’s

next is for you to learn how to modify the DOM elements you found:

322 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

After all, what’s the fun in having a giant lump of clay (or cookie dough) if we can’t
put our hands on it and make a giant mess? Anyway, besides it being fun and all, we
will find ourselves modifying the DOM all the time. Whether we are using JavaScript
to change some element’s text, swap out an image with a different one, move an
element from one part of a document to another, set an inline style, or perform any
of the bazillion other changes we will want to do, we will be modifying the DOM.
This chapter will teach you the basics of how to go about doing that.

DOM Elements Are Objects, Sort Of!
Our ability to use JavaScript to modify what gets shown by the browser is made possible
because of one major detail. That detail is that every HTML tag, style rule, or any other
thing that goes into your page has some sort of a representation in the DOM.

To visualize what I just said, let’s say we have an image element defined in markup:

<img src="images/lol_panda.png" alt="Sneezing Panda!" width="250"

height="100"/>

When our browser parses the document and hits this image element, it creates a
node in the DOM that represents it as shown in Figure 29.1.

FIGURE 29.1

All of our HTML elements will eventually end up having a DOM representation.

This DOM representation provides us with the ability to do everything we could
have done in markup. As it turns out, this DOM representation actually ends up
allowing us to do more with our HTML elements than we could have done using
just plain-old markup itself. This is something we’ll see a little bit of here and a

CHAPTER 29 MODIFYING DOM ELEMENTS 323

whole lot of in the future. The reason why our HTML elements are so versatile
when viewed via the DOM is because they share a lot of similarities with plain
JavaScript objects. Our DOM elements contain properties that allow us to get/set
values and call methods. They have a form of inheritance that we saw a little bit
about earlier, where the functionality each DOM element provides is spread out
across the Node, Element, and HTMLElement base types, as shown again in
Figure 29.2.

FIGURE 29.2

The hierarchy of the visual elements we’ll typically encounter in the HTML

DOM elements probably even smell like an object when they run inside the house
after rolling around in the rain for a bit.

Despite all of the similarities, for legal and possibly health reasons, I need to pro-
vide the following disclaimer: the DOM was never designed to mimic the way
objects work. Many of the things we can do with objects we can certainly do with

324 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

specifications don’t state that our DOM should behave identically to how we may
expect things to behave with plain-old objects. While I wouldn’t lose any sleep
worrying about this, if you ever decide to extend DOM elements or perform more
advanced object-related gymnastics, be sure to test across all browsers just to
make sure everything works the way you intended.

Now that we got this awkward conversation out of the way, let’s start to actually
modify the DOM.

Let’s Actually Modify DOM Elements
While we can certainly lean back and passively learn all there is about how to
modify elements in the DOM, this is one of those cases where you may have more
fun following along with a simple example. If you are interested in following along,
we’ll be using the following HTML as a sandbox for the techniques we will be
covering:

<!DOCTYPE html>

<html>

<head>

 <title>Hello...</title>

 <style>

 .highlight {

 font-family: "Arial";

 padding: 30px;

 }

 .summer {

 font-size: 64px;

 color: #0099FF;

 }

 </style>

CHAPTER 29 MODIFYING DOM ELEMENTS 325

</head>

<body>

 <h1 id="bigMessage" class="highlight summer">What's happening?

</h1>

 <script>

 </script>

</body>

</html>

Just put all of that into an HTML document and follow along. If you preview this
HTML in the browser, you will see something that looks like Figure 29.3.

FIGURE 29.3

What’s happening?

326 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

There isn’t really a whole lot going on here. The main piece of content is the h1
tag that displays the What’s happening? text:

<h1 id="bigMessage" class="highlight summer">What's happening?</h1>

Now, switching over to the DOM side of things, Figure 29.4 illustrates what this
example looks like with all the HTML elements and nodes like document and
window mapped.

FIGURE 29.4

What our DOM structure for our example looks like

In the following sections, we’ll look at some of the common things you can do in
terms of modifying a DOM element.

Changing an Element’s Text Value
Let’s start off with an easy one. Many HTML elements have the ability to display
some text. Examples of such elements are our headings, paragraphs, sections,
inputs, buttons, and many more. There is one thing they all have in common. The
way you modify the text value is by setting the textContent property.

CHAPTER 29 MODIFYING DOM ELEMENTS 327

Let’s say we want to change the text that appears in the h1 element from our
example. The following snippet shows what that would look like:

<body>

 <h1 id="bigMessage" class="highlight summer">What's happening?

</h1>

 <script>

 let headingElement = document.querySelector("#bigMessage");

 headingElement.textContent = "Oppa Gangnam Style!";

 </script>

</body>

If you make this change and preview it in the browser, you will see what is shown
in Figure 29.5.

FIGURE 29.5

Changing a heading’s text value.

328 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Let’s look at what exactly we did to cause this change. The first step to modifying
any HTML element in JavaScript is to first get a reference to it:

let headingElement = document.querySelector("#bigMessage");

Here is where our old friends querySelector and querySelectorAll come
in. As we will see later, we also have indirect ways of referencing an element. The
direct approach shown here, though, is what you will use when you have a very
specific idea of what element or elements you wish to target.

Once we have the reference to the element, we can just set the textContent
property on it:

headingElement.textContent = "Oppa Gangnam Style!";

The textContent property can be read like any variable to show the current
value. We can also set the property like we are here to change the value that is
stored currently. After this line has run, our markup’s original value of What’s hap-
pening? will be replaced in the DOM by what we specified in JavaScript.

Attribute Values
An important part of HTML elements are the attributes they carry with them. Com-
mon attributes we see all the time include the id attribute, class attribute, and
then a boatload of element-specific ones like src for img elements, autoplay
for video elements, and so on. When something is important in HTML, you know it
is important for us to know how to handle it via JavaScript. That’s what the follow-
ing sets of sections are all about.

Basics of Attribute Access
Before we jump ahead and look at custom attributes, let’s take a quick moment
and discuss how to access attributes in general. Let’s say that we have an HTML
element that looks as follows:

The two attributes on this element are id and src. In fine JavaScript tradition,
we have a multitude of ways to perform the same tasks. We are going to explore
some of those ways in this section.

CHAPTER 29 MODIFYING DOM ELEMENTS 329

Reading Attributes

JavaScript. The most popular way is by using getAttribute and providing the
attribute name as the argument:

let imgElement = document.querySelector("#tv");

let idValue = imgElement.getAttribute("id");

let srcValue = imgElement.getAttribute("src");

console.log(idValue) // tv

console.log(srcValue) // foo.png

For built-in attributes such as the id and src attributes on an image element, we
can access them directly by just dotting into it:

let imgElement = document.querySelector("#tv");

let idValue = imgElement.id;

let srcValue = imgElement.src;

console.log(idValue); // tv

console.log(srcValue); // <full-path>/foo.png

Another approach is to use the attributes property on the DOM element and
iterate through the attributes, but that is one we can table for later.

Setting Attributes
Reading attributes is one thing. Setting attributes is a whole other thing that is
handled by the setAttribute method, which takes the attribute name and the
new value as its arguments:

let imgElement = document.querySelector("#tv");

imgElement.setAttribute("src", "bar.png");

console.log(imgElement.getAttribute("src")); // bar.png

330 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Notice that we use setAttribute to change the value of the src attribute to
be bar.png.

Removing Attributes
The last basic attribute-related activity we will look at is how to remove attributes.
This task is handled by the removeAttribute method:

let imgElement = document.querySelector("#tv");

imgElement.removeAttribute("src");

console.log(imgElement.getAttribute("src")); // undefined

To use the removeAttribute method, we need to provide the name of the attri-
bute to remove, as shown in the preceding example. Notice we are removing the
src attribute from our image element, and when we try to access the removed
attribute, we can see that it returns a value of undefined.

Custom Attributes
Moving beyond the standard, built-in attributes our elements carry with them, we
have the fun world of custom attributes. In the past, if we ever wanted to mark
or tag our elements for any sort of programmatic access later, we didn’t have too
many good choices. The most common thing we did was add or remove class
values from an element:

That was fine if what we were doing resulted in our element visually changing.
There are many times when we just want to store some data in an element—data
that we wouldn’t want to surface to the user. Overloading the more CSS-oriented
class attribute seemed a bit distasteful. Also distasteful was abusing the rel tag,
declaring custom namespaces, and doing other things to make up for the lack of a
standardized way to embed data into our page.

Fortunately, something sweeter was on the horizon. We have the ability to specify
custom data attributes (aka _data dash or data- attributes_*) whose sole job is to

CHAPTER 29 MODIFYING DOM ELEMENTS 331

allow us to tag elements with data that we can programmatically access later. Let’s
say that we have a list of images:

What we want to do is store the name of the photographer as part of each
image. The way we are going to do this is by using a custom data attribute called
photographer:

Notice how the custom data attribute is defined. Whatever attribute name you are
interested in using, simply prefix data- in front of it. You can have as many custom
data attributes as you want. In case you were wondering, simply adding a custom
data attribute has no bearing on the appearance or layout of an application.

Working with Custom Data Attributes in JS
With custom data attributes, the two most common things we will do is to retrieve
the value stored by such an attribute and to set the value stored by such an attribute.
What we saw with getAttribute, setAttribute, and removeAttribute
work identically here.

To retrieve the value stored by a data-* attribute, use the trusty getAttribute
method on the HTML element the attribute lives on:

<script>

let tvImg = document.getElementById("tv");

let name = tvImg.getAttribute("data-photographer");

</script>

332 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

To set the value, we use getAttribute’s mortal enemy, the setAttribute
method:

tvImg.setAttribute("data-photographer", "Sideshow Bob");

You get the picture. The helpful thing to note is that our data-* attributes are
nothing more than just plain, boring attributes. Everything we could do in
JavaScript before with attributes, we can still do now. These attributes are just
named a little bit differently. That’s all.

The dataset Property
Okay, there is one thing that custom data attributes have that regular attributes
don’t. That is the handy dataset property. It makes sense when we look at an
example of it in action:

<script>

 let imgElement = document.querySelector("#tv");

 let imgSize = imgElement.dataset.size;

 let imgName = imgElement.dataset.name;

 console.log(imgSize); // large

 console.log(imgName); // Picasso

</script>

Notice that we have data-size and data-name as custom attributes. The way we
access these attributes is directly via the dataset property and omitting the data-
prefix. This handy way of reading custom data properties applies to setting them
as well, where we can just assign the new attribute value just like we would any
variable:

<script>

 let imgElement = document.querySelector("#tv");

CHAPTER 29 MODIFYING DOM ELEMENTS 333

 let imgSize = imgElement.dataset.size;

 imgElement.dataset.name = "Van Gogh";

 let imgName = imgElement.dataset.name;

 console.log(imgSize); // large

 console.log(imgName); // Van Gogh

</script>

We set the value for our data-name attribute to Van Gogh via JavaScript. We can
see the new value being set, but we can go one level deeper and inspect the ele-
ment to see for certain that the new value is what we see:

Pretty neat, right?

When to use Data-* Attributes
Now that you’ve seen all of this, a worthy next question to ask is, when should you
use these data-* attributes in your HTML or set them on the DOM via JavaScript?
There are some mixed opinions on this, but here is how I would summarize when
you should or shouldn’t use custom data attributes:

• Use data-* attributes for storing nonvisual data that also makes working with
your JavaScript easier.

• Don’t use data-* attributes for storing data that is better represented by
another element.

• Using getAttribute and setAttribute is an expensive operation relative
to just working with in-memory JavaScript objects. For performance-intensive
operations, avoid using data-* attributes.

If you must use them, read the data from your custom attributes, but do all further
processing in memory. Don’t write the data back to the attribute via setAttribute
unless you really have a good reason to do so.

334 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

There is something I need to clarify before we move on. In the examples for how to
use setAttribute and getAttribute, I picked on id and class. For these two
attributes, we do have another way of setting them. Because of how common set-
ting id and class attributes is, our HTML elements expose the id and className
properties directly:

<body>

 <h1 id="bigMessage" class="highlight summer">What's happening?</h1>

 <script>

 let headingElement = document.querySelector("h1");

 console.log(headingElement.id); // bigMessage

 headingElement.className = "bar foo";

 </script>

</body>

Getting back to our example, notice that I switched from using getAttribute
and setAttribute to using the id and className properties instead. The end
result is identical. The only difference is that you had a direct way of setting these
attribute values without having to use getAttribute or setAttribute. Now,
before we go further, I have to point out something strange: yes, we can’t use
class in JavaScript for referring to the class attribute because class has a whole s
different meaning that has to do with dealing with objects. That’s why we are using
className instead.

TIP There is a much better way of setting class values besides
using className. That way is via the much more awesome
classList property, which you will learn all about in the next
chapter.

CHAPTER 29 MODIFYING DOM ELEMENTS 335

THE ABSOLUTE MINIMUM
It may seem a bit odd to end our discussion around modifying DOM elements at
this point. While changing an element’s text and attribute values is very popular,
these are by no means the only major kinds of modifications you will perform. The
reason for ending at this cliffhanger is because manipulating the DOM and using
an element’s properties and methods to accomplish our task are central to every-
thing you are going to be learning. In subsequent chapters, you are going to see
a whole lot more of what you’ve seen here.

Your main takeaway from this chapter is that the DOM changes you perform will
almost always take one of the following two forms:

• Setting a property

• Calling a method

The textContent, setAttribute, and getAttribute methods you saw
here cover both of those approaches, and you’ll see a lot more of them and their
friends shortly.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

30
I N T H I S C H A P T E R
• Learn how to change CSS using JavaScript

• Understand the pros and cons of setting styles
directly as opposed to adjusting class values

• Use classList to make fiddling with element class
values a breeze

STYLING OUR CONTENT
In the previous chapter, we looked at how to modify our DOM’s content

using JavaScript. The other part of what makes our HTML elements stand

out is their appearance, their styling. When it comes to styling some con-

tent, the most common way is by creating a style rule and having its selec-

tor target an element or elements. A style rule would look as follows:

.batman {

width: 100px;

 height: 100px;

 background-color: #333;

}

338 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

An element that would be affected by this style rule could look like this:

<div class="batman"></div>

On any given web page, we’ll see anywhere from just a few to many, MANY style
rules, each beautifully stepping over each other to style everything we see. This
isn’t the only approach we can use to style content using CSS, though. It wouldn’t
be HTML if there weren’t multiple ways to accomplish the same task!

Ignoring inline styles, the other approach we can use to introduce elements to the
goodness that is CSS styling involves JavaScript. We can use JavaScript to directly
set a style on an element, and we can also use JavaScript to add or remove
class values on elements, which will alter which style rules get applied.

In this chapter, we’re going to learn about both of these approaches.

Why Would We Set Styles Using JavaScript?
Before we go further, it is probably useful to explain why we would ever want to
use JavaScript to affect the style of an element in the first place. In the common
cases where we use style rules or inline styles to affect how an element looks, the
styling kicks in when the page is loaded. That’s awesome, and that’s probably what
we want most of the time.

There are many cases, especially as our content gets more interactive, where we
want styles to dynamically kick in based on user input, some code having run in
the background, and more. In these sorts of scenarios, the CSS model involving
style rules or inline styles won’t help us. While pseudoselectors like hover provide
some support, we are still greatly limited in what we can do.

The solution we will need to employ for all of them is one that involves JavaScript.
JavaScript not only lets us style the element we are interacting with; more
importantly, it allows us to style elements all over the page. This freedom is very yy
powerful and goes well beyond CSS’s limited ability to style content inside (or very
close to) itself.

A Tale of Two Styling Approaches
Like we saw in the introduction, we have two ways to alter the style of an element
using JavaScript. One way is by setting a CSS property directly on the element.
The other way is by adding or removing class values from an element, which may

CHAPTER 30 STYLING OUR CONTENT 339

result in certain style rules getting applied or ignored. Let’s look at both of these
cases in greater detail.

Setting the Style Directly
Every HTML element you access via JavaScript has a style object. This object
allows you to specify a CSS property and set its value. For example, this is what
setting the background color of an HTML element whose id value is superman
looks like:

let myElement = document.querySelector("#superman");

myElement.style.backgroundColor = "#D93600";

To affect many elements, you can do something like the following:

let myElements = document.querySelectorAll(".bar");

for (let i = 0; i < myElements.length; i++) {

 myElements[i].style.opacity = 0;

}

In a nutshell, to style elements directly using JavaScript, the first step is to access
the element. Our handy querySelector method from earlier is quite helpful
here. The second step is just to find the CSS property you care about and give it
a value. Remember, many values in CSS are actually strings. Also remember that
many values require a unit of measurement, such as px or x em, to actually get
recognized. Also remember…actually, I forgot.

Lastly, some CSS properties require a more complex value to be provided with
a bunch of random text followed by the value you care about. One of the more
popular ones in this bucket is the transform property. One approach for setting
a complex value is to use good old-fashioned string concatenation:

myElement.style.transform = "translate3d(" + xPos + ", " + yPos +

"px, 0)";

340 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

That can get really irritating, because keeping track of the quotation marks and so
on is something tedious and error-prone. One less-irritating solution is to use the
template literal syntax:

myElement.style.transform = `translate3d(${xPos}px, ${yPos}px, 0)`;

Notice how this approach allows you to still provide custom values while avoiding
all of the string concatenation complexity. We’ll look at this syntax in greater detail
a bit later!

TIP Special Casing Some Names of CSS
Properties
JavaScript is very picky about what makes up a valid property
name. Most names in CSS would get JavaScript’s seal of approval,
so you can just use them straight out of the carton. There are a
few things to keep in mind, though.

To specify a CSS property in JavaScript that contains a dash,
simply remove the dash. For example, background-color
becomes backgroundColor, the border-radius property
transforms into borderRadius, and so on.

Also, certain words in JavaScript are reserved and can’t be used
directly. One example of a CSS property that falls into this
special category is float. In CSS, it is a layout property. In
JavaScript, it stands for something else. To use a property whose
name is entirely reserved, prefix the property with css, where float
becomes cssFloat.

Adding and Removing Classes Using JavaScript
The second approach involves adding and removing class values that, in turn,
change which style rules get applied. For example, let’s say we have a style rule
that looks as follows:

.disableMenu {

 display: none;

}

CHAPTER 30 STYLING OUR CONTENT 341

In HTML, we have a menu whose id is dropDown:

<ul id="dropDown">

 One

 Two

 Three

 Four

 Five

 Six

Now, if we wanted to apply our .disableMenu style rule to this element, all we
would need to do is add disableMenu as a class value to the dropDown element:

<ul class="disableMenu" id="dropDown">

 One

 Two

 Three

 Four

 Five

 Six

One way to accomplish this involves setting an element’s className property, an
approach we saw earlier. The trouble with className is that we are responsible
for maintaining the current list of class values applied. Worse, the list of class val-
ues is returned to us as a string. If we have multiple class values we want to add,
remove, or just toggle on/off, we have to do a bunch of error-prone string-related
trickery that just isn’t fun.

To help alleviate some of the inconvenience, we now have a much nicer API that
makes adding and removing class values from an element ridiculously easy. This
new API is affectionately known as classList, and it provides a handful of meth-
ods that will make working with class values a piece of cake:

• add

• remove

• toggle

• contains

342 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

What these four methods do may be pretty self-explanatory from their names, but
let’s look at them in further detail.

Adding Class Values
To add a class value to an element, get a reference to the element and call the
add method on it via classList:

let divElement = document.querySelector("#myDiv");

divElement.classList.add("bar");

divElement.classList.add("foo");

divElement.classList.add("zorb");

divElement.classList.add("baz");

console.log(divElement.classList);

After this code runs, our div element will have the following class values: bar,
foo, zorb, and baz. The classList API takes care of ensuring spaces are added
between class values. If we specify an invalid class value, the classList API will
complain and not add it. If we tell the add method to add a class that already
exists on the element, our code will still run, but the duplicate class value will not
get added.

Removing Class Values
To remove a class value, we can call the remove method on classList:

let divElement = document.querySelector("#myDiv");

divElement.classList.remove("foo");

console.log(divElement.classList);

After this code executes, the foo class value will be removed. What we will be left
with is just bar, zorb, and baz. Pretty simple, right?

Toggling Class Values
For many styling scenarios, there is one very common workflow. First, we check
if a class value on an element exists. If the value exists, we remove it from the

CHAPTER 30 STYLING OUR CONTENT 343

element. If the value does not exist, we add that class value to the element. To
simplify this very common toggling pattern, the classList API provides you with
the toggle method:

let divElement = document.querySelector("#myDiv");

divElement.classList.toggle("foo"); // remove foo

divElement.classList.toggle("foo"); // add foo

divElement.classList.toggle("foo"); // remove foo

console.log(divElement.classList);

The toggle method, as its name implies, adds or removes the specified class
value on the element each time it is called. In our case, the foo class is removed
the first time the toggle method is called. The second time, the foo class is
added. The third time, the foo class is removed. You get the picture.

Checking Whether a Class Value Exists
The last thing we are going to look at is the contains method:

let divElement = document.querySelector("#myDiv");

if (divElement.classList.contains("bar") == true) {

 // do something

}

This method checks to see if the specified class value exists on the element. If the
value exists, you get true. If the value doesn’t exist, you get false.

Going Further
As you can see, the classList API provides you with almost everything you
need to add, remove, or inspect class values on an element very easily—the
emphasis being on the word almost. For the few things the API doesn’t provide by
default, you can go online and read my full article on many more things you can
do with classList at http://bit.ly/kClassList.

http://bit.ly/kClassList

344 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
So, there you have it—two perfectly fine JavaScript-based approaches you can use
for styling your elements. Of these two choices, if you have the ability to modify
your CSS, I would prefer you go style elements by adding and removing classes.
The simple reason is that this approach is far more maintainable. It is much easier
to add and remove style properties from a style rule in CSS as opposed to adding
and removing lines of JavaScript.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

31
I N T H I S C H A P T E R
• Learn what CSS custom properties are

• Use various JavaScript methods to read and set CSS
custom properties

USING CSS CUSTOM
PROPERTIES
When setting CSS properties with JavaScript, especially the really complex

ones, you will often find yourself wrestling with strings:

var myCircle = document.querySelector("#myCircle");

setTranslate(50, 75, myCircle);

// Old approach

function setTranslate(xPos, yPos, el) {

 el.style.transform = "translate3d(" + xPos + ", " + yPos +

"px, 0)";

}

// Slightly better ES6-based old approach

function setTranslate(xPos, yPos, el) {

 el.style.transform = `translate3d(${xPos}px, ${yPos}px,

0)`;

}

346 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

to admit that something like the preceding is a bit frustrating to generate and prone
to all sorts of errors if you aren’t careful. The more complex the value you are trying to
set, the worse everything is. Besides, there is also something just really odd-looking
about having giant strings of CSS embedded inside your JavaScript.

In this chapter, we are going to look at something known as CSS custom proper-rr
ties (aka CSS variables) that will greatly simplify how we specify a complex value
by getting us out of the string-generation business. Let’s see how we can do that!

What Are CSS Custom Properties/Variables?
One of the big recent additions to the CSS language is this thing known as
CSS custom properties, commonly also referred to as CSS variables. What
CSS custom properties allow you to do is pretty neat. Inside a style rule, you can
specify a custom property name and initialize it to whatever value you want:

#container {

--myAlign: center;

width: 100%;

height: 350px;

background-color: #0099FF;

display: flex;

align-items: var(--myAlign);

justify-content: var(--myAlign);

}

This custom property can then be used elsewhere in your CSS, where you can
specify it instead of specifying the inline value directly:

#container {

--myAlign: center;

width: 100%;

height: 350px;

background-color: #0099FF;

display: flex;

CHAPTER 31 USING CSS CUSTOM PROPERTIES 347

align-items: var(--myAlign);

justify-content: var(--myAlign);

}

Notice in this example that the value for the align-items and justify-
content properties isn’t specified directly. It is inferred from the custom
--myAlign property name instead.

Just like with variables you would use in JavaScript, you now have a single location
where the value is being specified. If you change the value of our custom myAlign
property, any uses of it will use the new value instead. This is all pretty consistent with
how variables work. The CSS-specific behavior has to do with scope. The custom
property you define follows typical CSS cascading rules, so where you specify the
property is important to determine whether the property’s value can be used. If you
wish to declare some custom CSS properties globally, you can specify them in the
body selector or go one level higher with the root selector instead:

:root {

--logoColor: "#333";

--headerColor: "green";

--avatarWidth: 150px;

}

If you aren’t familiar with the root selector, it roughly translates to styles being
applied at the <html> tag level.

Now, to modify the values of a custom CSS property using JavaScript, there isn’t
anything special you have to do. The tried and tested setProperty method you
have used in the past will still work:

myLogo.style.setProperty("--logoColor", "#505168");

In the preceding code, we are setting our --logoColor custom property to a
dark shade of purple. Because we are setting this value inline on our myLogo ele-
ment, it will have a higher specificity and override whatever value we had earlier in
the root style rule. It goes without saying that any CSS property values that rely on
the value of --logoColor will automatically update to reflect the new value.

348 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

If you are wishing to read a custom CSS property value, there are a few minor
extra steps you need to follow. Let’s say you have a custom property called
themeColor set on the body selector:

body {

--themeColor: "blue";

}

The way you would read this property and its value is by using getComputedStyle,
like so:

var bodyStyle = getComputedStyle(document.body);

var theme = bodyStyle.getPropertyValue("--themeColor");

alert(theme);

This seems pretty easy, right? Well, you probably know that whenever a question
like that is asked, the answer is never a straightforward yes. You would think the
value we would ultimately get is “blue”. What we would actually get is “ blue”.
Ignore the quotation marks, but notice the leading space. This is because the
original behavior as defined by the W3C (only for custom properties) is to readl
the space value between --themeColor: "blue" as a valid entry. That behavior
is due to change in the near future, and the leading space will be ignored. This
means that if you are using a conditional to check for the custom property value,
you need to account for both cases, with and without a leading space:

if ((theme == "blue") || (theme == " blue")) {

// do something

}

You can read more about this strange behavior in the following discussion:
https://bit.ly/css_custom_prop_quirk

Setting Complex Values Easily
This ability for us to modify a custom CSS property value via JavaScript and have
all uses of that property update is a massive win. We no longer have to specify our
values using string manipulation logic like we saw at the beginning of this chapter.

https://bit.ly/css_custom_prop_quirk

CHAPTER 31 USING CSS CUSTOM PROPERTIES 349

Continuing our transform example, in the CSS variable-based world, we can spec-
ify the values for the horizontal and vertical values as follows:

#myCircle {

--xPos: 0px;

--yPos: 0px;

width: 100px;

height: 100px;

transform: translate3d(var(--xPos), var(--yPos), 0);

}

To update these values, our JavaScript can just be the following:

var myCircle = document.querySelector("#myCircle");

setTranslate(50, 75, myCircle);

function setTranslate(xPos, yPos, el) {

 el.style.setProperty("--xPos", xPos + "px");

 el.style.setProperty("--yPos", yPos + "px");

}

Notice that we no longer have to generate a massive string, worry about escap-
ing the characters at the right places, and so on. We just update the value of the
custom CSS properties directly, and that updating takes care of everything else!
Another benefit we get from this approach is that if we ever wanted to get even
more complex with our transform property, we can totally do so without having to
make changes in JavaScript:

#myCircle {

 --xPos: 0px;

 --yPos: 0px;

 width: 100px;

 height: 100px;

350 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

background-color: #FFF;

border: 10px solid #0066CC;

border-radius: 50%;

transform: translate3d(var(--xPos), var(--yPos), 0)

rotate(30deg)

 scale3d(1.5, 1.5, 0);

}

We added the rotate and scale3d functions, but it doesn’t modify what our
JS does. Now, you may feel the transform property is an easy one that doesn’t
effectively highlight the benefits. If so, feast your eyes on the following:

#container {

 --stripeColor: #1F505B;

 width: 100%;

 height: 400px;

 background-color: #3891A6;

}

#container.stripes {

 background-image:

 repeating-linear-gradient(

 -45deg,

 var(--stripeColor),

 var(--stripeColor) 20px,

 #3891A6 20px,

 #3891A6 40px

);

 background-size: 200% 200%;

 animation: slide 5s linear infinite;

}

What we have here is a fairly simple linear-gradient function for our background-
image property. Despite being simple, it is already six lines. Imagine having to set
the stripe color without being able to rely on the --stripeColor custom prop-
erty. Would you really want to generate that full string inside some JavaScript in
this case?

CHAPTER 31 USING CSS CUSTOM PROPERTIES 351

CSS custom properties make setting complex values via JavaScript extremely
simple. As long as we don’t modify our custom CSS property name or the kind of
value it expects, we can do whatever we want inside the style rule without hav-
ing to ensure our JavaScript is in sync with the changes. This is something we
couldn’t do in the old world, where we had to generate the full complex value in l
JavaScript, even if we only needed to modify one small part of it—or, worst case,
change the shape of the value entirely, like going from a linear gradient to a radial
gradient!

THE ABSOLUTE MINIMUM
Before we had CSS custom properties (aka CSS variables), we still had the ability
to set and modify complex CSS property values. It just wasn’t fun or easy, espe-
cially for really complex values like the kind you commonly run into with layout,
animation/transition, backgrounds (especially involving gradients), transforms, and
more. While the motivation for creating CSS custom properties may not have been
to make our lives easier when setting values via JavaScript, it indirectly did end up
having that effect, where the setProperty function makes all of this a breeze.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

32
I N T H I S C H A P T E R
• Learn how to navigate the DOM tree

• Use the various APIs you have for moving and
re-parenting elements

• Find an element’s sibling, parent, children, and more

TRAVERSING THE DOM
As you may have realized by now, our DOM looks like a giant tree—a giant

tree with elements dangerously hanging on to branches and trying to avoid

the pointy things that litter the place. To get a little more technical, ele-

ments in our DOM are arranged in a hierarchy, as illustrated in Figure 32.1,

that defines what we will eventually see in the browser.

FIGURE 32.1

The DOM and the browser are like two peas in a pod.

354 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

This hierarchy is used to help organize our HTML elements. It is also used to help
our CSS style rules make sense of what styles to apply on which things. From the
JavaScript angle, this hierarchy does add a bit of complexity. We will spend a fair
amount of time trying to figure out where in the DOM we are right now and where
we need to be. This is something that will become more apparent when we look
into creating new elements or moving elements around. This complexity is some-
thing that we need to be comfortable with.

That’s where this chapter comes in. To help you understand how to easily navi-
gate from branch to branch (basically, like a monkey), the DOM provides you with
a handful of properties you can combine with techniques you already know. This
chapter will give you an overview of all that and more.

Finding Your Way Around
Before we can find elements and do awesome things with them, we need to first
get to where the elements are. The easiest way to tackle this topic is to just start
from the top and slide all the way down. That’s exactly what we are going to do.

The view from the top of our DOM is made up of our window, document, and
html elements, as shown in Figure 32.2.

FIGURE 32.2

The view from the top of this tree never changes.

CHAPTER 32 TRAVERSING THE DOM 355

Because of how important these three things are, the DOM provides us with easy
access to them via window, document, and document.documentElement:

let windowObject = window; // um....

let documentObject = document; // this is probably unnecessary

let htmlElement = document.documentElement;

One thing to note is that both window and document are global properties. We
don’t have to explicitly declare them like I did. Just shake and use them straight
out of the container.

Once we go below the HTML element level, our DOM will start to branch out
and get more interesting. At this point, we have several ways of navigating
around. One way that we’ve seen plenty of is by using querySelector and
querySelectorAll to precisely get at the elements we are interested in.
For many practical cases, these two methods are too limiting.

Sometimes, we don’t know where we want to go. The querySelector and
querySelectorAll methods won’t help us here. We just want to get in the car
and drive…and hope we find what we are looking for. When it comes to navigat-
ing the DOM, we’ll find ourselves in this position all the time. That’s where the
various built-in properties the DOM provides will help us out, and we are going to
look at those properties next.

The thing that will help us out is knowing that all our elements in the DOM have
at least one combination of parents, siblings, and children to rely on. To visualize
this, take a look at the row containing the div and script elements in
Figure 32.3.

Both the div and script elements are siblings. The reason they are siblings is
because they share the body element as their parent. The script element has no
children, but the div element does. The img, h1, p, and div are children of the
div element, and all children of the same parent are siblings as well. Just like in
real life, the parent, child, and sibling relationship is based on where in the tree we
are focusing. Almost every element, depending on the angle at which we look at
them, can play multiple familial roles.

356 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 32.3

An example of our tree with some parents, siblings, and children

To help us through all this, we have a handful of properties on which we will rely.
These properties are firstChild, lastChild, parentNode, children,
previousSibling, and nextSibling. From just looking at their names, you
should be able to infer what role these properties play. The guy in red with the
pointed pitchfork is in the details, so we’ll look at this topic in greater detail next.

Dealing with Siblings and Parents
Of these properties, the easiest ones to deal with are the parents and siblings. The
relevant properties are parentNode, previousSibling, and nextSibling.
Figure 32.4 gives you an idea of how these three properties work.

CHAPTER 32 TRAVERSING THE DOM 357

FIGURE 32.4

The relationship between siblings and parents from our DOM’s point of view

This diagram is a little busy, but you can sort of make out what is going on here.
The parentNode property points you to the element’s parent. The previ-
ousSibling and nextSibling properties allow an element to find its previ-
ous or next sibling. You can see this visualized in the diagram by just moving in
the direction of the arrow. In the last line, our img's nextSibling is the div.
Our div's previousSibling is the img. Accessing parentNode on either of
these elements will take you to the parent div in the second row. It’s all pretty
straightforward.

Let’s Have Some Kids!
What is a little less straightforward is how the children fit into all of this,
so let’s take a look at the firstChild, lastChild, and children properties,
shown in Figure 32.5.

The firstChild and lastChild properties refer to a parent’s first and last child
elements. If the parent only has one child, as is the case with the body element
in our example, then both firstChild and lastChild point to the same thing.
If an element has no children, these properties return null.

358 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 32.5

A view of children and more children!

The tricky one compared to the other properties we’ve looked at is the children
property. When you access the children property on a parent, you basically get
a collection of the child elements the parent has. This collection is not an Array,
but it does have some Array-like powers. Just like with Array, you can iterate
through this collection or access the children individually, kind of like what you see
in the figure. This collection also has a length property that tells you the count
of how many children the parent is dealing with. If your head is spinning from this,
don’t worry. The snippets in the next section will help clarify the vagueness in my
explanation.

Putting It All Together
Now that we have a good idea of all the important properties we have for
traversing the DOM, let’s look at some code snippets that tie in all the diagrams
and words into some sweet lines of JavaScript.

CHAPTER 32 TRAVERSING THE DOM 359

Checking If a Child Exists
To check if an element has a child, we can do something like the following:

let bodyElement = document.querySelector("body");

if (bodyElement.firstChild) {

 // do something interesting

}

This if statement will return null if there are no children. We could also have used
bodyElement.lastChild or bodyElement.children.count if you enjoy
typing, but I prefer to just keep things simple.

Accessing All the Child Elements
If we want to access all of a parent’s children, we can always rely on good-old
uncle for loop:

let bodyElement = document.body;

for (let i = 0; i < bodyElement.children.length; i++) {

let childElement = bodyElement.children[i];

document.writeln(childElement.tagName);

}

Notice that we are using the children and length properties, just like we would
an Array. The thing to note is that this collection is actually not an Array. Almost
all of the Array methods we may want to use will not be available in this collec-
tion returned by the children property.

360 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Walking the DOM
Our last snippet touches upon a little bit of everything we’ve seen so far. This
snippet recursively walks the DOM and touches every HTML element it can find:

function theDOMElementWalker(node) {

if (node.nodeType == Node.ELEMENT_NODE) {

console.log(node.tagName);

 node = node.firstChild;

while (node) {

theDOMElementWalker(node);

 node = node.nextSibling;

 }

 }

}

To see this function in action, we just call it by passing in a node that we want to
start our walk from:

let texasRanger = document.querySelector("#texas");

theDOMElementWalker(texasRanger);

In this example, we are calling theDOMElementWalker function on an element
referenced by the texasRanger variable. If you want to run some code on the
element that this script found, replace the commented-out line with whatever you
want to do.

CHAPTER 32 TRAVERSING THE DOM 361

THE ABSOLUTE MINIMUM
Finding your way around the DOM is one of those skills that every JavaScript
developer should be familiar with. This tutorial provided you an overview of what
is technically possible. Applying this in more practical ways falls entirely onto
you…or a cool friend who helps you out with these things. With that said, in
subsequent chapters, we will expand on what we’ve seen here as part of continu-
ing our deep dive into everything we can do with the DOM. Doesn’t that sound
exciting?

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

33
I N T H I S C H A P T E R
• Understand how easy it is to use JavaScript to

create DOM elements from nothing

• Learn how to clone existing DOM elements as well
as remove DOM elements you no longer want

CREATING AND REMOVING
DOM ELEMENTS
This part may blow you away. For the following sentences, I suggest you

hold onto something sturdy:

364 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Despite what our earlier discussions about the DOM may have led you to believe,
our DOM does not have to be made up of HTML elements that exist in markup.
We have the ability to create HTML elements out of thin air and add them to our
DOM using just a few lines of JavaScript. We also have the ability to move ele-
ments around, remove them, and do all sorts of god-like things. Let’s pause for a
bit while we let all of that sink in. This is pretty big.

Besides the initial coolness of all this, the ability to dynamically create and modify
elements in our DOM is an important detail that makes a lot of our favorite
websites and applications tick. When you think about this, this makes sense. Hav-
ing everything predefined in our HTML is very limiting. We want our content to
change and adapt when new data is pulled in, when we interact with the page,
when we scroll further, or when we do a billion other things.

In this chapter, we are going to cover the basics of what makes all this work. We
are going to look at how to create elements, remove elements, re-parent ele-
ments, and clone elements. This is also the last of our chapters looking directly at
DOM-related shenanigans, so call your friends and get the balloons ready!

Creating Elements
It is very common for interactive sites and apps to dynamically create HTML ele-
ments and have them live in the DOM. If this is the first time you are hearing
about something like this being possible, you are going to love this section!

We can create elements by using the createElement method. The way
createElement works is pretty simple. We call it via our document object and
pass in the HTML tag name of the element we wish to create. In the following
snippet, we are creating a paragraph element represented by the letter p:

let myElement = document.createElement("p");

The myElement variable holds a reference to our newly created element.

If we run this line of code as part of a larger app, it will execute and a p element
will get created. Creating an element is the simple part. Actually raising it to be a
fun and responsible member of the DOM is where we need some extra effort. We
need to actually place this element somewhere in the DOM because our dynami-
cally created p element is just floating around aimlessly right now:

CHAPTER 33 CREATING AND REMOVING DOM ELEMENTS 365

The reason for this aimlessness is because our DOM has no real knowledge that
this element exists. In order for an element to be a part of the DOM, we need to
do two things:

1. Find an element that will act as the parent.

2. Use appendChild and add the element we want into that parent element.

The best way to make sense of all this is to look at an example that ties this all
together. If you want to follow along, create a new HTML document and add the
following HTML, CSS, and JS into it:

<!DOCTYPE html>

<html>

<head>

 <title>Creating Elements</title>

 <style>

body {

background-color: #0E454C;

padding: 30px;

366 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 }

h1 {

color: #14FFF7;

font-size: 72px;

font-family: sans-serif;

text-decoration: underline;

 }

p {

color: #14FFF7;

font-family: sans-serif;

font-size: 36px;

font-weight: bold;

 }

 </style>

</head>

<body>

 <h1>Am I real?</h1>

 <script>

let newElement = document.createElement("p");

let bodyElement = document.querySelector("body");

 newElement.textContent = "Or do I exist entirely in your

imagination?";

bodyElement.appendChild(newElement);

 </script>

</body>

</html>

CHAPTER 33 CREATING AND REMOVING DOM ELEMENTS 367

Save this file and preview it in your browser. If everything worked out, you should
see something that resembles the following screenshot:

Now, we are going to take a step back and look at what exactly is going on in our
example. If we look at our JavaScript, everything we need for creating an element
and adding it to our DOM is located in between the <script> tags:

let newElement = document.createElement("p");

let bodyElement = document.querySelector("body");

newElement.textContent = "Or do I exist entirely in your

imagination?";

bodyElement.appendChild(newElement);

With newElement, we are storing a reference to our newly created p tag. With
bodyElement, we are storing a reference to our body element. On our newly created y
element (newElement), we set the textContent property to what we ultimately end

368 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

up displaying. The last thing we do is take our aimlessly floating newElement and
make it a child of our body element by relying on good-old y appendChild.

Figure 33.1 is a visualization of what the DOM for our simple example looks like.

FIGURE 33.1

What the DOM looks like after our code has run

Now, a detail about the appendChild function is that it always adds the element
to the end of whatever children a parent may have. In our case, our body ele-
ment already has the h1 and script elements as its children. The p element gets
appended after them as the youngest child. With that said, we do have control
over the exact order where under a parent a particular element will live.

If we want to insert newElement directly after our h1 tag, we can do so by calling
the insertBefore function on the parent. The insertBefore function takes
two arguments. The first argument is the element you want to insert. The second
argument is a reference to the sibling (aka the child of a parent) you want to pre-
cede. Here is our example modified to have our newElement live after our h1
element (and before our script element):

let newElement = document.createElement("p");

let bodyElement = document.querySelector("body");

CHAPTER 33 CREATING AND REMOVING DOM ELEMENTS 369

let scriptElement = document.querySelector("script");

newElement.textContent = "I exist entirely in your imagination.";

bodyElement.insertBefore(newElement, scriptElement);

Notice that we call insertBefore on the bodyElement and specify that
newElement should be inserted before our script element. Our DOM in this
case would look as shown in Figure 33.2.

FIGURE 33.2

The newly inserted element is in between the h1 and script elements.

You might think that if there is an insertBefore method, there must be an
insertAfter method as well. As it turns out, that isn’t the case. There isn’t a
widely supported built-in way of inserting an element after an element instead r
of before it. What we can do is trick the insertBefore function by telling it to

370 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

insert an element an extra element ahead. That probably makes no sense, so let
me show you the code first and explain later:

let newElement = document.createElement("p");

let bodyElement = document.querySelector("body");

let h1Element = document.querySelector("h1");

newElement.textContent = "I exist entirely in your imagination.";

bodyElement.insertBefore(newElement, h1Element.nextSibling);

Pay attention to the highlighted lines and then take a look at Figure 33.3, which
illustrates what is happening before our code runs and after our code runs.

FIGURE 33.3

A trick we can use to simulate an insertAfter behaviorr

The h1Element.nextSibling call finds the script element. Inserting our
newElement before our script element accomplishes our goal of inserting our
element after the h1 element. What if there is no sibling element to target? Well,
the insertBefore function in that case is pretty clever and just appends the ele-
ment you want to the end automatically.

CHAPTER 33 CREATING AND REMOVING DOM ELEMENTS 371

DY DANDY FUNCTION
If for some reason you find yourself wanting to insert elements after another
sibling all the time, you may want to use this function to simplify your life a bit:
function insertAfter(target, newElement) {

target.parentNode.insertBefore(newElement, target.nextSibling);

}

Yes, I do realize this is a roundabout way of doing this, but it works really well.
Here is an example of this function at work:
let newElement = document.createElement("p");

let bodyElement = document.querySelector("body");

let h1Element = document.querySelector("h1");

newElement.textContent = "I exist entirely in your imagination.";

function insertAfter(target, element) {

target.parentNode.insertBefore(element, target.nextSibling);

}

insertAfter(bodyElement, newElement);

You can even go all out and extend HTMLElement with this function to provide
this functionality more conveniently to all your HTML elements. Chapter 21,
“Extending Built-in Objects,” covers how to do something like that in greater
detail. Note that extending your DOM is frowned upon by some people, so make
sure to have some witty banter on the ready to lighten the mood if you ever are
accosted by these people.

A more generic way of adding children to a parent is by realizing that parent ele-
ments treat children like entries in an array. To access this array of children,
we have the children and childNodes properties. The children property
only returns HTML elements, and the childNodes property returns the more
generic nodes that represent a lot of things we don’t care about. Yes, I realize I am

372 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

repeating myself, but you can check out Chapter 32, “Traversing the DOM,” for
details on more ways you have for pinpointing an element.

Removing Elements
I think somebody smart once said the following: “That which has the ability to
create, also has the ability to remove.” In the previous section, we saw how we
can use the createElement method to create an element. In this section, we
are going to look at removeChild, which, given its slightly unsavory name, is all
about removing elements.

Take a look at the following snippet of code that can be made to work with the
example we have been looking at for some time:

let newElement = document.createElement("p");

let bodyElement = document.querySelector("body");

let h1Element = document.querySelector("h1");

newElement.textContent = "I exist entirely in your imagination.";

bodyElement.appendChild(newElement);

bodyElement.removeChild(newElement);

The p element stored by newElement is being added to our body element by
the appendChild method. We saw that earlier. To remove this element, we call
removeChild on the body element and pass in a pointer to the element we wish
to remove. That element is, of course, newElement. Once removeChild has run,
it will be as if your DOM never knew that newElement existed.

The main thing to note is that we need to call removeChild from the parent of
the child we wish to remove. This method isn’t going to traverse up and down our
DOM trying to find the element we want to remove. Now, let’s say that we don’t
have direct access to an element’s parent and don’t want to waste time finding it.
We can still remove that element very easily by using the parentNode property,
as follows:

let newElement = document.createElement("p");

let bodyElement = document.querySelector("body");

CHAPTER 33 CREATING AND REMOVING DOM ELEMENTS 373

let h1Element = document.querySelector("h1");

newElement.textContent = "I exist entirely in your imagination.";

bodyElement.appendChild(newElement);

newElement.parentNode.removeChild(newElement);

In this variation, we remove newElement by calling removeChild on its parent
by specifying newElement.parentNode. This looks roundabout, but it gets the
job done.

Now, there is a newer, shinier, and better way to remove an element. In this way,
we just call the remove method on the element we wish to remove directly. This
example looks as follows:

let newElement = document.createElement("p");

let bodyElement = document.querySelector("body");

let h1Element = document.querySelector("h1");

newElement.textContent = "I exist entirely in your imagination.";

bodyElement.appendChild(newElement);

newElement.remove();

Now, why am I not beginning and ending this conversation around removing ele-
ments with the remove method? It has to do with browser support. This approach
is still fairly new, so older browsers like Internet Explorer don’t have support for it.
If supporting Internet Explorer is important for you, the other approaches we’ve
looked at will work.

If you are looking for a universally accepted approach for removing elements,
despite some minor quirks, the removeChild function is quite merciless in its
efficiency. If you want something direct, remove is your friend. Both of these
approaches have the ability to remove any DOM element—including ones that
were created in markup originally. We aren’t limited to removing DOM elements
we dynamically added. If the DOM element we are removing has many levels of
children and grandchildren, all of them will be removed as well.

374 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Cloning Elements
This chapter just keeps taking a turn for the weirder the further we go into it, but
fortunately we are at the last section. The one remaining DOM manipulation tech-
nique we need to be aware of is one that revolves around cloning elements, where
we start with one element and create identical replicas of it:

We clone an element by calling the cloneNode function on the element we wish
to clone, along with providing a true or false argument to specify whether we
want to clone just the element or the element and all of its children. Here is what
the snippet of code for cloning an element (and adding it to the DOM) will look
like:

let bodyElement = document.querySelector("body");

let item = document.querySelector("h1");

let clonedItem = item.cloneNode(false);

// add cloned element to the DOM

bodyElement.appendChild(clonedItem);

Once our cloned elements have been added to the DOM, we can then use all
the tricks we’ve learned to modify them. Cloning elements is such an important

CHAPTER 33 CREATING AND REMOVING DOM ELEMENTS 375

thing for us to get familiar with, let’s go beyond this snippet and look at a fuller
example:

<!DOCTYPE html>

<html>

<head>

 <title>Cloning Elements</title>

 <style>

body {

background-color: #60543A;

padding: 30px;

 }

h1 {

color: #F2D492;

font-size: 72px;

font-family: sans-serif;

text-decoration: underline;

 }

p {

color: #F2D492;

font-family: sans-serif;

font-size: 36px;

font-weight: bold;

 }

 </style>

</head>

<body>

 <h1>Am I real?</h1>

 <p class="message">I exist entirely in your imagination.</p>

 <script>

376 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

let bodyElement = document.querySelector("body");

let textElement = document.querySelector(".message");

setInterval(sayWhat, 1000);

function sayWhat() {

let clonedText = textElement.cloneNode(true);

bodyElement.appendChild(clonedText);

 }

 </script>

</body>

</html>

If you put all of this code into an HTML document and preview it in your browser,
you’ll see something that resembles our earlier example:

After a few seconds, though, you’ll notice that this example is quite a bit different.
The message keeps duplicating:

CHAPTER 33 CREATING AND REMOVING DOM ELEMENTS 377

The secret to what is going on here lies in our code. Let’s jump back to the code
inside the <script> tags and take a moment to understand what is going on:

let bodyElement = document.querySelector("body");

let textElement = document.querySelector(".message");

At the top, we have our bodyElement variable that references the body element
in our HTML. Similarly, we have our textElement variable that references our
p element with a class value of message. Nothing too special here.

Now, here is where things get a little interesting. We have our setInterval
timer function that calls the sayWhat function every 1000 milliseconds (1 second):

setInterval(sayWhat, 1000);

It is inside this sayWhat function where the actual cloning takes place:

function sayWhat() {

let clonedText = textElement.cloneNode(true);

bodyElement.appendChild(clonedText);

}

378 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

We call cloneNode on our textElement. The result of us doing this is that a
copy of our textElement is now created and stored as part of the clonedText
variable. The last step is for us to add our newly cloned element to the DOM so
that it shows up. Thanks to our setInterval, all of the code under sayWhat
repeats to keep adding our cloned element to the page.

One thing you may have noticed is that what we are cloning is the following
paragraph element:

<p class="message">I exist entirely in your imagination.</p>

What we specified in our code is the following:

let clonedText = textElement.cloneNode(true);

We are calling cloneNode with the true flag to indicate we want to clone all
of the children as well. Why? Our paragraph element doesn’t seem to have any
children, right? Well, this is where the distinction between elements and s nodes
comes into play. Our paragraph tag doesn’t have any child elements, but the text
wrapped by the p tag is a child node. This detail is important to keep in mind
when you find yourself cloning something and finding that you don’t exactly get
what you want when you specify that children shouldn’t get cloned.

THE ABSOLUTE MINIMUM
If there is anything you walk away with after reading all this, I hope you walk away
with the knowledge that our DOM is something you can touch and extensively
modify. We sort of talked about how everything in the DOM can be altered earlier,
but it is here where we saw firsthand the depth and breadth of the alterations we
can easily make using methods like createElement, removeElement, remove,
and cloneNode.

With everything you’ve learned here, there is nothing preventing you from starting
off with a completely empty page and using just a few lines of JavaScript to popu-
late everything inside it:
<!DOCTYPE html>

<html>

CHAPTER 33 CREATING AND REMOVING DOM ELEMENTS 379

<head>

 <title>Look what I did, ma!</title>

</head>

<body>

 <script>

let bodyElement = document.querySelector("body");

let h1Element = document.createElement("h1");

 h1Element.textContent = "Do they speak English in 'What'?";

bodyElement.appendChild(h1Element);

let pElement = document.createElement("p");

 pElement.textContent = “I am adding some text here...like a

boss!";

bodyElement.appendChild(pElement);

 </script>

</body>

</html>

Just because you can do something like this doesn’t mean you always should. The
main problem with dynamically creating content is that search engines, screen
readers, and other accessibility tools often have difficulty knowing what to do.
They are more familiar with content specified in markup than they are with things
created using JavaScript. Just be aware of that limitation if you ever decide to get
overenthusiastic with dynamically modifying your DOM.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

34
I N T H I S C H A P T E R
• Learn how to add many elements into the DOM

performantly

• Learn about the DocumentFragment and
innerHTML approaches for modifying our DOM

QUICKLY ADDING MANY
ELEMENTS INTO THE DOM
An important part of working with the DOM is learning how to take a bunch

of data and turning it into visuals we see onscreen. This general approach

of having data drive what we see is a common pattern, especially as our

apps get increasingly more dynamic. Let’s take Netflix for example, as

shown in Figure 34.1.

FIGURE 34.1

Netflix is one of those web apps with a lot of content.

382 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

As we navigate through the Netflix app, we see a bunch of thumbnails for the vid-
eos we can watch. All of these thumbnails and related content such as the head-
ings and descriptions aren’t predefined or hardcoded. The visuals are dynamically
generated based on the data the server returns for each category we are navigat-
ing through.

A far less interesting example is what happens when we use the search form on
the KIRUPA.com website, as shown in Figure 34.2.

FIGURE 34.2

Search results appear as we type in search terms.

As we type into the search box, we see inline results appear that we can click.
These results are generated by the search service, and we have no idea what
they are until we start typing into the search box. Behind the scenes, there is a
step where our search terms return some data from the server. This data is then
mapped to the appropriate HTML elements and then added to our DOM, where
we can see and interact with the results.

In this chapter, we’ll go deep into learning how to take a bunch of boring old
data and turn it into HTML elements that we can see and interact with. We’ll look

http://KIRUPA.com

CHAPTER 34 QUICKLY ADDING MANY ELEMENTS INTO THE DOM 383

at several approaches for being able to do this while keeping an eye on perfor-rr
mance. It’s going to be a hoot!

General Approach
In the previous chapter, we learned how to create and display HTML elements
using JavaScript. A lot of those techniques will apply here as well, but the twist is
that we are optimizing for creating and displaying a really large (think hundreds
or thousands!) number of elements. There is just one extra detail to keep in mind
when dealing with such a large quantity of elements: for maximum performance,
whether you are adding one element or a million elements, make all of your
DOM updates at once. And with this nugget of wisdom imparted, it’s time to
learn how exactly to pull all of this off.

Example
Before we start diving into the fun technical details, take a look at an example that
nicely captures what we are trying to do: https://bit.ly/addManyElements.

Now, if you do visit that page, you’ll see something that looks as follows:

https://bit.ly/addManyElements

384 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Find the Generate button and click it. When you click it, we have some code that
dynamically creates 1000 elements and adds them to the DOM:

We can see the newly added items in the scrollable region below, and we can
even scroll through them with our fingers/mouse to see that all these dynamically
created items are real. We’ll take this example and riff on it a bit as part of learn-
ing how to generate a bunch of elements and display them in our DOM.

Getting Started
In the following sections, we’ll look at the techniques we can use to get a lot of
elements dynamically added to the DOM, just like in the preceding example. If
you want to follow along, create a new document and add the following content
into it:

<!DOCTYPE html>

<html lang="en">

<head>

CHAPTER 34 QUICKLY ADDING MANY ELEMENTS INTO THE DOM 385

 <meta charset="UTF-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width,

initial-scale=1.0">

 <title>Add Element</title>

 <style>

 body {

 display: grid;

 place-content: center;

 background-color: #e8ffe7;

 }

 .topContent {

 width: 400px;

 border-bottom: 2px solid #CCC;

 padding-bottom: 30px;

 }

 h1 {

 font-family: sans-serif;

 font-size: 32px;

 font-weight: bold;

 }

 p {

 font-family: sans-serif;

 font-size: 18px;

 line-height: 1.5;

 }

 #container {

 min-height: 300px;

 height: 300px;

 border: 5px solid black;

 margin-top: 30px;

 overflow: auto;

 background-color: #f4f4f4;

 }

386 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 .item {

 margin: 20px;

 background-color: #FFF;

 }

 .item p {

 padding: 10px;

 }

 #generateItems {

 border: 5px solid black;

 padding: 10px;

 font-size: 16px;

 font-weight: bold;

 background-color: #ffd91e;

 width: 100%;

 }

 #generateItems:hover {

 background-color: #1bf1f9;

 }

 </style>

</head>

<body>

 <div class="topContent">

 <h1>Quickly Add Elements</h1>

 <p>Click the Generate button below to display <i>ten

thousand</i> elements that are created entirely in code! Neat,

huh?</p>

 <button id="generateItems">Generate</button>

 </div>

 <div id="container">

 </div>

 <script>

 let container = document.querySelector("#container");

CHAPTER 34 QUICKLY ADDING MANY ELEMENTS INTO THE DOM 387

 let generateButton = document.querySelector("#generateItems");

 // Visit emojipedia.org to copy/paste emojis if needed!

 let emojis = [" ", " ", " ", " ", " ", " ",

" ", " ", " ", " ", " ", " "];

 generateButton.addEventListener("click", generateContent,

false);

 function generateContent(e) {

 // code goes here!

 }

 </script>

</body>

</html>

Take a moment to look at what all of this HTML, CSS, and JS does. There is some
basic HTML for displaying the heading text, description, and our Generate but-
ton. Nothing too fancy here. To make the HTML elements look the way they do,
we have a bunch of CSS style rules.

While the HTML and CSS are very important, they aren’t going to be the focus of
our attention. That honor is reserved for our JavaScript:

let container = document.querySelector("#container");

let generateButton = document.querySelector("#generateItems");

let emojis = [" ", " ", " ", " ", " ", " ", " ", " ", " ", " ",

" ", " "];

generateButton.addEventListener("click", generateContent, false);

function generateContent(e) {

 // code goes here!

}

http://emojipedia.org

388 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

variables, references a few DOM elements, and contains the event handler
(generateContent) that gets called each time our Generate button is clicked. A
lot of the work we’ll be doing will go inside and around the generateContent
function to create the many HTML elements we will be adding to our DOM, so
we’ll be seeing a lot of this code in the following sections.

The innerHTML Approach
Let’s start with one of the easiest and fastest approaches for adding a bunch
of elements into our DOM. This approach works by setting a DOM element’s
innerHTML property with all of the content we want to add in the form of al
string. If you are actively following along, replace the contents of generate-
Content with the following:

function generateContent(e) {

 let htmlToAdd = "";

 let numberOfItems = 1000;

 for (let i = 0; i < numberOfItems; i++) {

 let num = Math.random() * 10000;

 let emoji = emojis[Math.floor(Math.random() * emojis.length)];

 htmlToAdd += `<div class="item"><p>${emoji} ${num}</p></div>`;

 }

 container.innerHTML = htmlToAdd;

}

Take a moment to look at what we are doing. We have a loop that runs 1000 times,
corresponding to the number of elements we want to add. Inside this loop, we are
generating the HTML we want to add to our DOM. We do this by treating the HTML
we want to add as a string and concatenating it to the htmlToAdd variable:

function generateContent(e) {

 let htmlToAdd = "";

 let numberOfItems = 1000;

 for (let i = 0; i < numberOfItems; i++) {

CHAPTER 34 QUICKLY ADDING MANY ELEMENTS INTO THE DOM 389

 let num = Math.random() * 10000;

 let emoji = emojis[Math.floor(Math.random() * emojis.length)];

 htmlToAdd += `<div class="item"><p>${emoji} ${num}</p></div>`;

 }

 container.innerHTML = htmlToAdd;

}

Each time our loop runs, a new chunk of HTML in string form containing a div
and p element are added to the htmlToAdd variable. By the end of our loop run-
ning, this variable will be quite large since it will contain the HTML for every ele-
ment we want to add to our DOM. Here is a console view of what the htmlToAdd
variable contains:

All of this HTML in string form doesn’t do much until it is actually added to a DOM
element. The DOM element that will host all of this HTML is our container ele-
ment, and our last step is to set its innerHTML property to htmlToAdd:

function generateContent(e) {

 let htmlToAdd = "";

390 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 let numberOfItems = 1000;

 for (let i = 0; i < numberOfItems; i++) {

 let num = Math.random() * 10000;

 let emoji = emojis[Math.floor(Math.random() * emojis.length)];

 htmlToAdd += `<div class="item"><p>${emoji} ${num}</p></div>`;

 }

 container.innerHTML = htmlToAdd;

}

When that last line runs, all of our HTML stored in string form is turned into actual
HTML and assigned as the content to our container element. The end result is the
large collection of items containing an emoji and a random number that we see.

What makes this approach awesome is the fact that it is very simple. We just deal
with strings and concatenating them, and the template literal syntax makes this a
breeze. Also, this approach is extremely fast. We make only one DOM update at
the very end when we set the innerHTML to the giant blob of HTML elements we
generated.

On the downside, if we want more fine-grained control over the HTML we gener-rr
ate beyond doing string replacement, then working with strings can involve a lot
of conditional statements, which can get a bit unwieldy

NOTE Don’t Forget to Design the HTML for
Your Data
An important detail when visualizing our data is actually figuring
out what HTML elements will be used to get our data to display.
For example, the HTML we generate for displaying our emoji and
random number looks like this:

<div class="item"><p> 1093.9706792591553</p></div>

How did we come up with this structure? There are several ways
to make this work, but my recommended approach is to ignore

CHAPTER 34 QUICKLY ADDING MANY ELEMENTS INTO THE DOM 391

the JavaScript for a moment and add the proposed HTML to the
relevant part of our document directly:

<div class="topContent">

 <h1>Quickly Add Elements</h1>

 <p>Click the Generate button below to display

<i>ten thousand</i> elements that are created

entirely in code! Neat, huh?</p>

 <button id="generateItems">Generate</button>

</div>

<div id="container">

 <div class="item"><p> 7488.253603325752</p></div>

 <div class="item"><p> 6694.840973924077</p></div>

 <div class="item"><p> 610.9320877589108</p></div>

 <div class="item"><p> 3368.3944750666337</p></div>

 <div class="item"><p> 5051.139001335616</p></div>

</div>

By using this temporary HTML structure, we can make changes
and see the results quickly. We can even use the in-browser DOM
tools to make edits to the HTML and CSS in real time. Once we
are happy with the final result, we can then translate this HTML
into a less fungible JavaScript-friendly approach to make it come
alive with our actual data.

In the previous section, the approach we used to map our data to real HTML ele-
ments was to turn the relevant HTML into a string. In the next section, we’ll look at
a more traditional DOM-oriented way of going from data to HTML.

The DocumentFragment Approach
The next approach we will look at is where we create a virtual DOM element,
make all of our DOM changes on it, and then assign that virtual DOM element to
our real DOM once we are ready to commit. Working with a virtual DOM element
is made possible thanks to the DocumentFragment object, and the following is
how our generateContent method can be modified to use it:

function generateContent(e) {

 let fragment = new DocumentFragment();

392 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 let numberOfItems = 1000;

 for (let i = 0; i < numberOfItems; i++) {

 let num = Math.random() * 10000;

 let emoji = emojis[Math.floor(Math.random() * emojis.length)];

 let divElement = document.createElement("div");

 divElement.classList.add("item");

 let pElement = document.createElement("p");

 pElement.innerText = `${emoji} ${num}`;

 divElement.appendChild(pElement);

 fragment.appendChild(divElement);

 }

 container.appendChild(fragment);

}

Our fragment variable stores a reference to our DocumentFragment object,
and we treat this like we would any other DOM element. Remember, our goal is to
generate HTML that looks as follows for each item:

<div class="item"><p> 47.5121104</p></div>

Because we are dealing with DOM elements here, we use the tried-and-true DOM
methods like createElement, appendChild, and classListto to generate
our HTML structure and build out our DOM subtree.

Now, earlier I mentioned that the way to ensure we add our DOM elements
quickly is to make all of our DOM updates just once. What we are seeing in this
example seems counter to that because we are creating and appending DOM ele-
ments at each iteration of our loop:

function generateContent(e) {

 let fragment = new DocumentFragment();

 let numberOfItems = 1000;

CHAPTER 34 QUICKLY ADDING MANY ELEMENTS INTO THE DOM 393

 for (let i = 0; i < numberOfItems; i++) {

 let num = Math.random() * 10000;

 let emoji = emojis[Math.floor(Math.random() * emojis.length)];

 let divElement = document.createElement("div");

 divElement.classList.add("item");

 let pElement = document.createElement("p");

 pElement.innerText = `${emoji} ${num}`;

 divElement.appendChild(pElement);

 fragment.appendChild(divElement);

 }

 container.appendChild(fragment);

}

The detail to note is that our DocumentFragment is not your typical DOM ele-
ment. It isn’t parented to any visual onscreen, so it is a virtual element where no
styles or layout get modified as a result of us changing its structure. We can’t even
see it! Think of a DocumentFragment as an invisible, virtual container that gives
us all the handy helper methods and capabilities that regular DOM elements pro-
vide without actually creating a new DOM element. All of the DOM manipulation
we are doing that would typically be expensive when done on our live DOM tree
doesn’t apply here.

Once we have finished building our DOM subtree, it’s time to commit our changes
to the DOM and visualize the result of all this data being mapped to HTML ele-
ments. This step we do exactly once after our loop has finished, and the gigantic
DOM subtree stored by our fragment is appended to our container element:

function generateContent(e) {

 let fragment = new DocumentFragment();

 let numberOfItems = 1000;

 for (let i = 0; i < numberOfItems; i++) {

 let num = Math.random() * 10000;

394 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 let emoji = emojis[Math.floor(Math.random() * emojis.length)];

 let divElement = document.createElement("div");

 divElement.classList.add("item");

 let pElement = document.createElement("p");

 pElement.innerText = `${emoji} ${num}`;

 divElement.appendChild(pElement);

 fragment.appendChild(divElement);

 }

 container.appendChild(fragment);

}

Driving home the invisible and virtual nature of our DocumentFragment, when
we append our DocumentFragment to another DOM element, the Document-
Fragment disappears. Because it acted like a temporary container to help us
build the DOM subtree, only the contents of the DocumentFragment survived
and became a part of the parent element. If we inspect the contents of our con-
tainer element, we won’t see any evidence of our DocumentFragment having
played a key role in helping us visualize all of this data:

CHAPTER 34 QUICKLY ADDING MANY ELEMENTS INTO THE DOM 395

This approach is awesome for three reasons. First, it’s powerful. By having access
to all of the DOM methods, we can build our DOM subtree without having to deal
with raw strings. Second, it’s fast. Our DocumentFragment isn’t a real DOM ele-
ment with all of the performance overhead that comes along with it, so we can
performantly build our DOM subtree and assign it once to our DOM when we are
ready to commit the changes. Finally, the DocumentFragment disappears once
it’s parented under a DOM element, so we aren’t inserting an additional HTML
element that we’ll need to keep around.

The downside of this approach, however, is that it’s verbose. Working with the
DOM methods does mean that we have to write additional code to create an ele-
ment, make any attribute changes on the element, append it to any intermediate
elements, and do other bookkeeping tasks to get our DOM subtree just right.

Removing Elements (Emptying an Entire Subtree)
We spent all this time looking at how to add a bunch of elements to our DOM.
What about the opposite, where we want to remove a bunch of elements instead?
Removing elements is far less glamourous because what we are looking to do is
just clear out an entire DOM subtree of content. The easiest way to do this is by
relying on the replaceChildren method.

If we wanted to clear out all of the contents of our container element, here is what
we would do:

container.replaceChildren();

That’s all there is to it. A practical use for this is actually in our current example.
Each time we click the Generate button, we don’t want to keep adding a thou-
sand elements each time. We want to clear out the current DOM elements before
adding new ones. The change would be to add the preceding line to the top of
our generateContent function, like so:

function generateContent(e) {

 container.replaceChildren();

 let htmlToAdd = "";

 let numberOfItems = 1000;

 for (let i = 0; i < numberOfItems; i++) {

396 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 let num = Math.random() * 10000;

 let emoji = emojis[Math.floor(Math.random() * emojis.length)];

 htmlToAdd += `<div class="item"><p>${emoji} ${num}</p></div>`;

 }

 container.innerHTML = htmlToAdd;

}

With this change, each time generateContent is called, we ensure that we are
dealing with an empty container element before adding any new elements to it.

THE ABSOLUTE MINIMUM
In this chapter, we looked at two approaches for being able to dynamically gen-
erate a bunch of elements using JavaScript and add them to the DOM. One
approach had us treating all of our HTML as strings and setting the innerHTML
property. Another approach had us creating a virtual DOM element using Docu-
mentFragment and creating our DOM subtree using the usual DOM manipu-
lation methods. Both of these approaches are quite good. In my testing, the
performance characteristics for both are really good, with the innerHTML
approach being slightly faster. Your mileage may vary, so definitely double-check
which happens to be faster for your situation.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

35
I N T H I S C H A P T E R
• Learn how browser developer tools can save you a

lot of time

• Familiarize yourself with what Chrome’s Developer
Tools offer

IN-BROWSER DEVELOPER
TOOLS
All of the major browsers—Google Chrome, Apple Safari, Mozilla Firefox,

and Microsoft Edge (formerly Internet Explorer)—do more than just display

web pages. For developers, they provide access to a lot of cool function-

ality for figuring out what is actually going on with the web page being

displayed. They do all of this via what I’ll generically just call the developer

tools. These are tools that are built in to the browser, and they give you

the ability to fiddle with your HTML, CSS, and JavaScript in a lot of neat

and interesting ways.

398 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Meet the Developer Tools
Let’s start at the very beginning. When you navigate to a web page, your browser
will load whatever document it was told to load:

In this chapter, let’s look at these developer tools and learn how we can use them
to make our lives easier.

I’LL BE USING GOOGLE CHROME
For all of the examples you are about to see, I’ll be using Google’s Chrome
browser. While each browser provides similar functionality for what I’ll be describ-
ing, the exact user interface (UI) and steps to get there will vary. Just be aware of
that, and also note that the version of Chrome you may be using might be more
recent than the one used in this chapter.

CHAPTER 35 IN-BROWSER DEVELOPER TOOLS 399

This should all be very familiar for you, as this part of the browser functional-
ity really hasn’t changed much since the very first browser was released in the
1800s…or thereabouts. While using Chrome, press command+option+I on the
Mac or the F12 key (or Ctrl+Shift+I) in Windows.

Notice what happens. While you may not hear heavenly music followed by the
earth rumbling and laser beams shooting across the sky, you will see your brows-
er’s layout change to show something mysterious (usually) toward the bottom or
right of the screen, as shown in Figure 35.1.

FIGURE 35.1

Your browser with its developer tools displayed right below it

Your browser will split into two parts. One part is where your browser deals with
displaying your web pages. We like this guy and have known him for quite some
time. The other part, the new guy whom we eye suspiciously from a distance, pro-
vides you with access to information about the currently displayed page that only
a developer such as yourself would appreciate. This guy is better known as the
developer tools.

400 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The developer tools provide you with the ability to do the following:

• Inspect the DOM

• Debug JavaScript

• Inspect objects and view messages via the console

• Figure out performance and memory issues

• See the network traffic

• …and a whole lot more!

In the interest of time (Game of Thrones is about to start soon, and this is the s
episode where I believe Ned Stark comes back to life as a dire wolf), I’m going
to focus on the first three items that are directly related to what you are learning
about in this book.

Inspecting the DOM
The first developer tool feature we will look at is how you can inspect and even
manipulate the contents of your DOM. With Chrome launched, navigate to http://
bit.ly/kirupaDevTool.

NO BROWSER? NO PROBLEM!
Now, if you don’t have a browser handy or simply can’t access that link, don’t
worry. I’ll explain what is going on at each step of the way so that you aren’t left
out of all the fun.

When you load this page, you will see a colorful background with some text
displayed:

http://bit.ly/kirupaDevTool
http://bit.ly/kirupaDevTool

CHAPTER 35 IN-BROWSER DEVELOPER TOOLS 401

If you reload this page, you’ll see it showing up with a different background color.
As you can guess, each page reload will result in a different background color get-
ting generated:

402 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The first thing we’ll do with this example is examine the DOM to see what is going
on. Make sure your developer tools are visible and ensure the Elements tab is
selected:

What you will see is a view of your live markup from the page that is currently
shown. To be more specific, this is a view of your DOM. The importance of this
distinction is that this view provides you with a live version of what your page
looks like. Any shenanigans JavaScript or your browser may have pulled on the
DOM will be shown in this view.

For our example, using View Source will result in something like the following:

<!DOCTYPE html>

<html>

<head>

 <title>Random Color Generator!</title>

CHAPTER 35 IN-BROWSER DEVELOPER TOOLS 403

 <style>

h2 {

font-family: Arial, Helvetica;

font-size: 100px;

color: #FFF;

text-shadow: 0px 0px 11px #333333;

margin: 0;

padding: 30px;

 }

 </style>

</head>

<body>

 <h2>Random

Color

Generator</h2>

 <script src="js/randomColor.js"> </script>

 <script>

let bodyElement = document.querySelector("body");

 bodyElement.style.backgroundColor = getRandomColor();

 </script>

</body>

</html>

The View Source command simply gives us a view of the markup as stored in the
HTML page. Another way of saying this is that View Source gives us a (stale) ver-rr
sion of the markup as it lives on the server and not a version of the DOM.

If you use the developer tools’ DOM view, you will see a DOM-based representa-
tion of our document based on the live version of the page:

<!DOCTYPE html>

<html>

<head>

404 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 <title>Random Color Generator!</title>

 <style>

h2 {

font-family: Arial, Helvetica;

font-size: 100px;

color: #FFF;

text-shadow: 0px 0px 11px #333333;

margin: 0;

padding: 30px;

 }

 </style>

<body style="background-color: rgb(75, 63, 101);">

 <h2>Random

Color

Generator</h2>

 <script src="js/randomColor.js"> </script>

 <script>

let bodyElement = document.querySelector("body");

 bodyElement.style.backgroundColor = getRandomColor();

 </script>

</body>

</html>

If you pay close attention, you’ll notice some subtle differences in how some ele-
ments look. The biggest difference is the highlighted inline background-color
style on the body element that exists in the DOM view but not in the traditional
View Source view. The reason is that we have some JavaScript that dynamically
sets an inline style on the body element. The following note expands on why this
happens!

CHAPTER 35 IN-BROWSER DEVELOPER TOOLS 405

NOTE The Difference Between the DOM View
and View Source
The reason for the discrepancy between the two code views goes
back to what the DOM represents. To repeat this one more time,
your DOM is the result of your browser and JavaScript having run
to completion. It provides you with a fresh-from-the-oven look
that mimics what your browser sees.

View Source is just a static representation of your document as
it was on the server (or your computer). It doesn’t contain any of
the liveliness of your running page that the DOM view highlights.
If you look at our JavaScript, you’ll see that I specified that our
body element get its backgroundColor set dynamically:

let bodyElement = document.querySelector("body");

bodyElement.style.backgroundColor = getRandomColor();

When this code runs, it modifies the DOM to set the back-
groundColor property on the body element. You would never
see this using View Source. Ever. That’s why the DOM view the
developer tools provide is your bestest friend in the whole wide
world.

As examples highlighting the differences between the source and DOM go, our
example was quite simple. To see the real benefit of the DOM view, you should
experiment with some element re-parentings, creations, and deletions to really see
the divergence between viewing the source and examining the DOM. Some of the
examples you saw in the previous chapters around DOM manipulation would be
good things to inspect as well.

Debugging JavaScript
Moving along, the other big thing that the developer tools bring to the table is
debuggability. I don’t know if that’s really a word, but the developer tools allow
you to poke and prod at your code to figure out what is going wrong (or not
wrong). The general catchall phrase for all this is known as debugging.

In your developer tools, click the Sources tab:

406 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Sources tab gives you access to all the files currently being used by your doc-
ument. As the name implies, you are looking at the raw contents of these files—
not the DOM-generated version from earlier that is your bestest friend.t

From the tree view on the left, ensure the randomColorGenerator.htm file is
selected. This will ensure that the contents of this file are displayed for you to
examine on the right. In the displayed file, scroll all the way down until you
see the <script> tag with the two lines of code you saw earlier. Based on the
line counts shown in the left gutter, our lines of JavaScript should be lines 20
and 21.

What we want to do is examine what happens when the code in line 21 is about
to execute. To do this, we need to tell the browser to stop when line 21 is about
to get executed. We do that by setting what is known as a breakpoint. To set a
breakpoint, click directly on the 21 label in the left gutter.

Once you’ve done that, you’ll see the 21 highlighted:

CHAPTER 35 IN-BROWSER DEVELOPER TOOLS 407

At this point, a breakpoint has been set. The next step is to actually have your
browser run into this breakpoint. This is more peacefully known as “hitting the
breakpoint.” The way a breakpoint is hit is by ensuring your code runs into it. In
our case, all we need to do is just hit F5 to refresh the page, as line 21 will just
execute as part your page loading and executing everything inside the
<script> tags.

If everything worked as expected, you’ll see your page load and suddenly pause,
with line 21 getting highlighted:

408 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

You are currently in debugging mode. The breakpoint you set on line 21 has been
hit. This means your entire page ground to a screeching halt the moment the
browser hit the breakpoint. At this point, with your browser being in suspended
animation, you have the ability to fiddle with everything going on in your page.
Think of this as time having stopped with only you having the ability to move
around, inspect, and alter the surroundings. If a movie hasn’t been made about
this, somebody should get on it!

While in this mode, go back to line 21 and hover over the bodyElement variable.
When you hover over it, you’ll see a tooltip indicating the various properties and
values that this particular object contains:

You can then interact with the tooltip, scroll through all the objects, and even dig
deeper into complex objects that have more objects inside them. Because body-
Element is basically the JavaScript/DOM representation of the body element,
we’ll see a lot of properties that we encountered indirectly from our look at
HTMLElement a few chapters ago.

On the right side of the source view, we have more angles through which we can
inspect our code:

CHAPTER 35 IN-BROWSER DEVELOPER TOOLS 409

I won’t be explaining what all of those categories do, but I am pointing that area
out just so you know that you have the ability to examine the current state of all
your JavaScript variables and objects in much greater detail if you wanted to.

The other big advantage a breakpoint provides is the ability for you to step
through your code just like your browser would. Right now, we are stuck on line
21. To step through the code, click the Step into function call button found on
the right side of the screen:

410 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Remember, this is the line of code you are currently broken at:

bodyElement.style.backgroundColor = getRandomColor();

Once you’ve clicked that button, notice what happens. You will find yourself inside
randomColor.js, where the getRandomColor function has been defined. Keep
clicking Step into function call to continue stepping into your code and going
through each line of the getRandomColor function. Notice that you now get to
see how the objects in your browser’s memory update as you go line-by-line and
execute the code sequentially. If you are tired of doing that, you can “step back”
by clicking the Step out of current function button (found to the right of your
Step into button), which exits you out of this function. In our case, that is back to
line 21 in randomColorGenerator.htm.

If you just want to execute your app without stepping through any more of the
code, click the Play button found a few pixels to the left of Step into:

When you click Play, your code will execute. If you happen to have another break-
point set somewhere in your code’s path, that breakpoint will also get hit. When
stopped at any breakpoint, you can choose to step into, step out, or just resume
execution with Play. Because we only set one breakpoint, clicking Play will just run
the code to completion and have your random color appear as the background for
your body element:

CHAPTER 35 IN-BROWSER DEVELOPER TOOLS 411

To remove a breakpoint, just click the line number you set the breakpoint on. If
you click the 21 label again, the breakpoint will toggle itself off and you can just
run your application without getting into debugging mode.

So, there you have it. A whirlwind tour of how to use some of the debugging func-
tionality you and I have at our disposal. To reiterate something I mentioned at the
beginning of this chapter, I am only scratching the surface of what is possible.

Meet the Console
The other, OTHER big debugging tool functionality we will look at is using what
is known as the Console. We’ve seen the Console in action quite a bit when we
looked at it earlier, so I am just repeating some of the information here for the
sake of completeness, but going a bit further as well. As we know, the Console
provides us with the ability to do several things. It allows us to see messages
logged by our code. It also allows us to pass commands and inspect any object
that is currently in scope.

412 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

To show the Console, navigate to the Console tab by clicking (or tapping) it:

Don’t be afraid of the vast emptiness you see in front of you. Instead, embrace the
freedom and fresh air.

Anyway, the Console provides us with the ability to inspect or call any object that
exists in whatever scope our application is currently running in. With no break-
points set, launching the Console puts us in the global state.

Inspecting Objects
Where your cursor is right now, type in window and press Enter:

CHAPTER 35 IN-BROWSER DEVELOPER TOOLS 413

What you will see is an interactive listing of all the things that live in your window
object. You can start to type in any valid object or property, and if it is in scope,
you will be able to access it, inspect its value, or even execute it:

This is by no means a read-only playground. We can cause all sorts of mayhem.
For example, if you type in document.body.remove() and press Enter, your entire
document will just disappear. If you did end up deleting the body, just refresh the
page to get back to your earlier state. Developer tools primarily work with the
in-memory representation of our page and don’t write back to source. Your experi-
mentations will safely stay in the transient realm.

REFRESHER ON THE SCOPE/STATE
On several occasions, I mentioned that your console allows you to inspect the world
at whatever scope you are currently in. This is basically just applying what you learned
about variable scope in Chapter 8, “Variable Scope,” to the Console’s behavior.

Let’s say we have a breakpoint set at the following highlighted line:

let oddNumber = false;

function calculateOdd(num) {

if (num % 2 == 0) {

414 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 oddNumber = false;

 } else {

 oddNumber = true;

 }

}

calculateOdd(3);

When we run the code and the breakpoint gets hit, the value of oddNumber is still
false. Our breakpointed line hasn’t been executed yet, and we can verify this by
testing the value of oddNumber in the Console. Next, let’s say we run this code,
hit this breakpoint, and step through to the next line.

At this point, our oddNumber value is set to true. Our Console will now reflect
the new value because that is what the in-memory representation of oddNumber
states. The main takeaway is that your Console’s view of the world is directly tied
to where in the code you are currently focusing. This is especially made obvious
when you are stepping through code and the scope you are in changes frequently.

Logging Messages
We are almost done with all of this “developer tools” business. The last thing we
will look at is the Console’s ability to log messages from your code. This is some-
thing we looked at in detail earlier in Chapter 11, so we’ll keep it brief. Remember
all those times in the earlier chapters where we did something like this?

function doesThisWork() {

alert("It works!!!");

}

CHAPTER 35 IN-BROWSER DEVELOPER TOOLS 415

Here we are using an alert statement to print some value or prove that the code
is being executed. Well, we can stop doing that now. By using the Console, we
have a far less annoying way of printing messages without interrupting everything
with a modal dialog. You can use the console.log function to pass in whatever
you want to print to the Console:

function doesThisWork() {

console.log("It works!!!")

}

When this code executes, you’ll see whatever you logged get printed in your Con-
sole when you bring it up:

Using the Console is, in almost every way, superior to using alert for debugging
purposes.

416 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
If you have never used a developer tool before, I really, REALLY think you should
take some time to get familiar with one. JavaScript is one of those languages
where things can go wrong even when everything looks right. In the very simple
examples you’ll encounter in this book, it’s easy to spot mistakes. When you start
working on larger and more complex applications, having the right tools to diag-
nose issues will save you many hours of effort.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

36
I N T H I S C H A P T E R
• Understand how communication happens between

you and your app

• Learn about events

• Use event arguments to better handle event-related
scenarios

EVENTS
In case you haven’t noticed, most applications and websites are pretty

boring when left alone. They launch with great fanfare and gusto, but the

excitement they bring to the table goes away very quickly if we don’t start

interacting with them:

418 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The reason for this is simple: Our applications exist to react to things we do to
them. They have some built-in motivation when we launch them to get themselves
out of bed and ready for the day. Everything else that they do afterward depends
largely on what we tell them to do. This is where things get really interesting.

We tell our applications what to do by having them react to what are known as
events. In this chapter, we will take an introductory look at what events are and
how we can use them.

What Are Events?
At a high level, everything we create can be modeled by the following statement:

We can fill in the blanks in this statement in a bajillion different ways. The first
blank calls out something that happens. The second blank describes the reaction
to that. Here are some examples of this statement filled out:

This generic model applies to all the code we’ve written together. This model
also applies to all the code our favorite developer/designer friends wrote for their
applications. There is no way of escaping this model, so there is no point in resist-
ing. Instead, we need to learn to embrace the star of this model—the very tal-
ented critter known as the event.

An event is nothing more than a signal. It communicates that something has just
happened. This something could be a mouse click. It could be a key press on our
keyboard. It could be our window getting resized. It could just be our document

CHAPTER 36 EVENTS 419

simply getting loaded. The thing to take away is that our signal could be any one
of hundreds of somethings that are built in to the JavaScript language—or custom
somethings that we created just for our app alone.

Getting back to our model, events make up the first half:

An event defines the thing that happens. It fires the signal. The second part of
the model is defined by the reaction to the event:

After all, what good is a signal if there isn’t someone somewhere who is waiting
for it and then takes the appropriate action?! Okay, now that we have a high-level
overview of what events are, let’s dive into how events live in the nature reserve
known as JavaScript.

420 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Events and JavaScript
Given the importance of events, it should be no surprise to you that JavaScript
provides us with a lot of great support for working with them. To work with events,
there are two things we need to do:

1. Listen for events.

2. React to events.

These two steps seem pretty simple, but never forget that we are dealing with
JavaScript here. The simplicity is just a smokescreen for the depth of the trauma
JavaScript will inflict upon us if we take a wrong step. Maybe I am being overly
dramatic here, but we’ll find out soon enough.

Listening for Events
To more bluntly state what I danced around earlier, almost everything we do inside
an application results in an event getting fired. Sometimes, our application will fire
events automatically, such as when it loads. Sometimes, our application will fire
events as a reaction to us actually interacting with it. The thing to note is that our
application is bombarded by events constantly, regardless of whether we intended
to have them get fired. Our task is to tell our application to listen only to the
events we care about.

The thankless job of listening to the right event is handled entirely by a function
called addEventListener. This function is responsible for being eternally vigi-
lant so that it can notify another part of our application when an interesting event
gets fired.

The way we use this function looks as follows:

source.addEventListener(eventName, eventHandler, false);

That’s probably not very helpful, so let’s dissect what each part of this function
means.

The Source
We call addEventListener via an element or object that we want to listen
for events on. Typically, that will be a DOM element, but it can also be our
document, window, or any object specially designed to fire events.

CHAPTER 36 EVENTS 421

The Event Name
The first argument we specify to the addEventListener function is the name
of the event we are interested in listening to. The full list of events we have at
our disposal is simply too large to show here (go to the following page instead:
https://bit.ly/kirupaEventsList), but some of the most common events you will
encounter are shown in Table 36.1.

TABLE 36.1 Common Events

Event When the Event Is Fired

click When you press down and release the primary mouse button, track-
pad, and so on.

mousemove Whenever you move the mouse cursor.

mouseover When you move the mouse cursor over an element. This is the event
you would use for detecting a hover!

mouseout When your mouse cursor moves outside the boundaries of an element.

dblclick When you quickly click twice.

DOMContent-
Loaded

When your document’s DOM has fully loaded. We’ll look into this event
in more detail in Chapter 40.

load When your entire document (DOM, external stuff like images, scripts,
and so on) has fully loaded.

keydown When you press down on a key on your keyboard.

keyup When you stop pressing down on a key on your keyboard.

scroll When an element is scrolled around.

wheel and
DOMMouseScroll

Every time you use your mouse wheel to scroll up or down.

In subsequent chapters, we will look at a lot of these events in greater detail. For
now, just take a quick glance at the click event. We will be using that one in a
few moments.

The Event Handler
The second argument requires us to specify a function that will get called when
the event is overheard. This function is very affectionately known as the event han-
dler by friends and family. We’ll learn a whole lot more about this function (and
occasionally an object) in a few moments.

https://bit.ly/kirupaEventsList

422 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

To Capture or Not to Capture? That Is the Question!
The last argument is made up of either a true or a false. To fully help us under-rr
stand the implications of specifying either value, we are going to have to wait until
Chapter 37, “Event Bubbling and Capturing in JavaScript,” which happens to be
the next chapter, so we won’t be waiting long.

Putting It All Together
Now that we’ve seen the addEventListener function and what it looks like, let’s
tie it all up with an example of this function fully decked out:

document.addEventListener("click", changeColor, false);

Our addEventListener in this example is attached to the document object.
When a click event is overheard, it calls the changeColor function (aka the
event handler) to react to the event. This sets us up nicely for the next section,
which is all about reacting to events.

Reacting to Events
As we saw in the previous section, listening to events is handled by
addEventListener. What to do after an event is overheard is handled by
the event handler. I wasn’t joking when I mentioned earlier that an event handler
is nothing more than a function or object:

function normalAndBoring() {

 // I like hiking and puppies and other stuff!

}

The only distinction between a typical function and one that is designated as the
event handler is that our event handler function is specifically called out by name
in an addEventListener call (and receives an Event object as its argument):

document.addEventListener("click", changeColor, false);

function changeColor(event) {

 // I am important!!!

}

CHAPTER 36 EVENTS 423

addEventListener function cares about gets overheard.

A Simple Example
The best way to make sense of what we’ve learned so far is to see all of this
fully working. To play along, add the following markup and code to an HTML
document:

<!DOCTYPE html>

<html>

<head>

 <title>Click Anywhere!</title>

</head>

<body>

 <script>

document.addEventListener("click", changeColor, false);

function changeColor() {

 document.body.style.backgroundColor = "#FFC926";

 }

 </script>

</body>

</html>

If we preview our document in the browser, we will initially just see a blank page,
as shown in Figure 36.1.

424 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

FIGURE 36.1

A blank page is all we see!

Things will change when you click anywhere on the page, though. Once you’ve
completed your click (that is, released the mouse press), your page’s background
will change from being white to a yellowish color (or a different shade of gray if
you are in the paperback edition of this book!), as seen in Figure 36.2.

FIGURE 36.2

Our blank page turns yellow when clicked!

425CHAPTER 36 EVENTS

The reason why this example does what it does lies in our code:

document.addEventListener("click", changeColor, false);

function changeColor() {

 document.body.style.backgroundColor = "#FFC926";

}

The addEventListener call is identical to what we saw earlier, so let’s skip that
one. Instead, let’s pay attention to the changeColor event handler:

document.addEventListener("click", changeColor, false);

function changeColor() {

 document.body.style.backgroundColor = "#FFC926";

}

This function gets called when the click event on the document is overheard.
When this function gets called, it sets the background color of the body element
to a shade of yellow. Tying this back to the very beginning where we generalized
how applications work, here is what this example looks like:

If all of this makes complete sense to you, that’s great! You just learned about one
of the most important concepts you’ll encounter. We aren’t done just yet. We let
the event handler off the hook a little too easily, so let’s pay it one more visit.

426 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Event Arguments and the Event Type
Our event handler does more than just get called when an event is overheard by
an event listener. It also provides access to the underlying event object as part of
its arguments. To access this event object easily, we need to modify our event han-
dler signature to support this argument.

Here is an example where we specify the event name to refer to our event
arguments:

function myEventHandler(event) {

 // event handlery stuff

}

At this point, our event handler is still a plain-old boring function. It just hap-
pens to be a function that takes one argument—the event argument! We can go
with any valid identifier for the argument, but I tend to go with event or just e
because that is what all the cool kids do. There is nothing technically wrong with
identifying our event as follows:

function myEventHandler(isNyanCatReal) {

 // event handlery stuff

}

The important detail is that the event argument points to an event object, and this
object is passed in as part of the event firing. There is a reason why we are paying
attention to what seems like a typical and boring occurrence. This event object
contains properties that are relevant to the event that was fired. An event trig-
gered by a mouse click will have different properties when compared to an event
triggered by a key press, a page load, an animation, and so on. Most events will
have their own specialized behavior we will rely on, and the event object is our
window into all of that uniqueness.

Despite the variety of events and resulting event objects we can get, there are
certain properties that are common. This commonality is made possible because
all event objects are derived from a base Event type (technically, an Interface).
Some of the popular properties from the Event type we will use are:

• currentTarget

• target

• preventDefault

CHAPTER 36 EVENTS 427

• stopPropagation

• type

To fully understand what these properties do, we need to go a little deeper in our
understanding of events. We aren’t there yet, so just know that these properties
exist. We’ll be seeing them real soon in subsequent chapters.

REMOVING AN EVENT LISTENER
Sometimes, we will need to remove an event listener from an element.
The way we do that is by using addEventListener’s archnemesis, the
removeEventListener function:

something.removeEventListener(eventName, eventHandler, false);

As we can see, this function takes the exact type of arguments as an
addEventListener function. The reason for that is simple. When we are listen-
ing for an event on an element or object, JavaScript uses the eventName, the
eventHandler, and the true/false value to uniquely identify that event listener.
To remove this event listener, we need to specify the exact same arguments.

Here is an example:

document.addEventListener(“click”, changeColor, false);

document.removeEventListener(“click”, changeColor, false);

function changeColor() {

 document.body.style.backgroundColor = “#FFC926”;

}

The event listener we added in the first line is completely neutralized by
the removeEventListener call in the highlighted second line. If the
removeEventListener call used any argument that was different from what was
specified with the corresponding addEventListener call, its impact would be
ignored and the event listening will continue.

428 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
Well, that’s all there is to getting an introduction to events. Just remember that
you have your addEventListener function, which allows you to register an
event handler function. This event handler function will get called when the event
your event listener is listening for gets fired. Although we touched on a few other
topics, they will make more sense when we view them in the context of the more
advanced event-related examples you will see in the following chapters!

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

37
I N T H I S C H A P T E R
• Learn how events travel through the DOM

• Understand the differences between event capturing
and event bubbling

• Interrupt events

EVENT BUBBLING AND
CAPTURING
In the previous chapter, you learned how to use the addEventListener

function to listen for events that you want to react to. That chapter cov-

ered the basics, but it glossed over an important detail about how events

actually get fired. An event isn’t an isolated disturbance. Like a butterfly

flapping its wings, an earthquake, a meteor strike, or a Godzilla visit, many

events ripple and affect a bunch of elements that lie in their path.

430 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

In this chapter, I will put on my investigative glasses, a top hat, and a serious
British accent to explain what exactly happens when an event gets fired. You will
learn about the two phases events live in, why all of this is relevant, and a few
other tricks to help you better take control of events.

Event Goes Down, Event Goes Up
To better help us understand events and their lifestyle, let’s frame all of this in the
context of a simple example. Here is some HTML we’ll refer to:

<!DOCTYPE html>

<html>

<head>

 <title>Events!</title>

</head>

<body id="theBody" class="item">

 <div id="one_a" class="item">

 <div id="two" class="item">

 <div id="three_a" class="item">

 <button id="buttonOne" class="item">one</button>

 </div>

 <div id="three_b" class="item">

 <button id="buttonTwo" class="item">two</button>

 <button id="buttonThree" class="item">three</button>

 </div>

 </div>

 </div>

 <div id="one_b" class="item">

 </div>

 <script>

 </script>

</body>

</html>

CHAPTER 37 EVENT BUBBLING AND CAPTURING 431

As you can see, there is nothing really exciting going on here. The HTML should
look pretty straightforward (as opposed to being shifty and constantly staring at its
phone), and its DOM representation is shown in Figure 37.1.

FIGURE 37.1

What the DOM for the markup looks like

432 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Here is where our investigation is going to begin. Let’s say that we click the
buttonOne element. From what we saw previously, you know that a click event
is going to be fired. The interesting part that I omitted is where exactly the click
event is going to get fired from. Your click event (just like almost every other
JavaScript event) does not actually originate at the element you interacted with.
That would be too easy and make far too much sense.

Instead, an event starts at the root of your document:

CHAPTER 37 EVENT BUBBLING AND CAPTURING 433

From the root, the event makes its way through the narrow pathways of the DOM
and stops at the element that triggered the event, buttonOne (also more formally
known as the event target):

As shown in the diagram, the path our event takes is direct, but it does obnox-
iously notify every element along that path. This means that if we were to listen for
a click event on body, one_a, two, or three_a, the associated event handler will
get fired. This is an important detail that we will revisit in a little bit.

Now, once our event reaches its target, it doesn’t stop. Like some sort of an ener-rr
getic bunny for a battery company whose trademarked name I probably can’t

434 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

mention here, the event keeps going by retracing its steps and returning back to
the root:

Just like before, every element along the event’s path as it is moving on up gets
notified about its existence.

Meet the Phases
One of the main things to note is that it doesn’t matter where in your DOM you
initiate an event. The event always starts at the root, goes down until it hits the
target, and then goes back up to the root. This entire journey is very formally
defined, so let’s look at all of this formalness.

CHAPTER 37 EVENT BUBBLING AND CAPTURING 435

The part where you initiate the event and the event barrels down the DOM from
the root is known as the event capturing phase:

The less learned in the world may just call it Phase 1, so be aware that you’ll see
the proper name and the phase name used interchangeably in event-related con-
tent you may encounter in real life. Up next is Phase 2, where our event bubbles
back up to the root:

436 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

This phase is also known as the event bubbling phase. The event “bubbles” back
to the top!

Anyway, all the elements in an event’s path are pretty lucky. They have the good
fortune of getting notified twice when an event is fired. This kinda sorta maybe
affects the code we write, because every time we listen for events, we make a
choice on which phase we want to listen for our event on. Do we listen for our
event as it is fumbling down in the capture phase? Do we listen for our event as it
climbs back up in the bubbling phase?

Choosing the phase is a very subtle detail that we specify with a true or false as
part of our addEventListener call:

item.addEventListener("click", doSomething, true);

CHAPTER 37 EVENT BUBBLING AND CAPTURING 437

If you remember, I glossed over the third argument to addEventListener in
the previous chapter. This third argument specifies whether you want to listen for
this event during the capture phase. An argument of true means that you want to
listen to the event during the capture phase. If you specify false, this means you
want to listen for the event during the bubbling phase.

To listen to an event across both the capturing and bubbling phases, you can sim-
ply do the following:

item.addEventListener("click", doSomething, true);

item.addEventListener("click", doSomething, false);

I don’t know why you would ever want to do this, but if you ever do, you now
know what needs to be done.

Who Cares?
At this point, you are probably wondering why all of this matters. This is doubly
true if you have been happily working with events for a really long time and this is
the first time you’ve ever heard about all this. Your choice of listening to an event
in the capturing or bubbling phase is mostly irrelevant to what you will be doing.
Very rarely will you find yourself scratching your head because your event listening

NOT SPECIFYING A PHASE
Now, you can be rebellious and choose to not specify this third argument for the
phase altogether:

 item.addEventListener("click", doSomething);

When you don’t specify the third argument, the default behavior is to listen to
your event during the bubbling phase. It’s equivalent to passing in a false value as
the argument.

438 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

and handling code isn’t doing the right thing because you accidentally specified
true instead of false in your addEventListener call.

With all this said, there will come a time in your life when you need to know and
deal with a capturing or bubbling situation. This time will sneak up on your code
and cause you many hours of painful head scratching. Over the years, these are
the situations where I’ve had to consciously be aware of which phase of my event’s
life I am watching for:

• Dragging an element around the screen and ensuring the drag still happens,
even if the element I am dragging slips out from under the cursor.

• Nested menus that reveal submenus when I hover over them.

• I have multiple event handlers on both phases, and I want to focus only on the
capturing or bubbling phase event handlers exclusively.

• A third-party component/control library has its own eventing logic, and I want
to circumvent it for my own custom behavior.

• I want to override some built-in/default browser behavior such as when I click
the scrollbar or give focus to a text field.

In my nearly 105 years of working with JavaScript, these five things were all I was
able to come up with. Even this is a bit skewed toward the last few years, since
various browsers didn’t work well with the various phases at all.

Event, Interrupted
The last thing I am going to talk about before re-watching Godzilla is how to pre-
vent our event from propagating. An event isn’t guaranteed to live a fulfilling life,
where it starts and ends at the root. Sometimes, it is actually desirable to prevent
our event from growing old and happy.

To end the life of an event, we have the stopPropagation method on the
Event object:

function handleClick(e) {

e.stopPropagation();

 // do something

}

As its name implies, the stopPropagation method prevents our event from con-
tinuing through the phases. Continuing with our earlier example, let’s say that we are

CHAPTER 37 EVENT BUBBLING AND CAPTURING 439

listening for the click event on the three_a element and wish to stop the event from
propagating. The code for preventing the propagation will look as follows:

let theElement = document.querySelector("#three_a");

theElement.addEventListener("click", doSomething, true);

function doSomething(e) {

e.stopPropagation();

}

When you click buttonOne, here is what our event’s path will look like:

440 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Our click event will steadfastly start moving down the DOM tree, notifying every
element on the path to buttonOne. Because the three_a element is listening for
the click event during the capture phase, the event handler associated with it
will get called:

function doSomething(e) {

e.stopPropagation();

}

In general, events will not continue to propagate until an event handler that gets
activated is fully dealt with. Because three_a has an event listener specified to
react on a click event, the doSomething event handler gets called. Our event
is in a holding pattern at this point until the doSomething event handler executes
and returns.

In this case, the event will not propagate further. The doSomething event handler
is its last client, thanks to the stopPropagation function that is hiding in the
shadows to kill the event right there and then. The click event will never reach
the buttonOne element, nor will it get a chance to bubble back up. So tragically
sad.

TIP Another function that lives on your event object that you
may awkwardly run into is preventDefault:

function overrideScrollBehavior(e) {
 e.preventDefault();

 // do something
}

What this function does is a little mysterious. Many HTML ele-
ments exhibit a default behavior when you interact with them. For
example, clicking in a text box gives that text box focus with a
little blinking text cursor appearing. Using your mouse wheel in a
scrollable area will scroll in the direction you are scrolling. Clicking
a check box will toggle the checked state on or off. All of these
are examples of built-in reactions to events your browser instinc-
tively knows how to handle.

CHAPTER 37 EVENT BUBBLING AND CAPTURING 441

THE ABSOLUTE MINIMUM
So, yeah! How about those events and their bubbling and capturing phases? One
of the best ways to learn more about how event capturing and bubbling works is
to just write some code and see how your event makes its way around the DOM.

We are done with the technical part of this topic, but if you have a few more
minutes to spare, I encourage you to watch the somewhat related episode of
Comedians in Cars Getting Coffee aptly titled “It’s Bubbly Time, Jerry.” In what
is probably the series’ bestest episode, Michael Richards and Jerry Seinfeld just t
chat over coffee about events, the bubbling phase, and other very important
topics. I think.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

If you want to turn off this default behavior, you can call the
preventDefault function. This function needs to be called
when reacting to an event on the element whose default reac-
tion you want to ignore. You can see an example of me using
this function in the “Smooth Parallax Scrolling” tutorial online at
http://bit.ly/kirupaParallax.

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata
http://bit.ly/kirupaParallax

This page intentionally left blank

38
I N T H I S C H A P T E R
• Learn how to listen to the mouse using the various

mouse events

• Understand the MouseEvent object

• Deal with the mouse wheel

MOUSE EVENTS
One of the most common ways people (and possibly cats) interact with

their computers is by using a pointing device known as a mouse (see

Figure 38.1).

FIGURE 38.1

Cats probably like them, too.

444 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

This magical device allows you to accomplish great things by moving it around
with your hands and clicking around with your fingers. Using a mouse as a user is
one thing. As a developer, trying to make your code work with a mouse is some-
thing else. That’s where this chapter comes in.

Meet the Mouse Events
In JavaScript, our primary way of dealing with the mouse is through events. There
are a boatload of events that deal with the mouse, but we won’t be looking at all
of them here. Instead, we’ll focus on just the cool and popular ones, such as the
following:

• click

• dblclick

• mouseover

• mouseout

• mouseenter

• mouseleave

• mousedown

• mouseup

• mousemove

• contextmenu

• mousewheel and DOMMouseScroll

The names of these events should give you a good idea of what they do, but we’ll
take nothing for granted and look at each of these events in some level of greater
detail in the following sections. I should warn you that some events are just more
interesting than others!

Clicking Once and Clicking Twice
Let’s start with probably the most popular of all the mouse events you will use—
the click event. This event is fired when you click an element. To state this differk -rr
ently in a way that doesn’t involve mentioning the thing I am describing as part of
my description, the click event is fired when you use your mouse to press down
on an element and then release the press while still over that same element.

CHAPTER 38 MOUSE EVENTS 445

Here is a totally unnecessary visualization of what I am talking about:

You’ve seen the code for working with the click event a few times already, but
you can never really get enough of it. Here is another example:

let button = document.querySelector("#myButton");

button.addEventListener("click", doSomething, false);

function doSomething(e) {

console.log("Mouse clicked on something!");

}

The way you listen for the click event is just like almost any other event you’ll
encounter, so I won’t unnecessarily bore you with that detail and our old friend
addEventListener. Instead, I will bore you with details about the somewhat
related dblclick event.

The dblclick event is fired when you quickly repeat a click action a double num-
ber of times, and the code for using it looks as follows:

let button = document.querySelector("#myButton");

button.addEventListener("dblclick", doSomething, false);

function doSomething(e) {

console.log("Mouse clicked on something...twice!");

}

The amount of time between each click that ends up resulting in a dblclick
event is based on the OS you are running the code in. It’s neither browser specific
nor something you can define (or read) using JavaScript.

446 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Mousing Over and Mousing Out
The classic hover over and hover out scenarios are handled by the appropriately
titled mouseover and mouseout events, respectively:

Here is a snippet of these two events in action:

let button = document.querySelector("#myButton");

button.addEventListener("mouseover", hovered, false);

button.addEventListener("mouseout", hoveredOut, false);

function hovered(e) {

console.log("Hovered!");

}

DON’T OVERDO IT
If you happen to listen for both the click and dblclick events on an element,
your event handlers will get called three times when the element is double-
clicked. You will get two click events to correspond to each time the element is
clicked. After the second click, you will also get a dblclick event.

CHAPTER 38 MOUSE EVENTS 447

function hoveredOut(e) {

console.log("Hovered Away!");

}

That’s all there is to these two events. They are pretty boring overall, which, as
you’ve probably found out by now, is actually a good thing when it comes to pro-
gramming concepts.

WHAT ABOUT THE OTHER TWO SIMILAR-LOOKING
EVENTS?

We just looked at two events (mouseover and mouseout), which are all about
hovering over something and hovering away from something. As it turns out, you
have two more events that pretty much do the exact same thing. These are your
mouseenter and mouseleave events. There is one important detail to know
about these events that makes them unique. The mouseenter and mouseleave
events do not bubble.

This detail only matters if the element you are interested in hovering over or out
from has child elements. All four of these events behave identically when there are
no child elements at play. If there are child elements at play, then keep the follow-
ing points in mind:

• The mouseover and mouseout events will get fired each time you move
the mouse over and around a child element. This means you could be seeing
many unnecessary events fire, even though it seems like you are moving your
mouse within a single region.

• The mouseenter and mouseleave events will get fired only once. It doesn’t
matter how many child elements your mouse moves through.

For 90 percent of what you will do, mouseover and mouseout will be good
enough. For the other times, often involving slightly more complex user interface
(UI) scenarios, you’ll be happy the non-bubbling mouseenter and mouseleave
events are available.

448 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Very Click-Like Mousing Down and Mousing Up Events
click event are the

mousedown and mouseup events. From the following diagram, you’ll see why:

When you press down with your mouse, the mousedown event is fired. When
you release the press, the mouseup event is fired. If you pressed down on and
released from the same element, the click event will also fire.

You can see all of this from the following snippet:

let button = document.querySelector("#myButton");

button.addEventListener("mousedown", mousePressed, false);

button.addEventListener("mouseup", mouseReleased, false);

button.addEventListener("click", mouseClicked, false);

function mousePressed(e) {

console.log("Mouse is down!");

}

function mouseReleased(e) {

console.log("Mouse is up!");

}

function mouseClicked(e) {

console.log("Mouse is clicked!");

}

CHAPTER 38 MOUSE EVENTS 449

You may be wondering why you would bother with these two events, given that
the click event seems perfectly suited for most cases where you may want to
use mousedown and mouseup. If you are spending sleepless nights wondering
about this, the answer is…yes, you are correct! A more helpful (and sensible)
answer is that the mousedown and mouseup events simply give you more control
in case you need it. Some interactions (such as drags, or awesome moves in video
games where you press and hold to charge a lightning bolt of doom!) need you to
act only when the mousedown event has happened but the mouseup event hasn’t.

The Event Heard Again…and Again…and Again!
One of the most chatty events you’ll ever encounter is the very friendly mouse-
move event. This event fires a whole lotta times as your mouse moves over the
element you are listening for the mousemove event on:

What follows is an example of the mousemove event in code:

let button = document.querySelector("#myButton");

button.addEventListener("mousemove", mouseIsMoving, false);

function mouseIsMoving(e) {

 console.log("Mouse is on the run!");

}

Your browser controls the rate at which the mousemove event gets fired, and this
event gets fired if your mouse moves even a single pixel. This event is great for
many interactive scenarios where your mouse’s current position is relevant to keep
track of, for example.

450 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Context Menu
The last mouse-related event we are going to look at is affectionately called con-
textmenu. As you probably know very well, when you right-click in various appli-
cations, you will commonly see a menu:

This menu is known as the context menu. The contextmenu event is fired just
before this menu appears.

Now, you may be wondering why anybody would want an event for this situation.
To be completely honest with you (as opposed to all the other times when I’ve
been lying), there is only one primary reason to listen for this event. That reason
has to do with preventing this menu from appearing when you right-click or use a
context menu keyboard button or shortcut.

Here is an example of how you can prevent the default behavior where the con-
text menu appears:

document.addEventListener("contextmenu", hideMenu, false);

function hideMenu(e) {

CHAPTER 38 MOUSE EVENTS 451

e.preventDefault();

}

The preventDefault method on any type of Event stops whatever the default
behavior is from actually happening. Because the contextmenu event is fired
before the menu appears, calling preventDefault on it ensures the context
menu never shows up. The default behavior has been prevented from running.
Yes, this is also the second time I’m mentioning this property. As you know, I am
being paid by the word (ha, ha).

With all of that said, I can think of a billion other ways you could prevent the con-
text menu from appearing without using an event for dealing with all of this, but
that’s the way things are…for now!

The MouseEvent Properties
Let’s get a little bit more specific. All of the mouse events we’ve seen so far are
based around MouseEvent. Normally, this is the kind of factoid you keep under
your hat for trivia night and ignore. This time around, though, this detail is impor-rr
tant because MouseEvent brings with it a number of properties that make work-
ing with the mouse easier. Let’s look at some of them.

The Global Mouse Position
The screenX and screenY properties return the distance your mouse cursor is
from the top-left location of your primary monitor:

452 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Here is a very simple example of the screenX and screenY properties at work:

document.addEventListener("mousemove", mouseMoving, false);

function mouseMoving(e) {

console.log(e.screenX + " " + e.screenY);

}

It doesn’t matter what other margin/padding/offset/layout craziness you may have
going on in your page. The values returned are always going to be the distance
between where your mouse is now and where the top-left corner of your primary
monitor is.

The Mouse Position Inside the Browser
The clientX and clientY properties return the x and y position of the mouse
relative to your browser’s (technically, the browser viewport’s) top-left corner:

The code for this is nothing exciting:

let button = document.querySelector("#myButton");

document.addEventListener("mousemove", mouseMoving, false);

CHAPTER 38 MOUSE EVENTS 453

function mouseMoving(e) {

console.log(e.clientX + " " + e.clientY);

}

You just call the clientX and clientY properties of the event argument that got
passed in to the event handler to get the values.

Detecting Which Button Was Clicked
Mice often have multiple buttons or ways to simulate multiple buttons. The most
common button configuration involves a left button, a right button, and a middle
button (often a click on your mouse wheel). To figure out which mouse button was
pressed, you have the button property. This property returns a 0 if the left mouse
button was pressed, a 1 if the middle button was pressed, and a 2 if the right
mouse button was pressed:

The code for using the button property to check for which button was pressed
looks exactly as you would expect:

454 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

document.addEventListener "mousedown", buttonPress, false);

function buttonPress(e) {

if (e.button == 0) {

console.log("Left mouse button pressed!");

 } else if (e.button == 1) {

console.log("Middle mouse button pressed!");

 } else if (e.button == 2) {

console.log("Right mouse button pressed!");

 } else {

console.log("Things be crazy up in here!!!");

 }

}

In addition to the button property, you also have the buttons and properties that
sort of do similar things to help you figure out which button was pressed. I’m not
going to talk too much about those two properties, but just know that they exist.
You can google them if you want to know more.

Dealing with the Mouse Wheel
The mouse wheel is special compared to everything else we’ve seen so far. The
obvious difference is that we are dealing with a wheel as opposed to a button.
The less obvious, yet probably more relevant, detail is that you have two events to
deal with. You have the mousewheel event that is used by Internet Explorer and
Chrome, and the DOMMouseScroll event used by Firefox.

The way you listen for these mouse wheel-related events is just the usual:

document.addEventListener("mousewheel", mouseWheeling, false);

document.addEventListener("DOMMouseScroll", mouseWheeling, false);

It’s what happens afterwards where things get interesting. The mousewheel and
DOMMouseScroll events will fire the moment you scroll the mouse wheel in any
direction. For all practical purposes, the direction you are scrolling the mouse
wheel is important. To get that information, we’ll need to go spelunking in the
event handler to find the event argument.

CHAPTER 38 MOUSE EVENTS 455

The event arguments for a mousewheel event contain a property known as
wheelDelta. For the DOMMouseScroll event, you have the detail property
on the event argument. Both of these properties are similar in that their values
change from positive or negative depending on what direction you scroll the
mouse wheel. The thing to note is that they are inconsistent in what sign they go
with. The wheelDelta property associated with the mousewheel event is posi-
tive when you scroll up on the mouse wheel, and it is negative when you scroll
down. The exact opposite holds true for DOMMouseScroll’s detail property.
This property is negative when you scroll up, and it is positive when you
scroll down.

Handling this wheelDelta and detail inconsistency is pretty simple, as you can
see in the following snippet:

function mouseWheeling(e) {

 let scrollDirection;

 let wheelData = e.wheelDelta;

 if (wheelData) {

 scrollDirection = wheelData;

 } else {

 scrollDirection = -1 * e.detail;

 }

 if (scrollDirection > 0) {

 console.log("Scrolling up! " + scrollDirection);

 } else {

 console.log("Scrolling down! " + scrollDirection);

 }

}

The scrollDirection variable stores the value contained by the wheelData
property or the detail property. Depending on whether this value is positive or
negative, you can adjust your code to react to the scroll direction accordingly.

456 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
Generally, it is true that if you know how to just work with one event, you pretty
much know how to work with all other events. The only thing you need to know
is which event corresponds to what you are trying to do. The mouse events are a
good introduction to working with events because they are very easy to play with.
They aren’t very fussy, and the things you learn about them you will use in almost
all apps you build.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

39
I N T H I S C H A P T E R
• Listen and react to the keyboard

• Understand how to work with the various keyboard-
related events

• See some examples that highlight how common
keyboard scenarios work

KEYBOARD EVENTS
We spend a lot of time in various applications tapping away at our

keyboards. In case you are wondering what a keyboard looks like, Figure

39.1 features a sweet one from I think about a hundred years ago.

FIGURE 39.1

What a keyboard might look like…in a museum probably

458 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Anyway, our computers (more specifically, the applications that run on them) just
know how to deal with our board of plastic depressible keys. You never really think
about it. Sometimes, however, depending on what you are doing, you will have to
think about them. In fact, you’ll have to deal with them and make them work prop-
erly. Better cancel any plans you have because this chapter is going to be pretty
intense!

By the end of this chapter, you will learn all about how to listen to the keyboard
events, what each of those events do, and you’ll see a handful of examples that
highlight some handy tricks that may come in, um, handy.

Meet the Keyboard Events
To work with keyboards in an HTML document, you will need to familiarize yourself
with three events:

• keydown

• keypress

• keyup

Given what these events are called, you probably already have a vague idea of
what each event does. The keydown event is fired when you press down on a
key on your keyboard. The keyup event is fired when you release a key you just
pressed. Both of these events work on any key you interact with.

The keypress event is a special bird. At first glance, it seems like this event
is fired when you press down on any key. Despite what the name claims, the
keypress event is fired only when you press down on a key that displays a char-rr
acter (letter, number, and the like). What this means is somewhat confusing, but it
makes sense in its own twisted way.

If you press and release a character key such as the Y key, you will see the Y key-
down, keypress, and keyup events fired in order. The keydown and keyup
events fire because the Y key is simply a key to them. The Y keypress event is fired
because the Y key is a character key. If you press and release a key that doesn’tY
display anything on the screen (such as the spacebar, arrow keys, or function keys),
all you will see are the keydown and keyup events fired.

This difference is subtle but very important when you want to ensure your key
presses are actually overheard by your application.

CHAPTER 39 KEYBOARD EVENTS 459

Using These Events
The way you listen for the keydown, keypress, and keyup events is similar to
any other event you may want to listen for and react to. You call addEventLis-
tener on the element that will be dealing with these events, specify the event
you want to listen for, specify the event-handling function that gets called when
the event is overheard, and provide a true/false value indicating whether you
want this event to bubble.

Here is an example of me listening to our three keyboard events on the window
object:

window.addEventListener("keydown", dealWithKeyboard, false);

window.addEventListener("keypress", dealWithKeyboard, false);

window.addEventListener("keyup", dealWithKeyboard, false);

function dealWithKeyboard(e) {

 // gets called when any of the keyboard events are overheard

}

If any of these events are overheard, the dealWithKeyboard event handler gets
called. In fact, this event handler will get called three times if you happen to press
down on a character key. This is all pretty straightforward, so let’s kick everything
up a few notches and go beyond the basics in the next few sections.

SAY WHAT?
It is weird that an event called keypress doesn’t fire when any key is pressed.
Maybe this event should be called something else like characterkeypress,
but that is probably a moo point. (What is a “moo point”? Well…http://
bit.ly/kirupaMoo.)

http://bit.ly/kirupaMoo
http://bit.ly/kirupaMoo

460 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Keyboard Event Properties
When an event handler that reacts to a keyboard event is called, a Keyboard
event argument is passed in. Let’s revisit our dealWithKeyboard event handler
you saw earlier. In that event handler, the keyboard event is represented by the e
argument that is passed in:

function dealWithKeyboard(e) {

 // gets called when any of the keyboard events are overheard

}

This argument contains a handful of properties:

• KeyCode: Every key you press on your keyboard has a number associated with
it. This read-only property returns that number.

• CharCode: This property only exists on event arguments returned by the
keypress event, and it contains the ASCII code for whatever character key
you pressed.

• ctrlKey, altKey, shiftKey: These three properties return a true if the Ctrl
key, Alt key, or Shift key is pressed.

• MetaKey: The metaKey property is similar to the ctrlKey, altKey, and
shiftKey properties in that it returns a true if the meta key is pressed. The
meta key is the Windows key on Windows keyboards and the command key
on Apple keyboards.

The Keyboard event contains a few other properties, but the ones in the preced-
ing list are the most interesting ones. With these properties, you can check for
which key was pressed and react accordingly. In the next few sections, you’ll see
some examples of this.

CAUTION The charCode and keyCode properties are cur-
rently marked as deprecated by the web standards people at the
W3C. Their replacement might be the mostly unsupported code
property. Just be aware of this and be ready to update your code
in the future when whichever successor to charCode and key-
Code has taken its rightful place on the throne.

CHAPTER 39 KEYBOARD EVENTS 461

Some Examples
Now that you’ve seen the horribly boring basics of how to work with keyboard
events, let’s look at some examples that clarify (or potentially confuse!) everything
you’ve seen so far.

Checking That a Particular Key Was Pressed
The following example shows how to use the keyCode property to check if a
particular key was pressed:

window.addEventListener("keydown", checkKeyPressed, false);

function checkKeyPressed(e) {

if (e.keyCode == 65) {

console.log("The 'a' key is pressed.");

 }

}

The particular key I check is the A key. Internally, this key is mapped to the
keyCode value of 65. In case you never memorized all of them in school, you can
find a handy list of all key and character codes at http://bit.ly/kirupaKeyCode.
Please do not memorize every single code from that list. There are far more inter-rr
esting things to memorize instead.

Note that the charCode and keyCode values for a particular key are not the
same. Also, the charCode is only returned if the event that triggered your event
handler was a keypress. In our example, the keydown event would not contain
anything useful for the charCode property.

If you wanted to check the charCode and use the keypress event, here is what
the preceding example would look like:

window.addEventListener("keypress", checkKeyPressed, false);

function checkKeyPressed(e) {

if (e.charCode == 97) {

console.log("The 'a' key is pressed.");

 }

}

http://bit.ly/kirupaKeyCode

462 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The charCode for the A key is 97. Again, refer to the table of key and character
codes I referenced earlier for such details.

Doing Something When the Arrow Keys Are Pressed
We see this most often in games where pressing the arrow keys does something
interesting. The following snippet of code shows how that is done:

window.addEventListener("keydown", moveSomething, false);

function moveSomething(e) {

switch (e.keyCode) {

case 37:

 // left key pressed

break;

case 38:

 // up key pressed

break;

case 39:

 // right key pressed

break;

case 40:

 // down key pressed

break;

 }

}

Again, this should be pretty straightforward. And, would you believe it—it’s an
actual use for the switch statement you learned about forever ago in Chapter 4,
“Conditional Statements: if, else, and switch.”

Detecting Multiple Key Presses
Now, this is going to be epic! An interesting case revolves around detecting when we
need to react to multiple key presses. What follows is an example of how to do that:

window.addEventListener("keydown", keysPressed, false);

window.addEventListener("keyup", keysReleased, false);

CHAPTER 39 KEYBOARD EVENTS 463

let keys = [];

function keysPressed(e) {

 // store an entry for every key pressed

 keys[e.keyCode] = true;

 // Ctrl + Shift + 5

if (keys[17] && keys[16] && keys[53]) {

 // do something

 }

 // Ctrl + f

if (keys[17] && keys[70]) {

 // do something

 // prevent default browser behavior

e.preventDefault();

 }

}

function keysReleased(e) {

 // mark keys that were released

 keys[e.keyCode] = false;

}

Going into great detail about this will require another chapter by itself, but let’s
just look at how this works very briefly.

First, we have a keys array that stores every single key you press:

let keys = [];

As keys get pressed, the keysPressed event handler gets called:

function keysPressed(e) {

 // store an entry for every key pressed

464 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 keys[e.keyCode] = true;

 // Ctrl + Shift + 5

if (keys[17] && keys[16] && keys[53]) {

 // do something

 }

 // Ctrl + f

if (keys[17] && keys[70]) {

 // do something

 // prevent default browser behavior

e.preventDefault();

 }

}

When a key gets released, the keysReleased event handler gets called:

function keysReleased(e) {

 // mark keys that were released

 keys[e.keyCode] = false;

}

Notice how these two event handlers work with each other. As keys get pressed,
an entry gets created for them in the keys array with a value of true. When keys
get released, those same keys are marked with a value of false. The existence of
the keys you press in the array is superficial. It is the values they store that is actu-
ally important.

As long as nothing interrupts your event handlers from getting called properly,
such as an alert window, you will get a one-to-one mapping between keys pressed
and keys released as viewed through the lens of the keys array. With all of this
said, the checks for seeing which combination of keys has been pressed are
handled in the keysPressed event handler. The following highlighted lines show
how this works:

function keysPressed(e) {

 // store an entry for every key pressed

CHAPTER 39 KEYBOARD EVENTS 465

 keys[e.keyCode] = true;

 // Ctrl + Shift + 5

if (keys[17] && keys[16] && keys[53]) {

 // do something

 }

 // Ctrl + f

if (keys[17] && keys[70]) {

 // do something

 // prevent default browser behavior

e.preventDefault();

 }

}

There is one thing you need to keep in mind. Some key combinations result in
your browser doing something. To avoid your browser from doing its own thing,
use the preventDefault method, as indicated here, when checking to see if
Ctrl+F is being used:

function keysPressed(e) {

 // store an entry for every key pressed

 keys[e.keyCode] = true;

 // Ctrl + Shift + 5

if (keys[17] && keys[16] && keys[53]) {

 // do something

 }

 // Ctrl + f

if (keys[17] && keys[70]) {

 // do something

 // prevent default browser behavior

466 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
The keyboard is pretty important when it comes to how people interact with their
computer-like devices. Despite the keyboard’s importance, you often won’t have
to deal with one directly. Your browser, the various text-related controls/elements,
and everything in-between just handle it as you would expect, by default. There
are certain kinds of applications where you may want to deal with a keyboard,
though, which is why I wrote this chapter.

This chapter started off in the most boring way possible, by explaining how to
work with the Keyboard events and their event arguments. Along the way, things
(hopefully) got more interesting as you saw several examples that addressed com-
mon things you would do when dealing with the keyboard in code.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

e.preventDefault();

 }

}

The preventDefault method prevents an event from triggering a default behav-
ior. In this case, it was preventing the browser from showing the Find dialog. Dif-
ferent key combinations will trigger different reactions by the browser, so keep this
method handy to put a stop to those reactions.

Anyway, looking at the code in aggregate, you have a basic blueprint for how to
check for multiple key presses easily.

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

40
I N T H I S C H A P T E R
• Learn about all the events that fire as your page is

getting loaded

• Understand what happens behind the scenes during
a page load

• Fiddle with the various script element attributes that
control exactly when your code runs

PAGE LOAD EVENTS AND
OTHER STUFF
An important part of working with JavaScript is ensuring that your code

runs at the right time. Things aren’t always as simple as putting your code

at the bottom of your page and expecting everything to work once your

page has loaded. Yes, we are going to revisit some things we looked at

in Chapter 10, “Where Should Your Code Live?” Every now and then, you

may have to add some extra code to ensure your code doesn’t run before

the page is ready. Sometimes, you may even have to put your code at the

top of your page…like an animal!

468 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

There are many factors that affect what the “right time” really is to run your code,
and in this chapter, we’re going to look at those factors and narrow down what
you should do to a handful of guidelines.

The Things That Happen During Page Load
Let’s start at the very beginning. You click a link or press Enter after typing in a
URL and, if the stars are aligned properly, your page loads. All of that seems pretty
simple and takes up a very tiny sliver of time to complete from beginning to end:

In that short period of time between you wanting to load a page and your page
loading, a lot of relevant and interesting stuff happens that you need to know
more about. One example of the relevant and interesting stuff that happens is that
any code specified on the page will run. When exactly the code runs depends on
a combination of the following things that all come alive at some point while your
page is getting loaded:

• The DOMContentLoaded event

• The load Event

• The async attribute for script elements

• The defer attribute for script elements

• The location your scripts live in the DOM

CHAPTER 40 PAGE LOAD EVENTS AND OTHER STUFF 469

Don’t worry if you don’t know what these things are. You’ll learn (or re-learn) what
all of these things do and the effect they have when your code runs really soon.
Before we get there, though, let’s take a quick detour and look at the three stages
of a page load.

Stage Numero Uno
The first stage is when your browser is about to start loading a new page:

At this stage, there isn’t anything interesting going on. A request has been made
to load a page, but nothing has been downloaded yet.

Stage Numero Dos
Things get a bit more exciting with the second stage, where the raw markup and
DOM of your page has been loaded and parsed:

470 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The thing to note about this stage is that external resources like images and linked
stylesheets have not been parsed. You only see the raw content specified by your
page/document’s markup.

Stage Numero Three
The final stage is where your page is fully loaded with any images, stylesheets,
scripts, and other external resources making their way into what you see:

CHAPTER 40 PAGE LOAD EVENTS AND OTHER STUFF 471

This is the stage where your browser’s loading indicators stop animating, and this
is also the stage you almost always find yourself in when interacting with your
HTML document. That said, sometimes you’ll find yourself in an in-between state
where 99 percent of your page has loaded, with only some random thing taking
forever to load. If you’ve been to one of those viral/buzz/feedy sites, you’ll totally
know what I am talking about.

Now that you have a basic idea of the three stages your document goes through
when loading content, let’s move forward to the more interesting stuff. Keep these
three stages at the tip of your fingers (or under your hat if you are wearing one
while reading this), as we’ll refer back to these stages a few times in the following
sections.

The DOMContentLoaded and load Events
Two events represent the two important milestones while your page loads: DOM-
ContentLoaded and load. The DOMContentLoaded event fires at the end of
Stage #2 when your page’s DOM is fully parsed. The load event fires at the end
of Stage #3 once your page has fully loaded. You can use these events to time
when exactly you want your code to run.

The following is a snippet of these events in action:

document.addEventListener("DOMContentLoaded", theDomHasLoaded,

false);

window.addEventListener("load", pageFullyLoaded, false);

function theDomHasLoaded(e) {

 // do something

}

function pageFullyLoaded(e) {

 // do something again

}

You use these events just like you would any other event, but the main thing to
note about them is that you need to listen to DOMContentLoaded from the
document element and load from the window element.

472 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

events important? Simple. If you have any code that relies on working with the
DOM, such as anything that uses the querySelector or querySelectorAll
functions, you want to ensure your code runs only after your DOM has been fully
loaded. If you try to access your DOM before it has fully loaded, you may get
incomplete results or no results at all.

Here is an awesome, extreme example from Kyle Murray (https://twitter.com/
krilnon) that should help explain this:

<!DOCTYPE html>

<html>

<head>

 <script>

 // try to analyze the book's meaning here

 </script>

</head>

<body>

 [INSERT ENTIRE COPY OF /WAR AND PEACE/ HERE]

</body>

</html>

War and Peace is a massively large novel. If all of its contents were pasted into
the body element as shown above, it will take our browser some time to fully
make sense of it. If we happen to have any script preceding it that tries to process
the contents inside our body element, that script would run far sooner than our
browser would have gotten to the end of War and Peace.

A surefire way to ensure you never get into a situation where your code runs
before your DOM is ready is to listen for the DOMContentLoaded event and let
all of the code that relies on the DOM to run only after that event is overheard:

document.addEventListener("DOMContentLoaded", theDomHasLoaded,

false);

https://twitter.com/krilnon
https://twitter.com/krilnon

CHAPTER 40 PAGE LOAD EVENTS AND OTHER STUFF 473

function theDomHasLoaded(e) {

let headings = document.querySelectorAll("h2");

 // do something with the images

}

For cases where you want your code to run only after your page has fully loaded,
use the load event. In my years of doing things in JavaScript, I never had too
much use for the load event at the document level, outside of checking the final
dimensions of a loaded image or creating a crude progress bar to indicate prog-
ress. Your mileage may vary, but I doubt it.

Scripts and Their Location in the DOM
In Chapter 8, “Variable Scope,” we looked at the various ways in which you can
have scripts appear in your document. You saw that the position of your script ele-
ments in the DOM affects when they run. In this section, we again emphasize that
simple truth and go a few steps further.

To review, a simple script element can be some code stuck inline somewhere:

<script>

let number = Math.random() * 100;

console.log("A random number is: " + number);

</script>

A simple script element can also be something that references some code from an
external file:

<script src="/foo/something.js"></script>

Now, here is the important detail about these elements. Your browser parses your
DOM sequentially from the top to the bottom. Any script elements that are found
along the way will get parsed in the order they appear in the DOM.

474 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Here is a very simple example where you have many script elements:

<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <script>

console.log("inline 1");

 </script>

 <script src="external1.js"></script>

 <script>

console.log("inline 2");

 </script>

 <script src="external2.js"></script>

 <script>

console.log("inline 3");

 </script>

</body>

</html>

It doesn’t matter if the script contains inline code or references something exter-rr
nal. All scripts are treated the same and run in the order in which they appear in
your document. Using the preceding example, the order in which the scripts will
run is as follows: inline 1, external 1, inline 2, external 2, and inline 3.

Now, here is a really, REALLY important detail to be aware of. Because your DOM
gets parsed from top to bottom, your script element has access to all of the DOM
elements that were already parsed. Your script has no access to any DOM ele-
ments that have not yet been parsed. Say, what?!

Let’s say you have a script element that is at the bottom of your page just above
the closing body element:

<!DOCTYPE html>

<html>

CHAPTER 40 PAGE LOAD EVENTS AND OTHER STUFF 475

<body>

 <h1>Example</h1>

 <p>

 Quisque faucibus, quam sollicitudin pulvinar dignissim, nunc

velit sodales leo, vel vehicula odio lectus vitae

 mauris. Sed sed magna augue. Vestibulum tristique cursus orci,

accumsan posuere nunc congue sed. Ut pretium sit amet

 eros non consectetur. Quisque tincidunt eleifend justo, quis

molestie tellus venenatis non. Vivamus interdum urna ut

 augue rhoncus, eu scelerisque orci dignissim. In commodo purus

id purus tempus commodo.

 </p>

 <button>Click Me</button>

 <script src="something.js"></script>

</body>

</html>

When something.js runs, it has the ability to access all the DOM elements that
appear just above it, such as the h1, p, and button elements. If your script ele-
ment was at the very top of your document, it wouldn’t have any knowledge of
the DOM elements that appear below it:

<!DOCTYPE html>

<html>

<body>

 <script src="something.js"></script>

 <h1>Example</h1>

 <p>

476 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

velit sodales leo, vel vehicula odio lectus vitae

 mauris. Sed sed magna augue. Vestibulum tristique cursus orci,

accumsan posuere nunc congue sed. Ut pretium sit amet

 eros non consectetur. Quisque tincidunt eleifend justo, quis

molestie tellus venenatis non. Vivamus interdum urna ut

 augue rhoncus, eu scelerisque orci dignissim. In commodo purus

id purus tempus commodo.

 </p>

 <button>Click Me</button>

</body>

</html>

By putting your script element at the bottom of your page, as shown earlier, the
end behavior is identical to what you would get if you had code that explicitly
listened for the DOMContentLoaded event. If you can guarantee that your scripts
will appear toward the end of your document after your DOM elements, you can
avoid following the whole DOMContentLoaded approach described in the previ-
ous section. Now, if you really want to have your script elements at the top of
your DOM, ensure that all of the code that relies on the DOM runs after the
DOMContentLoaded event gets fired.

Here is the thing. I’m a huge fan of putting script elements at the bottom of the
DOM. There is another reason besides easy DOM access why I recommend having
your scripts live toward the bottom of the page. When a script element is being
parsed, your browser stops everything else on the page from running while the
code is executing. If you have a really long-running script or your external script
takes its sweet time in getting downloaded, your HTML page will appear frozen.
If your DOM is only partially parsed at this point, your page will also look incom-
plete in addition to being frozen. Unless you are Facebook, you probably want to
avoid having your page look frozen for no reason.

CHAPTER 40 PAGE LOAD EVENTS AND OTHER STUFF 477

Script Elements: async and defer
In the previous section, I explained how a script element’s position in the DOM
determines when it runs. All of that only applies to what I call simple script ele-
ments. To be part of the non-simple world, script elements that point to external
scripts can have the defer and async attributes set on them:

<script async src="myScript.js"></script>

<script defer src="somethingSomethingDarkSide.js"></script>

These attributes alter when your script runs independent of where in the DOM
they actually show up, so let’s look at how they end up altering your script.

async
The async attribute allows a script to run asynchronously:

<script async src="someRandomScript.js"></script>

If you recall from the previous section, if a script element is being parsed, it could
block your browser from being responsive and usable. By setting the async attri-
bute on your script element, you avoid that problem altogether. Your script will run
whenever it is able to, but it won’t block the rest of your browser from doing its
thing.

This casualness in running your code is pretty awesome, but you must realize that
your scripts marked as async will not always run in order. You could have a case
where several scripts marked as async will run in an order different from what was
specified in your markup. The only guarantee you have is that your scripts marked
with async will start running at some mysterious point before the load event gets
fired.

defer
The defer attribute is a bit different from async:

<script defer src="someRandomScript.js"></script>

478 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Scripts marked with defer run in the order in which they were defined, but they
only get executed at the end, just a few moments before the DOMContent-
Loaded event gets fired. Take a look at the following example:

<!DOCTYPE html>

<html>

<body>

 <h1>Example</h1>

 <script defer src="external1.js"></script>

 <script>

console.log("inline 1");

 </script>

 <script src="external2.js"></script>

 <script>

console.log("inline 2");

 </script>

 <script defer src="external3.js"></script>

 <script>

console.log("inline 3");

 </script>

</body>

</html>

Take a second and tell the nearest human/pet the order in which these scripts will
run. It’s okay if you don’t provide them with any context. If they love you, they’ll
understand.

Anyway, your scripts will execute in the following order: inline 1, external 1,
inline 2, inline 3, external 3, and external 2. The external 3 and external 2
scripts are marked as defer, and that’s why they appear at the very end, despite
being declared in different locations in your markup.

CHAPTER 40 PAGE LOAD EVENTS AND OTHER STUFF 479

THE ABSOLUTE MINIMUM
In the previous sections, we looked at all sorts of factors that influence when your
code will execute. The following diagram summarizes everything you saw into a
series of lines and rectangles:

Now, here is probably what you are looking for. When is the right time to load
your JavaScript? The answer is as follows:

1. Place your script references below your DOM directly above your closing body
element.

2. Unless you are creating a library that others will use, don’t complicate your
code by listening to the DOMContentLoaded or load events. Instead, see the
previous point.

480 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

3. Mark your scripts referencing external files with the defer attribute.

4. If you have code that doesn’t rely on your DOM being loaded and runs as part
of teeing things off for other scripts in your document, you can place this script
at the top of your page with the async attribute set on it.

That’s it. I think those four steps will cover almost 90 percent of all your cases to
ensure your code runs at the right time. For more advanced scenarios, you should
definitely take a look at a third-party library like require.js, which gives you greater
control over when your code will run.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

41
I N T H I S C H A P T E R
• Learn how to load script files efficiently

• Learn how to use the appropriate script load events
to customize when your code runs

LOADING SCRIPT FILES
DYNAMICALLY
In the previous Chapter 40, “Page Load Events and Other Stuff,” a part of

what we looked at were the various ways we have to load and run external

JavaScript files in our pages. All of these various ways assumed we knew

exactly what script file we wanted to load with the src attribute already

pointing to our file:

<script src="https://www.example.com/foo.js">
</script>

https://www.example.com/foo.js"

482 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Now, what if you were in the situation where you didn’t know what script file
you wanted to load at the time your page is loading? What if you had to choose
between loading foo.js or bar.js depending on what actions the user took? Having
a hardcoded script element doesn’t really work well in this case. What does work
well is having a way to load our script file dynamically! In this short chapter, we will
go into greater detail about it.

The Basic Technique
For loading a script file dynamically using JavaScript, the basic steps are as
follows:

1. Create the script element.

2. Set the src attribute on the script element to point to the file we want to load.

3. Add the script element to the DOM.

This numbered list turned into code looks like the following three lines:

let myScript = document.createElement("script");

myScript.setAttribute("src", "https://www.example.com/foo.js");

document.body.appendChild(myScript);

The myScript variable stores a reference to our newly created script element.
The setAttribute method allows us to set the src value for the script we’d
like to load. We seal the deal by adding our script element to the bottom of our
body element via appendChild. If some of these steps seem a bit outlandish,
Chapter 33, “Creating and Removing DOM Elements,” will get you familiarized
(or re-familiarized!) with the fun world of DOM manipulation.

To see this code in action as part of a fully working example, create a new HTML
document and add/copy/paste the following content into it:

<!DOCTYPE html>

<html>

<head>

https://www.example.com/foo.js"

CHAPTER 41 LOADING SCRIPT FILES DYNAMICALLY

 <title>Dynamic Script Loading</title>

 <style>

 body {

 padding: 50px;

 background-color: #EAC5D8;

 }

 h1 {

 font-family: sans-serif;

 font-size: 128px;

 margin: 0;

 line-height: 1em;

 font-weight: bold;

 color: #D68FB5;

 }

 </style>

</head>

<body>

 <h1>I am
in your
 code!</h1>

 <script>

 let myCoolCode = document.createElement("script");

 myCoolCode.setAttribute("src",

"https://www.kirupa.com/js/easing.js");

 document.body.appendChild(myCoolCode);

 </script>

</body>

</html>

https://www.kirupa.com/js/easing.js"

484 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Take a moment to look at all that is contained here. We have some HTML and
CSS, and by now that isn’t anything exciting to write home about. Mainly, we have
a script element that contains some code to dynamically load a file called easing.
js and append it to the bottom of our body element. To see all of this in action,
save your HTML document and preview it in your favorite browser.

What you will see in your favorite browser will look something like the following:

What we visually see doesn’t really tell us much. What we need to do is go under-rr
cover and inspect the live version of our DOM! For that, we need to bring up the
browser developer tools and inspect the page to see exactly what the browser
sees. When we do this, notice that our dynamically created script element shows
up in the DOM:

CHAPTER 41 LOADING SCRIPT FILES DYNAMICALLY

To go even further, we can inspect the network traffic and see that the easing.js
script file referenced by our script element gets loaded as well:

486 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

If easing.js isn’t showing up for you, refresh the page with the Network tab open. k
That will ensure you can see the external script file being requested and then
loaded.

At this point, we have looked at the basics of how to load an external script
file using just a few lines of JavaScript. This doesn’t mean we have to be done,
though. There are some quirks and edge cases that might bite us if we aren’t care-
ful, so the next couple of sections will prepare us to not get bitten…or bite back!

Running Our Dynamically Loaded Script First
Adding a script element to the bottom of the body element means that our page
will render first without being blocked by our JavaScript from loading and execut-
ing. That is usually the correct behavior we want. Now, there will be cases when
you want the JavaScript to run first ahead of anything else your page might do. To
handle those cases, we need to adjust our code.

Take a look at what we are now doing:

let myScript = document.createElement("script");

myScript.setAttribute("src", "https://www.example.com/foo.js");

myScript.setAttribute("async", "false");

let head = document.head;

head.insertBefore(myScript, head.firstElementChild);

Two new things are going on in the code that ensure our external script file is
loaded and runs before anything else on the page is rendered:

1. We set the async attribute on our script element to false. Why do we do
that? It is because dynamically loaded script files are loaded asynchronously by
default. We want to explicitly override that default behavior.

2. We ensure we load our script before the rest of the page loads. Adding our
script element at the top of the head element is the best place to ensure it
runs ahead of anything else the page might be up to.

If we modify our full example to load our external script file first, here is what the
full HTML, CSS, and JS will look like:

<!DOCTYPE html>

<html>

https://www.example.com/foo.js"

CHAPTER 41 LOADING SCRIPT FILES DYNAMICALLY

<head>

 <title>Dynamic Script Loading</title>

 <style>

 body {

 padding: 50px;

 background-color: #EAC5D8;

 }

 h1 {

 font-family: sans-serif;

 font-size: 128px;

 margin: 0;

 line-height: 1em;

 font-weight: bold;

 color: #D68FB5;

 }

 </style>

 <script>

 let myCoolCode = document.createElement("script");

 myCoolCode.setAttribute("src",

"https://www.kirupa.com/js/easing.js");

 myCoolCode.setAttribute("async", "false");

 let head = document.head;

 head.insertBefore(myCoolCode, head.firstElementChild);

 </script>

</head>

<body>

 <h1>I am
in your
 code!</h1>

</body>

</html>

488 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

One additional change the larger example calls out is relevant here. The code for
actually loading our external script file needs to be inside the head element as
well. If we kept this code at the bottom of the page like we saw earlier, our page
will still render and load everything as usual before even realizing it needs to
handle loading an external script file. At that point, it doesn’t matter if our exter-rr
nal script file is loaded from the top of the page or the bottom of the page. The
page’s DOM has already loaded.

Running Dependent Code After Our Script File
Has Loaded

Before wrapping things up, we just have one last tidbit for dealing with dynamic
script files. It is common to load an external script file and then call a function (or
rely on something from the loaded script) immediately afterward. Here is one such
example of what this traditionally looks like:

The first script element loads docsearch.min.js. The second script element calls
something dependent on docsearch.min.js loaded by the earlier script element.
All of this just works because the browser handles this scenario naturally. Best of
all, we get this behavior for free.

For dynamically loaded script files, if we want to ensure similar behavior, we have
a small amount of extra work to do. This extra work involves listening to our script
element’s load event and, once this event is overheard, calling any dependent
code afterward. This will make more sense when we look at the code:

let myScript = document.createElement("script");

myScript.setAttribute("src", "https://www.example.com/foo.js");

document.body.appendChild(myScript);

https://www.example.com/foo.js"

CHAPTER 41 LOADING SCRIPT FILES DYNAMICALLY

myScript.addEventListener("load", scriptLoaded, false);

function scriptLoaded() {

 console.log("Script is ready to rock and roll!");

}

Let’s take a moment to walk through what is going on:

1. Our trusty old myScript element is loading foo.js.

2. Once foo.js fully loads and executes, myScript will fire the load event.

3. The addEventListener call that is listening for the load event will overhear
it and, in turn, call the scriptLoaded event handler.

4. Any code that lives inside scriptLoaded can call and access any method or
property that comes from foo.js and its contents.

If you need a fun refresher on how to work with events and event handlers, check
out Chapter 36, “Events in JavaScript.”

THE ABSOLUTE MINIMUM
As you and I build websites and apps that get increasingly more dynamic, we
wouldn’t want to overwhelm our users by loading every possible script file they
may need up front. The techniques we looked at in this chapter highlight one way
to break up when our script files load by, essentially, loading them on demand.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

42
I N T H I S C H A P T E R
• Learn to efficiently react to multiple events

• Revisit how events work for one last time

HANDLING EVENTS FOR
MULTIPLE ELEMENTS
In its most basic case, an event listener deals with events fired from a single

element:

492 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

As you build more complicated things, the “one event handler for one element”
mapping starts to show its limitation. The most common reason revolves around
you creating elements dynamically using JavaScript. These elements you are creat-
ing can fire events that you may want to listen for and react to, and you can have
anywhere from a handful of elements that need eventing support to many, MANY
elements that need to have their events dealt with.

What you don’t want to do is this:

You don’t want to create an event listener for each element if the event listener
is the same for all of them. One reason is because your parents told you so. The
other reason is because it is inefficient. Each of these elements carries around data
about the same event listener and its properties, which can really start adding up
the memory usage when you have a lot of content. Instead, what you want is a

CHAPTER 42 HANDLING EVENTS FOR MULTIPLE ELEMENTS 493

clean and fast way of handling events on multiple elements with minimal duplica-
tion and unnecessary things. What you want will look a little bit like this:

All of this sounds a bit crazy, right? Well, in this chapter, you will learn all about
how non-crazy this is and how to implement it using just a few lines of JavaScript.

How to Do All This
Okay, at this point, you know how simple event handling works, where you have
one element, one event listener, and one event handler. Despite how different the
case with multiple elements may seem, by taking advantage of the disruptiveness
of events, solving it is actually quite easy.

494 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Imagine we have a case where we want to listen for the click event on any of
the sibling elements whose id values are one, two, three, four, and five. Let’s use
our imagination by picturing the DOM as follows:

At the very bottom, we have the elements we want to listen for events on. They all
share a common parent with an element whose id value is d theDude. To solve our
event-handling problems, let’s look at a terrible solution followed by a good solution.

A Terrible Solution
Here is what we don’t want to do. We don’t want to have five event listeners for
each of these buttons:

let oneElement = document.querySelector("#one");

let twoElement = document.querySelector("#two");

CHAPTER 42 HANDLING EVENTS FOR MULTIPLE ELEMENTS 495

let threeElement = document.querySelector("#three");

let fourElement = document.querySelector("#four");

let fiveElement = document.querySelector("#five");

oneElement.addEventListener("click", doSomething, false);

twoElement.addEventListener("click", doSomething, false);

threeElement.addEventListener("click", doSomething, false);

fourElement.addEventListener("click", doSomething, false);

fiveElement.addEventListener("click", doSomething, false);

function doSomething(e) {

let clickedItem = e.target.id;

console.log("Hello " + clickedItem);

}

To echo what I mentioned in the chapter intro, the obvious reason is that you
don’t want to duplicate code. The other reason is that each of these elements now
has its addEventListener property set. This is not a big deal for five elements.
It starts to become a big deal when you have dozens or hundreds of elements,
each taking up a small amount of memory. The other, OTHER reason is that your
number of elements, depending on how adaptive or dynamic your user interface
(UI) really is, can vary. Your app may add or remove elements depending on what
the user is doing, so it would be difficult to keep track of all the individual event
listeners that each object may or may not need. Having one overarching event
handler makes this situation much more fun.

A Good Solution
The good solution for this mimics the figure you saw much earlier where we have
just one event listener. I am going to confuse you first by describing how this
works. Then I’ll hopefully unconfuse you by showing the code and explaining in
detail what exactly is going on. Here is the simple and confusing solution to this:

1. Create a single event listener on the parent element (theDude).

2. When any of the one, two, three, four, or five elements is clicked, rely on the
propagation behavior that events possess and intercept the click event when
they hit the parent theDude element.

496 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

3. (Optional) Stop the event propagation at the parent element just to avoid hav-
ing to deal with the event obnoxiously running up and down the DOM tree.

I don’t know about you, but I’m certainly confused after having read those three
steps! Let’s begin to unconfuse ourselves by starting with a figure that explains
those steps visually:

The last step in our quest for complete unconfusedness is the code that translates
what the figure and the three steps represent:

let theParent = document.querySelector("#theDude");

theParent.addEventListener("click", doSomething, false);

CHAPTER 42 HANDLING EVENTS FOR MULTIPLE ELEMENTS 497

function doSomething(e) {

if (e.target != e.currentTarget) {

let clickedItem = e.target.id;

console.log("Hello " + clickedItem);

 }

e.stopPropagation();

}

Take a moment to read and understand the code you see here. After seeing our
initial goals and the figure, we will listen for the event on the parent theDude
element:

let theParent = document.querySelector("#theDude");

theParent.addEventListener("click", doSomething, false);

There is only one event listener to handle this event, and that lonely creature is
called doSomething:

function doSomething(e) {

if (e.target != e.currentTarget) {

let clickedItem = e.target.id;

console.log("Hello " + clickedItem);

 }

e.stopPropagation();

}

This event listener will get called each time theDude element is clicked, along
with any children that get clicked as well. We only care about click events relat-
ing to the children, and the proper way to ignore clicks on this parent element is
to simply avoid running any code if the element the click is from (aka the event
target) is the same as the event listener target (that is, theDude element):

function doSomething(e) {

if (e.target != e.currentTarget) {

let clickedItem = e.target.id;

console.log("Hello " + clickedItem);

498 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 }

e.stopPropagation();

}

The target of the event is represented by e.target, and the target element the
event listener is attached to is represented by e.currentTarget. By simply
checking that these values are not equal, you can ensure that the event handler
doesn’t react to events fired from the parent element that you don’t care about.

To stop the event’s propagation, we simply call the stopPropagation method:

function doSomething(e) {

if (e.target != e.currentTarget) {

let clickedItem = e.target.id;

console.log("Hello " + clickedItem);

 }

e.stopPropagation();

}

Notice that this code is actually outside of our if statement. This is because
we want the event to stop traversing the DOM under all situations once it is
overheard.

Putting It All Together
The end result of all of this code running is that you can click any of theDude’s
children and listen for the event as it propagates up:

Because all of the event arguments are still unique to the element we are interact-
ing with (that is, the source of the event), we are able to identify and special case
the clicked element from inside the event handler despite the addEventLis-
tener being active only on the parent. The main thing to call out about this
solution is that it satisfies the problems we set out to avoid. We only created one
event listener. It doesn’t matter how many children theDude ends up having. This
approach is generic enough to accommodate all of them without any extra modi-
fication to our code. This also means that we should do some strict filtering if our
theDude element ends up having children besides buttons and other elements we
care about.

CHAPTER 42 HANDLING EVENTS FOR MULTIPLE ELEMENTS 499

THE ABSOLUTE MINIMUM
For some time, I actually proposed a solution for our Multiple Element Event-
ing Conundrum (or MEEC, as the cool kids call it!) that was inefficient but didn’t
require you to duplicate many lines of code. Before many people pointed out the
inefficiencies of it, I thought it was a valid solution.

This solution used a for loop to attach event listeners to all the children of a par-rr
ent (or an array containing HTML elements). Here is what that code looked like:

let theParent = document.querySelector("#theDude");

for (let i = 0; i < theParent.children.length; i++) {

500 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

let childElement = theParent.children[i];

childElement.addEventListener('click', doSomething, false);

}

function doSomething(e) {

let clickedItem = e.target.id;

console.log("Hello " + clickedItem);

}

The end result was that this approach allowed us to listen for the click event
directly on the children. The only code I wrote manually was this single event
listener call that was parameterized to the appropriate child element based on
where in the loop the code was:

childElement.addEventListener('click', doSomething, false);

The approach isn’t great because each child element has an event listener asso-
ciated with it. This goes back to our efficiency argument, where this approach
unnecessarily wastes memory.

Now, if you do have a situation where your elements are spread throughout the
DOM with no nearby common parent, using this approach on an array of HTML
elements is not a bad way of solving the MEEC problem.

Anyway, as you start working with larger quantities of UI elements for games, data-
visualization apps, and other HTML element-rich things, you’ll end up having to
use everything you saw here at least once…I hope. If all else fails, this chapter still
served an important purpose. All of the stuff about event tunneling and capturing
you saw earlier in the book clearly came in handy here. That’s something!

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

43
I N T H I S C H A P T E R
• Learn how to use emojis in your web documents

• Figure out an easy way to copy emojis and insert
them in our code

USING EMOJIS IN HTML,
CSS, AND JAVASCRIPT
From their humble beginnings in 1999, emojis are all the rage these days.

They’re no longer something only people half our age use to communi-

cate. You and I use them all the time, and almost every chat or messaging-

related app under the sun provides great support for them:

502 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

For everyday users, emojis are great. They are fun and easy to use. For us web
developers wanting to use emojis in our HTML, CSS, and JavaScript, the story is
a bit different. There are a few hoops we need to learn how to jump through, but
don’t worry. This chapter will help you master all of this hoop jumping like a pro!

What Are Emojis Exactly?
We already know that emojis are these tiny colorful icons. While this may give you
the impression that they are images in the traditional sense, they aren’t. They are
more like the letters, numbers, punctuation marks, and weird symbols we tend to
bucket with text:

CHAPTER 43 USING EMOJIS IN HTML, CSS, AND JAVASCRIPT

Towards the end of this chapter, I go into much greater detail on what emojis are
and some of the details under the covers that make them work. For now, just know
the following:

• They are just characters.

• You can select them, copy them, paste them, adjust their size, and so on.

• They have a more primitive numerical representation you can use to get them
to display.

To say we just scratched the surface in understanding emojis is an overstatement,
but this is enough for us to get started. It’s time to see emojis in action inside our
web documents!

Emojis in HTML
To use emojis in HTML, the first thing we need to do is set the document’s charac-
ter encoding to UTF-8. This ensures our emojis display consistently across the vari-
ety of browsers and devices our users may be running. Doing this is simple. Inside
your <head> tag, be sure to specify the following <meta> tag:

<meta charset="UTF-8">

504 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Once you’ve done this, now comes the fun part of actually getting an emoji to
display. You have two ways of being able to do this, each with a varying degree of
funness. One way is by using the emoji directly in your HTML. The other way is by
specifying the emoji via its primitive numerical representation. We’ll look at both
of these cases.

Using the Emoji Directly
The easiest way to display an emoji involves simply copying and pasting. You just
need an app or website that allows you to copy emojis in their native, character
form. One great place for doing that is Emojipedia (https://emojipedia.org). You
can use Emojipedia to search or browse for whatever emoji you are looking for.
Once you’ve found your emoji, there is a section where you can easily see and
copy it:

Once you have copied it, just paste it in its intended destination in your markup:

<p> </p>

https://emojipedia.org

CHAPTER 43 USING EMOJIS IN HTML, CSS, AND JAVASCRIPT

Because emojis are treated as text-based content, you can paste them almost any-
where in your document where text is supported. Now, if this is your first time see-
ing emojis randomly appearing inside your text-based code or your code editor, it
will look a bit strange:

Your traditional text-only environment where you’ve written your markup all these
years will suddenly have something visual in it. Don’t worry. It’s cool. When you
preview your HTML document in your browser, everything will still work.

Before we wrap up our look at emojis in HTML, let’s talk about accessibility. Emo-
jis are ultimately visual artifacts, but they are represented as text under the cov-
ers using elements like p and span that are semantically ambiguous in this case.
Screen readers and related tools may not interpret what the emoji is trying to
signify properly, but the solution is simple. To use emojis in an accessibility-friendly
way (a11y, as the cool kids call it!), set the role and aria-label attributes on
the element you are using to represent your emoji:

<p role="img" aria-label="hamburger"> </p>

With this change, you still get to use emojis in HTML and make them accessible at
the same time. That’s a win, win, win!

Specifying the Emoji Codepoint
If specifying the emoji directly doesn’t work, there is a less fun path you can take.
You can use the emoji’s numerical representation and specify it in your markup
instead. If you scroll down in Emojipedia for any emoji, you’ll see the numerical
representation (more formally known as a codepoint) displayed:

506 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

For the hamburger emoji, the codepoint is U+1F354. To specify this emoji in
HTML using the codepoint, we have to modify the value a bit. Add the &#x charx -rr
acters, remove the U+1 from the beginning of the codepoint, and just add the
remaining digits from the codepoint as part of any text element.

Here is the hamburger emoji in codepoint form:

<p>🍔</p>

When you preview your document in your browser, you’ll still see the hamburger
emoji displayed correctly, despite it looking strange in our markup compared to
the copy/paste solution we looked at earlier.

Emojis in CSS
You can totally use emojis in CSS. The same tricks we saw for emojis in HTML will
work with only some slight modifications. You can specify the emoji directly:

h1::before {

 content: " ";

}

You can also specify the emoji by setting the codepoint:

h1::before {

 content: "\01F354";

}

CHAPTER 43 USING EMOJIS IN HTML, CSS, AND JAVASCRIPT 507

How you specify the codepoint is a bit different from what we saw for HTML. All
you have to do is remove the U+ from the Unicode endpoint and add the \0 (slash
zero) characters just before it.

Emojis in JavaScript
The last thing we will look at is how to use emojis in JavaScript. The approach of using
them directly will work here as well. Just make sure to treat the emoji as text:

document.body.innerText = " ";

To use an emoji via its codepoint value instead, we have to pass it through the
String.fromCodePoint method. This method takes a codepoint value as its
argument:

document.body.innerText = String.fromCodePoint(0x1F354);

What gets returned is the character at that codepoint location. How you specify
the codepoint is different from both HTML and CSS. If the codepoint is U+1F354,
replace the U+ with 0x (zero and x x) before passing it in. That’s it. If you want to go
further, since you are in JavaScript, you can do all sorts of JavaScript-y things. You
can have an array of emojis, you can dynamically generate them, and so on:

let emojis = [0x1F600, 0x1F604, 0x1F34A, 0x1F344, 0x1F37F, 0x1F363,

0x1F370, 0x1F355, 0x1F354, 0x1F35F, 0x1F6C0, 0x1F48E, 0x1F5FA,

0x23F0, 0x1F579, 0x1F4DA, 0x1F431, 0x1F42A, 0x1F439, 0x1F424];

If you are curious to see a working example that uses emojis defined in
JavaScript, check out my Koncentration game (https://www.kirupa.com/react/
koncentration/index.html). The GitHub repo (https://github.com/kirupa/kirupa/
tree/master/reactjs/koncentration/src, especially Board.js) contains everything
you need to see how the game is tied together.

Some Emoji Details
We’ve glossed over what emojis really are and what purpose codepoints serve. To
start from what I said earlier, emojis are just characters like all of the text we type.

https://www.kirupa.com/react/koncentration/index.html
https://www.kirupa.com/react/koncentration/index.html
https://github.com/kirupa/kirupa/tree/master/reactjs/koncentration/src
https://github.com/kirupa/kirupa/tree/master/reactjs/koncentration/src

508 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

That is often a confusing thing to understand. A part of the reason for this confu-
sion is because we tend to think of characters as just what our keyboards support.
Here is the problem: What our keyboards allow us to represent is a very tiny
percentage of the overall set of characters available to us.

If you want to see this for yourself, you can view all the characters your operating sys-
tem supports by using Character Map on Windows or the Character Viewer on Mac:

Notice that you have many categories of characters that go beyond just the
usual things we see on a typical keyboard. If we had to have a keyboard to sup-
port every character our operating system supports, it would need to be at
least…three times bigger than the usual keyboard (https://www.youtube.com/
watch?v=NQ-8IuUkJJc&t=60s).

Okay, let’s go one level deeper. We saw that the emojis we wanted to use had a
bizarre numerical representation. As it turns out, all characters we use have the l
same bizarre representation under the covers as well. On our screens, we may see
letter characters like A, B, C, D, E, F, and G. Under the covers, these characters
look like the following: U+0041, U+0042, U+0043, U+0044, U+0045, U+0046,
and U+0047. I already said that this representation is known as a codepoint, but
the more precise term is Unicode codepoint. This detail is important to know
about because Unicode is an industry standard for ensuring the text you see on
your screen is the same on another screen somewhere else—regardless of lan-
guage, locale, system capabilities, operating system, and so on. A codepoint is
the most basic unit of representing information in Unicode. A series of codepoints
represents characters and text. Phew!

https://www.youtube.com/watch?v=NQ-8IuUkJJc&t=60s
https://www.youtube.com/watch?v=NQ-8IuUkJJc&t=60s

CHAPTER 43 USING EMOJIS IN HTML, CSS, AND JAVASCRIPT

THE ABSOLUTE MINIMUM
If you can get away with it, copying and pasting emojis is the easiest thing you
can do across HTML, CSS, and JavaScript. There will be situations where you can’t
do that, so you need the fallback approach involving codepoints. There is one last
thing that may be important to you. Because emojis are native to the app or plat-
form you are on, they can look different for different users:

510 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The Unicode standard ensures that the appropriate codepoints represent, in this case,
a cat. Each implementer has full creative freedom in interpreting that as they wish.
For some developers, this inconsistency isn’t desirable. What they have done instead
is re-create the emojis in SVG or PNG format so that they can ensure consistency.
An example of someone who does that is Twitter! I used a screenshot of their emoji
picker to start this chapter off, and every emoji you see there isn’t from our operat-
ing system or platform. It is from the really awesome Twemoji project (http://twitter.
github.io/twemoji/). There are many emoji libraries out there, so use whichever one //
you like if the native emoji support isn’t what you are looking for.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

http://twitter.github.io/twemoji/
http://twitter.github.io/twemoji/
https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

44
I N T H I S C H A P T E R
• Learn the basics of a web request

• Learn how to use both the Fetch API and the more
traditional XMLHttpRequest approach

MAKING HTTP/WEB
REQUESTS IN JAVASCRIPT
As you probably know very well by now, the Internet is made up of a bunch

of interconnected computers called servers. When you are surfing the web

and navigating between web pages, what you are really doing is telling

your browser to request information from any of these servers. It kinda

looks like this: Your browser sends a request, waits awkwardly for the server

to respond to the request, and (once the server responds) processes the

request. All of this communication is made possible because of something

known as the HTTP protocol.

512 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The HTTP protocol provides a common language that allows your browser and a
bunch of other things to communicate with all the servers that make up the Inter-rr
net. The requests your browser makes on your behalf using the HTTP protocol are
known as HTTP requests, and these requests go well beyond simply loading a
new page as you are navigating. A common (and whole lot more exciting) set of
use cases revolves around updating your existing page with data resulting from an
HTTP request.

For example, you may have a page where you’d like to display some information
about the currently logged-in user. This is information your page might not have
initially, but it will be information your browser will request as part of you inter-rr
acting with the page. The server will respond with the data and have your page
update with that information. All of this probably sounds a bit abstract, so I’m
going to go a bit weird for a few moments and describe what an HTTP request
and response might look like for this example.

To get information about the user, here is our HTTP request:

GET /user

Accept: application/json

For that request, here is what the server might return:

200 OK

Content-Type: application/json

{

 "name": "Kirupa",

 "url": "https://www.kirupa.com"

}

This back and forth happens a bunch of times, and all of this is fully supported in
JavaScript! This ability to asynchronously request and process data from a server
without requiring a page navigation/reload has a term. That term is Ajax (or x AJAX
if you want to shout). This acronym stands for Asynchronous JavaScript and XML,
and if you were around web developers a few years ago, Ajax was the buzzword
everybody threw around for describing the kind of web apps we take for granted
today—apps like Twitter, Facebook, Google Maps, Gmail, and more that con-
stantly fetch data as you are interacting with the page without requiring a full page
reload!

https://www.kirupa.com"

CHAPTER 44 MAKING HTTP/WEB REQUESTS IN JAVASCRIPT 513

Knowing how to Ajax it up and make HTTP requests is a very important skill, and
this chapter will give you everything you need to be dangerous. Or, should I say…
dangeresque (https://homestarrunner.com/sbemail106.html)?

The Example
Reading (or even thinking) about the HTTP and requests is boring…extremely
boring! To help you both stay awake and understand what all is involved, we are
going to be building a small example together. The example will look as follows:

On the surface, this example seems just as boring as the underlying details of
an HTTP request that I was hoping to make seem more exciting. Like, what are
you going to do with this knowledge about your IP? However, this example hides
some of the awesome underlying details relevant to what you are about to learn.
Here is a sneak peek: We have some JavaScript that makes an HTTP request to a
service (ipinfo.io) that returns a whole bunch of data about your connection. Using
JavaScript, we process all that returned data and surgically pinpoint the IP address
that we so proudly display here.

I don’t know about you, but I’m totally excited to see this all come together. By
the time you reach the end of this tutorial, you too will have created something
similar to this example and learned all about what goes on under the hood to
make it work.

https://homestarrunner.com/sbemail106.html
http://ipinfo.io

514 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Meet Fetch
The newest kid on the block for making HTTP requests is the fetch API. To use
fetch in its most basic form, all we need to do is provide the URL to send our
request to. Once the request has been made, a response will be returned that we
can then process. To put all of these words into action, let’s write some code and
get our earlier example up and running.

Diving into the Code
If you want to follow along, create a new HTML document and add the following
markup to it:

<!DOCTYPE html>

<html>

<head>

 <title>Display IP Address</title>

</head>

<body>

 <script>

 </script>

</body>

</html>

Inside the <script> tag, add the following code that makes up our web request:

fetch("https://ipinfo.io/json")

 .then(function (response) {

 return response.json();

 })

 .then(function (myJson) {

 console.log(myJson.ip);

https://ipinfo.io/json"

CHAPTER 44 MAKING HTTP/WEB REQUESTS IN JAVASCRIPT 515

 })

 .catch(function (error) {

 console.log("Error: " + error);

 });

Once you have added these lines, save your changes and test your page in the
browser. You won’t see anything displayed onscreen, but if you bring up the
console via your browser developer tools, you should see your IP address being
displayed:

That’s something! Now that you have your IP address displayed to your console,
let’s take a moment and revisit the code and see what exactly it is doing. With our
first line of code, we are calling fetch and providing the URL we want to make our
request to:

fetch("https://ipinfo.io/json")

 .then(function (response) {

 return response.json();

https://ipinfo.io/json"

516 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

 })

 .then(function (myJson) {

 console.log(myJson.ip);

 })

 .catch(function (error) {

 console.log("Error: " + error);

 });

The URL we send our request to is ipinfo.io/json. Once this line gets run, the
service running on ipinfo.io will send us some data. It is up to us to process that
data, and the following two then blocks are responsible for this processing:

fetch("https://ipinfo.io/json")

 .then(function (response) {

 return response.json();

 })

 .then(function (myJson) {

 console.log(myJson.ip);

 })

 .catch(function (error) {

 console.log("Error: " + error);

 });

One really important detail to call out is that the response returned by fetch is a
promise. These then blocks are part of how promises work asynchronously to
allow us to process the results. Covering promises goes beyond the scope of this
chapter, but the following MDN documentation does a great job explaining what
they are:

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/
Using_promises

The thing to know for now is that we have a chain of then blocks, where each
block is called automatically after the previous one completes. Because this is all
asynchronous, everything is done while the rest of our app is doing its thing. We
don’t have to do anything extra to ensure our request-related code doesn’t block
or freeze up our app while waiting for a slow network result or processing a large
amount of data.

http://ipinfo.io/json
http://ipinfo.io
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises

CHAPTER 44 MAKING HTTP/WEB REQUESTS IN JAVASCRIPT 517

Getting back to our code, in our first then block, we specify that we want the raw
JSON data that our fetch call returns:

fetch("https://ipinfo.io/json")

 .then(function (response) {

 return response.json();

 })

 .then(function (myJson) {

 console.log(myJson.ip);

 })

 .catch(function (error) {

 console.log("Error: " + error);

 });

In the next then block, which gets called after the previous one completes, we
process the returned data further by narrowing in on the property that will give us
the IP address and then printing it to the console:

fetch("https://ipinfo.io/json")

 .then(function (response) {

 return response.json();

 })

 .then(function (myJson) {

 console.log(myJson.ip);

 })

 .catch(function (error) {

 console.log("Error: " + error);

 });

How do we know that the IP address is going to be stored by the ip property
from our returned JSON data? The easiest way is by referring to the ipinfo.
io developer documentation (https://ipinfo.io/developers/responses#full-
response)! Every web service will have its own format for returning data when
requested. It’s up to us to take a few moments and figure out what the response
will look like, what parameters we may need to pass in as part of the request to
tune the response, and how we need to write our code to get the data we want.
As an alternative to reading the developer documentation, you can always inspect

https://ipinfo.io/json"
https://ipinfo.io/json"
http://ipinfo.io
http://ipinfo.io
https://ipinfo.io/developers/responses#full-response
https://ipinfo.io/developers/responses#full-response

518 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

the response returned by the request via the developer tools. Use whichever
approach is convenient for you.

We aren’t done with our code just yet. Sometimes the promise will result in an
error or a failed response. When that happens, our promise will stop going down
the chain of then blocks and look for a catch block instead. The code in this
catch block will then execute. Our catch block looks like this:

fetch("https://ipinfo.io/json")

 .then(function (response) {

 return response.json();

 })

 .then(function (myJson) {

 console.log(myJson.ip);

 })

 .catch(function (error) {

 console.log("Error: " + error);

 });

We aren’t doing anything groundbreaking with our error handling. We just print
the error message to the console.

Wrapping Up the Example
What we have right now is a blank page with our IP address being printed to the
console. Let’s go ahead and add the few missing details to get our current page
looking like the example we saw at the beginning of the chapter. In our current
HTML document, make the following highlighted changes:

<!DOCTYPE html>

<html>

<head>

 <title>Display IP Address</title>

 <style>

 body {

 background-color: #FFCC00;

 }

CHAPTER 44 MAKING HTTP/WEB REQUESTS IN JAVASCRIPT 519

 h1 {

 font-family: sans-serif;

 text-align: center;

 padding-top: 140px;

 font-size: 60px;

 margin: -15px;

 }

 p {

 font-family: sans-serif;

 color: #907400;

 text-align: center;

 }

 </style>

</head>

<body>

 <h1 id=ipText></h1>

 <p>(This is your IP address...probably :P)</p>

 <script>

 fetch("https://ipinfo.io/json")

 .then(function (response) {

 return response.json();

 })

 .then(function (myJson) {

 document.querySelector("#ipText").innerHTML = myJson.ip;

 })

 .catch(function (error) {

 console.log("Error: " + error);

 });

 </script>

</body>

</html>

520 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The biggest changes here are adding some HTML elements to provide some
visual structure and the CSS to make it all look good and proper. Notice that
we also modified what our second then block does. Instead of printing our
IP address to the console, we are instead displaying the IP address inside our
ipText paragraph element.

If you preview your page now, you should see your IP address displayed in all its
dark text and yellow backgrounded awesomeness.

Meet XMLHttpRequest
The other (more traditional) object that is responsible for allowing you to send and
receive HTTP requests is the weirdly named XMLHttpRequest. This object allows
you to do several things that are important to making web requests:

• Send a request to a server.

• Check on the status of a request.

• Retrieve and parse the response from the request.

• Listen for the onreadystatechange, which helps you react to the status of
your request.

There are a few more things that XMLHttpRequest does, and we’ll cover them
eventually. For now, these four will do just fine. Next, let’s set the stage for
re-creating the earlier example so that we can see all of this action for ourselves.
In your existing HTML document from earlier, delete everything that is inside your
<script> tag. Your document should look as follows:

<!DOCTYPE html>

<html>

<head>

 <title>Display IP Address</title>

 <style>

 body {

 background-color: #FFCC00;

 }

 h1 {

 font-family: sans-serif;

CHAPTER 44 MAKING HTTP/WEB REQUESTS IN JAVASCRIPT 521

 text-align: center;

 padding-top: 140px;

 font-size: 60px;

 margin: -15px;

 }

 p {

 font-family: sans-serif;

 color: #907400;

 text-align: center;

 }

 </style>

</head>

<body>

 <h1 id=ipText></h1>

 <p>(This is your IP address...probably :P)</p>

 <script>

 </script>

</body>

</html>

With our document in a good state, it’s time to build our example one line at a
time!

Creating the Request
The first thing we are going to do is initialize our XMLHttpRequest object, so
add the following line inside your <script> tag:

let xhr = new XMLHttpRequest();

The xhr variable will now be the gateway to all the various properties and meth-
ods the XMLHttpRequest object provides for allowing us to make web requests.

522 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

One such method is open. This method is what allows us to specify the details of
the request we would like to make, so let’s add it next:

let xhr = new XMLHttpRequest();

xhr.open('GET', "https://ipinfo.io/json", true);

The open method takes three-ish arguments:

• The first argument specifies which HTTP method to use to process your
request. The values you can specify are GET, PUT, POST, and DELETE. In
our case, we are interested in receiving information, so the first argument we
specify is going to be GET.

• Next, you specify the URL to send your request to. These URLs are well-
defined endpoints that know what to do when an HTTP request flies by. For
our IP example, the path we will specify is ipinfo.io/json.

• The last argument specifies whether you want your request to run asynchro-
nously. This value should be set to true. Running the request asynchronously
will ensure your page is responsive, and the rest of your code continues to
run while your HTTP request is taking its time to make its way around. At this
point, setting this value to false is going to be ignored by most of the brows-
ers, so…yeah.

• The “-ish” part of the “three-ish arguments” I mentioned earlier refers to the
arguments for username and password. Typically, you don’t want to specify
your username and password in such a plain-as-daylight location like your
JavaScript file, so you probably won’t ever need to set more than the three
arguments you’ve already seen.

Sending the Request
So far, we’ve initialized the XMLHttpRequest object and constructed our request.
We haven’t sent the request out yet, but that is handled by the next line:

let xhr = new XMLHttpRequest();

xhr.open('GET', "https://ipinfo.io/json", true);

xhr.send();

https://ipinfo.io/json"
http://ipinfo.io/json
https://ipinfo.io/json"

CHAPTER 44 MAKING HTTP/WEB REQUESTS IN JAVASCRIPT 523

The send method is responsible for sending the request. If you set your request
to be asynchronous (and why wouldn’t you have?!), the send method immediately
returns and the rest of your code continues to run. That’s the behavior we want.

Asynchronous Stuff and Events
When some code is running asynchronously, you have no idea when that code is
going to return with some news. In the case of what we’ve done, once the HTTP
request has been sent, our code doesn’t stop and wait for the request to make
its way back. Our code just keeps running. What we need is a way to send our
request and then be notified of when the request comes back so that our code
can finish what it started.

To satisfy that need, we have events. More specifically for our case, that’s why we
have the readystatechange event that is fired by our XMLHttpRequest object
whenever our request hits an important milestone on its epic journey.

To set this all up, go ahead and add the following highlighted line that invokes the
almighty addEventListener:

let xhr = new XMLHttpRequest();

xhr.open('GET', "https://ipinfo.io/json", true);

xhr.send();

xhr.addEventListener("readystatechange", processRequest, false);

This line looks like any other event listening code you’ve written a bunch of times.
We listen for the readystatechange event on our xhr object and call the
processRequest event handler when the event is overheard. Here is where
some fun stuff happens!

Processing the Request
This should be easy, right? We have our event listener all ready, and all we need
is the processRequest event handler where we can add some code to read the
result that gets returned. Let’s go ahead and first add our event handler:

let xhr = new XMLHttpRequest();

xhr.open('GET', "https://ipinfo.io/json", true);

https://ipinfo.io/json"
https://ipinfo.io/json"

524 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

xhr.send();

xhr.onreadystatechange = processRequest;

function processRequest(e) {

}

Next, all we need is some code to parse the result of the HTTP request inside our
newly added event handler.

As it turns out, it isn’t that simple. The complication comes from the readystate-
change event being tied to our XMLHttpRequest object’s readyState prop-
erty. This readyState property chronicles the path our HTTP request takes, and
each change in its value results in the readystatechange event getting fired.
What exactly is our readyState property representing that results in its value
changing so frequently? Check out Figure 44.1:

0 UNSENT

Value State Description

1 OPENED The send method has been called

The open method hasn't been called yet

2 HEADERS_RECEIVED
The send method has been called and the HTTP
request has returned the status and headers

3 LOADING The HTTP request response is being downloaded

4 DONE Everything has completed

FIGURE 44.1

The values returned by readyState to tell us what our request is doing

For every HTTP request we make, our readyState property hits each of these
five values. This means our readystatechange event gets fired five times. As
a result, our processRequest event handler gets called five times as well. See
the problem? For four out of the five times processRequest gets called, it won’t
be getting called for the reasons we are interested in—that is, the request has
returned and it is time to analyze the returned data.

CHAPTER 44 MAKING HTTP/WEB REQUESTS IN JAVASCRIPT 525

Since our goal is to read the returned value after our request has been completed,
the readyState value of 4 is our friend. We need to ensure we only move for-rr
ward when this value is set, so here is what the modified processRequest func-
tion would look like to handle that:

function processRequest(e) {

 if (xhr.readyState == 4) {

 // time to partay!!!

 }

}

While this seems good, we have one more check to add. It is possible for us to
find ourselves with no readable data despite our HTTP request having completed
successfully. To guard against that, we also have HTTP status codes that get
returned as a part of the request. You run into these HTTP status codes all the
time. For example, whenever you see a 404, you know that a file is missing. If you
are curious, you can see a full list of status codes at https://www.webfx.com/
web-development/glossary/http-status-codes/, but the one we care about with
HTTP requests is status code 200. This code is returned by the server when the
HTTP request was successful.

We are going to modify our earlier code slightly to include a check for the 200
status code, and the appropriately named status property contains the value
returned by the request:

function processRequest(e) {

 if (xhr.readyState == 4 && xhr.status == 200) {

 // time to partay!!!

 }

}

In plain English, what this check does is simple: The if statement checks that the
request has completed (readyState == 4) and is successful (d status == 200).
Only if both of those conditions are met can we declare that our request did what
we wanted it to do.

https://www.webfx.com/web-development/glossary/http-status-codes/
https://www.webfx.com/web-development/glossary/http-status-codes/

526 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Processing the Request…for Realz!
In the previous section, I used a whole lot of words to explain adding a simple if
statement. I promise this section will be more to the point. All that is left is to read
the body of the response that is returned. The way we do that is by reading the
value of the responseText property returned by our xhr object:

function processRequest(e) {

 if (xhr.readyState == 4 && xhr.status == 200) {

 let response = JSON.parse(xhr.responseText);

 document.querySelector("#ipText").innerHTML = response.ip;

 }

}

Here is where things become a bit less general. When we make a request to the
ipinfo.io server, the data gets returned in JSON format…as a string:

"{

 "ip": "52.41.128.211",

 "hostname": "static-52-41-128-211.blve.wa.verizon.net",

 "city": "Redmond",

 "region": "Washington",

 "country": "US",

 "loc": "46.6104,-121.1259",

 "org": "Verizon, Inc",

 "postal": "98052"

}"

To convert our JSON-like string into an actual JSON object, we pass in the result
of xhr.responseText into the JSON.parse method. This takes our string of
JSON data and turns it into an actual JSON object that is stored by the response
variable. From there, displaying the IP is as easy as what is shown in the high-
lighted line:

function processRequest(e) {

 if (xhr.readyState == 4 && xhr.status == 200) {

 let response = JSON.parse(xhr.responseText);

http://ipinfo.io

CHAPTER 44 MAKING HTTP/WEB REQUESTS IN JAVASCRIPT 527

 document.querySelector("#ipText").innerHTML = response.ip;

 }

}

I am not going to spend too much time on this section because I don’t want this
to become a discussion of how the ipinfo.io server returns data. Just like what we
saw with fetch earlier, every server we send an HTTP request to will send data in a
slightly different way, and each one may require you to jump through a slightly dif-
ferent hoop to get at what you are looking for. There isn’t an easy solution that will
prepare you for all your future HTTP requesting needs outside of reading docu-
mentation for the web service you are interested in requesting data from.

THE ABSOLUTE MINIMUM
Writing some code that makes an HTTP request and returns some data is prob-
ably one of the coolest things you can do in JavaScript. Everything you’ve seen
here used to be a novelty that only Internet Explorer supported in the very begin-
ning. Today, HTTP requests are everywhere. Much of the data you see displayed
in a typical page is often the result of a request getting made and processed—all
without you even noticing. If you are building a new app or are modernizing an
older app, the fetch API is a good one to start using if your app needs to make
a web request. Since a good chunk of your time will be reading other people’s
code, there is a good chance the web requests you encounter are made using
XMLHttpRequest. In those cases, you need to know your way around. That’s why
this chapter focused on both the newer fetch and the older XMLHttpRequest
approaches.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

http://ipinfo.io
https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

45
I N T H I S C H A P T E R
• Learn how to access the webcam

• Learn how to take the output of a webcam and dis-
play it on our page

ACCESSING THE WEBCAM
Accessing your webcam via your browser used to involve a plug-in (par-rr

don the profanity). That’s right. In order to connect to a webcam and gain

access to its video stream, you had to rely on something primarily created

in Flash or Silverlight. While that approach certainly worked for browsers

that supported plug-ins, it didn’t help for the increasing number of brows-

ers that aim to be plug-in free. This inability to natively access the webcam

without relying on third-party components was certainly a gap in the HTML

development story—especially on mobile devices. At least, that was the

case until pretty recently.

530 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The W3C has been attempting to fill this gap by encouraging browser vendors
to implement the proposals outlined in the Media Capture and Streams spec
(https://w3c.github.io/mediacapture-main/getusermedia.html). This spec
defines, among various other things, how to communicate with a webcam device
using just a little bit of JavaScript. The good news is that, despite it being fairly
new, almost all modern browsers across mobile and desktop forms support
this spec.

By the time you finish this chapter, you will have learned how to take your web-
cam’s video stream and display it in your web page.

The Example
Before proceeding further, let’s first take a look at an example that is identical
to what you will be creating. Navigate to the following URL for a live example:
https://bit.ly/webcamJS.

You should see something that looks as follows (hopefully with you in the picture
instead of me!):

A key part of being able to access the webcam is handling the permission prompt
your browser will display, similar to what is shown in Figure 45.1.

https://w3c.github.io/mediacapture-main/getusermedia.html
https://bit.ly/webcamJS

CHAPTER 45 ACCESSING THE WEBCAM 531

FIGURE 45.1

The permission prompt!

If you denied permission accidentally (or intentionally) when viewing the example,
just reload this page to get a crack at acing this test again.

Overview of How This Works
To help make this code easier to write, let’s look at an overview of how everything
works using plain-old English. Two components do all the heavy lifting in getting
data from your webcam displayed on your screen. They are the HTML video ele-
ment and the JavaScript getUserMedia function:

The video element is pretty straightforward in what it does. It is responsible for taking
the video stream from your webcam and actually displaying it on the screen.

532 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The interesting piece is the getUserMedia function. This function allows you to
do three things:

• Specify whether you want to get video data from the webcam, audio data
from a microphone, or both.

• If the user grants permission to access the webcam, specify a success function
to call, where you can process the webcam data further.

• If the user does not grant permission to access the webcam or your webcam
runs into some other kind of error, specify an error function to handle the error
conditions.

For what we are trying to do, we call the getUserMedia function and tell it to
only retrieve the video from the webcam. I will cover the microphone in the future!
Once we retrieve the video, we tell our success function to send the video data to
our video element for display on our screen.

If this sounds pretty straightforward, that’s because it actually is. Let’s put all of this
straightforward English-sounding description into HTML and JavaScript in the next
section.

Adding the Code
In this section, let’s go ahead and display our webcam data to the screen. First,
let’s add the HTML and CSS:

<!DOCTYPE html>

<html>

<head>

<meta charset="utf-8">

<title>Display Webcam Stream</title>

<style>

#container {

margin: 0px auto;

width: 500px;

height: 375px;

CHAPTER 45 ACCESSING THE WEBCAM 533

border: 10px #333 solid;

}

#videoElement {

width: 500px;

height: 375px;

background-color: #666;

}

</style>

</head>

<body>

<div id="container">

<video autoplay="true" id="videoElement">

</video>

</div>

<script>

</script>

</body>

</html>

In a new document, go ahead and add all of the HTML and CSS that you see
here. The important thing to note in this snippet is the <video> tag:

<video autoplay="true" id="videoElement">

</video>

Our <video> tag has an id value of videoElement, and its autoplay attribute
is set to true. By setting the autoplay attribute to true, we ensure that our video
starts to display automatically once we have our webcam video stream.

534 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

If you preview what your page looks like in your browser, you will see the
following:

Yes, this looks pretty plain and boring now, but that’s because we haven’t added
the JavaScript that ties together our video element with the webcam. We’ll do
that next!

Inside your <script> tag, add the following code:

let video = document.querySelector("#videoElement");

if (navigator.mediaDevices.getUserMedia) {

 navigator.mediaDevices.getUserMedia({ video: true })

 .then(function (stream) {

 video.srcObject = stream;

 })

CHAPTER 45 ACCESSING THE WEBCAM 535

 .catch(function (err0r) {

 console.log("Something went wrong!");

 });

}

Once you’ve added this code, save your HTML document and preview your page.
Provided you are on a supported browser, you should see your webcam video
stream after you’ve given your browser permission to access it.

Examining the Code
Now that you have a working example, let’s go through our code line-by-line
to understand how the verbal overview from earlier matches the code you just
added.

Let’s start at the very top:

let video = document.querySelector("#videoElement");

We first declare a variable called video, and it is initialized to our video
element that lives in the HTML. We get our paws on the video element by using
querySelector and specifying the id selector that targets it.

Next up is our code for accessing the getUserMedia API:

if (navigator.mediaDevices.getUserMedia) {

 navigator.mediaDevices.getUserMedia({ video: true })

 .then(function (stream) {

 video.srcObject = stream;

 })

 .catch(function (err0r) {

 console.log("Something went wrong!");

 });

}

536 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The getUserMedia method is supported by most browsers, but it doesn’t hurt
to check first before starting to access properties on it. This if statement ensures
that our media-related code only works if getUserMedia is actually supported.

The rest of our code is responsible for accessing our webcam and streaming the
visuals to the screen. Before we go through and look at that, let’s take a step back
and talk about how getUserMedia actually works. It takes one argument that
specifies what are known as constraints. Constraints allow you to control, among
various things, whether video is allowed, whether audio is allowed, how big to
make the video dimensions, whether to prefer a front-facing camera over a back-
facing one, the video frame rate, and more. You represent these constraints as just
objects and properties. Nothing fancy there.

In our code, you can see constraints in action in the following snippet:

if (navigator.mediaDevices.getUserMedia) {

 navigator.mediaDevices.getUserMedia({ video: true })

 .then(function (stream) {

 video.srcObject = stream;

 })

 .catch(function (err0r) {

 console.log("Something went wrong!");

 });

}

All we are telling getUserMedia is to specify a constraints object whose video
property is set to true. This means that default settings will be used in captur-rr
ing the visuals and displaying them. This isn’t the most exciting constraint to set,
but it gets the job done. To see the full range of constraints you can specify, refer
to the following MDN article on getUserMedia, which goes through all the fun
details: https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/
getUserMedia.

Beyond constraints, there is another very important detail we need to know about
the getUserMedia method. What it returns is a promise that resolves to an
object of type MediaStream. When the promise successfully resolves, you can
access the underlying media stream and perform any additional actions.

https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getUserMedia

CHAPTER 45 ACCESSING THE WEBCAM 537

In our code, we are keeping things simple and just setting our stream to our video
element’s srcObject property:

if (navigator.mediaDevices.getUserMedia) {

 navigator.mediaDevices.getUserMedia({ video: true })

 .then(function (stream) {

 video.srcObject = stream;

 })

 .catch(function (err0r) {

 console.log("Something went wrong!");

 });

}

If there are any failures, the catch block will kick in.

TIP Stopping the Webcam Stream
If you want to stop the webcam stream, you need some code that
looks like this:

function stop(e) {
 let stream = video.srcObject;
 let tracks = stream.getTracks();

 for (let i = 0; i < tracks.length; i++) {
 let track = tracks[i];
 track.stop();
 }

 video.srcObject = null;
}

See the thread https://bit.ly/stopWebcamStream, which goes
into more detail on what you should do as well as provides a
working example.

https://bit.ly/stopWebcamStream

538 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
So, there you have it—a look at how you can access a user’s webcam video stream
and display it in the browser. Once you get the video to display, you can then do
all sorts of things that you can do to videos in general. You can apply crazy filters,
you can take a snapshot and save the image to disk, and much more, but that
goes beyond the scope of what we are doing here.

The main takeaway is this: The getUserMedia method is our friend and is the
gateway to many of the basic and advanced capabilities available to us when try-
ing to display our webcam feed in our browser.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

46
I N T H I S C H A P T E R
• Learn the basics of destructuring

• Understand how to unpack variables from arrays and
objects

ARRAY AND OBJECT
DESTRUCTURING
A lot of the improvements made to JavaScript revolve around adding

missing capabilities, such as being able to access the webcam, using cool

new data structures such as sets, interacting in more creative ways with

the DOM, and more. Some improvements fall purely on the side of conve-

nience. There are many highly inconvenient JavaScript tasks we regularly

perform that either take too much code or require too many “gotchas” to

work properly. One such task involves taking values from arrays or objects

and storing them in variables. Allow me to elaborate. Let’s say that we have

an array and it contains the following items:

let winners = ["bear", "cat", "dog", "giraffe", "unicorn"];

540 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

What we want to do is store the first three items from this array. The common
approach we would use is one that looks like this:

let winners = ["bear", "cat", "dog", "giraffe", "unicorn"];

let firstPlace = winners[0];

let secondPlace = winners[1];

let thirdPlace = winners[2];

console.log(firstPlace); // bear

console.log(secondPlace); // cat

If we wanted to store every item in our array in its own variable or store the
remaining items that aren’t the first three values, we would be required to do a lot
more array manipulation and/or copying and pasting. Tasks such as this extend to
objects as well, where we may want to store certain properties in their own vari-
ables, as shown here:

let returnedData = {

 "id": 54901,

 "name": Laserific Spoon 2000,

 "price": $5.00,

 "inStock": false,

 "inventor": Dr. Atom

};

let productID = returnedData.id;

let inventor = returnedData.inventor;

console.log(productID); // 54901

console.log(inventor); // Dr. Atom

As our web apps become more data intensive, with us relying more and more on
JavaScript to process this data, the traditional approaches for accessing data and
storing it in variables become clunky. That is where the star of this chapter comes

CHAPTER 46 ARRAY AND OBJECT DESTRUCTURING 541

in: destructuring. Destructuring is all about making it easy to go from a chunk of y
data, stored either in an array or an object, and unpacking that data into variables.
We’ll look at what all of this entails in the following sections.

Destructuring Examples
The concepts behind destructuring are not very deep, so the best way to learn
how it works is by just looking at a bunch of examples spanning across both arrays
and objects.

General Overview Using Arrays
Let’s go back to the array example we started with earlier:

let winners = ["bear", "cat", "dog", "giraffe", "unicorn"];

If we want to store the first three items from the array in their own variables, here
is how we can do that by using destructuring:

let winners = ["bear", "cat", "dog", "giraffe", "unicorn"];

let [firstPlace, secondPlace, thirdPlace] = winners;

console.log(firstPlace); // bear

console.log(secondPlace); // cat

console.log(thirdPlace); // dog

We use this bizarre array-like syntax as part of the variable declaration to define
the three variables (firstPlace, secondPlace, thirdPlace) that will store the
first three items from our winners array. One of the other activities mentioned
earlier is how we can store the remaining items from the array that aren’t in the
first, second, or third position. Well, as it turns out, there is a special operator
called the spread operator (…) that allows us to do that very easily:

let winners = ["bear", "cat", "dog", "giraffe", "unicorn"];

let [firstPlace, secondPlace, thirdPlace, ...others] = winners;

542 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

console.log(firstPlace); // bear

console.log(secondPlace); // cat

console.log(thirdPlace); // dog

console.log(others); // [giraffe, unicorn, dinosaur]

Notice that we have the …others expression, where we pair the spread operator
(…) with a variable called others. The output is the remaining array values after
firstPlace, secondPlace, and thirdPlace get mapped.

If we had to visualize all this, we would see something similar to what’s shown in
Figure 46.1.

FIGURE 46.1

A visualization of how variables and the spread operator map to the data stored in the
array!

Really cool, right? Now, what we have seen is the elevator pitch for what destruc-
turing looks like and the syntax we will rely on. What we will do next is go even
deeper and look at more examples that touch upon the edge cases we run into.

Skipping Items with a Comma
We sorta kinda see the importance that the comma plays in destructuring. Each
variable is comma-separated, and the comma helps indicate when we jump from
one item in our array to the next in sequential order. This knowledge is handy if
we want to skip an item from being assigned to a variable. To skip an item (or
many items), we need to specify a comma but no variable to pair with the comma.

Take a look at the following example:

let [a, , b] = [1, 2, 3, 4, 5, 6, 7];

console.log(a); // 1

console.log(b); // 3

CHAPTER 46 ARRAY AND OBJECT DESTRUCTURING 543

Notice that we specify an empty comma after the a variable. This ends up appear-rr
ing as two commas, and the result is one where we map only the first item and the
third item. The second item is skipped since there is no variable to store that item.

When There Are More Variables Than Data
Sometimes we may be trying to map more variables than there is data to map to
them. Take a look at the following example:

let [first, second, third] = ["Homer", "Marge"];

console.log(first); // "Homer"

console.log(second); // "Marge"

console.log(third); // undefined

The array we are trying to unpack into variables only has two items, but we have
three variables. When we have a variable that doesn’t have any data associated
with it, that variable is given a value of undefined. That is what we see happening
when we inspect the value of our third variable.

If the undefined value is undesirable, we can specify a default value to override
that behavior:

let [first, second, third = "Person"] = ["Homer", "Marge"];

console.log(first); // Homer

console.log(second); // Marge

console.log(third); // Person

In this variation, notice that the value for third is set to the default value of Per-rr
son because it doesn’t have a defined value in the array.

Separating the Declaration and Assignment
Just like how we can separate the declaration and assignment activities when
working with variables, we can do the same when destructuring. I will warn you,
though, that it is going to look a little strange at first, but it is totally legit:

let foo;

let bar;

544 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

[foo, bar] = [1, 2];

console.log(foo) // 1

console.log(bar) // 2

Notice that we declare our foo and bar variables first, and we then assign those
variables later when we destructure the contents of our array.

Destructuring with Objects
In past few sections, we saw how destructuring works with arrays. Destructuring
also works with objects, and a lot of what we saw earlier applies fully in this objec-
tified world. Take a look at the following object:

let chair = {

 brand: "Le Chair",

 legs: "4",

 material: "Wood",

 inventory: "42",

 price: "$29.99",

 color: "Blue"

};

We have an object called chair, and it contains a bunch of properties. If we want
to extract and store the values of just the brand and price properties, we can do
so via destructuring:

let chair = {

 brand: "Le Chair",

 legs: "4",

 material: "Wood",

 inventory: "42",

 price: "$29.99",

 color: "Blue"

};

CHAPTER 46 ARRAY AND OBJECT DESTRUCTURING 545

let {brand, price} = chair;

console.log(brand); // "Le Chair"

console.log(price); // "$29.99"

In our variable declaration and assignment, we are declaring two variables called
brand and price whose names match the property names inside the object we
are unpacking. The end result is that we are able to work with the values stored by
brand and price properties as their own individual variables.

As we can see, our chair object contains more properties than just brand and
price. If we wanted to access the remaining properties without any manual book-
keeping, the spread operator exists in this context as well:

let chair = {

 brand: "Le Chair",

 legs: "4",

 material: "Wood",

 inventory: "42",

 price: "$29.99",

 color: "Blue"

}

let {brand, price, ...rest} = chair;

console.log(brand); // "Le Chair"

console.log(price); // "$29.99"

console.log(rest); /* {

 legs: '4',

 material: 'Wood',

 inventory: '42',

 color: 'Blue'

 } */

546 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The rest variable stores the results of destructuring our object using the spread
operator. What gets returned is a new object whose properties are the ones we
haven’t unpacked. In other words, this new object contains everything except the
brand and price properties. Really cool, right?

Destructuring Differences Between Arrays and Objects
In this happy world of destructuring, what differentiates what we see here with
objects from what we saw with arrays previously are three big things:

• The destructuring assignment for arrays involves brackets:

let [a, b] = [1, 2]

The destructuring assignment for objects involves curly braces:

let {a, b} = { a: 1, b: 2 }

• With arrays, the order of our variable names during assignment mapped to the
order of our items in the array. With objects, order doesn’t matter. The variable
names determine which of our object property values get mapped.

• With arrays, the spread operator returns a new array whose contents are a
consecutive list of array values starting right after the ones we had already
mapped. With objects, the spread operator returns a new object made up of
the properties we haven’t already mapped. The order of how the properties
are defined inside the object doesn’t matter. The only thing that matters is
which properties have already been mapped and which ones haven’t.

There are a handful of other subtle differences, but these are the big ones.

Assigning to New Variable Names
In our earlier snippets, the variable names mapped to the property names we are
accessing inside the object. That is the default behavior, but we may often want
different variable names that are decoupled from the internals of an object’s prop-
erty naming. Fortunately, we have a way of doing that. Take a look at the following
example:

let chair = {

 brand: "Le Chair",

CHAPTER 46 ARRAY AND OBJECT DESTRUCTURING 547

 legs: "4",

 material: "Wood",

 inventory: "42",

 price: "$29.99",

 color: "Blue"

};

let {brand, price: cost} = chair;

console.log(brand); // "Le Chair"

console.log(cost); // "$29.99"

Pay attention to our destructuring assignment. Notice that we have the price
property mapping to the value in the chair object we are trying to access but
we remapped the variable name to be cost instead. We did this by using a colon
character between the variable that maps to the object property name and the
name we specify as the new variable name. The end result of this snippet is that
we can use the cost variable to access the value of the price property instead of
using the price name.

NOTE There Are More Cases!
As with anything as general purpose as destructuring, there
are many more cases covering uncommon (yet very important)
scenarios than what we have covered here. For a full list of all
the destructuring shenanigans that one can see with arrays and
objects, the MDN documentation on this topic is perfect:
https://mzl.la/3I2Lbre.

https://mzl.la/3I2Lbre

548 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
Destructuring is one of those topics that has the potential to greatly simplify how
we map variables to data stored inside our arrays and objects. It is important for
us to understand the slightly bizarre-looking syntax made up of brackets, curly
braces, and periods. Even if you and I have no plans of ever using it in our code,
destructuring has gotten so common (especially in frameworks like React and Vue)
that we’ll find ourselves forced to use it or needing to review/read code written by
someone else that heavily relies on it.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

47
I N T H I S C H A P T E R
• Learn how to persist data on the page using the

Web Storage API

• Understand the basics of storing, retrieving, and
more

STORING DATA USING WEB
STORAGE
Just like Las Vegas, often what you do in a web page stays in the web page.

Let’s say you have a simple application (https://bit.ly/kirupa_todo) that

allows you to maintain a to-do list:

https://bit.ly/kirupa_todo

550 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

If you accidentally navigate to another page or close the tab this page was on, the
default behavior when you return to this page would be to empty the to-do list.

Web pages do not persist data by default. Fortunately, you have a bunch of
approaches you can take for solving this problem. In this chapter, we are going to
look at one of my favorite ways of storing data by relying on what is known as the
Web Storage API. This API allows you to write just a few lines of code to handle a
lot of tricky storage situations, so it’s going to be a fun one!

How Web Storage Works
The Web Storage API sounds complicated and scary, but it is mostly a pushover. It
is exposed to us via two global (attached to window) objects called localStor-
age and sessionStorage. You can use these two objects to specify what data
to store as well as what data to retrieve, update, permanently remove, and per-rr
form a whole bunch of other storage-related activities. Let’s go a bit deeper in our
understanding of what happens.

What Exactly Goes on Inside
For the sake of simplicity, I am not going to focus on both local storage and ses-
sion storage at the same time. They are very similar, so I am going to flip a coin
and pick…our localStorage object.

CHAPTER 47 STORING DATA USING WEB STORAGE 551

If you take a peek inside this object, you will see a well-oiled machine that is designed
for storing data. It stores data by neatly organizing it into key and value pairs. If you
aren’t familiar with this approach, take a look at the following visualization:

I am storing information about one of my favorite cartoon characters, and the data
I want to store is indexed by an easily identifiable key value. More specifically, you
can see that there are three pieces of data I am storing:

• The firstName key with a value of Bugs

• The lastName key with a value of Bunny

• The location key with a value of Earth

The key serves as the identifier, and the value is the data associated with it. As you
will soon find out, almost all operations you perform using our storage objects will
involve the key, the value, or both!

552 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Web Storage Data Is Tied to Your Domain
We are almost done with the explanation. There is one last detail you need to
know before we start looking at the code. All of the operations you perform with
the Web Storage APIs are tied to whatever domain your code is being run on. This
level of isolation ensures that you don’t accidentally (or deliberately!) modify any
data that third-party sites may have already set in your storage. In other words,
any data I store on kirupa.com is inaccessible to code that may be running on
google.com, and vice versa. If you were hoping to use local or session storage to
persist some data across multiple sites on different domains, you are out of luck!

Getting Your Code On
Now that you have a basic idea of how Web Storage does its thing, let’s look at
the code for doing all sorts of data-y things to it. If you want to follow along, all
you need is an empty HTML page with a <script> tag:

<!DOCTYPE html>

<html>

<head>

 <title>Local Storage</title>

</head>

<body>

 <script>

 </script>

</body>

</html>

There is no user interface (UI) for what we are doing here, so it’s all inspecting the state of
our localStorage or sessionStorage object using the browser developer tools.

Adding Data
If you’ve never done anything with local storage before, let’s start by adding some
data into it. The method you use for adding data lives off of your localStorage

http://onkirupa.com
http://google.com

CHAPTER 47 STORING DATA USING WEB STORAGE 553

object, and it is called setItem. This method (unsurprisingly) takes two arguments
made up of your key and value:

localStorage.setItem("key", "value");

Here is an example of the setItem method in action where I am storing the
details of the (totally sweet!) music I’m listening to right now while writing this:

localStorage.setItem("artist", "Tycho");

localStorage.setItem("album", "Awake");

localStorage.setItem("track", "Apogee");

localStorage.setItem("year", "2014");

With each line, we are pushing data into our localStorage object. At the end of
all this, the data in your localStorage object can be visualized as follows:

554 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

As you can see, the way you add entries is by using setItem and specifying a key
that you haven’t used before. If you specify an existing key, the existing value the
key is pointing to will be overwritten with your new value:

// overwriting some data

localStorage.setItem("track", "Apogee");

localStorage.setItem("track", "L");

Now, here is one more important detail you should know: Your keys and values must
be strings. That’s right. If you want to store a snazzy custom object for retrieval later,
you are completely out of luck under Web Storage. Basically, use string values and rely
heavily on methods like toString() and JSON.string-ify() to ensure you are
storing any complex data in the form of a string you can (hopefully) un-stringify later.

Retrieving Data
To retrieve some data stored in your localStorage object, you use the getItem
method:

let artist = localStorage.getItem("artist");

console.log(artist); // will print out 'Tycho'

The getItem method takes only the key as an argument, and it returns the value
associated with that key. If the key you pass in does not exist, a value of unde-
fined is returned instead. Pretty simple, right?

A SHORTCUT FOR ADDING AND REMOVING…MAYBE?
If for whatever reason you don’t like using the getItem or m setItem methods, you m
can bypass them by using the following notation for setting and retrieving data:

// storing data

localStorage["key"] = value;

// retrieving data

let myData = localStorage["key"];

CHAPTER 47 STORING DATA USING WEB STORAGE 555

This is a notation you may have seen (and possibly even used!) when working
with objects and associative arrays. That same technique can be used with your
localStorage and sessionStorage objects as well. There is no right or wrong
way to access your data, so use whichever approach speaks to your soul.

Now, back to our regularly scheduled programming.

Removing Data
There are two extremes to removing data from your local storage. You can remove
everything scorched-earth style, or you can selectively remove a key and value pair
individually.

Because Scorched Earth is an awesome video game, let’s look at this method first.
To remove everything from your local storage, you can call the clear method on
your localStorage object:

localStorage.clear();

This will remove all traces of any data you may have stored, so use it cautiously if
you have several pages on your site that each write to the localStorage object
independently and rely on data stored there actually being there.

To remove only select key and value entries from localStorage, you can use
removeItem() and pass in the key name associated with the data you wish to
remove:

localStorage.removeItem("year");

In this snippet, the year key and its value will be deleted while leaving all of the
other data intact. This is the safer option if you are working on an app that has
many components that rely on storing data using Web Storage.

556 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Dealing with File Size
For reasons I don’t know, all of the browsers give you have a fixed size of 5MB for
each domain your local storage is tied to. If you try to add more data after you
have exceeded your 5MB quota, a QUOTA_EXCEEDED_ERR exception will be
thrown.

Handling this exception is pretty straightforward by using a try/catch statement:

try {

 localStorage.setItem("key", "some data");

} catch (e) {

 if (e == QUOTA_EXCEEDED_ERR) {

 // do something nice to notify your users

 }

}

This ensures that your code fails nicely while still giving you the option of notify-
ing your users that their data can’t be saved. With all of that said, you really
should never have to do this. Remember, all of the data you store is in the form
of strings. Five megabytes is a lot of text-based data to store. If you need to store s
that much data, Web Storage may not be your best solution.

Detecting Support for Web Storage
Ironically, one of the last things we are going to do is talk about detecting whether
or not someone’s browser supports local storage. According to the Caniuse.com
statistics on local storage (https://caniuse.com/?search=local%20storage), pretty
much everybody (and their mothers) is using a browser that supports it. There is
another, better reason outside of browser support why you want to do this.r

Web Storage, just like cookies, allows websites to leave behind traces of them-
selves on your machine. When users are browsing using a “private” mode like the
kind offered by all your major browsers, the goal is to avoid dealing with these
traces of data. This means that your browser totally supports local and session
storage, but it may have this feature disabled or severely crippled to respect user
privacy. Trying to add some data into your local or session storage will either result
in an error or your data will simply be wiped out the moment you end your brows-
ing session.

http://theCaniuse.com
https://caniuse.com/?search=local%20storage

CHAPTER 47 STORING DATA USING WEB STORAGE 557

For the “private” mode case, it is a good idea to check whether Web Storage is
usable on the user’s browser. The code for doing this check looks like this:

function isLocalStorageSupported() {

 try {

 localStorage.setItem("blah", "blah");

 localStorage.removeItem("blah");

 return true;

 } catch (e) {

 return false;

 }

}

A call to the isLocalStorageSupported function will return a value of d true if local
storage is usable, and if local storage isn’t supported, you will see a value of false.

This code snippet is based entirely on the following Gist, which also outlines
the brief history of local storage feature detection: https://gist.github.com/
paulirish/5558557.

What About Session Storage?
Earlier I stated that we are going to focus on the localStorage object and that
we will focus on the sessionStorage object later. Guess what? Later is here,
so it’s time to shift gears and look at session storage! For the most part, you
use local storage and session storage the same way. Everything you saw for the
localStorage object in the previous sections applies to the sessionStorage
object as well. The way you add, update, and remove items is even unchanged.
The only difference is the syntax where you specify the sessionStorage object
instead of localStorage:

// adding items

sessionStorage.setItem("artist", "Tycho");

sessionStorage.setItem("album", "Awake");

sessionStorage.setItem("track", "Apogee");

sessionStorage.setItem("year", "2014");

// removing item

sessionStorage.removeItem("album");

https://gist.github.com/paulirish/5558557
https://gist.github.com/paulirish/5558557

558 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

As you can see, things are very similar from a code point of view! If they are so
similar, why would the Web Storage API expose both of these objects for you to
use?

As it turns out, the major subtle difference between localStorage and
sessionStorage is persistence. When you store data using local storage, your
data is available across multiple browsing sessions. You can close your browser,
come back later, and any data you had stored will still be accessible by your page.
When you are storing data via session storage, your data is only available for
that browsing session. There is no long-term persistence. You close your browser,
come back a few moments later, and you’ll find that all of the data stored in your
sessionStorage object is gone.

The takeaway is this: If you want to persist some information for just a single
browsing session, you should use session storage. If you want to persist informa-
tion (theoretically) forever, use local storage. For everything else, there is Master-rr
Card. Oh, snap!

THE ABSOLUTE MINIMUM
The Web Storage API addresses a long-running wish by designers and develop-
ers to have client-side storage that is more flexible than cookies and easier to use
than WebSQL or IndexedDB. As you can see, local storage (or session storage) is
fairly easy to use. A handful of setItem and getItem calls is all it really takes to
be up and running.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

 Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

48
I N T H I S C H A P T E R
• Understand the relationship between when a vari-

able is declared, initialized, and used

• Impress your friends with knowledge about the tem-
poral dead zone, a source of many a gnarly error!

VARIABLE AND FUNCTION
HOISTING
One of the quirkiest things about JavaScript is this thing known as hoisting.

We’ll get to what it means in a bit, but let’s set the stage for it by looking

at some examples and figuring out what the right behavior should be. For

our first example, take a look at the following code:

function foo() {

 return "Yay!";

}

console.log(foo());

560 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

What do you think is going to be displayed in our console when this code runs?
Here are three choices:

1. undefined

2. Error—foo isn’t referenced

3. Yay!

If you guessed Yay!, you would be right. There wasn’t anything tricky here, so it
was pretty straightforward. Let’s kick things up a notch and take a look at a slightly
modified version of our earlier code:

console.log(foo());

function foo() {

 return "Yay!";

}

In this case, we are logging the value returned by our foo function before we
actually even defined it. What do you think is going to be displayed in the console
now? Will it be the same as before? Will it be something different? As it turns out,
the answer is the same as before. Our console will print out Yay! as the output.
Hmm….

It’s time for our last example. Take a look at the following code:

console.log(bar);

let bar = 100;

This seems similar to what we’ve seen so far, right? You would expect the value
100 to be printed to the console. The actual answer is a whopping undefined.
What is going on here? By the end of this chapter, you will know all about what’s
happening and the role this hoisting thing plays.

JavaScript and Compiler Behavior
When you are running JavaScript, you have a JavaScript engine that takes the
code you write and turns (that is, compiles) it into the stuff that your computer s
understands and knows what to do with. As part of turning your code into

CHAPTER 48 VARIABLE AND FUNCTION HOISTING 561

something your computer understands, the compiler (aka the thing that does the r
turning) performs a variety of steps. One of these steps has to do with what hap-
pens when our compiler runs into any variable and function declarations. Depend-
ing on whether the declaration is for a variable or a function, the behavior is a little
different. Let’s look at each case separately.

Variable Declarations
Whenever our compiler encounters a block of JavaScript, the first thing it does is
scan the entire block for any variable or function declarations. Take a look at an
example from earlier:

console.log(bar);

let bar = 100;

Our compiler looks at both of these lines, but before anything gets executed, it
hones in on the variable declaration where we declare the bar variable:

console.log(bar);

let bar = 100;

At this point, what it does is promote the variable declaration to the beginning of
the scope it is looking at. From the compiler’s point of view, our code will look a
bit like this:

let bar;

console.log(bar);

bar = 100;

This promotion of the declared variable is known as variable hoisting. The impor-rr
tant thing to note is that only the declaration is hoisted. The initialization where
we set bar’s value to 100 remains in the exact same spot. That explains what
was going on with our example earlier and why we were printing an undefined.
Because of hoisting, the bar variable exists when we try to log it. Because the
variable isn’t initialized at this point, what gets logged is a value of undefined.

562 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Function Declarations
The behavior you saw with variable declarations is similar for functions as well. The
major difference is that the entire function is hoisted—not an empty shell of it.
Let’s revisit our earlier example:

console.log(foo());

function foo() {

 return "Yay!";

}

When our compiler scans this block of code, it hoists the foo function to the top.
This is known as function hoisting. What you have is something that ends up
looking like this:

function foo() {

 return "Yay!";

}

console.log(foo());

That is why the output for this example is Yay!, just as it would be if we wrote our
code with the function definition specified before we try to call it. Pretty simple,
right?

Some Hoisting Quirks
We are almost done here. Just because we understand how hoisting works doesn’t
mean there aren’t some exceptions to what we’ve seen.

Function Expressions Need Not Apply
First, hoisting doesn’t apply to function expressions. Look at the following
example:

console.log(foo());

let foo = function() {

CHAPTER 48 VARIABLE AND FUNCTION HOISTING 563

 return "Yay!";

}

The output isn’t going to be Yay! like we saw with plain-old functions earlier. It is
going to be a TypeError: foo is not a function.

The Temporal Dead Zone
There are cases where hoisting applies but the value is never initialized to some-
thing like undefined as we’ve seen with var. Those cases occur when you are
working with let, const, and class. Take a look at the following block of code:

console.log(answer) // ReferenceError

let answer = "Correct";

console.log(ROLE) // ReferenceError

const ROLE = "user";

let foo = new AwesomeSauce(); // ReferenceError

class AwesomeSauce {

 constructor() {

 console.log("I exist!");

 }

}

In all these cases, we would expect the variable or class to exist but simply not
be initialized. However, that isn’t the case. What you get with each example is a
ReferenceError. It doesn’t mean that using classes or variables defined using let
or const don’t get hoisted. They certainly do! The difference is that they remain
uninitialized. This time between them getting declared and initialized has a pretty
awesome name—the temporal dead zone.

564 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

THE ABSOLUTE MINIMUM
For the longest time, we’ve been told to declare our variables and functions
first before initializing them. We’ve also been told to only use a variable or func-
tion after it has been initialized. None of that guidance changes. Just because
JavaScript has a behavior around hoisting declarations to the top of the current
scope doesn’t mean we should make our code more difficult to read by relying on
it. Think of hoisting as a warning for you to fix your code. It isn’t intended to be
something you look forward to using.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

49
I N T H I S C H A P T E R
• Learn all about the Set data structure

• Understand how to use sets to avoid duplicate items
in the collection

WORKING WITH SETS
When it comes to storing a collection of data, arrays probably come to

mind first. They’ve been around forever, are very flexible, and contain a

boatload of properties that make using them a breeze. Over the past few

years, JavaScript gained another way to store a collection of data. That way

is via this mysterious array-looking creature known as a set. On the surface,

arrays and sets look similar:

566 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

But there are a bunch of characteristics that make them different. The biggest
characteristic is whether or not duplicate values are allowed to be stored. With a
set, we can only store unique items. This means we can use a set to store what-
ever we want (like an array), but we can store that item only once (unlike an array).
If we try to add a duplicate of an item that is already a part of our set, that item is
ignored and not added to our collection. Nifty, right?

In the following sections, we’ll go into more detail on what sets are and how to
use them like a professional ninja!

Creating a Set, Part I
Before we can use a set, we first need to create it. There isn’t a whole lot of drama
here. The only way we can create a set is by calling on the Set constructor:

let mySet = new Set();

When this code runs, we will have created an empty Set object called mySet:

Now, you may be wondering if there are other, cleverer ways to create sets out-
side of typing in a new Set() like an animal. The answer is nope.

CHAPTER 49 WORKING WITH SETS 567

Adding Items to a Set
Once we have a set, we can add items to it by using the add method:

let mySet = new Set();

mySet.add("blarg");

mySet.add(10);

mySet.add(true);

Now, here is where the uniqueness enforcement superpowers of sets come intos
play. Right now, our set contains the text value blarg, the number 10, and the
boolean true. If we try to add a new item that already exists in our set, nothing
new will get added. Take a look at the following highlighted line:

let mySet = new Set();

mySet.add("blarg");

mySet.add(10);

mySet.add(true);

mySet.add("blarg") // rut-roh

We are trying to add the text blarg one more time to our set. The blarg item
already exists, so our set won’t add this duplicated item.

Reacting to duplicate elements without making a fuss is one of Set’s strongest
differentiators compared to other data structures like arrays. When our set encoun-
ters a duplicate item, it just ignores it, and the rest of our code executes as if noth-
ing out of the ordinary happened.

How Checking for Duplicates Works
For every item we add, our Set object has a really fast way of checking whether
the item we are adding is equal to another item already in the set. The way our
Set will check for equality with another item is by using the strict equality (===)
approach. This is an important detail to call out, because it may be the source
of some frustration if we aren’t careful. By relying on ===, our set is checking for
equality of primitive values and object references. The primitive value part is

568 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

what we have been seeing so far in our code, where we added some text, a num-
ber, and a boolean. Something like the following doesn’t have any surprises:

let sayWhat = new Set();

sayWhat.add("Lobby!");

sayWhat.add("Lobby!");

sayWhat.add("Lobby!");

sayWhat.add("Lobby!");

sayWhat.add("Lobby!");

sayWhat.add("Lobby!");

sayWhat.add("Lobby!");

sayWhat.add("Lobby!");

sayWhat.add("Lobby!");

console.log(sayWhat); // Lobby!

Now, here is where things get a little bit interesting. Take a look at the following
example:

let anotherSet = new Set();

anotherSet.add(true);

anotherSet.add("abc");

anotherSet.add([1, 2]);

anotherSet.add([1, 2]);

What do you think the contents of our anotherSet object will be? The answer
is true, “abc”, [1, 2], and [1, 2]. The part that might seem trippy is the two [1,
2] arrays that we are adding. To us human beings, both of those arrays seem the
same. They are representing what looks to be identical things. To the === check
that our set performs, those two arrays are distinct. What our set will declare as
equal are object references that refer to the same thing. The following snippets
highlights this:

let myArray = [1, 2];

let anotherSet = new Set();

CHAPTER 49 WORKING WITH SETS 569

anotherSet.add(true);

anotherSet.add("abc");

anotherSet.add(myArray);

anotherSet.add(myArray);

In this case, we have our myArray object that stores our array values of 1 and 2.
It is this object we are now adding twice to our set, and since we are adding two
myArray object references, the === operator will say that they are both the same.
The end result will be that our array will end up getting represented inside our set
just once. The contents of anotherSet in this situation will be true, “abc”, and
[1, 2].

Creating a Set, Part 2
Earlier, we saw how to create an empty set that we then added items to. There is
another way we can create sets. It still involves the new keyword, but we can pass
in an existing collection of data when creating our set to pre-populate it:

let someValues = ["a", "b", "c", 10, "a", "c", false];

let newSet = new Set(someValues);

console.log(newSet); // "a", "b", "c", 10, false

In this snippet, we have our someValues array that contains a handful of items,
and some of the items like a and c are duplicated. When creating our newSet
object, we still use the new Set() expression, but we pass in the someValues
array to our Set constructor. When our set gets created this time, it isn’t empty. It
contains the unique values from the items we passed in when creating our set. Our s
duplicate items get filtered out.

This might bring up another question: What sorts of item collections can we pass
in to the Set constructor when creating a set? The answer is any iterable object,
which means any object that provides a way for us to cycle through all of its val-
ues. An array is one example of such an object. Text (Strings), TypedArray, Map,
other Set objects, NodeList, and a handful more fall into the iterable object
bucket. There are few really technical things an object must also satisfy to be con-
sidered iterable, and you can read more about that in this excellent MDN article
on this subject: https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Iteration_protocols#the_iterable_protocol.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#the_iterable_protocol
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols#the_iterable_protocol

570 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Before we wrap up this section, take a look at the following code, where we pass
in a string (aka an iterable object!) as part of creating our set:

let textSet = new Set("diplodocus");

console.log(textSet); // d, i, p, l, o, c, u, s

We pass in the word diplodocus, and what gets stored by our set are the unique
characters from it. Notice that each letter ends up becoming an individual entry in
our set. Whenever an iterable object is passed in, each individual value from that
object is evaluated for uniqueness and added to our set if that value is indeed
unique.

VERY RELEVANT TIP
Did you know that a Diplodocus is the longest type of dinosaur we’ve discovered
so far? Yeah, share that in your next standup routine!

Checking the Size of Our Set
To figure out how many items live inside our set, we have access to the handy
size property:

let setCount = new Set();

console.log(setCount.size); // 0

setCount.add("foo");

console.log(setCount.size); // 1

setCount.add("bar");

CHAPTER 49 WORKING WITH SETS 571

setCount.add("zorb");

console.log(setCount.size); // 3

The value returned by the size property gets updated each time we add or
remove (see next section) items from our set.

Deleting Items from a Set
To delete or remove an item from a set, we can use the appropriately named
delete method and pass in the value of the item we are looking to remove:

var robotSounds = new Set(["beep", "boop", "who dis?"]);

robotSounds.delete("who dis?");

console.log(robotSounds) // "beep", "boop"

When you delete an item, the deleted item is both removed from the set and a
value of true is returned:

let robotSounds = new Set(["beep", "boop", "who dis?"]);

if (robotSounds.delete("who dis?")) {

 console.log("Item successfully deleted!");

}

console.log(robotSounds) // "beep", "boop"

If we attempt to delete an item that doesn’t exist, our set remains unchanged and
false is returned by our delete method instead.

While deleting items individually is handy, there may be times when we just want
to fully empty all items from our set. We can do that by using the clear method:

let vegetables = new Set([" "," ", " ", " ", " "]);

console.log(vegetables.size); // 5

572 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

vegetables.clear();

console.log(vegetables.size); // 0

Another way to clear all the items from the set is by doing a new Set() to re-cre-
ate our Set object. It turns out that it isn’t actually faster, so we should just stick
with the clear method for efficiently emptying all items from our set.

Checking If an Item Exists
Not only is a set really fast at checking for duplicates, it is also really fast at check-
ing if an item exists in its collection in the first place. To check whether an item
exists, we can use the has method:

let ingredients = new Set(["milk", "eggs", "cheese", "tofu"]);

if (ingredients.has("tofu")) {

 ingredients.delete("tofu");

 ingredients.add("bacon");

}

console.log(ingredients); // "milk", "eggs", "cheese", "bacon"

The has method takes the item we want to check for as its argument. If the item is
found, it returns a true. If the item doesn’t exist in the collection, it returns a false.
The way the check works, as we saw earlier as part of identifying duplicates, is by
testing for strict equality (===).

Looping Through Items in a Set
There will be times when we’ll need to loop through the items in a set. We can do
this by using the for…of looping pattern. Take a look at the following example:

let textSet = new Set("diplodocus");

for (let letter of textSet) {

 console.log(letter);

}

CHAPTER 49 WORKING WITH SETS 573

This for loop will run until every item in the set has been reached. The order in
which the items from our set will be accessed is the same as the order they were
added to the set in the first place. Unlike arrays, sets don’t have any concept of
index positions that we can loop through. We have to use this for…of approach.

Entries, Keys, and Values
Under the covers, sets store items in the form of key and value pairs. This is some-
thing that makes the most sense when visualized. Let’s say we have the following
code:

let animaniacs = new Set(["Yakko", "Wakko", "Dot"]);

Inside our animaniacs set, the items Yakko, Wakko, and Dot will look a bit like
the following:

Think of the internals of our set being like a database or a spreadsheet with two
columns. One column is labeled Key. Another column is labeled Value. Each row
represents the item we are trying to store. The thing that makes sets a bit interest-
ing when compared to other key/value storage arrangements (like a hashtable,
for example) is that both keys and values store the same data. That is why in our
example, Yakko, Wakko, and Dot appear in both key column as well as the value
column. All of this is a bit strange, but, as the kids say these days, whatevs!

574 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

The reason why we spent this time looking at this key and value malarkey is that
the Set object provides us with a handful of methods that return all the keys, val-
ues, and actual key/value pairs (called entries) that make up a set. Take a look at
the following snippet:

let animaniacs = new Set(["Yakko", "Wakko", "Dot"]);

console.log(animaniacs.keys());

console.log(animaniacs.values());

console.log(animaniacs.entries());

The names of these methods should help clarify what type of data they will return.
The keys method returns all the keys, the values method returns all of the
values, and the entries method returns the key/value pair for each item in our
set. The way the data is returned is not in the form of something like an array or
generic object. The data is returned in the form of an Iterator object. This means
the way you can access the items is by using the similar for…of approach we saw
earlier:

for (let item of animaniacs.keys()) {

 console.log(item); // "Yakko", "Wakko", "Dot"

}

Iterators are really neat and provide a lot of cool functionality for iterating to
items, so take a look at the following article on iterators and genera-
tors: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/
Iterators_and_Generators.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Iterators_and_Generators

CHAPTER 49 WORKING WITH SETS 575

THE ABSOLUTE MINIMUM
If you read through every section, you learned almost everything there is to know
about the Set object and the various properties and methods you’ll likely end up
using. What makes sets really useful is their lightning-fast way of detecting dupli-
cate items and ensuring only unique values are stored by them. You’ll find yourself
relying on sets more and more for a variety of simple and not-so-simple data-
related tasks.

? Ask a question: https://forum.kirupa.com

Practice by building real apps: https://bit.ly/coding_exercises

Errors/known issues: https://bit.ly/javascript_errata

https://forum.kirupa.com
https://bit.ly/coding_exercises
https://bit.ly/javascript_errata

This page intentionally left blank

50
I N T H I S C H A P T E R
• Pat ourselves on the back for a job well done

• Pat ourselves on the back one more time, just
for kicks

CONCLUSION
Well, now you’ve done it! You just couldn’t stop binge reading and now

you are nearing the end. How does it feel knowing that you won’t have any

more new content to look forward to until the next season?

578 JAVASCRIPT ABSOLUTE BEGINNER’S GUIDE

Anyway, if you’ve been following along from the very beginning, you’ll agree that
we covered a lot of ground. We started with this:

<script>

console.log("hello, world!");

</script>

We ended up with examples and snippets that had many more lines of more com-
plex, useful, and far cooler code.

The thing you should remember is that writing code is easy. Writing elegant code t
that actually solves a problem is hard. This was best captured by one of my favor-rr
ite lines from Scarface where Tony Montana delivered the following line (exact
wording may be off a bit…it’s hard to understand him sometimes, as you know if
you’ve seen the film):

This book is all about the basics. The way you go from the basics to the next step
is by continuing to write code, trying out new things, and learning more along the
way. This book described all the various tools and provided short examples of how
they fit together to help you build small things. It’s up to you to take this knowl-
edge and apply it toward building all the cooler non-small things you often see

CHAPTER 50 CONCLUSION 579

associated with JavaScript. If you are feeling up for it, take a look at some of the
more involved tutorials and examples under “Coding Exercises” on https://www.
kirupa.com.

So with that, see you later. Feel free to drop me a line at kirupa@kirupa.com or
find me on Facebook and Twitter (@kirupa). Like I mentioned in the introduction, I
enjoy hearing from readers such as you, so don’t be shy about contacting me.
If you have any questions (big or small), take a moment and post them on
https://forum.kirupa.com.

Also, I know you have a lot of choices in books for learning JavaScript. Thank
you for choosing this book and allowing me to live vicariously through your code
editor.

Cheers,

https://www.kirupa.com
https://www.kirupa.com
mailto:atkirupa@kirupa.com
https://forum.kirupa.com

This page intentionally left blank

Glossary

A very casual look at the various terms you will
encounter in this book and beyond.

A
Arguments The values you provide (or pass in)
to a function.

Array A data structure that allows you to store
and access a sequence of values.

B
Boolean A data structure that represents true
or false.

C
Cascading Style Sheets (CSS) A styling
language used primarily for changing how the
content in your HTML page looks.

Closure An inner function that has access to an
outer function’s variables (in addition to its own
and any global variables).

Comments Human readable text (often
separated by // or /* and */ characters)
in your code that is completely ignored by
JavaScript.

D
Developer Tools In the context of browsers,
they are extensions that help you inspect,
debug, and diagnose what is going on inside
your web page.

Do…While Loop A control statement that
executes some code until a condition you
specify returns false. (This is great if you don’t
know how many times you want to loop!)

Document Object Model (DOM) The
JavaScript representation (often in a tree-like
structure) of your HTML page and all the things
inside it.

E
Event A signal that travels through your DOM
to indicate something has happened.

Event Bubbling The phase where an event
starts at the element that initiated the event and
climbs the DOM back to the root.

Event Capturing The phase where an event
starts at the root and traverses down the DOM
until it reaches the element that initiated the
event.

Event Listener A function that listens for an
event and then executes some code when that
event is overheard.

Event Target The element that is responsible
for having initiated (aka fired) an event.

F
For Loop A control statement that executes
some code a finite number of times.

Function A reusable block of code that takes
arguments, groups statements together, and
can be called on to execute the code contained
inside it.

582 GLOBAL SCOPE

O
Object A very flexible and ubiquitous data
structure you can use to store properties and
their values and…even other objects.

Operators A built-in function such as your
friendly +, -, *, /, for, while, if, do, =,
etc. words.

P
Primitives A basic type that isn’t composed of
other types.

R
Return A keyword that exits a function or block.
In the case of functions, it is often used to return
some data back to whatever called the function.

S
Scope A term indicating the visibility of
something. In the real world, it is also a brand of
mouthwash.

Strict Equality (===) Comparison Checks
whether the value and type of two things are
equal.

Strict Inequality (!==) Comparison Checks
whether the value and type of two things are not
equal.

String A sequence of characters that make up
what we think of as text. It is also the name of a
formal type for dealing with text in JavaScript.

Switch Statement A conditional statement that
checks a particular condition against a list of
cases. If one of the cases matches the condition,
the code associated with that case executes.

G
Global Scope Something declared outside of a
function that is accessible to the entire app.

I
If Statement A conditional statement that
executes some code if the condition is true.

If/Else Statement A conditional statement that
executes different pieces of code depending on
whether a condition is true or false.

IIFE (Immediately Invoked Function
Expression) A way of writing JavaScript that
allows you to execute some code in its own
scope without leaving behind any trace of its
existence.

Invoke A fancy way of saying the same thing as
calling a function.

J
JavaScript A fussy and (often) inconsistent
scripting language that, to everyone’s surprise
over the years, has grown to be quite popular
for building apps on the web and the server.rr

L
Local Scope Something that is accessible only
to the enclosing function or block.

Loop A control statement that allows you to
execute code repeatedly.

N
Node A generic name for an item in the DOM.

WHILE LOOP 583

W
Weak Equality (==) Comparison Checks only
whether the value of two things is equal.

Weak Inequality (!=) Comparison Checks only
whether the value of two things is unequal.

Web Browser A complex application that, at
its bare minimum, helps you browse the Internet
and display web pages.

While Loop A control statement that continually
executes some code until a condition you
specify returns false.

T
Timer Functions Functions that execute code
at a periodic interval. The most common timer
functions are setTimeOut, setInterval, and
requestAnimationFrame.

Type A classification that helps identify your
data and the values you can use.

V
Values The formal name for the various types of
data you’ll encounter.rr

Variable Scope The term for describing the
visibility of a variable in a section of code.

Variables A named bucket for storing
some data.

This page intentionally left blank

Ajax (Asynchronous JavaScript
and XML), HTTP requests,
512–513

alert function, 124
altKey property, keyboard yy

events, 460
animation, requestAnimation

Frame function, 83–84
arguments

arrow functions, 261, 263
curly brackets ({ }), 261–262
events, 426–427
functions, creating in, 30–34
mismatched number of, 34
parentheses (()), 261

arrays, 153–154
adding items, 149–150
callback functions, 156, 159
creating, 146–147
destructuring, 541–542, 546

commas (,), 542–543
declarations, 543–544
destructuring arrays,

543–544
variables, 543

filtering items, 156–157
finding items, 152
JSON objects, 296–297
mapping items, 154–156
merging, 152–153
objects, 143, 180
reducing item values,

157–159
removing items, 151–152
values, accessing, 147–148

arrow functions, 259, 263, 274
defined, 260
lexical scope, 273

A
absolute values, 196
accessing

array values, 147–148
child elements, DOM, 359
HTML element attributes,

328–330
individual characters in

strings, 163–165
webcams, 529–530

adding code, 532–535
constraints, 532–536
examining code, 535–537
example of, 530–531
overview, 531–532
stopping streams, 537

accessor properties, 202–204
addEventListener function, 420,

422
capturing events, 422
event handler, 421
event names, 421
sources, 420

adding
classes, 340–342
data to Web Storage,

552–555
elements, DOM

DocumentFragment
objects, 391–395

general approach,
383–388

innerHTML, 388–390
items to

arrays, 149–150
sets, 567

properties, to objects,
213–217

values in classes, 342

Symbolsy
&& operators, 44
* (multiplication) operators,

187–188
/ (division) operators, 187–188
‘ (backtick) character, string r

interpolation (template
literals), 175–177

, (commas), destructuring
arrays, 542–543

{ } (curly brackets), arguments,
261–262

== (equality) operators, 44,
281–282, 286

=== operators
null primitives, 284
undefined primitives,

285–286
!= (inequality) operators, 44,

281–282, 286
- (minus sign) operator, 186, r

187–188
() (parentheses), arguments,

261
% (percentage) operators,

187–188
|| operators, 44
+ operators, 162, 165–166,

175, 187–188
‘ (single quotation mark),

strings, 162, 163
“ (double quotation marks),

strings, 162, 163
> operators, 44
>= operators, 44
< operators, 44
<= operators, 44

Index

586 ARROW KEYS, KEYBOARD EVENTS

children, DOM, 355–356,
357–358

accessing elements of, 359
checking existence of,

357–358
null properties, 357–358

choosing event phases,
436–437

Chrome developer tools
(Google), 398

Console
debugging JavaScript,

405–412
logging messages,

414–415
variable scope, 413–414

debugging JavaScript,
405–412

displaying, 398–400
DOM inspections, 400–405
object inspections, 412–413
View Source command,

402–405
classes, 231–232

adding/removing, 340–342
components of, 236–239
constructors, 234–236
functions, appearance of,

239
inside of, 236–239
objects, creating, 232–234
objects, extending, 240–244,

247–248
controversy, 255–257
functionality, 256
future of, 256
online resources, 257
prototype inheritance,

249–253
subclasses, 247–248

subclasses, extending
objects, 247–248

syntax, 236–239
values

adding/removing,
340–342

checking existence of
class values, 343

online resources, 343
toggling, 342–343

overview, 531–532
stopping streams, 537

bubbling events, 435–436,
437–438

built-in objects, extending,
247–248

controversy, 255–257
functionality, 256
future of, 256
online resources, 257
prototype inheritance,

249–253
subclasses, 247–248

buttons
id values, 130–131
mouse events, 453–454

C
callback functions, 156, 159
calling functions, 26, 29–30
cameras (web), accessing,

529–530
adding code, 532–535
constraints, 532–536
examining code, 535–537
example of, 530–531
overview, 531–532
stopping streams, 537

capturing events, 422,
434–435, 437–438

cascading rules, CSS, 347
changing

text values in DOM
elements, 326–328

variable values, 20
CharCode property, keyboard yy

events, 460–462
checking

for duplicates in sets,
567–569

existence of
children, DOM, 357–358
class values, 343

items in sets, 572
size of sets, 570–571

arrow keys, keyboard events,
462

assignments, destructuring
arrays, 543–544

async script element, 477
author’s website, 579’

B
backtick (‘) character, string r

interpolation (template
literals), 175–177

backwards in loops, going, 66
best practices, comments,

76–77
bind method, 274–275
block scoping, 89–92
Boolean functions, 278–280
Boolean logic, 47
Boolean objects, 143, 180,

277–278
Boolean values, JSON objects,

295
bracket notation, object

properties, 214–215
breaking loops, 65
browsers

developer tools, 397
debugging JavaScript,

405–412
displaying, 398–400
DOM inspection,

400–405
logging messages,

414–415
object inspection,

412–413
variable scope, 413–414
View Source command,

402–405
mouse positioning, 452–453
webcam access, 529–530

adding code, 532–535
constraints, 532–536
examining code, 535–537
example of, 530–531

587DATASET PROPERTY, CUSTOM HTML ELEMENT ATTRIBUTES

setting styles directly,
339–340

contextmenu events, 450–451
CSS (Cascading Style Sheets),

2–3
cascading rules, 347
custom properties/variables

defined, 346–348
setting complex values,

348–351
updating, 349

emojis, 506–507
selector syntax, 318–319
styling web pages, 306–307

ctrlKey property, keyboard yy
events, 460

curly brackets ({ }), arguments,
261–262

custom HTML element
attributes, 330–334

custom objects, creating,
222–226

custom properties/variables,
CSS

defined, 346–348
setting complex values,

348–351
updating, 349

D
data properties, 201–204
data storage, Web Storage,

550
adding data, 552–555
coding, 552
domains, 552
file sizes, 556
operation of, 550–551
removing data, 555
retrieving data, 554–555
session storage, 557–558
support, 556–557

data-* attributes, HTML,
333–334

dataset property, custom HTML yy
element attributes, 332–333

variables, 173–174
interpolation (template

literals), 175–177
plus sign (+) operators,

175
conditional operators, 43–46
conditional statements, 39–40

if statements, 40–43, 46–47
if/else statements, 40–43

complex expressions,
46–47

switch statement
similarities, 53–55

using, 55–56
if/else-if/else statements,

47–48
if-only statements, 47
switch statements, 49–53

if/else statement
similarities, 53–55

using, 55–56
true/false evaluations,

42–43, 46–48, 53–54, 56
conditions, for loops, 63
configuring buttons, mouse

events, 453–454
Console, 124–125, 127–128

debugging JavaScript,
411–412

displaying, 126, 412
logging, 128

displaying warnings/
errors, 131–134

id values of buttons,
130–131

log method, 128–130
messages, 414–415
variable scope, 413–414

const Keyword, 20
constants, math objects,

192–193
constraints, 532–536
constructors, 234–236
content, styling, 337–339

classes
adding/removing,

340–342
toggling values, 342–343

click events, 421, 444–445, 446
cloning elements, DOM,

374–378
closures, 95–100
codepoints, emojis, 505–508
coding

duplicate code, 118–120
emojis, 174
location/placement of code,

109–112
HTML documents,

113–114
in separate files, 114–116

in multiple documents,
118–120

in a single document, 120
combining (concatenating)

strings, 162, 165–166,
173–174

interpolation (template
literals), 175–177

plus sign (+) operators,
175

variables, 173–174
interpolation (template

literals), 175–177
plus sign (+) operators,

175
commas (,), destructuring

arrays, 542–543
comments

best practices, 76–77
defined, 72–73
JSDoc-style comments, 75
multiline comments, 74–75
single-line comments, 73–74
whitespace, 76–77

compilers, behavior of,
560–561

complex expressions, if/else
statements, 46–47

concatenating (combining)
strings, 162, 165–166,

173–174
interpolation (template

literals), 175–177
plus sign (+) operators,

175

588 DATE OBJECTS

modifying, 324–326
as objects, 322–324
removing, 372–373,

395–396
finding elements in, 316

CSS selector syntax,
318–319

querySelector function,
317

querySelectorAll function,
317–318

hierarchy of, 353–356
inspecting, 400–405
navigating, 354–356
nodes, 309–311
parents, 355–357
querySelector function, 317
querySelectorAll function,

317–318
scripts, locating, 473–476
siblings, 355–357
subtrees, emptying, 395–396
window objects, 311

domains, Web Storage, 552
DOMContentLoaded events,

421, 471–473
DOMMouseScroll events, 421,

454–455
dot notation, object properties,

214
double quotation marks (“),

strings, 162, 163
do.while loops, 68–69
down/up, events, 430–434
duplicate code, 118–120
duplicates, checking for in sets,

567–569
dynamically loading scripts,

482–486
running dependent code,

488–489
running scripts, 486–488

E
element attributes, HTML

accessing, 328–330
custom attributes, 330–334

displaying
Console, 412
console, 126
developer tools, 398–400
errors, 131–134
warnings, 131–134

division (/) operators, 187–188
document objects, 312–313
DocumentFragment objects,

adding DOM elements,
391–395

documents
coding in

multiple documents,
118–120

a single document, 120
HTML documents, loca-

tion/placement of code,
113–114

document.write function, 59
DOM (Document Object

Model), 309, 360, 364
children, 355–356, 357–358

accessing elements of,
359

checking existence of,
357–358

null properties, 357–358
document objects, 312–313
elements

adding large amounts
of elements,
DocumentFragment
objects, 391–395

adding large amounts
of elements, general
approach, 383–388

adding large amounts of
elements, innerHTML,
388–390

changing text values,
326–328

cloning, 374–378
creating, 364–370
emptying subtrees,

395–396
events for multiple

elements, 492–498
inserting, 368–372

date objects, 143, 180
dblclick events, 421, 445–446
dead zones, hoisting, 563
debugging JavaScript

Console, 411–412
developer tools, 405–412

declarations, destructuring
arrays, 543–544

declaring
numbers, 186–187
variables, 16, 19–20

hoisting, 561
using variables without

declaring, 88–89
decrementing

for loops, 66
variables, 188–189

defer sync element, 477–478
defining web page structures

with HTML, 304–306
delays, setTimeout function,

80–81
deleting items from sets,

571–572
destructuring, 539–541

arrays, 541–542, 546
commas (,), 542–543
declarations, 543–544
destructuring arrays,

543–544
variables, 543

objects, 544–547
developer tools, 397

Console
debugging JavaScript,

405–412
logging messages,

414–415
variable scope, 413–414

debugging JavaScript,
405–412

displaying, 398–400
inspecting

DOM, 400–405
objects, 412–413

View Source command,
402–405

589FALSE EVALUATIONS, CONDITIONAL STATEMENTS

mouseout events, 421,
446–447

mouseover events, 421,
446–447

mouseup events,
448–449

mousewheel events, 421,
454–455

for multiple elements,
492–498

phases of, 434–437
choosing, 436–437
not specifying, 437

preventDefault function,
440–441

reacting to, 422–423
removing event listeners,

427
scroll events, 421
stopping, 438–441
stopPropagation function,

438–440
types of, 426–427

existence of items in sets,
checking, 572

exiting functions early, 36yy
expressions

complex expressions, if/else
statements, 46–47

defined, 14
evaluation order, 187–188
functions, 36–38, 562–563
hoisting, 562–563

extending objects, 240–244,
247–248

controversy, 255–257
functionality, 256
future of, 256
online resources, 257
prototype inheritance,

249–253
subclasses, 247–248

F
false evaluations, conditional

statements, 42–43, 46–48,
53–54, 56

bubbling events, 435–436,
437–438

capturing, 422, 434–435,
437–438

contextmenu events,
450–451

defined, 418–419
DOMContentLoaded events,

421, 471–473
event handler, 421
example of, 423–425
going up/down, 430–434
HTTP requests, 523
interrupting, 438–441
JavaScript, 420
keyboard events, 458

arrow keys, 462
keydown events, 421,

458
keypress events, 458–459
keyup events, 421, 458
multiple key presses,

462–466
particular key presses,

461–462
properties, 460–466

listening for, 420–422, 427,
437

load events, 421
mouse events, 444

browser positioning,
452–453

button configurations,
453–454

click events, 421,
444–445, 446

contextmenu events,
450–451

dblclick events, 421,
445–446

DOMMouseScroll events,
421, 454–455

global mouse position,
451–452

mousedown events,
448–449

mouseenter events, 447
mouseleave events, 447
mousemove events, 421,

449

data-* attributes, 333–334
reading, 329
removing, 330
setting, 329–330
values, 328

elements, DOM
adding large amounts of

elements
DocumentFragment

objects, 391–395
general approach,

383–388
innerHTML, 388–390

changing text values,
326–328

cloning, 374–378
creating, 364–370
emptying subtrees, 395–396
events for multiple elements,

492–498
inserting, 368–372
modifying, 324–326
as objects, 322–324
removing, 372–373,

395–396
emojis

codepoints, specifying,
505–508

in coding, 174
CSS, 506–507
defined, 501–503
direct usage of, 504–505
HTML, 503–506
JavaScript, 507

emptying subtrees, DOM,
395–396

entries, sets, 574
equality (==) operators, 44,

281–282, 286
errors, displaying, 131–134
events

addEventListener function,
420, 422

capturing events, 422
event handler, 421
event names, 421
sources, 420

arguments, 426–427

590 FALSE/TRUE VALUES

simple functions, 26–30
stopPropagation function,

438–440
trigonometric functions,

194.0345
within functions, 96–100

G
getters/setters, 205–206

logging activity, 206–207
property values validation,

207–208
shout generators, 206

global mouse position, mouse
events, 451–452

global scope, 86–88
Google Chrome developer

tools, 398
Console

debugging JavaScript,
405–412

logging messages,
414–415

variable scope, 413–414
debugging JavaScript,

405–412
displaying, 398–400
DOM inspections, 400–405
object inspections, 412–413
View Source command,

402–405

H
handling events, 421
“hello world” example, 9,

13–14, 15–16
functions, 13, 25, 26–27

arguments, 30–34
calling, 29–30
returning data, 35–38
simple functions, 26–30

HTML document, 9–12
statements, 12
strings, 13
variables, 16–18, 24–25

changing values, 20

event names, 421
sources, 420

alert function, 124
appearance in classes, 239
arguments, creating

functions with, 30–34
arrow functions, 259, 263,

274
defined, 260
lexical scope, 273

bind method, 274–275
Boolean functions, 278–280
callback functions, 156, 159
calling, 26, 29–30
classes, appearance of

functions, 239
closures, 95–100
declaring, hoisting, 562
defined, 13, 26
document.write function, 59
expressions, 36–38, 562–563
“hello world” example,

13, 25
calling functions, 29–30
functions with arguments,

30–34
returning data, 35–38
simple functions, 26–30

hoisting
declaring functions, 562
expressions, 562–563

IIFE, 37–38
inner functions, functions

that aren’t self-contained,
100–106

preventDefault function,
440–441

querySelector function, 317
querySelectorAll function,

317–318
requestAnimation Frame

function, 83–84
returning data, 35

exiting early, 36
expressions, 35
return keyword, 35–36

self-contained, functions that
aren’t, 100–106

setInterval function, 81–83
setTimeout function, 80–81

false/true values
Boolean functions, 278–280
Boolean objects, 277–278
equality (==) operators,

281–282
inequality (!=) operators,

281–282
fetch API, HTTP requests,

514–520
files

JavaScript files, referencing,
115–116

sizes, Web Storage, 556
filling loops

incompletely, 66–67
without numbers, 66

filtering array items, 156–157
finding

elements in DOM, 316
CSS selector syntax,

318–319
querySelector function,

317
querySelectorAll function,

317–318
items in arrays, 152
scripts in DOM, 473–476
something inside strings,

169–171
for loops, 59–62, 64

backwards, going, 66
breaking, 65
conditions, 63
decrementing, 66
examples of, 65–67
filling

incompletely, 66–67
without numbers, 66

skipping iterations, 65–66
starting points, 62
steps, 62

function objects, 143, 180
functional programming, 160
functions

addEventListener function,
420, 422

capturing events, 422
event handler, 421

JSON (JAVASCRIPT OBJECT NOTATION)

Infinity values, 190
inheritance, prototype, 229,

249–253
initializing variables, 16, 19–20
inner functions, functions that

aren’t self-contained, 100–106
innerHTML, adding DOM

elements, 388–390
inserting elements, DOM,

368–372
inspecting

DOM, 400–405
objects, 412–413

interpolation (template literals),
strings, 175–177

interrupting events, 438–441
intervals, setInterval function,

81–83
iterations (loops), skipping,

65–66
iterators, keys, 574

J
JavaScript

appearance of, 8–9
debugging

Console, 411–412
developer tools, 405–412

defined, 7–8
emojis, 507
events, 420
expression evaluation order,

187–188
flexibility of, 7
popularity of, 7–8
predefined objects, 142–144
referencing files, 115–116
types

overview, 139–141
pizza example, 136–139

variables, processing, 93–94
JSDoc-style comments, 75
JSON (JavaScript Object

Notation)
arrays, 296–297

processing requests,
523–527

running asynchronously,
523

sending requests,
522–523

I
id values of buttons, 130–131
if statements, 40–43, 46–47
if/else statements, 40–43

complex expressions, 46–47
switch statement similarities,

53–55
using, 55–56

if/else-if/else statements, 47–48
if-only statements, 47
IIFE (Immediately Invoked

Function Expressions), 37–38
in-browser developer tools, 397

Console
debugging JavaScript,

405–412
logging messages,

414–415
variable scope, 413–414

debugging JavaScript,
405–412

displaying, 398–400
inspecting

DOM, 400–405
objects, 412–413

View Source command,
402–405

incompletely filling loops,
66–67

incrementing/decrementing
variables, 188–189

indexing, strings, 169–171
indexOf method, strings,

169–170
individual characters, accessing

in strings, 163–165
inequality (!=) operators, 44,

281–282, 286

declaring, 16, 19–20
initializing, 16, 19–20
naming, 18–19

help, online resources, 579,
I01.0025

hexadecimal numbers, 190
hoisting, 94

compiler behavior, 560–561
declaring

functions, 562
variables, 561

defined, 559–560
functions

declaring, 562
expressions, 562–563

ReferenceErrors, 563
temporal dead zones, 563

HTML (HyperText Markup
Language), 2–3, 304

defining web page
structures, 304–306

designing for data, 390–391
element attributes

accessing, 328–330
custom attributes,

330–334
data-* attributes,

333–334
reading, 329
removing, 330
setting, 329–330
values, 328

emojis, 503–506
“hello world” example, 9–12
innerHTML, adding DOM

elements, 388–390
location/placement of code,

113–114
styling web pages with CSS,

306–307
HTTP requests, 512–513

example of, 513
fetch API, 514–520
XMLHttpRequest objects,

520–521
creating requests,

521–522
events, 523

592 JSON (JAVASCRIPT OBJECT NOTATION)

M
mapping array items, 154–156
match method, strings,

170–171
math objects, 143, 180,

191–193
merging arrays, 152–153
messages, logging, 414–415
MetaKey property, keyboard yy

events, 460
minus sign (-) operator, 186, r

187–188
modifying DOM elements,

324–326
mouse events, 444

browser positioning,
452–453

button configurations,
453–454

click events, 421, 444–445,
446

contextmenu events,
450–451

dblclick events, 421,
445–446

DOMMouseScroll events,
421, 454–455

global mouse position,
451–452

mousedown events,
448–449

mouseenter events, 447
mouseleave events, 447
mousemove events, 421,

449
mouseout events, 421,

446–447
mouseover events, 421,

446–447
mouseup events, 448–449
mousewheel events, 421,

454–455
multiline comments, 74–75
multiple documents, coding in,

118–120

running dependent code,
488–489

running scripts, 486–488
web pages, 468–469

async script element, 477
defer sync element,

482–486
DOMContentLoaded

events, 471–473
script location in DOM,

473–476
stages of, 469–471

local scope, 88
locating scripts in DOM,

473–476
location/placement of code,

109–112
HTML documents, 113–114
<script> tags, 117
in separate files, 114–116

log method, 128–130
logging

activity, 206–207
Console, 128

displaying warnings/
errors, 131–134

id values of buttons,
130–131

log method, 128–130
‘messages, 414–415

loops
defined, 58
do.while loops, 68–69
for loops, 59–62, 64

breaking, 65
conditions, 63
decrementing, 66
examples of, 65–67
filling incompletely, 66–67
filling without numbers,

66
going backwards, 66
skipping iterations, 65–66
starting points, 62
steps, 62

sets, 572–573
while loops, 67–68

lowercasing strings, 171

Boolean values, 295
defined, 287–292
null values, 297
numbers, 294
object values, 295–296
objects, property names,

292–293
parsing JSON-looking data

into actual JSON, 299–300
reading data, 297–299
strings, 293–294
syntax of, 287–292
values (overview), 293
writing data, 300

K
keyboard events, 458

arrow keys, 462
keydown events, 458
keypress events, 458–459
keyup events, 458
multiple key presses,

462–466
particular key presses,

461–462
properties, 460–461

KeyCode property, keyboard yy
events, 460–462

keydown events, 421
keys, sets, 573–574
keyup events, 421

L
lastIndexOf method, strings,

170
lexical scope, arrow functions,

273
listening for events, 420–422,

427, 437
literal syntax, object, 213
load events, 421
loading

scripts dynamically, 482–486

OBJECTS 593

prototype inheritance,
249–253

subclasses, 247–248
function objects, 143, 180
inspecting, 412–413
JSON objects

arrays, 296–297
Boolean values, 295
null values, 297
numbers, 294
property names, 292–293
strings, 293–294
values, 295–296
values (overview), 293

literal syntax, 213
math objects, 143, 180,

191–193
nested objects, properties,

216–217
number objects, 143, 180
predefined objects, 142–144
primitives

converting to objects,
182–183

object behavior as,
180–183

properties
adding to objects,

213–217
bracket notation,

214–215
dot notation, 214
nested objects, 216–217
removing, 217–218
this keyword, 226–229
undefined properties, 218

prototype chains, 220–221
prototype inheritance, 229,

249–253
RegExp objects, 143, 180
string objects, 143, 180
this keyword, 226–229
window objects, 311
XMLHttpRequest objects,

520–521
creating requests,

521–522
events, 523
processing requests,

523–527

percentage (%) operators,
187–188

plus sign (+) operators,
187–188

powers, 195–196
random numbers, 196–198
rounding numbers, 193–194
square roots, 195–196
strings, going to numbers,

191
trigonometric functions,

194.0345
using, 186

O
objects, 212

array objects, 143, 180
behind the scenes

operations, 218–221
Boolean objects, 143, 180,

277–278
built-in objects, extending,

247–248
controversy, 255–257
functionality, 256
future of, 256
online resources, 257
prototype inheritance,

249–253
subclasses, 247–248

classes, creating objects,
232–234

creating, 213, 232–234
custom objects, creating,

222–226
date objects, 143, 180
destructuring, 544–547
document objects, 312–313
DocumentFragment objects,

adding DOM elements,
391–395

DOM elements as objects,
322–324

extending, 240–244,
247–248

controversy, 255–257
functionality, 256
future of, 256
online resources, 257

multiple elements, events for,
492–498

multiple key presses, keyboard
events, 462–466

multiplication (*) operators,
187–188

N
naming variables, 18–19
NaN (Not a Number) values,

191
navigating DOM, 354–356
negative numbers, 186
nested objects, properties,

216–217
nodes, DOM, 309–311
null primitives, 284
null properties, children (DOM),

357–358
null values, JSON objects, 297
number objects, 143, 180
numbers

absolute values, 196
declaring, 186–187
division (/) operators,

187–188
expression evaluation order,

187–188
filling loops without

numbers, 66
hexadecimal numbers, 190
incrementing/decrementing

variables, 188–189
Infinity values, 190
JSON objects, 294
math objects, 191–193
minus sign (-) operator, 186,

187–188
multiplication (*) operators,

187–188
NaN values, 191
negative numbers, 186
Number method, 191
octal numbers, 190

594 OBJECTS

R
random numbers, 196–198
reacting to events, 422–423
reading

HTML element attributes,
329

JSON data, 297–299
values, data properties, 202

reducing item values, arrays,
157–159

ReferenceErrors, 563
referencing JavaScript files,

115–116
RegExp objects, 143, 180
removing

classes, 340–342
data from Web Storage, 555
elements, DOM, 372–373,

395–396
event listeners, 427
HTML element attributes,

330
items from arrays, 151–152
properties, 217–218
values from classes, 342

requestAnimation Frame
function, 83–84

requests, HTTP, 512–513
example of, 513
fetch API, 514–520
XMLHttpRequest objects,

520–521
creating requests,

521–522
events, 523
processing requests,

523–527
running asynchronously,

523
sending requests,

522–523
resources, online

author’s website, 579’
built-in objects, 257
class values, 343

retrieving data from Web
Storage, 554–555

preventDefault function,
440–441

primitives
converting to objects,

182–183
null primitives, 284
object behavior as, 180–183
undefined primitives,

284–286
properties

accessor properties,
202–204

CSS custom properties/
variables

defined, 346–348
setting complex values,

348–351
updating, 349

data properties, 201–204
dataset property, custom

HTML element attributes,
332–333

JSON objects, 292–293
keyboard events, 460–461
objects

adding properties to
objects, 213–217

bracket notation,
214–215

dot notation, 214
nested objects, 216–217
removing properties,

217–218
this keyword, 226–229
undefined properties, 218

removing, 217–218
undefined properties, 218
value validation, 207–208

prototype chains, objects,
220–221

prototype inheritance, 229,
249–253

Q
querySelector function, 317
querySelectorAll function,

317–318
quotation marks, strings, 162,

163

running asynchronously,
523

sending requests,
522–523

octal numbers, 190
online resources

author’s website, 579’
built-in objects, 257
class values, 343
help, I01.0025

operators
=== operators

null primitives, 284
undefined primitives,

285–286
conditional operators, 43–46
equality (==) operators,

281–282, 286
incrementing/decrementing

variables, 188–189
inequality (!=) operators,

281–282, 286

P
parentheses (()), arguments,

261
parents, DOM, 355–357
parsing, 117, 299–300
particular key presses, keyboard

events, 461–462
percentage (%) operators,

187–188
pizza example, types, 136–139
placement/location of code,

109–112
HTML documents, 113–114
<script> tags, 117
in separate files, 114–116

plus sign (+) operators, 162,
165–166, 175, 187–188

positioning mouse
browser positioning,

452–453
global positioning, 451–452

powers/square roots, 195–196
predefined objects, 142–144

STRINGS 595

true/false evaluations,
42–43, 46–48, 53–54,
56

defined, 12
“hello world” example, 12
if statements, 40–43, 46–47
if/else statements, 40–43

complex expressions,
46–47

switch statement
similarities, 53–55

using, 55–56
if/else-if/else statements,

47–48
if-only statements, 47
switch statements, 49–53

if/else statement
similarities, 53–55

using, 55–56
steps for loops, 62
stopping

events, 438–441
webcam streams, 537

stopPropagation function,
events, 438–440

storing data, Web Storage, 550
adding data, 552–555
coding, 552
domains, 552
file sizes, 556
operation of, 550–551
removing data, 555
retrieving data, 554–555
session storage, 557–558
support, 556–557

string objects, 143, 180
strings

backtick (‘) character,
175–177

combining (concatenating),
162, 165–166, 173–174

interpolation (template
literals), 175–177

plus sign (+) operators,
175

defined, 13
finding something inside

strings, 169–171

creating, 566, 569–570
deleting items, 571–572
entries, 574
existence of items in sets,

checking, 572
iterators, 574
keys, 573–574
loops, 572–573
size of, 570–571
values, 573–574

setters/getters, 205–206
logging activity, 206–207
property values validation,

207–208
shout generators, 206

setTimeout function, 80–81
setting HTML element

attributes, 329–330
shiftKey property, keyboard yy

events, 460
shout generators, 206
siblings, DOM, 355–357
simple functions, 26–30
single documents, coding in,

120
single quotation marks (‘),

strings, 162, 163
single-line comments, 73–74
skipping iterations, loops,

65–66
slice method, strings, 167
smooth animation, request-

Animation Frame function,
83–84

sources, addEventListener
function, 420

split method, 168–169
splitting, strings, 168–169
square roots/powers, 195–196
starting points, for loops, 62
statements

conditional statements,
39–40

if statements, 40–48
if/else statements, 40–48

return keyword, 35–36
returning data with functions,

35
exiting early, 36
expressions, 35
return keyword, 35–36

rounding numbers, 193–194

S
scope

block scoping, 89–92
global scope, 86–88
local scope, 88
variable scope, 413–414

block scoping, 89–92
global scope, 86–88
local scope, 88

scoping variables, 20
<script> tags

location/placement of code,
117

parsing, 117
scripts

async script element, 477
defer sync element, 477–478
loading dynamically, 482–

486
running dependent code,

488–489
running scripts, 486–488

locating in DOM, 473–476
scroll events, 421
self-contained functions that

aren’t, 100–106
separate files, location/

placement of code in,
114–116

session storage, Web Storage,
557–558

setInterval function, 81–83
sets, 565–566

adding items, 567
checking

for duplicates, 567–569
existence of items, 572
size of sets, 570–571

596 STRINGS

updating, CSS custom
properties/variables, 349

up/down, events, 430–434
uppercasing strings, 171

V
validation, property values,

207–208
values

absolute values, 196
array values, accessing,

147–148
class values

adding/removing,
340–342

toggling, 342–343
classes

checking existence of
class values, 343

online resources, 343
HTML element attributes,

328
JSON objects, 295–296

arrays, 296–297
Boolean values, 295
null values, 297
numbers, 294
overview, 293
strings, 293–294

property values validation,
207–208

reading/writing values, data
properties, 202

reducing item values, arrays,
157–159

sets, 573–574
text values, changing in

DOM elements, 326–328
variable scope, 413–414

block scoping, 89–92
closures, 95–100
global scope, 86–88
local scope, 88
this keyword, 268–271

variables
changing values, 20

syntax
CSS selector syntax,

318–319
objects, 213

T
template literals (string

interpolation), 175–177
temporal dead zones, hoisting,

563
text values, changing in DOM

elements, 326–328
this keyword, 226–229,

266–267
redefined, 271–273
variable scope, 268–271

timers, 79–80
requestAnimation Frame

function, 83–84
setInterval function, 81–83
setTimeout function, 80–81

toggling class values, 342–343
trigonometric functions,

194.0345
true/false evaluations

conditional statements,
42–43, 46–48, 53–54, 56

equality (==) operators,
281–282

inequality (!=) operators,
281–282

true/false values
Boolean functions, 278–280
Boolean objects, 277–278

types
defined, 141–142
overview, 139–141
pizza example, 136–139

U
UI (User Interface), developing,

81
undefined primitives, 284–286
undefined properties, 218

“hello world” example, 13
indexing, 169–171
indexOf method, 169–170
individual characters,

accessing in strings,
163–165

interpolation (template
literals), 175–177

JSON objects, 293–294
lastIndexOf method, 170
lowercasing, 171
match method, 170–171
numbers, going to, 191
plus sign (+) operators, 162,

165–166, 175
quotation marks, 162, 163
splitting, 168–169
substrings, 166–167

slice method, 167
substr method, 167–168

template literals (string
interpolation), 175–177

uppercasing, 171
visualizing, 162–163

styling
content, 337–339

adding/removing classes,
340–342

setting class styles
directly, 339–340

toggling class values,
342–343

web pages with CSS,
306–307

subclasses, extending objects,
253–255

substr method, strings,
167–168

substrings, getting out of
strings, 166–167

slice method, 167
substr method, 167–168

subtrees (DOM), emptying,
395–396

support, Web Storage, 556–557
switch statements, 49–53

if/else statement similarities,
53–55

using, 55–56

XMLHTTPREQUEST OBJECTS 597

Web Storage, 550
adding data, 552–555
coding, 552
domains, 552
file sizes, 556
operation of, 550–551
removing data, 555
retrieving data, 554–555
session storage, 557–558
support, 556–557

webcams, accessing, 529–530
adding code, 532–535
constraints, 532–536
examining code, 535–537
example of, 530–531
overview, 531–532
stopping streams, 537

websites, author’s website, 579’
while loops, 67–68
whitespace in comments, 76–77
window objects, 311
writing

JSON data, 300
values, data properties, 202

X - Y - Z
XMLHttpRequest objects,

520–521
creating requests, 521–522
events, 523
processing requests,

523–527
running asynchronously, 523
sending requests, 522–523

W
warnings, displaying, 131–134
web browsers

developer tools, 397
debugging JavaScript,

405–412
displaying, 398–400
DOM inspection,

400–405
logging messages,

414–415
object inspection,

412–413
variable scope, 413–414
View Source command,

402–405
mouse positioning, 452–453
webcam access, 529–530

adding code, 532–535
constraints, 532–536
examining code, 535–537
example of, 530–531
overview, 531–532
stopping streams, 537

web pages
building, 9
defining structures with

HTML, 304–306
loading, 468–469

async script element, 477
defer sync element,

477–478
DOMContentLoaded

events, 471–473
script location in DOM,

473–476
stages of, 469–471

combining (concatenating),
173–174

interpolation (template
literals), 175–177

plus sign (+) operators,
175

CSS custom properties/
variables

defined, 346–348
setting complex values,

348–351
updating, 349

declaring, 16, 19–20
hoisting, 561
using variables without

declaring, 88–89
destructuring

arrays, 543
objects, 546–547

“hello world” example,
16–18, 24–25

changing values, 20
declaring, 16, 19–20
initializing, 16, 19–20
naming, 18–19

hoisting, 94
initializing, 16, 19–20
interpolation (template

literals), 175–177
naming, 18–19
processing in JavaScript,

93–94
scoping, 20
template literals (string

interpolation), 175–177
using without declaring,

88–89
View Source command,

402–405
visualizing, strings, 162–163

This page intentionally left blank

pearsonitcertification.com/video

Exclusive Offer – 40% OFF

Advance Your Skills
Get star ted with fundamentals,

become an expert,
or get cer tif ied.

Train AnywhereT i A h
Train anywhere, at your
own pace, on any device.

Learn
Learn from trusted author

trainers published by
Pearson IT Certif ication.

Pearson IT Certification
Video Training

UsU e e cocoupu onon ccodode PIP TCVIDEEEO40 ddururinining g g chchhhhchchc ececcee kkkkokokoooooookookoooooooutuuuttutututututututttuuutuututtuutt........

Video Instruction from Technology Experts

Try Our Popular Video Training for FREE!
pearsonitcertification.com/video

Explore hundreds of FREE video lessons from our growing library of Complete Video
Courses, LiveLessons, networking talks, and workshops.

http://pearsonitcertification.com/video
http://pearsonitcertification.com/video

Addison-Wesley • Adobe Press • Cisco Press • Microsoft Press • Pearson IT Certif ication • Que • Sams • Peachpit Press

Register Your Product at pearsonITcertification.com/register
save 35% on your next purchase

• Automatically receive a coupon for 35% off your next purchase, valid
for 30 days. Look for your code in your Pearson IT Certification cart
or the Manage Codes section of your account page.

• Download available product updates.
• Access bonus material if available.*

• Check the box to hear from us and receive exclusive offers on new
editions and related products.

*Registration benefits vary by product. Benefits will be listed on your account page under
Registered Products.

Learning Solutions for Self-Paced Study, Enterprise, and the Classroom
Pearson IT Certification delivers training materials that address the learning, preparation, and
practice needs of a new generation of certification candidates, including the official publishing
programs of Adobe Press, Cisco Press, and Microsoft Press. At pearsonITcertification.com,
you can:

• Shop our books, eBooks, practice tests, software, and video courses
• Sign up to receive special offers
• Access thousands of free chapters and video lessons

Visit pearsonITcertification.com/community to connect with Pearson IT Certification

Photo by Olena Yakobchuk/Shutterstock

http://pearsonITcertification.com/register
http://pearsonITcertification.com
http://VisitpearsonITcertification.com/communityto

Addison-Wesley • Adobe Press • Cisco Press • Microsoft Press • Pearson IT Certification • Que • Sams • Peachpit Press

• General web development
• Design and usability
• JavaScript
• jQuery and Vue.js
• Node.js, Angular.js, and React

Whatever your experience, InformIT has books, eBooks, and
video training to help you develop, program, and design
websites and applications.

Visit informit.com/webdevcenter to read sample chapters,
shop, and watch video lessons from featured products.

Web Development & Design
Books, eBooks & Video

http://informit.com/webdevcenterto

	Cover
	Title Page
	Copyright Page
	Contents at a Glance
	Table of Contents
	Introduction
	Parlez-Vous JavaScript?
	Contacting Me/Getting Help

	1 Hello, World!
	What Is JavaScript?
	What JavaScript Looks Like

	Hello, World!
	The HTML Document

	Statements, Expressions, and Functions

	Part I: The Basic Stuff
	2 Values and Variables
	Using Variables
	More Variable Stuff
	Naming Variables
	More on Declaring and Initializing Variables

	3 Functions
	What Is a Function?
	A Simple Function
	Creating a Function That Takes Arguments
	Creating a Function That Returns Data
	The Return Keyword
	Exiting the Function Early
	Function Expressions

	4 Conditional Statements: if, else, and switch
	The If/Else Statement
	Meet the Conditional Operators
	Creating More Complex Expressions
	Variations on the If/Else Statement

	Switch Statements
	Using a Switch Statement
	Similarity to an If/Else Statement

	Deciding Which to Use

	5 Looping with for, while, and do…while!
	The for Loop
	The Starting Point
	The Step
	The Condition (aka How Long to Keep Looping)
	Putting It All Together

	Some for Loop Examples
	Breaking a Loop
	Skipping an Iteration
	Going Backwards
	You Don’t Have to Use Numbers
	Oh No He Didn’t!

	The Other Loops
	The while Loop
	The do…while Loop

	6 Commenting Your Code…FTW!
	What Are Comments?
	Single-Line Comments
	Multiline Comments

	Commenting Best Practices

	7 Timers
	Delaying with setTimeout
	Looping with setInterval
	Animating Smoothly with requestAnimationFrame

	8 Variable Scope
	Global Scope
	Local Scope
	Miscellaneous Scoping Shenanigans
	Block Scoping
	How JavaScript Processes Variables
	Closures

	9 Closures
	Functions Within Functions
	When the Inner Functions Aren’t Self-Contained

	10 Where Should Your Code Live?
	Approach #1: All the Code Lives in Your HTML Document
	Approach #2: The Code Lives in a Separate File
	The JavaScript File
	Referencing the JavaScript File

	So, Which Approach to Use?
	Yes, My Code Will Be Used on Multiple Documents!
	No, My Code Is Used Only Once on a Single HTML Document!

	11 Console Logging Basics
	Meet the Console
	Displaying the Console
	If You Want to Follow Along
	Console Logging 101
	Meet the log Method
	Going Beyond Predefined Text
	Displaying Warnings and Errors

	Part II: It’s an Object-Oriented World
	12 Of Pizza, Types, Primitives, and Objects
	Let’s First Talk About Pizza
	From Pizza to JavaScript!
	What Are Objects?
	The Predefined Objects Roaming Around in JavaScript

	13 Arrays
	Creating an Array
	Accessing Array Values
	Adding Items
	Removing Items
	Finding Items
	Merging Arrays
	Mapping, Filtering, and Reducing Arrays
	The Old School Way
	Modifying Each Array Item with map
	Filtering Items

	Getting One Value from an Array of Items
	More on the Callback Function Arguments

	A Short Foray into Functional Programming

	14 Strings
	The Basics
	String Properties and Methods
	Accessing Individual Characters
	Combining (aka Concatenating) Strings
	Getting Substrings Out of Strings
	Splitting a String with split
	Finding Something Inside a String
	Uppercasing and Lowercasing Strings

	15 Combining Strings and Variables
	Our Setup
	Using the + Operator (aka String Concatenation)
	Template Literals (aka String Interpolation)

	16 When Primitives Behave Like Objects
	Strings Aren’t the Only Problem
	Let’s Pick on Strings Anyway
	Why This Matters

	17 Numbers
	Using a Number
	Operators
	Doing Simple Math

	Incrementing and Decrementing
	Hexadecimal and Octal Values
	Special Values—Infinity and NaN
	Infinity
	NaN

	The Math Object
	The Constants
	Rounding Numbers
	Trigonometric Functions
	Powers and Square Roots
	Getting the Absolute Value

	Random Numbers

	18 Getters and Setters
	A Tale of Two Properties
	Meet Getters and Setters
	Shout Generator
	Logging Activity
	Property Value Validation

	19 A Deeper Look at Objects
	Meet the Object
	Creating Objects
	Adding Properties
	Removing Properties
	What Is Going on Behind the Scenes?

	Creating Custom Objects
	The this Keyword

	20 Using Classes
	The Class Syntax and Object Creation
	Creating an Object
	Meet the Constructor
	What Goes Inside the Class

	Extending Objects

	21 Extending Built-in Objects
	Say Hello to prototype Again, Sort Of!
	Using a Subclassing Approach
	Extending Built-in Objects Is Controversial
	You Don’t Control the Built-in Object’s Future
	Some Functionality Should Not Be Extended or Overridden

	22 Arrow Functions
	What Are Arrow Functions?
	Starting with the Basics
	Of Arguments and Parenthesis
	To Curly Bracket or Not to Curly Bracket

	Putting It All Together

	23 Making Sense of this and More
	The this Keyword 101
	When this Just Ain’t Right
	Using a Redefined Version of the this Keyword
	Arrow Functions and Their Lexical Scope
	One Method to Bind Them All

	24 Booleans and the Stricter === and !== Operators
	The Boolean Object
	The Boolean Function
	Strict Equality and Inequality Operators

	25 Null and Undefined
	Null
	Undefined

	26 All About JSON (JavaScript Object Notation)
	What Is JSON?
	Looking Inside a JSON Object
	Property Names
	The Values

	Reading JSON Data
	Parsing JSON-Looking Data into Actual JSON

	Writing JSON Data?

	Part III: Working with the DOM
	27 JS, the Browser, and the DOM
	What HTML, CSS, and JavaScript Do
	HTML Defines the Structure
	Prettify My World, CSS!
	It’s JavaScript Time!
	Meet the Document Object Model
	The window Object
	The Document Object

	28 Finding Elements in the DOM
	Meet the querySelector Family
	querySelector
	querySelectorAll

	It Really Is the CSS Selector Syntax

	29 Modifying DOM Elements
	DOM Elements Are Objects, Sort Of!
	Let’s Actually Modify DOM Elements
	Changing an Element’s Text Value
	Attribute Values
	Basics of Attribute Access
	Custom Attributes

	30 Styling Our Content
	Why Would We Set Styles Using JavaScript?
	A Tale of Two Styling Approaches
	Setting the Style Directly
	Adding and Removing Classes Using JavaScript
	Going Further

	31 Using CSS Custom Properties
	What Are CSS Custom Properties/Variables?
	Setting Complex Values Easily

	32 Traversing the DOM
	Finding Your Way Around
	Dealing with Siblings and Parents
	Let’s Have Some Kids!

	Putting It All Together
	Checking If a Child Exists
	Accessing All the Child Elements
	Walking the DOM

	33 Creating and Removing DOM Elements
	Creating Elements
	Removing Elements
	Cloning Elements

	34 Quickly Adding Many Elements into the DOM
	General Approach
	Example

	Getting Started
	The innerHTML Approach
	The DocumentFragment Approach
	Removing Elements (Emptying an Entire Subtree)

	35 In-Browser Developer Tools
	Meet the Developer Tools
	Inspecting the DOM
	Debugging JavaScript
	Meet the Console
	Inspecting Objects
	Logging Messages

	Part IV: Dealing with Events
	36 Events
	What Are Events?
	Events and JavaScript
	Listening for Events
	Reacting to Events

	A Simple Example
	The Event Arguments and the Event Type

	37 Event Bubbling and Capturing
	Event Goes Down, Event Goes Up
	Meet the Phases
	Who Cares?
	Event, Interrupted

	38 Mouse Events
	Meet the Mouse Events
	Clicking Once and Clicking Twice
	Mousing Over and Mousing Out
	The Very Click-Like Mousing Down and Mousing Up Events
	The Event Heard Again…and Again…and Again!
	The Context Menu

	The MouseEvent Properties
	The Global Mouse Position
	The Mouse Position Inside the Browser
	Detecting Which Button Was Clicked

	Dealing with the Mouse Wheel

	39 Keyboard Events
	Meet the Keyboard Events
	Using These Events
	The Keyboard Event Properties
	Some Examples
	Checking That a Particular Key Was Pressed
	Doing Something When the Arrow Keys Are Pressed
	Detecting Multiple Key Presses

	40 Page Load Events and Other Stuff
	The Things That Happen During Page Load
	Stage Numero Uno
	Stage Numero Dos
	Stage Numero Three

	The DOMContentLoaded and load Events
	Scripts and Their Location in the DOM
	Script Elements: async and defer
	async
	defer

	41 Loading Script Files Dynamically
	The Basic Technique
	Running Our Dynamically Loaded Script First
	Running Dependent Code After Our Script File Has Loaded

	42 Handling Events for Multiple Elements
	How to Do All This
	A Terrible Solution
	A Good Solution
	Putting It All Together

	Part V: Totally Useful Topics that Only Make Sense Now
	43 Using Emojis in HTML, CSS, and JavaScript
	What Are Emojis Exactly?
	Emojis in HTML
	Using the Emoji Directly
	Specifying the Emoji Codepoint

	44 Making HTTP/Web Requests in JavaScript
	The Example
	Meet Fetch
	Diving into the Code
	Wrapping Up the Example

	Meet XMLHttpRequest
	Creating the Request
	Sending the Request
	Asynchronous Stuff and Events
	Processing the Request
	Processing the Request…for Realz!

	45 Accessing the Webcam
	The Example
	Overview of How This Works
	Adding the Code
	Examining the Code

	46 Array and Object Destructuring
	Destructuring Examples
	General Overview Using Arrays
	Destructuring with Objects

	47 Storing Data Using Web Storage
	How Web Storage Works
	What Exactly Goes on Inside
	Web Storage Data Is Tied to Your Domain

	Getting Your Code On
	Adding Data
	Retrieving Data
	Removing Data
	Dealing with File Size
	Detecting Support for Web Storage
	What About Session Storage?

	48 Variable and Function Hoisting
	JavaScript and Compiler Behavior
	Variable Declarations
	Function Declarations
	Some Hoisting Quirks

	49 Working with Sets
	Creating a Set, Part I
	Adding Items to a Set
	How Checking for Duplicates Works
	Creating a Set, Part 2
	Checking the Size of Our Set
	Deleting Items from a Set
	Checking If an Item Exists
	Looping Through Items in a Set
	Entries, Keys, and Values

	50 Conclusion

	Glossary
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	N
	O
	P
	R
	S
	T
	V
	W

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	Q
	S
	T
	U
	V
	W
	X
	Y
	Z

