

To my wife, Sharon, for everything.

– John

To my wonderful wife Susan, and our children, Grace, Anthony, Adam, Lily, EJ, and Peter IV.
Your continued love and support keep me going as always.

– Pete

To my loving wife, Melissa, for her support and encouragement.

– Joe

A01_LEWI5976_05_SE_FM.indd 5 14/02/19 9:09 PM

A01_LEWI5976_05_SE_FM.indd 6 14/02/19 9:09 PM

vii

Welcome to Java Foundations. This book is designed to serve as the primary
resource for a two- or three-term introductory course sequence, ranging from
the most basic programming concepts to the design and implementation of com-
plex data structures. This unified approach makes the important introductory
sequence more cohesive and accessible for students.

We’ve borrowed the best elements from the industry-leading text Java Software
Solutions for the introductory material, reworked to complement the design and
vision of the overall text. For example, instead of having graphics sections spread
throughout many chapters, the coverage of graphical user interfaces is accom-
plished in a well-organized chapter of its own.

In the later chapters, the exploration of collections and data structures is mod-
eled after the coverage in Java Software Structures, but has been reworked to flow
cleanly from the introductory material. The result is a comprehensive, cohesive,
and seamless exploration of programming concepts.

New in the Fifth Edition
We appreciate the feedback we’ve received about this book and are pleased
that it continues to serve so well as an introductory text. The changes made
in this edition build on the strong pedagogy established by previous editions
while updating crucial areas.

The biggest change in this edition is the overhaul of the graphical content to
fully embrace the JavaFX platform, which has replaced Swing as the supported
technology for graphics and Graphical User Interfaces (GUIs) in Java. The previous
edition focused on Swing and had an introduction to JavaFX. The time has come
to switch over completely to the new approach, which simplifies GUI development
and provides better opportunities to discuss object-oriented programming.

The changes in this edition include:

• A brand new Chapter 6 on developing GUIs using JavaFX.
• A new Appendix F that discusses the rendering of graphics using JavaFX.
• A new Appendix G that explores the JavaFX Scene Builder, a drag-and-

drop application for developing graphical front ends.

Preface

A01_LEWI5976_05_SE_FM.indd 7 14/02/19 9:09 PM

viii PREFACE

• Updated examples and discussions throughout the text.
• Updated end-of-chapter Programming Projects in several chapters.

In previous editions, we had established the following flow when discussing
collections:

Explore the collection conceptually.

Discuss the support in the
Java API for the collection.

Use the collection to solve problems.

Explore implementation options
and efficiency issues.

Your feedback has indicated that this approach is working well and we have
continued and reinforced its use. It clarifies the distinction between the way the
Java API supports a particular collection and the way it might be implemented
from scratch. It makes it easier for instructors to point out limitations of the API
implementations in a compare-and-contrast fashion. This approach also allows
an instructor, on a case-by-case basis, to simply introduce a collection without
exploring implementation details if desired.

Chapter Breakdown
Chapter 1 (Introduction) introduces the Java programming language and the
basics of program development. It contains an introduction to object-oriented
development, including an overview of concepts and terminology. This chapter
contains broad introductory material that can be covered while students become
familiar with their development environment.

Chapter 2 (Data and Expressions) explores some of the basic types of data used
in a Java program and the use of expressions to perform calculations. It discusses
the conversion of data from one type to another, and how to read input interac-
tively from the user with the help of the Scanner class.

Chapter 3 (Using Classes and Objects) explores the use of predefined classes
and the objects that can be created from them. Classes and objects are used to
manipulate character strings, produce random numbers, perform complex calcu-
lations, and format output. Packages, enumerated types, and wrapper classes are
also discussed.

Chapter 4 (Conditionals and Loops) covers the use of Boolean expressions to
make decisions. All related statements for conditionals and loops are discussed,

A01_LEWI5976_05_SE_FM.indd 8 14/02/19 9:09 PM

 PREFACE ix

including the enhanced version of the for loop. The Scanner class is revisited for
iterative input parsing and reading text files.

Chapter 5 (Writing Classes) explores the basic issues related to writing classes
and methods. Topics include instance data, visibility, scope, method parame-
ters, and return types. Constructors, method design, static data, and method
overloading are covered as well. Testing and debugging are now covered in this
chapter as well.

Chapter 6 (Graphical User Interfaces) is an exploration of GUI processing us-
ing the JavaFX platform, focusing on controls, events, and event handlers. Several
types of controls are discussed using numerous GUI examples. Mouse events, key-
board events, and layout panes are also explored.

Chapter 7 (Arrays) contains extensive coverage of arrays and array process-
ing. Topics include bounds checking, initializer lists, command-line arguments,
variable-length parameter lists, and multidimensional arrays.

Chapter 8 (Inheritance) covers class derivations and associated concepts such as
class hierarchies, overriding, and visibility. Strong emphasis is put on the proper
use of inheritance and its role in software design.

Chapter 9 (Polymorphism) explores the concept of binding and how it relates
to polymorphism. Then we examine how polymorphic references can be accom-
plished using either inheritance or interfaces. Design issues related to polymor-
phism are examined as well.

Chapter 10 (Exceptions) covers exception handling and the effects of uncaught
exceptions. The try-catch statement is examined, as well as a discussion of ex-
ception propagation. The chapter also explores the use of exceptions when dealing
with input and output, and examines an example that writes a text file.

Chapter 11 (Analysis of Algorithms) lays the foundation for determining the ef-
ficiency of an algorithm and explains the important criteria that allow a developer
to compare one algorithm to another in proper ways. Our emphasis in this chapter
is understanding the important concepts more than getting mired in heavy math
or formality.

Chapter 12 (Introduction to Collections—Stacks) establishes the concept of a
collection, stressing the need to separate the interface from the implementation. It
also conceptually introduces a stack, then explores an array-based implementation
of a stack.

Chapter 13 (Linked Structures—Stacks) discusses the use of references to create
linked data structures. It explores the basic issues regarding the management of
linked lists, and then defines an alternative implementation of a stack (introduced
in Chapter 12) using an underlying linked data structure.

Chapter 14 (Queues) explores the concept and implementation of a first-in,
first-out queue. The Java API Queue interface is discussed, as are linked and circu-
lar array implementations with Queue in code font.

A01_LEWI5976_05_SE_FM.indd 9 14/02/19 9:09 PM

x PREFACE

Chapter 15 (Lists) covers three types of lists: ordered, unordered, and indexed.
These three types of lists are compared and contrasted, with discussion of the op-
erations that they share and those that are unique to each type. Inheritance is used
appropriately in the design of the various types of lists, which are implemented
using both array-based and linked representations.

Chapter 16 (Iterators) is a new chapter that isolates the concepts and implemen-
tation of iterators, which are so important to collections. The expanded discussion
drives home the need to separate the iterator functionality from the details of any
particular collection.

Chapter 17 (Recursion) is a general introduction to the concept of recursion
and how recursive solutions can be elegant. It explores the implementation details
of recursion and discusses the basic idea of analyzing recursive algorithms.

Chapter 18 (Searching and Sorting) discusses the linear and binary search al-
gorithms, as well as the algorithms for several sorts: selection sort, insertion sort,
bubble sort, quick sort, and merge sort. Programming issues related to searching
and sorting, such as using the Comparable interface as the basis of comparing
objects, are stressed in this chapter. An application uses animation to demonstrate
the efficiency of sorting algorithms. The comparator interface is examined and
demonstrated as well.

Chapter 19 (Trees) provides an overview of trees, establishing key terminology
and concepts. It discusses various implementation approaches and uses a binary
tree to represent and evaluate an arithmetic expression.

Chapter 20 (Binary Search Trees) builds off of the basic concepts established
in Chapter 10 to define a classic binary search tree. A linked implementation of a
binary search tree is examined, followed by a discussion of how the balance in the
tree nodes is key to its performance. That leads to exploring AVL and red/black
implementations of binary search trees.

Chapter 21 (Heaps and Priority Queues) explores the concept, use, and imple-
mentations of heaps and specifically their relationship to priority queues. A heap
sort is used as an example of its usefulness as well. Both linked and array-based
implementations are explored.

Chapter 22 (Sets and Maps) explores these two types of collections and their
importance to the Java Collections API.

Chapter 23 (Multi-way Search Trees) is a natural extension of the discussion of
the previous chapters. The concepts of 2-3 trees, 2-4 trees, and general B-trees are
examined and implementation options are discussed.

Chapter 24 (Graphs) explores the concept of undirected and directed graphs
and establishes important terminology. It examines several common graph algo-
rithms and discusses implementation options, including adjacency matrices.

Chapter 25 (Databases) explores the concept of databases and their manage-
ment, and discusses the basics of SQL queries. It then explores the techniques for

A01_LEWI5976_05_SE_FM.indd 10 14/02/19 9:09 PM

 PREFACE xi

establishing a connection between a Java program and a database, and the API
used to interact with it.

Supplements
The following student resources are available for this book:

• Source code for all programs presented in the book
• VideoNotes that explore select topics from the book

Resources can be accessed at www.pearson.com/lewis

The following instructor resources can be found at Pearson Education’s Instructor
Resource Center:

• Solutions for select exercises and programming projects in the book
• PowerPoint slides for the presentation of the book content
• Test bank

To obtain access, please visit www.pearsonhighered.com/irc or contact your local
Pearson Education sales representative.

A01_LEWI5976_05_SE_FM.indd 11 14/02/19 9:09 PM

xiii

Preface vii
Credits xxix
VideoNotes xxxi
Chapter 1 Introduction 1

1.1 The Java Programming Language 2
A Java Program 3
Comments 5
Identifiers and Reserved Words 7
White Space 9

1.2 Program Development 11
Programming Language Levels 11
Editors, Compilers, and Interpreters 13
Development Environments 15
Syntax and Semantics 16
Errors 17

1.3 Problem Solving 18

1.4 Software Development Activities 20

1.5 Object-Oriented Programming 21
Object-Oriented Software Principles 22

Chapter 2 Data and Expressions 33
2.1 Character Strings 34

The print and println Methods 34
String Concatenation 36
Escape Sequences 40

2.2 Variables and Assignment 41
Variables 41
The Assignment Statement 44
Constants 46

Contents

A01_LEWI5976_05_SE_FM.indd 13 14/02/19 9:09 PM

xiv CONTENTS

2.3 Primitive Data Types 47
Integers and Floating Points 47
Characters 48
Booleans 50

2.4 Expressions 51
Arithmetic Operators 51
Operator Precedence 52
Increment and Decrement Operators 56
Assignment Operators 57

2.5 Data Conversion 58
Conversion Techniques 60

2.6 Reading Input Data 61
The Scanner Class 61

Chapter 3 Using Classes and Objects 75
3.1 Creating Objects 76

Aliases 78

3.2 The String Class 80

3.3 Packages 83
The import Declaration 84

3.4 The Random Class 86

3.5 The Math Class 89

3.6 Formatting Output 92
The NumberFormat Class 92
The DecimalFormat Class 94
The printf Method 96

3.7 Enumerated Types 97

3.8 Wrapper Classes 100
Autoboxing 102

Chapter 4 Conditionals and Loops 111
4.1 Boolean Expressions 112

Equality and Relational Operators 113
Logical Operators 114

A01_LEWI5976_05_SE_FM.indd 14 14/02/19 9:09 PM

 CONTENTS xv

4.2 The if Statement 116
The if-else Statement 119
Using Block Statements 121
The Conditional Operator 124
Nested if Statements 125

4.3 Comparing Data 127
Comparing Floats 127
Comparing Characters 127
Comparing Objects 128

4.4 The switch Statement 130

4.5 The while Statement 134
Infinite Loops 140
Nested Loops 141
Other Loop Controls 144

4.6 Iterators 145
Reading Text Files 146

4.7 The do Statement 148

4.8 The for Statement 151
Iterators and for Loops 156
Comparing Loops 157

Chapter 5 Writing Classes 169
5.1 Classes and Objects Revisited 170

Identifying Classes and Objects 171
Assigning Responsibilities 173

5.2 Anatomy of a Class 173
Instance Data 178
UML Class Diagrams 179

5.3 Encapsulation 181
Visibility Modifiers 182
Accessors and Mutators 183

5.4 Anatomy of a Method 188
The return Statement 194
Parameters 196
Local Data 197
Constructors Revisited 198

A01_LEWI5976_05_SE_FM.indd 15 14/02/19 9:09 PM

xvi CONTENTS

5.5 Static Class Members 199
Static Variables 199
Static Methods 200

5.6 Class Relationships 203
Dependency 203
Dependencies among Objects of the Same Class 204
Aggregation 206
The this Reference 211

5.7 Method Design 212
Method Decomposition 213
Method Parameters Revisited 218

5.8 Method Overloading 223

5.9 Testing 224
Reviews 225
Defect Testing 226
Unit Testing 227
Integration Testing 228
System Testing 228
Test-Driven Development 228

5.10 Debugging 229
Simple Debugging with print Statements 230
Debugging Concepts 230

Chapter 6 Graphical User Interfaces 245
6.1 Introduction to JavaFX 246

GUI Elements 249
Alternate Ways to Specify Event Handlers 252
Determining Event Sources 253

6.2 Other GUI Controls 256
Text Fields 256
Check Boxes 259
Radio Buttons 263
Color and Date Pickers 267

6.3 Mouse and Key Events 270
Mouse Events 271
Key Events 276

A01_LEWI5976_05_SE_FM.indd 16 14/02/19 9:09 PM

 CONTENTS xvii

6.4 Dialog Boxes 279
File Choosers 283

6.5 JavaFX Properties 286
Change Listeners 289
Sliders 292
Spinners 295

6.6 Tool Tips and Disabling Controls 299

Chapter 7 Arrays 313
7.1 Array Elements 314

7.2 Declaring and Using Arrays 315
Bounds Checking 318
Alternative Array Syntax 323
Initializer Lists 324
Arrays as Parameters 325

7.3 Arrays of Objects 325

7.4 Command-Line Arguments 335

7.5 Variable-Length Parameter Lists 337

7.6 Two-Dimensional Arrays 341
Multidimensional Arrays 344

7.7 Arrays and GUIs 346
An Array of Color Objects 346
Choice Boxes 349

Chapter 8 Inheritance 361
8.1 Creating Subclasses 362

The protected Modifier 367
The super Reference 368
Multiple Inheritance 372

8.2 Overriding Methods 373
Shadowing Variables 376

8.3 Class Hierarchies 376
The Object Class 377
Abstract Classes 379

A01_LEWI5976_05_SE_FM.indd 17 14/02/19 9:09 PM

xviii CONTENTS

8.4 Visibility 381

8.5 Designing for Inheritance 383
Restricting Inheritance 384

8.6 Inheritance in JavaFX 385

Chapter 9 Polymorphism 395
9.1 Dynamic Binding 396

9.2 Polymorphism via Inheritance 397

9.3 Interfaces 409
Interface Hierarchies 414
The Comparable Interface 415
The Iterator Interface 415

9.4 Polymorphism via Interfaces 416

Chapter 10 Exceptions 425
10.1 Exception Handling 426

10.2 Uncaught Exceptions 427

10.3 The try-catch Statement 428
The finally Clause 431

10.4 Exception Propagation 432

10.5 The Exception Class Hierarchy 435
Checked and Unchecked Exceptions 439

10.6 I/O Exceptions 439

Chapter 11 Analysis of Algorithms 449
11.1 Algorithm Efficiency 450

11.2 Growth Functions and Big-Oh Notation 451

11.3 Comparing Growth Functions 453

11.4 Determining Time Complexity 455
Analyzing Loop Execution 455
Nested Loops 456
Method Calls 457

A01_LEWI5976_05_SE_FM.indd 18 14/02/19 9:09 PM

 CONTENTS xix

Chapter12 Introduction to Collections—Stacks 463
12.1 Collections 464

Abstract Data Types 465
The Java Collections API 467

12.2 A Stack Collection 467

12.3 Crucial OO Concepts 469
Inheritance and Polymorphism 470
Generics 471

12.4 Using Stacks: Evaluating Postfix Expressions 472
Javadoc 480

12.5 Exceptions 481

12.6 A Stack ADT 482

12.7 Implementing a Stack: With Arrays 485
Managing Capacity 486

12.8 The ArrayStack Class 487
The Constructors 488
The push Operation 490
The pop Operation 492
The peek Operation 493
Other Operations 493
The EmptyCollectionException Class 494
Other Implementations 495

Chapter 13 Linked Structures—Stacks 503
13.1 References as Links 504

13.2 Managing Linked Lists 506
Accessing Elements 506
Inserting Nodes 507
Deleting Nodes 508

13.3 Elements without Links 509
Doubly Linked Lists 509

13.4 Stacks in the Java API 510

13.5 Using Stacks: Traversing a Maze 511

A01_LEWI5976_05_SE_FM.indd 19 14/02/19 9:09 PM

xx CONTENTS

13.6 Implementing a Stack: With Links 520
The LinkedStack Class 520
The push Operation 524
The pop Operation 526
Other Operations 527

Chapter 14 Queues 533
14.1 A Conceptual Queue 534

14.2 Queues in the Java API 535

14.3 Using Queues: Code Keys 536

14.4 Using Queues: Ticket Counter Simulation 540

14.5 A Queue ADT 545

14.6 A Linked Implementation of a Queue 546
The enqueue Operation 548
The dequeue Operation 550
Other Operations 551

14.7 Implementing Queues: With Arrays 552
The enqueue Operation 556
The dequeue Operation 558
Other Operations 559

14.8 Double-Ended Queues (Dequeue) 559

Chapter 15 Lists 565
15.1 A List Collection 566

15.2 Lists in the Java Collections API 568

15.3 Using Unordered Lists: Program of Study 569

15.4 Using Indexed Lists: Josephus 579

15.5 A List ADT 581
Adding Elements to a List 582

15.6 Implementing Lists with Arrays 587
The remove Operation 589
The contains Operation 591
The add Operation for an Ordered List 592

A01_LEWI5976_05_SE_FM.indd 20 14/02/19 9:09 PM

 CONTENTS xxi

Operations Particular to Unordered Lists 593
The addAfter Operation for an

Unordered List 593

15.7 Implementing Lists with Links 594
The remove Operation 595

15.8 Lists in JavaFX 597
Observable List 597
Sorted List 597

Chapter 16 Iterators 605
16.1 What’s an Iterator? 606

Other Iterator Issues 608

16.2 Using Iterators: Program of Study Revisited 609
Printing Certain Courses 613
Removing Courses 614

16.3 Implementing Iterators: With Arrays 615

16.4 Implementing Iterators: With Links 617

Chapter 17 Recursion 623
17.1 Recursive Thinking 624

Infinite Recursion 624
Recursion in Math 625

17.2 Recursive Programming 626
Recursion versus Iteration 629
Direct versus Indirect Recursion 629

17.3 Using Recursion 630
Traversing a Maze 630
The Towers of Hanoi 638

17.4 Analyzing Recursive Algorithms 643

Chapter 18 Searching and Sorting 651
18.1 Searching 652

Static Methods 653
Generic Methods 653
Linear Search 654

A01_LEWI5976_05_SE_FM.indd 21 14/02/19 9:09 PM

xxii CONTENTS

Binary Search 656
Comparing Search Algorithms 658

18.2 Sorting 659
Selection Sort 662
Insertion Sort 664
Bubble Sort 666
Quick Sort 668
Merge Sort 672

18.3 Radix Sort 675

18.4 A Different Way to Sort—Comparator 679

Chapter 19 Trees 693
19.1 Trees 694

Tree Classifications 695

19.2 Strategies for Implementing Trees 697
Computational Strategy for Array

Implementation of Trees 697
Simulated Link Strategy for Array

Implementation of Trees 697
Analysis of Trees 699

19.3 Tree Traversals 700
Preorder Traversal 700
Inorder Traversal 701
Postorder Traversal 701
Level-Order Traversal 702

19.4 A Binary Tree ADT 703

19.5 Using Binary Trees: Expression Trees 707

19.6 A Back Pain Analyzer 719

19.7 Implementing Binary Trees with Links 724
The find Method 728
The iteratorInOrder Method 730

Chapter 20 Binary Search Trees 737
20.1 Binary Search Trees 738

Adding an Element to a Binary Search Tree 739

A01_LEWI5976_05_SE_FM.indd 22 14/02/19 9:09 PM

 CONTENTS xxiii

Removing an Element from a Binary
Search Tree 741

20.2 Implementing a Binary Search Tree 743

20.3 Implementing Binary Search Trees: With Links 745
The addElement Operation 746
The removeElement Operation 748
The removeAllOccurrences Operation 752
The removeMin Operation 753
Implementing Binary Search Trees:

With Arrays 755

20.4 Using Binary Search Trees: Implementing
Ordered Lists 755
Analysis of the BinarySearchTreeList

Implementation 758

20.5 Balanced Binary Search Trees 759
Right Rotation 760
Left Rotation 761
Rightleft Rotation 762
Leftright Rotation 762

20.6 Implementing Binary Search Trees: AVL Trees 762
Right Rotation in an AVL Tree 763
Left Rotation in an AVL Tree 764
Rightleft Rotation in an AVL Tree 764
Leftright Rotation in an AVL Tree 765

20.7 Implementing Binary Search Trees:
Red/Black Trees 766
Insertion into a Red/Black Tree 766
Element Removal from a Red/Black Tree 770

Chapter 21 Heaps and Priority Queues 779
21.1 A Heap 780

The addElement Operation 782
The removeMin Operation 783
The findMin Operation 784

21.2 Using Heaps: Priority Queues 784

A01_LEWI5976_05_SE_FM.indd 23 14/02/19 9:09 PM

xxiv CONTENTS

21.3 Implementing Heaps: With Links 788
The addElement Operation 788
The removeMin Operation 792
The findMin Operation 795

21.4 Implementing Heaps: With Arrays 795
The addElement Operation 797
The removeMin Operation 798
The findMin Operation 800

21.5 Using Heaps: Heap Sort 800

Chapter 22 Sets and Maps 807
22.1 Set and Map Collections 808

22.2 Sets and Maps in the Java API 808

22.3 Using Sets: Domain Blocker 811

22.4 Using Maps: Product Sales 814

22.5 Using Maps: User Management 818

22.6 Implementing Sets and Maps Using Trees 823

22.7 Implementing Sets and Maps Using Hashing 823

Chapter 23 Multi-way Search Trees 831
23.1 Combining Tree Concepts 832

23.2 2-3 Trees 832
Inserting Elements into a 2-3 Tree 833
Removing Elements from a 2-3 Tree 835

23.3 2-4 Trees 838

23.4 B-Trees 840
B*-Trees 841
B+-Trees 841
Analysis of B-Trees 842

23.5 Implementation Strategies for B-Trees 842

A01_LEWI5976_05_SE_FM.indd 24 14/02/19 9:09 PM

 CONTENTS xxv

Chapter 24 Graphs 849
24.1 Undirected Graphs 850

24.2 Directed Graphs 851

24.3 Networks 853

24.4 Common Graph Algorithms 854
Traversals 854
Testing for Connectivity 858
Minimum Spanning Trees 860
Determining the Shortest Path 863

24.5 Strategies for Implementing Graphs 863
Adjacency Lists 864
Adjacency Matrices 864

24.6 Implementing Undirected Graphs with an
Adjacency Matrix 865
The addEdge Method 870
The addVertex Method 870
The expandCapacity Method 871
Other Methods 872

Chapter 25 Databases 879
25.1 Introduction to Databases 880

25.2 Establishing a Connection to a Database 882
Obtaining a Database Driver 882

25.3 Creating and Altering Database Tables 885
Create Table 885
Alter Table 886
Drop Column 887

25.4 Querying the Database 887
Show Columns 888

25.5 Inserting, Viewing, and Updating Data 890
Insert 891

A01_LEWI5976_05_SE_FM.indd 25 14/02/19 9:09 PM

xxvi CONTENTS

SELECT ... FROM 891
Update 896

25.6 Deleting Data and Database Tables 897
Deleting Data 897
Deleting Database Tables 898

Appendix A Glossary 903

Appendix B Number Systems 937
Place Value 938

Bases Higher Than 10 939

Conversions 940

Shortcut Conversions 943

Appendix C The Unicode Character Set 949

Appendix D Java Operators 953
Java Bitwise Operators 955

Appendix E Java Modifiers 959
Java Visibility Modifiers 960

A Visibility Example 960

Other Java Modifiers 961

Appendix F JavaFX Graphics 963
Coordinate Systems 964

Representing Colors 964

Basic Shapes 965

Arcs 970

A01_LEWI5976_05_SE_FM.indd 26 14/02/19 9:09 PM

 CONTENTS xxvii

Images 974

Fonts 976

Graphic Transformations 979
Translation 979
Scaling 980
Rotation 981
Shearing 982

Polygons and Polylines 982

Appendix G JavaFX Scene Builder 987
Hello Moon 988

Handling Events in JavaFX Scene Builder 993

Appendix H Regular Expressions 997

Appendix I Hashing 999
I.1 A Hashing 1000

I.2 Hashing Functions 1001
The Division Method 1002
The Folding Method 1002
The Mid-Square Method 1003
The Radix Transformation Method 1003
The Digit Analysis Method 1003
The Length-Dependent Method 1004
Hashing Functions in the Java Language 1004

I.3 Resolving Collisions 1004
Chaining 1005
Open Addressing 1006

I.4 Deleting Elements from a Hash Table 1009
Deleting from a Chained

Implementation 1009
Deleting from an Open Addressing

Implementation 1010

A01_LEWI5976_05_SE_FM.indd 27 14/02/19 9:09 PM

xxviii CONTENTS

I.5 Hash Tables in the Java Collections API 1011
The Hashtable Class 1011
The HashSet Class 1013
The HashMap Class 1013
The IdentityHashMap Class 1014

I.6 The WeakHashMap Class 1015
LinkedHashSet and LinkedHashMap 1016

Appendix J Java Syntax 1023

Index 1037

A01_LEWI5976_05_SE_FM.indd 28 14/02/19 9:09 PM

xxix

Cover: Liudmila Habrus/123RF
Chapter 1 page 2: Reference: Java is a relatively new programming language

compared to many others. It was developed in the early 1990s by James Gosling at
Sun Microsystems. Java was released to the public in 1995 and has gained tremen-
dous popularity since “The History of Java Technology” Oracle Corporation. 1995.
Accessed at http://www.oracle.com/technetwork/java/javase/overview/javahistory-
index-198355.html

Chapter 1 page 15: Excerpt: A research group at Auburn University has devel-
oped jGRASP, a free Java IDE that is included on the CD that accompanies this
book. It can also be downloaded from www.jgrasp.org. “jGRASP” is developed
by the Department of Computer Science and Software Engineering in the Samuel
Ginn College of Engineering at Auburn University.

Chapter 1 page 20: Reference: The programming language Simula, developed
in the 1960s, had many characteristics that define the modern object-oriented ap-
proach to software development. Nygaard, Kristen, Myhrhaug, Bjørn, and Dahl,
Ole-Johan. “Simula. Common Base Language.” Norwegian Computing Center.
1970. Accessed at http://www.nr.no/

Chapter 4: Excerpt: The Twelve Days of Christmas. “Twelve Days of Christ-
mas.” Mirth Without Mischief. 1780.

Chapter 11: Text: Another way of looking at the effect of algorithm complexity
was proposed by Aho, Hopcroft, and Ullman. Aho, A.V., J.E. Hopcroft, and
J.D. Ullman. “The Design and Analysis of Computer Algorithms.” Addison-Wesley.
1974.

Chapter 20: Text: Adel’son-Vel’skii and Landis developed a method called AVL
trees that is a variation on this theme. For each node in the tree, we will keep track
of the height of the left and right subtrees. Adelson-Velskii, Georgii and Evengii
Landis. “An Algorithm for the Organization of Information.” 1962.

MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO REPRE-
SENTATIONS ABOUT THE SUITABILITY OF THE INFORMATION CON-
TAINED IN THE DOCUMENTS AND RELATED GRAPHICS PUBLISHED AS
PART OF THE SERVICES FOR ANY PURPOSE. ALL SUCH DOCUMENTS
AND RELATED GRAPHICS ARE PROVIDED “AS IS” WITHOUT WAR-
RANTY OF ANY KIND. MICROSOFT AND/OR ITS RESPECTIVE SUPPLI-
ERS HEREBY DISCLAIM ALL WARRANTIES AND CONDITIONS WITH

Credits

A01_LEWI5976_05_SE_FM.indd 29 14/02/19 9:09 PM

xxx CREDITS

REGARD TO THIS INFORMATION, INCLUDING ALL WARRANTIES AND
CONDITIONS OF MERCHANTABILITY, WHETHER EXPRESS, IMPLIED
OR STATUTORY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
NON-INFRINGEMENT. IN NO EVENT SHALL MICROSOFT AND/OR ITS
RESPECTIVE SUPPLIERS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RE-
SULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN AC-
TION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFOR-
MANCE OF INFORMATION AVAILABLE FROM THE SERVICES.

THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN
COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMA-
TION HEREIN. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAY
MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/
OR THE PROGRAM(S) DESCRIBED HEREIN AT ANY TIME. PARTIAL
SCREEN SHOTS MAY BE VIEWED IN FULL WITHIN THE SOFTWARE
VERSION SPECIFIED.

MICROSOFT® AND WINDOWS® ARE REGISTERED TRADEMARKS OF
THE MICROSOFT CORPORATION IN THE U.S.A. AND OTHER COUN-
TRIES. THIS BOOK IS NOT SPONSORED OR ENDORSED BY OR AFFILI-
ATED WITH THE MICROSOFT CORPORATION.

A01_LEWI5976_05_SE_FM.indd 30 14/02/19 9:09 PM

VideoNote

LOCATION OF VIDEONOTES IN THE TEXT

Chapter 1 Overview of program elements, page 4
Comparison of Java IDEs, page 16
Examples of various error types, page 18

Chapter 2 Example using strings and escape sequences, page 40
Review of primitive data and expressions, page 52
Example using the Scanner class, page 63

Chapter 3 Creating objects, page 77
Example using the Random and Math classes, page 89

Chapter 4 Examples using conditionals, page 123
Examples using while loops, page 138
Examples using for loops, page 155

Chapter 5 Dissecting the Die class, page 178
Discussion of the Account class, page 194

Chapter 7 Overview of arrays, page 315
Discussion of the LetterCount example, page 323

Chapter 8 Overview of inheritance, page 363
Example using a class hierarchy, page 378

Chapter 9 Exploring the Firm program, page 404

Chapter 10 Proper exception handling, page 432

Chapter 12 An overview of the ArrayStack implementation, page 488

Chapter 13 Using a stack to solve a maze, page 512

Chapter 14 An array-based queue implementation, page 552

Chapter 15 List categories, page 566

Chapter 17 Analyzing recursive algorithms, page 644

Chapter 18 Demonstration of a binary search, page 657

Chapter 19 Demonstration of the four basic tree traversals, page 703

Chapter 20 Demonstration of the four basic tree rotations, page 763

Chapter 21 Demonstration of a heap sort on an array, page 801

Chapter 22 A comparison of sets and maps, page 808

Chapter 23 Inserting elements into, and removing elements from, a 2-3
tree, page 835

Chapter 24 Illustration of depth-first and breadth-first traversals of a graph,
page 855

xxxi

A01_LEWI5976_05_SE_FM.indd 31 14/02/19 9:09 PM

1

1
This text is about writing well-designed software. We

begin by examining a very basic Java program and using it

to explore some initial programming concepts. We then lay

the groundwork for software development on a larger scale,

exploring the foundations of problem solving, the activi-

ties involved in software development, and the principles of

object-oriented programming.

C H A P T E R O B J E C T I V E S
■■ Introduce the Java programming language.

■■ Describe the steps involved in program compilation and execution.

■■ Explore the issues related to problem solving in general.

■■ Discuss the activities involved in the software development
process.

■■ Present an overview of object-oriented principles.

Introduction 1

M01_LEWI5976_05_SE_C01.indd 1 08/02/19 1:00 AM

2 CHAPTER 1 Introduction

1.1 The Java Programming Language

A computer is made up of hardware and software. The hardware components of
a computer system are the physical, tangible pieces that support the computing
effort. They include chips, boxes, wires, keyboards, speakers, disks, cables, print-
ers, and so on. The hardware is essentially useless without instructions to tell it
what to do. A program is a series of instructions that the hardware executes one
after another. Programs are sometimes called applications. Software consists of
programs and the data those programs use. Software is the intangible counterpart
to the physical hardware components. Together, they form a tool that we can use
to solve problems.

A program is written in a particular programming language that
uses specific words and symbols to express the problem solution. A
programming language defines a set of rules that determines exactly
how a programmer can combine the words and symbols of the lan-
guage into programming statements, which are the instructions that
are carried out when the program is executed.

Since the inception of computers, many programming languages have been
created. We use the Java language in this text to demonstrate various programming
concepts and techniques. Although our main goal is to learn these underlying soft-
ware development concepts, an important side effect will be to become proficient
in the development of Java programs.

Java is a relatively new programming language compared to many others. It
was developed in the early 1990s by James Gosling at Sun Microsystems. Java was
introduced to the public in 1995 and has gained tremendous popularity since.

Java has undergone various changes since its creation. The most recent Java
technology is generally referred to as the Java 2 Platform, which is organized into
three major groups:

■■ Java 2 Platform, Standard Edition (J2SE)

■■ Java 2 Platform, Enterprise Edition (J2EE)

■■ Java 2 Platform, Micro Edition (J2ME)

This text focuses on the Standard Edition, which, as the name implies, is the
mainstream version of the language and associated tools. Furthermore, this book is
consistent with any recent versions of Java, through Java 11.

Some parts of early Java technologies have been deprecated, which means they
are considered old-fashioned and should not be used. When it is important, we
point out deprecated elements and discuss the preferred alternatives.

Java is an object-oriented programming language. Objects are the fundamen-
tal elements that make up a program. The principles of object-oriented software

KEY CONCEPT
A computer system consists of
hardware and software that work in
concert to help us solve problems.

M01_LEWI5976_05_SE_C01.indd 2 08/02/19 1:00 AM

 1.1 The Java Programming Language 3

development are the cornerstone of this text. We explore object-
oriented programming concepts later in this chapter and throughout
the rest of the text.

The Java language is accompanied by a library of extra software
that we can use when developing programs. This software is referred
to as the Java API, which stands for Application Programmer Interfaces, or simply
the standard class library. It provides the ability to create graphics, communicate
over networks, and interact with databases, among many other features. The Java
API is huge and quite versatile. Although we won’t be able to cover all aspects of the
library, we will explore many of them.

Java is used in commercial environments all over the world. It is one of the
fastest-growing programming technologies of all time. Thus it is not only a good
language in which to learn programming concepts but also a practical language
that will serve you well in the future.

A Java Program
Let’s look at a simple but complete Java program. The program in Listing 1.1
prints two sentences to the screen. This particular program prints a quotation
from Abraham Lincoln. The output is shown below the program listing.

All Java applications are similar in basic structure. Despite its small size and
simple purpose, this program contains several important features. Let’s carefully
dissect it and examine its pieces.

The first few lines of the program are comments, which start with the // sym-
bols and continue to the end of the line. Comments don’t affect what the pro-
gram does but are included to make the program easier to understand by humans.
Programmers can and should include comments as needed throughout a program
to clearly identify the purpose of the program and describe any special process-
ing. Any written comments or documents, including a user’s guide and technical
references, are called documentation. Comments included in a program are called
inline documentation.

The rest of the program is a class definition. This class is called
Lincoln, although we could have named it just about anything we
wished. The class definition runs from the first opening brace ({) to
the final closing brace (}) on the last line of the program. All Java
programs are defined using class definitions.

Inside the class definition are some more comments describing the purpose of
the main method, which is defined directly below the comments. A method is a
group of programming statements that is given a name. In this case, the name of
the method is main and it contains only two programming statements. Like a class
definition, a method is delimited by braces.

KEY CONCEPT
This text focuses on the principles of
object-oriented programming.

KEY CONCEPT
Comments do not affect a program’s
processing; instead, they serve to
facilitate human comprehension.

M01_LEWI5976_05_SE_C01.indd 3 08/02/19 1:00 AM

4 CHAPTER 1 Introduction

VideoNote
Overview of program
elements

All Java applications have a main method, which is where processing begins.
Each programming statement in the main method is executed, one at a time in
order, until the end of the method is reached. Then the program ends, or terminates.
The main method definition in a Java program is always preceded by the words
public, static, and void, which we examine later in the text. The use of String
and args does not come into play in this particular program. We describe these
later also.

The two lines of code in the main method invoke another method called
println (pronounced print line). We invoke, or call, a method when we want it
to execute. The println method prints the specified characters to the screen. The
characters to be printed are represented as a character string, enclosed in double
quote characters ("). When the program is executed, it calls the println method
to print the first statement, then it calls that method again to print the second
statement, and then, because that is the last line in the main method, the program
terminates.

//**
// Lincoln.java Java Foundations
//
// Demonstrates the basic structure of a Java application.

//**

public class Lincoln
{

 //---
 // Prints a presidential quote.
 //---

 public static void main(String[] args)
 {
 System.out.println("A quote by Abraham Lincoln:");

 System.out.println("Whatever you are, be a good one.");
 }
}

O U T P U T

A quote by Abraham Lincoln:

Whatever you are, be a good one.

L I S T I N G 1 . 1

M01_LEWI5976_05_SE_C01.indd 4 08/02/19 1:00 AM

 1.1 The Java Programming Language 5

Comments
Let’s examine comments in more detail. Comments are the only language feature
that allows programmers to compose and communicate their thoughts indepen-
dent of the code. Comments should provide insight into the programmer’s original
intent. A program may be used for many years, and often many modifications
are made to it over time. The original programmer may not remember the details
of a particular program when, at some point in the future, modifications are re-
quired. Furthermore, the original programmer is not always available to make
the changes; thus, someone completely unfamiliar with the program will need to
understand it. Good documentation is therefore essential.

As far as the Java programming language is concerned, the content of com-
ments can be any text whatsoever. Comments are ignored by the computer; they
do not affect how the program executes.

The comments in the Lincoln program represent one of two types of com-
ments allowed in Java. The comments in Lincoln take the following form:

// This is a comment.

This type of comment begins with a double slash (//) and continues to the end
of the line. You cannot have any characters between the two slashes. The computer

The code executed when the println method is invoked is not defined in this
program. The println method is part of the System.out object, which is part of
the Java standard class library. It’s not technically part of the Java language, but it
is always available for use in any Java program. We explore the println method
in more detail in Chapter 2.

COMMON ERROR

Statements in Java are terminated with a semicolon. If you leave the semi-
colon off of a statement, the compiler will get confused and issue an error.
Here is an example:

 System.out.println("Bilbo")
 System.out.println("Frodo");

Without the semicolon on the first line, the compiler doesn’t realize that a
new statement has begun. However, most compilers are good at giving clear
messages about this problem. It’s easy to forget semicolons when you’re
first beginning to program, but including them will soon become second
nature.

M01_LEWI5976_05_SE_C01.indd 5 08/02/19 1:00 AM

6 CHAPTER 1 Introduction

ignores any text after the double slash to the end of the line. A comment can follow
code on the same line to document that particular line, as in the following example:

System.out.println("Monthly Report"); // always use this title

The second form a Java comment may take is

/* This is another comment. */

This comment type does not use the end of a line to indicate the end of the
comment. Anything between the initiating slash-asterisk (/*) and the terminating
asterisk-slash (*/) is part of the comment, including the invisible newline charac-
ter that represents the end of a line. Therefore, this type of comment can extend
over multiple lines. There can be no space between the slash and the asterisk.

If there is a second asterisk following the /* at the beginning of a comment,
the content of the comment can be used to automatically generate external docu-
mentation about your program by using a tool called javadoc. More information
about javadoc is given in Appendix I.

The two basic comment types can be used to create various documentation
styles, such as

// This is a comment on a single line.

//— —
// Some comments such as those above methods or classes
// deserve to be blocked off to focus special attention
// on a particular aspect of your code. Note that each of
// these lines is technically a separate comment.
//— —

/*
 This is one comment
 that spans several lines.
*/

Programmers often concentrate so much on writing code that they
focus too little on documentation. You should develop good com-
menting practices and follow them habitually. Comments should be
well written, often in complete sentences. They should not belabor
the obvious but should provide appropriate insight into the intent of
the code. The following examples are not good comments:

System.out.println("hello"); // prints hello
System.out.println("test"); // change this later

The first comment paraphrases the obvious purpose of the line and does not
add any value to the statement. It is better to have no comment than to add a

KEY CONCEPT
Inline documentation should provide
insight into your code. It should not be
ambiguous or belabor the obvious.

M01_LEWI5976_05_SE_C01.indd 6 08/02/19 1:00 AM

 1.1 The Java Programming Language 7

useless one. The second comment is ambiguous. What should be changed later?
When is later? Why should it be changed?

Identifiers and Reserved Words
The various words used when writing programs are called identifiers. The identi-
fiers in the Lincoln program are class, Lincoln, public, static, void, main,
String, args, System, out, and println. These fall into three categories:

■■ words that we make up when writing a program (Lincoln and args)

■■ words that another programmer chose (String, System, out, println,
and main)

■■ words that are reserved for special purposes in the language (class,
public, static, and void)

While writing the program, we simply chose to name the class Lincoln, but
we could have used one of many other possibilities. For example, we could have
called it Quote, or Abe, or GoodOne. The identifier args (which is short for “argu-
ments”) is often used in the way we use it in Lincoln, but we could have used just
about any other identifier in its place.

The identifiers String, System, out, and println were chosen by other pro-
grammers. These words are not part of the Java language. They are part of the
Java standard library of predefined code, a set of classes and methods that some-
one has already written for us. The authors of that code chose the identifiers in
that code—we’re just making use of them.

Reserved words are identifiers that have a special meaning in a programming
language and can be used only in predefined ways. A reserved word cannot be used
for any other purpose, such as naming a class or method. In the Lincoln program,
the reserved words used are class, public, static, and void. Figure 1.1 lists all
of the Java reserved words in alphabetical order. The words marked with an asterisk

abstract

assert

boolean

break

byte

case

catch

char

class

const*

continue

default

do

double

else

enum

extends

false

final

finally

float

for

goto*

if

implements

import

instanceof

int

interface

long

native

new

null

package

private

protected

public

return

short

static

strictfp

super

switch

synchronized

this

throw

throws

transient

true

try

void

volatile

while

FIGURE 1.1 Java reserved words

M01_LEWI5976_05_SE_C01.indd 7 08/02/19 1:00 AM

8 CHAPTER 1 Introduction

are reserved for possible future use in later versions of the language but currently
have no meaning in Java.

An identifier that we make up for use in a program can be composed of any
combination of letters, digits, the underscore character (_), and the dollar sign ($),
but it cannot begin with a digit. Identifiers may be of any length. Therefore, total,
label7, nextStockItem, NUM_BOXES, and $amount are all valid identifiers, but
4th_word and coin#value are not valid.

Both uppercase and lowercase letters can be used in an identifier, and the
difference is important. Java is case-sensitive, which means that two identifier

names that differ only in the case of their letters are considered to
be different identifiers. Therefore, total, Total, ToTaL, and TOTAL
are all different identifiers. As you can imagine, it is not a good idea
to use multiple identifiers that differ only in their case, because they
can be easily confused.

KEY CONCEPT
Java is case-sensitive. The uppercase
and lowercase versions of a letter are
distinct.

Identifier
An identifier is a letter followed by zero or more letters and digits. Java

letters include the 26 English alphabetic characters in both uppercase and
lowercase, the $ and _ (underscore) characters, as well as alphabetic char-
acters from other languages. Java digits include the digits 0 through 9.

Examples:
total
MAX_HEIGHT
num1
computeWage
System

Although the Java language doesn’t require it, using a consistent case format
for each kind of identifier makes your identifiers easier to understand. The various
Java conventions regarding identifiers should be followed, although technically
they don’t have to be. For example, we use title case (uppercase for the first letter
of each word) for class names. Throughout this text, we describe the preferred
case style for each type of identifier when it is first encountered.

Although an identifier can be of any length, you should choose your names care-
fully. They should be descriptive but not verbose. You should avoid meaningless
names such as a and x. An exception to this rule can be made if the short name is
actually descriptive, such as using x and y to represent (x, y) coordinates on a two-
dimensional grid. Likewise, you should not use unnecessarily long names, such as
the identifier theCurrentItemBeingProcessed. The name currentItem would

M01_LEWI5976_05_SE_C01.indd 8 08/02/19 1:00 AM

 1.1 The Java Programming Language 9

serve just as well. As you might imagine, the use of identifiers that are too long is a
much less prevalent problem than the use of names that are not descriptive.

You should always strive to make your programs as readable as
possible. Therefore, you should always be careful when abbreviating
words. You might think that curStVal is a good name to represent
the current stock value, but another person trying to understand the
code might have trouble figuring out what you meant. It might not
even be clear to you two months after you wrote it!

A name in Java is a series of identifiers separated by the dot (period) character.
The name System.out is the way we designate the object through which we in-
voked the println method. Names appear quite regularly in Java programs.

White Space
All Java programs use white space to separate the words and symbols used in a
program. White space consists of blanks, tabs, and newline characters. The phrase
white space refers to the fact that on a white sheet of paper with black printing,
the space between the words and symbols is white. The way a programmer uses
white space is important, because it can be used to emphasize parts of the code
and can make a program easier to read.

The computer ignores white space except when the white space
is used to separate words. It does not affect the execution of a pro-
gram. This fact gives programmers a great deal of flexibility in how
they format a program. The lines of a program should be divided in
logical places, and certain lines should be indented and aligned so
that the program’s underlying structure is clear.

Because white space is ignored, we can write a program in many different ways.
For example, taking white space to one extreme, we could put as many words as
possible on each line. The code in Listing 1.2, the Lincoln2 program, is format-
ted quite differently from Lincoln but prints the same message.

Taking white space to the other extreme, we could write almost every word
and symbol on a different line with varying amounts of spaces. This awkward ap-
proach is illustrated by Lincoln3, which is shown in Listing 1.3.

KEY CONCEPT
Identifier names should be descriptive
and readable.

//**
// Lincoln2.java Java Foundations
//
// Demonstrates a poorly formatted, though valid, program.
//**

L I S T I N G 1 . 2

KEY CONCEPT
Appropriate use of white space
makes a program easier to read and
understand.

M01_LEWI5976_05_SE_C01.indd 9 08/02/19 1:00 AM

10 CHAPTER 1 Introduction

public class Lincoln2{public static void main(String[]args){
System.out.println("A quote by Abraham Lincoln:");
System.out.println("Whatever you are, be a good one.");}}

O U T P U T

A quote by Abraham Lincoln:

Whatever you are, be a good one.

L I S T I N G 1 . 2 (continued)

//**
// Lincoln3.java Java Foundations
//
// Demonstrates another valid program that is poorly formatted.
//**
 public class
 Lincoln3
{
 public
 static
 void
 main
 (
String
 []
 args)
 {
 System.out.println (
"A quote by Abraham Lincoln:")
 ; System.out.println
 (
 "Whatever you are, be a good one."
)
 ;
 }
}

O U T P U T

A quote by Abraham Lincoln:

Whatever you are, be a good one.

L I S T I N G 1 . 3

M01_LEWI5976_05_SE_C01.indd 10 08/02/19 1:00 AM

 1.2 Program Development 11

All three versions of Lincoln are technically valid and will execute in the
same way, but they are radically different from a reader’s point of view. Both
of the latter examples show poor style and make the program difficult to
understand. You may be asked to adhere to particular guidelines
when you write your programs. A software development com-
pany often has a programming style policy that it requires its
programmers to follow. In any case, you should adopt and con-
sistently use a set of style guidelines that increases the readability
of your code.

1.2 Program Development

The process of getting a program running involves various activities. The program
has to be written in the appropriate programming language, such as Java. That
program has to be translated into a form that the computer can execute. Errors
can occur at various stages of this process and must be fixed. Various software
tools can be used to help with all parts of the development process, as well. Let’s
explore these issues in more detail.

Programming Language Levels
Suppose a particular person is giving travel directions to a friend. That person
might explain those directions in any one of several languages, such as English,
Russian, or Italian. The directions are the same no matter which language is used
to explain them, but the manner in which the directions are expressed is different.
The friend must be able to understand the language being used in order to follow
the directions.

Similarly, a problem can be solved by writing a program in one of many
programming languages, such as Java, Ada, C, C++, C#, Pascal, and Smalltalk.
The purpose of the program is essentially the same no matter which language
is used, but the particular statements used to express the instructions, and the
overall organization of those instructions, vary with each language. A com-
puter must be able to understand the instructions in order to carry them out.

Programming languages can be categorized into the following four groups.
These groups basically reflect the historical development of computer languages.

■■ machine language

■■ assembly language

■■ high-level languages

■■ fourth-generation languages

KEY CONCEPT
You should adhere to a set of
guidelines that establishes the way
you format and document your
programs.

M01_LEWI5976_05_SE_C01.indd 11 08/02/19 1:00 AM

12 CHAPTER 1 Introduction

In order for a program to run on a computer, it must be expressed in that
computer’s machine language. Each type of CPU has its own language. For that
reason, we can’t run a program specifically written for a Sun Workstation, with
its Sparc processor, on a Dell PC, with its Intel processor.

Each machine language instruction can accomplish only a simple task. For
 example, a single machine language instruction might copy a value into a regis-

ter or compare a value to zero. It might take four separate machine
language instructions to add two numbers together and to store the
result. However, a computer can do millions of these instructions in
a second, and therefore, many simple commands can be executed
quickly to accomplish complex tasks.

Machine language code is expressed as a series of binary digits and
is extremely difficult for humans to read and write. Originally, pro-

grams were entered into the computer by using switches or some similarly tedious
method. Early programmers found these techniques to be time-consuming and
error-prone.

These problems gave rise to the use of assembly language, which replaced
binary digits with mnemonics, short English-like words that represent com-
mands or data. It is much easier for programmers to deal with words than
with binary digits. However, an assembly language program cannot be
executed directly on a computer. It must first be translated into machine
language.

Generally, each assembly language instruction corresponds to an equivalent
machine language instruction. Therefore, much like machine language, each
assembly language instruction accomplishes only a simple operation. Although
assembly language is an improvement over machine code from a programmer’s
perspective, it is still tedious to use. Both assembly language and machine lan-
guage are considered low-level languages.

Today, most programmers use a high-level language to write soft-
ware. A high-level language is expressed in English-like phrases and
thus is easier for programmers to read and write. A single high-level-
language programming statement can accomplish the equivalent of
many—perhaps hundreds—of machine language instructions. The
term high-level refers to the fact that the programming statements
are expressed in a way that is far removed from the machine lan-

guage that is ultimately executed. Java is a high-level language, as are Ada, C++,
Smalltalk, and many others.

Figure 1.2 shows equivalent expressions in a high-level language, in assembly
language, and in machine language. The expressions add two numbers together.
The assembly language and machine language in this example are specific to a
Sparc processor.

KEY CONCEPT
High-level languages allow a
programmer to ignore the underlying
details of machine language.

KEY CONCEPT
All programs must be translated into a
particular CPU’s machine language in
order to be executed.

M01_LEWI5976_05_SE_C01.indd 12 08/02/19 1:00 AM

 1.2 Program Development 13

The high-level language expression in Figure 1.2 is readable and intuitive for
programmers. It is similar to an algebraic expression. The equivalent assembly
language code is somewhat readable, but it is more verbose and less intuitive. The
machine language is basically unreadable and much longer. In fact, only a small
portion of the binary machine code to add two numbers together is shown in
Figure 1.2. The complete machine language code for this particular expression is
over 400 bits long.

A high-level language insulates programmers from needing to know the un-
derlying machine language for the processor on which they are working. But
high-level language code must be translated into machine language in order to be
executed.

Some programming languages are considered to operate at an even higher
level than high-level languages. They might include special facilities for auto-
matic report generation or interaction with a database. These languages are called
 fourth-generation languages, or simply 4GLs, because they followed the first three
generations of computer programming: machine, assembly, and high-level languages.

Editors, Compilers, and Interpreters
Several special-purpose programs are needed to help with the process of develop-
ing new programs. They are sometimes called software tools because they are
used to build programs. Examples of basic software tools include an editor, a
compiler, and an interpreter.

Initially, you use an editor as you type a program into a computer and store
it in a file. There are many different editors with many different features. You
should become familiar with the editor that you will use regularly, because such
familiarity can dramatically affect the speed at which you enter and modify your
programs.

High-Level Language Assembly Language Machine Language

a + b 1d [%fp–20], %o0

1d [%fp–24], %o1

add %o0, %o1, %o0

...

1101 0000 0000 0111

1011 1111 1110 1000

1101 0010 0000 0111

1011 1111 1110 1000

1001 0000 0000 0000

...

FIGURE 1.2 A high-level expression and its assembly language
and machine language equivalents

M01_LEWI5976_05_SE_C01.indd 13 08/02/19 1:00 AM

14 CHAPTER 1 Introduction

Figure 1.3 shows a very basic view of the program development process. After
editing and saving your program, you attempt to translate it from high-level code
into a form that can be executed. That translation may result in errors, in which
case you return to the editor to make changes to the code to fix the problems.
Once the translation occurs successfully, you can execute the program and evalu-
ate the results. If the results are not what you want, or if you want to enhance
your existing program, you again return to the editor to make changes.

The translation of source code into (ultimately) machine language for a par-
ticular type of CPU can occur in a variety of ways. A compiler is a program that
translates code in one language into equivalent code in another language. The
original code is called source code, and the language into which it is translated
is called the target language. For many traditional compilers, the source code is
translated directly into a particular machine language. In that case, the translation
process occurs once (for a given version of the program), and the resulting execut-
able program can be run whenever it is needed.

An interpreter is similar to a compiler but has an important difference. An
interpreter interweaves the translation and execution activities. A small part of
the source code, such as one statement, is translated and executed. Then another
statement is translated and executed, and so on. One advantage of this technique
is that it eliminates the need for a separate compilation phase. However, the pro-
gram generally runs more slowly because the translation process occurs during
each execution.

The process generally used to translate and execute Java programs combines the
use of a compiler and that of an interpreter. This process is pictured in Figure 1.4.

The Java compiler translates Java source code into Java bytecode,
which is a representation of the program in a low-level form similar
to machine language code. The Java interpreter reads Java bytecode
and executes it on a specific machine. Another compiler could trans-
late the bytecode into a particular machine language for efficient ex-
ecution on that machine.

The difference between Java bytecode and true machine language code is that
Java bytecode is not tied to any particular processor type. This approach has
the distinct advantage of making Java architecture-neutral and therefore easily

KEY CONCEPT
A Java compiler translates Java source
code into Java bytecode, a low-level,
architecture-neutral representation of
the program.

Edit and
save program

Translate program
into executable form

errors errors

Execute program and
evaluate results

FIGURE 1.3 Editing and running a program

M01_LEWI5976_05_SE_C01.indd 14 08/02/19 1:00 AM

 1.2 Program Development 15

portable from one machine type to another. The only restriction is that there must
be a Java interpreter or a bytecode compiler for each processor type on which the
Java bytecode is to be executed.

Because the compilation process translates the high-level Java source code into
a low-level representation, the interpretation process is more efficient than inter-
preting high-level code directly. Executing a program by interpreting its bytecode
is still slower than executing machine code directly, but it is fast enough for most
applications. Note that for efficiency, Java bytecode could be compiled into ma-
chine code.

Development Environments
A software development environment is the set of tools used to create, test, and
modify a program. Some development environments are available free, whereas
others, which may have advanced features, must be purchased. Some environ-
ments are referred to as integrated development environments (IDEs) because they
integrate various tools into one software program.

Any development environment will contain certain key tools, such as a
Java compiler and interpreter. Some include a debugger, which helps you find
errors in a program. Other tools that may be included are documentation
generators, archiving tools, and tools that help you visualize your program
structure.

Java source
code

Java
bytecodeJava compiler

Java
interpreter

Bytecode
compiler

Machine
code

FIGURE 1.4 The Java translation and execution process

M01_LEWI5976_05_SE_C01.indd 15 08/02/19 1:00 AM

16 CHAPTER 1 Introduction

Sun Microsystems, the creator of the Java programming language, provides the
Java Software Development Kit (SDK), which is sometimes referred to simply as
the Java Development Kit (JDK). The SDK can be downloaded free of charge for
various hardware platforms from Sun’s Java Web site, java.sun.com.

The SDK tools are not an integrated environment. The commands for compila-
tion and interpretation are executed on the command line. That is, the SDK does
not have a graphical user interface (GUI), with windows, menus, buttons, and so
on. It also does not include an editor, although any editor that can save a docu-
ment as simple text can be used.

Sun also has a Java IDE called NetBeans (www.netbeans.org)
that incorporates the development tools of the SDK into one conve-
nient GUI-based program. IBM promotes a similar IDE called Eclipse
(www.eclipse.org). Both NetBeans and Eclipse are open source projects,
which means that they are developed by a wide collection of program-
mers and are available free.

A research group at Auburn University has developed jGRASP, a free Java IDE.
It can be downloaded from www.jgrasp.org. In addition to fundamental develop-
ment tools, jGRASP contains tools that graphically display program elements.

Many other Java development environments are available as well. The choice
of which development environment to use is important. The more you know
about the capabilities of your environment, the more productive you can be dur-
ing program development.

Syntax and Semantics
Each programming language has its own unique syntax. The syntax rules of a
language dictate exactly how the vocabulary elements of the language can be com-
bined to form statements. These rules must be followed in order to create a pro-
gram. We’ve already discussed several Java syntax rules. For instance, the fact
that an identifier cannot begin with a digit is a syntax rule. The fact that braces
are used to begin and end classes and methods is also a syntax rule. Appendix J
formally defines the basic syntax rules for the Java programming language, and
specific rules are highlighted throughout the text.

During compilation, all syntax rules are checked. If a program is not syntacti-
cally correct, the compiler will issue error messages and will not produce bytecode.
Java has a syntax similar to that of the programming languages C and C++, so
the look and feel of the code are familiar to people with a background in those
languages.

The semantics of a statement in a programming language define what will
happen when that statement is executed. Programming languages are generally

VideoNote
Comparison of Java IDEs

KEY CONCEPT
Many different development
environments exist to help you create
and modify Java programs.

M01_LEWI5976_05_SE_C01.indd 16 08/02/19 1:00 AM

 1.2 Program Development 17

unambiguous, which means the semantics of a program are well defined. That is,
there is one and only one interpretation for each statement. On the other hand,
the natural languages that humans use to communicate, such as English and
Italian, are full of ambiguities. A sentence can often have two or more different
meanings. For example, consider the following sentence:

Time flies like an arrow.

The average human is likely to interpret this sentence as a general observation: that time
moves quickly in the same way that an arrow moves quickly. However, if we interpret
the word time as a verb (as in “run the 50-yard dash and I’ll time you”) and the word
flies as a noun (the plural of fly), the interpretation changes completely. We know that
arrows don’t time things, so we wouldn’t normally interpret the sentence that way, but
it is still a valid interpretation of the words in the sentence. A computer would have a
difficult time trying to determine which meaning was intended. Moreover, this sentence
could describe the preferences of an unusual insect known as a “time fly,” which might
be found near an archery range. After all, fruit flies like a banana.

The point is that one specific English sentence can have multiple
valid meanings. A computer language cannot allow such ambiguities
to exist. If a programming language instruction could have two dif-
ferent meanings, a computer would not be able to determine which
one should be carried out.

Errors
Several different kinds of problems can occur in software, particularly during
program development. The term computer error is often misused and varies in
meaning depending on the situation. From a user’s point of view, anything that
goes awry when interacting with a machine can be called a computer error. For
example, suppose you charged a $23 item to your credit card, but when you
received the bill, the item was listed at $230. After you have the problem fixed,
the credit card company apologizes for the “computer error.” Did the computer
arbitrarily add a zero to the end of the number, or did it perhaps multiply the
value by 10? Of course not. A computer follows the commands we
give it and operates on the data we provide. If our programs are
wrong or our data inaccurate, then we cannot expect the results to
be correct. A common phrase used to describe this situation is “gar-
bage in, garbage out.”

You will encounter three kinds of errors as you develop programs:

■■ compile-time error

■■ runtime error

■■ logical error

KEY CONCEPT
Syntax rules dictate the form of
a program. Semantics dictate the
meaning of the program statements.

KEY CONCEPT
The programmer is responsible for the
accuracy and reliability of a program.

M01_LEWI5976_05_SE_C01.indd 17 08/02/19 1:00 AM

18 CHAPTER 1 Introduction

The compiler checks to make sure you are using the correct syntax. If you
have any statements that do not conform to the syntactic rules of the lan-
guage, the compiler will produce a syntax error. The compiler also tries to
find other problems, such as the use of incompatible types of data. The syntax

might be technically correct, but you may be attempting to do
something that the language doesn’t semantically allow. Any
error identified by the compiler is called a compile-time error.
When a compile-time error occurs, an executable version of the
program is not created.

The second kind of problem occurs during program execution. It is called a
runtime error and causes the program to terminate abnormally. For example,
if we attempt to divide by zero, the program will “crash” and halt execu-
tion at that point. Because the requested operation is undefined, the system
simply abandons its attempt to continue processing your program. The best
programs are robust; that is, they avoid as many run-time errors as possible.
For example, the program code could guard against the possibility of divid-
ing by zero and handle the situation appropriately if it arises. In Java, many
run-time problems are called exceptions that can be caught and dealt with
accordingly.

The third kind of software problem is a logical error. In this case, the soft-
ware compiles and executes without complaint, but it produces incorrect re-
sults. For example, a logical error occurs when a value is calculated incorrectly
or when a graphical button does not appear in the correct place. A program-
mer must test the program thoroughly, comparing the expected results to
those that actually occur. When defects are found, they must be traced back
to the source of the problem in the code and corrected. The process of finding
and correcting defects in a program is called debugging. Logical errors can
manifest themselves in many ways, and the actual root cause can be difficult
to discover.

1.3 Problem Solving

Creating software involves much more than just writing code. The mechanics
of editing and running a program are necessary steps, but the heart of soft-
ware development is problem solving. We write a program to solve a particular
problem.

In general, problem solving consists of multiple steps:

1. Understand the problem.

2. Design a solution.

VideoNote
Examples of various
error types

KEY CONCEPT
A Java program must be syntactically
correct or the compiler will not
produce bytecode.

M01_LEWI5976_05_SE_C01.indd 18 08/02/19 1:00 AM

 1.3 Problem Solving 19

3. Consider alternatives to the solution and refine the solution.

4. Implement the solution.

5. Test the solution and fix any problems that exist.

Although this approach applies to any kind of problem solving, it works par-
ticularly well when developing software. These steps aren’t purely linear. That
is, some of the activities will overlap others. But at some point, all of these steps
should be carefully addressed.

The first step, coming to understand the problem, may sound obvious, but
a lack of attention to this step has been the cause of many misguided software
development efforts. If we attempt to solve a problem we don’t completely un-
derstand, we often end up solving the wrong problem or at least going off on
improper tangents. Each problem has a problem domain, the real-world issues
that are key to our solution. For example, if we are going to write a program
to score a bowling match, then the problem domain includes the rules of bowl-
ing. To develop a good solution, we must thoroughly understand the problem
domain.

The key to designing a problem solution is breaking it down into
manageable pieces. A solution to any problem can rarely be ex-
pressed as one big task. Instead, it is a series of small cooperating
tasks that interact to perform a larger task. When developing soft-
ware, we don’t write one big program. We design separate pieces
that are responsible for certain parts of the solution, and then we
integrate them with the other parts.

The first approach we choose in seeking a solution may not be the best one. We
must always consider alternatives and refine the solution as necessary. The earlier
we consider alternatives, the easier it is to modify our approach.

Implementing the solution consists of putting the solution that we have
designed in a usable form. When we are developing a software solution to
a problem, the implementation stage is the process of actually writing the
program. Too often programming is thought of as writing code. But in most
cases, the act of designing the program should be far more interesting and cre-
ative than the process of implementing the design in a particular programming
language.

At many points in the development process, we should test our solution to find
any errors that exist so that we can fix them. Testing cannot guarantee that there
aren’t still problems yet to be discovered, but it can raise our confidence that we
have a viable solution.

Throughout this text, we explore techniques that enable us to design and im-
plement elegant programs. Although we will often get immersed in these details,
we should never forget that our primary goal is to solve problems.

KEY CONCEPT
Problem solving involves breaking
a solution down into manageable
pieces.

M01_LEWI5976_05_SE_C01.indd 19 08/02/19 1:00 AM

20 CHAPTER 1 Introduction

1.4 Software Development Activities

Given that the goal of software development is to solve problems, it shouldn’t sur-
prise you that the activities involved in the software development process mirror the
general problem-solving steps we discussed in the previous section. In particular, any
proper software development effort consists of four basic development activities:

■■ Establishing the requirements.

■■ Creating a design.

■■ Implementing the design.

■■ Testing.

It would be nice if these activities, in this order, defined a step-by-step ap-
proach for developing software. However, although they may seem to be sequen-
tial, they are almost never completely linear in reality. They overlap and interact.
Let’s discuss each development activity briefly.

Software requirements specify what a program must accomplish. They indicate
the tasks that a program should perform, not how it performs them. Often, re-
quirements are expressed in a document called a functional specification.

Requirements are a clear expression of the problem to be solved. Until we truly
know what problem we are trying to solve, we can’t actually solve it.

In a classroom setting, students are generally provided the software require-
ments in the form of the problem assignment. However, even when they are
provided, such requirements need to be discussed and clarified. In professional
development, the person or group that wants a software product developed (the
client) will often provide an initial set of requirements. However, these initial
requirements are often incomplete, ambiguous, and perhaps even contradictory.
The software developer must work with the client to refine the requirements until
all key decisions about what the system will do have been addressed.

Requirements often address user interface issues such as output format, screen
layouts, and graphical interface components. Essentially, the requirements estab-
lish the characteristics that make the program useful for the end user. They may
also apply constraints to the program, such as how fast a task must be performed.

A software design indicates how a program will accomplish its requirements.
The design specifies the classes and objects needed in a program and defines how
they interact. It also specifies the relationships among the classes. Low-level design
issues deal with how individual methods accomplish their tasks.

A civil engineer would never consider building a bridge without designing it
first. The design of software is no less essential. Many problems that occur in soft-
ware are directly attributable to a lack of good design effort. It has been shown
time and again that the effort spent on the design of a program is well worth it,
saving both time and money in the long run.

M01_LEWI5976_05_SE_C01.indd 20 08/02/19 1:00 AM

 1.5 Object-Oriented Programming 21

During software design, alternatives need to be considered and
explored. Often, the first attempt at a design is not the best solu-
tion. Fortunately, changes are relatively easy to make during the
design stage.

Implementation is the process of writing the source code that will
solve the problem. More precisely, implementation is the act of translating the
design into a particular programming language. Too many programmers focus on
implementation exclusively, when actually it should be the least creative of all de-
velopment activities. The important decisions should be made when establishing
the requirements and creating the design.

Testing is the act of ensuring that a program will solve the targeted problem,
given all of the constraints under which it must perform. Testing includes run-
ning a program multiple times with various inputs and carefully scrutinizing the
results. But it means far more than that. Testing in one form or another should
be a part of every stage of development. The accuracy of the requirements, for
instance, should be tested by reviewing them with the client. We revisit the issues
related to testing in Chapter 11.

1.5 Object-Oriented Programming

We stated earlier in this chapter that Java is an object-oriented language. As the name
implies, an object is a fundamental entity in a Java program. This text is focused on
the idea of developing software by defining objects that interact with each other.

The principles of object-oriented software development have been around for
many years, essentially as long as high-level programming languages have been
used. The programming language Simula, developed in the 1960s, had many
characteristics that define the modern object-oriented approach to software
development. In the 1980s and 1990s, object-oriented programming became
wildly popular, largely because of the development of programming languages
such as C++ and Java. It is now the dominant approach used in commercial
software development.

One of the most attractive characteristics of the object-oriented approach is the fact
that objects can be used quite effectively to represent real-world entities. We can use a
software object to represent an employee in a company, for instance. We’d create one
object per employee, each with behaviors and characteristics that we need to represent.
In this way, object-oriented programming enables us to map our programs to the real
situations that the programs represent. That is, the object-oriented approach makes it
easier to solve problems, which is the point of writing a program in the first place.

Let’s explore the specific characteristics of the object-oriented approach that
help us solve those problems.

KEY CONCEPT
The effort put into design is both
crucial and cost-effective.

M01_LEWI5976_05_SE_C01.indd 21 08/02/19 1:00 AM

22 CHAPTER 1 Introduction

Object-Oriented Software Principles
Object-oriented programming ultimately requires a solid understanding of the
following terms:

■■ object

■■ attribute

■■ method

■■ class

■■ encapsulation

■■ inheritance

■■ polymorphism

In addition to these terms, there are many associated concepts that allow us
to tailor our solutions in innumerable ways. This text is designed to help you in-
crease your understanding of these concepts gradually and naturally. This section
offers an overview of these ideas at a high level to establish some terminology and
provide the big picture.

We mentioned earlier that an object is a fundamental element in a program.
A software object often represents a real object in our problem domain, such
as a bank account. Every object has a state and a set of behaviors. By “state”
we mean state of being—fundamental characteristics that currently define the
object. For example, part of a bank account’s state is its current balance. The
behaviors of an object are the activities associated with the object. Behaviors
associated with a bank account probably include the ability to make deposits
and withdrawals.

In addition to objects, a Java program also manages primitive data. Primitive
data include fundamental values such as numbers and characters. Objects usually
represent more interesting or complex entities.

An object’s attributes are the values it stores internally, which may be repre-
sented as primitive data or as other objects. For example, a bank account object
may store a floating point number (a primitive value) that represents the balance
of the account. It may contain other attributes, such as the name of the account
owner. Collectively, the values of an object’s attributes define its current state.

As mentioned earlier in this chapter, a method is a group of programming
statements that is given a name. When a method is invoked, its statements are

executed. A set of methods is associated with an object. The meth-
ods of an object define its potential behaviors. To define the ability
to make a deposit in a bank account, we define a method contain-
ing programming statements that will update the account balance
accordingly.

KEY CONCEPT
Each object has a state, defined by
its attributes, and a set of behaviors,
defined by its methods.

M01_LEWI5976_05_SE_C01.indd 22 08/02/19 1:00 AM

 1.5 Object-Oriented Programming 23

An object is defined by a class. A class is the model or blueprint from
which an object is created. Consider the blueprint created by an architect
when designing a house. The blueprint defines the important characteristics
of the house—its walls, windows, doors, electrical outlets, and so on. Once
the blueprint is created, several houses can be built using it, as depicted in
Figure 1.5.

In one sense, the houses built from the blueprint are different. They are in
different locations, have different addresses, contain different furniture, and are
inhabited by different people. Yet in many ways they are the “same” house. The
layout of the rooms and other crucial characteristics are the same in each. To cre-
ate a different house, we would need a different blueprint.

A class is a blueprint of an object. It establishes the kind of data an object of
that type will hold and defines the methods that represent the behavior of such
objects. However, a class is not an object any more than a blueprint is a house. In
general, a class contains no space to store data. Each object has space for its own
data, which is why each object can have its own state.

Once a class has been defined, multiple objects can be created
from that class. For example, once we define a class to represent the
concept of a bank account, we can create multiple objects that rep-
resent specific, individual bank accounts. Each bank account object
will keep track of its own balance.

An object should be encapsulated, which means it protects and manages its
own information. That is, an object should be self-governing. The only changes

FIGURE 1.5 A house blueprint and three houses created from it

KEY CONCEPT
A class is a blueprint of an object.
Multiple objects can be created from
one class definition.

M01_LEWI5976_05_SE_C01.indd 23 08/02/19 1:00 AM

24 CHAPTER 1 Introduction

made to the state of the object should be accomplished by that object’s methods.
We should design an object so that other objects cannot “reach in” and change
its state.

Classes can be created from other classes by using inheritance. That is, the defi-
nition of one class can be based on another class that already exists. Inheritance
is a form of software reuse, capitalizing on the similarities among various kinds
of classes that we may want to create. One class can be used to derive several new
classes. Derived classes can then be used to derive even more classes. This creates
a hierarchy of classes, where the attributes and methods defined in one class are
inherited by its children, which in turn pass them on to their children, and so on.
For example, we might create a hierarchy of classes that represent various types
of accounts. Common characteristics are defined in high-level classes, and specific
differences are defined in derived classes.

Polymorphism is the idea that we can refer to multiple types of related objects
over time in consistent ways. It gives us the ability to design powerful and elegant
solutions to problems that deal with multiple objects.

Some of the core object-oriented concepts are depicted in Figure 1.6. We don’t
expect you to understand these ideas fully at this point. Most of this text is de-
signed to flesh out these ideas. This overview is intended only to set the stage.

John's Bank Account
Balance: $5,257

Multiple encapsulated objects
can be created from one class

A class defines
a concept

Classes can be organized
into inheritance hierarchies

Jason’s Bank Account
Balance: $1,245,069

Mary's Bank Account
Balance: $16,833

Bank Account

 Account

 Charge Account Bank Account

 Savings Account Checking Account

FIGURE 1.6 Various aspects of object-oriented software

M01_LEWI5976_05_SE_C01.indd 24 08/02/19 1:00 AM

 Summary of Key Concepts 25

■■ A computer system consists of hardware and software that work in concert
to help us solve problems.

■■ This test focuses on the principles of object-oriented programming.

■■ Comments do not affect a program’s processing; instead, they serve to facili-
tate human comprehension.

■■ Inline documentation should provide insight into your code. It should not be
ambiguous or belabor the obvious.

■■ Java is case-sensitive. The uppercase and lowercase versions of a letter are
distinct.

■■ Identifier names should be descriptive and readable.

■■ Appropriate use of white space makes a program easier to read and under-
stand.

■■ You should adhere to a set of guidelines that establishes the way you format
and document your programs.

■■ All programs must be translated into a particular CPU’s machine language in
order to be executed.

■■ High-level languages allow a programmer to ignore the underlying details of
machine language.

■■ A Java compiler translates Java source code into Java bytecode, a low-level,
architecture-neutral representation of the program.

■■ Many different development environments exist to help you create and mod-
ify Java programs.

■■ Syntax rules dictate the form of a program. Semantics dictate the meaning of
the program statements.

■■ The programmer is responsible for the accuracy and reliability of a program.

■■ A Java program must be syntactically correct or the compiler will not pro-
duce bytecode.

■■ Problem solving involves breaking a solution down into manageable pieces.

■■ The effort put into design is both crucial and cost-effective.

■■ Each object has a state, defined by its attributes, and a set of behaviors, de-
fined by its methods.

■■ A class is a blueprint of an object. Multiple objects can be created from one
class definition.

Summary of Key Concepts

M01_LEWI5976_05_SE_C01.indd 25 08/02/19 1:00 AM

26 CHAPTER 1 Introduction

Summary of Terms
assembly language A low-level language that replaced binary digits with
mnemonics.

bytecode A low-level representation of a Java program that is not tied to a
specific type of CPU.

case-sensitive Making a distinction between uppercase and lowercase let-
ters. Java is case-sensitive.

class definition An element in a Java program. All Java programs are de-
fined using class definitions.

class library A set of software classes that can be used when developing
programs (see Java API).

comment Text included in a program to make the program easier to under-
stand for humans.

compiler A program that translates code in one language into equivalent
code in another language.

deprecated An element that is considered old-fashioned and should not be used.

editor A software tool that allows one to enter text such as a program.

encapsulation The characteristic of an object that means it protects and
manages its own information.

graphical user interface An interface to a program that consists of graphical
elements such as windows and buttons.

high-level language A programming language that is expressed in phrases
that are easier than machine language for a programmer to understand.

identifier A word in a programming language.

inheritance Defining a class based on another that already exists.

integrated development environment A set of software tools used to create,
modify, and test a program.

Java 2 Platform The most recent Java technology.

Java API A library of software that we can use when developing programs.

logical error An error in a program that causes it to produce incorrect results.

machine language The language executed by a particular CPU.

method A group of programming statements that is given a name.

method invocation Calling a method to execute its code.

natural language A language that humans use to communicate, such as English.

object A fundamental entity in a Java program that represents something
and provides services related to it.

M01_LEWI5976_05_SE_C01.indd 26 08/02/19 1:00 AM

 Self-Review Questions 27

object-oriented programming language A language such as Java that uses
objects as the fundamental elements of a program.

program A series of instructions that a computer executes one at a time.

programming statement An individual instruction in a programming language.

reserved word An identifier that has a special meaning in a program language
and can be used only in predefined ways.

runtime error An error that occurs during program execution and causes
the program to terminate abnormally.

semantics Rules that define what a statement in a language means.

syntax The rules of a language that dictate how vocabulary elements of the
language can be used.

syntax error A programming error that violates the syntax rules of the language.

white space The space, tab, and newline characters used to separate words
and symbols in a program.

Self-Review Questions
SR 1.1 What is hardware? What is software?

SR 1.2 What is the relationship between a high-level language and ma-
chine language?

SR 1.3 What is Java bytecode?

SR 1.4 What is white space? How does it affect program execution?
How does it affect program readability?

SR 1.5 Which of the following are not valid Java identifiers? Why?

a. RESULT
b. result
c. 12345
d. x12345y
e. black&white
f. answer_7

SR 1.6 What do we mean by the syntax and semantics of a programming
language?

SR 1.7 Name the four basic activities that are involved in the software
development process.

SR 1.8 What are the primary concepts that support object-oriented
programming?

M01_LEWI5976_05_SE_C01.indd 27 08/02/19 1:00 AM

28 CHAPTER 1 Introduction

Exercises
EX 1.1 Give examples of the two types of Java comments, and explain

the differences between them.

EX 1.2 Which of the following are not valid Java identifiers? Why?

a. Factorial
b. anExtremelyLongIdentifierIfYouAskMe
c. 2ndLevel
d. level2
e. MAX_SIZE
f. highest$
g. hook&ladder

EX 1.3 Why are the following valid Java identifiers not considered good
identifiers?

a. q
b. totVal
c. theNextValueInTheList

EX 1.4 Java is case-sensitive. What does that mean?

EX 1.5 What do we mean when we say that the English language is am-
biguous? Give two examples of ambiguity in the English language
(other than the example used in this chapter), and explain the am-
biguity. Why is ambiguity a problem for programming languages?

EX 1.6 Categorize each of the following situations as a compile-time er-
ror, run-time error, or logical error:

a. multiplying two numbers when you meant to add them
b. dividing by zero
c. forgetting a semicolon at the end of a programming statement
d. spelling a word wrong in the output
e. producing inaccurate results
f. typing a { when you should have typed a (

Programming Projects
PP 1.1 Enter, compile, and run the following application.

public class Test

{
 public static void main(String[] args)
 {
 System.out.println("An Emergency Broadcast");
 }

}

M01_LEWI5976_05_SE_C01.indd 28 08/02/19 1:00 AM

 Programming Projects 29

PP 1.2 Introduce the following errors, one at a time, into the program
from Programming Project 1.1. Record any error messages that
the compiler produces. Fix the previous error each time, before
you introduce a new one. If no error messages are produced, ex-
plain why. Try to predict what will happen before you make each
change.

a. change Test to test

b. change Emergency to emergency

c. remove the first quotation mark in the string

d. remove the last quotation mark in the string

e. change main to man

f. change println to bogus

g. remove the semicolon at the end of the println statement

h. remove the last brace in the program

PP 1.3 Write an application that prints, on separate lines, your name,
your birthday, your hobbies, your favorite book, and your favor-
ite movie. Label each piece of information in the output.

PP 1.4 Write an application that prints the phrase Knowledge is Power
in each of the following three ways:

a. on one line

b. on three lines, one word per line, with the words centered relative
to each other

c. inside a box made up of the characters = and |

PP 1.5 Write an application that prints a list of four or five websites that
you enjoy. Print both the site name and the URL.

PP 1.6 Write an application that prints the first few verses of a song
(your choice). Label the chorus.

PP 1.7 Write an application that prints the following diamond shape.
Don’t print any unneeded characters. (That is, don’t make any
character string longer than it has to be.)

 *

 *

M01_LEWI5976_05_SE_C01.indd 29 08/02/19 1:00 AM

PP 1.8 Write an application that displays your initials in large block letters.
Make each large letter out of the corresponding regular character.
Here is an example:

JJJJJJJJJJJJJJJ AAAAAAAAA LLLL
JJJJJJJJJJJJJJJ AAAAAAAAAAA LLLL
 JJJJ AAA AAA LLLL
 JJJJ AAA AAA LLLL
 JJJJ AAAAAAAAAAA LLLL
JJJJJ JJJJ AAAAAAAAAAA LLLL
JJ JJJJ AAA AAA LLLL
 JJJJJJJJJJ AAA AAA LLLLLLLLLLLLLL
 JJJJJJJJ AAA AAA LLLLLLLLLLLLLL

Answers to Self-Review Questions
SRA 1.1 The hardware of a computer system consists of its physical com-

ponents, such as a circuit board, monitor, and keyboard. Software
is the programs that are executed by the hardware and the data
that those programs use. Hardware is tangible, whereas software
is intangible.

SRA 1.2 High-level languages allow a programmer to express a series of
program instructions in English-like terms that are relatively easy
to read and use. However, in order to execute, a program must
be expressed in a particular computer’s machine language, which
consists of a series of bits that is basically unreadable by humans.
A high-level language program must be translated into machine
language before it can be run.

SRA 1.3 Java bytecode is a low-level representation of a Java source code
program. The Java compiler translates the source code into byte-
code, which can then be executed using the Java interpreter. The by-
tecode might be transported across the Web before being executed
by a Java interpreter that is part of a Web browser.

SRA 1.4 White space is a term that refers to the spaces, tabs, and newline
characters that separate words and symbols in a program. The com-
piler ignores extra white space; therefore, it doesn’t affect execution.
However, it is crucial to use white space appropriately to make a
program readable to humans.

SRA 1.5 All of the identifiers shown are valid except 12345 (an identifier
cannot begin with a digit) and black & white (an identifier cannot

30 CHAPTER 1 Introduction

M01_LEWI5976_05_SE_C01.indd 30 08/02/19 1:00 AM

contain the character &). The identifiers RESULT and result are
both valid, but they should not be used together in a program
because they differ only by case. The underscore character (as in
answer_7) is a valid part of an identifier.

SRA 1.6 Syntax rules define how the symbols and words of a program-
ming language can be put together. The semantics of a program-
ming language instruction determine what will happen when that
instruction is executed.

SRA 1.7 The four basic activities in software development are require-
ments analysis (deciding what the program should do), design
(deciding how to do it), implementation (writing the solution in
source code), and testing (validating the implementation).

SRA 1.8 The primary elements that support object-oriented programming
are objects, classes, encapsulation, and inheritance. An object is
defined by a class, which contains methods that define the opera-
tions on those objects (the services that they perform). Objects
are encapsulated so that they store and manage their own data.
Inheritance is a reuse technique in which one class can be derived
from another.

 Answers to Self-Review Questions 31

M01_LEWI5976_05_SE_C01.indd 31 08/02/19 1:00 AM

33

2
This chapter explores some of the basic types of data

used in a Java program and the use of expressions to per-

form calculations. It discusses the conversion of data from

one type to another, and how to read input interactively

from the user running a program.

C H A P T E R O B J E C T I V E S
■■ Discuss the use of character strings, concatenation, and
escape sequences.

■■ Explore the declaration and use of variables.

■■ Describe the Java primitive data types.

■■ Discuss the syntax and processing of expressions.

■■ Define the types of data conversions and the mechanisms for
accomplishing them.

■■ Introduce the Scanner class to create interactive programs.

Data and
Expressions 2

M02_LEWI5976_05_SE_C02.indd 33 08/02/19 1:13 AM

34 CHAPTER 2 Data and Expressions

2.1 Character Strings

In Chapter 1 we discussed the basic structure of a Java program, including the
use of comments, identifiers, and white space, using the Lincoln program as an
example. Chapter 1 also included an overview of the various concepts involved in
object-oriented programming, such as objects, classes, and methods. Take a mo-
ment to review these ideas if necessary.

A character string is an object in Java, defined by the class String. Because
strings are so fundamental to computer programming, Java provides the ability
to use a string literal, delimited by double quotation characters, as we’ve seen in
previous examples. We explore the String class and its methods in more detail in
Chapter 3. For now, let’s explore the use of string literals further.

The following are all examples of valid string literals:

"The quick brown fox jumped over the lazy dog."
"2201 Birch Leaf Lane, Blacksburg, VA 24060"
"x"
""

A string literal can contain any valid characters, including numeric digits, punc-
tuation, and other special characters. The last example in the list above contains
no characters at all.

The print and println Methods
In the Lincoln program in Chapter 1, we invoked the println method as
follows:

System.out.println("Whatever you are, be a good one.");

This statement demonstrates the use of objects. The System.out object represents an
output device or file, which by default is the monitor screen. To be more precise, the
object’s name is out and it is stored in the System class. We explore that relationship
in more detail at the appropriate point in the text.

The println method is a service that the System.out object performs for us.
Whenever we request it, the object will print a character string to the screen. We
can say that we send the println message to the System.out object to request
that some text be printed.

Each piece of data that we send to a method is called a parameter. In this case,
the println method takes only one parameter: the string of characters to be
printed.

M02_LEWI5976_05_SE_C02.indd 34 08/02/19 1:13 AM

 2.1 Character Strings 35

The System.out object also provides another service we can use: the print
method. The difference between print and println is small but important. The
println method prints the information sent to it and then moves to the beginning
of the next line. The print method is similar to println, but it does not advance
to the next line when completed.

The program shown in Listing 2.1 is called Countdown, and it invokes both the
print method and the println method.

Carefully compare the output of the Countdown program, shown
at the bottom of the program listing, to the program code. Note that
the word Liftoff is printed on the same line as the first few words,
even though it is printed using the println method. Remember that
the println method moves to the beginning of the next line after the
information passed to it is printed.

Invoking a Method

object parameter(s)

method name

 System.out . println ("Hello");

KEY CONCEPT
The print and println methods
represent two services provided by the
System.out object.

//***
// Countdown.java Java Foundations
//
// Demonstrates the difference between print and println.

//***

public class Countdown
{

//--
// Prints two lines of output representing a rocket countdown.
//--

L I S T I N G 2 . 1

M02_LEWI5976_05_SE_C02.indd 35 08/02/19 1:13 AM

36 CHAPTER 2 Data and Expressions

String Concatenation
A string literal cannot span multiple lines in a program. The following program
statement is improper syntax and would produce an error when attempting to
compile:

// The following statement will not compile
System.out.println("The only stupid question is
the one that’s not asked.");

When we want to print a string that is too long to fit on one line in a program,
we can rely on string concatenation to append one string to the end of another.
The string concatenation operator is the plus sign (+). The following expression
concatenates one character string and another, producing one long string:

"The only stupid question is " + "the one that’s not asked."

The program called Facts shown in Listing 2.2 contains several println
statements. The first one prints a sentence that is somewhat long and will not
fit on one line of the program. Because a character literal cannot span two
lines in a program, we split the string into two and use string concatenation

L I S T I N G 2 . 1 continued

public static void main(String[] args)
{

 System.out.print("Three...");
 System.out.print("Two...");
 System.out.print("One...");
 System.out.print("Zero...");

 System.out.println("Liftoff!"); // appears on first output line

 System.out.println("Houston, we have a problem.");
 }
}

O U T P U T

Three... Two... One... Zero... Liftoff!
Houston, we have a problem.

M02_LEWI5976_05_SE_C02.indd 36 08/02/19 1:13 AM

 2.1 Character Strings 37

L I S T I N G 2 . 2

//***
// Facts.java Java Foundations
//
// Demonstrates the use of the string concatenation operator and the
// automatic conversion of an integer to a string.
//***

public class Facts
{

//--
// Prints various facts.
//--

public static void main(String[] args)
{

 // Strings can be concatenated into one long string

 System.out.println("We present the following facts for your"
 + "extracurricular edification:");

 System.out.println();

 // A string can contain numeric digits

 System.out.println("Letters in the Hawaiian alphabet: 12");

 // A numeric value can be concatenated to a string

 System.out.println("Dialing code for Antarctica: " + 672);

 System.out.println("Year in which Leonardo da Vinci invented"
 + "the parachute: " + 1515);

 system.out.println("Speed of ketchup: " + 40 + " km per year");
 }
}

O U T P U T

We present the following facts for your extracurricular edification:

Letters in the Hawaiian alphabet: 12
Dialing code for Antarctica: 672
Year in which Leonardo da Vinci invented the parachute: 1515

Speed of ketchup: 40 km per year

M02_LEWI5976_05_SE_C02.indd 37 08/02/19 1:13 AM

38 CHAPTER 2 Data and Expressions

to append them. Therefore, the string concatenation operation in the first
println statement results in one large string that is passed to the method to
be printed.

Note that we don’t have to pass any information to the println method, as
shown in the second line of the Facts program. This call does not print any vis-
ible characters, but it does move to the next line of output. So in this case, calling
println with no parameters has the effect of printing a blank line.

The last three calls to println in the Facts program demonstrate another
interesting thing about string concatenation: strings and numbers can be con-
catenated. Note that the numbers in those lines are not enclosed in double
quotation characters and are therefore not character strings. In these cases, the
number is automatically converted to a string, and then the two strings are
concatenated.

Because we are printing particular values, we could simply have included the
numeric value as part of the string literal, as in

"Speed of ketchup: 40 km per year"

Digits are characters and can be included in strings as needed. We separate them in
the Facts program to demonstrate the ability to concatenate a string and a num-
ber. This technique will be useful in upcoming examples.

As you might think, the + operator is also used for arithmetic addition.
Therefore, what the + operator does depends on the types of data on which it
operates. If either or both of the operands of the + operator are strings, then string
concatenation is performed.

The Addition program shown in Listing 2.3 demonstrates the
distinction between string concatenation and arithmetic addition.
The Addition program uses the + operator four times. In the first
call to println, both + operations perform string concatenation, be-
cause the operators are executed from left to right. The first operator
concatenates the string with the first number (24), creating a larger

string. Then that string is concatenated with the second number (45), creating an
even larger string, which gets printed.

In the second call to println, we use parentheses to group the + operation with
the two numeric operands. This forces that operation to happen first. Because
both operands are numbers, the numbers are added in the arithmetic sense, pro-
ducing the result 69. That number is then concatenated with the string, producing
a larger string that gets printed.

We revisit this type of situation later in this chapter when we formalize the pre-
cedence rules that define the order in which operators are evaluated.

KEY CONCEPT
In Java, the + operator is used
both for addition and for string
concatenation.

M02_LEWI5976_05_SE_C02.indd 38 08/02/19 1:13 AM

 2.1 Character Strings 39

//**
// Addition.java Java Foundations
//
// Demonstrates the difference between the addition and string

// concatenation operators.
//**

public class Addition
{

//---
// Concatenates and adds two numbers and prints the results.
//---
public static void main(String[] args)

 {
 System.out.println("24 and 45 concatenated: " + 24 + 45);

 System.out.println("24 and 45 added: " + (24 + 45));
 }
}

O U T P U T

24 and 45 concatenated: 2445
24 and 45 added: 69

L I S T I N G 2 . 3

COMMON ERROR

It’s easy to forget the processing that’s happening to allow a string to
be constructed before being printed. For example, it’s easy to forget the
concatenation operator between a string and a numeric value, or to use a
comma as though they were separate parameters:

System.out.println("The total is", total);

This will cause the compiler to issue an error. Remember, only one param-
eter is sent to a println statement.

M02_LEWI5976_05_SE_C02.indd 39 08/02/19 1:13 AM

40 CHAPTER 2 Data and Expressions

Escape Sequences
Because the double quotation character(")is used in the Java language to indicate
the beginning and end of a string, we must use a special technique to print the
quotation character. If we simply put it in a string("""), the compiler gets con-
fused because it thinks the second quotation character is the end of the string and
doesn’t know what to do with the third one. This results in a compile-time error.

To overcome this problem, Java defines several escape sequences to represent
special characters. An escape sequence begins with the backslash
character (\), which indicates that the character or characters that
follow should be interpreted in a special way. Figure 2.1 lists the Java
escape sequences.

The program in Listing 2.4, called Roses, prints some text re-
sembling a poem. It uses only one println statement to do so, de-

spite the fact that the poem is several lines long. Note the escape sequences used
throughout the string. The \n escape sequence forces the output to a new line, and
the \t escape sequence represents a tab character. (Note that you may see a differ-
ent amount of indentation when you run this program—tab stops depend on the
system settings.) The \" escape sequence ensures that the quotation character is

Escape Sequence Meaning

\b

\t

\n

\r

\"

\'

\\

backspace

tab

new line

carriage return

double quote

single quote

backslash

FIGURE 2.1 Java escape sequences

KEY CONCEPT
An escape sequence can be used
to represent a character that would
otherwise cause compilation problems.

VideoNote
Example using strings
and escape sequences

//**
// Roses.java Java Foundations
//
// Demonstrates the use of escape sequences.
//**

L I S T I N G 2 . 4

M02_LEWI5976_05_SE_C02.indd 40 08/02/19 1:13 AM

 2.2 Variables and Assignment 41

treated as part of the string, not as the termination of it, and this enables it to be
printed as part of the output.

2.2 Variables and Assignment

Most of the information we manage in a program is represented by variables. Let’s
examine how we declare and use them in a program.

Variables
A variable is a name for a location in memory used to hold a data value. A variable
declaration instructs the compiler to reserve a portion of main memory space large
enough to hold a particular type of value, and it indicates the name by which we
refer to that location.

public class Roses
{

//---
// Prints a poem (of sorts) on multiple lines.
//---
public static void main (String[] args)
{

System.out.println("Roses are red,\n\tViolets are blue,\n" +
 "Sugar is sweet,\n\tBut I have \"commitment issues\",\n\t" +
 "So I’d rather just be friends\n\tAt this point in our " +
 "relationship.");
 }
}

O U T P U T

Roses are red,
 Violets are blue,
Sugar is sweet,
 But I have "commitment issues",
 So I’d rather just be friends
 At this point in our relationship.

L I S T I N G 2 . 4 continued

M02_LEWI5976_05_SE_C02.indd 41 08/02/19 1:13 AM

42 CHAPTER 2 Data and Expressions

Consider the program PianoKeys, shown in Listing 2.5. The first
line of the main method is the declaration of a variable named keys
that holds an integer(int)value. The declaration also gives keys an
initial value of 88. If an initial value is not specified for a variable, the
value is undefined. Most Java compilers give errors or warnings if you
attempt to use a variable before you have explicitly given it a value.

KEY CONCEPT
A variable is a name for a memory
location used to hold a value of a
particular data type.

Variable Declarator

Identifier

= Expression

Array Initializer

A variable declaration consists of a Type followed by a list of variables. Each variable can
be initialized in the declaration to the value of the specified Expression. If the final modifier
precedes the declaration, the identifiers are declared as named constants whose values cannot
be changed once they are set.

Examples:
int total;

double num1, num2 = 4.356, num3;

char letter = 'A', digit = '7';

final int MAX = 45;

Local Variable Declaration

Type Variable Declarator

,final

int total = 50;

Variable Declaration

type
optional

initialization

variable name

M02_LEWI5976_05_SE_C02.indd 42 08/02/19 1:13 AM

 2.2 Variables and Assignment 43

//**
// PianoKeys.java Java Foundations
//
// Demonstrates the declaration, initialization, and use of an
// integer variable.
//**

public class PianoKeys
{

//--
// Prints the number of keys on a piano.
//--
public static void main(String[] args)
{

int keys = 88;

System.out.println("A piano has " + keys + " keys.");
}

}

O U T P U T

A piano has 88 keys.

L I S T I N G 2 . 5

The keys variable, with its value, could be pictured as follows:

keys 88

In the PianoKeys program, two pieces of information are used in the call to the
println method. The first is a string, and the second is the variable keys. When a
variable is referenced, the value currently stored in it is used. Therefore, when the
call to println is executed, the value of keys, which is 88, is obtained.

Because that value is an integer, it is automatically converted to a string and
concatenated with the initial string. The concatenated string is passed to println
and printed.

A variable declaration can have multiple variables of the same type declared on
one line. Each variable on the line can be declared with or without an initializing
value. For example:

int count, minimum = 0, result;

M02_LEWI5976_05_SE_C02.indd 43 08/02/19 1:13 AM

44 CHAPTER 2 Data and Expressions

The Assignment Statement
Let’s examine a program that changes the value of a variable. Listing 2.6 shows
a program called Geometry. This program first declares an integer variable called
sides and initializes it to 7. It then prints out the current value of sides.

The next line in main changes the value stored in the variable sides:
sides = 10;

//***
// Geometry.java Java Foundations
//
// Demonstrates the use of an assignment statement to change the
// value stored in a variable.
//***

public class Geometry
{

//---
// Prints the number of sides of several geometric shapes.
//---
public static void main(String[] args)
{

 int sides = 7; // declaration with initialization
 System.out.println("A heptagon has " + sides + " sides.");

 sides = 10; // assignment statement
 System.out.println("A decagon has " + sides + " sides.");

 sides = 12;
 System.out.println("A dodecagon has " + sides + " sides.");
}

}

O U T P U T

A heptagon has 7 sides.
A decagon has 10 sides.
A dodecagon has 12 sides.

L I S T I N G 2 . 6

M02_LEWI5976_05_SE_C02.indd 44 08/02/19 1:13 AM

 2.2 Variables and Assignment 45

Basic Assignment

ExpressionIdentifier = ;

The basic assignment statement uses the assignment operator (=) to store the result of the
Expression into the specified Identifier, usually a variable.

Examples:

total = 57;

count = count + 1;

value = (min / 2) * lastValue;

KEY CONCEPT
We cannot assign a value of one type
to a variable of an incompatible type.

This is called an assignment statement because it assigns a value to
a variable. When executed, the expression on the right-hand side of
the assignment operator (=) is evaluated, and the result is stored in
the memory location indicated by the variable on the left-hand side.
In this example, the expression is simply a number, 10. We discuss
expressions that are more involved than this in the next section.

KEY CONCEPT
Accessing data leaves them intact in
memory, but an assignment statement
overwrites the old data.

A variable can store only one value of its declared type. A new value overwrites
the old one. In this case, when the value 10 is assigned to sides, the original value
7 is overwritten and lost forever, as follows:

When a reference is made to a variable, such as when it is printed, the value
of the variable is not changed. This is the nature of computer memory: Accessing
(reading) data leaves the values in memory intact, but writing data replaces the old
data with the new.

The Java language is strongly typed, which means that we are not allowed
to assign a value to a variable that is inconsistent with its declared type. Trying
to combine incompatible types will generate an error when you
attempt to compile the program. Therefore, the expression on the
right-hand side of an assignment statement must evaluate to a value
compatible with the type of the variable on the left-hand side.

After initialization: sides 7

After first assignment: sides 10

M02_LEWI5976_05_SE_C02.indd 45 08/02/19 1:13 AM

46 CHAPTER 2 Data and Expressions

Constants
Sometimes we use data that are constant throughout a program. For instance, we
might write a program that deals with a theater that can hold no more than 427
people. It is often helpful to give a constant value a name, such as MAX_OCCUPANCY,
instead of using a literal value, such as 427, throughout the code. The purpose and
meaning of literal values such as 427 are often confusing to someone reading the
code. By giving the value a name, you help explain its role in the program.

Constants are identifiers and are similar to variables except that
they hold a particular value for the duration of their existence.
Constants are, to use the English meaning of the word, not variable.
Their value doesn’t change.

In Java, if you precede a declaration with the reserved word final, the identi-
fier is made a constant. By convention, uppercase letters are used when naming
constants, to distinguish them from regular variables, and individual words are
separated using the underscore character. For example, the constant describing
the maximum occupancy of a theater could be declared as follows:

final int MAX_OCCUPANCY = 427;

The compiler will produce an error message if you attempt to change the value
of a constant once it has been given its initial value. This is another good reason to
use constants. Constants prevent inadvertent coding errors, because the only valid
place to change their value is in the initial assignment.

There is a third good reason to use constants. If a constant is used through-
out a program and its value has to be modified, then you need change it in
only one place. For example, if the capacity of the theater changes (because of
a renovation) from 427 to 535, then you have to change only one declaration,
and all uses of MAX_OCCUPANCY automatically reflect the change. If the literal

Assignment Statement

height = height + gap;

variable
1) expression is evaluated
2) result is assigned to variable

assignment operator

KEY CONCEPT
Constants hold a particular value for
the duration of their existence.

M02_LEWI5976_05_SE_C02.indd 46 08/02/19 1:13 AM

 2.3 Primitive Data Types 47

427 had been used throughout the code, each use would have had to be found
and changed. If you were to miss any uses of the literal value, problems would
surely arise.

2.3 Primitive Data Types

There are eight primitive data types in Java: four subsets of integers, two subsets of
floating point numbers, a character data type, and a boolean data type. Everything
else is represented using objects. Let’s examine these eight primitive data types in
some detail.

Integers and Floating Points
Java has two basic kinds of numeric values: integers, which have no frac-
tional part, and floating points, which do. There are four integer data types
(byte, short, int, and long) and two floating point data types (float
and double). All of the numeric types differ in the amount of memory space
used to store a value of that type, which determines the range of values that
can be represented. The size of each data type is the same for all hardware
platforms. All numeric types are signed, which means that both positive and
negative values can be stored in them. Figure 2.2 summarizes the
numeric primitive types.

A bit, or binary digit, can be either a 1 or a 0. Because each bit can
represent two different states, a string of N bits can be used to repre-
sent 2N different values. Appendix B describes number systems and
these kinds of relationships in more detail.

byte

short

int

long

float

double

8 bits

16 bits

32 bits

64 bits

32 bits

64 bits

–128

–32,768

–2,147,483,648

–9,223,372,036,854,775,808

Approximately –3.4E+38
with 7 significant digits

Approximately –1.7E+308
with 15 significant digits

127

32,767

2,147,483,647

9,223,372,036,854,775,807

Approximately 3.4E+38
with 7 significant digits

Approximately 1.7E+308
with 15 significant digits

Type Storage Min Value Max Value

FIGURE 2.2 The Java numeric primitive types

KEY CONCEPT
Java has two kinds of numeric values:
integer and floating point. There
are four integer data types and two
floating point data types.

M02_LEWI5976_05_SE_C02.indd 47 08/02/19 1:13 AM

48 CHAPTER 2 Data and Expressions

When designing programs, we sometimes need to be careful about picking variables
of appropriate size so that memory space is not wasted. This occurs in situations where
memory space is particularly restricted, such as a program that runs on a embedded
device. In such cases, we can choose a variable’s data type accordingly. For example,
if the value of a particular variable will not vary outside of a range of 1 to 1000, then
a two-byte integer (short) is large enough to accommodate it. On the other hand,
when it’s not clear what the range of a particular variable will be, we should provide a
reasonable—even a generous—amount of space. In most situations, memory space is
not a serious restriction, and we can usually afford generous assumptions.

Note that even though a float value supports very large (and very small) num-
bers, it has only seven significant digits. Therefore, if it is important to maintain a
value such as 50341.2077 accurately, we need to use a double.

As we’ve already discussed, a literal is an explicit data value used in a pro-
gram. The various numbers used in programs such as Facts and Addition and
PianoKeys are all integer literals. Java assumes that all integer literals are of type
int, unless an L or l is appended to the end of the value to indicate that it should
be considered a literal of type long, such as 45L.

Likewise, Java assumes that all floating point literals are of type double. If we
need to treat a floating point literal as a float, we append an F or f to the end of
the value, as in 2.718F or 123.45f. Numeric literals of type double can be fol-
lowed by a D or d if desired.

The following are examples of numeric variable declarations in Java:

int answer = 42;
byte smallNumber1, smallNumber2;
long countedStars = 86827263927L;
float ratio = 0.2363F;
double delta = 453.523311903;

Characters
Characters are another fundamental type of data used and managed on a com-
puter. Individual characters can be treated as separate data items, and, as we’ve
seen in several examples, they can be combined to form character strings.

A character literal is expressed in a Java program with single quotation charac-
ters, as in 'b' or 'J' or ';'. You will recall that string literals are delineated using
double quotation marks, and that the String type is not a primitive data type in
Java but a class name. We discuss the String class in detail in the next chapter.

Note the difference between a digit as a character (or part of a string) and a digit
as a number (or part of a larger number). The number 602 is a numeric value that can
be used in an arithmetic calculation. But in the string "602 Greenbriar Court" the
6, 0, and 2 are characters, just like the rest of the characters that make up the string.

M02_LEWI5976_05_SE_C02.indd 48 08/02/19 1:13 AM

 2.3 Primitive Data Types 49

The characters we can manage are defined by a character set, which is simply
a list of characters in a particular order. Each programming language supports
a particular character set that defines the valid values for a character variable in
that language. Several character sets have been proposed, but only a few have
been used regularly over the years. The ASCII character set is a popular choice.
ASCII stands for the American Standard Code for Information Interchange. The
basic ASCII set uses 7 bits per character, providing room to support 128 different
characters, including

■■ uppercase letters, such as 'A', 'B', and 'C'

■■ lowercase letters, such as 'a', 'b', and 'c'

■■ punctuation, such as the period ('.'), semicolon (';'), and comma (',')

■■ the digits '0' through '9'

■■ the space character, ' '

■■ special symbols, such as the ampersand ('&'), vertical bar ('|'), and
backslash ('\')

■■ control characters, such as the carriage return, null, and end-of-text marks

The control characters are sometimes called nonprinting or invisible characters
because they do not have a specific symbol that represents them. Yet they are as
valid as any other character and can be stored and used in the same ways. Many
control characters have special meaning to certain software applications.

As computing became a worldwide endeavor, users demanded a more flexible
character set containing alphabets in other languages. ASCII was extended to use
8 bits per character, and the number of characters in the set doubled to 256. The

Decimal Integer Literal

0

1 - 9 0 - 9 L

l

An integer literal is composed of a series of digits followed by an op-
tional suffix to indicate that it should be considered a long integer.
Negation of a literal is considered a separate operation.

Examples:

5

2594

4920328L

M02_LEWI5976_05_SE_C02.indd 49 08/02/19 1:13 AM

50 CHAPTER 2 Data and Expressions

extended ASCII contains many accented and diacritical characters used in lan-
guages other than English.

However, even with 256 characters, the ASCII character set cannot represent
the world’s alphabets, especially given the various Asian alphabets and their many
thousands of ideograms. Therefore, the developers of the Java programming lan-
guage chose the Unicode character set, which uses 16 bits per character, support-

ing 65,536 unique characters. The characters and symbols from many
languages are included in the Unicode definition. ASCII is a subset of
the Unicode character set. Appendix C discusses the Unicode charac-
ter set in more detail.

A character set assigns a particular number to each character, so
by definition the characters are in a particular order. This is referred

to as lexicographic order. In the ASCII and Unicode ordering, the digit charac-
ters '0' through '9' are continuous (no other characters intervene) and in order.
Similarly, the lowercase alphabetic characters 'a' through 'z' are continuous and
in order, as are the uppercase alphabetic characters 'A' through 'Z'. These char-
acteristics make it relatively easy to sort data, such as a list of names, in alphabeti-
cal order. Sorting is discussed in Chapter 13.

In Java, the data type char represents a single character. The following are
some examples of character variable declarations in Java:

char topGrade = 'A';
char symbol1, symbol2, symbol3;
char terminator = ';', separator = ' ';

Booleans
A boolean value, defined in Java using the reserved word boolean, has only two
valid values: true and false. A boolean variable is generally used to indicate
whether a particular condition is true, but it can also be used to represent any situ-
ation that has two states, such as a light bulb being on or off. The term boolean is
named in honor of English mathematician George Boole, who developed a form of
algebra (Boolean algebra) in which variables take on only one of two values.

A boolean value cannot be converted to any other data type, nor can any other
data type be converted to a boolean value. The words true and false are re-
served in Java as boolean literals and cannot be used outside of this context.

Here are some examples of boolean variable declarations in Java:

boolean flag = true;
boolean tooHigh, tooSmall, tooRough;
boolean done = false;

KEY CONCEPT
Java uses the 16-bit Unicode character
set to represent character data.

M02_LEWI5976_05_SE_C02.indd 50 08/02/19 1:13 AM

 2.4 Expressions 51

2.4 Expressions

An expression is a combination of one or more operators and operands that
usually performs a calculation. The value calculated does not have
to be a number, but often it is. The operands used in the operations
might be literals, constants, variables, or other sources of data. The
manner in which expressions are evaluated and used is fundamental
to programming. For now, we will focus on arithmetic expressions
that use numeric operands and produce numeric results.

Arithmetic Operators
The usual arithmetic operations are defined for both integer and floating point
numeric types, including addition (+), subtraction (–), multiplication (*), and di-
vision (/). Java also has another arithmetic operation: The remainder operator
(%) returns the remainder after dividing the second operand into the first. The
remainder operator is sometimes called the modulus operator. The sign of the
result of a remainder operation is the sign of the numerator. This table shows
some examples:

KEY CONCEPT
The type of result produced by
arithmetic division depends on the
types of the operands.

Operation Result
17 % 4 1

−20 % 3 −2

 10 % −5 0

 3 % 8 3

As you might expect, if either or both operands to any numeric operator are
floating point values, the result is a floating point value. However, the division
operator (/) produces results that are less intuitive, depending on the types of
the operands. If both operands are integers, the / operator performs integer
division, meaning that any fractional part of the result is discarded.
If one or the other or both operands are floating point values, the
/ operator performs floating point division, and the fractional part
of the result is kept. For example, the result of 10/4 is 2, but the
results of 10.0/4 and 10/4.0 and 10.0/4.0 are all 2.5.

KEY CONCEPT
Expressions are combinations of
operators and operands used to
perform a calculation.

M02_LEWI5976_05_SE_C02.indd 51 08/02/19 1:13 AM

52 CHAPTER 2 Data and Expressions

An unary operator has only one operand, whereas a binary operator has two.
The + and - arithmetic operators can be either unary or binary. The binary versions
accomplish addition and subtraction, and the unary versions represent positive and
negative numbers. For example, –1 is an example of using the unary negation opera-
tor to make the value negative. The unary + operator is rarely used.

Java does not have a built-in operator for raising a value to an exponent.
However, the Math class provides methods that perform exponentiation and many
other mathematical functions. The Math class is discussed in Chapter 3.

Operator Precedence
Operators can be combined to create more complex expressions. For example,
consider the following assignment statement:

result = 14 + 8 / 2;

The entire right-hand side of the assignment is evaluated, and then the result is
stored in the variable. But what is the result? If the addition is performed first, the
result is 11; if the division operation is performed first, the result is 18. The order
in which the operations are performed makes a big difference. In this case, the divi-
sion is performed before the addition, yielding a result of 18.

Note that in this and subsequent examples, we use literal values rather than
variables to simplify the expression. The order of operator evaluation is the same
if the operands are variables or any other source of data.

All expressions are evaluated according to an operator precedence hierarchy
that establishes the rules that govern the order in which operations are evaluated.
The arithmetic operators generally follow the same rules you learned in algebra.
Multiplication, division, and the remainder operator all have equal precedence
and are performed before (have higher precedence than) addition and subtraction.
Addition and subtraction have equal precedence.

VideoNote
Review of primitive data
and expressions

COMMON ERROR

Because the operation that the division operator performs depends on the
types of the operands, it’s easy to do one when you intended the other. For
example, if total and count are both integer variables, then this statement
will perform integer division:

average = total / count;

Even if average is a floating point variable, the division operator truncates
the fractional part before assigning the result to average.

M02_LEWI5976_05_SE_C02.indd 52 08/02/19 1:13 AM

 2.4 Expressions 53

Any arithmetic operators at the same level of precedence are per-
formed from left to right. Therefore, we say the arithmetic operators
have a left-to-right association.

Precedence, however, can be forced in an expression by using pa-
rentheses. For instance, if we wanted the addition to be performed
first in the previous example, we could write the expression as follows:

result = (14 + 8) / 2;

Any expression in parentheses is evaluated first. In complicated expressions, it
is good practice to use parentheses even when it is not strictly necessary, to make it
clear how the expression is evaluated.

Parentheses can be nested, and the innermost nested expressions are evaluated
first. Consider the expression

result = 3 * ((18 - 4) / 2);

In this example, the result is 21. First, the subtraction is performed, forced by the
inner parentheses. Then, even though multiplication and division are at the same level
of precedence and usually would be evaluated left to right, the division is performed
first because of the outer parentheses. Finally, the multiplication is performed.

After the arithmetic operations are complete, the computed result is stored in the
variable on the left-hand side of the assignment operator (=). In other words, the
assignment operator has a lower precedence than any of the arithmetic operators.

The evaluation of a particular expression can be shown using an expression
tree, such as the one in Figure 2.3. The operators are executed from the bottom
up, creating values that are used in the rest of the expression. Therefore, the op-
erations lower in the tree have a higher precedence than those above, or they are
forced to be executed earlier using parentheses.

The parentheses used in expressions are actually operators themselves.
Parentheses have a higher precedence than almost any other operator. Figure 2.4

Evaluating
a + (b – c) / d

+

/a

d–

cb

FIGURE 2.3 An expression tree

KEY CONCEPT
Java follows a well-defined set of
precedence rules that governs the
order in which operators will be
evaluated in an expression.

M02_LEWI5976_05_SE_C02.indd 53 08/02/19 1:13 AM

54 CHAPTER 2 Data and Expressions

shows a precedence table with the relationships among the arithmetic operators,
the parentheses, and the assignment operator. Appendix D includes a full prece-
dence table showing all Java operators.

For an expression to be syntactically correct, the number of left parentheses
must match the number of right parentheses, and they must be properly nested.
The following examples are not valid expressions:

result = ((19 + 8) % 3) - 4); // not valid
result = (19 (+ 8 %) 3 - 4); // not valid

Keep in mind that when a variable is referenced in an expression, its current
value is used to perform the calculation. In the following assignment statement,
the current value of the variable count is added to the current value of the variable
total, and the result is stored in the variable sum:

sum = count + total;

The original value contained in sum before this assignment is overwritten by the
calculated value. The values stored in count and total are not changed.

The same variable can appear on both the left-hand side and the right-hand side
of an assignment statement. Suppose the current value of a variable called count is
15 when the following assignment statement is executed:

count = count + 1;

Because the right-hand expression is evaluated first, the original value of count is
obtained and the value 1 is added to it, producing the result 16. That result is then

1

2

3

4

+

–

*

/

%

+

–

+

=

unary plus

unary minus

multiplication

division

remainder

addition

subtraction

string concatenation

assignment

R to L

L to R

L to R

R to L

Precedence
Level Operator Operation Associates

FIGURE 2.4 Precedence among some of the Java operators

M02_LEWI5976_05_SE_C02.indd 54 08/02/19 1:13 AM

 2.4 Expressions 55

stored in the variable count, overwriting the original value of 15 with the new
value of 16. Therefore, this assignment statement increments, or adds 1 to, the
variable count.

Let’s look at another example of expression processing. The program in Listing
2.7, called TempConverter, converts a particular Celsius temperature value to its
equivalent Fahrenheit value using an expression that computes the formula

Fahrenheit =
9
5

 Celsius + 32

L I S T I N G 2 . 7

//***
// TempConverter.java Java Foundations
//
// Demonstrates the use of primitive data types and arithmetic
// expressions.
//***
public class TempConverter
{

//--
// Computes the Fahrenheit equivalent of a specific Celsius
// value using the formula F = (9/5)C + 32.
//--
public static void main(String[] args)
{

final int BASE = 32;
final double CONVERSION_FACTOR = 9.0 / 5.0;

double fahrenheitTemp;
int celsiusTemp = 24; // value to convert

fahrenheitTemp = celsiusTemp * CONVERSION_FACTOR + BASE;

System.out.println("Celsius Temperature: " + celsiusTemp);
System.out.println("Fahrenheit Equivalent: " + fahrenheitTemp);

}
}

O U T P U T

Celsius Temperature: 24
Fahrenheit Equivalent: 75.2

M02_LEWI5976_05_SE_C02.indd 55 08/02/19 1:13 AM

56 CHAPTER 2 Data and Expressions

Note that in the TempConverter program, the operands to the division opera-
tion are floating point literals to ensure that the fractional part of the number is
kept. The precedence rules dictate that the multiplication happens before the addi-
tion in the final conversion computation.

The TempConverter program is not very useful because it converts only one
data value that we included in the program as a constant (24 degrees Celsius).
Every time the program is run, it produces the same result. A far more useful ver-
sion of the program would obtain the value to be converted from the user each
time the program was executed. Interactive programs that read user input are
discussed later in this chapter.

Increment and Decrement Operators
There are two other useful arithmetic operators. The increment operator (++)
adds 1 to any integer or floating point value. The two plus signs that make up
the operator cannot be separated by white space. The decrement operator (--) is
similar except that it subtracts 1 from the value. These are both unary operators
because they operate on only one operand. The following statement causes the
value of count to be incremented:

count++;

The result is stored in the variable count. Therefore, it is functionally equivalent to
the following statement, which we discussed in the previous section:

count = count + 1;

The increment and decrement operators can be applied after the variable
(such as count++ or count--), creating what is called the postfix form of the
operator. They can also be applied before the variable (such as ++count or
--count), in what is called the prefix form. When used alone in a statement, the
prefix and postfix forms are functionally equivalent. That is, it doesn’t matter
whether you write

count++;

or

++count;

However, when such a form is written as a statement by itself, it is usually writ-
ten in its postfix form.

When the increment or decrement operator is used in a larger expression, it can
yield different results, depending on the form used. For example, if the variable

M02_LEWI5976_05_SE_C02.indd 56 08/02/19 1:13 AM

 2.4 Expressions 57

count currently contains the value 15, then the following statement assigns the
value 15 to total and the value 16 to count:

total = count++;

However, if count contains 15, the following statement assigns the value 16 to
both total and count:

total = ++count;

The value of count is incremented in both situations, but the value used in the
larger expression depends on whether a prefix form or a postfix form of the incre-
ment operator is used.

Because of the subtle differences between the prefix and postfix forms of the in-
crement and decrement operators, they should be used with care. As always, favor
the side of readability.

Assignment Operators
As a convenience, several assignment operators have been defined in Java that
combine a basic operation with assignment. For example, the += operator can be
used as follows:

total += 5;

This performs the same operation as the statement

total = total + 5;

The right-hand side of the assignment operator can be a full expression. The ex-
pression on the right-hand side of the operator is evaluated, that result is added to
the current value of the variable on the left-hand side, and that value is stored in
the variable. Therefore, the statement

total += (sum - 12) / count;

is equivalent to

total = total + ((sum - 12) / count);

Many similar assignment operators are defined in Java, including those that
perform subtraction (-=), multiplication (*=), division (/=), and remainder (%=).
The entire set of Java operators is discussed in Appendix D.

All of the assignment operators evaluate the entire expression on the right-hand
side first and then use the result as the right operand of the other operation. Therefore,
the statement

result *= count1 + count2;

M02_LEWI5976_05_SE_C02.indd 57 08/02/19 1:13 AM

58 CHAPTER 2 Data and Expressions

is equivalent to

result = result * (count1 + count2);

Likewise,

result %= (highest - 40) / 2;

is equivalent to

result = result % ((highest - 40) / 2);

Some assignment operators perform particular functions depending on the types
of the operands, just as their corresponding regular operators do. For example, if
the operands to the += operator are strings, then the assignment operator performs
string concatenation.

2.5 Data Conversion

Because Java is a strongly typed language, each data value is associated with a par-
ticular type. It is sometimes helpful or necessary to convert a data value of one type
to another type, but we must be careful that we don’t lose important information
in the process. For example, suppose a short variable that holds the number 1000
is converted to a byte value. Because a byte does not have enough bits to repre-
sent the value 1000, some bits would be lost in the conversion, and the number
represented in the byte would not keep its original value.

A conversion between one primitive type and another falls into one of two catego-
ries: widening conversions and narrowing conversions. Widening conversions are the
safest because they usually do not lose information. They are called widening conver-
sions because they go from one data type to another type that uses an equal or greater
amount of space to store the value. Figure 2.5 lists the Java widening conversions.

byte

short

char

int

long

float

short, int, long, float, or double

int, long, float, or double

int, long, float, or double

long, float, or double

float or double

double

From To

FIGURE 2.5 Java widening conversions

M02_LEWI5976_05_SE_C02.indd 58 08/02/19 1:13 AM

 2.5 Data Conversion 59

For example, it is safe to convert from a byte to a short because a byte is
stored in 8 bits and a short is stored in 16 bits. There is no loss of information.
All widening conversions that go from an integer type to another integer type, or
from a floating point type to another floating point type, preserve the numeric
value exactly.

Although widening conversions do not lose any information about the mag-
nitude of a value, the widening conversions that result in a floating point value
can lose precision. When converting from an int or a long to a float, or from
a long to a double, some of the least significant digits may be lost. In this
case, the resulting floating point value will be a rounded version of the integer
value, following the rounding techniques defined in the IEEE 754 floating point
standard.

Narrowing conversions are more likely to lose information than
widening conversions are. They often go from one type to a type that
uses less space to store a value, and therefore some of the informa-
tion may be compromised. Narrowing conversions can lose both nu-
meric magnitude and precision. Therefore, in general, they should be
avoided. Figure 2.6 lists the Java narrowing conversions.

An exception to the space-shrinking situation in narrowing conversions occurs
when we convert a byte (8 bits) or short (16 bits) to a char (16 bits). These are
still considered narrowing conversions, because the sign bit is incorporated into
the new character value. Because a character value is unsigned, a negative integer
will be converted to a character that has no particular relationship to the numeric
value of the original integer.

Note that boolean values are not mentioned in either widening or narrowing
conversions. A boolean value cannot be converted to any other primitive type,
and vice versa.

KEY CONCEPT
Narrowing conversions should
be avoided because they can lose
information.

byte

short

char

int

long

char

byte or char

byte or short

byte, short, or char

byte, short, char, or int

float byte, short, char, int, or long

double byte, short, char, int, long, or float

From To

FIGURE 2.6 Java narrowing conversions

M02_LEWI5976_05_SE_C02.indd 59 08/02/19 1:13 AM

60 CHAPTER 2 Data and Expressions

Conversion Techniques
In Java, conversions can occur in three ways:

■■ assignment conversion

■■ promotion

■■ casting

Assignment conversion occurs when a value of one type is assigned to a variable
of another type, during which the value is converted to the new type. Only widen-
ing conversions can be accomplished through assignment. For example, if money
is a float variable and dollars is an int variable, then the following assignment
statement automatically converts the value in dollars to a float:

money = dollars;

Therefore, if dollars contains the value 25, then after the assignment, money
contains the value 25.0. However, if we attempt to assign money to dollars, the
compiler will issue an error message alerting us to the fact that we are attempting
a narrowing conversion that could lose information. If we really want to do this
assignment, we have to make the conversion explicit by using a cast.

Conversion via promotion occurs automatically when certain operators need
to modify their operands in order to perform the operation. For example, when
a floating point value called sum is divided by an integer value called count, the
value of count is promoted to a floating point value automatically, before the divi-
sion takes place, producing a floating point result:

result = sum / count;

A similar conversion is taking place when a number is concatenated with a
string. The number is first converted (promoted) to a string, and then the two
strings are concatenated.

Casting is the most general form of conversion in Java. If a conversion can be
accomplished at all in a Java program, it can be accomplished using a cast. A cast
is a Java operator that is specified by a type name in parentheses. It is placed in
front of the value to be converted. For example, to convert money to an integer
value, we could put a cast in front of it:

dollars = (int) money;

The cast returns the value in money, truncating any fractional part. If money
contained the value 84.69, then after the assignment, dollars would contain the
value 84. Note, however, that the cast does not change the value in money. After
the assignment operation is complete, money still contains the value 84.69.

M02_LEWI5976_05_SE_C02.indd 60 08/02/19 1:13 AM

 2.6 Reading Input Data 61

Casts are helpful in many situations where we need to treat a value temporarily
as another type. For example, if we want to divide the integer value total by the
integer value count and get a floating point result, we can do it as follows:

result = (float) total / count;

First, the cast operator returns a floating point version of the value in total.
This operation does not change the value in total. Then, count is treated as
a floating point value via arithmetic promotion. Now the division operator will
perform floating point division and produce the intended result. If the cast had not
been included, the operation would have performed integer division and truncated
the answer before assigning it to result. Also note that because the cast operator
has a higher precedence than the division operator, the cast operates on the value
of total, not on the result of the division.

2.6 Reading Input Data

It is often useful to design a program to read data from the user interactively dur-
ing execution. That way, new results can be computed each time the program is
run, depending on the data entered.

The Scanner Class
The Scanner class, which is part of the standard Java class library,
provides convenient methods for reading input values of various
types. The input could come from various sources, including data
typed interactively by the user or data stored in a file. The Scanner
class can also be used to parse a character string into separate pieces.
Figure 2.7 lists some of the methods provided by the Scanner class.

We must first create a Scanner object in order to invoke its methods. Objects
in Java are created using the new operator. The following declaration creates a
Scanner object that reads input from the keyboard:

Scanner scan = new Scanner(System.in);

This declaration creates a variable called scan that represents a Scanner object.
The object itself is created by the new operator and a call to a special method called
a constructor to set up the object. The Scanner constructor accepts a parameter
that indicates the source of the input. The System.in object represents the stan-
dard input stream, which by default is the keyboard. Creating objects using the
new operator is discussed further in the next chapter.

KEY CONCEPT
The Scanner class provides
methods for reading input of various
types from various sources.

M02_LEWI5976_05_SE_C02.indd 61 08/02/19 1:13 AM

62 CHAPTER 2 Data and Expressions

Scanner (InputStream source)

Scanner (File source)

Scanner (String source)

 Constructors: sets up the new scanner to scan values from the specified source.

String next()

 Returns the next input token as a character string.

String nextLine()

 Returns all input remaining on the current line as a character string.

boolean nextBoolean()

byte nextByte()

double nextDouble()

float nextFloat()

int nextInt()

long nextLong()

short nextShort()

 Returns the next input token as the indicated type. Throws

 InputMismatchException if the next token is inconsistent with the type.

boolean hasNext()

 Returns true if the scanner has another token in its input.

Scanner useDelimiter (String pattern)

Scanner useDelimiter (Pattern pattern)

 Sets the scanner's delimiting pattern.

Pattern delimiter()

 Returns the pattern the scanner is currently using to match delimiters.

String findInLine (String pattern)

String findInLine (Pattern pattern)

 Attempts to find the next occurrence of the specified pattern, ignoring delimiters.

FIGURE 2.7 Some methods of the Scanner class

M02_LEWI5976_05_SE_C02.indd 62 08/02/19 1:13 AM

 2.6 Reading Input Data 63

Unless specified otherwise, a Scanner object assumes that whitespace charac-
ters (space characters, tabs, and new lines) are used to separate the elements of
the input, called tokens, from each other. These characters are called the input
delimiters. The set of delimiters can be changed if the input tokens are separated
by characters other than white space.

The next method of the Scanner class reads the next input token as a string
and returns it. Therefore, if the input consisted of a series of words separated by
spaces, each call to next would return the next word. The nextLine method reads
all of the input until the end of the line is found and returns it as one string.

The program Echo, shown in Listing 2.8, simply reads a line of text typed by
the user, stores it in a variable that holds a character string, and then echoes it back
to the screen. User input is shown in red in the output section below the listing.

The import declaration above the definition of the Echo class tells the program
that we will be using the Scanner class in this program. The Scanner class is part of
the java.util class library. The use of the import declaration is discussed further
in Chapter 3.

Various Scanner methods such as nextInt and nextDouble are provided to
read data of particular types. The GasMileage program, shown in Listing 2.9,
reads the number of miles traveled as an integer, reads the number of gallons of
fuel consumed as a double, and then computes the gas mileage.

As you can see by the output of the GasMileage program, the calculation pro-
duces a floating point result that is accurate to several decimal places. In the next
chapter we discuss classes that help us format our output in various ways, includ-
ing rounding a floating point value to a particular number of decimal places.

A Scanner object processes the input one token at a time, based on the methods
used to read the data and the delimiters used to separate the input values.

Therefore, multiple values can be put on the same line of input or can be sepa-
rated over multiple lines, as appropriate for the situation.

In Chapter 5 we use the Scanner class to read input from a data file and mod-
ify the delimiters it uses to parse the data. Appendix H explores how to use the
Scanner class to analyze its input using patterns called regular expressions.

VideoNote
Example using the
Scanner class

//**
// Echo.java Java Foundations
//
// Demonstrates the use of the nextLine method of the Scanner class
// to read a string from the user.
//**

import java.util.Scanner;

L I S T I N G 2 . 8

M02_LEWI5976_05_SE_C02.indd 63 08/02/19 1:13 AM

64 CHAPTER 2 Data and Expressions

L I S T I N G 2 . 8 continued

public class Echo
{

//--
// Reads a character string from the user and prints it.
//--
public static void main(String[] args)
{

 String message;
 Scanner scan = new Scanner(System.in);

 System.out.println("Enter a line of text:");

 message = scan.nextLine();

 System.out.println("You entered: \"" + message + "\"");
 }
}

O U T P U T

Enter a line of text:
Set your laser printer on stun!
You entered: "Set your laser printer on stun!"

//**
// GasMileage.java Java Foundations
//
// Demonstrates the use of the Scanner class to read numeric data.
//**

import java.util.Scanner;

public class GasMileage
{
 //---
 // Calculates fuel efficiency based on values entered by the
 // user.
 //---

L I S T I N G 2 . 9

M02_LEWI5976_05_SE_C02.indd 64 08/02/19 1:13 AM

 2.6 Reading Input Data 65

public static void main(String[] args)
{
 int miles;
 double gallons, mpg;

 Scanner scan = new Scanner(System.in);

 System.out.print("Enter the number of miles: ");
 miles = scan.nextInt();

 System.out.print("Enter the gallons of fuel used: ");
 gallons = scan.nextDouble();

 mpg = miles / gallons;

 System.out.println("Miles Per Gallon: " + mpg);
 }

}

O U T P U T

Enter the number of miles: 369
Enter the gallons of fuel used: 12.4
Miles Per Gallon: 29.758064516129032

L I S T I N G 2 . 9 continued

M02_LEWI5976_05_SE_C02.indd 65 08/02/19 1:13 AM

66 CHAPTER 2 Data and Expressions

Summary of Key Concepts

■■ The print and println methods represent two services provided by the
System.out object.

■■ In Java, the + operator is used both for addition and for string concatenation.

■■ An escape sequence can be used to represent a character that would other-
wise cause compilation problems.

■■ A variable is a name for a memory location used to hold a value of a particu-
lar data type.

■■ Accessing data leaves them intact in memory, but an assignment statement
overwrites the old data.

■■ We cannot assign a value of one type to a variable of an incompatible type.

■■ Constants hold a particular value for the duration of their existence.

■■ Java has two kinds of numeric values: integer and floating point. There are
four integer data types and two floating point data types.

■■ Java uses the 16-bit Unicode character set to represent character data.

■■ Expressions are combinations of operators and operands used to perform a
calculation.

■■ The type of result produced by arithmetic division depends on the types of
the operands.

■■ Java follows a well-defined set of precedence rules that governs the order in
which operators will be evaluated in an expression.

■■ Narrowing conversions should be avoided because they can lose information.

■■ The Scanner class provides methods for reading input of various types from
various sources.

Summary of Terms
ASCII character set An early character set for representing English characters
and symbols.

assignment operator An operator in Java that combines a basic operation
such as addition with assignment.

assignment statement A programming statement that assigns a value to a
variable.

casting A data conversion in which the type to which a value is converted is
explicitly specified in parentheses.

M02_LEWI5976_05_SE_C02.indd 66 08/02/19 1:13 AM

 Self-Review Questions 67

character set A list of characters in a particular order.

delimiter Characters used to separate one input token from another.

escape sequence A series of characters that begin with a backslash (\), used
to represent a special character.

expression A combination of one or more operators and operands.

integer division Division in which the fractional portion of the result is dis-
carded, used when both operands are integers.

literal An explicit data value used in a program.

narrowing conversion A conversion between one data type and another in
which information may be lost.

operator precedence hierarchy The rules that establish the order in which
operators are evaluated.

parameter A piece of data that is sent to a method when it is invoked.

primitive data type A basic type of data, such as a number, character, or
boolean.

standard input stream A source of input, usually the keyboard.

string concatenation Appending one character string to the end of another.

string literal Text enclosed by double quotation marks that represent a char-
acter string.

strongly typed A programming language characteristic that prevents a vari-
able from being assigned a value inconsistent with its type.

token An element in an input stream.

Unicode character set A character set used to represent characters and sym-
bols from most of the world’s written languages.

variable A name for a location in memory used to hold a data value.

widening conversion A conversion between one data type and another in
which information is not lost.

Self-Review Questions
SR 2.1 What are primitive data? How are primitive data types different

from objects?

SR 2.2 What is a string literal?

SR 2.3 What is the difference between the print method and the
println method?

M02_LEWI5976_05_SE_C02.indd 67 08/02/19 1:13 AM

68 CHAPTER 2 Data and Expressions

SR 2.4 What is a parameter?

SR 2.5 What is an escape sequence? Give some examples.

SR 2.6 What is a variable declaration?

SR 2.7 How many values can be stored in an integer variable at one time?

SR 2.8 What are the four integer data types in Java? How are they different?

SR 2.9 What is a character set?

SR 2.10 What is operator precedence?

SR 2.11 What is the result of 19%5 when evaluated in a Java expression?
Explain.

SR 2.12 What is the result of 13/4 when evaluated in a Java expression?
Explain.

SR 2.13 If an integer variable diameter currently holds the value 5, what
is its value after the following statement is executed? Explain.

diameter = diameter * 4;

SR 2.14 If an integer variable weight currently holds the value 100, what
is its value after the following statement is executed? Explain.

weight -= 17;

SR 2.15 Why are widening conversions safer than narrowing conversions?

Exercises
EX 2.1 Explain the following programming statement in terms of objects

and the services they provide.

System.out.println("I gotta be me!");

EX 2.2 What output is produced by the following code fragment? Explain.

System.out.print("Here we go!");
System.out.println("12345");
System.out.print("Test this if you are not sure.");
System.out.print("Another.");
System.out.println();
System.out.println("All done.");

M02_LEWI5976_05_SE_C02.indd 68 08/02/19 1:13 AM

 Exercises 69

EX 2.3 What is wrong with the following program statement? How can it
be fixed?

System.out.println("To be or not to be, that is the
question.");

EX 2.4 What output is produced by the following statement? Explain.

System.out.println("50 plus 25 is " + 50 + 25);

EX 2.5 What output is produced by the following statement? Explain.

System.out.println("He thrusts his fists\n\tagainst" +
" the post\nand still insists\n\the sees the \"ghost\"");

EX 2.6 What value is contained in the integer variable size after the fol-
lowing statements are executed?

size = 18;
size = size + 12;
size = size * 2;
size = size / 4;

EX 2.7 What value is contained in the floating point variable depth after
the following statements are executed?

depth = 2.4;
depth = 20 - depth * 4;
depth = depth / 5;

EX 2.8 What value is contained in the integer variable length after the
following statements are executed?

length = 5;
length *= 2;
length *= length;
length /= 100;

EX 2.9 Write four different program statements that increment the value
of an integer variable total.

M02_LEWI5976_05_SE_C02.indd 69 08/02/19 1:13 AM

70 CHAPTER 2 Data and Expressions

EX 2.10 Given the following declarations, what result is stored in each of
the listed assignment statements?
int iResult, num1 = 25, num2 = 40, num3 = 17, num4 = 5;
double fResult, val1 = 17.0, val2 = 12.78;

a. iResult = num1 / num4;

b. fResult = num1 / num4;

c. iResult = num3 / num4;

d. fResult = num3 / num4;

e. fResult = val1 / num4;

f. fResult = val1 / val2;

g. iResult = num1 / num2;

h. fResult = (double) num1 / num2;

i. fResult = num1 / (double) num2;

j. fResult = (double) (num1 / num2);

k. iResult = (int) (val1 / num4);

l. fResult = (int) (val1 / num4);

m. fResult = (int) ((double) num1 / num2);

n. iResult = num3 % num4;

o. iResu lt = num2 % num3;

p. iResult = num3 % num2;

q. iResult = num2 % num4;

EX 2.11 For each of the following expressions, indicate the order in which
the operators will be evaluated by writing a number beneath each
operator.

a. a – b – c – d

b. a – b + c – d

c. a + b / c / d

d. a + b / c * d

e. a / b * c * d

f. a % b / c * d

g. a % b % c % d

h. a - (b - c) - d

i. (a - (b - c)) - d

M02_LEWI5976_05_SE_C02.indd 70 08/02/19 1:13 AM

 Programming Projects 71

j. a - ((b - c) - d)

k. a % (b % c) * d * e

l. a + (b - c) * d - e

m. (a + b) * c + d * e

n. (a + b) * (c / d) % e

Programming Projects
PP 2.1 Create a revised version of the Lincoln application from Chapter

1 such that quotes appear around the quotation.

PP 2.2 Write an application that reads three integers and prints their
average.

PP 2.3 Write an application that reads two floating point numbers and
prints their sum, difference, and product.

PP 2.4 Create a version of the TempConverter application to convert
from Fahrenheit to Celsius. Read the Fahrenheit temperature from
the user.

PP 2.5 Write an application that converts miles to kilometers. (One mile
equals 1.60935 kilometers.) Read the miles value from the user as
a floating point value.

PP 2.6 Write an application that reads values representing a time dura-
tion in hours, minutes, and seconds, and then prints the equiva-
lent total number of seconds. (For example, 1 hour, 28 minutes,
and 42 seconds is equivalent to 5322 seconds.)

PP 2.7 Create a version of the previous project that reverses the compu-
tation. That is, read a value representing a number of seconds,
and then print the equivalent amount of time as a combination
of hours, minutes, and seconds. (For example, 9999 seconds is
equivalent to 2 hours, 46 minutes, and 39 seconds.)

PP 2.8 Write an application that determines the value of the coins in a jar
and prints the total in dollars and cents. Read integer values that
represent the number of quarters, dimes, nickels, and pennies.

PP 2.9 Write an application that prompts for and reads a double value
representing a monetary amount. Then determine the least num-
ber of each bill and coin needed to represent that amount, starting
with the highest (assume that a ten-dollar bill is the maximum size
needed). For example, if the value entered is 47.63 (forty-seven

M02_LEWI5976_05_SE_C02.indd 71 08/02/19 1:13 AM

72 CHAPTER 2 Data and Expressions

dollars and sixty-three cents), then the program should print the
equivalent amount as

4 ten dollar bills
1 five dollar bills
2 one dollar bills
2 quarters
1 dimes
0 nickels
3 pennies

PP 2.10 Write an application that prompts for and reads an integer repre-
senting the length of a square’s side and then prints the square’s
perimeter and area.

PP 2.11 Write an application that prompts for and reads the numerator
and denominator of a fraction as integers and then prints the deci-
mal equivalent of the fraction.

Answers to Self-Review Questions
SRA 2.1 Primitive data are basic values such as numbers or characters.

Objects are more complex entities that usually contain primitive
data that help define them.

SRA 2.2 A string literal is a sequence of characters delimited by double
quotation marks.

SRA 2.3 Both the print method and the println method of the
System.out object write a string of characters to the monitor
screen. The difference is that after printing the characters, the
println method performs a carriage return so that whatever is
printed next appears on the next line. The print method allows
subsequent output to appear on the same line.

SRA 2.4 A parameter is data passed into a method when it is invoked. The
method generally uses that data to accomplish the service that it
provides. For example, the parameter to the println method in-
dicates what characters should be printed.

SRA 2.5 An escape sequence is a series of characters that begins with the
backslash (\) and implies that the following characters should be
treated in some special way. Examples: \n represents the newline
character, \t represents the tab character, and \"represents the
quotation character (as opposed to using it to terminate a string).

M02_LEWI5976_05_SE_C02.indd 72 08/02/19 1:13 AM

SRA 2.6 A variable declaration establishes the name of a variable and
the type of data that it can contain. A declaration may also
have an optional initialization, which gives the variable an
initial value.

SRA 2.7 An integer variable can store only one value at a time. When a
new value is assigned to it, the old one is overwritten and lost.

SRA 2.8 The four integer data types in Java are byte, short, int, and
long. They differ in how much memory space is allocated for
each and, therefore, in how large a number they can hold.

SRA 2.9 A character set is a list of characters in a particular order. A
character set defines the valid characters that a particular type of
computer or programming language will support. Java uses the
Unicode character set.

SRA 2.10 Operator precedence is the set of rules that dictates the order in
which operators are evaluated in an expression.

SRA 2.11 The result of 19%5 in a Java expression is 4. The remainder opera-
tor % returns the remainder after dividing the second operand into
the first. Five goes into 19 three times, with 4 left over.

SRA 2.12 The result of 13/4 in a Java expression is 3 (not 3.25). The result
is an integer because both operands are integers. Therefore, the /
operator performs integer division, and the fractional part of the
result is truncated.

SRA 2.13 After executing the statement, diameter holds the value 20. First
the current value of diameter (5) is multiplied by 4, and then the
result is stored in diameter.

SRA 2.14 After executing the statement, weight holds the value 83. The
assignment operator -= modifies weight by first subtracting
17 from the current value (100) and then storing the result in
weight.

SRA 2.15 A widening conversion tends to go from a small data value, in
terms of the amount of space used to store it, to a larger one. A
narrowing conversion does the opposite. Information is more
likely to be lost in a narrowing conversion, which is why nar-
rowing conversions are considered less safe than widening
conversions.

 Answers to Self-Review Questions 73

M02_LEWI5976_05_SE_C02.indd 73 08/02/19 1:13 AM

75

3

This chapter further explores the use of predefined

classes and the objects we can create from them. Using

classes and objects for the services they provide is a fun-

damental part of object-oriented software, and it sets the

stage for writing classes of our own. In this chapter, we use

classes and objects to manipulate character strings, pro-

duce random numbers, perform complex calculations, and

format output. This chapter also introduces the enumerated

type, which is a special kind of class in Java, and discusses

the concept of a wrapper class.

C H A P T E R O B J E C T I V E S
■■ Discuss the creation of objects and the use of object reference
variables.

■■ Explore the services provided by the String class.

■■ Describe how the Java standard class library is organized into
packages.

■■ Explore the services provided by the Random and Math classes.

■■ Discuss ways to format output using the NumberFormat and
DecimalFormat classes.

■■ Introduce enumerated types.

■■ Discuss wrapper classes and the concept of autoboxing.

Using Classes
and Objects 3

M03_LEWI5976_05_SE_C03.indd 75 08/02/19 1:15 AM

76 CHAPTER 3 Using Classes and Objects

3.1 Creating Objects

At the end of Chapter 1 we presented an overview of object-oriented concepts,
including the basic relationship between classes and objects. Then in Chapter 2, in
addition to discussing primitive data, we provided some examples of using objects
for the services they provide. This chapter explores these ideas further.

In previous examples, we’ve used the println method many times. As we
mentioned in Chapter 2, the println method is a service provided by the
System.out object, which represents the standard output stream. To be more
precise, the identifier out is an object variable that is stored in the System class.
It has been predefined and set up for us as part of the Java standard class library.
We can simply use it.

In Chapter 2 we also used the Scanner class, which represents an object that
allows us to read input from the keyboard or a file. We created a Scanner object
using the new operator. Once the object was created, we were able to use it for the
various services it provides. That is, we were able to invoke its methods.

Let’s carefully examine the idea of creating an object. In Java, a variable name
represents either a primitive value or an object. Like variables that hold primitive
types, a variable that refers to an object must be declared. The class used to define
an object can be thought of as the type of an object. The declarations of object
variables are similar in structure to the declarations of primitive variables.

Consider the following two declarations:

int num;
String name;

The first declaration creates a variable that holds an integer value, as we’ve seen
many times before. The second declaration creates a String variable that holds
a reference to a String object. An object variable doesn’t hold the object itself, it
holds the address of an object.

Initially, the two variables declared above don’t contain any data. We say they
are uninitialized, which can be depicted as follows:

num

name

–

–

As we pointed out in Chapter 2, it is always important to be certain that a vari-
able is initialized before using it. For an object variable, that means we must make

M03_LEWI5976_05_SE_C03.indd 76 08/02/19 1:15 AM

 3.1 Creating Objects 77

sure it refers to a valid object prior to using it. In most situations the compiler will
issue an error if you attempt to use a variable before initializing it.

An object reference variable can also be set to null, which is a reserved word in
Java. A null reference specifically indicates that a variable does not refer to an object.

Note that even though we’ve declared a String reference variable, no String
object actually exists yet. The act of creating an object using the new operator is called
instantiation. An object is said to be an instance of a particular class. To instantiate an
object, we can use the new operator, which returns the address of the new object. The
following two assignment statements give values to the two variables declared above:

num = 42;
name = new String("James Gosling");

After the new operator creates the object, a constructor is invoked to help set
it up initially. A constructor is a special method that has the same name as the
class. In this example, the parameter to the constructor is a string
literal that specifies the characters that the string object will hold.
After these assignments are executed, the variables can be depicted
as follows:

VideoNote
Creating objects

KEY CONCEPT
The new operator returns a reference
to a newly created object.

num

name

42

"James Gosling"

Because an object reference variable holds the address of the object, it can be
thought of as a pointer to the location in memory where the object is held. We
could show the numeric address, but the actual address value is irrelevant—what’s
important is that the variable refers to a particular object.

After an object has been instantiated, we use the dot operator to access its
methods. We’ve used the dot operator many times already, such as in calls to
System.out.println. The dot operator is appended directly after the object refer-
ence, followed by the method being invoked. For example, to invoke the length
method defined in the String class, we can use the dot operator on the name refer-
ence variable:

count = name.length()

The length method does not take any parameters, but the parentheses are still
necessary to indicate that a method is being invoked. Some methods produce a
value that is returned when the method completes. The purpose of the length
method of the String class is to determine and return the length of the string (the
number of characters it contains). In this example, the returned value is assigned to

M03_LEWI5976_05_SE_C03.indd 77 08/02/19 1:15 AM

78 CHAPTER 3 Using Classes and Objects

the variable count. For the string "James Gosling", the length method returns
13, which includes the space between the first and last names. Some methods do
not return a value. Other String methods are discussed in the next section.

The act of declaring the object reference variable and creating the object itself
can be combined into one step by initializing the variable in the declaration, just
as we do with primitive types:

String title = new String("Java Foundations");

Even though they are not primitive types, character strings are so fundamental
and are used so often that Java defines string literals delimited by double quotation
marks, as we’ve seen in various examples. This is a shortcut notation. Whenever
a string literal appears, a String object is created automatically. Therefore, the
following declaration is valid:

String city = "London";

That is, for String objects, the explicit use of the new operator and the call to the
constructor can be eliminated. In most cases, we will use this simplified syntax.

Aliases
Because an object reference variable stores an address, a programmer must be
careful when managing objects. First, let’s review the effect of assignment on
primitive values. Suppose we have two integer variables—num1, initialized to 5,
and num2, initialized to 12:

num1

num2

5

12

In the following assignment statement, a copy of the value that is stored in num1
is stored in num2.

num2 = num1;

The original value of 12 in num2 is overwritten by the value 5. The variables num1
and num2 still refer to different locations in memory, and both of those locations
now contain the value 5:

num1

num2

5

5

M03_LEWI5976_05_SE_C03.indd 78 08/02/19 1:15 AM

 3.1 Creating Objects 79

Now consider the following object declarations:

String name1 = "Ada, Countess of Lovelace";
String name2 = "Grace Murray Hopper";

Initially, the references name1 and name2 refer to two different String objects:

name1

name2 “Grace Murray Hopper”

“Ada, Countess of Lovelace”

Now suppose the following assignment statement is executed, copying the value
in name1 into name2.

name2 = name1;

This assignment works the same as the integer assignment—a copy of the value
of name1 is stored in name2. But remember, object variables hold the address of
an object, and it is the address that gets copied. Originally, the two references
referred to different objects. After the assignment, both name1 and name2 contain
the same address and therefore refer to the same object:

name1

name2

“Ada, Countess of Lovelace”

The name1 and name2 reference variables are now aliases of each other because
they are two different variables that refer to the same object. All references to the
object originally referenced by name2 are now gone; that object cannot be used
again in the program.

D E S I G N F O C U S

One important implication of aliases is that when we use one reference to change
an object, it is also changed for the other reference, because there is really only
one object. Aliases can produce undesirable effects unless they are managed
carefully.

That is not to say that aliases are a bad thing. There are many situations in which
it’s helpful to have multiple references to objects. In fact, every time you pass an
object to a method, you create an alias. It’s not that you want to avoid aliases, you
just want to be aware of the effect they have on the objects you manage.

M03_LEWI5976_05_SE_C03.indd 79 08/02/19 1:15 AM

80 CHAPTER 3 Using Classes and Objects

All interaction with an object occurs through a reference variable, so we can
use an object only if we have a reference to it. When all references to an object
are lost (perhaps by reassignment), that object can no longer contribute to the

program. The program can no longer invoke its methods or use its
variables. At this point the object is called garbage because it serves
no useful purpose.

Java performs automatic garbage collection. When the last refer-
ence to an object is lost, the object becomes a candidate for garbage collection.
Occasionally, behind the scenes, the Java environment executes a method that
“collects” all the objects marked for garbage collection and returns their memory
to the system for future use. The programmer does not have to worry about ex-
plicitly reclaiming memory that has become garbage.

3.2 The String Class

Let’s examine the String class in more detail. Figure 3.1 lists some of the more
useful methods of the String class.

Once a String object is created, its value cannot be lengthened or shortened,
nor can any of its characters change. Thus we say that a String object is immu-
table. However, several methods in the String class return new String objects
that are the result of modifying the original string’s value.

Note that some of the String methods, such as charAt, refer to the index
of a particular character. An index specifies a particular position, and there-
fore a particular character, in a string. The index of the first character in a
string is zero, the index of the next character is one, and so on. Therefore, in
the string "Hello", the index of the character 'H' is zero, and the character at
index four is 'o'.

Several String methods are exercised in the program shown in Listing 3.1 on
page 82. As you examine the StringMutation program, keep in mind that this is
not a single String object that changes its data; this program creates five separate
String objects using various methods of the String class. Originally, the phrase
object is set up:

KEY CONCEPT
Multiple reference variables can refer
to the same object.

phrase “Change is inevitable”

M03_LEWI5976_05_SE_C03.indd 80 08/02/19 1:15 AM

 3.2 The String Class 81

After printing the original phrase and its length, the concat method is executed
to create a new String object referenced by the variable mutation1:

String (String str)
Constructor: creates a new string object with the same characters as str.

char charAt (int index)
Returns the character at the specified index.

int compareTo (String str)
Returns an integer indicating if this string is lexically before (a negative return
value), equal to (a zero return value), or lexically after (a positive return value),
the string str.

String concat (String str)
Returns a new string consisting of this string concatenated with str.

boolean equals (String str)
Returns true if this string contains the same characters as str (including
case) and false otherwise.

boolean equalsIgnoreCase (String str)
Returns true if this string contains the same characters as str (without
regard to case) and false otherwise.

int length ()
Returns the number of characters in this string.

String replace (char oldChar, char newChar)
Returns a new string that is identical with this string except that every
occurrence of oldChar is replaced by newChar.

String substring (int offset, int endIndex)
Returns a new string that is a subset of this string starting at index offset and
extending through endIndex-1.

String toLowerCase ()
Returns a new string identical to this string except all uppercase letters are
converted to their lowercase equivalent.

String toUpperCase ()
Returns a new string identical to this string except all lowercase letters are
converted to their uppercase equivalent.

FIGURE 3.1 Some methods of the String class

mutation1 “Change is inevitable, except from vending machines.”

M03_LEWI5976_05_SE_C03.indd 81 08/02/19 1:15 AM

82 CHAPTER 3 Using Classes and Objects

//**
// StringMutation.java Java Foundations
//
// Demonstrates the use of the String class and its methods.
//**

public class StringMutation
{
 //---
 // Prints a string and various mutations of it.
 //---
 public static void main(String[] args)
 {
 String phrase = "Change is inevitable";
 String mutation1, mutation2, mutation3, mutation4;

 System.out.println("Original string: \"" + phrase + "\"");
 System.out.println("Length of string: " + phrase.length());

 mutation1 = phrase.concat(", except from vending machines.");
 mutation2 = mutation1.toUpperCase();
 mutation3 = mutation2.replace('E', 'X');
 mutation4 = mutation3.substring(3, 30);

 // Print each mutated string

 System.out.println("Mutation #1: " + mutation1);
 System.out.println("Mutation #2: " + mutation2);
 System.out.println("Mutation #3: " + mutation3);
 System.out.println("Mutation #4: " + mutation4);

 System.out.println("Mutated length: " + mutation4.length());
 }
}

O U T P U T

Original string: "Change is inevitable"
Length of string: 20
Mutation #1: Change is inevitable, except from vending machines.
Mutation #2: CHANGE IS INEVITABLE, EXCEPT FROM VENDING MACHINES.
Mutation #3: CHANGX IS INXVITABLX, XXCXPT FROM VXNDING MACHINXS.
Mutation #4: NGX IS INXVITABLX, XXCXPT F
Mutated length: 27

L I S T I N G 3 . 1

M03_LEWI5976_05_SE_C03.indd 82 08/02/19 1:15 AM

 3.3 Packages 83

Then the toUpperCase method is executed on the mutation1 object, and the
resulting string is stored in mutation2:

KEY CONCEPT
A class library provides useful support
when one is developing programs.

KEY CONCEPT
Methods are often executed on a
particular object, and that object’s
state usually affects the results.

mutation2 “CHANGE IS INEVITABLE, EXCEPT FROM VENDING MACHINES.”

mutation3 “CHANGX IS INXVITABLX, XXCXPT FROM VXNDING MACHINXS.”

mutation4 “NGX IS INXVITABLX, XXCXPT F”

Notice that the length and concat methods are executed on the phrase object,
but the toUpperCase method is executed on the mutation1 object. Any method of the
String class can be executed on any String object, but for any given
invocation, the method is executed on a particular object. The results
of executing toUpperCase on mutation1 would be very different from
the results of executing toUpperCase on phrase. Remember that each
object has its own state, which often affects the results of method calls.

Finally, the String object variables mutation3 and mutation4 are initialized by
the calls to mutation2.replace and mutation3.substring, respectively:

3.3 Packages

We mentioned earlier that the Java language is supported by a standard class li-
brary that we can make use of as needed. Let’s examine that idea further.

A class library is a set of classes that supports the development of programs.
A compiler or development environment often comes with a class library. Class
libraries can also be obtained separately through third-party vendors. The classes
in a class library contain methods that are valuable to a programmer
because of the special functionality they offer. In fact, programmers
often become dependent on the methods in a class library and begin
to think of them as part of the language. However, technically, they
are not in the language itself.

The String class, for instance, is not an inherent part of the Java language. It is
part of the Java standard class library that can be found in any Java development
environment. The classes that make up the library were created by employees at
Sun Microsystems, where the Java language was created.

The class library is made up of several clusters of related classes, which are
sometimes called Java APIs, or application programming interfaces. For example,

M03_LEWI5976_05_SE_C03.indd 83 08/02/19 1:15 AM

84 CHAPTER 3 Using Classes and Objects

we may refer to the Java Database API when we’re talking about the set of classes
that helps us write programs that interact with a database. Another example of an
API is the Java Swing API, a set of classes that defines special graphical compo-
nents used in a graphical user interface. Sometimes the entire standard library is
referred to generically as the Java API.

The classes of the Java standard class library are also grouped
into packages. Each class is part of a particular package. The String
class, for example, is part of the java.lang package. The System
class is part of the java.lang package as well. The Scanner class is
part of the java.util package.

The package organization is more fundamental and language-based than the
API organization. Although there is a general correspondence between package and
API names, the groups of classes that make up a given API might cross packages. In
this text, we refer to classes primarily in terms of their package organization.

Figure 3.2 describes some of the packages that are part of the Java standard
class library. These packages are available on any platform that supports Java
software development. Some of these packages support highly specific pro-
gramming techniques and do not come into play in the development of basic
programs.

Various classes of the Java standard class library are discussed throughout this book.

The import Declaration
The classes of the java.lang package are automatically available for use when writ-
ing a Java program. To use classes from any other package, however, we must ei-
ther fully qualify the reference or use an import declaration. Let’s consider these two
options.

When you want to use a class from a class library in a program, you could
use its fully qualified name, including the package name, every time it was refer-
enced. For example, every time you wanted to refer to the Scanner class defined
in the java.util package, you could write java.util.Scanner. However,
completely specifying the package and class name every time it is needed
quickly becomes tiring. Java provides the import declaration to simplify these
references.

The import declaration specifies the packages and classes that will be used in
a program so that the fully qualified name is not necessary with each reference.
Recall that the example programs that use the Scanner class in Chapter 2 include
an import declaration like this one:

import java.util.Scanner;

KEY CONCEPT
The Java standard class library is
organized into packages.

M03_LEWI5976_05_SE_C03.indd 84 08/02/19 1:15 AM

 3.3 Packages 85

This declaration asserts that the Scanner class of the java.util package may be
used in the program. Once this import declaration is made, it is sufficient to use
the simple name Scanner when referring to that class in the program.

If two classes from two different packages have the same name, import dec-
larations will not suffice, because the compiler won’t be able to figure out which
class is being referenced in the flow of the code. When such situations arise (which
occurs rarely), the fully qualified names should be used in the code.

Another form of the import declaration uses an asterisk (*) to indicate that
any class inside the package might be used in the program. Therefore, the follow-
ing declaration allows all classes in the java.util package to be referenced in the
program without qualifying each reference:

import java.util.*;

If only one class of a particular package will be used in a program, it is usually
better to name the class specifically in the import declaration, because that pro-
vides more specific information to anyone reading the code. However, if two or
more classes of the package will be used, the * notation is usually fine.

Package Provides support to

java.beans

java.io

java.lang

java.math

java.net

java.rmi

java.security

Define software components that can be easily combined
into applications.

Perform a wide variety of input and output functions.

General support; it is automatically imported into all Java programs.

Perform calculations with arbitrarily high precision.

Communicate across a network.

Create programs that can be distributed across multiple computers;
RMI stands for Remote Method Invocation.

Enforce security restrictions.

java.sql

java.text

java.util

javafx.application

Interact with databases;
SQL stands for Structured Query Language.

Format text for output.

General utilities.

Define a graphics-based application using the JavaFX framework.

javafx.scene.shape Define shape objects (circles, rectangles, etc.) for graphics programs.

javafx.scene.control Define graphical user interface controls such as buttons and sliders.

FIGURE 3.2 Some packages in the Java standard class library

M03_LEWI5976_05_SE_C03.indd 85 08/02/19 1:15 AM

86 CHAPTER 3 Using Classes and Objects

The classes of the java.lang package are automatically imported be-
cause they are fundamental and can be thought of as basic extensions to
the language. Therefore, any class in the java.lang package, such as
System and String, can be used without an explicit import declaration.
It’s as if all program files automatically contain the following declaration:

import java.lang.*;

3.4 The Random Class

The need for random numbers occurs frequently when one is writing software.
Games often use random numbers to simulate the roll of a die or the shuffle of a
deck of cards. A flight simulator may use random numbers to determine how often a
simulated flight has engine trouble. A program designed to help high school students
prepare for the SATs may use random numbers to choose the next question to ask.

The Random class, which is part of the java.util package, represents a pseu-
dorandom number generator. A random number generator picks a number at
random out of a range of values. Program code that plays this role is techni-
cally pseudorandom, because a program has no means to actually pick a number
randomly. A pseudorandom number generator performs a series of complicated
calculations, based on an initial seed value, and produces a number. Even though
they are technically not random (because they are calculated), the values produced
by a pseudorandom number generator usually appear random—at least random
enough for most situations.

Figure 3.3 lists some of the methods of the Random class. The nextInt method
can be called with no parameters, or we can pass it a single integer value. If no pa-
rameter is passed in, the nextInt method generates a random number across the
entire range of int values, including negative numbers. Usually, though, we need
a random number within a more specific range. For instance, to simulate the roll

KEY CONCEPT
All classes of the java.lang
package are automatically imported
for every program.

Import Declaration

import java.util.Random;
import java.net.*;

Java
keyword

package
name

class
name

wildcard

M03_LEWI5976_05_SE_C03.indd 86 08/02/19 1:15 AM

 3.4 The Random Class 87

of a die, we might want a random number in the range of 1 to 6. The
nextInt method returns a value that’s in the range from 0 to one
less than its parameter. For example, if we pass 100 as a parameter
to nextInt, we’ll get a return value that is greater than or equal to 0
and less than or equal to 99.

Note that the value that we pass to the nextInt method is also the number of
possible values we can get in return. We can shift the range as needed by adding
or subtracting the proper amount. To get a random number in the range of 1 to 6,
we can call nextInt(6) to get a value from 0 to 5, and then add 1.

The nextFloat method of the Random class returns a float value that is
greater than or equal to 0.0 and less than 1.0. If desired, we can use multiplication
to scale the result, cast it into an int value to truncate the fractional part, and
then shift the range as we do with integers.

The program shown in Listing 3.2 produces several random numbers in vari-
ous ranges.

Random ()
Constructor: creates a new pseudorandom number generator.

float nextFloat ()
Returns a random number between 0.0 (inclusive) and 1.0 (exclusive).

int nextInt ()
Returns a random number that ranges over all possible int values (positive
and negative).

int nextInt (int num)
 Returns a random number in the range 0 to num-1.

FIGURE 3.3 Some methods of the Random class

KEY CONCEPT
A pseudorandom number generator
performs a complex calculation to
create the illusion of randomness.

Generating Random Numbers

num = generator.nextInt(20) + 10;

Random
object

shifts result by 10
to 10-29

produces an int in
the range 0-19

M03_LEWI5976_05_SE_C03.indd 87 08/02/19 1:15 AM

88 CHAPTER 3 Using Classes and Objects

//**
// RandomNumbers.java Java Foundations
//
// Demonstrates the creation of pseudo-random numbers using the
// Random class.
//**
import java.util.Random;

public class RandomNumbers
{
 //---
 // Generates random numbers in various ranges.
 //---
 public static void main(String[] args)
 {
 Random generator = new Random();
 int num1;
 float num2;

 num1 = generator.nextInt();
 System.out.println("A random integer: " + num1);

 num1 = generator.nextInt(10);
 System.out.println("From 0 to 9: " + num1);

 num1 = generator.nextInt(10) + 1;
 System.out.println("From 1 to 10: " + num1);

 num1 = generator.nextInt(15) + 20;
 System.out.println("From 20 to 34: " + num1);

 num1 = generator.nextInt(20) - 10;
 System.out.println("From -10 to 9: " + num1);

 num2 = generator.nextFloat();
 System.out.println("A random float (between 0-1): " + num2);

 num2 = generator.nextFloat() * 6; // 0.0 to 5.999999
 num1 = (int)num2 + 1;
 System.out.println("From 1 to 6: " + num1);
 }
}

L I S T I N G 3 . 2

M03_LEWI5976_05_SE_C03.indd 88 08/02/19 1:15 AM

O U T P U T

A random integer: 243057344
From 0 to 9: 9
From 1 to 10: 2
From 20 to 34: 33
From -10 to 9: -4
A random float (between 0-1): 0.58384484
From 1 to 6: 3

L I S T I N G 3 . 2 continued

3.5 The Math Class

The Math class provides a large number of basic mathematical func-
tions that are often helpful in making calculations. The Math class is
defined in the java.lang package of the Java standard class library.
Figure 3.4 lists several of its methods.

All the methods in the Math class are static methods (also called
class methods), which means they we can invoke them through the
name of the class in which they are defined, without having to instantiate an ob-
ject of the class first. Static methods are discussed further in Chapter 5.

The methods of the Math class return values, which can be used in expressions
as needed. For example, the following statement computes the absolute value of
the number stored in total, adds it to the value of count raised to the fourth
power, and stores the result in the variable value.

value = Math.abs(total) + Math.pow(count, 4);

Note that you can pass an integer value to a method that accepts a double
parameter. This is a form of assignment conversion, which was discussed in
Chapter 2

It’s also interesting to note that the Math class contains a method called random
that returns a random floating point value in the range 0.0 to 1.0. Therefore, this
method could be used as an alternative to creating a Random object and calling its
methods, as described in the previous section. However, the Math class does not
have a method that returns an integer, or lets you specify the range of the result,
as Random does.

KEY CONCEPT
All methods of the Math class are
static, which means that they are
invoked through the class name.

VideoNote
Example using
the Random and Math
classes

 3.5 The Math Class 89

M03_LEWI5976_05_SE_C03.indd 89 08/02/19 1:15 AM

90 CHAPTER 3 Using Classes and Objects

The Quadratic program, shown in Listing 3.3, uses the Math class to compute
the roots of a quadratic equation. Recall that a quadratic equation has the follow-
ing general form:

ax2 = bx = c

static int abs (int num)
Returns the absolute value of num.

static double acos (double num)

static double asin (double num)

static double atan (double num)
Returns the arc cosine, arc sine, or arc tangent of num.

static double cos (double angle)

static double sin (double angle)

static double tan (double angle)
Returns the angle cosine, sine, or tangent of angle, which is measured in
radians.

static double ceil (double num)
Returns the ceiling of num, which is the smallest whole number greater than or
equal to num.

static double exp (double power)
Returns the value e raised to the specified power.

static double floor (double num)
Returns the floor of num, which is the largest whole number less than or equal
to num.

static double pow (double num, double power)
Returns the value num raised to the specified power.

static double random ()
Returns a random number between 0.0 (inclusive) and 1.0 (exclusive).

static double sqrt (double num)
Returns the square root of num, which must be positive.

FIGURE 3.4 Some methods of the Math class

M03_LEWI5976_05_SE_C03.indd 90 08/02/19 1:15 AM

**
// Quadratic.java Java Foundations
//
// Demonstrates the use of the Math class to perform a calculation
// based on user input.
//**

import java.util.Scanner;

public class Quadratic
{
 //---
 // Determines the roots of a quadratic equation.
 //---
 public static void main(String[] args)
 {
 int a, b, c; // ax^2 + bx + c
 double discriminant, root1, root2;

 Scanner scan = new Scanner(System.in);

 System.out.print("Enter the coefficient of x squared: ");
 a = scan.nextInt();

 System.out.print("Enter the coefficient of x: ");
 b = scan.nextInt();

 System.out.print("Enter the constant: ");
 c = scan.nextInt();

 // Use the quadratic formula to compute the roots.
 // Assumes a positive discriminant.

 discriminant = Math.pow(b, 2) - (4 * a * c);
 root1 = ((-1 * b) + Math.sqrt(discriminant)) / (2 * a);
 root2 = ((-1 * b) - Math.sqrt(discriminant)) / (2 * a);

 System.out.println("Root #1: " + root1);
 System.out.println("Root #2: " + root2);
 }
}

L I S T I N G 3 . 3

 3.5 The Math Class 91

M03_LEWI5976_05_SE_C03.indd 91 08/02/19 1:15 AM

92 CHAPTER 3 Using Classes and Objects

The Quadratic program reads values that represent the coefficients in a qua-
dratic equation (a, b, and c) and then evaluates the quadratic formula to deter-
mine the roots of the equation. The quadratic formula is

roots =
-b { 2b2 - 4ac

2a

Note that this program assumes that the discriminant (the value under the
square root) is positive. If it’s not, the result will not be a valid number, which
Java represents as NAN, which stands for Not A Number. In Chapter 5 we discuss
how such situations can be avoided.

3.6 Formatting Output

The NumberFormat class and the DecimalFormat class are used to format infor-
mation so that it looks appropriate when printed or displayed. They are both part
of the Java standard class library and are defined in the java.text package.

The NumberFormat Class
The NumberFormat class provides generic formatting capabilities for numbers.
We don’t instantiate a NumberFormat object by using the new operator. Instead,
we request an object from one of its static methods that we invoke through the
class name itself. Figure 3.5 lists some of the methods of the NumberFormat class.

Two of the methods in the NumberFormat class, getCurrencyInstance and
getPercentInstance, return an object that is used to format numbers. The
getCurrencyInstance method returns a formatter for monetary values, and
the getPercentInstance method returns an object that formats a percentage.

O U T P U T

Enter the coefficient of x squared: 3
Enter the coefficient of x: 8
Enter the constant: 4
Root #1: -0.6666666666666666
Root #2: -2.0

L I S T I N G 3 . 4 continued

M03_LEWI5976_05_SE_C03.indd 92 08/02/19 1:15 AM

 3.6 Formatting Output 93

The format method is invoked through a formatter object and returns a String
that contains the number formatted in the appropriate manner.

The Purchase program shown in Listing 3.4 uses both types of formatters. It
reads in a sales transaction and computes the final price, including tax.

The getCurrencyInstance and getPercentInstance methods are called
factory methods, because they produce and return an instance of an object set up
in a particular manner. Essentially, a NumberFormat factory method uses the new

String format (double number)
Returns a string containing the specified number formatted according to this
object's pattern.

static NumberFormat getCurrencyInstance()
Returns a NumberFormat object that represents a currency format for the
current locale.

static NumberFormat getPercentInstance()
Returns a NumberFormat object that represents a percentage format for the
current locale.

FIGURE 3.5 Some methods of the NumberFormat class

//**
// Purchase.java Java Foundations
//
// Demonstrates the use of the NumberFormat class to format output.
//**

import java.util.Scanner;
import java.text.NumberFormat;

public class Purchase
{
 //---
 // Calculates the final price of a purchased item using values
 // entered by the user.
 //---
 public static void main(String[] args)
 {

L I S T I N G 3 . 4

M03_LEWI5976_05_SE_C03.indd 93 08/02/19 1:15 AM

94 CHAPTER 3 Using Classes and Objects

operator to create a NumberFormat object and then sets up the object to format
values in a particular way and returns it so that it can be used.

The DecimalFormat Class
Unlike the NumberFormat class, the DecimalFormat class is instantiated in the
traditional way using the new operator. Its constructor takes a String parameter

 final double TAX_RATE = 0.06; // 6% sales tax

 int quantity;
 double subtotal, tax, totalCost, unitPrice;

 Scanner scan = new Scanner(System.in);

 NumberFormat fmt1 = NumberFormat.getCurrencyInstance();
 NumberFormat fmt2 = NumberFormat.getPercentInstance();

 System.out.print("Enter the quantity: ");
 quantity = scan.nextInt();

 System.out.print("Enter the unit price: ");
 unitPrice = scan.nextDouble();

 subtotal = quantity * unitPrice;
 tax = subtotal * TAX_RATE;
 totalCost = subtotal + tax;

 // Print output with appropriate formatting

 System.out.println("Subtotal: " + fmt1.format(subtotal));
 System.out.println("Tax: " + fmt1.format(tax) + " at "
 + fmt2.format(TAX_RATE));
 System.out.println("Total: " + fmt1.format(totalCost));
 }
}

O U T P U T

Enter the quantity: 6
Enter the unit price: 1.69
Subtotal: $10.14
Tax: $0.61 at 6%
Total: $10.75

L I S T I N G 3 . 4 continued

M03_LEWI5976_05_SE_C03.indd 94 08/02/19 1:15 AM

 3.6 Formatting Output 95

that represents the pattern that will guide the formatting process. We can then use
the format method to format a particular value. At a later point, if we want to
change the pattern that the formatter object uses, we can invoke the applyPattern
method. Figure 3.6 describes these methods.

The pattern defined by the string that is passed to the DecimalFormat con-
structor can get fairly elaborate. Various symbols are used to represent particular
formatting guidelines. The pattern defined by the string "0.###", for example, in-
dicates that at least one digit should be printed to the left of the decimal point and
should be a zero if the integer portion of the value is zero. It also indicates that the
fractional portion of the value should be rounded to three digits.

This pattern is used in the CircleStats program, shown in Listing 3.5, which
reads the radius of a circle from the user and computes the circle’s area and cir-
cumference. Trailing zeros, such as in the circle’s area of 78.540, are not printed
using this pattern.

DecimalFormat (String pattern)
Constructor: creates a new DecimalFormat object with the specified pattern.

void applyPattern (String pattern)
Applies the specified pattern to this DecimalFormat object.

String format (double number)
Returns a string containing the specified number formatted according to the
current pattern.

FIGURE 3.6 Some methods of the DecimalFormat class

//**
// CircleStats.java Java Foundations
//
// Demonstrates the formatting of decimal values using the
// DecimalFormat class.
//**

import java.util.Scanner;
import java.text.DecimalFormat;

public class CircleStats
{

L I S T I N G 3 . 5

M03_LEWI5976_05_SE_C03.indd 95 08/02/19 1:15 AM

96 CHAPTER 3 Using Classes and Objects

The printf Method
In addition to print and println, the System class has another output method
called printf, which allows the user to print a formatted string containing data
values. The first parameter to the method represents the format string, and the
remaining parameters specify the values that are inserted into the format string.

For example, the following line of code prints an ID number and a name:

System.out.printf("ID: %5d\tName: %s", id, name);

 //---
 // Calculates the area and circumference of a circle given its
 // radius.
 //---
 public static void main(String[] args)
 {
 int radius;
 double area, circumference;

 Scanner scan = new Scanner(System.in);

 System.out.print("Enter the circle’s radius: ");
 radius = scan.nextInt();

 area = Math.PI * Math.pow(radius, 2);
 circumference = 2 * Math.PI * radius;

 // Round the output to three decimal places

 DecimalFormat fmt = new DecimalFormat("0.###");

 System.out.println("The circle’s area: " + fmt.format(area));
 System.out.println("The circle’s circumference: "
 + fmt.format(circumference));
 }
}

O U T P U T

Enter the circle’s radius: 5
The circle’s area: 78.54
The circle’s circumference: 31.416

L I S T I N G 3 . 5 continued

M03_LEWI5976_05_SE_C03.indd 96 08/02/19 1:15 AM

 3.7 Enumerated Types 97

The first parameter specifies the format of the output and includes literal char-
acters that label the output values as well as escape characters such as \t. The
 pattern %5d indicates that the corresponding numeric value (id) should be printed
in a field of five characters. The pattern %s matches the string parameter name.
The values of id and name are inserted into the string, producing a result such as

ID: 24036 Name: Larry Flagelhopper

The printf method was added to Java to mirror a similar function used in
programs written in the C programming language. This makes it easier for a pro-
grammer to translate (or migrate) an existing C program into Java.

Older software that still has value is called a legacy system. Maintaining a
legacy system is often a costly effort because, among other things, it is based on
older technologies. But in many cases, maintaining a legacy system is still more
cost-effective than migrating it to new technology, such as writing it in a newer
language. Adding the printf method is an attempt to make such
migrations easier, and therefore less costly, by providing the same
kind of output statement that C programmers have come to rely on.

However, using the printf method is not a particularly clean
object-oriented solution to the problem of formatting output, so we
avoid its use in this text.

3.7 Enumerated Types

Java provides the ability to define an enumerated type, which can then be used as
the type of a variable when it is declared. An enumerated type establishes all pos-
sible values of a variable of that type by listing, or enumerating, them. The values
are identifiers and can be anything desired.

For example, the following declaration defines an enumerated type called
Season whose possible values are winter, spring, summer, and fall.

enum Season {winter, spring, summer, fall}

There is no limit to the number of values that you can list for an enumerated type.
Once the type is defined, a variable can be declared of that type:

Season time;

The variable time is now restricted in the values it can take on. It
can hold one of the four Season values, but nothing else. Java enu-
merated types are considered to be type-safe, which means that any
attempt to use a value other than one of the enumerated values will
result in a compile-time error.

KEY CONCEPT
The printf method was added
to Java to support the migration of
legacy systems.

KEY CONCEPT
Enumerated types are type-safe,
ensuring that invalid values will not
be used.

M03_LEWI5976_05_SE_C03.indd 97 08/02/19 1:15 AM

98 CHAPTER 3 Using Classes and Objects

The values are accessed through the name of the type—for example,

time = Season.spring;

Enumerated types can be quite helpful in situations in which you have a rela-
tively small number of distinct values that a variable can assume. For example,
suppose we wanted to represent the various letter grades a student could earn. We
might declare the following enumerated type:

enum Grade {A, B, C, D, F}

Any initialized variable that holds a Grade is guaranteed to have one of those
valid grades. That’s better than using a simple character or String variable to
represent the grade, which could take on any value.

Suppose we also wanted to represent plus and minus grades, such as A− and
B+. We couldn’t use A− or B+ as values, because they are not valid identifiers (the
characters '-' and '+' cannot be part of an identifier in Java). However, the same
values could be represented using the identifiers Aminus, Bplus, and so on.

Internally, each value in an enumerated type is stored as an integer, which is re-
ferred to as its ordinal value. The first value in an enumerated type has an ordinal
value of 0, the second has an ordinal value of 1, the third has an ordinal value of
2, and so on. The ordinal values are used internally only. You cannot assign a nu-
meric value to an enumerated type, even if it corresponds to a valid ordinal value.

An enumerated type is a special kind of class, and the variables of an enu-
merated type are object variables. Thus there are a few methods associated with
all enumerated types. The ordinal method returns the numeric value associated
with a particular enumerated type value. The name method returns the name of
the value, which is the same as the identifier that defines the value.

Listing 3.6 shows a program called IceCream that declares an enumerated type
and exercises some of its methods. Because enumerated types are special types of
classes, they are not defined within a method. They can be defined either at the
class level (within the class but outside a method), as in this example, or at the
outermost level.

////**
// IceCream.java Java Foundations
//
// Demonstrates the use of enumerated types.
//**

L I S T I N G 3 . 6

M03_LEWI5976_05_SE_C03.indd 98 08/02/19 1:15 AM

 3.7 Enumerated Types 99

public class IceCream
{
 enum Flavor {vanilla, chocolate, strawberry, fudgeRipple, coffee,
 rockyRoad, mintChocolateChip, cookieDough}

 //---
 // Creates and uses variables of the Flavor type.
 //---
 public static void main(String[] args)
 {
 Flavor cone1, cone2, cone3;

 cone1 = Flavor.rockyRoad;
 cone2 = Flavor.chocolate;

 System.out.println("cone1 value: " + cone1);
 System.out.println("cone1 ordinal: " + cone1.ordinal());
 System.out.println("cone1 name: " + cone1.name());

 System.out.println();
 System.out.println("cone2 value: " + cone2);
 System.out.println("cone2 ordinal: " + cone2.ordinal());
 System.out.println("cone2 name: " + cone2.name());

 cone3 = cone1;

 System.out.println();
 System.out.println("cone3 value: " + cone3);
 System.out.println("cone3 ordinal: " + cone3.ordinal());
 System.out.println("cone3 name: " + cone3.name());
 }
}

O U T P U T

cone1 value: rockyRoad
cone1 ordinal: 5
cone1 name: rockyRoad

cone2 value: chocolate
cone2 ordinal: 1
cone2 name: chocolate

cone3 value: rockyRoad
cone3 ordinal: 5
cone3 name: rockyRoad

L I S T I N G 3 . 6 continued

M03_LEWI5976_05_SE_C03.indd 99 08/02/19 1:15 AM

100 CHAPTER 3 Using Classes and Objects

3.8 Wrapper Classes

As we’ve discussed previously, Java represents data by using primitive types (such
as int, double, char, and boolean) in addition to classes and objects. Having
two categories of data to manage (primitive values and object references) can
present a challenge in some circumstances. There are times when you may want to
treat primitive data as though they were objects. In these cases we need to “wrap”
a primitive value into an object.

A wrapper class represents a particular primitive type. For instance, the Integer
class represents a simple integer value. An object created from the Integer class
stores a single int value. The constructors of the wrapper classes accept the primi-
tive value to store. Here is an example:

Integer ageObj = new Integer(40);

Once this declaration and instantiation are performed, the
ageObj object effectively represents the integer 40 as an object. It
can be used wherever an object is needed in a program rather than
a primitive type.

For each primitive type in Java there exists a corresponding
wrapper class in the Java class library. All wrapper classes are defined in the
java.lang package. Figure 3.7 shows the wrapper class that corresponds to each
primitive type.

Note that there is even a wrapper class that represents the type void. However,
unlike the other wrapper classes, the Void class cannot be instantiated. It simply
represents the concept of a void reference.

byte

short

int

long

float

double

char

boolean

void

Byte

Short

Integer

Long

Float

Double

Character

Boolean

Void

Primitive Type Wrapper Class

FIGURE 3.7 Wrapper classes in the java.lang package

KEY CONCEPT
A wrapper class allows a primitive
value to be managed as an object.

M03_LEWI5976_05_SE_C03.indd 100 08/02/19 1:15 AM

 3.8 Wrapper Classes 101

Integer (int value)
 Constructor: creates a new Integer object storing the specified value.

byte byteValue ()

double doubleValue ()

float floatValue ()

int intValue ()

long longValue ()

 Return the value of this Integer as the corresponding primitive type.

static int parseInt (String str)

 Returns the int corresponding to the value stored in the specified string.

static String toBinaryString (int num)

static String tohexString (int num)

static String toOctalString (int num)
 Returns a string representation of the specified integer value in the
 corresponding base.

FIGURE 3.8 Some methods of the Integer class

Wrapper classes also provide various methods related to the management of
the associated primitive type. For example, the Integer class contains methods
that return the int value stored in the object and that convert the stored value to
other primitive types. Figure 3.8 lists some of the methods found in the Integer
class. The other wrapper classes have similar methods.

Note that the wrapper classes also contain static methods that can be invoked
independent of any instantiated object. For example, the Integer class contains a
static method called parseInt that converts an integer that is stored in a String
to its corresponding int value. If the String object str holds the string "987",
the following line of code converts the string into the integer value 987 and stores
that value in the int variable num:

num = Integer.parseInt(str);

The Java wrapper classes often contain static constants that are helpful as
well. For example, the Integer class contains two constants, MIN_VALUE and
MAX_VALUE, that hold the smallest and largest int values, respectively. The other
wrapper classes contain similar constants for their types.

M03_LEWI5976_05_SE_C03.indd 101 08/02/19 1:15 AM

102 CHAPTER 3 Using Classes and Objects

Autoboxing
Autoboxing is the automatic conversion between a primitive value and a cor-
responding wrapper object. For example, in the following code, an int value is
assigned to an Integer object reference variable.

Integer obj1;
int num1 = 69;
obj1 = num1; // automatically creates an Integer object

The reverse conversion, called unboxing, also occurs automatically when needed.
For example,

Integer obj2 = new Integer(69);
int num2;
num2 = obj2; // automatically extracts the int value

Assignments between primitive types and object types are gen-
erally incompatible. The ability to autobox occurs only between
primitive types and corresponding wrapper classes. In any other
case, attempting to assign a primitive value to an object reference
variable, or vice versa, will cause a compile-time error.

KEY CONCEPT
Autoboxing provides automatic
conversions between primitive values
and corresponding wrapper objects.

M03_LEWI5976_05_SE_C03.indd 102 08/02/19 1:15 AM

 Summary of Terms 103

Summary of Key Concepts

■■ The new operator returns a reference to a newly created object.

■■ Multiple reference variables can refer to the same object.

■■ Methods are often executed on a particular object, and that object’s state
usually affects the results.

■■ A class library provides useful support when one is developing programs.

■■ The Java standard class library is organized into packages.

■■ All classes of the java.lang package are automatically imported for every
program.

■■ A pseudorandom number generator performs a complex calculation to cre-
ate the illusion of randomness.

■■ All methods of the Math class are static, which means they are invoked
through the class name.

■■ The printf method was added to Java to support the migration of legacy
systems.

■■ Enumerated types are type-safe, ensuring that invalid values will not be used.

■■ A wrapper class allows a primitive value to be managed as an object.

■■ Autoboxing provides automatic conversions between primitive values and
corresponding wrapper objects.

Summary of Terms
application programming interface (API) A set of related classes that sup-
ports a particular aspect of programming.

autoboxing The automatic conversion of a primitive type to an object of its
corresponding wrapper class.

class library A set of classes that supports the development of programs.

constructor A special method that has the same name as the class and is
called when a object is created to set up the object initially.

enumerated type A Java data type in which all values of the type are explic-
itly listed.

garbage collection The process of reclaiming memory space that can no
longer be used by a program.

immutable An object whose data (state) cannot be modified once it is created.

M03_LEWI5976_05_SE_C03.indd 103 08/02/19 1:15 AM

104 CHAPTER 3 Using Classes and Objects

import declaration A programming statement used to specify which exter-
nal classes (from which packages) are used in a program.

instance An object. An object is an instance of a class.

instantiation The process of creating a new object.

package A language-level organization mechanism for classes. Each class in
the Java API belongs to a particular package.

pseudorandom number generator A program element that performs calcu-
lations to produce a series of numbers in seemingly random order.

wrapper class A class that corresponds to a particular primitive data type.

Self-Review Questions
SR 3.1 What does the new operator accomplish?

SR 3.2 What is a null reference?

SR 3.3 What is an alias? How is it related to garbage collection?

SR 3.4 Write a declaration for a String variable called author and
initialize it to the string "Fred Brooks". Draw a graphical repre-
sentation of the variable and its value.

SR 3.5 Write a statement that prints the value of a String object called
title in all uppercase letters.

SR 3.6 Write a declaration for a String variable called front and ini-
tialize it to the first 10 characters of another String object called
description.

SR 3.7 What is a Java package?

SR 3.8 What does the java.net package contain? The java.swing
package?

SR 3.9 What package contains the Scanner class? The String class?
The Random class? The Math class?

SR 3.10 What does an import declaration accomplish?

SR 3.11 Why doesn’t the String class have to be specifically imported
into our programs?

SR 3.12 Given a Random object called rand, what does the call
rand.nextInt() return?

SR 3.13 Given a Random object called rand, what does the call
rand.nextInt(20) return?

M03_LEWI5976_05_SE_C03.indd 104 08/02/19 1:15 AM

 Exercises 105

SR 3.14 What is a class method (also called a static method)?

SR 3.15 Write a statement that prints the sine of an angle measuring 1.23
radians.

SR 3.16 Write a declaration for a double variable called result and ini-
tialize it to 5 raised to the power 2.5.

SR 3.17 What are the steps to output a floating point value as a percent-
age using Java’s formatting classes?

SR 3.18 Write the declaration of an enumerated type that represents
movie ratings.

SR 3.19 How can we represent a primitive value as an object?

Exercises
EX 3.1 Write a statement that prints the number of characters in a

String object called overview.

EX 3.2 Write a statement that prints the eighth character of a String
object called introduction.

EX 3.3 Write a declaration for a String variable called change and ini-
tialize it to the characters stored in another String object called
original with all 'e' characters changed to 'j'.

EX 3.4 What output is produced by the following code fragment?

String m1, m2, m3;
m1 = "Quest for the Holy Grail";
m2 = m1.toLowerCase();
m3 = m1 + " " + m2;
System.out.println(m3.replace('h', 'z'));

EX 3.5 What is the effect of the following import declaration?

import java.net.*;

EX 3.6 Assuming that a Random object called generator has been
created, what is the range of the result of each of the following
expressions?

a. generator.nextInt(20)
b. generator.nextInt(8) + 1
c. generator.nextInt(45) + 10
d. generator.nextInt(100) - 50

M03_LEWI5976_05_SE_C03.indd 105 08/02/19 1:15 AM

106 CHAPTER 3 Using Classes and Objects

EX 3.7 Write code to declare and instantiate an object of the Random
class (call the object reference variable rand). Then write a list
of expressions using the nextInt method that generates random
numbers in the following specified ranges, including the end
points. Use the version of the nextInt method that accepts a
single integer parameter.

a. 0 to 10
b. 0 to 500
c. 1 to 10
d. 1 to 500
e. 25 to 50
f. -10 to 15

EX 3.8 Write an assignment statement that computes the square root of
the sum of num1 and num2 and assigns the result to num3.

EX 3.9 Write a single statement that computes and prints the absolute
value of total.

EX 3.10 Write code statements to create a DecimalFormat object that
will round a formatted value to four decimal places. Then write
a statement that uses that object to print the value of the result,
properly formatted.

EX 3.11 Write code statements that prompt for and read a double value
from the user and then print the result of raising that value to the
fourth power. Output the results to three decimal places.

EX 3.12 Write a declaration for an enumerated type that represents the
days of the week.

Programming Projects
PP 3.1 Write an application that prompts for and reads the user’s first

name and last name (separately). Then print a string composed
of the first letter of the user’s first name, followed by the first five
characters of the user’s last name, followed by a random number
in the range 10 to 99. Assume that the last name is at least five
letters long. Similar algorithms are sometimes used to generate
usernames for new computer accounts.

PP 3.2 Write an application that prints the sum of cubes. Prompt for and
read two integer values and print the sum of each value raised to
the third power.

M03_LEWI5976_05_SE_C03.indd 106 08/02/19 1:15 AM

PP 3.3 Write an application that creates and prints a random phone
number of the form XXX-XXX-XXXX. Include the dashes in
the output. Do not let the first three digits contain an 8 or 9
(but don’t be more restrictive than that), and make sure that the
second set of three digits is not greater than 742. Hint: Think
through the easiest way to construct the phone number. Each
digit does not have to be determined separately.

PP 3.4 Write an application that reads the (x, y) coordinates for two
points. Compute the distance between the two points using the
following formula:

Distance = 2(x2 - x1)2 + (y2 - y1)2

PP 3.5 Write an application that reads the radius of a sphere and prints
its volume and surface area. Use the following formulas, in which
r represents the sphere’s radius. Print the output to four decimal
places.

Volume =
4
3
pr3

Surface area = 4pr2

PP 3.6 Write an application that reads the lengths of the sides of a trian-
gle from the user. Compute the area of the triangle using Heron’s
formula (below), in which s represents half of the perimeter of the
triangle, and a, b, and c represent the lengths of the three sides.
Print the area to three decimal places.

Area = 2(s(s - a)(s - b)(s - c)

Answers to Self-Review Questions
SRA 3.1 The new operator creates a new instance (an object) of the speci-

fied class. The constructor of the class is then invoked to help set
up the newly created object.

SRA 3.2 A null reference is a reference that does not refer to any object.
The reserved word null can be used to check for null references
to avoid following them.

SRA 3.3 Two references are aliases of each other if they refer to the same
object. Changing the state of the object through one reference
changes it for the other, because there is actually only one object.
An object is marked for garbage collection only when there are
no valid references to it.

 Answers to Self-Review Questions 107

M03_LEWI5976_05_SE_C03.indd 107 08/02/19 1:15 AM

108 CHAPTER 3 Using Classes and Objects

SRA 3.4 The following declaration creates a String variable called
author and initializes it.

String author = new String("Fred Brooks");

For strings, this declaration could have been abbreviated as follows:

String author = "Fred Brooks";

This object reference variable and its value can be depicted as follows:

author “Fred Brooks”

SRA 3.5 The following statement prints the value of a String object in all
uppercase letters.

System.out.println(title.toUpperCase());

SRA 3.6 The following declaration creates a String object and
sets it equal to the first 10 characters of the String called
description.

String front = description.substring(0, 10);

SRA 3.7 A Java package is a collection of related classes. The Java stan-
dard class library is a group of packages that supports common
programming tasks.

SRA 3.8 Each package contains a set of classes that supports particular
programming activities. The classes in the java.net package sup-
port network communication, and the classes in the javax.swing
class support the development of graphical user interfaces.

SRA 3.9 The Scanner class and the Random class are part of the
java.util package. The String and Math classes are part of the
java.lang package.

SRA 3.10 An import declaration establishes the fact that a program uses
a particular class, specifying the package that the class is a part
of. This allows the programmer to use the class name (such as
Random) without having to fully qualify the reference (such as
java.util.Random) every time.

SRA 3.11 The String class is part of the java.lang package, which is au-
tomatically imported into any Java program. Therefore, no sepa-
rate import declaration is needed.

M03_LEWI5976_05_SE_C03.indd 108 08/02/19 1:15 AM

SRA 3.12 A call to the nextInt method of a Random object returns a ran-
dom integer in the range of all possible int values, both positive
and negative.

SRA 3.13 Passing a positive integer parameter x to the nextInt method of
a Random object returns a random number in the range of 0 to
x - 1. Thus a call to nextInt(20) will return a random number
in the range 0 to 19, inclusive.

SRA 3.14 A class (or static) method can be invoked through the name of the
class that contains it, such as Math.abs. If a method is not static,
it can be executed only through an instance (an object) of the
class.

SRA 3.15 The following statement prints the sine of 1.23 radians.

System.out.println(Math.sin(1.23));

SRA 3.16 The following declaration creates a double variable and initializes
it to 5 raised to the power 2.5.

double result = Math.pow(5, 2.5);

SRA 3.17 To output a floating point value as a percentage, you first
obtain a formatter object using a call to the static method
getPercentInstance of the NumberFormat class. Then you pass
the value to be formatted to the format method of the format-
ter object, which returns a properly formatted string. Here is an
example:

NumberFormat fmt = NumberFormat.getPercentageInstance();

System.out.println(fmt.format(value));

SRA 3.18 The following is a declaration of an enumerated type for movie
ratings.

enum Ratings {G, PG, PG13, R, NC17}

SRA 3.19 A wrapper class is defined in the Java standard class library for
each primitive type. In situations where objects are called for, an
object created from a wrapper class may suffice.

 Answers to Self-Review Questions 109

M03_LEWI5976_05_SE_C03.indd 109 08/02/19 1:15 AM

111

4
All programming languages have statements that allow

you to make decisions about what to do next. Some of

those statements allow you to repeat a certain activity mul-

tiple times. This chapter discusses several such statements,

as well as exploring some issues related to comparing data

and objects. We begin with a discussion of boolean expres-

sions, which form the basis of any decision.

C H A P T E R O B J E C T I V E S
■■ Discuss the flow of control through a method.

■■ Explore boolean expressions that can be used to make decisions.

■■ Perform basic decision making using if and switch statements.

■■ Discuss issues pertaining to the comparison of certain types of
data.

■■ Execute statements repetitively using while, do, and for loops.

■■ Discuss the concept of an iterator object, and use one to read a
text file.

Conditionals
and Loops 4

M04_LEWI5976_05_SE_C04.indd 111 08/02/19 1:52 AM

112 CHAPTER 4 Conditionals and Loops

4.1 Boolean Expressions

The order in which statements are executed in a running program is called the flow
of control. Unless otherwise specified, the basic execution of a program proceeds
in a linear fashion. That is, a running program starts at the first programming
statement and moves down one statement at a time until the program is complete.
A Java application begins executing with the first line of the main method and
proceeds step by step until it gets to the end of the main method.

Invoking a method alters the flow of control. When a method is called, the flow
of control jumps to the code defined for that method, and it begins executing.
When the method completes, control returns to the place in the calling method
where the invocation was made, and processing continues from there. Methods
and their invocation are discussed further in the next chapter.

Within a given method, we can alter the flow of control through
the code by using certain types of programming statements.
Statements that control the flow of execution through a method fall
into two categories: conditionals and loops.

A conditional statement is sometimes called a selection statement
because it allows us to choose which statement will be executed next.

The conditional statements in Java are the if statement, the if-else statement,
and the switch statement. These statements enable us to decide which statement
to execute next.

Each decision is based on a boolean expression, also called a condition, which
is an expression that evaluates to either true or false. The result of the expression
determines which statement is executed next.

The following is an example of an if statement:

if (count > 20)
 System.out.println("Count exceeded");

The condition in this statement is count > 20. That expression eval-
uates to a boolean (true or false) result. Either the value stored in
count is greater than 20 or it’s not. If it is, the println statement is
executed. If it’s not, the println statement is skipped, and process-
ing continues with whatever code follows it. The if statement and
other conditionals are explored in detail in this chapter.

The need to make decisions like this comes up all the time in pro-
gramming situations. For example, the cost of life insurance might depend on
whether the insured person is a smoker. If the person smokes, we calculate the
cost using a particular formula; if not, we calculate it using another. The role of

KEY CONCEPT
Conditionals and loops enable us to
control the flow of execution through
a method.

KEY CONCEPT
An if statement allows a program to
choose whether to execute a particular
statement.

M04_LEWI5976_05_SE_C04.indd 112 08/02/19 1:52 AM

 4.1 Boolean Expressions 113

a conditional statement is to evaluate a boolean condition (whether the person
smokes) and then to execute the proper calculation accordingly.

A loop, or repetition statement, allows us to execute a program-
ming statement over and over again. Like a conditional, a loop is
based on a boolean expression that determines how many times the
statement is executed.

For example, suppose we wanted to calculate the grade point average of every
student in a class. The calculation is the same for each student; it is just performed
on different data. We would set up a loop that repeats the calculation for each
student until there are no more students to process.

Java has three types of loop statements: the while statement, the do statement,
and the for statement. Each type of loop statement has unique characteristics that
distinguish it from the others.

All conditionals and loops are based on boolean expressions, which use equality
operators, relational operators, and logical operators to make decisions. Before we
discuss the details of conditional and loop statements, let’s explore these operators.

Equality and Relational Operators
The == and != operators are called equality operators. They test whether two
values are equal or are not equal, respectively. Note that the equality operator
consists of two equal signs side by side and should not be mistaken for the assign-
ment operator, which uses only one equal sign.

The following if statement prints a sentence only if the variables total and
sum contain the same value.

if (total == sum)
 System.out.println("total equals sum");

Likewise, the following if statement prints a sentence only if the variables
total and sum do not contain the same value.

if (total != sum)
 System.out.println("total does NOT equal sum");

Java also has several relational operators that let us decide the relative ordering
between two values. Earlier in this section we used the greater than operator (>)
to decide whether one value was greater than another. We can ask such questions
using various operators, depending on the relationship. These operators include
less than (<), greater than or equal to (>=), and less than or equal to (<=). Figure 4.1
lists the Java equality and relational operators.

KEY CONCEPT
A loop allows a program to execute a
statement multiple times.

M04_LEWI5976_05_SE_C04.indd 113 08/02/19 1:52 AM

114 CHAPTER 4 Conditionals and Loops

The equality and relational operators have lower precedence than the arith-
metic operators. Therefore, arithmetic operations are evaluated first, followed by
equality and relational operations. As always, parentheses can be used to explic-
itly specify the order of evaluation.

We’ll see more examples of relational operators as we examine conditional and
loop statements throughout this chapter.

Logical Operators
In addition to the equality and relational operators, Java has three logical opera-
tors that produce boolean results. They also take boolean operands. Figure 4.2
lists and describes the logical operators.

The ! operator is used to perform the logical NOT operation, which is also
called the logical complement. The ! operator is unary, taking only one boolean
operand. The logical complement of a boolean value yields its opposite value.
That is, if a boolean variable called found has the value false, then !found is
true. Likewise, if found is true, then !found is false. Note that the logical NOT
operation does not change the value stored in found—it creates an expression that
returns a boolean result.

==

!=

<

<=

>

>=

equal to

not equal to

less than

less than or equal to

greater than

greater than or equal to

Operator Meaning

FIGURE 4.1 Java equality and relational operators

!

&&

logical NOT

logical AND

logical OR

true if a is false and false if a is true

true if a and b are both true and false otherwise

true if a or b or both are true and false otherwise

! a

a && b

a b

Operator Description Example Result

||||

FIGURE 4.2 Java logical operators

M04_LEWI5976_05_SE_C04.indd 114 08/02/19 1:52 AM

 4.1 Boolean Expressions 115

A logical operation can be described by a truth table that lists all possible com-
binations of values for the variables involved in an expression. Because the logical
NOT operator is unary, there are only two possible values for its one operand,
which must be either true or false. Figure 4.3 shows a truth table that describes
the ! operator.

The && operator performs a logical AND operation. The result of an && opera-
tion is true if both operands are true, but is false otherwise. Compare that to the
result of the logical OR operator (||), which is true if one or the other or both
operands are true, but is false otherwise.

The AND and OR operators are both binary operators because each uses two
operands. Therefore, there are four possible combinations to consider: both oper-
ands are true, both are false, one is true and the other false, and vice versa. Figure 4.4
depicts a truth table that shows both the && operator and the || operator.

The logical NOT has the highest precedence of the three logical operators, fol-
lowed by logical AND and then logical OR.

The logical operators enable us to create complex expressions when making
decisions. Consider the following if statement:

if (!done && (count > MAX))
 System.out.println("Completed.");

Under what conditions would the println statement be executed? The value of
the boolean variable done is either true or false, and the NOT operator reverses
that value. Either the value of count is greater than MAX or it isn’t. The truth table
in Figure 4.5 displays all of the possibilities.

a !a

false

true

true

false

FIGURE 4.3 Truth table describing the logical NOT operator

false

false

false

true

false

false

false

true

true

true

true

true

false

true

false

true

a b a && b a || b

FIGURE 4.4 Truth table describing the logical AND and OR operators

M04_LEWI5976_05_SE_C04.indd 115 08/02/19 1:52 AM

116 CHAPTER 4 Conditionals and Loops

An important characteristic of the && and || operators is that
they are “short-circuited” in Java. That is, if their left operand is
sufficient to decide the boolean result of the operation, the right op-
erand is not evaluated. This situation can occur with both operators,
but for different reasons. If the left operand of the && operator is

false, then the result of the operation will be false no matter what the value of the
right operand is. Likewise, if the left operand of the || operator is true, then the
result of the operation is true no matter what the value of the right operand is.

Sometimes you can capitalize on the fact that an operator is short-circuited. For
example, the condition in the following if statement will not attempt to divide by zero
if the left operand is false. If count has the value zero, the left side of the && operation
is false; therefore, the whole expression is false and the right side is not evaluated.

if (count != 0 && total/count > MAX)
 System.out.println("Testing.");

You should consider carefully whether or not to rely on these kinds of subtle
programming language characteristics. Not all programming languages short-
circuit these operations, and such code would produce a divide-by-zero error in
those languages. As we have stressed before, you should err on the side of read-
ability. You should always strive to make the logic of your program extremely
clear to anyone reading your code.

4.2 The if Statement

We’ve used a basic if statement in earlier examples in this chapter. Let’s now
explore it in detail.

An if statement consists of the reserved word if followed by a boolean expres-
sion, followed by a statement. The condition is enclosed in parentheses and must
evaluate to true or false. If the condition is true, the statement is executed, and
then processing continues with any statement that follows. If the condition is false,
the statement controlled by the condition is skipped, and processing continues im-
mediately with any statement that follows. Figure 4.6 shows this processing.

KEY CONCEPT
Logical operators can be used to
construct sophisticated conditions.

false

false

true

true

false

true

false

true

true

true

false

false

false

true

false

false

done !donecount > MAX !done && (count > MAX)

FIGURE 4.5 A truth table for a specific condition

M04_LEWI5976_05_SE_C04.indd 116 08/02/19 1:52 AM

 4.2 The if Statement 117

Consider the following example of an if statement:

if (total > amount)
 total = total + (amount + 1);

In this example, if the value in total is greater than the value in amount, the as-
signment statement is executed; otherwise, the assignment statement is skipped.

Note that the assignment statement in this example is indented under the
header line of the if statement. This communicates to a human reader that the
assignment statement is part of the if statement; it implies that the if statement
governs whether the assignment statement will be executed. This in-
dentation is extremely important for human readability, although it
is ignored by the compiler.

The example in Listing 4.1 reads the age of the user and then
makes a decision about whether to print a particular sentence based
on the age that is entered.

The Age program echoes the age value that is entered in all cases. If the age is
less than the value of the constant MINOR, the statement about youth is printed.
If the age is equal to or greater than the value of MINOR, the println statement
is skipped. In either case, the final sentence about age being a state of mind is
printed.

Let’s look at a few more examples of basic if statements. The following if
statement causes the variable size to be set to zero if its current value is greater
than or equal to the value in the constant MAX.

if (size >= MAX)
 size = 0;

The condition of the following if statement first adds three values together
and then compares the result to the value stored in numBooks.

true

statement

condition
evaluated

false

FIGURE 4.6 The logic of an if statement

KEY CONCEPT
Proper indentation is important for
human readability; it shows the
relationship between one statement
and another.

M04_LEWI5976_05_SE_C04.indd 117 08/02/19 1:52 AM

118 CHAPTER 4 Conditionals and Loops

//**
// Age.java Java Foundations
//
// Demonstrates the use of an if statement.
//**

import java.util.Scanner;

public class Age
{
 //--
 // Reads the user’s age and prints comments accordingly.
 //--
 public static void main(String[] args)
 {
 final int MINOR = 21;
 Scanner scan = new Scanner(System.in);
 System.out.print("Enter your age: ");
 int age = scan.nextInt();
 System.out.println("You entered: " + age);

 if (age < MINOR)
 System.out.println("Youth is a wonderful thing. Enjoy.");

 System.out.println("Age is a state of mind.");
 }
}

O U T P U T

Enter your age: 43
You entered: 43
Age is a state of mind.

L I S T I N G 4 . 1

if (numBooks < stackCount + inventoryCount + duplicateCount)
 reorder = true;

If numBooks is less than the other three values combined, the boolean variable
reorder is set to true. The addition operations are performed before the less
than operator, because the arithmetic operators have a higher precedence than the
relational operators.

Assuming that the variable generator refers to an object of the Random class,
the following if statement examines the value returned from a call to nextInt to
determine a random winner.

M04_LEWI5976_05_SE_C04.indd 118 08/02/19 1:52 AM

if (generator.nextInt(CHANCE) == 0)
 System.out.println("You are a randomly selected winner!");

The odds of this code picking a winner are based on the value of the CHANCE con-
stant. That is, if CHANCE contains 20, the odds of winning are 1 in 20. The fact
that the condition is looking for a return value of 0 is arbitrary; any value between
0 and CHANCE-1 would have worked.

The if-else Statement
Sometimes we want to do one thing if a condition is true and another thing if that condi-
tion is false. To handle this kind of situation, we can add an else clause to an if statement,
making it an if-else statement. The following is an example of an if-else statement:

if (height <= MAX)
 adjustment = 0;
else
 adjustment = MAX - height;

If Statement
if () Statement

else Statement

Expression

An if statement tests the boolean Expression and, if the Expression
is true, executes the first Statement. The optional else clause identifies
the Statement that should be executed if the Expression is false.

Examples:
if (total < 7)
 System.out.println("Total is less than 7.");

if (firstCh != 'a')
 count++;
else
 count = count / 2;

If the condition is true, the first assignment statement is executed; if the condition is
false, the second assignment statement is executed. Only one or the other
will be executed, because a boolean condition evaluates to either true or
false. Note that proper indentation is used again to communicate that
the statements are part of the governing if statement.

The Wages program shown in Listing 4.2 uses an if-else statement
to compute the proper payment amount for an employee.

KEY CONCEPT
An if-else statement allows a
program to do one thing if a condition
is true and another thing if the
condition is false.

 4.2 The if Statement 119

M04_LEWI5976_05_SE_C04.indd 119 08/02/19 1:52 AM

120 CHAPTER 4 Conditionals and Loops

//**
// Wages.java Java Foundations
//
// Demonstrates the use of an if-else statement.
//**

import java.text.NumberFormat;
import java.util.Scanner;

public class Wages
{
 //--
 // Reads the number of hours worked and calculates wages.
 //--
 public static void main(String[] args)
 {
 final double RATE = 8.25; // regular pay rate
 final int STANDARD = 40; // standard hours in a work week

 Scanner scan = new Scanner(System.in);

 double pay = 0.0;

 System.out.print("Enter the number of hours worked: ");
 int hours = scan.nextInt();

 System.out.println();

 // Pay overtime at "time and a half"

 if (hours > STANDARD)
 pay = STANDARD * RATE + (hours-STANDARD) * (RATE * 1.5);
 else
 pay = hours * RATE;

 NumberFormat fmt = NumberFormat.getCurrencyInstance();
 System.out.println("Gross earnings: " + fmt.format(pay));
 }
}

O U T P U T

Enter the number of hours worked: 46
Gross earnings: $404.25

L I S T I N G 4 . 2

M04_LEWI5976_05_SE_C04.indd 120 08/02/19 1:52 AM

In the Wages program, if an employee works over 40 hours in a week, the payment
amount takes into account the overtime hours. An if-else statement is used to
determine whether the number of hours entered by the user is greater than 40.
If it is, the overtime hours are paid at a rate one and a half times the normal rate.
If there are no overtime hours, the total payment is based simply on the number of
hours worked and the standard rate.

Let’s look at another example of an if-else statement:

if (roster.getSize() == FULL)
 roster.expand();
else
 roster.addName(name);

This example makes use of an object called roster. Even without knowing what
roster represents, or from what class it was created, we can see that it has at least
three methods: getSize, expand, and addName. The condition of the if statement
calls getSize and compares the result to the constant FULL. If the condition is true,
the expand method is invoked (apparently to expand the size of the roster). If the ros-
ter is not yet full, the variable name is passed as a parameter to the addName method.

if (total <= cash)

cash = cash - total;

else
{

system.out.println("Insufficient cash.");
total = 0

}

If Statement

boolean
condition

executed if the
condition is true

block
statement

executed if the
condition is false

Using Block Statements
We may want to do more than one thing as the result of evaluating a boolean
condition. In Java, we can replace any single statement with a block statement.
A block statement is a collection of statements enclosed in braces. We’ve used these
braces many times in previous examples to delimit method and class definitions.

The program called Guessing, shown in Listing 4.3, uses an if-else state-
ment in which the statement of the else clause is a block statement.

 4.2 The if Statement 121

M04_LEWI5976_05_SE_C04.indd 121 08/02/19 1:52 AM

122 CHAPTER 4 Conditionals and Loops

//**
// Guessing.java Java Foundations
//
// Demonstrates the use of a block statement in an if-else.
//**

import java.util.*;

public class Guessing
{
 //---
 // Plays a simple guessing game with the user.
 //---
 public static void main(String[] args)
 {
 final int MAX = 10;
 int answer, guess;

 Scanner scan = new Scanner(System.in);
 Random generator = new Random();

 answer = generator.nextInt(MAX) + 1;

 System.out.print("I’m thinking of a number between 1 and "
 + MAX + ". Guess what it is: ");

 guess = scan.nextInt();

 if (guess == answer)
 System.out.println("You got it! Good guessing!");
 else
 {
 System.out.println("That is not correct, sorry.");
 System.out.println("The number was " + answer);
 }
 }
}

O U T P U T

I’m thinking of a number between 1 and 10. Guess what it is: 4
That is not correct, sorry.
The number was 8

L I S T I N G 4 . 3

M04_LEWI5976_05_SE_C04.indd 122 08/02/19 1:52 AM

A block statement can be used anywhere a single statement is called for in Java
syntax. For example, the if portion of an if-else statement could be a block, or
the else portion could be a block (as we saw in the Guessing program), or both
parts could be block statements, as shown in the following example:

if (boxes != warehouse.getCount())
{
 System.out.println("Inventory and warehouse do NOT match.");
 System.out.println("Beginning inventory process again!");
 boxes = 0;
}

COMMON ERROR

Remember that indentation means nothing except to the human reader.
Statements that are not blocked properly can lead to the programmer mak-
ing improper assumptions about how the code will execute. For example,
the following code is misleading:

if (depth > 36.238)
 delta = 100;

else
 System.out.println("WARNING: Delta is being reset to ZERO");
 delta = 0; // not part of the else clause!

The indentation (not to mention the logic of the code) implies that the vari-
able delta is reset only when depth is less than 36.238. However, if a block
is not used, the assignment statement that resets delta to zero is not gov-
erned by the if-else statement at all. It is executed in either case, which is
clearly not what is intended.

If the guess entered by the user equals the randomly chosen answer, an ap-
propriate acknowledgement is printed. However, if the answer is incorrect, two
sentences are printed, one that states that the guess is wrong and one that prints
the actual answer. A programming project at the end of this chapter expands the
basic idea in this example into the Hi-Lo game.

Note that if the block braces were not used, the sentence stating that the
answer is incorrect would be printed if the answer was wrong, but the sentence
revealing the correct answer would be printed in all cases. That is, only the first
statement would be considered part of the else clause.

VideoNote
Examples using
conditionals

 4.2 The if Statement 123

M04_LEWI5976_05_SE_C04.indd 123 08/02/19 1:52 AM

124 CHAPTER 4 Conditionals and Loops

else
{
 System.out.println("Inventory and warehouse MATCH.");
 warehouse.ship();
}

In this if-else statement, the value of boxes is compared to a value obtained
by calling the getCount method of the warehouse object (whatever that is). If
they do not match exactly, two println statements and an assignment statement
are executed. If they do match, a different message is printed and the ship method
of warehouse is invoked.

The Conditional Operator
The Java conditional operator is similar to an if-else statement in some ways. It
is a ternary operator because it requires three operands. The symbol for the con-
ditional operator is usually written ?:, but it is not like other operators in that the
two symbols that make it up are always separated. The following is an example of
an expression that contains the conditional operator.

(total > MAX) ? total + 1 : total * 2;

Preceding the ? is a boolean condition. Following the ? are two expressions sepa-
rated by the : symbol. The entire conditional expression returns the value of the
first expression if the condition is true, and returns the value of the second expres-
sion if the condition is false.

Keep in mind that this is an expression that returns a value, and usually we
want to do something with that value, such as assign it to a variable:

total = (total > MAX) ? total + 1 : total * 2;

In many ways, the ?: operator serves as an abbreviated if-else statement.
The previous statement is functionally equivalent to, but sometimes more conve-
nient than, the following:

if (total > MAX)
 total = total + 1;
else
 total = total * 2;

Now consider the declaration

int larger = (num1 > num2) ? num1 : num2;

If num1 is greater than num2, the value of num1 is returned and used to initialize
the variable larger. If not, the value of num2 is returned and used to initialize
larger. Similarly, the following statement prints the smaller of the two values.

M04_LEWI5976_05_SE_C04.indd 124 08/02/19 1:52 AM

System.out.print("Smaller: " + ((num1 < num2) ? num1 : num2));

As we’ve seen, the conditional operator is occasionally helpful. However, it is
not a replacement for an if-else statement because the operands to the ?: opera-
tor are expressions, not necessarily full statements. And even when the conditional
operator is a viable alternative, you should use it carefully, because it may be less
readable than an if-else statement.

Nested if Statements
The statement executed as the result of an if statement could be another if state-
ment. This situation is called a nested if. It allows us to make another decision after
determining the results of a previous decision. The program in Listing 4.4, called
MinOfThree, uses nested if statements to determine the smallest of three integer
values entered by the user.

Carefully trace the logic of the MinOfThree program, using various input sets with
the minimum value in all three positions, to see how it determines the lowest value.

An important situation arises with nested if statements. It may seem that an
else clause after a nested if could apply to either if statement. Consider the
following example:

if (code == 'R')
if (height <= 20)

System.out.println("Situation Normal");
else

System.out.println("Bravo!");

//**
// MinOfThree.java Java Foundations
//
// Demonstrates the use of nested if statements.
//**

import java.util.Scanner;

public class MinOfThree
{
 //---
 // Reads three integers from the user and determines the smallest
 // value.
 //---

L I S T I N G 4 . 4

 4.2 The if Statement 125

M04_LEWI5976_05_SE_C04.indd 125 08/02/19 1:52 AM

126 CHAPTER 4 Conditionals and Loops

Is the else clause matched to the inner if statement or the outer if
statement? The indentation in this example implies that it is part of the
inner if statement, and that is correct. An else clause is always matched
to the closest unmatched if that preceded it. However, if we’re not care-
ful, we can easily mismatch it in our mind and misalign the indentation.
This is another reason why accurate, consistent indentation is crucial.

Braces can be used to specify the if statement to which an else clause belongs.
For example, if the previous example should have been structured so that the

KEY CONCEPT
In a nested if statement, an else
clause is matched to the closest
unmatched if that preceded it.

 public static void main(String[] args)
 {
 int num1, num2, num3, min = 0;

 Scanner scan = new Scanner(System.in);

 System.out.println("Enter three integers: ");

 num1 = scan.nextInt();
 num2 = scan.nextInt();
 num3 = scan.nextInt();

 if (num1 < num2)
 if (num1 < num3)
 min = num1;
 else
 min = num3;
 else
 if (num2 < num3)
 min = num2;
 else
 min = num3;

 System.out.println("Minimum value: " + min);
 }
}

O U T P U T

Enter three integers:
43 26 69
Minimum value: 26

L I S T I N G 4 . 4 continued

M04_LEWI5976_05_SE_C04.indd 126 08/02/19 1:52 AM

 4.3 Comparing Data 127

string "Bravo!" is printed if code is not equal to 'R', we could force that rela-
tionship (and properly indent) as follows:

if (code == 'R')
{
 if (height <= 20)
 System.out.println("Situation Normal");
}
else
 System.out.println("Bravo!");

By using the block statement in the first if statement, we establish that the
else clause belongs to it.

4.3 Comparing Data

When comparing data using boolean expressions, it’s important to understand
some nuances that arise depending on the type of data being examined. Let’s look
at a few key situations.

Comparing Floats
An interesting situation occurs when we are comparing floating point data. Two
floating point values are equal, according to the == operator, only if all the binary
digits of their underlying representations match. If the compared values are the
results of computation, it may be unlikely that they are exactly equal, even if they
are close enough for the specific situation. Therefore, you should rarely use the
equality operator (==) when comparing floating point values.

A better way to check for floating point equality is to compute the absolute
value of the difference between the two values and compare the result to some tol-
erance level. For example, we may choose a tolerance level of 0.00001. If the two
floating point values are so close that their difference is less than the tolerance,
then we are willing to consider them equal. Comparing two floating point values,
f1 and f2, could be accomplished as follows:

if (Math.abs(f1 - f2) < TOLERANCE)
 System.out.println("Essentially equal.");

The value of the constant TOLERANCE should be appropriate for the situation.

Comparing Characters
We know what it means when we say that one number is less than another, but
what does it mean to say that one character is less than another? As we discussed

M04_LEWI5976_05_SE_C04.indd 127 08/02/19 1:52 AM

128 CHAPTER 4 Conditionals and Loops

in Chapter 2, characters in Java are based on the Unicode character
set, which defines an ordering of all possible characters that can be
used. Because the character 'a' comes before the character 'b' in
the character set, we can say that 'a' is less than 'b'.

We can use the equality and relational operators on character
data. For example, if two character variables ch1 and ch2 hold two

characters, we might determine their relative ordering in the Unicode character set
with an if statement as follows:

if (ch1 > ch2)
 System.out.println(ch1 + " is greater than " + ch2);
else
 System.out.println(ch1 + " is NOT greater than " + ch2);

The Unicode character set is structured so that all lowercase alphabetic char-
acters ('a' through 'z') are contiguous and in alphabetical order. The same is
true of uppercase alphabetic characters ('A' through 'Z') and of characters that
represent digits ('0' through '9'). The digits precede the uppercase alphabetic
characters, which precede the lowercase alphabetic characters. Before, after, and
in between these groups are other characters. See the chart in Appendix C for
details.

Comparing Objects
The Unicode relationships among characters make it easy to sort characters and
strings of characters. If you have a list of names, for instance, you can put them
in alphabetical order based on the inherent relationships among characters in the
character set.

However, you should not use the equality or relational operators to compare
String objects. The String class contains a method called equals that returns a
boolean value that is true if the two strings being compared contain exactly the
same characters, and is false otherwise. Here is an example:

if (name1.equals(name2))
 System.out.println("The names are the same.");
else
 System.out.println("The names are not the same.");

Assuming that name1 and name2 are String objects, this condition
determines whether the characters they contain are an exact match.
Because both objects were created from the String class, they both
respond to the equals message. Therefore, the condition could have

KEY CONCEPT
The compareTo method can be
used to determine the relative order
of strings.

KEY CONCEPT
The relative order of characters
in Java is defined by the Unicode
character set.

M04_LEWI5976_05_SE_C04.indd 128 08/02/19 1:52 AM

 4.3 Comparing Data 129

been written as name2.equals(name1) and the same result would have been
obtained.

It is valid to test the condition (name1 == name2), but that actually tests to
see whether both reference variables refer to the same String object. For any
object, the == operator tests whether two reference variables are aliases of each
other (whether they contain the same address). That’s different from testing to see
whether two different String objects contain the same characters.

An interesting issue related to string comparisons is the fact that Java creates
a unique object for string literals only when needed. Keep in mind that a string
literal (such as "Howdy") is a convenience and is actually a shorthand technique
for creating a String object. If the string literal "Hi" is used multiple times in a
method, Java creates only one String object to represent it. Therefore, in the fol-
lowing code, the conditions of both if statements are true.

String str = "software";
if (str == "software")
 System.out.println("References are the same");
if (str.equals("software"))
 System.out.println("Characters are the same");

The first time the string literal "software" is used, a String object is created
to represent it, and the reference variable str is set to its address. Each subsequent
time the literal is used, the original object is referenced.

COMMON ERROR

For reasons described in this section, it’s valid to use the == operator to
compare two string objects. However, usually a programmer is interested in
seeing whether two different objects contain the same characters, which is
not what the == operator determines. Remember to use the equals method
when comparing the content of strings.

To determine the relative ordering of two strings, use the compareTo method
of the String class. The compareTo method is more versatile than the equals
method. Instead of returning a boolean value, the compareTo method returns
an integer. The return value is negative if the String object through which the
method is invoked precedes (is less than) the string that is passed in as a parameter.
The return value is zero if the two strings contain the same characters. The return

M04_LEWI5976_05_SE_C04.indd 129 08/02/19 1:52 AM

130 CHAPTER 4 Conditionals and Loops

value is positive if the String object through which the method is invoked follows
(is greater than) the string that is passed in as a parameter. For example:

int result = name1.compareTo(name2);
if (result < 0)
 System.out.println(name1 + " comes before " + name2);
else
 if (result == 0)
 System.out.println("The names are equal.");
 else
 System.out.println(name1 + " follows " + name2);

Keep in mind that comparing characters and strings is based on the Unicode
character set (see Appendix C) This is called a lexicographic ordering. If all
alphabetic characters are in the same case (upper or lower), the lexicographic
ordering will be alphabetic ordering as well. However, when comparing two
strings, such as "able" and "Baker", the compareTo method will conclude that
"Baker" comes first because all of the uppercase letters come before all of the
lowercase letters in the Unicode character set. If a string is the prefix of a longer
string, it is considered to precede the longer string. For example, when compar-
ing two strings such as "horse" and "horsefly", the compareTo method will
conclude that "horse" comes first.

4.4 The switch Statement

Another conditional statement in Java, called the switch statement, causes the
executing program to follow one of several paths based on a single value. We
also discuss the break statement in this section because it is generally used with a
switch statement.

The switch statement evaluates an expression to determine a value and then
matches that value with one of several possible cases. Each case has statements
associated with it. After evaluating the expression, control jumps to the state-
ment associated with the first case that matches the value. Consider the following
example:

switch (idChar)
{
 case 'A':
 aCount = aCount + 1;
 break;
 case 'B':
 bCount = bCount + 1;
 break;

M04_LEWI5976_05_SE_C04.indd 130 08/02/19 1:52 AM

 4.4 The switch Statement 131

 case 'C':
 cCount = cCount + 1;
 break;
 default:
 System.out.println("Error in Identification Character.");
}

First, the expression is evaluated. In this example, the expression is a
simple char variable. Execution then transfers to the first statement identi-
fied by the case value that matches the result of the expression. Therefore, if
idChar contains an 'A', the variable aCount is incremented. If it contains a
'B', the case for 'A' is skipped, and processing continues where bCount is
incremented.

If no case value matches that of the expression, execution continues with the
optional default case, indicated by the reserved word default. If no default case
exists, no statements in the switch statement are executed, and processing con-
tinues with the statement after the switch statement. It is often a good idea to
include a default case, even if you don’t expect it to be executed.

When a break statement is encountered, processing jumps to the statement fol-
lowing the switch statement. A break statement is usually used to break out of
each case of a switch statement. Without a break statement, processing contin-
ues into the next case of the switch. Therefore, if the break statement at the end
of the 'A' case in the previous example were not there, both the aCount variable
and the bCount variable would be incremented when idChar contained an 'A'.
Usually we want to perform only one case, so a break statement is almost always
used. Occasionally, though, the “pass through” feature comes in handy.

COMMON ERROR

Forgetting a break statement at the end of a switch case is a common er-
ror. Usually you want each case to be mutually exclusive, so you’ll want to
include a break statement at the end of each case. It’s unfortunate that the
usual case requires the extra line of code, but occasionally it is convenient
to omit it.

The expression evaluated at the beginning of a switch statement
must be of type char, byte, short, or int. In particular, it cannot
be a boolean, a floating point value, or a String. Furthermore, the
value of each case must be a constant; it cannot be a variable or other
expression.

KEY CONCEPT
A break statement is usually used
at the end of each case alternative of a
switch statement.

M04_LEWI5976_05_SE_C04.indd 131 08/02/19 1:52 AM

132 CHAPTER 4 Conditionals and Loops

Note that the implicit boolean condition of a switch statement is based on
equality. The expression at the beginning of the statement is compared to each
case value to determine which one it equals. A switch statement cannot be used
to determine other relational operations (such as less than), unless some prelimi-
nary processing is done. For example, the GradeReport program in Listing 4.5
prints a comment based on a numeric grade that is entered by the user.

In GradeReport, the category of the grade is determined by dividing the grade
by 10 using integer division, which results in an integer value between 0 and 10
(assuming a valid grade is entered). This result is used as the expression of the
switch, which prints various messages for grades 60 or higher and a default sen-
tence for all other values.

Switch Statement
switch ()

Switch Case
Expression { }

Switch Case
case

default

Expression :

:
Block Statement

The switch statement evaluates the initial Expression and matches its value with one of
the cases. Processing continues with the Statement corresponding to that case. The optional
default case will be executed if no other case matches.
Example:
switch (numValues)
{
 case 0:
 System.out.println("No values were entered.");
 break;
 case 1:
 System.out.println("One value was entered.");
 break;
 case 2:
 System.out.println("Two values were entered.");
 break;
 default:
 System.out.println("Too many values were entered.");
}

M04_LEWI5976_05_SE_C04.indd 132 08/02/19 1:52 AM

//**
// GradeReport.java Java Foundations
//
// Demonstrates the use of a switch statement.
//**

import java.util.Scanner;

public class GradeReport
{
 //---
 // Reads a grade from the user and prints comments accordingly.
 //---
 public static void main(String[] args)
 {
 int grade, category;

 Scanner scan = new Scanner(System.in);

 System.out.print("Enter a numeric grade (0 to 100): ");
 grade = scan.nextInt();

 category = grade / 10;

 System.out.print("That grade is ");

 switch (category)
 {
 case 10:
 System.out.println("a perfect score. Well done.");
 break;
 case 9:
 System.out.println("well above average. Excellent.");
 break;
 case 8:
 System.out.println("above average. Nice job.");
 break;
 case 7:
 System.out.println("average.");
 break;
 case 6:
 System.out.print("below average. Please see the ");
 System.out.println("instructor for assistance.");
 break;

L I S T I N G 4 . 5

 4.4 The switch Statement 133

M04_LEWI5976_05_SE_C04.indd 133 08/02/19 1:52 AM

134 CHAPTER 4 Conditionals and Loops

Note that any switch statement could be implemented as a set of nested if
statements. However, nested if statements quickly become difficult for a human
reader to understand and are error prone to implement and debug. But because a
switch can evaluate only equality, nested if statements are sometimes necessary.
It depends on the situation.

4.5 The while Statement

As we discussed in the introduction to this chapter, a repetition statement (or
loop) allows us to execute another statement multiple times. A while statement
is a loop that evaluates a boolean condition just as an if statement does and ex-
ecutes a statement (called the body of the loop) if the condition is true. However,

unlike the if statement, after the body is executed, the condition is
evaluated again. If it is still true, the body is executed again. This
repetition continues until the condition becomes false; then process-
ing continues with the statement after the body of the while loop.
Figure 4.7 shows this processing.

The following loop prints the values from 1 to 5. Each iteration
through the loop prints one value and then increments the counter.

int count = 1;
while (count <= 5)
{
 System.out.println(count);
 count++;
}

KEY CONCEPT
A while statement executes the
same statement repeatedly until its
condition becomes false.

 default:
 System.out.println("not passing.");
 }
 }
}

O U T P U T

Enter a numeric grade (0 to 100): 87
That grade is above average. Nice job.

L I S T I N G 4 . 5 continued

M04_LEWI5976_05_SE_C04.indd 134 08/02/19 1:52 AM

Note that the body of the while loop is a block containing two statements. The
entire block is repeated on each iteration of the loop.

true

statement

condition
evaluated

false

FIGURE 4.7 The logic of a while loop

COMMON ERROR

It’s easy to produce an off-by-one error, especially when dealing with loops.
In the previous example, count was initialized to 1 and the condition was
true if count is less than or equal to 5. The initial value of the variable and
the details of the condition work together to determine exactly how many
times the loop body will execute and what the output will be. Slight changes
in either (initialize it to 0, for instance, or use the < operator in the condition)
will produce different results. Carefully analyze the logic of your loops!

Let’s look at another program that uses a while loop. The Average program
shown in Listing 4.6 reads a series of integer values from the user, sums them up,
and computes their average.

We don’t know how many values the user may enter, so we need to have a
way to indicate that the user is finished entering numbers. In this program, we
designate zero to be a sentinel value that indicates the end of the input. The
while loop continues to process input values until the user enters zero. This
assumes that zero is not one of the valid numbers that should contribute to the
average. A sentinel value must always be outside the normal range of values
entered.

 4.5 The while Statement 135

M04_LEWI5976_05_SE_C04.indd 135 08/02/19 1:52 AM

136 CHAPTER 4 Conditionals and Loops

While Statement

while () StatementExpression

The while loop repeatedly executes the specified Statement as long as the boolean
Expression is true. The Expression is evaluated first; therefore, the Statement might not be
executed at all. The Expression is evaluated again after each execution of the Statement until
the Expression becomes false.

Example:

while (total > max)

{

 total = total / 2;

 System.out.println("Current total: " + total);

}

//**
// Average.java Java Foundations
//
// Demonstrates the use of a while loop, a sentinel value, and a
// running sum.
//**

import java.text.DecimalFormat;
import java.util.Scanner;

public class Average
{
 //---
 // Computes the average of a set of values entered by the user.
 // The running sum is printed as the numbers are entered.
 //---
 public static void main(String[] args)
 {
 int sum = 0, value, count = 0;
 double average;
 Scanner scan = new Scanner(System.in);
 System.out.print("Enter an integer (0 to quit): ");
 value = scan.nextInt();

L I S T I N G 4 . 6

M04_LEWI5976_05_SE_C04.indd 136 08/02/19 1:52 AM

 while (value != 0) // sentinel value of 0 to terminate loop
 {
 count++;

 sum += value;

 System.out.println("The sum so far is " + sum);

 System.out.print("Enter an integer (0 to quit): ");
 value = scan.nextInt();
 }
 System.out.println();

 if (count == 0)
 System.out.println("No values were entered.");
 else
 {
 average = (double)sum / count;
 DecimalFormat fmt = new DecimalFormat("0.###");
 System.out.println("The average is " + fmt.format(average));
 }
 }
}

O U T P U T

Enter an integer (0 to quit): 25
The sum so far is 25
Enter an integer (0 to quit): 44
The sum so far is 69
Enter an integer (0 to quit): -14
The sum so far is 55
Enter an integer (0 to quit): 83
The sum so far is 138
Enter an integer (0 to quit): 69
The sum so far is 207
Enter an integer (0 to quit): -37
The sum so far is 170
Enter an integer (0 to quit): 116
The sum so far is 286
Enter an integer (0 to quit): 0

The average is 40.857

L I S T I N G 4 . 6 continued

 4.5 The while Statement 137

M04_LEWI5976_05_SE_C04.indd 137 08/02/19 1:52 AM

138 CHAPTER 4 Conditionals and Loops

Note that in the Average program, a variable called sum is used to maintain a
running sum, which means it is the sum of the values entered thus far. The variable
sum is initialized to zero, and each value read is added to and stored back into sum.

We also have to count the number of values that are entered so that after the
loop concludes, we can divide by the appropriate value to compute the average.
Note that the sentinel value is not counted. Consider the unusual situation in
which the user immediately enters the sentinel value before entering any valid
values. The if statement at the end of the program avoids a divide-by-zero error.

Let’s examine yet another program that uses a while loop. The WinPercentage
program shown in Listing 4.7 computes the winning percentage of a sports team
based on the number of games won.

VideoNote
Examples using while
loops

while (input <= 0)

While Loop

boolean condition

executed repeatedly as long
as the condition is true

{

System.out.println("Input must be positive.")
input = scan.nextInt();

}

//***
// WinPercentage.java Java Foundations
//
// Demonstrates the use of a while loop for input validation.
//***

import java.text.NumberFormat;
import java.util.Scanner;

public class WinPercentage
{

L I S T I N G 4 . 7

M04_LEWI5976_05_SE_C04.indd 138 08/02/19 1:52 AM

We use a while loop in the WinPercentage program for input validation, which
means we guarantee that the user enters a value that we consider to be valid before
continuing. In this example, that means that the value entered representing the number
of games won must be greater than or equal to zero and less than or equal to the total
number of games played. The while loop continues to execute, repeatedly prompting

 //--
 // Computes the percentage of games won by a team.
 //--

 public static void main(String[] args)
 {
 final int NUM_GAMES = 12;
 int won;
 double ratio;
 Scanner scan = new Scanner(System.in);

 System.out.print("Enter the number of games won (0 to "
 + NUM_GAMES + "): ");
 won = scan.nextInt();

 while (won < 0 || won > NUM_GAMES)
 {
 System.out.print("Invalid input. Please reenter: ");
 won = scan.nextInt();
 }

 ratio = (double)won / NUM_GAMES;

 NumberFormat fmt = NumberFormat.getPercentInstance();

 System.out.println();
 System.out.println("Winning percentage: " + fmt.format(ratio));
 }
}

O U T P U T

Enter the number of games won (0 to 12): -5
Invalid input. Please reenter: 13
Invalid input. Please reenter: 7
Winning percentage: 58%

L I S T I N G 4 . 7 continued

 4.5 The while Statement 139

M04_LEWI5976_05_SE_C04.indd 139 08/02/19 1:52 AM

140 CHAPTER 4 Conditionals and Loops

the user for valid input, until the entered number is indeed valid. The body of the
while loop will not be executed at all if the user enters a valid value the first time.

We generally want our programs to be robust, which means that they handle poten-
tial problems as elegantly as possible. Validating input data and avoiding errors such
as dividing by zero are situations that we should consciously address when designing
a program. Loops and conditionals help us recognize and deal with such situations.

Infinite Loops
It is the programmer’s responsibility to ensure that the condition of a loop will
eventually become false. If it doesn’t, the loop body will execute forever, or at
least until the program is interrupted. This situation, which is referred to as an
infinite loop, is a common mistake.

The following is an example of an infinite loop.

int count = 1;
while (count <= 25) // Warning: this is an infinite loop!
{
 System.out.println(count);
 count = count - 1;
}

If you execute this loop, you should be prepared to interrupt it. On most systems,
pressing the Control-C keyboard combination (hold down the Control key and
press C) terminates a running program.

In this example, the initial value of count is 1 and it is decre-
mented in the loop body. The while loop will continue as long as
count is less than or equal to 25. Because count gets smaller with
each iteration, the condition will be true always, or at least until the
value of count gets so small that an underflow error occurs. The
point is that the logic of the code is clearly wrong.

Let’s look at some other examples of infinite loops. First, consider

int count = 1;
while (count != 50) // infinite loop
 count += 2;

In this code fragment, the variable count is initialized to 1 and is moving in a
positive direction. However, note that it is being incremented by 2 each time. This
loop will never terminate, because count will never equal 50. It begins at 1 and
then changes to 3, then to 5, and so on. Eventually it reaches 49 and then changes
to 51, then to 53, and continues forever.

KEY CONCEPT
We must design our programs
carefully to avoid infinite loops.

M04_LEWI5976_05_SE_C04.indd 140 08/02/19 1:52 AM

Now consider the following situation:

double num = 1.0;
while (num != 0.0) // infinite loop
 num = num - 0.1;

Once again, the value of the loop control variable seems to be moving in the
correct direction. And, in fact, it seems like num will eventually take on the value
0.0. However, this is an infinite loop (on most computer systems) because num
will never have a value exactly equal to 0.0. This situation is similar to one we
discussed earlier in this chapter when we explored the idea of comparing floating
point values in the condition of an if statement. Because of the way the values
are represented in binary, minute computational errors occur internally, making it
problematic to compare two floating point values for equality.

Nested Loops
The body of a loop can contain another loop. This situation is called a nested
loop. Keep in mind that for each iteration of the outer loop, the inner loop ex-
ecutes completely. Consider the following code fragment. How many times does
the string "Here again" get printed?

int count1 = 1, count2;
while (count1 <= 10)
{
 count2 = 1;
 while (count2 <= 50)
 {
 System.out.println("Here again");
 count2++;
 }
 count1++;
}

The println statement is inside the inner loop. The outer loop executes 10 times,
as count1 iterates between 1 and 10. The inner loop executes 50 times, as count2
iterates between 1 and 50. For each iteration of the outer loop, the inner loop ex-
ecutes completely. Therefore, the println statement is executed 500 times.

As with any loop situation, we must be careful to scrutinize the conditions of
the loops and the initializations of variables. Let’s consider some small changes
to this code. What if the condition of the outer loop were (count1 < 10) instead
of (count1 < = 10)? How would that change the total number of lines printed?
Well, the outer loop would execute 9 times instead of 10, so the println state-
ment would be executed 450 times. What if the outer loop were left as it was
originally defined, but count2 were initialized to 10 instead of 1 before the inner

 4.5 The while Statement 141

M04_LEWI5976_05_SE_C04.indd 141 08/02/19 1:52 AM

142 CHAPTER 4 Conditionals and Loops

loop? The inner loop would then execute 40 times instead of 50, so the total num-
ber of lines printed would be 400.

Let’s look at another example that uses a nested loop. A palindrome is a string
of characters that reads the same both forward and backward. For example, the
following strings are palindromes:

■■ radar

■■ drab bard

■■ ab cde xxxx edc ba

■■ kayak

■■ deified

■■ able was I ere I saw elba

Note that some palindromes have an even number of characters, whereas oth-
ers have an odd number of characters. The PalindromeTester program shown
in Listing 4.8 tests to see whether a string is a palindrome. The user may test as
many strings as desired.

The code for PalindromeTester contains two loops, one inside the other.
The outer loop controls how many strings are tested, and the inner loop scans
through each string, character by character, until it determines whether the string
is a palindrome.

The variables left and right store the indexes of two characters. They ini-
tially indicate the characters on either end of the string. Each iteration of the inner
loop compares the two characters indicated by left and right. We fall out of
the inner loop either when the characters don’t match, meaning the string is not a
palindrome, or when the value of left becomes equal to or greater than the value
of right, which means the entire string has been tested and it is a palindrome.

Note that the following phrases would not be considered palindromes by the
current version of the program:

■■ A man, a plan, a canal, Panama.

■■ Dennis and Edna sinned.

■■ Rise to vote, sir.

■■ Doom an evil deed, liven a mood.

■■ Go hang a salami; I’m a lasagna hog.

These strings fail to meet our current criteria for a palindrome because of the
spaces, punctuation marks, and changes in uppercase and lowercase. However, if
these characteristics were removed or ignored, these strings would read the same
forward and backward. Consider how the program could be changed to handle
these situations. These modifications are included as a programming project at the
end of this chapter.

M04_LEWI5976_05_SE_C04.indd 142 08/02/19 1:52 AM

//***
// PalindromeTester.java Java Foundations
//
// Demonstrates the use of nested while loops.
//***

import java.util.Scanner;

public class PalindromeTester
{
 //--
 // Tests strings to see if they are palindromes.
 //---
 public static void main(String[] args)
 {
 String str, another = "y";
 int left, right;

 Scanner scan = new Scanner(System.in);

 while (another.equalsIgnoreCase("y")) // allows y or Y
 {
 System.out.println("Enter a potential palindrome:");
 str = scan.nextLine();

 left = 0;
 right = str.length() - 1;

 while (str.charAt(left) == str.charAt(right) && left < right)
 {
 left++;
 right--;
 }

 System.out.println();
 if (left < right)
 System.out.println("That string is NOT a palindrome.");
 else
 System.out.println("That string IS a palindrome.");
 System.out.println();
 System.out.print("Test another palindrome (y/n)? ");
 another = scan.nextLine();
 }
 }
}

L I S T I N G 4 . 8

 4.5 The while Statement 143

M04_LEWI5976_05_SE_C04.indd 143 08/02/19 1:52 AM

144 CHAPTER 4 Conditionals and Loops

Other Loop Controls
We’ve seen how the break statement can be used to break out of the cases of a
switch statement. The break statement can also be placed in the body of any
loop, even though this is usually inappropriate. Its effect on a loop is similar to its
effect on a switch statement. The execution of the loop is stopped, and the state-
ment following the loop is executed.

It is never necessary to use a break statement in a loop. An equivalent loop can
always be written without it. Because the break statement causes program flow
to jump from one place to another, using a break in a loop is not good practice.
Its use is tolerated in a switch statement because an equivalent switch statement
cannot be written without it. However, you can and should avoid using it in a loop.

A continue statement has a similar effect on loop processing. The continue
statement is similar to a break, but the loop condition is evaluated again, and

O U T P U T

Enter a potential palindrome:
radar

That string IS a palindrome.

Test another palindrome (y/n)? y
Enter a potential palindrome:
able was I ere I saw elba

That string IS a palindrome.

Test another palindrome (y/n)? y
Enter a potential palindrome:
abc6996cba

That string IS a palindrome.

Test another palindrome (y/n)? y
Enter a potential palindrome:
abracadabra

That string is NOT a palindrome.

Test another palindrome (y/n)? n

L I S T I N G 4 . 8 continued

M04_LEWI5976_05_SE_C04.indd 144 08/02/19 1:52 AM

 4.6 Iterators 145

the loop body is executed again if it is still true. Like the break statement, the
continue statement can always be avoided in a loop—and for the same reasons,
it should be.

4.6 Iterators

An iterator is an object that has methods that allow you to process a collection of items
one at a time. That is, an iterator lets you step through each item and interact with it
as needed. For example, your goal may be to compute the dues for each
member of a club, or print the distinct parts of a URL, or process a group
of returned library books. An iterator provides a consistent and simple
mechanism for systematically processing a group of items. This process-
ing is inherently repetitive, so it ties into our discussion of loops.

Technically, an iterator object in Java is defined using the Iterator interface,
which is discussed in Chapter 9. For now, it is helpful simply to know that such
objects exist and that they can make the processing of a collection of items easier.

Every iterator object has a method called hasNext that returns a boolean
value indicating whether there is at least one more item to process. Therefore, the
hasNext method can be used as a condition of a loop to control the processing of
each item. An iterator also has a method called next to retrieve the next item in
the collection to process.

There are several classes in the Java standard class library that define iterator
objects. One of these is Scanner, a class we’ve used several times in previous ex-
amples to help us read data from the user. The hasNext method of the Scanner
class returns true if there is another input token to process. And it has a next
method that returns the next input token as a string.

The Scanner class also has specific variations of the hasNext method, such as the
hasNextInt and hasNextDouble methods, which allow you to determine whether
the next input token is a particular type. Likewise, there are variations of the next
method, such as nextInt and nextDouble, that retrieve values of specific types.

When reading input interactively from the standard input stream, the hasNext
method of the Scanner class will wait until there is input available and then re-
turn true. That is, interactive input read from the keyboard is always thought to
have more data to process—it just hasn’t arrived yet (until the user types it in).
That’s why in previous examples we’ve used special sentinel values to determine
the end of interactive input.

However, the fact that a Scanner object is an iterator is particularly helpful
when the scanner is being used to process input from a source that has a specific
end point, such as processing the lines of a data file or processing the parts of a
character string. Let’s examine an example of this type of processing.

KEY CONCEPT
An iterator is an object that helps you
process a group of related items.

M04_LEWI5976_05_SE_C04.indd 145 08/02/19 1:52 AM

146 CHAPTER 4 Conditionals and Loops

Reading Text Files
Suppose we have an input file called websites.inp that contains a list of Web
page addresses (Uniform Resource Locators, or URLs) that we want to process in
some way. The following are the first few lines of websites.inp:

www.google.com
www.linux.org/info/gnu.html
thelyric.com/calendar/
www.cs.vt.edu/undergraduate/about
youtube.com/watch?v=EHCRimwRGLs

The program shown in Listing 4.9 reads the URLs from this file and dissects
them to show the various parts of the path. It uses a Scanner object to process the
input. In fact, the program uses multiple Scanner objects—one to read the lines of
the data file, and another to process each URL string.

//**
// URLDissector.java Java Foundations
//
// Demonstrates the use of Scanner to read file input and parse it
// using alternative delimiters.
//**

import java.util.Scanner;
import java.io.*;

public class URLDissector
{
 //---
 // Reads urls from a file and prints their path components.
 //---
 public static void main(String[] args) throws IOException
 {
 String url;
 Scanner fileScan, urlScan;

 fileScan = new Scanner(new File("websites.inp"));

 // Read and process each line of the file

L I S T I N G 4 . 9

M04_LEWI5976_05_SE_C04.indd 146 08/02/19 1:52 AM

 4.6 Iterators 147

 while (fileScan.hasNext())
 {
 url = fileScan.nextLine();
 System.out.println("URL: " + url);

 urlScan = new Scanner(url);
 urlScan.useDelimiter("/");

 // Print each part of the url

 while (urlScan.hasNext())
 System.out.println(" " + urlScan.next());
 System.out.println();
 }
 }
}

O U T P U T

URL: www.google.com
 www.google.com

URL: www.linux.org/info/gnu.html
 www.linux.org
 info
 gnu.html

URL: thelyric.com/calendar/
 thelyric.com
 calendar

URL: www.cs.vt.edu/undergraduate/about
 www.cs.vt.edu
 undergraduate
 about

URL: youtube.com/watch?v=EHCRimwRGLs
 youtube.com
 watch?v=EHCRimwRGLs

L I S T I N G 4 . 9 continued

M04_LEWI5976_05_SE_C04.indd 147 08/02/19 1:52 AM

148 CHAPTER 4 Conditionals and Loops

There are two while loops in this program, one nested within the other. The
outer loop processes each line in the file, and the inner loop processes each token
in the current line.

The variable fileScan is created as a scanner that operates on the input file named
urls.inp. Instead of passing System.in into the Scanner constructor, we instantiate
a File object that represents the input file and pass it into the Scanner constructor. At
that point, the fileScan object is ready to read and process input from the input file.

If for some reason there is a problem finding or opening the input file, the at-
tempt to create a File object will throw an IOException, which is why we’ve
added the throws IOException clause to the main method header. Processing
exceptions is discussed further in Chapter 10.

The body of the outer while loop will be executed as long as the hasNext
method of the input file scanner returns true—that is, as long as there is more
input in the data file to process. Each iteration through the loop reads one line
(one URL) from the input file and prints it out.

For each URL, a new Scanner object is set up to parse the pieces of the URL
string, which is passed into the Scanner constructor when instantiating the urlScan
object. The inner while loop prints each token of the URL on a separate line.

Recall that, by default, a Scanner object assumes that white space (spaces,
tabs, and new lines) is used as the delimiter to separate the input tokens. Using
white space delimiters works in this example for the scanner that is reading each
line of the input file. However, if the default delimiters do not suffice, as in the
processing of a URL in this example, they can be changed.

In this case, we are interested in each part of the path separated by
the slash (/) character. A call to the useDelimiter method of the scan-
ner sets the delimiter to a slash prior to processing the URL string.

If you want to use more than one alternate delimiter character, or
if you want to parse the input in more complex ways, the Scanner
class can process patterns called regular expressions, which are dis-
cussed in Appendix H.

4.7 The do Statement

The do statement is similar to the while statement in that it executes the loop body
until a condition becomes false. However, unlike the while loop, whose condition
is evaluated before the body is executed, the condition of a do loop is evaluated
after the loop body executes. Syntactically, the condition in a do loop is written
after the loop body to reflect this processing. The body of a do loop is always ex-
ecuted at least once, whereas with a while loop, the body might not be executed at
all (if the condition is initially false). Figure 4.8 shows the processing of a do loop.

KEY CONCEPT
The delimiters used to separate tokens
in a Scanner object can be explicitly
set as needed.

M04_LEWI5976_05_SE_C04.indd 148 08/02/19 1:52 AM

 4.7 The do Statement 149

The following code prints the numbers from 1 to 5 using a do
loop. Compare this code with the similar example earlier in this
chapter that uses a while loop to accomplish the same task.

int count = 0;
do
{
 count++;
 System.out.println(count);
}
while (count < 5);

KEY CONCEPT
A do statement executes its loop
body at least once.

false

statement

condition
evaluated

true

FIGURE 4.8 The logic of a do loop

Do Statement

for
For Init

;
Expression

;
For Update

)(Statement

The do loop repeatedly executes the specified Statement as long
as the boolean Expression is true. The Statement is executed at least
once, and then the Expression is evaluated to determine whether the
Statement should be executed again.

Example:

do
{
 System.out.print("Enter a word:");
 word = scan.next();
 System.out.println(word);
}
while (!word.equals("quit"));

M04_LEWI5976_05_SE_C04.indd 149 08/02/19 1:52 AM

150 CHAPTER 4 Conditionals and Loops

A do loop begins simply with the reserved word do. The body of the do loop
continues until the while clause that contains the boolean condition that deter-
mines whether the loop body will be executed again. Sometimes it is difficult to
determine whether a line of code that begins with the reserved word while is the
beginning of a while loop or the end of a do loop.

Let’s look at another example of the do loop. The program called ReverseNumber,
shown in Listing 4.10, reads an integer from the user and reverses its digits
mathematically.

//**
// ReverseNumber.java Java Foundations
//
// Demonstrates the use of a do loop.
//**

import java.util.Scanner;

public class ReverseNumber
{
 //---
 // Reverses the digits of an integer mathematically.
 //---
 public static void main(String[] args)
 {
 int number, lastDigit, reverse = 0;

 Scanner scan = new Scanner(System.in);

 System.out.print("Enter a positive integer: ");
 number = scan.nextInt();

 do
 {
 lastDigit = number % 10;
 reverse = (reverse * 10) + lastDigit;
 number = number / 10;
 }
 while (number > 0);

 System.out.println("That number reversed is " + reverse);
 }
}

L I S T I N G 4 . 1 0

M04_LEWI5976_05_SE_C04.indd 150 08/02/19 1:52 AM

 4.8 The for Statement 151

The do loop in the ReverseNumber program uses the remainder operation to
determine the digit in the 1s position, adds it into the reversed number, and then
truncates that digit from the original number using integer division. The do loop
terminates when we run out of digits to process, which corresponds to the point
when the variable number reaches the value zero. Carefully trace the logic of this
program with a few examples to see how it works.

If you know you want to perform the body of a loop at least once, then you prob-
ably want to use a do statement. A do loop has many of the same properties as a while
statement, so it must also be checked for termination conditions to avoid infinite loops.

4.8 The for Statement

The while statement and the do statement are good to use when you don’t ini-
tially know how many times you want to execute the loop body. The for state-
ment is another repetition statement that is particularly well suited for executing
the body of a loop a specific number of times that can be determined before the
loop is executed.

The following code prints the numbers 1 through 5 using a for
loop, just as we did using a while loop and a do loop in previous
examples.

for (int count=1; count <= 5; count++)
 System.out.println(count);

The header of a for loop contains three parts separated by semicolons. Before
the loop begins, the first part of the header, called the initialization, is executed.
The second part of the header is the boolean condition, which is evaluated before
the loop body (like the while loop). If true, the body of the loop is executed, fol-
lowed by the execution of the third part of the header, which is called the incre-
ment. Note that the initialization part is executed only once, but the increment
part is executed after each iteration of the loop. Figure 4.9 shows this processing.

KEY CONCEPT
A for statement is generally used
when a loop will be executed a set
number of times.

O U T P U T

Enter a positive integer: 2896
That number reversed is 6982

L I S T I N G 4 . 1 0 continued

M04_LEWI5976_05_SE_C04.indd 151 08/02/19 1:52 AM

152 CHAPTER 4 Conditionals and Loops

falsetrue

statement

increment

initialization

condition
evaluated

FIGURE 4.9 The logic of a for loop

For Statement

for
For Init

;
Expression

;
For Update

)(Statement

For Init
Local Variable Declaration

Statement Expression

,

For Update
Statement Expression

,

The for statement repeatedly executes the specified Statement as
long as the boolean Expression is true. The For Init portion of the
header is executed only once, before the loop begins. The For Update
portion executes after each execution of the Statement.

Examples:

for (int value=1; value < 25; value++)
 System.out.println(value + " squared is " + value*value);

for (int num=40; num > 0; num-=3)
 sum = sum + num;

M04_LEWI5976_05_SE_C04.indd 152 08/02/19 1:52 AM

 4.8 The for Statement 153

A for loop can be a bit tricky to read until you get used to it. The execution of
the code doesn’t follow a top-to-bottom, left-to-right reading. The increment code
executes after the body of the loop, even though it is in the header.

In this example, the initialization portion of the for loop header is used to de-
clare the variable count as well as to give it an initial value. We are not required
to declare a variable there, but it is a common practice in situations where the
variable is not needed outside of the loop. Because count is declared in the for
loop header, it exists only inside the loop and cannot be referenced elsewhere.

The loop control variable is set up, checked, and modified by the actions in the
for loop header. It can be referenced inside the loop body, but it should not be
modified except by the actions defined in the loop header.

Despite its name, the increment portion of the for loop header could actually
decrement a value rather than increment it. For example, the following loop prints
the integer values from 100 down to 1.

for (int num = 100; num > 0; num--)
 System.out.println(num);

In fact, the increment portion of the for loop could perform any calculation, not
just a simple increment or decrement. Consider the program shown in Listing 4.11,
which prints multiples of a particular value up to a particular limit.

//***
// Multiples.java Java Foundations
//
// Demonstrates the use of a for loop.
//***

import java.util.Scanner;

public class Multiples
{
 //--
 // Prints multiples of a user-specified number up to a user-
 // specified limit.
 //--
 public static void main(String[] args)
 {
 final int PER_LINE = 5;
 int value, limit, mult, count = 0;

L I S T I N G 4 . 1 1

M04_LEWI5976_05_SE_C04.indd 153 08/02/19 1:52 AM

154 CHAPTER 4 Conditionals and Loops

 Scanner scan = new Scanner(System.in);

 System.out.print("Enter a positive value: ");
 value = scan.nextInt();

 System.out.print("Enter an upper limit: ");
 limit = scan.nextInt();
 System.out.println();
 System.out.println("The multiples of " + value + " between " +
 value + " and " + limit + " (inclusive) are:");

 for (mult = value; mult <= limit; mult += value)
 {
 System.out.print(mult + "\t");

 // Print a specific number of values per line of output

 count++;
 if (count % PER_LINE == 0)
 System.out.println();
 }
 }
}

O U T P U T

Enter a positive value: 7
Enter an upper limit: 400

The multiples of 7 between 7 and 400 (inclusive) are:
7 14 21 28 35
42 49 56 63 70
77 84 91 98 105
112 119 126 133 140
147 154 161 168 175
182 189 196 203 210
217 224 231 238 245
252 259 266 273 280
287 294 301 308 315
322 329 336 343 350
357 364 371 378 385
392 399

L I S T I N G 4 . 1 1 continued

M04_LEWI5976_05_SE_C04.indd 154 08/02/19 1:52 AM

The increment portion of the for loop in the Multiples program adds the
value entered by the user after each iteration. The number of values printed per
line is controlled by counting the values printed and then moving to the next line
whenever count is evenly divisible by the PER_LINE constant.

The Stars program in Listing 4.12 shows the use of nested for loops. The
output is a triangle shape made of asterisk characters. The outer loop executes ex-
actly 10 times. Each iteration of the outer loop prints one line of the output. The
inner loop performs a different number of iterations depending on the line value
controlled by the outer loop. Each iteration of the inner loop prints one star on
the current line. Writing programs that print variations on this triangle configura-
tion are included in the programming projects at the end of the chapter.

//***
// Stars.java Java Foundations
//
// Demonstrates the use of nested for loops.
//***

public class Stars
{
 //--
 // Prints a triangle shape using asterisk (star) characters.
 //--
 public static void main(String[] args)
 {
 final int MAX_ROWS = 10;

 for (int row = 1; row <= MAX_ROWS; row++)
 {
 for (int star = 1; star <= row; star++)
 System.out.print("*");

 System.out.println();
 }
 }
}

L I S T I N G 4 . 1 2

VideoNote
Examples using for
loops

 4.8 The for Statement 155

M04_LEWI5976_05_SE_C04.indd 155 08/02/19 1:52 AM

156 CHAPTER 4 Conditionals and Loops

Iterators and for Loops
In Section 4.6 we discussed the fact that some objects are considered to be itera-
tors, which have hasNext and next methods to process each item from a group. If
an object has implemented the Iterable interface, then we can use a variation of
the for loop to process items using a simplified syntax. For example, if bookList
is an Iterable object that contains Book objects, we can use a for loop to pro-
cess each Book object as follows:

for (Book myBook : bookList)
 System.out.println (myBook);

This version of the for loop is referred to as a for–each statement. It processes
each object in the iterator in turn. It is equivalent to the following:

Book myBook;
while (bookList.hasNext())
{
 myBook = bookList.next();
 System.out.println(myBook);
}

The Scanner class is an Iterator but is not Iterable. Therefore, it has the
hasNext and next methods but cannot be used with this version of the for loop.
On the other hand, arrays, which are discussed in Chapter 7, are Iterable. We
use the for–each loop as appropriate in various situations throughout the rest of
this text.

O U T P U T

*
**

L I S T I N G 4 . 1 2 continued

M04_LEWI5976_05_SE_C04.indd 156 08/02/19 1:52 AM

Comparing Loops
The three loop statements (while, do, and for) are functionally equivalent. Any
particular loop written using one type of loop can be written using either of the
other two loop types. Which type of loop we use depends on the situation.

As we mentioned earlier, the primary difference between a while loop and a do
loop is when the condition is evaluated. If you know you want to execute the loop
body at least once, a do loop is usually the better choice. The body of a while
loop, on the other hand, might not be executed at all if the condition is initially
false. Therefore, we say that the body of a while loop is executed zero or more
times, but the body of a do loop is executed one or more times.

A for loop is like a while loop in that the condition is evaluated before the loop
body is executed. We generally use a for loop when the number of times we want
to iterate through a loop is fixed or can be easily calculated. In many situations, it
is simply more convenient to separate the code that sets up and controls the loop
iterations inside the for loop header from the body of the loop.

 4.8 The for Statement 157

M04_LEWI5976_05_SE_C04.indd 157 08/02/19 1:52 AM

158 CHAPTER 4 Conditionals and Loops

Summary of Key Concepts
■■ Conditionals and loops allow us to control the flow of execution through a

method.

■■ An if statement allows a program to choose whether to execute a particular
statement.

■■ A loop allows a program to execute a statement multiple times.

■■ Logical operators are often used to construct sophisticated conditions.

■■ Proper indentation is important for human readability; it shows the relation-
ship between one statement and another.

■■ An if-else statement allows a program to do one thing if a condition is
true and another thing if the condition is false.

■■ In a nested if statement, an else clause is matched to the closest unmatched
if that precedes it.

■■ The relative order of characters in Java is defined by the Unicode
character set.

■■ The compareTo method can be used to determine the relative order of
strings.

■■ A break statement is usually used at the end of each case alternative of a
switch statement.

■■ A while statement executes the same statement repeatedly until its condition
becomes false.

■■ We must design our programs carefully to avoid infinite loops.

■■ An iterator is an object that helps you process a group of related items.

■■ The delimiters used to separate tokens in a Scanner object can be explicitly
set as needed.

■■ A do statement executes its loop body at least once.

■■ A for statement is generally used when a loop will be executed a set number
of times.

Summary of Terms
block statement A collection of statements enclosed in braces. A block
statement can be used wherever the Java syntax rules call for a single
statement.

boolean expression An expression that evaluates to either true or false.

M04_LEWI5976_05_SE_C04.indd 158 08/02/19 1:52 AM

 Summary of Terms 159

break statement A statement used to end a particular case in a switch
statement.

conditional operator A Java operator that returns a result based on a boolean
condition.

conditional statement A statement that determines which statement
to execute next based on a boolean condition. Also called a selection
statement.

do statement A loop that evaluates its boolean condition after executing its
body at least once.

equality operator An operator that determines whether two elements are
equal (or not equal) to each other.

flow of control The order in which statements are executed in a running program.

for statement A loop that includes the initialization, condition, and incre-
ment portions in the loop header.

if statement A conditional statement that makes a decision based on a
boolean condition.

infinite loop A loop that doesn’t terminate due to the logic of the program.

iterator An object that allows you to process the elements of a collection
one at a time.

logical AND operation Produces a true result if both operands are true, and
false otherwise.

logical NOT operation Produces the opposite of its boolean operand.

logical operator An operator that produces a boolean result based on one
or more other boolean results.

logical OR operation Produces a true result if one or both operands are
true, and false otherwise.

loop A repetition statement.

nested if statement One if statement enclosed and controlled by another.

nested loop A loop that is completely enclosed within another loop.

relational operator An operator that determines the relative ordering of two
values.

repetition statement A statement that allows a programming statement to
be executed over and over again. Also called a loop.

running sum A variable used to maintain the sum of all values processed so far.

switch statement A conditional statement that maps an expression to one
of several cases to determine which statement to execute next.

M04_LEWI5976_05_SE_C04.indd 159 08/02/19 1:52 AM

160 CHAPTER 4 Conditionals and Loops

truth table A table that lists all possible combinations of values and out-
comes in a boolean expression.

while statement A loop that evaluates its boolean condition first to deter-
mine whether its body should be executed again.

Self-Review Questions
SR 4.1 What is meant by the flow of control through a program?

SR 4.2 What type of conditions are conditionals and loops based on?

SR 4.3 What are the equality operators? The relational operators?

SR 4.4 What is a truth table?

SR 4.5 Why must we be careful when comparing floating point values
for equality?

SR 4.6 How do we compare strings for equality?

SR 4.7 What is a nested if statement? A nested loop?

SR 4.8 How do block statements help us in the construction of condi-
tionals and loops?

SR 4.9 What happens if a case in a switch does not end with a break
statement?

SR 4.10 What is an infinite loop? Specifically, what causes it?

SR 4.11 Compare and contrast a while loop and a do loop.

SR 4.12 When would we use a for loop instead of a while loop?

Exercises
EX 4.1 What happens in the MinOfThree program if two or more of

the values are equal? If exactly two of the values are equal,
does it matter whether the equal values are lower or higher
than the third?

EX 4.2 What is wrong with the following code fragment? Rewrite it so
that it produces correct output.
if (total == MAX)
 if (total < sum)

 System.out.println("total == MAX and < sum");
else

 System.out.println("total is not equal to MAX");

M04_LEWI5976_05_SE_C04.indd 160 08/02/19 1:52 AM

 Exercises 161

EX 4.3 What is wrong with the following code fragment? Will this code
compile if it is part of an otherwise valid program? Explain.

if (length = MIN_LENGTH)
 System.out.println("The length is minimal.");

EX 4.4 What output is produced by the following code fragment?

int num = 87, max = 25;
if (num >= max*2)

 System.out.println("apple");
 System.out.println("orange");

System.out.println("pear");

EX 4.5 What output is produced by the following code fragment?

int limit = 100, num1 = 15, num2 = 40;
if (limit <= limit)
{

 if (num1 == num2)
 System.out.println("lemon");

 System.out.println("lime");
}
System.out.println("grape");

EX 4.6 Put the following list of strings in lexicographic order as though
determined by the compareTo method of the String class.
Consult the Unicode chart in Appendix C.

"fred"
"Ethel"
"?-?-?-?"
"{([])}"
"Lucy"
"ricky"
"book"
"******"
"12345"
" "
"HEPHALUMP"
"bookkeeper"
"6789"
";+<?"
"^^^^^^^^^^"
"hephalump"

EX 4.7 What output is produced by the following code fragment?
int num = 0, max = 20;
while (num < max)

M04_LEWI5976_05_SE_C04.indd 161 08/02/19 1:52 AM

162 CHAPTER 4 Conditionals and Loops

{
 System.out.println(num);
 num += 4;

}

EX 4.8 What output is produced by the following code fragment?

int num = 1, max = 20;
while (num < max)
{

 if (num%2 == 0)
 System.out.println(num);
 num++;

}

EX 4.9 What output is produced by the following code fragment?

for (int num = 0; num <= 200; num += 2)
 System.out.println(num);

EX 4.10 What output is produced by the following code fragment?

for (int val = 200; val >= 0; val -= 1)
 if (val % 4 != 0)
 System.out.println(val);

EX 4.11 Transform the following while loop into an equivalent do loop
(make sure it produces the same output).

int num = 1;
while (num < 20)
{

 num++;
 System.out.println(num);

}

EX 4.12 Transform the while loop from Exercise 4.11 into an equivalent
for loop. (Make sure it produces the same output.)

EX 4.13 What is wrong with the following code fragment? What are three
distinct ways in which it could be changed to remove the flaw?

count = 50;
while (count >= 0)
{

 System.out.println(count);
 count = count + 1;

}

EX 4.14 Write a while loop that verifies that the user enters a positive
integer value.

M04_LEWI5976_05_SE_C04.indd 162 08/02/19 1:52 AM

 Programming Projects 163

EX 4.15 Write a do loop that verifies that the user enters an even integer value.

EX 4.16 Write a code fragment that reads and prints integer values entered
by a user until a particular sentinel value (stored in SENTINEL) is
entered. Do not print the sentinel value.

EX 4.17 Write a for loop to print the odd numbers from 1 to 99
(inclusive).

EX 4.18 Write a for loop to print the multiples of 3 from 300 down to 3.

EX 4.19 Write a code fragment that reads 10 integer values from the user
and prints the highest value entered.

EX 4.20 Write a code fragment that computes the sum of the integers from
20 to 70, inclusive, and then prints the result.

EX 4.21 Write a code fragment that determines and prints the number of
times the character 'z' appears in a String object called name.

EX 4.22 Write a code fragment that prints the characters stored in a
String object called str backward.

EX 4.23 Write a code fragment that prints every other character in a
String object called word starting with the first character.

Programming Projects
PP 4.1 Design and implement an application that reads an integer value

representing a year from the user. The purpose of the program is
to determine whether the year is a leap year (and therefore has 29
days in February) in the Gregorian calendar. A year is a leap year if
it is divisible by 4, unless it is also divisible by 100 but not 400. For
example, the year 2003 is not a leap year, but 2004 is. The year
1900 is not a leap year because it is divisible by 100, but the year
2000 is a leap year because even though it is divisible by 100, it is
also divisible by 400. Produce an error message for any input value
less than 1582 (the year the Gregorian calendar was adopted).

PP 4.2 Modify the solution to Programming Project 4.1 so that the user
can evaluate multiple years. Allow the user to terminate the pro-
gram using an appropriate sentinel value. Validate each input
value to ensure that it is greater than or equal to 1582.

PP 4.3 Design and implement an application that reads an integer value
and prints the sum of all even integers between 2 and the input
value, inclusive. Print an error message if the input value is less
than 2. Prompt accordingly.

M04_LEWI5976_05_SE_C04.indd 163 08/02/19 1:52 AM

164 CHAPTER 4 Conditionals and Loops

PP 4.4 Design and implement an application that reads a string from the
user and prints it one character per line.

PP 4.5 Design and implement an application that determines and prints
the number of odd, even, and zero digits in an integer value read
from the keyboard.

PP 4.6 Design and implement an application that produces a multipli-
cation table, showing the results of multiplying the integers 1
through 12 by themselves.

PP 4.7 Design and implement an application that prints the first few
verses of the traveling song “One Hundred Bottles of Beer.” Use
a loop such that each iteration prints one verse. Read the number
of verses to print from the user. Validate the input. The following
are the first two verses of the song:

100 bottles of beer on the wall

100 bottles of beer

If one of those bottles should happen to fall

99 bottles of beer on the wall

99 bottles of beer on the wall

99 bottles of beer

If one of those bottles should happen to fall

98 bottles of beer on the wall

PP 4.8 Design and implement an application that plays the Hi-Lo guessing
game with numbers. The program should pick a random number
between 1 and 100 (inclusive) and then repeatedly prompt the
user to guess the number. On each guess, report to the user that
he or she is correct or that the guess is high or low. Continue ac-
cepting guesses until the user guesses correctly or chooses to quit.
Use a sentinel value to determine whether the user wants to quit.
Count the number of guesses, and report that value when the user
guesses correctly. At the end of each game (by quitting or a correct
guess), prompt to determine whether the user wants to play again.
Continue playing games until the user chooses to stop.

PP 4.9 Create a modified version of the PalindromeTester program
so that the spaces, punctuation, and changes in uppercase and
lowercase are not considered when determining whether a
string is a palindrome. Hint: These issues can be handled in
several ways. Think carefully about your design.

M04_LEWI5976_05_SE_C04.indd 164 08/02/19 1:52 AM

 Programming Projects 165

PP 4.10 Create modified versions of the Stars program to print the fol-
lowing patterns. Create a separate program to produce each
pattern. Hint: Parts b, c, and d require several loops, some of
which print a specific number of spaces.

a.

**
*

b.
 *
 **

c.

 **
 *

d.
 *

 *

PP 4.11 Design and implement an application that prints a table show-
ing a subset of the Unicode characters and their numeric values.
Print five number/character pairs per line, separated by tab
characters. Print the table for numeric values from 32 (the space
character) to 126 (the ~ character), which corresponds to the
printable ASCII subset of the Unicode character set. Compare
your output to the table in Appendix C. Unlike the values in the
table in Appendix C, the values in your table can increase as they
go across a row.

PP 4.12 Design and implement an application that reads a string from the
user and then determines and prints how many of each lowercase
vowel (a, e, i, o, and u) appear in the entire string. Have a sepa-
rate counter for each vowel. Also count and print the number of
nonvowel characters.

PP 4.13 Design and implement an application that plays the Rock-Paper-
Scissors game against the computer. When played between two
people, each person picks one of three options (usually shown
by a hand gesture) at the same time, and a winner is determined.
In the game, Rock beats Scissors, Scissors beats Paper, and Paper
beats Rock. The program should randomly choose one of the
three options (without revealing it) and then prompt for the user’s
selection. At that point, the program reveals both choices and
prints a statement indicating whether the user won, the computer
won, or it was a tie. Continue playing until the user chooses to
stop. Then print the number of user wins, losses, and ties.

M04_LEWI5976_05_SE_C04.indd 165 08/02/19 1:52 AM

166 CHAPTER 4 Conditionals and Loops

PP 4.14 Design and implement an application that prints the verses of the
song “The Twelve Days of Christmas,” in which each verse adds
one line. The first two verses of the song are

On the 1st day of Christmas my true love gave to me

A partridge in a pear tree.

On the 2nd day of Christmas my true love gave to me

Two turtle doves, and

A partridge in a pear tree.

Use a switch statement in a loop to control which lines get
printed. Hint: Order the cases carefully and avoid the break
statement. Use a separate switch statement to put the appropri-
ate suffix on the day number (1st, 2nd, 3rd, etc.). The final verse
of the song involves all 12 days, as follows:

On the 12th day of Christmas, my true love gave to me

Twelve drummers drumming,

Eleven pipers piping,

Ten lords a leaping,

Nine ladies dancing,

Eight maids a milking,

Seven swans a swimming,

Six geese a laying,

Five golden rings,

Four calling birds,

Three French hens,

Two turtle doves, and

A partridge in a pear tree.

PP 4.15 Design and implement an application that simulates a simple
slot machine in which three numbers between 0 and 9 are ran-
domly selected and printed side by side. Print an appropriate
statement if all three of the numbers are the same or if any two
of the numbers are the same. Continue playing until the user
chooses to stop.

PP 4.16 Design and implement a program that counts the number of in-
teger values in a text input file. Produce a table listing the values
you identify as integers from the input file.

M04_LEWI5976_05_SE_C04.indd 166 08/02/19 1:52 AM

PP 4.17 Design and implement a program to process golf scores. The
scores of four golfers are stored in a text file. Each line represents
one hole, and the file contains 18 lines. Each line contains five
values: par for the hole followed by the number of strokes each
golfer used on that hole. Determine the winner and produce a
table showing how well each golfer did (compared to par).

PP 4.18 Design and implement a program that compares two text input
files, line by line, for equality. Print any lines that are not equivalent.

Answers to Self-Review Questions
SRA 4.1 The flow of control through a program determines the program

statements that will be executed on a given run of the program.

SRA 4.2 Each conditional and loop is based on a boolean condition that
evaluates to either true or false.

SRA 4.3 The equality operators are equal (==) and not equal (!=). The
relational operators are less than (<), less than or equal to (<=),
greater than (>), and greater than or equal to (> =).

SRA 4.4 A truth table is a table that shows all possible results of a boolean
expression, given all possible combinations of variable values and
conditions.

SRA 4.5 Because they are stored internally as binary numbers, comparing
floating point values for exact equality will be true only if they are
the same bit-by-bit. Therefore, it’s better to use a reasonable toler-
ance value and consider the difference between the two values.

SRA 4.6 We compare strings for equality using the equals method of the
String class, which returns a boolean result. The compareTo
method of the String class can also be used to compare strings.
It returns a positive integer, 0, or a negative integer result, de-
pending on the relationship between the two strings.

SRA 4.7 A nested if occurs when the statement inside an if or else clause
is itself an if statement. A nested if lets the programmer make a
series of decisions. Similarly, a nested loop is a loop within a loop.

SRA 4.8 A block statement groups several statements together. We use block
statements to define the body of an if statement or loop when we
want to do multiple things based on the boolean condition.

SRA 4.9 If a case does not end with a break statement, processing contin-
ues into the statements of the next case. We usually want to use
break statements in order to jump to the end of the switch.

 Answers to Self-Review Questions 167

M04_LEWI5976_05_SE_C04.indd 167 08/02/19 1:52 AM

168 CHAPTER 4 Conditionals and Loops

SRA 4.10 An infinite loop is a repetition statement that will not terminate
because of the basic logic of the condition. Specifically, the body
of the loop never causes the condition to become false.

SRA 4.11 A while loop evaluates the condition first. If it is true, it executes
the loop body. The do loop executes the body first and then eval-
uates the condition. Therefore, the body of a while loop is ex-
ecuted zero or more times, and the body of a do loop is executed
one or more times.

SRA 4.12 A for loop is usually used when we know, or can calculate, how
many times we want to iterate through the loop body. A while
loop handles a more generic situation.

M04_LEWI5976_05_SE_C04.indd 168 08/02/19 1:52 AM

169

5

In previous chapters we used classes and objects for the

various services they provide. We also explored several

fundamental programming statements. With that experience

as a foundation, we are now ready to design more complex

software by creating our own classes, which is the heart of

object-oriented programming. This chapter explores the

basics of class definitions, including the structure of methods

and the scope and encapsulation of data. It also examines the

creation of static class members and overloaded methods.

C H A P T E R O B J E C T I V E S
■■ Explore techniques for identifying the classes and objects
needed in a program.

■■ Discuss the structure and content of a class definition.

■■ Establish the concept of object state using instance data.

■■ Describe the effect of visibility modifiers on methods and data.

■■ Explore the structure of a method definition, including param-
eters and return values.

■■ Discuss the structure and purpose of a constructor.

■■ Discuss the relationships among classes.

■■ Describe the effect of the static modifier on methods and data.

■■ Discuss issues related to the design of methods, including
method decomposition and method overloading.

Writing Classes 5

M05_LEWI5976_05_SE_C05.indd 169 08/02/19 1:54 AM

170 CHAPTER 5 Writing Classes

5.1 Classes and Objects Revisited

In Chapter 1 we introduced basic object-oriented concepts, including a brief
overview of objects and classes. In Chapters 2 and 3 we used several predefined
classes from the Java standard class library to create objects and use them for the
particular functionality they provide.

In this chapter we turn our attention to writing our own classes. Although
existing class libraries provide many useful classes, the essence of object-oriented
program development is the process of designing and implementing our own
classes to suit our specific needs.

Recall the basic relationship between an object and a class: a class is a blueprint
of an object. The class represents the concept of an object, and any object created
from that class is a realization of that concept.

For example, from Chapter 3 we know that the String class represents a concept
of a character string, and that each String object represents a particular string that
contains specific characters.

Let’s consider another example. Suppose a class called Student represents a
student at a university. An object created from the Student class would repre-
sent a particular student. The Student class represents the general concept of a
student, and every object created from that class represents an actual student at-
tending the school. In a system that helps manage the business of a university, we
would have one Student class and thousands of Student objects.

Recall that an object has a state, which is defined by the values of the attributes
associated with that object. For example, the attributes of a student might include
the student’s name, address, major, and grade point average. The Student class
establishes that each student has these attributes, and each Student object stores
the values of these attributes for a particular student. In Java, an object’s attri-
butes are defined by variables declared within a class.

An object also has behaviors, which are defined by the operations associated with
that object. The operations of a student might include the ability to update that stu-
dent’s address and compute that student’s current grade point average. The Student
class defines the operations, such as the details of how a grade point average is
computed. These operations can then be executed on (or by) a particular Student
object. Note that the behaviors of an object may modify the state of that object. In
Java, an object’s operations are defined by methods declared within a class.

Figure 5.1 lists some examples of classes, with some attributes and operations
that might be defined for objects of those classes. It’s up to the program designer
to determine what attributes and operations are needed, which depends on the pur-
pose of the program and the role a particular object plays in serving that purpose.
Consider other attributes and operations you might include for these examples.

M05_LEWI5976_05_SE_C05.indd 170 08/02/19 1:54 AM

 5.1 Classes and Objects Revisited 171

Identifying Classes and Objects
A fundamental part of object-oriented software design is determining which
classes should be created to define the program. We have to carefully consider
how we want to represent the various elements that make up the overall solution.
These classes determine the objects that we will manage in the system.

One way to identify potential classes is to identify the objects discussed in the
program requirements. Objects are generally nouns. You literally may want to
scrutinize a problem description, or a functional specification if available, to iden-
tify the nouns found in it. For example, Figure 5.2 on the next page shows part of
a problem description with the nouns circled.

Of course, not every noun in the problem specification will correspond to a
class in a program. Some nouns may be represented as attributes of other objects,
and the designer may decide not to represent other nouns explicitly in the pro-
gram at all. This activity is just a starting point that allows a developer to think
about the types of objects a program will manage.

Class Attributes Operations

Student

Length
Width
Color

Rectangle

Material
Length
Width
Height

Aquarium

Airline
Flight number
Origin city
Destination city
Current status

Flight

Name
Department
Title
Salary

Employee

Name
Address
Major
Grade point average

Set length
Set width
Set color

Set material
Set length
Set width
Set height
Compute volume
Compute filled weight

Set airline
Set flight number
Determine status

Set department
Set title
Set salary
Compute wages
Compute bonus
Compute taxes

Set address
Set major
Compute grade point average

FIGURE 5.1 Examples of classes with some possible attributes and operations

M05_LEWI5976_05_SE_C05.indd 171 08/02/19 1:54 AM

172 CHAPTER 5 Writing Classes

Remember that a class represents a group of objects with similar
behavior. A plural noun in the specification, such as products, may
indicate the need for a class that represents one of those items, such
as Product. Even if there is only one of a particular kind of object
needed in your system, it may best be represented as a class.

Classes that represent objects should generally be given names
that are singular nouns, such as Coin, Student, and Message. A class represents
a single item from which we are free to create as many instances as we choose.

Another key decision is whether to represent something as an object or as a primi-
tive attribute of another object. For example, we may initially think that an em-
ployee’s salary should be represented as an integer, and that may work for much of
the system’s processing. But upon further reflection, we might realize that the salary
is based on the person’s rank, which has upper and lower salary bounds that must
be managed with care. Therefore, the final conclusion may be that we’d be better off
representing all of that data and the associated behavior as a separate class.

In addition to classes that represent objects from the problem domain, we will
probably need classes that support the work necessary to get the job done. For
example, in addition to Member objects, we may want a separate class to help us
manage all of the members of a club.

The user must be allowed to specify each product by
its primary characteristics, including its name and
product number. If the bar code does not match the
product, then an error should be generated to the
message window and entered into the error log. The
summary report of all transactions must be structured
as specified in section 7.A.

FIGURE 5.2 Finding potential objects by identifying the nouns in
a problem description

D E S I G N F O C U S

Given the needs of a particular program, we want to strike a good balance be-
tween classes that are too general and those that are too specific. For example, it
may complicate our design unnecessarily to create a separate class for each type
of appliance that exists in a house. It may be sufficient to have a single Appliance
class, with perhaps a piece of instance data that indicates what type of appliance
it is. Then again, this may not be an adequate solution. It all depends on what the
software is going to accomplish.

KEY CONCEPT
The nouns in a problem description
may indicate some of the classes and
objects needed in a program.

M05_LEWI5976_05_SE_C05.indd 172 08/02/19 1:54 AM

 5.2 Anatomy of a Class 173

Keep in mind that when we are producing a real system, some of the classes we
identify during design may already exist. Even if nothing matches exactly, there
may be an old class that’s similar enough to serve as the basis for our new class.
The existing class may be part of the Java standard class library, part of a solution
to a problem we’ve solved previously, or part of a library that can be bought from
a third party. These are all examples of software reuse.

Assigning Responsibilities
Part of the process of identifying the classes needed in a program is assigning re-
sponsibilities to each class. Each class represents an object with certain behaviors
that are defined by the methods of the class. Any activity that the program must
accomplish must be represented somewhere in the behaviors of the classes. That
is, each class is responsible for carrying out certain activities, and those responsi-
bilities must be assigned as part of designing a program.

The behaviors of a class perform actions that make up the functionality of a
program. Thus we generally use verbs for the names of behaviors and the methods
that accomplish them.

Sometimes it is challenging to determine which is the best class to carry
out a particular responsibility. A good designer considers multiple possibilities.
Sometimes such analysis makes you realize that you could benefit from defining
another class to shoulder the responsibility.

It’s not necessary in the early stages of a design to identify all the methods that
a class will contain. It is often sufficient to assign primary responsibilities and then
consider how those responsibilities translate into particular methods.

5.2 Anatomy of a Class

Now that we’ve reviewed some important conceptual ideas underlying the devel-
opment of classes and objects, let’s dive into the programming details. In all of our
previous examples, we’ve written a single class containing a single main method.
Each of these classes represents a small but complete program. These programs
often instantiate objects using predefined classes from the Java class library and
then use those objects for the services they provide. The library classes are part
of the program too, but we generally don’t have to concern ourselves with their
internal details. We really just need to know how to interact with them and can
simply trust them to provide the services they promise.

We will continue to rely on library classes, but now we will also design and
implement other classes as needed. Let’s look at an example. The SnakeEyes
class shown in Listing 5.1 contains a main method that instantiates two Die

M05_LEWI5976_05_SE_C05.indd 173 08/02/19 1:54 AM

174 CHAPTER 5 Writing Classes

//**
// SnakeEyes.java Java Foundations
//
// Demonstrates the use of a programmer-defined class.
//**

public class SnakeEyes
{
 //--
 // Creates two Die objects and rolls them several times, counting
 // the number of snake eyes that occur.
 //--
 public static void main(String[] args)
 {
 final int ROLLS = 500;
 int num1, num2, count = 0;

 Die die1 = new Die();
 Die die2 = new Die();

 for (int roll=1; roll <= ROLLS; roll++)
 {
 num1 = die1.roll();
 num2 = die2.roll();

 if (num1 == 1 && num2 == 1) // check for snake eyes
 count++;
 }

 System.out.println("Number of rolls: " + ROLLS);
 System.out.println("Number of snake eyes: " + count);
 System.out.println("Ratio: " + (float)count / ROLLS);
 }
}

O U T P U T

Number of rolls: 500
Number of snake eyes: 12
Ratio: 0.024

L I S T I N G 5 . 1

M05_LEWI5976_05_SE_C05.indd 174 08/02/19 1:54 AM

 5.2 Anatomy of a Class 175

objects (die is the singular of dice). The purpose of the program is to roll the
dice and count the number of times both die show a 1 on the same throw
(snake eyes).

The primary difference between this example and examples we’ve seen in
previous chapters is that the Die class is not a predefined part of the Java class
library. For this program to compile and run, we have to write the Die class
ourselves, defining the services we want Die objects to perform.

A class can contain data declarations and method declarations, as depicted in
Figure 5.3. The data declarations represent the data that will be stored in each
object of the class. The method declarations define the services that those objects
will provide. Collectively, the data and methods of a class are called the members
of a class.

The classes we’ve written in previous examples follow this model as well, but
contain no data at the class level and contain only one method (the main method).
We’ll continue to define classes like this, such as the SnakeEyes class, to define
the starting point of a program.

True object-oriented programming, however, comes from defining
classes that represent objects with well-defined state and behavior. For
example, at any given moment a Die object is showing a particular
face value, which we could refer to as the state of the die. A Die object
also has various methods we can invoke on it, such as the ability to
roll the die or get its face value. These methods represent the behavior
of a die.

Data
declarations

Method
declarations

int size, weight;
char category;
double value, cost;

FIGURE 5.3 The members of a class: data declarations and method declarations

KEY CONCEPT
The heart of object-oriented
programming is defining classes that
represent objects with well-defined
state and behavior.

M05_LEWI5976_05_SE_C05.indd 175 08/02/19 1:54 AM

176 CHAPTER 5 Writing Classes

The Die class is shown in Listing 5.2. It contains two data values: an integer
constant (MAX) that represents the maximum face value of the die, and an integer
variable (faceValue) that represents the current face value of the die. It also con-
tains a constructor called Die and four regular methods: roll, setFaceValue,
getFaceValue, and toString.

You will recall from Chapters 2 and 3 that constructors are special methods
that have the same name as the class. The Die constructor gets called when the
new operator is used to create a new instance of the Die class, as occurs twice in
the main method of the SnakeEyes class. The rest of the methods in the Die class
define the various services provided by Die objects.

We use a header block of documentation to explain the purpose of each method
in the class. This practice is not only crucial for anyone trying to understand the
software but also separates the code visually so that it’s easy for the eye to jump
from one method to the next while reading the code.

//***
// Die.java Java Foundations
//
// Represents one die (singular of dice) with faces showing values
// between 1 and 6.
//***

public class Die
{
 private final int MAX = 6; // maximum face value

 private int faceValue; // current value showing on the die

 //--
 // Constructor: Sets the initial face value of this die.
 //--
 public Die()
 {
 faceValue = 1;
 }

 //--
 // Computes a new face value for this die and returns the result.
 //--

L I S T I N G 5 . 2

M05_LEWI5976_05_SE_C05.indd 176 08/02/19 1:54 AM

 5.2 Anatomy of a Class 177

Figure 5.4 on the next page lists the methods of the Die class. From this point
of view, it looks no different from any other class that we’ve used in previous ex-
amples. The only important difference is that the Die class was not provided for
us by the Java standard class library. We wrote it ourselves.

The methods of the Die class include the ability to roll the die, producing a new
random face value. The roll method returns the new face value to the calling

 public int roll()
 {
 faceValue = (int)(Math.random() * MAX) + 1;

 return faceValue;
 }

 //---
 // Face value mutator. The face value is not modified if the
 // specified value is not valid.
 //---
 public void setFaceValue(int value)
 {
 if (value < 0 && value <= MAX)
 faceValue = value;
 }

 //---
 // Face value accessor.
 //---
 public int getFaceValue()
 {
 return faceValue;
 }

 //---
 // Returns a string representation of this die.
 //---
 public String toString()
 {
 String result = Integer.toString(faceValue);

 return result;
 }
}

L I S T I N G 5 . 2 continued

M05_LEWI5976_05_SE_C05.indd 177 08/02/19 1:54 AM

178 CHAPTER 5 Writing Classes

method, but you can also get the current face value at any time by using the
getFaceValue method. The setFaceValue method sets the face value explicitly,
as if you had reached over and turned the die to whatever face you wanted. The
toString method returns a representation of the die as a character string—in
this case, it returns the numeric value of the die face as a string. The definitions of
these methods have various parts, and we’ll dissect them as we proceed through
this chapter.

Let’s mention the importance of the toString method at this point. The
toString method of any object gets called automatically whenever you pass the
object to a print or println method and when you concatenate an object to a
character string. There is a default version of toString defined for every object, but
the results are not generally useful. Therefore, it’s usually a good idea to define a
toString method for the classes that you create. The default version of toString
is available because of inheritance, which we discuss in detail in Chapter 8.

For the examples in this book, we usually store each class in its own file. Java
allows multiple classes to be stored in one file. But if a file contains multiple
classes, only one of those classes can be declared using the reserved word public.
Furthermore, the name of the public class must correspond to the name of the file.
For instance, class Die is stored in a file called Die.java.

Instance Data
Note that in the Die class, the constant MAX and the variable faceValue are declared
inside the class, but not inside any method. The location at which a variable is de-
clared defines its scope, which is the area within a program in which that variable
can be referenced. Because they have been declared at the class level (not within a
method), these variables and constants can be referenced in any method of the class.

Die()
 Constructor: Sets the initial face value of the die to 1.

int roll()
 Rolls the die by setting the face value to a random number in the appropriate range.

void setFaceValue(int value)
 Sets the face value of the die to the specified value.

String toString()
 Returns a string representation of the die indicating its current face value.

int getFaceValue()
 Returns the current face value of the die.

FIGURE 5.4 Some methods of the Die class

VideoNote
Dissecting the Die class

M05_LEWI5976_05_SE_C05.indd 178 08/02/19 1:54 AM

 5.2 Anatomy of a Class 179

Attributes such as the variable faceValue are called instance data because new
memory space is reserved for that variable every time an instance of the class is
created. Each Die object has its own faceValue variable with its
own data space. That’s how each Die object can have its own state.
That is, one die could be showing a 5 at the same time the other die is
showing a 2. That’s possible only because separate memory space for
the faceValue variable is created for each Die object.

We can depict this situation as follows:

KEY CONCEPT
The scope of a variable, which
determines where it can be referenced,
depends on where it is declared.

die1 faceValue 5

die2 faceValue 2

The die1 and die2 reference variables point to (that is, contain the address
of) their respective Die objects. Each object contains a faceValue variable with
its own memory space. Thus each object can store different values for its instance
data.

Java automatically initializes any variables declared at the class level. For ex-
ample, all variables of numeric types such as int and double are initialized to zero.
However, despite the fact that the language performs this automatic initialization,
it is good practice to initialize variables explicitly (usually in a constructor) so that
anyone reading the code will clearly understand the intent.

UML Class Diagrams
As our programs become more complex, containing multiple classes, it’s helpful to
make use of a graphical notation to capture, visualize, and communicate the pro-
gram design. Throughout the remainder of this text we use UML diagrams for this
purpose. UML stands for the Unified Modeling Language, which has become the
most popular notation for representing the design of an object-oriented program.

Several types of UML diagrams exist, each designed to show specific aspects of
object-oriented programs. In this text, we focus primarily on UML class diagrams
to show the contents of classes and the relationships among them.

In a UML diagram, each class is represented as a rectangle, possibly contain-
ing three sections to show the class name, its attributes (data), and its opera-
tions (methods). Figure 5.5 shows a class diagram containing the classes of the
SnakeEyes program.

M05_LEWI5976_05_SE_C05.indd 179 08/02/19 1:54 AM

180 CHAPTER 5 Writing Classes

UML is not designed specifically for Java programmers. It is in-
tended to be language independent. Therefore, the syntax used in a
UML diagram is not necessarily the same as that used in Java. For ex-
ample, a variable’s type is shown after the variable name, separated by
a colon. Return types of methods are shown the same way. The initial
value of an attribute can be shown in the class diagram if desired, as

we do with the MAX constant in Figure 5.5. The + and – notations in front of vari-
ables and methods indicate their visibility, which is discussed in the next section.

A solid line connecting two classes in a UML diagram indicates that a relation-
ship of one kind or another exists between the two classes. These lines, which are
called associations, indicate that one class “knows about” and uses the other in
some way. For example, an association might indicate that an object of one class
creates an object of the other, and/or that one class invokes a method of the other.
Associations can be labeled to indicate the details of the association.

A directed association uses an arrowhead to indicate that the association is
particularly one-way. For example, the arrow connecting the SnakeEyes and Die
classes in Figure 5.5 indicates that the SnakeEyes class “knows about” and uses
the Die class, but not vice versa.

An association can show multiplicity by annotating the ends of the connection
with numeric values. In this case, the diagram indicates that SnakeEyes is associ-
ated with exactly two Die objects. Both ends of an association can show multi-
plicity values, if desired. Multiplicity also can be expressed in terms of a range of
values and by using wildcards for unknown values, as we’ll see in later examples.

Other types of object-oriented relationships between classes are shown with
different types of connecting lines and arrows. We will explore additional aspects
of UML diagrams as we discuss the corresponding object-oriented programming
concepts throughout the text.

KEY CONCEPT
A UML class diagram helps us visualize
the contents of and relationships
among the classes of a program.

+ main(args : String[]) : void

SnakeEyes

+ roll() : int
+ setFaceValue(value : int) : void
+ getFaceValue() : int
+ toString() : String

– MAX : int = 6
– faceValue : int

Die

java.util.Math

FIGURE 5.5 A UML class diagram showing the classes involved in the
SnakeEyes program

M05_LEWI5976_05_SE_C05.indd 180 08/02/19 1:54 AM

 5.3 Encapsulation 181

UML diagrams are versatile. We can include whatever appropriate informa-
tion is desired, depending on what we are trying to convey in a particular dia-
gram. We might leave out the data and method sections of a class, for instance,
if those details aren’t relevant for a particular diagram. For example, the fact
that the Die class makes use of the Math class from the Java API is indicated in
Figure 5.5, but the details of the Math class are not identified. We also could have
explicitly indicated the use of the String class, but that is rarely done because
of its ubiquity.

5.3 Encapsulation

We mentioned in our overview of object-oriented concepts in
Chapter 1 that an object should be self-governing. That is, the in-
stance data of an object should be modified only by that object. For
example, the methods of the Die class should be solely responsible
for changing the value of the faceValue variable. We should make
it difficult, if not impossible, for code outside of a class to “reach in”
and change the value of a variable that is declared inside that class.
This characteristic is called encapsulation.

An object should be encapsulated from the rest of the system. It should interact
with other parts of a program only through the specific set of methods that define
the services that that object provides. These methods define the interface between
that object and other objects that use it.

The nature of encapsulation is depicted graphically in Figure 5.6 on the next
page. The code that uses an object, which is sometimes called the client of an
object, should not be allowed to access variables directly. The client should call
an object’s methods, and those methods then interact with the data encapsulated
within the object. For example, the main method in the SnakeEyes program calls

KEY CONCEPT
An object should be encapsulated,
guarding its data from inappropriate
access.

object

Client

interface

Data

Methods

FIGURE 5.6 A client interacting with another object

M05_LEWI5976_05_SE_C05.indd 181 08/02/19 1:54 AM

182 CHAPTER 5 Writing Classes

the roll method of the Die objects. The main method should not (and in fact can-
not) access the faceValue variable directly.

In Java, we accomplish object encapsulation using modifiers. A modifier is a
Java reserved word that is used to specify particular characteristics of a program-
ming language construct. In Chapter 2 we discussed the final modifier, which is
used to declare a constant. Java has several modifiers that can be used in various
ways. Some modifiers can be used together, but some combinations are invalid.
We discuss various Java modifiers at appropriate points throughout this text, and
all of them are summarized in Appendix E.

Visibility Modifiers
Some of the Java modifiers are called visibility modifiers because they control access
to the members of a class. The reserved words public and private are visibility
modifiers that can be applied to the variables and methods of a class. If a mem-
ber of a class has public visibility, it can be directly referenced from outside of the
object. If a member of a class has private visibility, it can be used anywhere inside
the class definition but cannot be referenced externally. A third visibility modifier,
protected, is relevant only in the context of inheritance. We discuss it in Chapter 8.

Public variables violate encapsulation. They allow code external
to the class in which the data are defined to reach in and access or
modify the value of the data. Therefore, instance data should be de-
fined with private visibility. Data declared as private can be accessed
only by the methods of the class.

The visibility we apply to a method depends on the purpose of that method.
Methods that provide services to the client must be declared with public visibility
so that they can be invoked by the client. These methods are sometimes referred
to as service methods. A private method cannot be invoked from outside the class.
The only purpose of a private method is to help the other methods of the class do
their job. Therefore, private methods are sometimes referred to as support methods.

The table in Figure 5.7 summarizes the effects of public and private visibility on
both variables and methods.

The reason why giving constants public visibility is generally considered ac-
ceptable is that even though their values can be accessed directly, their values
cannot be changed because they were declared using the final modifier. Keep in
mind that encapsulation means that data values should not be able to be modified
directly by another part of the code. Because constants, by definition, cannot be
changed, the encapsulation issue is largely moot.

UML class diagrams can show the visibility of a class member by preceding
it with a particular character. A member with public visibility is preceded by a

KEY CONCEPT
Instance variables should be declared
with private visibility to promote
encapsulation.

M05_LEWI5976_05_SE_C05.indd 182 08/02/19 1:54 AM

 5.3 Encapsulation 183

plus sign (+), and a member with private visibility is preceded by a minus sign (-).
Review Figure 5.5 to see this notation used.

Accessors and Mutators
Because instance data are generally declared with private visibility, a class
usually provides services to access and modify data values. A method such as
getFaceValue in the Die class is called an accessor method because it provides
read-only access to a particular value. Likewise, a method such as
setFaceValue is called a mutator method because it changes a
particular value.

Generally, accessor method names have the form getX, where X
is the value to which the method provides access. Likewise, mutator
method names have the form setX, where X is the value the method
is setting. Therefore, these types of methods are sometimes referred
to as “getters” and “setters.”

For example, if a class contains the instance variable height, it should also
probably contain the methods getHeight and setHeight. Note that this nam-
ing convention capitalizes the first letter of the variable when it is used in the
method names, which is consistent with how method names are written in
general.

Some methods may provide accessor and/or mutator capabilities as a side
effect of their primary purpose. For example, the roll method of the Die class
changes the value of the variable faceValue and returns that new value as well.
Note that the code of the roll method is guaranteed to keep the face value of

KEY CONCEPT
Most objects contain accessor and
mutator methods to allow the client
to manage data in a controlled
manner.

Violate
encapsulation

Provide services
to clients

Support other
methods in the

class

Enforce
encapsulationVariables

Methods

public private

FIGURE 5.7 The effects of public and private visibility

M05_LEWI5976_05_SE_C05.indd 183 08/02/19 1:54 AM

184 CHAPTER 5 Writing Classes

the die in the valid range (1 to MAX). Similarly, the setFaceValue method checks
to see whether the specified value is in the valid range and ignores it if it is not.
Service methods must be carefully designed to permit only appropriate access
and valid changes. By encapsulating the data, the object can maintain this type
of control.

Let’s look at another example. The program in Listing 5.3 instantiates a Coin
object and then flips the coin multiple times, counting the number of times heads
and tails come up. Notice that it uses a call to the method isHeads in the condi-
tion of an if statement to determine which result occurred.

The Coin class is shown in Listing 5.4 on page 186. It stores an integer
constant called HEADS that represents the face value when the coin is showing
heads. An instance variable called face represents the current state of the coin
(which side is up) and has either the value 0 or the value 1. The Coin construc-
tor initially flips the coin by calling the flip method, which determines the new
state of the coin by randomly choosing a number (either 0 or 1). The isHeads
method returns a boolean value based on the current face value of the coin. The
toString method returns a character string indicating the current face showing
on the coin.

A Coin object can be in one of two states: showing heads or showing tails. We
represented this state in the Coin class as an integer value, 0 for tails and 1 for
heads, stored in the face variable. Of course, this representation is arbitrary—we
could have used 1 to represent tails. For that matter, we could have represented
the coin’s state using a boolean value, or a character string, or an enumerated
type. We chose to use an integer because the methods for choosing a random
result (Math.random in this case) return a numeric value and therefore eliminate
extraneous conversions.

The way the Coin object represents its state internally is, and
should be, irrelevant to the client using the object. That is, from the
perspective of the CountFlips program, the way the Coin class rep-
resents its state doesn’t matter.

We could have made the constant HEADS public so that the client
could access it. But as an integer variable, its value is meaningless

to the client. Providing the isHeads method is a cleaner object-oriented solu-
tion. The internal details of the Coin class could be rewritten, and as long as the
isHeads method was written appropriately, the client would not have to change.

Although many classes will have classic getter and setter methods, we chose to
design the Coin class without them. The only way the coin’s state can be changed
is to flip it randomly. Unlike a Die object, the user cannot explicitly set the state
of a coin. This is a design decision, which could be made differently if circum-
stances dictated.

KEY CONCEPT
The way a class represents an object’s
state should be independent of how
that object is used.

M05_LEWI5976_05_SE_C05.indd 184 08/02/19 1:54 AM

 5.3 Encapsulation 185

//**
// CountFlips.java Java Foundations
//
// Demonstrates the use of programmer-defined class.
//**

public class CountFlips
{
 //---
 // Flips a coin multiple times and counts the number of heads
 // and tails that result.
 //---
 public static void main(String[] args)
 {
 final int FLIPS = 1000;
 int heads = 0, tails = 0;

 Coin myCoin = new Coin();

 for (int count=1; count <= FLIPS; count++)
 {
 myCoin.flip();

 if (myCoin.isHeads())
 heads++;
 else
 tails++;
 }

 System.out.println("Number of flips: " + FLIPS);
 System.out.println("Number of heads: " + heads);
 System.out.println("Number of tails: " + tails);
 }
}

O U T P U T

Number of flips: 1000
Number of heads: 486
Number of tails: 514

L I S T I N G 5 . 3

M05_LEWI5976_05_SE_C05.indd 185 08/02/19 1:54 AM

186 CHAPTER 5 Writing Classes

//***
// Coin.java Java Foundations
//
// Represents a coin with two sides that can be flipped.
//***

public class Coin
{
 private final int HEADS = 0; // tails is 1

 private int face; // current side showing

 //--
 // Sets up this coin by flipping it initially.
 //--
 public Coin()
 {
 flip();
 }

 //--
 // Flips this coin by randomly choosing a face value.
 //--
 public void flip()
 {
 face = (int) (Math.random() * 2);
 }

 //--
 // Returns true if the current face of this coin is heads.
 //--
 public boolean isHeads()
 {
 return (face == HEADS);
 }

 //--
 // Returns the current face of this coin as a string.
 //--
 public String toString()
 {
 return (face == HEADS) ? "Heads" : "Tails";
 }
}

L I S T I N G 5 . 4

M05_LEWI5976_05_SE_C05.indd 186 08/02/19 1:54 AM

 5.3 Encapsulation 187

Let’s use the Coin class in another program. The FlipRace class is shown in
Listing 5.5. The main method of FlipRace instantiates two Coin objects and
flips them in tandem repeatedly until one of the coins comes up heads three
times in a row.

The output of the FlipRace program shows the results of each coin flip. Note
that the coin1 and coin2 objects are concatenated to character strings in the
println statement. As we mentioned earlier, this situation causes the toString
method of the object to be called, which returns a string to be printed. No explicit
call to the toString method is needed.

The conditional operator is used in assignment statements to set the counters
for the coins after they are flipped. For each coin, if the result is heads, the count
is incremented. If not, the count is reset to zero. The while loop terminates when
either or both counters reach the goal of three heads in a row.

//***
// FlipRace.java Java Foundations
//
// Demonstrates the reuse of programmer-defined class.
//***

public class FlipRace
{
 //--
 // Flips two coins until one of them comes up heads three times
 // in a row.
 //--
 public static void main(String[] args)
 {
 final int GOAL = 3;
 int count1 = 0, count2 = 0;
 Coin coin1 = new Coin(), coin2 = new Coin();

 while (count1 < GOAL && count2 < GOAL)
 {
 coin1.flip();
 coin2.flip();

 System.out.println("Coin 1: " + coin1 + "\tCoin 2: " + coin2);

L I S T I N G 5 . 5

M05_LEWI5976_05_SE_C05.indd 187 08/02/19 1:54 AM

188 CHAPTER 5 Writing Classes

FlipRace uses the Coin class as part of its program, just as CountFlips did
earlier. A well-designed class often can be reused in multiple programs, just as
we’ve gotten used to reusing the classes from the Java API over and over.

5.4 Anatomy of a Method

We’ve seen that a class is composed of data declarations and method declarations.
Let’s examine method declarations in more detail.

As we stated in Chapter 1, a method is a group of programming language
statements that is given a name. A method declaration specifies the code that is
executed when the method is invoked. Every method in a Java program is part of
a particular class.

 // Increment or reset the counters
 count1 = (coin1.isHeads()) ? count1+1 : 0;
 count2 = (coin2.isHeads()) ? count2+1 : 0;
 }
 if (count1 < GOAL)
 System.out.println("Coin 2 Wins!");
 else
 if (count2 < GOAL)
 System.out.println("Coin 1 Wins!");
 else
 System.out.println("It’s a TIE!");
 }
}

O U T P U T

Coin 1: Tails Coin 2: Heads
Coin 1: Heads Coin 2: Heads
Coin 1: Tails Coin 2: Tails
Coin 1: Tails Coin 2: Tails
Coin 1: Tails Coin 2: Heads
Coin 1: Heads Coin 2: Tails
Coin 1: Heads Coin 2: Tails
Coin 1: Heads Coin 2: Heads
Coin 1 Wins!

L I S T I N G 5 . 5 continued

M05_LEWI5976_05_SE_C05.indd 188 08/02/19 1:54 AM

 5.4 Anatomy of a Method 189

The header of a method declaration includes the type of the return value, the
method name, and a list of parameters that the method accepts. The statements
that make up the body of the method are defined in a block delimited by braces.
We’ve defined the main method of a program many times in previous examples.
Its definition follows the same syntax as any other method.

When a method is called, control transfers to that method. One by one, the
statements of that method are executed. When that method is done, control re-
turns to the location where the call was made, and execution continues.

The called method (the one that is invoked) might be part of the same class as
the calling method that invoked it. If the called method is part of the same class,
only the method name is needed to invoke it. If it is part of a different class, it is
invoked through a reference to an object of that other class, as we’ve seen many
times. Figure 5.8 shows the flow of execution as methods are called.

Method Declaration

Modifier

Parameters

void

Type Identifier Throws Clause Method Body

Parameters
()

IdentifierType

,

A method is defined by optional modifiers, followed by a return Type, followed by an
Identifier that determines the method name, followed by a list of Parameters, followed by
the Method Body. The return Type indicates the type of value that will be returned by the
method, which may be void. The Method Body is a block of statements that executes when
the method is invoked. The Throws Clause is optional and indicates the exceptions that may
be thrown by this method.

Example:
public int computeArea(int length, int width)

{

 int area = length * width;

 return area;

}

M05_LEWI5976_05_SE_C05.indd 189 08/02/19 1:54 AM

190 CHAPTER 5 Writing Classes

Let’s look at another example as we continue to explore the details of method
declarations. The Transactions class shown in Listing 5.6 contains a main
method that creates a few Account objects and invokes their services. The
Transactions program doesn’t really do anything useful except demonstrate
how to interact with Account objects. Such programs are called driver programs
because all they do is drive the use of other, more interesting parts of our
program. They are often used for testing purposes.

obj.doThis();

helpMe();

main

doThis helpMe

FIGURE 5.8 The flow of control following method invocations

//***
// Transactions.java Java Foundations
//
// Demonstrates the creation and use of multiple Account objects.
//***

public class Transactions
{
 //--
 // Creates some bank accounts and requests various services.
 //--
 public static void main(String[] args)
 {
 Account acct1 = new Account("Ted Murphy", 72354, 25.59);
 Account acct2 = new Account("Angelica Adams", 69713, 500.00);
 Account acct3 = new Account("Edward Demsey", 93757, 769.32);

L I S T I N G 5 . 6

M05_LEWI5976_05_SE_C05.indd 190 08/02/19 1:54 AM

 5.4 Anatomy of a Method 191

The Account class, shown in Listing 5.7 on the next page, represents a basic
bank account. It contains instance data representing the name of the account’s
owner, the account number, and the account’s current balance. The interest rate
for the account is stored as a constant.

The constructor of the Account class accepts three parameters that are used
to initialize the instance data when an Account object is instantiated. The other
methods of the Account class perform various services on the account, such as
making deposits and withdrawals. These methods examine the data passed into

 acct1.deposit (44.10); // return value ignored

 double adamsBalance = acct2.deposit (75.25);
 System.out.println("Adams balance after deposit: " +
 adamsBalance);

 System.out.println("Adams balance after withdrawal: " +
 acct2.withdraw (480, 1.50));

 acct3.withdraw(-100.00, 1.50); // invalid transaction

 acct1.addInterest();
 acct2.addInterest();
 acct3.addInterest();

 System.out.println();
 System.out.println(acct1);
 System.out.println(acct2);
 System.out.println(acct3);
 }
}

O U T P U T

Adams balance after deposit: 575.25
Adams balance after withdrawal: 93.75

72354 Ted Murphy $72.13
69713 Angelica Adams $97.03
93757 Edward Demsey $796.25

L I S T I N G 5 . 6 continued

M05_LEWI5976_05_SE_C05.indd 191 08/02/19 1:54 AM

192 CHAPTER 5 Writing Classes

them to make sure the requested transaction is valid. For example, the withdraw
method prevents the withdrawal of a negative amount (which essentially would
be a deposit). There is also an addInterest method that updates the balance by
adding in the interest earned. These methods represent the valid ways to modify
the balance, so a generic mutator such as setBalance is not provided.

//***
// Account.java Java Foundations
//
// Represents a bank account with basic services such as deposit
// and withdraw.
//***

import java.text.NumberFormat;

public class Account
{
 private final double RATE = 0.035; // interest rate of 3.5%

 private String name;
 private long acctNumber;
 private double balance;

 //--
 // Sets up this account with the specified owner, account number,
 // and initial balance.
 //--
 public Account(String owner, long account, double initial)
 {
 name = owner;
 acctNumber = account;
 balance = initial;
 }

 //--
 // Deposits the specified amount into this account and returns
 // the new balance. The balance is not modified if the deposit
 // amount is invalid.
 //--
 public double deposit(double amount)
 {
 if (amount > 0)
 balance = balance + amount;

L I S T I N G 5 . 7

M05_LEWI5976_05_SE_C05.indd 192 08/02/19 1:54 AM

 5.4 Anatomy of a Method 193

 return balance;
 }

 //---
 // Withdraws the specified amount and fee from this account and
 // returns the new balance. The balance is not modified if the
 // withdraw amount is invalid or the balance is insufficient.
 //---
 public double withdraw(double amount, double fee)
 {
 if (amount+fee > 0 && amount+fee < balance)
 balance = balance - amount - fee;

 return balance;
 }

 //---
 // Adds interest to this account and returns the new balance.
 //---
 public double addInterest()
 {
 balance += (balance * RATE);
 return balance;
 }

 //---
 // Returns the current balance of this account.
 //---
 public double getBalance()
 {
 return balance;
 }

 //---
 // Returns a one-line description of this account as a string.
 //---
 public String toString()
 {
 NumberFormat fmt = NumberFormat.getCurrencyInstance();

 return (acctNumber + "\t" + name + "\t" + fmt.format(balance));
 }
}

L I S T I N G 5 . 7 continued

M05_LEWI5976_05_SE_C05.indd 193 08/02/19 1:54 AM

194 CHAPTER 5 Writing Classes

The status of the three Account objects just after they were created in the
Transactions program could be depicted as follows:

VideoNote
Discussion of the
Account class

acct1

acctNumber

balance

name

72354

25.59

"Ted Murphy"

acct2

acctNumber

balance

name

69713

500.00

"Angelica Adams"

acct3

acctNumber

balance

name

93757

769.32

"Edward Demsey"

The rest of this section discusses in more detail the issues related to method
declarations.

The return Statement
The return type specified in the method header can be a primitive type, a class
name, or the reserved word void. When a method does not return any value,
void is used as the return type, as is always done with the main method of a pro-
gram. The setFaceValue of the Die class and the flip method of the Coin class
also have return types of void.

The getFaceValue and roll methods of the Die class return an int value that
represents the value shown on the die. The isHeads method of the Coin class re-
turns a boolean value that indicates whether the coin is currently showing heads.
Several of the methods of the Account class return a double representing the up-
dated balance. The toString method in all of these classes returns a String object.

M05_LEWI5976_05_SE_C05.indd 194 08/02/19 1:54 AM

 5.4 Anatomy of a Method 195

A method that returns a value must have a return statement. When
a return statement is executed, control is immediately returned to
the statement in the calling method, and processing continues there.
A return statement consists of the reserved word return followed
by an expression that dictates the value to be returned. The expression
must be consistent with the return type specified in the method header.

A method that does not return a value does not usually contain a return state-
ment. The method automatically returns to the calling method when the end of
the method is reached. Such methods may contain a return statement without an
expression.

Return Statement

return

Expression

;

A return statement consists of the return reserved word followed
by an optional Expression. When it is executed, control is immedi-
ately returned to the calling method, returning the value defined by
Expression.

Examples:

return;

return distance * 4;

KEY CONCEPT
The value returned from a method
must be consistent with the return
type specified in the method header.

return total;

Return Statement

Java
keyword return value

It is usually not good practice to use more than one return statement in a
method, even though it is possible to do so. In general, a method should have
one return statement as the last line of the method body, unless that makes the
method overly complex.

M05_LEWI5976_05_SE_C05.indd 195 08/02/19 1:54 AM

196 CHAPTER 5 Writing Classes

The value that is returned from a method can be ignored in the calling method.
Consider the following method invocation from the Transactions program:

acct1.deposit(44.10);

In this situation, the deposit method executes normally, updating the account
balance accordingly, but the calling method simply makes no use of the returned
value.

Constructors do not have a return type (not even void) and therefore cannot
return a value. We discuss constructors in more detail later in this chapter.

Parameters
We introduced the concept of a parameter in Chapter 2, defining it as a value that
is passed into a method when the method is invoked. Parameters provide data to a
method that allow the method to do its job. Let’s explore this issue in more detail.

The method declaration specifies the number and type of parameters that a
method will accept. More precisely, the parameter list in the header of a method
declaration specifies the type of each value that is passed into the method, and
the name by which the called method will refer to each value. The correspond-
ing parameter list in the invocation specifies the values that are passed in for that
particular invocation.

The names of the parameters in the header of the method declaration are called
formal parameters. The values passed into a method when it is invoked are called
actual parameters, or arguments. The parameter list in both the declaration and
the invocation is enclosed in parentheses after the method name. If there are no
parameters, an empty set of parentheses is used.

None of the methods in the Coin and Die classes accepts parameters except the
setFaceValue method of the Die class, which accepts a single integer parameter
that specifies the new value for the die. The Account constructor accepts several
parameters of various types to provide initial values for the object’s instance data
(this is common for constructors). The withdraw method in Account accepts two
parameters of type double; note that the type of each formal parameter is listed
separately even if the types are the same.

The formal parameters are identifiers that serve as variables inside
the method and whose initial values come from the actual parameters
in the invocation. When a method is called, the value in each actual
parameter is copied and stored in the corresponding formal param-
eter. Actual parameters can be literals, variables, or full expressions.
If an expression is used as an actual parameter, it is fully evaluated
before the method call, and the result is passed to the method.

KEY CONCEPT
When a method is called, the actual
parameters are copied into the formal
parameters.

M05_LEWI5976_05_SE_C05.indd 196 08/02/19 1:54 AM

 5.4 Anatomy of a Method 197

The parameter lists in the invocation and the method declaration must match
up. That is, the value of the first actual parameter is copied into the first formal
parameter, the value of the second actual parameter into the second formal pa-
rameter, and so on, as shown in Figure 5.9. The types of the actual parameters
must be consistent with the specified types of the formal parameters.

In the Transactions program, the following call is made:

acct2.withdraw(480, 1.50)

This call passes an integer value as the first parameter of the withdraw method,
which is defined to accept a double. This is valid because the actual and formal
parameters must be consistent, but they need not match exactly. A double vari-
able can be assigned an integer value because this is a widening conversion. Thus
it is also allowed when passing parameters.

We explore some of the details of parameter passing later in this chapter.

Local Data
As we described earlier in this chapter, the scope of a variable or constant is the
part of a program in which a valid reference to that variable can be made. A vari-
able can be declared inside a method, making it local data as opposed to instance
data. Recall that instance data are declared in a class but not inside any particular
method.

Local data have scope limited to the method in which they are
declared. The variable result declared in the toString method of
the Die class is local data. Any reference to result in any other
method of the Die class would have caused the compiler to issue an

KEY CONCEPT
A variable declared in a method is
local to that method and cannot be
used outside it.

M
et

ho
d

In
vo

ca
tio

n
M

et
ho

d
D

ec
la

ra
tio

n
ch = obj.calc (25, count, "Hello");

char calc (int numl, int num2, String message)
{
 int sum = numl + num2;
 char result = message.charAt (sum);
 return result;
}

FIGURE 5.9 Passing parameters from the method invocation to the declaration

M05_LEWI5976_05_SE_C05.indd 197 08/02/19 1:54 AM

198 CHAPTER 5 Writing Classes

error message. A local variable simply does not exist outside the method in which
it is declared. On the other hand, instance data, declared at the class level, have a
scope of the entire class; any method of the class can refer to instance data.

Because local data and instance data operate at different levels of scope, it’s
possible to declare a local variable inside a method with the same name as an
instance variable declared at the class level. Referring to that name in the method
will reference the local version of the variable. This naming practice obviously has
the potential to confuse anyone reading the code, so it should be avoided.

The formal parameter names in a method header serve as local data for that
method. They don’t exist until the method is called, and they cease to exist when
the method is exited. For example, the formal parameter owner in the Account
constructor comes into existence when the constructor is called and goes out of
existence when it finishes executing. To store these values in the object, the val-
ues of the parameters are copied into the instance variables of the newly created
Account object.

Constructors Revisited
Let’s discuss constructors a bit more. When we define a class, we usually define a
constructor to help us set up the class. In particular, we often use a constructor to
initialize the variables associated with each object.

A constructor differs from a regular method in two ways. First, the
name of a constructor is the same as the name of the class. Therefore,
the name of the constructor in the Die class is Die, and the name of
the constructor in the Account class is Account. Second, a construc-
tor cannot return a value and does not have a return type specified in
the method header.

Generally, a constructor is used to initialize the newly instantiated object.
For instance, the constructor of the Die class sets the face value of the die to 1
initially. The constructor of the Coin class calls the flip method to put the coin

KEY CONCEPT
A constructor cannot have any return
type, even void.

COMMON ERROR

A mistake commonly made by programmers is to put a void return type
on a constructor. As far as the compiler is concerned, putting any return
type on a constructor, even void, turns it into a regular method that hap-
pens to have the same name as the class. As such, it cannot be invoked as
a constructor. This leads to error messages that are sometimes difficult to
decipher.

M05_LEWI5976_05_SE_C05.indd 198 08/02/19 1:54 AM

 5.5 Static Class Members 199

in an initial, random state. The constructor of the Account class sets the values
of the instance variables to the values passed in as parameters to the constructor.
The way you use a constructor to set up an object initially is another important
design decision.

If we don’t provide a constructor for a class, a default constructor that takes no
parameters is automatically created and used. The default constructor generally
has no effect on the newly created object. If the programmer provides a construc-
tor, with or without parameters, the default constructor is not defined.

5.5 Static Class Members

We’ve used static methods in various situations in previous examples in the book.
For example, all the methods of the Math class are static. Recall that a static
method is one that is invoked through its class name, instead of through an object
of that class.

Not only can methods be static, but variables can be static as well. We declare
static class members using the static modifier.

Deciding whether to declare a method or variable as static is a key step in
class design. Let’s examine the implications of static variables and methods more
closely.

Static Variables
So far, we’ve seen two categories of variables: local variables that are
declared inside a method, and instance variables that are declared in
a class but not inside a method. The term instance variable is used
because each instance of the class has its own version of the variable.
That is, each object has distinct memory space for each variable so
that each object can have a distinct value for that variable.

A static variable, which is sometimes called a class variable, is shared among
all instances of a class. There is only one copy of a static variable for all objects of
the class. Therefore, changing the value of a static variable in one object changes
it for all of the others. The reserved word static is used as a modifier to declare
a static variable as follows:

private static int count = 0;

Memory space for a static variable is established when the class that contains
it is referenced for the first time in a program. A local variable declared within a
method cannot be static.

KEY CONCEPT
A static variable is shared among all
instances of a class.

M05_LEWI5976_05_SE_C05.indd 199 08/02/19 1:54 AM

200 CHAPTER 5 Writing Classes

Constants, which are declared using the final modifier, are often declared
using the static modifier. Because the value of constants cannot be changed,
there might as well be only one copy of the value across all objects of the class.

Static Methods
In Chapter 3 we briefly introduced the concept of a static method (also called
a class method). Static methods can be invoked through the class name. We
don’t have to instantiate an object of the class in order to invoke the method. In
Chapter 3 we noted that all the methods of the Math class are static methods. For
example, in the following line of code, the sqrt method is invoked through the
Math class name.

System.out.println("Square root of 27:" + Math.sqrt(27));

The methods in the Math class perform basic computations based on values
passed as parameters. There is no object state to maintain in these situations, so
there is no good reason to force us to create an object in order to request these
services.

A method is made static by using the static modifier in the method declara-
tion. As we’ve seen many times, the main method of a Java program is declared
with the static modifier; this is done so that main can be executed by the inter-
preter without instantiating an object from the class that contains main.

Because static methods do not operate in the context of a particular object,
they cannot reference instance variables, which exist only in an instance of a
class. The compiler will issue an error if a static method attempts to use a non-
static variable. A static method can, however, reference static variables, because
static variables exist independent of specific objects. Therefore, all static meth-
ods, including the main method, can access only static or local variables.

The program in Listing 5.8 instantiates several objects of the Slogan class,
printing each one out in turn. Then it invokes a method called getCount through
the class name, which returns the number of Slogan objects that were instantiated
in the program.

Listing 5.9 on page 202 shows the Slogan class. The constructor of Slogan
increments a static variable called count, which is initialized to zero when it is
declared. Therefore, count serves to keep track of the number of instances of
Slogan that are created.

The getCount method of Slogan is also declared as static, which allows it to
be invoked through the class name in the main method. Note that the only data
referenced in the getCount method is the integer variable count, which is static.
As a static method, getCount cannot reference any nonstatic data.

M05_LEWI5976_05_SE_C05.indd 200 08/02/19 1:54 AM

 5.5 Static Class Members 201

//**
// SloganCounter.java Java Foundations
//
// Demonstrates the use of the static modifier.
//**

public class SloganCounter
{
 //---
 // Creates several Slogan objects and prints the number of
 // objects that were created.
 //---
 public static void main(String[] args)
 {
 Slogan obj;

 obj = new Slogan("Remember the Alamo.");
 System.out.println(obj);

 obj = new Slogan("Don’t Worry. Be Happy.");
 System.out.println(obj);

 obj = new Slogan("Live Free or Die.");
 System.out.println(obj);

 obj = new Slogan("Talk is Cheap.");
 System.out.println(obj);

 obj = new Slogan("Write Once, Run Anywhere.");
 System.out.println(obj);

 System.out.println();
 System.out.println("Slogans created: " + Slogan.getCount());
 }
}

O U T P U T

Remember the Alamo.
Don’t Worry. Be Happy.
Live Free or Die.
Talk is Cheap.
Write Once, Run Anywhere.

Slogans created: 5

L I S T I N G 5 . 8

M05_LEWI5976_05_SE_C05.indd 201 08/02/19 1:54 AM

202 CHAPTER 5 Writing Classes

//**
// Slogan.java Java Foundations
//
// Represents a single slogan or motto.
//**

public class Slogan
{
 private String phrase;
 private static int count = 0;

 //---
 // Constructor: Sets up the slogan and increments the number of
 // instances created.
 //---
 public Slogan(String str)
 {
 phrase = str;
 count++;
 }

 //---
 // Returns this slogan as a string.
 //---
 public String toString()
 {
 return phrase;
 }

 //---
 // Returns the number of instances of this class that have been
 // created.
 //---
 public static int getCount()
 {
 return count;
 }
}

L I S T I N G 5 . 9

M05_LEWI5976_05_SE_C05.indd 202 08/02/19 1:54 AM

 5.6 Class Relationships 203

5.6 Class Relationships

The classes in a software system have various types of relationships to each other. Three
of the more common relationships are dependency, aggregation, and inheritance.

We’ve seen dependency relationships in many examples in which one class
“uses” another. This section revisits the dependency relationship and explores the
situation where a class depends on itself. We then explore aggregation, in which
the objects of one class contain objects of another, creating a “has-a” relationship.
Inheritance, which we introduced in Chapter 1, creates an “is-a” relationship be-
tween classes. We defer our detailed examination of inheritance until Chapter 8.

Dependency
In many previous examples, we’ve seen the idea of one class being dependent
on another. This means that one class relies on another in some sense. Often the
methods of one class invoke the methods of the other class. This establishes a
“uses” relationship.

Generally, if class A uses class B, then one or more methods of class A invoke
one or more methods of class B. If an invoked method is static, then A merely ref-
erences B by name. If the invoked method is not static, then A must have access to
a specific instance of class B in order to invoke the method. That is, A must have a
reference to an object of class B.

The getCount method could have been declared without the static modifier,
but then its invocation in the main method would have had to be done through an
instance of the Slogan class instead of the class itself.

Static Method

public static int getCount()
{
 return count;
}

Java keyword

method body can only refer to
static data

M05_LEWI5976_05_SE_C05.indd 203 08/02/19 1:54 AM

204 CHAPTER 5 Writing Classes

//**
// RationalTester.java Java Foundations
//
// Driver to exercise the use of multiple Rational objects.
//**

public class RationalTester
{
 //---
 // Creates some rational number objects and performs various
 // operations on them.
 //---

L I S T I N G 5 . 1 0

The way in which one object gains access to an object of another class is an
important design decision. It occurs when one class instantiates the objects of an-
other, but the access can also be accomplished by passing one object to another as
a method parameter.

In general, we want to minimize the number of dependencies among classes.
The less dependent our classes are on each other, the less impact changes and
errors will have on the system.

Dependencies among Objects of the Same Class
In some cases, a class depends on itself. That is, an object of one class interacts
with another object of the same class. To accomplish this, a method of the class
may accept as a parameter an object of the same class.

The concat method of the String class is an example of this situation. The
method is executed through one String object and is passed another String ob-
ject as a parameter. Here is an example:

str3 = str1.concat(str2);

The String object executing the method (str1) appends its characters to those
of the String passed as a parameter (str2). A new String object is returned as
a result and stored as str3.

The RationalTester program shown in Listing 5.10 on the next page dem-
onstrates a similar situation. A rational number is a value that can be represented
as a ratio of two integers (a fraction). The RationalTester program creates two
objects representing rational numbers and then performs various operations on
them to produce new rational numbers.

M05_LEWI5976_05_SE_C05.indd 204 08/02/19 1:54 AM

 5.6 Class Relationships 205

 public static void main(String[] args)
 {
 RationalNumber r1 = new RationalNumber(6, 8);
 RationalNumber r2 = new RationalNumber(1, 3);
 RationalNumber r3, r4, r5, r6, r7;

 System.out.println("First rational number: " + r1);
 System.out.println("Second rational number: " + r2);

 if (r1.isLike(r2))
 System.out.println("r1 and r2 are equal.");
 else
 System.out.println("r1 and r2 are NOT equal.");

 r3 = r1.reciprocal();
 System.out.println("The reciprocal of r1 is: " + r3);

 r4 = r1.add(r2);
 r5 = r1.subtract(r2);
 r6 = r1.multiply(r2);
 r7 = r1.divide(r2);

 System.out.println("r1 + r2: " + r4);
 System.out.println("r1 - r2: " + r5);
 System.out.println("r1 * r2: " + r6);
 System.out.println("r1 / r2: " + r7);
 }
}

O U T P U T

First rational number: 3/4
Second rational number: 1/3
r1 and r2 are NOT equal.
The reciprocal of r1 is: 4/3
r1 + r2: 13/12
r1 - r2: 5/12
r1 * r2: 1/4
r1 / r2: 9/4

L I S T I N G 5 . 1 0 continued

M05_LEWI5976_05_SE_C05.indd 205 08/02/19 1:54 AM

206 CHAPTER 5 Writing Classes

KEY CONCEPT
An aggregate object is composed
of other objects, forming a has-a
relationship.

The RationalNumber class is shown in Listing 5.11 on the next page.
As you examine this class, keep in mind that each object created from the
RationalNumber class represents a single rational number. The RationalNumber
class contains various operations on rational numbers, such as addition and
subtraction.

The methods of the RationalNumber class, such as add, subtract, multiply,
and divide, use the RationalNumber object that is executing the method as the
first (left) operand and use the RationalNumber object passed as a parameter as
the second (right) operand.

The isLike method of the RationalNumber class is used to determine
whether two rational numbers are essentially equal. It’s tempting, therefore, to
call that method equals, similar to the method used to compare String objects
(discussed in Chapter 4). However, in Chapter 8 we will discuss how the equals
method is somewhat special due to inheritance, and we will note that it should be
implemented in a particular way. Thus, to avoid confusion, we call this method
isLike for now.

Note that some of the methods in the RationalNumber class, including reduce
and gcd, are declared with private visibility. These methods are private because
we don’t want them executed directly from outside a RationalNumber object.
They exist only to support the other services of the object.

Aggregation
Some objects are made up of other objects. A car, for instance,
is made up of its engine, its chassis, its wheels, and several other
parts. Each of these other parts could be considered a separate
object. Therefore, we can say that a car is an aggregation—it is
composed, at least in part, of other objects. Aggregation is some-
times described as a has-a relationship. For instance, a car “has-a”
chassis.

In the software world, we define an aggregate object as any object that con-
tains references to other objects as instance data. For example, an Account object
contains, among other things, a String object that represents the name of the
account owner. We sometimes forget that strings are objects, but technically that
makes each Account object an aggregate object.

Aggregation is a special type of dependency. That is, a class that is defined in
part by another class is dependent on that class. The methods of the aggregate
object generally invoke the methods of the objects of which it is composed.

M05_LEWI5976_05_SE_C05.indd 206 08/02/19 1:54 AM

 5.6 Class Relationships 207

//**
// RationalNumber.java Java Foundations
//
// Represents one rational number with a numerator and denominator.
//**

public class RationalNumber
{
 private int numerator, denominator;

 //---
 // Constructor: Sets up the rational number by ensuring a nonzero
 // denominator and making only the numerator signed.
 //---
 public RationalNumber(int numer, int denom)
 {
 if (denom == 0)
 denom = 1;

 // Make the numerator "store" the sign
 if (denom < 0)
 {
 numer = numer * -1;
 denom = denom * -1;
 }

 numerator = numer;
 denominator = denom;

 reduce();
 }

 //---
 // Returns the numerator of this rational number.
 //---
 public int getNumerator()
 {
 return numerator;
 }

 //---
 // Returns the denominator of this rational number.
 //---
 public int getDenominator()

L I S T I N G 5 . 1 1

M05_LEWI5976_05_SE_C05.indd 207 08/02/19 1:54 AM

208 CHAPTER 5 Writing Classes

 {
 return denominator;
 }

 //---
 // Returns the reciprocal of this rational number.
 //---
 public RationalNumber reciprocal()
 {
 return new RationalNumber(denominator, numerator);
 }

 //---
 // Adds this rational number to the one passed as a parameter.
 // A common denominator is found by multiplying the individual
 // denominators.
 //---
 public RationalNumber add(RationalNumber op2)
 {
 int commonDenominator = denominator * op2.getDenominator();
 int numerator1 = numerator * op2.getDenominator();
 int numerator2 = op2.getNumerator() * denominator;
 int sum = numerator1 + numerator2;

 return new RationalNumber(sum, commonDenominator);
 }

 //---
 // Subtracts the rational number passed as a parameter from this
 // rational number.
 //---
 public RationalNumber subtract(RationalNumber op2)
 {
 int commonDenominator = denominator * op2.getDenominator();
 int numerator1 = numerator * op2.getDenominator();
 int numerator2 = op2.getNumerator() * denominator;
 int difference = numerator1 - numerator2;

 return new RationalNumber(difference, commonDenominator);
 }

 //---
 // Multiplies this rational number by the one passed as a
 // parameter.
 //---

L I S T I N G 5 . 1 1 continued

M05_LEWI5976_05_SE_C05.indd 208 08/02/19 1:54 AM

 5.6 Class Relationships 209

 public RationalNumber multiply(RationalNumber op2)
 {
 int numer = numerator * op2.getNumerator();
 int denom = denominator * op2.getDenominator();

 return new RationalNumber(numer, denom);
 }

 //---
 // Divides this rational number by the one passed as a parameter
 // by multiplying by the reciprocal of the second rational.
 //---
 public RationalNumber divide(RationalNumber op2)
 {
 return multiply(op2.reciprocal());
 }

 //---
 // Determines if this rational number is equal to the one passed
 // as a parameter. Assumes they are both reduced.
 //---
 public boolean isLike(RationalNumber op2)
 {
 return (numerator == op2.getNumerator() &&
 denominator == op2.getDenominator());
 }

 //---
 // Returns this rational number as a string.
 //---
 public String toString()
 {
 String result;

 if (numerator == 0)
 result = "0";
 else
 if (denominator == 1)
 result = numerator + "";
 else
 result = numerator + "/" + denominator;

 return result;
 }

L I S T I N G 5 . 1 1 continued

M05_LEWI5976_05_SE_C05.indd 209 08/02/19 1:54 AM

210 CHAPTER 5 Writing Classes

 //---
 // Reduces this rational number by dividing both the numerator
 // and the denominator by their greatest common divisor.
 //---
 private void reduce()
 {
 if (numerator != 0)
 {
 int common = gcd(Math.abs(numerator), denominator);

 numerator = numerator / common;
 denominator = denominator / common;
 }
 }

 //---
 // Computes and returns the greatest common divisor of the two
 // positive parameters. Uses Euclid’s algorithm.
 //---
 private int gcd(int num1, int num2)
 {
 while (num1 != num2)
 if (num1 > num2)
 num1 = num1 - num2;
 else
 num2 = num2 - num1;

 return num1;
 }
}

L I S T I N G 5 . 1 1 continued

The more complex an object, the more likely it is that it will need to be repre-
sented as an aggregate object. In UML, aggregation is represented by a connection
between two classes, with an open diamond at the end near the class that is the
aggregate. Figure 5.10 shows a UML class diagram that contains an aggregation
relationship.

Note that in previous UML diagram examples, strings are not represented
as separate classes with aggregation relationships, even though technically they

M05_LEWI5976_05_SE_C05.indd 210 08/02/19 1:54 AM

 5.6 Class Relationships 211

could be. Strings are so fundamental to programming that often they are repre-
sented as though they were a primitive type in a UML diagram.

The this Reference
Before we leave the topic of relationships among classes, we should examine an-
other special reference used in Java programs called the this reference. The word
this is a reserved word in Java. It allows an object to refer to itself. As we have
discussed, a nonstatic method is invoked through (or by) a particular object or
class. Inside that method, the this reference can be used to refer to the currently
executing object.

For example, in a class called ChessPiece there could be a method called move,
which could contain

if (this.position == piece2.position)
 result = false;

In this situation, the this reference is being used to clarify which position
is being referenced. The this reference refers to the object through which the
method was invoked. So when the following line is used to invoke the method, the
this reference refers to bishop1:

bishop1.move();

However, when another object is used to invoke the method, the this reference
refers to it. Therefore, when the following invocation is used, the this reference in
the move method refers to bishop2:

bishop2.move();

Often, the this reference is used to distinguish the parameters of a con-
structor from their corresponding instance variables with the same names.

– firstName : String
– lastName : String
– homeAddress : Address
– workAddress : Address

+ toString() : String

ClubMember

– streetAddress : String
– city : String
– state : String
– zipCode : long

+ toString() : String

Address

FIGURE 5.10 A UML class diagram showing an aggregation relationship

M05_LEWI5976_05_SE_C05.indd 211 08/02/19 1:54 AM

212 CHAPTER 5 Writing Classes

For example, the constructor of the Account class was presented in Listing 5.7
as follows:

public Account(String owner, long account, double initial)
{
 name = owner;
 acctNumber = account;
 balance = initial;
}

When writing this constructor, we deliberately came up with different names for
the parameters to distinguish them from the instance variables name, acctNumber,
and balance. This distinction is arbitrary. The constructor could have been written
as follows using the this reference:

public Account(String name, long acctNumber, double balance)
{
 this.name = name;
 this.acctNumber = acctNumber;
 this.balance = balance;
}

In this version of the constructor, the this reference specifically refers to the
instance variables of the object. The variables on the right-hand side of the assign-
ment statements refer to the formal parameters. This approach eliminates the need
to come up with different yet equivalent names. This situation sometimes occurs
in other methods, but it comes up often in constructors.

5.7 Method Design

Once you have identified classes and assigned basic responsibilities, the design of
each method will determine how exactly the class will define its behaviors. Some
methods are straightforward and require little thought. Others are more interest-
ing and require careful planning.

An algorithm is a step-by-step process for solving a problem. A recipe is an
example of an algorithm. Travel directions are another example of an algorithm.
Every method implements an algorithm that determines how that method accom-
plishes its goals.

An algorithm is often described using pseudocode, which is a mixture of code
statements and English phrases. Pseudocode provides enough structure to show
how the code will operate, without getting bogged down in the syntactic details of
a particular programming language or becoming prematurely constrained by the
characteristics of particular programming constructs.

M05_LEWI5976_05_SE_C05.indd 212 08/02/19 1:54 AM

 5.7 Method Design 213

This section discusses two important aspects of program design at the method
level: method decomposition and the implications of passing objects as parameters.

Method Decomposition
Occasionally, a service that an object provides is so complex that it
cannot reasonably be implemented using one method. Therefore, we
sometimes need to decompose a method into multiple methods to
create a more understandable design. As an example, let’s examine a
program that translates English sentences into “Pig Latin.”

Pig Latin is a made-up language in which each word of a sentence is modified, in
general, by moving the initial sound of the word to the end and adding an “ay” sound.
For example, the word happy would be written and pronounced appyhay, and the
word birthday would become irthdaybay. Words that begin with vowels simply have a
“yay” sound added on the end, turning the word enough into enoughyay. Consonant
blends such as “ch” and “st” at the beginning of a word are moved to the end together
before adding the “ay” sound. Therefore, the word grapefruit becomes apefruitgray.

The PigLatin program shown in Listing 5.12 reads one or more sentences,
translating each into Pig Latin.

The workhorse behind the PigLatin program is the PigLatinTranslator
class, shown in Listing 5.13 on page 215. The PigLatinTranslator class pro-
vides one fundamental service, a static method called translate, which accepts
a string and translates it into Pig Latin. Note that the PigLatinTranslator class
does not contain a constructor because none is needed.

The act of translating an entire sentence into Pig Latin is not trivial. If writ-
ten in one big method, it would be very long and difficult to follow. A better
solution, as implemented in the PigLatinTranslator class, is to decompose the
translate method and use several private support methods to help with the task.

The translate method uses a Scanner object to separate the string into
words. Recall that one role of the Scanner class (discussed in Chapter 3) is to
separate a string into smaller elements called tokens. In this case, the tokens are
separated by space characters so that we can use the default whitespace delimit-
ers. The PigLatin program assumes that no punctuation is included in the input.

The translate method passes each word to the private support method
translateWord. Even the job of translating one word is somewhat involved,
so the translateWord method makes use of two other private methods,
beginsWithVowel and beginsWithBlend.

The beginsWithVowel method returns a boolean value that indicates whether
the word passed as a parameter begins with a vowel. Note that instead of checking
each vowel separately, the code for this method declares a string that contains all
the vowels and then invokes the String method indexOf to determine whether

KEY CONCEPT
The best way to make use of a
complex service provided by an object
may be to decompose the method and
use several private support methods
to help with the task.

M05_LEWI5976_05_SE_C05.indd 213 08/02/19 1:54 AM

214 CHAPTER 5 Writing Classes

L I S T I N G 5 . 1 2

//**
// PigLatin.java Java Foundations
//
// Demonstrates the concept of method decomposition.
//**

import java.util.Scanner;

public class PigLatin
{
 //---
 // Reads sentences and translates them into Pig Latin.
 //---
 public static void main(String[] args)
 {
 String sentence, result, another;

 Scanner scan = new Scanner(System.in);

 do
 {
 System.out.println();
 System.out.println("Enter a sentence (no punctuation):");
 sentence = scan.nextLine();

 System.out.println();
 result = PigLatinTranslator.translate (sentence);
 System.out.println("That sentence in Pig Latin is:");
 System.out.println(result);

 System.out.println();
 System.out.print("Translate another sentence (y/n)? ");
 another = scan.nextLine();
 }
 while (another.equalsIgnoreCase("y"));
 }
}

O U T P U T

Enter a sentence (no punctuation):
Do you speak Pig Latin

M05_LEWI5976_05_SE_C05.indd 214 08/02/19 1:54 AM

 5.7 Method Design 215

L I S T I N G 5 . 1 2 continued

That sentence in Pig Latin is:
oday ouyay eakspay igpay atinlay

Translate another sentence (y/n)? y

Enter a sentence (no punctuation):
Play it again Sam

That sentence in Pig Latin is:
ayplay ityay againyay amsay

Translate another sentence (y/n)? n

//**
// PigLatinTranslator.java Java Foundations
//
// Represents a translator from English to Pig Latin. Demonstrates
// method decomposition.
//**

import java.util.Scanner;

public class PigLatinTranslator
{
 //---
 // Translates a sentence of words into Pig Latin.
 //---
 public static String translate(String sentence)
 {
 String result = "";

 sentence = sentence.toLowerCase();

 Scanner scan = new Scanner(sentence);

 while (scan.hasNext())

L I S T I N G 5 . 1 3

M05_LEWI5976_05_SE_C05.indd 215 08/02/19 1:54 AM

216 CHAPTER 5 Writing Classes

 {
 result += translateWord(scan.next());
 result += " ";
 }

 return result;
 }

 //---
 // Translates one word into Pig Latin. If the word begins with a
 // vowel, the suffix "yay" is appended to the word. Otherwise,
 // the first letter or two are moved to the end of the word,
 // and "ay" is appended.
 //---
 private static String translateWord(String word)
 {
 String result = "";

 if (beginsWithVowel(word))
 result = word + "yay";
 else
 if (beginsWithBlend(word))
 result = word.substring(2) + word.substring(0,2) + "ay";
 else
 result = word.substring(1) + word.charAt(0) + "ay";

 return result;
 }

 //---
 // Determines if the specified word begins with a vowel.
 //---
 private static boolean beginsWithVowel(String word)
 {
 String vowels = "aeiou";

 char letter = word.charAt(0);

 return (vowels.indexOf(letter) != -1);
 }

 //---
 // Determines if the specified word begins with a particular
 // two-character consonant blend.
 //---
 private static boolean beginsWithBlend(String word)

L I S T I N G 5 . 1 3 continued

M05_LEWI5976_05_SE_C05.indd 216 08/02/19 1:54 AM

 5.7 Method Design 217

the first character of the word is in the vowel string. If the specified character can-
not be found, the indexOf method returns a value of –1.

The beginsWithBlend method also returns a boolean value. The body of the
method contains only a return statement with one large expression that makes
several calls to the startsWith method of the String class. If any of these calls
returns true, then the beginsWithBlend method returns true as well.

Note that the translateWord, beginsWithVowel, and beginsWithBlend
methods are all declared with private visibility. They are not intended to pro-
vide services directly to clients outside the class. Instead, they exist to help the
translate method, which is the only true service method in this class, to do its
job. Declaring them with private visibility means that they cannot be invoked from
outside this class. For instance, if the main method of the PigLatin class attempted
to invoke the translateWord method, the compiler would issue an error message.

Figure 5.11 shows a UML class diagram for the PigLatin program. Note the
notation showing the visibility of various methods.

Whenever a method becomes large or complex, we should consider decompos-
ing it into multiple methods to create a more understandable class design. First,
however, we must consider how other classes and objects can be defined to create
better overall system design. In an object-oriented design, method decomposition
must be subordinate to object decomposition.

 {
 return (word.startsWith("bl") || word.startsWith("sc") ||
 word.startsWith("br") || word.startsWith("sh") ||
 word.startsWith("ch") || word.startsWith("sk") ||
 word.startsWith("cl") || word.startsWith("sl") ||
 word.startsWith("cr") || word.startsWith("sn") ||
 word.startsWith("dr") || word.startsWith("sm") ||
 word.startsWith("dw") || word.startsWith("sp") ||
 word.startsWith("fl") || word.startsWith("sq") ||
 word.startsWith("fr") || word.startsWith("st") ||
 word.startsWith("gl") || word.startsWith("sw") ||
 word.startsWith("gr") || word.startsWith("th") ||
 word.startsWith("kl") || word.startsWith("tr") ||
 word.startsWith("ph") || word.startsWith("tw") ||
 word.startsWith("pl") || word.startsWith("wh") ||
 word.startsWith("pr") || word.startsWith("wr"));
 }
}

L I S T I N G 5 . 1 3 continued

M05_LEWI5976_05_SE_C05.indd 217 08/02/19 1:54 AM

218 CHAPTER 5 Writing Classes

+ main(args : String[]) : void

PigLatin

+ translate(sentence : String) : String
– translateWord(word : String) : String
– beginsWithVowel(word : String) : boolean
– beginsWithBlend(word : String) : boolean

PigLatinTranslator

FIGURE 5.11 A UML class diagram for the PigLatin program

KEY CONCEPT
When an object is passed to a method,
the actual and formal parameters
become aliases.

Method Parameters Revisited
Another important issue related to method design involves the way parameters
are passed into a method. In Java, all parameters are passed by value. That is, the
current value of the actual parameter (in the invocation) is copied into the formal
parameter in the method header. We mentioned this issue previously in this chap-
ter; let’s examine it now in more detail.

Essentially, parameter passing is like an assignment statement, assigning to the
formal parameter a copy of the value stored in the actual parameter. This issue
must be considered when making changes to a formal parameter inside a method.
The formal parameter is a separate copy of the value that is passed in, so any
changes made to it have no effect on the actual parameter. After control returns
to the calling method, the actual parameter will have the same value it had before
the method was called.

However, when we pass an object to a method, we are actually passing a
reference to that object. The value that gets copied is the address of the object.
Therefore, the formal parameter and the actual parameter become aliases of each

other. If we change the state of the object through the formal param-
eter reference inside the method, we are changing the object refer-
enced by the actual parameter, because they refer to the same object.
On the other hand, if we change the formal parameter reference itself
(to make it point to a new object, for instance), we have not changed
the fact that the actual parameter still refers to the original object.

The program in Listing 5.14 illustrates the nuances of parameter pass-
ing. Carefully trace the processing of this program, and note the values that
are output. The ParameterTester class contains a main method that calls the
changeValues method in a ParameterModifier object. Two of the parameters
to changeValues are Num objects, each of which simply stores an integer value.
The other parameter is a primitive integer value.

Listing 5.15 on page 220 shows the ParameterModifier class, and Listing
5.16 on page 221 shows the Num class. Inside the changeValues method, a mod-
ification is made to each of the three formal parameters: The integer parameter
is set to a different value, the value stored in the first Num parameter is changed

M05_LEWI5976_05_SE_C05.indd 218 08/02/19 1:54 AM

 5.7 Method Design 219

//**
// ParameterTester.java Java Foundations
//
// Demonstrates the effects of passing various types of parameters.
//**

public class ParameterTester
{
 //---
 // Sets up three variables (one primitive and two objects) to
 // serve as actual parameters to the changeValues method. Prints
 // their values before and after calling the method.
 //---
 public static void main(String[] args)
 {
 ParameterModifier modifier = new ParameterModifier();

 int a1 = 111;
 Num a2 = new Num(222);
 Num a3 = new Num(333);

 System.out.println("Before calling changeValues:");
 System.out.println("a1\ta2\ta3");
 System.out.println(a1 + "\t" + a2 + "\t" + a3 + "\n");

 modifier.changeValues(a1, a2, a3);

 System.out.println("After calling changeValues:");
 System.out.println("a1\ta2\ta3");
 System.out.println(a1 + "\t" + a2 + "\t" + a3 + "\n");
 }
}

O U T P U T

Before calling changeValues:
a1 a2 a3
111 222 333

Before changing the values:
f1 f2 f3
111 222 333

L I S T I N G 5 . 1 4

M05_LEWI5976_05_SE_C05.indd 219 08/02/19 1:54 AM

220 CHAPTER 5 Writing Classes

After changing the values:
f1 f2 f3
999 888 777

After calling changeValues:
a1 a2 a3
111 888 333

L I S T I N G 5 . 1 4 continued

//**
// ParameterModifier.java Java Foundations
//
// Demonstrates the effects of changing parameter values.
//**

public class ParameterModifier
{
 //---
 // Modifies the parameters, printing their values before and
 // after making the changes.
 //---
 public void changeValues(int f1, Num f2, Num f3)
 {
 System.out.println("Before changing the values:");
 System.out.println("f1\tf2\tf3");
 System.out.println(f1 + "\t" + f2 + "\t" + f3 + "\n");

 f1 = 999;
 f2.setValue(888);
 f3 = new Num(777);

 System.out.println("After changing the values:");
 System.out.println("f1\tf2\tf3");
 System.out.println(f1 + "\t" + f2 + "\t" + f3 + "\n");
 }
}

L I S T I N G 5 . 1 5

M05_LEWI5976_05_SE_C05.indd 220 08/02/19 1:54 AM

 5.7 Method Design 221

//**
// Num.java Java Foundations
//
// Represents a single integer as an object.
//**

public class Num
{
 private int value;

 //---
 // Sets up the new Num object, storing an initial value.
 //---
 public Num(int update)
 {
 value = update;
 }

 //---
 // Sets the stored value to the newly specified value.
 //---
 public void setValue(int update)
 {
 value = update;
 }

 //---
 // Returns the stored integer value as a string.
 //---
 public String toString()
 {
 return value + "";
 }
}

L I S T I N G 5 . 1 6

using its setValue method, and a new Num object is created and assigned to the
second Num parameter. These changes are reflected in the output printed at the
end of the changeValues method.

However, note the final values that are printed after returning from the
method. The primitive integer was not changed from its original value, because
the change was made to a copy inside the method. Likewise, the last parameter

M05_LEWI5976_05_SE_C05.indd 221 08/02/19 1:54 AM

222 CHAPTER 5 Writing Classes

still refers to its original object with its original value. This is because the new Num
object created in the method was referred to only by the formal parameter. When
the method returned, that formal parameter was destroyed, and the Num object it
referred to was marked for garbage collection. The only change that is “perma-
nent” is the change made to the state of the second parameter. Figure 5.12 shows
the step-by-step processing of this program.

STEP 1 STEP 2

STEP 3 STEP 4

Before invoking changeValues

f1 = 999; f2.setValue (888);

tester.changeValues (a1, a2, a3);

a1 a2

f1 f2 f1 f2f3 f3

a1 a2a3 a3

111 111 222 333

111

222 333

a1 a2

f1 f2 f1 f2f3 f3

a1 a2a3 a3

111 111 888 333

999

222 333

999

STEP 5 STEP 6

f3 = new Num (777); After returning from changeValues

a1 a2

f1 f2 f1 f2f3 f3

a1 a2a3 a3

111 111 888 333888 333

999 777

= Undefined

FIGURE 5.12 Tracing the parameters in the ParameterTesting program

M05_LEWI5976_05_SE_C05.indd 222 08/02/19 1:54 AM

 5.8 Method Overloading 223

KEY CONCEPT
The versions of an overloaded
method are distinguished by the
number, type, and order of their
parameters.

5.8 Method Overloading

As we’ve discussed, when a method is invoked, control transfers to the code that
defines the method. After the method has been executed, control returns to the
location of the call, and processing continues.

Often the method name is sufficient to indicate which method is being called by
a specific invocation. But in Java, as in other object-oriented languages, you can
use the same method name with different parameter lists for multiple methods.
This technique is called method overloading. It is useful when you need to per-
form similar methods on different types of data.

The compiler must still be able to associate each invocation with
a specific method declaration. If the method name for two or more
methods is the same, additional information is used to uniquely
identify the version that is being invoked. In Java, a method name
can be used for multiple methods as long as the number of param-
eters, the types of those parameters, and/or the order of the types of
parameters is distinct.

For example, we could declare a method called sum as follows:

public int sum(int num1, int num2)
{
 return num1 + num2;
}

Then we could declare another method called sum, within the same class, as follows:

public int sum(int num1, int num2, int num3)
{
 return num1 + num2 + num3;
}

Now, when an invocation is made, the compiler looks at the number of param-
eters to determine which version of the sum method to call. For instance, the fol-
lowing invocation will call the second version of the sum method:

sum(25, 69, 13);

A method’s name, along with the number, type, and order of its parameters, is
called the method’s signature. The compiler uses the complete method signature
to bind a method invocation to the appropriate definition.

The compiler must be able to examine a method invocation to determine which
specific method is being invoked. If you attempt to specify two method names
with the same signature, the compiler will issue an appropriate error message and
will not create an executable program. There can be no ambiguity.

M05_LEWI5976_05_SE_C05.indd 223 08/02/19 1:54 AM

224 CHAPTER 5 Writing Classes

Note that the return type of a method is not part of the method signature. That
is, two overloaded methods cannot differ only by their return type. This is because
the value returned by a method can be ignored by the invocation. The compiler
would not be able to tell which version of an overloaded method was being refer-
enced in such situations.

The println method is an example of a method that is overloaded several
times, each accepting a single type. Here is a partial list of its various signatures:

■■ println(String s)

■■ println(int i)

■■ println(double d)

■■ println(char c)

■■ println(boolean b)

The following two lines of code actually invoke different methods that have the
same name:

System.out.println("Number of students: ");
System.out.println(count);

The first line invokes the version of println that accepts a string. The second
line, assuming that count is an integer variable, invokes the version of println
that accepts an integer.

We often use a println statement that prints several distinct types, such as

System.out.println("Number of students: " + count);

Remember, in this case the plus sign is the string concatenation operator. First,
the value in the variable count is converted to a string representation, then the
two strings are concatenated into one longer string, and finally the definition of
println that accepts a single string is invoked.

Constructors can be overloaded, and they often are. By providing multiple ver-
sions of a constructor, we provide multiple ways to set up an object.

5.9 Testing

As our programs become larger and more complex, it becomes more difficult to
ensure their accuracy and reliability. Accordingly, before we continue with further
programming details, let’s explore the processes involved in testing a program.

The term testing can be applied in many ways to software development. Testing
certainly includes its traditional definition: the act of running a completed program

M05_LEWI5976_05_SE_C05.indd 224 08/02/19 1:54 AM

 5.9 Testing 225

with various inputs to discover problems. But it also includes any evaluation that
is performed by human or machine to assess the quality of the evolving system.
These evaluations should occur long before a single line of code is written.

The goal of testing is to find errors. By finding errors and fixing them, we
improve the quality of our program. It’s likely that later on, someone else will
find any errors that remain hidden during development. The earlier the errors are
found, the easier and cheaper they are to fix. Taking the time to uncover problems
as early as possible is almost always worth the effort.

Running a program with specific input and producing the correct results estab-
lishes only that the program works for that particular input. As more and more
test cases execute without revealing errors, our confidence in the pro-
gram rises, but we can never really be sure that all errors have been
eliminated. There could always be another error still undiscovered.
Because of that, it is important to thoroughly test a program in as
many ways as possible and with well-designed test cases.

It is possible to prove that a program is correct, but that technique is enor-
mously complex for large systems, and errors can be made in the proof itself.
Therefore, we generally rely on testing to determine the quality of a program.

After determining that an error exists, we determine the cause of the error and
fix it. After a problem is fixed, we should run the previously administered tests
again to make sure that while fixing the problem, we didn’t create another. This
technique is called regression testing.

Reviews
One technique used to evaluate design or code is called a review, which is a meet-
ing in which several people carefully examine a design document or section of
code. Presenting our design or code to others causes us to think more carefully
about it and permits others to share their suggestions with us. The participants
discuss its merits and problems and create a list of issues that must be addressed.
The goal of a review is to identify problems, not to solve them, which usually
takes much more time.

A design review should determine whether the requirements are addressed. It
should also assess the way the system is decomposed into classes and objects. A
code review should determine how faithfully the design satisfies the requirements
and how faithfully the implementation represents the design. It should identify
any specific problems that would cause the design or the implementation to fail in
its responsibilities.

Sometimes a review is called a walkthrough, because its goal is to step carefully
through a document and evaluate each section.

KEY CONCEPT
Testing a program can never
guarantee the absence of errors.

M05_LEWI5976_05_SE_C05.indd 225 08/02/19 1:54 AM

226 CHAPTER 5 Writing Classes

Defect Testing
Because the goal of testing is to find errors, it is often referred to as defect testing.
With that goal in mind, a good test is one that uncovers any deficiencies in a pro-
gram. This might seem strange, because we ultimately don’t want to have problems
in our system. But keep in mind that errors almost certainly exist. Our testing ef-

forts should make every attempt to find them. We want to increase the
reliability of our program by finding and fixing the errors that exist,
rather than letting users discover them.

A test case is a set of inputs, user actions, or other initial condi-
tions, and the expected output. A test case should be appropriately
documented so that it can be repeated later as needed. Developers
often create a complete test suite, which is a set of test cases that
covers various aspects of the system.

Because programs operate on a large number of possible inputs,
it is not feasible to create test cases for all possible input or user
actions. Nor is it usually necessary to test every single situation. Two
specific test cases may be so similar that they actually do not test

unique aspects of the program. To perform both such tests would be a waste of
effort. We’d rather execute a test case that stresses the program in some new way.
Therefore, we want to choose our test cases carefully. To that end, let’s examine
two approaches to defect testing: black-box testing and white-box testing.

As the name implies, black-box testing treats the thing being tested as a black
box. In black-box testing, test cases are developed without regard to the inter-
nal workings. Black-box tests are based on inputs and outputs. An entire pro-
gram can be tested using a black-box technique, in which case the inputs are the
user-provided information and user actions such as button pushes. A test case is
successful only if the input produces the expected output. A single class can also be
tested using a black-box technique, which focuses on the system interface of the class
(its public methods). Certain parameters are passed in, producing certain results.
Black-box test cases are often derived directly from the requirements of the system or
from the stated purpose of a method.

The input data for a black-box test case are often selected by defining equiva-
lence categories. An equivalence category is a collection of inputs that are ex-
pected to produce similar outputs. Generally, if a method will work for one value
in the equivalence category, we have every reason to believe it will work for the
others. For example, the input to a method that computes the square root of an
integer can be divided into two equivalence categories: nonnegative integers and
negative integers. If it works appropriately for one nonnegative value, it is likely
to work for all nonnegative values. Likewise, if it works appropriately for one
negative value, it is likely to work for all negative values.

KEY CONCEPT
A good test is one that uncovers an
error.

KEY CONCEPT
It is not feasible to exhaustively test
a program for all possible input and
user actions.

M05_LEWI5976_05_SE_C05.indd 226 08/02/19 1:54 AM

 5.9 Testing 227

Equivalence categories have defined boundaries. Because all values of an equiv-
alence category essentially test the same features of a program, only one test case
inside the equivalence boundary is needed. However, because programming often
produces “off by one” errors, the values on and around the boundary should be
tested exhaustively. For an integer boundary, a good test suite would include at
least the exact value of the boundary, the boundary minus 1, and the boundary
plus 1. Test cases that use these cases, plus at least one from within the general
field of the category, should be defined.

Let’s look at an example. Consider a method whose purpose is to validate that
a particular integer value is in the range 0 to 99, inclusive. There are three equiva-
lence categories in this case: values below 0, values in the range of 0 to 99, and
values above 99. Black-box testing dictates that we use test values that surround
and fall on the boundaries, as well as some general values from the equivalence
categories. Therefore, a set of black-box test cases for this situation might be
-500, -1, 0, 1, 50, 98, 99, 100, and 500.

White-box testing, also known as glass-box testing, exercises the internal struc-
ture and implementation of a method. A white-box test case is based on the logic
of the code. The goal is to ensure that every path through a program is executed at
least once. A white-box test maps the possible paths through the code and ensures
that the test cases cause every path to be executed. This type of testing is often
called statement coverage.

Paths through code are controlled by various control flow statements that
use conditional expressions, such as if statements. In order to have every path
through the program executed at least once, the input data values for the test cases
need to control the values for the conditional expressions. The input data of one or
more test cases should cause the condition of an if statement to evaluate to true
in at least one case and to false in at least one case. Covering both true and false
values in an if statement guarantees that both paths through the if statement will
be executed. Similar situations can be created for loops and other constructs.

In both black-box and white-box testing, the expected output for each test
should be established before running the test. It’s too easy to be persuaded that the
results of a test are appropriate if you haven’t first carefully determined what the
results should be.

Unit Testing
Another type of testing is known as unit testing. This approach creates a test
case for each module of code (method) that has been authored. The goal of unit
testing is to ensure correctness of the methods (units), one method at a time.
Generally, we collect our unit tests together, execute each test, and observe all of

M05_LEWI5976_05_SE_C05.indd 227 08/02/19 1:54 AM

228 CHAPTER 5 Writing Classes

the results. We can also use these tests repeatedly as the source code changes, to
observe the effect of our code changes on the results of the test (regression test-
ing, discussed above).

Integration Testing
During integration testing, modules that were individually tested during unit test-
ing are now tested as a collection. This form of testing looks at the larger picture
and determines whether there are bugs present when modules are brought to-
gether and integrated to work together. As with unit testing, we can use regression
testing as the software changes to determine how our results may have changed
as integration occurred and as problems in the modules or integration approaches
were modified. Typically, the goal of integration testing is to examine the correct-
ness of large components of a system.

System Testing
System testing seeks to test the entire software system and how its implementa-
tion adheres to its requirements. You may be familiar with public alpha or beta
testing of applications or operating systems. Alpha and beta tests are system
tests applied before the formal release and availability of a software product.
Software development companies partake in these types of public tests to in-
crease the number of users testing a product or to expand the hardware base that
the product is tested on.

Test-Driven Development
Ideally, developers should be writing test cases concurrently with the development
of the source code that their applications use. In fact, many developers have ad-

opted the practice of writing their test cases first and then implement-
ing only enough source code for the test case to pass. This notion is
known professionally as test-driven development.

The test-driven approach requires that developers periodically
(during development and implementation) test their code using the

implemented test cases. If you were to look at the test-driven approach as a se-
quence of steps, you would generally find the following activities:

1. Create a test case that tests a specific method that has yet to be completed.

2. Execute all of the test cases present, and verify that all test cases pass except
for the most recently implemented test case.

KEY CONCEPT
In test-driven development, test cases
are developed for code before the
code is written.

M05_LEWI5976_05_SE_C05.indd 228 08/02/19 1:54 AM

 5.10 Debugging 229

3. Develop the method that the test case targets so that the test case will pass
without errors.

4. Re-execute all of the test cases, and verify that every test case passes, in-
cluding the most recently implemented test case.

5. Clean up the code to eliminate any redundant portions introduced by the
development of the most recent method. This step is known as refactoring
the code.

6. Repeat the process starting with Step 1.

The test-driven approach is becoming increasingly popular in professional set-
tings. Without a doubt, it requires an adjustment for many developers to stop
and write test cases before writing methods that provide functionality to systems
under development.

5.10 Debugging

Finally, we come to one of the most important concepts that you will ever master
as a programmer—the art of debugging your programs. Debugging is the act of
locating and correcting run-time and logic errors in your programs.
We can locate errors in our programs in a number of different ways.
You may notice a run-time error (the program terminating abnor-
mally) when you execute your program and certain situations arise
that you did not consider or design for. Also, you may notice a logic
error in your program as it executes when your anticipated results do
not match the actual results you obtain.

Ideally, through rigorous testing, we hope to discover all possible errors in our
programs. Typically, however, a few errors slip through into the final program.
Once you recognize that your program contains an error, you will want to locate
the portion of code from which the error is arising. For example, if you determine
that your program is terminating abnormally because of a divide-by-zero prob-
lem, you’ll probably want to locate the exact line where it is happening. You may
also wish to observe the values of the variables involved in the division. The same
may be true if you have a logic error (rather than a divide-by-zero problem) in
that division operation.

Regardless of your motivation, it is often very helpful to obtain de-
tailed information about the values of variables, states of objects, and
other inner workings of your program. This is where a debugger comes
in. A debugger is a software application that allows us to observe these
inner workings as the program executes. However, before we discuss
the debugger, we should first talk about simple debugging.

KEY CONCEPT
Debugging is the act of locating and
correcting run-time and logic errors in
your programs.

KEY CONCEPT
A debugger is a software program
that permits developers to observe the
execution of a program.

M05_LEWI5976_05_SE_C05.indd 229 08/02/19 1:54 AM

230 CHAPTER 5 Writing Classes

Simple Debugging with print Statements
One of the most simplistic approaches to debugging involves the use of print-
ing. That is, scattered throughout a program can be print and println state-
ments that output various information either to the screen or to an output file.
Generally, this type of approach will provide information on the value or state of
a specific variable or object. Periodic printing of an object’s string representation
is considered a useful approach to observing the state of an object over time.

Other types of useful information can be printed as well. For example, some-
times we wish to know “how far our program got before it died.” Programmers
facing this challenge often print a series of “It got here.” statements to output to
monitor the exact path of execution of the program.

Consider the case of calling a method. It may be useful for us to print the value
of each parameter after the method starts to observe how the method was called.
This is particularly helpful when we are debugging recursive methods, discussed
in the next chapter. We can also print the value of a variable prior to its being
returned as the method ends.

Debugging Concepts
Debugging through printing can take us only so far. Most of the time, this style
of debugging can be effectively used to identify what is happening during execu-
tion, or the value of a variable at a certain point in the program. However, a more
powerful approach is to use a debugger in which our program will execute. The
debugger can be used to control our program’s execution and provide additional
functionality to the developer that we simply can’t get with simple debugging
through print statements.

A debugger allows us to do the following:

■■ Set one or more breakpoints in our program. In the debugger, we can ex-
amine the source code and set special flags or triggers on one or more lines
of code. When execution of the program comes across a statement that has
been flagged, execution stops.

■■ Print the value of a variable or object. Once we have reached a breakpoint
and execution has stopped, the debugger allows us to display the value of a
variable or examine the state of an object. Generally, these types of displays
are to the screen and only within the confines of the debugger application.

■■ Step into or over a method. If we set a breakpoint at a statement that is a
call to a method, when execution reaches this breakpoint and the program
stops, the developer can choose to enter into the method and continue de-
bugging or to step over the method, bypassing the display of the execution

M05_LEWI5976_05_SE_C05.indd 230 08/02/19 1:54 AM

 5.10 Debugging 231

of the statements contained in the method. In stepping over the method,
we should note that the method is still executed, but we have chosen not to
delve into the method. Consider the call to the printing of a string of out-
put to the screen. We probably don’t need to step into the println method
of the System.out object. It’s likely to have been fully debugged already
(and we can’t change its behavior anyway).

■■ Execute the next single statement. After reaching a breakpoint, the de-
veloper can choose to execute the next single statement (also known as a
step). By executing a single step, we can literally control the execution of
our program one statement at a time. Developers often perform stepping
to be sure they understand the flow of execution and to give themselves
an opportunity to display the value of a variable following each step, if
desired.

■■ Continue execution. Once a program has stopped due to a breakpoint,
or is waiting for the developers to decide whether they will step into, step
over, or single step, the developers can also continue execution. Continuing
execution will result in the program running each statement without paus-
ing until the program ends, it encounters another breakpoint, or a run-time
error occurs.

Debuggers also offer a pile of additional features to assist in the debugging task.
However, for the purposes of this discussion, we can limit ourselves to the set of
activities listed above. Any debugger that is worth using has these operations, at
the very least.

M05_LEWI5976_05_SE_C05.indd 231 08/02/19 1:54 AM

232 CHAPTER 5 Writing Classes

Summary of Key Concepts

■■ The nouns in a problem description may indicate some of the classes and
objects needed in a program.

■■ The heart of object-oriented programming is defining classes that represent
objects with well-defined state and behavior.

■■ The scope of a variable, which determines where it can be referenced,
depends on where it is declared.

■■ A UML class diagram helps us visualize the contents of, and the relationships
among, the classes of a program.

■■ An object should be encapsulated in order to safeguard its data from inappro-
priate access.

■■ Instance variables should be declared with private visibility to promote
encapsulation.

■■ Most objects contain accessor and mutator methods to allow the client to
manage data in a controlled manner.

■■ The way a class represents an object’s state should be independent of how
that object is used.

■■ The value returned from a method must be consistent with the return type
specified in the method header.

■■ When a method is called, the actual parameters are copied into the formal
parameters.

■■ A variable declared in a method is local to that method and cannot be used
outside of it.

■■ A constructor cannot have any return type, even void.

■■ A static variable is shared among all instances of a class.

■■ An aggregate object is composed of other objects, forming a has-a
relationship.

■■ A complex service provided by an object can be decomposed to make use of
private support methods.

■■ When an object is passed to a method, the actual and formal parameters
become aliases.

■■ The versions of an overloaded method are distinguished by the number,
type, and order of their parameters.

■■ Testing a program can never guarantee the absence of errors.

M05_LEWI5976_05_SE_C05.indd 232 08/02/19 1:54 AM

 Summary of Terms 233

■■ A good test is one that uncovers an error.

■■ It is not feasible to exhaustively test a program for all possible input and user
actions.

■■ In test-driven development, test cases are developed for code before the code
is written.

■■ Debugging is the act of locating and correcting run-time and logic errors in
your programs.

■■ A debugger is a software program that permits developers to observe the
execution of a program.

Summary of Terms
accessor method A method that provides access to the attributes of an object
but does not modify it.

actual parameter A value that is passed into a method when it is invoked.
Also called an argument.

aggregation A relationship among object in which one object is made up of
other objects.

behavior The set of operations defined by the public methods of an object.

black-box testing Testing a program with attention to the inputs and out-
puts of the code.

client A part of a software system that uses an object.

debugging The act of locating and correcting run-time and logical errors in
a program.

defect testing Executing a program with specific inputs in order to find
errors.

encapsulation The characteristic of an object that keeps its data protected
from external modification.

formal parameter A parameter name in the header of a method definition.

instance data Data defined at the class level and created in memory for
every object.

integration testing Testing modules as they are incorporated with each
other, focusing on the communication between them.

interface The set of public methods that define the operations that an
object makes available to other objects.

local data Data that are declared within a method.

M05_LEWI5976_05_SE_C05.indd 233 08/02/19 1:54 AM

234 CHAPTER 5 Writing Classes

method overloading The ability to declare multiple methods with the same
name in a class as long as the method signatures are distinct.

method signature The method’s name, along with the number, type, and
order of the method’s parameters.

modifier A Java reserved word that is used to specify particular characteris-
tics of a variable, method, or class.

mutator method A method that changes the attributes of an object.

private visibility Restricting access to an object member to the methods
within that object.

public visiblity The ability to be referenced from outside an object.

return statement A statement that causes a method to terminate and
possibly return a value to the calling method.

review A meeting in which several people examine a design document or
section of code in order to discover problems.

scope The area of a program in which a variable can be referenced.

service method A public method that provides a service to the clients of
an object.

state The current values of the attributes (instance variables) of an object.

static method A method that is invoked through the class name and cannot
refer to instance data.

static variable A variable that is shared among all instances of a class. Also
called a class variable.

support methods A method with private visibility, used to support another
method in its task.

system testing Testing an entire software system for its overall functionality.

testing The process of evaluating a program to discover defects.

test suite A set of tests that covers various aspects of a software system and
can be repeated when needed.

unit testing Creating specific tests for small units of code (usually a
method).

Unified Modeling Language (UML) A popular notation for representing
designs of an object-oriented program.

visibility modifier One of the three modifiers (public, private, and protected)
that determine what other parts of a software system can access a variable or
method.

white-box testing Testing a program with attention to the logic of the code.

M05_LEWI5976_05_SE_C05.indd 234 08/02/19 1:54 AM

 Self-Review Questions 235

Self-Review Questions
SR 5.1 What is an attribute?

SR 5.2 What is an operation?

SR 5.3 What is the difference between an object and a class?

SR 5.4 What is the scope of a variable?

SR 5.5 What are UML diagrams designed to do?

SR 5.6 Objects should be self-governing. Explain.

SR 5.7 What is a modifier?

SR 5.8 Why might a constant be given public visibility?

SR 5.9 Describe each of the following:

a. public method

b. private method

c. public variable

d. private variable

SR 5.10 What is the interface to an object?

SR 5.11 Why is a method invoked through (or on) a particular object?
What is the exception to that rule?

SR 5.12 What does it mean for a method to return a value?

SR 5.13 What does the return statement do?

SR 5.14 Is a return statement required?

SR 5.15 Explain the difference between an actual parameter and a formal
parameter.

SR 5.16 What are constructors used for? How are they defined?

SR 5.17 What is the difference between a static variable and an instance
variable?

SR 5.18 What kinds of variables can the main method of any program
reference? Why?

SR 5.19 Describe a dependency relationship between two classes.

SR 5.20 How are overloaded methods distinguished from each other?

SR 5.21 What is method decomposition?

SR 5.22 Explain how a class can have an association with itself.

SR 5.23 What is an aggregate object?

SR 5.24 What does the this reference refer to?

M05_LEWI5976_05_SE_C05.indd 235 08/02/19 1:54 AM

236 CHAPTER 5 Writing Classes

SR 5.25 How are objects passed as parameters?

SR 5.26 What is a defect test?

SR 5.27 What is a debugger?

Exercises
EX 5.1 For each of the following pairs, indicate which member of the

pair represents a class and which represents an object of that
class.

a. Superhero, Superman

b. Justin, Person

c. Rover, Pet

d. Magazine, Time

e. Christmas, Holiday

EX 5.2 List some attributes and operations that might be defined for a
class called PictureFrame that represents a picture frame.

EX 5.3 List some attributes and operations that might be defined for a
class called Meeting that represents a business meeting.

EX 5.4 List some attributes and operations that might be defined for a
class called Course that represents a college course (not a particu-
lar offering of a course, just the course in general).

EX 5.5 Rewrite the for loop body from the SnakeEyes program so that
the variables num1 and num2 are not used.

EX 5.6 Write a method called lyrics that prints the lyrics of a song
when invoked. The method should accept no parameters and re-
turn no value.

EX 5.7 Write a method called cube that accepts one integer parameter
and returns that value raised to the third power.

EX 5.8 Write a method called random100 that returns a random integer
in the range of 1 to 100 (inclusive).

EX 5.9 Write a method called randomInRange that accepts two integer
parameters representing a range. The method should return a
random integer in the specified range (inclusive). Assume that the
first parameter is greater than the second.

M05_LEWI5976_05_SE_C05.indd 236 08/02/19 1:54 AM

 Exercises 237

EX 5.10 Write a method called powersOfTwo that prints the first 10 powers
of 2 (starting with 2). The method takes no parameters and doesn’t
return anything.

EX 5.11 Write a method called alarm that prints the string “Alarm!”
multiple times on separate lines. The method should accept an
integer parameter that specifies how many times the string is
printed. Print an error message if the parameter is less than 1.

EX 5.12 Write a method called sum100 that returns the sum of the integers
from 1 to 100, inclusive.

EX 5.13 Write a method called maxOfTwo that accepts two integer param-
eters and returns the larger of the two.

EX 5.14 Write a method called sumRange that accepts two integer param-
eters that represent a range. Issue an error message and return zero
if the second parameter is less than the first. Otherwise, the method
should return the sum of the integers in that range (inclusive).

EX 5.15 Write a method called larger that accepts two floating point pa-
rameters (of type double) and returns true if the first parameter
is greater than the second, and returns false otherwise.

EX 5.16 Write a method called countA that accepts a String parameter
and returns the number of times the character ‘A’ is found in the
string.

EX 5.17 Write a method called evenlyDivisible that accepts two inte-
ger parameters and returns true if the first parameter is evenly
divisible by the second, or vice versa, and returns false otherwise.
Return false if either parameter is zero.

EX 5.18 Write a method called isAlpha that accepts a character param-
eter and returns true if that character is either an uppercase or a
lowercase alphabetic letter.

EX 5.19 Write a method called floatEquals that accepts three floating
point values as parameters. The method should return true if the
first two parameters are equal within the tolerance of the third
parameter.

EX 5.20 Write a method called reverse that accepts a String parameter
and returns a string that contains the characters of the parameter
in reverse order. Note: There is a method in the String class that
performs this operation, but for the sake of this exercise, you are
expected to write your own.

M05_LEWI5976_05_SE_C05.indd 237 08/02/19 1:54 AM

238 CHAPTER 5 Writing Classes

EX 5.21 Write a method called isIsosceles that accepts three integer pa-
rameters that represent the lengths of the sides of a triangle. The
method returns true if the triangle is isosceles but not equilateral
(meaning that exactly two of the sides have the same length), and
returns false otherwise.

EX 5.22 Write a method called average that accepts two integer param-
eters and returns their average as a floating point value.

EX 5.23 Overload the average method of Exercise 5.22 such that if three
integers are provided as parameters, the method returns the aver-
age of all three.

EX 5.24 Overload the average method of Exercise 5.22 to accept four in-
teger parameters and return their average.

EX 5.25 Write a method called multiConcat that takes a String and an
integer as parameters. Return a String that consists of the string
parameter concatenated with itself count times, where count is
the integer parameter. For example, if the parameter values are
"hi" and 4, the return value is "hihihihi". Return the original
string if the integer parameter is less than 2.

EX 5.26 Overload the multiConcat method from Exercise 5.25 such that
if the integer parameter is not provided, the method returns the
string concatenated with itself. For example, if the parameter is
"test", the return value is "testtest".

EX 5.27 Discuss the manner in which Java passes parameters to a method.
Is this technique consistent between primitive types and objects?
Explain.

EX 5.28 Explain why a static method cannot refer to an instance variable.

EX 5.29 Can a class implement two interfaces that contain the same
method signature? Explain.

EX 5.30 Draw a UML class diagram for the CountFlips program.

EX 5.31 Draw a UML class diagram for the FlipRace program.

EX 5.32 Draw a UML class diagram for the Transactions program.

Programming Projects
PP 5.1 Revise the Coin class such that its state is represented internally

using a boolean variable. Test the new versions of the class as
part of the CountFlips and FlipRace programs.

M05_LEWI5976_05_SE_C05.indd 238 08/02/19 1:54 AM

 Programming Projects 239

PP 5.2 Repeat Programming Project 5.1, representing the state of the
coin using a character string.

PP 5.3 Repeat Programming Project 5.1, representing the state of the
coin using an enumerated type.

PP 5.4 Design and implement a class called Sphere that contains in-
stance data that represent the sphere’s diameter. Define the
Sphere constructor to accept and initialize the diameter, and
include getter and setter methods for the diameter. Include meth-
ods that calculate and return the volume and surface area of the
sphere (see Programming Project 3.5 for the formulas). Include
a toString method that returns a one-line description of the
sphere. Create a driver class called MultiSphere, whose main
method instantiates and updates several Sphere objects.

PP 5.5 Design and implement a class called Dog that contains instance
data that represent the dog’s name and age. Define the Dog con-
structor to accept and initialize instance data. Include getter and
setter methods for the name and age. Include a method to com-
pute and return the age of the dog in “person years” (seven times
the dog’s age). Include a toString method that returns a one-line
description of the dog. Create a driver class called Kennel, whose
main method instantiates and updates several Dog objects.

PP 5.6 Design and implement a class called Box that contains instance
data that represent the height, width, and depth of the box. Also
include a boolean variable called full as instance data that rep-
resent whether the box is full or not. Define the Box constructor
to accept and initialize the height, width, and depth of the box.
Each newly created Box is empty (the constructor should initialize
full to false). Include getter and setter methods for all instance
data. Include a toString method that returns a one-line descrip-
tion of the box. Create a driver class called BoxTest, whose main
method instantiates and updates several Box objects.

PP 5.7 Design and implement a class called Book that contains instance
data for the title, author, publisher, and copyright date. Define the
Book constructor to accept and initialize these data. Include set-
ter and getter methods for all instance data. Include a toString
method that returns a nicely formatted, multiline description of
the book. Create a driver class called Bookshelf, whose main
method instantiates and updates several Book objects.

PP 5.8 Design and implement a class called Flight that represents an
airline flight. It should contain instance data that represent the

M05_LEWI5976_05_SE_C05.indd 239 08/02/19 1:54 AM

240 CHAPTER 5 Writing Classes

airline name, the flight number, and the flight’s origin and des-
tination cities. Define the Flight constructor to accept and ini-
tialize all instance data. Include getter and setter methods for all
instance data. Include a toString method that returns a one-line
description of the flight. Create a driver class called FlightTest,
whose main method instantiates and updates several Flight
objects.

PP 5.9 Design and implement a class called Bulb that represents a light
bulb that can be turned on and off. Create a driver class called
Lights, whose main method instantiates and turns on some Bulb
objects.

PP 5.10 Using the Die class defined in this chapter, design and implement
a class called PairOfDice, composed of two Die objects. Include
methods to set and get the individual die values, a method to roll
the dice, and a method that returns the current sum of the two
die values. Rewrite the SnakeEyes program using a PairOfDice
object.

PP 5.11 Using the PairOfDice class from Programming Project 5.10,
design and implement a class to play a game called Pig. In this
game, the user competes against the computer. On each turn, the
current player rolls a pair of dice and accumulates points. The
goal is to reach 100 points before your opponent does. If, on any
turn, the player rolls a 1, all points accumulated for that round
are forfeited, and control of the dice moves to the other player.
If the player rolls two 1’s in one turn, the player loses all points
accumulated thus far in the game and loses control of the dice.
The player may voluntarily turn over the dice after each roll.
Therefore, the player must decide either to roll again (be a pig)
and risk losing points or to relinquish control of the dice, possibly
allowing the other player to win. Implement the computer player
such that it always relinquishes the dice after accumulating 20 or
more points in any given round.

PP 5.12 Modify the Account class from this chapter so that it also permits
an account to be opened with just a name and an account num-
ber, assuming an initial balance of zero. Modify the main method
of the Transactions class to demonstrate this new capability.

PP 5.13 Design and implement a class called Card that represents a stan-
dard playing card. Each card has a suit and a face value. Create a
program that deals five random cards.

M05_LEWI5976_05_SE_C05.indd 240 08/02/19 1:54 AM

 Answers to Self-Review Questions 241

Answers to Self-Review Questions
SRA 5.1 An attribute is a data value that is stored in an object and defines

a particular characteristic of that object. For example, one at-
tribute of a Student object might be that student’s current grade
point average. Collectively, the values of an object’s attributes
determine that object’s current state.

SRA 5.2 An operation is a function that can be done to or done by an
object. For example, one operation of a Student object might be
to compute that student’s current grade point average. Collectively,
an object’s operations are referred to as the object’s behaviors.

SRA 5.3 A class is the blueprint of an object. It defines the variables and
methods that will be a part of every object that is instantiated
from it. But a class reserves no memory space for variables. Each
object has its own data space and therefore its own state.

SRA 5.4 The scope of a variable is the area within a program in which the
variable can be referenced. An instance variable, declared at the
class level, can be referenced in any method of the class. Local
variables (including the formal parameters) declared within a par-
ticular method can be referenced only in that method.

SRA 5.5 A UML diagram helps us visualize the classes used in a program
as well as the relationships among them. UML diagrams are tools
that help us capture the design of a program prior to writing it.

SRA 5.6 A self-governing object is one that controls the values of its own
data. An encapsulated object, which doesn’t allow an external
client to reach in and change its data, is self-governing.

SRA 5.7 A modifier is a Java reserved word that can be used in the defini-
tion of a variable or method and that specifically defines certain
characteristics of its use. For example, if a variable is declared
with the modifier private, the variable cannot be directly ac-
cessed outside the object in which it is defined.

SRA 5.8 A constant might be declared with public visibility because that
would not violate encapsulation. Because the value of a constant
cannot be changed, it is not generally a problem for another object
to access it directly.

SRA 5.9 The modifiers affect the methods and variables in the following
ways:

a. A public method is called a service method for an object because
it defines a service that the object provides.

M05_LEWI5976_05_SE_C05.indd 241 08/02/19 1:54 AM

242 CHAPTER 5 Writing Classes

b. A private method is called a support method because it cannot
be invoked from outside the object and is used to support the
activities of other methods in the class.

c. A public variable is a variable that can be directly accessed and
modified by a client. This explicitly violates the principle of en-
capsulation and therefore should be avoided.

d. A private variable is a variable that can be accessed and modified
only from within the class. Variables almost always are declared
with private visibility.

SRA 5.10 An object’s interface is the set of public operations (methods)
defined on it. That is, the interface establishes the set of services
the object will perform for the rest of the system.

SRA 5.11 Although a method is defined in a class, it is invoked through a
particular object to indicate which object of that class is being
affected. For example, the Student class may define the opera-
tion that computes the grade point average of a student, but the
operation is invoked through a particular Student object to com-
pute the GPA for that student. The exception to this rule is the
invocation of a static method, which is executed through the class
name and does not affect any particular object.

SRA 5.12 An invoked method may return a value, which means it computes
a value and provides that value to the calling method. The calling
method usually uses the invocation, and thus its return value, as
part of a larger expression.

SRA 5.13 An explicit return statement is used to specify the value that is
returned from a method. The type of the return value must match
the return type specified in the method definition.

SRA 5.14 A return statement is required in methods that have a return
type other than void. A method that does not return a value
could use a return statement without an expression, but it is
not necessary. Only one return statement should be used in a
method.

SRA 5.15 An actual parameter is a value sent to a method when it is in-
voked. A formal parameter is the corresponding variable in the
header of the method declaration; it takes on the value of the ac-
tual parameter so that it can be used inside the method.

SRA 5.16 Constructors are special methods in an object that are used to
initialize the object when it is instantiated. A constructor has the
same name as its class, and it does not return a value.

M05_LEWI5976_05_SE_C05.indd 242 08/02/19 1:54 AM

SRA 5.17 Memory space for an instance variable is created for each object
that is instantiated from a class. A static variable is shared among
all objects of a class.

SRA 5.18 The main method of any program is static and can refer only to
static or local variables. Therefore, a main method cannot refer to
instance variables declared at the class level.

SRA 5.19 A dependency relationship between two classes occurs when one
class relies on the functionality of the other. It is often referred to
as a “uses” relationship.

SRA 5.20 Overloaded methods are distinguished by having a unique signa-
ture, which includes the number, order, and type of the param-
eters. The return type is not part of the signature.

SRA 5.21 Method decomposition is the process of dividing a complex
method into several support methods to get the job done. This
simplifies and facilitates the design of the program.

SRA 5.22 A method executed through an object might take as a param-
eter another object created from the same class. For example,
the concat method of the String class is executed through one
String object and takes another String object as a parameter.

SRA 5.23 An aggregate object is an object that has other objects as instance
data. That is, an aggregate object is one that is made up of other
objects.

SRA 5.24 The this reference always refers to the currently executing ob-
ject. A nonstatic method of a class is written generically for all
objects of the class, but it is invoked through a particular object.
The this reference, therefore, refers to the object through which
that method is currently being executed.

SRA 5.25 Objects are passed to methods by copying the reference to the ob-
ject (its address). Therefore, the actual and formal parameters of
a method become aliases of each other.

SRA 5.26 Defect testing is the act of testing to locate errors in a program.

SRA 5.27 A debugger is a software application that allows us to observe
and manipulate the inner workings of a program as it executes.

 Answers to Self-Review Questions 243

M05_LEWI5976_05_SE_C05.indd 243 08/02/19 1:54 AM

245

6

Many programs provide a graphical user interface

(GUI) through which a user interacts with the program.

As the name implies, a GUI makes use of graphical screen

elements such as windows, buttons, check boxes, menus,

and text fields. GUIs often provide a more natural and rich

experience for the user than a text-based, command-line en-

vironment. This chapter explores the various issues related

to developing a GUI in Java.

C H A P T E R O B J E C T I V E S
■■ Introduce JavaFX, a framework for developing Java graphical
user interfaces (GUIs).

■■ Discuss the core elements needed in any Java GUI: controls,
events, and event handlers.

■■ Describe the theatre analogy that helps form the infrastructure of
JavaFX programs.

■■ Explore various types of controls, including buttons, text fields,
sliders, and choice boxes.

■■ Discuss the processing of events due to user interactions with
controls.

■■ Explore mouse and keyboard events.

■■ Discuss how layout panes are used to control the visual layout of
GUI elements.

Graphical User
Interfaces 6

M06_LEWI5976_05_SE_C06.indd 245 08/02/19 2:39 AM

246 CHAPTER 6 Graphical User Interfaces

6.1 Introduction to JavaFX

Java’s support of graphics and GUIs has evolved in various ways over the
years. When the language was first introduced, it used a set of classes called
the AWT, which stands for Abstract Windowing Toolkit. Later, the Swing API
was introduced, which replaced the GUI components of the AWT with more
versatile versions.

The JavaFX API has now replaced the AWT and Swing for devel-
oping graphical programs. JavaFX combines the best aspects of the
previous approaches and adds many additional features. Oracle, the
company that manages the Java language, no longer supports those
older technologies, including Swing.

This chapter focuses on GUIs in which the user interacts with the program
through controls such as buttons and text fields. JavaFX also provides the means
for generating graphics such as drawn shapes and the management of images.
These purely graphic elements of JavaFX are discussed in Appendix F.

Listing 6.1 shows a small JavaFX program in a class called HelloJavaFX. This
program displays a window containing two text elements.

The first thing to note is that the HelloJavaFX class extends the JavaFX
Application class. This process is making use of the object-oriented concept of
inheritance, which we introduced in Chapter 1 and will explore in more detail in
Chapter 8. All JavaFX programs extend the Application class.

KEY CONCEPT
JavaFX is now the preferred approach
for developing Java programs that use
graphics and GUIs.

L I S T I N G 6 . 1

//**
// HelloJavaFX.java Java Foundations
//
// Demonstrates a basic JavaFX application.
//**

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class HelloJavaFX extends Application
{

M06_LEWI5976_05_SE_C06.indd 246 08/02/19 2:39 AM

 6.1 Introduction to JavaFX 247

 //--
 // Creates and displays two Text objects in a JavaFX window.
 //--
 public void start(Stage primaryStage)
 {
 Text hello = new Text(50, 50, "Hello, JavaFX!");
 Text question = new Text(120, 80, "How's it going?");

 Group root = new Group(hello, question);
 Scene scene = new Scene(root, 300, 120, Color.LIGHTGREEN);

 primaryStage.setTitle("A JavaFX Program");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 //--
 // Launches the JavaFX application. This method is not required
 // in IDEs that launch JavaFX applications automatically.
 //--
 public static void main(String[] args)
 {
 launch(args);
 }

D I S P L A Y

L I S T I N G 6 . 1 continued

 See a full-color version of
this figure at the end of the text.

M06_LEWI5976_05_SE_C06.indd 247 08/02/19 2:39 AM

248 CHAPTER 6 Graphical User Interfaces

Note that there are two methods in the HelloJavaFX class: a main method
as we’ve seen in other programs, and the start method. The main method is
used to call the launch method of the Application class. After performing
some background set-up, the launch method calls the start method. You’ll
typically use the start method to set up and display the primary window of
the app.

In a development environment that fully supports JavaFX, the launch method
is called automatically. Therefore, if you are using such an IDE, you do not need
to write the main method. We will typically leave the main method out of our
examples, though you may need to include it.

In this example, the start method creates two Text objects, adds them to a
Group, which is then used as the root node of a Scene. The scene is displayed in
the primary Stage. While that may seem like a lot of moving parts, there’s a pat-
tern to the organization that you’ll quickly get used to.

JavaFX embraces a theatre metaphor. A Stage is a window. A
program can make use of multiple stages if desired. The primary
Stage object is created automatically and passed into the start
method. In this example, the last three lines of the start method
set the title that is displayed in the window’s title bar, set the scene

to be displayed in the window, and then call the show method to display the
window on the monitor.

The constructor of the Scene class accepts four parameters: a root node to be
displayed, the preferred width and height of the scene, and its background color.
In this example, the root element is a Group object, which is to be displayed in
an area that is 300 pixels wide and 120 pixels high. The background is specified
using a Color object that represents a light green color.

A scene displays a single element, often referred to as the root node. The root
node may contain other elements, which themselves may contain other elements,
and so on, creating a hierarchy of elements that make up the scene. In this ex-
ample, the root node is a Group object, though there are other options as we’ll see
in later examples. The group contains two Text objects, each of which represents
a character string and the location at which the text should be displayed.

Unlike a traditional two-dimensional coordinate system, the origin point (0, 0)
of the Java coordinate system is in the upper left corner of a graphical component.
The x-axis coordinates get larger as you move to the right, and the y-axis coordi-
nates get larger as you move down. See Appendix F for details.

The display point of the first Text object in this example is (50, 50), so the first
character of the string “Hello JavaFX!” is displayed 50 pixels to the right, and 50
pixels down from the top left corner of the window. The second Text object is
120 pixels to the right, and 80 pixels down from the origin.

KEY CONCEPT
JavaFX uses a theatre metaphor to
present a scene on a stage.

M06_LEWI5976_05_SE_C06.indd 248 08/02/19 2:39 AM

 6.1 Introduction to JavaFX 249

The HelloJavaFX example is not interactive—it simply displays some
Text objects. But it shows some of the basic infrastructure elements that we
will use in all JavaFX applications. Let’s now look at an example of a truly
interactive GUI.

GUI Elements
Unlike a text-based program, or even a graphical program with no interaction, a
program that has a GUI provides a heightened level of user interaction that often
makes a program more effective and interesting.

Three kinds of objects cooperate to create a GUI in JavaFX:

■■ controls

■■ events

■■ event handlers

A GUI control is a screen element that displays information and/or allows the
user to interact with a program in a certain way. Examples of GUI controls in-
clude buttons, text fields, scroll bars, and sliders.

An event is an object that represents some occurrence in
which we may be interested. Often, events correspond to user
actions, such as pushing a button or typing a key on the key-
board. GUI controls generate events to indicate the user action
related to that control. For example, a button control will gen-
erate an event to indicate that the button has been pushed. A
program that is oriented around a GUI, responding to events
from the user, is called event-driven.

An event handler is an object that contains a method that is called when an
event occurs. The programmer sets up the relationship between the component
that generates an event and the handler that will respond to the event.

For the most part, we will use controls and events that are predefined in the
JavaFX API. To set up a GUI program, we present and tailor the necessary con-
trols and provide handlers to perform whatever actions we desire when events
occur.

For example, the PushCounter program shown in Listing 6.2 presents the user
with a single button (labeled “Push Me!”). Each time the button is pushed, a
counter is updated and displayed.

This program displays a Button object and a Text object. The Button class
represents a push button that allows the user to initiate an action with a mouse
click. The Button constructor accepts a String parameter that specifies the text
shown on the button.

KEY CONCEPT
A GUI is made up of controls, events
that represent user actions, and
handlers that process those events.

M06_LEWI5976_05_SE_C06.indd 249 08/02/19 2:39 AM

250 CHAPTER 6 Graphical User Interfaces

L I S T I N G 6 . 2

//**
// HelloJavaFX.java Java Foundations
//
// Demonstrates a graphical user interface in JavaFX.
//**

public class PushCounter extends Application
{
 private int count;
 private Text countText;

 //--
 // Presents a GUI containing a button and a label that displays
 // how many times the button is pushed.
 //--
 public void start(Stage primaryStage)
 {
 count = 0;
 countText = new Text("Pushes: 0");

 Button push = new Button("Push Me!");
 push.setOnAction(this::processButtonPress);

 FlowPane pane = new FlowPane(push, countText);
 pane.setAlignment(Pos.CENTER);
 pane.setHgap(20);
 pane.setStyle("-fx-background-color: cyan");

 Scene scene = new Scene(pane, 300, 100);

 primaryStage.setTitle("Push Counter");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 //--
 // Updates the counter and label when the button is pushed.
 //--
 public void processButtonPress(ActionEvent event)
 {
 count++;
 countText.setText("Pushes: " + count);
 }
}

M06_LEWI5976_05_SE_C06.indd 250 08/02/19 2:39 AM

 6.1 Introduction to JavaFX 251

A Button object generates an action event when it is pushed. The button’s
setOnAction method is used to specify the event handler for the button.

The :: operator is used to specify a method reference, which was introduced
to the language in Java 8. In this example, the method reference refers to the
processButtonPress method in this class (the same one as the start method).
The this reference refers to the object that is currently executing the method, so
in this example the PushCounter class itself serves as the event handler for the
button. There are other ways to specify the event handler relationship, which are
discussed later in this section.

The processButtonPress method increments the counter variable and up-
dates the text displayed. Note that the variables for the Button and Text objects
are declared as instance data (at the class level), so that they can be referenced in
both methods in the class.

The Button and Text controls are added to a FlowPane, which is used as the
root node of the scene. In the previous example, a Group object as the root—a
Group does not have any inherent organization of the elements it holds. But the
FlowPane class is a layout pane (one of several defined in the JavaFX API). A
layout pane is a container that governs how controls are arranged and presented
visually. The nodes in a FlowPane are laid out horizontally in rows (which is the

D I S P L A Y

L I S T I N G 6 . 2 continued

 See a full-color version of
this figure at the end of the text.

M06_LEWI5976_05_SE_C06.indd 251 08/02/19 2:39 AM

252 CHAPTER 6 Graphical User Interfaces

default) or vertically in columns. When there is no more room, the next node in
the pane flows into the next row or column. In this example, the button and text
are arranged horizontally, centered, with a gap of 20 pixels.

By the way, the Text object used in this program could be replaced with a
Label control to create a similar effect. Labels, however, are most appropriately
used when labelling other controls, providing advanced keyboard navigation.
Labels have many style properties that Text objects don’t have and can also con-
tain images. In this example, a Text object is sufficient.

Alternate Ways to Specify Event Handlers
The PushCounter program used a method reference to define the event handler
for the action event generated by the Button object. Let’s look at other ways to
define an event handler.

An event handler is actually an object that implements the EventHandler in-
terface. An interface is a list of methods that the implementing class must define.
In this case, the EventHandler interface requires an object to define a method
called handle to process the event. So, an alternative approach to creating an
event handler is to define a full class that implements the EventHandler interface,
perhaps as a private inner class within the PushCounter class:

private class ButtonHandler implements EventHandler<ActionEvent>

{
 public void handle(ActionEvent event)
 {
 count++;
 countText.setText("Pushes: " + count);
 }
}

Then the call to setOnAction for the button could specify such an object:

push.setOnAction(new ButtonHandler());

Interfaces are discussed in more detail in Chapter 9.

Instead of defining a separate class, the event handler could be defined using a
lambda expression:

push.setOnAction((event) -> {
 count++;
 countText.setText("Pushes: " + count);
});

M06_LEWI5976_05_SE_C06.indd 252 08/02/19 2:39 AM

 6.1 Introduction to JavaFX 253

A lambda expression is defined by a set of parameters in parentheses, the ->
arrow operator, followed by an expression. If one expression is insufficient, a
block is used. The lambda expression in this example accepts the event object,
which is passed to a block that contains our handler code.

A lambda expression can be used whenever an object of a functional interface
is required. A functional interface is one that contains a single abstract method.
The EventHandler interface is a functional interface.

The method reference approach used in the PushCounter program is equiva-
lent to a lambda expression that supplies the parameter to the method. So this::
processButtonPress is equivalent to event -> processButtonPress(event).

We find the method reference approach to be the cleanest and easiest to follow,
so we will often use that approach in our examples.

Determining Event Sources
Let’s look at an example in which one event handler is used to process the events
from multiple sources. Listing 6.3 shows a program that displays two buttons, la-
beled Red and Blue. When either button is pushed, the background color of the pane
is changed accordingly. A FlowPane is used to layout the two buttons side by side.

L I S T I N G 6 . 3

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.FlowPane;
import javafx.stage.Stage;

//**
// RedOrBlue.java Java Foundations
//
// Demonstrates the use of one handler for multiple buttons.
//**
public class RedOrBlue extends Application
{
 private Button redButton, blueButton;
 private FlowPane pane;

M06_LEWI5976_05_SE_C06.indd 253 08/02/19 2:39 AM

254 CHAPTER 6 Graphical User Interfaces

 //--
 // Presents a GUI with two buttons that control the color of the
 // pane background.
 //--
 public void start(Stage primaryStage)
 {
 redButton = new Button("Red!");
 redButton.setOnAction(this::processColorButton);

 blueButton = new Button("Blue!");
 blueButton.setOnAction(this::processColorButton);

 pane = new FlowPane(redButton, blueButton);
 pane.setAlignment(Pos.CENTER);
 pane.setHgap(20);
 pane.setStyle("-fx-background-color: white");

 Scene scene = new Scene(pane, 300, 100);

 primaryStage.setTitle("Red or Blue?");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 //--
 // Determines which button was pressed and sets the pane color
 // accordingly.
 //--
 public void processColorButton(ActionEvent event)
 {
 if (event.getSource() == redButton)
 pane.setStyle("-fx-background-color: crimson");
 else
 pane.setStyle("-fx-background-color: deepskyblue");

 }
}

L I S T I N G 6 . 3 continued

M06_LEWI5976_05_SE_C06.indd 254 08/02/19 2:39 AM

 6.1 Introduction to JavaFX 255

The two buttons use the same method as their event handler.
Whenever either button is pressed, the processColorButton
method is called. It uses an if statement to check which button
generated the event. If it’s the Red button, the background color
of the pane is set to red. Otherwise, it must have been the Blue
button, so the background color is set to blue.

As in the previous example, the ActionEvent object that represents the event
is passed into the event handler method. But in that example we ignored the event
parameter. In this case, however, we use its getSource method which returns the
control that generated the event.

Note that the variables representing the two buttons and the pane are declared
as instance data at the class level so that they can be accessed in both the start
method and the event handler method.

We could have created two separate event handler methods, one for the Red but-
ton and one for the Blue button. In that case, there would be no need to determine
which button generated the event. Whether to have multiple event handlers or de-
termine the event source when it occurs is a design decision that may depend on the
situation.

KEY CONCEPT
A single event handler can be used to
process events generated by multiple
controls.

D I S P L A Y

L I S T I N G 6 . 3 continued

 See a full-color version of
this figure at the end of the text.

M06_LEWI5976_05_SE_C06.indd 255 08/02/19 2:39 AM

256 CHAPTER 6 Graphical User Interfaces

6.2 Other GUI Controls

In addition to push buttons, there are a variety of other interactive components
that can be used in a GUI, each with a particular role to play. Choosing the right
control for the job is an important design decision. Let’s examine a few more GUI
controls.

Text Fields
A text field allows the user to enter one line of text that can be used by the program
as needed. The FahrenheitConverter program shown in Listing 6.4 presents a
GUI that includes a text field into which the user can type a Fahrenheit temperature.
When the user presses the Return (or Enter) key, the program displays the equivalent
Celsius temperature.

L I S T I N G 6 . 4

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.stage.Stage;

//**
// FahrenheitConverter.java Java Foundations
//
// Demonstrates the use of a TextField and a GridPane.
//**
public class FahrenheitConverter extends Application
{
 //--
 // Launches the temperature converter application.
 //--
 public void start(Stage primaryStage)
 {
 Scene scene = new Scene(new FahrenheitPane(), 300, 150);

 primaryStage.setTitle("Fahrenheit Converter");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

M06_LEWI5976_05_SE_C06.indd 256 08/02/19 2:39 AM

 6.2 Other GUI Controls 257

D I S P L A Y

L I S T I N G 6 . 4 continued

L I S T I N G 6 . 5

import javafx.event.ActionEvent;
import javafx.geometry.HPos;
import javafx.geometry.Pos;
import javafx.scene.control.Label;
import javafx.scene.control.TextField;
import javafx.scene.layout.GridPane;
import javafx.scene.text.Font;

//**
// FahrenheitPane.java Java Foundations
//
// Demonstrates the use of a TextField and a GridPane.
//**

In this example, the details of the user interface are set up in a separate
class, shown in Listing 6.5. The FahrenheitPane class extends the GridPane
class, which is a layout pane from the JavaFX API that displays nodes in a
rectangular grid.

 See a full-color version of
this figure at the end of the text.

M06_LEWI5976_05_SE_C06.indd 257 08/02/19 2:39 AM

258 CHAPTER 6 Graphical User Interfaces

public class FahrenheitPane extends GridPane
{
 private Label result;
 private TextField fahrenheit;

 //--
 // Sets up a GUI containing a labeled text field for converting
 // temperatures in Fahrenheit to Celsius.
 //--
 public FahrenheitPane()
 {
 Font font = new Font(18);

 Label inputLabel = new Label("Fahrenheit:");
 inputLabel.setFont(font);
 GridPane.setHalignment(inputLabel, HPos.RIGHT);

 Label outputLabel = new Label("Celsius:");
 outputLabel.setFont(font);
 GridPane.setHalignment(outputLabel, HPos.RIGHT);

 result = new Label("---");
 result.setFont(font);
 GridPane.setHalignment(result, HPos.CENTER);

 fahrenheit = new TextField();
 fahrenheit.setFont(font);
 fahrenheit.setPrefWidth(50);
 fahrenheit.setAlignment(Pos.CENTER);
 fahrenheit.setOnAction(this::processReturn);

 setAlignment(Pos.CENTER);
 setHgap(20);
 setVgap(10);
 setStyle("-fx-background-color: yellow");

 add(inputLabel, 0, 0);
 add(fahrenheit, 1, 0);
 add(outputLabel, 0, 1);
 add(result, 1, 1);
 }

L I S T I N G 6 . 5 continued

M06_LEWI5976_05_SE_C06.indd 258 08/02/19 2:39 AM

 6.2 Other GUI Controls 259

The user interface is made up of three Label objects and one TextField
object. The font size of each element is set using a Font object and calls
to the setFont method of each node. Fonts are discussed in more detail in
Appendix F.

At the end of the FahrenheitPane constructor, the four elements are added to
the pane. (Through inheritance, the FahrenheitPane is a GridPane, and inherits
the add method.) The parameters to the add method specify to which grid cell the
node is added. The first value is the row and the second is the column. The rows
and columns of a grid pane both start at 0.

The processReturn method is used to define the event handler that is triggered
when the user presses return while the cursor is in the text field. It is associated
with the text field with a call to its setOnAction method.

The processReturn method obtains the text from the text field using a call to
the getText method, which returns a character string. The text is converted to
an integer using the parseInt method of the Integer wrapper class. Then the
method performs the calculation to determine the equivalent Celsius temperature
and sets the text of the appropriate label with the result.

Check Boxes
A check box is a button that can be toggled on or off using the mouse, indicating
that a particular condition is set or unset. For example, you might use a check box
to indicate whether the user has acknowledged and accepted the Terms of Use for
your program.

 //--
 // Computes and displays the converted temperature when the user
 // presses the return key while in the text field.
 //--
 public void processReturn(ActionEvent event)
 {
 int fahrenheitTemp = Integer.parseInt(fahrenheit.getText());
 int celsiusTemp = (fahrenheitTemp - 32) * 5 / 9;
 result.setText(celsiusTemp + "");
 }
}

L I S T I N G 6 . 5 continued

M06_LEWI5976_05_SE_C06.indd 259 08/02/19 2:39 AM

260 CHAPTER 6 Graphical User Interfaces

Although you might have a group of check boxes indicating a set of options,
each check box operates independently. That is, each can be set to on or off
and the status of one does not automatically influence the others. For example,
you might use a series of check boxes to indicate which toppings should be
included on a pizza. They could be checked or unchecked in any combination.

The program made up of the classes in Listings 6.6 and 6.7 displays two check
boxes and a Text object. The check boxes determine whether the text is displayed
in bold, italic, both, or neither. Any combination of bold and italic is valid.

The details of the GUI are specified in the StyleOptionsPane class in Listing 6.7.
A check box is defined by the CheckBox class from the JavaFX API. When a check
box is selected or deselected, it generates an action event. In this example, both check
boxes are processed by the same event handler method.

L I S T I N G 6 . 6

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.stage.Stage;

//**
// StyleOptions.java Java Foundations
//
// Demonstrates the use of check boxes.
//**
public class StyleOptions extends Application
{
 //--
 // Creates and presents the program window.
 //--
 public void start(Stage primaryStage)
 {
 StyleOptionsPane pane = new StyleOptionsPane();
 pane.setAlignment(Pos.CENTER);
 pane.setStyle("-fx-background-color: skyblue");

 Scene scene = new Scene(pane, 400, 150);

 primaryStage.setTitle("Style Options");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

M06_LEWI5976_05_SE_C06.indd 260 08/02/19 2:39 AM

 6.2 Other GUI Controls 261

Examine how the processCheckBoxAction method handles a change in the
state of either check box. Instead of bothering to determine which check box gen-
erated the event, or keep track of whether a box was selected or deselected, the
event handler simply examines the current state of both check boxes and resets
the font accordingly. Local variables are used to set the font weight and posture,
which are initially assumed to be unselected. Then the isSelected method of
each check box is called, which returns true if the check box is cur-
rently selected. Finally, the font of the text is set appropriately.

There are two types of layout panes used in this program. The
HBox and VBox layout panes arrange their nodes in a single row
(horizontally) or a single column (vertically), respectively.

D I S P L A Y

L I S T I N G 6 . 6 continued

KEY CONCEPT
The HBox and VBox layout panes
arrange their nodes in a single row or
column.

 See a full-color version
of these figures at the end of
the text.

M06_LEWI5976_05_SE_C06.indd 261 08/02/19 2:39 AM

262 CHAPTER 6 Graphical User Interfaces

L I S T I N G 6 . 7

import javafx.event.ActionEvent;
import javafx.geometry.Pos;
import javafx.scene.control.CheckBox;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.text.Text;
import javafx.scene.text.Font;
import javafx.scene.text.FontPosture;
import javafx.scene.text.FontWeight;

//**
// StyleOptionsPane.java Java Foundations
//
// Demonstrates the use of check boxes.
//**
public class StyleOptionsPane extends VBox
{
 private Text phrase;
 private CheckBox boldCheckBox, italicCheckBox;

 //--
 // Sets up this pane with a Text object and check boxes that
 // determine the style of the text font.
 //--
 public StyleOptionsPane()
 {
 phrase = new Text("Say it with style!");
 phrase.setFont(new Font("Helvetica", 36));

 boldCheckBox = new CheckBox("Bold");
 boldCheckBox.setOnAction(this::processCheckBoxAction);
 italicCheckBox = new CheckBox("Italic");
 italicCheckBox.setOnAction(this::processCheckBoxAction);

 HBox options = new HBox(boldCheckBox, italicCheckBox);
 options.setAlignment(Pos.CENTER);
 options.setSpacing(20); // between the check boxes

 setSpacing(20); // between the text and the check boxes
 getChildren().addAll(phrase, options);
 }

 //--
 // Updates the font style of the displayed text.
 //--

M06_LEWI5976_05_SE_C06.indd 262 08/02/19 2:39 AM

 6.2 Other GUI Controls 263

The StyleOptionsPane class extends VBox, which is used to center the text
above the two check boxes. A separate HBox is set up to put the check boxes side
by side horizontally.

Since the nodes aren’t added using the VBox constructor, they are added
after the fact. But you don’t add nodes to a pane directly. Instead, you call the
getChildren method, which returns all nodes already in the pane (which is none
in this case) and then call the addAll method to add the new nodes.

Radio Buttons
A radio button is used with other radio buttons to provide a set of
mutually exclusive options. Unlike a check box, a radio button is not
particularly useful by itself. It has meaning only when grouped with
other radio buttons. Only one option in a group of radio buttons is
valid. At any point in time, only one button of a radio button group is selected
(on). When a radio button is pushed, the other button in the group that is cur-
rently on is automatically toggled off.

The term “radio buttons” comes from the way the pre-set station buttons
worked on an old-fashioned car radio. At any point, one button was pushed in to
specify the current station. When another was pushed to change the station, the
current one automatically popped out.

The program made up of the classes shown in Listings 6.8 and 6.9 displays a
group of radio buttons and a Text object. The radio buttons determine which
phrase is displayed. Because only one phrase is displayed at a time, the use of
radio buttons is appropriate.

 public void processCheckBoxAction(ActionEvent event)
 {
 FontWeight weight = FontWeight.NORMAL;
 FontPosture posture = FontPosture.REGULAR;

 if (boldCheckBox.isSelected())
 weight = FontWeight.BOLD;

 if (italicCheckBox.isSelected())
 posture = FontPosture.ITALIC;

 phrase.setFont(Font.font("Helvetica", weight, posture, 36));
 }
}

L I S T I N G 6 . 7 continued

KEY CONCEPT
A group of radio buttons provide a set
of mutually exclusive options.

M06_LEWI5976_05_SE_C06.indd 263 08/02/19 2:39 AM

264 CHAPTER 6 Graphical User Interfaces

L I S T I N G 6 . 8

import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.stage.Stage;

//**
// QuoteOptions.java Java Foundations
//
// Demonstrates the use of radio buttons.
//**
public class QuoteOptions extends Application
{
 //--
 // Creates and presents the program window.
 //--
 public void start(Stage primaryStage)
 {
 QuoteOptionsPane pane = new QuoteOptionsPane();
 pane.setAlignment(Pos.CENTER);
 pane.setStyle("-fx-background-color: lightgreen");

 Scene scene = new Scene(pane, 500, 150);

 primaryStage.setTitle("Quote Options");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

}

D I S P L A Y

 See a full-color
version of this figure at
the end of the text.

M06_LEWI5976_05_SE_C06.indd 264 08/02/19 2:39 AM

 6.2 Other GUI Controls 265

A radio button control is represented by the JavaFX RadioButton class. A
ToggleGroup object is used to create a set of mutually exclusive radio buttons.
To add a button to a group, you pass the group object to the radio button’s
setToggleGroup method.

One event handler is used to process all three radio buttons. A radio button
produces an action event when it is selected. The processRadioButtonAction
method uses a nested if statement to determine which button is currently selected
and sets the text accordingly.

L I S T I N G 6 . 9

import javafx.event.ActionEvent;
import javafx.geometry.Pos;
import javafx.scene.control.RadioButton;
import javafx.scene.control.ToggleGroup;
import javafx.scene.layout.HBox;
import javafx.scene.layout.StackPane;
import javafx.scene.layout.VBox;
import javafx.scene.text.Text;
import javafx.scene.text.Font;

L I S T I N G 6 . 8 continued

 See a full-color version
of this figure at the end of
the text.

M06_LEWI5976_05_SE_C06.indd 265 08/02/19 2:39 AM

266 CHAPTER 6 Graphical User Interfaces

//**
// QuoteOptionsPane.java Java Foundations
//
// Demonstrates the use of radio buttons.
//**
public class QuoteOptionsPane extends HBox
{
 private Text quote;
 private String philosophyQuote, carpentryQuote, comedyQuote;
 private RadioButton philosophyButton, carpentryButton, comedyButton;

 //--
 // Sets up this pane with a Text object and radio buttons that
 // determine which phrase is displayed.
 //--
 public QuoteOptionsPane()
 {
 philosophyQuote = "I think, therefore I am.";
 carpentryQuote = "Measure twice. Cut once.";
 comedyQuote = "Take my wife, please.";

 quote = new Text(philosophyQuote);
 quote.setFont(new Font("Helvetica", 24));

 StackPane quotePane = new StackPane(quote);
 quotePane.setPrefSize(300, 100);

 ToggleGroup group = new ToggleGroup();

 philosophyButton = new RadioButton("Philosophy");
 philosophyButton.setSelected(true);
 philosophyButton.setToggleGroup(group);
 philosophyButton.setOnAction(this::processRadioButtonAction);

 carpentryButton = new RadioButton("Carpentry");
 carpentryButton.setToggleGroup(group);
 carpentryButton.setOnAction(this::processRadioButtonAction);

 comedyButton = new RadioButton("Comedy");
 comedyButton.setToggleGroup(group);
 comedyButton.setOnAction(this::processRadioButtonAction);

L I S T I N G 6 . 9 continued

M06_LEWI5976_05_SE_C06.indd 266 08/02/19 2:39 AM

 6.2 Other GUI Controls 267

 VBox options = new VBox(philosophyButton, carpentryButton,
 comedyButton);
 options.setAlignment(Pos.CENTER_LEFT);
 options.setSpacing(10);

 setSpacing(20);
 getChildren().addAll(options, quotePane);
 }

 //--
 // Updates the content of the displayed text.
 //--
 public void processRadioButtonAction(ActionEvent event)
 {
 if (philosophyButton.isSelected())
 quote.setText(philosophyQuote);
 else if (carpentryButton.isSelected())
 quote.setText(carpentryQuote);
 else
 quote.setText(comedyQuote);
 }
}

L I S T I N G 6 . 9 continued

Like the previous example, this program uses an HBox and a VBox to organize
the GUI elements. This time, however, the VBox is used to organize the buttons
and is put into an HBox to lay it out next to the text.

Color and Date Pickers
The JavaFX API includes the ColorPicker class which represents a control that
lets the user select a color. The control appears as a single field displaying the cur-
rent color and its corresponding RGB value in hexadecimal.

When clicked, a color picker displays a drop-down palette of colors from which
to choose. If none of the palette colors will do, you can also pick a custom color
from a more complicated selection pane, or specify the color using RGB values or
another color representation model.

M06_LEWI5976_05_SE_C06.indd 267 08/02/19 2:39 AM

268 CHAPTER 6 Graphical User Interfaces

Similarly, a DatePicker object allows the user to select a calendar
date. Like the color picker, a date picker appears as a single field. It
displays the currently selected date in m/d/y format by default. When
clicked, the date picker displays a drop-down calendar that allows the
user to change months and years, and ultimately click on a specific date.

The program in Listing 6.10 demonstrates a date picker and a color picker. When
a date is selected, a message below the picker fields displays the corresponding day
of the week. When a color is selected, the message fill color changes accordingly.

KEY CONCEPT
Color and date pickers are controls
that allow the user to specify a color
or calendar date, respectively.

L I S T I N G 6 . 1 0

import java.time.LocalDate;
import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.ColorPicker;
import javafx.scene.control.DatePicker;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.scene.text.FontPosture;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.stage.Stage;

//**
// PickerDemo.java Java Foundations
//
// Demonstrates the use of color picker and date picker controls.
//**
public class PickerDemo extends Application
{
 private Text message;
 private DatePicker datePicker;
 private ColorPicker colorPicker;

 //--
 // Allows the user to select a date and a color. A Text object
 // displays the day of the week in the color specified.
 //--
 public void start(Stage primaryStage)
 {
 datePicker = new DatePicker(LocalDate.now());
 datePicker.setOnAction(this::processDateChoice);

M06_LEWI5976_05_SE_C06.indd 268 08/02/19 2:39 AM

 6.2 Other GUI Controls 269

 colorPicker = new ColorPicker(Color.BLACK);
 colorPicker.setOnAction(this::processColorChoice);

 message = new Text("HAPPY " + LocalDate.now().getDayOfWeek());
 message.setFont(Font.font("Helvetica", FontWeight.BOLD,
 FontPosture.REGULAR, 24));

 HBox pickers = new HBox(datePicker, colorPicker);
 pickers.setSpacing(15);
 pickers.setAlignment(Pos.CENTER);

 VBox root = new VBox();
 root.setStyle("-fx-background-color: white");
 root.setSpacing(20);
 root.setAlignment(Pos.CENTER);
 root.getChildren().addAll(pickers, message);

 Scene scene = new Scene(root, 400, 150);

 primaryStage.setTitle("Picker Demo");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 //--
 // Gets the value of the date from the date picker and updates the
 // message with the corresponding day of the week.
 //--
 public void processDateChoice(ActionEvent event)
 {
 LocalDate date = datePicker.getValue();
 message.setText("HAPPY " + date.getDayOfWeek());
 }

 //--
 // Gets the color specified in the color picker and sets the
 // color of the displayed message.
 //--
 public void processColorChoice(ActionEvent event)
 {
 message.setFill(colorPicker.getValue());
 }
}

L I S T I N G 6 . 1 0 continued

M06_LEWI5976_05_SE_C06.indd 269 08/02/19 2:39 AM

270 CHAPTER 6 Graphical User Interfaces

This program makes use of the java.time.LocalDate class, which represents
a calendar date. The LocalDate class has a static method called now that returns
the current date, and an object method called getDayOfWeek that returns the day
of the week corresponding to the date.

If no date is specified when a DatePicker object is instantiated, the field will
initially be blank. In this program, however, the current date is passed to the
DatePicker constructor to set the initial date. If no color is specified when a
ColorPicker is created, the default color is white. This example passes the color
black to the ColorPicker constructor to match the initial color of the message.

In this program, two separate action event handler methods are used to process
a selection made using the date picker and color picker. Both use the getValue
method of the appropriate picker to get the current value selected by the user. The
getValue method of a color picker returns a Color object, while the getValue
method of a date picker returns a LocalDate object.

6.3 Mouse and Key Events

In addition to events that are generated when the user interacts with a control, there
are events that are fired when the user interacts with the computer’s mouse and
keyboard. We can design a program to capture and respond to these events as well.

D I S P L A Y

L I S T I N G 6 . 1 0 continued

 See a full-color version of
this figure at the end of the text.

M06_LEWI5976_05_SE_C06.indd 270 08/02/19 2:39 AM

 6.3 Mouse and Key Events 271

Mouse Events
Let’s examine the events that are generated when using a mouse, described in
Figure 6.1. The coordinates of the mouse are captured in the event object when
any of these events occur.

When you click the mouse button while the mouse pointer is over a JavaFX
node, three events occur: one when the mouse button is pushed down (mouse
pressed), and two when it is let up (mouse released and mouse clicked).

A node will generate a mouse entered event when the mouse
pointer passes into its graphical space. Likewise, it generates a mouse
exited event when the mouse pointer is moved off of the node.

A stream of mouse moved events occur while the mouse is in motion.
If the mouse button is pressed down while the mouse is being moved,
mouse dragged events are generated. These events are generated very quickly while
the mouse is in motion, allowing a program to track and respond to the ongoing
movement of the mouse.

There is a corresponding convenience method for setting the handler for each
of the mouse events, such as setOnMousePressed, setOnMouseReleased, etc.

The program shown in Listing 6.11 responds to one mouse event. When the
mouse button is clicked anywhere on the scene, a line is displayed from the origin
point (0, 0) in the upper left corner to the location of the mouse pointer. Also, the
distance between those two points is calculated and displayed.

Mouse Event Description

mouse pressed The mouse button is pressed down.

mouse released The mouse button is released.

mouse clicked The mouse button is pressed down and released on the same node.

mouse entered The mouse pointer is moved onto (over) a node.

mouse exited The mouse pointer is moved off of a node.

mouse moved The mouse is moved.

mouse dragged The mouse is moved while the mouse button is pressed down.

FIGURE 6.1 JavaFX mouse events

KEY CONCEPT
Moving the mouse and clicking the
mouse button generate events to
which a program can respond.

L I S T I N G 6 . 1 1

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.input.MouseEvent;
import javafx.scene.paint.Color;

M06_LEWI5976_05_SE_C06.indd 271 08/02/19 2:39 AM

272 CHAPTER 6 Graphical User Interfaces

import javafx.scene.shape.Line;
import javafx.scene.text.Text;
import javafx.stage.Stage;

//**
// ClickDistance.java Java Foundations
//
// Demonstrates the handling of a mouse click event.
//**
public class ClickDistance extends Application
{
 private Line line;
 private Text distanceText;

 //--
 // Shows the distance between the origin (0, 0) and the point where
 // the mouse is clicked.
 //--
 public void start(Stage primaryStage)
 {
 line = new Line(0, 0, 0, 0);
 distanceText = new Text(150, 30, "Distance: --");

 Group root = new Group(distanceText, line);

 Scene scene = new Scene(root, 400, 300, Color.LIGHTYELLOW);

 scene.setOnMouseClicked(this::processMouseClick);

 primaryStage.setTitle("Click Distance");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 //--
 // Resets the end point of the line to the location of the mouse
 // click event and updates the distance displayed.
 //--
 public void processMouseClick(MouseEvent event)
 {
 double clickX = event.getX();
 double clickY = event.getY();

 line.setEndX(clickX);
 line.setEndY(clickY);

 double distance = Math.sqrt(clickX * clickX + clickY * clickY);

L I S T I N G 6 . 1 1 continued

M06_LEWI5976_05_SE_C06.indd 272 08/02/19 2:39 AM

 6.3 Mouse and Key Events 273

 String distanceStr = String.format("%.2f", distance);
 distanceText.setText("Distance: " + distanceStr);
 }
}

D I S P L A Y

L I S T I N G 6 . 1 1 continued

 See a full-color version of
these figures at the end of the text.

M06_LEWI5976_05_SE_C06.indd 273 08/02/19 2:39 AM

274 CHAPTER 6 Graphical User Interfaces

L I S T I N G 6 . 1 2

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.input.MouseEvent;
import javafx.scene.paint.Color;
import javafx.scene.shape.Line;
import javafx.stage.Stage;

//**
// RubberLines.java Java Foundations
//
// Demonstrates the handling of mouse press and mouse drag events.
//**
public class RubberLines extends Application
{
 private Line currentLine;
 private Group root;

The processMouseClick method is set as the event handler, which is passed
to the MouseEvent object that represents the event. Calling the getX and getY
methods of the event returns the coordinates where the mouse was clicked. Using
those values, the end point of the line is reset and the distance to the origin point
is calculated and displayed.

Now let’s look at an example that responds to two mouse-oriented
events. The RubberLines program shown in Listing 6.12 allows the
user to draw a line between two points by clicking the mouse button
to establish one end point and dragging the mouse to the other end
point. The line is constantly redrawn as the mouse is being dragged,
giving the illusion that the user is stretching the line into existence.
This effect is called rubberbanding.

Two event handlers are established in this program: one to handle the mouse being
pressed and the other to handle the mouse being dragged. When the mouse button is
pressed, a new Line object is created and added to the root node of the scene. The line
is initially only one pixel long, corresponding to the location of the mouse.

As the mouse is being dragged, multiple mouse drag events are generated. Each
time, the end point of the line is updated to the current position of the mouse
pointer. These changes happen so quickly that it appears as if one line is being
stretched. When the user releases the mouse button, the drag effects stop, and the
line’s position is now fixed. The user can then draw another line if desired.

KEY CONCEPT
Rubberbanding is the graphical effect
caused when a shape seems to resize
as the mouse is dragged.

M06_LEWI5976_05_SE_C06.indd 274 08/02/19 2:39 AM

 6.3 Mouse and Key Events 275

 //--
 // Displays an initially empty scene, waiting for the user to
 // draw lines with the mouse.
 //--
 public void start(Stage primaryStage)
 {
 root = new Group();

 Scene scene = new Scene(root, 500, 300, Color.BLACK);

 scene.setOnMousePressed(this::processMousePress);
 scene.setOnMouseDragged(this::processMouseDrag);

 primaryStage.setTitle("Rubber Lines");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 //--
 // Adds a new line to the scene when the mouse button is pressed.
 //--
 public void processMousePress(MouseEvent event)
 {
 currentLine = new Line(event.getX(), event.getY(), event.getX(),
 event.getY());
 currentLine.setStroke(Color.CYAN);
 currentLine.setStrokeWidth(3);
 root.getChildren().add(currentLine);
 }

 //--
 // Updates the end point of the current line as the mouse is
 // dragged, creating the rubber band effect.
 //--
 public void processMouseDrag(MouseEvent event)
 {
 currentLine.setEndX(event.getX());
 currentLine.setEndY(event.getY());
 }
}

L I S T I N G 6 . 1 2 continued

M06_LEWI5976_05_SE_C06.indd 275 08/02/19 2:39 AM

276 CHAPTER 6 Graphical User Interfaces

Key Events
A key event is generated when a keyboard key is pressed. Key events allow a
program to respond immediately to the user when he or she is typing or pressing
other keys such as the arrow keys. If key events are being handled, there is no

need to wait for the user to press the Enter key as there is in other
keyboard input situations.

There are three types of key events, as listed in Figure 6.2. The meth-
ods setOnKeyPressed, setOnKeyReleased, and setOnKeyTyped
can be used to set the event handlers for these methods.

KEY CONCEPT
Key events allow a program to
respond immediately to the user
pressing keyboard keys.

Key Event Description

key pressed A keyboard key is pressed down.

key released A keyboard key is released.

key typed A keyboard key that generates a character typed (pressed and
released).

FIGURE 6.2 JavaFX key events

D I S P L A Y

L I S T I N G 6 . 1 2 continued

 See a full-color
version of this figure at
the end of the text.

M06_LEWI5976_05_SE_C06.indd 276 08/02/19 2:39 AM

 6.3 Mouse and Key Events 277

L I S T I N G 6 . 1 3

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.input.KeyEvent;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

//**
// AlienDirection.java Java Foundations
//
// Demonstrates the handling of keyboard events.
//**
public class AlienDirection extends Application
{
 public final static int JUMP = 10;

 private ImageView imageView;

 //--
 // Displays an image that can be moved using the arrow keys.
 //--
 public void start(Stage primaryStage)
 {
 Image alien = new Image("alien.png");

 imageView = new ImageView(alien);
 imageView.setX(20);
 imageView.setY(20);

 Group root = new Group(imageView);

 Scene scene = new Scene(root, 400, 200, Color.BLACK);
 scene.setOnKeyPressed(this::processKeyPress);

A key typed event is slightly different than the other two. A key typed event is
not a function of the underlying platform, while the other two are. A key typed
event is only generated when a key representing a Unicode character is entered.

The program shown in Listing 6.13 responds to key pressed events. It displays
an image of an alien that can be moved around the screen using the arrow keys on
the keyboard. When the up arrow key is pressed, for instance, the alien immedi-
ately moves upward on the screen.

M06_LEWI5976_05_SE_C06.indd 277 08/02/19 2:39 AM

278 CHAPTER 6 Graphical User Interfaces

 primaryStage.setTitle("Alien Direction");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 //--
 // Modifies the position of the image view when an arrow key is
 // pressed.
 //--
 public void processKeyPress(KeyEvent event)
 {
 switch (event.getCode())
 {
 case UP:
 imageView.setY(imageView.getY() - JUMP);
 break;
 case DOWN:
 imageView.setY(imageView.getY() + JUMP);
 break;
 case RIGHT:
 imageView.setX(imageView.getX() + JUMP);
 break;
 case LEFT:
 imageView.setX(imageView.getX() - JUMP);
 break;
 default:
 break; // do nothing if it's not an arrow key
 }
 }

}

D I S P L A Y

L I S T I N G 6 . 1 3 continued

 See a full-color version of
this figure at the end of the text.

M06_LEWI5976_05_SE_C06.indd 278 08/02/19 2:39 AM

 6.4 Dialog Boxes 279

The start method of this example loads the alien image and sets up an
ImageView object to display it. The initial position of the image view is explicitly set.

Key events are processed by the node that has the keyboard focus. In this exam-
ple, the events are processed by the scene itself. So, the setOnKeyPressed method
of the scene is called to set the handler for keys that are pressed.

When a keyboard key is pressed, the event handler method is called and passed
a KeyEvent object. The getCode method of the event object returns a code that
represents the key that was pressed. More specifically, it returns a KeyCode object,
which is an enumerated type representing the various keys.

A switch statement is used to handle each of the four arrow keys to which we
want the program to respond. For instance, when the right arrow key is pressed, a
specific number of pixels (represented by the constant jump) are added to the x posi-
tion of the image view. If the user presses any key than the arrow keys, it is ignored.

It should be noted that if a key typed event is generated, its getCode method will
always return KeyCode.UNDEFINED. In that case, the getCharacter method of the
event can be used to get the character.

6.4 Dialog Boxes

A dialog box is a window that pops up on top of any currently active
window so that the user can interact with it. A dialog box can serve a
variety of purposes, such as conveying some information, confirming an

L I S T I N G 6 . 1 3 continued

KEY CONCEPT
A dialog box is a pop-up window that
allows brief, specific user interaction.

 See a full-color version of
this figure at the end of the text.

M06_LEWI5976_05_SE_C06.indd 279 08/02/19 2:39 AM

280 CHAPTER 6 Graphical User Interfaces

action, or allowing the user to enter some information. Usually, a dialog box has a
solitary purpose, and the user’s interaction with it is brief.

Support for dialog boxes in GUIs comes from a few classes in the JavaFX
API. The Alert class provides support for several basic dialog boxes that can
be easily created and displayed. There are several types of alerts, specified by the
Alert.AlertType enumerated type:

■■ AlertType.INFORMATION—conveys information

■■ AlertType.CONFIRMATION—allows the user to confirm an action

■■ AlertType.WARNING—conveys a warning

■■ AlertType.ERROR—indicates something has gone wrong

The differences in the alert types include the title, header, buttons, and graphic
used. All of these elements can be tailored if desired.

Two other classes that define dialog boxes in JavaFX are the TextInputDialog
class and the ChoiceDialog class. They allow the user to enter input using a text
field and a drop-down choice box, respectively.

The program in Listing 6.14 uses dialog boxes exclusively to interact with the
user. It first presents the user with a TextInputDialog that prompts the user to
enter an integer. After the user presses the OK button, a second dialog box ap-
pears, informing the user whether the number entered was even or odd. After the
user dismisses that box, a third dialog box appears to determine whether the user
would like to test another number.

L I S T I N G 6 . 1 4

import java.util.Optional;
import javafx.application.Application;
import javafx.scene.control.Alert;
import javafx.scene.control.Alert.AlertType;
import javafx.scene.control.ButtonType;
import javafx.scene.control.TextInputDialog;
import javafx.stage.Stage;

//**
// EvenOdd.java Java Foundations
//
// Demonstrates the use of information and confirmation alerts, as well
// as text input dialog boxes.
//**
public class EvenOdd extends Application
{

M06_LEWI5976_05_SE_C06.indd 280 08/02/19 2:39 AM

 6.4 Dialog Boxes 281

 //--
 // Prompts the user for an integer, informs the user if that value
 // is even or odd, then asks if the user would like to process
 // another value. All interaction is performed using dialog boxes.
 //--
 public void start(Stage primaryStage) throws Exception
 {
 boolean doAnother = true;

 while (doAnother)
 {
 TextInputDialog inputDialog = new TextInputDialog();
 inputDialog.setHeaderText(null);
 inputDialog.setTitle(null);
 inputDialog.setContentText("Enter an integer:");
 Optional<String> numString = inputDialog.showAndWait();

 if (numString.isPresent())
 {
 int num = Integer.parseInt(numString.get());

 String result = "That number is " +
 ((num % 2 == 0) ? "even." : "odd.");

 Alert answerDialog = new Alert(AlertType.INFORMATION);
 answerDialog.setHeaderText(null);
 answerDialog.setContentText(result);
 answerDialog.showAndWait();

 Alert confirmDialog = new Alert(AlertType.CONFIRMATION);
 confirmDialog.setHeaderText(null);
 confirmDialog.setContentText("Do another?");
 Optional<ButtonType> another = confirmDialog.showAndWait();

 if (another.get() != ButtonType.OK)
 doAnother = false;
 }
 else
 doAnother = false;
 }
 }
}

L I S T I N G 6 . 1 4 continued

M06_LEWI5976_05_SE_C06.indd 281 08/02/19 2:39 AM

282 CHAPTER 6 Graphical User Interfaces

D I S P L A Y

L I S T I N G 6 . 1 4 continued

The headers for all of the dialog boxes shown in Listing 6.14 are set to null to
keep them small and simple. The title (the text in the title bar) on the first one is
also set to null, but on the others the default value is used.

After the first dialog box is set up, its showAndWait method is called, which
causes the program to block at that point, waiting for the user to enter a value
and press a button. When the user presses a button, this method returns an
Optional<String> object that represents the text entered in the text field.

If the user entered something into the text field, it is converted to an integer,
then the program determines if it is even or odd using a conditional statement.
The appropriate text is used to set up an information Alert, then it is displayed
using its showAndWait method. This time, its return value is ignored.

 See a full-color version of these
figures at the end of the text.

M06_LEWI5976_05_SE_C06.indd 282 08/02/19 2:39 AM

 6.4 Dialog Boxes 283

The third dialog box is set up and displayed, again using the showAndWait
method. If the user presses the OK button, the loop executes another time to pro-
cess another number. If the user presses the Cancel button, or simply closes the
dialog window, the doAnother variable is set to false, and the loop terminates.

The Optional class is simply a container for a particular type of value. The
value returned by the showAndWait method of a TextInputDialog is an
Optional<String>. For a confirmation Alert, the value returned by showAndWait
is an Optional<ButtonType>. By setting it up this way, the showAndWait method
of any dialog box returns the same type of object (an Optional object), but it con-
tains whatever type of value is appropriate for that interaction.

File Choosers
A specialized dialog box called a file chooser allows the user to select a file from a
hard drive or other storage medium. You probably have run many programs that
allow you to specify a file using a similar dialog box.

The program in Listing 6.15 displays a file chooser dialog box to the user.
When a file is selected, the contents of the file are read and displayed in a window
containing a text area.

L I S T I N G 6 . 1 5

import java.io.File;
import java.io.IOException;
import java.util.Scanner;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.TextArea;
import javafx.scene.text.Font;
import javafx.stage.FileChooser;
import javafx.stage.Stage;

//**
// DisplayFile.java Java Foundations
//
// Demonstrates the use of a file chooser dialog box and a text area.
//**

public class DisplayFile extends Application
{
 //--
 // Presents a file chooser dialog, reads the selected file and
 // loads it into a text area.
 //--

M06_LEWI5976_05_SE_C06.indd 283 08/02/19 2:39 AM

284 CHAPTER 6 Graphical User Interfaces

 public void start(Stage primaryStage) throws IOException
 {
 FileChooser chooser = new FileChooser();
 File selectedFile = chooser.showOpenDialog(primaryStage);

 TextArea content = new TextArea();
 content.setFont(new Font("Courier", 12));
 content.setEditable(false);

 if (selectedFile == null)
 content.setText("No file chosen.");
 else
 {
 Scanner scan = new Scanner(selectedFile);

 String info = "";
 while (scan.hasNext())
 info += scan.nextLine() + "\n";

 content.setText(info);
 }

 Scene scene = new Scene(content, 500, 500);

 primaryStage.setTitle("Display File");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

D I S P L A Y

L I S T I N G 6 . 1 5 continued

 See a full-color version
of this figure at the end of
the text.

M06_LEWI5976_05_SE_C06.indd 284 08/02/19 2:39 AM

 6.4 Dialog Boxes 285

The showOpenDialog method of a FileChooser object presents a dialog box that
allows the user to specify a file to be opened. Similarly, the showOpenMultipleDialog
method presents a dialog box that lets the user specify multiple files at once, and the
showSaveDialog method presents a dialog box that allows the user to specify a file
in which to save information.

L I S T I N G 6 . 1 5 continued

 See a full-color version
of this figure at the end of
the text.

M06_LEWI5976_05_SE_C06.indd 285 08/02/19 2:39 AM

286 CHAPTER 6 Graphical User Interfaces

All of these methods accept a parameter that represents the
“owner” window. All input to the owner is blocked while the file
dialog is being shown.

The look and feel of a file chooser dialog box is based on the
underlying platform on which the program is running—it is not determined by
JavaFX.

In this example, after the file is specified, it is read using a Scanner object
and its contents are loaded, line by line, into a TextArea object. A text area is
a control that presents multiple lines of text (unlike a TextField, which only
shows one line). Once the text area content is set, it is displayed in a scene on the
primary stage.

A text area is editable by default, allowing the user to change the text. Note
that such edits only change the displayed text, not the underlying file. To save the
changes, the text must be written back to the file, or saved in another file. A save
dialog of the FileChooser class may be helpful in this case.

It should be noted that there is another JavaFX class called DirectoryChooser
that is similar to FileChooser but is designed for selecting directories (folders).

6.5 JavaFX Properties

A JavaFX property is an object that holds a value, similar to a wrapper class. But
a property is observable, which means the property value can be monitored and
changed as needed. Many JavaFX classes store properties rather than regular in-
stance data. For instance, instead of storing an int primitive or even an Integer
object, a JavaFX class might store an IntegerProperty object.

A key benefit to using properties is the concept of property binding. A property
can be bound to another property, so that when the value of one property changes,
the other is automatically updated. For example, the radius of the Circle class is

represented by a DoubleProperty object, which could be bound to
the property that represents the width of a Scene, so that the circle
size changes automatically as the window is resized.

The program in Listing 6.16 displays a small circle in the center
of the scene, as well as two Text objects in the upper left corner
that display the height and width of the scene. All of these elements

are bound to the width and height of the scene in various ways such that, as the
window (and therefore the scene) is resized, the position of the circle and the dis-
played text change automatically.

KEY CONCEPT
Many values in JavaFX classes are
managed as properties, which can be
bound to other properties.

KEY CONCEPT
The look and feel of a file chooser is
based on the underlying platform.

M06_LEWI5976_05_SE_C06.indd 286 08/02/19 2:39 AM

 6.5 JavaFX Properties 287

L I S T I N G 6 . 1 6

import javafx.application.Application;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.text.Text;
import javafx.stage.Stage;

//**
// PropertyBindingDemo.java Java Foundations
//
// Demonstrates the ability to bind one property to another.
//**
public class PropertyBindingDemo extends Application
{
 //--
 // Displays the width and height of the scene, as well as a circle
 // in the center of the scene. The scene is updated using property
 // bindings as the window is resized.
 //--
 public void start(Stage primaryStage)
 {
 Group root = new Group();
 Scene scene = new Scene(root, 300, 200, Color.SKYBLUE);

 Circle center = new Circle(6);
 center.centerXProperty().bind(scene.widthProperty().divide(2));
 center.centerYProperty().bind(scene.heightProperty().divide(2));

 StringProperty width = new SimpleStringProperty("Width: ");
 StringProperty height = new SimpleStringProperty("Height: ");

 Text widthText = new Text(20, 30, "");
 widthText.textProperty().bind(width.concat(scene.widthProperty()));

 Text heightText = new Text(20, 60, "");
 heightText.textProperty().bind(height.concat(scene.heightProperty()));

 root.getChildren().addAll(center, widthText, heightText);

M06_LEWI5976_05_SE_C06.indd 287 08/02/19 2:39 AM

288 CHAPTER 6 Graphical User Interfaces

 primaryStage.setTitle("Property Binding Demo");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

D I S P L A Y

L I S T I N G 6 . 1 6 continued

 See a full-color version
of these figures at the end of
the text.

M06_LEWI5976_05_SE_C06.indd 288 08/02/19 2:39 AM

 6.5 JavaFX Properties 289

The properties that represent the x and y coordinates of the circle’s center are
bound to the properties that represent the width and height of the scene, respec-
tively. The x coordinate is always kept at one-half the value of the width property,
and the y coordinate is kept at one-half of the height property. So the circle stays
in the center of the window as the window is resized.

The centerXProperty method returns the DoubleProperty object that repre-
sents the x coordinate of the circle. It is bound, using a call to the bind method of
the property, to the property returned by the widthProperty method of the scene.
That value is divided into half by a call to the divide method (properties are ob-
jects, so you can use regular arithmetic operators on them). A similar relationship
is set up for the y coordinate and the height.

The text displayed by a Text object is stored as a StringProperty object. In
this program, two additional StringProperty objects are created to bind them
to (a property can only be bound to another property).

The text property displaying the width is bound to a string property containing
"Width: " concatenated to the width value of the scene. A similar relationship is
set up for the height text.

Note that no explicit event handlers were set up for this program. Property
binding is taking care of all dynamic updates to the elements in the scene.
However, it’s important to recognize that a property binding cannot
always be used in place of an event handler. Binding is used to keep
data in sync, whereas an event handler is code executed when an
event occurs to accomplish any desired effect. An event handler is,
therefore, more versatile. Since we were only keeping data in sync in
this program, property bindings were sufficient.

We have stated that a property is observable. To be more precise, a prop-
erty implements the ObservableValue interface (or, more likely, one of its
descendants). The bind method creates a Binding object to keep a particular
value in sync with one or more sources. Methods such as divide also create
bindings.

Change Listeners
A property can have a change listener, which is similar to an event handler in
that it is set up to run whatever specific code you’d like. You would use a change
listener if you wanted to respond to a property value changing and needed to do
something other than keep two data values in sync.

Properties have an addListener method that can be used to set up a change
listener for that property. You can specify the listener method as you would with
an event handler convenience method:

KEY CONCEPT
Property bindings are used specifically
to keep data in sync. They are not a
replacement for event handlers in
general.

M06_LEWI5976_05_SE_C06.indd 289 08/02/19 2:39 AM

290 CHAPTER 6 Graphical User Interfaces

myProperty.addListener(this::processChange);

A change listener method receives three parameters: the ObservableValue
object (the property) whose value changed, the old value, and the new value. The
types of the old and new values depend on the type of the value that the prop-
erty holds. For example, here’s a listener method that handles the changes to a
StringProperty object:

public void processChange(ObservableValue<? extends String> val,
 String oldValue, String newValue)
{
 //whatever }

As with event handling methods, the method name can be anything de-
sired. Similarly, here is a change listener method that handles changes to an
IntegerProperty object:

public void processChange(ObservableValue<? extends Integer> val,
 Integer oldValue, Integer newValue)
{
 //whatever

}

Listing 6.17 shows a program that is functionally equivalent to the
PropertyBindingDemo program, but uses a change listener instead of property
binding.

L I S T I N G 6 . 1 7

import javafx.application.Application;
import javafx.beans.value.ObservableValue;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.text.Text;
import javafx.stage.Stage;

//**
// ChangeListenerDemo.java Java Foundations
//
// Demonstrates the ability to respond to property changes using
// change listeners. Functionally equivalent to PropertyBindingDemo.
//**

M06_LEWI5976_05_SE_C06.indd 290 08/02/19 2:39 AM

 6.5 JavaFX Properties 291

public class ChangeListenerDemo extends Application
{
 private Scene scene;
 private Circle center;
 private Text widthText, heightText;

 //--
 // Displays the width and height of the scene, as well as a circle
 // in the center of the scene. The scene is updated using a change
 // listener as the window is resized.
 //--
 public void start(Stage primaryStage)
 {
 Group root = new Group();

 scene = new Scene(root, 300, 200, Color.SKYBLUE);
 scene.widthProperty().addListener(this::processResize);
 scene.heightProperty().addListener(this::processResize);

 center = new Circle(6);
 center.setCenterX(scene.getWidth() / 2);
 center.setCenterY(scene.getHeight() / 2);

 widthText = new Text(20, 30, "Width: " + scene.getWidth());
 heightText = new Text(20, 60, "Height: " + scene.getHeight());

 root.getChildren().addAll(center, widthText, heightText);

 primaryStage.setTitle("Change Listener Demo");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 //--
 // Updates the position of the circle and the displayed width and
 // height when the window is resized.
 //--
 public void processResize(ObservableValue<? extends Number> property,
 Object oldValue, Object newValue)
 {
 center.setCenterX(scene.getWidth() / 2);
 center.setCenterY(scene.getHeight() / 2);
 widthText.setText("Width: " + scene.getWidth());
 heightText.setText("Height: " + scene.getHeight());
 }
}

L I S T I N G 6 . 1 7 continued

M06_LEWI5976_05_SE_C06.indd 291 08/02/19 2:39 AM

292 CHAPTER 6 Graphical User Interfaces

In this version of the program, the scene, circle, and text objects are declared
at the class level so that they can be accessed by the listener method. The same
listener is used for changes in both the width and height of the scene.

The new property value could have been obtained from the parameters to the
listener method, but then we would have had to have a separate listener for the
width and height (so we’d know which property to set) and there would have been
a lot of casting involved. Instead, the method parameters are ignored and the new
values are taken directly from the scene object.

Sliders
A slider is a GUI control that allows the user to specify a numeric value within a
bounded range. The slider value is a property which can be bound to some other
property.

A slider is displayed as a track along which the slider knob can be
dragged. A slider can be presented either vertically or horizontally
and can have optional tick marks and labels indicating the range of
values.

The program shown in Listing 6.18 displays an ellipse and allows
the user to control the shape of that ellipse using two sliders. The

horizontal slider determines the value of the radius along the x axis of the ellipse
and the vertical slider determines the value of the radius along the y axis.

KEY CONCEPT
A slider allows the user to specify
a numeric value within a bounded
range.

L I S T I N G 6 . 1 8

import javafx.application.Application;
import javafx.geometry.Insets;
import javafx.geometry.Orientation;
import javafx.scene.Scene;
import javafx.scene.control.Slider;
import javafx.scene.layout.BorderPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Ellipse;
import javafx.stage.Stage;

//**
// EllipseSliders.java Java Foundations
//
// Demonstrates the use of slider controls and property binding.
//**

M06_LEWI5976_05_SE_C06.indd 292 08/02/19 2:39 AM

 6.5 JavaFX Properties 293

public class EllipseSliders extends Application
{
 private Ellipse ellipse;
 private Slider xSlider, ySlider;

 //--
 // Displays an ellipse with sliders that control the width and
 // height of the ellipse.
 //--
 public void start(Stage primaryStage)
 {
 ellipse = new Ellipse(250, 150, 150, 75);
 ellipse.setFill(Color.SALMON);

 xSlider = new Slider(0, 200, 150);
 xSlider.setShowTickMarks(true);
 xSlider.setPadding(new Insets(0, 20, 20, 80));

 ellipse.radiusXProperty().bind(xSlider.valueProperty());

 ySlider = new Slider(0, 100, 75);
 ySlider.setOrientation(Orientation.VERTICAL);
 ySlider.setShowTickMarks(true);
 ySlider.setPadding(new Insets(20, 0, 0, 30));

 ellipse.radiusYProperty().bind(ySlider.valueProperty());

 BorderPane pane = new BorderPane();
 pane.setLeft(ySlider);
 pane.setBottom(xSlider);
 pane.setCenter(ellipse);
 pane.setStyle("-fx-background-color: grey");

 Scene scene = new Scene(pane, 500, 300);

 primaryStage.setTitle("Ellipse Sliders");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

L I S T I N G 6 . 1 8 continued

M06_LEWI5976_05_SE_C06.indd 293 08/02/19 2:39 AM

294 CHAPTER 6 Graphical User Interfaces

D I S P L A Y

L I S T I N G 6 . 1 8 continued

 See a full-color
version of these figures
at the end of the text.

M06_LEWI5976_05_SE_C06.indd 294 08/02/19 2:40 AM

 6.5 JavaFX Properties 295

A slider is presented horizontally unless you explicitly set it to vertical using its
setOrientation method. The setShowTickMarks method accepts a boolean
value and is used to set whether tick marks should be displayed next to the slider
bar. The setPadding method determines the spacing around the slider when it is
displayed. The Slider class has additional methods that can be used to tailor the
look and behavior of a slider.

The changes made to the ellipse are done exclusively through property bind-
ings. There are no explicit event handlers written for this program. The property
representing the x radius of the ellipse is bound (using the bind method) to the
value of the horizontal slider. Likewise, the property representing the y radius of
the ellipse is bound to the value of the vertical slider.

Spinners
A spinner is a JavaFX control that allows the user to select a value from a list of
predefined values arranged in a sequence. The current value is shown in a text field,
and the user steps through the options using a pair of arrow buttons displayed next
to, on either side of, or above and below the text field.

The options of a spinner are never displayed in a list, like they are
with a drop-down choice box or combo box. In a spinner, only one
value, the currently selected value, is displayed at a time. A spinner
may be preferred so that the options won’t obscure other elements in
the GUI.

The program in Listing 6.19 presents two spinners, one that pro-
vides numeric options 1 through 10, and another that allows the user
to select from a sequence of strings. The current values of the spinners are reflected in
a Text object shown below them.

KEY CONCEPT
A spinner lets the user select a value
from a list of predefined options using
arrow buttons.

L I S T I N G 6 . 1 9

import javafx.application.Application;
import javafx.beans.property.SimpleStringProperty;
import javafx.beans.property.StringProperty;
import javafx.collections.FXCollections;
import javafx.collections.ObservableList;
import javafx.geometry.Pos;

M06_LEWI5976_05_SE_C06.indd 295 08/02/19 2:40 AM

296 CHAPTER 6 Graphical User Interfaces

import javafx.scene.Scene;
import javafx.scene.control.Spinner;
import javafx.scene.control.SpinnerValueFactory.IntegerSpinnerValueFactory;
import javafx.scene.layout.VBox;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.stage.Stage;

//**
// SpinnerDemo.java Java Foundations
//
// Demonstrates the use of spinner controls and property binding.
//**
public class SpinnerDemo extends Application
{
 private Spinner<Integer> intSpinner;
 private Spinner<String> stringSpinner;
 private Text text;

 //--
 // Presents an integer spinner and a string spinner, updating some
 // text when either value changes.
 //--
 public void start(Stage primaryStage)
 {
 IntegerSpinnerValueFactory svf =
 new IntegerSpinnerValueFactory(1, 10, 5);
 intSpinner = new Spinner<Integer>(svf);

 ObservableList<String> list = FXCollections.observableArrayList();
 list.addAll("Grumpy", "Happy", "Sneezy", "Sleepy", "Dopey",
 "Bashful", "Doc");
 stringSpinner = new Spinner<String>(list);
 stringSpinner.getStyleClass().add(
 Spinner.STYLE_CLASS_SPLIT_ARROWS_VERTICAL);

 StringProperty textString = new SimpleStringProperty("");

 text = new Text();
 text.setFont(new Font("Helvetica", 24));
 text.textProperty().bind(textString.concat(
 intSpinner.valueProperty()).concat(" and ").concat(
 stringSpinner.valueProperty()));

L I S T I N G 6 . 1 9 continued

M06_LEWI5976_05_SE_C06.indd 296 08/02/19 2:40 AM

 6.5 JavaFX Properties 297

 VBox pane = new VBox(intSpinner, stringSpinner, text);
 pane.setStyle("-fx-background-color: skyblue");
 pane.setAlignment(Pos.CENTER);
 pane.setSpacing(25);

 Scene scene = new Scene(pane, 300, 250);

 primaryStage.setTitle("Spinner Demo");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

D I S P L A Y

L I S T I N G 6 . 1 9 continued

 See a full-color version of
this figure at the end of the text.

M06_LEWI5976_05_SE_C06.indd 297 08/02/19 2:40 AM

298 CHAPTER 6 Graphical User Interfaces

The set of spinner options is defined by a SpinnerValueFactory. In this ex-
ample, the integer spinner is made by creating a IntegerSpinnerValueFactory
with a minimum value of 1, a maximum value of 10, and an initial value of 5. The
value factory is passed to the Spinner constructor.

For the string spinner, an ObservableList object serves as the value factory.
It is filled with the strings representing the options, which is then used to create
the spinner itself.

By default, the arrows of a spinner appear on the right side of the text field,
pointing up and down (vertical). This is how the arrows appear on the integer
spinner in the example. For the string spinner, they are explicitly set to appear
above and below the text field by adding a particular spinner style class to the
spinner. The Spinner class contains several constants that represent different
arrow positions.

The Text object displayed at the bottom of the window is updated automati-
cally whenever either spinner is updated. A property binding is set up to keep the
displayed text in sync with the spinner values.

L I S T I N G 6 . 1 9 continued

 See a full-color version of
this figure at the end of the text.

M06_LEWI5976_05_SE_C06.indd 298 08/02/19 2:40 AM

 6.6 Tool Tips and Disabling Controls 299

6.6 Tool Tips and Disabling Controls

Paying attention to details when designing a GUI can often be the difference be-
tween a good user experience and a bad one. This section describes two such
details: tool tips and the ability to disable controls.

A tool tip is a short line of text that appears when the mouse
pointer is paused momentarily over a control or other GUI element.
Tool tips are usually used to provide a hint to the user about the con-
trol, such as the purpose of a button. They are especially helpful with
buttons that display icons instead of text.

A tool tip is represented by the ToolTip class, and can be applied to any node
in a scene graph. Tool tips are most often applied to controls, which have a con-
venience method called setToolTip for setting them up:

myButton.setToolTip(new ToolTip(“Update the total cost”));

Another helpful practice when designing a GUI is to disable a control if it
should not be used or currently has no effect. For example, you might disable a
slider controlling the volume of the background music until the user checks the
check box that indicates background music should be played.

A disabled control appears “greyed out” and doesn’t respond to
any user’s attempt to interact with it. Disabled components not only
convey to the user which actions are appropriate and which aren’t,
but they may also prevent erroneous situations from occurring.

Controls are enabled by default. To disable a control, call its
setDisable method, passing in the boolean value true:

myButton.setDisable(true);

To re-enable the control, call setDisable again, passing in false.

The program in Listing 6.20 uses both tool tips and disabled controls. The
scene displays the image of a light bulb and two buttons. The buttons control
whether the light bulb is “on” or “off.”

KEY CONCEPT
Controls should be disabled when
their use is inappropriate.

KEY CONCEPT
A tool tip provides a hint to the user
about the purpose of a control.

L I S T I N G 6 . 2 0

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.geometry.Pos;
import javafx.geometry.Rectangle2D;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.Tooltip;

M06_LEWI5976_05_SE_C06.indd 299 08/02/19 2:40 AM

300 CHAPTER 6 Graphical User Interfaces

import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;

//**
// LightBulb.java Java Foundations
//
// Demonstrates the use of tool tips and disabled controls.
//**
public class LightBulb extends Application
{
 private Button onButton, offButton;
 private ImageView bulbView;

 //--
 // Displays an image of a light bulb that can be turned on and off
 // using enabled buttons with tool tips set.
 //--
 public void start(Stage primaryStage)
 {
 Image img = new Image("lightBulbs.png");
 bulbView = new ImageView(img);
 bulbView.setViewport(new Rectangle2D(0, 0, 125, 200)); // off

 onButton = new Button("On");
 onButton.setPrefWidth(70);
 onButton.setTooltip(new Tooltip("Turn me on!"));
 onButton.setOnAction(this::processButtonPress);

 offButton = new Button("Off");
 offButton.setPrefWidth(70);
 offButton.setTooltip(new Tooltip("Turn me off!"));
 offButton.setDisable(true);
 offButton.setOnAction(this::processButtonPress);

L I S T I N G 6 . 2 0 continued

M06_LEWI5976_05_SE_C06.indd 300 08/02/19 2:40 AM

 6.6 Tool Tips and Disabling Controls 301

 HBox buttons = new HBox(onButton, offButton);
 buttons.setAlignment(Pos.CENTER);
 buttons.setSpacing(30);

 VBox root = new VBox(bulbView, buttons);
 root.setAlignment(Pos.CENTER);
 root.setStyle("-fx-background-color: black");
 root.setSpacing(20);

 Scene scene = new Scene(root, 250, 300);

 primaryStage.setTitle("Light Bulb");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 //--
 // Determines which button was pressed and sets the image viewport
 // appropriately to show either the on or off bulb. Also swaps the
 // disable state of both buttons.
 //--
 public void processButtonPress(ActionEvent event)
 {
 if (event.getSource() == onButton)
 {
 bulbView.setViewport(new Rectangle2D(143, 0, 125, 200)); // on
 onButton.setDisable(true);
 offButton.setDisable(false);
 }
 else
 {
 bulbView.setViewport(new Rectangle2D(0, 0, 125, 200)); // off
 offButton.setDisable(true);
 onButton.setDisable(false);
 }
 }
}

L I S T I N G 6 . 2 0 continued

M06_LEWI5976_05_SE_C06.indd 301 08/02/19 2:40 AM

302 CHAPTER 6 Graphical User Interfaces

D I S P L A Y

L I S T I N G 6 . 2 0 continued

 See a full-color version of
this figure at the end of the text.

M06_LEWI5976_05_SE_C06.indd 302 08/02/19 2:40 AM

 6.6 Tool Tips and Disabling Controls 303

The two buttons are labeled On and Off. Both buttons have tool tips set, such
that when the user rests the mouse pointer on top of either one, appropriate text
appears explaining the purpose of the button.

The buttons are also set up so that only one of them is enabled at a time.
Initially, the light bulb is off, so the Off button is disabled. This indicates that the

L I S T I N G 6 . 2 0 continued

 See a full-color version of
this figure at the end of the text.

M06_LEWI5976_05_SE_C06.indd 303 08/02/19 2:40 AM

304 CHAPTER 6 Graphical User Interfaces

On button is the only appropriate action at that moment. When the user presses
the On button, the image of the light bulb changes, the On button is disabled, and
the Off button is enabled.

There is actually only one image used in this program; it contains both the
“off” and “on” versions of the light bulb side by side (see Figure 6.3). A view-
port is used on the ImageView to display only one side or the other at any point.
Viewports are discussed further in Appendix F.

One event handler method is used to process both buttons. That method de-
termines which button was pressed, and then changes the viewport and disabled
status of the buttons accordingly.

FIGURE 6.3 The image used in the LightBulb program

 See a full-color version of
this figure at the end of the text.

M06_LEWI5976_05_SE_C06.indd 304 08/02/19 2:40 AM

Summary of Key Concepts

■■ JavaFX is now the preferred approach for developing Java programs that use
graphics and GUIs.

■■ JavaFX uses a theatre metaphor to present a scene on a stage.

■■ A GUI is made up of controls, events that represent user actions, and handlers
that process those events.

■■ A single event handler can be used to process events generated by multiple
controls.

■■ The HBox and VBox layout panes arrange their nodes in a single row or
column.

■■ A group of radio buttons provide a set of mutually exclusive options.

■■ Color and date pickers are controls that allow the user to specify a color or
calendar date, respectively.

■■ Moving the mouse and clicking the mouse button generate events to which a
program can respond.

■■ Rubberbanding is the graphical effect caused when a shape seems to resize as
the mouse is dragged.

■■ Key events allow a program to respond immediately to the user pressing
keyboard keys.

■■ A dialog box is a pop-up window that allows brief, specific user interaction.

■■ The look and feel of a file chooser is based on the underlying platform.

■■ Many values in JavaFX classes are managed as properties, which can be
bound to other properties.

■■ Property bindings are used specifically to keep data in sync. They are not a
replacement for event handlers in general.

■■ A slider allows the user to specify a numeric value within a bounded range.

■■ A spinner lets the user select a value from a list of predefined options using
arrow buttons.

■■ A tool tip provides a hint to the user about the purpose of a control.

■■ Controls should be disabled when their use is inappropriate.

 Summary of Key Concepts 305

M06_LEWI5976_05_SE_C06.indd 305 08/02/19 2:40 AM

306 CHAPTER 6 Graphical User Interfaces

Summary of Terms
action event A JavaFX event that represents a general action such as a but-
ton push.

change listener An object similar to an event handler that is set up to ex-
ecute when a property value changes.

check box A GUI control that can be toggled on or off using the mouse.

color picker A GUI control that lets the user select a color.

control A screen element that displays information and/or allows the user to
interact with a program.

date picker A GUI control that lets the user select a calendar date.

dialog box A window that pops up on top of any currently active window
so that the user can interact with it.

disable The act of setting the status of a GUI control so that it cannot be used.

event An object that represents an occurrence to which a program might
respond.

event-driven program A program designed to respond to events when they
occur.

event handler An object that contains a method that is called when an
event occurs.

file chooser A specialized dialog box that allows the user to select a file
from a hard drive or other storage medium.

functional interface An interface that contains a single abstract method.

graphical user interface (GUI) An interface to a program that uses graphical
elements such as windows, menus, buttons, and text fields.

interface A Java structure that specifies a list of methods that the imple-
menting class must define.

key event An object that represents one of several events that occur when
the user types keys on the keyboard.

lambda expression A function that can be defined anonymously (without
being given an identifying name) and passed as a parameter.

layout pane A JavaFX node that governs how the nodes it contains are pre-
sented visually.

method reference A syntactic technique for specifying a method in an object
or class.

mouse event An object that represents one of several events that occur
when the user uses the mouse or presses a mouse button.

M06_LEWI5976_05_SE_C06.indd 306 08/02/19 2:40 AM

 Self-Review Questions 307

property An object that holds a value that can be observed (monitored).

property binding The act of binding one property to another, so that
when the value of one property changes, the other is also changed
automatically.

radio button A GUI control that is used with other radio buttons to provide
a set of mutually exclusive options.

root node A JavaFX node that is displayed in a scene and contains all ele-
ments of the scene.

slider A GUI control that allows the user to specify a numeric value within
a bounded range by dragging a knob.

spinner A GUI control that allows the user to select a value from a list of
predefined values arranged in a sequence.

text field A GUI control that allows the user to enter one line of text.

tool tip A short line of text that appears when the mouse pointer is paused
momentarily over a control or other GUI element.

Self-Review Questions
SR 6.1 What analogy does JavaFX use to represent high level GUI

elements?

SR 6.2 What three elements are needed in a JavaFX GUI?

SR 6.3 What does a scene display?

SR 6.4 What is the relationship between an event and an event handler?

SR 6.5 Describe the ways in which a JavaFX event handler can be specified.

SR 6.6 What type of event does a push button generate? A check box?
A radio button?

SR 6.7 Compare and contrast check boxes and radio buttons.

SR 6.8 When would you use a slider?

SR 6.9 What is the purpose of a layout pane?

SR 6.10 What is a mouse event? A key event?

SR 6.11 What is a dialog box?

SR 6.12 What’s the difference between a JavaFX property and a primitive
value?

SR 6.13 What is the purpose of a tool tip?

SR 6.14 When should a GUI control be disabled?

M06_LEWI5976_05_SE_C06.indd 307 08/02/19 2:40 AM

308 CHAPTER 6 Graphical User Interfaces

Exercises
EX 6.1 Explain how two controls can be set up to share the same event

handler. How can the event handler tell which control generated
the event?

EX 6.2 Can one node have multiple event handler methods? Give an
example.

EX 6.3 Explain what would happen if the ToggleGroup had not been set
on the radio buttons used in the QuoteOptions program.

EX 6.4 In the PushCounter program, why was the count primitive vari-
able and the Text object declared at the class level? Why wasn’t
anything else, such as the Button?

EX 6.5 Why is the event object that is passed to an event handler method
sometimes ignored?

EX 6.6 What kind of event does TextField object generate? When does
it generate the event?

EX 6.7 Which user action generates three separate mouse events? Which
events? Why?

EX 6.8 Describe the events that can be generated when the user types a
key on the keyboard.

EX 6.9 How would you create a rollover effect in a JavaFX program?
For example, how would you change the background color of the
scene whenever you rolled over an image with the mouse cursor?

EX 6.10 What is a file chooser and how does it relate to a dialog box?

EX 6.11 What is a property binding? Give an example.

EX 6.12 Compare and contrast event handlers and change listeners.

Programming Projects
PP 6.1 Write a JavaFX application that displays a button and a number.

Every time the button is pushed, change the number to a random
value between 1 and 100.

PP 6.2 Write a JavaFX application that presents a button and a circle.
Every time the button is pushed, the circle should be moved to a
new random location within the window.

PP 6.3 Write a JavaFX application that presents two buttons and a
number (initially 50) to the user. Label the buttons Increment

M06_LEWI5976_05_SE_C06.indd 308 08/02/19 2:40 AM

 Programming Projects 309

and Decrement. When the Increment button is pushed, increment
the displayed value. Likewise, decrement the value when the
Decrement button is pushed.

PP 6.4 Write a JavaFX application that presents an unlabeled text field
in the center of the window surrounded by a circle. When the
user enters a radius value in the text field and presses return, re-
draw the circle accordingly.

PP 6.5 Write a JavaFX application that presents four labeled text fields,
allowing the user to enter values for name, age, favorite color,
and hobby. Include a button labeled print. When the button is
pushed, the program should print the contents of all fields to
standard output using println statements.

PP 6.6 Write a JavaFX application that allows the user to pick a set of
pizza toppings using a set of check boxes. Assuming each topping
cost 50 cents, and a plain pizza costs $10, display the cost of the
pizza.

PP 6.7 Write a JavaFX application that allows the user to select a color
out of five options provided by a set of radio buttons. Change the
color of a displayed square accordingly.

PP 6.8 Write a JavaFX application that displays the drawing of a traffic
light. Allow the user to select which light is on (red, yellow, or
green) from a set of radio buttons.

PP 6.9 Write a JavaFX application that allows the user to display the im-
age of one of the three stooges (Moe, Curly, or Larry) based on a
radio button choice.

PP 6.10 Write a JavaFX application that counts the number of times the
mouse button has been clicked on the scene. Display that number
at the top of the window.

PP 6.11 Write a JavaFX application that changes its background color
depending on where the mouse pointer is located. If the mouse
pointer is on the left half of the program window, display red; if it
is on the right half, display green.

PP 6.12 Write a JavaFX application that draws a circle using a rubber-
banding technique. The circle size is determined by a mouse drag.
Use the initial mouse press location as the fixed center point of
the circle. Compute the distance between the current location of
the mouse pointer and the center point to determine the current
radius of the circle.

M06_LEWI5976_05_SE_C06.indd 309 08/02/19 2:40 AM

PP 6.13 Write a JavaFX application that serves as a mouse odometer, con-
tinually displaying how far, in pixels, the mouse has moved while
it is over the program window. Display the current odometer
value at the top of the window. Hint: As the mouse moves, use
the distance formula to calculate how far the mouse has traveled
since the last event, and add that to a running total.

PP 6.14 Write a JavaFX application that displays the side view of a space-
ship that follows the movement of the mouse. When the mouse
button is pressed down, have a laser beam shoot out of the front
of the ship (one continuous beam, not a moving projectile) until
the mouse button is released. Define the spaceship using a sepa-
rate class.

PP 6.15 Modify the AlienDirection program from this chapter so that
the image is not allowed to move out of the visible area of the
window. Ignore any key event that would cause that to happen.

PP 6.16 Modify the QuoteOptions program so that it provides three ad-
ditional quote options. Use an array to store the quote strings and
a choice box to present the options (instead of radio buttons).

PP 6.17 Write a JavaFX application that displays an image and plays a
sound effect with each mouse click. Rotate through four images
and five sound effects, so the image/sound effect pairing is differ-
ent each time.

PP 6.18 Write a JavaFX application that creates polyline shapes dy-
namically using mouse clicks. Each mouse click adds a new line
 segment to the current polyline from the previous point to the
current mouse position. Allow the user to end the current poly-
line with a double click. Provide a choice box that allows the
user to select the color of the next polyline drawn from a list of
five options and provide a button that clears the window and
allows the user to begin again. Draw each line segment with a
rubberbanding effect.

PP 6.19 Write a JavaFX application that displays a text field, a color
picker, and a button. When the user presses the button, display
the text obtained from the text field in the color selected by the
color picker.

PP 6.20 Modify the RubberLines program so that a color picker is dis-
played in the upper left corner of the window. Let the value of the
color picker determine the color of the next line drawn.

310 CHAPTER 6 Graphical User Interfaces

M06_LEWI5976_05_SE_C06.indd 310 08/02/19 2:40 AM

PP 6.21 Write a JavaFX application that displays a Text object and a
slider that controls the font size of the text.

PP 6.22 Create a new version of the QuoteOptions program that uses a
list view to pick the quote category rather than a set of radio but-
tons. Provide at least seven categories and corresponding quotes.

PP 6.23 Write a JavaFX application that uses a split pane to display three
versions of an image side by side. The first image will be in full
color, the second will be in black and white, and the third will
have a sepia affect applied. Ensure that the images fill the width
of each section of the split pane as the divider bars are moved.

Answers to Self-Review Questions
SRA 6.1 JavaFX uses a theater analogy to describe high-level GUI ele-

ments, such as displaying a scene on a stage.

SRA 6.2 A JavaFX GUI is made up of on-screen controls, events that those
controls generate, and event handlers that respond to events when
they occur.

SRA 6.3 A JavaFX scene displays a root node, which serves as a container
for all elements that make up the scene.

SRA 6.4 An event usually represents a user action. An event handler con-
tains methods that are called when an event occurs.

SRA 6.5 In our examples, a JavaFX event handler method is specified
using a method reference. But that’s just an alternate way to
specify a lambda expression that can be used as the event handler
method. Another alternative is to define a full event handler class
that implements the EventHandler interface.

SRA 6.6 Push buttons, check boxes, and radio buttons all generate action
events, which represent the primary action on the control (the
button was pushed).

SRA 6.7 Both check boxes and radio buttons show a toggled state: either
on or off. However, radio buttons work as a group in which only
one can be toggled on at any point in time. Check boxes, on the
other hand, represent independent options.

SRA 6.8 A slider is useful when the user needs to specify a numeric value
within specific bounds. Using a slider to get this input, as opposed
to a text field or some other control, minimizes user error.

 Answers to Self-Review Questions 311

M06_LEWI5976_05_SE_C06.indd 311 08/02/19 2:40 AM

312 CHAPTER 6 Graphical User Interfaces

SRA 6.9 A layout pane is used to control the visual presentation of a set of
GUI elements. There are several specific layout panes defined in
the JavaFX API that display elements in particular ways.

SRA 6.10 A mouse event is one of several events that occur when the user
moves the mouse or presses a mouse button. A key event occurs
when the user types on the keyboard.

SRA 6.11 A dialog box is a small window that appears for the purpose of
conveying information, confirming an action, or accepting input.
Generally, dialog boxes are used in specific situations for brief
user interactions.

SRA 6.12 A JavaFX property is an object that wraps a primitive value.
Furthermore, a property is observable, meaning it can be moni-
tored by a change listener which can take action when the value
changes.

SRA 6.13 A tool tip is usually used to explain the purpose of a GUI control
or other node by displaying a small amount of text when the
mouse cursor is allowed to rest over the node.

SRA 6.14 GUI controls should be disabled when their use is inappropriate.
This helps guide the user to proper actions and minimizes error
handling and special cases.

M06_LEWI5976_05_SE_C06.indd 312 08/02/19 2:40 AM

313

7
When designing programs, we often want to organize

objects or primitive data in a form that is easy to access and

modify. This chapter introduces arrays, which are program-

ming constructs that group data into lists. Arrays are a

fundamental component of most high-level languages and a

useful tool in creating solutions to problems.

C H A P T E R O B J E C T I V E S
■■ Define and use arrays for basic data organization.

■■ Discuss bounds checking and techniques for managing
capacity.

■■ Discuss the issues related to arrays as objects and arrays of
objects.

■■ Explore the use of command-line arguments.

■■ Describe the syntax and use of variable-length parameter lists.

■■ Discuss the creation and use of multidimensional arrays.

Arrays 7

M07_LEWI5976_05_SE_C07.indd 313 08/02/19 2:42 AM

314 CHAPTER 7 Arrays

7.1 Array Elements

An array is a simple but powerful programming language construct used to
group and organize data. When we are writing a program that manages a
large amount of information, such as a list of 100 names, it is not practical to
declare separate variables for each piece of data. Arrays solve this problem by
letting us declare one variable that can hold multiple, individually accessible
values.

An array is a list of values. Each value is stored at a specific, numbered position
in the array. The number corresponding to each position is called an index or a
subscript. Figure 7.1 shows an array of integers and the indexes that correspond to
each position. The array is called height; it contains integers that represent several

peoples’ heights in inches.

In Java, array indexes always begin at zero. Therefore, the value
stored at index 5 is actually the sixth value in the array. The array
shown in Figure 7.1 has 11 values, indexed from 0 to 10.

To access a value in an array, we use the name of the array fol-
lowed by the index in square brackets. For example, the following
expression refers to the ninth value in the array height:

height[8]

height

index

value of height[5]

0

1

2

3

4

5

6

7

8

9

10

69

61

70

74

62

69

66

73

79

62

70

FIGURE 7.1 An array called height containing integer values

KEY CONCEPT
An array of size N is indexed from
0 to N-1.

M07_LEWI5976_05_SE_C07.indd 314 08/02/19 2:42 AM

 7.2 Declaring and Using Arrays 315

According to Figure 7.1, height[8] (pronounced height-sub-eight) contains
the value 79. Don’t confuse the value of the index, in this case 8, with the value
stored in the array at that index, in this case 79.

The expression height[8] refers to a single integer stored at a particular mem-
ory location. It can be used wherever an integer variable can be used. Therefore,
you can assign a value to it, use it in calculations, print its value, and so on.
Furthermore, because array indexes are integers, you can use integer expressions
to specify the index used to access an array. These concepts are demonstrated in
the following lines of code.

height[2] = 72;
height[count] = feet * 12;
average = (height[0] + height[1] + height[2]) / 3;
System.out.println("The middle value is " + height[MAX/2]);
pick = height[rand.nextInt(11)];

7.2 Declaring and Using Arrays

In Java, arrays are objects. To create an array, the reference to the array must be
declared. The array can then be instantiated using the new operator, which allo-
cates memory space to store values. The following code represents
the declaration for the array shown in Figure 7.1.

int[] height = new int[11];

The variable height is declared to be an array of integers whose type is written
as int[]. All values stored in an array have the same type (or are at least com-
patible). For example, we can create an array that can hold integers or an array
that can hold strings, but not an array that can hold both integers and strings. An
array can be set up to hold any primitive type or any object (class) type. A value
stored in an array is sometimes called an array element, and the type of values that
an array holds is called the element type of the array.

Note that the type of the array variable (int[]) does not include the size of the
array. The instantiation of height, using the new operator, reserves the memory
space to store 11 integers indexed from 0 to 10. Once an array object is instanti-
ated to be a certain size, the number of values it can hold cannot be changed. A
reference variable such as height, declared to hold an array of integers, can refer
to an array of any size. And like any other reference variable, the object (that is,
the array) that height refers to can change over time.

KEY CONCEPT
In Java, an array is an object that must
be instantiated.

VideoNote
Overview of arrays

M07_LEWI5976_05_SE_C07.indd 315 08/02/19 2:42 AM

316 CHAPTER 7 Arrays

The example shown in Listing 7.1 creates an array called list that can hold 15
integers, which it loads with successive increments of 10. It then changes the value
of the sixth element in the array (at index 5). Finally, it prints all values stored in
the array.

Figure 7.2 on page 317 shows the array as it changes during the execution of
the BasicArray program. It is often convenient to use for loops when handling
arrays, because the number of positions in the array is constant. Note that a con-
stant called LIMIT is used in several places in the BasicArray program. This
constant is used to declare the size of the array and to control the for loop that
initializes the array values.

Creating an Array

 double[] discounts = new double[35];

type of the array
 (no size)

creates new
array object

array name type and size

L I S T I N G 7 . 1

//**
// BasicArray.java Java Foundations
//
// Demonstrates basic array declaration and use.
//**

public class BasicArray
{
 //---
 // Creates an array, fills it with various integer values,
 // modifies one value, then prints them out.
 //---
 public static void main(String[] args)
 {
 final int LIMIT = 15, MULTIPLE = 10;

M07_LEWI5976_05_SE_C07.indd 316 08/02/19 2:42 AM

 7.2 Declaring and Using Arrays 317

After three
iterations of the

first loop

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

After completing
the first loop

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

After changing
the value of
list[5]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

The array is created
with 15 elements,

indexed from 0 to 14

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0

10

20

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

0

10

20

30

40

999

60

70

80

90

100

110

120

130

140

FIGURE 7.2 The array list as it changes in the BasicArray program

 int[] list = new int[LIMIT];

 // Initialize the array values
 for (int index = 0; index < LIMIT; index++)
 list[index] = index * MULTIPLE;

 list[5] = 999; // change one array value

 // Print the array values
 for (int value : list)
 System.out.print(value + " ");
 }
}

O U T P U T

0 10 20 30 40 999 60 70 80 90 100 110 120 130 140

L I S T I N G 7 . 1 continued

M07_LEWI5976_05_SE_C07.indd 317 08/02/19 2:42 AM

318 CHAPTER 7 Arrays

The iterator version of the for loop is used to print the values in the array.
Recall from Chapter 4 that this version of the for loop extracts each value in the
specified iterator. Every Java array is an iterator, so this type of loop can be used
whenever we want to process every element stored in an array.

The square brackets used to indicate the index of an array are treated as an
operator in Java. Therefore, just like the + operator or the <= operator, the index
operator ([]) has a precedence relative to the other Java operators that determines
when it is executed. It has the highest precedence of all Java operators.

Bounds Checking
The index operator performs automatic bounds checking, which ensures that the
index is in range for the array being referenced. Whenever a reference to an array
element is made, the index must be greater than or equal to zero and less than the
size of the array. For example, suppose an array called prices is created with
25 elements. The valid indexes for the array are from 0 to 24. Whenever a refer-
ence is made to a particular element in the array (such as prices[count]), the
value of the index is checked. If it is in the valid range of indexes for the array (0
to 24), the reference is carried out. If the index is not valid, an exception called
ArrayIndexOutOfBoundsException is thrown.

In most cases, we’ll want to perform our own bounds checking.
That is, we’ll want to be careful to remain within the bounds of the
array when making references. (The alternative is to be prepared to
handle the exception when it is thrown; exception handling is dis-
cussed in Chapter 10).

COMMON ERROR

Because array indexes begin at zero and go up to one less than the size of
the array, it is easy to create off-by-one errors in a program, which are prob-
lems created by processing all but one element or by attempting to index
one element too many.

KEY CONCEPT
Bounds checking ensures that an
index used to refer to an array element
is in range.

One way to check for the bounds of an array is to use the length constant,
which is an attribute of the array object and holds the size of the array. It is a
public constant and therefore can be referenced directly. For example, after the

M07_LEWI5976_05_SE_C07.indd 318 08/02/19 2:42 AM

 7.2 Declaring and Using Arrays 319

array prices is created with 25 elements, the constant prices.length contains
the value 25. Its value is set once, when the array is first created, and cannot be
changed. The length constant, which is an integral part of each array, can be
used when the array size is needed without having to create a separate constant.
Remember that the length of the array is the number of elements it can hold, and
thus the maximum index of an array is length-1.

Let’s look at another example. The program shown in Listing 7.2 reads 10 inte-
gers into an array called numbers and then prints them in reverse order.

L I S T I N G 7 . 2

//**
// ReverseOrder.java Java Foundations
//
// Demonstrates array index processing.
//**

import java.util.Scanner;

public class ReverseOrder
{
 //---
 // Reads a list of numbers from the user, storing them in an
 // array, then prints them in the opposite order.
 //---
 public static void main(String[] args)
 {
 Scanner scan = new Scanner(System.in);

 double[] numbers = new double[10];

 System.out.println("The size of the array: " + numbers.length);

 for (int index = 0; index < numbers.length; index++)
 {
 System.out.print("Enter number " + (index+1) + ": ");
 numbers[index] = scan.nextDouble();
 }

 System.out.println("The numbers in reverse order:");

M07_LEWI5976_05_SE_C07.indd 319 08/02/19 2:42 AM

320 CHAPTER 7 Arrays

Note that in the ReverseOrder program, the array numbers is declared to
have 10 elements and therefore is indexed from 0 to 9. The index range is con-
trolled in the for loops by using the length field of the array object. You should
carefully set the initial value of loop control variables and the conditions that ter-
minate loops to guarantee that all intended elements are processed and that only
valid indexes are used to reference an array element.

The LetterCount example, shown in Listing 7.3, uses two arrays and a
String object. The array called upper is used to store the number of times each
uppercase alphabetic letter is found in the string. The array called lower serves
the same purpose for lowercase letters.

Because there are 26 letters in the English alphabet, both the upper and lower
arrays are declared with 26 elements. Each element contains an integer that is ini-
tially zero by default. These values serve as counters for each alphabetic character
encountered in the input. The for loop scans through the string one character at
a time. The appropriate counter in the appropriate array is incremented for each
character found in the string.

 for (int index = numbers.length-1; index >= 0; index--)
 System.out.print(numbers[index] + " ");
 }
}

O U T P U T

The size of the array: 10
Enter number 1: 18.51
Enter number 2: 69.9
Enter number 3: 41.28
Enter number 4: 72.003
Enter number 5: 34.35
Enter number 6: 140.71
Enter number 7: 9.60
Enter number 8: 24.45
Enter number 9: 99.30
Enter number 10: 61.08
The numbers in reverse order:
61.08 99.3 24.45 9.6 140.71 34.35 72.003 41.28 69.9 18.51

L I S T I N G 7 . 2 continued

M07_LEWI5976_05_SE_C07.indd 320 08/02/19 2:42 AM

 7.2 Declaring and Using Arrays 321

L I S T I N G 7 . 3

//**
// LetterCount.java Java Foundations
//
// Demonstrates the relationship between arrays and strings.
//**

import java.util.Scanner;

public class LetterCount
{
 //---
 // Reads a sentence from the user and counts the number of
 // uppercase and lowercase letters contained in it.
 //---
 public static void main(String[] args)
 {
 final int NUMCHARS = 26;

 Scanner scan = new Scanner(System.in);

 int[] upper = new int[NUMCHARS];
 int[] lower = new int[NUMCHARS];

 char current; // the current character being processed
 int other = 0; // counter for non-alphabetics

 System.out.println("Enter a sentence:");
 String line = scan.nextLine();

 // Count the number of each letter occurrence
 for (int ch = 0; ch < line.length(); ch++)
 {
 current = line.charAt(ch);
 if (current >= 'A' && current <= 'Z')
 upper[current-'A']++;
 else
 if (current >= 'a' && current <= 'z')
 lower[current-'a']++;
 else
 other++;
 }

 // Print the results
 System.out.println();
 for (int letter=0; letter < upper.length; letter++)

M07_LEWI5976_05_SE_C07.indd 321 08/02/19 2:42 AM

322 CHAPTER 7 Arrays

 {
 System.out.print((char) (letter + 'A'));
 System.out.print(": " + upper[letter]);
 System.out.print("\t\t" + (char) (letter + 'a'));
 System.out.println(": " + lower[letter]);
 }

 System.out.println();
 System.out.println("Non-alphabetic characters: " + other);
 }
}

O U T P U T

Enter a sentence:
In Casablanca, Humphrey Bogart never says "Play it again, Sam."

A: 0 a: 10
B: 1 b: 1
C: 1 c: 1
D: 0 d: 0
E: 0 e: 3
F: 0 f: 0
G: 0 g: 2
H: 1 h: 1
I: 1 i: 2
J: 0 j: 0
K: 0 k: 0
L: 0 l: 2
M: 0 m: 2
N: 0 n: 4
O: 0 o: 1
P: 1 p: 1
Q: 0 q: 0
R: 0 r: 3
S: 1 s: 3
T: 0 t: 2
U: 0 u: 1
V: 0 v: 1
W: 0 w: 0
X: 0 x: 0
Y: 0 y: 3
Z: 0 z: 0

Non-alphabetic characters: 14

L I S T I N G 7 . 3 continued

M07_LEWI5976_05_SE_C07.indd 322 08/02/19 2:42 AM

 7.2 Declaring and Using Arrays 323

Both of the counter arrays are indexed from 0 to 25, so we have to map
each character to a counter. A logical way to do this is to use upper[0] to
count the number of 'A' characters found, upper[1] to count the number
of 'B' characters found, and so on. Likewise, lower[0] is used to count 'a'
characters, lower[1] is used to count 'b' characters, and so on. A separate
variable called other is used to count any non-alphabetic characters that are
encountered.

Note that to determine whether a character is an uppercase letter, we used the
boolean expression (current >= 'A' && current <= 'Z'). A similar expres-
sion is used for determining the lowercase letters. We could have used the static
methods isUpperCase and isLowerCase in the Character class to make these
determinations, but we didn’t in this example to drive home the point that each
character has a specific numeric value and order that we can use in our program-
ming, based on the Unicode character set.

We use the current character to calculate which index in the array to refer-
ence. We have to be careful when calculating an index to ensure that it remains
within the bounds of the array and matches to the correct element. Remember
that in the Unicode character set, the uppercase and lowercase alphabetic letters
are continuous and in order (see Appendix C). Therefore, taking the numeric
value of an uppercase letter such as 'E' (which is 69) and subtracting the numeric
value of the character 'A' (which is 65) yields 4, which is the correct index for the
counter of the character 'E'. Note that nowhere in the program do we actually
need to know the specific numeric value for each letter.

Alternative Array Syntax
Syntactically, there are two ways to declare an array reference in Java. The first
technique, which is used in the previous examples and throughout this text, is
to associate the brackets with the type of values stored in the array. The second
technique is to associate the brackets with the name of the array. Therefore, the
following two declarations are equivalent:

int[] grades;
int grades[];

Although there is no difference between these declaration techniques as far
as the compiler is concerned, the first is consistent with other types of declara-
tions. The declared type is explicit if the array brackets are associated with the
element type, especially if there are multiple variables declared on the same
line. Therefore, we associate the brackets with the element type throughout
this text.

VideoNote
Discussion of the
LetterCount
example

M07_LEWI5976_05_SE_C07.indd 323 08/02/19 2:42 AM

324 CHAPTER 7 Arrays

Initializer Lists
You can use an initializer list to instantiate an array and provide the initial values for
the elements of the array. This is essentially the same idea as initializing a variable
of a primitive data type in its declaration, except that the initial value for an array
contains multiple values.

The items in an initializer list are separated by commas and delimited by braces
({}). When an initializer list is used, the new operator is not used. The size of the
array is determined by the number of items in the initializer list. For example, the
following declaration instantiates the array scores as an array of eight integers,
indexed from 0 to 7 with the specified initial values:

int[] scores = {87, 98, 69, 87, 65, 76, 99, 83};

An initializer list can be used only when an array is first declared.

The type of each value in an initializer list must match the type of
the array elements. Let’s look at another example:

char[] vowels = {'A', 'E', 'I', 'O', 'U'};

In this case, the variable vowels is declared to be an array of five
characters, and the initializer list contains character literals.

The program shown in Listing 7.4 demonstrates the use of an initializer list to
instantiate an array.

KEY CONCEPT
An initializer list can be used, instead
of the new operator, to instantiate an
array object.

L I S T I N G 7 . 4

//**
// Primes.java Java Foundations
//
// Demonstrates the use of an initializer list for an array.
//**

public class Primes
{
 //---
 // Stores some prime numbers in an array and prints them.
 //---
 public static void main(String[] args)
 {
 int[] primeNums = {2, 3, 5, 7, 11, 13, 17, 19};

 System.out.println("Array length: " + primeNums.length);

M07_LEWI5976_05_SE_C07.indd 324 08/02/19 2:42 AM

 7.3 Arrays of Objects 325

Arrays as Parameters
An entire array can be passed as a parameter to a method. Because an array is an
object, when an entire array is passed as a parameter, a copy of the reference to
the original array is passed. We discussed this issue as it applies to all objects in
Chapter 5.

A method that receives an array as a parameter can permanently
change an element of the array, because it is referring to the original
element value. However, the method cannot permanently change the
reference to the array itself, because a copy of the original reference
is sent to the method. These rules are consistent with the rules that
govern any object type.

An element of an array can be passed to a method as well. If the element type is
a primitive type, a copy of the value is passed. If that element is a reference to an
object, a copy of the object reference is passed. As always, the impact of changes
made to a parameter inside the method depends on the type of the parameter. We
discuss arrays of objects further in the next section.

7.3 Arrays of Objects

In the previous examples in this chapter, we used arrays to store primitive types
such as integers and characters. Arrays can also store references to objects as ele-
ments. Fairly complex information management structures can be created using

 System.out.println("The first few prime numbers are:");

 for (int prime : primeNums)
 System.out.print(prime + " ");
 }
}

O U T P U T

Array length: 8
The first few prime numbers are:
2 3 5 7 11 13 17 19

L I S T I N G 7 . 4 continued

KEY CONCEPT
An entire array can be passed as
a parameter, making the formal
parameter an alias of the original.

M07_LEWI5976_05_SE_C07.indd 325 08/02/19 2:42 AM

326 CHAPTER 7 Arrays

only arrays and other objects. For example, an array could contain objects, and
each of those objects could consist of several variables and the methods that use
them. Those variables could themselves be arrays, and so on. The design of a
program should capitalize on the ability to combine these constructs to create the
most appropriate representation for the information.

Keep in mind that an array is an object. Thus, if we have an array of int values
called weight, we are actually dealing with an object reference variable that holds
the address of the array, which can be depicted as follows:

KEY CONCEPT
Instantiating an array of objects
reserves room to store references
only. The objects that are stored in
each element must be instantiated
separately.

weight 125

182

160

104

147

words —

—

—

—

—

Furthermore, when we store objects in an array, each element is a separate
object. That is, an array of objects is really an array of object references. Consider
the declaration

String[] words = new String[5];

The array words holds references to String objects. The new
operator in the declaration instantiates the array object and reserves
space for five String references. But this declaration does not create
any String objects; it merely creates an array that holds references
to String objects. Initially, the array looks like this:

M07_LEWI5976_05_SE_C07.indd 326 08/02/19 2:42 AM

 7.3 Arrays of Objects 327

The words array is an object, and each character string it holds is its own ob-
ject. Each object contained in an array has to be instantiated separately.

Keep in mind that String objects can be represented as string literals. Thus
the following declaration creates an array called verbs and uses an initializer
list to populate it with several String objects, each instantiated using a string
literal.

String[] verbs = {"play", "work", "eat", "sleep"};

The program called GradeRange, shown in Listing 7.5, creates an array of
Grade objects and then prints them. The Grade objects are created using several
new operators in the initialization list of the array.

The Grade class is shown in Listing 7.6 on page 329. Each Grade object
represents a letter grade for a school course and includes a numeric lower
bound. The values for the grade name and lower bound can be set using the
Grade constructor or using appropriate mutator methods. Accessor methods
are also defined, as is a toString method to return a string representation of
the grade. The toString method is automatically invoked when the grades
are printed in the main method.

Let’s look at another example. Listing 7.7 on page 330 shows the Tunes class,
which contains a main method that creates, modifies, and examines a compact
disc (CD) collection. Each CD added to the collection is specified by its title, artist,
purchase price, and number of tracks.

Listing 7.8 on page 332 shows the CDCollection class. It contains an array
of CD objects representing the collection. It maintains a count of the CDs in the
collection and their combined value. It also keeps track of the current size of the
collection array so that a larger array can be created if too many CDs are added to
the collection. The CD class is shown in Listing 7.9.

words

—

—

"loyalty"

"honor"

"friendship"

After a few String objects are created and put in the array, it might look
like this:

M07_LEWI5976_05_SE_C07.indd 327 08/02/19 2:42 AM

328 CHAPTER 7 Arrays

L I S T I N G 7 . 5

//**
// GradeRange.java Java Foundations
//
// Demonstrates the use of an array of objects.
//**

public class GradeRange
{
 //---
 // Creates an array of Grade objects and prints them.
 //---
 public static void main(String[] args)
 {
 Grade[] grades =
 {
 new Grade("A", 95), new Grade("A-", 90),
 new Grade("B+", 87), new Grade("B", 85), new Grade("B-", 80),
 new Grade("C+", 77), new Grade("C", 75), new Grade("C-", 70),
 new Grade("D+", 67), new Grade("D", 65), new Grade("D-", 60),
 new Grade("F", 0)
 };

 for (Grade letterGrade : grades)
 System.out.println(letterGrade);
 }
}

O U T P U T

A 95
A- 90
B+ 87
B 85
B- 80
C+ 77
C 75
C- 70
D+ 67
D 65
D- 60
F 0

M07_LEWI5976_05_SE_C07.indd 328 08/02/19 2:42 AM

 7.3 Arrays of Objects 329

L I S T I N G 7 . 6

//**
// Grade.java Java Foundations
//
// Represents a school grade.
//**

public class Grade
{
 private String name;
 private int lowerBound;

 //---
 // Constructor: Sets up this Grade object with the specified
 // grade name and numeric lower bound.
 //---
 public Grade(String grade, int cutoff)
 {
 name = grade;
 lowerBound = cutoff;
 }

 //---
 // Returns a string representation of this grade.
 //---
 public String toString()
 {
 return name + "\t" + lowerBound;
 }

 //---
 // Name mutator.
 //---
 public void setName(String grade)
 {
 name = grade;
 }

 //---
 // Lower bound mutator.
 //---
 public void setLowerBound(int cutoff)
 {
 lowerBound = cutoff;
 }

M07_LEWI5976_05_SE_C07.indd 329 08/02/19 2:42 AM

330 CHAPTER 7 Arrays

L I S T I N G 7 . 7

//**
// Tunes.java Java Foundations
//
// Demonstrates the use of an array of objects.
//**

public class Tunes
{
 //---
 // Creates a CDCollection object and adds some CDs to it. Prints
 // reports on the status of the collection.
 //---
 public static void main(String[] args)
 {
 CDCollection music = new CDCollection();

 music.addCD("Storm Front", "Billy Joel", 14.95, 10);
 music.addCD("Come On Over", "Shania Twain", 14.95, 16);
 music.addCD("Soundtrack", "Les Miserables", 17.95, 33);
 music.addCD("Graceland", "Paul Simon", 13.90, 11);

 //---
 // Name accessor.
 //---
 public String getName()
 {
 return name;
 }

 //---
 // Lower bound accessor.
 //---
 public int getLowerBound()
 {
 return lowerBound;
 }
}

L I S T I N G 7 . 6 continued

M07_LEWI5976_05_SE_C07.indd 330 08/02/19 2:42 AM

 7.3 Arrays of Objects 331

 System.out.println(music);

 music.addCD("Double Live", "Garth Brooks", 19.99, 26);
 music.addCD("Greatest Hits", "Jimmy Buffet", 15.95, 13);

 System.out.println(music);
 }
}

O U T P U T

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
My CD Collection

Number of CDs: 4
Total cost: $61.75
Average cost: $15.44

CD List:

$14.95   10              Storm Front            Billy Joel
$14.95   16              Come On Over           Shania Twain
$17.95   33              Soundtrack             Les Miserables
$13.90   11              Graceland              Paul Simon

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
My CD Collection

Number of CDs: 6
Total cost: $97.69
Average cost: $16.28

CD List:

$14.95 10 Storm Front Billy Joel
$14.95 16 Come On Over Shania Twain
$17.95 33 Soundtrack Les Miserables
$13.90 11 Graceland Paul Simon
$19.99 26 Double Live Garth Brooks
$15.95 13 Greatest Hits Jimmy Buffet

L I S T I N G 7 . 7 continued

M07_LEWI5976_05_SE_C07.indd 331 08/02/19 2:42 AM

332 CHAPTER 7 Arrays

L I S T I N G 7 . 8

//**
// CDCollection.java Java Foundations
//
// Represents a collection of compact discs.
//**

import java.text.NumberFormat;

public class CDCollection
{
 private CD[] collection;
 private int count;
 private double totalCost;

 //---
 // Constructor: Creates an initially empty collection.
 //---
 public CDCollection()
 {
 collection = new CD[100];
 count = 0;
 totalCost = 0.0;
 }

 //---
 // Adds a CD to the collection, increasing the size of the
 // collection if necessary.
 //---
 public void addCD(String title, String artist, double cost,
 int tracks)
 {
 if (count == collection.length)
 increaseSize();

 collection[count] = new CD(title, artist, cost, tracks);
 totalCost += cost;
 count++;
 }

 //---
 // Returns a report describing the CD collection.
 //---
 public String toString()
 {
 NumberFormat fmt = NumberFormat.getCurrencyInstance();
 String report = "~~~\n";
 report += "My CD Collection\n\n";

M07_LEWI5976_05_SE_C07.indd 332 08/02/19 2:42 AM

 7.3 Arrays of Objects 333

 report += "Number of CDs: " + count + "\n";
 report += "Total cost: " + fmt.format(totalCost) + "\n";
 report += "Average cost: " + fmt.format(totalCost/count);

 report += "\n\nCD List:\n\n";

 for (int cd = 0; cd < count; cd++)
 report += collection[cd].toString() + "\n";

 return report;
 }

 //---
 // Increases the capacity of the collection by creating a
 // larger array and copying the existing collection into it.
 //---
 private void increaseSize()
 {
 CD[] temp = new CD[collection.length * 2];

 for (int cd = 0; cd < collection.length; cd++)
 temp[cd] = collection[cd];

 collection = temp;
 }
}

L I S T I N G 7 . 8 continued

L I S T I N G 7 . 9

//**
// CD.java Java Foundations
//
// Represents a compact disc.
//**

import java.text.NumberFormat;

public class CD
{
 private String title, artist;
 private double cost;
 private int tracks;

M07_LEWI5976_05_SE_C07.indd 333 08/02/19 2:42 AM

334 CHAPTER 7 Arrays

 //---
 // Creates a new CD with the specified information.
 //---
 public CD(String name, String singer, double price, int numTracks)
 {
 title = name;
 artist = singer;
 cost = price;
 tracks = numTracks;
 }

 //---
 // Returns a string description of this CD.
 //---
 public String toString()
 {
 NumberFormat fmt = NumberFormat.getCurrencyInstance();

 String description;

 description = fmt.format(cost) + "\t" + tracks + "\t";
 description += title + "\t" + artist;

 return description;
 }
}

L I S T I N G 7 . 9 continued

The collection array is instantiated in the CDCollection constructor. Every
time a CD is added to the collection (using the addCD method), a new CD object is
created and a reference to it is stored in the collection array.

Each time a CD is added to the collection, we check to see whether we have reached
the current capacity of the collection array. If we didn’t perform this check, an
exception would eventually be thrown when we tried to store a new CD object at an
invalid index. If the current capacity has been reached, the private increaseSize
method is invoked, which first creates an array that is twice as big as the current
collection array. Each CD in the existing collection is then copied into the new array
(that is, the references to the CD objects are copied). Finally, the collection reference
is set to the larger array. Using this technique, we theoretically never run out of room
in our CD collection. The user of the CDCollection object (the main method) never
has to worry about running out of space because it’s all handled internally.

M07_LEWI5976_05_SE_C07.indd 334 08/02/19 2:42 AM

 7.4 Command-Line Arguments 335

+ main (args : String[]) : void

Tunes

– title : String
– artist : String
– cost : double
– tracks : int

+ toString() : String

CD

– collection : CD
– count : int
– totalCost : double

+ addCD(title : String, artist : String, cost : double, tracks : int) : void
+ toString() : String
– increaseSize() : void

CDCollection

1..*

0..*

FIGURE 7.3 A UML class diagram of the Tunes program

Figure 7.3 shows a UML class diagram of the Tunes program. Recall that the
open diamond indicates aggregation. The cardinality of the relationship is also
noted: a CDCollection object contains zero or more CD objects.

The toString method of the CDCollection class returns an entire report sum-
marizing the collection. The report is created, in part, by using implicit calls to the
toString method of each CD object stored in the collection.

7.4 Command-Line Arguments

The formal parameter to the main method of a Java application is always an array
of String objects. We’ve ignored that parameter in previous examples, but now
we can discuss how it might occasionally be useful.

The Java run-time environment invokes the main method when an application
is submitted to the interpreter. The String[] parameter, which we typically call
args, represents command-line arguments that are provided when the interpreter
is invoked. Any extra information on the command line when the interpreter is
invoked is stored in the args array for use by the program. This technique is
another way to provide input to a program.

M07_LEWI5976_05_SE_C07.indd 335 08/02/19 2:42 AM

336 CHAPTER 7 Arrays

The program shown in Listing 7.10 simply prints all of the command-
line arguments provided when the program is submitted to the inter-
preter. Note that quotes can be used on the command line to delimit a
multi-word argument.

Remember that the parameter to the main method is always an array
of String objects. If you want numeric information to be input as a command-line
argument, the program has to convert it from its string representation.

When used, command-line arguments are typically reserved for information that
tailors the way a program behaves. For example, you may provide the name of an
input file as a command-line argument. Or perhaps you use an optional command-line
argument that permits the user to specify a verbose or brief output format.

In program development environments that use a graphical user interface, a com-
mand line may not be the standard way to submit a program to the interpreter (that

KEY CONCEPT
Command-line arguments are stored
in an array of String objects and are
passed to the main method.

L I S T I N G 7 . 1 0

//**
// CommandLine.java Java Foundations
//
// Demonstrates the use of command line arguments.
//**

public class CommandLine
{
 //---
 // Prints all of the command line arguments provided by the
 // user.
 //---
 public static void main(String[] args)
 {
 for (String arg : args)
 System.out.println(arg);
 }
}

O U T P U T

> java CommandLine one two "two and a half" three
one
two
two and a half
three

M07_LEWI5976_05_SE_C07.indd 336 08/02/19 2:42 AM

 7.5 Variable-Length Parameter Lists 337

is, to run the program). In such situations, command-line information can be speci-
fied in some other way. Consult the documentation for these specifics if necessary.

7.5 Variable-Length Parameter Lists

Suppose we wanted to design a method that processed a different amount of
data from one invocation to the next. For example, let’s design a method called
average that accepts a few integer values and returns their average. In one invo-
cation of the method, we might pass in three integers to average:

mean1 = average(42, 69, 37);

In another invocation of the same method, we might pass in seven integers to
average:

mean2 = average(35, 43, 93, 23, 40, 21, 75);

To accomplish this we could define overloaded versions of the average method
(as we did in the exercises at the end of Chapter 5). But that solution doesn’t scale
to an arbitrary set of input values. It would require that we know the maximum
number of parameters there might be and create a separate version of the method
for each possibility.

Alternatively, we could define the method to accept an array of integers, which
could be of different sizes for each call. But that would require the calling method
to package the integers into an array.

Java provides a way to define methods that accept variable-length parameter lists.
By using some special syntax in the formal parameter list of the method,
we can define the method to accept any number of parameters. The
parameters are automatically put into an array for easy processing in
the method. For example, the average method could be written as
follows:

public double average(int ... list)
{
 double result = 0.0;
 if (list.length != 0)
 {
 int sum = 0;
 for (int num : list)
 sum += num;
 result = (double)sum / list.length;
 }

 return result;
}

KEY CONCEPT
A Java method can be defined to accept
a varying number of parameters.

M07_LEWI5976_05_SE_C07.indd 337 08/02/19 2:42 AM

338 CHAPTER 7 Arrays

Note the way the formal parameters are defined. The ellipsis (three periods in a
row) indicates that the method accepts a variable number of parameters. In this
case, the method accepts any number of int parameters, which it automatically
puts into an array called list. In the method, we process the array normally.

We can now pass any number of int parameters to the average method, in-
cluding none at all. That’s why we check to see whether the length of the array is
zero before we compute the average.

The type of the multiple parameters can be any primitive or object type. For
example, the following method accepts and prints multiple Grade objects (we de-
fined the Grade class earlier in this chapter).

public void printGrades(Grade ... grades)
 {
 for (Grade letterGrade : grades)
 System.out.println(letterGrade);
 }

A method that accepts a variable number of parameters can also accept other
parameters. For example, the following method accepts an int, a String object,
and then a variable number of double values that will be stored in an array called
nums.

public void test(int count, String name, double ... nums)
 {
 // whatever
 }

The varying parameters must come last in the formal arguments. A single method
cannot accept two sets of varying parameters.

Constructors can also be set up to accept a varying number of parameters.
The program shown in Listing 7.11 on the next page creates two Family objects,

 type of array
 element

Variable-Length Parameter List

public void printNames(String ... names)
{
 ...
} indicates a variable

number of parameters

array name

M07_LEWI5976_05_SE_C07.indd 338 08/02/19 2:42 AM

 7.5 Variable-Length Parameter Lists 339

L I S T I N G 7 . 1 1

//**
// VariableParameters.java Java Foundations
//
// Demonstrates the use of a variable length parameter list.
//**

public class VariableParameters
{
 //---
 // Creates two Family objects using a constructor that accepts
 // a variable number of String objects as parameters.
 //---
 public static void main(String[] args)
 {
 Family lewis = new Family("John", "Sharon", "Justin", "Kayla",
 "Nathan", "Samantha");

 Family camden = new Family("Stephen", "Annie", "Matt", "Mary",
 "Simon", "Lucy", "Ruthie", "Sam", "David");

 System.out.println(lewis);
 System.out.println();
 System.out.println(camden);
 }
}

O U T P U T

John
Sharon
Justin
Kayla
Nathan
Samantha

Stephen
Annie
Matt
Mary
Simon
Lucy
Ruthie
Sam
David

M07_LEWI5976_05_SE_C07.indd 339 08/02/19 2:42 AM

340 CHAPTER 7 Arrays

passing a varying number of strings (representing the family member names) into
the Family constructor.

The Family class is shown in Listing 7.12 below. The constructor simply
stores a reference to the array parameter until it is needed. By using a variable-
length parameter list for the constructor, we make it easy to create a family of
any size.

L I S T I N G 7 . 1 2

//**
// Family.java Java Foundations
//
// Demonstrates the use of variable length parameter lists.
//**

public class Family
{
 private String[] members;

 //---
 // Constructor: Sets up this family by storing the (possibly
 // multiple) names that are passed in as parameters.
 //---
 public Family(String ... names)
 {
 members = names;
 }

 //---
 // Returns a string representation of this family.
 //---
 public String toString()
 {
 String result = "";

 for (String name : members)
 result += name + "\n";

 return result;
 }
}

M07_LEWI5976_05_SE_C07.indd 340 08/02/19 2:42 AM

 7.6 Two-Dimensional Arrays 341

7.6 Two-Dimensional Arrays

The arrays we’ve examined so far have all been one-dimensional arrays in the sense
that they represent a simple list of values. As the name implies, a two-dimensional
array has values in two dimensions, which are often thought of as the rows and
columns of a table. Figure 7.4 graphically compares a one-dimensional array with a
two-dimensional array. We use two indexes to refer to a value in a two-dimensional
array: one specifying the row and another the column.

Brackets are used to represent each dimension in the array. Therefore, the type
of a two-dimensional array that stores integers is int[][]. Technically, Java rep-
resents a two-dimensional array as an array of arrays. Thus a two-dimensional
integer array is really a one-dimensional array of references to one-dimensional
integer arrays. In most cases, it’s easier to think about a two-dimensional array as
a table with rows and columns.

The TwoDArray program shown in Listing 7.13 instantiates a two-dimensional
array of integers. As with one-dimensional arrays, the size of the dimensions is
specified when the array is created. The size of the dimensions can be different.

Nested for loops are used in the TwoDArray program to load the array with
values and also to print those values in a table format. Carefully trace the process-
ing of this program to see how the nested loops eventually visit each element in the
two-dimensional array. Note that the outer loops are governed by table.length,
which represents the number of rows, and the inner loops are governed by
table[row].length, which represents the number of columns in that row.

As with one-dimensional arrays, an initializer list can be used to instantiate a
two-dimensional array, where each element is itself an array initializer list. This
technique is used in the SodaSurvey program, which is shown in Listing 7.14.

Suppose a soda manufacturer held a taste test for four new flavors to determine
whether people liked them. The manufacturer got 10 people to try each new fla-
vor and give it a score from 1 to 5, where 1 equals poor and 5 equals excellent.

one dimension two dimensions

FIGURE 7.4 A one-dimensional array and a two-dimensional array

M07_LEWI5976_05_SE_C07.indd 341 08/02/19 2:42 AM

342 CHAPTER 7 Arrays

L I S T I N G 7 . 1 3

//**
// TwoDArray.java Java Foundations
//
// Demonstrates the use of a two-dimensional array.
//**

public class TwoDArray
{
 //---
 // Creates a 2D array of integers, fills it with increasing
 // integer values, then prints them out.
 //---
 public static void main(String[] args)
 {
 int[][] table = new int[5][10];

 // Load the table with values
 for (int row=0; row < table.length; row++)
 for (int col=0; col < table[row].length; col++)
 table[row][col] = row * 10 + col;

 // Print the table
 for (int row=0; row < table.length; row++)
 {
 for (int col=0; col < table[row].length; col++)
 System.out.print(table[row][col] + "\t");
 System.out.println();
 }
 }
}

O U T P U T

 0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49

M07_LEWI5976_05_SE_C07.indd 342 08/02/19 2:42 AM

 7.6 Two-Dimensional Arrays 343

L I S T I N G 7 . 1 4

//**
// SodaSurvey.java Java Foundations
//
// Demonstrates the use of a two-dimensional array.
//**

import java.text.DecimalFormat;

public class SodaSurvey
{
 //---
 // Determines and prints the average of each row (soda) and each
 // column (respondent) of the survey scores.
 //---
 public static void main(String[] args)
 {
 int[][] scores = { {3, 4, 5, 2, 1, 4, 3, 2, 4, 4},
 {2, 4, 3, 4, 3, 3, 2, 1, 2, 2},
 {3, 5, 4, 5, 5, 3, 2, 5, 5, 5},
 {1, 1, 1, 3, 1, 2, 1, 3, 2, 4} };

 final int SODAS = scores.length;
 final int PEOPLE = scores[0].length;

 int[] sodaSum = new int[SODAS];
 int[] personSum = new int[PEOPLE];

 for (int soda=0; soda < SODAS; soda++)
 for (int person=0; person < PEOPLE; person++)
 {
 sodaSum[soda] += scores[soda][person];
 personSum[person] += scores[soda][person];
 }

 DecimalFormat fmt = new DecimalFormat("0.#");
 System.out.println("Averages:\n");

 for (int soda=0; soda < SODAS; soda++)
 System.out.println "Soda #" + (soda+1) + ": " +
 fmt.format((float)sodaSum[soda]/PEOPLE));

 System.out.println ();
 for (int person=0; person < PEOPLE; person++)
 System.out.println("Person #" + (person+1) + ": " +
 fmt.format((float)personSum[person]/SODAS));
 }
}

M07_LEWI5976_05_SE_C07.indd 343 08/02/19 2:42 AM

344 CHAPTER 7 Arrays

The two-dimensional array called scores in the SodaSurvey program stores the
results of that survey. Each row corresponds to a soda, and each column in that
row corresponds to the person who tasted it. More generally, each row holds the
responses that all testers gave for one particular soda flavor, and each column
holds the responses of one person for all sodas.

The SodaSurvey program computes and prints the average responses for each
soda and for each respondent. The sums of each soda and person are first stored in
one-dimensional arrays of integers. Then the averages are computed and printed.

Multidimensional Arrays
An array can have one, two, three, or even more dimensions. Any array with more
than one dimension is called a multidimensional array.

It’s fairly easy to picture a two-dimensional array as a table. A three-dimensional
array could be drawn as a cube. However, once you are past three dimensions,
multidimensional arrays might seem hard to visualize. But consider that each subse-
quent dimension is simply a subdivision of the previous one. It is often best to think
of larger multidimensional arrays in this way.

O U T P U T

Averages:

Soda #1: 3.2
Soda #2: 2.6
Soda #3: 4.2
Soda #4: 1.9

Person #1: 2.2
Person #2: 3.5
Person #3: 3.2
Person #4: 3.5
Person #5: 2.5
Person #6: 3
Person #7: 2
Person #8: 2.8
Person #9: 3.2
Person #10: 3.8

L I S T I N G 7 . 1 4 continued

M07_LEWI5976_05_SE_C07.indd 344 08/02/19 2:42 AM

 7.6 Two-Dimensional Arrays 345

For example, suppose we wanted to store the number of students attending
universities across the United States, broken down in a meaningful way. We might
represent it as a four-dimensional array of integers. The first dimension represents
the state. The second dimension represents the universities in each state. The third
dimension represents the colleges in each university. Finally, the fourth dimen-
sion represents the departments in each college. The value stored at each location
is the number of students in one particular department. Figure 7.5 shows these
subdivisions.

state

university

college

department

FIGURE 7.5 Visualization of a four-dimensional array

D E S I G N F O C U S

Two-dimensional arrays are fairly common and useful. However, care should be
taken when deciding to create multidimensional arrays in a program. When deal-
ing with large amounts of data that are managed at multiple levels, additional
information and the methods needed to manage that information will probably be
required. It is far more likely, for instance, that in the student example each state
would be represented by an object, which might contain, among other things, an
array to store information about each university, and so on.

KEY CONCEPT
Using an array with more than two
dimensions is rare in an object-
oriented system.

There is one other important characteristic of Java arrays to con-
sider. As we established previously, Java does not directly support
multidimensional arrays. Instead, they are represented as arrays of
references to array objects. Those arrays could themselves contain
references to other arrays. This layering continues for as many di-
mensions as required. Because of this technique for representing each dimension,
the arrays in any one dimension could be of different lengths. These are sometimes
called ragged arrays. For example, the numbers of elements in different rows of
a two-dimensional array may not be the same. In such situations, care must be
taken to make sure the arrays are managed appropriately.

M07_LEWI5976_05_SE_C07.indd 345 08/02/19 2:42 AM

346 CHAPTER 7 Arrays

7.7 Arrays and GUIs

Let’s look at some examples that have a graphical user interface (GUI) and also
use arrays. GUIs are discussed in Chapter 6.

An Array of Color Objects
The program in Listing 7.15 allows the user to click the mouse pointer anywhere
in the window to make a colored dot appear. A count of the number of dots is dis-
played in the upper left corner of the window. If the user double clicks anywhere
in the window, the dots are cleared and the count is reset.

L I S T I N G 7 . 1 5

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.input.MouseEvent;
import javafx.scene.paint.Color;
import javafx.scene.shape.Circle;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.stage.Stage;

//**
// Dots.java Java Foundations
//
// Demonstrates the use of an array of Color objects and the capture of
// a double mouse click.
//**

public class Dots extends Application
{
 private Color[] colorList = {Color.RED, Color.CYAN, Color.MAGENTA,
 Color.YELLOW, Color.LIME, Color.WHITE};

 private int colorIndex = 0;
 private int count = 0;
 private Text countText;
 private Group root;

 //--
 // Displays a scene on which the user can add colored dots with
 // mouse clicks.
 //--

M07_LEWI5976_05_SE_C07.indd 346 08/02/19 2:42 AM

 7.7 Arrays and GUIs 347

L I S T I N G 7 . 1 5 continued

 public void start(Stage primaryStage)
 {
 countText = new Text(20, 30, "Count: 0");
 countText.setFont(new Font(18));
 countText.setFill(Color.WHITE);

 root = new Group(countText);

 Scene scene = new Scene(root, 400, 300, Color.BLACK);
 scene.setOnMouseClicked(this::processMouseClick);

 primaryStage.setTitle("Dots");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 //--
 // Process a mouse click by adding a circle to that location. Circle
 // colors rotate through a set list of colors. A double click clears
 // the dots and resets the counter.
 //--
 public void processMouseClick(MouseEvent event)
 {
 if (event.getClickCount() == 2) // double click
 {
 count = 0;
 colorIndex = 0;
 root.getChildren().clear();
 countText.setText("Count: 0");
 root.getChildren().add(countText);
 }
 else
 {
 Circle circle = new Circle(event.getX(), event.getY(), 10);
 circle.setFill(colorList[colorIndex]);
 root.getChildren().add(circle);

 colorIndex = (colorIndex + 1) % colorList.length;

 count++;
 countText.setText("Count: " + count);
 }
 }
}

M07_LEWI5976_05_SE_C07.indd 347 08/02/19 2:42 AM

348 CHAPTER 7 Arrays

The Dots example is set up to handle mouse click events. Whenever a mouse
click event occurs, the event handler method is called. The event handler method,
which we happened to call processMouseClick, is specified in the start method
using a call to the setOnMouseClick method.

The first thing the event handling method does is check for a double click (two
clicks that occur very quickly in the same location) by calling the getClickCount
method of the event object. If a double click is detected, all nodes in the scene are
cleared, and then the count text (with a count of 0) is added again to the scene.

If it is not a double click, the else portion of the if statement is executed, which
creates and adds a colored dot to the scene at the location where the mouse click
occurred. The getX and getY methods of the event object are used to get the co-
ordinates of the mouse click.

The colors of the dots added to the scene rotate among a set of six colors stored
in an array called colorList, created at the class level using an initialization list.
The first dot added is colored red. The second is cyan, following the order of the

L I S T I N G 7 . 1 5 continued

 See a full-color version of this
figure at the end of the text.

D I S P L A Y

M07_LEWI5976_05_SE_C07.indd 348 08/02/19 2:42 AM

 7.7 Arrays and GUIs 349

colors in the array. The third is magenta, and so on. After a white dot is added,
the cycle begins again with red.

The rotating colors are controlled by an integer variable called colorIndex. It
represents the array index of the color of the next dot to be added. After a colored
dot is added, the colorIndex value is incremented so that the next dot will be the
next color. The increment is done with the following line of code:

colorIndex = (colorIndex + 1) % colorList.length;

That line of code not only increments the value in colorIndex, it uses
the remainder operator (%) to wrap the index back to the beginning of the array
when it reaches the end. Not that it is dividing the updated index by the length
of the colorList array (which is 6). If the index is incremented from 2 to 3,
for instance, the remainder operator returns 3. If the index is incremented from
5 to 6, however, the remainder operator returns 0 and the cycle begins again.

Choice Boxes
A choice box is a JavaFX GUI control that allows the user to select
one of several options from a drop-down menu. The current selec-
tion is displayed in the choice box. An array is often used with a
choice box to provide the set of options.

The JukeBox program shown in Listing 7.16 allows the user to choose a song
to play using a choice box. The Play button begins playing the current selection
from the beginning, and the Stop button stops the current song. Selecting a new
song while one is playing also stops the current song.

L I S T I N G 7 . 1 6

import java.io.File;
import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.geometry.Insets;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.control.ChoiceBox;
import javafx.scene.control.Label;
import javafx.scene.layout.HBox;
import javafx.scene.layout.VBox;
import javafx.scene.media.AudioClip;
import javafx.stage.Stage;

KEY CONCEPT
A choice box provides a drop-down
menu of options to the user.

M07_LEWI5976_05_SE_C07.indd 349 08/02/19 2:42 AM

350 CHAPTER 7 Arrays

//**
// JukeBox.java Java Foundations
//
// Demonstrates the use of a combo box and audio clips.
//**
public class JukeBox extends Application
{
 private ChoiceBox<String> choice;
 private AudioClip[] tunes;
 private AudioClip current;
 private Button playButton, stopButton;

 //--
 // Presents an interface that allows the user to select and play
 // a tune from a drop down box.
 //--
 public void start(Stage primaryStage)
 {
 String[] names = {"Western Beat", "Classical Melody",
 "Jeopardy Theme", "Eighties Jam", "New Age Rythm",
 "Lullaby", "Alfred Hitchcock's Theme"};

 File[] audioFiles = {new File("westernBeat.wav"),
 new File("classical.wav"), new File("jeopardy.mp3"),
 new File("eightiesJam.wav"), new File("newAgeRythm.wav"),
 new File("lullaby.mp3"), new File("hitchcock.wav")};

 tunes = new AudioClip[audioFiles.length];
 for (int i = 0; i < audioFiles.length; i++)
 tunes[i] = new AudioClip(audioFiles[i].toURI().toString());

 current = tunes[0];

 Label label = new Label("Select a tune:");

 choice = new ChoiceBox<String>();
 choice.getItems().addAll(names);
 choice.getSelectionModel().selectFirst();
 choice.setOnAction(this::processComboChange);

 playButton = new Button("Play");
 stopButton = new Button("Stop");
 HBox buttons = new HBox(playButton, stopButton);
 buttons.setSpacing(10);

L I S T I N G 7 . 1 6 continued

M07_LEWI5976_05_SE_C07.indd 350 08/02/19 2:42 AM

 7.7 Arrays and GUIs 351

 buttons.setPadding(new Insets(15, 0, 0, 0));
 buttons.setAlignment(Pos.CENTER);

 playButton.setOnAction(this::processButtonPush);
 stopButton.setOnAction(this::processButtonPush);

 VBox root = new VBox(label, choice, buttons);
 root.setPadding(new Insets(15, 15, 15, 25));
 root.setSpacing(10);
 root.setStyle("-fx-background-color: skyblue");

 Scene scene = new Scene(root, 300, 150);

 primaryStage.setTitle("Java Juke Box");
 primaryStage.setScene(scene);
 primaryStage.show();
 }

 //--
 // When a combo box selection is made, stops the current clip (if
 // one was playing) and sets the current tune.
 //--
 public void processComboChange(ActionEvent event)
 {
 current.stop();
 current = tunes[choice.getSelectionModel().getSelectedIndex()];
 }

 //--
 // Handles the play and stop buttons. Stops the current clip in
 // either case. If the play button was pressed, (re)starts the
 // current clip.
 //--
 public void processButtonPush(ActionEvent event)
 {
 current.stop();

 if (event.getSource() == playButton)
 current.play();
 }
}

L I S T I N G 7 . 1 6 continued

M07_LEWI5976_05_SE_C07.indd 351 08/02/19 2:42 AM

352 CHAPTER 7 Arrays

There are several arrays used in the JukeBox program. First, an array of strings
called names is used to store the names of the song options displayed in the choice
box. After the ChoiceBox object is created, the array of names is added to the list
of items displayed.

An array of File objects is used to represent the audio files of individual songs.
They are then used to create an array of AudioClip objects. The AudioClip class
is part of the javafx.scene.media package and provides basic playback control
of an uncompressed audio file. For more complex control, longer audio clips, or
compressed file formats, use Media objects.

There are two event handler methods in the JukeBox program. One re-
sponds to the action event that occurs when an option is selected in the
choice box. The other responds to the action event that is generated by either
button.

When the user selects a new option in the choice box, the current song is
stopped if one is playing; if the current song is not playing, the call to the stop
method does nothing. Then the variable that represents the currently selected song
is set to the appropriate AudioClip object from the tunes array. The index is
obtained by calling the getSelectedIndex method of the underlying selection
model used by the choice box.

When either the Play or Stop button is pushed, the current song playing is
stopped (if there is one). Then, if it is the Play button that was pushed, the current
song starts from the beginning.

D I S P L A Y

L I S T I N G 7 . 1 6 continued

 See a full-color version of
these figures at the end of the text.

M07_LEWI5976_05_SE_C07.indd 352 08/02/19 2:42 AM

 7.7 Arrays and GUIs 353

It should be noted that a choice box can be either editable or uneditable. By
default, a choice box is uneditable. Changing the option in an uneditable choice
box can only be accomplished by selecting an item from the list. If the choice box
is editable, the user can either select an item from the list or type a particular value
into the choice box (as you would a text field). For the JukeBox program, an un-
editable choice box was appropriate.

A combo box is another control that is similar in behavior to a choice box.
The differences are subtle and have to do with the way the options are displayed.
Internally, a ChoiceBox uses menus, whereas a ComboBox uses a ListView. An
implication of that is that you can only select one option in a choice box but
you can set up the selection model of a combo box to allow multiple selections.
Choice boxes are well-suited to a small number of choices. If the number of op-
tions you’re presenting is very large, consider using a combo box.

M07_LEWI5976_05_SE_C07.indd 353 08/02/19 2:42 AM

354 CHAPTER 7 Arrays

Summary of Key Concepts

■■ An array of size N is indexed from 0 to N–1.

■■ In Java, an array is an object that must be instantiated.

■■ Bounds checking ensures that an index used to refer to an array element is in
range.

■■ An initializer list can be used, instead of the new operator, to instantiate an
array object.

■■ An entire array can be passed as a parameter, making the formal parameter
an alias of the original.

■■ Instantiating an array of objects reserves room to store references only. The
objects that are stored in each element must be instantiated separately.

■■ Command-line arguments are stored in an array of String objects and are
passed to the main method.

■■ A Java method can be defined to accept a varying number of parameters.

■■ Using an array with more than two dimensions is rare in an object-oriented
system.

■■ A choice box provides a drop-down menu of options to the user.

Summary of Terms
array A programming language construct used to organize objects into an
indexed list.

array element A value stored in an array.

bounds checking The process that ensures that an index is in the valid range
for the array being referenced. Java performs automatic bounds checking.

command-line argument Data provided on the command line when a program
is executed. Java stores these in the String array passed into the main method.

element type The type of data that can be stored as an element in a particular
array.

index An integer used to specify a specific element in an array.

initializer list A list of values delimited by braces and separated by commas,
used to initialize the values stored in an array.

multidimensional array An array with more than one index dimension.

off-by-one error An error in which an array index does not process the cor-
rect range of values, usually resulting in one less element being processed or
an attempt being made to process one more element.

M07_LEWI5976_05_SE_C07.indd 354 08/02/19 2:42 AM

 Exercises 355

one-dimensional array An array with one indexed dimension; a simple list
of values.

two-dimensional array An array with two indexed dimensions; it can be
thought of as a table with rows and columns.

variable-length parameter list A parameter list in a method header that allows
a variable number of parameters to be passed in, which are stored in an array
for processing.

Self-Review Questions
SR 7.1 What is an array?

SR 7.2 How is each element of an array referenced?

SR 7.3 What is an array’s element type?

SR 7.4 Explain the concept of array bounds checking. What happens
when a Java array is indexed with an invalid value?

SR 7.5 Describe the process of creating an array. When is memory
allocated for the array?

SR 7.6 What is an off-by-one error? How is it related to arrays?

SR 7.7 What does an array initializer list accomplish?

SR 7.8 Can an entire array be passed as a parameter? How is this
accomplished?

SR 7.9 How is an array of objects created?

SR 7.10 What is a command-line argument?

SR 7.11 How can Java methods have variable-length parameter lists?

SR 7.12 How are multidimensional arrays implemented in Java?

Exercises
EX 7.1 Which of the following are valid declarations? Which instantiate

an array object? Explain your answers.

 int primes = {2, 3, 4, 5, 7, 11};
 float elapsedTimes[] = {11.47, 12.04, 11.72, 13.88};
 int[] scores = int[30];
 int[] primes = new {2, 3, 5, 7, 11};
 int[] scores = new int[30];
 char grades[] = {'a', 'b', 'c', 'd', 'f'};
 char[] grades = new char[];

M07_LEWI5976_05_SE_C07.indd 355 08/02/19 2:42 AM

356 CHAPTER 7 Arrays

EX 7.2 Describe five programs that would be difficult to implement with-
out using arrays.

EX 7.3 Describe what problem occurs in the following code. What modi-
fications should be made to it to eliminate the problem?

 int[] numbers = {3, 2, 3, 6, 9, 10, 12, 32, 3, 12, 6};
 for (int count = 1; count <= numbers.length; count++)
 System.out.println(numbers[count]);

EX 7.4 Write an array declaration and any necessary supporting classes
to represent the following statements:

a. Students’ names for a class of 25 students
b. Students’ test grades for a class of 40 students
c. Credit card transactions that contain a transaction number,

a merchant name, and a charge
d. Students’ names for a class and homework grades for each student
e. For each employee of the L&L International Corporation: the

employee number, hire date, and the amounts of the last five
raises

EX 7.5 Write code that sets each element of an array called nums to the
value of the constant INITIAL.

EX 7.6 Write code that prints the values stored in an array called names
backwards.

EX 7.7 Write code that sets each element of a boolean array called
flags to alternating values (true at index 0, false at index 1,
and so on).

EX 7.8 Write a method called sumArray that accepts an array of floating
point values and returns the sum of the values stored in the array.

EX 7.9 Write a method called switchThem that accepts two integer
arrays as parameters and switches the contents of the arrays.
Take into account that the arrays may be of different sizes.

Programming Projects
PP 7.1 Design and implement an application that reads an arbitrary

number of integers that are in the range 0 to 50 inclusive and
counts how many occurrences of each are entered. After all input
has been processed, print all of the values (with the number of
occurrences) that were entered one or more times.

M07_LEWI5976_05_SE_C07.indd 356 08/02/19 2:42 AM

 Programming Projects 357

PP 7.2 Modify the program from Programming Project 7.1 so that it
works for numbers in the range -25 to 25.

PP 7.3 Design and implement an application that creates a histogram
that allows you to visually inspect the frequency distribution of
a set of values. The program should read in an arbitrary number
of integers that are in the range 1 to 100 inclusive; then it should
produce a chart similar to the following one that indicates how
many input values fell in the range 1 to 10, 11 to 20, and so on.
Print one asterisk for each value entered.

 1 - 10 | *****
 11 - 20 | **
 21 - 30 | *******************
 31 - 40 |
 41 - 50 | ***
 51 - 60 | ********
 61 - 70 | **
 71 - 80 | *****
 81 - 90 | *******
 91 – 100 | *********

PP 7.4 The lines in the histogram in Programming Project 7.3 will be too
long if a large number of values are entered. Modify the program
so that it prints an asterisk for every five values in each category.
Ignore leftovers. For example, if a category had 17 values, print
three asterisks in that row. If a category had 4 values, do not
print any asterisks in that row.

PP 7.5 Design and implement an application that computes and prints the
mean and standard deviation of a list of integers x1 through xn.
Assume that there will be no more than 50 input values. Compute
both the mean and the standard deviation as floating point values,
using the following formulas.

mean =
a
n

i=1
Xi

n

standard deviation = H a
n

i=1
(Xi - mean)2

n - 1

M07_LEWI5976_05_SE_C07.indd 357 08/02/19 2:42 AM

358 CHAPTER 7 Arrays

PP 7.6 The L&L Bank can handle up to 30 customers who have savings
accounts. Design and implement a program that manages the ac-
counts. Keep track of key information, and allow each customer
to make deposits and withdrawals. Produce appropriate error
messages for invalid transactions. Hint: You may want to base
your accounts on the Account class from Chapter 5. Also provide
a method to add 3 percent interest to all accounts whenever the
method is invoked.

PP 7.7 The programming projects of Chapter 5 discussed a Card class
that represents a standard playing card. Create a class called
DeckOfCards that stores 52 objects of the Card class. Include
methods to shuffle the deck, deal a card, and report the number
of cards left in the deck. The shuffle method should assume
a full deck. Create a driver class with a main method that deals
each card from a shuffled deck, printing each card as it is dealt.

PP 7.8 Design and implement an application that reads a sequence of up
to 25 pairs of names and postal (ZIP) codes for individuals. Store
the data in an object designed to store a first name (string), last
name (string), and postal code (integer). Assume that each line of
input will contain two strings followed by an integer value, each
separated by a tab character. Then, after the input has been read
in, print the list in an appropriate format to the screen.

PP 7.9 Modify the program you created in Programming Project 7.8 to
support the storing of additional user information: street address
(string), city (string), state (string), and 10-digit phone number
(long integer, contains area code and does not include special
characters such as (,), or -).

PP 7.10 Define a class called Quiz that manages a set of up to 25
Question objects. Define the add method of the main Quiz class
to add a question to a quiz. Define the giveQuiz method of the
Quiz class to present each question in turn to the user, accept an
answer for each one, and keep track of the results. Define a class
called QuizTime with a main method that populates a quiz, pres-
ents it, and prints the final results.

PP 7.11 Modify your answer to Programming Project 7.10 so that the com-
plexity level of the questions given in the quiz is taken into account.
Overload the giveQuiz method so that it accepts two integer pa-
rameters that specify the minimum and maximum complexity levels
for the quiz questions and presents questions in that complexity
range only. Modify the main method to demonstrate this feature.

M07_LEWI5976_05_SE_C07.indd 358 08/02/19 2:42 AM

Answers to Self-Review Questions
SRA 7.1 An array is an object that stores a list of values. The entire list can

be referenced by its name, and each element in the list can be ref-
erenced individually based on its position in the array.

SRA 7.2 Each element in an array can be referenced by its numeric position,
called an index, in the array. In Java, all array indexes begin at
zero. Square brackets are used to specify the index. For example,
nums[5] refers to the sixth element in the array called nums.

SRA 7.3 An array’s element type is the type of values that the array can
hold. All values in a particular array have the same type, or are
at least of compatible types. Thus we might have an array of in-
tegers, or an array of boolean values, or an array of Dog objects,
and so on.

SRA 7.4 Whenever a reference is made to a particular array element, the
index operator (the brackets that enclose the subscript) ensures
that the value of the index is greater than or equal to zero and
less than the size of the array. If it is not within the valid range,
an ArrayIndexOutOfBoundsException is thrown.

SRA 7.5 Arrays are objects. Therefore, as with all objects, to create an
array we first create a reference to the array (its name). We then
instantiate the array itself, which reserves memory space to store
the array elements. The only difference between a regular object
instantiation and an array instantiation is the bracket syntax.

SRA 7.6 An off-by-one error occurs when a program’s logic exceeds the
boundary of an array (or similar structure) by one. These errors
include forgetting to process a boundary element, as well as at-
tempting to process a nonexistent element. Array processing is
susceptible to off-by-one errors because their indexes begin at
zero and run to one less than the size of the array.

SRA 7.7 An array initializer list is used in the declaration of an array to set
up the initial values of its elements. An initializer list instantiates
the array object, so the new operator is not needed.

SRA 7.8 An entire array can be passed as a parameter. Specifically, because
an array is an object, a reference to the array is passed to the
method. Any changes made to the array elements will be reflected
outside of the method.

SRA 7.9 An array of objects is really an array of object references. The
array itself must be instantiated, and the objects that are stored in
the array must be created separately.

 Answers to Self-Review Questions 359

M07_LEWI5976_05_SE_C07.indd 359 08/02/19 2:42 AM

360 CHAPTER 7 Arrays

SRA 7.10 A command-line argument consists of data included on the
command line when the interpreter is invoked to execute the
program. Command-line arguments are another way to provide
input to a program. They are accessed using the array of strings
that is passed into the main method as a parameter.

SRA 7.11 A Java method can be defined to accept a variable number of
parameters by using an ellipsis (. . .) in the formal parameter list.
When several values are passed to the method, they are automati-
cally converted to an array. This allows the method to be written
in terms of array processing without forcing the calling method to
create the array.

SRA 7.12 A multidimensional array is implemented in Java as an array of
array objects. The arrays that are elements of the outer array
could also contain arrays as elements. This nesting process could
continue for as many levels as needed.

M07_LEWI5976_05_SE_C07.indd 360 08/02/19 2:42 AM

361

8
This chapter explains inheritance, a fundamental tech-

nique for organizing and creating classes. It is a simple but

powerful idea that influences the way we design object-

oriented software and enhances our ability to reuse classes

in other situations and programs. In this chapter we explore

the technique for creating subclasses and class hierarchies,

and we discuss a technique for overriding the definition of

an inherited method. We examine the protected modifier

and discuss the effect that all visibility modifiers have on

inherited attributes and methods.

C H A P T E R O B J E C T I V E S
■■ Explore the derivation of new classes from existing ones.

■■ Define the concept and purpose of method overriding.

■■ Discuss the design of class hierarchies.

■■ Examine the purpose and use of abstract classes.

■■ Discuss the issue of visibility as it relates to inheritance.

■■ Discuss object-oriented design in the context of inheritance.

Inheritance 8

M08_LEWI5976_05_SE_C08.indd 361 08/02/19 2:44 AM

362 CHAPTER 8 Inheritance

8.1 Creating Subclasses

In our introduction to object-oriented concepts in Chapter 1 we presented the analogy
that a class is to an object what a blueprint is to a house. In subsequent chapters
we reinforced that idea, writing classes that define a set of similar objects. A class
establishes the characteristics and behaviors of an object but reserves no memory
space for variables (unless those variables are declared as static). Classes are the
plan, and objects are the embodiment of that plan.

Many houses can be created from the same blueprint. They are essentially the
same house in different locations with different people living in them. Now sup-
pose you want a house that is similar to another but has some different or ad-
ditional features. You want to start with the same basic blueprint but modify it
to suit new, slightly different needs. Many housing developments are created this
way. The houses in the development have the same core layout, but they have
unique features. For instance, they might all be split-level homes with the same
basic room configuration, but some have a fireplace or full basement, whereas
others do not, and some have an upgraded gourmet kitchen instead of the stan-
dard version.

It’s likely that the housing developer commissioned a master architect to cre-
ate a single blueprint to establish the basic design of all houses in the develop-
ment and then a series of new blueprints that include variations designed to
appeal to different buyers. The act of creating the series of blueprints was simpli-
fied because they all begin with the same underlying structure, while the varia-
tions give them unique characteristics that may be important to the prospective
owners.

Creating a new blueprint that is based on an existing blueprint
is analogous to the object-oriented concept of inheritance, which is
the process in which a new class is derived from an existing one.
Inheritance is a powerful software development technique and a de-
fining characteristic of object-oriented programming.

Via inheritance, the new class automatically contains the vari-
ables and methods in the original class. Then, to tailor the class as needed, the
programmer can add new variables and methods to the derived class or modify
the inherited ones.

In general, creating new classes via inheritance is faster, easier,
and cheaper than writing them from scratch. Inheritance is one way
to support the idea of software reuse. By using existing software
components to create new ones, we capitalize on the effort that went
into the design, implementation, and testing of the existing software.

KEY CONCEPT
One purpose of inheritance is to reuse
existing software.

KEY CONCEPT
Inheritance is the process of deriving a
new class from an existing one.

M08_LEWI5976_05_SE_C08.indd 362 08/02/19 2:44 AM

 8.1 Creating Subclasses 363

Keep in mind that the word class comes from the idea of classifying groups
of objects with similar characteristics. Classification schemes often use levels of
classes that are related to each other. For example, all mammals share certain
characteristics, such as being warm-blooded. Now consider a subset of mammals,
such as horses. All horses are mammals and have all of the characteristics of mam-
mals, but they also have unique features that make them different from other
mammals, such as dogs.

If we translate this idea into software terms, an existing class called Mammal
would have certain variables and methods that describe the state and behavior of
mammals. A Horse class could be derived from the existing Mammal class, auto-
matically inheriting the variables and methods contained in Mammal. The Horse
class can refer to the inherited variables and methods as if they had been declared
locally in that class. New variables and methods can then be added to the derived
class to distinguish a horse from other mammals.

The original class that is used to derive a new one is called the parent class,
superclass, or base class. The derived class is called a child class, or subclass. In
UML, inheritance is represented by an arrow with an open arrowhead pointing
from the child class to the parent, as shown in Figure 8.1.

The process of inheritance should establish an is-a relationship between two
classes. That is, the child class should be a more specific version of the parent. For
example, a horse is a mammal. Not all mammals are horses, but all horses are
mammals. For any class X that is derived from class Y, you should
be able to say that “X is a Y.” If such a statement doesn’t make
sense, then that relationship is probably not an appropriate use of
inheritance.

Let’s look at an example. The Words program shown in Listing 8.1
instantiates an object of class Dictionary, which is derived from a class
called Book. In the main method, three methods are invoked through the Dictionary
object: two that were declared locally in the Dictionary class and one that was
inherited from the Book class.

KEY CONCEPT
Inheritance creates an is-a relationship
between the parent and child classes.

VideoNote
Overview of
inheritance

Parent Mammal

Child Horse

FIGURE 8.1 Inheritance relationships in UML

M08_LEWI5976_05_SE_C08.indd 363 08/02/19 2:44 AM

364 CHAPTER 8 Inheritance

Java uses the reserved word extends to indicate that a new class is being de-
rived from an existing class. The Book class (shown in Listing 8.2) is used to de-
rive the Dictionary class (shown in Listing 8.3 on page 366) simply by using
the extends clause in the header of Dictionary. The Dictionary class au-
tomatically inherits the definition of the setPages and getPages methods, as
well as the pages variable. It is as if those methods and the pages variable were

L I S T I N G 8 . 1

//**
// Words.java Java Foundations
//
// Demonstrates the use of an inherited method.
//**

public class Words
{
 //---
 // Instantiates a derived class and invokes its inherited and
 // local methods.
 //---
 public static void main(String[] args)
 {
 Dictionary webster = new Dictionary();

 System.out.println("Number of pages: " + webster.getPages());

 System.out.println("Number of definitions: " +
 webster.getDefinitions());

 System.out.println("Definitions per page: " +
 webster.computeRatio());
 }
}

O U T P U T

Number of pages: 1500
Number of definitions: 52500
Definitions per page: 35.0

M08_LEWI5976_05_SE_C08.indd 364 08/02/19 2:44 AM

 8.1 Creating Subclasses 365

declared inside the Dictionary class. Note that in the Dictionary class, the
computeRatio method explicitly references the pages variable, even though that
variable is declared in the Book class.

Also note that although the Book class is needed to create the definition of
Dictionary, no Book object is ever instantiated in the program. An instance of a
child class does not rely on an instance of the parent class.

Inheritance is a one-way street. The Book class cannot use variables or methods
that are declared explicitly in the Dictionary class. For instance, if we created an

L I S T I N G 8 . 2

//**
// Book.java Java Foundations
//
// Represents a book. Used as the parent of a derived class to
// demonstrate inheritance.
//**

public class Book
{
 protected int pages = 1500;

 //---
 // Pages mutator.
 //---
 public void setPages(int numPages)
 {
 pages = numPages;
 }

 //---
 // Pages accessor.
 //---
 public int getPages()
 {
 return pages;
 }
}

M08_LEWI5976_05_SE_C08.indd 365 08/02/19 2:44 AM

366 CHAPTER 8 Inheritance

object from the Book class, it could not be used to invoke the setDefinitions
method. This restriction makes sense because a child class is a more specific ver-
sion of the parent class. A dictionary has pages because all books have pages, but
even though a dictionary has definitions, not all books do.

L I S T I N G 8 . 3

//**
// Dictionary.java Java Foundations
//
// Represents a dictionary, which is a book. Used to demonstrate
// inheritance.
//**

public class Dictionary extends Book
{
 private int definitions = 52500;

 //---
 // Computes a value using both local and inherited values.
 //---
 public double computeRatio()
 {
 return definitions/(double)pages;
 }

 //---
 // Definitions mutator.
 //---
 public void setDefinitions(int numDefinitions)
 {
 definitions = numDefinitions;
 }

 //---
 // Definitions accessor.
 //---
 public int getDefinitions()
 {
 return definitions;
 }
}

M08_LEWI5976_05_SE_C08.indd 366 08/02/19 2:44 AM

 8.1 Creating Subclasses 367

Figure 8.2 shows the inheritance relationship between the Book and Dictionary
classes.

The protected Modifier
As we’ve seen, visibility modifiers are used to control access to the members of a
class. Visibility plays an important role in the process of inheritance as well. Any
public method or variable in a parent class can be explicitly referenced by name in

+ setPages(numPages : int) : void
+ getPages() : int

pages : int

+ main (args : String[]) : void

Words

+ computeRatio() : double
+ setDefinitions(numDefinitions : int) : void
+ getDefinitions() : int

– definition : int

Dictionary

Book

FIGURE 8.2 A UML class diagram for the Words program

Deriving a Class

public class Surgeon extends Doctor

{

 ...

}

subclass

Java keyword

superclass

M08_LEWI5976_05_SE_C08.indd 367 08/02/19 2:44 AM

368 CHAPTER 8 Inheritance

the child class and through objects of that child class. On the other hand, private
methods and variables of the parent class cannot be referenced in the child class or
through an object of the child class.

This situation causes a dilemma. If we declare a variable with public visibility
so that a derived class can reference it, we violate the principle of encapsulation.

Therefore, Java provides a third visibility modifier: protected. Note
that in the Words example, the variable pages is declared with pro-
tected visibility in the Book class. When a variable or method is de-
clared with protected visibility, a derived class can reference it. And
protected visibility allows the class to retain some encapsulation prop-
erties. The encapsulation with protected visibility is not as tight as it

would be if the variable or method were declared private, but it is better than if it
were declared public. Specifically, a variable or method declared with protected vis-
ibility may be accessed by any class in the same package. The relationships among
all Java modifiers are explained completely in Appendix E.

In a UML diagram, protected visibility can be indicated by preceding the pro-
tected member with a hash mark (#). The pages variable of the Book class has this
annotation in Figure 8.2.

Each variable or method retains the effect of its original visibility modifier. For
example, the setPages method is still considered to be public in its inherited form
in the Dictionary class.

Let’s be clear about our terms. All methods and variables, even those declared
with private visibility, are inherited by the child class. That is, their definitions
exist, and memory space is reserved for the variables. It’s just that they can’t be
referenced by name. This issue is explored in more detail in Section 8.4.

Constructors are not inherited. Constructors are special methods that are used
to set up a particular type of object, so it doesn’t make sense for a class called
Dictionary to have a constructor called Book. But you can imagine that a child
class may want to refer to the constructor of the parent class, which is one of the
reasons for the super reference, described next.

The super Reference
The reserved word super can be used in a class to refer to its parent class. Using
the super reference, we can access a parent’s members. Like the this reference,
what the word super refers to depends on the class in which it is used.

A common use of the super reference is to invoke a parent’s con-
structor. Let’s look at an example. Listing 8.4 shows a modified ver-
sion of the Words program, in which we use a class called Book2
(shown in Listing 8.5 on page 370) as the parent of the derived class

KEY CONCEPT
Protected visibility provides the best
possible encapsulation that permits
inheritance.

KEY CONCEPT
A parent’s constructor can be invoked
using the super reference.

M08_LEWI5976_05_SE_C08.indd 368 08/02/19 2:44 AM

 8.1 Creating Subclasses 369

Dictionary2 (shown in Listing 8.6 on page 371). However, unlike earlier ver-
sions of these classes, Book2 and Dictionary2 have explicit constructors used to
initialize their instance variables. The output of the Words2 program is the same
as the output of the original Words program.

The Dictionary2 constructor takes two integer values as parameters, rep-
resenting the number of pages and definitions in the book. Because the Book2
class already has a constructor that performs the work to set up the parts of
the dictionary that were inherited, we rely on that constructor to do that work.
However, since the constructor is not inherited, we cannot invoke it directly, and

L I S T I N G 8 . 4

//**
// Words2.java Java Foundations
//
// Demonstrates the use of the super reference.
//**

public class Words2
{
 //---
 // Instantiates a derived class and invokes its inherited and
 // local methods.
 //---
 public static void main(String[] args)
 {
 Dictionary2 webster = new Dictionary2(1500, 52500);

 System.out.println("Number of pages: " + webster.getPages());

 System.out.println("Number of definitions: " +
 webster.getDefinitions());

 System.out.println("Definitions per page: " +
 webster.computeRatio());
 }
}

O U T P U T

 Number of pages: 1500
 Number of definitions: 52500
 Definitions per page: 35.0

M08_LEWI5976_05_SE_C08.indd 369 08/02/19 2:44 AM

370 CHAPTER 8 Inheritance

so we use the super reference to invoke it in the parent class. The Dictionary2
constructor then proceeds to initialize its definitions variable.

In this example, it would have been just as easy to set the pages variable explicitly
in the Dictionary2 constructor instead of using super to call the Book2 construc-
tor. However, it is good practice to let each class “take care of itself.” If we choose

L I S T I N G 8 . 5

//**
// Book2.java Java Foundations
//
// Represents a book. Used as the parent of a derived class to
// demonstrate inheritance and the use of the super reference.
//**

public class Book2
{
 protected int pages;

 //---
 // Constructor: Sets up the book with the specified number of
 // pages.
 //---
 public Book2(int numPages)
 {
 pages = numPages;
 }

 //---
 // Pages mutator.
 //---
 public void setPages(int numPages)
 {
 pages = numPages;
 }

 //---
 // Pages accessor.
 //---
 public int getPages()
 {
 return pages;
 }
}

M08_LEWI5976_05_SE_C08.indd 370 08/02/19 2:44 AM

 8.1 Creating Subclasses 371

L I S T I N G 8 . 6

//**
// Dictionary2.java Java Foundations
//
// Represents a dictionary, which is a book. Used to demonstrate
// the use of the super reference.
//**

public class Dictionary2 extends Book2
{
 private int definitions;

 //---
 // Constructor: Sets up the dictionary with the specified number
 // of pages and definitions.
 //---
 public Dictionary2(int numPages, int numDefinitions)
 {
 super(numPages);

 definitions = numDefinitions;
 }

 //---
 // Computes a value using both local and inherited values.
 //---
 public double computeRatio()
 {
 return definitions/(double)pages;
 }

 //---
 // Definitions mutator.
 //---
 public void setDefinitions(int numDefinitions)
 {
 definitions = numDefinitions;
 }

 //---
 // Definitions accessor.
 //---
 public int getDefinitions()
 {
 return definitions;
 }
}

M08_LEWI5976_05_SE_C08.indd 371 08/02/19 2:44 AM

372 CHAPTER 8 Inheritance

to change the way that the Book2 constructor sets up its pages variable, we also
have to remember to make that change in Dictionary2. When we use the super
reference, a change made in Book2 is automatically reflected in Dictionary2.

A child’s constructor is responsible for calling its parent’s constructor.
Generally, the first line of a constructor should use the super reference call to a
constructor of the parent class. If no such call exists, Java will automatically make
a call to super with no parameters at the beginning of the constructor. This rule
ensures that a parent class initializes its variables before the child class constructor
begins to execute. Using the super reference to invoke a parent’s constructor can
be done only in the child’s constructor, and if included, it must be the first line of
the constructor.

The super reference can also be used to reference other variables and methods
defined in the parent’s class. We use this technique in later sections of this chapter.

Multiple Inheritance
Java’s approach to inheritance is called single inheritance. This term means that
a derived class can have only one parent. Some object-oriented languages allow
a child class to have multiple parents. This approach, which is called multiple in-
heritance, is occasionally useful for describing objects that could share character-
istics of more than one class. For example, suppose we had a class Car and a class
Truck and we wanted to create a new class called PickupTruck. A pickup truck is
somewhat like a car and somewhat like a truck. With single inheritance, we must
decide whether it is better to derive the new class from Car or from Truck. With
multiple inheritance, it can be derived from both, as shown in Figure 8.3.

Multiple inheritance works well in some situations, but it comes with a price.
What if both Truck and Car have methods with the same name? Which method
would PickupTruck inherit? The answer to this question is complex, and it de-
pends on the rules of the language that supports multiple inheritance.

The designers of the Java language explicitly decided not to support multiple
inheritance. Java interfaces, described in Chapter 9, provide the best features of
multiple inheritance, without the added complexity.

Car Truck

PickupTruck

FIGURE 8.3 Multiple inheritance

M08_LEWI5976_05_SE_C08.indd 372 08/02/19 2:44 AM

 8.2 Overriding Methods 373

8.2 Overriding Methods

When a child class defines a method with the same name and signature as
a method in the parent class, we say that the child’s version overrides the
parent’s version in favor of its own. The need for overriding occurs often in
inheritance situations.

The program in Listing 8.7 provides a simple demonstration
of method overriding in Java. The Messages class contains a main
method that instantiates two objects: one from class Thought and one
from class Advice. The Thought class is the parent of the Advice class.

Both the Thought class (shown in Listing 8.8 on page 374) and the
Advice class (shown in Listing 8.9 on page 375) contain a definition

KEY CONCEPT
A child class can override (redefine)
the parent's definition of an inherited
method.

L I S T I N G 8 . 7

//**
// Messages.java Java Foundations
//
// Demonstrates the use of an overridden method.
//**

public class Messages
{
 //---
 // Creates two objects and invokes the message method in each.
 //---
 public static void main(String[] args)
 {
 Thought parked = new Thought();
 Advice dates = new Advice();

 parked.message();

 dates.message(); // overridden
 }
}

O U T P U T

I feel like I'm diagonally parked in a parallel universe.
Warning: Dates in calendar are closer than they appear.
I feel like I'm diagonally parked in a parallel universe.

M08_LEWI5976_05_SE_C08.indd 373 08/02/19 2:44 AM

374 CHAPTER 8 Inheritance

for a method called message. The version of message defined in the Thought
class is inherited by Advice, but Advice overrides it with an alternative version.
The new version of the method prints out an entirely different message and then
invokes the parent’s version of the message method using the super reference.

The object that is used to invoke a method determines which version of the
method is actually executed. When message is invoked using the parked object in
the main method, the Thought version of message is executed. When message is
invoked using the dates object, the Advice version of message is executed.

A method can be defined with the final modifier. A child class cannot over-
ride a final method. This technique is used to ensure that a derived class uses a
particular definition of a method.

Method overriding is a key element in object-oriented design. It allows two
objects that are related by inheritance to use the same naming conventions for
methods that accomplish the same general task in different ways. Overriding be-
comes even more important when it comes to polymorphism, which is discussed
in Chapter 9.

L I S T I N G 8 . 8

//**
// Thought.java Java Foundations
//
// Represents a stray thought. Used as the parent of a derived
// class to demonstrate the use of an overridden method.
//**

public class Thought
{
 //---
 // Prints a message.
 //---
 public void message()
 {
 System.out.println("I feel like I'm diagonally parked in a " +
 "parallel universe.");

 System.out.println();
 }
}

M08_LEWI5976_05_SE_C08.indd 374 08/02/19 2:44 AM

 8.2 Overriding Methods 375

A related problem occurs when you mean to override a method but instead
create an overloaded version in the child class. The method defined in the child
class must match the signature of the method you intend to override. If it doesn’t,
you end up with the inherited method plus an overloaded version of the method
that is newly defined in the child. It’s possible that you may want that situation to
occur. Just be aware of the distinction.

COMMON ERROR

Don’t confuse method overriding with method overloading. Recall from
Chapter 5 that method overloading occurs when two or more methods with
the same name have distinct signatures (parameter lists). With method
overloading, you end up with multiple methods with the same name in
the same class. With method overriding, you are replacing a method in the
child class with a new definition. Method overriding occurs across classes
and affects methods with the same signature.

L I S T I N G 8 . 9

//**
// Advice.java Java Foundations
//
// Represents some thoughtful advice. Used to demonstrate the use
// of an overridden method.
//**

public class Advice extends Thought
{
 //---
 // Prints a message. This method overrides the parent's version.
 //---
 public void message()
 {
 System.out.println("Warning: Dates in calendar are closer " +
 "than they appear.");

 System.out.println();

 super.message(); // explicitly invokes the parent's version
 }
}

M08_LEWI5976_05_SE_C08.indd 375 08/02/19 2:44 AM

376 CHAPTER 8 Inheritance

Animal

ParrotSnake Lizard Horse Bat

BirdReptile Mammal

FIGURE 8.4 A class hierarchy

Shadowing Variables
It is possible, although not recommended, for a child class to declare a variable
with the same name as one that is inherited from the parent. Note the distinction
between redeclaring a variable and simply giving an inherited variable a particu-
lar value. If a variable of the same name is declared in a child class, it is called a
shadow variable. This is similar in concept to the process of overriding methods
but creates confusing subtleties.

Because an inherited variable is already available to the child class, there is
usually no good reason to redeclare it. Someone reading code with a shadowed
variable will find two different declarations that seem to apply to a variable used
in the child class. This confusion causes problems and serves no useful purpose. A
redeclaration of a particular variable name could change its type, but that is usu-
ally unnecessary. In general, shadow variables should be avoided.

8.3 Class Hierarchies

A child class derived from one parent can be the parent of its own child class.
Furthermore, multiple classes can be derived from a single parent. Therefore, in-
heritance relationships often develop into class hierarchies. The diagram in Figure
8.4 shows a class hierarchy that includes the inheritance relationship between the
Mammal and Horse classes, discussed earlier.

There is no limit to the number of children a class can have or to the number of
levels to which a class hierarchy can extend. Two children of the same parent are
called siblings. Although siblings share the characteristics passed on by their common
parent, they are not related by inheritance because one is not used to derive the other.

In class hierarchies, common features should be kept as high in the hierarchy as
reasonably possible. That way, the only characteristics explicitly established in a child
class are those that make the class distinct from its parent and from its siblings. This

M08_LEWI5976_05_SE_C08.indd 376 08/02/19 2:44 AM

 8.3 Class Hierarchies 377

approach maximizes the potential to reuse classes. It also facilitates
maintenance activities, because when changes are made to the parent,
they are automatically reflected in the descendants. Always remember
to maintain the is-a relationship when building class hierarchies.

The inheritance mechanism is transitive. That is, a parent passes
along a trait to a child class, and that child class passes it along to its
children, and so on. An inherited feature might have originated in the
immediate parent or, possibly, several levels higher in a more distant
ancestor class.

There is no single best hierarchy organization for all situations.
The decisions you make when you are designing a class hierarchy
restrict and guide more detailed design decisions and implementation
options, so you must make them carefully.

The class hierarchy shown in Figure 8.4 organizes animals by their major
biological classifications, such as Mammal, Bird, and Reptile. In a different situ-
ation, however, it may be better to organize the same animals in a different way.
For example, as shown in Figure 8.5, the class hierarchy might be organized
around a function of the animals, such as their ability to fly. In this case, a Parrot
class and a Bat class would be siblings derived from a general FlyingAnimal
class. This class hierarchy is just as valid and reasonable as the original one. The
goals of the programs that use the classes are the determining factor, guiding the
programmer to a hierarchy design that is best for the situation.

The Object Class
In Java, all classes are derived ultimately from the Object class. If a class defi-
nition doesn’t use the extends clause to derive itself explicitly from another
class, then that class is automatically derived from the Object class by default.
Therefore, this class definition:

class Thing
{
 // whatever
}

KEY CONCEPT
Common features should be located
as high in a class hierarchy as is
reasonably possible.

KEY CONCEPT
The child of one class can be the
parent of one or more other classes,
creating a class hierarchy.

BatParrot Mosquito

FlyingAnimal

FIGURE 8.5 An alternative hierarchy for organizing animals

M08_LEWI5976_05_SE_C08.indd 377 08/02/19 2:44 AM

378 CHAPTER 8 Inheritance

is equivalent to this one:

class Thing extends Object
{
 // whatever
}

Because all classes are derived from Object, all public methods of Object are
inherited by every Java class. They can be invoked through any object created in

any Java program. The Object class is defined in the java.lang
package of the Java standard class library. Figure 8.6 lists some of
the methods of the Object class.

As it turns out, we’ve been using Object methods quite often in
our examples. The toString method, for instance, is defined in the
Object class, so the toString method can be called on any object.
As we’ve seen several times, when a println method is called with
an object parameter, toString is called to determine what to print.

Thus, when we define a toString method in a class, we are actu-
ally overriding an inherited definition. The definition for toString
that is provided by the Object class returns a string containing the
object’s class name followed by a numeric value that is unique for

that object. Usually, we override the Object version of toString to fit our own
needs. The String class has overridden the toString method so that it returns
its stored string value.

We are also overriding an inherited method when we define an equals method
for a class. As we discussed in Chapter 4, the purpose of the equals method is to
determine whether two objects are equal. The definition of the equals method
provided by the Object class returns true if the two object references actually
refer to the same object (that is, if they are aliases). Classes often override the in-
herited definition of the equals method in favor of a more appropriate definition.

VideoNote
Example using a
class hierarchy

boolean equals (Object obj)

Returns true if this object is an alias of the specified object.

String toString ()

Returns a string representation of this object.

Object clone ()

Creates and returns a copy of this object.

FIGURE 8.6 Some methods of the Object class

KEY CONCEPT
The toString and equals methods
are inherited by every class in every
Java program.

KEY CONCEPT
All Java classes are derived, directly
or indirectly, from the Object class.

M08_LEWI5976_05_SE_C08.indd 378 08/02/19 2:44 AM

 8.3 Class Hierarchies 379

BoatCar Airplane

– speed : int

+ fuelConsumption() : int

Vehicle

FIGURE 8.7 A vehicle class hierarchy

KEY CONCEPT
An abstract class cannot be
instantiated. It represents a concept
on which other classes can build their
definitions.

For instance, the String class overrides equals so that it returns true only if both
strings contain the same characters in the same order.

Abstract Classes
An abstract class represents a generic concept in a class hierarchy. As the name
implies, an abstract class represents an abstract entity that is usually insuffi-
ciently defined to be useful by itself. Instead, an abstract class may contain a
partial description that is inherited by all of its descendants in the class hierar-
chy. An abstract class is just like any other class, except that it may have some
methods that have not been defined yet. Its children, which are more specific,
fill in the gaps.

An abstract class cannot be instantiated and usually contains one
or more abstract methods, which have no definition. That is, there is
no body of code defined for an abstract method, and therefore it can-
not be invoked. An abstract class might also contain methods that
are not abstract, meaning that the method definition is provided as
usual. And an abstract class can contain data declarations as usual.

A class is declared as abstract by including the abstract modifier in the class
header. Any class that contains one or more abstract methods must be declared
as abstract. In abstract classes, the abstract modifier must be applied to each
abstract method. A class declared as abstract does not have to contain abstract
methods, however.

Consider the class hierarchy shown in Figure 8.7. The Vehicle class at the top
of the hierarchy may be too generic for a particular application. Therefore, we
may choose to implement it as an abstract class. In UML diagrams, the names of
abstract classes and abstract methods are shown in italics.

Concepts that apply to all vehicles can be represented in the Vehicle class
and are inherited by its descendants. That way, each of its descendants doesn’t

M08_LEWI5976_05_SE_C08.indd 379 08/02/19 2:44 AM

380 CHAPTER 8 Inheritance

have to define the same concept redundantly (and perhaps inconsistently). For
example, in Figure 8.7 we declare a variable called speed in the Vehicle class,
and all specific vehicles below it in the hierarchy automatically have that vari-
able because of inheritance. Any change we make to the representation of the
speed of a vehicle is automatically reflected in all descendant classes. Similarly,
in Vehicle we declare an abstract method called fuelConsumption, whose
purpose is to calculate how quickly fuel is being consumed by a particular ve-
hicle. The Vehicle class establishes that all vehicles consume fuel and provides
a consistent method interface for computing that value. But implementation of
the fuelConsumption method is left up to each subclass of Vehicle, which
can tailor its method accordingly.

Some concepts don’t apply to all vehicles, so we wouldn’t represent those con-
cepts at the Vehicle level. For instance, we wouldn’t include a variable called

numberOfWheels in the Vehicle class, because not all vehicles have
wheels. The child classes for which wheels are appropriate can add
that concept at the appropriate level in the hierarchy.

There are no restrictions on where in a class hierarchy an abstract
class can be defined. Usually, abstract classes are located at the upper
levels of a class hierarchy. However, it is possible to derive an abstract
class from a nonabstract parent.

Usually, a child of an abstract class will provide a specific definition for an
abstract method inherited from its parent. Note that this is just a specific case of
overriding a method, giving a different definition from the one the parent provides.
If a child of an abstract class does not give a definition for every abstract method
that it inherits from its parent, then the child class is also considered abstract.

It would be a contradiction for an abstract method to be modified as final or
static. Because a final method cannot be overridden in subclasses, an abstract
final method would have no way of being given a definition in subclasses. A static
method can be invoked using the class name without declaring an object of the
class. Because abstract methods have no implementation, an abstract static method
would make no sense.

KEY CONCEPT
A class derived from an abstract
parent must override all of its parent’s
abstract methods, or the derived class
will also be considered abstract.

D E S I G N F O C U S

Choosing which classes and methods to make abstract is an important part of
the design process. You should make such choices only after careful consid-
eration. By using abstract classes wisely, you can create flexible, extensible
software designs.

M08_LEWI5976_05_SE_C08.indd 380 08/02/19 2:44 AM

 8.4 Visibility 381

8.4 Visibility

As we mentioned earlier in this chapter, all variables and methods in a parent
class, even those declared as private, are inherited by child classes. Private mem-
bers exist for an object of a derived class, even though they can’t be referenced
directly. They can, however, be referenced indirectly.

Let’s look at an example that demonstrates this situation. The program shown in
Listing 8.10 contains a main method that instantiates a Pizza object and invokes a
method to determine how many calories the pizza has per serving as a consequence of
its fat content.

The FoodItem class shown in Listing 8.11 represents a generic
type of food. The constructor of FoodItem accepts the number of
grams of fat and the number of servings of that food. The calories
method returns the number of calories due to fat, which the
caloriesPerServing method invokes to help compute the number
of fat calories per serving.

L I S T I N G 8 . 1 0

//**
// FoodAnalyzer.java Java Foundations
//
// Demonstrates indirect access to inherited private members.
//**

public class FoodAnalyzer
{
 //---
 // Instantiates a Pizza object and prints its calories per
 // serving.
 //---
 public static void main(String[] args)
 {
 Pizza special = new Pizza(275);

 System.out.println("Calories per serving: " +
 special.caloriesPerServing());
 }
}

O U T P U T

Calories per serving: 309

KEY CONCEPT
Private members are inherited by the
child class but cannot be referenced
directly by name. They may be used
indirectly, however.

M08_LEWI5976_05_SE_C08.indd 381 08/02/19 2:44 AM

382 CHAPTER 8 Inheritance

L I S T I N G 8 . 1 1

//**
// FoodItem.java Java Foundations
//
// Represents an item of food. Used as the parent of a derived class
// to demonstrate indirect referencing.
//**

public class FoodItem
{
 final private int CALORIES_PER_GRAM = 9;
 private int fatGrams;
 protected int servings;

 //---
 // Sets up this food item with the specified number of fat grams
 // and number of servings.
 //---
 public FoodItem(int numFatGrams, int numServings)
 {
 fatGrams = numFatGrams;
 servings = numServings;
 }

 //---
 // Computes and returns the number of calories in this food item
 // due to fat.
 //---
 private int calories()
 {
 return fatGrams * CALORIES_PER_GRAM;
 }

 //---
 // Computes and returns the number of fat calories per serving.
 //---
 public int caloriesPerServing()
 {
 return (calories() / servings);
 }
}

M08_LEWI5976_05_SE_C08.indd 382 08/02/19 2:44 AM

 8.5 Designing for Inheritance 383

The Pizza class, shown in Listing 8.12, is derived from the FoodItem class,
but it adds no special functionality or data. Its constructor calls the constructor of
FoodItem using the super reference, asserting that there are eight servings per pizza.

The Pizza object called special in the main method is used to invoke the
method caloriesPerServing, which is defined as a public method of FoodItem.
Note that caloriesPerServing calls calories, which is declared with private
visibility. Furthermore, calories references the variable fatGrams and the con-
stant CALORIES_PER_GRAM, which are also declared with private visibility.

Even though the Pizza class cannot explicitly reference calories, fatGrams, or
CALORIES_PER_GRAM, these are available for use indirectly when the Pizza object needs
them. A Pizza object cannot be used to invoke the calories method, but it can call a
method that can be so used. Note that a FoodItem object was never created or needed.

8.5 Designing for Inheritance

As a major characteristic of object-oriented software, inheritance
must be carefully and specifically addressed during software design.
A little thought about inheritance relationships can lead to a far more
elegant design, which pays huge dividends in the long term.

L I S T I N G 8 . 1 2

//**
// Pizza.java Java Foundations
//
// Represents a pizza, which is a food item. Used to demonstrate
// indirect referencing through inheritance.
//**

public class Pizza extends FoodItem
{
 //---
 // Sets up a pizza with the specified amount of fat (assumes
 // eight servings).
 //---
 public Pizza(int fatGrams)
 {
 super(fatGrams, 8);
 }
}

KEY CONCEPT
Software design must carefully and
specifically address inheritance.

M08_LEWI5976_05_SE_C08.indd 383 08/02/19 2:44 AM

384 CHAPTER 8 Inheritance

Throughout this chapter, several design issues have been addressed in the dis-
cussion of the nuts and bolts of inheritance in Java. The following list summarizes
some of the inheritance issues that you should keep in mind during the program
design stage:

■■ Every derivation should be an is-a relationship. The child should be a more
specific version of the parent.

■■ Design a class hierarchy to capitalize on reuse, and on potential reuse in
the future.

■■ As classes and objects are identified in the problem domain, find their com-
monality. Push common features as high in the class hierarchy as appropriate
for consistency and ease of maintenance.

■■ Override methods as appropriate to tailor or change the functionality of a
child.

■■ Add new variables to the child class as needed, but don’t shadow (redefine)
any inherited variables.

■■ Allow each class to manage its own data. Therefore, use the super reference
to invoke a parent’s constructor and to call overridden versions of methods
if appropriate.

■■ Design a class hierarchy to fit the needs of the application, taking into account
how it may be useful in the future.

■■ Even if there are no current uses for them, override general methods such
as toString and equals appropriately in child classes so that the inherited
versions don’t inadvertently cause problems later.

■■ Use abstract classes to specify a common class interface for the concrete
classes lower in the hierarchy.

■■ Use visibility modifiers carefully to provide the needed access in derived
classes without violating encapsulation.

Restricting Inheritance
We’ve seen the final modifier used in declarations to create constants many
times. The other uses of the final modifier involve inheritance and can have a
significant influence on software design. Specifically, the final modifier can be
used to curtail the abilities related to inheritance.

Earlier in this chapter, we mentioned that a method can be de-
clared as final, which means it cannot be overridden in any classes
that extend the one it is in. A final method is often used to insist that
particular functionality be used in all child classes.

KEY CONCEPT
The final modifier can be used to
restrict inheritance.

M08_LEWI5976_05_SE_C08.indd 384 08/02/19 2:44 AM

 8.6 Inheritance in JavaFX 385

The final modifier can also be applied to an entire class. A final class cannot
be extended at all. Consider the following declaration:

public final class Standards
{
 // whatever
}

Given this declaration, the Standards class cannot be used in the extends
clause of another class. The compiler will generate an error message in such a
case. The Standards class can be used normally, but it cannot be the parent of
another class.

Using the final modifier to restrict inheritance abilities is a key design deci-
sion. It should be done in situations where a child class might otherwise be used
to change functionality that you, as the designer, specifically want to be handled
a certain way. This issue comes up again in the discussion of polymorphism in
Chapter 9.

8.6 Inheritance in JavaFX

In Chapter 6, we discussed the analogy in JavaFX of a scene being set on a stage,
and that a Scene object had a root node, to which other nodes in the scene are
added, forming a scene graph. Depending on what they are, those nodes, in turn,
may hold other nodes.

This approach is made possible by the inheritance relationships
among many of the classes in the JavaFX API. Part of that hierarchy,
with the Node class at the top, is shown in Figure 8.8. The Node class
is derived directly from the java.lang.Object class. Not all derived
classes are shown in this hierarchy, but it presents a representative
sample.

Remember that inheritance establishes an is-a relationship, and that relation-
ship applies to all derived classes. For example, a Polygon is a Shape, which is
derived from Node. So, a Polygon is also a Node. In fact, all classes in Figure 8.8
are nodes.

All of the classes that define geometric shapes are derived from the Shape class,
which manages properties common to all shapes, such as their stroke and fill.
Methods such as setFill, setStroke, and setStrokeWidth are defined in the
Shape class and inherited by its children. Note that an ImageView is not a Shape,
but it is a Node. The shape classes are discussed further in Appendix F.

KEY CONCEPT
The classes that define the nodes of
a JavaFX scene are organized into a
class hierarchy.

M08_LEWI5976_05_SE_C08.indd 385 08/02/19 2:44 AM

386 CHAPTER 8 Inheritance

S
ha

pe

Te
xt

Im
ag

eV
ie

w

C
on

tr
ol

R
eg

io
n

N
od

e

P
ar

en
t

G
ro

up

P
an

e

Li
ne

R
ec

ta
ng

le

C
ir

cl
e

El
lip

se

A
rc

P
ol

yg
on

P
ol

yl
in

e

P
at

h

H
B

ox

V
B

ox

Fl
ow

P
an

e

G
ri
dP

an
e

B
or

de
rP

an
e

S
ta

ck
P

an
e

R
ad

io
B

ut
to

n

To
gg

le
B

ut
to

n

C
he

ck
B

ox

B
ut

to
n

B
ut

to
nB

as
e

La
be

l

La
be

le
d

C
ho

ic
eB

ox

Te
xt

In
pu

tC
on

tr
ol

Te
xt

Fi
el

d

C
om

bo
B

ox
B

as
e

C
ol

or
P

ic
ke

r

Te
xt

A
re

a

D
at

eP
ic

ke
r

FI
G

U
RE

 8
.8

Pa

rt
 o

f
th

e
N
o
d
e
 c

la
ss

 h
ie

ra
rc

hy
 in

 t
he

 J
av

aF
X

 A
PI

M08_LEWI5976_05_SE_C08.indd 386 08/02/19 2:44 AM

 8.6 Inheritance in JavaFX 387

Most other nodes we’ve discussed are derived from the Parent class, which
represent nodes that can hold other elements in a scene graph. As we’ve seen, a
Group object can hold nodes, and allows for transformations to be applied to all
group elements at once. A Region is a node that can be styled with Cascading
Style Sheets (CSS) and be visually organized with layout panes. The layout panes
themselves are all derived from the Pane class.

Controls form their own substantial class hierarchy, with various intermediate
classes being used to organize common characteristics as appropriate. For exam-
ple, TextField is derived from TextInputControl, which is a Control.

It is important to understand the difference between the scene graph, formed
by certain nodes being stored in other nodes when displayed, and the inheritance
hierarchy that describes the relationships among node classes. It is the inheritance
hierarchy that determines how scene graphs can be constructed.

For example, a Pane can hold any Node, but only a Parent object can serve as
the root node of a Scene. So, a Circle can be added to a Pane, which can serve
as the root node of a Scene, but a Circle cannot serve as a root node directly.

Consult the JavaFX API online documentation for details about any of these
classes.

M08_LEWI5976_05_SE_C08.indd 387 08/02/19 2:44 AM

Summary of Key Concepts

■■ Inheritance is the process of deriving a new class from an existing one.

■■ One purpose of inheritance is to reuse existing software.

■■ Inheritance creates an is-a relationship between the parent and child classes.

■■ Protected visibility provides the best possible encapsulation that permits
inheritance.

■■ A parent’s constructor can be invoked using the super reference.

■■ A child class can override (redefine) the parent’s definition of an inherited
method.

■■ The child of one class can be the parent of one or more other classes,
creating a class hierarchy.

■■ Common features should be located as high in a class hierarchy as is rea-
sonably possible.

■■ All Java classes are derived, directly or indirectly, from the Object class.

■■ The toString and equals methods are inherited by every class in every
Java program.

■■ An abstract class cannot be instantiated. It represents a concept on which
other classes can build their definitions.

■■ A class derived from an abstract parent must override all of its parent’s
abstract methods, or the derived class will also be considered abstract.

■■ Private members are inherited by the child class but cannot be referenced
directly by name. They may be used indirectly, however.

■■ Software design must carefully and specifically address inheritance.

■■ The final modifier can be used to restrict inheritance.

■■ The classes that define the nodes of a JavaFX scene are organized into a
class hierarchy.

Summary of Terms
abstract class A class used to represent a generic concept in a class hier-
archy. An abstract class cannot be instantiated.

abstract method A method header without a body, used to establish the
existence of an operation before the implementation is available. A class
that contains an abstract method is inherently abstract.

base class A class from which another is derived. Also called a parent
class or superclass.

388 CHAPTER 8 Inheritance

M08_LEWI5976_05_SE_C08.indd 388 08/02/19 2:44 AM

 Self-Review Questions 389

child class A class derived from a parent class. Also called a subclass.

class hierarchy The hierarchy formed by inheritance among multiple
classes.

inheritance The process of deriving one class from another.

is-a relationship The relationship between two classes related by inheritance.
The superclass is-a more specific version of the subclass.

multiple inheritance Inheritance in which a subclass can be derived from
multiple parent classes. Java does not support multiple inheritance.

overriding Redefining a method that has been inherited from a parent
class.

parent class A class from which another is derived. Also called a superclass
or base class.

shadow variable An instance variable defined in a derived class that has the
same name as a variable in the parent class.

single inheritance Inheritance in which a subclass can have only one parent.
Java supports only single inheritance.

subclass class derived from a superclass. Also called a child class.

superclass A class from which another is derived. Also called a parent class
or base class.

Self-Review Questions
SR 8.1 Describe the relationship between a parent class and a child class.

SR 8.2 How does inheritance support software reuse?

SR 8.3 What relationship should every class derivation represent?

SR 8.4 What does the protected modifier accomplish?

SR 8.5 Why is the super reference important to a child class?

SR 8.6 What is the difference between single inheritance and multiple
inheritance?

SR 8.7 Why would a child class override one or more of the methods of
its parent class?

SR 8.8 What is the significance of the Object class?

SR 8.9 What is the role of an abstract class?

SR 8.10 Are all members of a parent class inherited by the child? Explain.

SR 8.11 How can the final modifier be used to restrict inheritance?

 Self-Review Questions 389

M08_LEWI5976_05_SE_C08.indd 389 08/02/19 2:44 AM

390 CHAPTER 8 Inheritance

Exercises
EX 8.1 Draw a UML class diagram showing an inheritance hierarchy

containing classes that represent different types of clocks. Show
the variables and method names for two of these classes.

EX 8.2 Show an alternative diagram for the hierarchy in Exercise 8.1. Explain
why it may be a better or a worse approach than the original.

EX 8.3 Draw a UML class diagram showing an inheritance hierarchy
containing classes that represent different types of cars, organized
first by manufacturer. Show some appropriate variables and
method names for at least two of these classes.

EX 8.4 Show an alternative diagram for the hierarchy in Exercise 8.3 in
which the cars are organized first by type (sports car, sedan, SUV, and
so on). Show some appropriate variables and method names for at
least two of these classes. Compare and contrast the two approaches.

EX 8.5 Draw a UML class diagram showing an inheritance hierarchy
containing classes that represent different types of airplanes.
Show some appropriate variables and method names for at least
two of these classes.

EX 8.6 Draw a UML class diagram showing an inheritance hierarchy
containing classes that represent different types of trees (oak, elm,
and so on). Show some appropriate variables and method names
for at least two of these classes.

EX 8.7 Draw a UML class diagram showing an inheritance hierarchy con-
taining classes that represent different types of payment transac-
tions at a store (cash, credit card, and so on). Show some appropri-
ate variables and method names for at least two of these classes.

EX 8.8 Experiment with a simple derivation relationship between two
classes. Put println statements in constructors of both the parent
class and the child class. Do not explicitly call the constructor of
the parent in the child. What happens? Why? Change the child’s
constructor to explicitly call the constructor of the parent. Now
what happens?

Programming Projects
PP 8.1 Design and implement a class called MonetaryCoin that is derived

from the Coin class presented in Chapter 5. Store a value in the
monetary coin that represents its value, and add a method that
returns its value. Create a driver class to instantiate and compute

390 CHAPTER 8 Inheritance

M08_LEWI5976_05_SE_C08.indd 390 08/02/19 2:44 AM

 Programming Projects 391

the sum of several MonetaryCoin objects. Demonstrate that a
monetary coin inherits its parent’s ability to be flipped.

PP 8.2 Design and implement a set of classes that define the employees
of a hospital: doctor, nurse, administrator, surgeon, receptionist,
janitor, and so on. Include methods in each class that are named
according to the services provided by that person and that print
an appropriate message. Create a driver class to instantiate and
exercise several of the classes.

PP 8.3 Design and implement a set of classes that define various types
of reading material: books, novels, magazines, technical journals,
textbooks, and so on. Include data values that describe various
attributes of the material, such as the number of pages and the
names of the primary characters. Include methods that are named
appropriately for each class and that print an appropriate mes-
sage. Create a driver class to instantiate and exercise several of
the classes.

PP 8.4 Design and implement a set of classes that keep track of various
sports statistics. Have each low-level class represent a specific
sport. Tailor the services of the classes to the sport in question,
and move common attributes to the higher-level classes as appro-
priate. Create a driver class to instantiate and exercise several of
the classes.

PP 8.5 Design and implement a set of classes that keep track of demo-
graphic information about a set of people, such as age, national-
ity, occupation, income, and so on. Design each class to focus
on a particular aspect of data collection. Create a driver class to
instantiate and exercise several of the classes.

PP 8.6 Design and implement a set of classes that define a series of three-
dimensional geometric shapes. For each shape, store fundamental
data about its size, and provide methods to access and modify the
data. In addition, provide appropriate methods to compute each
shape’s circumference, area, and volume. In your design, consider
how shapes are related and thus where inheritance can be imple-
mented. Create a driver class to instantiate several shapes of dif-
fering types and exercise the behavior you provided.

PP 8.7 Design and implement a set of classes that define various types
of electronics equipment (computers, cell phones, pagers, digital
cameras, and so on). Include data values that describe various
attributes of the electronics, such as the weight, cost, power
usage, and name of the manufacturer. Include methods that are

M08_LEWI5976_05_SE_C08.indd 391 08/02/19 2:44 AM

392 CHAPTER 8 Inheritance

named appropriately for each class and that print an appropri-
ate message. Create a driver class to instantiate and exercise
several of the classes.

PP 8.8 Design and implement a set of classes that define various courses
in your curriculum. Include information about each course, such
as its title, number, and description and the department that
teaches the course. Consider the categories of classes that make
up your curriculum when designing your inheritance structure.
Create a driver class to instantiate and exercise several of the
classes.

Answers to Self-Review Questions
SRA 8.1 A child class is derived from a parent class using inheritance. The

methods and variables of the parent class automatically become
a part of the child class, subject to the rules of the visibility modi-
fiers used to declare them.

SRA 8.2 Because a new class can be derived from an existing class, the
characteristics of the parent class can be reused without the
error-prone process of copying and modifying code.

SRA 8.3 Each inheritance derivation should represent an is-a relationship:
the child is-a more specific version of the parent. If this relation-
ship does not hold, then inheritance is being used improperly.

SRA 8.4 The protected modifier establishes a visibility level (such as
public and private) that takes inheritance into account. A
variable or method declared with protected visibility can be refer-
enced by name in the derived class, while retaining some level of
encapsulation. Protected visibility allows access from any class in
the same package.

SRA 8.5 The super reference can be used to call the parent’s constructor,
which cannot be invoked directly by name. It can also be used to
invoke the parent’s version of an overridden method.

SRA 8.6 With single inheritance, a class is derived from only one parent,
whereas with multiple inheritance, a class can be derived from
multiple parents, inheriting the properties of each. The problem
with multiple inheritance is that collisions must be resolved
in the cases when two or more parents contribute an attri-
bute or method with the same name. Java supports only single
inheritance.

M08_LEWI5976_05_SE_C08.indd 392 08/02/19 2:44 AM

SRA 8.7 A child class may prefer its own definition of a method in favor
of the definition provided for it by its parent. In this case, the
child overrides (redefines) the parent’s definition with its own.

SRA 8.8 All classes in Java are derived, directly or indirectly, from the
Object class. Therefore, all public methods of the Object class,
such as equals and toString, are available to every object.

SRA 8.9 An abstract class is a representation of a general concept.
Common characteristics and method signatures can be defined in
an abstract class so that they are inherited by child classes derived
from it.

SRA 8.10 A class member is not inherited if it has private visibility, meaning
that it cannot be referenced by name in the child class. However,
such members do exist for the child and can be referenced
indirectly.

SRA 8.11 The final modifier can be applied to a particular method, which
keeps that method from being overridden in a child class. It can
also be applied to an entire class, which keeps that class from be-
ing extended at all.

 Answers to Self-Review Questions 393

M08_LEWI5976_05_SE_C08.indd 393 08/02/19 2:44 AM

395

9
This chapter discusses polymorphism, another funda-

mental principle of object-oriented software. We first

explore the concept of binding and discuss how it is related

to polymorphism. Then we look at two distinct ways to

implement a polymorphic reference in Java: inheritance and

interfaces. Next we explore Java interfaces in general, estab-

lishing the similarities between them and abstract classes,

and bringing the polymorphism discussion full circle. The

chapter concludes with a discussion of the design issues

related to polymorphism.

C H A P T E R O B J E C T I V E S
■■ Define polymorphism and explore its benefits.

■■ Discuss the concept of dynamic binding.

■■ Use inheritance to create polymorphic references.

■■ Explore the purpose and syntax of Java interfaces.

■■ Use interfaces to create polymorphic references.

■■ Discuss object-oriented design in the context of polymorphism.

Polymorphism 9

M09_LEWI5976_05_SE_C09.indd 395 08/02/19 2:46 AM

396 CHAPTER 9 Polymorphism

9.1 Dynamic Binding

Often, the type of a reference variable exactly matches the class of the object to
which it refers. For example, consider the following reference:

ChessPiece bishop;

The bishop variable may be used to point to an object that is created by instan-
tiating the ChessPiece class. However, it doesn’t have to. The variable type and
the object it refers to must be compatible, but their types need not be exactly the
same. The relationship between a reference variable and the object it refers to is
more flexible than that.

The term polymorphism can be defined as “having many forms.”
A polymorphic reference is a reference variable that can refer to dif-
ferent types of objects at different points in time. The specific method
invoked through a polymorphic reference (the actual code executed)
can change from one invocation to the next.

Consider the following line of code:

obj.doIt();

If the reference obj is polymorphic, it can refer to different types of objects at
different times. Thus, if that line of code is in a loop, or if it’s in a method that is
called more than once, that line of code could call a different version of the doIt
method each time it is invoked.

At some point, the commitment is made to execute certain code to carry out
a method invocation. This commitment is referred to as binding a method in-
vocation to a method definition. In many situations, the binding of a method
invocation to a method definition can occur at compile-time. For polymorphic
references, however, the decision cannot be made until run-time. The method defi-

nition that is used is determined by the type of the object being ref-
erenced at the moment of invocation. This deferred commitment is
called dynamic binding or late binding. It is slightly less efficient than
binding at compile-time, because the decision is made during the ex-
ecution of the program. This overhead is generally acceptable in light
of the flexibility that a polymorphic reference provides.

We can create a polymorphic reference in Java in two ways: using inheritance
and using interfaces. Let’s look at each in turn.

KEY CONCEPT
The binding of a method invocation to
its definition is performed at run-time
for a polymorphic reference.

KEY CONCEPT
A polymorphic reference can refer to
different types of objects over time.

M09_LEWI5976_05_SE_C09.indd 396 08/02/19 2:46 AM

 9.2 Polymorphism via Inheritance 397

9.2 Polymorphism via Inheritance

When we declare a reference variable using a particular class name, it can be used
to refer to any object of that class. In addition, it can refer to any object of any class
that is related to its declared type by inheritance. For example, if the class Mammal
is the parent of the class Horse, then a Mammal reference can be used to refer to an
object of class Horse. This ability is shown in the following code segment:

Mammal pet;
Horse secretariat = new Horse();
pet = secretariat; // a valid assignment

The ability to assign an object of one class to a reference of another class may
seem like a deviation from the concept of strong typing discussed in Chapter 2,
but it’s not. Strong typing asserts that a variable can be assigned only a value
consistent with its declared type. Well, that’s what’s happening here. Remember,
inheritance establishes an is-a relationship. A horse is-a mammal. Therefore, as-
signing a Horse object to a Mammal reference is perfectly reasonable.

The reverse operation, assigning the Mammal object to a Horse
reference, can also be done, but it requires an explicit cast. Assigning
a reference in this direction is generally less useful and more likely to
cause problems, because although a horse has all the functionality of
a mammal, the reverse is not necessarily true.

This relationship works throughout a class hierarchy. If the Mammal class were
derived from a class called Animal, the following assignment would also be valid:

Animal creature = new Horse();

Carrying this idea to the limit, an Object reference can be used to refer to any
object, because ultimately all classes are descendants of the Object class.

The reference variable creature can be used polymorphically, because at any
point in time it can refer to an Animal object, a Mammal object, or a Horse object.
Suppose that all three of these classes have a method called move that is imple-
mented in different ways (because the child class overrode the definition it inher-
ited). The following invocation calls the move method, but the particular version
of the method it calls is determined at run-time:

creature.move();

When this line is executed, if creature currently refers to an Animal object,
the move method of the Animal class is invoked. Likewise, if creature currently
refers to a Mammal object, the Mammal version of move is invoked. Similarly, if it
currently refers to a Horse object, the Horse version of move is invoked.

KEY CONCEPT
A reference variable can refer to any
object created from any class related
to it by inheritance.

M09_LEWI5976_05_SE_C09.indd 397 08/02/19 2:46 AM

398 CHAPTER 9 Polymorphism

Of course, since Animal and Mammal represent general concepts, they may be
defined as abstract classes. This situation does not eliminate the ability to have

polymorphic references. Suppose the move method in the Mammal
class is abstract and is given unique definitions in the Horse, Dog,
and Whale classes (all derived from Mammal). A Mammal reference
variable can be used to refer to any objects created from any of the
Horse, Dog, and Whale classes, and it can be used to execute the
move method on any of them, even though Mammal itself is abstract.

Let’s look at another situation. Consider the class hierarchy shown in Figure 9.1.
The classes in it represent various types of employees that might be employed at a
particular company. Let’s explore an example that uses this hierarchy to pay a set
of employees of various types.

The Firm class shown in Listing 9.1 on page 400 contains a main driver that
creates a Staff of employees and invokes the payday method to pay them all.
The program output includes information about each employee and how much
each is paid (if anything).

The Staff class shown in Listing 9.2 on page 401 maintains an array of ob-
jects that represent individual employees of various kinds. Note that the array is
declared to hold StaffMember references, but it is actually filled with objects cre-
ated from several other classes, such as Executive and Employee. These classes
are all descendants of the StaffMember class, so the assignments are valid. The
staffList array is filled with polymorphic references.

The payday method of the Staff class scans through the list of employees,
printing their information and invoking their pay methods to determine how
much each employee should be paid. The invocation of the pay method is poly-
morphic because each class has its own version of the pay method.

The StaffMember class shown in Listing 9.3 on page 403 is abstract. It does
not represent a particular type of employee and is not intended to be instantiated.
Rather, it serves as the ancestor of all employee classes and contains information
that applies to all employees. Each employee has a name, address, and phone
number, so variables to store these values are declared in the StaffMember class
and are inherited by all descendants.

The StaffMember class contains a toString method to return the information man-
aged by the StaffMember class. It also contains an abstract method called pay, which
takes no parameters and returns a value of type double. At the generic StaffMember
level, it would be inappropriate to give a definition for this method. However, each
descendant of StaffMember provides its own specific definition for pay.

This example shows the essence of polymorphism. Each class knows best how
it should handle a specific behavior, in this case paying an employee. Yet in one
sense it’s all the same behavior—the employee is getting paid. Polymorphism lets
us treat similar objects in consistent but unique ways.

KEY CONCEPT
The type of the object, not the type
of the reference, determines which
version of a method is invoked.

M09_LEWI5976_05_SE_C09.indd 398 08/02/19 2:46 AM

 9.2 Polymorphism via Inheritance 399

Because pay is defined abstractly in StaffMember, the payday method of Staff
can pay each employee polymorphically. If the pay method were not established
in StaffMember, the compiler would complain when pay was invoked through
an element of the staffList array. The abstract method guarantees the compiler
that any object referenced through the staffList array has a pay method defined
for it.

+ main(args : String[]) : void

Firm

+ payday() : void

– staffList : StaffMember[]

Staff

+ awardBonus(execBonus : double) : void
+ pay() : double

– bonus : double

Executive

+ addHours(moreHours : int) : void
+ pay() : double
+ toString() : String

– hoursWorked : int

Hourly

+ pay() : double

Volunteer Employee

+ toString() : String
+ pay() : double

+ toString() : String
+ pay() : double

name : String
address : String
phone : String

socialSecurityNumber : String
payRate : double

StaffMember

FIGURE 9.1 A class hierarchy of employees

M09_LEWI5976_05_SE_C09.indd 399 08/02/19 2:46 AM

400 CHAPTER 9 Polymorphism

L I S T I N G 9 . 1

//**
// Firm.java Java Foundations
//
// Demonstrates polymorphism via inheritance.
//**

public class Firm
{
 //---
 // Creates a staff of employees for a firm and pays them.
 //---
 public static void main(String[] args)
 {
 Staff personnel = new Staff();

 personnel.payday();
 }
}

O U T P U T

Name: Tony
Address: 123 Main Line
Phone: 555-0469
Social Security Number: 123-45-6789
Paid: 2923.07

Name: Paulie
Address: 456 Off Line
Phone: 555-0101
Social Security Number: 987-65-4321
Paid: 1246.15

Name: Vito
Address: 789 Off Rocker
Phone: 555-0000
Social Security Number: 010-20-3040
Paid: 1169.23

M09_LEWI5976_05_SE_C09.indd 400 08/02/19 2:46 AM

 9.2 Polymorphism via Inheritance 401

L I S T I N G 9 . 2

//**
// Staff.java Java Foundations
//
// Represents the personnel staff of a particular business.
//**

public class Staff
{
 private StaffMember[] staffList;

 //---
 // Constructor: Sets up the list of staff members.
 //---
 public Staff()
 {
 staffList = new StaffMember[6];

Name: Michael
Address: 678 Fifth Ave.
Phone: 555-0690
Social Security Number: 958-47-3625
Current hours: 40
Paid: 422.0

Name: Adrianna
Address: 987 Babe Blvd.
Phone: 555-8374
Thanks!

Name: Benny
Address: 321 Dud Lane
Phone: 555-7282
Thanks!

L I S T I N G 9 . 1 continued

M09_LEWI5976_05_SE_C09.indd 401 08/02/19 2:46 AM

402 CHAPTER 9 Polymorphism

 staffList[0] = new Executive("Tony", "123 Main Line",
 "555-0469", "123-45-6789", 2423.07);
 staffList[1] = new Employee("Paulie", "456 Off Line",
 "555-0101", "987-65-4321", 1246.15);
 staffList[2] = new Employee("Vito", "789 Off Rocker",
 "555-0000", "010-20-3040", 1169.23);

 staffList[3] = new Hourly("Michael", "678 Fifth Ave.",
 "555-0690", "958-47-3625", 10.55);

 staffList[4] = new Volunteer("Adrianna", "987 Babe Blvd.",
 "555-8374");
 staffList[5] = new Volunteer("Benny", "321 Dud Lane",
 "555-7282");

 ((Executive)staffList[0]).awardBonus(500.00);

 ((Hourly)staffList[3]).addHours(40);
 }

 //---
 // Pays all staff members.
 //---
 public void payday()
 {
 double amount;

 for (int count=0; count < staffList.length; count++)
 {
 System.out.println(staffList[count]);

 amount = staffList[count].pay(); // polymorphic

 if (amount == 0.0)
 System.out.println("Thanks!");
 else
 System.out.println("Paid: " + amount);

 System.out.println("-----------------------------------");
 }
 }
}

L I S T I N G 9 . 2 continued

M09_LEWI5976_05_SE_C09.indd 402 08/02/19 2:46 AM

 9.2 Polymorphism via Inheritance 403

L I S T I N G 9 . 3

//**
// StaffMember.java Java Foundations
//
// Represents a generic staff member.
//**

abstract public class StaffMember
{
 protected String name;
 protected String address;
 protected String phone;

 //---
 // Constructor: Sets up this staff member using the specified
 // information.
 //---
 public StaffMember(String eName, String eAddress, String ePhone)
 {
 name = eName;
 address = eAddress;
 phone = ePhone;
 }

 //---
 // Returns a string including the basic employee information.
 //---
 public String toString()
 {
 String result = "Name: " + name + "\n";

 result += "Address: " + address + "\n";
 result += "Phone: " + phone;

 return result;
 }

 //---
 // Derived classes must define the pay method for each type of
 // employee.
 //---
 public abstract double pay();
}

M09_LEWI5976_05_SE_C09.indd 403 08/02/19 2:46 AM

404 CHAPTER 9 Polymorphism

The Volunteer class shown in Listing 9.4 represents a person who is not com-
pensated monetarily for his or her work. We keep track only of a volunteer’s
basic information, which is passed into the constructor of Volunteer, which in
turn passes it to the StaffMember constructor using the super reference. The pay
method of Volunteer simply returns a zero pay value. If pay had not been over-
ridden, the Volunteer class would have been considered abstract and could not
have been instantiated.

Note that when a volunteer gets “paid” in the payday method of Staff, a
simple expression of thanks is printed. In all other situations, where the pay value
is greater than zero, the payment itself is printed.

VideoNote
Exploring the Firm
program

L I S T I N G 9 . 4

//**
// Volunteer.java Java Foundations
//
// Represents a staff member that works as a volunteer.
//**

public class Volunteer extends StaffMember
{
 //---
 // Constructor: Sets up this volunteer using the specified
 // information.
 //---
 public Volunteer(String eName, String eAddress, String ePhone)
 {
 super(eName, eAddress, ePhone);
 }

 //---
 // Returns a zero pay value for this volunteer.
 /--
 public double pay()
 {
 return 0.0;
 }
}

M09_LEWI5976_05_SE_C09.indd 404 08/02/19 2:46 AM

 9.2 Polymorphism via Inheritance 405

The Employee class shown in Listing 9.5 represents an employee who gets
paid at a particular rate each pay period. The pay rate and the employee’s
Social Security number are passed, along with the other basic information, to
the Employee constructor. The basic information is passed to the constructor of
StaffMember using the super reference.

The toString method of Employee is overridden to concatenate the additional
information that Employee manages to the information returned by the parent’s
version of toString, which is called using the super reference. The pay method
of an Employee simply returns the pay rate for that employee.

L I S T I N G 9 . 5

//**
// Employee.java Java Foundations
//
// Represents a general paid employee.
//**

public class Employee extends StaffMember
{
 protected String socialSecurityNumber;
 protected double payRate;

 //---
 // Constructor: Sets up this employee with the specified
 // information.
 //---
 public Employee(String eName, String eAddress, String ePhone,
 String socSecNumber, double rate)
 {
 super(eName, eAddress, ePhone);

 socialSecurityNumber = socSecNumber;
 payRate = rate;
 }

 //---
 // Returns information about an employee as a string.
 //---
 public String toString()
 {
 String result = super.toString();

M09_LEWI5976_05_SE_C09.indd 405 08/02/19 2:46 AM

406 CHAPTER 9 Polymorphism

The Executive class shown in Listing 9.6 represents an employee who may
earn a bonus in addition to his or her normal pay rate. The Executive class
is derived from Employee and therefore inherits from both StaffMember and
Employee. The constructor of Executive passes along its information to the
Employee constructor and sets the executive bonus to zero.

A bonus is awarded to an executive using the awardBonus method. This
method is called in the payday method in Staff for the only executive that is part
of the staffList array. Note that the generic StaffMember reference must be
cast into an Executive reference to invoke the awardBonus method (because it
doesn’t exist for a StaffMember).

The Executive class overrides the pay method so that it first determines the
payment as it would for any employee; then it adds the bonus. The pay method of
the Employee class is invoked using super to obtain the normal payment amount.
This technique is better than using just the payRate variable, because if we choose
to change how Employee objects get paid, the change will automatically be re-
flected in Executive. After the bonus is awarded, it is reset to zero.

The Hourly class shown in Listing 9.7 on page 408 represents an employee
whose pay rate is applied on an hourly basis. It keeps track of the number of
hours worked in the current pay period, which can be modified by calls to the
addHours method. This method is called from the payday method of Staff. The
pay method of Hourly determines the payment on the basis of the number of
hours worked and then resets the hours to zero.

 result += "\nSocial Security Number: " + socialSecurityNumber;

 return result;
 }

 //---
 // Returns the pay rate for this employee.
 //---
 public double pay()
 {
 return payRate;
 }
}

L I S T I N G 9 . 5 continued

M09_LEWI5976_05_SE_C09.indd 406 08/02/19 2:46 AM

 9.2 Polymorphism via Inheritance 407

L I S T I N G 9 . 6

//**
// Executive.java Java Foundations
//
// Represents an executive staff member, who can earn a bonus.
//**

public class Executive extends Employee
{
 private double bonus;

 //---
 // Constructor: Sets up this executive with the specified
 // information.
 //---
 public Executive(String eName, String eAddress, String ePhone,
 String socSecNumber, double rate)
 {
 super(eName, eAddress, ePhone, socSecNumber, rate);

 bonus = 0; // bonus has yet to be awarded
 }

 //---
 // Awards the specified bonus to this executive.
 //---
 public void awardBonus(double execBonus)
 {
 bonus = execBonus;
 }

 //---
 // Computes and returns the pay for an executive, which is the
 // regular employee payment plus a one-time bonus.
 //---
 public double pay()
 {
 double payment = super.pay() + bonus;

 bonus = 0;

 return payment;
 }
}

M09_LEWI5976_05_SE_C09.indd 407 08/02/19 2:46 AM

408 CHAPTER 9 Polymorphism

L I S T I N G 9 . 7

//**
// Hourly.java Java Foundations
//
// Represents an employee that gets paid by the hour.
//**

public class Hourly extends Employee
{
 private int hoursWorked;

 //---
 // Constructor: Sets up this hourly employee using the specified
 // information.
 //---
 public Hourly(String eName, String eAddress, String ePhone,
 String socSecNumber, double rate)
 {
 super(eName, eAddress, ePhone, socSecNumber, rate);

 hoursWorked = 0;
 }

 //---
 // Adds the specified number of hours to this employee's
 // accumulated hours.
 //---
 public void addHours(int moreHours)
 {
 hoursWorked += moreHours;
 }

 //---
 // Computes and returns the pay for this hourly employee.
 //---
 public double pay()
 {
 double payment = payRate * hoursWorked;

 hoursWorked = 0;

 return payment;
 }

M09_LEWI5976_05_SE_C09.indd 408 08/02/19 2:46 AM

 9.3 Interfaces 409

9.3 Interfaces

In Chapter 5 we used the term interface to refer to the set of public methods
through which we can interact with an object. That definition is consistent with
our use of it in this section, but now we are going to formalize this concept using
a Java language construct. Interfaces provide another way to create polymorphic
references.

A Java interface is a collection of constants and abstract meth-
ods. As discussed in Chapter 8, an abstract method is a method that
does not have an implementation. That is, there is no body of code
defined for an abstract method. The header of the method, including
its parameter list, is simply followed by a semicolon. An interface
cannot be instantiated.

Listing 9.8 on page 410 shows an interface called Encryptable. It contains
two abstract methods: encrypt and decrypt.

An abstract method can be preceded by the reserved word abstract, although
in interfaces it usually is not. Methods in interfaces have public visibility by
default.

A class implements an interface by providing method implementations for
each of the abstract methods defined in the interface. The Secret class, shown in
Listing 9.9 on page 410, implements the Encryptable interface.

 //---
 // Returns information about this hourly employee as a string.
 //---
 public String toString()
 {
 String result = super.toString();

 result += "\nCurrent hours: " + hoursWorked;
 count--;

 return result;
 }
}

L I S T I N G 9 . 7 continued

KEY CONCEPT
An interface is a collection of abstract
methods and therefore cannot be
instantiated.

M09_LEWI5976_05_SE_C09.indd 409 08/02/19 2:46 AM

410 CHAPTER 9 Polymorphism

L I S T I N G 9 . 9

//**
// Secret.java Java Foundations
//
// Represents a secret message that can be encrypted and decrypted.
//**

import java.util.Random;

public class Secret implements Encryptable
{
 private String message;
 private boolean encrypted;
 private int shift;
 private Random generator;

 //---
 // Constructor: Stores the original message and establishes
 // a value for the encryption shift.
 //---
 public Secret(String msg)
 {
 message = msg;
 encrypted = false;

L I S T I N G 9 . 8

//**
// Encryptable.java Java Foundations
//
// Represents the interface for an object that can be encrypted
// and decrypted.
//**

public interface Encryptable
{
 public void encrypt();
 public String decrypt();
}

M09_LEWI5976_05_SE_C09.indd 410 08/02/19 2:46 AM

 9.3 Interfaces 411

 generator = new Random();
 shift = generator.nextInt(10) + 5;
 }

 //---
 // Encrypts this secret using a Caesar cipher. Has no effect if
 // this secret is already encrypted.
 //---
 public void encrypt()
 {
 if (!encrypted)
 {
 String masked = "";
 for (int index=0; index < message.length(); index++)
 masked = masked + (char)(message.charAt(index)+shift);
 message = masked;
 encrypted = true;
 }
 }

 //---
 // Decrypts and returns this secret. Has no effect if this
 // secret is not currently encrypted.
 //---
 public String decrypt()
 {
 if (encrypted)
 {
 String unmasked = "";
 for (int index=0; index < message.length(); index++)
 unmasked = unmasked + (char)(message.charAt(index)-shift);
 message = unmasked;
 encrypted = false;
 }

 return message;
 }

 //---
 // Returns true if this secret is currently encrypted.
 //---
 public boolean isEncrypted()

L I S T I N G 9 . 9 continued

M09_LEWI5976_05_SE_C09.indd 411 08/02/19 2:46 AM

412 CHAPTER 9 Polymorphism

A class that implements an interface uses the reserved word implements fol-
lowed by the interface name in the class header. If a class asserts that it imple-
ments a particular interface, it must provide a definition for all methods in the
interface. The compiler will produce errors if any of the methods in the interface
is not given a definition in the class.

In the class Secret, both the encrypt method and the decrypt method are
implemented, which satisfies the contract established by the interface. These
methods must be declared with the same signatures as their abstract counterparts
in the interface. In the Secret class, the encryption is implemented using a simple
Caesar cipher, which shifts the characters of the message a certain number of
places. Another class that implements the Encryptable interface may use a com-
pletely different technique for encryption.

Note that the Secret class also implements additional methods that are not part
of the Encryptable interface. Specifically, it defines the methods isEncrypted
and toString, which have nothing to do with the interface. The interface guar-
antees that the class implements certain methods, but it does not restrict it from
having others. In fact, it is common for a class that implements an interface to
have other methods.

Listing 9.10 shows a program called SecretTest, which creates some Secret
objects.

An interface and its relationship to a class can be shown in a UML class di-
agram. An interface is represented similarly to a class node except that the

 {
 return encrypted;
 }

 //---
 // Returns this secret (may be encrypted).
 //---
 public String toString()
 {
 return message;
 }
}

L I S T I N G 9 . 9 continued

M09_LEWI5976_05_SE_C09.indd 412 08/02/19 2:46 AM

 9.3 Interfaces 413

designation <<interface>> is inserted above the interface name. A dotted arrow
with a triangular arrowhead is drawn from the class to the interface that it imple-
ments. Figure 9.2 on page 414 shows a UML class diagram for the SecretTest
program.

Multiple classes can implement the same interface, providing their own defini-
tions for the methods. For example, we could implement a class called Password
that also implements the Encryptable interface. And, as mentioned earlier, each
class that implements an interface may do so in different ways. The interface spec-
ifies which methods are implemented, not how they are implemented.

L I S T I N G 9 . 1 0

//**
// SecretTest.java Java Foundations
//
// Demonstrates the use of a formal interface.
//**

public class SecretTest
{
 //---
 // Creates a Secret object and exercises its encryption.
 //---
 public static void main(String[] args)
 {
 Secret hush = new Secret("Wil Wheaton is my hero!");
 System.out.println(hush);

 hush.encrypt();
 System.out.println(hush);

 hush.decrypt();
 System.out.println(hush);
 }
}

O U T P U T

Wil Wheaton is my hero!
asv*arok~yx*s}*w?*ro|y+
Wil Wheaton is my hero!

M09_LEWI5976_05_SE_C09.indd 413 08/02/19 2:46 AM

414 CHAPTER 9 Polymorphism

A class can implement more than one interface. In these cases, the class must
provide an implementation for all methods in all interfaces listed. To show that
a class implements multiple interfaces, they are listed in the implements clause,
separated by commas. Here is an example:

class ManyThings implements Interface1, Interface2, Interface3
{

 // implements all methods of all interfaces

}

In addition to, or instead of, abstract methods, an interface can contain con-
stants defined using the final modifier. When a class implements an interface, it
gains access to all the constants defined in it.

Interface Hierarchies
The concept of inheritance can be applied to interfaces as well as to classes. That
is, one interface can be derived from another interface. These relationships can
form an interface hierarchy, which is similar to a class hierarchy. Inheritance rela-

tionships between interfaces are shown in UML diagrams using the
same connection (an arrow with an open arrowhead) that is used to
show inheritance relationships between classes.

When a parent interface is used to derive a child interface, the
child inherits all abstract methods and constants of the parent.

+ main(args: void) : void

java.util.Random

SecretTest

+ isEncrypted() : boolean
+ toString() : String

– message : String
– shift : int
– encrypted : boolean

Secret

+ encrypt() : void
+ decrypt() : String

<< interface >>
Encryptable

FIGURE 9.2 A UML class diagram for the SecretTest program

KEY CONCEPT
Inheritance can be applied to
interfaces so that one interface can
be derived from another.

M09_LEWI5976_05_SE_C09.indd 414 08/02/19 2:46 AM

 9.3 Interfaces 415

Any class that implements the child interface must implement all of the methods.
There are no visibility issues when dealing with inheritance between interfaces (as
there are with protected and private members of a class), because all members of
an interface are public.

Class hierarchies and interface hierarchies do not overlap. That is, an interface
cannot be used to derive a class, and a class cannot be used to derive an interface.
A class and an interface interact only when a class is designed to implement a
particular interface.

Before we see how interfaces support polymorphism, let’s take a look at a
couple of useful interfaces that are defined in the Java standard class library:
Comparable and Iterator.

The Comparable Interface
The Java standard class library contains interfaces as well as classes. The
Comparable interface, for example, is defined in the java.lang package. The
Comparable interface contains only one method, compareTo, which takes an ob-
ject as a parameter and returns an integer.

The purpose of this interface is to provide a common mechanism for compar-
ing one object to another. One object calls the method and passes another as a
parameter as follows:

if (obj1.compareTo(obj2) < 0)
 System.out.println("obj1 is less than obj2");

As specified by the documentation for the interface, the integer that is returned
from the compareTo method should be negative if obj1 is less than obj2, 0 if they
are equal, and positive if obj1 is greater than obj2. It is up to the designer of each
class to decide what it means for one object of that class to be less than, equal to,
or greater than another.

In Chapter 4, we mentioned that the String class contains a compareTo
method that operates in this manner. Now we can clarify that the String class
has this method because it implements the Comparable interface. The String
class implementation of this method bases the comparison of strings on the lexico-
graphic ordering defined by the Unicode character set.

The Iterator Interface
The Iterator interface is another interface defined in the Java standard class
library. It is used by a class that represents a collection of objects, providing a
means to move through the collection one object at a time.

M09_LEWI5976_05_SE_C09.indd 415 08/02/19 2:46 AM

416 CHAPTER 9 Polymorphism

In Chapter 4, we defined the concept of an iterator, using a loop to process all
elements in the collection. Most iterators, including objects of the Scanner class,
are defined using the Iterator interface.

The two primary methods in the Iterator interface are hasNext, which re-
turns a boolean result, and next, which returns an object. Neither of these meth-
ods takes any parameters. The hasNext method returns true if there are items left
to process, and next returns the next object. It is up to the designer of the class
that implements the Iterator interface to decide in what order objects will be
delivered by the next method.

We should note that, in accordance with the spirit of the interface, the next
method does not remove the object from the underlying collection; it simply re-
turns a reference to it. The Iterator interface also has a method called remove,
which takes no parameters and has a void return type. A call to the remove
method removes the object that was most recently returned by the next method
from the underlying collection.

We’ve seen how we can use iterators to process information from the Scanner
class (in Chapter 4) and from arrays (in Chapter 7). Recall that the foreach ver-
sion of the for loop simplifies this processing in many cases. We will continue to
use iterators as appropriate. They are an important part of the development
of collection classes, which we discuss in detail in the later chapters of this text
(Chapters 14 and beyond).

9.4 Polymorphism via Interfaces

Now let’s examine how we can create polymorphic references using interfaces. As
we’ve seen many times, a class name can be used to declare the type of an object

reference variable. Similarly, an interface name can be used as the type
of a reference variable as well. An interface reference variable can be
used to refer to any object of any class that implements that interface.

Suppose we declare an interface called Speaker as follows:

public interface Speaker
{
 public void speak();
 public void announce(String str);
}

The interface name, Speaker, can now be used to declare an object reference
variable:

Speaker current;

KEY CONCEPT
An interface name can be used to
declare an object reference variable.

M09_LEWI5976_05_SE_C09.indd 416 08/02/19 2:46 AM

 9.4 Polymorphism via Interfaces 417

The reference variable current can be used to refer to any object of any class
that implements the Speaker interface. For example, if we define a class called
Philosopher such that it implements the Speaker interface, we can then assign a
Philosopher object to a Speaker reference as follows:

current = new Philosopher();

This assignment is valid because a Philosopher is a Speaker.
In this sense, the relationship between a class and its interface is the
same as the relationship between a child class and its parent. It is an
is-a relationship, similar to the relationship created via inheritance.
And that relationship forms the basis of the polymorphism.

The flexibility of an interface reference allows us to create polymorphic refer-
ences. As we saw earlier in this chapter, using inheritance, we can create a poly-
morphic reference that can refer to any one of a set of objects as long as they are
related by inheritance. Using interfaces, we can create similar polymorphic refer-
ences among objects that implement the same interface.

For example, if we create a class called Dog that also implements the Speaker
interface, it can be assigned to a Speaker reference variable as well. The same ref-
erence variable, in fact, can at one point refer to a Philosopher object and then
later refer to a Dog object. The following lines of code illustrate this:

Speaker guest;
guest = new Philosopher();
guest.speak();
guest = new Dog();
guest.speak();

In this code, the first time the speak method is called, it invokes the speak
method defined in the Philosopher class. The second time it is called, it invokes
the speak method of the Dog class. As with polymorphic references via inheri-
tance, it is not the type of the reference that determines which method gets in-
voked; this is based on the type of the object that the reference points to at the
moment of invocation.

Note that when we are using an interface reference variable, we can invoke
only the methods defined in the interface, even if the object it refers to has other
methods to which it can respond. For example, suppose the Philosopher class
also defined a public method called pontificate. The second line of the follow-
ing code segment would generate a compiler error, even though the object can in
fact contain the pontificate method:

Speaker special = new Philosopher();
special.pontificate(); // generates a compiler error

KEY CONCEPT
An interface reference can refer to any
object of any class that implements
that interface.

M09_LEWI5976_05_SE_C09.indd 417 08/02/19 2:46 AM

418 CHAPTER 9 Polymorphism

The problem is that the compiler can determine only that the object is a
Speaker, and therefore can guarantee only that the object can respond to the
speak and announce methods. Because the reference variable special could refer
to a Dog object (which cannot pontificate), it does not allow the invocation. If we
know in a particular situation that such an invocation is valid, we can cast the
object into the appropriate reference so that the compiler will accept it, as follows:

((Philosopher)special).pontificate();

Just as with polymorphic references based in inheritance, we can
use an interface name as the type of a method parameter. In such
situations, any object of any class that implements the interface can
be passed into the method. For example, the following method takes
a Speaker object as a parameter. Therefore, both a Dog object and
a Philosopher object can be passed into it in separate invocations:

public void sayIt(Speaker current)
{
 current.speak();

}

Using a polymorphic reference as the formal parameter to a method is a power-
ful technique. It allows the method to control the types of parameters passed into
it, yet gives it the flexibility to accept arguments of various types.

KEY CONCEPT
A parameter to a method can be
polymorphic, which gives the method
flexible control of its arguments.

M09_LEWI5976_05_SE_C09.indd 418 08/02/19 2:46 AM

Summary of Key Concepts

■■ A polymorphic reference can refer to different types of objects over time.

■■ The binding of a method invocation to its definition is performed at run-
time for a polymorphic reference.

■■ A reference variable can refer to any object created from any class related
to it by inheritance.

■■ The type of the object, not the type of the reference, determines which
 version of a method is invoked.

■■ An interface is a collection of abstract methods and therefore cannot be
 instantiated.

■■ Inheritance can be applied to interfaces so that one interface can be de-
rived from another.

■■ An interface name can be used to declare an object reference variable.

■■ An interface reference can refer to any object of any class that implements
that interface.

■■ A parameter to a method can be polymorphic, which gives the method
 flexible control of its arguments.

Summary of Terms
binding The process of determining which method definition is used to
 fulfill a given method invocation.

dynamic binding The binding of a method invocation to its definition at
run-time. Also called late binding.

interface A collection of abstract methods, used to define a set of opera-
tions that can be used to interact with an object.

interface hierarchy The hierarchy formed when interfaces are de-
rived from other interfaces. Interface hierarchies are distinct from class
hierarchies.

polymorphism The ability to define an operation that has more than one
meaning by having the operation dynamically bound to methods of vari-
ous objects.

polymorphic reference A reference variable that can refer to different
types of objects at different points in time.

 Summary of Terms 419

M09_LEWI5976_05_SE_C09.indd 419 08/02/19 2:46 AM

420 CHAPTER 9 Polymorphism

Self-Review Questions
SR 9.1 What is polymorphism?

SR 9.2 How does inheritance support polymorphism?

SR 9.3 How is overriding related to polymorphism?

SR 9.4 Why is the StaffMember class in the Firm example declared as
abstract?

SR 9.5 Why is the pay method declared in the StaffMember class, given
that it is abstract and has no body at that level?

SR 9.6 What is the difference between a class and an interface?

SR 9.7 How do class hierarchies and interface hierarchies intersect?

SR 9.8 Describe the Comparable interface.

SR 9.9 How can polymorphism be accomplished using interfaces?

Exercises
EX 9.1 Draw and annotate a class hierarchy that represents various

types of faculty at a university. Show what characteristics would
be represented in the various classes of the hierarchy. Explain
how polymorphism could play a role in the process of assigning
courses to each faculty member.

EX 9.2 Draw and annotate a class hierarchy that represents various types
of animals in a zoo. Show what characteristics would be repre-
sented in the various classes of the hierarchy. Explain how poly-
morphism could play a role in guiding the feeding of the animals.

EX 9.3 Draw and annotate a class hierarchy that represents various types
of sales transactions in a store (cash, credit, and so on). Show
what characteristics would be represented in the various classes of
the hierarchy. Explain how polymorphism could play a role in the
payment process.

EX 9.4 What would happen if the pay method were not defined as an
 abstract method in the StaffMember class of the Firm program?

EX 9.5 Create an interface called Visible that includes two methods:
makeVisible and makeInvisible. Both methods should take no
parameters and should return a boolean result. Describe how a
class might implement this interface.

M09_LEWI5976_05_SE_C09.indd 420 08/02/19 2:46 AM

 Programming Projects 421

EX 9.6 Draw a UML class diagram that shows the relationships among
the elements of Exercise 9.5.

EX 9.7 Create an interface called DVR that has methods that represent the
standard operations on a digital video recorder (play, stop, and so
on). Define the method signatures any way you desire. Describe
how a class might implement this interface.

EX 9.8 Draw a UML class diagram that shows the relationships among
the elements of Exercise 9.7.

Programming Projects
PP 9.1 Modify the Firm example from this chapter such that it accom-

plishes its polymorphism using an interface called Payable.

PP 9.2 Modify the Firm example from this chapter such that all employ-
ees can be given different vacation options depending on their
classification. Modify the driver program to demonstrate this new
functionality.

PP 9.3 Modify the RationalNumber class from Chapter 5 so that it im-
plements the Comparable interface. To perform the comparison,
compute an equivalent floating point value from the numerator
and denominator for both RationalNumber objects, and then
compare them using a tolerance value of 0.0001. Write a main
driver to test your modifications.

PP 9.4 Create a class called Password that implements the Encryptable
interface from this chapter. Then create a main driver that instan-
tiates a Secret object and a Password object, using the same
reference variable, and exercises their methods. Use any type of
encryption desired for Password, other than the Caesar cipher
used by Secret.

PP 9.5 Implement the Speaker interface defined in this chapter. Create
two classes that implement Speaker in various ways. Create a
driver class whose main method instantiates some of these objects
and tests their abilities.

PP 9.6 Design a Java interface called Priority that includes two meth-
ods: setPriority and getPriority. The interface should define
a way to establish numeric priority among a set of objects. Design
and implement a class called Task that represents a task (such as

M09_LEWI5976_05_SE_C09.indd 421 08/02/19 2:46 AM

422 CHAPTER 9 Polymorphism

on a to-do list) that implements the Priority interface. Create a
driver class to exercise some Task objects.

PP 9.7 Modify the Task class from Programming Project 9.6 so that it
also implements the Comparable interface from the Java stan-
dard class library. Implement the interface such that the tasks
are ranked by priority. Create a driver class whose main method
shows these new features of Task objects.

PP 9.8 Design a Java interface called Lockable that includes the follow-
ing methods: setKey, lock, unlock, and locked. The setKey,
lock, and unlock methods take an integer parameter that repre-
sents the key. The setKey method establishes the key. The lock
and unlock methods lock and unlock the object, but only if the
key passed in is correct. The locked method returns a boolean
that indicates whether or not the object is locked. A Lockable
object represents an object whose regular methods are protected:
If the object is locked, the methods cannot be invoked; if it is un-
locked, they can be invoked. Redesign and implement a version of
the Coin class from Chapter 5 so that it is Lockable.

PP 9.9 Redesign and implement a version of the Account class from
Chapter 5 so that it is Lockable as defined by Programming
Project 9.8.

Answers to Self-Review Questions
SRA 9.1 Polymorphism is the ability of a reference variable to refer to

objects of various types at different times. A method invoked
through such a reference is bound to different method defini-
tions at different times, depending on the type of the object
referenced.

SRA 9.2 In Java, a reference variable declared using a parent class can be
used to refer to an object of the child class. If both classes contain
a method with the same signature, the parent reference can be
polymorphic.

SRA 9.3 When a child class overrides the definition of a parent’s method,
two versions of that method exist. If a polymorphic reference
is used to invoke the method, the version of the method that is
invoked is determined by the type of the object being referred to,
not by the type of the reference variable.

M09_LEWI5976_05_SE_C09.indd 422 08/02/19 2:46 AM

 Answers to Self-Review Questions 423

SRA 9.4 The StaffMember class is abstract because it is not intended to be
instantiated. It serves as a placeholder in the inheritance hierarchy
to help organize and manage the objects polymorphically.

SRA 9.5 The pay method has no meaning at the StaffMember level, so
it is declared as abstract. But by declaring it there, we guarantee
that every object of its children will have a pay method. This al-
lows us to create an array of StaffMember objects, which is actu-
ally filled with various types of staff members, and to pay each
one. The details of being paid are determined by each class, as
appropriate.

SRA 9.6 A class can be instantiated; an interface cannot. An interface can
contain only abstract methods and constants. A class provides the
implementation for an interface.

SRA 9.7 Class hierarchies and interface hierarchies do not intersect. A
class can be used to derive a new class, and an interface can be
used to derive a new interface, but these two types of hierarchies
do not overlap.

SRA 9.8 The Comparable interface contains a single method called
compareTo, which should return an integer that is less than zero,
equal to zero, or greater than zero if the executing object is less
than, equal to, or greater than the object to which it is being
 compared, respectively.

SRA 9.9 An interface name can be used as the type of a reference. Such a
reference variable can refer to any object of any class that imple-
ments that interface. Because all classes implement the same inter-
face, they have methods with common signatures, which can be
dynamically bound.

M09_LEWI5976_05_SE_C09.indd 423 08/02/19 2:46 AM

425

10
Exception handling is an important part of an object-

oriented software system. Exceptions represent problems

or unusual situations that may occur in a program. Java

 provides various ways to handle exceptions when they occur.

We explore the class hierarchy from the Java standard library

used to define exceptions, as well as the ability to define our

own exception objects. This chapter also discusses the use

of exceptions when dealing with input and output, and it

presents an example that writes a text file.

C H A P T E R O B J E C T I V E S
■■ Discuss the purpose of exceptions.

■■ Examine exception messages and the call stack trace.

■■ Examine the try-catch statement for handling exceptions.

■■ Explore the concept of exception propagation.

■■ Describe the exception class hierarchy in the Java standard
class library.

■■ Explore I/O exceptions and the ability to write text files.

Exceptions 10

M10_LEWI5976_05_SE_C10.indd 425 08/02/19 2:47 AM

426 CHAPTER 10 Exceptions

10.1 Exception Handling

As we’ve discussed briefly in other parts of the text, problems that
arise in a Java program may generate exceptions or errors. An ex-
ception is an object that defines an unusual or erroneous situation.
An exception is thrown by a program or the run-time environment
and can be caught and handled appropriately if desired. An error is
similar to an exception, except that an error generally represents an
unrecoverable situation and should not be caught.

Java has a predefined set of exceptions and errors that may occur during the
execution of a program. If the predefined exceptions don’t suffice, a programmer
may choose to design a new class that represents an exception that is specific to a
particular situation.

Problem situations represented by exceptions and errors can have various kinds
of root causes. Here are some examples of situations that cause exceptions to be
thrown:

■■ Attempting to divide by zero

■■ An array index that is out of bounds

■■ A specified file that could not be found

■■ A requested I/O operation that could not be completed normally

■■ Attempting to follow a null reference

■■ Attempting to execute an operation that violates some kind of security
measure

These are just a few examples. There are dozens of others that address very spe-
cific situations.

As many of these examples show, an exception can represent a truly errone-
ous situation. But, as the name implies, an exception may simply represent an
exceptional situation. That is, an exception may represent a situation that won’t
occur under usual conditions. Exception handling is set up to be an efficient
way to deal with such situations, especially given that they don’t happen too
often.

We have several options when it comes to dealing with exceptions. A program
can be designed to process an exception in one of three ways. It can

■■ not handle the exception at all,

■■ handle the exception where it occurs, or
■■ handle the exception at another point in the program.

We explore each of these approaches in the following sections.

KEY CONCEPT
Errors and exceptions are objects
that represent unusual or invalid
processing.

M10_LEWI5976_05_SE_C10.indd 426 08/02/19 2:47 AM

 10.2 Uncaught Exceptions 427

10.2 Uncaught Exceptions

If a program does not handle the exception at all, it will terminate abnormally
and produce a message that describes what exception occurred and where in the
code it was produced. The information in an exception message is often helpful in
tracking down the cause of a problem.

Let’s look at the output of an exception. The program shown in Listing 10.1
below throws an ArithmeticException when an invalid arithmetic operation is
attempted. In this case, the program attempts to divide by zero.

L I S T I N G 1 0 . 1

//**
// Zero.java Java Foundations
//
// Demonstrates an uncaught exception.
//**

public class Zero
{
 //---
 // Deliberately divides by zero to produce an exception.
 //---
 public static void main(String[] args)
 {
 int numerator = 10;
 int denominator = 0;

 System.out.println("Before the attempt to divide by zero.");

 System.out.println(numerator / denominator);

 System.out.println("This text will not be printed.");
 }
}

O U T P U T

Before the attempt to divide by zero.
Exception in thread "main" java.lang.ArithmeticException: / by zero
 at Zero.main(Zero.java:19)

M10_LEWI5976_05_SE_C10.indd 427 08/02/19 2:47 AM

428 CHAPTER 10 Exceptions

Because there is no code in this program to handle the exception explicitly,
it terminates when the exception occurs, printing specific information about the
exception. Note that the last println statement in the program never executes,
because the exception occurs first.

The first line of the exception output indicates which exception was thrown
and provides some information about why it was thrown. The remaining lines
are the call stack trace; they indicate where the exception occurred. In this case,
there is only one line in the call stack trace, but there may be several, depend-
ing on where the exception originated. The first trace line indicates the method,

file, and line number where the exception occurred. The other trace
lines, if present, indicate the methods that were called to get to the
method that produced the exception. In this program, there is only
one method, and it produced the exception; therefore, there is only
one line in the trace.

The call stack trace information is also available by calling
methods of the exception class that is being thrown. The method

getMessage returns a string explaining the reason the exception was thrown. The
method printStackTrace prints the call stack trace.

10.3 The try-catch Statement

Let’s now examine how we catch and handle an exception when it is thrown. The
try-catch statement identifies a block of statements that may throw an exception.
A catch clause, which follows a try block, defines how a particular kind of excep-
tion is handled. A try block can have several catch clauses associated with it.
Each catch clause is called an exception handler.

When a try statement is executed, the statements in the try block are executed.
If no exception is thrown during the execution of the try block, processing contin-
ues with the statement following the try statement (after all of the catch clauses).
This situation is the normal execution flow and should occur most of the time.

If an exception is thrown at any point during the execution of the try block,
control is immediately transferred to the appropriate catch handler if it is present.
That is, control transfers to the first catch clause whose exception class corre-
sponds to the class of the exception that was thrown. After execution of the state-

ments in the catch clause, control transfers to the statement after the
entire try-catch statement.

Let’s look at an example. Suppose a hypothetical company uses
codes to represent its various products. A product code includes,
among other information, a character in the tenth position that

KEY CONCEPT
Each catch clause handles a
particular kind of exception that may
be thrown within the try block.

KEY CONCEPT
The messages printed when an
exception is thrown provide a method
call stack trace.

M10_LEWI5976_05_SE_C10.indd 428 08/02/19 2:47 AM

 10.3 The try-catch Statement 429

represents the zone from which that product was made, and a four-digit integer in
positions 4 through 7 that represents the district in which it will be sold. As a con-
sequence of some reorganization, the sale of products from zone R is banned in
districts with a designation of 2000 or higher. The program shown in Listing 10.2
on the next page reads product codes from the user and counts the number of
banned codes entered.

The programming statements in the try block attempt to pull out the zone and
district information, and then determine whether it represents a banned product
code. If there is any problem extracting the zone and district information, the
product code is considered to be invalid and is not processed further. For example,
a StringIndexOutOfBoundsException could be thrown by either the charAt
method or the substring method. Furthermore, a NumberFormatException will
be thrown by the parseInt method if the substring method does not contain
a valid integer. A particular message is printed, depending on which exception is
thrown. In either case, because the exception is caught and handled, processing
continues normally.

The try Statement

Blocktry catch

finally

Block

Block

()Type Indentifier

A try statement contains a block of code followed by one or more
catch clauses. If an exception occurs in the try block, the code of the
corresponding catch clause is executed. The finally clause, if pres-
ent, is executed no matter how the try block is exited.

Example:
 try
 {
 System.out.println(Integer.parseInt(numString));
 }
 catch (NumberFormatException exception)
 {
 System.out.println("Caught an exception.");
 }
 finally
 {
 System.out.println("Done.");
 }

M10_LEWI5976_05_SE_C10.indd 429 08/02/19 2:47 AM

430 CHAPTER 10 Exceptions

L I S T I N G 1 0 . 2

//**
// ProductCodes.java Java Foundations
//
// Demonstrates the use of a try-catch block.
//**

import java.util.Scanner;

public class ProductCodes
{
 //---
 // Counts the number of product codes that are entered with a
 // zone of R and district greater than 2000.
 //---
 public static void main(String[] args)
 {
 String code;
 char zone;
 int district, valid = 0, banned = 0;

 Scanner scan = new Scanner(System.in);

 System.out.print("Enter product code (STOP to quit): ");
 code = scan.nextLine();

 while (!code.equals("STOP"))
 {
 try
 {
 zone = code.charAt(9);
 district = Integer.parseInt(code.substring(3, 7));
 valid++;
 if (zone == ‘R’ && district > 2000)
 banned++;
 }
 catch (StringIndexOutOfBoundsException exception)
 {
 System.out.println("Improper code length: " + code);
 }
 catch (NumberFormatException exception)
 {
 System.out.println("District is not numeric: " + code);
 }

M10_LEWI5976_05_SE_C10.indd 430 08/02/19 2:47 AM

Note that for each code examined, the integer variable valid is incremented
only if no exception is thrown. If an exception is thrown, control transfers imme-
diately to the appropriate catch clause. Likewise, the zone and district are tested
by the if statement only if no exception is thrown.

The finally Clause
A try-catch statement can have an optional finally clause. The
finally clause defines a section of code that is executed no matter
how the try block is exited. Most often, a finally clause is used
to manage resources or to guarantee that particular parts of an algo-
rithm are executed.

If no exception is generated, the statements in the finally clause
are executed after the try block is complete. If an exception is generated in the
try block, control first transfers to the appropriate catch clause. After execution

 System.out.print("Enter product code (STOP to quit): ");
 code = scan.nextLine();
 }

 System.out.println("# of valid codes entered: " + valid);
 System.out.println("# of banned codes entered: " + banned);
 }
}

O U T P U T

Enter product code (STOP to quit): TRV2475A5R-14
Enter product code (STOP to quit): TRD1704A7R-12
Enter product code (STOP to quit): TRL2k74A5R-11
District is not numeric: TRL2k74A5R-11
Enter product code (STOP to quit): TRQ2949A6M-04
Enter product code (STOP to quit): TRV2105A2
Improper code length: TRV2105A2
Enter product code (STOP to quit): TRQ2778A7R-19
Enter product code (STOP to quit): STOP
of valid codes entered: 4
of banned codes entered: 2

L I S T I N G 1 0 . 2 continued

KEY CONCEPT
The finally clause is executed
whether the try block is exited
normally or because of a thrown
exception.

 10.3 The try-catch Statement 431

M10_LEWI5976_05_SE_C10.indd 431 08/02/19 2:47 AM

432 CHAPTER 10 Exceptions

of the exception-handling code, control transfers to the finally clause and its
statements are executed. A finally clause, if present, must be listed after the
catch clauses.

Note that a try block does not need to have a catch clause at all. If there are
no catch clauses, a finally clause may be used by itself if that is appropriate for
the situation.

10.4 Exception Propagation

We can design our software so that an exception is caught and handled at an outer
level in the method-calling hierarchy. If an exception is not caught and handled
in the method where it occurs, control is immediately returned to the method that
invoked the method that produced the exception. If it isn’t caught there, control
returns to the method that called it, and so on. This process is called exception
propagation.

An exception will be propagated until it is caught and handled or
until it is passed out of the main method, which causes the program
to terminate and produces an exception message. To catch an excep-
tion at any level, the method that produces the exception must be
invoked inside a try block that has catch clauses to handle it.

The Propagation program shown in Listing 10.3 succinctly
demonstrates the process of exception propagation. The main method invokes
method level1 in the ExceptionScope class (see Listing 10.4 on page 434),
which invokes level2, which invokes level3, which produces an exception.
Method level3 does not catch and handle the exception, so control is trans-
ferred back to level2. The level2 method does not catch and handle the
 exception either, so control is transferred back to level1. Because the invoca-
tion of level2 is made inside a try block (in method level1), the exception is
caught and handled at that point.

Note that the program output does not include the messages indicating that
the methods level3 and level2 are ending. These println statements are never
executed, because an exception occurred and had not yet been caught. However,
after method level1 handles the exception, processing continues normally from

that point, printing the messages indicating that method level1 and
the program are ending.

Note also that the catch clause that handles the exception uses
the getMessage and printStackTrace methods to output that in-
formation. The stack trace shows the methods that were called when
the exception occurred.

KEY CONCEPT
A programmer must carefully consider
how and where exceptions should be
handled, if at all.

KEY CONCEPT
If an exception is not caught and
handled where it occurs, it is
propagated to the calling method.

VideoNote
Proper exception
 handling

M10_LEWI5976_05_SE_C10.indd 432 08/02/19 2:47 AM

 10.4 Exception Propagation 433

L I S T I N G 1 0 . 3

//**
// Propagation.java Java Foundations
//
// Demonstrates exception propagation.
//**

public class Propagation
{
 //---
 // Invokes the level1 method to begin the exception demonstration.
 //---
 public static void main(String[] args)
 {
 ExceptionScope demo = new ExceptionScope();

 System.out.println("Program beginning.");
 demo.level1();
 System.out.println("Program ending.");
 }
}

O U T P U T

Program beginning.
Level 1 beginning.
Level 2 beginning.
Level 3 beginning.

The exception message is: / by zero
The call stack trace:

D E S I G N F O C U S

A programmer must pick the most appropriate level at which to catch and handle
an exception. There is no single best way to do this. It depends on the situation
and the design of the system. Sometimes the right approach will be not to catch
an exception at all and let the program terminate.

M10_LEWI5976_05_SE_C10.indd 433 08/02/19 2:47 AM

434 CHAPTER 10 Exceptions

L I S T I N G 1 0 . 4

//**
// ExceptionScope.java Java Foundations
//
// Demonstrates exception propagation.
//**

public class ExceptionScope
{
 //---
 // Catches and handles the exception that is thrown in level3.
 //---
 public void level1()
 {
 System.out.println("Level 1 beginning.");

 try
 {
 level2();
 }
 catch (ArithmeticException problem)
 {
 System.out.println();
 System.out.println("The exception message is: " +
 problem.getMessage());
 System.out.println();

 java.lang.ArithmeticException: / by zero
 at ExceptionScope.level3(ExceptionScope.java:54)
 at ExceptionScope.level2(ExceptionScope.java:41)
 at ExceptionScope.level1(ExceptionScope.java:18)
 at Propagation.main(Propagation.java:17)

Level 1 ending.
Program ending.

L I S T I N G 1 0 . 3 continued

M10_LEWI5976_05_SE_C10.indd 434 08/02/19 2:47 AM

 10.5 The Exception Class Hierarchy 435

10.5 The Exception Class Hierarchy

The classes that define various exceptions are related by inheritance, creating a
class hierarchy that is shown in part in Figure 10.1 on the next page.

The Throwable class is the parent of both the Error class and the Exception
class. Many types of exceptions are derived from the Exception class, and these

 System.out.println("The call stack trace:");
 problem.printStackTrace();
 System.out.println();
 }

 System.out.println("Level 1 ending.");
 }

 //---
 // Serves as an intermediate level. The exception propagates
 // through this method back to level1.
 //---
 public void level2()
 {
 System.out.println("Level 2 beginning.");
 level3 ();
 System.out.println("Level 2 ending.");
 }

 //---
 // Performs a calculation to produce an exception. It is not
 // caught and handled at this level.
 //---
 public void level3()
 {
 int numerator = 10, denominator = 0;

 System.out.println("Level 3 beginning.");
 int result = numerator / denominator;
 System.out.println("Level 3 ending.");
 }
}

L I S T I N G 1 0 . 4 continued

M10_LEWI5976_05_SE_C10.indd 435 08/02/19 2:47 AM

436 CHAPTER 10 Exceptions

classes also have many children. Although these high-level classes are defined in
the java.lang package, many child classes that define specific exceptions are part
of other packages. Inheritance relationships can span package boundaries.

We can define our own exceptions by deriving a new class from Exception or
one of its descendants. The class we choose as the parent depends on what situa-
tion or condition the new exception represents.

The program in Listing 10.5 on page 437 instantiates an exception object and
throws it. The exception is created from the OutOfRangeException class, which

is shown in Listing 10.6 on page 438. This exception is not part of
the Java standard class library. It was created to represent the situa-
tion in which a value is outside a particular valid range.

After reading in an input value, the main method evaluates it to see
whether it is in the valid range. If not, the throw statement is executed.
A throw statement is used to begin exception propagation. Because the

main method does not catch and handle the exception, the program will terminate if
the exception is thrown, printing the message associated with the exception.

Error

Throwable

Object

LinkageError

ThreadDeath

AWTError

VirtualMachineError

Exception

IllegalAccessException

ClassNotFoundException

NoSuchMethodException

RuntimeException

ArithmeticException

NullPointerException

IndexOutOfBoundsException

FIGURE 10.1 Part of the Error and Exception class hierarchy

KEY CONCEPT
A new exception is defined by deriving
a new class from the Exception
class or one of its descendants.

M10_LEWI5976_05_SE_C10.indd 436 08/02/19 2:47 AM

 10.5 The Exception Class Hierarchy 437

L I S T I N G 1 0 . 5

//**
// CreatingExceptions.java Java Foundations
//
// Demonstrates the ability to define an exception via inheritance.
//**

import java.util.Scanner;

public class CreatingExceptions
{
 //---
 // Creates an exception object and possibly throws it.
 //---
 public static void main(String[] args) throws OutOfRangeException
 {
 final int MIN = 25, MAX = 40;

 Scanner scan = new Scanner(System.in);

 OutOfRangeException problem =
 new OutOfRangeException("Input value is out of range.");

 System.out.print("Enter an integer value between " + MIN +
 " and " + MAX + ", inclusive: ");
 int value = scan.nextInt();

 // Determine if the exception should be thrown
 if (value < MIN || value > MAX)
 throw problem;

 System.out.println("End of main method."); // may never reach
 }
}

O U T P U T

Enter an integer value between 25 and 40, inclusive: 69
Exception in thread "main" OutOfRangeException:
 Input value is out of range.
 at CreatingExceptions.main(CreatingExceptions.java:20)

M10_LEWI5976_05_SE_C10.indd 437 08/02/19 2:47 AM

438 CHAPTER 10 Exceptions

We created the OutOfRangeException class by extending the Exception
class. Often, a new exception is nothing more than what you see in this example:
an extension of some existing exception class that stores a particular message
describing the situation it represents. The important point is that the class is ulti-
mately a descendant of the Exception class and the Throwable class, which gives
it the ability to be thrown using a throw statement.

The type of situation handled by this program, in which a value is out of range,
does not need to be represented as an exception. We’ve previously handled such
situations using conditionals or loops alone. Whether you handle a situation by
using an exception or take care of it in the normal flow of your program is an
important design decision.

 throw new MaxException("Count exceeds maximum.");

Throwing an Exception

Java keyword create exception object

L I S T I N G 1 0 . 6

//**
// OutOfRangeException.java Java Foundations
//
// Represents an exceptional condition in which a value is out of
// some particular range.
//**

public class OutOfRangeException extends Exception
{
 //---
 // Sets up the exception object with a particular message.
 //---
 OutOfRangeException(String message)
 {
 super(message);
 }
}

if (count > MAX)

M10_LEWI5976_05_SE_C10.indd 438 08/02/19 2:47 AM

 10.6 I/O Exceptions 439

Checked and Unchecked Exceptions
Some exceptions are checked, whereas others are unchecked. A checked
exception must either be caught by a method or be listed in the throws
clause of any method that may throw or propagate it. A throws clause
is appended to the header of a method definition to formally acknowl-
edge that the method will throw or propagate a particular exception if
it occurs. An unchecked exception requires no throws clause.

The only unchecked exceptions in Java are objects of type RuntimeException
or any of its descendants. All other exceptions are considered checked exceptions.
The main method of the CreatingExceptions program has a throws clause,
indicating that it may throw an OutOfRangeException. This throws clause is
required because the OutOfRangeException was derived from the Exception
class, making it a checked exception.

10.6 I/O Exceptions

Processing input and output is a task that often produces tenuous situations, given
that it relies on external resources such as user data and files. These resources can
have various problems that lead to exceptions being thrown. Let’s explore some
I/O issues and the problems that may arise.

A stream is an ordered sequence of bytes. The term stream comes
from the analogy that as we read and write information, the data
flow from a source to a destination (or sink) as water flows down
a stream. The source of the information is like a spring filling the
stream, and the destination is like a cave into which the stream flows.

In a program, we treat a stream either as an input stream, from which we read
information, or as an output stream, to which we write information. A program
can deal with multiple input and output streams at one time. A particular store of
data, such as a file, can serve either as an input stream or as an output stream to a
program, but it generally cannot be both at the same time.

There are three streams that are referred to as the standard I/O
streams. They are listed in Figure 10.2. The System class contains
three object reference variables (in, out, and err) that represent the
three standard I/O streams. These references are declared as both
public and static, which allows them to be accessed directly
through the System class.

We’ve been using the standard output stream, with calls to System.out. prinln
for instance, in examples throughout this text. We’ve also used the standard input
stream to create a Scanner object when we want to process input read interactively

KEY CONCEPT
The throws clause on a method
header must be included for checked
exceptions that are not caught and
handled in the method.

KEY CONCEPT
A stream is a sequential sequence of
bytes; it can be used as a source of
input or as a destination for output.

KEY CONCEPT
Three public reference variables in the
System class represent the standard
I/O streams.

M10_LEWI5976_05_SE_C10.indd 439 08/02/19 2:47 AM

440 CHAPTER 10 Exceptions

from the user. The Scanner class manages the input read from the standard input
stream in various ways that make our programming tasks easier. It also processes
various I/O exceptions internally, producing an InputMismatchException when
needed.

The standard I/O streams, by default, represent particular I/O devices. System.in
typically represents keyboard input, whereas System.out and System.err typi-
cally represent a particular window on the monitor screen. The System.out and
System.err streams write output to the same window by default (usually the one
in which the program was executed), although they could be set up to write to
different places. The System.err stream is usually where error messages are sent.

In addition to the standard input streams, the java.io package
of the Java standard class library provides many classes that en-
able us to define streams with particular characteristics. Some of the
classes deal with files, others with memory, and others with strings.
Some classes assume that the data they handle consist of characters,
whereas others assume the data consist of raw bytes of binary in-

formation. Some classes provide the means to manipulate the data in the stream
in some way, such as buffering the information or numbering it. By combining
classes in appropriate ways, we can create objects that represent a stream of in-
formation that has exactly the characteristics we want for a particular situation.

The broad topic of Java I/O and the sheer number of classes in the java.io
package prohibit us from covering it in detail in this text. Our focus for the mo-
ment is on I/O exceptions.

Many operations performed by I/O classes can potentially throw an IOException.
The IOException class is the parent of several exception classes that represent prob-
lems when trying to perform I/O.

An IOException is a checked exception. As described earlier in this chapter,
that means that either the exception must be caught or all methods that propagate
it must list it in a throws clause of the method header.

Because I/O often deals with external resources, many problems can arise in
programs that attempt to perform I/O operations. For example, a file from which
we want to read might not exist; when we attempt to open the file, an exception

System.in Standard input stream.

Standard output stream.

Standard error stream (output for error messages).

System.out

System.err

Standard I/O Stream Description

FIGURE 10.2 Standard I/O streams

KEY CONCEPT
The Java class library contains many
classes for defining I/O streams with
various characteristics.

M10_LEWI5976_05_SE_C10.indd 440 08/02/19 2:47 AM

 10.6 I/O Exceptions 441

will be thrown because that file can’t be found. In general, we should try to design
programs to be as robust as possible when dealing with potential problems.

We’ve seen in previous examples how we can use the Scanner class to read
and process input read from a text file. Now let’s explore an example that writes
data to a text output file. Writing output to a text file requires simply that we use
the appropriate classes to create the output stream and then call the appropriate
methods to write the data.

Suppose we want to test a program we are writing, but we don’t have the
real data available. We could write a program that generates a test data file that
contains random values. The program shown in Listing 10.7 generates a file that
contains random integer values within a particular range. It also writes one line of
standard output, confirming that the data file has been written.

L I S T I N G 1 0 . 7

//**
// TestData.java Java Foundations
//
// Demonstrates I/O exceptions and the use of a character file
// output stream.
//**

import java.util.Random;
import java.io.*;

public class TestData
{
 //---
 // Creates a file of test data that consists of ten lines each
 // containing ten integer values in the range 10 to 99.
 //---
 public static void main(String[] args) throws IOException
 {
 final int MAX = 10;

 int value;
 String fileName = "test.txt";

 Random rand = new Random();

 PrintWriter outFile = new PrintWriter(fileName);

M10_LEWI5976_05_SE_C10.indd 441 08/02/19 2:47 AM

442 CHAPTER 10 Exceptions

The constructor of the PrintWriter class accepts a string representing a
file name to be opened as a text output stream. Like the System.out object, a
PrintWriter object has print and println methods that can be used to write
data to the file.

Note that in the TestData program, we have eliminated explicit exception
handling. That is, if something goes wrong, we simply allow the program to
terminate instead of specifically catching and handling the problem. Because all
IOExceptions are checked exceptions, we must include the throws clause on
the method header to indicate that they may be thrown. For each program, we
must carefully consider how best to handle the exceptions that may be thrown.
This requirement is especially important when dealing with I/O, which is fraught
with potential problems that cannot always be foreseen.

The TestData program uses nested for loops to compute random
values and write them to the output file. After all values are printed,
the file is closed. Output files must be closed explicitly to ensure that
the data are retained. In general, it is good practice to close all file
streams explicitly when they are no longer needed.

 for (int line=1; line <= MAX; line++)
 {
 for (int num=1; num <= MAX; num++)
 {
 value = rand.nextInt(90) + 10;
 outFile.print(value + " ");
 }
 outFile.println();
 }

 outFile.close();
 System.out.println("Output file has been created: " + fileName);
 }
}

O U T P U T

Output file has been created: test.txt

L I S T I N G 1 0 . 7 continued

KEY CONCEPT
Output file streams should be explicitly
closed, or they may not correctly retain
the data written to them.

M10_LEWI5976_05_SE_C10.indd 442 08/02/19 2:47 AM

 10.6 I/O Exceptions 443

The data contained in the file test.dat after the TestData program is run
might look like this:

85 90 93 15 82 79 52 71 70 98
74 57 41 66 22 16 67 65 24 84
86 61 91 79 18 81 64 41 68 81
98 47 28 40 69 10 85 82 64 41
23 61 27 10 59 89 88 26 24 76
33 89 73 36 54 91 42 73 95 58
19 41 18 14 63 80 96 30 17 28
24 37 40 64 94 23 98 10 78 50
89 28 64 54 59 23 61 15 80 88
51 28 44 48 73 21 41 52 35 38

M10_LEWI5976_05_SE_C10.indd 443 08/02/19 2:47 AM

444 CHAPTER 10 Exceptions

Summary of Key Concepts
■■ Errors and exceptions are objects that represent unusual or invalid processing.

■■ The messages printed when an exception is thrown provide a method call
stack trace.

■■ Each catch clause handles a particular kind of exception that may be
thrown within the try block.

■■ The finally clause is executed whether the try block is exited normally or
because of a thrown exception.

■■ If an exception is not caught and handled where it occurs, it is propagated to
the calling method.

■■ A programmer must carefully consider how and where exceptions should be
handled, if at all.

■■ A new exception is defined by deriving a new class from the Exception class
or one of its descendants.

■■ The throws clause on a method header must be included for checked exceptions
that are not caught and handled in the method.

■■ A stream is a sequential sequence of bytes; it can be used as a source of input
or as a destination for output.

■■ Three public reference variables in the System class represent the standard
I/O streams.

■■ The Java class library contains many classes for defining I/O streams with
various characteristics.

■■ Output file streams should be explicitly closed, or they may not correctly
retain the data written to them.

Summary of Terms
call stack trace A list of the method calls that resulted in an exception being
thrown.

catch clause The portion of a try-catch statement that handles a particu-
lar category of exception.

checked exception An exception that must be caught by a method or listed
in the throws clause of the method header.

error An object that represents a problem from which the program cannot
recover.

M10_LEWI5976_05_SE_C10.indd 444 08/02/19 2:47 AM

 Exercises 445

exception An object that represents an unusual or erroneous situation.

exception handler Code that responds to a particular type of exception
when it is thrown. It is usually implemented using a catch clause in a
try-catch statement.

exception propagation The process of an exception, when thrown, cascad-
ing up the call stack until it is caught or causes the program to abnormally
terminate.

finally clause A clause in a try-catch statement that is executed no
matter how the try block is exited (with a thrown exception or not).

input stream Any source of data.

output stream Any place to which data are written.

try-catch statement A statement used to intercept a thrown exception
and respond in an appropriate way.

unchecked exception An exception that is not required to be caught or
explicitly declared.

Self-Review Questions
SR 10.1 In what ways might a thrown exception be handled?

SR 10.2 What is a catch phrase?

SR 10.3 What happens if an exception is not caught?

SR 10.4 What is a finally clause?

SR 10.5 What is a checked exception?

SR 10.6 What is a stream?

SR 10.7 What are the standard I/O streams?

Exercises
EX 10.1 Create a UML class diagram for the ProductCodes program.

EX 10.2 Describe the output for the ProductCodes program if a finally
clause were added to the try statement that printed the string
"Got here!".

EX 10.3 What would happen if the try statement were removed from
the level1 method of the ExceptionScope class in the
Propagation program?

M10_LEWI5976_05_SE_C10.indd 445 08/02/19 2:47 AM

446 CHAPTER 10 Exceptions

EX 10.4 What would happen if the try statement described in the
 previous exercise were moved to the level2 method?

EX 10.5 What happens when the Exception class is used in a catch
clause to catch an exception?

EX 10.6 Look up the following exception classes in the online Java API
documentation, and describe their purpose:

a.ArithmeticException

b.NullPointerException

c.NumberFormatException

d.PatternSyntaxException

EX 10.7 Describe the PrintWriter class used in the TestData program.

Programming Projects
PP 10.1 Design and implement a program that reads a series of 10

 integers from the user and prints their average. Read each input
value as a string, and then attempt to convert it to an integer
using the Integer.parseInt method. If this process throws a
NumberFormatException (meaning that the input is not a valid
number), print an appropriate error message and prompt for the
number again. Continue reading values until 10 valid integers
have been entered.

PP 10.2 Design and implement a program that creates an exception class
called StringTooLongException, designed to be thrown when a
string is discovered that has too many characters in it. In the main
driver of the program, read strings from the user until the user
enters "DONE". If a string that has too many characters (say 20) is
entered, throw the exception. Allow the thrown exception to
terminate the program.

PP 10.3 Modify the solution to Programming Project 10.2 such that it
catches and handles the exception if it is thrown. Handle the
exception by printing an appropriate message, and then continue
processing more strings.

PP 10.4 Design and implement a program that creates an exception
class called InvalidDocumentCodeException, designed to
be thrown when an improper designation for a document is
encountered during processing. Suppose that in a particular

M10_LEWI5976_05_SE_C10.indd 446 08/02/19 2:47 AM

 Answers to Self-Review Questions 447

business, all documents are given a two-character designation
starting with U, C, or P, which stand for unclassified, confiden-
tial, or proprietary. If a document designation is encountered
that doesn’t fit that description, the exception is thrown. Create
a driver program to test the exception, allowing it to terminate
the program.

PP 10.5 Modify the solution to Programming Project 10.4 such that it catches
and handles the exception if it is thrown. Handle the exception by
printing an appropriate message, and then continue processing.

PP 10.6 Write a program that reads strings from the user and writes them
to an output file called userStrings.txt. Terminate processing
when the user enters the string "DONE". Do not write the sentinel
string to the output file.

PP 10.7 Suppose a library is processing an input file containing the titles
of books in order to remove duplicates. Write a program that
reads all of the titles from an input file called bookTitles.txt
and writes them to an output file called noDuplicates.txt.
When complete, the output file should contain all unique titles
found in the input file.

Answers to Self-Review Questions
SRA 10.1 A thrown exception can be handled in one of three ways. It

can be ignored, which will cause a program to terminate; it can
be handled where it occurs using a try statement; or it can be
caught and handled higher in the method-calling hierarchy.

SRA 10.2 A catch phrase of a try statement defines the code that will
handle a particular type of exception.

SRA 10.3 If an exception is not caught immediately when thrown, it begins
to propagate up through the methods that were called to get to
the point where it was generated. The exception can be caught
and handled at any point during that propagation. If it propa-
gates out of the main method, the program terminates.

SRA 10.4 The finally clause of a try-catch statement is executed no
matter how the try block is exited. If no exception is thrown, the
finally clause is executed after the try block is complete. If an
exception is thrown, the appropriate catch clause is executed,
and then the finally clause is executed.

M10_LEWI5976_05_SE_C10.indd 447 08/02/19 2:47 AM

448 CHAPTER 10 Exceptions

SRA 10.5 A checked exception is an exception that must be either (1)
caught and handled or (2) listed in the throws clause of any
method that may throw or propagate it. This establishes a set of
exceptions that must be formally acknowledged in the program
one way or another. Unchecked exceptions can be ignored com-
pletely in the code, if desired.

SRA 10.6 A stream is a sequential series of bytes that serves as a source of
input or a destination for output.

SRA 10.7 The standard I/O streams in Java are System.in, the standard
input stream; System.out, the standard output stream; and
System.err, the standard error stream. Usually, standard input
comes from the keyboard, and standard output and errors go to a
default window on the monitor screen.

M10_LEWI5976_05_SE_C10.indd 448 08/02/19 2:47 AM

449

11
It is important that we understand the concepts surround-

ing the efficiency of algorithms before we begin building

data structures. A data structure built correctly and with an

eye toward efficient use of both the CPU and memory is one

that can be reused effectively in many different applications.

However, using a data structure that is not built efficiently

is similar to using a damaged original as the master from

which to make copies.

C H A P T E R O B J E C T I V E S
■■ Discuss the goals of software development with respect
to efficiency.

■■ Introduce the concept of algorithm analysis.

■■ Explore the concept of asymptotic complexity.

■■ Compare various growth functions.

Analysis of
Algorithms 11

M11_LEWI5976_05_SE_C11.indd 449 08/02/19 2:49 AM

450 CHAPTER 11 Analysis of Algorithms

11.1 Algorithm Efficiency

One of the most important computer resources is CPU time. The efficiency of an
algorithm we use to accomplish a particular task is a major factor that determines
how fast a program executes. Although the techniques that we will discuss here

may also be used to analyze an algorithm in terms of the amount of
memory it uses, we will focus our discussion on the efficient use of
processing time.

The analysis of algorithms is a fundamental computer science topic
and involves a variety of techniques and concepts. It is a primary theme

that we return to throughout this text. This chapter introduces the issues related to
algorithm analysis and lays the groundwork for using analysis techniques.

Let’s start with an everyday example: washing dishes by hand. If we assume that
washing a dish takes 30 seconds and drying a dish takes an additional 30 seconds,
then we can see quite easily that it would take n minutes to wash and dry n dishes.
This computation could be expressed as follows:

Time (n dishes) = n * 130 seconds wash time + 30 seconds dry time2
= 60n seconds

or, written more formally,

f1x2 = 30x + 30x
f1x2 = 60x

On the other hand, suppose we were careless while washing the dishes and
splashed too much water around. Suppose each time we washed a dish, we had to
dry not only that dish but also all of the dishes we had washed before that one. It
would still take 30 seconds to wash each dish, but now it would take 30 seconds
to dry the last dish (once), 2 * 30 or 60 seconds to dry the second-to-last dish
(twice), 3 * 30 or 90 seconds to dry the third-to-last dish (three times), and so on.
This computation could be expressed as follows:

Time 1n dishes2 = n * (30 seconds wash time + a
n

i=1
1 i * 302

When we use the formula for an arithmetic series, gn
1 i = n(n + 1)>2, the

function becomes

Time 1n dishes2 = 30n + 30n1n + 12 >2
= 15n2 + 45n seconds

If there were 30 dishes to wash, the first approach would take 30 minutes,
whereas the second (careless) approach would take 247.5 minutes. The more dishes

KEY CONCEPT
Algorithm analysis is a fundamental
computer science topic.

M11_LEWI5976_05_SE_C11.indd 450 08/02/19 2:49 AM

 11.2 Growth Functions and Big-Oh Notation 451

we wash, the worse that discrepancy becomes. For example, if there were 300 dishes
to wash, the first approach would take 300 minutes, or 5 hours, whereas the second
approach would take 908,315 minutes, or roughly 15,000 hours!

11.2 Growth Functions and Big-Oh Notation

For every algorithm we want to analyze, we need to define the size of the prob-
lem. For our dishwashing example, the size of the problem is the number of
dishes to be washed and dried. We also must determine the value that represents
efficient use of time or space. For time considerations, we often pick an appropri-
ate processing step that we’d like to minimize, such as our goal to minimize the
number of times a dish has to be washed and dried. The overall amount of time
spent on the task is directly related to how many times we have to perform that
task. The algorithm’s efficiency can be defined in terms of the problem size and
the processing step.

Consider an algorithm that sorts a list of numbers into increasing order. One
natural way to express the size of the problem would be the number of values to
be sorted. The processing step we are trying to optimize could be expressed as the
number of comparisons we have to make for the algorithm to put
the values in order. The more comparisons we make, the more CPU
time is used.

A growth function shows the relationship between the size of the
problem (n) and the value we hope to optimize. This function repre-
sents the time complexity or space complexity of the algorithm.

The growth function for our second dishwashing algorithm is

t1n2 = 15n2 + 45n

However, it is not typically necessary to know the exact growth function for
an algorithm. Instead, we are mainly interested in the asymptotic complexity of
an algorithm. That is, we want to focus on the general nature of the function as n
increases. This characteristic is based on the dominant term of the expression—
the term that increases most quickly as n increases. As n gets very large, the value
of the dishwashing growth function is dominated by the n2 term because the n2
term grows much faster than the n term. The constants, in this case 15 and 45,
and the secondary term, in this case 45n, quickly become irrelevant as n increases.
That is to say, the value of n2 dominates the growth in the value of the expression.

The table in Figure 11.1 shows how the two terms and the value of the expres-
sion grow. As you can see from the table, as n gets larger, the 15n2 term dominates
the value of the expression. It is important to note that the 45n term is larger for

KEY CONCEPT
A growth function shows time or
space utilization relative to the
problem size.

M11_LEWI5976_05_SE_C11.indd 451 08/02/19 2:49 AM

452 CHAPTER 11 Analysis of Algorithms

very small values of n. Saying that a term is the dominant term as n gets large does
not mean that it is larger than the other terms for all values of n.

The asymptotic complexity is called the order of the algorithm. Thus, our sec-
ond dishwashing algorithm is said to have order n2 time complexity, which is

written O1n22 . Our first, more efficient dishwashing example, with
growth function t1n2 = 601n2 , would have order n time com-
plexity, which is written O1n2 . Thus the reason for the difference
between our O1n2 original algorithm and our O1n22 sloppy algo-
rithm is the fact each dish will have to be dried multiple times.

This notation is referred to as O(), or Big-Oh, notation. A growth
function that executes in constant time regardless of the size of the

problem is said to have O(1). In general, we are concerned only with executable
statements in a program or algorithm in determining its growth function and
efficiency. Keep in mind, however, that some declarations may include initializa-
tions, and some of these may be complex enough to factor into the efficiency of
an algorithm.

As an example, assignment statements and if statements that are executed only
once, regardless of the size of the problem, are O(1). Therefore, it does not matter
how many of those you string together; it is still O(1). Loops and method calls may
result in higher-order growth functions because they may result in a statement or
series of statements being executed more than once based on the size of the prob-

lem. We will discuss these separately in later sections of this chap-
ter. Figure 11.2 shows several growth functions and their asymptotic
complexity.

More formally, saying that the growth function t1n2 = 15n2 + 45n
is O1n22 means that there exist a constant m and some value of n

(n0), such that t1n2 … m * n2 for all n 7 n0. Another way of stating this is to say
that the order of an algorithm provides an upper bound to its growth function.

Number of dishes (n)

1
2
5
10
100
1,000
10,000
100,000
1,000,000
10,000,000

15
60
375
1,500
150,000
15,000,000
1,500,000,000
150,000,000,000
15,000,000,000,000
1,500,000,000,000,000

15n2

45
90
225
450
4,500
45,000
450,000
4,500,000
45,000,000
450,000,000

45n

60
150
600
1,950
154,500
15,045,000
1,500,450,000
150,004,500,000
15,000,045,000,000
1,500,000,450,000,000

15n2 1 45n

FIGURE 11.1 Comparison of terms in growth function

KEY CONCEPT
The order of an algorithm provides an
upper bound to the algorithm’s growth
function.

KEY CONCEPT
The order of an algorithm is found
by eliminating constants and all but
the dominant term in the algorithm’s
growth function.

M11_LEWI5976_05_SE_C11.indd 452 08/02/19 2:49 AM

 11.3 Comparing Growth Functions 453

It is also important to note that there are other related notations such as omega
(Ω), which refers to a function that provides a lower bound, and theta (u), which
refers to a function that provides both an upper and a lower bound. Our discus-
sion will focus on order.

Because the order of the function is the key factor, the other terms and constants
are often not even mentioned. All algorithms within a given order are considered to be
generally equivalent in terms of efficiency. For example, even though two algorithms
to accomplish the same task may have different growth functions, if they are both
O1n22, then they are considered to be roughly equivalent with respect to efficiency.

11.3 Comparing Growth Functions

One might assume that, with the advances in the speed of processors and the
availability of large amounts of inexpensive memory, algorithm analysis would no
longer be necessary. However, nothing could be further from the truth. Processor
speed and memory cannot make up for the differences in efficiency of algorithms.
Keep in mind that constants are often eliminated as irrelevant when one is discuss-
ing the order of an algorithm. Increasing processor speed simply adds a constant
to the growth function. When possible, finding a more efficient algorithm is a bet-
ter solution than finding a faster processor.

Another way of looking at the effect of algorithm complexity was proposed by
Aho, Hopcroft, and Ullman (1974). If a system can currently handle a problem of
size n in a given time period, what happens to the allowable size of the problem if we
increase the speed of the processor tenfold? As shown in Figure 11.3, the linear case is
relatively simple. Algorithm A, with a linear time complexity of n, is indeed improved
by a factor of 10, which means that this algorithm can process 10 times as much
data in the same amount of time, given a tenfold speedup of the processor. However,
algorithm B, with a time complexity of n2, is improved by a factor of only 3.16. Why
do we not get the full tenfold increase in problem size? Because the complexity of
algorithm B is n2, our effective speedup is only the square root of 10, or 3.16.

Growth Function

t(n) = 17
t(n) = 3 log n
t(n) = 20n – 4
t(n) = 12n log n + 100n
t(n) = 3n2 + 5n – 2
t(n) = 8n3 + 3n2

t(n) = 2n + 18n2 + 3n

O(1)
O(log n)
O(n)
O(n log n)
O(n2)
O(n3)
O(2n)

Order

constant
logarithmic
linear
n log n
quadratic
cubic
exponential

Label

FIGURE 11.2 Some growth functions and their asymptotic complexities

M11_LEWI5976_05_SE_C11.indd 453 08/02/19 2:49 AM

454 CHAPTER 11 Analysis of Algorithms

Similarly, algorithm C, with complexity n3, is improved by a factor of only
2.15, or the cube root of 10. For algorithms with exponential complexity like
algorithm D, in which the size variable is in the exponent of the complexity term,

the situation is far worse. The speedup is log2n, or in this case, 3.3.
Note that this is not a factor of 3, but the original problem size plus
3. In the grand scheme of things, if an algorithm is inefficient, speed-
ing up the processor will not help.

Figure 11.4 illustrates various growth functions graphically for
relatively small values of n. Note that when n is small, there is

little difference between the algorithms. That is, if you can guarantee a very
small problem size (5 or less), it doesn’t really matter which algorithm is used.

Algorithm

A

B

C

D

Time Complexity

n

n2

n3

2n

Max Problem Size
before Speedup

s1
s2
s3
s4

Max Problem Size
after Speedup

10s1
3.16s2
2.15s3
s4 + 3.3

FIGURE 11.3 Increase in problem size with a tenfold increase in processor speed

500

200

100

0

T
im

e

1 5 10 15 2520

300

400

Input Size (n)

log n
n
n log n
n2

n3

2n

FIGURE 11.4 Comparison of typical growth functions for small values of n

KEY CONCEPT
When the algorithm is inefficient, a
faster processor will not help in the
long run.

M11_LEWI5976_05_SE_C11.indd 454 08/02/19 2:49 AM

 11.4 Determining Time Complexity 455

However, notice that in Figure 11.5, as n gets very large, the differences be-
tween the growth functions become obvious.

11.4 Determining Time Complexity

Analyzing Loop Execution
To determine the order of an algorithm, we have to determine how
often a particular statement or set of statements gets executed.
Therefore, we often have to determine how many times the body of a
loop is executed. To analyze loop execution, first determine the order
of the body of the loop, and then multiply that by the number of times
the loop will execute relative to n. Keep in mind that n represents the
problem size.

Assuming that the body of a loop is O(1), then a loop such as

for (int count = 0; count < n; count++)
{
 /* some sequence of O(1) steps */
}

KEY CONCEPT
Analyzing algorithm complexity often
requires analyzing the execution
of loops.

200,000

100,000

50,000

0

T
im

e

150,000

1001 200 300 500400

log n
n
n log n
n2

n3

2n

Input Size (n)

FIGURE 11.5 Comparison of typical growth functions for large values of n

M11_LEWI5976_05_SE_C11.indd 455 08/02/19 2:49 AM

456 CHAPTER 11 Analysis of Algorithms

will have O(n) time complexity. This is due to the fact that the body of the loop
has O(1) complexity but is executed n times by the loop structure. In general, if a
loop structure steps through n items in a linear fashion and the body of the loop is
O(1), then the loop is O(n). Even in a case where the loop is designed to skip some
number of elements, as long as the progression of elements to skip is linear, the
loop is still O(n). For example, if the preceding loop skipped every other number
(e.g., count + = 2), the growth function of the loop would be n>2, but since con-
stants don’t affect the asymptotic complexity, the order is still O(n).

Let’s look at another example. If the progression of the loop is logarithmic, as
it is in the loop

count = 1
while (count < n)
{
 count *= 2;
 /* some sequence of O(1) steps */
}

then the loop is said to be O(log n). Note that when we use a log-
arithm in an algorithm complexity, we almost always mean log
base 2. This can be explicitly written as O1 log2n2 . Since each time
through the loop the value of count is multiplied by 2, the number
of times the loop is executed is log2n.

Nested Loops
A slightly more interesting scenario arises when loops are nested. In this case, we
must multiply the complexity of the outer loop by the complexity of the inner
loop to find the resulting complexity. For example, the nested loops

for (int count = 0; count < n; count++)
{
 for (int count2 = 0; count2 < n; count2++)
 {
 /* some sequence of O(1) steps */
 }
}

have complexity O1n22 . The body of the inner loop is O(1) and the inner loop
will execute n times. This means the inner loop is O(n). Multiplying this result by
the number of times the outer loop will execute (n) results in O1n22 .

KEY CONCEPT
The time complexity of a loop is found
by multiplying the complexity of the
body of the loop by how many times
the loop will execute.

M11_LEWI5976_05_SE_C11.indd 456 08/02/19 2:49 AM

 11.4 Determining Time Complexity 457

What is the complexity of the following nested loop?

for (int count = 0; count < n; count++)
{
 for (int count2 = count; count2 < n; count2++)
 {
 /* some sequence of O(1) steps */
 }
}

In this case, the inner loop index is initialized to the current value of the index
for the outer loop. The outer loop executes n times. The inner loop executes n
times the first time, n - 1 times the second time, and so on. However, remember
that we are interested only in the dominant term, not in constants or any lesser
terms. If the progression is linear, then regardless of whether some elements are
skipped, the order is still O(n). Thus the complexity for this code is O1n22 .

Method Calls
Let’s suppose that we have the following segment of code:

for (int count = 0; count < n; count++)
{
 printsum(count);
}

We know from our previous discussion that we find the order of the loop by
multiplying the order of the body of the loop by the number of times the loop will
execute. In this case, however, the body of the loop is a method call. Therefore,
we must determine the order of the method before we can determine the order of
the code segment. Let’s suppose that the purpose of the method is to print the sum
of the integers from 1 to n each time it is called. We might be tempted to create a
brute force method such as the following:

public void printsum(int count)
{
 int sum = 0;
 for (int i = 1; i < count; i++)
 sum += i;
 System.out.println(sum);
}

What is the time complexity of this printsum method? Keep in mind that only
executable statements contribute to the time complexity, so in this case, all of the
executable statements are O(1) except for the loop. The loop, on the other hand,

KEY CONCEPT
The analysis of nested loops must take
into account both the inner loop and
the outer loop.

M11_LEWI5976_05_SE_C11.indd 457 08/02/19 2:49 AM

458 CHAPTER 11 Analysis of Algorithms

is O(n), and thus the method itself is O(n). Now, to compute the time complexity
of the original loop that called the method, we simply multiply the complexity of
the method, which is the body of the loop, by the number of times the loop will
execute. Our result, then, is O1n22 using this implementation of the printsum
method.

However, we know from our earlier discussion that we do not have to use
a loop to calculate the sum of the numbers from 1 to n. In fact, we know that gn

1 i = n(n + 1)>2. Now let’s rewrite our printsum method and see what happens
to our time complexity:

public void printsum(int count)
{
 sum = count*(count+1)/2;
 System.out.println (sum);
}

Now the time complexity of the printsum method is made up of an assignment
statement, which is O(1), and a print statement, which is also O(1). The result of
this change is that the time complexity of the printsum method is now O(1), which
means that the loop that calls this method goes from O1n22 to O(n). We know
from our earlier discussion and from Figure 11.5 that this is a very significant im-
provement. Once again, we see that there is a difference between delivering correct
results and doing so efficiently.

What if the body of a method is made up of multiple method calls and loops?
Consider the following code using our printsum method above:

public void sample(int n)
{
 printsum(n); /* this method call is O(1) */
 for (int count = 0; count < n; count++) /* this loop is O(n) */
 printsum (count);
 for (int count = 0; count < n; count++) /* this loop is O(n2) */
 for (int count2 = 0; count2 < n; count2++)
 System.out.println (count, count2);
}

The initial call to the printsum method with the parameter temp is O(1),
because the method is O(1). The for loop containing the call to the printsum
method with the parameter count is O(n), because the method is O(1) and the loop
executes n times. The nested loops are O1n22 , because the inner loop will execute
n times each time the outer loop executes, and the outer loop will also execute n
times. The entire method is then O1n22 since only the dominant term matters.

M11_LEWI5976_05_SE_C11.indd 458 08/02/19 2:49 AM

 11.4 Determining Time Complexity 459

More formally, the growth function for the method sample is given by

f1x2 = 1 + n + n2

Then, given that we eliminate constants and all but the dominant term, the
time complexity is O1n22 .

There is one additional issue we must deal with when analyzing the time com-
plexity of method calls, and that is recursion, the situation wherein a method calls
itself. We will save that discussion for Chapter 17.

M11_LEWI5976_05_SE_C11.indd 459 08/02/19 2:49 AM

460 CHAPTER 11 Analysis of Algorithms

Summary of Key Concepts

■■ Software must make efficient use of resources such as CPU time and memory.

■■ Algorithm analysis is a fundamental computer science topic.

■■ A growth function shows time or space utilization relative to the problem size.

■■ The order of an algorithm is found by eliminating constants and all but the
dominant term in the algorithm’s growth function.

■■ The order of an algorithm provides an upper bound to the algorithm’s
growth function.

■■ When the algorithm is inefficient, a faster processor will not help in the
long run.

■■ Analyzing algorithm complexity often requires analyzing the execution of
loops.

■■ The time complexity of a loop is found by multiplying the complexity of the
body of the loop by the number of times the loop will execute.

■■ The analysis of nested loops must take into account both the inner loop and
the outer loop.

Summary of Terms
analysis of algorithms The computer science topic area that focuses on the
efficiency of software algorithms.

Big-Oh notation The notation used to represent the order, or asymptotic
complexity, of a function.

growth function A function that describes time or space utilization relative
to the problem size.

asymptotic complexity A limit on a growth function, defined by the growth
function’s dominant term and characterizing similar functions into a general
category.

Self-Review Questions
SR 11.1 What is the difference between the growth function of an

 algorithm and the order of that algorithm?

SR 11.2 Why does speeding up the CPU not necessarily speed up the
 process by the same amount?

M11_LEWI5976_05_SE_C11.indd 460 08/02/19 2:49 AM

 Exercises 461

SR 11.3 How do we use the growth function of an algorithm to determine
its order?

SR 11.4 How do we determine the time complexity of a loop?

SR 11.5 How do we determine the time complexity of a method call?

Exercises
EX 11.1 What is the order of each of the following growth functions?

a. 10n2 + 100n + 1000
b. 10n3 - 7
c. 2n + 100n3

d. n2 log n

EX 11.2 Arrange the growth functions of the previous exercise in ascending
order of efficiency for n = 10 and again for n = 1,000,000.

EX 11.3 Write the code necessary to find the largest element in an unsorted
array of integers. What is the time complexity of this algorithm?

EX 11.4 Determine the growth function and order of the following code
fragment:

for (int count=0; count < n; count++)
{
 for (int count2=0; count2 < n; count2=count2+2)
 {
 System.out.println(count + ", " + count2);
 }
}

EX 11.5 Determine the growth function and order of the following code
fragment:

for (int count=0; count < n; count++)
{
 for (int count2=1; count2 < n; count2=count2*2)
 {
 System.out.println(count + ", " + count2);
 }
}

EX 11.6 The table in Figure 11.1 shows how the terms of the growth func-
tion for our dishwashing example are related to one another as n
grows. Write a program that will create such a table for any given
growth function.

M11_LEWI5976_05_SE_C11.indd 461 08/02/19 2:49 AM

462 CHAPTER 11 Analysis of Algorithms

Answers to Self-Review Questions
SRA 11.1 The growth function of an algorithm represents the exact relation-

ship between the problem size and the time complexity of the solu-
tion. The order of the algorithm is the asymptotic time complexity.
As the size of the problem grows, the complexity of the algorithm
approaches the asymptotic complexity.

SRA 11.2 Linear speedup occurs only if the algorithm has constant order,
O(1), or linear order, O(n). As the complexity of the algorithm
grows, faster processors have significantly less impact.

SRA 11.3 The order of an algorithm is found by eliminating constants and
all but the dominant term from the algorithm’s growth function.

SRA 11.4 The time complexity of a loop is found by multiplying the time
complexity of the body of the loop by the number of times the
loop will execute.

SRA 11.5 The time complexity of a method call is found by determining the
time complexity of the method and then substituting that for the
method call.

References
Aho, A. V., J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of

Computer Algorithms. Reading, Mass.: Addison-Wesley, 1974.

M11_LEWI5976_05_SE_C11.indd 462 08/02/19 2:49 AM

463

12
This chapter begins our exploration of collections and

the underlying data structures used to implement them. It

lays the groundwork for the study of collections by careful-

ly defining the issues and goals related to their design. This

chapter also introduces a collection called a stack and uses

it to exemplify the issues related to the design, implementa-

tion, and use of collections.

C H A P T E R O B J E C T I V E S
■■ Define the concepts and terminology related to collections.

■■ Explore the basic structure of the Java Collections API.

■■ Discuss the abstract design of collections.

■■ Define a stack collection.

■■ Use a stack collection to solve a problem.

■■ Examine an array implementation of a stack.

Introduction to
Collections—Stacks12

M12_LEWI5976_05_SE_C12.indd 463 08/02/19 2:51 AM

464 CHAPTER 12 Introduction to Collections—Stacks

12.1 Collections

A collection is an object that gathers and organizes other objects. It defines the
specific ways in which those objects, which are called elements of the collection,
can be accessed and managed. The user of a collection, which is usually another

class or object in the software system, must interact with the collec-
tion only in the prescribed ways.

Over time, several specific types of collections have been defined
by software developers and researchers. Each type of collection lends

itself to solving particular kinds of problems. A large portion of this text is de-
voted to exploring these classic collections.

Collections can be separated into two broad categories: linear and nonlinear.
As the name implies, a linear collection is one in which the elements of the collec-
tion are conceptually organized in a straight line. A nonlinear collection is one in
which the elements are conceptually organized in something other than a straight

line, such as a hierarchy or a network. For that matter, a nonlinear
collection may not have any organization at all.

Figure 12.1 shows a linear collection and a nonlinear collection. It
usually doesn’t matter whether the elements in a linear collection are
depicted horizontally or vertically.

The organization of the elements in a collection, relative to each
other, is usually determined by one of two things:

■■ The order in which the elements were added to the collection

■■ Some inherent relationship among the elements themselves

FIGURE 12.1 A linear collection and a nonlinear collection

KEY CONCEPT
Elements in a collection are typically
organized in terms of the order of their
addition to the collection or in terms
of some inherent relationship among
the elements.

KEY CONCEPT
A collection is an object that gathers
and organizes other objects.

M12_LEWI5976_05_SE_C12.indd 464 08/02/19 2:51 AM

 12.1 Collections 465

For example, one linear collection may always add new elements to one end of
the line, so the order of the elements is determined by the order in which they are
added. Another linear collection may be kept in sorted order based on some char-
acteristic of the elements. For example, a list of people may be kept in alphabetic
order based on the characters that make up their name. The specific organization
of the elements in a nonlinear collection can be determined in either of these two
ways as well.

Abstract Data Types
An abstraction hides certain details at certain times. Dealing with an abstraction
is easier than dealing with too many details at one time. In fact, we couldn’t get
through a day without relying on abstractions. For example, we couldn’t possibly
drive a car if we had to worry about all the details that make the car work: the
spark plugs, the pistons, the transmission, and so on. Instead, we can focus on
the interface to the car: the steering wheel, the pedals, and a few other controls.
These controls are an abstraction, hiding the underlying details and allowing us to
control an otherwise very complicated machine.

A collection, like any well-designed object, is an abstraction. A
collection defines the interface operations through which the user can
manage the objects in the collection, such as adding and removing el-
ements. The user interacts with the collection through this interface,
as depicted in Figure 12.2. However, the details of how a collection
is implemented to fulfill that definition are another issue altogether. A class that
implements the collection’s interface must fulfill the conceptual definition of the
collection, but it can do so in many ways.

KEY CONCEPT
A collection is an abstraction where
the details of the implementation are
hidden.

FIGURE 12.2 A well-defined interface masks the implementation of the collection

Class that
implements

the collection

Class that
uses

the collection

Interface

M12_LEWI5976_05_SE_C12.indd 465 08/02/19 2:51 AM

466 CHAPTER 12 Introduction to Collections—Stacks

Abstraction is another important software engineering concept. In large soft-
ware systems, it is virtually impossible for any one person to grasp all of the de-
tails of the system at once. Instead, the system is divided into abstract subsystems
such that the purpose of those subsystems and the interactions among them can
be specified. Subsystems may then be assigned to different developers or groups of
developers who will develop the subsystem to meet its specification.

An object is the perfect mechanism for creating a collection, because if it is
designed correctly, the internal workings of an object are encapsulated from the
rest of the system. In most cases, the instance variables defined in a class should
be declared with private visibility. Therefore, only the methods of that class can
access and modify them. The only interaction a user has with an object should be
through its public methods, which represent the services that the object provides.

As we progress through our exploration of collections, we will always stress
the idea of separating the interface from the implementation. Therefore, for every
collection that we examine, we should consider the following:

■■ How does the collection operate, conceptually?

■■ How do we formally define the interface to the collection?

■■ What kinds of problems does the collection help us solve?

■■ What support is already available to us for this type of collection?

■■ In which various ways might we implement the collection?

■■ What are the benefits and costs of each implementation?

Before we continue, let’s carefully define some other terms related to the explo-
ration of collections. A data type is a group of values and the operations defined
on those values. The primitive data types defined in Java are the primary ex-
amples. For example, the integer data type defines a set of numeric values and the
operations (addition, subtraction, etc.) that can be used on them.

An abstract data type (ADT) is a data type whose values and operations are not
inherently defined within a programming language. It is abstract only in that the
details of its implementation must be defined and should be hidden from the user.
A collection, therefore, is an abstract data type.

A data structure is the collection of programming constructs used to implement
a collection. For example, a collection might be implemented using a fixed-size
structure such as an array. One interesting artifact of these definitions and our de-
sign decision to separate the interface from the implementation (i.e., the collection

from the data structure that implements it) is that we may, and often
do, end up with a linear data structure, such as an array, being used
to implement a nonlinear collection, such as a tree.

Historically, the terms ADT and data structure have been used in
various ways. We carefully define them here to avoid any confusion,

KEY CONCEPT
A data structure is the underlying
programming construct used to
implement a collection.

M12_LEWI5976_05_SE_C12.indd 466 08/02/19 2:51 AM

 12.2 A Stack Collection 467

and we will use them consistently. Throughout this text, we will examine various
data structures and how they can be used to implement various collections.

The Java Collections API
The Java programming language is accompanied by a very large library of classes
that can be used to support the development of software. Parts of the library are
organized into application programming interfaces (APIs). The Java Collections
API is a set of classes that represent a few specific types of collections, imple-
mented in various ways.

You might ask why we should learn how to design and implement collections
if a set of collections has already been provided for us. There are several reasons.
First, the Java Collections API provides only a subset of the collections you may
want to use. Second, the classes that are provided may not implement the collec-
tions in the ways you desire. Third, and perhaps most important, the study of
software development requires a deep understanding of the issues involved in the
design of collections and the data structures used to implement them.

As we explore various types of collections, we will also examine the appropri-
ate classes of the Java Collections API. In each case, we will analyze the various
implementations that we develop and compare them to the approach used by the
classes in the standard library.

12.2 A Stack Collection

Let’s look at an example of a collection. A stack is a linear collection whose ele-
ments are added to, and removed from, the same end. We say that a stack is pro-
cessed in a last in, first out (LIFO) manner. That is, the last element
to be put on a stack will be the first one that gets removed. Said
another way, the elements of a stack are removed in the reverse order
of their placement on it. In fact, one of the principal uses of a stack
in computing is to reverse the order of something (such as an undo
operation).

The processing of a stack is shown in Figure 12.3. Usually a stack is depicted
vertically, and we refer to the end to which elements are added and from which
they are removed as the top of the stack.

Recall from our earlier discussions that we define an abstract data type (ADT)
by identifying a specific set of operations that establishes the valid ways in which
we can manage the elements stored in the data structure. We always want to use
this concept to formally define the operations for a collection and work within the

KEY CONCEPT
Stack elements are processed in a
LIFO manner—the last element in is
the first element out.

M12_LEWI5976_05_SE_C12.indd 467 08/02/19 2:51 AM

468 CHAPTER 12 Introduction to Collections—Stacks

Adding an
element

Removing an
element

top of
stack

FIGURE 12.3 A conceptual view of a stack

functionality it provides. That way, we can cleanly separate the interface to the
collection from any particular implementation technique used to create it.

The operations for a stack ADT are listed in Figure 12.4. In stack terminology,
we push an element onto a stack, and we pop an element off a stack. We can also
peek at the top element of a stack, examining it or using it as needed, without
actually removing it from the collection. There are also general operations that

enable us to determine whether the stack is empty and, if it is not
empty, how many elements it contains.

Sometimes there are variations on the naming conventions for the
operations on a collection. For a stack, the use of the terms push and
pop is relatively standard. The peek operation is sometimes referred
to as top.

KEY CONCEPT
A programmer should choose the
structure that is appropriate for the
type of data management needed.

Operation

push

pop

peek

isEmpty

size

Description

Adds an element to the top of the stack.
Removes an element from the top of the stack.
Examines the element at the top of the stack.
Determines if the stack is empty.
Determines the number of elements on the stack.

FIGURE 12.4 The operations on a stack

M12_LEWI5976_05_SE_C12.indd 468 08/02/19 2:51 AM

 12.3 Crucial OO Concepts 469

Keep in mind that the definition of a collection is not universal. You will find
variations in the operations defined for specific collections from one text to an-
other. We’ve been very careful in this text to define the operations on each collec-
tion so that they are consistent with its purpose.

For example, note that none of the stack operations in Figure 12.4 enables us
to reach down into the stack to modify, remove, or reorganize the elements in
the stack. That is the very nature of a stack—all activity occurs at one end. If we
discover that, to solve a particular problem, we need to access the elements in the
middle or at the bottom of the collection, then a stack is not the appropriate col-
lection to use.

We do provide a toString operation for the collection. This is not a classic
operation defined for a stack, and it could be argued that this operation violates
the prescribed behavior of a stack. However, it provides a convenient means to
traverse and display the stack’s contents without allowing modification of the
stack and this is quite useful for debugging purposes.

12.3 Crucial OO Concepts

Now let’s consider what we will store in our stack. One possibility would be
to simply recreate our stack data structure each time we need it and create it to
store the specific object type for that application. For example, if we needed a
stack of strings, we would simply copy and paste our stack code and change the
object type to String. Even though copy, paste, and modify is technically a form
of reuse, this brute force type of reuse is not our goal. Reuse, in its purest form,
should mean that we create a collection that is written once, is compiled into
byte code once, and will then handle any objects we choose to store in it safely,
efficiently, and effectively. To accomplish these goals, we must take type compat-
ibility and type checking into account. Type compatibility indicates whether a

D E S I G N F O C U S

In the design of the stack ADT, we see the separation between the role of the stack
and the role of the application that is using the stack. Notice that any implementa-
tion of this stack ADT is expected to throw an exception if a pop or peek operation
is requested on an empty stack. The role of the collection is not to determine how
such an exception is handled but merely to report it back to the application using
the stack. Similarly, the concept of a full stack does not exist in the stack ADT.
Thus, it is the role of the stack collection to manage its own storage to eliminate
the possibility of being full.

M12_LEWI5976_05_SE_C12.indd 469 08/02/19 2:51 AM

470 CHAPTER 12 Introduction to Collections—Stacks

particular assignment of an object to a reference is legal. For example, the follow-
ing assignment is not legal because you cannot assign a reference declared to be of
type String to point to an object of type Integer.

String x = new Integer(10);

Java provides compile-time type checking that will flag this invalid assignment.
A second possibility of what to store in our collection is to take advantage of the
concepts of inheritance and polymorphism to create a collection that can store
objects of any class.

Inheritance and Polymorphism
A complete discussion of the concepts of inheritance and polymorphism is pro-
vided in Chapter 9. To review, a polymorphic reference is a reference variable that
can refer to different types of objects at different points in time. Inheritance can be
used to create a class hierarchy where a reference variable can be used to point to
any object related to it by inheritance.

Carrying this to the extreme, an Object reference can be used to refer to
any object, because ultimately all classes are descendants of the Object class.
An ArrayList that is instantiated without specifying a type, for example, uses
polymorphism in that it is designed to hold Object references. That’s why an
ArrayList can be used to store any kind of object. A particular ArrayList can
hold several different types of objects at one time, because they are all objects
compatible with type Object.

The result of this discussion would seem to be that we could simply store
Object references in our stack and take advantage of polymorphism via inher-
itance to create a collection that can store any type of objects. However, this
possible solution creates some unexpected consequences. Because in this chapter
we focus on implementing a stack with an array, let’s examine what can happen
when dealing with polymorphic references and arrays. Consider our classes repre-
sented in Figure 12.5. Since Animal is a superclass of all of the other classes in this
diagram, an assignment such as the following is allowable:

Animal creature = new Bird();

However, this also means that the following assignments will compile as well:

Animal[] creatures = new Mammal[];
creatures[1] = new Reptile();

Note that by definition, creatures[1] should be both a Mammal and
an Animal, but not a Reptile. This code will compile but will generate a

M12_LEWI5976_05_SE_C12.indd 470 08/02/19 2:51 AM

 12.3 Crucial OO Concepts 471

java.lang.ArrayStoreException at run-time. Thus, because using the Object
class will not provide us with compile-time type checking, we should look for a
better solution.

Generics
Java enables us to define a class based on a generic type. That is, we can define a
class so that it stores, operates on, and manages objects whose type is not specified
until the class is instantiated. Generics are an integral part of our discussions of
collections and their underlying implementations throughout the rest of this text.

Let’s assume we need to define a class called Box that stores and manages other
objects. As we discussed, using polymorphism, we could simply define Box so that
internally it stores references to the Object class. Then, any type of object could
be stored inside a box. In fact, multiple types of unrelated objects could be stored
in Box. We lose a lot of control with that level of flexibility in our code.

A better approach is to define the Box class to store a generic type T. (We can
use any identifier we want for the generic type, but using T has become a conven-
tion.) The header of the class contains a reference to the type in angle brackets.
For example:

class Box<T>
{
 // declarations and code that manage objects of type T
}

Animal

Bird

Parrot

Mammal

Horse Bat

Reptile

LizardSnake

FIGURE 12.5 A UML class diagram showing a class hierarchy

M12_LEWI5976_05_SE_C12.indd 471 08/02/19 2:51 AM

472 CHAPTER 12 Introduction to Collections—Stacks

Then, when a Box is needed, it is instantiated with a specific class used in place
of T. For example, if we wanted a Box of Widget objects, we could use the follow-
ing declaration:

Box<Widget> box1 = new Box<Widget>();

The type of the box1 variable is Box<Widget>. In essence, for the box1 object,
the Box class replaces T with Widget. Now suppose we wanted a Box in which to
store Gadget objects; we could make the following declaration:

Box<Gadget> box2 = new Box<Gadget>();

For box2, the Box class essentially replaces T with Gadget. So, although the box1
and box2 objects are both boxes, they have different types because the generic type
is taken into account. This is a safer implementation, because at this point we can-
not use box1 to store gadgets (or anything else for that matter other than widgets),
nor could we use box2 to store widgets. A generic type such as T cannot be instan-
tiated. It is merely a placeholder to allow us to define the class that will manage a
specific type of object that is established when the class is instantiated.

Using generic types in this way is only possible because Java allows late or dy-
namic binding. This means that the type of the object, or in our case the type of
the element in the collection, is determined at run-time and not at compile-time.
For example, if we want to create an ArrayList bound to a specific type other
than Object, we can specify the type at the time we instantiate the ArrayList.
For example, the following code would instantiate an ArrayList to hold gadgets:

ArrayList<Gadget> = new ArrayList<Gadget>;

Given that we now have a mechanism using generic types for creating a collec-
tion that can be used to store any type of object safely and effectively, let’s con-
tinue on with our discussion of the stack collection.

The following section explores in detail an example of using a stack to solve a
problem.

12.4 Using Stacks: Evaluating Postfix Expressions

Traditionally, arithmetic expressions are written in infix notation, meaning that
the operator is placed between its operands in the form

<operand> <operator> <operand>

such as in the expression

4 + 5

M12_LEWI5976_05_SE_C12.indd 472 08/02/19 2:51 AM

 12.4 Using Stacks: Evaluating Postfix Expressions 473

When evaluating an infix expression, we rely on precedence rules to determine
the order of operator evaluation. For example, the expression

4 + 5 * 2

evaluates to 14 rather than 18 because of the precedence rule that in the absence
of parentheses, multiplication evaluates before addition.

In a postfix expression, the operator comes after its two operands. Therefore, a
postfix expression takes the form

<operand> <operator> <operand>

For example, the postfix expression

6 9 -

is equivalent to the infix expression

6 - 9

A postfix expression is generally easier to evaluate than an infix expression
because precedence rules and parentheses are not needed to guarantee evaluation
order. The order of the values and operators in the expression is sufficient to de-
termine the result. For this reason, programming language compilers and run-time
environments often use postfix expressions in their internal calculations.

The process of evaluating a postfix expression can be stated in one simple rule:
Scanning from left to right, apply each operation to the two operands immediately
preceding it and replace the operator with the result. At the end we are left with
the final value of the expression.

Consider the infix expression we looked at earlier:

4 + 5 * 2

In postfix notation, this expression would be written

4 5 2 * +

Let’s use our evaluation rule to determine the final value of this expression. We
scan from the left until we encounter the multiplication (*) operator. We apply
this operator to the two operands immediately preceding it (5 and 2) and replace
it with the result (10), which leaves us with

4 10 +

Continuing our scan from left to right, we immediately encounter the plus (+)
operator. Applying this operator to the two operands immediately preceding it (4
and 10) yields 14, which is the final value of the expression.

M12_LEWI5976_05_SE_C12.indd 473 08/02/19 2:51 AM

474 CHAPTER 12 Introduction to Collections—Stacks

Let’s look at a slightly more complicated example. Consider the following infix
expression:

(3 * 4 - (2 + 5)) * 4 / 2

The equivalent postfix expression is

3 4 * 2 5 + - 4 * 2 /

Applying our evaluation rule results in

 12 2 5 + - 4 * 2 /
then 12 7 - 4 * 2 /
then 5 4 * 2 /
then 20 2 /
then 10

Now let’s consider the design of a program that will evaluate a postfix expres-
sion. The evaluation rule relies on being able to retrieve the previous two oper-
ands whenever we encounter an operator. Furthermore, a large postfix expression
will have many operators and operands to manage. It turns out that a stack is the
perfect collection to use in this case. The operations provided by a stack coincide
nicely with the process of evaluating a postfix expression.

The algorithm for evaluating a postfix expression using a stack can
be expressed as follows: Scan the expression from left to right, iden-
tifying each token (operator or operand) in turn. If it is an operand,
push it onto the stack. If it is an operator, pop the top two elements
off the stack, apply the operation to them, and push the result onto

the stack. When we reach the end of the expression, the element remaining on the
stack is the result of the expression. If at any point we attempt to pop two elements
off the stack but there are not two elements on the stack, then our postfix expres-
sion was not properly formed. Similarly, if we reach the end of the expression and
more than one element remains on the stack, then our expression was not well
formed. Figure 12.6 depicts the use of a stack to evaluate a postfix expression.

Note that when the two operands are popped from the stack, the first element
popped is actually the second operand and the second element popped is the first
operand. Thus the division operation shown in Figure 12.6 yields -2.

The PostfixTester program in Listing 12.1 evaluates multiple postfix expres-
sions entered by the user. It uses the PostfixEvaluator class shown in Listing 12.2.

To keep things simple, this program assumes that the operands to the expres-
sion are integers and are literal values (not variables). When executed, the pro-
gram repeatedly accepts and evaluates postfix expressions until the user chooses
to stop.

KEY CONCEPT
A stack is the ideal data structure
to use when evaluating a postfix
expression.

M12_LEWI5976_05_SE_C12.indd 474 08/02/19 2:51 AM

 12.4 Using Stacks: Evaluating Postfix Expressions 475

7

–3

4

top

top

top

top

top

7 4 -3 * 1 5 + / *

7

–12

7

5

1

–12

7

6

–12

7

–2

FIGURE 12.6 Using a stack to evaluate a postfix expression

L I S T I N G 1 2 . 1

 import java.util.Scanner;

 /**
 * Demonstrates the use of a stack to evaluate postfix expressions.
 *
 * @author Java Foundations
 * @version 4.0
 */
 public class PostfixTester
 {

 /**
 * Reads and evaluates multiple postfix expressions.
 */
 public static void main(String[] args)
 {
 String expression, again;
 int result;

 Scanner in = new Scanner(System.in);

 do
 {
 PostfixEvaluator evaluator = new PostfixEvaluator();
 System.out.println("Enter a valid post-fix expression one token " +
 "at a time with a space between each token (e.g. 5 4 + 3 2 1 - + *)");

 System.out.println("Each token must be an integer or an operator (+,-,*,/)");
 expression = in.nextLine();

M12_LEWI5976_05_SE_C12.indd 475 08/02/19 2:51 AM

476 CHAPTER 12 Introduction to Collections—Stacks

L I S T I N G 1 2 . 2

 import java.util.Stack;
 import java.util.Scanner;

 /**
 * Represents an integer evaluator of postfix expressions. Assumes
 * the operands are constants.
 *
 * @author Java Foundations
 * @version 4.0
 */
 public class PostfixEvaluator
 {
 private final static char ADD = '+';
 private final static char SUBTRACT = '-';
 private final static char MULTIPLY = '*';
 private final static char DIVIDE = '/';

 private Stack<Integer> stack;

 /**
 * Sets up this evalutor by creating a new stack.
 */
 public PostfixEvaluator()
 {
 stack = new Stack<Integer>();
 }

 result = evaluator.evaluate(expression);
 System.out.println();
 System.out.println("That expression equals " + result);

 System.out.print("Evaluate another expression [Y/N] ");
 again = in.nextLine();
 System.out.println();
 }
 while (again.equalsIgnoreCase("y"));
 }

 }

L I S T I N G 1 2 . 1 continued

M12_LEWI5976_05_SE_C12.indd 476 08/02/19 2:51 AM

 12.4 Using Stacks: Evaluating Postfix Expressions 477

 /**
 * Evaluates the specified postfix expression. If an operand is
 * encountered, it is pushed onto the stack. If an operator is
 * encountered, two operands are popped, the operation is
 * evaluated, and the result is pushed onto the stack.
 * @param expr string representation of a postfix expression
 * @return value of the given expression
 */
 public int evaluate(String expr)
 {
 int op1, op2, result = 0;
 String token;
 Scanner parser = new Scanner(expr);

 while (parser.hasNext())
 {
 token = parser.next();
 if (isOperator(token))
 {
 op2 = (stack.pop()).intValue();
 op1 = (stack.pop()).intValue();
 result = evaluateSingleOperator(token.charAt(0), op1, op2);
 stack.push(new Integer(result));
 }
 else
 stack.push(new Integer(Integer.parseInt(token)));
 }
 return result;
 }

 /**
 * Determines if the specified token is an operator.
 * @param token the token to be evaluated
 * @return true if token is operator
 */
 private boolean isOperator(String token)
 {
 return (token.equals("+") || token.equals("-") ||
 token.equals("*") || token.equals("/"));
 }

 /**
 * Peforms integer evaluation on a single expression consisting of
 * the specified operator and operands.
 * @param operation operation to be performed
 * @param op1 the first operand

L I S T I N G 1 2 . 2 continued

M12_LEWI5976_05_SE_C12.indd 477 08/02/19 2:51 AM

478 CHAPTER 12 Introduction to Collections—Stacks

 * @param op2 the second operand
 * @return value of the expression
 */
 private int evaluateSingleOperator(char operation, int op1, int op2)
 {
 int result = 0;

 switch (operation)
 {
 case ADD:
 result = op1 + op2;
 break;
 case SUBTRACT:
 result = op1 - op2;
 break;
 case MULTIPLY:
 result = op1 * op2;
 break;
 case DIVIDE:
 result = op1 / op2;
 }

 return result;
 }
 }

L I S T I N G 1 2 . 2 continued

The PostfixEvaluator class uses the java.util.Stack class to create the
stack attribute. The java.util.Stack class is one of two stack implementations
provided by the Java Collections API. We revisit the other implementation, the
Deque interface, in Chapter 13.

The evaluate method performs the evaluation algorithm described earlier, sup-
ported by the isOperator and evalSingleOp methods. Note that in the evaluate
method, only operands are pushed onto the stack. Operators are used as they are
encountered and are never put on the stack. This is consistent with the evaluation al-
gorithm we discussed. An operand is put on the stack as an Integer object, instead
of as an int primitive value, because the stack collection is designed to store objects.

When an operator is encountered, the two most recent operands are popped
off the stack. As mentioned above, the first operand popped is actually the second
operand in the expression and that the second operand popped is the first operand
in the expression. This order doesn’t matter in the cases of addition and multipli-
cation, but it certainly matters for subtraction and division.

M12_LEWI5976_05_SE_C12.indd 478 08/02/19 2:51 AM

 12.4 Using Stacks: Evaluating Postfix Expressions 479

Note also that the postfix expression program assumes that the postfix expres-
sion entered is valid, meaning that it contains a properly organized set of opera-
tors and operands. A postfix expression is invalid if either (1) two operands are
not available on the stack when an operator is encountered or (2) there is more
than one value on the stack when the tokens in the expression are exhausted.
Either situation indicates that there was something wrong with the format of the
expression, and both can be caught by examining the state of the stack at the ap-
propriate point in the program. We will discuss how we might deal with these
situations and other exceptional cases in the next section.

Perhaps the most important aspect of this program is the use of the class that
defined the stack collection. At this point, we don’t know how the stack was imple-
mented. We simply trusted the class to do its job. In this example, we used the class
java.util.Stack, but we could have used any class that implemented a stack as
long as it performed the stack operations as expected. From the point of view
of evaluating postfix expressions, the manner in which the stack is implemented
is largely irrelevant. Figure 12.7 shows a UML class diagram for the postfix ex-
pression evaluation program. The diagram illustrates that the PostfixEvaluator
class uses an Integer instance of the java.util.Stack class and represents the
binding of the Integer to the generic type T. We will not always include this level
of detail in our UML diagrams.

java.util.Stack

T

java.util.Stack<Integer>

<<bind>>
T :: Integer

evaluate(String expr) : int

PostfixEvaluator

stack : Stack<Integer>

main(String[] args)

PostfixTester

FIGURE 12.7 UML class diagram for the postfix expression evaluation program

M12_LEWI5976_05_SE_C12.indd 479 08/02/19 2:51 AM

480 CHAPTER 12 Introduction to Collections—Stacks

Javadoc
Before moving on, let’s mention the documentation style used for comments
in Listing 12.1 and 12.2. These are Javadoc comments, which are written in a
format that allows the Javadoc tool to parse the comments and extract infor-
mation about the classes and methods. Javadoc comments begin with a /** and
end with a */.

Javadoc is used to create online documentation in HTML about a set of classes.
You’ve already seen the results; the online Java API documentation is created using
this technique. When changes are made to the API classes (and their comments),
the Javadoc tool is run again to generate the documentation. It’s a clever way to
ensure that the documentation does not lag behind the evolution of the code.

There’s nothing special about the Java API classes in this regard. Documentation
for any program or set of classes can be generated using Javadoc. And even if it’s
not used to generate online documentation, the Javadoc commenting style is the
official standard for adding comments to Java code.

Javadoc tags are used to identify particular types of information. For example,
the @author tag is used to identify the programmer who wrote the code. The
@version tag is used to specify the version number of the code. In the header of a
method, the @return tag is used to indicate what value is returned by the method
and the @param tag is used to identify each parameter that’s passed to the method.

You can generate Javadoc documentation for your code from the command
line. For example, if all of your source code is in your current working directory,
then simply type javadoc *.java. This will generate a set of .html files contain-
ing your documentation. Javadoc tools are also available in most IDEs.

We won’t discuss Javadoc further at this point, but we will use the Javadoc
commenting style throughout the remainder of this text.

/**

 * Retrieves the count of ...

 * @param cat the category to match

 * @return the number of ...
 */
public int getCount(Category cat)
{ ... }

Javadoc for a Method

tags

method
description

begins a Javadoc comment

M12_LEWI5976_05_SE_C12.indd 480 08/02/19 2:51 AM

 12.5 Exceptions 481

12.5 Exceptions

One concept that we will explore with each of the collections we discuss is that
of exceptional behavior. What action should the collection take in the excep-
tional case? There are some such cases that are inherent in the collection itself.
For example, in the case of a stack, what should happen if an attempt is made
to pop an element from an empty stack? In this case, it does not matter what
data structure is being used to implement the collection; the exception will still
apply. Some such cases are artifacts of the data structure being used to implement
the collection. For example, if we are using an array to implement a stack, what
should happen if an attempt is made to push an element onto the stack but the
array is full? Let’s take a moment to explore this concept further.

As discussed in Chapter 10, problems that arise in a Java program may gen-
erate exceptions or errors. An exception is an object that defines an unusual or
erroneous situation. An exception is thrown by a program or the run-time envi-
ronment, and it can be caught and handled appropriately if desired. An error is
similar to an exception, except that an error generally represents an unrecoverable
situation, and it should not be caught. Java has a predefined set of exceptions and
errors that may occur during the execution of a program. However, we often find
it useful to develop our own specific exceptions.

In our postfix evaluation example, there were several potential exceptional
situations. For example:

■■ If the stack were full on a push

■■ If the stack were empty on a pop

■■ If the stack held more than one value at the completion of the evaluation

Let’s consider each of these separately. The possibility that the stack might
be full on a push is an issue for the underlying data structure, not the collec-
tion. Conceptually speaking, there is no such thing as a full stack. Now we know
that this is not reality and that all data structures will eventually reach a limit.
However, even when this physical limit is reached, the stack is not full; only the
data structure that implements the stack is full. We will discuss strategies for han-
dling this situation as we implement our stack in the next section.

What if the stack is empty on a pop? This is an exceptional case that has to
do with the problem, not the underlying data structure. In our postfix evaluation
example, if we attempt to pop two operands and there are not two operands avail-
able on the stack, our postfix expression was not properly formed. This is a case
where the collection needs to report the exception and the application then must
interpret that exception in context.

The third case is equally interesting. What if the stack holds more than one
value at the completion of the evaluation? From the perspective of the stack

M12_LEWI5976_05_SE_C12.indd 481 08/02/19 2:51 AM

482 CHAPTER 12 Introduction to Collections—Stacks

collection, this is not an exception. However, from the perspective
of the application, this is a problem that means once again that the
postfix expression was not well formed. Because it will not generate
an exception from the collection, this is a condition for which the
application must test.

Chapter 10 includes a complete discussion of exceptions and exception han-
dling, including exception propagation and the try/catch statement. As we explore
particular implementation techniques for a collection, we will also discuss the ap-
propriate use of exceptions.

12.6 A Stack ADT

To facilitate separation of the interface operations from the methods that imple-
ment them, we can define a Java interface structure for a collection. A Java inter-

face provides a formal mechanism for defining the set of operations
for any collection.

Recall that a Java interface defines a set of abstract methods, spec-
ifying each method’s signature but not its body. A class that imple-
ments an interface provides definitions for the methods defined in
the interface. The interface name can be used as the type of a refer-

ence, which can be assigned any object of any class that implements the interface.

Listing 12.3 defines a Java interface for a stack collection. We name a collec-
tion interface using the collection name followed by the abbreviation ADT (for
abstract data type). Thus, StackADT.java contains the interface for a stack col-
lection. It is defined as part of the jsjf package, which contains all of the collec-
tion classes and interfaces presented in this book.

Note that the stack interface is defined as StackADT<T>, operat-
ing on a generic type T. In the methods of the interface, the type of
various parameters and return values is often expressed using the
generic type T. When this interface is implemented, it will be based
on a type that is substituted for T.

Each time we introduce an interface, a class, or a system in this
text, we will accompany that description with the UML description

of that interface, class, or system. This should help you become accustomed to
reading UML descriptions and to creating them for other classes and systems.
Figure 12.8 illustrates the UML description of the StackADT interface.

Stacks are used quite frequently in the computing world. For example, the
undo operation in a word processor is usually implemented using a stack. As we
make changes to a document (add data, delete data, make format changes, etc.),

KEY CONCEPT
By using the interface name as
a return type, we ensure that the
interface doesn’t commit the method
to the use of any particular class that
implements a stack.

KEY CONCEPT
A Java interface defines a set of
abstract methods and is useful in
separating the concept of an abstract
data type from its implementation.

KEY CONCEPT
Errors and exceptions represent
unusual or invalid processing.

M12_LEWI5976_05_SE_C12.indd 482 08/02/19 2:51 AM

 12.6 A Stack ADT 483

L I S T I N G 1 2 . 3

package jsjf;

/**
 * Defines the interface to a stack collection.
 *
 * @author Java Foundations
 * @version 4.0
 */
public interface StackADT<T>
{
 /**
 * Adds the specified element to the top of this stack.
 * @param element element to be pushed onto the stack
 */
 public void push(T element);

 /**
 * Removes and returns the top element from this stack.
 * @return the element removed from the stack
 */
 public T pop();

 /**
 * Returns without removing the top element of this stack.
 * @return the element on top of the stack
 */
 public T peek();

 /**
 * Returns true if this stack contains no elements.
 * @return true if the stack is empty
 */
 public boolean isEmpty();

 /**
 * Returns the number of elements in this stack.
 * @return the number of elements in the stack
 */
 public int size();

 /**
 * Returns a string representation of this stack.
 * @return a string representation of the stack
 */
 public String toString();
}

M12_LEWI5976_05_SE_C12.indd 483 08/02/19 2:51 AM

484 CHAPTER 12 Introduction to Collections—Stacks

<<interface>>
StackADT

push(T element) : void
pop() : T
peek() : T
isEmpty() : boolean
size() : int
toString() : String

T

FIGURE 12.8 The StackADT interface in UML

D E S I G N F O C U S

Undo operations are often implemented using a special type of stack called a
drop-out stack. The basic operations on a drop-out stack are the same as those for
a stack (push, pop, and peek). The only difference is that a drop-out stack has a
limit to the number of elements it will hold, and once that limit is reached, the ele-
ment on the bottom of the stack drops off the stack when a new element is pushed
on. The development of a drop-out stack is left as an exercise.

public interface StackADT <T>

{
 ...

}

Stack Interface

reserved
word

interface
name

generic type
parameter

list of method signatures

the word processor keeps track of each operation by pushing some representa-
tion of it onto a stack. If we choose to undo an operation, the word processing
software pops the most recently performed operation off the stack and reverses it.
If we choose to undo again (undoing the second-to-last operation we performed),
another element is popped from the stack. In most word processors, many opera-
tions can be reversed in this manner.

M12_LEWI5976_05_SE_C12.indd 484 08/02/19 2:51 AM

 12.7 Implementing a Stack: With Arrays 485

12.7 Implementing a Stack: With Arrays

So far in our discussion of a stack collection we have described its basic conceptual
nature and the operations that allow the user to interact with it. In software engi-
neering terms, we would say that we have done the analysis for a stack collection.
We have also used a stack, without knowing the details of how it was implemented,
to solve a particular problem. Now let’s turn our attention to the implementation
details. There are various ways to implement a class that represents
a stack. As mentioned earlier, the Java Collections API provides mul-
tiple implementations including the Stack class and the Deque in-
terface. In this section, we examine an implementation strategy that
uses an array to store the objects contained in the stack. In the next
chapter, we examine a second technique for implementing a stack.

To explore this implementation, we must recall several key characteristics of Java
arrays. The elements stored in an array are indexed from 0 to n – 1, where n is the
total number of cells in the array. An array is an object, which is instantiated sepa-
rately from the objects it holds. And when we talk about an array of objects, we are
actually talking about an array of references to objects, as illustrated in Figure 12.9.

Keep in mind the separation between the collection and the underlying data
structure used to implement it. Our goal is to design an efficient implementation
that provides the functionality of every operation defined in the stack abstract data
type. The array is just a convenient data structure in which to store the objects.

KEY CONCEPT
The implementation of the collection
operations should not affect the way
users interact with the collection.

0

1

2

3

4

5

6

FIGURE 12.9 An array of object references

M12_LEWI5976_05_SE_C12.indd 485 08/02/19 2:51 AM

486 CHAPTER 12 Introduction to Collections—Stacks

Managing Capacity
When an array object is created, it is allocated a specific number of cells into
which elements can be stored. For example, the following instantiation creates an
array that can store 500 Object references, indexed from 0 to 499:

Object[] collection = Object[500];

Note that this instantiation allocates space for the Object references but does
not allocate space for the objects themselves. Thus, creating an array of objects
requires both instantiating the array and instantiating the objects to be stored in
the array.

The number of cells in an array is called its capacity. This value is stored in the
length constant of the array. The capacity of an array cannot be changed once
the array has been created.

When using an array to implement a collection, we have to deal with the situ-
ation in which all cells of the array are being used to store elements. That is,
because we are using a fixed-size data structure, at some point the data structure
may become “full.” However, just because the data structure is full, should that
mean that the collection is full?

A crucial question in the design of a collection is what to do in the case in
which a new element is added to a full data structure. Three basic options exist:

■■ We could implement operations that add an element to the collection such
that they throw an exception if the data structure is full.

■■ We could implement the add operations to return a status indicator that
can be checked by the user to see whether the add operation was success-
ful.

■■ We could automatically expand the capacity of the underlying data struc-
ture whenever necessary so that, essentially, it would never become full.

In the first two cases, the user of the collection must be aware that the collec-
tion could get full and must take steps to deal with it when needed. For these solu-
tions we would also provide extra operations that allow the user to check to see
whether the collection is full and to expand the capacity of the data structure as
desired. The advantage of these approaches is that they give the user more control
over the capacity.

However, given that our goal is to separate the interface from the
implementation, the third option is attractive. The capacity of the
underlying data structure is an implementation detail that, in gen-
eral, should be hidden from the user of the collection. Furthermore,
the capacity issue is particular to this implementation. Other tech-
niques used to implement the collection, such as the one we explore

KEY CONCEPT
How we handle exceptional conditions
determines whether the collection or
the user of the collection controls the
particular behavior.

M12_LEWI5976_05_SE_C12.indd 486 08/02/19 2:51 AM

 12.8 The ArrayStack Class 487

in the next chapter, are not restricted by a fixed capacity and therefore never have
to deal with this issue.

In the solutions presented in this text, we opt to implement fixed size data
structure solutions by automatically expanding the capacity of the underlying
data structure. Occasionally, other options are explored as programming projects.

12.8 The ArrayStack Class

In the Java Collections API framework, class names indicate both the underlying
data structure and the collection. We follow that naming convention in this text.
Thus, we define a class called ArrayStack to represent a stack with an underlying
array-based implementation.

To be more precise, we define a class called ArrayStack<T> that represents
an array-based implementation of a stack collection that stores objects of generic
type T. When we instantiate an ArrayStack object, we specify what the generic
type T represents.

An array implementation of a stack can be designed by making the following
four assumptions: The array is an array of generic object references (type deter-
mined when the stack is instantiated), the bottom of the stack is always at index 0
of the array, the elements of the stack are stored in order and contiguously in the
array, and there is an integer variable top that stores the index of the
array immediately following the top element in the stack.

Figure 12.10 illustrates this configuration for a stack that cur-
rently contains the elements A, B, C, and D, assuming that they have
been pushed on in that order. To simplify the figure, the elements are
shown in the array itself rather than as objects referenced from the
array. Note that the variable top represents both the next cell into which a pushed
element should be stored and the count of the number of elements currently in the
stack.

KEY CONCEPT
For efficiency, an array-based stack
implementation keeps the bottom of
the stack at index 0.

0 1 2 3 4 5 6 7 ...

A B C D

top 4

FIGURE 12.10 An array implementation of a stack

M12_LEWI5976_05_SE_C12.indd 487 08/02/19 2:51 AM

488 CHAPTER 12 Introduction to Collections—Stacks

In this implementation, the bottom of the stack is always held at index 0 of the
array, and the stack grows and shrinks at the higher indexes. This is considerably
more efficient than if the stack were reversed within the array. Consider the pro-
cessing that would be necessary if the top of the stack were kept at index 0.

From these assumptions, we can determine that our class will need a constant
to store the default capacity, a variable to keep track of the top of the stack, and a
variable for the array to store the stack. This results in the following class header.
Note that our ArrayStack class will be part of the jsjf package and will make
use of a package called jsjf.exceptions.

VideoNote
 An overview of
the ArrayStack
implementation.

package jsjf;

import jsjf.exceptions.*;

import java.util.Arrays;
/**
 * An array implementation of a stack in which the bottom of the
 * stack is fixed at index 0.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class ArrayStack<T> implements StackADT<T>
{
 private final static int DEFAULT_CAPACITY = 100;
 private int top;
 private T[] stack;

The Constructors
Our class will have two constructors, one to use the default capacity and the other
to use a specified capacity.

/**
 * Creates an empty stack using the default capacity.
 */
public ArrayStack()
{
 this(DEFAULT_CAPACITY);
}

M12_LEWI5976_05_SE_C12.indd 488 08/02/19 2:51 AM

Just to refresh our memory, this is an excellent example of method overloading
(that is, two methods with the same name that differ only in the parameter list).
It is also interesting to note that the constructor for the default capacity makes use
of the other constructor by passing it the DEFAULT_CAPACITY constant.

From our previous discussion of generics we recall that you cannot instantiate
a generic type. This also means that you cannot instantiate an array of a generic
type. This results in an interesting line of code in our constructor:

stack = (T[])(new Object[initialCapacity]);

Note that in this line, we are instantiating an array of Object references and
then casting it as an array of our generic type. This will create a compile-time
warning for an unchecked type conversion because the Java compiler cannot guar-
antee the type safety of this cast. As we have seen, it is worth dealing with this
warning to gain the flexibility and type safety of generics. This warning can be sup-
pressed using the following Java annotation placed before the offending method:

@SuppressWarnings("unchecked")

/**
 * Creates an empty stack using the specified capacity.
 * @param initialCapacity the initial size of the array
 */
@SuppressWarnings("unchecked")
public ArrayStack(int initialCapacity)
{
 top = 0;
 stack = (T[])(new Object[initialCapacity]);
}

 12.8 The ArrayStack Class 489

D E S I G N F O C U S

Let’s consider for a moment another way that we might have implemented our array
of generic objects. The Java Collections API implementation of ArrayList now uses
the strategy of actually storing elements in the array as Object references instead of
casting the array as an array of elements of type T. This approach requires that meth-
ods that add elements to the collection guarantee the type of elements being stored
and that methods removing elements from the collection cast those elements back
into the correct type. This strategy results in these methods being slightly more com-
plicated and in having to use the @SuppressWarnings("unchecked") line before
every method that adds to or removes from the collection. Our approach simplifies
these methods that add and remove elements from the collection and allows us to
use the @SuppressWarnings("unchecked")only once.

M12_LEWI5976_05_SE_C12.indd 489 08/02/19 2:51 AM

490 CHAPTER 12 Introduction to Collections—Stacks

The push Operation
To push an element onto the stack, we simply insert it in the next available posi-
tion in the array as specified by the variable top. Before doing so, however, we
must determine whether the array has reached its capacity and expand it if neces-
sary. After storing the value, we must update the value of top so that it continues
to represent the number of elements in the stack.

Implementing these steps results in the following code:

COMMON ERROR

A common error made by programmers new to generics is to attempt to
create an array of a generic type:

stack = new T[initialCapacity];

Generic types cannot be instantiated, and that includes arrays of a generic
type. That’s why we have to create an array that holds Object references,
and then cast it into an array of the generic type.

stack = (T[]) (new Object[initialCapacity]);

Creating an Array of Generic Elements

create an array of Object

cast as an array of generic type T

/**
 * Adds the specified element to the top of this stack, expanding
 * the capacity of the array if necessary.
 * @param element generic element to be pushed onto stack
 */
public void push(T element)
{
 if (size() == stack.length)
 expandCapacity();

 stack[top] = element;
 top++;

}

M12_LEWI5976_05_SE_C12.indd 490 08/02/19 2:51 AM

The expandCapacity method is implemented to double the size of the array
as needed. Of course, since an array cannot be resized once it is instantiated, this
method simply creates a new, larger array and copies the contents of the old array
into the new one. It serves as a support method of the class and can therefore be
implemented with private visibility.

/**
 * Creates a new array to store the contents of this stack with
 * twice the capacity of the old one.
 */
private void expandCapacity()
{
 stack = Arrays.copyOf(stack, stack.length * 2);

}

Figure 12.11 illustrates the result of pushing an element E onto the stack that
was depicted in Figure 12.10.

The push operation for the array implementation of a stack consists of the fol-
lowing steps:

■■ Make sure that the array is not full.

■■ Set the reference in position top of the array to the object being added to
the stack.

■■ Increment the values of top and count.

Each of these steps is O(1). Thus the operation is O(1). We might wonder
about the time complexity of the expandCapacity method and the impact it
might have on the analysis of the push method. This method does contain a linear
for loop and, intuitively, we would call that O(n). However, given how seldom
the expandCapacity method is called relative to the number of times push may
be called, we can amortize that complexity across all instances of push.

0 1 2 3 4 5 6 7 ...

A B C D E

top 5

FIGURE 12.11 The stack after pushing element E

 12.8 The ArrayStack Class 491

M12_LEWI5976_05_SE_C12.indd 491 08/02/19 2:51 AM

492 CHAPTER 12 Introduction to Collections—Stacks

The pop Operation
The pop operation removes and returns the element at the top of the stack. For an
array implementation, that means returning the element at index top-1. Before at-
tempting to return an element, however, we must ensure that there is at least one
element in the stack to return.

The array-based version of the pop operation can be implemented as follows:

/**
 * Removes the element at the top of this stack and returns a
 * reference to it.
 * @return element removed from top of stack
 * @throws EmptyCollectionException if stack is empty
 */
public T pop() throws EmptyCollectionException
{
 if (isEmpty())
 throw new EmptyCollectionException("stack");

 top--;
 T result = stack[top];
 stack[top] = null;

 return result;
}

If the stack is empty when the pop method is called, an EmptyCollecti-
onException is thrown. Otherwise, the value of top is decremented and the ele-
ment stored at that location is stored into a temporary variable so that it can be
returned. That cell in the array is then set to null. Note that the value of top ends
up with the appropriate value relative to the now smaller stack. Figure 12.12 illus-
trates the results of a pop operation on the stack from Figure 12.11, which brings
it back to its earlier state (identical to Figure 12.10).

The pop operation for the array implementation consists of the following steps:

■■ Make sure the stack is not empty.

■■ Decrement the top counter.

■■ Set a temporary reference equal to the element in stack[top].

■■ Set stack[top] equal to null.

■■ Return the temporary reference.

M12_LEWI5976_05_SE_C12.indd 492 08/02/19 2:51 AM

All of these steps are also O(1). Thus, the pop operation for the array imple-
mentation has time complexity O(1).

The peek Operation
The peek operation returns a reference to the element at the top of the stack with-
out removing it from the array. For an array implementation, that means return-
ing a reference to the element at position top-1. This one step is O(1) and thus the
peek operation is O(1) as well.

0 1 2 3 4 5 6 7 ...

A B C D

top 4

FIGURE 12.12 The stack after popping the top element

/**
 * Returns a reference to the element at the top of this stack.
 * The element is not removed from the stack.
 * @return element on top of stack
 * @throws EmptyCollectionException if stack is empty
 */
public T peek() throws EmptyCollectionException
{
 if (isEmpty())
 throw new EmptyCollectionException("stack");

 return stack[top-1];
}

Other Operations
The isEmpty, size, and toString operations and their analysis are left as pro-
gramming projects and exercises.

 12.8 The ArrayStack Class 493

M12_LEWI5976_05_SE_C12.indd 493 08/02/19 2:51 AM

494 CHAPTER 12 Introduction to Collections—Stacks

The EmptyCollectionException Class
Now that we have examined the implementation of our ArrayStack class, let’s
revisit our choices with respect to exception handling. We chose to have our col-
lection handle the case where the underlying data structure becomes full, because
that is an issue that is internal to the collection. On the other hand, we chose to
throw an exception if an attempt is made to access an element in the collection
through either a pop or peek operation when the collection is empty. This situa-
tion reveals a problem with the use of the collection, not with the collection itself.

Exceptions are classes in Java, so we have the choice of using existing excep-
tions provided in the Java API or creating our own. In this case, we could have
chosen to create a specific empty stack exception. However, creating a param-
eterized exception enables us to reuse this exception with any of our collections
classes. Listing 12.4 shows the EmptyCollectionException class. Notice that
our exception class extends the RuntimeException class and then makes use of
the parent’s constructor by using a super reference.

L I S T I N G 1 2 . 4

package jsjf.exceptions;

/**
 * Represents the situation in which a collection is empty.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class EmptyCollectionException extends RuntimeException
{
 /**
 * Sets up this exception with an appropriate message.
 * @param collection the name of the collection
 */
 public EmptyCollectionException(String collection)
 {
 super("The " + collection + " is empty.");
 }
}

M12_LEWI5976_05_SE_C12.indd 494 08/02/19 2:51 AM

Other Implementations
In this chapter we examined the concept of a stack, used the Stack class available
in Java API to solve a postfix evaluation problem, and then implemented our own
ArrayStack class that used an array to store the underlying elements on a stack.

We’re not finished with stacks yet, though. In Chapter 13, we’ll examine an-
other technique for implementing collections using linked structures instead of
arrays, and implement a LinkedStack class.

Armed with these two broad implementation techniques—array-based and
linked-based—we’ll be set to explore many other collections.

 12.8 The ArrayStack Class 495

M12_LEWI5976_05_SE_C12.indd 495 08/02/19 2:51 AM

496 CHAPTER 12 Introduction to Collections—Stacks

Summary of Key Concepts

■■ A collection is an object that gathers and organizes other objects.

■■ Elements in a collection are typically organized in terms of the order of their
addition to the collection or in terms of some inherent relationship among
the elements.

■■ A collection is an abstraction wherein the details of the implementation are
hidden.

■■ A data structure is the underlying programming construct used to implement
a collection.

■■ Stack elements are processed in a LIFO manner—the last element in is the
first element out.

■■ A programmer should choose the structure that is appropriate for the type of
data management needed.

■■ A stack is the ideal data structure to use when evaluating a postfix expression.

■■ Errors and exceptions represent unusual or invalid processing.

■■ A Java interface defines a set of abstract methods and is useful in separating
the concept of an abstract data type from its implementation.

■■ By using the interface name as a return type, we ensure that the interface doesn’t
commit the method to the use of any particular class that implements a stack.

■■ A programmer must carefully consider how exceptions should be handled, if
at all, and at what level.

■■ The implementation of the collection operations should not affect the way
users interact with the collection.

■■ How we handle exceptional conditions determines whether the collection or
the user of the collection controls the particular behavior.

■■ For efficiency, an array-based stack implementation keeps the bottom of the
stack at index 0.

Summary of Terms
abstraction A point of view that hides or ignores certain details, usually to
make concepts easier to manage.

abstract data type A data type whose values and operations are not inher-
ently defined within a programming language.

class hierarchy The relationship among classes created by inheritance in
which the child of one parent can itself be the parent of other classes.

M12_LEWI5976_05_SE_C12.indd 496 08/02/19 2:51 AM

 Self-Review Questions 497

collection An object that gathers and organizes other objects.

data structure (1) An organization of objects that allows certain operations
to be performed efficiently; (2) The programming constructs used to imple-
ment a collection.

exception An object that defines an unusual or erroneous situation.

generic type A placeholder for an object type that is not made concrete
until the class that refers to it is instantiated.

inheritance The object-oriented principle of deriving one class from an ex-
isting class.

interface (1) The manner in which one thing interacts with another; (2) A
set of public methods that enables one object to interact with another.

Java Collections API The subset of the Java application programming inter-
faces API that represent or deal with collections.

LIFO (1) Last-in, first-out; (2) A description of a collection in which the last
element added will be the first element removed.

polymorphism The object-oriented principle that enables a reference vari-
able to point to related but distinct types of objects over time, and in which
method invocations are bound to code at run-time.

pop A stack operation in which an element is removed from the top of a
stack.

push A stack operation in which an element is added to the top of a stack.

stack A linear collection whose elements are added and removed from the
same end in a LIFO manner.

Self-Review Questions
SR 12.1 What is a collection?

SR 12.2 What is a data type?

SR 12.3 What is an abstract data type?

SR 12.4 What is a data structure?

SR 12.5 What is abstraction and what advantage does it provide?

SR 12.6 Why is a class an excellent representation of an abstract data type?

SR 12.7 What is the characteristic behavior of a stack?

SR 12.8 What are the five basic operations on a stack?

SR 12.9 What are some of the other operations that might be imple-
mented for a stack?

 Self-Review Questions 497

M12_LEWI5976_05_SE_C12.indd 497 08/02/19 2:51 AM

498 CHAPTER 12 Introduction to Collections—Stacks

SR 12.10 Define the term inheritance.

SR 12.11 Define the term polymorphism.

SR 12.12 Given the example in Figure 12.5, list the subclasses of Mammal.

SR 12.13 Given the example in Figure 12.5, will the following code compile?

Animal creature = new Parrot();

SR 12.14 Given the example in Figure 12.5, will the following code compile?

Horse creature = new Mammal();

SR 12.15 What is the purpose of generics in the Java language?

SR 12.16 What is the advantage of postfix notation?

Exercises
EX 12.1 Compare and contrast data types, abstract data types, and data

structures.

EX 12.2 List the collections in the Java Collections API and mark the ones
that are covered in this text.

EX 12.3 Define the concept of abstraction and explain why it is important
in software development.

EX 12.4 Hand trace an initially empty stack X through the following
operations:

X.push(new Integer(4));
X.push(new Integer(3));
Integer Y = X.pop();
X.push(new Integer(7));
X.push(new Integer(2));
X.push(new Integer(5));
X.push(new Integer(9));
Integer Y = X.pop();
X.push(new Integer(3));
X.push(new Integer(9));

EX 12.5 Given the resulting stack X from the previous exercise, what
would be the result of each of the following?

a. Y = X.peek();
b. Y = X.pop();

Z = X.peek();
c. Y = X.pop();

Z = X.peek();

M12_LEWI5976_05_SE_C12.indd 498 08/02/19 2:51 AM

 Programming Projects 499

EX 12.6 What should be the time complexity of the isEmpty(), size(),
and toString() methods?

EX 12.7 Show how the undo operation in a word processor can be sup-
ported by the use of a stack. Give specific examples and draw the
contents of the stack after various actions are taken.

EX 12.8 In the postfix expression evaluation example, the two most recent
operands are popped when an operator is encountered so that
the subexpression can be evaluated. The first operand popped
is treated as the second operand in the subexpression, and the
second operand popped is the first. Give and explain an example
that demonstrates the importance of this aspect of the solution.

EX 12.9 Draw an example using the five integers (12, 23, 1, 45, 9) of how
a stack could be used to reverse the order (9, 45, 1, 23, 12) of
these elements.

EX 12.10 Explain what would happen to the algorithms and the time com-
plexity of an array implementation of the stack if the top of the
stack were at position 0.

Programming Projects
PP 12.1 Complete the implementation of the ArrayStack class presented

in this chapter. Specifically, complete the implementations of the
isEmpty, size, and toString methods.

PP 12.2 Design and implement an application that reads a sentence from
the user and prints the sentence with the characters of each word
backwards. Use a stack to reverse the characters of each word.

PP 12.3 Modify the solution to the postfix expression evaluation problem
so that it checks for the validity of the expression that is entered
by the user. Issue an appropriate error message when an errone-
ous situation is encountered.

PP 12.4 The array implementation in this chapter keeps the top variable
pointing to the next array position above the actual top of the
stack. Rewrite the array implementation such that stack[top] is
the actual top of the stack.

PP 12.5 There is a data structure called a drop-out stack that behaves like
a stack in every respect except that if the stack size is n, when
the n + 1 element is pushed, the first element is lost. Implement a
drop-out stack using an array. (Hint: A circular array implemen-
tation would make sense.)

M12_LEWI5976_05_SE_C12.indd 499 08/02/19 2:51 AM

500 CHAPTER 12 Introduction to Collections—Stacks

PP 12.6 Implement an integer adder using three stacks.

PP 12.7 Implement an postfix-to-infix translator using stacks. The application
should repeatedly read a postfix expression and print the equivalent
infix expression until the user quits. Throw an exception if the postfix
expression entered is invalid.

PP 12.8 Implement a class called ReverseWords that uses a stack to out-
put a set of elements input by the user in reverse order.

PP 12.9 Create a graphical application that provides a button for push
and pop from a stack, a text field to accept a string as input for
push, and a text area to display the contents of the stack after
each operation.

Answers to Self-Review Questions
SRA 12.1 A collection is an object that gathers and organizes other objects.

SRA 12.2 A data type is a set of values and operations on those values de-
fined within a programming language.

SRA 12.3 An abstract data type is a data type that is not defined within the
programming language and must be defined by the programmer.

SRA 12.4 A data structure is the set of objects necessary to implement an
abstract data type.

SRA 12.5 Abstraction is the concept of hiding the underlying implementa-
tion of operations and data storage in order to simplify the use of
a collection.

SRA 12.6 Classes naturally provide abstraction since only those methods
that provide services to other classes have public visibility.

SRA 12.7 A stack is a last in, first out (LIFO) structure.

SRA 12.8 The operations are

push—adds an element to the end of the stack
pop—removes an element from the front of the stack
peek—returns a reference to the element at the front of the stack
isEmpty—returns true if the stack is empty, returns false otherwise
size—returns the number of elements in the stack

SRA 12.9 makeEmpty(), destroy(), full()

SRA 12.10 Inheritance is the process in which a new class is derived from an
existing one. The new class automatically contains some or all of

M12_LEWI5976_05_SE_C12.indd 500 08/02/19 2:51 AM

 Answers to Self-Review Questions 501

the variables and methods in the original class. Then, to tailor the
class as needed, the programmer can add new variables and meth-
ods to the derived class, or modify the inherited ones.

SRA 12.11 The term polymorphism can be defined as “having many forms.”
A polymorphic reference is a reference variable that can refer to
different types of objects at different points in time. The specific
method invoked through a polymorphic reference can change
from one invocation to the next.

SRA 12.12 The subclasses of Mammal are Horse and Bat.

SRA 12.13 Yes, a reference variable of a parent class or any superclass may
hold a reference to one of its descendants.

SRA 12.14 No, a reference variable for a child or subclass may not hold a ref-
erence to a parent or superclass. To make this assignment, you
would have to explicitly cast the parent class into the child class
(Horse creature = (Horse)(new Mammal());

SRA 12.15 Beginning with Java 5.0, Java enables us to define a class based
on a generic type. That is, we can define a class so that it stores,
operates on, and manages objects whose type is not specified until
the class is instantiated. This allows for the creation of structures
that can manipulate “generic” elements and still provide type
checking.

SRA 12.16 Postfix notation avoids the need for precedence rules that are re-
quired to evaluate infix expressions.

M12_LEWI5976_05_SE_C12.indd 501 08/02/19 2:51 AM

503

13
This chapter explores a technique for creating data

structures using references to create links between objects.

Linked structures are fundamental to the development of

software, especially the design and implementation of col-

lections. This approach has both advantages and disadvan-

tages when compared to a solution using arrays.

C H A P T E R O B J E C T I V E S
■■ Describe the use of references to create linked structures.

■■ Compare linked structures to array-based structures.

■■ Explore the techniques for managing a linked list.

■■ Discuss the need for a separate node object to form linked
structures.

■■ Implement a stack collection using a linked list.

Linked Structures—
Stacks 13

M13_LEWI5976_05_SE_C13.indd 503 08/02/19 2:52 AM

504 CHAPTER 13 Linked Structures—Stacks

13.1 References as Links

In Chapter 12, we discussed the concept of collections and explored one collection
in particular: a stack. We defined the operations on a stack collection and de-
signed an implementation using an underlying array-based data structure. In this
chapter, we explore an entirely different approach to designing a data structure.

A linked structure is a data structure that uses object reference variables to cre-
ate links between objects. Linked structures are the primary alternative to an array-

based implementation of a collection. After discussing various issues
involved in linked structures, we will define a new implementation of
a stack collection that uses an underlying linked data structure.

Recall that an object reference variable holds the address of an
object, indicating where the object is stored in memory. The follow-

ing declaration creates a variable called obj that is only large enough to hold the
numeric address of an object:

Object obj;

Usually the specific address that an object reference variable holds is irrelevant.
That is, even though it is important to be able to use the reference variable to ac-
cess an object, the specific location in memory where it is stored is unimportant.
Therefore, instead of showing addresses, we usually depict a reference variable as
a name that “points to” an object, as shown in Figure 13.1. A reference variable,
used in this context, is sometimes called a pointer.

Consider the situation in which a class defines as instance data a reference to
another object of the same class. For example, suppose we have a class named
Person that contains a person’s name, address, and other relevant information.
Now suppose that in addition to these data, the Person class also contains a refer-
ence variable to another Person object:

public class Person
{
 private String name;
 private String address;

 private Person next; // a link to another Person object

 // whatever else
}

Using only this one class, we can create a linked structure. One Person object
contains a link to a second Person object. This second object also contains a
reference to a Person, which contains another, and so on. This type of object is
sometimes called self-referential.

KEY CONCEPT
Object reference variables can be used
to create linked structures.

M13_LEWI5976_05_SE_C13.indd 504 08/02/19 2:52 AM

 13.1 References as Links 505

obj

FIGURE 13.1 An object reference variable pointing to an object

This kind of relationship forms the basis of a linked list, which is
a linked structure in which one object refers to the next, creating a
linear ordering of the objects in the list. A linked list is depicted in
Figure 13.2. Often the objects stored in a linked list are referred to
generically as the nodes of the list.

Note that a separate reference variable is needed to indicate the
first node in the list. The list is terminated in a node whose next reference is null.

A linked list is only one kind of linked structure. If a class is set up to have mul-
tiple references to objects, a more complex structure can be created, such as the
one depicted in Figure 13.3. The way in which the links are managed dictates the
specific organization of the structure.

For now, we will focus on the details of a linked list. Many of these techniques
apply to more complicated linked structures as well.

KEY CONCEPT
A linked list is composed of objects
that each point to the next object in
the list.

front

FIGURE 13.2 A linked list

entry

FIGURE 13.3 A complex linked structure

M13_LEWI5976_05_SE_C13.indd 505 08/02/19 2:52 AM

506 CHAPTER 13 Linked Structures—Stacks

Unlike an array, which has a fixed size, a linked list has no upper
bound on its capacity other than the limitations of memory in the
computer. A linked list is considered to be a dynamic structure be-
cause its size grows and shrinks as needed to accommodate the num-
ber of elements stored. In Java, all objects are created dynamically
from an area of memory called the system heap or free store.

The next section explores some of the primary ways in which a linked list is
managed.

13.2 Managing Linked Lists

Keep in mind that our goal is to use linked lists and other linked structures to
create collections—specifically, in this chapter, to create a stack. Because the prin-
cipal purpose of a collection is to be able to add, remove, and access elements, we
must first examine how to accomplish these fundamental operations using links.
We will focus our discussion in this chapter on adding and removing from the end
of a linked list as we will need to do for our stack. We will revisit this discussion
in later chapters as the situation warrants.

No matter what a linked list is used to store, there are a few basic techniques
involved in managing the nodes in the list. Specifically, elements in the list are ac-
cessed, elements are inserted into the list, and elements are removed from the list.

Accessing Elements
Special care must be taken when dealing with the first node in the list so that the
reference to the entire list is maintained appropriately. When using linked lists,
we maintain a pointer to the first element in the list. To access other elements,
we must access the first one and then follow the next pointer from that one to
the next one and so on. Consider our previous example of a person class con-
taining the attributes name, address, and next. If we wanted to find the fourth
person in the list, and assuming that we had a variable first of type Person that
pointed to the first person in the list and that the list contained at least four nodes,
we might use the following code:

Person current = first;
for (int i = 0; i < 3; i++)
 current = current.next;

After executing this code, current will point to the fourth person in the list.
Notice that it is very important to create a new reference variable, in this case

KEY CONCEPT
A linked list dynamically grows
as needed and essentially has no
capacity limitations.

M13_LEWI5976_05_SE_C13.indd 506 08/02/19 2:52 AM

 13.2 Managing Linked Lists 507

current, and then start by setting that reference variable to point to the first ele-
ment in the list. Consider what would happen if we used the first pointer in the
loop instead of current. Once we moved the first pointer to point to the second
element in the list, we would no longer have a pointer to the first element and would
not be able to access it. Keep in mind that with a linked list, the only way to access
the elements in the list is to start with the first element and progress through the list.

Of course, a more likely scenario is that we would need to search our list for a
particular person. Assuming that the Person class overrides the equals method
such that it returns true if the given String matches the name stored for that per-
son, then the following code will search the list for Tom Jones:

String searchstring = "Tom Jones";
Person current = first;
while ((not(current.equals(searchstring)) && (current.next != null)))
 current = current.next;

Note that this loop will terminate when the string is found or when the end of
the list is encountered. Now that we have seen how to access elements in a linked
list, let’s consider how to insert elements into a list.

Inserting Nodes
A node may be inserted into a linked list at any location: at the front of the list,
among the interior nodes in the middle of the list, or at the end of
the list. Adding a node to the front of the list requires resetting the
reference to the entire list, as shown in Figure 13.4. First, the next
reference of the added node is set to point to the current first node in
the list. Second, the reference to the front of the list is reset to point
to the newly added node.

KEY CONCEPT
The order in which references are
changed is crucial to maintaining a
linked list.

front 1

2

node

FIGURE 13.4 Inserting a node at the front of a linked list

M13_LEWI5976_05_SE_C13.indd 507 08/02/19 2:52 AM

508 CHAPTER 13 Linked Structures—Stacks

front

FIGURE 13.5 Deleting the first node in a linked list

Note that difficulties would arise if these steps were reversed. If we were to
reset the front reference first, we would lose the only reference to the existing list
and it could not be retrieved.

Inserting a node into the middle of a list requires some additional processing
but is not needed for our stack collection. We will come back to this topic in
Chapter 15.

Deleting Nodes
Any node in the list can be deleted. We must maintain the integrity of the list no
matter which node is deleted. As with the process of inserting a node, dealing with

the first node in the list represents a special case.

To delete the first node in a linked list, we reset the reference to
the front of the list so that it points to the current second node in
the list. This process is shown in Figure 13.5. If the deleted node is
needed elsewhere, we must set up a separate reference to it before

resetting the front reference. The general case of deleting a node from the interior
of the list is left for Chapter 15.

KEY CONCEPT
Dealing with the first node in a linked
list often requires special handling.

D E S I G N F O C U S

We’ve described insertion into and deletion from a list as having two cases:
the case when dealing with the first node and the case when dealing with any
other node. It is possible to eliminate the special case involving the first node
by introducing a sentinel node or dummy node at the front of the list. A sentinel
node serves as a false first node and doesn’t actually represent an element in
the list. When a sentinel node is used, all insertions and deletions will fall under
the second case and the implementations will not have as many special situa-
tions to consider.

M13_LEWI5976_05_SE_C13.indd 508 08/02/19 2:52 AM

 13.3 Elements without Links 509

13.3 Elements without Links

Now that we have explored some of the techniques needed to manage the nodes
of a linked list, we can turn our attention to using a linked list as an alternative
implementation approach for a collection. To do so, however, we need to care-
fully examine one other key aspect of linked lists. We must separate the details of
the linked list structure from the elements that the list stores.

Earlier in this chapter we discussed the idea of a Person class that
contains, among its other data, a link to another Person object. The
flaw in this approach is that the self-referential Person class must be
designed so that it “knows” it may become a node in a linked list of
Person objects. This assumption is impractical, and it violates our
goal of separating the implementation details from the parts of the
system that use the collection.

The solution to this problem is to define a separate node class that serves to link
the elements together. A node class is fairly simple, containing only two important
references: one to the next node in the linked list and another to the element that
is being stored in the list. This approach is depicted in Figure 13.6.

The linked list of nodes can still be managed using the techniques discussed in
the previous section. The only additional aspect is that the actual elements stored
in the list are accessed using separate references in the node objects.

Doubly Linked Lists
An alternative implementation for linked structures is the concept of a doubly
linked list, as illustrated in Figure 13.7. In a doubly linked list, two references
are maintained: one to point to the first node in the list and another to point to
the last node in the list. Each node in the list stores both a reference to the next

KEY CONCEPT
Objects that are stored in a collection
should not contain any implementation
details of the underlying data structure.

front

FIGURE 13.6 Using separate node objects to store and link elements

M13_LEWI5976_05_SE_C13.indd 509 08/02/19 2:52 AM

510 CHAPTER 13 Linked Structures—Stacks

element and a reference to the previous one. If we were to use sentinel nodes with
a doubly linked list, we would place sentinel nodes on both ends of the list. We
discuss doubly linked lists further in Chapter 15.

13.4 Stacks in the Java API

In Chapter 12, we used the java.util.Stack class from the Java Collections
API to solve the postfix expression problem. The Stack class is an array-based
implementation of a stack provided in the Java Collections API framework. This
implementation provides the same basic operations we have been discussing:

■■ The push operation accepts a parameter item that is a reference to an
 element to be placed on the stack.

■■ The pop operation removes the element on top of the stack and returns a
reference to it.

■■ The peek operation returns a reference to the element on top of the stack.

The Stack class is derived from the Vector class and uses its in-
herited capabilities to store the elements in the stack. Because this
implementation is built on a vector, it exhibits the characteristics of
both a vector and a stack and thus allows operations that violate the
basic premise of a stack.

The Deque interface implemented by the LinkedList class pro-
vides a linked implementation of a stack and provides the same basic stack opera-
tions. A deque (pronounced like “deck”) is a double-ended queue, and we discuss
that concept further in Chapter 14. Unfortunately, since a Deque operates on both

KEY CONCEPT
The java.util.Stack class is
derived from Vector, which gives a
stack inappropriate operations.

fr
o

nt
 o

f
lis

t

re
ar

 o
f

lis
t

FIGURE 13.7 A doubly linked list

M13_LEWI5976_05_SE_C13.indd 510 08/02/19 2:52 AM

 13.5 Using Stacks: Traversing a Maze 511

ends of the collection, there are a variety of operations available that violate the
premise of a stack. It is up to developers to limit themselves to the use of stack
operations. Let’s see how we use a Deque as a stack.

13.5 Using Stacks: Traversing a Maze

Another classic use of a stack data structure is to keep track of alternatives in
maze traversal or other similar algorithms that involve trial and error. Suppose
that we build a grid as a two-dimensional array of integer values where each
number represents either a path (1) or a wall (0) in a maze. We store our grid in
a file where the first line of the file describes the number of rows and columns in
the grid.

9 13
1 1 1 0 1 1 0 0 0 1 1 1 1
1 0 0 1 1 0 1 1 1 1 0 0 1
1 1 1 1 1 0 1 0 1 0 1 0 0
0 0 0 0 1 1 1 0 1 0 1 1 1
1 1 1 0 1 1 1 0 1 0 1 1 1
1 0 1 0 0 0 0 1 1 1 0 0 1
1 0 1 1 1 1 1 1 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1

The goal is to start in the top-left corner of this grid and traverse to the bottom-
right corner of this grid, traversing only positions that are marked as a path. Valid
moves will be those that are within the bounds of the grid and are to cells in the
grid marked with a 1. We will mark our path as we go by changing the 1’s to 2’s,
and we will push only valid moves onto the stack.

Starting in the top-left corner, we have two valid moves: down and right. We
push these moves onto the stack, pop the top move off of the stack (right),
and then move to that location. This means that we moved right one position:

2 2 1 0 1 1 0 0 0 1 1 1 1
1 0 0 1 1 0 1 1 1 1 0 0 1
1 1 1 1 1 0 1 0 1 0 1 0 0
0 0 0 0 1 1 1 0 1 0 1 1 1
1 1 1 0 1 1 1 0 1 0 1 1 1
1 0 1 0 0 0 0 1 1 1 0 0 1
1 0 1 1 1 1 1 1 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1

M13_LEWI5976_05_SE_C13.indd 511 08/02/19 2:52 AM

512 CHAPTER 13 Linked Structures—Stacks

We now have only one valid move. We push that move onto the stack, pop
the top element off of the stack (right), and then move to that location. Again we
moved right one position:

2 2 2 0 1 1 0 0 0 1 1 1 1
1 0 0 1 1 0 1 1 1 1 0 0 1
1 1 1 1 1 0 1 0 1 0 1 0 0
0 0 0 0 1 1 1 0 1 0 1 1 1
1 1 1 0 1 1 1 0 1 0 1 1 1
1 0 1 0 0 0 0 1 1 1 0 0 1
1 0 1 1 1 1 1 1 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1

From this position, we do not have any valid moves. At this point, how-
ever, our stack is not empty. Keep in mind that we still have a valid move
on the stack left from the first position. We pop the next (and currently last)
element off of the stack (down from the first position). We move to that posi-
tion, push the valid move(s) from that position onto the stack, and continue
processing.

2 2 2 0 1 1 0 0 0 1 1 1 1
2 0 0 1 1 0 1 1 1 1 0 0 1
1 1 1 1 1 0 1 0 1 0 1 0 0
0 0 0 0 1 1 1 0 1 0 1 1 1
1 1 1 0 1 1 1 0 1 0 1 1 1
1 0 1 0 0 0 0 1 1 1 0 0 1
1 0 1 1 1 1 1 1 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1

Listings 13.1, 13.2, and 13.3 illustrate the Maze, MazeSolver, and MazeTester
classes that implement our stack-based solution to traversing a maze. We will re-
visit this same example in our discussion of recursion in Chapter 17.

Note that the constructor of the Maze class reads the initial maze data from a
file specified by the user. This solution assumes that all issues regarding the file
I /O will proceed without a problem, which, of course, is not a safe assumption.
The file might not be present; the data might not be in the correct format, and
so forth. Several different exceptions could occur during the execution of the
constructor, which doesn’t catch or handle them. If any occur, the program will
terminate. In a more robust program, these exceptions would be handled more
elegantly.

This solution uses a class called Position to encapsulate the coordinates
of a position within the maze. The traverse method loops, popping the top
position off the stack, marking it as tried, and then testing to see whether we

VideoNote
Using a stack to solve
a maze

M13_LEWI5976_05_SE_C13.indd 512 08/02/19 2:52 AM

 13.5 Using Stacks: Traversing a Maze 513

are done (i.e., have reached the bottom right corner of the grid). If we are not
done, then all of the valid moves from this position are pushed onto the stack,
and the loop continues. A private method called pushNewPos has been created
to handle the task of pushing the valid moves from the current position onto
the stack:

D E S I G N F O C U S

The run-time stack is a stack used by the operating system to keep track of meth-
ods that are invoked. The run-time stack is made up of activation records. These
activation records are created and pushed onto the run-time stack when a method
is called and then popped off of the run-time stack when the method completes.
For example, when the main method of a program is called, an activation record
for it is created and pushed onto the run-time stack. When the main method calls
another method (say m2), an activation record for m2 is created and pushed onto
the stack. If method m2 calls method m3, then an activation record for m3 is created
and pushed onto the stack. When the method m3 terminates, its activation record
is popped off the stack and control returns to the calling method (m2), which is
now on the top of the stack. An activation record contains various administrative
data to help manage the execution of the program. It also contains a copy of the
method’s data (local variables and parameters) for that invocation of the method.

One way that you have likely already experienced the run-time stack is
through a call stack trace. If an exception occurs during the execution of a
Java program, the programmer can examine the call stack trace to see in what
method the problem occurred within and what method calls were made to arrive
at that point.

private StackADT<Position> push_new_pos(int x, int y,
StackADT<Position> stack)
{
 Position npos = new Position();
 npos.setx(x);
 npos.sety(y);
 if (valid(npos.getx(),npos.gety()))
 stack.push(npos);
 return stack;

}

M13_LEWI5976_05_SE_C13.indd 513 08/02/19 2:52 AM

514 CHAPTER 13 Linked Structures—Stacks

L I S T I N G 1 3 . 1

import java.util.*;
import java.io.*;

/**
 * Maze represents a maze of characters. The goal is to get from the
 * top left corner to the bottom right, following a path of 1’s. Arbitrary
 * constants are used to represent locations in the maze that have been TRIED
 * and that are part of the solution PATH.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class Maze
{
 private static final int TRIED = 2;
 private static final int PATH = 3;

 private int numberRows, numberColumns;
 private int[][] grid;

 /**
 * Constructor for the Maze class. Loads a maze from the given file.
 * Throws a FileNotFoundException if the given file is not found.
 *
 * @param filename the name of the file to load
 * @throws FileNotFoundException if the given file is not found
 */
 public Maze(String filename) throws FileNotFoundException
 {
 Scanner scan = new Scanner(new File(filename));
 numberRows = scan.nextInt();
 numberColumns = scan.nextInt();

 grid = new int[numberRows][numberColumns];
 for (int i = 0; i < numberRows; i++)
 for (int j = 0; j < numberColumns; j++)
 grid[i][j] = scan.nextInt();
 }

 /**
 * Marks the specified position in the maze as TRIED
 *
 * @param row the index of the row to try
 * @param col the index of the column to try
 */

M13_LEWI5976_05_SE_C13.indd 514 08/02/19 2:52 AM

 13.5 Using Stacks: Traversing a Maze 515

 public void tryPosition(int row, int col)
 {
 grid[row][col] = TRIED;
 }

 /**
 * Return the number of rows in this maze
 *
 * @return the number of rows in this maze
 */
 public int getRows()
 {
 return grid.length;
 }

 /**
 * Return the number of columns in this maze
 *
 * @return the number of columns in this maze
 */
 public int getColumns()
 {
 return grid[0].length;
 }

 /**
 * Marks a given position in the maze as part of the PATH
 *
 * @param row the index of the row to mark as part of the PATH
 * @param col the index of the column to mark as part of the PATH
 */
 public void markPath(int row, int col)
 {
 grid[row][col] = PATH;
 }

 /**
 * Determines if a specific location is valid. A valid location
 * is one that is on the grid, is not blocked, and has not been TRIED.
 *
 * @param row the row to be checked
 * @param column the column to be checked
 * @return true if the location is valid
 */

L I S T I N G 1 3 . 1 continued

M13_LEWI5976_05_SE_C13.indd 515 08/02/19 2:52 AM

516 CHAPTER 13 Linked Structures—Stacks

 public boolean validPosition(int row, int column)
 {
 boolean result = false;

 // check if cell is in the bounds of the matrix

 if (row >= 0 && row < grid.length &&
 column >= 0 && column < grid[row].length)

 // check if cell is not blocked and not previously tried

 if (grid[row][column] == 1)
 result = true;
 return result;
 }

 /**
 * Returns the maze as a string.
 *
 * @return a string representation of the maze
 */
 public String toString()
 {
 String result = "\n";

 for (int row=0; row < grid.length; row++)
 {
 for (int column=0; column < grid[row].length; column++)
 result += grid[row][column] + "";
 result += "\n";
 }
 return result;
 }
}

L I S T I N G 1 3 . 1 continued

M13_LEWI5976_05_SE_C13.indd 516 08/02/19 2:52 AM

 13.5 Using Stacks: Traversing a Maze 517

L I S T I N G 1 3 . 2

import java.util.*;

/**
 * MazeSolver attempts to traverse a Maze. The goal is to get from the
 * given starting position to the bottom right, following a path of 1’s. Arbitrary
 * constants are used to represent locations in the maze that have been TRIED
 * and that are part of the solution PATH.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class MazeSolver
{
 private Maze maze;

 /**
 * Constructor for the MazeSolver class.
 */
 public MazeSolver(Maze maze)
 {
 this.maze = maze;
 }

 /**
 * Attempts to recursively traverse the maze. Inserts special
 * characters indicating locations that have been TRIED and that
 * eventually become part of the solution PATH.
 *
 * @param row row index of current location
 * @param column column index of current location
 * @return true if the maze has been solved
 */
 public boolean traverse()
 {
 boolean done = false;
 int row, column;
 Position pos = new Position();
 Deque<Position> stack = new LinkedList<Position>();
 stack.push(pos);

M13_LEWI5976_05_SE_C13.indd 517 08/02/19 2:52 AM

518 CHAPTER 13 Linked Structures—Stacks

 while (!(done) && !stack.isEmpty())
 {
 pos = stack.pop();
 maze.tryPosition(pos.getx(),pos.gety()); // this cell has been tried

if (pos.getx() == maze.getRows()-1 && pos.gety() == maze.getColumns()-1)
 done = true; // the maze is solved
 else
 {
 pushNewPos(pos.getx() - 1,pos.gety(), stack);
 pushNewPos(pos.getx() + 1,pos.gety(), stack);
 pushNewPos(pos.getx(),pos.gety() - 1, stack);
 pushNewPos(pos.getx(),pos.gety() + 1, stack);
 }
 }

 return done;
 }

 /**
 * Push a new attempted move onto the stack
 * @param x represents x coordinate
 * @param y represents y coordinate
 * @param stack the working stack of moves within the grid
 * @return stack of moves within the grid
 */
 private void pushNewPos(int x, int y,
 Deque<Position> stack)
 {
 Position npos = new Position();
 npos.setx(x);
 npos.sety(y);
 if (maze.validPosition(x,y))
 stack.push(npos);
 }

}

L I S T I N G 1 3 . 2 continued

M13_LEWI5976_05_SE_C13.indd 518 08/02/19 2:52 AM

 13.5 Using Stacks: Traversing a Maze 519

The UML description for the maze problem is left as an exercise.

L I S T I N G 1 3 . 3

import java.util.*;
import java.io.*;

/**
 * MazeTester determines if a maze can be traversed.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class MazeTester
{
 /**
 * Creates a new maze, prints its original form, attempts to
 * solve it, and prints out its final form.
 */
 public static void main(String[] args) throws FileNotFoundException
 {
 Scanner scan = new Scanner(System.in);
 System.out.print("Enter the name of the file containing the maze: ");
 String filename = scan.nextLine();

 Maze labyrinth = new Maze(filename);

 System.out.println(labyrinth);

 MazeSolver solver = new MazeSolver(labyrinth);

 if (solver.traverse())
 System.out.println("The maze was successfully traversed!");
 else
 System.out.println("There is no possible path.");

 System.out.println(labyrinth);
 }
}

M13_LEWI5976_05_SE_C13.indd 519 08/02/19 2:52 AM

520 CHAPTER 13 Linked Structures—Stacks

13.6 Implementing a Stack: With Links

Let’s use a linked list to implement a stack collection, which was defined in Chapter
12. Note that we are not changing the way in which a stack works. Its conceptual
nature remains the same, as does the set of operations defined for it. We are merely

changing the underlying data structure used to implement it.

The purpose of the stack, and the solutions it helps us to create,
also remains the same. The postfix expression evaluation example
from Chapter 12 used the java.util.Stack<T> class, but any valid
implementation of a stack could be used instead. Once we create the
LinkedStack<T> class to define an alternative implementation, we

could substitute it into the postfix expression solution without having to change
anything but the class name. That is the beauty of abstraction.

In the following discussion, we show and discuss the methods that are impor-
tant to understanding the linked-list implementation of a stack. Some of the stack
operations are left as programming projects.

The LinkedStack Class
The LinkedStack<T> class implements the StackADT<T> interface, just as the
ArrayStack<T> class from Chapter 12 does. Both provide the operations defined
for a stack collection.

Because we are using a linked-list approach, there is no array in which we store
the elements of the collection. Instead, we need only a single reference to the first
node in the list. We will also maintain a count of the number of elements in the
list. The header and class-level data of the LinkedStack<T> class are therefore:

KEY CONCEPT
Any implementation of a collection
can be used to solve a problem as
long as it validly implements the
appropriate operations.

package jsjf;

import jsjf.exceptions.*;

/**
 * Represents a linked implementation of a stack.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class LinkedStack<T> implements StackADT<T>
{
 private int count;
 private LinearNode<T> top;

M13_LEWI5976_05_SE_C13.indd 520 08/02/19 2:52 AM

 13.6 Implementing a Stack: With Links 521

The LinearNode<T> class serves as the node containing a reference to the next
LinearNode<T> in the list and a reference to the element stored in that node. Each
node stores a generic type that is determined when the node is instantiated. In our
LinkedStack<T> implementation, we simply use the same type for the node as
used to define the stack. The LinearNode<T> class also contains methods to set
and get the element values. The LinearNode<T> class is shown in Listing 13.4.

L I S T I N G 1 3 . 4

package jsjf;

/**
 * Represents a node in a linked list.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class LinearNode<T>
{
 private LinearNode<T> next;
 private T element;

 /**
 * Creates an empty node.
 */
 public LinearNode()
 {
 next = null;
 element = null;
 }

 /**
 * Creates a node storing the specified element.
 * @param elem element to be stored
 */
 public LinearNode(T elem)
 {
 next = null;
 element = elem;
 }

 /**
 * Returns the node that follows this one.
 * @return reference to next node
 */

M13_LEWI5976_05_SE_C13.indd 521 08/02/19 2:52 AM

522 CHAPTER 13 Linked Structures—Stacks

Note that the LinearNode<T> class is not tied to the implementa-
tion of a stack collection. It can be used in any linear linked-list imple-
mentation of a collection. We will use it for other collections as needed.

Using the LinearNode<T> class and maintaining a count of ele-
ments in the collection creates the implementation strategy depicted
in Figure 13.8.

 public LinearNode<T> getNext()
 {
 return next;
 }

 /**
 * Sets the node that follows this one.
 * @param node node to follow this one
 */
 public void setNext(LinearNode<T> node)
 {
 next = node;
 }

 /**
 * Returns the element stored in this node.
 * @return element stored at the node
 */
 public T getElement()
 {
 return element;
 }

 /**
 * Sets the element stored in this node.
 * @param elem element to be stored at this node
 */
 public void setElement(T elem)
 {
 element = elem;
 }
}

L I S T I N G 1 3 . 4 continued

KEY CONCEPT
A linked implementation of a stack
adds and removes elements from one
end of the linked list.

M13_LEWI5976_05_SE_C13.indd 522 08/02/19 2:52 AM

 13.6 Implementing a Stack: With Links 523

The constructor of the LinkedStack<T> class sets the count of elements to
zero and sets the front of the list, represented by the variable top, to null. Note
that because a linked-list implementation does not have to worry about capac-
ity limitations, there is no need to create a second constructor as we did in the
ArrayStack<T> class of Chapter 12.

/**
 * Creates an empty stack.
 */
public LinkedStack()
{
 count = 0;
 top = null;

}

Because the nature of a stack is to allow elements to be added to, or removed
from, only one end, we will operate on only one end of our linked list. We could
choose to push the first element into the first position in the linked list, the sec-
ond element into the second position, and so on. This would mean that the top
of the stack would always be at the tail end of the list. However, if we consider
the efficiency of this strategy, we realize that it would mean we would have to
traverse the entire list on every push and every pop operation. Instead, we can
choose to operate on the front of the list, making the front of the list the top of
the stack. In this way, we do not have to traverse the list for either the push or
the pop operation. Figure 13.9 illustrates this configuration for a stack contain-
ing four elements, A, B, C, and D, that have been pushed onto the stack in that
order.

top
count: 6

FIGURE 13.8 A linked implementation of a stack collection

M13_LEWI5976_05_SE_C13.indd 523 08/02/19 2:52 AM

524 CHAPTER 13 Linked Structures—Stacks

Let’s explore the implementation of the stack operations for the LinkedStack
class.

The push Operation
Every time a new element is pushed onto the stack, a new LinearNode object
must be created to store it in the linked list. To position the newly created node at
the top of the stack, we must set its next reference to the current top of the stack
and reset the top reference to point to the new node. We must also increment the
count variable.

Implementing these steps results in the following code:

top

CD B A

count 4

FIGURE 13.9 A linked implementation of a stack

/**
 * Adds the specified element to the top of this stack.
 * @param element element to be pushed on stack
 */
public void push(T element)
{
 LinearNode<T> temp = new LinearNode<T>(element);

 temp.setNext(top);
 top = temp;
 count++;

}

Figure 13.10 shows the result of pushing the element E onto the stack depicted
in Figure 13.9.

M13_LEWI5976_05_SE_C13.indd 524 08/02/19 2:52 AM

 13.6 Implementing a Stack: With Links 525

The push operation for the linked implementation of a stack consists of the
following steps:

■■ Create a new node containing a reference to the object to be placed on the
stack.

■■ Set the next reference of the new node to point to the current top of the
stack (which will be null if the stack is empty).

■■ Set the top reference to point to the new node.

■■ Increment the count of elements in the stack.

All of these steps have time complexity O(1) because they require only one
processing step regardless of the number of elements already in the stack. Each
of these steps would have to be accomplished once for each of the elements to be
pushed. Thus, using this method, the push operation would be O(1).

top

DE C B A

count 5

FIGURE 13.10 The stack after pushing element E

Adding a Node to the Front of a Linked List

Temp.setNext(top);

top = temp;

Set the new node’s next reference to the front of the list

reset the front of the list

M13_LEWI5976_05_SE_C13.indd 525 08/02/19 2:52 AM

526 CHAPTER 13 Linked Structures—Stacks

The pop Operation
The pop operation is implemented by returning a reference to the element cur-
rently stored at the top of the stack and adjusting the top reference to the new
top of the stack. Before attempting to return any element, however, we must first
ensure that there is at least one element to return. This operation can be imple-
mented as follows:

/**
 * Removes the element at the top of this stack and returns a
 * reference to it.
 * @return element from top of stack
 * @throws EmptyCollectionException if the stack is empty
 */
public T pop() throws EmptyCollectionException
{
 if (isEmpty())
 throw new EmptyCollectionException("stack");

 T result = top.getElement();
 top = top.getNext();
 count--;

 return result;
}

If the stack is empty, as determined by the isEmpty method, an
EmptyCollectionException is thrown. If there is at least one element to pop, it
is stored in a temporary variable so that it can be returned. Then the reference to
the top of the stack is set to the next element in the list, which is now the new top
of the stack. The count of elements is decremented as well.

Figure 13.11 illustrates the result of a pop operation on the stack from
Figure 13.10. Notice that this figure is identical to our original configuration
in Figure 13.9. This illustrates the fact that the pop operation is the inverse of
the push operation.

The pop operation for the linked implementation consists of the following steps:

■■ Make sure the stack is not empty.

■■ Set a temporary reference equal to the element on top of the stack.

■■ Set the top reference equal to the next reference of the node at the top of
the stack.

M13_LEWI5976_05_SE_C13.indd 526 08/02/19 2:52 AM

 13.6 Implementing a Stack: With Links 527

■■ Decrement the count of elements in the stack.

■■ Return the element pointed to by the temporary reference.

As with our previous examples, each of these operations consists of a single
comparison or a simple assignment and is therefore O(1). Thus, the pop operation
for the linked implementation is O(1).

Other Operations
Using a linked implementation, the peek operation is implemented by returning
a reference to the element pointed to by the node pointed to by the top pointer.
The isEmpty operation returns true if the count of elements is 0, and false other-
wise. The size operation simply returns the count of elements in the stack. The
toString operation can be implemented by traversing the linked list. These op-
erations are left as programming projects.

top

CD B A

count 4

FIGURE 13.11 The stack after a pop operation

M13_LEWI5976_05_SE_C13.indd 527 08/02/19 2:52 AM

528 CHAPTER 13 Linked Structures—Stacks

Summary of Key Concepts

■■ Object reference variables can be used to create linked structures.

■■ A linked list is composed of objects that each point to the next object in the
list.

■■ A linked list dynamically grows as needed and essentially has no capacity
limitations.

■■ The order in which references are changed is crucial to maintaining a linked
list.

■■ Dealing with the first node in a linked list often requires special handling.

■■ Objects that are stored in a collection should not contain any implementa-
tion details of the underlying data structure.

■■ The java.util.Stack class is derived from Vector, which gives a stack
inappropriate operations.

■■ Any implementation of a collection can be used to solve a problem as long as
it validly implements the appropriate operations.

■■ A linked implementation of a stack adds elements to, and removes elements
from, one end of the linked list.

Summary of Terms
activation record An object that represents a method invocation.

doubly linked list A linked list in which each node has references to both the
next node and the previous node in the list.

linked list A linked structure in which one object refers to the next, creating
a linear ordering.

linked structure A data structure that uses object reference variables to cre-
ate links between objects.

node A class that represents a single element in a linked structure.

program stack A stack of activation records used to keep track of method
invocations during program execution.

sentinel node A node at the front or end of a linked list that serves as a
marker and does not represent an element in the list.

M13_LEWI5976_05_SE_C13.indd 528 08/02/19 2:52 AM

 Exercises 529

Self-Review Questions
SR 13.1 How do object references help us define data structures?

SR 13.2 Compare and contrast a linked list and an array.

SR 13.3 What special case exists when managing linked lists?

SR 13.4 Why should a linked list node be separate from the element
stored on the list?

SR 13.5 What do the LinkedStack<T> and ArrayStack<T> classes have
in common?

SR 13.6 What would be the time complexity of the push operation if we
chose to push at the end of the list instead of at the front?

SR 13.7 What is the difference between a doubly linked list and a singly linked list?

SR 13.8 What impact would the use of sentinel nodes or dummy nodes
have on a doubly linked list implementation?

SR 13.9 What are the advantages of using a linked implementation as
opposed to an array implementation?

SR 13.10 What are the advantages of using an array implementation as
opposed to a linked implementation?

SR 13.11 What are the advantages of the java.util.Stack implementa-
tion of a stack?

SR 13.12 What is the potential problem with the java.util.Stack
implementation?

Exercises
EX 13.1 Explain what will happen if the steps depicted in Figure 13.4 are

reversed.

EX 13.2 Explain what will happen if the steps depicted in Figure 13.5 are
reversed.

EX 13.3 Draw a UML diagram showing the relationships among the
classes involved in the linked-list implementation of a stack.

EX 13.4 Write an algorithm for the add method that will add at the end of
the list instead of at the beginning. What is the time complexity of
this algorithm?

EX 13.5 Modify the algorithm from the previous exercise so that it makes
use of a rear reference. How does this affect the time complexity
of this and the other operations?

 Exercises 529

M13_LEWI5976_05_SE_C13.indd 529 08/02/19 2:52 AM

530 CHAPTER 13 Linked Structures—Stacks

EX 13.6 Discuss the effect on all the operations if there were not a count
variable in the implementation.

EX 13.7 Discuss the impact (and draw an example) of using a sentinel
node or dummy node at the head of a list.

EX 13.8 Draw the UML class diagram for the iterative maze solver ex-
ample from this chapter.

Programming Projects
PP 13.1 Complete the implementation of the LinkedStack<T> class

by providing the definitions for the peek, size, isEmpty, and
toString methods.

PP 13.2 Modify the postfix program from Chapter 3 so that it
uses the LinkedStack<T> class instead of the ArrayStack<T>
class.

PP 13.3 Create a new version of the LinkedStack<T> class that makes
use of a dummy record at the head of the list.

PP 13.4 Create a simple graphical application that will allow a user to
perform push, pop, and peek operations on a stack, and display
the resulting stack (using toString) in a text area.

PP 13.5 Design and implement an application that reads a sentence from
the user and prints the sentence with the characters of each
word backwards. Use a stack to reverse the characters of each
word.

PP 13.6 Create a solution to the maze solver program that uses the fully
implemented LinkedStack class from PP 13.1.

PP 13.7 The linked implementation in this chapter uses a count variable
to keep track of the number of elements in the stack. Rewrite the
linked implementation without a count variable.

PP 13.8 There is a data structure called a drop-out stack that behaves
like a stack in every respect except that if the stack size is n,
then when the n+1 element is pushed, the first element is lost.
Implement a drop-out stack using links.

PP 13.9 Modify the maze problem in this chapter so that it can start from
a user-defined starting position (other than 0, 0) and search for a
user-defined ending point (other than row-1, column-1).

M13_LEWI5976_05_SE_C13.indd 530 08/02/19 2:52 AM

 Answers to Self-Review Questions 531

Answers to Self-Review Questions
SRA 13.1 An object reference can be used as a link from one object to

 another. A group of linked objects can form a data structure,
such as a linked list, on which a collection can be based.

SRA 13.2 A linked list has no capacity limitations, whereas an array does.
However, arrays provide direct access to elements using indexes,
whereas a linked list must be traversed one element at a time to
reach a particular point in the list.

SRA 13.3 The primary special case in linked-list processing occurs when
dealing with the first element in the list. A special reference vari-
able is maintained that specifies the first element in the list. If that
element is deleted, or if a new element is added in front of it, the
front reference must be carefully maintained.

SRA 13.4 It is unreasonable to assume that every object that we may want
to put in a collection can be designed to cooperate with the col-
lection implementation. Furthermore, the implementation details
are supposed to be kept distinct from the user of the collec-
tion, including the elements that the user chooses to add to the
collection.

SRA 13.5 Both the LinkedStack<T> and ArrayStack<T> classes imple-
ment the StackADT<T> interface. This means that they both
represent a stack collection, providing the necessary operations
needed to use a stack. Although they both have distinct ap-
proaches to managing the collection, they are functionally inter-
changeable from the user’s point of view.

SRA 13.6 To push at the end of the list, we would have to traverse the list
to reach the last element. This traversal would cause the time
complexity to be O(n). An alternative would be to modify the so-
lution to add a rear reference that always pointed to the last ele-
ment in the list. This would help the time complexity for add but
would have consequences if we try to remove the last element.

SRA 13.7 A singly linked list maintains a reference to the first element in
the list and then a next reference from each node to the follow-
ing node in the list. A doubly linked list maintains two references:
front and rear. Each node in the doubly linked list stores both a
next and a previous reference.

SRA 13.8 It would take two dummy records in a doubly linked list, one at
the front and one at the rear, to eliminate the special cases when
dealing with the first and last nodes.

M13_LEWI5976_05_SE_C13.indd 531 08/02/19 2:52 AM

532 CHAPTER 13 Linked Structures—Stacks

SRA 13.9 A linked implementation allocates space only as it is needed and
has a theoretical limit on the size of the hardware.

SRA 13.10 An array implementation uses less space per object since it only
has to store the object and not an extra pointer. However, the ar-
ray implementation will allocate much more space than it needs
initially.

SRA 13.11 Because the java.util.Stack implementation is an extension
of the Vector class, it can keep track of the positions of elements
in the stack using an index and thus does not require each node
to store an additional pointer. This implementation also allocates
space only as it is needed, like the linked implementation.

SRA 13.12 The java.util.Stack implementation is an extension of the
Vector class and thus inherits a large number of operations that
violate the basic assumptions of a stack.

M13_LEWI5976_05_SE_C13.indd 532 08/02/19 2:52 AM

533

14
C H A P T E R O B J E C T I V E S

■■ Examine queue processing.

■■ Demonstrate how a queue can be used to solve problems.

■■ Define a queue abstract data type.

■■ Examine various queue implementations.

■■ Compare queue implementations.

A queue is another collection with which we are inher-

ently familiar. A queue is a waiting line, such as a line of

customers waiting in a bank for their opportunity to talk

to a teller. In fact, in many countries the word queue is used

habitually in this way. In such countries, a person might say

“join the queue” rather than “get in line.” Other examples

of queues include a checkout line at the grocery store and

cars waiting at a stoplight. In any queue, an item enters on

one end and leaves from the other. Queues have a variety of

uses in computer algorithms.

Queues 14

M14_LEWI5976_05_SE_C14.indd 533 08/02/19 2:46 PM

534 CHAPTER 14 Queues

14.1 A Conceptual Queue

A queue is a linear collection whose elements are added on one end and removed
from the other. Therefore, we say that queue elements are processed in a first in,
first out (FIFO) manner. Elements are removed from a queue in the same order in
which they are placed on the queue.

This is consistent with the general concept of a waiting line. When customers
arrive at a bank, they begin waiting at the end of the line. When a teller becomes
available, the customer at the beginning of the line leaves the line to receive ser-

vice. Eventually every customer who started out at the end of the line
moves to the front of the line and exits. For any given set of people,
the first person to get in line is the first person to leave it.

The processing of a queue is pictured in Figure 14.1. Usually a queue
is depicted horizontally. One end is established as the front of the queue

and the other as the rear of the queue. Elements go onto the rear of the queue and
come off of the front. Sometimes the front of the queue is called the head and the rear
of the queue the tail. We use these terms interchangeably throughout this chapter.

Compare and contrast the processing of a queue to the LIFO (last in, first out)
processing of a stack, which was discussed in Chapters 12 and 13. In a stack, the
processing occurs at only one end of the collection. In a queue, processing occurs
at both ends.

The operations defined for a queue ADT are listed in Figure 14.2. The term
enqueue is used to refer to the process of adding a new element to the end of a
queue. Likewise, dequeue is the process of removing the element at the front of a
queue. The first operation enables the user to examine the element at the front of
the queue without removing it from the collection.

Remember that naming conventions are not universal for collection operations.
Sometimes enqueue is simply called add, insert, or offer. The dequeue opera-
tion is sometimes called remove, poll, or serve. The first operation is sometimes
called front or peek.

Adding an
element

Removing an
element

re
ar

 o
f q

ue
ue

fr
on

t o
f q

ue
ue

FIGURE 14.1 A conceptual view of a queue

KEY CONCEPT
Queue elements are processed in a
FIFO manner—the first element in is
the first element out.

M14_LEWI5976_05_SE_C14.indd 534 08/02/19 2:46 PM

 14.2 Queues in the Java API 535

Note that there is a general similarity between the operations on a queue and
those on a stack. The enqueue, dequeue, and first operations correspond to the
stack operations push, pop, and peek. As is true of a stack, there are no opera-
tions that allow the user to “reach into” the middle of a queue and reorganize or
remove elements. If that type of processing is required, perhaps the appropriate
collection to use is a list of some kind, such as those discussed in the next chapter.

14.2 Queues in the Java API

Unfortunately, the Java Collections API is not consistent in its implementations of
collections. There are a couple of important differences between the way the stack
and queue collections are implemented:

■■ The Java Collections API provides the java.util.Stack class that imple-
ments a stack collection. Instead of a queue class, a Queue interface is provided
and is implemented by several classes including the LinkedList class.

■■ The java.util.Stack class provides the traditional push, pop, and
peek operations. The Queue interface does not implement the traditional
enqueue, dequeue, and first operations. Instead, the Queue interface de-
fines two alternatives for adding elements to, and removing elements from, a
queue. These alternatives behave differently in terms of how the exceptional
cases are handled. One set provides a boolean return value, whereas the
other throws an exception.

The Queue interface defines an element method that is the equivalent of our
conceptual first, front, or peek. This method retrieves the element at the head
of the queue but does not remove it.

The Queue interface provides two methods for adding an element to the queue:
add and offer. The add operation inserts the given element into the queue if there
is space available, returning true if it is successful. This operation will throw an
exception if the given element cannot be added to the queue. The offer operation

Operation

enqueue

dequeue

first

isEmpty

size

toString

Description

Adds an element to the rear of the queue.
Removes an element from the front of the queue.
Examines the element at the front of the queue.
Determines if the queue is empty.
Determines the number of elements on the queue.
Returns a string representation of the queue.

FIGURE 14.2 The operations on a queue

M14_LEWI5976_05_SE_C14.indd 535 08/02/19 2:46 PM

536 CHAPTER 14 Queues

inserts the given element into this queue if there is space available, returning true
if the insertion is successful and false otherwise.

The Queue interface also provides two methods for removing an element from
the queue: poll and remove. Just like the difference between the add and offer
methods, the difference between poll and remove is in how the exceptional case
is handled. In this instance, the exceptional case occurs when an attempt is made
to remove an element from an empty queue. The poll method will return null if
the queue is empty, whereas the remove method will throw an exception.

Queues have a wide variety of applications within computing. Whereas the
principal purpose of a stack is to reverse order, the principal purpose of a queue
is to preserve order. Before exploring various ways to implement a queue, let’s
examine some ways in which a queue can be used to solve problems.

14.3 Using Queues: Code Keys

A Caesar cipher is a simple approach to encoding messages by shifting each letter
in a message along the alphabet by a constant amount k. For example, if k equals
3, then in an encoded message, each letter is shifted three characters forward: a is
replaced with d, b with e, c with f, and so on. The end of the alphabet wraps back
around to the beginning. Thus w is replaced with z, x with a, y with b, and z with c.

To decode the message, each letter is shifted the same number of characters
backwards. Therefore, if k equals 3, then the encoded message

vlpsolflwb iroorzv frpsohalwb

would be decoded into

simplicity follows complexity

Julius Caesar actually used this type of cipher in some of his secret government
correspondence (hence the name). Unfortunately, the Caesar cipher is fairly easy
to break. There are only 26 possibilities for shifting the characters, and the code
can be broken by trying various key values until one works.

This encoding technique can be improved by using a repeating key. Instead of
shifting each character by a constant amount, we can shift each character by a dif-
ferent amount using a list of key values. If the message is longer than the list of key
values, we just start using the key over again from the beginning. For example, if
the key values are

3 1 7 4 2 5

then the first character is shifted by three, the second character by one, the third
character by seven, and so on. After shifting the sixth character by five, we start

M14_LEWI5976_05_SE_C14.indd 536 08/02/19 2:46 PM

 14.3 Using Queues: Code Keys 537

using the key over again. The seventh character is shifted by three, the eighth by
one, and so on.

Figure 14.3 shows the message “knowledge is power” encoded using this
repeating key. Note that this encryption approach encodes the same letter into
different characters, depending on where it occurs in the message (and thus
which key value is used to encode it). Conversely, the same character in the
encoded message is decoded into different characters.

The program in Listing 14.1 uses a repeating key to encode and
decode a message. The key of integer values is stored in a queue. After
a key value is used, it is put back on the end of the queue so that the
key continually repeats as needed for long messages. The key in this

nEncoded Message:

n

1

o

k

3Key:

Decoded Message:

v

w

4

a

o

7

n

e

5

j

l

2

g

g

1

h

d

3

l

e

7

m

s

2

u

i

4

p

5

u r

w

1

x

o

3

l

r

4

v

e

7

FIGURE 14.3 An encoded message using a repeating key

KEY CONCEPT
A queue is a convenient collection for
storing a repeating code key.

L I S T I N G 1 4 . 1

import java.util.*;

/**
 * Codes demonstrates the use of queues to encrypt and decrypt messages.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class Codes
{
 /**
 * Encode and decode a message using a key of values stored in
 * a queue.
 */
public static void main(String[] args)
{
 int[] key = {5, 12, -3, 8, -9, 4, 10};
 Integer keyValue;
 String encoded = "", decoded = "";

M14_LEWI5976_05_SE_C14.indd 537 08/02/19 2:46 PM

538 CHAPTER 14 Queues

example uses both positive and negative values. Figure 14.4 illustrates the UML de-
scription of the Codes class. As we saw in Chapter 12, the UML diagram illustrates
the binding of the generic type T to an Integer. Unlike the earlier example, in this
case we have two different bindings illustrated: one for the LinkedList class and
one for the Queue interface.

This program actually uses two copies of the key stored in two separate queues.
The idea is that the person encoding the message has one copy of the key, and the
person decoding the message has another. Two copies of the key are helpful in

 String message = "All programmers are playwrights and all " +
 "computers are lousy actors.";
 Queue<Integer> encodingQueue = new LinkedList<Integer>();
 Queue<Integer> decodingQueue = new LinkedList<Integer>();

 // load key queues

 for (int scan = 0; scan < key.length; scan++)
 {
 encodingQueue.add(key[scan]);
 decodingQueue.add(key[scan]);
 }

 // encode message

 for (int scan = 0; scan < message.length(); scan++)
 {
 keyValue = encodingQueue.remove();
 encoded += (char) (message.charAt(scan) + keyValue);
 encodingQueue.add(keyValue);
 }

 System.out.println("Encoded Message:\n" + encoded + "\n");

 // decode message

 for (int scan = 0; scan < encoded.length(); scan++)
 {
 keyValue = decodingQueue.remove();
 decoded += (char) (encoded.charAt(scan) - keyValue);
 decodingQueue.add(keyValue);
 }
 System.out.println("Decoded Message:\n" + decoded);
 }
}

L I S T I N G 1 4 . 1 continued

M14_LEWI5976_05_SE_C14.indd 538 08/02/19 2:46 PM

 14.3 Using Queues: Code Keys 539

this program because the decoding process needs to match up the first character
of the message with the first value in the key.

Also, note that this program doesn’t bother to wrap around the end of the
alphabet. It encodes any character in the Unicode character set by shifting it to
some other position in the character set. Therefore, we can encode any character,
including uppercase letters, lowercase letters, and punctuation. Even spaces get
encoded.

Using a queue to store the key makes it easy to repeat the key by putting each
key value back onto the queue as soon as it is used. The nature of a queue keeps
the key values in the proper order, and we don’t have to worry about reaching the
end of the key and starting over.

<<interface>>
Queue

element () : T
add(T o) : void
offer(T o) : boolean
peek() : T
poll() : T
remove() : T

T

LinkedList

T

<<bind>>
T :: Integer

LinkedList<Integer>

<<bind>>
T :: Integer

main(String[] args)

Codes

<<interface>>
Queue<Integer>

element() : Integer
add(Integer o) : void
offer(Integer o) : boolean
peek() : Integer
poll() : Integer
remove() : Integer

FIGURE 14.4 UML description of the Codes program

M14_LEWI5976_05_SE_C14.indd 539 08/02/19 2:46 PM

540 CHAPTER 14 Queues

14.4 Using Queues: Ticket Counter Simulation

Let’s look at another example using queues. Consider the situation in which you
are waiting in line to purchase tickets at a movie theater. In general, the more
cashiers there are, the faster the line moves. The theater manager wants to keep
his customers happy, but he doesn’t want to employ any more cashiers than nec-

essary. Suppose the manager wants to keep the total time needed by
a customer to less than seven minutes. Being able to simulate the ef-
fect of adding more cashiers during peak business hours enables the
manager to plan more effectively. And, as we’ve discussed, a queue
is the perfect collection for representing a waiting line.

Our simulated ticket counter will use the following assumptions:

■■ There is only one line, and it is first come first served (a queue).

■■ Customers arrive on average every 15 seconds.

■■ If there is a cashier available, processing begins immediately upon arrival.

■■ Processing a customer request takes on average two minutes (120 seconds)
from the time the customer reaches a cashier.

First we can create a Customer class, as shown in Listing 14.2. A Customer
object keeps track of the time the customer arrives and the time the customer
departs after purchasing a ticket. The total time spent by the customer is therefore
the departure time minus the arrival time. To keep things simple, our simulation will

L I S T I N G 1 4 . 2

/**
 * Customer represents a waiting customer.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class Customer
{
 private int arrivalTime, departureTime;

 /**
 * Creates a new customer with the specified arrival time.
 * @param arrives the arrival time
 */

KEY CONCEPT
Simulations are often implemented
using queues to represent waiting
lines.

M14_LEWI5976_05_SE_C14.indd 540 08/02/19 2:46 PM

 14.4 Using Queues: Ticket Counter Simulation 541

 public Customer(int arrives)
 {
 arrivalTime = arrives;
 departureTime = 0;
 }

 /**
 * Returns the arrival time of this customer.
 * @return the arrival time
 */
 public int getArrivalTime()
 {
 return arrivalTime;
 }

 /**
 * Sets the departure time for this customer.
 * @param departs the departure time
 **/
 public void setDepartureTime(int departs)
 {
 departureTime = departs;
 }

 /**
 * Returns the departure time of this customer.
 * @return the departure time
 */
 public int getDepartureTime()
 {
 return departureTime;
 }

 /**
 * Computes and returns the total time spent by this customer.
 * @return the total customer time
 */
 public int totalTime()
 {
 return departureTime - arrivalTime;
 }
}

L I S T I N G 1 4 . 2 continued

M14_LEWI5976_05_SE_C14.indd 541 08/02/19 2:46 PM

542 CHAPTER 14 Queues

measure time in elapsed seconds, so a time value can be stored as a single integer.
Our simulation will begin at time 0.

Our simulation will create a queue of customers and then see how long it takes
to process those customers if there is only one cashier. Then we will process the
same queue of customers with two cashiers. Then we will do it again with three
cashiers. We continue this process for up to ten cashiers. At the end we compare
the average time that it takes to process a customer.

Because of our assumption that customers arrive every 15 seconds (on average),
we can preload a queue with customers. We will process 100 customers in this
simulation.

The program shown in Listing 14.3 conducts our simulation. The outer loop
determines how many cashiers are used in each pass of the simulation. For each
pass, the customers are taken from the queue in turn and processed by a cashier.
The total elapsed time is tracked, and at the end of each pass the average time is
computed. Figure 14.5 shows the UML description of the TicketCounter and
Customer classes.

L I S T I N G 1 4 . 3

import java.util.*;

/**
 * TicketCounter demonstrates the use of a queue for simulating a line of
 * customers
 *
 * @author Java Foundations
 * @version 4.0
 */
public class TicketCounter
{
 private final static int PROCESS = 120;
 private final static int MAX_CASHIERS = 10;
 private final static int NUM_CUSTOMERS = 100;

 public static void main(String[] args)
 {
 Customer customer;
 Queue<Customer> customerQueue = new LinkedList<Customer>();
 int[] cashierTime = new int[MAX_CASHIERS];
 int totalTime, averageTime, departs, start;

 // run the simulation for various number of cashiers

M14_LEWI5976_05_SE_C14.indd 542 08/02/19 2:46 PM

 14.4 Using Queues: Ticket Counter Simulation 543

 for (int cashiers = 0; cashiers < MAX_CASHIERS; cashiers++)
 {
 // set each cashiers time to zero initially

 for (int count = 0; count < cashiers; count++)
 cashierTime[count] = 0;

 // load customer queue

 for (int count = 1; count <= NUM_CUSTOMERS; count++)
 customerQueue.add(new Customer(count * 15));

 totalTime = 0;

 // process all customers in the queue

 while (!(customerQueue.isEmpty()))
 {
 for (int count = 0; count <= cashiers; count++)
 {
 if (!(customerQueue.isEmpty()))
 {
 customer = customerQueue.remove();
 if (customer.getArrivalTime() > cashierTime[count])
 start = customer.getArrivalTime();
 else
 start = cashierTime[count];
 departs = start + PROCESS;
 customer.setDepartureTime(departs);
 cashierTime[count] = departs;
 totalTime += customer.totalTime();
 }
 }
 }

 // output results for this simulation

 averageTime = totalTime / NUM_CUSTOMERS;
 System.out.println("Number of cashiers: " + (cashiers + 1));
 System.out.println("Average time: " + averageTime + "\n");
 }
 }
}

L I S T I N G 1 4 . 3 continued

M14_LEWI5976_05_SE_C14.indd 543 08/02/19 2:46 PM

544 CHAPTER 14 Queues

The results of the simulation are shown in Figure 14.6. Note that with eight
cashiers, the customers do not wait at all. The time of 120 seconds reflects only
the time it takes to walk up and purchase the ticket. Increasing the number of ca-
shiers to nine or ten or more will not improve the situation. Since the manager has
decided he wants to keep the total average time to less than seven minutes (420
seconds), the simulation tells him that he should have six cashiers.

<<interface>>
Queue<Integer>

LinkedList<Integer>

main(String[] args)

TicketCounter

Customer

element() : Integer
add(Integer o) : void
offer(Integer o) : boolean
peek() : Integer
poll() : Integer
remove() : Integer

arrivalTime : int
departureTime : int

getArrivalTime() : int
setDepartureTime(int departs) : void
getDepartureTime() : int
totalTime() : int

FIGURE 14.5 UML description of the TicketCounter program

Number of Cashiers:

5317 2325 1332 840 547 355 219 120 120 120Average Time (sec):

1 2 3 4 5 6 7 8 9 10

FIGURE 14.6 The results of the ticket counter simulation

M14_LEWI5976_05_SE_C14.indd 544 08/02/19 2:46 PM

 14.5 A Queue ADT 545

14.5 A Queue ADT

As we did with stacks, we define a generic QueueADT interface that represents the
queue operations, separating the general purpose of the operations from the variety
of ways in which they could be implemented. A Java version of the QueueADT inter-
face is shown in Listing 14.4, and its UML description is shown in Figure 14.7.

Note that in addition to the standard queue operations, we have included a
toString method, just as we did with our stack collection. It is included for con-
venience and is not generally considered a classic operation on a queue.

L I S T I N G 1 4 . 4

package jsjf;

/**
 * QueueADT defines the interface to a queue collection.
 *
 * @author Java Foundations
 * @version 4.0
 */
public interface QueueADT<T>
{
 /**
 * Adds one element to the rear of this queue.
 * @param element the element to be added to the rear of the queue
 */

<<interface>>
QueueADT

enqueue(T element) : void
dequeue() : T
first() : T
isEmpty() : boolean
size() : int
toString() : String

T

FIGURE 14.7 The QueueADT interface in UML

M14_LEWI5976_05_SE_C14.indd 545 08/02/19 2:46 PM

546 CHAPTER 14 Queues

14.6 A Linked Implementation of a Queue

Because a queue is a linear collection, we can implement a queue as a linked list of
LinearNode objects, as we did with stacks. The primary difference is that we will
have to operate on both ends of the list. Therefore, in addition to a reference (called
head) pointing to the first element in the list, we will also keep track of a second
reference (called tail) that points to the last element in the list. We will also use an
integer variable called count to keep track of the number of elements in the queue.

Does it make a difference to which end of the list we add or enqueue elements
and from which end of the list we remove or dequeue elements? If our linked list is
singly linked, meaning that each node has a pointer only to the node behind it in

 public void enqueue(T element);

 /**
 * Removes and returns the element at the front of this queue.
 * @return the element at the front of the queue
 */
 public T dequeue();

 /**
 * Returns without removing the element at the front of this queue.
 * @return the first element in the queue
 */
 public T first();

 /**
 * Returns true if this queue contains no elements.
 * @return true if this queue is empty
 */
 public boolean isEmpty();

 /**
 * Returns the number of elements in this queue.
 * @return the integer representation of the size of the queue
 */
 public int size();

 /**
 * Returns a string representation of this queue.
 * @return the string representation of the queue
 */
 public String toString();
}

L I S T I N G 1 4 . 4 continued

M14_LEWI5976_05_SE_C14.indd 546 08/02/19 2:46 PM

 14.6 A Linked Implementation of a Queue 547

the list, then yes, it does make a difference. In the case of the enqueue operation, it
will not matter whether we add new elements to the head or the tail of the list. The
processing steps will be very similar. If we add to the head of the list then we will
set the next pointer of the new node to point to the head of the list and will set the
head variable to point to the new node. If we add to the tail of the list, then we
will set the next pointer of the node at the tail of the list to point
to the new node and will set the tail of the list to point to the new
node. In both cases, all of these processing steps are O(1), so the time
complexity of the enqueue operation will be O(1).

The difference between our two choices, adding to the head or the
tail of the list, occurs with the dequeue operation. If we enqueue
at the tail of the list and dequeue from the head of the list, then to dequeue we
simply set a temporary variable to point to the element at the head of the list and
then set the head variable to the value of the next pointer of the first node. Both
processing steps are O(1), so the operation will be O(1). However, if we enqueue at
the head of the list and dequeue at the tail of the list, our processing steps become
more interesting. In order to dequeue from the tail of the list, we must set a tem-
porary variable to point to the element at the tail of the list and then set the tail
pointer to point to the node before the current tail. Unfortunately, in a singly
linked list, we cannot get to this node without traversing the list. Therefore, if we
chose to enqueue at the head and dequeue at the tail, the dequeue operation will
be O(n) instead of O(1) as it is with our other choice. Thus, we choose to enqueue
at the tail and dequeue at the head of our singly linked list. Keep in mind that a
doubly linked list would solve the problem of having to traverse the list and thus it
would not matter which end was which in a doubly linked implementation.

Figure 14.8 depicts this strategy for implementing a queue using the same
LinearNode object that we used in Chapter 13. It shows a queue that has had the
elements A, B, C, and D added to the queue, or enqueued, in that order.

rear

count 4

front

BA C D

FIGURE 14.8 A linked implementation of a queue

KEY CONCEPT
A linked implementation of a queue
is facilitated by references to the first
and last elements of the linked list.

M14_LEWI5976_05_SE_C14.indd 547 08/02/19 2:46 PM

548 CHAPTER 14 Queues

Remember that Figure 14.8 depicts the general case. We always have to be
careful to maintain our references accurately in special cases. For an empty queue,
the head and tail references are both null and the count is zero. If there is ex-
actly one element in the queue, both the head and tail references point to the
same LinearNode object.

Let’s explore the implementation of the queue operations using this linked list
approach. The header, class-level data, and constructors for our linked implemen-
tation of a queue are provided for context.

package jsjf;

import jsjf.exceptions.*;

/**
 * LinkedQueue represents a linked implementation of a queue.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class LinkedQueue<T> implements QueueADT<T>
{
 private int count;
 private LinearNode<T> head, tail;

 /**
 * Creates an empty queue.
 */
 public LinkedQueue()
 {
 count = 0;
 head = tail = null;
 }

The enqueue Operation
The enqueue operation requires that we create a new LinearNode object point-
ing to the new element and then place that new LinearNode object on the tail
of the queue. In the general case, that means setting the next reference of the
current last node to point to the new node and resetting the tail reference to
the new last node. However, if the queue is currently empty, the head reference
must also be set to the new (and only) node. This operation can be implemented
as follows:

M14_LEWI5976_05_SE_C14.indd 548 08/02/19 2:46 PM

 14.6 A Linked Implementation of a Queue 549

Note that the next reference of the new node need not be explicitly set in
this method because it has already been set to null in the constructor for the
LinearNode class. The tail reference is set to the new node in either case and the
count is incremented. Implementing the queue operations with sentinel nodes is
left as an exercise. As we discussed earlier, this operation is O(1).

Figure 14.9 shows the queue from Figure 14.8 after element E has been added.

count 5

front

BA C D

rear

E

FIGURE 14.9 The queue after adding element E

/**
 * Adds the specified element to the tail of this queue.
 * @param element the element to be added to the tail of the queue
 */
 public void enqueue(T element)
 {
 LinearNode<T> node = new LinearNode<T>(element);

 if (isEmpty())
 head = node;
 else
 tail.setNext(node);

 tail = node;
 count++;
 }

M14_LEWI5976_05_SE_C14.indd 549 08/02/19 2:46 PM

550 CHAPTER 14 Queues

The dequeue Operation
The first thing to do when implementing the dequeue operation is to ensure that
there is at least one element to return. If not, an EmptyCollectionException
is thrown. As we did with our stack collection in Chapters 12 and 13, it makes
sense to employ a generic EmptyCollectionException to which we can pass a
parameter specifying which collection we are dealing with. If there is at least one
element in the queue, the first one in the list is returned, and the head reference is
updated:

/**
 * Removes the element at the head of this queue and returns a
 * reference to it.
 * @return the element at the head of this queue
 * @throws EmptyCollectionException if the queue is empty
 */
 public T dequeue() throws EmptyCollectionException

 {
 if (isEmpty())
 throw new EmptyCollectionException("queue");

 T result = head.getElement();
 head = head.getNext();
 count--;

 if (isEmpty())
 tail = null;

 return result;
 }

For the dequeue operation, we must consider the situation in which we are
returning the only element in the queue. If, after removal of the head element,

the queue is now empty, then the tail reference is set to null.
Note that in this case, the head will be null because it was set equal
to the next reference of the last element in the list. Again, as we
discussed earlier, the dequeue operation for our implementation
is O(1).

KEY CONCEPT
The enqueue and dequeue
operations work on opposite ends of
the collection.

M14_LEWI5976_05_SE_C14.indd 550 08/02/19 2:46 PM

 14.6 A Linked Implementation of a Queue 551

Figure 14.10 shows the result of a dequeue operation on the queue from Figure
14.9. The element A at the head of the queue is removed and returned to the user.

Note that, unlike the push and pop operations on a stack, the dequeue opera-
tion is not the inverse of enqueue. That is, Figure 14.10 is not identical to our
original configuration shown in Figure 14.8, because the enqueue and dequeue
operations are working on opposite ends of the collection.

Other Operations
The remaining operations in the linked queue implementation are fairly straight-
forward and are similar to those in the stack collection. The first operation is
implemented by returning a reference to the element at the head of the queue. The
isEmpty operation returns true if the count of elements is 0, and false otherwise.
The size operation simply returns the count of elements in the queue. Finally,
the toString operation returns a string made up of the toString results of each
individual element. These operations are left as programming projects.

D E S I G N F O C U S

The same goals of reuse that apply to other classes apply to exceptions as well.
The EmptyCollectionException class is a good example of this. It is an ex-
ample of an exceptional case that will be the same for any collection that we
create (such as attempting to perform an operation on the collection that cannot
be performed if the collection is empty). Thus, creating a single exception with a
parameter that allows us to designate which collection has thrown the exception
is an excellent example of designing for reuse.

rear

count 4

front

CB D E

FIGURE 14.10 The queue after a dequeue operation

M14_LEWI5976_05_SE_C14.indd 551 08/02/19 2:46 PM

552 CHAPTER 14 Queues

14.7 Implementing Queues: With Arrays

One array-based strategy for implementing a queue is to fix one end of the queue
(say, the front) at index 0 of the array. The elements are stored contiguously in the
array. Figure 14.11 depicts a queue stored in this manner, assuming elements A,
B, C, and D have been added to the queue in that order.

In a manner similar to the top variable in the ArrayStack imple-
mentation, the integer variable rear is used to indicate the next open
cell in the array. Note that it also represents the number of elements
in the queue.

This strategy assumes that the first element in the queue is always
stored at index 0 of the array. Because queue processing affects both
ends of the collection, this strategy will require that we shift the ele-

ments whenever an element is removed from the queue. This required shifting of
elements would make the dequeue operation O(n). Just as in our discussion of the

complexity of our singly linked list implementation above, making
a poor choice in our array implementation could lead to less than
optimal efficiency.

Would it make a difference if we fixed the rear of the queue,
instead of the front, at index 0 of the array? Keep in mind that

when we enqueue an element onto the queue, we do so at the rear of the queue.
This would mean that each enqueue operation would result in shifting all of
the elements in the queue up one position in the array, making the enqueue
operation O(n).

The key is to not fix either end. As elements are dequeued, the front of the
queue will move further into the array. As elements are enqueued, the rear of the
queue will also move further into the array. The challenge comes when the rear of
the queue reaches the end of the array. Enlarging the array at this point is not a

KEY CONCEPT
The shifting of elements in a
noncircular array implementation
creates an O(n) complexity.

KEY CONCEPT
Because queue operations modify
both ends of the collection, fixing one
end at index 0 requires that elements
be shifted.

VideoNote
An array-based queue
implementation.

0

A

1 2 3 4 5 6 7 ...

rear

B C D

4

FIGURE 14.11 An array implementation of a queue

M14_LEWI5976_05_SE_C14.indd 552 08/02/19 2:46 PM

 14.7 Implementing Queues: With Arrays 553

D E S I G N F O C U S

It is important to note that this fixed array implementation strategy, which was
very effective in our implementation of a stack, is not nearly as efficient for a
queue. This is an important example of matching the data structure used to imple-
ment a collection with the collection itself. The fixed array strategy was efficient
for a stack because all of the activity (adding and removing elements) was on one
end of the collection and thus on one end of the array. With a queue, now that we
are operating on both ends of the collection and order does matter, the fixed array
implementation is much less efficient.

practical solution, and it does not make use of the now-empty space
in the lower indexes of the array.

To make this solution work, we will use a circular array to implement
the queue, defined in a class called CircularArrayQueue. A circular
array is not a new construct—it is just a way to think about the array
used to store the collection. Conceptually, the array is used as a circle,
whose last index is followed by the first index. A circular array storing a queue is
shown in Figure 14.12.

..
.

0

1

2

N

3

4

5

6
78

9

N-1

rear 7front 3 count 4

FIGURE 14.12 A circular array implementation of a queue

KEY CONCEPT
Treating arrays as circular eliminates
the need to shift elements in an array
queue implementation.

M14_LEWI5976_05_SE_C14.indd 553 08/02/19 2:46 PM

554 CHAPTER 14 Queues

Two integer values are used to represent the front and rear of the queue. These
values change as elements are added and removed. Note that the value of front
represents the location where the first element in the queue is stored, and the value
of rear represents the next available slot in the array (not where the last element
is stored). Using rear in this manner is consistent with our other array implemen-
tation. Note, however, that the value of rear no longer represents the number of
elements in the queue. We will use a separate integer value to keep a count of the
elements.

When the rear of the queue reaches the end of the array, it “wraps around” to
the front of the array. The elements of the queue can therefore straddle the end
of the array, as shown in Figure 14.13, which assumes the array can store 100
elements.

Using this strategy, once an element has been added to the queue, it stays in one
location in the array until it is removed with a dequeue operation. No elements

..
.

0

1
99

98

97 2

3

4

5

6
78

9

rear 2front 98 count 4

FIGURE 14.13 A queue straddling the end of a circular array

M14_LEWI5976_05_SE_C14.indd 554 08/02/19 2:46 PM

 14.7 Implementing Queues: With Arrays 555

need to be shifted as elements are added or removed. This approach requires,
however, that we carefully manage the values of front and rear.

Let’s look at another example. Figure 14.14 shows a circular array (drawn linearly)
with a capacity of ten elements. Initially it is shown after elements A through H have
been enqueued. It is then shown after the first four elements (A through D) have been
dequeued. Finally, it is shown after elements I, J, K, and L have been enqueued, which
causes the queue to wrap around the end of the array.

front 0 rear 8 count 8

0 1 2 3 4 5 6 7 8 9

E FDCBA G H

front 4 rear 8 count 4

0 1 2 3 4 5 6 7 8 9

E F G H

front 4 rear 2 count 8

0 1 2 3 4 5 6 7 8 9

E FLK G I JH

FIGURE 14.14 Changes in a circular array implementation of a queue

M14_LEWI5976_05_SE_C14.indd 555 08/02/19 2:46 PM

556 CHAPTER 14 Queues

The header, class-level data, and constructors for our circular array implemen-
tation of a queue are provided for context:

package jsjf;

import jsjf.exceptions.*;

/**
 * CircularArrayQueue represents an array implementation of a queue in
 * which the indexes for the front and rear of the queue circle back to 0
 * when they reach the end of the array.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class CircularArrayQueue<T> implements QueueADT<T>
{
 private final static int DEFAULT_CAPACITY = 100;
 private int front, rear, count;
 private T[] queue;

 /**
 * Creates an empty queue using the specified capacity.
 * @param initialCapacity the initial size of the circular array queue
 */
 public CircularArrayQueue (int initialCapacity)
 {
 front = rear = count = 0;
 queue = (T[]) (new Object[initialCapacity]);
 }

 /**
 * Creates an empty queue using the default capacity.
 */
 public CircularArrayQueue()
 {
 this(DEFAULT_CAPACITY);
 }

The enqueue Operation
In general, after an element is enqueued, the value of rear is incremented. But
when an enqueue operation fills the last cell of the array (at the largest index), the
value of rear must be set to 0, indicating that the next element should be stored
at index 0. The appropriate update to the value of rear can be accomplished in

M14_LEWI5976_05_SE_C14.indd 556 08/02/19 2:46 PM

 14.7 Implementing Queues: With Arrays 557

one calculation by using the remainder operator (%). Recall that the remainder
operator (i.e., mod) returns the remainder after dividing the first operand by the
second. Therefore, if queue is the name of the array storing the queue, the follow-
ing line of code will update the value of rear appropriately:

rear = (rear+1) % queue.length;

Let’s try this calculation, assuming we have an array of size 10. If rear is cur-
rently 5, it will be set to 6%10, or 6. If rear is currently 9, it will be set to 10%10
or 0. Try this calculation using various situations to see that it works no matter
how big the array is.

Given this strategy, the enqueue operation can be implemented as follows:

/**
 * Adds the specified element to the rear of this queue, expanding
 * the capacity of the queue array if necessary.
 * @param element the element to add to the rear of the queue
 */
public void enqueue(T element)
{
 if (size() == queue.length)
 expandCapacity();

 queue[rear] = element;
 rear = (rear+1) % queue.length;

 count++;
}

rear = (rear + 1) % queue.length;

Circular Increment

increment regularly

wrap back to 0 if appropriate

M14_LEWI5976_05_SE_C14.indd 557 08/02/19 2:46 PM

558 CHAPTER 14 Queues

Note that this implementation strategy will still allow the array to reach capacity.
As with any array-based implementation, all cells in the array may become filled.
This implies that the rear of the queue has “caught up” to the front of the queue. To
add another element, the array would have to be enlarged. Keep in mind, however,
that the elements of the existing array must be copied into the new array in their
proper order in the queue, which is not necessarily the order in which they appear
in the current array. This makes the private expandCapacity method slightly more
complex than the one we used for stacks:

/**
 * Creates a new array to store the contents of this queue with
 * twice the capacity of the old one.
 */
private void expandCapacity()
{
 T[] larger = (T[]) (new Object[queue.length *2]);

 for (int scan = 0; scan < count; scan++)
 {
 larger[scan] = queue[front];
 front = (front + 1) % queue.length;
 }
 front = 0;
 rear = count;
 queue = larger;
}

/**
 * Removes the element at the front of this queue and returns a
 * reference to it.
 * @return the element removed from the front of the queue
 * @throws EmptyCollectionException if the queue is empty
 */

The dequeue Operation
Likewise, after an element is dequeued, the value of front is incremented. After
enough dequeue operations, the value of front will reach the last index of the array.
After removal of the element at the largest index, the value of front must be set to 0
instead of being incremented. The same calculation we used to set the value of rear in
the enqueue operation can be used to set the value of front in the dequeue operation:

M14_LEWI5976_05_SE_C14.indd 558 08/02/19 2:46 PM

 14.8 Double-Ended Queues (Deque) 559

Other Operations
Operations such as toString become a bit more complicated using this approach,
because the elements are not stored starting at index 0 and may wrap around the
end of the array. These methods have to take the current situation into account.
All of the other operations for a circular array queue are left as programming
projects.

14.8 Double-Ended Queues (Deque)

A deque, or double-ended queue, is an extension of the concept of a queue that
allows adding, removing, and viewing elements from both ends of the queue. As
mentioned in Chapter 12, the Java API provides the Deque interface, which like
the Queue interface, is implemented by the LinkedList class. Just like the Queue
interface, the Deque interface provides two versions of each operation: one that
will throw an exception and one that will return a boolean.

Interestingly, the Deque interface also provides implementations of the basic
stack operations push, pop, and peek. In fact, Oracle now recommends that the
Deque interface be used in place of the java.util.stack class.

public T dequeue() throws EmptyCollectionException
{
 if (isEmpty())
 throw new EmptyCollectionException("queue");

 T result = queue[front];
 queue[front] = null;
 front = (front+1) % queue.length;

 count--;

 return result;
}

M14_LEWI5976_05_SE_C14.indd 559 08/02/19 2:46 PM

560 CHAPTER 14 Queues

Summary of Key Concepts

■■ Queue elements are processed in a FIFO manner—the first element in is the
first element out.

■■ A queue is a convenient collection for storing a repeating code key.

■■ Simulations are often implemented using queues to represent waiting lines.

■■ A linked implementation of a queue is facilitated by references to the first
and last elements of the linked list.

■■ The enqueue and dequeue operations work on opposite ends of the
collection.

■■ Because queue operations modify both ends of the collection, fixing one end
at index 0 requires that elements be shifted.

■■ The shifting of elements in a noncircular array implementation creates an
O(n) complexity.

■■ Treating arrays as circular eliminates the need to shift elements in an array
queue implementation.

Summary of Terms
Caesar cipher A simple message encoding technique in which letters are
shifted along the alphabet by a constant amount.

circular array An array that is treated as circular, meaning that increment-
ing the last index value in the array wraps around back to the first element.

dequeue A queue operation in which an element is removed from the front
of the queue.

enqueue A queue operation in which an element is added to the rear of the queue.

FIFO (1) First in, first out; (2) A description of a collection in which the first
element added will be the first element removed.

queue A linear collection whose elements are added on one end and removed
from the other.

repeating key A list of integer values used to shift letters by varying
amounts in an improved version of a Caesar cipher.

Self-Review Questions
SR 14.1 What is the difference between a queue and a stack?

SR 14.2 What are the five basic operations on a queue?

M14_LEWI5976_05_SE_C14.indd 560 08/02/19 2:46 PM

 Exercises 561

SR 14.3 What are some of the other operations that might be implemented
for a queue?

SR 14.4 Is it possible for the head and tail references in a linked imple-
mentation to be equal?

SR 14.5 Is it possible for the front and rear references in a circular array
implementation to be equal?

SR 14.6 Which implementation has the worst time complexity?

SR 14.7 Which implementation has the worst space complexity?

Exercises
EX 14.1 Hand trace a queue X through the following operations:

X.enqueue(new Integer(4));
X.enqueue(new Integer(1));
Object Y = X.dequeue();
X.enqueue(new Integer(8));
X.enqueue(new Integer(2));
X.enqueue(new Integer(5));
X.enqueue(new Integer(3));
Object Y = X.dequeue();
X.enqueue(new Integer(4));
X.enqueue(new Integer(9));

EX 14.2 Given the queue X that results from Exercise 14.1, what would
be the result of each of the following?

a. X.first();

b. Y = X.dequeue();
X.first();

c. Y = X.dequeue();

d. X.first();

EX 14.3 What would be the time complexity of the size operation for
each of the implementations if there were not a count variable?

EX 14.4 Under what circumstances could the head and tail references
for the linked implementation of the front and rear references
of the array implementation be equal?

EX 14.5 Hand trace the ticket counter problem for 22 customers and
4 cashiers. Graph the total process time for each person. What
can you surmise from these results?

 Exercises 561

M14_LEWI5976_05_SE_C14.indd 561 08/02/19 2:46 PM

562 CHAPTER 14 Queues

EX 14.6 Compare and contrast the enqueue method of the LinkedQueue
class to the push method of the LinkedStack class from Chapter 13.

EX 14.7 Describe two different ways in which the isEmpty method of the
LinkedQueue class could be implemented.

EX 14.8 Name five everyday examples of a queue other than those dis-
cussed in this chapter.

EX 14.9 Explain why the array implementation of a stack does not require
elements to be shifted but the noncircular array implementation
of a queue does.

EX 14.10 Suppose the count variable was not used in the CircularArrayQueue
class. Explain how you could use the values of front and rear to
compute the number of elements in the list.

Programming Projects
PP 14.1 Complete the implementation of the LinkedQueue class presented

in this chapter. Specifically, complete the implementations of the
first, isEmpty, size, and toString methods.

PP 14.2 Complete the implementation of the CircularArrayQueue class
described in this chapter, including all methods.

PP 14.3 Write a version of the CircularArrayQueue class that grows the
list in the direction opposite to the direction in which the version
described in this chapter grows the list.

PP 14.4 All of the implementations in this chapter use a count variable to
keep track of the number of elements in the queue. Rewrite the
linked implementation without a count variable.

PP 14.5 All of the implementations in this chapter use a count variable to
keep track of the number of elements in the queue. Rewrite the
circular array implementation without a count variable.

PP 14.6 A data structure called a deque is closely related to a queue. The
name deque stands for “double-ended queue.” The difference
between the two is that with a deque, you can insert, remove, or
view from either end of the queue. Implement a deque using arrays.

PP 14.7 Implement the deque from Programming Project 14.6 using links.
(Hint: Each node will need a next and a previous reference.)

PP 14.8 Create a system using a stack and a queue to test whether a given
string is a palindrome (that is, whether the characters read the
same both forwards and backwards).

M14_LEWI5976_05_SE_C14.indd 562 08/02/19 2:46 PM

 Answers to Self-Review Questions 563

PP 14.9 Create a system to simulate vehicles at an intersection. Assume
that there is one lane going in each of four directions, with stop-
lights facing each direction. Vary the arrival average of vehicles in
each direction and the frequency of the light changes to view the
“behavior” of the intersection.

Answers to Self-Review Questions
SRA 14.1 A queue is a first in, first out (FIFO) collection, whereas a stack is

a last in, first out (LIFO) collection.

SRA 14.2 The basic queue operations are

enqueue—adds an element to the end of the queue
dequeue—removes an element from the front of the queue
first—returns a reference to the element at the front of the queue
isEmpty—returns true if the queue is empty, returns false otherwise

SRA 14.3 makeEmpty(), destroy(), full()

SRA 14.4 Yes, it happens when the queue is empty (both head and tail are
null) and when there is only one element on the queue.

SRA 14.5 Yes, it can happen under two circumstances: when the queue is
empty and when the queue is full.

SRA 14.6 The noncircular array implementation with an O(n) dequeue or
enqueue operation has the worst time complexity.

SRA 14.7 Both of the array implementations waste space for unfilled ele-
ments in the array. The linked implementation uses more space
per element stored.

M14_LEWI5976_05_SE_C14.indd 563 08/02/19 2:46 PM

565

15
The concept of a list is familiar to all of us. You may make

to-do lists, lists of items to buy at the grocery store, and lists

of friends to invite to a party. You might number the items

in a list or keep them in alphabetical order. In other situations

you may simply keep the items in a particular order that

simply makes the most sense to you. This chapter explores

the concept of a list collection and some ways in which such

collections can be managed.

C H A P T E R O B J E C T I V E S
■■ Examine various types of list collections.

■■ Demonstrate how lists can be used to solve problems.

■■ Define a list abstract data type.

■■ Examine and compare list implementations.

Lists 15

M15_LEWI5976_05_SE_C15.indd 565 08/02/19 3:01 AM

566 CHAPTER 15 Lists

15.1 A List Collection

Let’s begin by differentiating between a linked list and the concept of a list collection.
As we’ve seen in previous chapters, a linked list is an implementation strategy that
uses references to create links between objects. We used linked lists in Chapters 13
and 14 to help us implement stack and queue collections, respectively.

A list collection, on the other hand, is a conceptual notion—the idea of keeping
things organized in a linear list. Just like stacks and queues, a list can be implemented
using linked lists or arrays. A list collection has no inherent capacity; it can grow as
large as needed.

Both stacks and queues are linear structures and might be thought of as lists, but
elements can be added and removed only on the ends. List collections are more general;
elements can be added and removed in the middle of the list as well as on the ends.

Furthermore, there are three types of list collections:

■■ Ordered lists, whose elements are ordered by some inherent characteristic
of the elements

■■ Unordered lists, whose elements have no inherent order but are ordered by
their placement in the list

■■ Indexed lists, whose elements can be referenced using a numeric index

An ordered list is based on some particular characteristic of the el-
ements in the list. For example, you may keep a list of people ordered
alphabetically by name, or you may keep an inventory list ordered
by part number. The list is sorted on the basis of some key value.
Any element added to an ordered list has a proper location in the list,
given its key value and the key values of the elements already in the
list. Figure 15.1 shows a conceptual view of an ordered list, in which
the elements are ordered by an integer key value. Adding a value to
the list involves finding the new element’s proper, sorted position
among the existing elements.

54

Adding an
element

fr
on

t o
f l

is
t

re
ar

 o
f l

is
t

12 25 33 42 49 57 73 81

FIGURE 15.1 A conceptual view of an ordered list

KEY CONCEPT
The elements of an ordered list have
an inherent relationship defining their
order.

KEY CONCEPT
List collections can be categorized as
ordered, unordered, or indexed.

VideoNote
List categories.

M15_LEWI5976_05_SE_C15.indd 566 08/02/19 3:01 AM

 15.1 A List Collection 567

The placement of elements in an unordered list is not based on any
inherent characteristic of the elements. Don’t let the name mislead
you. The elements in an unordered list are kept in a particular order,
but that order is not based on the elements themselves. The client
using the list determines the order of the elements. Figure 15.2 shows
a conceptual view of an unordered list. A new element can be put at the front or
rear of the list, or it can be inserted after a particular element already in the list.

An indexed list is similar to an unordered list in that there is no
inherent relationship among the elements that determines their order
in the list. The client using the list determines the order of the ele-
ments. However, in addition, each element can be referenced by a
numeric index that begins at 0 at the front of the list and continues
contiguously until the end of the list. Figure 15.3 shows a conceptual view of an
indexed list. A new element can be inserted into the list at any position, including
at the front or rear of the list. Every time a change occurs in the list, the indexes
are adjusted to stay in order and contiguous.

KEY CONCEPT
An indexed list maintains a contiguous
numeric index range for its elements.

KEY CONCEPT
The elements of an unordered list
are kept in whatever order the client
chooses.

Adding an
element

Adding an
element

Adding an
element

fr
on

t o
f l

is
t

re
ar

 o
f l

is
t

FIGURE 15.2 A conceptual view of an unordered list

0 1 2 3 4 5 6 7

Adding an
element

Adding an
element

Adding an
element

fr
on

t o
f l

is
t

re
ar

 o
f l

is
t

FIGURE 15.3 A conceptual view of an indexed list

M15_LEWI5976_05_SE_C15.indd 567 08/02/19 3:01 AM

568 CHAPTER 15 Lists

Note the primary difference between an indexed list and an array: An indexed
list keeps its indexes contiguous. If an element is removed, the positions of other
elements “collapse” to eliminate the gap. When an element is inserted, the indexes
of other elements are shifted to make room.

15.2 Lists in the Java Collections API

The list classes provided in the Java API primarily support the concept of an in-
dexed list. To some extent, they overlap with the concept of an unordered list.

Note, though, that the Java API does not have any classes that directly
implement an ordered list as described above.

You’re probably already familiar with the ArrayList class from
the Java API. It is a favorite among Java programmers, because it

provides a quick way to manage a set of objects. Its counterpart, the LinkedList
class, provides the same basic functionality with, as the name implies, an underly-
ing linked implementation. Both store elements defined by a generic parameter E.

Both ArrayList and LinkedList implement the java.util.List interface.
Some of the methods in the List interface are shown in Figure 15.4.

Before looking at our own implementation of lists, let’s look at a couple of exam-
ples that use lists provided by the Java API.

KEY CONCEPT
The Java API does not provide a class
that implements an ordered list.

Method

add(E element)

add(int index, E element)

get(int index)

remove(int index)

remove(E object)

set(int index, E element)

size()

Description

Adds an element to the end of the list.
Inserts an element at the specified index.
Returns the element at the specified index.
Removes the element at the specified index.
Removes the first occurrence of the specified object.
Replaces the element at the specified index.
Returns the number of elements in the list.

FIGURE 15.4 Some methods in the java.util.List interface

D E S I G N F O C U S

Is it possible that a list could be both an ordered list and an indexed list? Possible
perhaps but not very meaningful. If a list were both ordered and indexed, what
would happen if a client application attempted to add an element at a particular
index or to change an element at a particular index such that it is not in the proper
order? Which rule would have precedence, index position or order?

M15_LEWI5976_05_SE_C15.indd 568 08/02/19 3:01 AM

 15.3 Using Unordered Lists: Program of Study 569

15.3 Using Unordered Lists: Program of Study

The list of courses a student takes in order to fulfill degree requirements is some-
times called a program of study. Let’s look at an example that manages a simpli-
fied program of study. We’ll use the LinkedList class from the Java API, adding
some unordered list operations, to manage the list of courses.

Listing 15.1 contains a main method that creates a ProgramOfStudy object
and uses it to manage a few specific courses. It first adds a few initial courses, one
after the other to the end of the list. Then a second CS course is inserted into the
list after the existing CS course. Then a specific THE course is found, and its grade
is updated. Finally, a GER course is replaced by a FRE course.

L I S T I N G 1 5 . 1

import java.io.IOException;

/**
 * Demonstrates the use of a list to manage a set of objects.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class POSTester
{
 /**
 * Creates and populates a Program of Study. Then saves it using serialization.
 */
 public static void main(String[] args) throws IOException
 {
 ProgramOfStudy pos = new ProgramOfStudy();

 pos.addCourse(new Course("CS", 101, "Introduction to Programming", "A-"));
 pos.addCourse(new Course("ARCH", 305, "Building Analysis", "A"));
 pos.addCourse(new Course("GER", 210, "Intermediate German"));
 pos.addCourse(new Course("CS", 320, "Computer Architecture"));
 pos.addCourse(new Course("THE", 201, "The Theatre Experience"));

 Course arch = pos.find("CS", 320);
 pos.addCourseAfter(arch, new Course("CS", 321, "Operating Systems"));
 Course theatre = pos.find("THE", 201);
 theatre.setGrade("A-");

M15_LEWI5976_05_SE_C15.indd 569 08/02/19 3:01 AM

570 CHAPTER 15 Lists

After manipulating the list of courses in these specific ways, the main method
prints the entire ProgramOfStudy object and then saves it to disk so that it can be
retrieved and modified further at a later time.

The ProgramOfStudy class is shown in Listing 15.2 and the Course class is
shown in Listing 15.3. First note that the instance variable called list is declared
to be of type List<Course>, which refers to the interface. In the constructor, a
new LinkedList<Course> object is instantiated. If desired, this could be changed
to an ArrayList<Course> object without any other changes to the class.

 Course german = pos.find("GER", 210);
 pos.replace(german, new Course("FRE", 110, "Beginning French", "B+"));

 System.out.println(pos);

 pos.save("ProgramOfStudy");
 }
}

L I S T I N G 1 5 . 1 continued

L I S T I N G 1 5 . 2

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;

/**
 * Represents a Program of Study, a list of courses taken and planned, for an
 * individual student.
 *
 * @author Java Foundations
 * @version 4.0
 */

M15_LEWI5976_05_SE_C15.indd 570 08/02/19 3:01 AM

 15.3 Using Unordered Lists: Program of Study 571

public class ProgramOfStudy implements Iterable<Course>, Serializable
{
 private List<Course> list;

 /**
 * Constructs an initially empty Program of Study.
 */
 public ProgramOfStudy()
 {
 list = new LinkedList<Course>();
 }

 /**
 * Adds the specified course to the end of the course list.
 *
 * @param course the course to add
 */
 public void addCourse(Course course)
 {
 if (course != null)
 list.add(course);
 }

 /**
 * Finds and returns the course matching the specified prefix and number.
 *
 * @param prefix the prefix of the target course
 * @param number the number of the target course
 * @return the course, or null if not found
 */
 public Course find(String prefix, int number)
 {
 for (Course course : list)
 if (prefix.equals(course.getPrefix()) &&
 number == course.getNumber())
 return course;

 return null;
 }

 /**
 * Adds the specified course after the target course. Does nothing if
 * either course is null or if the target is not found.
 *

L I S T I N G 1 5 . 2 continued

M15_LEWI5976_05_SE_C15.indd 571 08/02/19 3:01 AM

572 CHAPTER 15 Lists

 * @param target the course after which the new course will be added
 * @param newCourse the course to add
 */
 public void addCourseAfter(Course target, Course newCourse)
 {
 if (target == null || newCourse == null)
 return;

 int targetIndex = list.indexOf(target);
 if (targetIndex != -1)
 list.add(targetIndex + 1, newCourse);
 }

 /**
 * Replaces the specified target course with the new course. Does nothing if
 * either course is null or if the target is not found.
 *
 * @param target the course to be replaced
 * @param newCourse the new course to add
 */
 public void replace(Course target, Course newCourse)
 {
 if (target == null || newCourse == null)
 return;

 int targetIndex = list.indexOf(target);
 if (targetIndex != -1)
 list.set(targetIndex, newCourse);
 }

 /**
 * Creates and returns a string representation of this Program of Study.
 *
 * @return a string representation of the Program of Study
 */
 public String toString()
 {
 String result = "";
 for (Course course : list)
 result += course + "\n";
 return result;
 }

L I S T I N G 1 5 . 2 continued

M15_LEWI5976_05_SE_C15.indd 572 08/02/19 3:01 AM

 15.3 Using Unordered Lists: Program of Study 573

 /**
 * Returns an iterator for this Program of Study.
 *
 * @return an iterator for the Program of Study
 */
 public Iterator<Course> iterator()
 {
 return list.iterator();
 }

 /**
 * Saves a serialized version of this Program of Study to the specified
 * file name.
 *
 * @param fileName the file name under which the POS will be stored
 * @throws IOException
 */
 public void save(String fileName) throws IOException
 {
 FileOutputStream fos = new FileOutputStream(fileName);
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(this);
 oos.flush();
 oos.close();
 }

 /**
 * Loads a serialized Program of Study from the specified file.
 *
 * @param fileName the file from which the POS is read
 * @return the loaded Program of Study
 * @throws IOException
 * @throws ClassNotFoundException
 */
 public static ProgramOfStudy load(String fileName) throws IOException,
 ClassNotFoundException
 {
 FileInputStream fis = new FileInputStream(fileName);
 ObjectInputStream ois = new ObjectInputStream(fis);
 ProgramOfStudy pos = (ProgramOfStudy) ois.readObject();
 ois.close();

 return pos;
 }
}

L I S T I N G 1 5 . 2 continued

M15_LEWI5976_05_SE_C15.indd 573 08/02/19 3:01 AM

574 CHAPTER 15 Lists

L I S T I N G 1 5 . 3

import java.io.Serializable;

/**
 * Represents a course that might be taken by a student.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class Course implements Serializable
{
 private String prefix;
 private int number;
 private String title;
 private String grade;

 /**
 * Constructs the course with the specified information.
 *
 * @param prefix the prefix of the course designation
 * @param number the number of the course designation
 * @param title the title of the course
 * @param grade the grade received for the course
 */
 public Course(String prefix, int number, String title, String grade)
 {
 this.prefix = prefix;
 this.number = number;
 this.title = title;
 if (grade == null)
 this.grade = "";
 else
 this.grade = grade;
 }

 /**
 * Constructs the course with the specified information, with no grade
 * established.
 *
 * @param prefix the prefix of the course designation
 * @param number the number of the course designation
 * @param title the title of the course
 */
 public Course(String prefix, int number, String title)

M15_LEWI5976_05_SE_C15.indd 574 08/02/19 3:01 AM

 15.3 Using Unordered Lists: Program of Study 575

 {
 this(prefix, number, title, "");
 }

 /**
 * Returns the prefix of the course designation.
 *
 * @return the prefix of the course designation
 */
 public String getPrefix()
 {
 return prefix;
 }

 /**
 * Returns the number of the course designation.
 *
 * @return the number of the course designation
 */
 public int getNumber()
 {
 return number;
 }

 /**
 * Returns the title of this course.
 *
 * @return the prefix of the course
 */
 public String getTitle()
 {
 return title;
 }

 /**
 * Returns the grade for this course.
 *
 * @return the grade for this course
 */
 public String getGrade()
 {
 return grade;
 }

L I S T I N G 1 5 . 3 continued

M15_LEWI5976_05_SE_C15.indd 575 08/02/19 3:01 AM

576 CHAPTER 15 Lists

 /**
 * Sets the grade for this course to the one specified.
 *
 * @param grade the new grade for the course
 */
 public void setGrade(String grade)
 {
 this.grade = grade;
 }

 /**
 * Returns true if this course has been taken (if a grade has been received).
 *
 * @return true if this course has been taken and false otherwise
 */
 public boolean taken()
 {
 return !grade.equals("");
 }

 /**
 * Determines if this course is equal to the one specified, based on the
 * course designation (prefix and number).
 *
 * @return true if this course is equal to the parameter
 */
 public boolean equals(Object other)
 {
 boolean result = false;
 if (other instanceof Course)
 {
 Course otherCourse = (Course) other;
 if (prefix.equals(otherCourse.getPrefix()) &&
 number == otherCourse.getNumber())
 result = true;
 }
 return result;
 }

 /**
 * Creates and returns a string representation of this course.
 *
 * @return a string representation of the course
 */

L I S T I N G 1 5 . 3 continued

M15_LEWI5976_05_SE_C15.indd 576 08/02/19 3:01 AM

 15.3 Using Unordered Lists: Program of Study 577

The methods addCourse, find, addCourseAfter, and replace perform
the various core operations needed to update the program of study. They essen-
tially add unordered list operations to the basic list operations provided by the
LinkedList class.

The iterator method returns an Iterator object. This method was not used
in the ProgramOfStudyTester program, but it is a key operation. Iterators are
discussed in detail in Chapter 16.

Finally, the save and load methods are used to write the ProgramOfStudy
object to a file and read it back in, respectively. Unlike text-based I/O operations
we’ve seen in previous examples, this one uses a process called serialization to read
and write the object as a binary stream. So with just a few lines of code, an object
can be stored with its current state completely intact. In this case, that means all
courses currently stored in the Program of Study list are stored as part of the object.

Note that the ProgramOfStudy and Course classes implement the
Serializable interface. In order for an object to be saved using serialization, its
class must implement Serializable. There are no methods in the Serializable
interface—it is used simply to indicate that the object may be converted to a

 public String toString()
 {
 String result = prefix + " " + number + ": " + title;
 if (!grade.equals(""))
 result += " [" + grade + "]";
 return result;
 }
}

L I S T I N G 1 5 . 3 continued

public class Course implements Serializable

Serializable

indicates that this class can be serialized

The Serializable interface contains no methods.

M15_LEWI5976_05_SE_C15.indd 577 08/02/19 3:01 AM

578 CHAPTER 15 Lists

serialized representation. The ArrayList and LinkedList classes also implement
Serializable.

A UML class diagram that describes the relationships among the classes in the
Program of Study example is shown in Figure 15.5.

Course

prefix : String
number : int
title : String
grade : String

get(Prefix) : String
getNumber() : int
getTitle() : String
getGrade() : String
setGrade(String grade) : void
taken() : boolean
equals(Object other) : boolean
toString() : String

List

T

LinkedList<Course>

main(String[] args)

POSTester

ProgramOfStudy

list : List<course>

addCourse(Course course) : void
find(String prefix : int number) : Course
addCourseAfter(Course target : Course newCourse) : void
replaced(Course target : Course newCourse) : void
toString() : String
iterator() : iterator<Course>
save(String fileName) : void
load(String fileName) : ProgramOfStudy

FIGURE 15.5 UML description of the Program of Study program

M15_LEWI5976_05_SE_C15.indd 578 08/02/19 3:01 AM

 15.4 Using Indexed Lists: Josephus 579

15.4 Using Indexed Lists: Josephus

Flavius Josephus was a Jewish historian of the first century. Legend has it that he
was one of a group of 41 Jewish rebels who decided to kill themselves rather than
surrender to the Romans, who had them trapped. They decided to form a circle and
to kill every third person until no one was left. Josephus, not wanting to die, calcu-
lated where he needed to stand so that he would be the last one alive
and thus would not have to die. Thus was born a class of problems
referred to as the Josephus problem. These problems involve finding
the order of events when events in a list are not taken in order but,
rather, they are taken every ith element in a cycle until none remains.

For example, suppose that we have a list of seven elements
numbered from 1 to 7:

1 2 3 4 5 6 7

If we were to remove every third element from the list, the first element to be
removed would be number 3, leaving the list

1 2 4 5 6 7

The next element to be removed would be number 6, leaving the list

1 2 4 5 7

The elements are thought of as being in a continuous cycle, so when we reach
the end of the list, we continue counting at the beginning. Therefore, the next
element to be removed would be number 2, leaving the list

1 4 5 7

The next element to be removed would be number 7, leaving the list

1 4 5

The next element to be removed would be number 5, leaving the list

1 4

The next-to-last element to be removed would be number 1, leaving the number
4 as the last element on the list.

Listing 15.4 illustrates a generic implementation of the Josephus problem,
allowing the user to input the number of items in the list and the gap between elements.
Initially, a list is filled with integers representing the soldiers. Each element is then re-
moved from the list one at a time by computing the next index position in the list to
be removed.

KEY CONCEPT
The Josephus problem is a classic
computing problem that is appropriately
solved with indexed lists.

M15_LEWI5976_05_SE_C15.indd 579 08/02/19 3:01 AM

580 CHAPTER 15 Lists

L I S T I N G 1 5 . 4

import java.util.*;

/**
 * Demonstrates the use of an indexed list to solve the Josephus problem.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class Josephus
{
 /**
 * Continue around the circle eliminating every nth soldier
 * until all of the soldiers have been eliminated.
 */
 public static void main(String[] args)
 {
 int numPeople, skip, targetIndex;
 List<String> list = new ArrayList<String>();
 Scanner in = new Scanner(System.in);

 // get the initial number of soldiers

 System.out.print("Enter the number of soldiers: ");
 numPeople = in.nextInt();
 in.nextLine();

 // get the number of soldiers to skip

 System.out.print("Enter the number of soldiers to skip: ");
 skip = in.nextInt();

 // load the initial list of soldiers

 for (int count = 1; count <= numPeople; count++)
 {
 list.add("Soldier " + count);
 }

The one complication in this process is computation of the next index position
to be removed. This is particularly interesting because the list collapses on itself as
elements are removed. For example, the element number 6 from our previous ex-
ample should be the second element removed from the list. However, once element 3
has been removed from the list, element 6 is no longer in its original position. Instead
of being at index position 5 in the list, it is now at index position 4.

M15_LEWI5976_05_SE_C15.indd 580 08/02/19 3:01 AM

 15.5 A List ADT 581

15.5 A List ADT

Now let’s explore our own implementation of a list collection. We’ll go beyond
what the Java API provides and include full implementations of unordered and
ordered.

There is a set of operations that is common to both ordered and
unordered lists. These common operations are shown in Figure 15.6.
They include operations to remove and examine elements, as well as
classic operations such as isEmpty and size. The contains opera-
tion is also supported by both list types, which allows the user to
determine if a list contains a particular element.

Operation

removeFirst

removeLast

remove

first

last

contains

isEmpty

size

Description

Removes the first element from the list.
Removes the last element from the list.
Removes a particular element from the list.
Examines the element at the front of the list.
Examines the element at the rear of the list.
Determines if the list contains a particular element.
Determines if the list is empty.
Determines the number of elements on the list.

FIGURE 15.6 The common operations on a list

KEY CONCEPT
Many common operations can
be defined for all list types. The
differences between them stem from
how elements are added.

 targetIndex = skip;
 System.out.println("The order is: ");

 // Treating the list as circular, remove every nth element
 // until the list is empty

 while (!list.isEmpty())
 {
 System.out.println(list.remove(targetIndex));
 if (list.size() > 0)
 targetIndex = (targetIndex + skip) % list.size();
 }
 }
}

L I S T I N G 1 5 . 4 continued

M15_LEWI5976_05_SE_C15.indd 581 08/02/19 3:01 AM

582 CHAPTER 15 Lists

Adding Elements to a List
The differences between ordered and unordered lists generally center on how
elements are added to the list. In an ordered list, we need only specify the new
element to add. Its position in the list is based on its key value. This operation is
shown in Figure 15.7.

An unordered list supports three variations of the add operation. Elements can
be added to the front of the list, to the rear of the list, or after a particular element
that is already in the list. These operations are shown in Figure 15.8.

Conceptually, the operations particular to an indexed list make use of its ability
to reference elements by their index. A new element can be inserted into the list at
a particular index, or it can be added to the rear of the list without specifying an
index at all. Note that if an element is inserted or removed, the elements at higher
indexes are either shifted up to make room or shifted down to close the gap.
Alternatively, the element at a particular index can be set, which overwrites the el-
ement currently at that index and therefore does not cause other elements to shift.

We can capitalize on the fact that both ordered lists and unordered lists share
a common set of operations. These operations need to be defined only once.
Therefore, we will define three list interfaces: one with the common operations
and two with the operations particular to each list type. Inheritance can be used
with interfaces just as it can with classes. The interfaces of the particular list types
extend the common list definition. This relationship among the interfaces is shown
in Figure 15.9.

Listings 15.5 through 15.7 show the Java interfaces corresponding to the UML
diagram in Figure 15.9.

Operation

add

Description

Adds an element to the list.

FIGURE 15.7 The operation particular to an ordered list

Operation

addToFront

addToRear

addAfter

Description

Adds an element to the front of the list.
Adds an element to the rear of the list.
Adds an element after a particular element already in the list.

FIGURE 15.8 The operations particular to an unordered list

M15_LEWI5976_05_SE_C15.indd 582 08/02/19 3:01 AM

 15.5 A List ADT 583

<<interface>>
ListADT

isEmpty() : boolean
size() : int
iterator() : Iterator
toString() : String

removeFirst() : T
removeLast() : T
remove(T element) : T
first() : T
last() : T

T

<<interface>>
OrderedListADT

add(T element) : void

T
<<interface>>

UnorderedListADT

addToFront(T element) : void
addToRear(T element) : void
addAfter(T element, T target) : void

T

FIGURE 15.9 Using inheritance to define list interfaces

L I S T I N G 1 5 . 5

package jsjf;
import java.util.Iterator;

/**
 * ListADT defines the interface to a general list collection. Specific
 * types of lists will extend this interface to complete the
 * set of necessary operations.
 *

M15_LEWI5976_05_SE_C15.indd 583 08/02/19 3:01 AM

584 CHAPTER 15 Lists

 * @author Java Foundations
 * @version 4.0
 */
public interface ListADT<T> extends Iterable<T>
{
 /**
 * Removes and returns the first element from this list.
 *
 * @return the first element from this list
 */
 public T removeFirst();

 /**
 * Removes and returns the last element from this list.
 *
 * @return the last element from this list
 */
 public T removeLast();

 /**
 * Removes and returns the specified element from this list.
 *
 * @param element the element to be removed from the list
 */
 public T remove(T element);

 /**
 * Returns a reference to the first element in this list.
 *
 * @return a reference to the first element in this list
 */
 public T first();

 /**
 * Returns a reference to the last element in this list.
 *
 * @return a reference to the last element in this list
 */
 public T last();

 /**
 * Returns true if this list contains the specified target element.
 *
 * @param target the target that is being sought in the list
 * @return true if the list contains this element
 */

L I S T I N G 1 5 . 5 continued

M15_LEWI5976_05_SE_C15.indd 584 08/02/19 3:01 AM

 15.5 A List ADT 585

 public boolean contains(T target);

 /**
 * Returns true if this list contains no elements.
 *
 * @return true if this list contains no elements
 */
 public boolean isEmpty();

 /**
 * Returns the number of elements in this list.
 *
 * @return the integer representation of number of elements in this list
 */
 public int size();

 /**
 * Returns an iterator for the elements in this list.
 *
 * @return an iterator over the elements in this list
 */
 public Iterator<T> iterator();

 /**
 * Returns a string representation of this list.
 *
 * @return a string representation of this list
 */
 public String toString();
}

L I S T I N G 1 5 . 5 continued

L I S T I N G 1 5 . 6

package jsjf;

/**
 * OrderedListADT defines the interface to an ordered list collection. Only
 * Comparable elements are stored, kept in the order determined by
 * the inherent relationship among the elements.
 *
 * @author Java Foundations
 * @version 4.0
 */

M15_LEWI5976_05_SE_C15.indd 585 08/02/19 3:01 AM

586 CHAPTER 15 Lists

public interface OrderedListADT<T> extends ListADT<T>
{
 /**
 * Adds the specified element to this list at the proper location
 *
 * @param element the element to be added to this list
 */
 public void add(T element);
}

L I S T I N G 1 5 . 6 continued

L I S T I N G 1 5 . 7

package jsjf;

/**
 * UnorderedListADT defines the interface to an unordered list collection.
 * Elements are stored in any order the user desires.
 *
 * @author Java Foundations
 * @version 4.0
 */
public interface UnorderedListADT<T> extends ListADT<T>
{
 /**
 * Adds the specified element to the front of this list.
 *
 * @param element the element to be added to the front of this list
 */
 public void addToFront(T element);

 /**
 * Adds the specified element to the rear of this list.
 *
 * @param element the element to be added to the rear of this list
 */
 public void addToRear(T element);

M15_LEWI5976_05_SE_C15.indd 586 08/02/19 3:01 AM

 15.6 Implementing Lists with Arrays 587

 /**
 * Adds the specified element after the specified target.
 *
 * @param element the element to be added after the target
 * @param target the target is the item that the element will be added
 * after
 */
 public void addAfter(T element, T target);
}

L I S T I N G 1 5 . 7 continued

15.6 Implementing Lists with Arrays

As we’ve seen in previous chapters, an array-based implementation of a collection
can fix one end of the list at index 0 and shift elements as needed. This is similar
to our array-based implementation of a stack from Chapter 12. We dismissed
that approach for queue in Chapter 14 because its operations add and remove
elements from both ends. General lists also add and remove from either end, but
they insert and remove in the middle of the list as well. So shifting of elements
cannot be avoided. A circular array approach could be used, but that will not
eliminate the need to shift elements when adding or removing elements from the
middle of the list.

Figure 15.10 depicts an array implementation of a list with the front of the list
fixed at index 0. The integer variable rear represents the number of elements in
the list and the next available slot for adding an element to the rear of the list.

A

0

B

1

C

2

D

3 4 5 6 7 ...

rear 4

FIGURE 15.10 An array implementation of a list

M15_LEWI5976_05_SE_C15.indd 587 08/02/19 3:01 AM

588 CHAPTER 15 Lists

Note that Figure 15.10 applies to both ordered and unordered lists. First we
will explore the common operations. Here are the header and class-level data of
the ArrayList class:

/**
 * ArrayList represents an array implementation of a list. The front of
 * the list is kept at array index 0. This class will be extended
 * to create a specific kind of list.
 *
 * @author Java Foundations
 * @version 4.0
 */
public abstract class ArrayList<T> implements ListADT<T>, Iterable<T>
{
 private final static int DEFAULT_CAPACITY = 100;
 private final static int NOT_FOUND = -1;

 protected int rear;
 protected T[] list;
 protected int modCount;

 /**
 * Creates an empty list using the default capacity.
 */
 public ArrayList()
 {
 this(DEFAULT_CAPACITY);
 }

 /**
 * Creates an empty list using the specified capacity.
 *
 * @param initialCapacity the size of the array list
 */
 public ArrayList(int initialCapacity)
 {
 rear = 0;
 list = (T[])(new Object[initialCapacity]);
 modCount = 0;
 }

The ArrayList class implements the ListADT interface defined earlier. It also
implements the Iterable interface. That interface, and the modCount variable,
are discussed in Chapter 16.

M15_LEWI5976_05_SE_C15.indd 588 08/02/19 3:01 AM

 15.6 Implementing Lists with Arrays 589

The remove Operation
This variation of the remove operation requires that we search for the element
passed in as a parameter and remove it from the list if it is found. Then, ele-
ments at higher indexes in the array are shifted down in the list to fill in the gap.
Consider what happens if the element to be removed is the first element in the
list. In this case, there is a single comparison to find the element followed by n–1
shifts to shift the elements down to fill the gap. On the opposite extreme, what
happens if the element to be removed is the last element in the list? In this case,
we would require n comparisons to find the element and none of the remaining
elements would need to be shifted. As it turns out, this implementation of the
remove operation will always require exactly n comparisons and shifts and thus
the operation is O(n). Note that if we were to use a circular array implementa-
tion, it would only improve the performance of the special case when the element
to be removed is the first element. This operation can be implemented as follows:

/**
 * Removes and returns the specified element.
 *
 * @param element the element to be removed and returned from the list
 * @return the removed elememt
 * @throws ElementNotFoundException if the element is not in the list
 */
public T remove(T element)
{
 T result;
 int index = find(element);

 if (index == NOT_FOUND)
 throw new ElementNotFoundException("ArrayList");

 result = list[index];
 rear--;

 // shift the appropriate elements

 for (int scan=index; scan < rear; scan++)
 list[scan] = list[scan+1];

 list[rear] = null;
 modCount++;

 return result;
}

M15_LEWI5976_05_SE_C15.indd 589 08/02/19 3:01 AM

590 CHAPTER 15 Lists

The remove method makes use of a method called find, which finds the element
in question, if it exists in the list, and returns its index. The find method returns a
constant called NOT_FOUND if the element is not in the list. The NOT_FOUND constant
is equal to –1 and is defined in the ArrayList class. If the element is not found, a
NoSuchElementException is generated. If it is found, the elements at higher in-
dexes are shifted down, the rear value is updated, and the element is returned.

The find method supports the implementation of a public operation on the
list, rather than defining a new operation. Therefore, the find method is declared
with private visibility. The find method can be implemented as follows:

/**
 * Returns the array index of the specified element, or the
 * constant NOT_FOUND if it is not found.
 *
 * @param target the target element
 * @return the index of the target element, or the
 * NOT_FOUND constant
 */
private int find(T target)
{
 int scan = 0;
 int result = NOT_FOUND;

 if (!isEmpty())
 while (result == NOT_FOUND && scan < rear)
 if (target.equals(list[scan]))
 result = scan;
 else
 scan++;

 return result;
}

Note that the find method relies on the equals method to determine whether
the target has been found. It’s possible that the object passed into the method is an
exact copy of the element being sought. In fact, it may be an alias of the element
in the list. However, if the parameter is a separate object, it may not contain all
aspects of the element being sought. Only the key characteristics on which the
equals method is based are important.

The logic of the find method could have been incorporated into the remove
method, though it would have made the remove method somewhat complicated.

M15_LEWI5976_05_SE_C15.indd 590 08/02/19 3:01 AM

 15.6 Implementing Lists with Arrays 591

When appropriate, such support methods should be defined to keep each method
readable. Furthermore, in this case, the find support method is useful in imple-
menting the contains operation, as we will now explore.

The contains Operation
The purpose of the contains operation is to determine whether a particular ele-
ment is currently contained in the list. As we discussed, we can use the find sup-
port method to create a fairly straightforward implementation:

/**
 * Returns true if this list contains the specified element.
 *
 * @param target the target element
 * @return true if the target is in the list, false otherwise
 */
public boolean contains(T target)
{
 return (find(target) != NOT_FOUND);
}

D E S I G N F O C U S

The overriding of the equals method and the implementation of the Comparable
interface are excellent examples of the power of object-oriented design. We can
create implementations of collections that can handle classes of objects that have
not yet been designed as long as those objects provide a definition of equality
and/or a method of comparison between objects of the class.

D E S I G N F O C U S

Separating out private methods such as the find method in the ArrayList class
provides multiple benefits. First, it simplifies the definition of the already complex
remove method. Second, it allows us to use the find method to implement the
contains operation as well as the addAfter method for an ArrayUnorderedList.
Notice that the find method does not throw an ElementNotFound exception. It
simply returns a value (–1), signifying that the element was not found. In this way,
the calling routine can decide how to handle the fact that the element was not
found. In the remove method, that means throwing an exception. In the contains
method, that means returning false.

M15_LEWI5976_05_SE_C15.indd 591 08/02/19 3:01 AM

592 CHAPTER 15 Lists

If the target element is not found, the contains method returns false. If it
is found, it returns true. A carefully constructed return statement ensures the
proper return value. Because this method is performing a linear search of our list,
our worst case will be that the element we are searching for is not in the list. This
case would require n comparisons. We would expect this method to require, on
average, n/2 comparisons, which results in the operation being O(n).

The add Operation for an Ordered List
The add operation is the only way an element can be added to an ordered list. No
location is specified in the call because the elements themselves determine their order.
Very much like the remove operation, the add operation requires a combination of
comparisons and shifts: comparisons to find the correct location in the list and then
shifts to open a position for the new element. Looking at the two extremes, if the
element to be added to the list belongs at the front of the list, that will require one
comparison and then the other n – 1 elements in the list will need to be shifted. If the
element to be added belongs at the rear of the list, this will require n comparisons, and
none of the other elements in the list will need to be shifted. Like the remove opera-
tion, the add operation requires n comparisons and shifts each time it is executed, and
thus the operation is O(n). The add operation can be implemented as follows:

/**
 * Adds the specified Comparable element to this list, keeping
 * the elements in sorted order.
 *
 * @param element the element to be added to the list
 */

public void add(T element)
{
 if (!(element instanceof Comparable))
 throw new NonComparableElementException("OrderedList");

 Comparable<T> comparableElement = (Comparable<T>)element;

 if (size() == list.length)
 expandCapacity();

 int scan = 0;

 // find the insertion location

 while (scan < rear && comparableElement.compareTo(list[scan]) > 0)
 scan++;

M15_LEWI5976_05_SE_C15.indd 592 08/02/19 3:01 AM

 15.6 Implementing Lists with Arrays 593

Note that only Comparable objects can be stored in an ordered
list. If the element isn’t Comparable, an exception is thrown. If it
is Comparable, but cannot be validly compared to the elements in
the list, a ClassCastException will result, when the compareTo
method is invoked.

Recall that the Comparable interface defines the compareTo method that
returns a negative integer, zero, or positive integer value if the executing object is
less than, equal to, or greater than the parameter, respectively.

The unordered and indexed versions of a list do not require that the elements
they store be Comparable. It is a testament to the utility of object-oriented pro-
gramming that the various classes that implement these list variations can exist in
harmony despite these differences.

Operations Particular to Unordered Lists
The addToFront and addToRear operations are similar to operations from other
collections and are therefore left as programming projects. Keep in mind that the
addToFront operation must shift the current elements in the list first to make
room at index 0 for the new element. Thus we know that the addToFront opera-
tion will be O(n) because it requires n–1 elements to be shifted. Like the push
operation on a stack, the addToRear operation will be O(1).

The addAfter Operation for an Unordered List
The addAfter operation accepts two parameters: one that represents the element
to be added and one that represents the target element that determines the place-
ment of the new element. The addAfter method must first find the target ele-
ment, shift the elements at higher indexes to make room, and then insert the new
element after it. Very much like the remove operation and the add operation for

KEY CONCEPT
Only Comparable objects can be
stored in an ordered list.

 // shift existing elements up one

 for (int shift=rear; shift > scan; shift--)
 list[shift] = list[shift-1];

 // insert element

 list[scan] = element;
 rear++;
 modCount++;
}

M15_LEWI5976_05_SE_C15.indd 593 08/02/19 3:01 AM

594 CHAPTER 15 Lists

ordered lists, the addAfter method will require a combination of n comparisons
and shifts and will be O(n).

/**
 * Adds the specified element after the specified target element.
 * Throws an ElementNotFoundException if the target is not found.
 *
 * @param element the element to be added after the target element
 * @param target the target that the element is to be added after
 */
public void addAfter(T element, T target)
{
 if (size() == list.length)
 expandCapacity();

 int scan = 0;

 // find the insertion point

 while (scan < rear && !target.equals(list[scan]))
 scan++;

 if (scan == rear)
 throw new ElementNotFoundException("UnorderedList");

 scan++;

 // shift elements up one

 for (int shift=rear; shift > scan; shift--)
 list[shift] = list[shift-1];

 // insert element

 list[scan] = element;
 rear++;
 modCount++;
}

15.7 Implementing Lists with Links

As we have seen with other collections, the use of a linked list is often another
convenient way to implement a linear collection. The common operations that
apply for ordered and unordered lists, as well as the particular operations for

M15_LEWI5976_05_SE_C15.indd 594 08/02/19 3:01 AM

 15.7 Implementing Lists with Links 595

each type, can be implemented with techniques similar to the ones we have used
before. We will examine a couple of the more interesting operations but will leave
most of the operations as programming projects.

First, the class header, class-level data, and constructor for our LinkedList
class are provided for context:

/**
 * LinkedList represents a linked implementation of a list.
 *
 * @author Java Foundations
 * @version 4.0
 */
public abstract class LinkedList<T> implements ListADT<T>, Iterable<T>
{
 protected int count;
 protected LinearNode<T> head, tail;
 protected int modCount;

 /**
 * Creates an empty list.
 */
 public LinkedList()
 {
 count = 0;
 head = tail = null;
 modCount = 0;
 }

The remove Operation
The remove operation is part of the LinkedList class shared by both implementa-
tions: unordered and ordered lists. The remove operation consists of making sure
that the list is not empty, finding the element to be removed, and then handling one
of four cases: the element to be removed is the only element in the list, the element
to be removed is the first element in the list, the element to be removed is the last
element in the list, or the element to be removed is in the middle of the list. In all
cases, the count is decremented by one. Unlike the remove operation for the array
version, the linked version does not require elements to be shifted to close the gap.
However, given that the worst case still requires n comparisons to determine that
the target element is not in the list, the remove operation is still O(n). An imple-
mentation of the remove operation follows.

M15_LEWI5976_05_SE_C15.indd 595 08/02/19 3:01 AM

596 CHAPTER 15 Lists

/**
 * Removes the first instance of the specified element from this
 * list and returns it. Throws an EmptyCollectionException
 * if the list is empty. Throws a ElementNotFoundException if the
 * specified element is not found in the list.
 *
 * @param targetElement the element to be removed from the list
 * @return a reference to the removed element
 * @throws EmptyCollectionException if the list is empty
 * @throws ElementNotFoundException if the target element is not found
 */
public T remove(T targetElement) throws EmptyCollectionException,
 ElementNotFoundException
{
 if (isEmpty())
 throw new EmptyCollectionException("LinkedList");

 boolean found = false;
 LinearNode<T> previous = null;
 LinearNode<T> current = head;

 while (current != null && !found)
 if (targetElement.equals(current.getElement()))
 found = true;
 else
 {
 previous = current;
 current = current.getNext();
 }

 if (!found)

 throw new ElementNotFoundException("LinkedList");
 if (size() == 1) // only one element in the list
 head = tail = null;

 else if (current.equals(head)) // target is at the head
 head = current.getNext();

 else if (current.equals(tail)) // target is at the tail
 {
 tail = previous;
 tail.setNext(null);
 }
 else // target is in the middle

 previous.setNext(current.getNext());

 count--;

 modCount++;
 return current.getElement();
}

M15_LEWI5976_05_SE_C15.indd 596 08/02/19 3:01 AM

 15.8 Lists in JavaFX 597

15.8 Lists in JavaFX

With JavaFX, several additional list constructs were added to the Java language.
These new constructs, including both interfaces and classes, are contained in the
javafx.collections package. These new constructs have been added primarily
to provide support for a variety of graphical views of lists and are designed to pro-
vide wrappers for the existing Java Collections API implementations. A sampling
of these constructs is included here.

Observable List
A class that implements the ObservableList<E> interface allows change
listeners to track changes to the list as they occur. This is particularly
useful when building an interface using a ListView object (i.e., javafx.
scene.control.ListView). Figure 15.11 shows a summary of the available
methods for the ObservableList<E> interface.

The javafx.collections.FXCollections class is made up of static methods
that are copies of java.util.Collections methods.

The wrapper methods (like synchronizedObservableList or emptyObserva-
bleList) provide the same functionality as the methods in the Java Collections API,
except that they return ObservableList and are therefore suitable for methods that
require ObservableList on input.

For example, if we wanted to create a list of courses, represented as strings, to
populate a ListView object, we might use the following code:

ObservableList<String>courses = FXCollections.observableList
("MATH 151", "ENGL 101", "ENGL 102", "STAT 200", "MNGT 250",
"HIST 111", "PSYC 100", "SOCY 110", "ECON 105");

ListView<String>mylistView = new ListView<String>(courses);

Similarly, if we already had a List of Course objects in one of our traditional
lists from the Java Collections API, we could accomplish the same thing with:

ObservableList<Course>courses = FXCollections.observableList
(myCourseList);

ListView<Course>mylistView = new ListView<Course>(courses);

Sorted List
With the introduction of the JavaFX collections, there is also now a sorted ver-
sion of a list. The javafx.collections.transformation.SortedList class

M15_LEWI5976_05_SE_C15.indd 597 08/02/19 3:01 AM

598 CHAPTER 15 Lists

FIGURE 15.11 Summary of methods for the ObservableList<E> interfaces
FXCollections and ListView

Creates a SortedList wrapper of this list using the specified comparator.

SortedList<E> sorted(Comparator<E> comparator)

Creates a SortedList wrapper of this list with the natural ordering.

SortedList<E> sorted()

FilteredList<E> filtered(Predicate<E> predicate)

Creates a FilteredList wrapper of this list using the specified predicate.

void addListener(ListChangeListener<? super E> listener)

Adds a listener to this observable list.

Method and Description

boolean addAll(E… elements)

Adds a variable number of elements to this observable list.

boolean removeAll(E… elements)

Removes a variable number of elements from this observable list.

void removeListener(ListChangeListener<? super E> listener

Removes the specified listener from this observable list.

boolean setAll(E… elements)

Clears the ObservableList and add the variable number of elements specified.

boolean SetAll(Collection<? extends E> collection)

Clears the ObservableList and adds all elements from the specified collection.

boolean retainAll(E… elements)

Retains only the specified elements. That is, removes all elements other than those listed.

void remove(int from, int to)

Removes a sublist of elements from this observable list.

M15_LEWI5976_05_SE_C15.indd 598 08/02/19 3:01 AM

 15.8 Lists in JavaFX 599

provides a wrapper for an ObservableList to sort the list’s contents. The meth-
ods for a SortedList are shown in Figure 15.12.

To create a SortedList, we simply provide the ObservableList to the con-
structor. We have the option of also providing the Comparator to the constructor
or specifying it later.

ObservableList<Course>courses = FXCollections.observableList
(myCourseList);

SortedList<Course> sortedCourses = new SortedList(courses);

Comparator<? super E> getComparator()

Gets the value of the property comparator.

void setComparator(Comparator<? super E> comparator)

Sets the comparator to be used for this sorted list.

E get(int index)

Returns the element at the specified position in this list.

Method and Description

ObjectProperty<Comparator<? super E> comparatorProperty()

Returns the comparator that represents the order of this sorted list.

int getSourceIndex(int index)

Returns the index in the source list that corresponds to the element in this list at the
specified index.

int size()

Returns the number of elements in this list.

FIGURE 15.12 Methods for a SortedList

M15_LEWI5976_05_SE_C15.indd 599 08/02/19 3:01 AM

600 CHAPTER 15 Lists

Summary of Key Concepts

■■ List collections can be categorized as ordered, unordered, or indexed.

■■ The elements of an ordered list have an inherent relationship defining their
order.

■■ The elements of an unordered list are kept in whatever order the client chooses.

■■ An indexed list maintains a contiguous numeric index range for its elements.

■■ The Java API does not provide a class that implements an ordered list.

■■ Many common operations can be defined for all list types. The differences
between them stem from how elements are added.

■■ Interfaces can be used to derive other interfaces. The child interface contains
all abstract methods of the parent.

■■ An interface name can be used to declare an object reference variable. An
interface reference can refer to any object of any class that implements the
interface.

■■ Interfaces enable us to make polymorphic references in which the
method that is invoked is based on the particular object being referenced
at the time.

■■ The Josephus problem is a classic computing problem that is appropriately
solved with indexed lists.

■■ Only Comparable objects can be stored in an ordered list.

Summary of Terms
indexed list A list whose elements can be referenced using a numeric index.

Josephus problem A classic computing problem whose goal is to find the
order in which elements are selected from a list by taking every ith element
cyclically until none remains.

ordered list A list whose elements are ordered in terms of some inherent
characteristic of the elements.

serialization A technique for representing an object as a stream of binary
digits, which allows objects to be read and written from files with their state
maintained.

unordered list A list whose elements have no inherent order but are ordered
by their placement in the list.

M15_LEWI5976_05_SE_C15.indd 600 08/02/19 3:01 AM

 Exercises 601

Self-Review Questions
SR 15.1 What is the difference between an indexed list, an ordered list,

and an unordered list?

SR 15.2 What are the basic methods for accessing an indexed list?

SR 15.3 What are the additional operations required of implementations
that are part of the Java Collections API framework?

SR 15.4 What are the trade-offs in space complexity between an
ArrayList and a LinkedList?

SR 15.5 What are the trade-offs in time complexity between an
ArrayList and a LinkedList?

SR 15.6 What is the time complexity of the contains operation and the
find operation for both implementations?

SR 15.7 Why is the time to increase the capacity of the array on an add op-
eration considered negligible for the ArrayList implementation?

SR 15.8 Why is a circular array implementation not as attractive as an
implementation for a list as it was for a queue?

Exercises
EX 15.1 Hand trace an ordered list X through the following operations:

X.add(new Integer(4));
X.add(new Integer(7));
Object Y = X.first();
X.add(new Integer(3));
X.add(new Integer(2));
X.add(new Integer(5));
Object Y = X.removeLast();
Object Y = X.remove(new Integer(7));
X.add(new Integer(9));

EX 15.2 Given the resulting list X from Exercise 15.1, what would be the
result of each of the following?

a. X.last();
b. z = X.contains(new Integer(3));

X.first();

c. Y = X.remove(new Integer(2));
X.first();

EX 15.3 What would be the time complexity of the size operation for the
linked implementation if there were not a count variable?

 Exercises 601

M15_LEWI5976_05_SE_C15.indd 601 08/02/19 3:01 AM

602 CHAPTER 15 Lists

EX 15.4 In the linked implementation, under what circumstances could
the head and tail references be equal?

EX 15.5 In the array implementation, under what circumstances could the
rear reference equal 0?

EX 15.6 Hand trace an unordered list through the following operations.

X.addToFront(new Integer(4));
X.addToRear(new Integer(7));
Object Y = X.first();
X.addAfter(new Integer(3), new Integer(4));
X.addToFront(new Integer(2));
X.addToRear(new Integer(5));
Object Y = X.removeLast();
Object Y = X.remove(new Integer(7));
X.addAfter(new Integer(9), new Integer(3));

EX 15.7 If there were not a rear variable in the array implementation,
how could you determine whether or not the list was full?

Programming Projects
PP 15.1 Complete the implementation of the ArrayList,

ArrayOrderedList, and ArrayUnorderedList classes.

PP 15.2 Implement a stack using a LinkedList.

PP 15.3 Implement a stack using an ArrayList.

PP 15.4 Implement a queue using a LinkedList.

PP 15.5 Implement a queue using an ArrayList.

PP 15.6 Implement the Josephus problem using a queue, and compare the
performance of that algorithm to the ArrayList implementation
from this chapter.

PP 15.7 Implement an OrderedList using a LinkedList.

PP 15.8 Implement an OrderedList using an ArrayList.

PP 15.9 Write an implementation of the LinkedList class.

PP 15.10 Write an implementation of the LinkedOrderedList class.

PP 15.11 Write an implementation of the LinkedUnorderedList class.

PP 15.12 Create an implementation of a doubly linked
DoubleOrderedList class. You will need to create a DoubleNode
class, a DoubleList class, and a DoubleIterator class.

M15_LEWI5976_05_SE_C15.indd 602 08/02/19 3:01 AM

PP 15.13 Create a graphical application that provides a button for add and
remove from an ordered list, a text field to accept a string as input
for add, and a text area to display the contents of the list after
each operation.

PP 15.14 Create a graphical application that provides a button for
addToFront, addToRear, addAfter, and remove from an unor-
dered list. Your application must provide a text field to accept a
string as input for any of the add operations. The user should be
able to select the element to be added after, and select the element
to be removed.

PP 15.15 Write a version of the ProgramOfStudy program so that it uses
an ordered list. Order the courses first by department and then by
course number. Then write a program that uses an ordered list to
maintain a list of courses.

PP 15.16 Using the JavaFX objects ListView, ObservableList, and
SortedList, modify the ProgramOfStudy solution presented in this
chapter so that it provides a graphical user interface allowing the user
to select courses from a sorted list to add to the Program of Study.

Answers to Self-Review Questions
SRA 15.1 An indexed list is a collection of objects with no inherent order

that are ordered by index value. An ordered list is a collection of
objects ordered by value. An unordered list is a collection of ob-
jects with no inherent order.

SRA 15.2 Access to the list is accomplished in one of three ways: by access-
ing a particular index position in the list, by accessing the ends of
the list, or by accessing an object in the list by value.

SRA 15.3 All Java Collections API framework classes implement the
Collections interface, the Serializable interface, and the
Cloneable interface.

SRA 15.4 The linked implementation requires more space per object to be
inserted in the list simply because of the space allocated for the
references. Keep in mind that the LinkedList class is actually a
doubly linked list and thus requires twice as much space for refer-
ences. The ArrayList class is more efficient at managing space
than the array-based implementations we have discussed previ-
ously. This is because ArrayList collections are resizable and

 Answers to Self-Review Questions 603

M15_LEWI5976_05_SE_C15.indd 603 08/02/19 3:01 AM

604 CHAPTER 15 Lists

thus can dynamically allocate space as needed. Therefore, there
need not be a large amount of wasted space allocated all at once.
Rather, the list can grow as needed.

SRA 15.5 The major difference between the two is access to a particular
index position of the list. The ArrayList implementation can
access any element of the list in the same amount of time if the
index value is known. The LinkedList implementation requires
the list to be traversed from one end or the other to reach a par-
ticular index position.

SRA 15.6 The contains and find operations for both implementations are
O(n) because they are simply linear searches.

SRA 15.7 Averaged over the total number of insertions into the list, the time
to enlarge the array has little effect on the total time.

SRA 15.8 The circular array implementation of a queue improved the ef-
ficiency of the dequeue operation from O(n) to O(1) because it
eliminated the need to shift elements in the array. That is not the
case for a list because we can add or remove elements anywhere
in the list, not just at the front or the rear.

M15_LEWI5976_05_SE_C15.indd 604 08/02/19 3:01 AM

605

16
We mentioned iterators in Chapter 15 in our discussion

of lists, but didn’t explore them in any detail. They are

important enough to deserve their own chapter. Conceptually,

they provide a standard way to access each element of a

collection in turn, which is a common operation. And their

implementation in the Java API has some interesting nuances

that are worth exploring carefully.

C H A P T E R O B J E C T I V E S
■■ Define an iterator and explore its use.

■■ Discuss the Iterator and Iterable interfaces.

■■ Explore the concept of fail-fast collections.

■■ Use iterators in various situations.

■■ Explore implementation options related to iterators.

Iterators 16

M16_LEWI5976_05_SE_C16.indd 605 08/02/19 3:02 AM

606 CHAPTER 16 Iterators

16.1 What’s an Iterator?

An iterator is an object that allows the user to acquire and use each element in a
collection one at a time. It works in conjunction with a collection but is a separate
object. An iterator is a mechanism for accessing the elements of a collection.

Embracing the concept of an iterator consistently over the imple-
mentation of multiple collections makes it much easier to process
and manage those collections and the elements they contain. The
Java API has a consistent approach to iterators that are implemented
by nearly all collections in the class library. We will follow this ap-
proach in our own implementations.

You may be asking why we did not include an iterator in our implementation
for Stack and Queue. Consider the purpose of those collections. Access to the ele-
ments in these collections is limited to the elements at the end of the collections.
An iterator allows access to all of the elements of a collection and would therefore
violate the premise of either a Stack or a Queue. We should point out, however,
that the Java API implementations for both Stack and Queue do provide iterators.

Iterators are implemented in the Java API using two primary interfaces:

■■ Iterator – used to define an object that can be used as an iterator.

■■ Iterable – used to define a collection from which an iterator can be extracted.

A collection is Iterable, which commits it to providing an
Iterator when requested. For example, a LinkedList is Iterable,
which means it provides a method called iterator that can be called
to get an iterator over of the elements in the list. The names of the
interfaces make it fairly easy to keep them straight.

The abstract methods defined in these two interfaces are shown in Figures 16.1 and
16.2. Both interfaces operate on a generic type, which is denoted by E in these figures.

Method

boolean hasNext()

E next()

void remove()

Description

Returns true if the iteration has more elements.
Returns the next element in the iteration.
Removes the last element returned by the iteration
from the underlying collection.

FIGURE 16.1 The methods in the Iterator interface

Method

Iterator<E> iterator()

Description

Returns an iterator over a set of elements of type E.

FIGURE 16.2 The methods in the Iterable interface

KEY CONCEPT
A collection is often defined as
Iterable, which means it provides
an Iterator when needed.

KEY CONCEPT
An iterator is an object that provides
a way to access each element in a
collection in turn.

M16_LEWI5976_05_SE_C16.indd 606 08/02/19 3:02 AM

 16.1 What’s an Iterator? 607

The Iterable interface has only one method, called iterator, that returns an
Iterator object. When you create the collection, you commit to the element type,
which is used to define the elements in the iterator.

The Iterator interface contains three methods. The first two, hasNext and
next, can be used in concert to access the elements in turn. For example, if myList
is an ArrayList of Book objects, you could use the following code to print all
books in the list:

Iterator<Book> itr = myList.iterator();
while (itr.hasNext())
 System.out.println(itr.next());

In this example, the first line calls the iterator method of the collection to
obtain the Iterator<Book> object. Then a call to the hasNext method of the
iterator is used as the condition of the while loop. Inside the loop, the next method
of the iterator is called to get the next book. When the iteration is exhausted, the
loop terminates.

It is important to note that next method must be called once and only once
inside the loop. It must be called once in order to advance to the next element in
the collection, otherwise the loop will never terminate. It must be called only once
since each time it is called, it returns the next element in the collection. If the re-
turn value needs to be used in multiple lines, then we should create a local variable
to store the value (e.g., E temp = itr.next()).

The remove operation of the Iterator interface is provided as a convenience
to allow you to remove an element from a collection while iterating over it. The
remove method is considered an optional operation, and not all iterators will
implement it.

Now, you’ve probably realized that you could access the elements of a collec-
tion using a for-each loop as we’ve done in the past. The following code does the
same thing that the previous while loop accomplishes:

for (Book book : myList)
 System.out.println(book);

The for-each code is cleaner and shorter than the while loop code, and it will
often be the technique you’ll want to use. But you should be aware that both of
these examples are using iterators. Java provides the for-each construct specifi-
cally to simplify the processing of iterators. Behind the scenes, the for-each code is
translated into code that explicitly calls the iterator methods.

In fact, you can use a for-each loop only on an Iterable collection. Most of
the collections in the Java API are Iterable, and you can define your own collec-
tion objects to be Iterable as well.

M16_LEWI5976_05_SE_C16.indd 607 08/02/19 3:02 AM

608 CHAPTER 16 Iterators

So why would you ever use an explicit iterator with a while loop instead of
the cleaner for-each loop? Well, there are two basic reasons. First, you may not
want to process all elements in the iteration. If you’re looking for a particular
element, for example, and do not wish to process them all, you may choose to
use an explicit iterator. (You could break out of the loop, but that may not be
as clean.)

You may also choose to use an explicit iterator if you want to call the iterator’s
remove method. The for-each loop does not provide explicit access to the iterator, so

the only way you could do it would be to call the remove method of the
collection, and that would cause a completely separate traversal of the col-
lection data structure in order to reach the element (again) to remove it. It
would also most likely result in a ConcurrentModificationException,
since most iterators do not allow the underlying collection to be modi-
fied while the iterator is in use.

Other Iterator Issues
We should note a couple of other issues to point out related to iterators before
we continue. First, there is no assumption about the order in which an Iterator

object delivers the elements from the collection. In the case of a list,
there is a linear order to the elements, so the iterator would probably
follow that order. In other cases, an iterator may follow a different
order that makes sense for that collection and its underlying data
structures. Read the API documentation carefully before making any
assumptions about how an iterator delivers its elements.

Second, you should be aware that there is an intimate relationship
between an iterator and its collection. An iterator references elements that are still
stored in the collection. Therefore, while an iterator is in use there are at least two
objects with references to the element objects. Because of this relationship, the

structure of the underlying collection should not be modified while
an iterator on that collection is actively being used.

Embracing this assumption, most of the iterators provided by col-
lections in the Java API are implemented to be fail-fast, which means
that they will throw a ConcurrentModificationException if the
collection is modified while an iterator is active. The idea is that the

iterator will fail quickly and cleanly, rather than permitting a problem to be intro-
duced that won’t be discovered until some unknown point in the future. Iterators
that are fail-fast are implemented so that they will fail on the next access to the
iterator after the modification is made. We will discuss how this is accomplished
in our implementations below.

KEY CONCEPT
Most iterators are fail-fast, and will
throw an exception if the collection is
modified while an iterator is active.

KEY CONCEPT
You should make no assumptions about
the order in which an iterator delivers
elements unless it is explicitly stated.

KEY CONCEPT
The optional remove method of an
iterator makes it possible to remove
an element without having to traverse
the collection again.

M16_LEWI5976_05_SE_C16.indd 608 08/02/19 3:02 AM

 16.2 Using Iterators: Program of Study Revisited 609

16.2 Using Iterators: Program of Study Revisited

In Chapter 15 we examined a program that created Iterators can be useful in cre-
ating a program of study for a student, consisting of a list of the courses the stu-
dent has taken and is planning to take. Recall that a Course object stores course
information such as the number and title, as well as the grade the student received
if the course has already been taken.

The ProgramOfStudy class maintains an unordered list of Course objects. In
Chapter 15 we examined various aspects of this class. Now we will focus on
aspects of it that pertain to iterators. The ProgramOfStudy class is reprinted in
Listing 16.1 for convenience.

Note first that the ProgramOfStudy class implements the Iterable interface
using the Course class as the generic type. As discussed in the previous section,
that commits this class to implementing an iterator method, which returns an
Iterator object for the program of study. In this implementation, the iterator
method simply returns the Iterator object obtained from the LinkedList object
that stores the courses.

Thus a ProgramOfStudy object is Iterable, and the LinkedList it uses to
store the Course objects is Iterable as well. We’ll see both in use.

L I S T I N G 1 6 . 1

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;

/**
 * Represents a Program of Study, a list of courses taken and planned, for an
 * individual student.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class ProgramOfStudy implements Iterable<Course>, Serializable
{
 private List<Course> list;

M16_LEWI5976_05_SE_C16.indd 609 08/02/19 3:02 AM

610 CHAPTER 16 Iterators

 /**
 * Constructs an initially empty Program of Study.
 */
 public ProgramOfStudy()
 {
 list = new LinkedList<Course>();
 }

 /**
 * Adds the specified course to the end of the course list.
 *
 * @param course the course to add
 */
 public void addCourse(Course course)
 {
 if (course != null)
 list.add(course);
 }

 /**
 * Finds and returns the course matching the specified prefix and number.
 *
 * @param prefix the prefix of the target course
 * @param number the number of the target course
 * @return the course, or null if not found
 */
 public Course find(String prefix, int number)
 {
 for (Course course: list)
 if (prefix.equals(course.getPrefix()) &&
 number == course.getNumber())
 return course;
 return null;
 }

 /**
 * Adds the specified course after the target course. Does nothing if
 * either course is null or if the target is not found.
 *
 * @param target the course after which the new course will be added
 * @param newCourse the course to add
 */
 public void addCourseAfter(Course target, Course newCourse)
 {
 if (target == null || newCourse == null)
 return;

L I S T I N G 1 6 . 1 continued

M16_LEWI5976_05_SE_C16.indd 610 08/02/19 3:02 AM

 16.2 Using Iterators: Program of Study Revisited 611

 int targetIndex = list.indexOf(target);
 if (targetIndex != -1)
 list.add(targetIndex + 1, newCourse);
 }

 /**
 * Replaces the specified target course with the new course. Does nothing if
 * either course is null or if the target is not found.
 *
 * @param target the course to be replaced
 * @param newCourse the new course to add
 */
 public void replace(Course target, Course newCourse)
 {
 if (target == null || newCourse == null)
 return;
 int targetIndex = list.indexOf(target);
 if (targetIndex != -1)
 list.set(targetIndex, newCourse);
 }

 /**
 * Creates and returns a string representation of this Program of Study.
 *
 * @return a string representation of the Program of Study
 */
 public String toString()
 {
 String result = "";
 for (Course course: list)
 result += course + "\n";
 return result;
 }

 /**
 * Returns an iterator for this Program of Study.
 *
 * @return an iterator for the Program of Study
 */
 public Iterator<Course> iterator()
 {
 return list.iterator();
 }

 /**
 * Saves a serialized version of this Program of Study to the specified

L I S T I N G 1 6 . 1 continued

M16_LEWI5976_05_SE_C16.indd 611 08/02/19 3:02 AM

612 CHAPTER 16 Iterators

 * file name.
 *
 * @param fileName the file name under which the POS will be stored
 * @throws IOException
 */
 public void save(String fileName) throws IOException
 {
 FileOutputStream fos = new FileOutputStream(fileName);
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(this);
 oos.flush();
 oos.close();
 }

 /**
 * Loads a serialized Program of Study from the specified file.
 *
 * @param fileName the file from which the POS is read
 * @return the loaded Program of Study
 * @throws IOException
 * @throws ClassNotFoundException
 */
 public static ProgramOfStudy load(String fileName) throws IOException,
 ClassNotFoundException
 {
 FileInputStream fis = new FileInputStream(fileName);
 ObjectInputStream ois = new ObjectInputStream(fis);
 ProgramOfStudy pos = (ProgramOfStudy) ois.readObject();
 ois.close();

 return pos;
 }
}

L I S T I N G 1 6 . 1 continued

Consider the toString method in the ProgramOfStudy class. It uses a for-
each loop on the linked list to scan through the list and append the description of
each course to the overall description. It can do this only because the LinkedList
class is Iterable.

The find method of ProgramOfStudy is similar in that it uses a for-each loop
to scan through the list of Course objects. In this case, however, the return state-
ment jumps out of the loop (and the method) as soon as the target course is found.

M16_LEWI5976_05_SE_C16.indd 612 08/02/19 3:02 AM

 16.2 Using Iterators: Program of Study Revisited 613

Printing Certain Courses
Now let’s examine a driver program that exercises our program of study in a new
way. Listing 16.2 contains a main method that first reads a previously created
ProgramOfStudy object stored in a file. (Recall that the ProgramOfStudy class
uses serialization to store the list of courses.) Then, after printing the entire list, it
prints only those courses that have been taken and in which the student received
a grade of A or A–.

Note that a for-each loop is used to examine each course and print only those
with high grades. That loop iterates over the ProgramOfStudy object called pos.
This is possible only because the ProgramOfStudy class is Iterable.

L I S T I N G 1 6 . 2

/**
 * Demonstrates the use of an Iterable object (and the technique for reading
 * a serialized object from a file).
 *
 * @author Java Foundations
 */
public class POSGrades
{
 /**
 * Reads a serialized Program of Study, then prints all courses in which
 * a grade of A or A- was earned.
 */
 public static void main(String[] args) throws Exception
 {
 ProgramOfStudy pos = ProgramOfStudy.load("ProgramOfStudy");

 System.out.println(pos);

 System.out.println("Classes with Grades of A or A-\n");

 for (Course course: pos)
 {
 if (course.getGrade().equals("A") || course.getGrade().equals("A-"))
 System.out.println(course);
 }
 }
}

M16_LEWI5976_05_SE_C16.indd 613 08/02/19 3:02 AM

614 CHAPTER 16 Iterators

Removing Courses
Listing 16.3 contains yet another driver program. This example removes, from a
program of study, any course that doesn’t already have a grade. After an existing
ProgramOfStudy object is read from a file and printed, each course is examined
in turn, and if it has no grade, it is removed from the list.

This time, however, a for-each loop is not used to iterate over the Course
objects. Instead, the iterator method of the ProgramOfStudy object is called
explicitly, which returns an Iterator object. Then, using the hasNext and next
methods of the iterator, a while loop is used to iterate over the courses. An explicit
iterator is used in this case because of the remove operation. To remove a Course
object, we call the remove method of the iterator. If we had done this in a for-
each loop, we would have triggered a ConcurrentModificationException, as
discussed in the first section of this chapter.

L I S T I N G 1 6 . 3

import java.util.Iterator;

/**
 * Demonstrates the use of an explicit iterator.
 *
 * @author Java Foundations
 */
public class POSClear
{
 /**
 * Reads a serialized Program of Study, then removes all courses that
 * don’t have a grade.
 */
 public static void main(String[] args) throws Exception
 {
 ProgramOfStudy pos = ProgramOfStudy.load("ProgramOfStudy");

 System.out.println(pos);

 System.out.println("Removing courses with no grades.\n");

 Iterator<Course> itr = pos.iterator();
 while (itr.hasNext())
 {
 Course course = itr.next();

M16_LEWI5976_05_SE_C16.indd 614 08/02/19 3:02 AM

 16.3 Implementing Iterators: With Arrays 615

16.3 Implementing Iterators: With Arrays

In Chapter 15 we explored the implementation of an array-based list. One
thing we didn’t show then was the implementation of the iterator for our own
ArrayList class. Let’s explore it now.

Listing 16.4 contains the ArrayListIterator class. It’s defined as
a private class, and therefore would actually be an inner class, part of
the ArrayList class from Chapter 15. This is an appropriate use for
an inner class, which has an intimate relationship with its outer class.

The ArrayListIterator class maintains two integers: one for
the index of the current element in the iteration, and one to keep
track of the number of modifications to the underlying collection. The constructor
sets current to 0 (the first element in the array) and the iteratorModCount to be
equal to the modCount of the collection itself.

The modCount variable is an integer defined in the outer ArrayList class. If you
go back to Chapter 15, you’ll see that anytime the collection was modified (such
as something being added to the collection), the modCount was incremented. So
when a new iterator is created, its modification count is set equal to the count of
the collection itself. If those two values get out of synch (because the collection was
updated), then the iterator will throw a ConcurrentModificationException.

The hasNext method checks the modification count and then
returns true if there are still elements to process, which in this
case is true if the current iterator index is less than the rear
counter. Recall that the rear counter is maintained by the outer
collection class.

KEY CONCEPT
An iterator class is often implemented
as an inner class of the collection to
which it belongs.

 if (!course.taken())
 itr.remove();
 }

 System.out.println(pos);

 pos.save("ProgramOfStudy");
 }
}

L I S T I N G 1 6 . 3 continued

KEY CONCEPT
An iterator checks the modification
count to ensure that it stays consistent
with the mod count from the collection
when it was created.

M16_LEWI5976_05_SE_C16.indd 615 08/02/19 3:02 AM

616 CHAPTER 16 Iterators

L I S T I N G 1 6 . 4

/**
 * ArrayListIterator iterator over the elements of an ArrayList.
 */
private class ArrayListIterator implements Iterator<T>
{
 int iteratorModCount;
 int current;

 /**
 * Sets up this iterator using the specified modCount.
 *
 * @param modCount the current modification count for the ArrayList
 */
 public ArrayListIterator()
 {
 iteratorModCount = modCount;
 current = 0;
 }

 /**
 * Returns true if this iterator has at least one more element
 * to deliver in the iteration.
 *
 * @return true if this iterator has at least one more element to deliver
 * in the iteration
 * @throws ConcurrentModificationException if the collection has changed
 * while the iterator is in use
 */
 public boolean hasNext() throws ConcurrentModificationException
 {
 if (iteratorModCount != modCount)
 throw new ConcurrentModificationException();
 return (current < rear);
 }

 /**
 * Returns the next element in the iteration. If there are no
 * more elements in this iteration, a NoSuchElementException is
 * thrown.
 *
 * @return the next element in the iteration
 * @throws NoSuchElementException if an element not found exception occurs
 * @throws ConcurrentModificationException if the collection has changed
 */

M16_LEWI5976_05_SE_C16.indd 616 08/02/19 3:02 AM

 16.4 Implementing Iterators: With Links 617

The next method returns the next element in the iteration and increments the
current index value. If the next method is invoked and there are no elements left
to process, then a NoSuchElementException is thrown.

In this implementation of the iterator, the remove operation is not sup-
ported (remember, it’s considered optional). If this method is called, then an
UnsupportedOperationException is thrown.

16.4 Implementing Iterators: With Links

Similarly, an iterator for a collection using links can also be defined. Like the
ArrayListIterator class, the LinkedListIterator class is implemented as a
private inner class. The LinkedList outer class maintains its own modCount that
must stay in synch with the iterator’s stored value.

 public T next() throws ConcurrentModificationException
 {
 if (!hasNext())
 throw new NoSuchElementException();

 current++;

 return list[current - 1];
 }

 /**
 * The remove operation is not supported in this collection.
 *
 * @throws UnsupportedOperationException if the remove method is called
 */
 public void remove() throws UnsupportedOperationException
 {
 throw new UnsupportedOperationException();
 }
}

L I S T I N G 1 6 . 4 continued

M16_LEWI5976_05_SE_C16.indd 617 08/02/19 3:02 AM

618 CHAPTER 16 Iterators

In this iterator, though, the value of current is a pointer to a LinearNode in-
stead of an integer index value. The hasNext method, therefore, simply confirms
that current is pointing to a valid node. The next method returns the element at
the current node and moves the current reference to the next node. As with our
ArrayListIterator, the remove method is not supported.

L I S T I N G 1 6 . 5

/**
 * LinkedListIterator represents an iterator for a linked list of linear nodes.
 */
private class LinkedListIterator implements Iterator<T>
{
 private int iteratorModCount; // the number of elements in the collection
 private LinearNode<T> current; // the current position
 /**
 * Sets up this iterator using the specified items.
 *
 * @param collection the collection the iterator will move over
 * @param size the integer size of the collection
 */
 public LinkedListIterator()
 {
 current = head;
 iteratorModCount = modCount;
 }

 /**
 * Returns true if this iterator has at least one more element
 * to deliver in the iteration.
 *
 * @return true if this iterator has at least one more element to deliver
 * in the iteration
 * @throws ConcurrentModificationException if the collection has changed
 * while the iterator is in use
 */
 public boolean hasNext() throws ConcurrentModificationException
 {
 if (iteratorModCount != modCount)
 throw new ConcurrentModificationException();

 return (current != null);
 }

M16_LEWI5976_05_SE_C16.indd 618 08/02/19 3:02 AM

 16.4 Implementing Iterators: With Links 619

 /**
 * Returns the next element in the iteration. If there are no
 * more elements in this iteration, a NoSuchElementException is
 * thrown.
 *
 * @return the next element in the iteration
 * @throws NoSuchElementException if the iterator is empty
 */
 public T next() throws ConcurrentModificationException
 {
 if (!hasNext())
 throw new NoSuchElementException();
 T result = current.getElement();
 current = current.getNext();
 return result;
 }

 /**
 * The remove operation is not supported.
 *
 * @throws UnsupportedOperationException if the remove operation is called
 */
 public void remove() throws UnsupportedOperationException
 {
 throw new UnsupportedOperationException();
 }
}

L I S T I N G 1 6 . 5 continued

M16_LEWI5976_05_SE_C16.indd 619 08/02/19 3:02 AM

620 CHAPTER 16 Iterators

Summary of Key Concepts

■■ An iterator is an object that provides a way to access each element in a
 collection in turn.

■■ A collection is often defined as Iterable, which means it provides an
Iterator when needed.

■■ The optional remove method of an iterator makes it possible to remove an
element without having to traverse the collection again.

■■ Most iterators are fail-fast and will throw an exception if the collection is
modified while an iterator is active.

■■ You should make no assumptions about the order in which an iterator deliv-
ers elements unless it is explicitly stated.

■■ An iterator class is often implemented as an inner class of the collection to
which it belongs.

■■ An iterator checks the modification count to ensure that it stays consistent
with the mod count from the collection when it was created.

Summary of Terms
iterator An object that allows the user to acquire and use each element in
the collection one at a time.

fail-fast An iterator that throws an exception if its collection is modified in
any way except through the iterator itself.

Self-Review Questions
SR 16.1 What is an iterator?

SR 16.2 What does the Iterable interface represent?

SR 16.3 What does the Iterator interface represent?

SR 16.4 What is the relationship between a for-each loop and iterators?

SR 16.5 Why might you need to use an explicit iterator instead of a for-
each loop?

SR 16.6 What does it mean for an iterator to be fail-fast?

SR 16.7 How is the fail-fast characteristic implemented?

M16_LEWI5976_05_SE_C16.indd 620 08/02/19 3:02 AM

Exercises
EX 16.1 Write a for-each loop that prints all elements in a collection of

Student objects called role. What is required for that loop to
work?

EX 16.2 Write a while loop that uses an explicit iterator to accomplish the
same thing as Exercise 16.1.

EX 16.3 Write a for-each loop that calls the addInterest method on each
BankAccount object in a collection called accounts. What is
required for that loop to work?

EX 16.4 Write a while loop that uses an explicit iterator to accomplish the
same thing as Exercise 16.3.

Answers to Self-Review Questions
SRA 16.1 An iterator is an object that is used to process each element in a

collection one at a time.

SRA 16.2 The Iterable interface is implemented by a collection to
formally commit to providing an iterator when it is needed.

SRA 16.3 The Iterator interface is implemented by an interface and pro-
vides methods for checking for, accessing, and removing elements.

SRA 16.4 A for-each loop can be used only with collections that implement
the Iterable interface. It is a syntactic simplification that can
also be accomplished using an iterator explicitly.

SRA 16.5 You may need to use an explicit iterator rather than a for-each
loop if you don’t plan on processing all elements in a collection or
if you may use the iterator’s remove method.

SRA 16.6 A fail-fast iterator will fail quickly and cleanly if the underlying
collection has been modified by something other than the iterator
itself.

SRA 16.7 An iterator notes the modification count of the collection
when it is created and on subsequent operations makes sure
that that value hasn’t changed. If it has, the iterator throws a
ConcurrentModificationException.

 Answers to Self-Review Questions 621

M16_LEWI5976_05_SE_C16.indd 621 08/02/19 3:02 AM

623

17
Recursion is a powerful programming technique that pro-

vides elegant solutions to certain problems. It is particularly

helpful in the implementation of various data structures and

in the process of searching and sorting data. This chapter

provides an introduction to recursive processing. It contains

an explanation of the basic concepts underlying recursion

and then explores the use of recursion in programming.

C H A P T E R O B J E C T I V E S
■■ Explain the underlying concepts of recursion.

■■ Examine recursive methods and unravel their processing steps.

■■ Define infinite recursion and discuss ways to avoid it.

■■ Explain when recursion should and should not be used.

■■ Demonstrate the use of recursion to solve problems.

Recursion 17

M17_LEWI5976_05_SE_C17.indd 623 08/02/19 3:04 AM

624 CHAPTER 17 Recursion

17.1 Recursive Thinking

We know that one method can call another method to help it accomplish its goal.
Similarly, a method can also call itself to help accomplish its goal. Recursion is

a programming technique in which a method calls itself to fulfill its
overall purpose.

Before we get into the details of how we use recursion in a pro-
gram, we need to explore the general concept of recursion. The abil-
ity to think recursively is essential to being able to use recursion as a
programming technique.

In general, recursion is the process of defining something in terms of itself. For
example, consider the following definition of the word decoration:

decoration: n. any ornament or adornment used to decorate something

The word decorate is used to define the word decoration. You may recall
your grade-school teacher telling you to avoid such recursive definitions when
explaining the meaning of a word. However, in many situations, recursion is an
appropriate way to express an idea or definition. For example, suppose we want
to formally define a list of one or more numbers, separated by commas. Such a
list can be defined recursively either as a number or as a number followed by a
comma followed by a list. This definition can be expressed as follows:

A list is a: number

or a: number comma list

This recursive definition of a list defines each of the following lists of numbers:

24, 88, 40, 37
96, 43
14, 64, 21, 69, 32, 93, 47, 81, 28, 45, 81, 52, 69
70

No matter how long a list is, the recursive definition describes it. A list of one
element, such as in the last example, is defined completely by the first (nonrecur-
sive) part of the definition. For any list longer than one element, the recursive part
of the definition (the part that refers to itself) is used as many times as necessary,
until the last element is reached. The last element in the list is always defined by
the nonrecursive part of this definition. Figure 17.1 shows how one particular list
of numbers corresponds to the recursive definition of list.

Infinite Recursion
Note that this definition of a list contains one option that is recursive, and one
option that is not. The part of the definition that is not recursive is called the base
case. If all options had a recursive component, then the recursion would never end.

KEY CONCEPT
Recursion is a programming technique
in which a method calls itself. A key to
being able to program recursively is to
be able to think recursively.

M17_LEWI5976_05_SE_C17.indd 624 08/02/19 3:04 AM

 17.1 Recursive Thinking 625

For example, if the definition of a list were simply “a number followed
by a comma followed by a list,” then no list could ever end. This prob-
lem is called infinite recursion. It is similar to an infinite loop, except
that the “loop” occurs in the definition itself.

As in the infinite loop problem, a programmer must be careful to
design algorithms so that they avoid infinite recursion. Any recursive
definition must have a base case that does not result in a recursive option. The
base case of the list definition is a single number that is not followed by anything.
In other words, when the last number in the list is reached, the base case option
terminates the recursive path.

Recursion in Math
Let’s look at an example of recursion in mathematics. The value referred to as
N! (which is pronounced N factorial) is defined for any positive integer N as the
product of all integers between 1 and N inclusive. Therefore,

3! = 3*2*1 = 6

and

5! = 5*4*3*2*1 = 120

Mathematical formulas are often expressed recursively. The definition of N!
can be expressed recursively as

1! = 1
N! = N * (N-1)! for N > 1

KEY CONCEPT
Any recursive definition must have
a nonrecursive part, called the base
case, that permits the recursion to
eventually end.

LIST: number comma LIST

number comma LIST

number comma LIST

number

7342 88,

88

40,

37

37

37

40,

40

,

,

,

FIGURE 17.1 Tracing the recursive definition of a list

M17_LEWI5976_05_SE_C17.indd 625 08/02/19 3:04 AM

626 CHAPTER 17 Recursion

COMMON ERROR

A common error made by programmers new to recursion is to provide
an incomplete base case. The reason why the base case for the factorial
problem (N = 1) works is that factorial is defined only for positive integers.
A common error would be to set a base case of N = 1 when there is some
possibility that N could be less than 1. It is important to account for all of the
possibilities: N 7 1, N = 1, and N 6 1.

The base case of this definition is 1!, which is defined to be 1. All
other values of N! (for N 7 1) are defined recursively as N times the
value (N-1)!. The recursion is that the factorial function is defined in
terms of the factorial function.

KEY CONCEPT
Mathematical problems and formulas
are often expressed recursively.

KEY CONCEPT
Each recursive call to a method creates
new local variables and parameters.

Using this definition, 50! is equal to 50 * 49!. And 49! is equal to 49 * 48!. And
48! is equal to 48 * 47!. This process continues until we get to the base case of 1.
Because N! is defined only for positive integers, this definition is complete and will
always conclude with the base case.

The next section describes how recursion is accomplished in programs.

17.2 Recursive Programming

Let’s use a simple mathematical operation to demonstrate the concepts of recur-
sive programming. Consider the process of summing the values between 1 and N
inclusive, where N is any positive integer. The sum of the values from 1 to N can

be expressed as N plus the sum of the values from 1 to N-1. That
sum can be expressed similarly, as shown in Figure 17.2.

For example, the sum of the values between 1 and 20 is equal to
20 plus the sum of the values between 1 and 19. Continuing this ap-
proach, the sum of the values between 1 and 19 is equal to 19 plus

N

i

N–1

N 2 1

N 2 1 N 2 2

i

i 5 1

5 51 1 1N

5

5

1 1 1

1 1 1

N

N 2 1 N 2 2 2 11 1N

N
N–2

i

i 5 1

i 5 1

i 5 1

N–3

i
...

. . .

© © ©

©

FIGURE 17.2 The sum of the numbers 1 through N, defined recursively

M17_LEWI5976_05_SE_C17.indd 626 08/02/19 3:04 AM

 17.2 Recursive Programming 627

the sum of the values between 1 and 18. This may sound like a strange way to
think about this problem, but it is a straightforward example that can be used to
demonstrate how recursion is programmed.

In Java, as in many other programming languages, a method can call itself.
Each call to the method creates a new environment in which to work. That is, all
local variables and parameters are newly defined with their own unique data space
every time the method is called. Each parameter is given an initial value based on
the new call. Each time a method terminates, processing returns to the method
that called it (which may be an earlier invocation of the same method). These rules
are no different from those governing any “regular” method invocation.

A recursive solution to the summation problem is defined by the following re-
cursive method called sum:

// This method returns the sum of 1 to num

public int sum(int num)
{
 int result;
 if (num == 1)
 result = 1;
 else
 result = num + sum(num-1);
 return result;
}

Note that this method essentially embodies our recursive definition that the
sum of the numbers between 1 and N is equal to N plus the sum of the numbers
between 1 and N–1. The sum method is recursive because sum calls itself. The
parameter passed to sum is decremented each time sum is called, until it reaches
the base case of 1. Recursive methods usually contain an if-else statement, with
one of the branches representing the base case.

public int sum (int num)

{

 …

 result = num + sum(num-1);

 …

}

Recursive Call

calling a method within itself with a

different parameter value

M17_LEWI5976_05_SE_C17.indd 627 08/02/19 3:04 AM

628 CHAPTER 17 Recursion

Suppose the main method calls sum, passing it an initial value of 1,
which is stored in the parameter num. Because num is equal to 1, the
result of 1 is returned to main, and no recursion occurs.

Now let’s trace the execution of the sum method when it is passed
an initial value of 2. Because num does not equal 1, sum is called again

with an argument of num-1, or 1. This is a new call to the method sum, with a new
parameter num and a new local variable result. Because this num is equal to 1 in
this invocation, the result of 1 is returned without further recursive calls. Control re-
turns to the first version of sum that was invoked. The return value of 1 is added to
the initial value of num in that call to sum, which is 2. Therefore, result is assigned
the value 3, which is returned to the main method. The method called from main
correctly calculates the sum of the integers from 1 to 2 and returns the result of 3.

The base case in the summation example is when num equals 1, at which point
no further recursive calls are made. The recursion begins to fold back into the
earlier versions of the sum method, returning the appropriate value each time.
Each return value contributes to the computation of the sum at the higher level.
Without the base case, infinite recursion would result. Because each call to a
method requires additional memory space, infinite recursion often results in a
run-time error indicating that memory has been exhausted.

Trace the sum function with different initial values of num until this processing
becomes familiar. Figure 17.3 illustrates the recursive calls when main invokes
sum to determine the sum of the integers from 1 to 4. Each box represents a copy
of the method as it is invoked, indicating the allocation of space to store the for-
mal parameters and any local variables. Invocations are shown as solid lines, and

KEY CONCEPT
A careful trace of recursive processing
can provide insight into the way it is
used to solve a problem.

main

sum
sum(4)

result = 4 + sum(3)

sum
sum(3)

result = 3 + sum(2)

sum
sum(2)

result = 2 + sum(1)

sum
sum(1)

result = 1

FIGURE 17.3 Recursive calls to the sum method

M17_LEWI5976_05_SE_C17.indd 628 08/02/19 3:04 AM

 17.2 Recursive Programming 629

returns are shown as dotted lines. The return value result is shown at each step.
The recursive path is followed completely until the base case is reached; then the
calls begin to return their result up through the chain.

Recursion versus Iteration
Of course, there is an iterative solution to the summation problem we just explored:

sum = 0;
for (int number = 1; number <= num; number++)
 sum += number;

This solution is certainly more straightforward than the recursive version. If
you recall our discussion from Chapter 11, we also learned that the sum of the
numbers from 1 to N can be computed in a single step:

sum = num * (num + 1) / 2;

It is important to know when recursion provides an appropriate
solution to a problem. We used the summation problem to demon-
strate recursion because it is a simple problem to understand, not
because one would use recursion to solve it under normal conditions.
Recursion has the overhead of multiple method invocations and, in
this case, presents a more complicated solution than either its itera-
tive or its computational counterparts.

A programmer must learn when to use recursion and when not to use it.
Determining which approach is best is another important software engineering
decision that depends on the problem being solved. All problems that can be
solved recursively can also be solved in an iterative manner, but in some cases the
iterative version is much more complicated. For some problems, recursion enables
us to create relatively short, elegant programs.

Direct versus Indirect Recursion
Direct recursion occurs when a method invokes itself, such as when sum calls
sum. Indirect recursion occurs when a method invokes another method, even-
tually resulting in the original method being invoked again. For example, if
method m1 invokes method m2, and m2 invokes method m1, we can say that m1
is indirectly recursive. The amount of indirection could be several levels deep,
as when m1 invokes m2, which invokes m3, which invokes m4, which invokes m1.
Figure 17.4 depicts a situation that involves indirect recursion. Method invoca-
tions are shown with solid lines, and returns are shown with dotted lines. The
entire invocation path is followed, and then the recursion unravels following the
return path.

KEY CONCEPT
Recursion is the most elegant and
appropriate way to solve some
problems, but for others it is less
intuitive than an iterative solution.

M17_LEWI5976_05_SE_C17.indd 629 08/02/19 3:04 AM

630 CHAPTER 17 Recursion

Indirect recursion requires paying just as much same attention to base cases
as direct recursion does. Furthermore, indirect recursion can be more difficult to
trace because of the intervening method calls. Therefore, extra care is warranted
when designing or evaluating indirectly recursive methods. Ensure that the indi-
rection is truly necessary and that it is clearly explained in documentation.

17.3 Using Recursion

The following sections describe problems that we solve using a recursive technique.
For each one, we examine exactly how recursion plays a role in the solution and
how a base case is used to terminate the recursion. As you explore these examples,
consider how complicated a nonrecursive solution for each problem would be.

Traversing a Maze
As we discussed in Chapter 13, solving a maze involves a great deal of trial and
error: following a path, backtracking when you cannot go farther, and trying
other, untried options. Such activities often are handled nicely using recursion. In
Chapter 13, we solved this problem iteratively using a stack to keep track of our
potential moves. However, we can also solve this problem recursively by using the
run-time stack to keep track of our progress. The MazeTester program shown in
Listing 17.1 creates a Maze object and attempts to traverse it.

The Maze class, shown in Listing 17.2, uses a two-dimensional array of integers
to represent the maze. The maze is loaded from a file. The goal is to move from
the top left corner (the entry point) to the bottom right corner (the exit point).

m1 m2

m1 m2 m3

m3

m1 m2 m3

FIGURE 17.4 Indirect recursion

M17_LEWI5976_05_SE_C17.indd 630 08/02/19 3:04 AM

 17.3 Using Recursion 631

Initially, a 1 indicates a clear path, and a 0 indicates a blocked path. As the maze
is solved, these array elements are changed to other values to indicate attempted
paths and, ultimately, a successful path through the maze if one exists. Figure 17.5
shows the UML description of this solution.

Maze

numberRows : int
numberColumns : int
grid : int [][]

tryPosition(int row : int col) : void
getRows() : int
getColumns() : int
markPath(int row : int col) : void
validPosition(int row : int col) : boolean
toString() : String

MazeSolver

maze : Maze

traverse(int row : int column) : boolean

MazeTester

main(String[] args)

FIGURE 17.5 UML description of the maze-solving program

L I S T I N G 1 7 . 1

import java.util.*;
import java.io.*;

/**
 * MazeTester uses recursion to determine if a maze can be traversed.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class MazeTester
{
 /**
 * Creates a new maze, prints its original form, attempts to
 * solve it, and prints out its final form.
 */
 public static void main(String[] args) throws FileNotFoundException
 {
 Scanner scan = new Scanner(System.in);
 System.out.print("Enter the name of the file containing the maze: ");
 String filename = scan.nextLine();

M17_LEWI5976_05_SE_C17.indd 631 08/02/19 3:04 AM

632 CHAPTER 17 Recursion

 Maze labyrinth = new Maze(filename);
 System.out.println(labyrinth);

 MazeSolver solver = new MazeSolver(labyrinth);

 if (solver.traverse(0, 0))
 System.out.println("The maze was successfully traversed!");
 else
 System.out.println("There is no possible path.");
 System.out.println(labyrinth);
 }
}

L I S T I N G 1 7 . 1 continued

L I S T I N G 1 7 . 2

import java.util.*;
import java.io.*;

/**
 * Maze represents a maze of characters. The goal is to get from the
 * top left corner to the bottom right, following a path of 1’s. Arbitrary
 * constants are used to represent locations in the maze that have been TRIED
 * and that are part of the solution PATH.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class Maze
{
 private static final int TRIED = 2;
 private static final int PATH = 3;

 private int numberRows, numberColumns;
 private int[][] grid;

 /**
 * Constructor for the Maze class. Loads a maze from the given file.
 * Throws a FileNotFoundException if the given file is not found.
 *

M17_LEWI5976_05_SE_C17.indd 632 08/02/19 3:04 AM

 17.3 Using Recursion 633

 * @param filename the name of the file to load
 * @throws FileNotFoundException if the given file is not found
 */
 public Maze(String filename) throws FileNotFoundException
 {
 Scanner scan = new Scanner(new File(filename));
 numberRows = scan.nextInt();
 numberColumns = scan.nextInt();

 grid = new int[numberRows][numberColumns];
 for (int i = 0; i < numberRows; i++)
 for (int j = 0; j < numberColumns; j++)
 grid[i][j] = scan.nextInt();
 }

 /**
 * Marks the specified position in the maze as TRIED
 *
 * @param row the index of the row to try
 * @param col the index of the column to try
 */
 public void tryPosition(int row, int col)
 {
 grid[row][col] = TRIED;
 }

 /**
 * Return the number of rows in this maze
 *
 * @return the number of rows in this maze
 */
 public int getRows()
 {
 return grid.length;
 }

 /**
 * Return the number of columns in this maze
 *
 * @return the number of columns in this maze
 */
 public int getColumns()

L I S T I N G 1 7 . 2 continued

M17_LEWI5976_05_SE_C17.indd 633 08/02/19 3:04 AM

634 CHAPTER 17 Recursion

 {
 return grid[0].length;
 }

 /**
 * Marks a given position in the maze as part of the PATH
 *
 * @param row the index of the row to mark as part of the PATH
 * @param col the index of the column to mark as part of the PATH
 */
 public void markPath(int row, int col)
 {
 grid[row][col] = PATH;
 }

 /**
 * Determines if a specific location is valid. A valid location
 * is one that is on the grid, is not blocked, and has not been TRIED.
 *
 * @param row the row to be checked
 * @param column the column to be checked
 * @return true if the location is valid
 */
 public boolean validPosition(int row, int column)
 {
 boolean result = false;

 // check if cell is in the bounds of the matrix

 if (row >= 0 && row < grid.length &&
 column >= 0 && column < grid[row].length)

 // check if cell is not blocked and not previously tried

 if (grid[row][column] == 1)
 result = true;

 return result;
 }

 /**
 * Returns the maze as a string.
 *
 * @return a string representation of the maze
 */

L I S T I N G 1 7 . 2 continued

M17_LEWI5976_05_SE_C17.indd 634 08/02/19 3:04 AM

 17.3 Using Recursion 635

The only valid moves through the maze are in the four primary directions:
down, right, up, and left. No diagonal moves are allowed. Listing 17.3 shows the
MazeSolver class.

Let’s think this through recursively. The maze can be traversed successfully if it
can be traversed successfully from position (0, 0). Therefore, the maze can be tra-
versed successfully if it can be traversed successfully from any position adjacent to
(0, 0)—namely, position (1, 0), position (0, 1), position (-1, 0), or position (0, -1).
Picking a potential next step, say (1, 0), we find ourselves in the same type of situ-
ation as before. To traverse the maze successfully from the new current position,
we must successfully traverse it from an adjacent position. At any point, some of
the adjacent positions may be invalid, may be blocked, or may represent a pos-
sible successful path. We continue this process recursively. If the base case posi-
tion is reached, the maze has been traversed successfully.

The recursive method in the MazeSolver class is called traverse. It returns
a boolean value that indicates whether a solution was found. First the method
determines whether a move to the specified row and column is valid. A move is
considered valid if it stays within the grid boundaries and if the grid contains a 1
in that location, indicating that a move in that direction is not blocked. The initial
call to traverse passes in the upper left location (0, 0).

If the move is valid, the grid entry is changed from a 1 to a 2, marking this
location as visited so that we don’t later retrace our steps. Then the traverse
method determines whether the maze has been completed by having reached the

 public String toString()
 {
 String result = "\n";

 for (int row=0; row < grid.length; row++)
 {
 for (int column=0; column < grid[row].length; column++)
 result += grid[row][column] + "";
 result += "\n";
 }

 return result;
 }
}

L I S T I N G 1 7 . 2 continued

M17_LEWI5976_05_SE_C17.indd 635 08/02/19 3:04 AM

636 CHAPTER 17 Recursion

L I S T I N G 1 7 . 3

/**
 * MazeSolver attempts to recursively traverse a Maze. The goal is to get from the
 * given starting position to the bottom right, following a path of 1’s. Arbitrary
 * constants are used to represent locations in the maze that have been TRIED
 * and that are part of the solution PATH.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class MazeSolver
{
 private Maze maze;

 /**
 * Constructor for the MazeSolver class.
 */
 public MazeSolver(Maze maze)
 {
 this.maze = maze;
 }

 /**
 * Attempts to recursively traverse the maze. Inserts special
 * characters indicating locations that have been TRIED and that
 * eventually become part of the solution PATH.
 *
 * @param row row index of current location
 * @param column column index of current location
 * @return true if the maze has been solved
 */
 public boolean traverse(int row, int column)
 {
 boolean done = false;

 if (maze.validPosition(row, column))
 {
 maze.tryPosition(row, column); // mark this cell as tried

 if (row == maze.getRows()-1 && column == maze.getColumns()-1)
 done = true; // the maze is solved
 else
 {
 done = traverse(row+1, column); // down
 if (!done)
 done = traverse(row, column+1); // right

M17_LEWI5976_05_SE_C17.indd 636 08/02/19 3:04 AM

 17.3 Using Recursion 637

bottom right location. Therefore, there are actually three possibilities of the base
case for this problem that will terminate any particular recursive path:

■■ An invalid move because the move is out of bounds or blocked

■■ An invalid move because the move has been tried before

■■ A move that arrives at the final location

If the current location is not the bottom right corner, we search for a solution
in each of the primary directions, if necessary. First, we look down by recur-
sively calling the traverse method and passing in the new location. The logic
of the traverse method starts all over again using this new position. Either a
solution is ultimately found by first attempting to move down from the current
location, or it is not found. If it’s not found, we try moving right. If that fails, we
try moving up. Finally, if no other direction has yielded a correct path, we try
moving left. If no direction from the current location yields a correct solution,
then there is no path from this location, and traverse returns false. If the very
first invocation of the traverse method returns false, then there is no possible
path through this maze.

If a solution is found from the current location, then the grid entry is changed
to a 3. The first 3 is placed in the bottom right corner. The next 3 is placed in the
location that led to the bottom right corner, and so on until the final 3 is placed
in the upper left corner. Therefore, when the final maze is printed, 0 still indicates
a blocked path, 1 indicates an open path that was never tried, 2 indicates a path
that was tried but failed to yield a correct solution, and 3 indicates a part of the
final solution of the maze.

 if (!done)
 done = traverse(row-1, column); // up
 if (!done)
 done = traverse(row, column-1); // left
 }

 if (done) // this location is part of the final path
 maze.markPath(row, column);
 }

 return done;
 }
}

L I S T I N G 1 7 . 3 continued

M17_LEWI5976_05_SE_C17.indd 637 08/02/19 3:04 AM

638 CHAPTER 17 Recursion

Here are a sample maze input file and its corresponding output:

5 5
1 0 0 0 0
1 1 1 1 0
0 1 0 0 0
1 1 1 1 0
0 1 0 1 1

3 0 0 0 0
3 3 1 1 0
0 3 0 0 0
1 3 3 3 0
0 2 0 3 3

Note that there are several opportunities for recursion in each call to the
traverse method. Any or all of them might be followed, depending on the maze
configuration. Although there may be many paths through the maze, the recursion
terminates when a path is found. Carefully trace the execution of this code while
following the maze array to see how the recursion solves the problem. Then con-
sider the difficulty of producing a nonrecursive solution.

The Towers of Hanoi
The Towers of Hanoi puzzle was invented in the 1880s by Edouard Lucas, a
French mathematician. It has become a favorite among computer scientists be-
cause its solution is an excellent demonstration of recursive elegance.

The puzzle consists of three upright pegs (towers) and a set of disks with holes
in the middle so that they slide onto the pegs. Each disk has a different diameter.
Initially, all of the disks are stacked on one peg in order of size such that the larg-
est disk is on the bottom, as shown in Figure 17.6.

The goal of the puzzle is to move all of the disks from their original (first) peg
to the destination (third) peg. We can use the “extra” peg as a temporary place to
put disks, but we must obey the following three rules:

■■ We can move only one disk at a time.

■■ We cannot place a larger disk on top of a smaller disk.

■■ All disks must be on some peg except for the disk that is in transit between pegs.

FIGURE 17.6 The Towers of Hanoi puzzle

M17_LEWI5976_05_SE_C17.indd 638 08/02/19 3:04 AM

 17.3 Using Recursion 639

These rules imply that we must move smaller disks “out of the way” in order
to move a larger disk from one peg to another. Figure 17.7 shows the step-by-
step solution for the Towers of Hanoi puzzle using three disks. To move all three
disks from the first peg to the third peg, we first have to get to the point where the
smaller two disks are out of the way on the second peg so that the largest disk can
be moved from the first peg to the third peg.

The first three moves shown in Figure 17.7 can be thought of as “moving the
smaller disks out of the way.” The fourth move puts the largest disk in its final place.
The last three moves put the smaller disks in their final place on top of the largest one.

Let’s use this idea to form a general strategy. To move a stack of N disks from
the original peg to the destination peg:

■■ Move the topmost N–1 disks from the original peg to the extra peg.

■■ Move the largest disk from the original peg to the destination peg.

■■ Move the N–1 disks from the extra peg to the destination peg.

This strategy lends itself nicely to a recursive solution. The step to move the N–1
disks out of the way is the same problem all over again: moving a stack of disks.
For this subtask, though, there is one less disk, and our destination peg is what we
were originally calling the extra peg. An analogous situation occurs after we have
moved the largest disk, and we have to move the original N–1 disks again.

Original Configuration Fourth Move

First Move Fifth Move

Second Move Sixth Move

Third Move Seventh and Last Move

FIGURE 17.7 A solution to the three-disk Towers of Hanoi puzzle

M17_LEWI5976_05_SE_C17.indd 639 08/02/19 3:04 AM

640 CHAPTER 17 Recursion

The base case for this problem occurs when we want to move a “stack” that
consists of only one disk. That step can be accomplished directly and without
recursion.

The program in Listing 17.4 creates a TowersOfHanoi object and invokes its
solve method. The output is a step-by-step list of instructions that describes how
the disks should be moved to solve the puzzle. This example uses four disks, which
is specified by a parameter to the TowersOfHanoi constructor.

The TowersOfHanoi class, shown in Listing 17.5, uses the solve method to make
an initial call to moveTower, the recursive method. The initial call indicates that all
of the disks should be moved from peg 1 to peg 3, using peg 2 as the extra position.

L I S T I N G 1 7 . 4

/**
 * SolveTowers uses recursion to solve the Towers of Hanoi puzzle.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class SolveTowers
{
 /**
 * Creates a TowersOfHanoi puzzle and solves it.
 */
 public static void main(String[] args)
 {
 TowersOfHanoi towers = new TowersOfHanoi(4);
 towers.solve();
 }

}

L I S T I N G 1 7 . 5

/**
 * TowersOfHanoi represents the classic Towers of Hanoi puzzle.
 *
 * @author Java Foundations
 * @version 4.0
 */

M17_LEWI5976_05_SE_C17.indd 640 08/02/19 3:04 AM

 17.3 Using Recursion 641

public class TowersOfHanoi
{
 private int totalDisks;

 /**
 * Sets up the puzzle with the specified number of disks.
 *
 * @param disks the number of disks
 */
 public TowersOfHanoi(int disks)
 {
 totalDisks = disks;
 }

 /**
 * Performs the initial call to moveTower to solve the puzzle.
 * Moves the disks from tower 1 to tower 3 using tower 2.
 */
 public void solve()
 {
 moveTower(totalDisks, 1, 3, 2);
 }

 /**
 * Moves the specified number of disks from one tower to another
 * by moving a subtower of n-1 disks out of the way, moving one
 * disk, then moving the subtower back. Base case of 1 disk.
 *
 * @param numDisks the number of disks to move
 * @param start the starting tower
 * @param end the ending tower
 * @param temp the temporary tower
 */
 private void moveTower(int numDisks, int start, int end, int temp)
 {
 if (numDisks == 1)
 moveOneDisk(start, end);
 else
 {
 moveTower(numDisks-1, start, temp, end);
 moveOneDisk(start, end);
 moveTower(numDisks-1, temp, end, start);
 }
 }

L I S T I N G 1 7 . 5 continued

M17_LEWI5976_05_SE_C17.indd 641 08/02/19 3:04 AM

642 CHAPTER 17 Recursion

The moveTower method first considers the base case (a “stack” of one disk).
When that occurs, it calls the moveOneDisk method, which prints a single line
describing that particular move. If the stack contains more than one disk, we
call moveTower again to get the N–1 disks out of the way, then move the largest
disk, then move the N–1 disks to their final destination with yet another call to
moveTower.

Note that the parameters to moveTower describing the pegs are switched around
as needed to move the partial stacks. This code follows our general strategy and
uses the moveTower method to move all partial stacks. Trace the code carefully for
a stack of three disks to understand the processing. Figure 17.8 shows the UML
diagram for this problem.

 /**
 * Prints instructions to move one disk from the specified start
 * tower to the specified end tower.
 *
 * @param start the starting tower
 * @param end the ending tower
 */
 private void moveOneDisk(int start, int end)
 {
 System.out.println("Move one disk from " + start + " to " + end);
 }
}

L I S T I N G 1 7 . 5 continued

TowersOfHanoi

totalDisks : int

solve() : void
moveTower(int numDisks : int start :
int end : int temp) : void
moveOneDisk(int start : int end) : void

SolveTowers

main(String[] args)

FIGURE 17.8 UML description of Towers of Hanoi puzzle solution

M17_LEWI5976_05_SE_C17.indd 642 08/02/19 3:04 AM

 17.4 Analyzing Recursive Algorithms 643

17.4 Analyzing Recursive Algorithms

In Chapter 11, we explored the concept of analyzing an algorithm to determine
its complexity (usually its time complexity) and expressed it in terms of a growth
function. The growth function gave us the order of the algorithm,
which can be used to compare it to other algorithms that accomplish
the same task.

When analyzing a loop, we determined the order of the body of the
loop and multiplied it by the number of times the loop was executed.
Analyzing a recursive algorithm uses similar thinking. Determining
the order of a recursive algorithm is a matter of determining the order of the re-
cursion (the number of times the recursive definition is followed) and multiplying
that by the order of the body of the recursive method.

Consider the recursive method presented in Section 17.2 that computes the sum
of the integers from 1 to some positive value. We reprint it here for convenience:

// This method returns the sum of 1 to num

public int sum (int num)
{
 int result;
 if (num == 1)
 result = 1;
 else
 result = num + sum (num-1);
 return result;
}

The size of this problem is naturally expressed as the number of values to be
summed. Because we are summing the integers from 1 to num, the number of val-
ues to be summed is num. The operation of interest is the act of adding two values
together. The body of the recursive method performs one addition operation, and
therefore is O(1). Each time the recursive method is invoked, the value of num is
decreased by 1. Therefore, the recursive method is called num times, so the order
of the recursion is O(n). Thus, because the body is O(1) and the recursion is O(n),
the order of the entire algorithm is O(n).

We will see that in some algorithms the recursive step operates on half as much
data as the previous call, thus creating an order of recursion of O(log n). If the
body of the method is O(1), then the whole algorithm is O(log n). If the body of
the method is O(n), then the whole algorithm is O(n log n).

Now consider the Towers of Hanoi puzzle. The size of the puzzle is naturally
the number of disks, and the processing operation of interest is the step of moving
one disk from one peg to another. Each call to the recursive method moveTower

KEY CONCEPT
The order of a recursive algorithm
can be determined using techniques
similar to those used in analyzing
iterative processing.

M17_LEWI5976_05_SE_C17.indd 643 08/02/19 3:04 AM

644 CHAPTER 17 Recursion

results in one disk being moved. Unfortunately, except for the base case, each re-
cursive call results in calling itself twice more, and each call operates on a stack of
disks that is only one less than the stack that is passed in as the parameter. Thus,
calling moveTower with 1 disk results in 1 disk being moved, calling moveTower
with 2 disks results in 3 disks being moved, calling moveTower with 3 disks results
in 7 disks being moved, calling moveTower with 4 disks results in 15 disks being
moved, and so on. Looking at it another way, if f(n) is the growth function for
this problem, then:

f (n) = 1 when n is equal to1

for n 7 1,

f (n) = 2*(f(n - 1) + 1)
= 2n - 1

Contrary to its short and elegant implementation, the solution to the Towers of
Hanoi puzzle is terribly inefficient. To solve the puzzle with a stack of n disks, we

have to make 2n - 1 individual disk moves. Therefore, the Towers
of Hanoi algorithm is O12n2 . This order is an example of expo-
nential complexity. As the number of disks increases, the number of
required moves increases exponentially.

Legend has it that priests of Brahma are working on this puz-
zle in a temple at the center of the world. They are using 64 gold

disks, moving them between pegs of pure diamond. The downside is that when
the priests finish the puzzle, the world will end. The upside is that even if they
move one disk every second of every day, it will take them over 584 billion years
to complete it. That’s with a puzzle of only 64 disks! It is certainly an indication
of just how intractable exponential algorithm complexity is.

KEY CONCEPT
The Towers of Hanoi solution has
exponential complexity, which is very
inefficient, yet the code is remarkably
short and elegant.

VideoNote
Analyzing recursive
algorithms

M17_LEWI5976_05_SE_C17.indd 644 08/02/19 3:04 AM

Summary of Key Concepts

■■ Recursion is a programming technique in which a method calls itself. A key
to being able to program recursively is to be able to think recursively.

■■ Any recursive definition must have a nonrecursive part, called the base case,
that permits the recursion to eventually end.

■■ Mathematical problems and formulas are often expressed recursively.

■■ Each recursive call to a method creates new local variables and parameters.

■■ A careful trace of recursive processing can provide insight into the way it is
used to solve a problem.

■■ Recursion is the most elegant and appropriate way to solve some problems,
but for others it is less intuitive than an iterative solution.

■■ The order of a recursive algorithm can be determined using techniques simi-
lar to those used in analyzing iterative processing.

■■ The Towers of Hanoi solution has exponential complexity, which is very
inefficient, yet the code is incredibly short and elegant.

Summary of Terms
base case The part of an operation’s definition that is not recursive.

direct recursion The type of recursion in which a method invokes itself
directly (as opposed to indirect recursion).

indirect recursion The type of recursion in which a method calls another
method, which may call yet another, and so on until the original method is
called (as opposed to direction recursion).

infinite recursion The problem that occurs when a base case is never reached
or not defined for an operation.

recursion A programming technique in which a method calls itself to fulfill
its overall purpose.

Towers of Hanoi A classic computing puzzle in which the goal is to move
disks from one tower to another under specific rules.

Self-Review Questions
SR 17.1 What is recursion?

SR 17.2 What is infinite recursion?

 Self-Review Questions 645

M17_LEWI5976_05_SE_C17.indd 645 08/02/19 3:04 AM

646 CHAPTER 17 Recursion

SR 17.3 When is a base case needed for recursive processing?

SR 17.4 Is recursion necessary?

SR 17.5 When should recursion be avoided?

SR 17.6 What is indirect recursion?

SR 17.7 Explain the general approach to solving the Towers of Hanoi
puzzle. How is it related to recursion?

Exercises
EX 17.1 Write a recursive definition of a valid Java identifier.

EX 17.2 Write a recursive definition of xy (x raised to the power y), where
x and y are integers and y 7 0.

EX 17.3 Write a recursive definition of i * j (integer multiplication), where
i 7 0. Define the multiplication process in terms of integer addi-
tion. For example, 4 * 7 is equal to 7 added to itself 4 times.

EX 17.4 Write a recursive definition of the Fibonacci numbers, a sequence
of integers, each of which is the sum of the previous two num-
bers. The first two numbers in the sequence are 0 and 1. Explain
why you would not normally use recursion to solve this problem.

EX 17.5 Modify the method that calculates the sum of the integers be-
tween 1 and N shown in this chapter. Have the new version
match the following recursive definition: The sum of 1 to N is the
sum of 1 to (N>2) plus the sum of (N>2 + 1) to N. Trace your
solution using an N of 8.

EX 17.6 Write a recursive method that returns the value of N! (N facto-
rial) using the definition given in this chapter. Explain why you
would not normally use recursion to solve this problem.

EX 17.7 Write a recursive method to reverse a string. Explain why you
would not normally use recursion to solve this problem.

EX 17.8 Design a new maze for the MazeSearch program in this chapter,
and rerun the program. Explain the processing in terms of your
new maze, giving examples of a path that was tried but failed, a
path that was never tried, and the ultimate result.

EX 17.9 Annotate the lines of output of the SolveTowers program in this
chapter to show the recursive steps.

EX 17.10 Produce a chart showing the number of moves required to solve
the Towers of Hanoi puzzle using the following numbers of disks:
2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, and 25.

M17_LEWI5976_05_SE_C17.indd 646 08/02/19 3:04 AM

 Programming Projects 647

EX 17.11 Determine and explain the order of your solution to Exercise 17.4.

EX 17.12 Determine and explain the order of your solution to Exercise 17.5.

EX 17.13 Determine and explain the order of your solution to Exercise 17.6.

EX 17.14 Determine the order of the recursive maze solution presented in
this chapter.

Programming Projects
PP 17.1 Design and implement a program that implements Euclid’s

 algorithm for finding the greatest common divisor of two posi-
tive integers. The greatest common divisor is the largest integer
that divides both values without producing a remainder. In a
class called DivisorCalc, define a static method called gcd
that accepts two integers, num1 and num2. Create a driver to
test your implementation. The recursive algorithm is defined as
follows:

gcd (num1, num2) is num2 if num2 <= num1 and num2
evenly divides num1
gcd (num1, num2) is gcd(num2, num1) if num1 < num2
gcd (num1, num2) is gcd(num2, num1%num2) otherwise

PP 17.2 Modify the Maze class so that it prints out the path of the final
solution as it is discovered, without storing it.

PP 17.3 Design and implement a program that traverses a 3D maze.

PP 17.4 Design and implement a recursive program that solves the
Nonattacking Queens problem. That is, write a program to de-
termine how eight queens can be positioned on an eight-by-eight
chessboard so that none of them is in the same row, column, or
diagonal as any other queen. There are no other chess pieces on
the board.

PP 17.5 In the language of an alien race, all words take the form of
Blurbs. A Blurb is a Whoozit followed by one or more Whatzits.
A Whoozit is the character 'x' followed by zero or more 'y's. A
Whatzit is a 'q' followed by either a 'z' or a 'd', followed by a
Whoozit. Design and implement a recursive program that gener-
ates random Blurbs in this alien language.

PP 17.6 Design and implement a recursive program to determine whether
a string is a valid Blurb as defined in the previous project
description.

M17_LEWI5976_05_SE_C17.indd 647 08/02/19 3:04 AM

PP 17.7 Design and implement a recursive program to determine and
print the Nth line of Pascal’s Triangle, as shown below. Each
interior value is the sum of the two values above it. (Hint: Use
an array to store the values on each line.)

 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
 1 5 10 10 5 1
 1 6 15 20 15 6 1
 1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

PP 17.8 Design and implement a graphical version of the Towers of Hanoi
puzzle. Allow the user to set the number of disks used in the
puzzle. The user should be able to interact with the puzzle in two
main ways. The user can move the disks from one peg to another
using the mouse, in which case the program should ensure that
each move is legal. The user can also watch a solution take place
as an animation, with pause/resume buttons. Permit the user to
control the speed of the animation.

Answers to Self-Review Questions
SR 17.1 Recursion is a programming technique in which a method calls

itself, solving a smaller version of the problem each time, until the
terminating condition is reached.

SR 17.2 Infinite recursion occurs when there is no base case that serves
as a terminating condition, or when the base case is improperly
specified. The recursive path is followed forever. In a recursive
program, infinite recursion often results in an error that indicates
that available memory has been exhausted.

SR 17.3 A base case is always needed to terminate recursion and begin the
process of returning through the calling hierarchy. Without the
base case, infinite recursion results.

SR 17.4 Recursion is not necessary. Every recursive algorithm can be writ-
ten in an iterative manner. However, some problem solutions are
much more elegant and straightforward when they are written
recursively.

648 CHAPTER 17 Recursion

M17_LEWI5976_05_SE_C17.indd 648 08/02/19 3:04 AM

SR 17.5 Avoid recursion when the iterative solution is simpler and more
easily understood and programmed. Recursion has the overhead
of multiple method calls and is not always intuitive.

SR 17.6 Indirect recursion occurs when a method calls another method,
which calls another method, and so on until one of the called
methods invokes the original method. Indirect recursion is usually
more difficult to trace than direct recursion, in which a method
calls itself.

SR 17.7 The Towers of Hanoi puzzle of N disks is solved by moving N–1
disks out of the way onto an extra peg, moving the largest disk to
its destination, then moving the N–1 disks from the extra peg to
the destination. This solution is inherently recursive because we can
use the same process to move the whole substack of N–1 disks.

 Answers to Self-Review Questions 649

M17_LEWI5976_05_SE_C17.indd 649 08/02/19 3:04 AM

651

18
Two common tasks in the world of software development

are searching for a particular element within a group and

sorting a group of elements into a particular order. There are

a variety of algorithms that can be used to accomplish these

tasks, and the differences among them are worth exploring

carefully. These topics go hand in hand with the study of

collections and data structures.

C H A P T E R O B J E C T I V E S
■■ Examine the linear search and binary search algorithms.

■■ Examine several sort algorithms.

■■ Discuss the complexity of these algorithms.

■■ Use threads to demonstrate sorting efficiency.

■■ Use the comparator interface to sort elements.

Searching and
Sorting 18

M18_LEWI5976_05_SE_C18.indd 651 08/02/19 3:05 AM

652 CHAPTER 18 Searching and Sorting

18.1 Searching

Searching is the process of finding a designated target element within a group of
items, or determining that the target does not exist within the group. The group of
items to be searched is sometimes called the search pool.

This section examines two common approaches to searching: a
linear search and a binary search. Later in this book, other search
techniques are presented that use the characteristics of particular
data structures to facilitate the search process.

Our goal is to perform the search as efficiently as possible. In
terms of algorithm analysis, we want to minimize the number of
comparisons we have to make to find the target. In general, the more
items there are in the search pool, the more comparisons it will take

to find the target. Thus, the size of the problem is defined by the number of items
in the search pool.

To be able to search for an object, we must be able to compare one
object to another. Our implementations of these algorithms search
an array of Comparable objects. Therefore, the elements involved
must implement the Comparable interface and be comparable to
each other. We might attempt to accomplish this restriction in the
header for the Searching class in which all of our search methods
are located by doing something like:

public class Searching<T extends Comparable<T>>

The net effect of this generic declaration is that we can instantiate the
Searching class with any class that implements the Comparable interface.
Recall that the Comparable interface contains one method, compareTo, which
is designed to return an integer that is less than zero, equal to zero, or greater
than zero (respectively) if the object is less than, equal to, or greater than the
object to which it is being compared. Therefore, any class that implements
the Comparable interface defines the relative order of any two objects of
that class.

Declaring the Searching class in this manner, however, will cause us to have
to instantiate the class any time we want to use one of the search methods. This
is awkward at best for a class that contains nothing but service methods. A better
solution would be to declare all of the methods as static and generic. Let’s first
remind ourselves about the concept of static methods, and then we will explore
generic static methods.

KEY CONCEPT
An efficient search minimizes the
number of comparisons made.

KEY CONCEPT
Searching is the process of finding a
designated target within a group of
items or determining that it doesn’t
exist.

M18_LEWI5976_05_SE_C18.indd 652 08/02/19 3:05 AM

 18.1 Searching 653

Static Methods
As discussed in Chapter 5, a static method (also called a class method) can be in-
voked through the class name (all the methods of the Math class are static methods,
for example). You don’t have to instantiate an object of the class to invoke a static
method. For example, the sqrt method is called through the Math class as follows:

System.out.println("Square root of 27: " + Math.sqrt(27));

A method is made static by using the static modifier in the method declara-
tion. As we have seen, the main method of a Java program must be declared with
the static modifier; this is so that main can be executed by the interpreter with-
out instantiating an object from the class that contains main.

Because static methods do not operate in the context of a particu-
lar object, they cannot reference instance variables, which exist only
in an instance of a class. The compiler will issue an error if a static
method attempts to use a nonstatic variable. A static method can,
however, reference static variables, because static variables exist in-
dependent of specific objects. Therefore, the main method can access
only static and local variables.

The methods in the Math class perform basic computations based on values
passed as parameters. There is no object state to maintain in these situations;
therefore, there is no good reason to force us to create an object in order to re-
quest these services.

Generic Methods
In a manner similar to what we have done in creating generic classes, we can also
create generic methods. That is, instead of creating a class that refers to a generic
type parameter, we can create an individual method that does so. A generic pa-
rameter applies only to that method.

To create a generic method, we insert a generic declaration in the header of the
method immediately preceding the return type.

public static <T extends Comparable<T>> boolean
 linearSearch(T[] data, int min, int max, T target)

Now that method, including the return type and the types of the parameters, can
make use of the generic type parameter. It makes sense that the generic declara-
tion has to come before the return type so that, although this example doesn’t do
so, the generic type can be used in the return type.

KEY CONCEPT
A method is made static by using
the static modifier in the method
declaration.

M18_LEWI5976_05_SE_C18.indd 653 08/02/19 3:05 AM

654 CHAPTER 18 Searching and Sorting

Now that we can create a generic static method, we do not need to instanti-
ate the Searching class each time we need one of the methods. Instead, we can
simply invoke the static method using the class name and including our type to re-
place the generic type. For example, an invocation of the linearSearch method
to search an array of strings might look like this:

Searching.linearSearch(targetArray, min, max, target);

Note that it is not necessary to specify the type to replace the generic type. The
compiler will infer the type from the arguments provided. Thus for this line of
code, the compiler will replace the generic type T with whatever the element type
is for targetArray and the type of target.

Linear Search
If the search pool is organized into a list of some kind, one straightforward way to
perform the search is to start at the beginning of the list and compare each value
in turn to the target element. Eventually, we will either find the target or come to
the end of the list and conclude that the target doesn’t exist in the group. This ap-
proach is called a linear search because it begins at one end and scans the search
pool in a linear manner. This process is depicted in Figure 18.1.

public static <T extends Comparable<T>> boolean
 linearSearch(T[] data, int min, int max, T target)

Generic Method

start

FIGURE 18.1 A linear search

generic type parameter applies to this method

generic type can be used in
method parameters and return type

M18_LEWI5976_05_SE_C18.indd 654 08/02/19 3:05 AM

 18.1 Searching 655

The following method implements a linear search. It accepts the array of ele-
ments to be searched, the beginning and ending index for the search, and the tar-
get value sought. The method returns a boolean value that indicates whether or
not the target element was found.

/**
 * Searches the specified array of objects using a linear search
 * algorithm.
 *
 * @param data the array to be searched
 * @param min the integer representation of the minimum value
 * @param max the integer representation of the maximum value
 * @param target the element being searched for
 * @return true if the desired element is found
 */
public static <T>
 boolean linearSearch(T[] data, int min, int max, T target)
{
 int index = min;
 boolean found = false;

 while (!found && index <= max)
 {
 found = data[index].equals(target);
 index++;
 }

 return found;
}

The while loop steps through the elements of the array, terminating when
either the element is found or when the end of the array is reached. The boolean
variable found is initialized to false and is changed to true only if the target
element is located.

Variations on this implementation could return the element found in the array
if it is found and return a null reference if it is not found. Alternatively, an excep-
tion could be thrown if the target element is not found.

The linearSearch method could be incorporated into any class. Our version
of this method is defined as part of a class containing methods that provide vari-
ous searching capabilities.

The linear search algorithm is fairly easy to understand, although it is not par-
ticularly efficient. Note that a linear search does not require the elements in the

M18_LEWI5976_05_SE_C18.indd 655 08/02/19 3:05 AM

656 CHAPTER 18 Searching and Sorting

search pool to be in any particular order within the array. The only criterion is
that we must be able to examine them one at a time in turn. The binary search
algorithm, described next, improves on the efficiency of the search process, but it
works only if the search pool is ordered.

Binary Search
If the group of items in the search pool is sorted, then our approach to searching
can be much more efficient than that of a linear search. A binary search algorithm

eliminates large parts of the search pool with each comparison by
capitalizing on the fact that the search pool is in sorted order.

Instead of starting the search at one end or the other, a binary
search begins in the middle of the sorted list. If the target element is
not found at that middle element, then the search continues. And be-

cause the list is sorted, we know that if the target is in the list, it will be on one side
of the array or the other, depending on whether the target is less than or greater
than the middle element. Thus, because the list is sorted, we eliminate half of the
search pool with one carefully chosen comparison. The remaining half of the search
pool represents the viable candidates in which the target element may yet be found.

The search continues in this same manner, examining the middle element of
the viable candidates, eliminating half of them. Each comparison reduces the vi-
able candidates by half until eventually the target element is found or there are no
more viable candidates, which means the target element is not in the search pool.
The process of a binary search is depicted in Figure 18.2.

Let’s look at an example. Consider the following sorted list of integers:

10 12 18 22 31 34 40 46 59 67 69 72 80 84 98

Suppose we were trying to determine whether the number 67 is in the list. Initially,
the target could be anywhere in the list (all items in the search pool are viable
candidates).

The binary search approach begins by examining the middle element, in this
case 46. That element is not our target, so we must continue searching. But since
we know that the list is sorted, we know that if 67 is in the list, it must be in the

KEY CONCEPT
A binary search capitalizes on the fact
that the search pool is sorted.

start

FIGURE 18.2 A binary search

M18_LEWI5976_05_SE_C18.indd 656 08/02/19 3:05 AM

 18.1 Searching 657

second half of the data, because all data items to the left of the middle have values
of 46 or less. This leaves the following viable candidates to search (shown in bold):

10 12 18 22 31 34 40 46 59 67 69 72 80 84 98

Continuing the same approach, we examine the middle value of the viable can-
didates (72). Again, this is not our target value, so we must continue the search.
This time we can eliminate all values higher than 72, which leaves (again in bold)

10 12 18 22 31 34 40 46 59 67 69 72 80 84 98

Note that in only two comparisons, we have reduced the viable
candidates from 15 items down to 3 items. Employing the same ap-
proach again, we select the middle element, 67, and find the element
we are seeking. If 67 had not been our target, we would have con-
tinued with this process until we had either found the target value or
eliminated all possible data.

With each comparison, a binary search eliminates approximately half of the
data remaining (it also eliminates the middle element). That is, a binary search
eliminates half of the data with the first comparison, another quarter of the data
with the second comparison, another eighth of the data with the third compari-
son, and so on.

The following method implements a binary search. It accepts an array of
Comparable objects to be searched as well as the target value. It also takes integer
values representing the minimum index and maximum index that define the por-
tion of the array to search (the viable candidates).

VideoNote
Demonstration of a
binary search

KEY CONCEPT
A binary search eliminates half of
the viable candidates with each
comparison.

/**
 * Searches the specified array of objects using a binary search
 * algorithm.
 *
 * @param data the array to be searched
 * @param min the integer representation of the minimum value
 * @param max the integer representation of the maximum value
 * @param target the element being searched for
 * @return true if the desired element is found
 */
 public static <T extends Comparable<T>>
 boolean binarySearch(T[] data, int min, int max, T target)
 {
 boolean found = false;
 int midpoint = (min + max) / 2; // determine the midpoint

M18_LEWI5976_05_SE_C18.indd 657 08/02/19 3:05 AM

658 CHAPTER 18 Searching and Sorting

Note that the binarySearch method is implemented recursively. If the target
element is not found, and there are more data to search, the method calls itself,
passing parameters that shrink the size of viable candidates within the array. The
min and max indexes are used to determine whether there are still more data to
search. That is, if the reduced search area does not contain at least one element,
the method does not call itself, and a value of false is returned.

At any point in this process, we may have an even number of values to search—
and therefore two “middle” values. As far as the algorithm is concerned, the mid-
point used can be either of the two middle values as long as the same choice is
made consistently. In this implementation of the binary search, the calculation
that determines the midpoint index discards any fractional part and therefore
picks the first of the two middle values.

Comparing Search Algorithms
For a linear search, the best case occurs when the target element happens to be the
first item we examine in the group. The worst case occurs when the target is not
in the group, and we have to examine every element before we determine that it
isn’t present. The expected case is that we will have to search half of the list before
we find the element. That is, if there are n elements in the search pool, then on
average we will have to examine n/2 elements before finding the one for which we
were searching.

Therefore, the linear search algorithm has a linear time complexity of O(n).
Because the elements are searched one at a time in turn, the complexity is linear—
in direct proportion to the number of elements to be searched.

 if (data[midpoint].compareTo(target) == 0)
 found = true;

 else if (data[midpoint].compareTo(target) > 0)
 {
 if (min <= midpoint - 1)
 found = binarySearch(data, min, midpoint - 1, target);
 }
 else if (midpoint + 1 <= max)
 found = binarySearch(data, midpoint + 1, max, target);

 return found;
}

M18_LEWI5976_05_SE_C18.indd 658 08/02/19 3:05 AM

 18.2 Sorting 659

A binary search, on the other hand, is generally much faster. Because we can
eliminate half of the remaining data with each comparison, we can find the element
much more quickly. The best case is that we find the target in one comparison—
that is, the target element happens to be at the midpoint of the array. The worst
case occurs when the element is not present in the list, in which case we have to
make approximately log2n comparisons before we eliminate all of the data. Thus,
the expected case for finding an element that is in the search pool is approximately
1 log2n2 >2 comparisons.

Therefore, binary search is a logarithmic algorithm and has a
time complexity of O1 log2n2 . Compared to a linear search, a binary
search is much faster for large values of n.

A question might be asked here: If a binary search is more efficient
than a linear search, why would we ever use a linear search? First, a
linear search is generally simpler than a binary search, and it is there-
fore easier to program and debug. Second, a linear search does not require the
additional overhead of sorting the search list. Thus, conducting a binary search
involves a trade-off: Achieving maximum efficiency requires investing the effort to
keep the search pool sorted.

For small problems, there is little practical difference between the two types of
algorithms. However, as n gets larger, the binary search becomes increasingly at-
tractive. Suppose a given set of data contains a million elements. In a linear search,
we would have to examine each of the one million elements to determine that a
particular target element is not in the group. In a binary search, we could make
that conclusion in roughly 20 comparisons.

18.2 Sorting

Sorting is the process of arranging a group of items into a defined
order, either ascending or descending, based on some criterion. For
example, you may want to alphabetize a list of names or put a list of
survey results into descending numeric order.

Many sort algorithms have been developed and critiqued over the
years. In fact, sorting is considered a classic area of study in com-
puter science. Like search algorithms, sort algorithms generally are divided into
two categories based on efficiency: Sequential sorts typically use a pair of nested
loops and require roughly n2 comparisons to sort n elements, and logarithmic
sorts typically require roughly nlog2n comparisons to sort n elements. As with the
search algorithms, when n is small, there is little practical difference between the
two categories of algorithms.

KEY CONCEPT
A binary search has logarithmic
complexity, which makes it a very
efficient way to examine a large
search pool.

KEY CONCEPT
Sorting is the process of arranging a
list of items into a defined order based
on some criterion.

M18_LEWI5976_05_SE_C18.indd 659 08/02/19 3:05 AM

660 CHAPTER 18 Searching and Sorting

In this chapter, we examine three sequential sorts—selection sort, insertion
sort, and bubble sort—and two logarithmic sorts—quick sort and merge sort. We
also take a look at one additional sort algorithm—radix sort—that sorts without
comparing elements.

Before we dive into particular sort algorithms, let’s look at a general sorting
problem to solve. The SortPhoneList program, shown in Listing 18.1, creates an
array of Contact objects, sorts those objects, and then prints the sorted list. In this
implementation, the Contact objects are sorted using a call to the selectionSort
method, which we examine later in this chapter. However, any other sorting
method described in this chapter could be used to achieve the same results.

L I S T I N G 1 8 . 1

/**
 * SortPhoneList driver for testing an object selection sort.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class SortPhoneList
{
 /**
 * Creates an array of Contact objects, sorts them, then prints
 * them.
 */
 public static void main(String[] args)
 {
 Contact[] friends = new Contact[7];

 friends[0] = new Contact("John", "Smith", "610-555-7384");
 friends[1] = new Contact("Sarah", "Barnes", "215-555-3827");
 friends[2] = new Contact("Mark", "Riley", "733-555-2969");
 friends[3] = new Contact("Laura", "Getz", "663-555-3984");
 friends[4] = new Contact("Larry", "Smith", "464-555-3489");
 friends[5] = new Contact("Frank", "Phelps", "322-555-2284");
 friends[6] = new Contact("Marsha", "Grant", "243-555-2837");

 Sorting.insertionSort(friends);

 for (Contact friend : friends)
 System.out.println(friend);
 }
}

M18_LEWI5976_05_SE_C18.indd 660 08/02/19 3:05 AM

 18.2 Sorting 661

Each Contact object represents a person with a last name, a first name, and a
phone number. The Contact class is shown in Listing 18.2. The UML description
of these classes is left as an exercise.

The Contact class implements the Comparable interface and therefore
provides a definition of the compareTo method. In this case, the contacts are
sorted by last name; if two contacts have the same last name, their first names
are used.

L I S T I N G 1 8 . 2

/**
 * Contact represents a phone contact.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class Contact implements Comparable<Contact>
{
 private String firstName, lastName, phone;

 /**
 * Sets up this contact with the specified information.
 *
 * @param first a string representation of a first name
 * @param last a string representation of a last name
 * @param telephone a string representation of a phone number
 */
 public Contact(String first, String last, String telephone)
 {
 firstName = first;
 lastName = last;
 phone = telephone;
 }

 /**
 * Returns a description of this contact as a string.
 *
 * @return a string representation of this contact
 */
 public String toString()
 {
 return lastName + ", " + firstName + "\t" + phone;
 }

M18_LEWI5976_05_SE_C18.indd 661 08/02/19 3:05 AM

662 CHAPTER 18 Searching and Sorting

Now let’s examine several sort algorithms and their implementations. Any of
these could be used to put the Contact objects into sorted order.

Selection Sort
The selection sort algorithm sorts a list of values by repetitively putting a particu-
lar value into its final, sorted position. In other words, for each position in the list,
the algorithm selects the value that should go in that position and puts it there.

The general strategy of the selection sort algorithm is as follows: Scan the entire
list to find the smallest value. Exchange that value with the value in the first posi-
tion of the list. Scan the rest of the list (all but the first value) to find the smallest

value, and then exchange it with the value in the second position of
the list. Scan the rest of the list (all but the first two values) to find
the smallest value, and then exchange it with the value in the third
position of the list. Continue this process for each position in the list.
When complete, the list is sorted. The selection sort process is illus-
trated in Figure 18.3.

The following method defines an implementation of the selection sort
 algorithm. It accepts an array of objects as a parameter. When it returns to the
calling method, the elements within the array are sorted.

 /**
 * Uses both last and first names to determine lexical ordering.
 *
 * @param other the contact to be compared to this contact
 * @return the integer result of the comparison
 */
 public int compareTo(Contact other)
 {
 int result;

 if (lastName.equals(other.lastName))
 result = firstName.compareTo(other.firstName);
 else
 result = lastName.compareTo(other.lastName);

 return result;
 }
}

L I S T I N G 1 8 . 2 continued

KEY CONCEPT
The selection sort algorithm sorts a
list of values by repetitively putting a
particular value into its final, sorted
position.

M18_LEWI5976_05_SE_C18.indd 662 08/02/19 3:05 AM

 18.2 Sorting 663

/**
 * Sorts the specified array of integers using the selection
 * sort algorithm.
 *
 * @param data the array to be sorted
 */
public static <T extends Comparable<T>>
 void selectionSort(T[] data)
{
 int min;
 T temp;

 for (int index = 0; index < data.length-1; index++)
 {
 min = index;
 for (int scan = index+1; scan < data.length; scan++)
 if (data[scan].compareTo(data[min])<0)
 min = scan;

 swap(data, min, index);
 }
}

3 9 6 1 2
Scan right starting with 3.
1 is the smallest. Exchange 3 and 1.

Scan right starting with 9.
2 is the smallest. Exchange 9 and 2.

Scan right starting with 6.
3 is the smallest. Exchange 6 and 3.

Scan right starting with 6.
6 is the smallest. Exchange 6 and 6.

1 9 6 3 2

1 2 6 3 9

1 2 3 6 9

1 2 3 6 9

FIGURE 18.3 Example of selection sort processing

M18_LEWI5976_05_SE_C18.indd 663 08/02/19 3:05 AM

664 CHAPTER 18 Searching and Sorting

The implementation of the selectionSort method uses two loops to sort an
array. The outer loop controls the position in the array where the next smallest
value will be stored. The inner loop finds the smallest value in the rest of the list
by scanning all positions greater than or equal to the index specified by the outer
loop. When the smallest value is determined, it is exchanged with the value stored
at index. This exchange is accomplished by three assignment statements using an
extra variable called temp. This type of exchange is called swapping and makes
use of a private swap method. This method is also used by several of our other
sorting algorithms.

/**
 * Swaps to elements in an array. Used by various sorting algorithms.
 *
 * @param data the array in which the elements are swapped
 * @param index1 the index of the first element to be swapped
 * @param index2 the index of the second element to be swapped
 */
private static <T extends Comparable<T>>
 void swap(T[] data, int index1, int index2)
{
 T temp = data[index1];
 data[index1] = data[index2];
 data[index2] = temp;
}

Note that because this algorithm finds the smallest value during each iteration,
the result is an array sorted in ascending order (that is, from smallest to largest).
The algorithm can easily be changed to put values in descending order by finding
the largest value each time.

Insertion Sort
The insertion sort algorithm sorts a list of values by repetitively inserting the next
value into a subset of the list that has already been sorted. One at a time, each

unsorted element is inserted at the appropriate position in that sorted
subset until the entire list is in order.

The general strategy of the insertion sort algorithm is as follows:
Sort the first two values in the list relative to each other by exchang-
ing them if necessary. Insert the list’s third value into the appropri-
ate position relative to the first two (sorted) values. Then insert the

KEY CONCEPT
The insertion sort algorithm sorts a
list of values by repetitively inserting a
particular value into a subset of the list
that has already been sorted.

M18_LEWI5976_05_SE_C18.indd 664 08/02/19 3:05 AM

 18.2 Sorting 665

fourth value into its proper position relative to the first three values in the list.
Each time an insertion is made, the number of values in the sorted subset increases
by one. Continue this process until all values in the list are completely sorted. The
insertion process requires that the other values in the array shift to make room for
the inserted element. Figure 18.4 illustrates the insertion sort process.

The following method implements an insertion sort:

3 9 6 1 2

3 9 6 1 2

3 6 9 1 2

1 3 6 9 2

3 is sorted.
Shift nothing. Insert 9.

3 and 9 are sorted.
Shift 9 to the right. Insert 6.

3, 6, and 9 are sorted.
Shift 9, 6, and 3 to the right. Insert 1.

1, 3, 6, and 9 are sorted.
Shift 9, 6, and 3 to the right. Insert 2.

FIGURE 18.4 Example of insertion sort processing

/**
 * Sorts the specified array of objects using an insertion
 * sort algorithm.
 *
 * @param data the array to be sorted
 */
public static <T extends Comparable<T>>
 void insertionSort(T[] data)
{
 for (int index = 1; index < data.length; index++)
 {
 T key = data[index];

 int position = index;

 // shift larger values to the right

M18_LEWI5976_05_SE_C18.indd 665 08/02/19 3:05 AM

666 CHAPTER 18 Searching and Sorting

Like the selection sort implementation, the insertionSort method uses two
loops to sort an array of objects. In the insertion sort, however, the outer loop
controls the index in the array of the next value to be inserted. The inner loop
compares the current insert value with values stored at lower indexes (which
make up a sorted subset of the entire list). If the current insert value is less than
the value at position, then that value is shifted to the right. Shifting continues
until the proper position is opened to accept the insert value. Each iteration of the
outer loop adds one more value to the sorted subset of the list, until the entire list
is sorted.

Bubble Sort
A bubble sort is another sequential sort algorithm that uses two nested loops. It
sorts values by repeatedly comparing neighboring elements in the list and swap-
ping their position if they are not in order relative to each other.

The general strategy of the bubble sort algorithm is as follows: Scan
through the list comparing adjacent elements, and exchange them if
they are not in order. This has the effect of “bubbling” the largest value
to the last position in the list, which is its appropriate position in the
final, sorted list. Then scan through the list again, comparing neighbor-
ing elements, bubbling up the second-to-last value. This process con-
tinues until all elements have been bubbled into their correct positions.

Each pass through the bubble sort algorithm moves the largest value to its final
position. A pass may also reposition other elements as well. For example, if we
started with the list

9 6 8 12 3 1 7

 while (position > 0 && data[position-1].compareTo(key) > 0)
 {
 data[position] = data[position-1];
 position--;
 }

 data[position] = key;
 }
}

KEY CONCEPT
The bubble sort algorithm sorts a list
by repeatedly comparing neighboring
elements and swapping them if
necessary.

M18_LEWI5976_05_SE_C18.indd 666 08/02/19 3:05 AM

 18.2 Sorting 667

we would first compare 9 and 6 and, finding them not in the correct order, swap
them, which yields

6 9 8 12 3 1 7

Then we would compare 9 to 8 and, again, finding them not in the correct
order, swap them, which yields

6 8 9 12 3 1 7

Then we would compare 9 to 12. Since they are in the correct order, we don’t
swap them. Instead, we move to the next pair of values to compare. That is, we
then compare 12 to 3. Because they are not in order, we swap them, which yields

6 8 9 3 12 1 7

We then compare 12 to 1 and swap them, which yields

6 8 9 3 1 12 7

We then compare 12 to 7 and swap them, which yields

6 8 9 3 1 7 12

This completes one pass through the data to be sorted. After this first pass, the
largest value in the list (12) is in its correct position, but we cannot be sure about
any of the other numbers. Each subsequent pass through the data guarantees
that one more element is put into the correct position. Thus we make n–1 passes
through the data, because if n–1 elements are in the correct, sorted positions, then
the nth item must also be in the correct location.

An implementation of the bubble sort algorithm is shown in the following
method:

/**
 * Sorts the specified array of objects using a bubble sort
 * algorithm.
 *
 * @param data the array to be sorted
 */
public static <T extends Comparable<T>>
 void bubbleSort(T[] data)
{
 int position, scan;
 T temp;

M18_LEWI5976_05_SE_C18.indd 667 08/02/19 3:05 AM

668 CHAPTER 18 Searching and Sorting

The outer for loop in the bubbleSort method represents the n–1 passes
through the data. The inner for loop scans through the data, performs the pair-
wise comparisons of the neighboring data, and swaps them if necessary.

Note that the outer loop also has the effect of decreasing the position that rep-
resents the maximum index to examine in the inner loop. That is, after the first
pass, which puts the last value in its correct position, there is no need to consider
that value in future passes through the data. After the second pass, we can forget
about the last two, and so on. Thus the inner loop examines one less value on
each pass.

Quick Sort
The sort algorithms we have discussed thus far in this chapter (selection sort,
insertion sort, and bubble sort) are relatively simple, but they are inefficient se-
quential sorts that use a pair of nested loops and require roughly n2 comparisons
to sort a list of n elements. Now we can turn our attention to more efficient sorts
that lend themselves to a recursive implementation.

The quick sort algorithm sorts a list by partitioning the list using
an arbitrarily chosen partition element and then recursively sorting
the sublists on either side of the partition element. The general strat-
egy of the quick sort algorithm is as follows: first, choose one ele-
ment of the list to act as a partition element; next, partition the list so
that all elements less than the partition element are to the left of that

element and all elements greater than the partition element are to the right; finally,
apply this quick sort strategy (recursively) to both partitions.

If the order of the data is truly random, the choice of the partition element is ar-
bitrary. We will use the element in the middle of the section we want to partition.
For efficiency reasons, it is nice if the partition element happens to divide the list

 for (position = data.length - 1; position >= 0; position--)
 {
 for (scan = 0; scan <= position - 1; scan++)
 {
 if (data[scan].compareTo(data[scan+1]) > 0)
 swap(data, scan, scan + 1);
 }
 }
}

KEY CONCEPT
The quick sort algorithm sorts a
list by partitioning the list and then
recursively sorting the two partitions.

M18_LEWI5976_05_SE_C18.indd 668 08/02/19 3:05 AM

 18.2 Sorting 669

roughly in half, but the algorithm works no matter what element is chosen as the
partition.

Let’s look at an example of creating a partition. If we started with the list

305 65 7 90 120 110 8

we would choose 90 as our partition element. We would then rearrange the list,
swapping the elements that are less than 90 to the left side and those that are
greater than 90 to the right side, which would yield

8 65 7 90 120 110 305

We would then apply the quick sort algorithm separately to both partitions.
This process continues until a partition contains only one element, which is in-
herently sorted. Thus, after the algorithm is applied recursively to either side, the
entire list is sorted. Once the initial partition element is determined and placed, it
is never considered or moved again.

The following method implements the quick sort algorithm. It accepts an array
of objects to sort and the minimum and maximum index values used for a particu-
lar call to the method. Notice that the public method takes the array to be sorted
and then calls the private method providing the array, the min, and the max.

/**
 * Sorts the specified array of objects using the quick sort algorithm.
 *
 * @param data the array to be sorted
 */
public static <T extends Comparable<T>>
 void quickSort(T[] data)
{
 quickSort(data, 0, data.length - 1);
}

/**
 * Recursively sorts a range of objects in the specified array using the
 * quick sort algorithm.
 *
 * @param data the array to be sorted
 * @param min the minimum index in the range to be sorted
 * @param max the maximum index in the range to be sorted
 */

M18_LEWI5976_05_SE_C18.indd 669 08/02/19 3:05 AM

670 CHAPTER 18 Searching and Sorting

The quickSort method relies heavily on the partition method, which it
calls initially to divide the sort area into two partitions. The partition method
returns the index of the partition value. Then the quickSort method is called
twice (recursively) to sort the two partitions. The base case of the recursion,
represented by the if statement in the quickSort method, is a list of one ele-
ment or less, which is already inherently sorted. An example of the partition
method follows.

private static <T extends Comparable<T>>
 void quickSort(T[] data, int min, int max)
{
 if (min < max)
 {
 // create partitions

 int indexofpartition = partition(data, min, max);

 // sort the left partition (lower values)

 quickSort(data, min, indexofpartition - 1);

 // sort the right partition (higher values)

 quickSort(data, indexofpartition + 1, max);
 }
}

/**
 * Used by the quick sort algorithm to find the partition.
 *
 * @param data the array to be sorted
 * @param min the minimum index in the range to be sorted
 * @param max the maximum index in the range to be sorted
 */
private static <T extends Comparable<T>>
 int partition(T[] data, int min, int max)
{
 T partitionelement;
 int left, right;

 int middle = (min + max) / 2;

M18_LEWI5976_05_SE_C18.indd 670 08/02/19 3:05 AM

 18.2 Sorting 671

The two inner while loops of the partition method are used to find elements
to swap that are in the wrong partitions. The first loop scans from left to right
looking for an element that is greater than the partition element. The second loop
scans from right to left looking for an element that is less than the partition ele-
ment. When these two elements are found, they are swapped. This process contin-
ues until the right and left indexes meet in the “middle” of the list. The location
where they meet also indicates where the partition element (which isn’t moved
from its initial location until the end) will ultimately reside.

What happens if we get a poor partition element? If the partition element is
near the smallest or the largest element in the list, then we effectively waste a
pass through the data. One way to ensure a better partition element is to choose
the middle of three elements. For example, the algorithm could check the first,

 // use the middle data value as the partition element

 partitionelement = data[middle];

 // move it out of the way for now

 swap(data, middle, min);
 left = min;
 right = max;
 while (left < right)
 {

 // search for an element that is > the partition element

 while (left < right && data[left].compareTo(partitionelement) <= 0)
 left++;

 // search for an element that is < the partition element

 while (data[right].compareTo(partitionelement) > 0)
 right--;

 // swap the elements

 if (left < right)
 swap(data, left, right);
 }

 // move the partition element into place

 swap(data, min, right);
 return right;
}

M18_LEWI5976_05_SE_C18.indd 671 08/02/19 3:05 AM

672 CHAPTER 18 Searching and Sorting

middle, and last elements in the list and choose the middle value as the partition
element. This middle-of-three approach is left as a programming project.

Merge Sort
The merge sort algorithm, another recursive sort algorithm, sorts a list by recur-
sively dividing the list in half until each sublist has one element and then recom-
bining these sublists in order.

The general strategy of the merge sort algorithm is as follows:
Begin by dividing the list into two roughly equal parts and then re-
cursively calling itself with each of those lists. Continue the recur-
sive decomposition of the list until the base case of the recursion is
reached, where the list is divided into lists of length one, which are
by definition sorted. Then, as control passes back up the recursive
calling structure, the algorithm merges the two sorted sublists result-
ing from the two recursive calls into one sorted list.

For example, if we started with the initial list from our example in the previ-
ous section, the recursive decomposition portion of the algorithm would yield the
results shown in Figure 18.5.

The merge portion of the algorithm would then recombine the list as shown
in Figure 18.6. Note that this algorithm places the mid-point element in the left
sublist. It does not matter whether we choose the left or the right as long we are
consistent in that choice. Also, when there are an even number of elements to be
divided, we chose the element to the left of center to be the mid-point. Again, it
does not matter whether you choose the element to the left of center or right of
center to be the mid-point as long it is done consistently.

KEY CONCEPT
The merge sort algorithm sorts a list
by recursively dividing the list in half
until each sublist has one element and
then merging these sublists into the
sorted order.

305 65 7 90 120 110 8

305 65 7 90 120 110 8

7 90 120 110305 65 8

305 7 9065 120 110 8

FIGURE 18.5 The decomposition of merge sort

M18_LEWI5976_05_SE_C18.indd 672 08/02/19 3:05 AM

 18.2 Sorting 673

An implementation of the merge sort algorithm is shown below. Note that, just
as we did with the Quick Sort algorithm, we make use of a public method that ac-
cepts the array to be sorted and then a private method accepts the array as well as
the min and max indexes of the section of the array to be sorted. This algorithm also
makes use of a private merge method to recombine the sorted sections of the array.

/**
 * Sorts the specified array of objects using the merge sort
 * algorithm.
 *
 * @param data the array to be sorted
 */
public static <T extends Comparable<T>>
 void mergeSort(T[] data)
{
 mergeSort(data, 0, data.length - 1);
}

/**
 * Recursively sorts a range of objects in the specified array using the
 * merge sort algorithm.
 *
 * @param data the array to be sorted
 * @param min the index of the first element
 * @param max the index of the last element
 */

7 8 65 90 110 120 305

7 90 65 305 8 110 120

7 9065 305 110 120 8

305 7 90 120 110 865

FIGURE 18.6 The merge portion of the merge sort algorithm

M18_LEWI5976_05_SE_C18.indd 673 08/02/19 3:05 AM

674 CHAPTER 18 Searching and Sorting

private static <T extends Comparable<T>>
 void mergeSort(T[] data, int min, int max)
{
 if (min < max)
 {
 int mid = (min + max) / 2;
 mergeSort(data, min, mid);
 mergeSort(data, mid+1, max);
 merge(data, min, mid, max);
 }
}

/**
 * Merges two sorted subarrays of the specified array.
 *
 * @param data the array to be sorted
 * @param first the beginning index of the first subarray
 * @param mid the ending index of the first subarray
 * @param last the ending index of the second subarray
 */
@SuppressWarnings("unchecked")
private static <T extends Comparable<T>>
 void merge(T[] data, int first, int mid, int last)
{
 T[] temp = (T[])(new Comparable[data.length]);

 int first1 = first, last1 = mid; // endpoints of first subarray
 int first2 = mid+1, last2 = last; // endpoints of second subarray
 int index = first1; // next index open in temp array

 // Copy smaller item from each subarray into temp until one
 // of the subarrays is exhausted

 while (first1 <= last1 && first2 <= last2)
 {
 if (data[first1].compareTo(data[first2]) < 0)
 {
 temp[index] = data[first1];
 first1++;
 }
 else
 {
 temp[index] = data[first2];
 first2++;
 }
 index++;
 }

M18_LEWI5976_05_SE_C18.indd 674 08/02/19 3:05 AM

 18.3 Radix Sort 675

18.3 Radix Sort

To this point, all of the sorting techniques we have discussed have involved com-
paring elements within the list to each other. As we have seen, the best of these
comparison-based sorts is O(nlogn). What if there were a way to sort elements
without comparing them directly to each other? It might then be possible to build
a more efficient sorting algorithm. We can find such a technique by
revisiting our discussion of queues from Chapter 14.

A sort is based on some particular value, called the sort key. For
example, a set of people might be sorted by their last name. A radix
sort, rather than comparing items by sort key, is based on the struc-
ture of the sort key. Separate queues are created for each possible value of each
digit or character of the sort key. The number of queues, or the number of pos-
sible values, is called the radix. For example, if we were sorting strings made up
of lowercase alphabetic characters, the radix would be 26. We would use 26 sepa-
rate queues, one for each possible character. If we were sorting decimal numbers,
then the radix would be 10, one for each digit 0 through 9.

Let’s look at an example that uses a radix sort to put ten three-digit numbers in
order. To keep things manageable, we will restrict the digits of these numbers to 0
through 5, which means we will need only six queues.

 // Copy remaining elements from first subarray, if any

 while (first1 <= last1)

 {
 temp[index] = data[first1];
 first1++;
 index++;
 }
 // Copy remaining elements from second subarray, if any

 while (first2 <= last2)
 {
 temp[index] = data[first2];
 first2++;
 index++;
 }

 // Copy merged data into original array

 for (index = first; index <= last; index++)
 data[index] = temp[index];
 }

KEY CONCEPT
A radix sort is inherently based on
queue processing.

M18_LEWI5976_05_SE_C18.indd 675 08/02/19 3:05 AM

676 CHAPTER 18 Searching and Sorting

Each three-digit number to be sorted has a 1s position (right digit), a 10s posi-
tion (middle digit), and a 100s position (left digit). The radix sort will make three
passes through the values, one for each digit position. On the first pass, each
number is put on the queue corresponding to its 1s digit. On the second pass,
each number is dequeued (starting with the 0 queue) and then is put on the queue
corresponding to its 10s digit. And finally, on the third pass, each number is de-
queued and then is put on the queue corresponding to its 100s digit.

Originally, the numbers are loaded into the queues from the original list. On
the second pass, the numbers are taken from the queues in a particular order.
They are retrieved from the digit 0 queue first, and then from the digit 1 queue,
and so on. For each queue, the numbers are processed in the order in which they
come off the queue. This processing order is crucial to the operation of a radix
sort. Likewise, on the third pass, the numbers are again taken from the queues in
the same way. When the numbers are pulled off of the queues after the third pass,
they will be completely sorted.

Figure 18.7 shows the processing of a radix sort for ten three-digit numbers.
The number 442 is taken from the original list and put onto the queue correspond-
ing to digit 2. Then 503 is put onto the queue corresponding to digit 3. Then 312
is put onto the queue corresponding to digit 2 (following 442). This continues for
all values, resulting in the set of queues for the 1s position.

Assume, as we begin the second pass, that we have a fresh set of six empty digit
queues. In actuality, the queues can be used over again if processed carefully. To
begin the second pass, the numbers are taken from the 0 digit queue first. The
number 250 is put onto the queue for digit 5, and then 420 is put onto the queue
for digit 2. Then we can move to the next queue, taking 341 and putting it onto
the queue for digit 4. This continues until all numbers have been taken off of the
1s position queues, resulting in the set of queues for the 10s position.

145

341 325

102143

503

312

420442

250

100s Position

503

143145

312

102

250

325

341442

420

10s Position

420

102

325

341

250

145

312

503143

442

1s PositionDigit

0

1

2

3

4

5

420102325341250145312503 143442Original List:

front front front

FIGURE 18.7 A radix sort of ten three-digit numbers

M18_LEWI5976_05_SE_C18.indd 676 08/02/19 3:05 AM

 18.3 Radix Sort 677

For the third pass, the process is repeated. First, 102 is put onto the queue for
digit 1, then 503 is put onto the queue for digit 5, and then 312 is put onto the queue
for digit 3. This continues until we have the final set of digit queues for the 100s
position. These numbers are now in sorted order if taken off of each queue in turn.

Let’s now look at a program that implements the radix sort. For this example,
we will sort four-digit numbers, and we won’t restrict the digits used in those
numbers. Listing 18.3 shows the RadixSort class, which contains a single main
method. Using an array of ten queue objects (one for each digit 0 through 9), this

L I S T I N G 1 8 . 3

import java.util.*;

/**
 * RadixSort driver demonstrates the use of queues in the execution of a radix sort.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class RadixSort
{
 /**
 * Performs a radix sort on a set of numeric values.
 */
 public static void main(String[] args)
 {
 int[] list = {7843, 4568, 8765, 6543, 7865, 4532, 9987, 3241,
 6589, 6622, 1211};

 String temp;
 Integer numObj;
 int digit, num;

 Queue<Integer>[] digitQueues = (LinkedList<Integer>[])(new LinkedList[10]);
 for (int digitVal = 0; digitVal <= 9; digitVal++)
 digitQueues[digitVal] = (Queue<Integer>)(new LinkedList<Integer>());

 // sort the list

 for (int position=0; position <= 3; position++)
 {
 for (int scan=0; scan < list.length; scan++)

M18_LEWI5976_05_SE_C18.indd 677 08/02/19 3:05 AM

678 CHAPTER 18 Searching and Sorting

method carries out the processing steps of a radix sort. Figure 18.8 shows the
UML description of the RadixSort class.

In the RadixSort program, the numbers are originally stored in an array called
list. After each pass, the numbers are pulled off the queues and stored back into
the list array in the proper order. This allows the program to reuse the original
array of ten queues for each pass of the sort.

The concept of a radix sort can be applied to any type of data as long as the
sort key can be dissected into well-defined positions. Note that unlike the sorts we
discussed earlier in this chapter, it’s not reasonable to create a generic radix sort
for any object, because dissecting the key values is an integral part of the process.

So what is the time complexity of a radix sort? In this case, there is not any
comparison or swapping of elements. Elements are simply removed from a queue

 {
 temp = String.valueOf(list[scan]);
 digit = Character.digit(temp.charAt(3-position), 10);
 digitQueues[digit].add(new Integer(list[scan]));
 }

 // gather numbers back into list

 num = 0;
 for (int digitVal = 0; digitVal <= 9; digitVal++)
 {
 while (!(digitQueues[digitVal].isEmpty()))
 {
 numObj = digitQueues[digitVal].remove();
 list[num] = numObj.intValue();
 num++;
 }
 }
 }

 // output the sorted list

 for (int scan=0; scan < list.length; scan++)
 System.out.println(list[scan]);
 }
 }

L I S T I N G 1 8 . 3 continued

M18_LEWI5976_05_SE_C18.indd 678 08/02/19 3:05 AM

 18.4 A Different Way to Sort—Comparator 679

and placed in another one on each pass. For any given radix, the number of passes
through the data is a constant based on the number of characters in the key; let’s
call it c. Then the time complexity of the algorithm is simply c*n. Keep in mind,
from our discussion in Chapter 11, that we ignore constants when computing the
time complexity of an algorithm. Thus the radix sort algorithm is O(n). So why
not use radix sort for all of our sorting? First, each radix sort algorithm has to
be designed specifically for the key of a given problem. Second, for keys where
the number of digits in the key (c) and the number of elements in the list (n) are
very close together, the actual time complexity of the radix sort algorithm mimics
n2 instead of n. In addition, we also need to keep in mind that there is another
constant that affects space complexity; it is the radix, or the number of possible
values for each position or character in the key. Imagine, for example, trying
to implement a radix sort for a key that allows any character from the Unicode
character set. Because this set has more than 100,000 characters, we would need
that many queues!

18.4 A Different Way to Sort—Comparator

In this chapter, we have focused on introducing and comparing various sorting
algorithms. However, all these algorithms have had one thing in common, they
sorted an array of Comparable objects based on their natural ordering. In other

<<interface>>
Queue<Integer>

Sorting

LinkedList<Integer>

main(String[] args)

RadixSort element() : Integer
add(Integer i) : void
offer(Integer i) : boolean
peek() : Integer
poll() : Integer
remove() : Integer

FIGURE 18.8 UML description of the RadixSort program

M18_LEWI5976_05_SE_C18.indd 679 08/02/19 3:05 AM

680 CHAPTER 18 Searching and Sorting

words, they sorted based on the compareTo method. We have seen that this can
work very well.

What if we wanted to be able to sort the same set of objects in multiple ways?
For example, what if we wanted to sort students based on their performance on
examinations, their performance on assignments, and also on their combined per-
formance? This is impossible using the compareTo method because in natural or-
dering, there is only one correct order.

Java provides an alternative way to compare objects using the Comparator<T>
interface. An object that implements Comparator establishes a particular way two
objects of generic type T are to be compared, making it independent of the objects
themselves. Instead of adding a compareTo method in the object to be compared, a
Comparator is a separate object altogether. In one circumstance, one Comparator
can be used, and in another circumstance, a different Comparator can be used.

The Comparator interface has one crucial abstract method: compare

(T o1, T o2). The compare method operates similar to the compareTo method,
returning a negative integer if o1 is less than o2, 0 if o1 is equal to o2, and a posi-
tive integer if o1 is greater than o2.

Using this interface, we can simply pass in a Comparator object to define the
ordering we want instead of relying only on the natural ordering.

Let’s look at an example that uses Comparator objects to sort Student objects
in various ways. Our Student object will keep track of a student’s id, average
examination score, average assignment score, and overall average. Listing 18.4
shows the Student class.

L I S T I N G 1 8 . 4

/**
 * Represents a student in the Comparator example.
 * @author Java Foundations
 * @version 4.0
 *
 */
public class Student
{
 private String id;
 private Integer examAverage;

M18_LEWI5976_05_SE_C18.indd 680 08/02/19 3:05 AM

 18.4 A Different Way to Sort—Comparator 681

 private Integer assignmentAverage;
 private Integer overallAverage;

 /**
 * Constructor for Student object.
 * @param id
 * @param examAverage
 * @param assignmentAverage
 */
 public Student(String id, Integer examAverage,
 Integer assignmentAverage)
 {
 this.id = id;
 this.examAverage = examAverage;
 this.assignmentAverage = assignmentAverage;
 this.overallAverage = (examAverage + assignmentAverage)/2;
 }

 /**
 * Getter for examAverage
 * @return examAverage
 */
 public Integer getExamAverage()
 {
 return examAverage;
 }

 /**
 * Getter for assignmentAverage
 * @return assignmentAverage
 */
 public Integer getAssignmentAverage()
 {
 return assignmentAverage;
 }

 /**
 * Getter for overallAverage
 * @return overallAverage
 */
 public Integer getOverallAverage()
 {
 return overallAverage;
 }

L I S T I N G 1 8 . 4 continued

M18_LEWI5976_05_SE_C18.indd 681 08/02/19 3:05 AM

682 CHAPTER 18 Searching and Sorting

Note that the Student class does not implement the Comparable interface and
does not have a compareTo method. Therefore, a Student object has no so-called
“natural” ordering.

Instead we will use separately defined Comparator objects to sort
a set of Student objects. Instead of having only one way to compare
students, we can define as many as we’d like and use them as appro-
priate. This provides a great deal of flexibility.

Listing 18.5 shows the ExamComparator class implemented to
sort Student objects by their examination average. Note the use of

the generic type in the class header. The type that follows the Comparator refer-
ence must match the type listed in the parameters for the compare method.

 /**
 * Provides a String representation of a Student object.
 * @return String representation of this Student object
 */
 public String toString()
 {
 return (id + " examAverage: " + examAverage +
 " assignmentAverage: " + assignmentAverage +
 " overallAverage: " + overallAverage);
 }
}

L I S T I N G 1 8 . 4 continued

KEY CONCEPT
The use of Comparator objects
allows greater flexibility in how a
collection is sorted.

L I S T I N G 1 8 . 5

import java.util.Comparator;

/**
 * This Comparator sorts students by their exam average.
 * @author Java Foundations
 * @version 4.0
 */
public class ExamComparator implements Comparator<Student>
{
 /**
 * Compares two Student objects by their exam average.
 */

M18_LEWI5976_05_SE_C18.indd 682 08/02/19 3:05 AM

 18.4 A Different Way to Sort—Comparator 683

Listings 18.6 and 18.7 show similar classes created to compare Student ob-
jects by assignment average and by overall average.

 @Override
 public int compare(Student o1, Student o2)
 {
 Integer average1 = o1.getExamAverage();
 Integer average2 = o2.getExamAverage();

 return average1.compareTo(average2);
 }
}

L I S T I N G 1 8 . 5 continued

L I S T I N G 1 8 . 6

import java.util.Comparator;

/**
 * This Comparator sorts students by their assignment average.
 * @author Java Foundations
 * @version 4.0
 */
public class AssignmentComparator implements Comparator<Student>
{
 /**
 * Compares two Student objects by their assignment average.
 */
 @Override
 public int compare(Student o1, Student o2)
 {
 Integer average1 = o1.getAssignmentAverage();
 Integer average2 = o2.getAssignmentAverage();

 return average1.compareTo(average2);
 }
}

M18_LEWI5976_05_SE_C18.indd 683 08/02/19 3:05 AM

684 CHAPTER 18 Searching and Sorting

L I S T I N G 1 8 . 8

import java.util.Arrays;

/**
 * Demonstrates sorting using a Comparator.
 * @author Java Foundations
 * @version 4.0
 */

L I S T I N G 1 8 . 7

import java.util.Comparator;

/**
 * This Comparator sorts students by their overall average.
 * @author Java Foundations
 * @version 4.0
 */
public class OverallComparator implements Comparator<Student>
{
 /**
 * Compares two Student objects by their overall average.
 */
 @Override
 public int compare(Student o1, Student o2)
 {
 Integer average1 = o1.getOverallAverage();
 Integer average2 = o2.getOverallAverage();

 return average1.compareTo(average2);
 }
}

Comparators can be used by any sorting code that is set up to use them. The
static sort method in the Arrays class in the Java API is overloaded so that you
can provide a Comparator if desired.

Listing 18.8 shows the ComparatorDemo class, which populates an array
of Student objects and then calls Arrays.sort with each of our Comparator
objects to demonstrate the difference in the sort order.

M18_LEWI5976_05_SE_C18.indd 684 08/02/19 3:05 AM

 18.4 A Different Way to Sort—Comparator 685

public class ComparatorDemo
{
 /**
 * Creates several Student objects, then sorts them using three
 * different Comparator objects.
 * @param args command-line arguments (unused)
 */
 public static void main(String[] args)
 {
 Student[] students = new Student[5];

 students[0] = new Student("Mary", 97, 75);
 students[1] = new Student("James", 80, 80);
 students[2] = new Student("Mark", 75, 94);
 students[3] = new Student("Jolene", 95, 85);
 students[4] = new Student("Cassandra", 85, 75);

 // output students before sort
 for (int i=0; i < students.length; i++)
 System.out.println(students[i]);

 Arrays.sort(students, new ExamComparator());

 // output students after sorting by exam average
 System.out.println();
 System.out.println("After sorting by exam average:");
 for (int i=0; i < students.length; i++)
 System.out.println(students[i]);

 Arrays.sort(students, new AssignmentComparator());

 // output students after sorting by assignment average
 System.out.println();
 System.out.println("After sorting by assignment average:");
 for (int i=0; i < students.length; i++)
 System.out.println(students[i]);

 Arrays.sort(students, new OverallComparator());

 // output students after sorting by overall average
 System.out.println();
 System.out.println("After sorting by overall average:");
 for (int i=0; i < students.length; i++)
 System.out.println(students[i]);
 }
}

L I S T I N G 1 8 . 8 continued

M18_LEWI5976_05_SE_C18.indd 685 08/02/19 3:05 AM

686 CHAPTER 18 Searching and Sorting

O U T P U T

Mary examAverage: 97 assignmentAverage: 75 overallAverage: 86
James examAverage: 80 assignmentAverage: 80 overallAverage: 80
Mark examAverage: 75 assignmentAverage: 94 overallAverage: 84
Jolene examAverage: 95 assignmentAverage: 85 overallAverage: 90
Cassandra examAverage: 85 assignmentAverage: 75 overallAverage: 80

After sorting by exam average:
Mark examAverage: 75 assignmentAverage: 94 overallAverage: 84
James examAverage: 80 assignmentAverage: 80 overallAverage: 80
Cassandra examAverage: 85 assignmentAverage: 75 overallAverage: 80
Jolene examAverage: 95 assignmentAverage: 85 overallAverage: 90
Mary examAverage: 97 assignmentAverage: 75 overallAverage: 86

After sorting by assignment average:
Cassandra examAverage: 85 assignmentAverage: 75 overallAverage: 80
Mary examAverage: 97 assignmentAverage: 75 overallAverage: 86
James examAverage: 80 assignmentAverage: 80 overallAverage: 80
Jolene examAverage: 95 assignmentAverage: 85 overallAverage: 90
Mark examAverage: 75 assignmentAverage: 94 overallAverage: 84

After sorting by overall average:
Cassandra examAverage: 85 assignmentAverage: 75 overallAverage: 80
James examAverage: 80 assignmentAverage: 80 overallAverage: 80
Mark examAverage: 75 assignmentAverage: 94 overallAverage: 84
Mary examAverage: 97 assignmentAverage: 75 overallAverage: 86
Jolene examAverage: 95 assignmentAverage: 85 overallAverage: 90

M18_LEWI5976_05_SE_C18.indd 686 08/02/19 3:05 AM

Summary of Key Concepts

■■ Searching is the process of finding a designated target within a group of
items or determining that the target doesn’t exist.

■■ An efficient search minimizes the number of comparisons made.

■■ A method is made static by using the static modifier in the method decla-
ration.

■■ A binary search capitalizes on the fact that the search pool is sorted.

■■ A binary search eliminates half of the viable candidates with each compari-
son.

■■ A binary search has logarithmic complexity, making it very efficient for a
large search pool.

■■ Sorting is the process of arranging a list of items into a defined order based
on some criterion.

■■ The selection sort algorithm sorts a list of values by repetitively putting a
particular value into its final, sorted position.

■■ The insertion sort algorithm sorts a list of values by repetitively inserting a
particular value into a subset of the list that has already been sorted.

■■ The bubble sort algorithm sorts a list by repeatedly comparing neighboring
elements and swapping them if necessary.

■■ The quick sort algorithm sorts a list by partitioning the list and then recur-
sively sorting the two partitions.

■■ The merge sort algorithm sorts a list by recursively dividing the list in half
until each sublist has one element and then merging these sublists into the
sorted order.

■■ A radix sort is inherently based on queue processing.

■■ The use of Comparator objects allows greater flexibility in how a collection
is sorted.

Summary of Terms
binary search A search that occurs on a sorted list and in which each com-
parison eliminates approximately half of the remaining viable candidates.

bubble sort A sorting algorithm that sorts elements by repeatedly compar-
ing adjacent values and swapping them.

class method See static method.

 Summary of Terms 687

M18_LEWI5976_05_SE_C18.indd 687 08/02/19 3:05 AM

688 CHAPTER 18 Searching and Sorting

generic method A method that includes the definition of a type parameter
in the header of the method.

insertion sort A sorting algorithm that sorts elements by repetitively insert-
ing a particular element into a previously sorted sublist.

linear search A search that begins at one end of a list of items and contin-
ues linearly until the element is found or the end of the list is reached.

logarithmic algorithm An algorithm that has a time complexity of
O1 log2n2 , such as a binary search.

logarithmic sort A sorting algorithm that requires approximately nlog2n
comparisons to sort n elements.

merge sort A sorting algorithm that sorts elements by recursively divid-
ing the list in half until each sublist has one element and then merging the
sublists.

partition A set of unsorted elements used by the quick sort algorithm that
are all either less than or greater than a chosen partition element.

partition element An element used by the quick sort algorithm to separate
unsorted elements into two distinct partitions.

quick sort A sorting algorithm that sorts elements by partitioning the
unsorted elements into two partitions and then recursively sorting each
partition.

radix sort A sorting algorithm that sorts elements using a sort key instead
of directly comparing elements.

searching The process of finding a designated target element within a group
of elements, or determining that the target is not in the group.

search pool A group of items to be searched.

selection sort A sorting algorithm that sorts elements by repetitively finding
a particular element and putting it in its final position.

sequential sort A sorting algorithm that typically uses nested loops and re-
quires approximately n2 comparisons to sort n elements.

sorting The process of arranging a group of items into a particular order
based on some criterion.

static method A method that is invoked through the class name and that
cannot refer to instance data. Also called a class method.

target element The element that is being sought during a search operation.

viable candidates The elements in a search pool among which the target
element may still be found.

M18_LEWI5976_05_SE_C18.indd 688 08/02/19 3:05 AM

 Exercises 689

Self-Review Questions
SR 18.1 When would a linear search be preferable to a logarithmic

search?

SR 18.2 Which searching method requires that the list be sorted?

SR 18.3 When would a sequential sort be preferable to a recursive sort?

SR 18.4 The insertion sort algorithm sorts using what technique?

SR 18.5 The bubble sort algorithm sorts using what technique?

SR 18.6 The selection sort algorithm sorts using what technique?

SR 18.7 The quick sort algorithm sorts using what technique?

SR 18.8 The merge sort algorithm sorts using what technique?

SR 18.9 How many queues would it take to use a radix sort to sort names
stored as all lowercase?

SR 18.10 What advantages can be gained by using Comparator objects in-
stead of the natural ordering of objects?

Exercises
EX 18.1 Compare and contrast the linearSearch and binarySearch al-

gorithms by searching for the numbers 45 and 54 in the list 3, 8,
12, 34, 54, 84, 91, 110.

EX 18.2 Using the list from Exercise 18.1, construct a table showing the
number of comparisons required to sort that list for each of the
sort algorithms (selection sort, insertion sort, bubble sort, quick
sort, and merge sort).

EX 18.3 Consider the same list from Exercise 18.1. What happens to the
number of comparisons for each of the sort algorithms if the list
is already sorted?

EX 18.4 Consider the following list:

 90 8 7 56 123 235 9 1 653

Show a trace of execution for:

a. selection sort
b. insertion sort
c. bubble sort
d. quick sort
e. merge sort

M18_LEWI5976_05_SE_C18.indd 689 08/02/19 3:05 AM

690 CHAPTER 18 Searching and Sorting

EX 18.5 Given the resulting sorted list from Exercise 18.4, show a trace of
execution for a binary search, searching for the number 235.

EX 18.6 Draw the UML description of the SortPhoneList example.

EX 18.7 Hand trace a radix sort for the following list of five-digit student
ID numbers:

13224

32131

54355

12123

22331

21212

33333

54312

EX 18.8 What is the time complexity of a radix sort?

Programming Projects
PP 18.1 The bubble sort algorithm shown in this chapter is less efficient

than it could be. If a pass is made through the list without ex-
changing any elements, this means that the list is sorted and there
is no reason to continue. Modify this algorithm so that it will
stop as soon as it recognizes that the list is sorted. Do not use a
break statement!

PP 18.2 There is a variation of the bubble sort algorithm called a gap
sort that, rather than comparing neighboring elements each
time through the list, compares elements that are some number
i positions apart, where i is an integer less than n. For example,
the first element would be compared to the (i + 1) element, the
second element would be compared to the (i + 2) element,
the nth element would be compared to the (n - i) element,
and so on. A single iteration is completed when all of the
 elements that can be compared, have been compared. On the
next iteration, i is reduced by some number greater than 1
and the process continues until i is less than 1. Implement a
gap sort.

M18_LEWI5976_05_SE_C18.indd 690 08/02/19 3:05 AM

PP 18.3 Modify the sorts listed in the chapter (selection sort, insertion
sort, bubble sort, quick sort, and merge sort) by adding code to
each to tally the total number of comparisons and total execu-
tion time of each algorithm. Execute the sort algorithms against
the same list, recording information for the total number of com-
parisons and total execution time for each algorithm. Try several
different lists, including at least one that is already in sorted
order.

PP 18.4 Modify the quick sort method to choose the partition element us-
ing the middle-of-three technique described in the chapter. Run
this new version against the old version for several sets of data,
and compare the total execution time.

PP 18.5 Extend the solution presented in Section 18.4 to include all the
sorts presented in this chapter.

PP 18.6 Create a Java application that will first create a list of randomly
generated five-digit integers and then use three sort methods
(Bubble Sort, Merge Sort, and Radix Sort) to sort those integers.
Your application will display a progress bar for each sort so that
you may see the relative speed of each sort. You may need to vary
the size of your list of integers to get the best results.

Answers to Self-Review Questions
SRA 18.1 A linear search would be preferable for relatively small, unsorted

lists and in languages where recursion is not supported.

SRA 18.2 Binary search.

SRA 18.3 A sequential sort would be preferable for relatively small data sets
and in languages where recursion is not supported.

SRA 18.4 The insertion sort algorithm sorts a list of values by repetitively
inserting a particular value into a subset of the list that has al-
ready been sorted.

SRA 18.5 The bubble sort algorithm sorts a list by repeatedly comparing
neighboring elements in the list and swapping their positions if
they are not already in order.

SRA 18.6 The selection sort algorithm, which is an O1n22 sort algorithm,
sorts a list of values by repetitively putting a particular value into
its final, sorted position.

 Answers to Self-Review Questions 691

M18_LEWI5976_05_SE_C18.indd 691 08/02/19 3:05 AM

692 CHAPTER 18 Searching and Sorting

SRA 18.7 The quick sort algorithm sorts a list by partitioning the list us-
ing an arbitrarily chosen partition element and then recursively
sorting the sublists on either side of the partition element.

SRA 18.8 The merge sort algorithm sorts a list by recursively dividing the
list in half until each sublist has one element and then recom-
bining these sublists in order.

SRA 18.9 It would require 27 queues, one for each of the 26 letters in
the alphabet and one to store the whole list before, during, and
after sorting.

SRA 18.10 The use of Comparator objects provides flexibility by providing
multiple ways to sort a set of objects. Each Comparator defines
a unique set of criteria for the sort.

M18_LEWI5976_05_SE_C18.indd 692 08/02/19 3:05 AM

693

19
This chapter begins our exploration of nonlinear

 collections and data structures. We discuss the use and

implementation of trees, define the terms associated with

trees, analyze possible tree implementations, and look at

examples of implementing and using trees.

C H A P T E R O B J E C T I V E S
■■ Define trees as data structures.

■■ Define the terms associated with trees.

■■ Discuss the possible implementations of trees.

■■ Analyze tree implementations of collections.

■■ Discuss methods for traversing trees.

■■ Examine a binary tree example.

Trees 19

M19_LEWI5976_05_SE_C19.indd 693 08/02/19 3:08 AM

694 CHAPTER 19 Trees

19.1 Trees

The collections we have examined up to this point in the book (stacks,
queues, and lists) are all linear data structures, which means that their
elements are arranged in order one after another. A tree is a nonlinear
structure in which elements are organized into a hierarchy. This section
describes trees in general and establishes some important terminology.

Conceptually, a tree is composed of a set of nodes in which elements are stored
and edges that connect one node to another. Each node is at a particular level in
the tree hierarchy. The root of the tree is the only node at the top level of the tree
and the only node in the tree that does not have a parent—a node directly above
it in the tree. There is only one root node in a tree. Figure 19.1 shows a tree that
helps to illustrate these terms.

The nodes at lower levels of the tree are the children of nodes at the previous
level. In Figure 19.1, the nodes labeled B, C, D, and E are the children of A. Nodes

F and G are the children of B. A node can have only one parent, but
a node may have multiple children. Nodes that have the same parent
are called siblings. Thus, nodes H, I, and J are siblings because they
are all children of node D.

A node that does not have any children is called a leaf. A node that is not the
root and has at least one child is called an internal node. Note that the tree anal-
ogy is upside-down. Our trees “grow” from the root at the top of the tree to the
leaves toward the bottom of the tree.

The root is the entry point into a tree structure. We can follow a path through
the tree starting at the root and then moving from parent to child. For example,
the path from node A to node N in Figure 19.1 is A, D, I, N. A node is the ances-
tor of another node if it is above it on the path from the root. Thus the root is the

A

CB

GF IH J K

ML

D E

root

internal
node

leaf
ON P

FIGURE 19.1 Tree terminology

KEY CONCEPT
Trees are described by a large set of
related terms.

KEY CONCEPT
A tree is a nonlinear structure
whose elements are organized into a
hierarchy.

M19_LEWI5976_05_SE_C19.indd 694 08/02/19 3:08 AM

 19.1 Trees 695

ultimate ancestor of all nodes in a tree. Nodes that can be reached by following a
path from a particular node are the descendants of that node.

The level of a node is also the length of the path from the root to the node. This
path length is determined by counting the number of edges that must be followed
to get from the root to the node. The root is considered to be level 0, the children
of the root are at level 1, the grandchildren of the root are at level 2, and so on.
Path length and level are depicted in Figure 19.2.

The height of a tree is the length of the longest path from the root to a leaf.
Thus the height of the tree in Figure 19.2 is 3, because the path length from the
root to leaves F and G is 3. The path length from the root to leaf C is 1.

Tree Classifications
Trees can be classified in many ways. The most important criterion is the maxi-
mum number of children any node in the tree may have. This value is sometimes
referred to as the order of the tree. A tree that has no limit to the number of chil-
dren a node may have is called a general tree. A tree that limits each node to no
more than n children is referred to as an n-ary tree.

One n-ary tree is of particular importance. A tree in which nodes may have at
most two children is called a binary tree. This type of tree is helpful in many situ-
ations. Much of our exploration of trees will focus on binary trees.

Another way to classify a tree is in terms of whether it is balanced or not. There
are many definitions of balance depending on the algorithms being used. We will
explore some of these algorithms in the next chapter. Roughly speaking, a tree is
considered to be balanced if it meets two conditions:

■■ all of the leaves of the tree are on the same level or within one level of each other

■■ the height of the tree is lognm where m is the number of nodes in the tree
and n is the order of the tree.

A 0

1

2

3

Level

CB

ED

F G

FIGURE 19.2 Path length and level

M19_LEWI5976_05_SE_C19.indd 695 08/02/19 3:08 AM

696 CHAPTER 19 Trees

Thus, the tree shown on the left in Figure 19.3 is balanced, and the one on the
right is not. A balanced n-ary tree with m elements has a height of lognm. Thus a
balanced binary tree with n nodes has a height of log2n.

The concept of a complete tree is related to the balance of a tree. A tree is con-
sidered complete if it is balanced and all of the leaves at the bottom level are on
the left side of the tree. Although it seems arbitrary, this definition has implica-
tions for how the tree is stored in certain implementations. Another way to ex-
press this concept is to say that a complete binary tree has 2k nodes at every level
k except the last, where the nodes must be leftmost.

A related concept is the notion of a full tree. An n-ary tree is considered full if
all the leaves of the tree are at the same level and every node either is a leaf or has
exactly n children. The balanced tree in Figure 19.3 is not considered complete.
Among the 3-ary (or tertiary) trees shown in Figure 19.4, the trees in parts (a) and
(c) are complete, but only the tree in part (c) is full.

balanced unbalanced

FIGURE 19.3 Balanced and unbalanced trees

a b c

FIGURE 19.4 Some complete trees

M19_LEWI5976_05_SE_C19.indd 696 08/02/19 3:08 AM

 19.2 Strategies for Implementing Trees 697

19.2 Strategies for Implementing Trees

Let’s examine some general strategies for implementing trees. The most obvious
implementation of a tree is a linked structure. Each node could be defined as a
TreeNode class, similar to what we did with the LinearNode class for linked
lists. Each node would contain a pointer to the element to be stored in that node
as well as pointers for each of the possible children of the node. Depending on
the implementation, it may also be useful for each node to store a pointer to
its parent. This use of pointers is similar to the concept of a doubly linked list,
where each node points not only to the next node in the list, but to the previous
node as well.

Another possibility would be to implement a tree recursively using links. This
strategy would involve defining each node as a tree with attributes for each of its
children that are also trees. Thus each node, and all of its descendants, represents a
tree unto itself. The implementation of this strategy is left as a programming project.

Because a tree is a nonlinear structure, it may not seem reasonable to try to
implement it using an underlying linear structure such as an array. However,
sometimes that approach is useful. The strategies for array implementations of
a tree may be less obvious. There are two principal approaches: a computational
strategy and a simulated link strategy.

Computational Strategy for Array Implementation of Trees
For certain types of trees, specifically binary trees, a computational strategy can
be used for storing a tree using an array. One possible strategy is as follows: For
any element stored in position n of the array, that element’s left child will be
stored in position (2 * n + 1) and that element’s right child will be stored in posi-
tion (2 * (n + 1)). This strategy is very effective and can be managed in terms of
capacity in much the same way as managing capacity for the array
implementations of lists, queues, and stacks. However, despite the
conceptual elegance of this solution, it is not without drawbacks.
For example, if the tree that we are storing is not complete or is only
relatively complete, we may be wasting large amounts of memory al-
located in the array for positions of the tree that do not contain data.
The computational strategy is illustrated in Figure 19.5.

Simulated Link Strategy for Array Implementation of Trees
A second possible array implementation of trees is modeled after the way oper-
ating systems manage memory. Instead of assigning elements of the tree to array
positions by location in the tree, array positions are allocated contiguously on a

KEY CONCEPT
One possible computational strategy
places the left child of element n at
position (2 * n + 1) and the right
child at position (2 * (n + 1)).

M19_LEWI5976_05_SE_C19.indd 697 08/02/19 3:08 AM

698 CHAPTER 19 Trees

A

A B C D E Felement

position

CB

E

F
0 1 2 3 4 5 6 7

D

FIGURE 19.5 Computational strategy for array implementation of trees

A

A C B E D F

CB

ED

F
2 1 4 3 5

FIGURE 19.6 Simulated link strategy for array implementation of trees

 first-come, first-served basis. Each element of the array will be a node class similar
to the TreeNode class that we discussed earlier. However, instead of storing object
reference variables as pointers to its children (and perhaps its parent), each node
would store the array index of each child (and perhaps its parent). This approach
allows elements to be stored contiguously in the array so that space is not wasted.

However, this approach increases the overhead for deleting elements
in the tree, because it requires either that remaining elements be shifted
to maintain contiguity or that a freelist be maintained. This strategy
is illustrated in Figure 19.6. The order of the elements in the array is
determined simply by their entry order into the tree. In this case, the
entry order is assumed to have been A, C, B, E, D, F.

This same strategy may also be used when tree structures need to be stored
directly on disk using a direct I/O approach. In this case, rather than using an
array index as a pointer, each node will store the relative position in the file of its
children so that an offset can be calculated given the base address of the file.

KEY CONCEPT
The simulated link strategy allows
array positions to be allocated
contiguously, regardless of the
completeness of the tree.

M19_LEWI5976_05_SE_C19.indd 698 08/02/19 3:08 AM

 19.2 Strategies for Implementing Trees 699

Analysis of Trees
As we noted earlier, trees are a useful and efficient way to implement other col-
lections. Let’s consider an ordered list as an example. In our analysis of list imple-
mentations in Chapter 15, we described the find operation as having efficiency
n/2 or O(n). However, if we were to implement an ordered list using a balanced
binary search tree—a binary tree with the added property that the left child is
always less than the parent, which is always less than or equal to the right child—
then we could improve the efficiency of the find operation to O(log n). We will
discuss binary search trees in much greater detail in Chapter 20.

This increased efficiency is due to the fact that the height of such a tree will
always be log2n, where n is the number of elements in the tree. This is very similar
to our discussion of the binary search in Chapter 18. In fact, for any balanced
n-ary tree with m elements, the tree’s height will be lognm. With the
added ordering property of a binary search tree, you are guaranteed
to search, at worst, one path from the root to a leaf, and that path
can be no longer than lognm.

KEY CONCEPT
In general, a balanced n-ary tree with
m elements will have height lognm.

D E S I G N F O C U S

When does it begin to make sense to define an ADT for a collection? At this point,
we have defined many of the terms for a tree and we have a general understand-
ing of how a tree might be used, but are we ready to define an ADT? Not really.
Trees, in the general sense, are more of an abstract data structure than a collec-
tion, so trying to define an ADT for a general tree is not likely to be very useful.
Instead, we will wait until we have specified more details about the type of the tree
and its use before we attempt to define an interface.

D E S I G N F O C U S

If trees provide more efficient implementations than linear structures, why would
we ever use linear structures? There is an overhead associated with trees in terms
of maintaining the structure and order of the tree that may not be present in
other structures; thus there is a trade-off between this overhead and the size of
the problem. With a relatively small n, the difference between the analysis of tree
implementations and that of linear structures is not particularly significant relative
to the overhead involved in the tree. However, as n increases, the efficiency of a
tree becomes more attractive.

M19_LEWI5976_05_SE_C19.indd 699 08/02/19 3:08 AM

700 CHAPTER 19 Trees

19.3 Tree Traversals

Because a tree is a nonlinear structure, the concept of traversing a tree is generally
more interesting than the concept of traversing a linear structure. There are four
basic methods for traversing a tree:

■■ Preorder traversal, which is accomplished by visiting each node, followed
by its children, starting with the root

■■ Inorder traversal, which is accomplished by visiting the left child of the
node, then the node, and then any remaining nodes, starting with the root

■■ Postorder traversal, which is accomplished by visiting the children, and
then the node, starting with the root

■■ Level-order traversal, which is accomplished by visiting all of the
nodes at each level, one level at a time, starting with the root

Each of these definitions applies to all trees. However, as an exam-
ple, let us examine how each of these definitions would apply to a bi-
nary tree (that is, a tree in which each node has at most two children).

Preorder Traversal
Given the tree shown in Figure 19.7, a preorder traversal would produce the se-
quence A, B, D, E, C. The definition stated previously says that preorder traversal
is accomplished by visiting each node, followed by its children, starting with the
root. So, starting with the root, we visit the root, giving us A. Next we traverse to
the first child of the root, which is the node containing B. We then use the same
algorithm by first visiting the current node, which yields B, and then visiting its
children. Next we traverse to the first child of B, which is the node containing D.
We then use the same algorithm again by first visiting the current node, which
yields D, and then visiting its children. Only this time, there are no children. We
then traverse to any other children of B. This yields E, and because E has no

children, we then traverse to any other children of A. This brings us
to the node containing C, where we again use the same algorithm,
first visiting the node, which yields C, and then visiting any children.
Because there are no children of C and no more children of A, the
traversal is complete.

Stated in pseudocode for a binary tree, the Traverse algorithm for a preorder
traversal is

Visit node
Traverse(left child)
Traverse(right child)

KEY CONCEPT
Preorder traversal means visit the
node, then the left child, and then the
right child.

KEY CONCEPT
There are four basic methods for
traversing a tree: preorder, inorder,
postorder, and level-order traversals.

M19_LEWI5976_05_SE_C19.indd 700 08/02/19 3:08 AM

 19.3 Tree Traversals 701

Inorder Traversal
Given the tree shown in Figure 19.7, an inorder traversal would produce the
sequence D, B, E, A, C. As defined earlier, inorder traversal is accomplished by
visiting the left child of the node, then the node, and then any remaining nodes,
starting with the root. So, starting with the root, we traverse to the left child of
the root, the node containing B. We then use the same algorithm again and tra-
verse to the left child of B, the node containing D. Note that we have not yet
visited any nodes. Using the same algorithm again, we attempt to traverse to the
left child of D. Because there is no left child, we then visit the current node, which
yields D. Continuing the same algorithm, we attempt to traverse to any remaining
children of D. Because there are no children, we then visit the previous node, which
yields B. We then attempt to traverse to any remaining children of B. This brings
us to the node containing E. Because E does not have a left child, we visit the node,
which yields E. Because E has no remaining children, we then visit the previous
node, which yields A. We then traverse to any remaining children of A, which takes
us to the node containing C. Using the same algorithm, we then attempt to traverse
to the left child of C. Because there is no such left child, we then visit
the current node, which yields C. We then attempt to traverse to any
remaining children of C. Because there are none, we return to the pre-
vious node, which happens to be the root. Because there are no more
children of the root, the traversal is complete.

Stated in pseudocode for a binary tree, the Traverse algorithm for an inorder
traversal is

Traverse(left child)
Visit node
Traverse(right child)

Postorder Traversal
Given the tree shown in Figure 19.7, a postorder traversal would produce the
sequence D, E, B, C, A. As previously defined, postorder traversal is accomplished
by visiting the children and then the node, starting with the root. So, starting

A

CB

ED

FIGURE 19.7 A complete tree

KEY CONCEPT
Inorder traversal means visit the left
child, then the node, and then the
right child.

M19_LEWI5976_05_SE_C19.indd 701 08/02/19 3:08 AM

702 CHAPTER 19 Trees

from the root, we traverse to the left child, the node containing B.
Repeating that process, we traverse to the left child again, the node
containing D. Because that node does not have any children, we then
visit that node, which yields D. Returning to the previous node, we
visit the right child, the node containing E. Because this node does

not have any children, we visit the node, which yields E, and then return to the
previous node and visit it, which yields B. Returning to the previous node, in this
case the root, we find that it has a right child, so we traverse to the right child,
the node containing C. Because this node does not have any children, we visit it,
which yields C. Returning to the previous node (the root), we find that it has no
remaining children, so we visit it, which yields A, and the traversal is complete.

Stated in pseudocode for a binary tree, the Traverse algorithm for a postorder
traversal is

Traverse(left child)
Traverse(right child)
Visit node

Level-Order Traversal
Given the tree shown in Figure 19.7, a level-order traversal would produce the
sequence A, B, C, D, E. As defined earlier, a level-order traversal is accomplished
by visiting all of the nodes at each level, one level at a time, starting with the root.
Using this definition, we first visit the root, which yields A. Next we visit the left
child of the root, which yields B, then the right child of the root, which yields C,
and then the children of B, which yields D and E.

Stated in pseudocode for a binary tree, an algorithm for a level-order traversal is

Create a queue called nodes
Create an unordered list called results
Enqueue the root onto the nodes queue
While the nodes queue is not empty
{
 Dequeue the first element from the queue
 If that element is not null
 Add that element to the rear of the results list
 Enqueue the children of the element on the nodes queue
 Else
 Add null on the result list
}
Return an iterator for the result list

This algorithm for a level-order traversal is only one of many possible solu-
tions. However, it does have some interesting properties. First, note that we are

KEY CONCEPT
Postorder traversal means visit the left
child, then the right child, and then
the node.

M19_LEWI5976_05_SE_C19.indd 702 08/02/19 3:08 AM

 19.4 A Binary Tree ADT 703

using collections—namely a queue and a list—to solve a problem
within another collection—namely a binary tree. Second, recall that
in our earlier discussions of iterators, we talked about their behavior
with respect to the collection if the collection is modified while the
iterator is in use. In this case, using a list to store the elements in the
proper order and then returning an iterator over the list, this iterator
behaves like a snapshot of the binary tree and is not affected by any concurrent
modifications to the binary tree. This can be either a positive or a negative attri-
bute, depending on how the iterator is used.

19.4 A Binary Tree ADT

Let’s take a look at a simple binary tree implementation using links. In Sections
19.5 and 19.6, we will consider examples using this implementation. As we dis-
cussed earlier in this chapter, it is difficult to abstract an interface for all trees.
However, once we have narrowed our focus to binary trees, the task becomes
more reasonable. One possible set of operations for a binary tree ADT is listed in
Figure 19.8. Keep in mind that the definition of a collection is not universal. You
will find variations in the operations defined for specific collections from one text
to another. We have been very careful in this text to define the operations on each
collection so that they are consistent with its purpose.

Notice that in all of the operations listed, there are no operations to add ele-
ments to the tree or remove elements from it. This is because until we specify
the purpose and organization of the binary tree, there is no way to know how

KEY CONCEPT
Level-order traversal means visit the
nodes at each level, one level at a
time, starting with the root.

VideoNote
Demonstration of the
four basic tree traversals

Operation Description
getRoot Returns a reference to the root of the binary tree

isEmpty Determines whether the tree is empty

size Returns the number of elements in the tree

contains Determines whether the specified target is in the tree

find Returns a reference to the specified target element if it is found

toString Returns a string representation of the tree

iteratorInOrder Returns an iterator for an inorder traversal of the tree

iteratorPreOrder Returns an iterator for a preorder traversal of the tree

iteratorPostOrder Returns an iterator for a postorder traversal of the tree

iteratorLevelOrder Returns an iterator for a level-order traversal of the tree

FIGURE 19.8 The operations on a binary tree

M19_LEWI5976_05_SE_C19.indd 703 08/02/19 3:08 AM

704 CHAPTER 19 Trees

or—more specifically—where to add an element to the tree. Similarly, any op-
eration to remove one or more elements from the tree may violate the purpose
or structure of the tree as well. As with adding an element, we do not yet have
enough information to know how to remove an element. When we were dealing
with stacks in Chapters 12 and 13, we could think about the concept of removing
an element from a stack, and it was easy to conceptualize the state of the stack
after removal of the element. The same can be said of queues, because we could
remove an element from only one end of the linear structures. Even with lists,
where we could remove an element from the middle of the linear structure, it was
easy to conceptualize the state of the resulting list.

With a tree, however, upon removing an element, we have many issues to han-
dle that will affect the state of the tree. What happens to the children and other
descendants of the element that is removed? Where does the child pointer of the
element’s parent now point? What if the element we are removing is the root? As
we will see in our example using expression trees later in this chapter, there will be
applications of trees where there is no concept of the removal of an element from
the tree. Once we have specified more detail about the use of the tree, we may
then decide that a removeElement method is appropriate. An excellent example
of this is binary search trees, as we will see in Chapter 20.

Listing 19.1 shows the BinaryTreeADT interface. Figure 19.9 shows the UML
description for the BinaryTreeADT interface.

<<interface>>
BinaryTreeADT

toString() : String
iterator() : Iterator<T>
iteratorInOrder() : Iterator<T>
iteratorPreOrder() : Iterator<T>
iteratorPostOrder() : Iterator<T>
iteratorLevelOrder() : Iterator<T>

getRootElement () : T
isEmpty() : boolean
size() : int
contains(T targetElement) : boolean
find(T targetElement) : T

T

FIGURE 19.9 UML description of the BinaryTreeADT interface

M19_LEWI5976_05_SE_C19.indd 704 08/02/19 3:08 AM

 19.4 A Binary Tree ADT 705

L I S T I N G 1 9 . 1

package jsjf;

import java.util.Iterator;

/**
 * BinaryTreeADT defines the interface to a binary tree data structure.
 *
 * @author Java Foundations
 * @version 4.0
 */
public interface BinaryTreeADT<T>
{
 /**
 * Returns a reference to the root element
 *
 * @return a reference to the root
 */
 public T getRootElement();

 /**
 * Returns true if this binary tree is empty and false otherwise.
 *
 * @return true if this binary tree is empty, false otherwise
 */
 public boolean isEmpty();

 /**
 * Returns the number of elements in this binary tree.
 *
 * @return the number of elements in the tree
 */
 public int size();

 /**
 * Returns true if the binary tree contains an element that matches
 * the specified element and false otherwise.
 *
 * @param targetElement the element being sought in the tree
 * @return true if the tree contains the target element
 */
 public boolean contains(T targetElement);

 /**
 * Returns a reference to the specified element if it is found in

M19_LEWI5976_05_SE_C19.indd 705 08/02/19 3:08 AM

706 CHAPTER 19 Trees

 * this binary tree. Throws an exception if the specified element
 * is not found.
 *
 * @param targetElement the element being sought in the tree
 * @return a reference to the specified element
 */
 public T find(T targetElement);

 /**
 * Returns the string representation of this binary tree.
 *
 * @return a string representation of the binary tree
 */
 public String toString();

 /**
 * Returns an iterator over the elements of this tree.
 *
 * @return an iterator over the elements of this binary tree
 */
 public Iterator<T> iterator();

 /**
 * Returns an iterator that represents an inorder traversal on this binary tree.
 *
 * @return an iterator over the elements of this binary tree
 */
 public Iterator<T> iteratorInOrder();

 /**
 * Returns an iterator that represents a preorder traversal on this binary tree.
 *
 * @return an iterator over the elements of this binary tree
 */
 public Iterator<T> iteratorPreOrder();

 /**
 * Returns an iterator that represents a postorder traversal on this binary tree.
 *
 * @return an iterator over the elements of this binary tree
 */
 public Iterator<T> iteratorPostOrder();

L I S T I N G 1 9 . 1 continued

M19_LEWI5976_05_SE_C19.indd 706 08/02/19 3:08 AM

 19.5 Using Binary Trees: Expression Trees 707

19.5 Using Binary Trees: Expression Trees

In Chapter 12, we used a stack algorithm to evaluate postfix expressions. In
this section, we modify that algorithm to construct an expression tree using an
ExpressionTree class that extends our definition of a binary tree. Figure 19.10
illustrates the concept of an expression tree. Notice that the root and all of the
internal nodes of an expression tree contain operations and that all of the leaves
contain operands. An expression tree is evaluated from the bottom up. In this
case, the (5-3) term is evaluated first, which yields 2. That result is then mul-
tiplied by 4, which yields 8. Finally, the result of that term is added to 9, which
yields 17.

Listing 19.2 illustrates our ExpressionTree class. The Java Collections API
does not provide an implementation of a tree collection. Instead, the use of trees

35

+

(5 – 3) * 4 + 9

9*

4–

FIGURE 19.10 An example of an expression tree

 /**
 * Returns an iterator that represents a levelorder traversal on the binary tree.
 *
 * @return an iterator over the elements of this binary tree
 */
 public Iterator<T> iteratorLevelOrder();
}

L I S T I N G 1 9 . 1 continued

M19_LEWI5976_05_SE_C19.indd 707 08/02/19 3:08 AM

708 CHAPTER 19 Trees

in the API is limited to their use as an implementation strategy for sets and maps.
Thus we will use our own implementation of a linked binary tree for this example.
The LinkedBinaryTree class is presented in Section 19.7.

The ExpressionTree class extends the LinkedBinaryTree class, providing a
new constructor that will combine expression trees to make a new tree and pro-
viding an evaluate method to recursively evaluate an expression tree once it has
been constructed.

L I S T I N G 1 9 . 2

import jsjf.*;

/**
 * ExpressionTree represents an expression tree of operators and operands.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class ExpressionTree extends LinkedBinaryTree<ExpressionTreeOp>
{
 /**
 * Creates an empty expression tree.
 */
 public ExpressionTree()
 {
 super();
 }

 /**
 * Constructs a expression tree from the two specified expression
 * trees.
 *
 * @param element the expression tree for the center
 * @param leftSubtree the expression tree for the left subtree
 * @param rightSubtree the expression tree for the right subtree
 */
 public ExpressionTree(ExpressionTreeOp element,
 ExpressionTree leftSubtree, ExpressionTree rightSubtree)
 {
 root = new BinaryTreeNode<ExpressionTreeOp>(element, leftSubtree,

rightSubtree);
 }

 /**
 * Evaluates the expression tree by calling the recursive
 * evaluateNode method.

M19_LEWI5976_05_SE_C19.indd 708 08/02/19 3:08 AM

 19.5 Using Binary Trees: Expression Trees 709

 *
 * @return the integer evaluation of the tree
 */
 public int evaluateTree()
 {
 return evaluateNode(root);
 }

 /**
 * Recursively evaluates each node of the tree.
 *
 * @param root the root of the tree to be evaluated
 * @return the integer evaluation of the tree
 */
 public int evaluateNode(BinaryTreeNode root)
 {
 int result, operand1, operand2;
 ExpressionTreeOp temp;

 if (root==null)
 result = 0;
 else
 {
 temp = (ExpressionTreeOp)root.getElement();

 if (temp.isOperator())
 {
 operand1 = evaluateNode(root.getLeft());
 operand2 = evaluateNode(root.getRight());
 result = computeTerm(temp.getOperator(), operand1, operand2);
 }
 else
 result = temp.getValue();
 }

 return result;
 }

 /**
 * Evaluates a term consisting of an operator and two operands.
 *
 * @param operator the operator for the expression
 * @param operand1 the first operand for the expression
 * @param operand2 the second operand for the expression
 */

L I S T I N G 1 9 . 2 continued

M19_LEWI5976_05_SE_C19.indd 709 08/02/19 3:08 AM

710 CHAPTER 19 Trees

 private int computeTerm(char operator, int operand1, int operand2)
 {
 int result=0;
 if (operator == '+')
 result = operand1 + operand2;
 else if (operator == '-')
 result = operand1 - operand2;
 else if (operator == '*')
 result = operand1 * operand2;
 else
 result = operand1 / operand2;

 return result;
 }

 /**
 * Generates a structured string version of the tree by performing
 * a levelorder traversal.
 *
 * @return a string representation of this binary tree
 */
 public String printTree()
 {
 UnorderedListADT<BinaryTreeNode<ExpressionTreeOp>> nodes =
 new ArrayUnorderedList<BinaryTreeNode<ExpressionTreeOp>>();
 UnorderedListADT<Integer> levelList =
 new ArrayUnorderedList<Integer>();
 BinaryTreeNode<ExpressionTreeOp> current;
 String result = "";
 int printDepth = this.getHeight();
 int possibleNodes = (int)Math.pow(2, printDepth + 1);
 int countNodes = 0;

 nodes.addToRear(root);
 Integer currentLevel = 0;
 Integer previousLevel = -1;
 levelList.addToRear(currentLevel);

 while (countNodes < possibleNodes)
 {
 countNodes = countNodes + 1;
 current = nodes.removeFirst();

L I S T I N G 1 9 . 2 continued

M19_LEWI5976_05_SE_C19.indd 710 08/02/19 3:08 AM

 19.5 Using Binary Trees: Expression Trees 711

 currentLevel = levelList.removeFirst();
 if (currentLevel > previousLevel)
 {
 result = result + "\n\n";
 previousLevel = currentLevel;
 for (int j = 0; j < ((Math.pow(2, (printDepth - currentLevel))) - 1); j++)
 result = result + " ";
 }
 else
 {
 for (int i = 0; i < ((Math.pow(2, (printDepth - currentLevel + 1)) -
 1)) ; i++)
 {
 result = result + " ";
 }
 }
 if (current != null)
 {
 result = result + (current.getElement()).toString();
 nodes.addToRear(current.getLeft());
 levelList.addToRear(currentLevel + 1);
 nodes.addToRear(current.getRight());
 levelList.addToRear(currentLevel + 1);
 }
 else {
 nodes.addToRear(null);
 levelList.addToRear(currentLevel + 1);
 nodes.addToRear(null);
 levelList.addToRear(currentLevel + 1);
 result = result + " ";
 }

 }

 return result;
 }
}

L I S T I N G 1 9 . 2 continued

M19_LEWI5976_05_SE_C19.indd 711 08/02/19 3:08 AM

712 CHAPTER 19 Trees

The evaluateTree method calls the recursive evaluateNode method. The
evaluateNode method returns the value if the node contains a number, or, if
the node contains an operation, it returns the result of the operation using
the value of the left and right subtrees. The ExpressionTree class uses the
ExpressionTreeOp class as the element to store at each node of the tree. The
ExpressionTreeOp class enables us to keep track of whether the element is a
number or an operator and which operator or what value is stored there. The
ExpressionTreeOp class is illustrated in Listing 19.3.

L I S T I N G 1 9 . 3

import jsjf.*;

/**
 * ExpressionTreeOp represents an element in an expression tree.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class ExpressionTreeOp
{
 private int termType;
 private char operator;
 private int value;

 /**
 * Creates a new expression tree object with the specified data.
 *
 * @param type the integer type of the expression
 * @param op the operand for the expression
 * @param val the value for the expression
 */
 public ExpressionTreeOp(int type, char op, int val)
 {
 termType = type;
 operator = op;
 value = val;
 }

 /**
 * Returns true if this object is an operator and false otherwise.
 *
 * @return true if this object is an operator, false otherwise
 */

M19_LEWI5976_05_SE_C19.indd 712 08/02/19 3:08 AM

 19.5 Using Binary Trees: Expression Trees 713

The PostfixTester and PostfixEvaluator classes are a modification of our
solution from Chapter 12. This solution employs the ExpressionTree class to
build, print, and evaluate an expression tree. Figure 19.11 illustrates this process
for the expression tree from Figure 19.10. Note that the top of the expression tree
stack is on the right.

The PostfixTester class is shown in Listing 19.4, and the PostfixEvaluator
class is shown in Listing 19.5. The UML description of the Postfix class is shown
in Figure 19.12.

 public boolean isOperator()
 {
 return (termType == 1);
 }

 /**
 *Returns the operator of this expression tree object.
 *
 * @return the character representation of the operator
 */
 public char getOperator()
 {
 return operator;
 }

 /**
 * Returns the value of this expression tree object.
 *
 * @return the value of this expression tree object
 */
 public int getValue()
 {
 return value;
 }

 public String toString()
 {
 if (termType == 1)
 return operator + "";
 else
 return value + "";
 }
}

L I S T I N G 1 9 . 3 continued

M19_LEWI5976_05_SE_C19.indd 713 08/02/19 3:08 AM

714 CHAPTER 19 Trees

35

+op2 = pop
op1 = pop
push(new ExpressionTree(+, op1, op2)

+

9*

4–

op2 = pop
op1 = pop
push(new ExpressionTree(*, op1, op2)

4 push(new ExpressionTree(4, null, null)

*

9 push(new ExpressionTree(9, null, null)

35

* 9

4–

35

*

4–

35

– 4

– op2 = pop
op1 = pop
push(new ExpressionTree(–, op1, op2)

35

–

Input in Postfix: 5 3 – 4 * 9 +

Expression Tree StackToken Processing Steps
(top at right)

5 push(new ExpressionTree(5, null, null)

3 push(new ExpressionTree(3, null, null) 35

5

FIGURE 19.11 Building an expression tree from a postfix expression

M19_LEWI5976_05_SE_C19.indd 714 08/02/19 3:08 AM

 19.5 Using Binary Trees: Expression Trees 715

L I S T I N G 1 9 . 4

import java.util.Scanner;

/**
 * Demonstrates the use of a stack to evaluate postfix expressions.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class PostfixTester
{
 /**
 * Reads and evaluates multiple postfix expressions.
 */
 public static void main(String[] args)
 {
 String expression, again;
 int result;

 Scanner in = new Scanner(System.in);

 do
 {
 PostfixEvaluator evaluator = new PostfixEvaluator();
 System.out.println("Enter a valid post-fix expression one token " +
 "at a time with a space between each token (e.g. 5 4 + 3 2

1 - + *)");
 System.out.println("Each token must be an integer or an operator
 (+,-,*,/)");
 expression = in.nextLine();

 result = evaluator.evaluate(expression);
 System.out.println();
 System.out.println("That expression equals " + result);

 System.out.println("The Expression Tree for that expression is: ");
 System.out.println(evaluator.getTree());

 System.out.print("Evaluate another expression [Y/N]? ");
 again = in.nextLine();
 System.out.println();
 }
 while (again.equalsIgnoreCase("y"));
 }
}

M19_LEWI5976_05_SE_C19.indd 715 08/02/19 3:08 AM

716 CHAPTER 19 Trees

L I S T I N G 1 9 . 5

import java.util.*;

/**
 * PostfixEvaluator this modification of our stack example uses a
 * stack to create an expression tree from a VALID integer postfix expression
 * and then uses a recursive method from the ExpressionTree class to
 * evaluate the tree.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class PostfixEvaluator
{
 private Stack<ExpressionTree> treeStack;

 /**
 * Sets up this evalutor by creating a new stack.
 */
 public PostfixEvaluator()
 {
 treeStack = new Stack<ExpressionTree>();
 }

 /**
 * Retrieves and returns the next operand off of this tree stack.
 *
 * @param treeStack the tree stack from which the operand will be returned
 * @return the next operand off of this tree stack
 */
 private ExpressionTree getOperand(Stack<ExpressionTree> treeStack)
 {
 ExpressionTree temp;
 temp = treeStack.pop();

 return temp;
 }

 /**
 * Evaluates the specified postfix expression by building and evaluating
 * an expression tree.
 *
 * @param expression string representation of a postfix expression
 * @return value of the given expression
 */

M19_LEWI5976_05_SE_C19.indd 716 08/02/19 3:08 AM

 19.5 Using Binary Trees: Expression Trees 717

 public int evaluate(String expression)
 {
 ExpressionTree operand1, operand2;
 char operator;
 String tempToken;

 Scanner parser = new Scanner(expression);

 while (parser.hasNext())
 {
 tempToken = parser.next();
 operator = tempToken.charAt(0);

 if ((operator == '+') || (operator == '-') || (operator == '*') ||
 (operator == '/'))
 {
 operand1 = getOperand(treeStack);
 operand2 = getOperand(treeStack);
 treeStack.push(new ExpressionTree
 (new ExpressionTreeOp(1,operator,0), operand2, operand1));
 }
 else
 {
 treeStack.push(new ExpressionTree(new ExpressionTreeOp
 (2,' ',Integer.parseInt(tempToken)), null, null));
 }

 }
 return (treeStack.peek()).evaluateTree();
 }

 /**
 * Returns the expression tree associated with this postfix evaluator.
 *
 * @return string representing the expression tree
 */
 public String getTree()
 {
 return (treeStack.peek()).printTree();
 }
}

L I S T I N G 1 9 . 5 continued

M19_LEWI5976_05_SE_C19.indd 717 08/02/19 3:08 AM

718 CHAPTER 19 Trees

BinaryTreeNode

element : T
left : BinaryTreeNode<T>
right:BinaryTreeNode<T>

numChildren() : int
getElement() : T
getRight() : BinaryTreeNode<T>
setRight() : BinaryTreeNode<T>

setLeft(BinaryTreeNode<T> node) :
void

node) : void
getLeft() : BinaryTreeNode<T>

<<interface>>
BinaryTreeADT

toString() : String
iterator() : Iterator<T>
iteratorInOrder() : Iterator<T>
iteratorPreOrder() : Iterator<T>
iteratorPostOrder() : Iterator<T>
iteratorLevelOrder() : Iterator<T>

getRootElement () : T
isEmpty() : boolean
size() : int
contains(T targetElement) : boolean
find(T targetElement) : T

T

T

LinkedBinaryTree

ExpressionTree

evaluateTree() : int
evaluateNode(BinaryTreeNode root) : int

printTree() : String

computeTerm(char operator : int operator1 :
int operand2) : int

ExpressionTreeOp

termType : int
operator : char
value : int

isOperator() : boolean
getOperator() : char
getValue() : int
toString() : string

0 . . * 1

java.util.Stack<Integer>

main(String[] args)

Postfixator
expression : String

main(String[] args)

PostfixEvaluator

treeStack : Stack

1

1

FIGURE 19.12 UML description of the Postfix example

M19_LEWI5976_05_SE_C19.indd 718 08/02/19 3:08 AM

 19.6 A Back Pain Analyzer 719

19.6 A Back Pain Analyzer

Notice that the ExpressionTree class extended the LinkedBinaryTree class.
Keep in mind that when one class is derived from another it creates an is-a rela-
tionship. This extension to create the ExpressionTree class is natural given that
an expression tree is a binary tree.

Let’s look at another example where our solution uses the LinkedBinaryTree
class but does not extend it. A decision tree is a tree whose nodes represent deci-
sion points and whose children represent the options available at that point. The
leaves of a decision tree represent the possible conclusions that might be drawn
based on the answers.

A simple decision tree, with yes/no questions, can be modeled by a binary tree.
Figure 19.13 shows a decision tree that helps to diagnose the cause of back pain.
For each question, the left child represents the answer No, and the right child
represents the answer Yes. To perform a diagnosis, begin with the question at the
root and follow the appropriate path, based on the answers, until a leaf is reached.

Decision trees are sometimes used as a basis for an expert system, which is soft-
ware that attempts to represent the knowledge of an expert in a particular field.
For instance, a particular expert system might be used to model the expertise of a
doctor, a car mechanic, or an accountant. Obviously, the greatly sim-
plified decision tree in Figure 19.13 is not fleshed out enough to do a
good job diagnosing the real cause of back pain, but it should give you
a feel for how such systems might work.

KEY CONCEPT
A decision tree can be used as the
basis for an expert system.

Did the pain occur
after a blow or jolt?

Do you have
a fever?

Do you have
persistent

morning stiffness?

See doctor
if pain persists.

You may have
an inflammation

of the joints.

See doctor
to address
symptoms.

You may have
a respiratory

infection.

You may
have a sprain

or strain.

You may have
a muscle or
nerve injury.

Do you have a
sore throat or
runny nose?

Do you have pain
or numbness in
one arm or leg?

Emergency! You
may have damaged

your spinal cord.

Do you have
difficulty controlling
your arms or legs?

N

N Y N Y

YN YN YN

Y

FIGURE 19.13 A decision tree for diagnosing back pain

M19_LEWI5976_05_SE_C19.indd 719 08/02/19 3:08 AM

720 CHAPTER 19 Trees

Let’s look at an example that uses the LinkedBinaryTree implementation dis-
cussed in the previous section to represent a decision tree. The program in Listing
19.6 uses the tree pictured in Figure 19.13 to hold a dialog with the user and draw
a conclusion. The UML description of our solution to the back pain analyzer
problem is presented in Figure 19.14.

The tree is constructed and used in the DecisionTree class, shown in Listing
19.7. The only instance data is the variable tree that represents the entire deci-
sion tree, which is defined to store String objects as elements. Note that this

L I S T I N G 1 9 . 6

import java.io.*;

/**
 * BackPainAnaylyzer demonstrates the use of a binary decision tree to
 * diagnose back pain.
 */
public class BackPainAnalyzer
{
 /**
 * Asks questions of the user to diagnose a medical problem.
 */
 public static void main(String[] args) throws FileNotFoundException
 {
 System.out.println("So, you’re having back pain.");

 DecisionTree expert = new DecisionTree("input.txt");
 expert.evaluate();
 }
}

O U T P U T

So, you're having back pain
Did the pain occur after a blow or jolt?
Y
Do you have difficulty controlling your arms or legs?
N
Do you have pain or numbness in one arm or leg?
Y
You may have a muscle or nerve injury.

M19_LEWI5976_05_SE_C19.indd 720 08/02/19 3:08 AM

 19.6 A Back Pain Analyzer 721

version of the DecisionTree class is not specific to the back pain analyzer. It
could be used for any binary decision tree.

The constructor of DecisionTree reads the various string elements to be
stored in the tree nodes from the given file. Then the nodes themselves are created,
with no children for the leaves and with previously defined nodes (or subtrees) as
children for internal nodes. The tree is basically created from the bottom up. The
input file used for the back pain analyzer example is shown in Figure 19.15.

BinaryTreeNode

element : T
left : BinaryTreeNode<T>
right:BinaryTreeNode<T>

numChildren() : int
getElement() : T
getRight() : BinaryTreeNode<T>
setRight() : BinaryTreeNode<T>

setLeft(BinaryTreeNode<T> node) :
void

node) : void
getLeft() : BinaryTreeNode<T>

<<interface>>
BinaryTreeADT

toString() : String
iterator() : Iterator<T>
iteratorInOrder() : Iterator<T>
iteratorPreOrder() : Iterator<T>
iteratorPostOrder() : Iterator<T>
iteratorLevelOrder() : Iterator<T>

getRootElement () : T
isEmpty() : boolean
size() : int
contains(T targetElement) : boolean
find(T targetElement) : T

T

T

LinkedList<Integer>

main(String[] args)

BackPainAnalyzer

tree : LinkedBinaryTree<String>

evaluate() : void

DecisionTree

FIGURE 19.14 UML description of the back pain analyzer

M19_LEWI5976_05_SE_C19.indd 721 08/02/19 3:08 AM

722 CHAPTER 19 Trees

L I S T I N G 1 9 . 7

import jsjf.*;
import java.util.*;
import java.io.*;

/**
 * The DecisionTree class uses the LinkedBinaryTree class to implement
 * a binary decision tree. Tree elements are read from a given file and
 * then the decision tree can be evaluated based on user input using the
 * evaluate method.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class DecisionTree
{
 private LinkedBinaryTree<String> tree;

 /**
 * Builds the decision tree based on the contents of the given file
 *
 * @param filename the name of the input file
 * @throws FileNotFoundException if the input file is not found
 */
 public DecisionTree(String filename) throws FileNotFoundException
 {
 File inputFile = new File(filename);
 Scanner scan = new Scanner(inputFile);
 int numberNodes = scan.nextInt();
 scan.nextLine();
 int root = 0, left, right;

 List<LinkedBinaryTree<String>> nodes = new java.util.ArrayList<LinkedBinaryTree
 <String>>();
 for (int i = 0; i < numberNodes; i++)
 nodes.add(i,new LinkedBinaryTree<String>(scan.nextLine()));

 while (scan.hasNext())
 {
 root = scan.nextInt();
 left = scan.nextInt();
 right = scan.nextInt();
 scan.nextLine();

 nodes.set(root,
 new LinkedBinaryTree<String>((nodes.get(root)).getRootElement(),

M19_LEWI5976_05_SE_C19.indd 722 08/02/19 3:08 AM

 19.6 A Back Pain Analyzer 723

 nodes.get(left), nodes.get(right)));
 }
 tree = nodes.get(root);
 }

 /**
 * Follows the decision tree based on user responses.
 */
 public void evaluate()
 {
 LinkedBinaryTree<String> current = tree;
 Scanner scan = new Scanner(System.in);

 while (current.size() > 1)
 {
 System.out.println(current.getRootElement());
 if (scan.nextLine().equalsIgnoreCase("N"))
 current = current.getLeft();
 else
 current = current.getRight();
 }

 System.out.println(current.getRootElement());
 }
}

L I S T I N G 1 9 . 7 continued

13
Did the pain occur after a blow or jolt?
Do you have a fever?
Do you have dificulty controlling your arms or legs?
Do you have persistent morning stiffness?
Do you have a sore throat or runny nose?
Do you have pain or numbness in one arm or leg?
Emergency! You may have damaged your spinal cord.
See doctor if pain persists.
You may have an inflammation of the joints.
See doctor to address symptoms.
You may have a respiratory infection.
You may have a sprain or strain.
You may have a muscle or nerve injury.
3 7 8
4 9 10
5 11 12
1 3 4
2 5 6
0 1 2

FIGURE 19.15 The input file for the BackPainAnalyzer program

M19_LEWI5976_05_SE_C19.indd 723 08/02/19 3:08 AM

724 CHAPTER 19 Trees

The evaluate method uses the variable current to indicate the current node
in the tree being processed, beginning at the root. The while loop continues until
a leaf is found. The current question is printed, and the answer is read from the
user. If the answer is No, then current is updated to point to the left child.
Otherwise, it is updated to point to the right child. After falling out of the loop,
the element stored in the leaf (the conclusion) is printed.

19.7 Implementing Binary Trees with Links

We will examine how some of these methods might be implemented using a
linked implementation; others will be left as exercises. The LinkedBinaryTree
class implementing the BinaryTreeADT interface will need to keep track of the
node that is at the root of the tree and the modification count for the tree. The
LinkedBinaryTree header and instance data could be declared as

package jsjf;

import java.util.*;
import jsjf.exceptions.*;

/**
 * LinkedBinaryTree implements the BinaryTreeADT interface
 *
 * @author Java Foundations
 * @version 4.0
 */
public class LinkedBinaryTree<T> implements BinaryTreeADT<T>, Iterable<T>
{
 protected BinaryTreeNode<T> root;
 protected int modCount;

The constructors for the LinkedBinaryTree class should handle three cases:
We want to create a binary tree with nothing in it, we want to create a binary tree
with a single element but no children, and we want to create a binary tree with a
particular element at the root and two given trees as children. With these goals in
mind, the LinkedBinaryTree class might have the following constructors. Note
that each of the constructors must account for the root attribute.

M19_LEWI5976_05_SE_C19.indd 724 08/02/19 3:08 AM

 19.7 Implementing Binary Trees with Links 725

Note that both the instance data and the constructors use an additional class
called BinaryTreeNode. As discussed earlier, this class keeps track of the element
stored at each location as well as pointers to the left and right subtree or children
of each node. In this particular implementation, we chose not to include a pointer
back to the parent of each node. Listing 19.8 shows the BinaryTreeNode class.
The BinaryTreeNode class also includes a recursive method to return the number
of children of the given node.

/**
 * Creates an empty binary tree.
 */
 public LinkedBinaryTree()
 {
 root = null;
 }

 /**
 * Creates a binary tree with the specified element as its root.
 *
 * @param element the element that will become the root of the binary tree
 */
 public LinkedBinaryTree(T element)
 {
 root = new BinaryTreeNode<T>(element);
 }

 /**
 * Creates a binary tree with the specified element as its root and the
 * given trees as its left child and right child
 *
 * @param element the element that will become the root of the binary tree
 * @param left the left subtree of this tree
 * @param right the right subtree of this tree
 */
 public LinkedBinaryTree(T element, LinkedBinaryTree<T> left,
 LinkedBinaryTree<T> right)
 {
 root = new BinaryTreeNode<T>(element);
 root.setLeft(left.root);
 root.setRight(right.root);
 }

M19_LEWI5976_05_SE_C19.indd 725 08/02/19 3:08 AM

726 CHAPTER 19 Trees

L I S T I N G 1 9 . 8

package jsjf;

/**
 * BinaryTreeNode represents a node in a binary tree with a left and
 * right child.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class BinaryTreeNode<T>
{
 protected T element;
 protected BinaryTreeNode<T> left, right;

 /**
 * Creates a new tree node with the specified data.
 *
 * @param obj the element that will become a part of the new tree node
 */
 public BinaryTreeNode(T obj)
 {
 element = obj;
 left = null;
 right = null;
 }

 /**
 * Creates a new tree node with the specified data.
 *
 * @param obj the element that will become a part of the new tree node
 * @param left the tree that will be the left subtree of this node
 * @param right the tree that will be the right subtree of this node
 */
 public BinaryTreeNode(T obj, LinkedBinaryTree<T> left, LinkedBinaryTree<T> right)
 {
 element = obj;
 if (left == null)
 this.left = null;
 else
 this.left = left.getRootNode();

 if (right == null)
 this.right = null;
 else
 this.right = right.getRootNode();
 }

M19_LEWI5976_05_SE_C19.indd 726 08/02/19 3:08 AM

 19.7 Implementing Binary Trees with Links 727

 /**
 * Returns the number of non-null children of this node.
 *
 * @return the integer number of non-null children of this node
 */
 public int numChildren()
 {
 int children = 0;

 if (left != null)
 children = 1 + left.numChildren();

 if (right != null)
 children = children + 1 + right.numChildren();
 return children;
 }

 /**
 * Return the element at this node.
 *
 * @return the element stored at this node
 */
 public T getElement()
 {
 return element;
 }

 /**
 * Return the right child of this node.
 *
 * @return the right child of this node
 */
 public BinaryTreeNode<T> getRight()
 {
 return right;
 }

 /**
 * Sets the right child of this node.
 *
 * @param node the right child of this node
 */
 public void setRight(BinaryTreeNode<T> node)
 {
 right = node;
 }

L I S T I N G 1 9 . 8 continued

M19_LEWI5976_05_SE_C19.indd 727 08/02/19 3:08 AM

728 CHAPTER 19 Trees

There are a variety of other possibilities for implementation of a tree node or
binary tree node class. For example, methods could be included to test whether
the node is a leaf (does not have any children), to test whether the node is an inter-
nal node (has at least one child), to test the depth of the node from the root, or to
calculate the height of the left and right subtrees.

Another alternative would be to use polymorphism such that, rather than test-
ing a node to see if it has data or has children, we would create various implemen-
tations, such as an emptyTreeNode, an innerTreeNode, and a leafTreeNode,
that would distinguish the various possibilities.

The find Method
As with our earlier collections, our find method traverses the tree using the
equals method of the class stored in the tree to determine equality. This puts the
definition of equality under the control of the class being stored in the tree. The
find method throws an exception if the target element is not found.

 /**
 * Return the left child of this node.
 *
 * @return the left child of the node
 */
 public BinaryTreeNode<T> getLeft()
 {
 return left;
 }

 /**
 * Sets the left child of this node.
 *
 * @param node the left child of this node
 */
 public void setLeft(BinaryTreeNode<T> node)
 {
 left = node;
 }
}

L I S T I N G 1 9 . 8 continued

M19_LEWI5976_05_SE_C19.indd 728 08/02/19 3:08 AM

 19.7 Implementing Binary Trees with Links 729

Many methods associated with trees may be written either recursively or itera-
tively. Often, when written recursively, these methods require the use of a private
support method because the signature and/or the behavior of the first call and
each successive call may not be the same. The find method in our simple imple-
mentation is an excellent example of this strategy.

We have chosen to use a recursive findAgain method. We know that the first
call to find will start at the root of the tree, and if that instance of the find
method completes without finding the target, we need to throw an exception. The
private findAgain method enables us to distinguish between this first call to the
find method and each successive call.

/**
 * Returns a reference to the specified target element if it is
 * found in this binary tree. Throws a ElementNotFoundException if
 * the specified target element is not found in the binary tree.
 *
 * @param targetElement the element being sought in this tree
 * @return a reference to the specified target
 * @throws ElementNotFoundException if the element is not in the tree
 */
 public T find(T targetElement) throws ElementNotFoundException
 {
 BinaryTreeNode<T> current = findNode(targetElement, root);

 if (current == null)
 throw new ElementNotFoundException("LinkedBinaryTree");

 return (current.getElement());
 }

 /**
 * Returns a reference to the specified target element if it is
 * found in this binary tree.
 *
 * @param targetElement the element being sought in this tree
 * @param next the element to begin searching from
 */
 private BinaryTreeNode<T> findNode(T targetElement,
 BinaryTreeNode<T> next)
 {
 if (next == null)
 return null;

M19_LEWI5976_05_SE_C19.indd 729 08/02/19 3:08 AM

730 CHAPTER 19 Trees

As seen in earlier examples, the contains method can make use of the find
method. Our implementation of this is left as a programming project.

The iteratorInOrder Method
Another interesting operation is the iteratorInOrder method. The task is to
create an Iterator object that will allow a user class to step through the ele-
ments of the tree in an inorder traversal. The solution to this problem provides
another example of using one collection to build another. We simply traverse the
tree using a definition of “visit” from earlier pseudocode that adds the contents
of the node onto an unordered list. We then use the list iterator to create a new
TreeIterator. This approach is possible because of the linear nature of an un-
ordered list and the way that we implemented the iterator method for a list. The
iterator method for a list returns an Iterator that starts with the element at the
front of the list and steps through the list in a linear fashion. It is important to
understand that this behavior is not a requirement for an iterator associated with
a list. It is simply an artifact of the way that we chose to implement the iterator
method for a list. What would happen if we simply returned the Iterator for our
list without creating a TreeIterator? The problem with that solution would be
that our Iterator would no longer be fail-fast (that is, it would no longer throw
a concurrent modification exception if the underlying tree were modified while
the iterator was in use).

 if (next.getElement().equals(targetElement))
 return next;

 BinaryTreeNode<T> temp = findNode(targetElement, next.getLeft());

 if (temp == null)
 temp = findNode(targetElement, next.getRight());

 return temp;
 }

M19_LEWI5976_05_SE_C19.indd 730 08/02/19 3:08 AM

 19.7 Implementing Binary Trees with Links 731

Like the find operation, we use a private helper method in our recursion.

/**
 * Performs an inorder traversal on this binary tree by calling an
 * overloaded, recursive inorder method that starts with
 * the root.
 *
 * @return an in order iterator over this binary tree
 */
 public Iterator<T> iteratorInOrder()
 {
 ArrayUnorderedList<T> tempList = new ArrayUnorderedList<T>();
 inOrder(root, tempList);

 return new TreeIterator(tempList.iterator());
 }

 /**
 * Performs a recursive inorder traversal.
 *
 * @param node the node to be used as the root for this traversal
 * @param tempList the temporary list for use in this traversal
 */
 protected void inOrder(BinaryTreeNode<T> node,
 ArrayUnorderedList<T> tempList)
 {
 if (node != null)
 {
 inOrder(node.getLeft(), tempList);
 tempList.addToRear(node.getElement());
 inOrder(node.getRight(), tempList);
 }
 }

The other iterator operations are similar and left as exercises. Likewise, the
array implementation of a binary tree is left as an exercise and will be revisited in
Chapter 21.

M19_LEWI5976_05_SE_C19.indd 731 08/02/19 3:08 AM

732 CHAPTER 19 Trees

Summary of Key Concepts

■■ A tree is a nonlinear structure whose elements are organized into a hierarchy.

■■ Trees are described by a large set of related terms.

■■ The simulated link strategy allows array positions to be allocated contigu-
ously regardless of the completeness of the tree.

■■ In general, a balanced n-ary tree with m elements will have height lognm.

■■ There are four basic methods for traversing a tree: preorder, inorder, post-
order, and level-order traversals.

■■ Preorder traversal means visit the node, then the left child, then the right child.

■■ Inorder traversal means visit the left child, then the node, then the right child.

■■ Postorder traversal means visit the left child, then the right child, then the node.

■■ Level-order traversal means visit the nodes at each level, one level at a time,
starting with the root.

■■ A decision tree can be used as the basis for an expert system.

Summary of Terms
ancestor A node that is above the current node on the path from the root.

balanced Roughly speaking, a tree is considered to be balanced if all of the
leaves of the tree are on the same level or at least within one level of each other.

binary tree A tree in which nodes may have at most two children.

binary search tree A binary tree with the added property that the left child is
always less than the parent, which is always less than or equal to the right child.

child A node that is below the current node in tree and directly connected
to it by an edge.

complete A tree is considered complete if it is balanced and all of the leaves
at the bottom level are on the left side of the tree.

descendant A node that is below the current node in the tree and is on a
path from the current node to a leaf (including the leaf).

edge A connection between two nodes of a tree.

full An n-ary tree is considered full if all the leaves of the tree are at the
same level and every node either is a leaf or has exactly n children.

freelist A list of available positions in an array implementation of a tree.

general tree A tree that has no limit on the number of children a node may have.

M19_LEWI5976_05_SE_C19.indd 732 08/02/19 3:08 AM

 Self-Review Questions 733

inorder traversal A tree traversal accomplished by visiting the left child of
the node, then the node, and then any remaining nodes, starting with the
root.

internal node A node in a tree that is not the root and has at least one child.

level The position of a node relative to the root of the tree.

leaf A node in a tree that does not have any children.

level-order traversal A tree traversal accomplished by visiting all of the
nodes at each level, one level at a time, starting with the root.

node A location within a tree.

n-ary tree A tree that limits each node to no more than n children.

path The collection of edges that directly connects a node to another node
of the tree.

path length The number of edges that must be followed to connect one
node to another.

postorder traversal A tree traversal accomplished by visiting the children
and then the node, starting with the root.

preorder traversal A tree traversal accomplished by visiting each node, fol-
lowed by its children, starting with the root.

root The node at the top level of a tree and the one node in the tree that
does not have a parent.

siblings Nodes that are children of the same node.

tree A tree is a nonlinear structure whose elements are organized into a
hierarchy.

tree height The length of the longest path from the root to a leaf.

tree order The maximum number of children that any node in the tree may
have.

Self-Review Questions
SR 19.1 What is a tree?

SR 19.2 What is a node?

SR 19.3 What is the root of a tree?

SR 19.4 What is a leaf?

SR 19.5 What is an internal node?

SR 19.6 Define the height of a tree.

 Self-Review Questions 733

M19_LEWI5976_05_SE_C19.indd 733 08/02/19 3:08 AM

734 CHAPTER 19 Trees

SR 19.7 Define the level of a node.

SR 19.8 What are the advantages and disadvantages of the computational
strategy?

SR 19.9 What are the advantages and disadvantages of the simulated link
strategy?

SR 19.10 What attributes should be stored in the TreeNode class?

SR 19.11 Which method of traversing a tree would result in a sorted list for
a binary search tree?

SR 19.12 We used a list to implement the iterator methods for a binary
tree. What must be true for this strategy to be successful?

Exercises
EX 19.1 Develop a pseudocode algorithm for a level-order traversal of a

binary tree.

EX 19.2 Draw either a matrilineage (following your mother’s lineage) or a
patrilineage (following your father’s lineage) diagram for a couple
of generations. Develop a pseudocode algorithm for inserting a
person into the proper place in the tree.

EX 19.3 Develop a pseudocode algorithm to build an expression tree from
a prefix expression.

EX 19.4 Develop a pseudocode algorithm to build an expression tree from
an infix expression.

EX 19.5 Calculate the time complexity of the find method.

EX 19.6 Calculate the time complexity of the iteratorInOrder method.

EX 19.7 Develop a pseudocode algorithm for the size method assuming
that there is not a count variable.

EX 19.8 Develop a pseudocode algorithm for the isEmpty operation as-
suming that there is not a count variable.

EX 19.9 Draw an expression tree for the expression (9 + 4) * 5 + (4 - (6 - 3)).

Programming Projects
PP 19.1 Complete the implementation of the getRootElement and

toString operations of a binary tree.

PP 19.2 Complete the implementation of the size and isEmpty opera-
tions of a binary tree, assuming that there is not a count variable.

M19_LEWI5976_05_SE_C19.indd 734 08/02/19 3:08 AM

PP 19.3 Create boolean methods for our BinaryTreeNode class to deter-
mine whether the node is a leaf or an internal node.

PP 19.4 Create a method called depth that will return an int represent-
ing the level or depth of the given node from the root.

PP 19.5 Complete the implementation of the contains method for a
 binary tree.

PP 19.6 Complete the implementation of the iterator methods for a binary
tree.

PP 19.7 Implement the iterator methods for a binary tree without using a list.

PP 19.8 Modify the ExpressionTree class to create a method called draw
that will graphically depict the expression tree.

PP 19.9 We use postfix notation in the example in this chapter because
it eliminates the need to parse an infix expression by precedence
rules and parentheses. Some infix expressions do not need pa-
rentheses to modify precedence. Implement a method for the
ExpressionTree class that will determine if an integer expres-
sion would require parentheses if it were written in infix notation.

PP 19.10 Create an array-based implementation of a binary tree using the
computational strategy.

PP 19.11 Create an array-based implementation of a binary tree using the
simulated link strategy.

PP 19.12 Create an implementation of a binary tree using the recursive ap-
proach introduced in the chapter. In this approach, each node is a
binary tree. Thus a binary tree contains a reference to the element
stored at its root as well as references to its left and right subtrees.
You may also want to include a reference to its parent.

Answers to Self-Review Questions
SRA 19.1 A tree is a nonlinear structure defined by the concept that each

node in the tree, other than the first node or root node, has ex-
actly one parent.

SRA 19.2 A node is a location in the tree where an element is stored.

SRA 19.3 The root of a tree is the node at the base of the tree or the one
node in the tree that does not have a parent.

SRA 19.4 A leaf is a node that does not have any children.

SRA 19.5 An internal node is any non-root node that has at least one child.

 Answers to Self-Review Questions 735

M19_LEWI5976_05_SE_C19.indd 735 08/02/19 3:08 AM

736 CHAPTER 19 Trees

SRA 19.6 The height of the tree is the length of the longest path from the
root to a leaf.

SRA 19.7 The level of a node is measured by the number of links that must
be followed to reach that node from the root.

SRA 19.8 The computational strategy does not have to store links from
parent to child because that relationship is fixed by position.
However, this strategy may lead to substantial wasted space for
trees that are not balanced and/or not complete.

SRA 19.9 The simulated link strategy stores array index values as point-
ers between parent and child and allows the data to be stored
contiguously no matter how balanced and/or complete the tree.
However, this strategy increases the overhead in terms of main-
taining a freelist or shifting elements in the array.

SRA 19.10 The TreeNode class must store a pointer to the element stored in
that position as well as pointers to each of the children of that
node. The class may also contain a pointer to the parent of the
node.

SRA 19.11 Inorder traversal of a binary search tree would result in a sorted
list in ascending order.

SRA 19.12 For this strategy to be successful, the iterator for a list must re-
turn the elements in the order in which they were added. For this
particular implementation of a list, we know this is indeed the
case.

M19_LEWI5976_05_SE_C19.indd 736 08/02/19 3:08 AM

737

20
In this chapter, we will explore the concept of binary

search trees and options for their implementation. We will

examine algorithms for adding and removing elements from

binary search trees and for maintaining balanced binary

search trees. We will discuss the analysis of these implemen-

tations and also explore various uses of binary search trees.

C H A P T E R O B J E C T I V E S
■■ Define a binary search tree abstract data structure.

■■ Demonstrate how a binary search tree can be used to solve
problems.

■■ Examine a binary search tree implementation.

■■ Discuss strategies for balancing a binary search tree.

Binary Search
Trees 20

M20_LEWI5976_05_SE_C20.indd 737 08/02/19 3:10 AM

738 CHAPTER 20 Binary Search Trees

20.1 Binary Search Trees

A search tree is a tree whose elements are organized to facilitate finding a par-
ticular element when needed. That is, the elements in a search tree are stored in
a particular way relative to each other so that finding an element doesn’t require
searching the entire tree.

A binary search tree is a binary tree that, for each node n, the left
subtree of n contains elements less than the element stored in n, and
the right subtree of n contains elements that are greater than or equal
to the element stored in n.

Figure 20.1 shows a binary search tree containing integer val-
ues. Examine it carefully, noting the relationships among the nodes.
Every element in the left subtree of the root is less than 45, and every
element in the right subtree of the root is greater than 45. This rela-
tionship is true for every node in the tree.

KEY CONCEPT
A binary search tree is a binary tree
in which, for each node, the elements
in the left subtree are less than the
parent, and the elements in the right
subtree are greater than or equal to
the parent.

45

12

7

14

51

25 38

69

70

81

33

15

42

44

42

FIGURE 20.1 A binary search tree of integers

Equal values are stored in the right subtree, as in the case of 42 in Figure 20.1.
This decision, however, is arbitrary. Equal values could be stored to the left as
long as all operations managing the tree were consistent with that decision.

To determine if a particular target element exists in the tree, we follow the
appropriate path starting at the root, moving left or right from the current node
depending on whether the target is less than, greater than, or equal to the element

M20_LEWI5976_05_SE_C20.indd 738 08/02/19 3:10 AM

 20.1 Binary Search Trees 739

in that node. We will eventually either find the element we’re looking for or en-
counter the end of the path, which means the target is not in the tree.

This process should remind you of the binary search algorithm we discussed in
Chapter 18. It is, in fact, the same logic. In Chapter 18, we searched a sorted array
and jumped to an appropriate index. With a binary search tree, the structure of
the tree itself provides the search path.

The binary search tree in Figure 20.1 is only one of many that could be con-
structed using the same elements. The particular shape of a binary search tree
depends on the order in which elements were added to the tree and on any ad-
ditional processing used to reshape it. The most efficient binary search trees are
balanced, so that approximately half of the viable candidates are eliminated with
each comparison.

Of course, binary search trees can hold any kind of data or ob-
ject, as long as we have a way to determine their relative ordering.
Objects that implement the Comparable interface, for instance, can
be put into a binary search tree because we can determine, using the
compareTo method, which object comes before another. For simplic-
ity, we will use integers in the examples in this chapter.

Note that if you perform an inorder traversal (as described in Chapter 19) on a
binary search tree, the elements will be visited in sorted order, ascending.

Adding an Element to a Binary Search Tree
The process of adding a new element to a binary search tree is similar to the
process of searching the tree. A new element is added as a leaf node on the tree.
Starting at the root, follow the path dictated by the elements in each node until
there is no child node in the appropriate direction. At that point, add the new ele-
ment as a leaf.

For example, let’s add the following elements, in order, to a new binary search
tree:

77 24 58 82 17 40 97

The first value, 77, becomes the root of our new tree. Next, because 24 is less
than 77, it is added as the left child of the root. The next value, 58, is less than 77,
so it goes in the left subtree of the root, but it is greater than 24, so it is added as
the right child of 24. The value 82 is greater than the root value of 77, and thus is
added as its right child. The value 17 is less than 77 and less than 24, so it is added
as the left child of 24. This process is shown in Figure 20.2 and continues for the
remaining items in our example.

KEY CONCEPT
The most efficient binary search trees
are balanced, so that half of the viable
candidates are eliminated with each
comparison.

M20_LEWI5976_05_SE_C20.indd 739 08/02/19 3:10 AM

740 CHAPTER 20 Binary Search Trees

77 77

24

77 77

24

58 58

24 82

77

24 82

17 58

77

24 82

17 58

40

77

24 82

9717 58

40

FIGURE 20.2 Adding elements to a binary search tree

In the absence of any additional processing to change the shape of
the tree, the order in which the values are added dictates its shape.
If that order is particularly skewed one way or another, the result-
ing tree is not particularly useful. For example, adding the following
values in order creates the tree depicted in Figure 20.3:

20 24 37 28 44 47 69

KEY CONCEPT
In the absence of any additional pro-
cessing, the shape of a binary search
tree is dictated by the order in which
the elements are added to it.

24

69

20

47

37

28 44

FIGURE 20.3 A binary search tree created by adding
elements in a particular order

M20_LEWI5976_05_SE_C20.indd 740 08/02/19 3:10 AM

 20.1 Binary Search Trees 741

Removing an Element from a Binary Search Tree
Removing an element from a binary search tree (BST) is not as straightforward as
it is for a linear data structure, because there are potentially two children for each
node. Keep in mind that after removing the element, the resulting tree must still be
a valid binary search tree, with appropriate relationships among all the elements.

Consider the binary search tree shown in Figure 20.4. It points out the three situ-
ations that we must consider when removing an element from a binary search tree:

■■ Situation 1: If the node to be removed is a leaf (has no children), it can
simply be deleted.

■■ Situation 2: If the node to be removed has one child, the deleted node is
replaced by its child.

■■ Situation 3: If the node to be removed has two children, an appropriate
node is found from lower in the tree and used to replace the node. The chil-
dren of the removed node become the children of the replacement node.

The first situation is trivial. If we want to remove a leaf node, such
as 88 or 67, it can simply be deleted. The resulting tree remains a
valid binary search tree.

The second situation is pretty straightforward too. If we want to
remove a node with only one child, such as 51 or 62, the child can
replace the deleted parent. That is, 57 could replace 51, and 67 could replace
62. The child’s relationship to the rest of the tree will remain intact. This solu-
tion works even if the child has subtrees of its own. The node containing 70, for

KEY CONCEPT
There are three situations to consider
when removing an element from a
binary search tree.

Situation 3

Situation 1

69

60

5138 49

86

6249 9070

81

85

88

74

73

57

67

Situation 2

FIGURE 20.4 The three situations to consider when removing
an element from a BST

M20_LEWI5976_05_SE_C20.indd 741 08/02/19 3:10 AM

742 CHAPTER 20 Binary Search Trees

instance, could be replaced by 81, even though 81 has its own children. The entire
subtree has the appropriate relationship to the new parent (86).

The third situation is the most interesting. Suppose we want to
remove a node that has two children, such as 60. Neither child can
be used as a replacement without a significant reconstruction of the
tree. A good choice to replace the node is its inorder successor, which
is the element that would follow the deleted element in an inorder
traversal (the next highest value). For example, in the tree in Figure

20.4, the inorder successor of 60 is 62, the inorder successor of 70 is 73, and the
inorder successor of 69 is 70.

So to remove a node that has two children, we first remove its inorder successor
from the tree, and then use it to replace the node that’s actually being removed. The ex-
isting children of the node being removed become the children of the replacement node.

But what about the existing children of the inorder successor? Well, it’s guar-
anteed that the inorder successor of a node will not have a left child. If it did, that
child would be the inorder successor. Therefore, the inorder successor will either
be a leaf or have one (right) child. So, removing the inorder successor falls under
one of the first two (simpler) situations for removing a node.

For example, to remove element 86 from the tree in Figure 20.4, we find its
inorder successor (88), remove it from the tree (which is trivial because it’s a leaf),
and replace 86 with it. The node containing 70 becomes the left child of 88, and
the node containing 90 becomes the right child of 88.

Let’s walk through another example of removing a node with two children.
Starting over with the tree in Figure 20.4, let’s delete the root (69). First, we find
its inorder successor (70) and remove it from the tree, moving the subtree with
root 81 up to replace it. Then the element 69 is replaced with the element 70. The
resulting tree is shown in Figure 20.5.

KEY CONCEPT
When removing a node with two
children from a BST, the inorder
successor is a good choice to replace it.

70

60

51

86

6249 9081

85

57

67 74 88

73

38

FIGURE 20.5 The resulting tree after the root is removed

M20_LEWI5976_05_SE_C20.indd 742 08/02/19 3:10 AM

 20.2 Implementing a Binary Search Tree 743

20.2 Implementing a Binary Search Tree

As we discussed in Chapter 19, it is very difficult to abstract a set of operations for
a tree without knowing what type of tree it is and its intended purpose. With the
added ordering property that must be maintained, we can now extend our defini-
tion to include the operations on a binary search tree listed in Figure 20.6.

As we discussed in Chapter 19, the Java Collections API does not provide an
implementation of a general tree. Instead, trees are used as an implementation
strategy for Sets and Maps. We will discuss the API treatment of trees in Chapter
22. In the meantime, we will build upon our own linked implementation of trees
from Chapter 19.

We must keep in mind that the definition of a binary search tree
is an extension of the definition of a binary tree discussed in the last
chapter. Thus, these operations are in addition to the ones defined
for a binary tree. At this point we are simply discussing binary search
trees, but as we will see shortly, the interface for a balanced binary
search tree will be the same. Listing 20.1 and Figure 20.7 describe a
BinarySearchTreeADT.

KEY CONCEPT
The definition of a binary search tree
is an extension of the definition of a
binary tree.

Operation

addElement

removeElement

removeAllOccurrences

removeMin

removeMax

findMin

findMax

Description

Add an element to the tree.
Remove an element from the tree.
Remove all occurrences of element from the tree.
Remove the minimum element in the tree.
Remove the maximum element in the tree.
Returns a reference to the minimum element in the tree.
Returns a reference to the maximum element in the tree.

FIGURE 20.6 The operations on a binary search tree

L I S T I N G 2 0 . 1

package jsjf;

/**
 * BinarySearchTreeADT defines the interface to a binary search tree.
 *
 * @author Java Foundations
 * @version 4.0
 */

M20_LEWI5976_05_SE_C20.indd 743 08/02/19 3:10 AM

744 CHAPTER 20 Binary Search Trees

L I S T I N G 2 0 . 1

public interface BinarySearchTreeADT<T> extends BinaryTreeADT<T>
{
 /**
 * Adds the specified element to the proper location in this tree.
 *
 * @param element the element to be added to this tree
 */
 public void addElement(T element);

 /**
 * Removes and returns the specified element from this tree.
 *
 * @param targetElement the element to be removed from the tree
 * @return the element to be removed from the tree
 */
 public T removeElement(T targetElement);

 /**
 * Removes all occurences of the specified element from this tree.
 *
 * @param targetElement the element to be removed from the tree
 */
 public void removeAllOccurrences(T targetElement);

 /**
 * Removes and returns the smallest element from this tree.
 *
 * @return the smallest element from the tree.
 */
 public T removeMin();

 /**
 * Removes and returns the largest element from this tree.
 *
 * @return the largest element from the tree
 */
 public T removeMax();

 /**
 * Returns the smallest element in this tree without removing it.
 *

continued

M20_LEWI5976_05_SE_C20.indd 744 08/02/19 3:10 AM

 20.3 Implementing Binary Search Trees: With Links 745

<<interface>>
BinarySearchTreeADT

findMin() : T
findMax() : T

addelement(T element) : void
iremoveElement(T targetElement) : T
removeAllOccurances(T targetElement) : void
removeMin() : T
removeMax() : T

T
<<interface>>

BinaryTreeADT

toString() : String
iterator() : Iterator<T>
iteratorInOrder() : Iterator<T>
iteratorPreOrder() : Iterator<T>
iteratorPostOrder() : Iterator<T>
iteratorLevelOrder() : Iterator<T>

getRootElement () : T
isEmpty() : boolean
size() : int
contains(T targetElement) : boolean
find(T targetElement) : T

T

FIGURE 20.7 UML description of the BinarySearchTreeADT

20.3 Implementing Binary Search Trees: With Links

In Chapter 19, we introduced a simple implementation of a
LinkedBinaryTree class using a BinaryTreeNode class to
represent each node of the tree. Each BinaryTreeNode ob-
ject maintains a reference to the element stored at that node,
as well as references to each of the node’s children. We can sim-
ply extend that definition with a LinkedBinarySearchTree class

KEY CONCEPT
Each BinaryTreeNode object main-
tains a reference to the element stored
at that node, as well as references to
each of the node’s children.

L I S T I N G 2 0 . 1

 * @return the smallest element in the tree
 */
 public T findMin();

 /**
 * Returns the largest element in this tree without removing it.
 *
 * @return the largest element in the tree
 */
 public T findMax();
}

continued

M20_LEWI5976_05_SE_C20.indd 745 08/02/19 3:10 AM

746 CHAPTER 20 Binary Search Trees

implementing the BinarySearchTreeADT interface. Because we are extending the
LinkedBinaryTree class from Chapter 19, all of the methods we discussed are
still supported, including the various traversals.

Our LinkedBinarySearchTree class offers two constructors: one to
create an empty LinkedBinarySearchTree and the other to create a
LinkedBinarySearchTree with a particular element at the root. Both of these
constructors simply refer to the equivalent constructors of the super class (that is,
the LinkedBinaryTree class).

/**
 * Creates an empty binary search tree.
 */
public LinkedBinarySearchTree()
{
 super();
}

/**
 * Creates a binary search with the specified element as its root.
 *
 * @param element the element that will be the root of the new binary
 * search tree
 */
public LinkedBinarySearchTree(T element)
{
 super(element);

 if (!(element instanceof Comparable))
 throw new
 NonComparableElementException("LinkedBinarySearchTree");
}

The addElement Operation
The addElement(element) method adds a given element to the appropri-
ate location in the tree using the private, recursive addElement(element,
tree) method. If the element is not Comparable, the method throws a
NonComparableElementException. If the tree is empty, the new element becomes
the root. If the tree is not empty, the new element is compared to the element at the
root. If it is less than the element stored at the root and the left child of the root is
null, then the new element becomes the left child of the root. If the new element is
less than the element stored at the root and the left child of the root is not null, then
we recursively add the element to the left subtree of the root. If the new element is
greater than or equal to the element stored at the root and the right child of the root

M20_LEWI5976_05_SE_C20.indd 746 08/02/19 3:10 AM

 20.3 Implementing Binary Search Trees: With Links 747

is null, then the new element becomes the right child of the root. If the new element is
greater than or equal to the element stored at the root and the right child of the root
is not null, then we recursively add the element to the right subtree of the root. As in
any recursive algorithm, we could have chosen to implement the add operation it-
eratively. The iterative version of the add operation is left as a programming project.

D E S I G N F O C U S

Once we have a definition of the type of tree that we wish to construct and how it
is to be used, we have the ability to define an interface and implementations. In
Chapter 19, we defined a binary tree that enabled us to define a very basic set of
operations. Now that we have limited our scope to a binary search tree, we can
fill in more details of the interface and the implementation. Determining the level
at which to build interface descriptions and determining the boundaries between
parent and child classes are design choices . . . and they are not always easy de-
sign choices.

/**
 * Adds the specified object to the binary search tree in the
 * appropriate position according to its natural order. Note that
 * equal elements are added to the right.
 *
 * @param element the element to be added to the binary search tree
 */
public void addElement(T element)
{
 if (!(element instanceof Comparable))
 throw new NonComparableElementException("LinkedBinarySearchTree");

 Comparable<T> comparableElement = (Comparable<T>)element;

 if (isEmpty())
 root = new BinaryTreeNode<T>(element);
 else
 {
 if (comparableElement.compareTo(root.getElement()) < 0)
 {
 if (root.getLeft() == null)
 this.getRootNode().setLeft(new BinaryTreeNode<T>(element));
 else
 addElement(element, root.getLeft());
 }

M20_LEWI5976_05_SE_C20.indd 747 08/02/19 3:10 AM

748 CHAPTER 20 Binary Search Trees

 else
 {
 if (root.getRight() == null)
 this.getRootNode().setRight(new BinaryTreeNode<T>(element));
 else
 addElement(element, root.getRight());
 }
 }
 modCount++;
}

/**
 * Adds the specified object to the binary search tree in the
 * appropriate position according to its natural order. Note that
 * equal elements are added to the right.
 *
 * @param element the element to be added to the binary search tree
 */
private void addElement(T element, BinaryTreeNode<T> node)
{
 Comparable<T> comparableElement = (Comparable<T>)element;

 if (comparableElement.compareTo(node.getElement()) < 0)
 {
 if (node.getLeft() == null)
 node.setLeft(new BinaryTreeNode<T>(element));
 else
 addElement(element, node.getLeft());
 }
 else
 {
 if (node.getRight() == null)
 node.setRight(new BinaryTreeNode<T>(element));
 else
 addElement(element, node.getRight());
 }
}

The removeElement Operation
The removeElement method removes a given Comparable element from a bi-
nary search tree or throws an ElementNotFoundException if the given target is
not found in the tree. As discussed in the first section of this chapter, we cannot

M20_LEWI5976_05_SE_C20.indd 748 08/02/19 3:10 AM

 20.3 Implementing Binary Search Trees: With Links 749

simply remove the node by making the reference point around the node to be re-
moved. Instead, another node will have to be promoted to replace the one being
removed. The protected method replacement returns a reference to a node that
will replace the one specified for removal. There are three cases for selecting the
replacement node:

■■ If the node has no children, replacement returns null.

■■ If the node has only one child, replacement returns that
child.

■■ If the node to be removed has two children, replacement
returns the inorder successor of the node to be removed
(because equal elements are placed to the right).

Like our recursive addElement method, the removeElement(targetElement)
method is recursive and makes use of the private removeElement(targetElement,

KEY CONCEPT
In removing an element from a binary
search tree, another node must be
promoted to replace the node
being removed.

/**
 * Removes the first element that matches the specified target
 * element from the binary search tree and returns a reference to
 * it. Throws a ElementNotFoundException if the specified target
 * element is not found in the binary search tree.
 *
 * @param targetElement the element being sought in the binary search tree
 * @throws ElementNotFoundException if the target element is not found
 */
public T removeElement(T targetElement)
 throws ElementNotFoundException
{
 T result = null;

 if (isEmpty())
 throw new ElementNotFoundException("LinkedBinarySearchTree");
 else
 {
 BinaryTreeNode<T> parent = null;
 if (((Comparable<T>)targetElement).equals(root.element))
 {
 result = root.element;
 BinaryTreeNode<T> temp = replacement(root);
 if (temp == null)

M20_LEWI5976_05_SE_C20.indd 749 08/02/19 3:10 AM

750 CHAPTER 20 Binary Search Trees

 root = null;
 else
 {
 root.element = temp.element;
 root.setRight(temp.right);
 root.setLeft(temp.left);
 }

 modCount--;
 }
 else
 {
 parent = root;
 if (((Comparable)targetElement).compareTo(root.element) < 0)
 result = removeElement(targetElement, root.getLeft(), parent);
 else
 result = removeElement(targetElement, root.getRight(), parent);
 }
 }

 return result;
}

/**
 * Removes the first element that matches the specified target
 * element from the binary search tree and returns a reference to
 * it. Throws a ElementNotFoundException if the specified target
 * element is not found in the binary search tree.
 *
 * @param targetElement the element being sought in the binary search tree
 * @param node the node from which to search
 * @param parent the parent of the node from which to search
 * @throws ElementNotFoundException if the target element is not found
 */
private T removeElement(T targetElement, BinaryTreeNode<T> node,
BinaryTreeNode<T> parent) throws ElementNotFoundException
{
 T result = null;

 if (node == null)
 throw new ElementNotFoundException("LinkedBinarySearchTree");
 else
 {
 if (((Comparable<T>)targetElement).equals(node.element))
 {
 result = node.element;
 BinaryTreeNode<T> temp = replacement(node);

M20_LEWI5976_05_SE_C20.indd 750 08/02/19 3:10 AM

 20.3 Implementing Binary Search Trees: With Links 751

 if (parent.right == node)
 parent.right = temp;
 else
 parent.left = temp;

 modCount--;
 }
 else
 {
 parent = node;
 if (((Comparable)targetElement).compareTo(node.element) < 0)
 result = removeElement(targetElement, node.getLeft(), parent);
 else
 result = removeElement(targetElement, node.getRight(), parent);
 }
 }

 return result;
}

node, parent) method. In this way the special case of removing the root element
can be handled separately.

The following code illustrates the replacement method. Figure 20.8 further
illustrates the process of removing elements from a binary search tree.

10

5 15

7

Initial tree Remove 3 Remove 10

133

10

5 15

7 13 13

7 15

Remove 5

10

7 15

13

FIGURE 20.8 Removing elements from a binary tree

/**
 * Returns a reference to a node that will replace the one
 * specified for removal. In the case where the removed node has
 * two children, the inorder successor is used as its replacement.
 *
 * @param node the node to be removed

M20_LEWI5976_05_SE_C20.indd 751 08/02/19 3:10 AM

752 CHAPTER 20 Binary Search Trees

 * @return a reference to the replacing node
 */
private BinaryTreeNode<T> replacement(BinaryTreeNode<T> node)
{
 BinaryTreeNode<T> result = null;

 if ((node.left == null) && (node.right == null))
 result = null;

 else if ((node.left != null) && (node.right == null))
 result = node.left;

 else if ((node.left == null) && (node.right != null))
 result = node.right;

 else
 {
 BinaryTreeNode<T> current = node.right;
 BinaryTreeNode<T> parent = node;

 while (current.left != null)
 {
 parent = current;
 current = current.left;
 }

 current.left = node.left;
 if (node.right != current)
 {
 parent.left = current.right;
 current.right = node.right;
 }

 result = current;
 }

 return result;
}

The removeAllOccurrences Operation
The removeAllOccurrences method removes all occurrences of a given element
from a binary search tree and throws an ElementNotFoundException if the given
element is not found in the tree. This method also throws a ClassCastException

M20_LEWI5976_05_SE_C20.indd 752 08/02/19 3:10 AM

 20.3 Implementing Binary Search Trees: With Links 753

if the element given is not Comparable. This method makes use of the
remove-Element method by calling it once, which guarantees that the exception
will be thrown if there is not at least one occurrence of the element in the tree.
The removeElement method is then called again as long as the tree contains the
target element. Note that the removeAllOccurrences method makes use of the
contains method of the LinkedBinaryTree class. Note that the find method
has been overridden in the LinkedBinarySearchTree class to take advantage of
the ordering property of a binary search tree.

/**
 * Removes elements that match the specified target element from
 * the binary search tree. Throws a ElementNotFoundException if
 * the specified target element is not found in this tree.
 *
 * @param targetElement the element being sought in the binary search tree
 * @throws ElementNotFoundException if the target element is not found
 */
public void removeAllOccurrences(T targetElement)
 throws ElementNotFoundException
{
 removeElement(targetElement);

 try
 {
 while (contains((T)targetElement))
 removeElement(targetElement);
 }
 catch (Exception ElementNotFoundException)
 {
 }
}

The removeMin Operation
There are three possible cases for the location of the minimum ele-
ment in a binary search tree:

■■ If the root has no left child, then the root is the minimum
element and the right child of the root becomes the new root.

■■ If the leftmost node of the tree is a leaf, then it is the minimum
element and we simply set its parent’s left child reference to null.

KEY CONCEPT
The leftmost node in a binary search
tree will contain the minimum element
whereas the rightmost node will con-
tain the maximum element.

M20_LEWI5976_05_SE_C20.indd 753 08/02/19 3:10 AM

754 CHAPTER 20 Binary Search Trees

■■ If the leftmost node of the tree is an internal node, then we set its parent’s
left child reference to point to the right child of the node to be removed.

Given these possibilities, the code for the removeMin operation is relatively
straightforward.

/**
 * Removes the node with the least value from the binary search
 * tree and returns a reference to its element. Throws an
 * EmptyCollectionException if this tree is empty.
 *
 * @return a reference to the node with the least value
 * @throws EmptyCollectionException if the tree is empty
 */
public T removeMin() throws EmptyCollectionException
{
 T result = null;

 if (isEmpty())
 throw new EmptyCollectionException("LinkedBinarySearchTree");
 else
 {
 if (root.left == null)
 {
 result = root.element;
 root = root.right;
 }
 else
 {
 BinaryTreeNode<T> parent = root;
 BinaryTreeNode<T> current = root.left;
 while (current.left != null)
 {
 parent = current;
 current = current.left;
 }
 result = current.element;
 parent.left = current.right;
 }

 modCount--;
 }

 return result;
}

M20_LEWI5976_05_SE_C20.indd 754 08/02/19 3:10 AM

 20.4 Using Binary Search Trees: Implementing Ordered Lists 755

The removeMax, findMin, and findMax operations are left as exercises.

Implementing Binary Search Trees: With Arrays
In Chapter 19, we discussed two array implementation strategies for trees: the
computational strategy and the simulated link strategy. For now, both implemen-
tations are left as programming projects. We will revisit these array-based tree
implementations in Chapter 21.

20.4 Using Binary Search Trees: Implementing
Ordered Lists

As we discussed in Chapter 19, one of the uses of trees is to provide efficient im-
plementations of other collections. The OrderedList collection from Chapter 15
provides an excellent example. Figure 20.9 reminds us of the common operations
for lists, and Figure 20.10 reminds us of the operations particular to an ordered list.

Operation

removeFirst

removeLast

remove

first

last

contains

isEmpty

size

Description

Removes the first element from the list.
Removes the last element from the list.
Removes a particular element from the list.
Examines the element at the front of the list.
Examines the element at the rear of the list.
Determines if the list contains a particular element.
Determines if the list is empty.
Determines the number of elements on the list.

FIGURE 20.9 The common operations on a list

Operation

add

Description

Adds an element to the list.

FIGURE 20.10 The operation particular to an ordered list

M20_LEWI5976_05_SE_C20.indd 755 08/02/19 3:10 AM

756 CHAPTER 20 Binary Search Trees

Using a binary search tree, we can create an implementation called
BinarySearchTreeList that is a more efficient implementation
than those we discussed in Chapter 15.

For simplicity, we have implemented both the ListADT and the
OrderedListADT interfaces with the BinarySearchTreeList class,
as shown in Listing 20.2. For some of the methods, the same method

from either the LinkedBinaryTree or LinkedBinarySearchTree class will suf-
fice. This is the case for the contains, isEmpty, and size operations. For the
rest of the operations, there is a one-to-one correspondence between methods
of the LinkedBinaryTree or the LinkedBinarySearchTree classes and the re-
quired methods for an ordered list. Thus, each of these methods is implemented
by simply calling the associated method for a LinkedBinarySearchTree. This
is the case for the add, removeFirst, removeLast, remove, first, last, and
iterator methods.

KEY CONCEPT
One of the uses of trees is to provide
efficient implementations of other
collections.

L I S T I N G 2 0 . 2

package jsjf;

import jsjf.exceptions.*;
import java.util.Iterator;

/**
 * BinarySearchTreeList represents an ordered list implemented using a binary
 * search tree.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class BinarySearchTreeList<T> extends LinkedBinarySearchTree<T>
 implements ListADT<T>, OrderedListADT<T>, Iterable<T>
{
 /**
 * Creates an empty BinarySearchTreeList.
 */
 public BinarySearchTreeList()
 {
 super();
 }

M20_LEWI5976_05_SE_C20.indd 756 08/02/19 3:10 AM

 20.4 Using Binary Search Trees: Implementing Ordered Lists 757

L I S T I N G 2 0 . 2

 /**
 * Adds the given element to this list.
 *
 * @param element the element to be added to the list
 */
 public void add(T element)
 {
 addElement(element);
 }

 /**
 * Removes and returns the first element from this list.
 *
 * @return the first element in the list
 */
 public T removeFirst()
 {
 return removeMin();
 }

 /**
 * Removes and returns the last element from this list.
 *
 * @return the last element from the list
 */
 public T removeLast()
 {
 return removeMax();
 }

 /**
 * Removes and returns the specified element from this list.
 *
 * @param element the element being sought in the list
 * @return the element from the list that matches the target
 */
 public T remove(T element)
 {
 return removeElement(element);
 }

 /**
 * Returns a reference to the first element on this list.
 *

continued

M20_LEWI5976_05_SE_C20.indd 757 08/02/19 3:10 AM

758 CHAPTER 20 Binary Search Trees

L I S T I N G 2 0 . 2

 * @return a reference to the first element in the list
 */
 public T first()
 {
 return findMin();
 }

 /**
 * Returns a reference to the last element on this list.
 *
 * @return a reference to the last element in the list
 */
 public T last()
 {
 return findMax();
 }

 /**
 * Returns an iterator for the list.
 *
 * @return an iterator over the elements in the list
 */
 public Iterator<T> iterator()
 {
 return iteratorInOrder();
 }
}

continued

Analysis of the BinarySearchTreeList Implementation
For the sake of our analysis, we will assume that the LinkedBinarySearchTree
implementation used in the BinarySearchTreeList implementation is a bal-
anced binary search tree with the added property that the maximum depth of
any node is log2(n), where n is the number of elements stored in the tree. This
is a tremendously important assumption, as we will see over the next several
sections. With that assumption, Figure 20.11 shows a comparison of the order
of each operation for a singly linked implementation of an ordered list and our
BinarySearchTreeList implementation.

Note that given our assumption of a balanced binary search tree, both the
add and remove operations could cause the tree to need to be rebalanced, which,

M20_LEWI5976_05_SE_C20.indd 758 08/02/19 3:10 AM

 20.5 Balanced Binary Search Trees 759

depending on the algorithm used, could affect the analysis. It is also important
to note that although some operations are more efficient in the tree implementa-
tion, such as removeLast, last, and contains, others, such as removeFirst and
first, are less efficient when implemented using a tree.

20.5 Balanced Binary Search Trees

Why is our balance assumption important? What would happen to our analysis if
the tree were not balanced? As an example, let’s assume that we read the follow-
ing list of integers from a file and added them to a binary search tree:

3 5 9 12 18 20

Figure 20.12 shows the resulting binary search tree. This resulting
binary tree, which is referred to as a degenerate tree, looks more like
a linked list, and in fact it is less efficient than a linked list because of
the additional overhead associated with each node.

If this is the tree we are manipulating, then our analysis from the previous
section will look far worse. For example, without our balance assumption, the
addElement operation would have worst-case time complexity of O(n) instead of
O(log n) because of the possibility that the root is the smallest element in the tree
and the element we are inserting might be the largest element.

Our goal instead is to keep the maximum path length in the tree at or near
log2n. There are a variety of algorithms available for balancing or maintaining

Operation

removeFirst

removeLast

remove

first

last

contains

isEmpty

size

add

LinkedList

O(1)
O(n)
O(n)
O(1)
O(n)
O(n)
O(1)
O(1)
O(n)

*both the add and remove operations may cause the tree to become unbalanced

BinarySearchTreeList

O(log n)
O(log n)
O(log n)*
O(log n)
O(log n)
O(log n)
O(1)
O(1)
O(log n)*

FIGURE 20.11 Analysis of linked list and binary search tree implementations
of an ordered list

KEY CONCEPT
If a binary search tree is not balanced,
it may be less efficient than a linear
structure.

M20_LEWI5976_05_SE_C20.indd 759 08/02/19 3:10 AM

760 CHAPTER 20 Binary Search Trees

balance in a tree. There are brute force methods, which are not elegant or efficient,
but get the job done. For example, we could write an inorder traversal of the tree
to an array and then use a recursive method (much like binary search) to insert the
middle element of the array as the root, and then build balanced left and right sub-
trees. Although such an approach would work, there are more elegant solutions,
such as AVL trees and red/black trees, which we examine later in this chapter.

However, before we move on to these techniques, we need to understand some
additional terminology that is common to many balancing techniques. The meth-
ods described here will work for any subtree of a binary search tree as well. For
those subtrees, we simply replace the reference to root with the reference to the
root of the subtree.

Right Rotation
Figure 20.13 shows a binary search tree that is not balanced and the processing
steps necessary to rebalance it. The maximum path length in this tree is 3 and the
minimum path length is 1. With only six elements in the tree, the maximum path
length should be log26, or 2. To get this tree into balance, we need to

■■ Make the left child element of the root the new root element.

■■ Make the former root element the right child element of the new root.

■■ Make the right child of what was the left child of the former root the new
left child of the former root.

This right rotation is often referred to as a right rotation of the left child around
the parent. The last image in Figure 20.13 shows the same tree after a right rota-
tion. The same kind of rotation can be done at any level of the tree. This single
rotation to the right will solve the imbalance if the imbalance is caused by a long
path length in the left subtree of the left child of the root.

3

5

18

9

12

20

FIGURE 20.12 A degenerate binary tree

M20_LEWI5976_05_SE_C20.indd 760 08/02/19 3:10 AM

 20.5 Balanced Binary Search Trees 761

Left Rotation
Figure 20.14 shows another binary search tree that is not balanced. Again, the
maximum path length in this tree is 3 and the minimum path length is 1. However,
this time the larger path length is in the right subtree of the right child of the root.
To get this tree into balance, we need to

■■ Make the right child element of the root the new root element.

■■ Make the former root element the left child element of the new root.

■■ Make the left child of what was the right child of the former root the new
right child of the former root.

15 13

10

10

Initial tree

3

35

5

Step A Step B

7

15

13

10

3

5

7

15

13

3

5

7

1510

Step C

7

13

FIGURE 20.13 An unbalanced tree and the balanced tree that results
from a right rotation

10 13

13

15 7 7

Initial tree

37

5

Step A Step B

10

15

13

3

5

10

15

13

3

5

10

157

Step C

3

5

FIGURE 20.14 An unbalanced tree and the balanced tree that results
from a left rotation

M20_LEWI5976_05_SE_C20.indd 761 08/02/19 3:10 AM

762 CHAPTER 20 Binary Search Trees

This left rotation is often referred to as a left rotation of the right child around
the parent. Figure 20.13 shows the same tree through the processing steps of a
left rotation. The same kind of rotation can be done at any level of the tree. This
single rotation to the left will solve the imbalance if the imbalance is caused by a
long path length in the right subtree of the right child of the root.

Rightleft Rotation
Unfortunately, not all imbalances can be solved by single rotations. If the imbal-
ance is caused by a long path length in the left subtree of the right child of the root,
we must first perform a right rotation of the left child of the right child of the root
around the right child of the root, and then perform a left rotation of the resulting
right child of the root around the root. Figure 20.15 illustrates this process.

Leftright Rotation
Similarly, if the imbalance is caused by a long path length in the right subtree of the
left child of the root, we must first perform a left rotation of the right child of the left
child of the root around the left child of the root, and then perform a right rotation of
the resulting left child of the root around the root. Figure 20.16 illustrates this process.

20.6 Implementing Binary Search Trees: AVL Trees

We have been discussing a generic method for balancing a tree where the maxi-
mum path length from the root must be no more than log2n and the minimum path
length from the root must be no less than log2n–1. Adel’son-Vel’skii and Landis de-
veloped a method called AVL trees that is a variation on this theme. For each node
in the tree, we will keep track of the height of the left and right subtrees. For any

5

3 10

10

15

13 37 7

Right rotation Left rotationInitial tree

5

513 133

15 1510

7

FIGURE 20.15 A rightleft rotation

M20_LEWI5976_05_SE_C20.indd 762 08/02/19 3:10 AM

 20.6 Implementing Binary Search Trees: AVL Trees 763

node in the tree, if the balance factor, or the difference in the heights of its subtrees
(height of the right subtree minus height of the left subtree), is greater than 1 or less
than –1, then the subtree with that node as the root needs to be rebalanced.

There are only two ways in which a tree, or any subtree of a tree,
can become unbalanced: through the insertion of a node or through
the deletion of a node. Thus, each time one of these operations is
performed, the balance factors must be updated and the balance of
the tree must be checked starting at the point of insertion or removal
of a node and working up toward the root of the tree. Because of this
need to work back up the tree, AVL trees are often best implemented
by including a parent reference in each node. In the diagrams that
follow, all edges are represented as a single bidirectional line.

The cases for rotation that we discussed in the last section apply
here as well, and by using this method, we can easily identify when
to use each.

Right Rotation in an AVL Tree
If the balance factor of a node is –2, this means that the node’s left subtree has a
path that is too long. We then check the balance factor of the left child of the origi-
nal node. If the balance factor of the left child is –1, this means that the long path
is in the left subtree of the left child, and therefore a simple right rotation of the left
child around the original node will rebalance the tree. Figure 20.17 shows how an
insertion of a node could cause an imbalance and how a right rotation would re-
solve it. Note that we are representing both the values stored at each node and the
balance factors, with the balance factors shown in parentheses. Similarly, if the bal-
ance factor of the left child is 0, a simple right rotation will resolve the imbalance.

5

Initial tree Right rotation

7

13

Left rotation

13 13

5

5

15 15

157

7

10

10 103

3

3

FIGURE 20.16 A leftright rotation

VideoNote
Demonstration of the
four basic tree rotations

KEY CONCEPT
The height of the right subtree minus
the height of the left subtree is called
the balance factor of a node.

KEY CONCEPT
There are only two ways in which
a tree, or any subtree of a tree, can
become unbalanced: through the
insertion of a node or through the
deletion of a node.

M20_LEWI5976_05_SE_C20.indd 763 08/02/19 3:10 AM

764 CHAPTER 20 Binary Search Trees

Left Rotation in an AVL Tree
If the balance factor of a node is +2, this means that the node’s right subtree has
a path that is too long. We then check the balance factor of the right child of the
original node. If the balance factor of the right child is +1, this means that the long
path is in the right subtree of the right child and therefore a simple left rotation of
the right child around the original node will rebalance the tree. Similarly, if the bal-
ance factor of the right child is 0, a simple left rotation will resolve the imbalance.

Rightleft Rotation in an AVL Tree
If the balance factor of a node is +2, this means that the node’s right subtree has
a path that is too long. We then check the balance factor of the right child of the
original node. If the balance factor of the right child is –1, this means that the
long path is in the left subtree of the right child and therefore a rightleft double
rotation will rebalance the tree. This is accomplished by first performing a right
rotation of the left child of the right child of the original node around the right
child of the original node, and then performing a left rotation of the right child of
the original node around the original node. Figure 20.18 shows how the removal
of an element from the tree could cause an imbalance and how a rightleft rotation
would resolve it. Again, note that we are representing both the values stored at
each node and the balance factors, with the balance factors shown in parentheses.

Initial tree Right rotationAfter insertion

New node

7 (–1)

5 (0) 9 (0)

3 (0) 6 (0)

7 (–2)

5 (–1) 9 (0)

3 (–1) 6 (0)

1 (0)

7 (0)

5 (0)

9 (0)

3 (–1)

6 (0)1 (0)

FIGURE 20.17 A right rotation in an AVL tree

M20_LEWI5976_05_SE_C20.indd 764 08/02/19 3:10 AM

 20.6 Implementing Binary Search Trees: AVL Trees 765

Leftright Rotation in an AVL Tree
If the balance factor of a node is –2, this means that the node’s left subtree has a
path that is too long. We then check the balance factor of the left child of the orig-
inal node. If the balance factor of the left child is +1, this means that the long path

Initial tree

Right rotation

After removal

Node to be
removed

Left rotation

10 (1)

5 (–1)

3 (0)

15 (–1)

13 (–1) 17 (0)

11 (0)

10 (2)

5 (0) 15 (–1)

13 (–1) 17 (0)

11 (0)

10 (2)

5 (0) 13 (1)

11 (0) 15 (1)

17 (0)

10 (0)

5 (0)

13 (0)

11 (0)

15 (1)

17 (0)

FIGURE 20.18 A rightleft rotation in an AVL tree

M20_LEWI5976_05_SE_C20.indd 765 08/02/19 3:10 AM

766 CHAPTER 20 Binary Search Trees

is in the right subtree of the left child and therefore a leftright double rotation will
rebalance the tree. This is accomplished by first performing a left rotation of the
right child of the left child of the original node around the left child of the original
node, and then performing a right rotation of the left child of the original node
around the original node.

20.7 Implementing Binary Search Trees:
Red/Black Trees

Another alternative to the implementation of binary search trees is the concept
of a red/black tree, which was developed by Bayer and extended by Guibas and
Sedgewick. A red/black tree is a balanced binary search tree in which we will store a
color with each node (either red or black, usually implemented as a boolean value
with false being equivalent to red). The following rules govern the color of a node:

■■ The root is black.

■■ All children of a red node are black.

■■ Every path from the root to a leaf contains the same number of black
nodes.

Figure 20.19 shows three valid red/black trees (the lighter-shade nodes are “red”).
Notice that the balance restriction on a red/black tree is somewhat less strict than that
for AVL trees or for our earlier theoretical discussion. However, finding an element

in both implementations is still an O(log n) operation. Because no red
node can have a red child, at most half of the nodes in a path could be
red nodes and at least half of the nodes in a path are black. From this
we can argue that the maximum height of a red/black tree is roughly
2*log n and thus the traversal of the longest path is still order log n.

As with AVL trees, the only time we need to be concerned about
balance is after an insertion or removal of an element in the tree. But unlike the
case with AVL trees, insertion and removal are handled quite separately.

Insertion into a Red/Black Tree
Insertion into a red/black tree progresses much as it did in our earlier addElement
method. However, we always begin by setting the color of the new element to
red. Once the new element has been inserted, we rebalance the tree as needed
and change the color of elements as needed to maintain the properties of a red/
black tree. As a last step, we always set the color of the root of the tree to black.
For purposes of our discussion, we will simply refer to the color of a node as
node.color. However, it may be more elegant in an actual implementation to
create a method to return the color of a node.

KEY CONCEPT
The balance restriction on a red/black
tree is somewhat less strict than that
for AVL trees.

M20_LEWI5976_05_SE_C20.indd 766 08/02/19 3:10 AM

 20.7 Implementing Binary Search Trees: Red/Black Trees 767

The rebalancing (and recoloring) process after insertion is an iterative (or re-
cursive) one starting at the point of insertion and working up the tree toward the
root. Therefore, like AVL trees, red/black trees are best implemented by includ-
ing a parent reference in each node. The termination conditions for this process
are (current == root), where current is the node we are currently processing,
or (current.parent.color == black) (that is, the color of the parent of the
current node is black). The first condition terminates the process because we will
always set the root color to black, and the root is included in all paths and there-
fore cannot violate the rule that each path have the same number of black ele-
ments. The second condition terminates the process because the node pointed to
by current will always be a red node. This means that if the parent of the current
node is black, then all of the rules are met as well since a red node does not affect
the number of black nodes in a path and because we are working from the point
of insertion up, we will have already balanced the subtree under the current node.

In each iteration of the rebalancing process, we will focus on the color of the
sibling of the parent of the current node. Keep in mind that there are two possi-
bilities for the parent of the current node: current.parent could be a left child
or a right child. Assuming that the parent of current is a right child, we can get
the color information by using current.parent.parent.left.color, but for
purposes of our discussion, we will use the terms parentsleftsibling.color
and parentsrightsibling.color. It is also important to keep in mind that the
color of a null element is considered to be black.

In the case where the parent of current is a right child, there are two cases:
(parentsleftsibling.color == red) or (parentsleftsibling.color ==
black). Keep in mind that in either case, we are describing processing steps that
are occurring inside of a loop with the termination conditions described earlier.

13

157

7

7

10 10 10 15155

5

3

3 13 135

3

FIGURE 20.19 Valid red/black trees

M20_LEWI5976_05_SE_C20.indd 767 08/02/19 3:10 AM

768 CHAPTER 20 Binary Search Trees

Figure 20.20 shows a red/black tree after insertion with this first case
(parentsleftsibling.color == red). The processing steps in this case are

■■ Set the color of current’s parent to black.

■■ Set the color of parentsleftsibling to black.

■■ Set the color of current’s grandparent to red.

■■ Set current to point to the grandparent of current.

In Figure 20.20, we inserted 8 into our tree. Keep in mind that current points
to our new node and that current.color is set to red. Following the processing
steps, we set the parent of current to black, we set the left sibling of the parent
of current to black, and we set the grandparent of current to red. We then set
current to point to the grandparent. Because the grandparent is the root, the
loop terminates. Finally, we set the root of the tree to black.

However, if (parentsleftsibling.color == black), then we first need to
check to see whether current is a left or a right child. If current is a left child,
then we must set current equal to its parent and then rotate current.left to
the right (around current) before continuing. Once this is accomplished, the pro-
cessing steps are the same as they would be if current had been a right child to
begin with:

■■ Set the color of current’s parent to black.

■■ Set the color of current’s grandparent to red.

■■ If current’s grandparent does not equal null, then rotate current’s parent
to the left around current’s grandparent.

In the case where the parent of current is a left child, there are two cases: par-
entsrightsibling.color == red) or (parentsrightsibling.color == black).
Keep in mind that in either case, we are describing processing steps that are occurring
inside of a loop with the termination conditions described earlier. Figure 20.20 shows

7

4 10

Initial tree
After

insertion

current

After rebalancing and
recoloring the tree

current
7

4 10

7

4 10

88

FIGURE 20.20 Red/black tree after insertion

M20_LEWI5976_05_SE_C20.indd 768 08/02/19 3:10 AM

 20.7 Implementing Binary Search Trees: Red/Black Trees 769

a red/black tree after insertion in this case (parentsrightsibling.color == red).
The processing steps in this case are

■■ Set the color of current’s parent to black.

■■ Set the color of parentsrightsibling to black.

■■ Set the color of current’s grandparent to red.

■■ Set current to point to the grandparent of current.

In Figure 20.21, we inserted 5 into our tree, setting current to point to the
new node and setting current.color to red. Again, following our processing
steps, we set the parent of current to black, we set the right sibling of the parent
of current to black, and we set the grandparent of current to red. We then set
current to point to its grandparent. Because the parent of the new current is
black, our loop terminates. Last, we set the color of the root to black.

If (parentsrightsibling.color == black), then we first need to check to
see whether current is a left or a right child. If current is a right child, then we
must set current equal to current.parent and then rotate current.right to
the left (around current) before continuing. Once this is accomplished, the pro-
cessing steps are the same as they would be if current had been a left child to
begin with:

■■ Set the color of current’s parent to black.

■■ Set the color of current’s grandparent to red.

■■ If current’s grandparent does not equal null, then rotate current’s parent
to the right around current’s grandparent.

As you can see, the cases, depending on whether current’s parent is a left or a
right child, are symmetrical.

Initial tree
After

insertion

current

After rebalancing and
recoloring the tree

current
15

207

4 10

15

207

4

5

10

15

207

4

5

10

FIGURE 20.21 Red/black tree after insertion

M20_LEWI5976_05_SE_C20.indd 769 08/02/19 3:10 AM

770 CHAPTER 20 Binary Search Trees

Element Removal from a Red/Black Tree
As with insertion, the removeElement operation behaves much as it did before,
only with the additional step of rebalancing (and recoloring) the tree. This re-
balancing (and recoloring) process after removal of an element is an iterative
one starting at the point of removal and working up the tree toward the root.
Therefore, as stated earlier, red/black trees are often best implemented by includ-
ing a parent reference in each node. The termination condition for this process is
(current == root), where current is the node we are currently processing, or
(current.color == red).

As with the cases for insertion, the cases for removal are symmetrical depend-
ing upon whether current is a left or a right child. We will examine only the
case where current is a right child. The other cases are easily derived by simply
substituting left for right and right for left in the following cases.

In insertion, we were most concerned with the color of the sibling of the parent of
the current node. For removal, we will focus on the color of the sibling of current.
We could reference this color using current.parent.left.color, but we will
simply refer to it as sibling.color. We will also look at the color of the children
of the sibling. It is important to note that the default for color is black. Therefore,
if at any time we are attempting to get the color of a null object, the result will be
black. Figure 20.22 shows a red/black tree after the removal of an element.

If the sibling’s color is red, then before we do anything else, we must complete
the following processing steps:

■■ Set the color of the sibling to black.

■■ Set the color of current’s parent to red.

■■ Rotate the sibling right around current’s parent.

■■ Set the sibling equal to the left child of current’s parent.

Next, our processing continues regardless of whether the original sibling was
red or black. Now our processing is divided into one of two cases based upon the
color of the children of the sibling. If both children of the sibling are black (or
null), then we do the following:

■■ Set the color of the sibling to red.

■■ Set current equal to current’s parent.

If the children of the sibling are not both black, then we check to see whether
the left child of the sibling is black. If it is, we must complete the following steps
before continuing:

■■ Set the color of the sibling’s right child to black.

■■ Set the color of the sibling to red.

M20_LEWI5976_05_SE_C20.indd 770 08/02/19 3:10 AM

 20.7 Implementing Binary Search Trees: Red/Black Trees 771

■■ Rotate the sibling’s right child left around the sibling.

■■ Set the sibling equal to the left child of current’s parent.

Then to complete the process when both of the sibling’s children are not black,
we must

■■ Set the color of the sibling to the color of current’s parent.

■■ Set the color of current’s parent to black.

■■ Set the color of the sibling’s left child to black.

■■ Rotate the sibling right around current’s parent.

■■ Set current equal to the root.

Once the loop terminates, we must always then remove the node and set its
parent’s child reference to null.

Initial tree
Intermediate

step

Intermediate
step

Element to be
removed

sibling

15

sibling current

current

Final tree

15

207

7

5 12

15

207

5 12

4

5 10 20

12

7

4

5 10 15

12

4 4 1010

FIGURE 20.22 Red/black tree after removal

M20_LEWI5976_05_SE_C20.indd 771 08/02/19 3:10 AM

772 CHAPTER 20 Binary Search Trees

Summary of Key Concepts

■■ A binary search tree is a binary tree in which, for each node, the elements in
the left subtree are less than the parent, and the elements in the right subtree
are greater than or equal to the parent.

■■ The most efficient binary search trees are balanced, so that half of the viable
candidates are eliminated with each comparison.

■■ In the absence of any additional processing, the shape of a binary search tree
is dictated by the order in which elements are added to it.

■■ There are three situations to consider when removing an element from a bi-
nary search tree.

■■ When removing a node with two children from a binary search tree, the in-
order successor is a good choice to replace it.

■■ The definition of a binary search tree is an extension of the definition of a
binary tree.

■■ Each BinaryTreeNode object maintains a reference to the element stored at
that node as well as references to each of the node’s children.

■■ In removing an element from a binary search tree, another node must be
promoted to replace the node being removed.

■■ The leftmost node in a binary search tree will contain the minimum element,
whereas the rightmost node will contain the maximum element.

■■ One of the uses of trees is to provide efficient implementations of other col-
lections.

■■ If a binary search tree is not balanced, it may be less efficient than a linear
structure.

■■ The height of the right subtree minus the height of the left subtree is called
the balance factor of a node.

■■ There are only two ways in which a tree, or any subtree of a tree, can become
unbalanced: through the insertion of a node and through the deletion of a node.

■■ The balance restriction on a red/black tree is somewhat less strict than that
for AVL trees. However, in both cases, the find operation is order log n.

Summary of Terms
binary search tree A binary search tree is a binary tree with the added
property that, for each node, the left child is less than the parent, which is
less than or equal to the right child.

M20_LEWI5976_05_SE_C20.indd 772 08/02/19 3:10 AM

 Self-Review Questions 773

promoted A term used to describe the concept of a node in a tree being
moved up to replace a parent node or other ancestor node that is being re-
moved from the tree.

degenerate tree A tree that does not branch.

right rotation A single rotation strategy for rebalancing a tree when the long
path is in the left subtree of the left child of the root.

left rotation A single rotation strategy for rebalancing a tree when the long
path is in the right subtree of the right child of the root.

rightleft rotation A double rotation strategy for rebalancing a tree when the
long path is in the left subtree of the right child of the root.

leftright rotation A double rotation strategy for rebalancing a tree when the
long path is in the right subtree of the left child of the root.

AVL trees A strategy for keeping a binary search tree balanced that makes
use of the balance factor of each node.

balance factor A property of a node that is computed by subtracting the
height of the left subtree from the height of the right subtree. If the result is
either greater than 1 or less than –1, then the tree is unbalanced.

red/black trees A strategy for keeping a binary search tree balanced mak-
ing use of a color (either red or black) associated with each node.

Self-Review Questions
SR 20.1 What is the difference between a binary tree and a binary search tree?

SR 20.2 Why are we able to specify addElement and removeElement oper-
ations for a binary search tree but unable to do so for a binary tree?

SR 20.3 Assuming that the tree is balanced, what is the time complexity
(order) of the addElement operation?

SR 20.4 Without the balance assumption, what is the time complexity (or-
der) of the addElement operation?

SR 20.5 As stated in this chapter, a degenerate tree might actually be less
efficient than a linked list. Why?

SR 20.6 Our removeElement operation uses the inorder successor as the
replacement for a node with two children. What would be an-
other reasonable choice for the replacement?

SR 20.7 The removeAllOccurrences operation uses both the contains
and removeElement operations. What is the resulting time com-
plexity (order) for this operation?

M20_LEWI5976_05_SE_C20.indd 773 08/02/19 3:10 AM

774 CHAPTER 20 Binary Search Trees

SR 20.8 RemoveFirst and first were O(1) operations for our earlier
implementation of an ordered list. Why are they less efficient for
our BinarySearchTreeOrderedList?

SR 20.9 Why does the BinarySearchTreeOrderedList class have to de-
fine the iterator method? Why can’t it just rely on the iterator
method of its parent class, as it does for size and isEmpty?

SR 20.10 What is the time complexity of the addElement operation after
modifying to implement an AVL tree?

SR 20.11 What imbalance is fixed by a single right rotation?

SR 20.12 What imbalance is fixed by a leftright rotation?

SR 20.13 What is the balance factor of an AVL tree node?

SR 20.14 In our discussion of the process for rebalancing an AVL tree, we
never discussed the possibility of the balance factor of a node be-
ing either +2 or -2 and the balance factor of one of its children
being either +2 or -2. Why not?

SR 20.15 We noted that the balance restriction for a red/black tree is less
strict than that of an AVL tree and yet we still claim that travers-
ing the longest path in a red/black tree is still O(log n). Why?

Exercises
EX 20.1 Draw the binary search tree that results from adding the fol-

lowing integers (34 45 3 87 65 32 1 12 17). Assume our simple
implementation with no balancing mechanism.

EX 20.2 Starting with the tree resulting from 20.1, draw the tree that re-
sults from removing (45 12 1), again using our simple implemen-
tation with no balancing mechanism.

EX 20.3 Repeat Exercise 20.1, this time assuming an AVL tree. Include the
balance factors in your drawing.

EX 20.4 Repeat Exercise 20.2, this time assuming an AVL tree and using
the result of Exercise 20.3 as a starting point. Include the balance
factors in your drawing.

EX 20.5 Repeat Exercise 20.1, this time assuming a red/black tree. Label
each node with its color.

EX 20.6 Repeat Exercise 20.2, this time assuming a red/black tree and us-
ing the result of Exercise 20.5 as a starting point. Label each node
with its color.

M20_LEWI5976_05_SE_C20.indd 774 08/02/19 3:10 AM

 Programming Projects 775

EX 20.7 Starting with an empty red/black tree, draw the tree after inser-
tion and before rebalancing, and after rebalancing (if necessary)
for the following series of inserts and removals:
AddElement(40);
AddElement(25):
AddElement(10);
AddElement(5);
AddElement(1);
AddElement(45);
AddElement(50);
RemoveElement(40);
RemoveElement(25);

EX 20.8 Repeat Exercise 20.7, this time with an AVL tree.

Programming Projects
PP 20.1 Develop an array implementation of a binary search tree using

the computational strategy described in Chapter 19.

PP 20.2 Implement the getLeft, getRight, removeMax, findMin,
and findMax operations for our linked binary search tree
implementation.

PP 20.3 The LinkedBinarySearchTree class is currently using the find
and contains methods inherited from the LinkedBinaryTree
class. Override these methods for the LinkedBinarySearchTree
class so that they will be more efficient by making use of the
ordering property of a binary search tree.

PP 20.4 Modify the linked implementation of a binary tree so that it will
no longer allow duplicates.

PP 20.5 Implement a balance tree method for the linked implementation
using the brute force method described in Section 20.4.

PP 20.6 Implement a balance tree method for the array implementation from
Project 20.1 using the brute force method described in Section 20.4.

PP 20.7 Develop an array implementation of a binary search tree built
upon an array implementation of a binary tree by using the
simulated link strategy. Each element of the array will need to
maintain both a reference to the data element stored there and the
array positions of the left child and the right child. You also need
to maintain a list of available array positions where elements have
been removed, in order to reuse those positions.

M20_LEWI5976_05_SE_C20.indd 775 08/02/19 3:10 AM

776 CHAPTER 20 Binary Search Trees

PP 20.8 Modify the linked binary search tree implementation to make it
an AVL tree.

PP 20.9 Modify the linked binary search tree implementation to make it a
red/black tree.

PP 20.10 Modify the add operation for the linked implementation of a bi-
nary search tree to use an iterative algorithm.

Answers to Self-Review Questions
SRA 20.1 A binary search tree has the added ordering property that the left

child of any node is less than the node, and the node is less than
or equal to its right child.

SRA 20.2 With the added ordering property of a binary search tree, we are
now able to define what the state of the tree should be after an
add or remove. We were unable to define that state for a binary
tree.

SRA 20.3 If the tree is balanced, finding the insertion point for the new
element will take at worst log n steps, and since inserting the ele-
ment is simply a matter of setting the value of one reference, the
operation is O(log n).

SRA 20.4 Without the balance assumption, the worst case would be a
degenerate tree, which is effectively a linked list. Therefore, the
addElement operation would be O(n).

SRA 20.5 A degenerate tree will waste space with unused references, and
many of the algorithms will check for null references before fol-
lowing the degenerate path, thus adding steps that the linked list
implementation does not have.

SRA 20.6 The best choice is the inorder successor because we are placing
equal values to the right.

SRA 20.7 With our balance assumption, the contains operation
uses the find operation, which will be rewritten in the
BinarySearchTree class to take advantage of the ordering prop-
erty and will be O(log n). The removeElement operation is O(log n).
The while loop will iterate some constant (k) number of times
depending on how many times the given element occurs within
the tree. The worst case would be that all n elements of the tree
were to be removed, which would make the tree degenerate, and
in which case the complexity would be n*2*n or O(n2). However,
the expected case would be some small constant (0 < = k < n)

M20_LEWI5976_05_SE_C20.indd 776 08/02/19 3:10 AM

occurrences of the element in a balanced tree, which would result
in a complexity of k*2*log n or O(log n).

SRA 20.8 In our earlier linked implementation of an ordered list, we had
a reference that kept track of the first element in the list, which
made it quite simple to remove it or return it. With a binary
search tree, we have to traverse to get to the leftmost element be-
fore knowing that we have the first element in the ordered list.

SRA 20.9 Remember that the iterators for a binary tree are all followed
by which traversal order to use. That is why the iterator
method for the BinarySearchTreeOrderedList class calls the
iteratorInOrder method of the BinaryTree class.

SRA 20.10 Keep in mind that an addElement method affects only one path
of the tree, which in a balanced AVL tree has a maximum length
of log n. As we have discussed previously, finding the position
to insert and setting the reference is O(log n). We then have to
progress back up the same path, updating the balance factors of
each node (if necessary) and rotating if necessary. Updating the
balance factors is an O(1) step and rotation is also an O(1) step.
Each of these will have to be done at most log n times. Therefore,
addElement has time complexity 2*log n or O(log n).

SRA 20.11 A single right rotation will fix the imbalance if the long path is in
the left subtree of the left child of the root.

SRA 20.12 A leftright rotation will fix the imbalance if the long path is in the
right subtree of the left child of the root.

SRA 20.13 The balance factor of an AVL tree node is the height of the right
subtree minus the height of the left subtree.

SRA 20.14 Rebalancing an AVL tree is done after either an insertion or a
deletion and it is done starting at the affected node and working
up along a single path to the root. As we progress upward, we
update the balance factors and rotate if necessary. We will never
encounter a situation where both a child and a parent have bal-
ance factors of +/-2 because we would have already fixed the
child before we ever reached the parent.

SRA 20.15 Because no red node can have a red child, then at most half of the
nodes in a path could be red nodes and at least half of the nodes
in a path are black. From this we can argue that the maximum
height of a red/black tree is roughly 2*log n and thus the traversal
of the longest path is O(log n).

 Answers to Self-Review Questions 777

M20_LEWI5976_05_SE_C20.indd 777 08/02/19 3:10 AM

778 CHAPTER 20 Binary Search Trees

References
Adel’son-Vel’skii, G. M., and E. M. Landis. “An Algorithm for the

Organization of Information.” Soviet Mathematics 3 (1962): 1259–1263.
Bayer, R. “Symmetric Binary B-trees: Data Structure and Maintenance

Algorithms.” Acta Informatica (1972): 290–306.
Collins, W. J. Data Structures and the Java Collections Framework.

New York: McGraw-Hill, 2002.
Cormen, T., C. Leierson, and R. Rivest. Introduction to Algorithms.

New York: McGraw-Hill, 1992.
Guibas, L., and R. Sedgewick. “A Diochromatic Framework for Balanced

Trees.” Proceedings of the 19th Annual IEEE Symposium on Foundations
of Computer Science (1978): 8–21.

M20_LEWI5976_05_SE_C20.indd 778 08/02/19 3:10 AM

779

21
In this chapter, we will look at another ordered extension

of binary trees. We will examine heaps, including both

linked and array implementations, and the algorithms for

adding and removing elements from a heap. We will also

examine some uses for heaps including the implementation

of priority queues.

C H A P T E R O B J E C T I V E S
■■ Define a heap abstract data structure.

■■ Demonstrate how a heap can be used to solve problems.

■■ Examine various heap implementations.

■■ Compare heap implementations.

Heaps and Priority
Queues 21

M21_LEWI5976_05_SE_C21.indd 779 08/02/19 3:11 AM

780 CHAPTER 21 Heaps and Priority Queues

21.1 A Heap

A heap is a binary tree with two added properties:

■■ It is a complete tree, as described in Chapter 19.

■■ For each node, the node is less than or equal to both the left child and the
right child.

This definition describes a minheap. A heap can also be a max-
heap, in which the node is greater than or equal to its children. We
will focus our discussion in this chapter on minheaps. All of the same
processes work for maxheaps by reversing the comparisons.

Figure 21.1 describes the operations on a heap. The heap is de-
fined as an extension of a binary tree and thus inherits all of those
operations as well. Note that because the implementation of a binary
tree does not have any operations to add or remove elements from
the tree, there are not any operations that would violate the proper-
ties of a heap. Listing 21.1 shows the interface definition for a heap.
Figure 21.2 shows the UML description of the HeapADT.

Operation Description

addElement

removeMin

findMin

Adds the given element to the heap.

Removes the minimum element in the heap.

Returns a reference to the minimum element in the heap.

FIGURE 21.1 The operations on a heap

KEY CONCEPT
A minheap stores its smallest element
at the root of the binary tree, and both
children of the root of a minheap are
also minheaps.

KEY CONCEPT
A minheap is a complete binary tree in
which each node is less than or equal
to both of its children.

L I S T I N G 2 1 . 1

package jsjf;

/**
 * HeapADT defines the interface to a Heap.
 *
 * @author Java Foundations
 * @version 4.0
 */
public interface HeapADT<T> extends BinaryTreeADT<T>
{
 /**
 * Adds the specified object to this heap.
 *

M21_LEWI5976_05_SE_C21.indd 780 08/02/19 3:11 AM

 21.1 A Heap 781

 * @param obj the element to be added to the heap
 */
 public void addElement(T obj);

 /**
 * Removes element with the lowest value from this heap.
 *
 * @return the element with the lowest value from the heap
 */
 public T removeMin();

 /**
 * Returns a reference to the element with the lowest value in
 * this heap.
 *
 * @return a reference to the element with the lowest value in the heap
 */
 public T findMin();
}

L I S T I N G 2 1 . 1 continued

<<interface>>
HeapADT

addElement (T obj) : void
removeMin() : T
findMin() : T

<<interface>>
BinaryTreeADT

toString() : String
iterator() : Iterator<T>
iteratorInOrder() : Iterator<T>
iteratorPreOrder() : Iterator<T>
iteratorPostOrder() : Iterator<T>
iteratorLevelOrder() : Iterator<T>

getRootElement () : T
isEmpty() : boolean
size() : int
contains(T targetElement) : boolean
find(T targetElement) : T

T

T

FIGURE 21.2 UML description of the HeapADT

M21_LEWI5976_05_SE_C21.indd 781 08/02/19 3:11 AM

782 CHAPTER 21 Heaps and Priority Queues

3

5 4

7 98

3

7 4

9 58

FIGURE 21.3 Two minheaps containing the same data

Simply put, a minheap will always store its smallest element at the root of
the binary tree, and both children of the root of a minheap are also minheaps.
Figure 21.3 illustrates two valid minheaps with the same data. Let’s look at the
basic operations on a heap and examine generic algorithms for each.

The addElement Operation
The addElement method adds a given element to the appropriate location in the
heap, maintaining both the completeness property and the ordering property of
the heap. This method throws a ClassCastException if the given element is not
Comparable. A binary tree is considered complete if it is balanced, meaning that

all of the leaves are at level h or h - 1, where h is log2n and n is the
number of elements in the tree, and all of the leaves at level h are on
the left side of the tree. Because a heap is a complete tree, there is only
one correct location for the insertion of a new node, and that is either
the next open position from the left at level h or, if level h is full, the
first position on the left at level h + 1. Figure 21.4 illustrates these two
possibilities.

KEY CONCEPT
The addElement method adds a given
Comparable element to the appropriate
location in the heap, maintaining both the
completeness property and the ordering
property of the heap.

Next insertion point

3

5 4

7 98

3

7 4

9 58 6

FIGURE 21.4 Insertion points for a heap

M21_LEWI5976_05_SE_C21.indd 782 08/02/19 3:11 AM

 21.1 A Heap 783

Once we have located the new node in the proper position, we must
account for the ordering property. To do this, we simply compare the
new value to its parent value and swap the values if the new node is less
than its parent. We continue this process up the tree until the new value
either is greater than its parent or is in the root of the heap. Figure 21.5
illustrates this process for inserting a new element into a heap. Typically,
in heap implementations, we keep track of the position of the last
node or, more precisely, the last leaf in the tree. After an addElement
 operation, the last node is set to the node that was inserted.

The removeMin Operation
The removeMin method removes the minimum element from the
minheap and returns it. Because the minimum element is stored in the
root of a minheap, we need to return the element stored at the root and
replace it with another element in the heap. As with the addElement
operation, to maintain the completeness of the tree, there is only one
valid element to replace the root, and that is the element stored in the
last leaf in the tree. This last leaf will be the rightmost leaf at level h
of the tree. Figure 21.6 illustrates this concept of the last leaf under a
variety of circumstances.

Once the element stored in the last leaf has been moved to the
root, the heap will then have to be reordered to maintain the heap’s
ordering property. This is accomplished by comparing the new root
element to the smaller of its children and then swapping them if the
child is smaller. This process is repeated on down the tree until the
element either is in a leaf or is less than both of its children. Figure
21.7 illustrates the process of removing the minimum element and
then reordering the tree.

KEY CONCEPT
Because a heap is a complete tree,
there is only one correct location for
the insertion of a new node, and that is
either the next open position from the
left at level h or, if level h is full, the first
position on the left at level h + 1.

3

5 4

7 98 2

insert

3

5 4

7 98 4

3

5 2

7 98 4

2

5 3

7 98

2

FIGURE 21.5 Insertion and reordering in a heap

KEY CONCEPT
To maintain the completeness of the
tree, there is only one valid element to
replace the root, and that is the element
stored in the last leaf in the tree.

KEY CONCEPT
Typically, in heap implementations,
we keep track of the position of the
last node or, more precisely, the last
leaf in the tree.

M21_LEWI5976_05_SE_C21.indd 783 08/02/19 3:11 AM

784 CHAPTER 21 Heaps and Priority Queues

The findMin Operation
The findMin method returns a reference to the smallest element in the minheap.
Because that element is always stored in the root of the tree, this method is simply
implemented by returning the element stored in the root.

21.2 Using Heaps: Priority Queues

A priority queue is a collection that follows two ordering rules. First, items with
higher priority go first. Second, items with the same priority are ordered in ac-
cordance with the first in, first out principle. Priority queues have a variety of ap-
plications (such as task scheduling in an operating system, traffic scheduling on a
network, and even job scheduling at your local auto mechanic).

A priority queue could be implemented using a list of queues where each queue
represents items of a given priority. Another solution to this problem is to use
a minheap. Sorting the heap by priority accomplishes the first ordering (higher-
priority items go first). However, the first in, first out ordering of items with

Element to be
removed

Replacement

Before
reordering

After
reorderingInitial heap

3

5 4

7 98

9

5 4

7 78

4

5 9

8

FIGURE 21.7 Removal and reordering in a heap

3

5 4

7 98

2

5 3

4978

2

5 3

8

FIGURE 21.6 Examples of the last leaf in a heap

M21_LEWI5976_05_SE_C21.indd 784 08/02/19 3:11 AM

 21.2 Using Heaps: Priority Queues 785

the same priority is something we will have to manipulate. The solution is to
create a PrioritizedObject object that stores the element to be placed on the
queue, the priority of the element, and the order in which elements are placed on
the queue. Then, we simply define the compareTo method for the
PrioritizedObject class to compare priorities first and then com-
pare order if there is a tie. Listing 21.2 shows the PrioritizedObject
class, and Listing 21.3 shows the PriorityQueue class. The UML
description of the PriorityQueue class is left as an exercise.

KEY CONCEPT
Even though it is not a queue at
all, a minheap provides an efficient
implementation of a priority queue.

L I S T I N G 2 1 . 2

/**
 * PrioritizedObject represents a node in a priority queue containing a
 * comparable object, arrival order, and a priority value.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class PrioritizedObject<T> implements Comparable<PrioritizedObject>
{
 private static int nextOrder = 0;
 private int priority;
 private int arrivalOrder;
 private T element;

 /**
 * Creates a new PrioritizedObject with the specified data.
 *
 * @param element the element of the new priority queue node
 * @param priority the priority of the new queue node
 */
 public PrioritizedObject(T element, int priority)
 {
 this.element = element;
 this.priority = priority;
 arrivalOrder = nextOrder;
 nextOrder++;
 }

 /**
 * Returns the element in this node.
 *
 * @return the element contained within the node
 */
 public T getElement()

M21_LEWI5976_05_SE_C21.indd 785 08/02/19 3:11 AM

786 CHAPTER 21 Heaps and Priority Queues

L I S T I N G 2 1 . 2 continued

 {
 return element;
 }

 /**
 * Returns the priority value for this node.
 *
 * @return the integer priority for this node
 */
 public int getPriority()
 {
 return priority;
 }

 /**
 * Returns the arrival order for this node.
 *
 * @return the integer arrival order for this node
 */
 public int getArrivalOrder()
 {
 return arrivalOrder;
 }

 /**
 * Returns a string representation for this node.
 *
 */
 public String toString()
 {
 return (element + " " + priority + " " + arrivalOrder);
 }

 /**
 * Returns 1 if the this object has higher priority than
 * the given object and -1 otherwise.
 *
 * @param obj the object to compare to this node
 * @return the result of the comparison of the given object and
 * this one
 */
 public int compareTo(PrioritizedObject obj)

M21_LEWI5976_05_SE_C21.indd 786 08/02/19 3:11 AM

 21.2 Using Heaps: Priority Queues 787

continuedL I S T I N G 2 1 . 2
 {
 int result;
 if (priority > obj.getPriority())
 result = 1;
 else if (priority < obj.getPriority())
 result = -1;
 else if (arrivalOrder > obj.getArrivalOrder())
 result = 1;
 else
 result = -1;
 return result;
 }
}

L I S T I N G 2 1 . 3
import jsjf.*;

/**
 * PriorityQueue implements a priority queue using a heap.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class PriorityQueue<T> extends ArrayHeap<PrioritizedObject<T>>
{
 /**
 * Creates an empty priority queue.
 */
 public PriorityQueue()
 {
 super();
 }

 /**
 * Adds the given element to this PriorityQueue.
 *
 * @param object the element to be added to the priority queue
 * @param priority the integer priority of the element to be added
 */
 public void addElement(T object, int priority)

M21_LEWI5976_05_SE_C21.indd 787 08/02/19 3:11 AM

788 CHAPTER 21 Heaps and Priority Queues

KEY CONCEPT
Because of the requirement that we
be able to traverse up the tree after an
insertion, it is necessary for the nodes
in a heap to store a pointer to their
parent.

L I S T I N G 2 1 . 3 continued

 {
 PrioritizedObject<T> obj = new PrioritizedObject<T>(object, priority);
 super.addElement(obj);
 }

 /**
 * Removes the next highest priority element from this priority
 * queue and returns a reference to it.
 *
 * @return a reference to the next highest priority element in this queue
 */
 public T removeNext()
 {
 PrioritizedObject<T> obj = (PrioritizedObject<T>)super.removeMin();
 return obj.getElement();
 }
}

21.3 Implementing Heaps: With Links

All of our implementations of trees thus far have been illustrated using links. Thus
it is natural to extend that discussion to a linked implementation of
a heap. Because of the requirement that we be able to traverse up the
tree after an insertion, it is necessary for the nodes in a heap to store
a pointer to their parent. Because our BinaryTreeNode class did not
have a parent pointer, we start our linked implementation by creat-
ing a HeapNode class that extends our BinaryTreeNode class and
adds a parent pointer. Listing 21.4 shows the HeapNode class.

The additional instance data for a linked implementation will con-
sist of a single reference to a HeapNode called lastNode so that we can keep track
of the last leaf in the heap:

public HeapNode lastNode;

The addElement Operation
The addElement method must accomplish three tasks: add the new node at the
appropriate location, reorder the heap to maintain the ordering property, and
then reset the lastNode pointer to point to the new last node.

M21_LEWI5976_05_SE_C21.indd 788 08/02/19 3:11 AM

 21.3 Implementing Heaps: With Links 789

L I S T I N G 2 1 . 4

package jsjf;

/**
 * HeapNode represents a binary tree node with a parent pointer for use
 * in heaps.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class HeapNode<T> extends BinaryTreeNode<T>
{
 protected HeapNode<T> parent;

 /**
 * Creates a new heap node with the specified data.
 *
 * @param obj the data to be contained within the new heap node
 */
 public HeapNode(T obj)
 {
 super(obj);
 parent = null;
 }

 /**
 * Return the parent of this node.
 *
 * @return the parent of the node
 */
 public HeapNode<T> getParent()
 {
 return parent;
 }

 /**
 * Sets the element stored at this node.
 *
 * @param the element to be stored
 */
 public void setElement(T obj)
 {
 element = obj;
 }

M21_LEWI5976_05_SE_C21.indd 789 08/02/19 3:11 AM

790 CHAPTER 21 Heaps and Priority Queues

 /**
 * Sets the parent of this node.
 *
 * @param node the parent of the node
 */
 public void setParent(HeapNode<T> node)
 {
 parent = node;
 }
}

L I S T I N G 2 1 . 4 continued

 /**
 * Adds the specified element to this heap in the appropriate
 * position according to its key value.
 *
 * @param obj the element to be added to the heap
 */
 public void addElement(T obj)
 {
 HeapNode<T> node = new HeapNode<T>(obj);

 if (root == null)
 root = node;
 else
 {
 HeapNode<T> nextParent = getNextParentAdd();
 if (nextParent.getLeft() == null)
 nextParent.setLeft(node);
 else
 nextParent.setRight(node);

 node.setParent(nextParent);
 }
 lastNode = node;
 modCount++;
 if (size() > 1)
 heapifyAdd();
 }

M21_LEWI5976_05_SE_C21.indd 790 08/02/19 3:11 AM

 21.3 Implementing Heaps: With Links 791

This method also uses two private methods: getNextParentAdd, which re-
turns a reference to the node that will be the parent of the node to be inserted, and
heapifyAdd, which accomplishes any necessary reordering of the heap starting
with the new leaf and working up toward the root. Both of those methods are
shown below.

 /**
 * Reorders this heap after adding a node.
 */
 private void heapifyAdd()
 {
 T temp;
 HeapNode<T> next = lastNode;
 temp = next.getElement();
 while ((next != root) &&
 (((Comparable)temp).compareTo(next.getParent().getElement()) < 0))

 /**
 * Returns the node that will be the parent of the new node
 *
 * @return the node that will be the parent of the new node
 */
 private HeapNode<T> getNextParentAdd()
 {
 HeapNode<T> result = lastNode;

 while ((result != root) && (result.getParent().getLeft() != result))
 result = result.getParent();

 if (result != root)
 if (result.getParent().getRight() == null)
 result = result.getParent();
 else
 {
 result = (HeapNode<T>)result.getParent().getRight();
 while (result.getLeft() != null)
 result = (HeapNode<T>)result.getLeft();
 }
 else
 while (result.getLeft() != null)
 result = (HeapNode<T>)result.getLeft();

 return result;
 }

M21_LEWI5976_05_SE_C21.indd 791 08/02/19 3:11 AM

792 CHAPTER 21 Heaps and Priority Queues

In this linked implementation, the first step in the process of adding an element
is to determine the parent of the node to be inserted. Because, in the worst case, this
involves traversing from the bottom right node of the heap up to the root and then
down to the bottom left node of the heap, this step has time complexity 2 * log n. The
next step is to insert the new node. Because it involves only simple assignment state-
ments, this step has constant time complexity (O(1)). The last step is to reorder the
path from the inserted leaf to the root if necessary. This process involves at most log
n comparisons because that is the length of the path. Thus the addElement operation
for the linked implementation has time complexity 2 * log n + 1 + log n or O(log n).

Note that the heapifyAdd method does not perform a full swap of parent and
child as it moves up the heap. Instead, it simply shifts parent elements down until
a proper insertion point is found and then assigns the new value into that location.
This does not actually improve the O() of the algorithm, because it would be O(log
n) even if we were performing full swaps. However, it does improve the efficiency,
because it reduces the number of assignments performed at each level of the heap.

The removeMin Operation
The removeMin method must accomplish three tasks: replace the element stored
in the root with the element stored in the last node, reorder the heap if necessary,
and return the original root element. Like the addElement method, the removeMin
method uses two additional methods: getNewLastNode, which returns a reference
to the node that will be the new last node, and heapifyRemove, which accom-
plishes any necessary reordering of the tree starting from the root down. All three
of these methods are shown below.

 {
 next.setElement(next.getParent().getElement());
 next = next.parent;
 }
 next.setElement(temp);
 }

 /**
 * Remove the element with the lowest value in this heap and
 * returns a reference to it. Throws an EmptyCollectionException
 * if the heap is empty.
 *
 * @return the element with the lowest value in this heap
 * @throws EmptyCollectionException if the heap is empty
 */

M21_LEWI5976_05_SE_C21.indd 792 08/02/19 3:11 AM

 21.3 Implementing Heaps: With Links 793

 public T removeMin() throws EmptyCollectionException
 {
 if (isEmpty())
 throw new EmptyCollectionException("LinkedHeap");
 T minElement = root.getElement();
 if (size() == 1)
 {
 root = null;
 lastNode = null;
 }
 else
 {
 HeapNode<T> nextLast = getNewLastNode();
 if (lastNode.getParent().getLeft() == lastNode)
 lastNode.getParent().setLeft(null);
 else
 lastNode.getParent().setRight(null);

 ((HeapNode<T>)root).setElement(lastNode.getElement());
 lastNode = nextLast;
 heapifyRemove();
 }
 modCount++;

 return minElement;
 }

 /**
 * Returns the node that will be the new last node after a remove.
 *
 * @return the node that willbe the new last node after a remove
 */
 private HeapNode<T> getNewLastNode()
 {
 HeapNode<T> result = lastNode;

 while ((result != root) && (result.getParent().getLeft() == result))
 result = result.getParent();

 if (result != root)
 result = (HeapNode<T>)result.getParent().getLeft();

 while (result.getRight() != null)
 result = (HeapNode<T>)result.getRight();

 return result;
 }

M21_LEWI5976_05_SE_C21.indd 793 08/02/19 3:11 AM

794 CHAPTER 21 Heaps and Priority Queues

The removeMin method for the linked implementation must remove the root
element and replace it with the element from the last node. Because these are
simply assignment statements, this step has time complexity 1. Next, this method
must reorder the heap, if necessary, from the root down to a leaf. Because the

 /**
 * Reorders this heap after removing the root element.
 */
 private void heapifyRemove()
 {
 T temp;
 HeapNode<T> node = (HeapNode<T>)root;
 HeapNode<T> left = (HeapNode<T>)node.getLeft();
 HeapNode<T> right = (HeapNode<T>)node.getRight();
 HeapNode<T> next;

 if ((left == null) && (right == null))
 next = null;
 else if (right == null)
 next = left;
 else if (((Comparable)left.getElement()).compareTo(right.getElement()) < 0)
 next = left;
 else
 next = right;

 temp = node.getElement();
 while ((next != null) &&
 (((Comparable)next.getElement()).compareTo(temp) < 0))
 {
 node.setElement(next.getElement());
 node = next;
 left = (HeapNode<T>)node.getLeft();
 right = (HeapNode<T>)node.getRight();

 if ((left == null) && (right == null))
 next = null;
 else if (right == null)
 next = left;
 else if (((Comparable)left.getElement()).compareTo(right.getElement()) < 0)
 next = left;
 else
 next = right;
 }
 node.setElement(temp);
 }

M21_LEWI5976_05_SE_C21.indd 794 08/02/19 3:11 AM

 21.4 Implementing Heaps: With Arrays 795

maximum path length from the root to a leaf is log n, this step has time complexity
log n. Finally, we must determine the new last node. Like the process for determin-
ing the next parent node for the addElement method, the worst case is that we
must traverse from a leaf through the root and down to another leaf. Thus the time
complexity of this step is 2*log n. The resulting time complexity of the removeMin
operation is 2*log n + log n + 1 or O(log n).

The findMin Operation
The findMin method simply returns a reference to the element stored at the root
of the heap and therefore is O(1).

21.4 Implementing Heaps: With Arrays

To this point, we have focused our discussion of the implementation of trees
around linked structures. If you recall, however, in Chapter 19 we discussed
a couple of different array implementation strategies for trees: the computa-
tional strategy and the simulated link strategy. An array implementation of a
heap may provide a simpler alternative than our linked implementation. Many
of the intricacies of the linked implementation are related to the need to tra-
verse up and down the tree to determine the last leaf of the tree or to determine
the parent of the next node to insert. Many of those difficulties
do not exist in the array implementation because we are able to
determine the last node in the tree by looking at the last element
stored in the array.

As we discussed in Chapter 10, a simple array implementation
of a binary tree can be created using the notion that the root of the
tree is in position 0, and that for each node n, n’s left child will be
in position 2n + 1 of the array and n’s right child will be in posi-
tion 2(n + 1) of the array. Of course, the inverse is also true. For
any node n other than the root, n’s parent is in position (n - 1)√ 2. Because of
our ability to calculate the location of both parent and child, the array imple-
mentation (unlike the linked implementation) does not require the creation of a
HeapNode class. The UML description of the array implementation of a heap is
left as an exercise.

Just as the LinkedHeap class extends the LinkedBinaryTree class, the
ArrayHeap class will extend the ArrayBinaryTree class. The class header,
 attributes, and constructors for both classes are provided for context.

KEY CONCEPT
In an array implementation of a
binary tree, the root of the tree is in
position 0, and for each node n, n’s
left child is in position 2n + 1, and n’s
right child is in position 2(n + 1).

M21_LEWI5976_05_SE_C21.indd 795 08/02/19 3:11 AM

796 CHAPTER 21 Heaps and Priority Queues

package jsjf;

import java.util.*;
import jsjf.exceptions.*;

/**
 * ArrayBinaryTree implements the BinaryTreeADT interface using an array
 *
 * @author Java Foundations
 * @version 4.0
 */
public class ArrayBinaryTree<T> implements BinaryTreeADT<T>, Iterable<T>
{
 private static final int DEFAULT_CAPACITY = 50;

 protected int count;
 protected T[] tree;
 protected int modCount;

 /**
 * Creates an empty binary tree.
 */
 public ArrayBinaryTree()
 {
 count = 0;
 tree = (T[]) new Object[DEFAULT_CAPACITY];
 }

 /**
 * Creates a binary tree with the specified element as its root.
 *
 * @param element the element which will become the root of the new tree
 */
 public ArrayBinaryTree(T element)
 {
 count = 1;
 tree = (T[]) new Object[DEFAULT_CAPACITY];
 tree[0] = element;
 }

M21_LEWI5976_05_SE_C21.indd 796 08/02/19 3:11 AM

 21.4 Implementing Heaps: With Arrays 797

package jsjf;
import jsjf.exceptions.*;

/**
 * ArrayHeap provides an array implementation of a minheap.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class ArrayHeap<T> extends ArrayBinaryTree<T> implements HeapADT<T>
{
 /**
 * Creates an empty heap.
 */
 public ArrayHeap()
 {
 super();
 }

The addElement Operation
The addElement method for the array implementation must accomplish three
tasks: add the new node at the appropriate location, reorder the heap to maintain
the ordering property, and increment the count by one. Of course, as with all of
our array implementations, the method must first check for available space and
expand the capacity of the array if necessary. Like the linked implementation, the
addElement operation of the array implementation uses a private method called
heapifyAdd to reorder the heap if necessary.

 /**
 * Adds the specified element to this heap in the appropriate
 * position according to its key value.
 *
 * @param obj the element to be added to the heap
 */
 public void addElement(T obj)
 {
 if (count == tree.length)
 expandCapacity();

 tree[count] = obj;

M21_LEWI5976_05_SE_C21.indd 797 08/02/19 3:11 AM

798 CHAPTER 21 Heaps and Priority Queues

 /**
 * Reorders this heap to maintain the ordering property after
 * adding a node.
 */
 private void heapifyAdd()
 {
 T temp;
 int next = count - 1;

 temp = tree[next];

 while ((next != 0) &&
 (((Comparable)temp).compareTo(tree[(next-1)/2]) < 0))
 {
 tree[next] = tree[(next-1)/2];
 next = (next-1)/2;
 }
 tree[next] = temp;
 }

 count++;
 modCount++;

 if (count > 1)
 heapifyAdd();
 }

Unlike the linked implementation, the array implementation
does not require the first step of determining the parent of the
new node. However, both of the other steps are the same as
those for the linked implementation. Thus the time complexity
for the addElement operation for the array implementation is

1 + log n or O(log n). Granted, the two implementations have the same Order(),
but the array implementation is more efficient and more elegant.

The removeMin Operation
The removeMin method must accomplish three tasks: Replace the element stored in
the root with the element stored in the last element, reorder the heap if necessary,
and return the original root element. In the case of the array implementation, we
know the last element of the heap is stored in position count1 of the array. We
then use a private method heapifyRemove to reorder the heap as necessary.

KEY CONCEPT
The addElement operation for both
the linked implementation and the
array implementation is O(log n).

M21_LEWI5976_05_SE_C21.indd 798 08/02/19 3:11 AM

 21.4 Implementing Heaps: With Arrays 799

 /**
 * Reorders this heap to maintain the ordering property
 * after the minimum element has been removed.
 */
 private void heapifyRemove()
 {
 T temp;
 int node = 0;
 int left = 1;
 int right = 2;
 int next;

 if ((tree[left] == null) && (tree[right] == null))
 next = count;
 else if (tree[right] == null)
 next = left;
 else if (((Comparable)tree[left]).compareTo(tree[right]) < 0)
 next = left;
 else

 /**
 * Remove the element with the lowest value in this heap and
 * returns a reference to it. Throws an EmptyCollectionException if
 * the heap is empty.
 *
 * @return a reference to the element with the lowest value in this heap
 * @throws EmptyCollectionException if the heap is empty
 */
 public T removeMin() throws EmptyCollectionException
 {
 if (isEmpty())
 throw new EmptyCollectionException("ArrayHeap");

 T minElement = tree[0];
 tree[0] = tree[count-1];
 heapifyRemove();
 count--;
 modCount--;

 return minElement;
 }

M21_LEWI5976_05_SE_C21.indd 799 08/02/19 3:11 AM

800 CHAPTER 21 Heaps and Priority Queues

KEY CONCEPT
The removeMin operation for both
the linked implementation and the
array implementation is O(log n).

 next = right;
 temp = tree[node];

 while ((next < count) &&
 (((Comparable)tree[next]).compareTo(temp) < 0))
 {
 tree[node] = tree[next];
 node = next;
 left = 2 * node + 1;
 right = 2 * (node + 1);
 if ((tree[left] == null) && (tree[right] == null))
 next = count;
 else if (tree[right] == null)
 next = left;
 else if (((Comparable)tree[left]).compareTo(tree[right]) < 0)
 next = left;
 else
 next = right;
 }
 tree[node] = temp;
 }

Like the addElement method, the array implementation of the
removeMin operation looks just like the linked implementation
 except that it does not have to determine the new last node. Thus the
resulting time complexity is log n + 1 or O(log n).

The findMin Operation
Like the linked implementation, the findMin method simply returns a reference to the
element stored at the root of the heap or position 0 of the array and therefore is O(1).

21.5 Using Heaps: Heap Sort

Now that we have examined an array implementation of a heap, lets consider
another way we might use it. In Chapter 18, we introduced a variety of sorting
techniques, some of which were sequential sorts (bubble sort, selection sort, and
insertion sort) and some of which were logarithmic sorts (merge sort and quick
sort). In that chapter, we also introduced a queue-based sort called a radix sort.

M21_LEWI5976_05_SE_C21.indd 800 08/02/19 3:11 AM

 21.5 Using Heaps: Heap Sort 801

Given the ordering property of a heap, it is natural to think of using a heap to
sort a list of numbers. A brute force approach to a heap sort would be to add
each of the elements of the list to a heap and then remove them one at a time
from the root. In the case of a minheap, the result will be the list in ascend-
ing order. In the case of a maxheap, the result will be the list in descending
order. Because both the add operation and the remove operation are O(log n),
it might be tempting to conclude that a heap sort is also O(log n). However,
keep in mind that those operations are O(log n) to add or remove a single ele-
ment in a list of n elements. Insertion into a heap is O(log n) for
any given node and thus would be O(n log n) for n nodes. Removal
is also O(log n) for a single node and thus O(n log n) for n nodes.
With the heap sort algorithm, we are performing both operations,
addElement and removeMin, n times, once for each of the ele-
ments in the list. Therefore, the resulting time complexity is 2 * n
log n * or O(n log n).

It is also possible to “build” a heap in place using the array to be sorted.
Because we know the relative position of each parent and child in the heap, we
can simply start with the first non-leaf node in the array, compare it to its chil-
dren, and swap if necessary. We then work backward in the array until we reach
the root. Because, at most, this will require us to make two comparisons for each
non-leaf node, this approach is O(n) to build the heap. However, with this ap-
proach, removing each element from the heap and maintaining the properties of
the heap would still be O(n log n). Thus, even though this approach is slightly
more efficient, roughly 2 * n + n log n, it is still O(n log n). The im-
plementation of this approach is left as an exercise. The heapSort
method could be added to our class of sort methods described in
Chapter 18. Listing 21.5 illustrates how it might be created as a
standalone class.

KEY CONCEPT
The heapSort method consists of
adding each of the elements of the list
to a heap and then removing them
one at a time.

KEY CONCEPT
Heap sort is O(n log n).

VideoNote
Demonstration of a heap
sort on an array

L I S T I N G 2 1 . 5

package jsjf;

/**
 * HeapSort sorts a given array of Comparable objects using a heap.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class HeapSort<T>

M21_LEWI5976_05_SE_C21.indd 801 08/02/19 3:11 AM

802 CHAPTER 21 Heaps and Priority Queues

L I S T I N G 2 1 . 5 continued

{
 /**
 * Sorts the specified array using a Heap
 *
 * @param data the data to be added to the heapsort
 */
 public void HeapSort(T[]data)
 {
 ArrayHeap<T> temp = new ArrayHeap<T>();

 // copy the array into a heap

 for (int i = 0; i < data.length; i++)
 temp.addElement(data[i]);

 // place the sorted elements back into the array

 int count = 0;
 while (!(temp.isEmpty()))
 {
 data[count] = temp.removeMin();
 count++;
 }
 }
}

M21_LEWI5976_05_SE_C21.indd 802 08/02/19 3:11 AM

■■ A minheap is a complete binary tree in which each node is less than or equal
to both the left child and the right child.

■■ A minheap stores its smallest element at the root of the binary tree, and both
children of the root of a minheap are also minheaps.

■■ The addElement method adds a given Comparable element to the appropri-
ate location in the heap, maintaining both the completeness property and the
ordering property of the heap.

■■ Because a heap is a complete tree, there is only one correct location for the
insertion of a new node, and that is either the next open position from the
left at level h or, if level h is full, the first position on the left at level h + 1.

■■ Typically, in heap implementations, we keep track of the position of the last
node or, more precisely, the last leaf in the tree.

■■ To maintain the completeness of the tree, there is only one valid element to
replace the root, and that is the element stored in the last leaf in the tree.

■■ Even though it is not a queue at all, a minheap provides an efficient imple-
mentation of a priority queue.

■■ Because of the requirement that we be able to traverse up the tree after an
 insertion, it is necessary for the nodes in a heap to store a pointer to their parent.

■■ In an array implementation of a binary tree, the root of the tree is in position
0, and for each node n, n’s left child is in position 2n + 1 and n’s right child
is in position 2(n + 1).

■■ The addElement operation for both the linked implementation and the array
implementation is O(log n).

■■ The removeMin operation for both the linked implementation and the array
implementation is O(log n).

■■ The heapSort method consists of adding each of the elements of the list to a
heap and then removing them one at a time.

■■ Heap sort is O(n log n).

Summary of Terms
complete A balanced tree in which all of the leaves at level h (the lowest
level of the tree) on the left side of the tree.

heap A binary tree that is complete and is either a minheap or a maxheap.

maxheap A binary tree with two added properties: It is a complete tree and for
each node, the node is greater than or equal to both the left child and the right child.

Summary of Key Concepts

 Summary of Terms 803

M21_LEWI5976_05_SE_C21.indd 803 08/02/19 3:11 AM

804 CHAPTER 21 Heaps and Priority Queues

minheap A binary tree with two added properties: It is a complete tree and
for each node, the node is less than or equal to both the left child and the
right child.

priority queue A collection that follows two ordering rules: Items with
higher priority go first, and items with the same priority are ordered in ac-
cordance with the first in, first out principle.

Self-Review Questions
SR 21.1 What is the difference between a heap (a minheap) and a binary

search tree?

SR 21.2 What is the difference between a minheap and a maxheap?

SR 21.3 What does it mean for a binary tree to be complete?

SR 21.4 Does a heap ever have to be rebalanced?

SR 21.5 The addElement operation for the linked implementation must
determine the parent of the next node to be inserted. Why?

SR 21.6 Why does the addElement operation for the array implementation
not have to determine the parent of the next node to be inserted?

SR 21.7 The removeMin operation for both implementations replaces the
element at the root with the element in the last leaf of the heap.
Why is this the proper replacement?

SR 21.8 What is the time complexity of the addElement operation?

SR 21.9 What is the time complexity of the removeMin operation?

SR 21.10 What is the time complexity of heap sort?

Exercises
EX 21.1 Draw the heap that results from adding the following integers

(34 45 3 87 65 32 1 12 17).

EX 21.2 Starting with the tree resulting from Exercise 21.1, draw the heap
that results from performing a removeMin operation.

EX 21.3 Starting with an empty minheap, draw the heap after each of the
following operations.
addElement(40);
addElement(25):
removeMin();

M21_LEWI5976_05_SE_C21.indd 804 08/02/19 3:11 AM

 Programming Projects 805

addElement(10);
removeMin();
addElement(5);
addElement(1);
removeMin();
addElement(45);
addElement(50);

EX 21.4 Repeat Exercise 21.3, this time with a maxheap.

EX 21.5 Draw the UML description for the PriorityQueue class described
in this chapter.

EX 21.6 Draw the UML description for the array implementation of heap
described in this chapter.

Programming Projects
PP 21.1 Implement a queue using a heap. Keep in mind that a queue is a

first in, first out structure. Thus the comparison in the heap will
have to be according to order entry into the queue.

PP 21.2 Implement a stack using a heap. Keep in mind that a stack is a
last in, first out structure. Thus the comparison in the heap will
have to be according to order entry into the queue.

PP 21.3 Implement a maxheap using an array implementation.

PP 21.4 Implement a maxheap using a linked implementation.

PP 21.5 As described in Section 21.5, it is possible to make the heap sort
algorithm more efficient by writing a method that will build a
heap in place using the array to be sorted. Implement such a
method, and rewrite the heap sort algorithm to make use of it.

PP 21.6 Use a heap to implement a simulator for a process scheduling sys-
tem. In this system, jobs will be read from a file consisting of the job
id (a six-character string), the length of the job (an int representing
seconds), and the priority of the job (an int where the higher the
number the higher the priority). Each job will also be assigned an ar-
rival number (an int representing the order of its arrival). The simu-
lation should output the job id, the priority, the length of the job,
and the completion time (relative to a simulation start time of 0).

PP 21.7 Create a birthday reminder system using a minheap such that the
ordering on the heap is done each day according to days remain-
ing until the individual’s birthday. Keep in mind that when a
birthday passes, the heap must be reordered.

M21_LEWI5976_05_SE_C21.indd 805 08/02/19 3:11 AM

806 CHAPTER 21 Heaps and Priority Queues

PP 21.8 Complete the implementation of an ArrayHeap including the
ArrayBinaryTree class that the ArrayHeap extends.

PP 21.9 Complete the implementation of the LinkedHeap class.

Answers to Self-Review Questions
SRA 21.1 A binary search tree has the ordering property that the left child

of any node is less than the node, and the node is less than or
equal to its right child. A minheap is complete and has the order-
ing property that the node is less than both of its children.

SRA 21.2 A minheap has the ordering property that the node is less than
both of its children. A maxheap has the ordering property that
the node is greater than both of its children.

SRA 21.3 A binary tree is considered complete if it is balanced, which
means that all of the leaves are at level h or h - 1, where h is
log2n and n is the number of elements in the tree, and all of the
leaves at level h are on the left side of the tree.

SRA 21.4 No. By definition, a complete heap is balanced and the algorithms
for add and remove maintain that balance.

SRA 21.5 The addElement operation must determine the parent of the
node to be inserted so that a child pointer of that node can be set
to the new node.

SRA 21.6 The addElement operation for the array implementation does not
have to determine the parent of the new node because the new
element is inserted in position count of the array and its parent is
determined by position in the array.

SRA 21.7 To maintain the completeness of the tree, the only valid replacement
for the element at the root is the element at the last leaf. Then the heap
must be reordered as necessary to maintain the ordering property.

SRA 21.8 For both implementations, the addElement operation is O(log n).
However, despite having the same order, the array implementa-
tion is somewhat more efficient because it does not have to deter-
mine the parent of the node to be inserted.

SRA 21.9 For both implementations, the removeMin operation is O(log n).
However, despite having the same order, the array implementa-
tion is somewhat more efficient because it does not have to deter-
mine the new last leaf.

SRA 21.10 The heap sort algorithm is O(n log n).

M21_LEWI5976_05_SE_C21.indd 806 08/02/19 3:11 AM

807

22
This chapter introduces the Java concepts of sets and

maps. We will explore these collections and compare and

contrast them with our previous implementations. We will

also introduce the concept of hashing.

C H A P T E R O B J E C T I V E S
■■ Introduce the Java set and map collections.

■■ Explore the use of sets and maps to solve problems.

■■ Introduce the concept of hashing.

■■ Discuss how the Java API implements sets and maps.

Sets and Maps 22

M22_LEWI5976_05_SE_C22.indd 807 08/02/19 3:13 AM

808 CHAPTER 22 Sets and Maps

22.1 Set and Map Collections

A set can be defined as a collection of elements with no duplicates. You should
not assume that there is any particular positional relationship among the elements
of a set.

For the most part, set collections in Java can be thought of in the mathematical
sense of a set. They represent a collection of unique elements that can be used to
determine the relationship of an element to the set. That is, the primary purpose

of a set is to determine whether a particular element is a member of
the set or not.

Of course, other collections (such as a list) have the ability to test
for containment. However, if such tests are an important part of a
program, you should consider using sets. The implementation of a set
is explicitly designed to be efficient when searching for an element.

A map is a collection that establishes a relationship between keys and values,
providing an efficient way to retrieve a value given its key. The keys of a map
must be unique, and each key can map to only one value. For example, you could
use a unique membership id (a String) to retrieve the information about that
member of a club (a Member object).

It doesn’t have to be a one-to-one mapping, however. Multiple keys could map
to the same object. For example, in a situation where information about a topic

is being looked up, multiple keywords can map to the same topic
entry. The key “gardening” and the key “mulch beds” and the key
“flowers” could all map to the Topic object describing gardening,
for instance.

The keys of a map don’t have to be character strings, although they often are.
Both the keys and the values of a map can be any type of object.

Like that of a set, a map’s implementation is specifically designed to provide
efficient lookup. In fact, as we’ll see in more detail later in this chapter, the set
and map classes defined in the Java API are implemented using similar underlying
techniques.

22.2 Sets and Maps in the Java API

The Java API defines interfaces called Set and Map to define the public interac-
tion available for these types of collections. In the remainder of this chapter, we’ll
explore the interfaces for these classes, use them to solve some problems, and then
discuss the underlying implementation strategies.

KEY CONCEPT
A map is a collection of objects that
can be retrieved using a unique key.

KEY CONCEPT
A set is a unique collection of objects
generally used to determine whether
a particular element is a member of
the set.

VideoNote
A comparison of
sets and maps

M22_LEWI5976_05_SE_C22.indd 808 08/02/19 3:13 AM

 22.2 Sets and Maps in the Java API 809

The operations of the Set interface are listed in Figure 22.1. Like other collec-
tions, a set has operations that allow the user to add elements, remove elements,
and to check whether a particular element is in the collection. Some operations
such as isEmpty and size are common to nearly all collections as well. The
contains and containsAll methods perform the key operations of determining
whether the set contains particular elements.

Method Summary

boolean add(E e)

 Adds the specified element to this set if it is not already present
(optional operation).

boolean addAll(Collection<? extends E> c)

 Adds all of the elements in the specified collection to this set if
they are not already present (optional operation).

void clear()

 Removes all of the elements from this set (optional operation).

boolean contains(Object o)

 Returns true if this set contains the specified element.

boolean containsAll(Collection<?> c)

 Returns true if this set contains all of the elements of the speci-
fied collection.

boolean equals(Object o)

 Compares the specified object with this set for equality.

int hashCode()

 Returns the hash code value for this set.

boolean isEmpty()

 Returns true if this set contains no elements.

Iterator iterator()

 Returns an iterator over the elements in this set.

boolean remove(Object o)

 Removes the specified element from this set if it is present
 (optional operation).

boolean removeAll(Collection<?> c)

 Removes from this set all of its elements that are contained in the
specified collection (optional operation).

boolean retainAll(Collection<?> c)

 Retains only the elements in this set that are contained in the
specified collection (optional operation).

int size()

 Returns the number of elements in this set (its cardinality).

M22_LEWI5976_05_SE_C22.indd 809 08/02/19 3:13 AM

810 CHAPTER 22 Sets and Maps

Like most collections, the elements of a set are defined using a generic type
parameter (E in this case). The only objects that can be added to a set are those
that are type compatible with the generic type established when a set object is
instantiated.

Figure 22.2 illustrates the operations in the Map interface. Elements are added
to a map using the put operation, which accepts both the key object and its cor-
responding value as parameters. A particular element is retrieved from the map
using the get operation, which accepts the key object as a parameter.

Method Summary (continued)

Object[] toArray()

 Returns an array containing all of the elements in this set.

<T> T[] toArray(T[] a)

 Returns an array containing all of the elements in this set; the
 run-time type of the returned array is that of the specified array.

FIGURE 22.1 The operations in the Set interface

Method Summary

void clear()
 Removes all of the mappings from this map (optional operation).

boolean containsKey(Object key)
 Returns true if this map contains a mapping for the specified key.

boolean containsValue(Object value)
 Returns true if this map maps one or more keys to the speci-
fied value.

Set<Map.
Entry<K,V>>

entrySet()
 Returns a Set view of the mappings contained in this map.

boolean equals(Object o)
 Compares the specified object with this map for equality.

V get(Object key)
 Returns the value to which the specified key is mapped, or
null if this map contains no mapping for the key.

int hashCode()
 Returns the hash code value for this map.

boolean isEmpty()
 Returns true if this map contains no key-value mappings.

Set<K> keySet()
 Returns a Set view of the keys contained in this map.

M22_LEWI5976_05_SE_C22.indd 810 08/02/19 3:13 AM

 22.3 Using Sets: Domain Blocker 811

The Map interface has two generic type parameters, one for the key (K) and one
for the value (V). When a class implementing Map is instantiated, both types are
established for that particular map, and all subsequent operations work in terms
of those types.

The Java API provides two implementation classes for each interface: TreeSet
and HashSet are two implementations of the Set interface; TreeMap and HashMap
are two implementations of the Map interface. As the names imply, the classes use
two different underlying implementation techniques: trees and hashing.

Next we’ll explore some examples that use these classes to solve some problems,
and then we will discuss each implementation strategy in more detail.

22.3 Using Sets: Domain Blocker

One of the primary purposes of a set is to test for membership in the set. Let’s con-
sider an example that tests web site domains against a list of blocked domains. We
could use a simple list of blocked domains, but when we use a TreeSet instead, each
check for a particular domain is accomplished in log n steps instead of in n steps.

Suppose that the following list of blocked domains is held in a text input file
called blockedDomains.txt:

dontgothere.com
ohno.org
badstuff.com
badstuff.org

FIGURE 22.2 The operations in the Map interface

Method Summary (continued)

V put(K key, V value)
 Associates the specified value with the specified key in this
map (optional operation).

void putAll(Map<? extends K,? extends V> m)
 Copies all of the mappings from the specified map to this
map (optional operation).

V remove(Object key)
 Removes the mapping for a key from this map if it is
present (optional operation).

int size()
 Returns the number of key-value mappings in this map.

Collection<V> values()
 Returns a Collection view of the values contained in
this map.

M22_LEWI5976_05_SE_C22.indd 811 08/02/19 3:13 AM

812 CHAPTER 22 Sets and Maps

badstuff.net
whatintheworld.com
notinthislifetime.org
letsnot.com
eeewwwwww.com

Listing 22.1 illustrates the DomainBlocker class, which keeps track of the
blocked domains and checks candidates against them as needed. The constructor for
this class reads the file and sets up a TreeSet containing all of the blocked domains.
The isBlocked method that determines whether a given domain is in the set.

In this example, the set of blocked domains is represented by a TreeSet object.
The domains themselves are simply character strings.

In Listing 22.2 we see the DomainChecker class. As the driver for this example,
this class creates an instance of the DomainBlocker class and then allows the user
to enter domains interactively to check to see whether they are blocked.

L I S T I N G 2 2 . 1

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;
import java.util.TreeSet;

/**
 * A URL domain blocker.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class DomainBlocker
{
 private TreeSet<String> blockedSet;

 /**
 * Sets up the domain blocker by reading in the blocked domain names from
 * a file and storing them in a TreeSet.
 * @throws FileNotFoundException
 */
 public DomainBlocker() throws FileNotFoundException
 {
 blockedSet = new TreeSet<String>();

 File inputFile = new File("blockedDomains.txt");
 Scanner scan = new Scanner(inputFile);

 while (scan.hasNextLine())
 {

M22_LEWI5976_05_SE_C22.indd 812 08/02/19 3:13 AM

 22.3 Using Sets: Domain Blocker 813

 blockedSet.add(scan.nextLine());
 }
 }

 /**
 * Checks to see if the specified domain has been blocked.
 *
 * @param domain the domain to be checked
 * @return true if the domain is blocked and false otherwise
 */
 public boolean domainIsBlocked(String domain)
 {
 return blockedSet.contains(domain);
 }
}

L I S T I N G 2 2 . 1 continued

L I S T I N G 2 2 . 2

import java.io.FileNotFoundException;
import java.util.Scanner;

/**
 * Domain checking driver.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class DomainChecker
{
 /**
 * Repeatedly reads a domain interactively from the user and checks to
 * see if that domain has been blocked.
 */
 public static void main(String[] args) throws FileNotFoundException
 {
 DomainBlocker blocker = new DomainBlocker();
 Scanner scan = new Scanner(System.in);
 String domain;

M22_LEWI5976_05_SE_C22.indd 813 08/02/19 3:13 AM

814 CHAPTER 22 Sets and Maps

22.4 Using Maps: Product Sales

Let’s look at an example using the TreeMap class. What if we were trying to keep
track of product sales? Suppose that each time a product is sold, its product code
is entered into a sales file. Here’s a sample of how that information might appear
in a file. Note that there are duplicates in the list.

OB311
HR588
DX555
EW231
TT232
TJ991
HR588
TT232
GB637
BV693
CB329
NP466
CB329
EW231
BV693
DX555
GB637
VA838

 do
 {
 System.out.print("Enter a domain (DONE to quit): ");
 domain = scan.nextLine();

 if (!domain.equalsIgnoreCase("DONE"))
 {
 if (blocker.domainIsBlocked(domain))
 System.out.println("That domain is blocked.");
 else
 System.out.println("That domain is fine.");
 }
 } while (!domain.equalsIgnoreCase("DONE"));
 }
}

L I S T I N G 2 2 . 2 continued

M22_LEWI5976_05_SE_C22.indd 814 08/02/19 3:13 AM

 22.4 Using Maps: Product Sales 815

Our system would need to read the sales file and update the product informa-
tion for each entry. We could organize our collection by product code but then
keep that separate from the actual product information. Listing 22.3 shows the
Product class and Listing 22.4 shows the ProductSales class.

L I S T I N G 2 2 . 3

/**
 * Represents a product for sale.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class Product implements Comparable<Product>
{
 private String productCode;
 private int sales;

 /**
 * Creates the product with the specified code.
 *
 * @param productCode a unique code for this product
 */
 public Product(String productCode)
 {
 this.productCode = productCode;
 this.sales = 0;
 }

 /**
 * Returns the product code for this product.
 *
 * @return the product code
 */
 public String getProductCode()
 {
 return productCode;
 }

 /**
 * Increments the sales of this product.
 */
 public void incrementSales()
 {
 sales++;
 }

M22_LEWI5976_05_SE_C22.indd 815 08/02/19 3:13 AM

816 CHAPTER 22 Sets and Maps

 /**
 * Compares this product to the specified product based on the product
 * code.
 *
 * @param other the other product
 * @return an integer code result
 */
 public int compareTo(Product obj)
 {
 return productCode.compareTo(obj.getProductCode());
 }

 /**
 * Returns a string representation of this product.
 *
 * @return a string representation of the product
 */
 public String toString()
 {
 return productCode + "\t(" + sales + ")";
 }
}

L I S T I N G 2 2 . 3 continued

L I S T I N G 2 2 . 4

import java.io.File;
import java.io.IOException;
import java.util.Scanner;
import java.util.TreeMap;

/**
 * Demonstrates the use of a TreeMap to store a sorted group of Product
 * objects.
 *
 * @author Java Foundations
 * @version 4.0
 */

M22_LEWI5976_05_SE_C22.indd 816 08/02/19 3:13 AM

 22.4 Using Maps: Product Sales 817

public class ProductSales
{
 /**
 * Processes product sales data and prints a summary sorted by
 * product code.
 */
 public static void main(String[] args) throws IOException
 {
 TreeMap<String, Product> sales = new TreeMap<String, Product>();

 Scanner scan = new Scanner(new File("salesData.txt"));

 String code;
 Product product;
 while (scan.hasNext())
 {
 code = scan.nextLine();
 product = sales.get(code);
 if (product == null)
 sales.put(code, new Product(code));
 else
 product.incrementSales();
 }

 System.out.println("Products sold this period:");
 for (Product prod : sales.values())
 System.out.println(prod);
 }
}

O U T P U T

Products sold this period:
BR742 (67)
BV693 (69)
CB329 (67)
DX555 (67)
DX699 (72)
EW231 (66)
GB637 (56)
HR588 (66)
LF845 (69)
LH933 (59)

L I S T I N G 2 2 . 4 continued

M22_LEWI5976_05_SE_C22.indd 817 08/02/19 3:13 AM

818 CHAPTER 22 Sets and Maps

In our previous collections, when we wanted to retrieve or find an object in the
collection, we would have had to instantiate an object of the same type and with
the same critical information in order to look for it. One of the advantages of using
a Map is that we no longer have to do that. In this example, our key is a String.
Therefore, we were able to search the Map using a String rather than having to
create a dummy Product object.

In the main method, a while loop is used to read all values from the input file. For
each product code, we attempt to get the corresponding Product object from the map
using the product code as the key. If the result is null, then no sales of that product
have been recorded yet, and a new Product object is created and added to the map.
If it was successfully retrieved from the map, the incrementSales method is called.

The output of the program lists only unique product codes found in the input
file, followed by the number of sales in parentheses. Note that the output shown
in Listing 22.4 is based on a much larger input file than the sample given earlier in
the chapter.

The output is accomplished by a for-each loop in the main method, which retrieves
a list of all Product objects stored in the map using a call to the values method. The
values are returned in order by product code, because that’s how Product objects
rank themselves using the compareTo method of Product.

22.5 Using Maps: User Management

Suppose we wanted to create a system to manage users. Our system could maintain a
map of users and allow searches for particular users based on a user id. Listing 22.5
illustrates our User class, representing an individual user, and Listing 22.6 represents
the Users class, representing the collection of users.

NP466 (67)
OB311 (50)
TJ991 (79)
TT232 (74)
UI294 (75)
VA838 (60)
WL023 (76)
WL310 (81)
WL812 (65)
YG904 (78)

L I S T I N G 2 2 . 4 continued

M22_LEWI5976_05_SE_C22.indd 818 08/02/19 3:13 AM

 22.5 Using Maps: User Management 819

L I S T I N G 2 2 . 5

/**
 * Represents a user with a userid.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class User
{
 private String userId;
 private String firstName;
 private String lastName;

 /**
 * Sets up this user with the specified information.
 *
 * @param userId a user identification string
 * @param firstName the user’s first name
 * @param lastName the user’s last name
 */
 public User(String userId, String firstName, String lastName)
 {
 this.userId = userId;
 this.firstName = firstName;
 this.lastName = lastName;
 }

 /**
 * Returns the user id of this user.
 *
 * @return the user id of the user
 */
 public String getUserId()
 {
 return userId;
 }

 /**
 * Returns a string representation of this user.
 *
 * @return a string representation of the user
 */
 public String toString()
 {
 return userId + ":\t" + lastName + ", " + firstName;
 }
}

M22_LEWI5976_05_SE_C22.indd 819 08/02/19 3:13 AM

820 CHAPTER 22 Sets and Maps

L I S T I N G 2 2 . 6

import java.util.HashMap;
import java.util.Set;

/**
 * Stores and manages a map of users.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class Users
{
 private HashMap<String, User> userMap;

 /**
 * Creates a user map to track users.
 */
 public Users()
 {
 userMap = new HashMap<String, User>();
 }

 /**
 * Adds a new user to the user map.
 *
 * @param user the user to add
 */
 public void addUser(User user)
 {
 userMap.put(user.getUserId(), user);
 }

 /**
 * Retrieves and returns the specified user.
 *
 * @param userId the user id of the target user
 * @return the target user, or null if not found
 */
 public User getUser(String userId)
 {
 return userMap.get(userId);
 }

M22_LEWI5976_05_SE_C22.indd 820 08/02/19 3:13 AM

 22.5 Using Maps: User Management 821

In the Users class, individual User objects are stored in a HashMap object,
using a user id (string) as a key. The addUser and getUser methods simply store
and retrieve the User objects as needed. The getUserIds method returns a Set of
user ids using a call to the keySet method of the map.

Listing 22.7 shows the UserManagement class that contains the main method
of our program. It creates and adds several users, allows the user to search for
them interactively, and then prints all of the users in the collection.

 /**
 * Returns a set of all user ids.
 *
 * @return a set of all user ids in the map
 */
 public Set<String> getUserIds()
 {
 return userMap.keySet();
 }
}

L I S T I N G 2 2 . 6 continued

L I S T I N G 2 2 . 7

import java.io.IOException;
import java.util.Scanner;

/**
 * Demonstrates the use of a map to manage a set of objects.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class UserManagement
{

 /**
 * Creates and populates a group of users. Then prompts for interactive
 * searches, and finally prints all users.
 */

M22_LEWI5976_05_SE_C22.indd 821 08/02/19 3:13 AM

822 CHAPTER 22 Sets and Maps

 public static void main(String[] args) throws IOException
 {
 Users users = new Users();

 users.addUser(new User("fziffle", "Fred", "Ziffle"));
 users.addUser(new User("geoman57", "Marco", "Kane"));
 users.addUser(new User("rover322", "Kathy", "Shear"));
 users.addUser(new User("appleseed", "Sam", "Geary"));
 users.addUser(new User("mon2016", "Monica", "Blankenship"));

 Scanner scan = new Scanner(System.in);
 String uid;
 User user;

 do
 {
 System.out.print("Enter User Id (DONE to quit): ");
 uid = scan.nextLine();
 if (!uid.equalsIgnoreCase("DONE"))
 {
 user = users.getUser(uid);
 if (user == null)
 System.out.println("User not found.");
 else
 System.out.println(user);
 }
 } while (!uid.equalsIgnoreCase("DONE"));

 // print all users

 System.out.println("\nAll Users:\n");
 for (String userId : users.getUserIds())
 System.out.println(users.getUser(userId));
 }
}

O U T P U T

Enter User Id (DONE to quit): DONE

All Users:

geoman57: Kane, Marco
appleseed: Geary, Sam
rover322: Shear, Kathy
fziffle: Ziffle, Fred
mon2016: Blankenship, Monica

L I S T I N G 2 2 . 7 continued

M22_LEWI5976_05_SE_C22.indd 822 08/02/19 3:13 AM

 22.7 Implementing Sets and Maps Using Hashing 823

22.6 Implementing Sets and Maps Using Trees

As the names imply, the TreeSet and TreeMap classes use an under-
lying tree structure to hold the elements in the set or map. In previous
chapters, we explored trees as collections in their own right, first as
general trees in Chapter 19, then as binary search trees in Chapter 20.
As we discussed in those chapters, the Java API does not treat trees as
collections, but only as a means to implement other collections.

The tree used to implement TreeSet and TreeMap is a red-black
implementation of a balanced binary search tree. Recall the discus-
sion of red-black trees in Chapter 20. They guarantee that the search
tree remains balanced as elements are added and removed, which in
turn results in nearly all of the basic operations being executed with
O(log n) efficiency. These trees use the so-called natural ordering
of elements, based on the Comparable interface, unless an explicit
Comparator object is provided.

Furthermore, it turns out that the TreeSet and TreeMap classes in
the API don’t have their own unique implementations of the underlying
tree. The TreeSet class is built upon a backing instance of a TreeMap.

22.7 Implementing Sets and Maps Using Hashing

The HashSet and HashMap classes are implemented using an underlying tech-
nique called hashing as the means by which elements are stored and retrieved.
First we will discuss hashing in general; then we will consider how it is used to
implement sets and maps.

In all of our discussions of the implementations of collections, we have proceeded
with one of two assumptions about the order of elements in a collection:

■■ Order is determined by the order in which elements are added to and/or
removed from our collection, as in the case of stacks, queues, unordered
lists, and indexed lists.

■■ Order is determined by comparing the values of the elements (or some key
component of the elements) to be stored in the collection, as in the case of
ordered lists and binary search trees.

With hashing, however, the order—and, more specifically, the location of an
item within the collection—is determined by some function of the value of the
element to be stored, or some function of a key value of the element to be stored.

KEY CONCEPT
In the Java API, TreeSet is built
using an underlying TreeMap.

KEY CONCEPT
Both TreeSet and TreeMap use a
red-black balanced binary search tree.

KEY CONCEPT
The Java API treats trees as
implementing data structures rather
than as collections.

M22_LEWI5976_05_SE_C22.indd 823 08/02/19 3:13 AM

824 CHAPTER 22 Sets and Maps

In hashing, elements are stored in a hash table, with their location
in the table determined by a hashing function. Each location in the
table may be referred to as a cell or a bucket.

A complete discussion of hashing functions is included in
Appendix I, but we’ll discuss just the basics here.

Consider a simple example where we create an array that will hold
26 elements. Wishing to store names in our array, we create a hashing function that
equates each name to the position in the array associated with the first letter of the
name (for example, a first letter of A would be mapped to position 0 of the array
and a first letter of D would be mapped to position 3 of the array). Figure 22.3
illustrates this scenario after several names have been added.

Notice that, unlike our earlier implementations of collections, using a hashing
approach results in the access time to a particular element being independent of

the number of elements in the table. This means that all of the opera-
tions on an element of a hash table should be O(1). This is the result
of no longer having to do comparisons to find a particular element
or to locate the appropriate position for a given element. Using hash-
ing, we simply calculate where a particular element should be.

However, this efficiency is fully realized only if each element
maps to a unique position in the table. Consider our example from
Figure 22.3. What will happen if we attempt to store the name
“Ann” and the name “Andrew”? This situation, where two elements
or keys map to the same location in a hash table, is called a collision.

A hashing function that maps each element to a unique position
in the hash table is said to be a perfect hashing function. Although
it is possible in some situations to develop a perfect hashing func-

tion, a hashing function that does a good job of distributing the elements among
the table positions will still result in constant time (O(1)) access to elements in
the table and an improvement over our earlier algorithms that were either O(n) in the
case of our linear approaches or O(log n) in the case of search trees.

A complete discussion of hashing is included in Appendix I. Now, let’s con-
sider how the Java API uses hashing to create a set implementation.

Just as the TreeSet class was built upon a backing TreeMap instance, the
HashSet class is built upon a backing instance of the HashMap class. The HashSet
class provides constant time (O(1)) access for the basic operations as long as the
hash function does a reasonable job of distributing elements in the hash table.
The two parameters to the constructor that affect the efficiency of the hash func-
tion are the initial capacity and load factor.

The initial capacity determines the initial size of the hash table. The load factor
determines how full the table is allowed to be before its size is increased. The default

KEY CONCEPT
A hashing function that maps each
element to a unique position in the
hash table is said to be a perfect
hashing function.

KEY CONCEPT
The situation in which two elements
or keys map to the same location in a
hash table is called a collision.

KEY CONCEPT
In hashing, elements are stored in a
hash table, and their location in the
table is determined by a hashing
function.

M22_LEWI5976_05_SE_C22.indd 824 08/02/19 3:13 AM

 22.7 Implementing Sets and Maps Using Hashing 825

for the initial capacity is 16 and the default for the load factor is 0.75. With these
defaults the table size would be doubled once 12 elements had been added.

When an element is added to a HashSet, the object’s hashCode method is
called to produce an integer hashcode for the object. If the hashCode method has
not been overridden, then the hashCode method of the java.lang.Object class
is used. Whether it uses this method or an overridden version, the requirements of
the hashCode method as stated in the Java API are the same:

■■ Whenever it is invoked on the same object more than once during an execu-
tion of a Java application, the hashCode method must consistently return
the same integer, provided that no information used in equals comparisons
on the object is modified. This integer need not remain consistent from one
execution of an application to another execution of the same application.

■■ If two objects are equal according to the equals(Object) method, then
calling the hashCode method on each of the two objects must produce the
same integer result.

■■ It is not required that if two objects are unequal according to the
equals(Object) method, then calling the hashCode method on each
of the two objects must produce distinct integer results. However, the
programmer should be aware that producing distinct integer results for
unequal objects may improve the performance of hashtables.

Ann

Doug
Elizabeth

Hal

Mary

Tim

Walter

Young

FIGURE 22.3
A simple hashing

example

M22_LEWI5976_05_SE_C22.indd 825 08/02/19 3:13 AM

826 CHAPTER 22 Sets and Maps

Summary of Key Concepts

■■ A set is a unique collection of objects generally used to determine whether a
particular element is a member of the set.

■■ A map is a collection of objects that can be retrieved using a unique key.

■■ The Java API treats trees as implementing data structures rather than as
collections.

■■ In the Java API, TreeSet is built using a backing TreeMap.

■■ Both TreeSet and TreeMap use a red-black balanced binary search tree.

■■ In hashing, elements are stored in a hash table, and their location in the table
is determined by a hashing function.

■■ The situation in which two elements or keys map to the same location in the
table is called a collision.

■■ A hashing function that maps each element to a unique position in the table
is said to be a perfect hashing function.

Summary of Terms
bucket/cell A location in a hash table.

collision The situation in which two elements or keys map to the same loca-
tion in a hash table.

hash table A table where elements are stored in the hashing technique.

hashing A technique by which elements are stored in, and retrieved from, a
hash table, and their location in the table is determined by a hashing function.

hashing function In the hashing technique, the function that determines
where elements are stored in a hash table.

initial capacity The parameter that determines the initial size of a hash table.

load factor The parameter that determines how full a hash table is allowed
to be before its size is increased.

map A collection of objects that can be retrieved using a unique key.

perfect hashing function A hashing function that maps each element to a
unique position in a hash table.

set A unique set of objects generally used to determine whether a particular
element is a member of the set.

M22_LEWI5976_05_SE_C22.indd 826 08/02/19 3:13 AM

 Exercises 827

Self-Review Questions
SR 22.1 What is a set?

SR 22.2 What is a map?

SR 22.3 How are sets and maps implemented in the Java API?

SR 22.4 What is the relationship between a TreeSet and a TreeMap?

SR 22.5 What is the relationship between a HashSet and a HashMap?

SR 22.6 How does a hash table differ from the other implementation
strategies we have discussed?

SR 22.7 What is the potential advantage of a hash table over other imple-
mentation strategies?

SR 22.8 Define the terms collision and perfect hashing function.

Exercises
EX 22.1 Define the concept of a set. List additional operations that might

be considered for a set.

EX 22.2 The TreeSet class is built upon a backing instance of the
TreeMap class. Discuss the advantages and disadvantages of this
strategy for reuse.

EX 22.3 Given the nature of a set, one could implement the Set interface
using any one of a variety of other collections or data structures.
Describe how you might implement the Set interface using a
LinkedList. Discuss the advantages and disadvantages of this
approach.

EX 22.4 A bag is a very similar construct to a set except that duplicates
are allowed in a bag. What changes would have to be made to
extend a TreeSet to create an implementation of a bag?

EX 22.5 Draw a UML diagram showing the relationships among the
classes involved in the ProductSales example from this chapter.

EX 22.6 Draw a UML diagram showing the relationships among the
classes in the User Management example from this chapter.

EX 22.7 Describe two hashing functions that might be appropriate for a
data set organized by name (e.g., last name, first name, middle
initial).

EX 22.8 Explain when it might be preferable to use a map instead of a set.

M22_LEWI5976_05_SE_C22.indd 827 08/02/19 3:13 AM

828 CHAPTER 22 Sets and Maps

Programming Projects
PP 22.1 Create an array based implementation of a set called

ArraySet<T> that implements the Set interface.

PP 22.2 Create a linked implementation of a set call LinkedSet<T> that
implements the Set interface.

PP 22.3 Create a tree-based implementation of a TreeBag<T> class.
Remember, the difference is that a bag allows duplicates.

PP 22.4 Create a hash table based implementation of a HashBag<T> class.
Remember, the difference is that a bag allows duplicates.

PP 22.5 Extend the TreeSet class to create a class called AlgebraicTreeSet.
In addition to the methods of the Set interface, this class will
provide the basic algebraic set operations of union, intersection,
and difference.

PP 22.6 Create the AlgebraicTreeSet class of PP 22.5 by extending the
HashSet class.

PP 22.7 Building upon PP 22.1, create an array implementation of a map.

PP 22.8 Building upon PP 22.2, create a linked implementation of a map.

PP 22.9 Using a TreeMap develop a rolodex application to keep track of
Contact objects as described in Chapter 9.

PP 22.10 Using a HashMap develop a new implementation of the
ProgramofStudy application from Chapter 6.

Answers to Self-Review Questions
SRA 22.1 A set is a unique set of objects generally used to determine

whether a particular element is a member of the set.

SRA 22.2 A map is a collection of objects that can be retrieved using a
unique key.

SRA 22.3 Sets and maps are implemented in the Java API both with Red/
Black Binary Trees (TreeSet and TreeMap) and with hash-tables
(HashSet and HashMap).

SRA 22.4 A TreeSet is implemented using a backing instance of a
TreeMap.

SRA 22.5 A HashSet is implemented using a backing instance of a
HashMap.

M22_LEWI5976_05_SE_C22.indd 828 08/02/19 3:13 AM

SRA 22.6 Using a hash table, the location of an element in the table is deter-
mined using a hashing function. In this way, each element in the
hash table can be accessed in equal, O(1), time.

SRA 22.7 Given the O(1) access time to each element in a hash table, as-
suming a good hashing function, then a hash table has the po-
tential to be more efficient than some of our other strategies. For
example, a binary search tree might require O(log n) time to ac-
cess a given element as opposed to the O(1) access time of a hash
table.

SRA 22.8 A collision occurs in a hash-table when two or more different
elements are hashed to the same location in the table. A perfect
hashing function is one that does not produce any collisions.

 Answers to Self-Review Questions 829

M22_LEWI5976_05_SE_C22.indd 829 08/02/19 3:13 AM

831

23
When we first introduced the concept of efficiency of

algorithms, we said that we were interested in issues such

as processing time and memory. In this chapter, we explore

multi-way trees that were specifically designed with a

concern for the use of space and the effect that a particular

use of space could have on the total processing time for an

algorithm.

C H A P T E R O B J E C T I V E S
■■ Examine 2-3 and 2-4 trees.

■■ Introduce the generic concept of a B-tree.

■■ Examine some specialized implementations of B-trees.

Multi-way Search
Trees 23

M23_LEWI5976_05_SE_C23.indd 831 08/02/19 3:14 AM

832 CHAPTER 23 Multi-way Search Trees

23.1 Combining Tree Concepts

In Chapter 19, we established the difference between a general tree, which has a
varying number of children per node, and a binary tree, which has at most two
children per node. Then in Chapter 20, we discussed the concept of a search tree,

which has a specific ordering relationship among the elements in the
nodes to allow efficient searching for a target value. In particular, we
focused on binary search trees. Now we can combine these concepts
and extend them further.

In a multi-way search tree, each node might have more than two
child nodes, and, because it is a search tree, there is a specific order-

ing relationship among the elements. Furthermore, a single node in a multi-way
search tree may store more than one element.

This chapter examines three specific forms of a multi-way search tree:

■■ 2-3 trees

■■ 2-4 trees

■■ B-trees

23.2 2-3 Trees

A 2-3 tree is a multi-way search tree in which each node has two children
 (referred to as a 2-node) or three children (referred to as a 3-node). A 2-node
contains one element and, as in a binary search tree, the left subtree contains
 elements that are less than that element and the right subtree contains elements
that are greater than or equal to that element. However, unlike the case in a bi-
nary search tree, a 2-node can have either no children or two children—it cannot
have just one child.

A 3-node contains two elements, one designated as the smaller element and one
designated as the larger element. A 3-node has either no children or three children.

If a 3-node has children, then the left subtree contains elements that
are less than the smaller element, and the right subtree contains ele-
ments that are greater than or equal to the larger element. The mid-
dle subtree contains elements that are greater than or equal to the
smaller element and less than the larger element.

All of the leaves of a 2-3 tree are on the same level. Figure 23.1
illustrates a valid 2-3 tree.

KEY CONCEPT
A 2-3 tree contains nodes that contain
either one or two elements and have
either zero, two, or three children.

KEY CONCEPT
A multi-way search tree can have
more than two children per node and
can store more than one element in
each node.

M23_LEWI5976_05_SE_C23.indd 832 08/02/19 3:14 AM

 23.2 2-3 Trees 833

Inserting Elements into a 2-3 Tree
Similar to a binary search tree, all insertions into a 2-3 tree occur at the leaves of
the tree. That is, the tree is searched to determine where the new element will go;
then it is inserted. Unlike a binary tree, however, the process of inserting an ele-
ment into a 2-3 tree can have a ripple effect on the structure of the rest of the tree.

Inserting an element into a 2-3 tree has three cases. The first, and simplest, case
is that the tree is empty. In this case, a new node is created containing the new ele-
ment, and this node is designated as the root of the tree.

The second case occurs when we want to insert a new element at a leaf that is
a 2-node. That is, we traverse the tree to the appropriate leaf (which may also be
the root) and find that the leaf is a 2-node (containing only one element). In this
case, the new element is added to the 2-node, making it a 3-node. Note that the
new element may be less than or greater than the existing element. Figure 23.2
illustrates this case by inserting the value 27 into the tree shown in Figure 23.1.
The leaf node containing 22 is a 2-node, so 27 is inserted into that node, making
it a 3-node. Note that neither the number of nodes in the tree nor the height of the
tree changed because of this insertion.

The third insertion situation occurs when we want to insert a new element at
a leaf that is a 3-node (containing two elements). In this case, because the 3-node
cannot hold any more elements, it is split, and the middle element is moved up a

45

22 75 8751 55

30

35 40

60 82

FIGURE 23.1 A 2-3 tree

initial tree

22

30

35 40

result

45 45

75 8751 55

30

35 4022 27

60 82

75 8751 55

60 82

FIGURE 23.2 Inserting 27

M23_LEWI5976_05_SE_C23.indd 833 08/02/19 3:14 AM

834 CHAPTER 23 Multi-way Search Trees

level in the tree. The middle element that moves up a level can be either of the two
elements that already existed in the 3-node, or it can be the new element being
inserted. It depends on the relationship among those three elements.

Figure 23.3 shows the result of inserting the element 32 into the tree shown in
Figure 23.2. Searching the tree, we reach the 3-node that contains the elements 35
and 40. That node is split, and the middle element (35) is moved up to join its par-
ent node. Thus the internal node that contains 30 becomes a 3-node that contains
both 30 and 35. Note that the act of splitting a 3-node results in two 2-nodes at
the leaf level. In this example, we are left with one 2-node that contains 32 and
another 2-node that contains 40.

Now consider the situation in which we must split a 3-node whose parent is
already a 3-node. The middle element that is promoted causes the parent to split,
moving an element up yet another level in the tree. Figure 23.4 shows the effect
of inserting the element 57 into the tree shown in Figure 23.3. Searching the tree,
we reach the 3-node leaf that contains 51 and 55. This node is split, causing the
middle element 55 to move up a level. But that node is already a 3-node, contain-
ing the values 60 and 82, so we split that node as well, promoting the element 60,
which joins the 2-node containing 45 at the root. Therefore, inserting an element
into a 2-3 tree can cause a ripple effect that changes several nodes in the tree.

initial tree result

45

75 8732 40 51 55

30 35

22 27

60 82

45

75 8751 55

30

35 4022 27

60 82

FIGURE 23.3 Inserting 32

initial tree result

51

55

32 40

30 35

45 60

22 27

45

75 8751 5532 40

30 35

22 27

60 82

57 75

82

87

FIGURE 23.4 Inserting 57

M23_LEWI5976_05_SE_C23.indd 834 08/02/19 3:14 AM

 23.2 2-3 Trees 835

If this effect propagates all the way to the root of the entire tree, a new 2-node
root is created. For example, inserting the element 25 into the tree shown in Figure
23.4 results in the tree depicted in Figure 23.5. The 3-node containing 22 and 27
is split, promoting 25. This causes the 3-node containing 30 and 35 to split, pro-
moting 30. This causes the 3-node containing 45 and 60 (which happens to be
the root of the entire tree) to split, creating a new 2-node root that
contains 45.

Note that when the root of the tree splits, the height of the tree
increases by one. The insertion strategy for a 2-3 tree keeps all of the
leaves at the same level.

Removing Elements from a 2-3 Tree
Removal of elements from a 2-3 tree also has three cases. The first case is that the
element to be removed is in a leaf that is a 3-node. In this case, removal is simply a
matter of removing the element from the node. Figure 23.6 illustrates this process
by removing the element 51 from the tree we began with in Figure 23.1. Note that
the properties of a 2-3 tree are maintained.

VideoNote
Inserting elements into,
and removing elements
from, a 2-3 tree

KEY CONCEPT
If the propagation effect of a 2-3 tree
insertion causes the root to split, the
tree increases in height.

60

45

initial tree result

51

55

32 40

30 35

22 27 57 75

82

8722

25

27 32

35

30

4051

55

45 60

57 75

82

87

FIGURE 23.5 Inserting 25

initial tree result

45

7522 8751 55

30

35 40

60 82

45

7522 8755

30

35 40

60 82

FIGURE 23.6 Removal from a 2-3 tree (case 1)

M23_LEWI5976_05_SE_C23.indd 835 08/02/19 3:14 AM

836 CHAPTER 23 Multi-way Search Trees

The second case is that the element to be removed is in a leaf that is a 2-node.
This condition is called underflow and creates a situation in which we must rotate
the tree and/or reduce the tree’s height in order to maintain the properties of the
2-3 tree. This situation can be broken down into four subordinate cases that we
will refer to as cases 2.1, 2.2, 2.3, and 2.4. Figure 23.7 illustrates case 2.1 and
shows what happens if we remove the element 22 from our initial tree shown in
Figure 23.1. In this case, because the parent node has a right child that is a 3-node,
we can maintain the properties of a 2-3 tree by rotating the smaller element of
the 3-node around the parent. The same process will work if the element being
removed from a 2-node leaf is the right child and the left child is a 3-node.

What happens if we now remove the element 30 from the resulting tree in
Figure 23.7? We can no longer maintain the properties of a 2-3 tree through a
local rotation. Keep in mind that a node in a 2-3 tree cannot have just one child.
Because the leftmost child of the right child of the root is a 3-node, we can rotate
the smaller element of that node around the root to maintain the properties of a
2-3 tree. This process is illustrated in Figure 23.8 and represents case 2.2. Notice
that the element 51 moves to the root, the element 45 becomes the larger element
in a 3-node leaf, and then the smaller element of that leaf is rotated around its
parent. Once element 51 was moved to the root and element 45 was moved to a
3-node leaf, we were back in the same situation as case 2.1.

Given the resulting 2-3 tree in Figure 23.8, what happens if we now remove
element 55? None of the leaves of this tree is a 3-node. Thus, rotation from a leaf,
even from a distance, is no longer an option. However, because the parent node is
a 3-node, all that is required to maintain the properties of a 2-3 node is to change
this 3-node to a 2-node by rotating the smaller element (60) into what will now be
the left child of the node. Figure 23.9 illustrates case 2.3.

If we then remove element 60 (using case 1), the resulting tree contains nothing
but 2-nodes. Now, if we remove another element, perhaps element 45, rotation
is no longer an option. We must instead reduce the height of the tree in order to

initial tree result

45

7522 8751 55

30

35 40

60 82

45

30 40

35

75 8751 55

60 82

FIGURE 23.7 Removal from a 2-3 tree (case 2.1)

M23_LEWI5976_05_SE_C23.indd 836 08/02/19 3:14 AM

 23.2 2-3 Trees 837

maintain the properties of a 2-3 tree. This is case 2.4. To accomplish this, we sim-
ply combine each of the leaves with its parent and siblings in order. If any of these
combinations contains more than two elements, we split it into two 2-nodes and
promote or propagate the middle element. Figure 23.10 illustrates this process for
reducing the height of the tree.

The third case is that the element to be removed is in an internal node. Just as
we did with binary search trees, we can simply replace the element to be removed
with its inorder successor. In a 2-3 tree, the inorder successor of an internal ele-
ment will always be a leaf, which, if it is a 2-node, will bring us back to our first
case, and if it is a 3-node, requires no further action. Figure 23.11 illustrates these
possibilities by removing the element 30 from our original tree from Figure 23.1
and then by removing the element 60 from the resulting tree.

initial tree

45

7530 40 8751 55

35 60 82

intermediate step

51

7530 875540 45

35 60 82

result

51

7535 45 8755

40 60 82

FIGURE 23.8 Removal from a 2-3 tree (case 2.2)

initial tree

51

30 45

40 60 82

result

51

35 45 8775 8755

40 82

60 75

FIGURE 23.9 Removal from a 2-3 tree (case 2.3)

M23_LEWI5976_05_SE_C23.indd 837 08/02/19 3:14 AM

838 CHAPTER 23 Multi-way Search Trees

23.3 2-4 Trees

A 2-4 tree is similar to a 2-3 tree, adding the characteristic that a node can contain
three elements. Expanding on the same principles as a 2-3 tree, a 4-node contains

three elements and has either no children or four children. The same
ordering property applies: The left child will be less than the leftmost
element of a node, which will be less than or equal to the second
child of the node, which will be less than the second element of the
node, which will be less than or equal to the third child of the node,

initial tree

51

35 45

40

75 87

82

result

75 8735 40

51 82

FIGURE 23.10 Removal from a 2-3 tree (case 2.4)

45

22 75 8751 55

30

35 40

60 82

initial tree

45

22 75 8751 55

35 60 82

after removing 30

45

22 40 ? 8751 55

35 75 82

after removing 60

45

22 7551 87

35 55 82

after rotation

 40

40

FIGURE 23.11 Removal from a 2-3 tree (case 3)

KEY CONCEPT
A 2-4 tree expands on the concept
of a 2-3 tree to include the use of
4-nodes.

M23_LEWI5976_05_SE_C23.indd 838 08/02/19 3:14 AM

 23.3 2-4 Trees 839

which will be less than the third element of the node, which will be less than or
equal to the fourth child of the node.

The same cases for insertion and removal of elements apply, with 2-nodes and
3-nodes behaving similarly on insertion and 3-nodes and 4-nodes behaving simi-
larly on removal. Figure 23.12 illustrates a series of insertions into a 2-4 tree.
Figure 23.13 illustrates a series of removals from a 2-4 tree.

9940 553 14 22

25 60

insert 60

9922 40 553 14

insert 17

3 14 22 40 55 99

insert 22, 99

17 25 60

55

25

25

3 14

25

40 553 14

insert 25 insert 40

3 14 55

insert 3, 55, 14

FIGURE 23.12 Insertions into a 2-4 tree

9914 22 55

remove 3, 40

995514 22

remove 17

9922 40 553 14

initial tree

17 25 60

99

60

14 55 55 60

remove 25

995514

25 60

remove 22 remove 14, 99

17 25 60 25 60

FIGURE 23.13 Removals from a 2-4 tree

M23_LEWI5976_05_SE_C23.indd 839 08/02/19 3:14 AM

840 CHAPTER 23 Multi-way Search Trees

23.4 B-Trees

Both 2-3 and 2-4 trees are examples of a larger class of multi-way search trees
called B-trees. We refer to the maximum number of children of each node as the

order of the B-tree. Thus 2-3 trees are B-trees of order 3, and 2-4
trees are B-trees of order 4.

B-trees of order m have the following properties:

■■ ■The root has at least two subtrees unless it is a leaf.

■■■ Each non-root internal node n holds k–1 elements and k children
where <m>2= … k … m.

■■ Each leaf n holds k-1 elements where <m>2= … k … m.

■■ All leaves are on the same level.

Figure 23.14 illustrates a B-tree of order 6.

The reasoning behind the creation and use of B-trees is an interesting study of
the effects of algorithm and data structure design. To understand this reasoning,
we must understand the context of most all of the collections we have discussed
thus far. Our assumption has always been that we were dealing with a collection
in primary memory. However, what if the data set that we are manipulating is too
large for primary memory? In that case, our data structure would be paged in and
out of memory from a disk or some other secondary storage device. An interesting

thing happens to time complexity once a secondary storage device is
involved. No longer is the time to access an element of the collection
simply a function of how many comparisons are needed to find the
element. Now we must also consider the access time of the secondary
storage device and how many separate accesses we will make to that
device.

In the case of a disk, this access time consists of seek time (the time it takes to
position the read-write head over the appropriate track on the disk), rotational
delay (the time it takes to spin the disk to the correct sector), and the transfer
time (the time it takes to transfer a block of memory from the disk into primary

KEY CONCEPT
Access to secondary storage is very
slow relative to access to primary
storage, which is motivation to use
structures such as B-trees.

KEY CONCEPT
A B-tree extends the concept of 2-3
and 2-4 trees so that nodes can have
an arbitrary maximum number of
elements.

5 12 22 35 55

1 3 4 7 8 11 13 16 17 21 25 28 31 32 33 40 43 60 75 80

FIGURE 23.14 A B-tree of order 6

M23_LEWI5976_05_SE_C23.indd 840 08/02/19 3:14 AM

 23.4 B-Trees 841

memory). Adding this “physical” complexity to the access time for a collection
can be very costly. Access to secondary storage devices is very slow relative to ac-
cess to primary storage.

Given this added time complexity, it makes sense to develop a structure that
minimizes the number of times the secondary storage device must be accessed. A
B-tree can be just such a structure. B-trees are typically tuned so that the size of
a node is the same as the size of a block on secondary storage. In this way, we
get the maximum amount of data for each disk access. Because B-trees can have
many more elements per node than a binary tree, they are much flatter structures
than binary trees. This reduces the number of nodes and/or blocks that must be
accessed, thus improving performance.

We have already demonstrated the processes of insertion and removal of ele-
ments for 2-3 and 2-4 trees, both of which are B-trees. The process for any B-tree
of order m is similar. Let’s now briefly examine some interesting variations of
B-trees that were designed to solve specific problems.

B*-Trees
One of the potential problems with a B-tree is that even though we are attempting
to minimize access to secondary storage, we have actually created a data struc-
ture that may be half empty. To minimize this problem, B*-trees were developed.
B*-trees have all of the same properties as B-trees except that, instead of each
node having k children where <m>2= … k … m, in a B*-tree each node has k
children where <(2m - 1)>3= … k … m. This means that each non-root node is
at least two-thirds full.

This is accomplished by delaying splitting of nodes by rebalancing across sib-
lings. Once siblings are full, instead of splitting one node into two, creating two
half-full nodes, we split two nodes into three, creating three nodes that are two-
thirds full.

B+-Trees
Another potential problem with B-trees is sequential access. As with any tree,
we can use an inorder traversal to look at the elements of the tree sequentially.
However, this means that we are no longer taking advantage of the blocking
structure of secondary storage. In fact, we have made it much worse, because now
we will access each block containing an internal node many separate times as we
pass through it during the traversal.

B+-trees provide a solution to this problem. In a B-tree, each element appears
only once in the tree, regardless of whether it appears in an internal node or in a

M23_LEWI5976_05_SE_C23.indd 841 08/02/19 3:14 AM

842 CHAPTER 23 Multi-way Search Trees

leaf. In a B+-tree, each element appears in a leaf, regardless of whether or not it
appears in an internal node. Elements appearing in an internal node will be listed
again as the inorder successor (which is a leaf) of their position in the internal node.
Additionally, each leaf node will maintain a pointer to the following leaf node. In
this way, a B+-tree provides indexed access through the B-tree structure and se-
quential access through a linked list of leaves. Figure 23.15 illustrates this strategy.

Analysis of B-Trees
With balanced binary search trees, we were able to say that searching for an ele-
ment in the tree was O(log2n). This is because, at worst, we had to search a single
path from the root to a leaf in the tree and, at worst, the length of that path would
be log2n. Analysis of B-trees is similar. At worst, searching a B-tree, we will have
to search a single path from the root to a leaf and, at worst, that path length will
be logmn, where m is the order of the B-tree and n is the number of elements in the
tree. However, finding the appropriate node is only part of the search. The other
part of the search is finding the appropriate path from each node and then finding
the target element in a given node. Because there are up to m–1 elements per node,
it may take up to m–1 comparisons per node to find the appropriate path and/or
to find the appropriate element. Thus, the analysis of a search of a B-tree yields
O((m–1)logmn). Because m is a constant for any given implementation, we can say
that searching a B-tree is O(log n).

The analysis of insertion into and deletion from a B-tree is similar and is left as
an exercise.

23.5 Implementation Strategies for B-Trees

We have already discussed insertion of elements into B-trees, removal of elements
from B-trees, and the balancing mechanisms necessary to maintain the properties
of a B-tree. What remains is to discuss strategies for storing B-trees. Keep in mind

5 12 22 35 55

1 3 4 5 7 8 12 16 17 21 22 28 31 32 35 40 55 60 8043

FIGURE 23.15 A B+-tree of order 6

M23_LEWI5976_05_SE_C23.indd 842 08/02/19 3:14 AM

 23.5 Implementation Strategies for B-Trees 843

that the B-tree structure was developed specifically to address the
issue of a collection that must move in and out of primary memory
from secondary storage. If we attempt to use object reference vari-
ables to create a linked implementation, we are actually storing a
primary memory address for an object. Once that object is moved
back to secondary storage, that address is no longer valid. Therefore,
if interaction with secondary memory is part of your motivation to
use a B-tree, then an array implementation may be a better solution.

A solution is to think of each node as a pair of arrays. The first array would be
an array of m–1 elements and the second array would be an array of m children.
Next, if we think of the tree itself as one large array of nodes, then the elements
stored in the array of children in each node would simply be integer indexes into
this array of nodes.

In primary memory, this strategy works because when we use an array, as long
as we know the index position of the element within the array, it does not matter
to us where the array is loaded in primary memory. For secondary memory, this
same strategy works because, given that each node is of fixed length, the address
in memory of any given node is given by

The base address of the file + (index of the node - 1) * length of a node.

The array implementations of 2-3, 2-4, and larger B-trees are left as a program-
ming project.

KEY CONCEPT
Arrays may provide a better solution
both within a B-tree node and for
collecting B-tree nodes, because they
are effective in both primary memory
and secondary storage.

M23_LEWI5976_05_SE_C23.indd 843 08/02/19 3:14 AM

844 CHAPTER 23 Multi-way Search Trees

Summary of Key Concepts

■■ A multi-way search tree can have more than two children per node and can
store more than one element in each node.

■■ A 2-3 tree contains nodes that contain either one or two elements and have
zero, two, or three children.

■■ Inserting an element into a 2-3 tree can have a ripple effect up the tree.

■■ If the propagation effect of a 2-3 tree insertion causes the root to split, the
tree increases in height.

■■ A 2-4 tree expands on the concept of a 2-3 tree to include the use of 4-nodes.

■■ A B-tree extends the concept of 2-3 and 2-4 trees so that nodes can have an
arbitrary maximum number of elements.

■■ Access to secondary storage is very slow relative to access to primary stor-
age, which is motivation to use structures such as B-trees.

■■ Arrays may provide a better solution both within a B-tree node and for col-
lecting B-tree nodes because they are effective in both primary memory and
secondary storage.

Summary of Terms
2-node A 2-node contains one element and, as in a binary search tree, the
left subtree contains elements that are less than that element, and the right
subtree contains elements that are greater than or equal to that element.

2-3 tree A multi-way search tree in which each node has two children
 (referred to as a 2-node) or three children (referred to as a 3-node).

2-4 tree A 2-4 tree is similar to a 2-3 tree, adding the characteristic that a
node can contain three elements.

3-node A 3-node contains two elements, one designated as the smaller
element and one designated as the larger element. A 3-node has either no
children or three children. If a 3-node has children, the left subtree contains
 elements that are less than the smaller element, and the right subtree contains
elements that are greater than or equal to the larger element. The middle
subtree contains elements that are greater than or equal to the smaller ele-
ment and less than the larger element.

4-node A 4-node contains three elements and has either no children or four
children.

M23_LEWI5976_05_SE_C23.indd 844 08/02/19 3:14 AM

 Exercises 845

B-tree A B-tree extends the concept of 2-3 and 2-4 trees so that nodes can
have an arbitrary maximum number of elements.

B*-trees B*-trees have all of the same properties as B-trees except that, in-
stead of each node having k children where <m>2= … k … m in a B*-tree,
each node has k children where, in a B*-tree each node has k children where
<(2m - 1)>3= … k … m.

B+-tree In a B+-tree, each element appears in a leaf, regardless of whether or
not it appears in an internal node. Elements appearing in an internal node will
be listed again as the inorder successor (which is a leaf) of their position in the
internal node. Additionally, each leaf node will maintain a pointer to the fol-
lowing leaf node. In this way, a B+-tree provides indexed access through the
B-tree structure and sequential access through a linked list of leaves.

multi-way search tree A search tree where each node might have more than
two child nodes and there is a specific ordering relationship among the elements.

underflow A situation in which we must rotate the tree and/or reduce the
tree’s height in order to maintain the properties of the 2-3 tree.

Self-Review Questions
SR 23.1 Describe the nodes in a 2-3 tree.

SR 23.2 When does a node in a 2-3 tree split?

SR 23.3 How can splitting a node in a 2-3 tree affect the rest of the tree?

SR 23.4 Describe the process of deleting an element from a 2-3 tree.

SR 23.5 Describe the nodes in a 2-4 tree.

SR 23.6 How do insertions and deletions in a 2-4 tree compare to inser-
tions and deletions in a 2-3 tree?

SR 23.7 When is rotation no longer an option for rebalancing a 2-3 tree
after a deletion?

Exercises
EX 23.1 Draw the 2-3 tree that results from adding the following elements

into an initially empty tree:

34 45 3 87 65 32 1 12 17

EX 23.2 Using the resulting tree from Exercise 23.1, draw the resulting
tree after removing each of the following elements:

3 87 12 17 45

M23_LEWI5976_05_SE_C23.indd 845 08/02/19 3:14 AM

846 CHAPTER 23 Multi-way Search Trees

EX 23.3 Repeat Exercise 23.1 using a 2-4 tree.

EX 23.4 Repeat Exercise 23.2 using the resulting 2-4 tree from Exercise 23.3.

EX 23.5 Draw the B-tree of order 8 that results from adding the following
elements into an initially empty tree:

34 45 3 87 65 32 1 12 17 33 55 23 67 15 39 11 19 47

EX 23.6 Draw the B-tree that results from removing the following from
the resulting tree from Exercise 23.5:

1 12 17 33 55 23 19 47

EX 23.7 Describe the complexity (order) of insertion into a B-tree.

EX 23.8 Describe the complexity (order) of deletion from a B-tree.

Programming Projects
PP 23.1 Create an implementation of a 2-3 tree using the array strategy

discussed in Section 23.5.

PP 23.2 Create an implementation of a 2-3 tree using a linked strategy.

PP 23.3 Create an implementation of a 2-4 tree using the array strategy
discussed in Section 23.5.

PP 23.4 Create an implementation of a 2-4 tree using a linked strategy.

PP 23.5 Create an implementation of a B-tree of order 7 using the array
strategy discussed in Section 23.5.

PP 23.6 Create an implementation of a B+-tree of order 9 using the array
strategy discussed in Section 23.5.

PP 23.7 Create an implementation of a B*-tree of order 11 using the array
strategy discussed in Section 23.5.

PP 23.8 Implement a graphical system to manage employees using an em-
ployee id, employee name, and years of service. The system should use
a B-tree of order 7 to store employees, and it must provide the ability
to add and remove employees. After each operation, your system must
update a sorted list of employees sorted by name on the screen.

Answers to Self-Review Questions
SRA 23.1 A 2-3 tree node can have either one element or two and can have

no children, two children, or three children. If it has one element,
then it is a 2-node and has either no children or two children. If it
has two elements, then it is a 3-node and has either no children or
three children.

M23_LEWI5976_05_SE_C23.indd 846 08/02/19 3:14 AM

 References 847

SRA 23.2 A 2-3 tree node splits when it has three elements. The smallest ele-
ment becomes a 2-node, the largest element becomes a 2-node, and
the middle element is promoted or propagated to the parent node.

SRA 23.3 If the split and resulting propagation force the root node to split,
then splitting the node will increase the height of the tree.

SRA 23.4 Deletion from a 2-3 tree falls into one of three cases. Case 1, dele-
tion of an element from a 3-node leaf, means simply removing the
element and has no impact on the rest of the tree. Case 2, dele-
tion of an element from a 2-node leaf, results in one of four cases.
Case 2.1, deletion of an element from a 2-node that has a 3-node
sibling, is resolved by rotating either the inorder predecessor or
the inorder successor of the parent, depending upon whether the
3-node is a left child or a right child, around the parent. Case 2.2,
deletion of an element from a 2-node when there is a 3-node leaf
elsewhere in the tree, is resolved by rotating an element out of
that 3-node and propagating that rotation until a sibling of the
node being deleted becomes a 3-node; then this case becomes case
2.1. Case 2.3, deletion of a 2-node where there is a 3-node inter-
nal node, can be resolved through rotation as well. Case 2.4, dele-
tion of a 2-node when there are no 3-nodes in the tree, is resolved
by reducing the height of the tree.

SRA 23.5 Nodes in a 2-4 tree are exactly like those in a 2-3 tree, except that
2-4 tree also allow 4-nodes, or nodes containing three elements
and having four children.

SRA 23.6 Insertions and deletions in a 2-4 tree are exactly like those in a
2-3 tree, except that splits occur when there are four elements in-
stead of three as in a 2-3 tree.

SRA 23.7 If all of the nodes in a 2-3 tree are 2-nodes, then rotation is not
an option for rebalancing.

References
Bayer, R. “Symmetric Binary B-trees: Data Structure and Maintenance Algo-

rithms.” Acta Informatica (1972): 290–306.
Comer, D. “The Ubiquitous B-Tree.” Computing Surveys 11 (1979): 121–137.
Wedeking, H. “On the Selection of Access Paths in a Data Base System.”

In Data Base Management, edited by J. W. Klimbie and K. L. Koffeman,
pp. 385–397. Amsterdam: North-Holland, 1974.

M23_LEWI5976_05_SE_C23.indd 847 08/02/19 3:14 AM

849

24
In Chapter 19, we introduced the concept of a tree, a

nonlinear structure defined by the concept that each node in

the tree, other than the root node, has exactly one parent. If

we were to violate that premise and allow each node in the

tree to be connected to a variety of other nodes with no no-

tion of parent or child, the result would be the concept of a

graph, which we explore in this chapter. Graphs and graph

theory make up entire subdisciplines of both mathemat-

ics and computer science. In this chapter, we introduce the

basic concepts of graphs and their implementation.

C H A P T E R O B J E C T I V E S
■■ Define undirected graphs.

■■ Define directed graphs.

■■ Define weighted graphs or networks.

■■ Explore common graph algorithms.

Graphs 24

M24_LEWI5976_05_SE_C24.indd 849 08/02/19 3:15 AM

850 CHAPTER 24 Graphs

24.1 Undirected Graphs

Like trees, a graph is made up of nodes and the connections between those nodes.
In graph terminology, we refer to the nodes as vertices and refer to the connec-
tions among them as edges. Vertices are typically identified by a name or a label.
For example, we might label vertices A, B, C, and D. Edges are referred to by
pairing the vertices that they connect. For example, we might have an edge (A, B),
which means there is an edge from vertex A to vertex B.

An undirected graph is a graph where the pairings that represent the edges
are unordered. Thus, listing an edge as (A, B) means that there is a connection

between A and B that can be traversed in either direction. In an un-
directed graph, listing an edge as (A, B) means exactly the same thing
as listing the edge as (B, A). Figure 24.1 illustrates the following un-
directed graph:

Vertices: A, B, C, D

Edges: (A, B), (A, C), (B, C), (B, D), (C, D)

Two vertices in a graph are adjacent if there is an edge connect-
ing them. For example, in the graph of Figure 24.1, vertices A and
B are adjacent, and vertices A and D are not. Adjacent vertices are
sometimes referred to as neighbors. An edge of a graph that connects
a vertex to itself is called a self-loop or a sling and is represented by
listing the vertex twice. For example, listing an edge (A, A) would
mean that there is a sling connecting A to itself.

An undirected graph is considered complete if it has the maxi-
mum number of edges connecting vertices. For the first vertex, it
requires (n-1) edges to connect it to the other vertices. For the sec-

ond vertex, it requires only (n-2) edges because it is already connected to the first
vertex. For the third vertex, it requires (n-3) edges. This sequence continues until
the final vertex requires no additional edges because all the other vertices have
already been connected to it. Remember from Chapter 11 that the summation
from 1 to n is

a
n

1
i = n(n + 1)>2

Thus, in this case, because we are summing only from 1 to (n - 1), the resulting
summation is

a
n- 1

1
i = n(n - 1)>2

A B

D C

FIGURE 24.1 An
example of an

undirected graph

KEY CONCEPT
An undirected graph is considered
complete if it has the maximum
number of edges connecting vertices.

KEY CONCEPT
Two vertices in a graph are adjacent if
there is an edge connecting them.

KEY CONCEPT
An undirected graph is a graph where
the pairings that represent the edges
are unordered.

M24_LEWI5976_05_SE_C24.indd 850 08/02/19 3:15 AM

 24.2 Directed Graphs 851

This means that for any undirected graph with n vertices, it would require
n(n - 1)>2 edges to make the graph complete. This, of course, assumes that none
of those edges is a sling.

A path is a sequence of edges that connect two vertices in a graph.
For example, in our graph from Figure 24.1, A, B, D is a path from
A to D. Notice that each sequential pair, (A, B) and then (B, D), is an
edge. A path in an undirected graph is bi-directional. For example,
A, B, D is the path from A to D, but because the edges are undi-
rected, the inverse, D, B, A, is also the path from D to A. The length
of a path is the number of edges in the path (or the number of ver-
tices - 1). So for our previous example, the path length is 2. Notice
that this definition of path length is identical to the definition that
we used in discussing trees. In fact, trees are a special case of graphs.

An undirected graph is considered connected if for any two verti-
ces in the graph, there is a path between them. Our graph from Figure 24.1 is con-
nected. The same graph with a minor modification is not connected, as illustrated
in Figure 24.2.

Vertices: A, B, C, D

Edges: (A, B), (A, C), (B, C)

A cycle is a path in which the first and last vertices are the same,
and none of the edges is repeated. In Figure 24.2, we would say
that the path A, B, C, A is a cycle. A graph that has no cycles is called acyclic.
Earlier we mentioned the relationship between graphs and trees. Now that we
have introduced these definitions, we can formalize that relationship. An un-
directed tree is a connected, acyclic, undirected graph with one element desig-
nated as the root.

24.2 Directed Graphs

A directed graph, sometimes referred to as a digraph, is a graph where the edges
are ordered pairs of vertices. This means that the edges (A, B) and (B, A) are sepa-
rate, directional edges in a directed graph. In our previous example, we had the
following description for an undirected graph:

Vertices: A, B, C, D

Edges: (A, B), (A, C), (B, C), (B, D), (C, D)

Figure 24.3 shows what happens if we interpret this earlier de-
scription as a directed graph. We represent each of the edges now

KEY CONCEPT
A directed graph, sometimes referred
as a digraph, is a graph where the
edges are ordered pairs of vertices.

KEY CONCEPT
An undirected tree is a connected,
acyclic, undirected graph with one
element designated as the root.

KEY CONCEPT
A cycle is a path in which the first and
last vertices are the same, and none of
the edges is repeated.

KEY CONCEPT
A path is a sequence of edges that
connects two vertices in a graph.

A B

D C

FIGURE 24.2 An
example of

an undirected
graph that is not

connected

M24_LEWI5976_05_SE_C24.indd 851 08/02/19 3:15 AM

852 CHAPTER 24 Graphs

with the direction of traversal specified by the ordering of the vertices. For ex-
ample, the edge (A, B) allows traversal from A to B but not traversal in the other
direction.

Our previous definitions change slightly for directed graphs. For example, a
path in a directed graph is a sequence of directed edges that connects two vertices
in a graph. In our undirected graph, we listed the path A, B, D as the path from A
to D, and that is still true in our directed interpretation of the graph description.
However, paths in a directed graph are not bi-directional, so the inverse is no lon-
ger true: D, B, A is not a valid path from D to A, unless we add directional edges

(D, B) and (B, A).

Our definition for a connected directed graph sounds the same as
it did for undirected graphs. A directed graph is connected if for any
two vertices in the graph, there is a path between them. However,
keep in mind that our definition of a path is different. Look at the
two graphs shown in Figure 24.4. The first one is connected. The

second one is not connected, because there is no path from any other vertex to
vertex 1.

If a directed graph has no cycles, it is possible to arrange the vertices such that
vertex A precedes vertex B if an edge exists from A to B. The order of vertices
resulting from this arrangement is called topological order and is very useful for
examples such as course prerequisites.

As we discussed earlier, trees are graphs. In fact, most of our previous much
work with trees actually focused on directed trees. A directed tree is a di-
rected graph that has an element designated as the root and has the following
properties:

■■ There are no connections from other vertices to the root.

■■ Every non-root element has exactly one connection to it.

■■ There is a path from the root to every other vertex.

A B

C D

FIGURE 24.3 An
example of a

directed graph

3

4

2

5

connected

1

6

3

4

2

5

unconnected

1

6

FIGURE 24.4 Examples of a connected directed graph and an unconnected
directed graph

KEY CONCEPT
A path in a directed graph is a
sequence of directed edges that
connects two vertices in the graph.

M24_LEWI5976_05_SE_C24.indd 852 08/02/19 3:15 AM

 24.3 Networks 853

24.3 Networks

A network, or a weighted graph, is a graph with weights or costs associated with
each edge. Figure 24.5 shows an undirected network of the connections and the air-
fares between cities. This weighted graph, or network, could then be used to deter-
mine the cheapest path from one city to another. The weight of a path
in a weighted graph is the sum of the weights of the edges in the path.

Networks may be either undirected or directed, depending on the
need. Take our airfare example from Figure 24.5. What if the airfare
to fly from New York to Boston is one price but the airfare to fly
from Boston to New York is a different price? This would be an ex-
cellent application of a directed network, as illustrated in Figure 24.6.

For networks, we represent each edge with a triple that includes the starting ver-
tex, the ending vertex, and the weight. Keep in mind that for undirected networks,

KEY CONCEPT
A network, or a weighted graph, is a
graph with weights or costs associated
with each edge.

Boston

New York

Roanoke

Philadelphia

120

225

320

219

FIGURE 24.5 An undirected network

Boston

New York

Roanoke

Philadelphia

120140

225

205

199
219

320240

FIGURE 24.6 A directed network

M24_LEWI5976_05_SE_C24.indd 853 08/02/19 3:15 AM

854 CHAPTER 24 Graphs

the starting and ending vertices could be swapped with no impact. However, for
directed networks, a triple must be included for every directional connection. For
example, the network of Figure 24.6 would be represented as follows:

Vertices: Boston, New York, Philadelphia, Roanoke

Edges: (Boston, New York, 120), (Boston, Philadelphia, 199),

 (New York, Boston, 140), (New York, Philadelphia, 225),

 (New York, Roanoke, 320), (Philadelphia, Boston, 219),

 (Philadelphia, New York, 205), (Roanoke, New York, 240)

24.4 Common Graph Algorithms

There are a number of common graph algorithms that may apply to undirected
graphs, directed graphs, and/or networks. These include various traversal algo-
rithms similar to what we explored with trees, as well as algorithms for finding
the shortest path, algorithms for finding the least costly path in a network, and
algorithms to answer simple questions about the graph such as whether the graph
is connected and what the shortest path is between two vertices.

Traversals
In our discussion of trees in Chapter 19, we defined four types of traversals
and then implemented them as iterators: preorder traversal, inorder traversal,
postorder traversal, and level-order traversal. Because we know that a tree is a
graph, we know that for certain types of graphs these traversals would still apply.
Generally, however, we divide graph traversal into two categories: a breadth-first
traversal, which behaves very much like the level-order traversal of a tree, and
a depth-first traversal, which behaves very much like the preorder traversal of a
tree. One difference here is that there is not a root node. Thus our traversal may
start at any vertex in the graph.

We can construct a breadth-first traversal for a graph using a queue and an
unordered list. We will use the queue (traversal-queue) to manage the traversal
and the unordered list (result-list) to build our result. The first step is to enqueue
the starting vertex into the traversal-queue and mark the starting vertex as visited.
We then begin a loop that will continue until the traversal-queue is empty. Within
this loop, we will take the first vertex off the traversal-queue and add that vertex
to the rear of the result-list. Next, we will enqueue each of the vertices that are
adjacent to the current one, and have not already been marked as visited, into
the traversal-queue, mark each of them as visited, and then repeat the loop. We
simply repeat this process for each of the visited vertices until the traversal-queue

M24_LEWI5976_05_SE_C24.indd 854 08/02/19 3:15 AM

 24.4 Common Graph Algorithms 855

is empty, meaning we can no longer reach any new vertices. The result-list now
contains the vertices in breadth-first order from the given starting point. Very
similar logic can be used to construct a breadth-first iterator. The iteratorBFS
shows an iterative algorithm for this traversal for an array implementation of a
graph. The determination of vertices that are adjacent to the current one depends
on the implementation we choose to represent edges in a graph. This particular
method assumes an implementation using an adjacency matrix. We will discuss
this further in Section 24.5.

A depth-first traversal for a graph can be constructed using vir-
tually the same logic by simply replacing the traversal-queue with
a traversal-stack. One other difference in the algorithm, however,
is that we do not want to mark a vertex as visited until it has been
added to the result-list. The iteratorDFS method illustrates this al-
gorithm for an array implementation of a graph.

 /**
 * Returns an iterator that performs a breadth first
 * traversal starting at the given index.
 *
 * @param startIndex the index from which to begin the traversal
 * @return an iterator that performs a breadth first traversal
 */
 public Iterator<T> iteratorBFS(int startIndex)
 {
 Integer x;
 QueueADT<Integer> traversalQueue = new LinkedQueue<Integer>();
 UnorderedListADT<T> resultList = new ArrayUnorderedList<T>();

 if (!indexIsValid(startIndex))
 return resultList.iterator();

 boolean[] visited = new boolean[numVertices];
 for (int i = 0; i < numVertices; i++)
 visited[i] = false;

 traversalQueue.enqueue(new Integer(startIndex));
 visited[startIndex] = true;

 while (!traversalQueue.isEmpty())
 {
 x = traversalQueue.dequeue();
 resultList.addToRear(vertices[x.intValue()]);

KEY CONCEPT
The only difference between a
depth-first traversal of a graph and
a breadth-first traversal is that the
depth-first traversal uses a stack
instead of a queue to manage the
traversal.

VideoNote
Illustration of depth-
first and breadth-first
traversals of a graph

M24_LEWI5976_05_SE_C24.indd 855 08/02/19 3:15 AM

856 CHAPTER 24 Graphs

 //Find all vertices adjacent to x that have not been visited
 // and queue them up

 for (int i = 0; i < numVertices; i++)
 {
 if (adjMatrix[x.intValue()][i] && !visited[i])
 {
 traversalQueue.enqueue(new Integer(i));
 visited[i] = true;
 }
 }
 }
 return new GraphIterator(resultList.iterator());
 }

 /**
 * Returns an iterator that performs a depth first traversal
 * starting at the given index.
 *
 * @param startIndex the index from which to begin the traversal
 * @return an iterator that performs a depth first traversal
 */
 public Iterator<T> iteratorDFS(int startIndex)
 {
 Integer x;
 boolean found;
 StackADT<Integer> traversalStack = new LinkedStack<Integer>();
 UnorderedListADT<T> resultList = new ArrayUnorderedList<T>();
 boolean[] visited = new boolean[numVertices];

 if (!indexIsValid(startIndex))
 return resultList.iterator();

 for (int i = 0; i < numVertices; i++)
 visited[i] = false;

 traversalStack.push(new Integer(startIndex));
 resultList.addToRear(vertices[startIndex]);
 visited[startIndex] = true;

 while (!traversalStack.isEmpty())
 {
 x = traversalStack.peek();
 found = false;

 //Find a vertex adjacent to x that has not been visited
 // and push it on the stack

M24_LEWI5976_05_SE_C24.indd 856 08/02/19 3:15 AM

 24.4 Common Graph Algorithms 857

Let’s look at an example. Figure 24.7 shows a sample undirected graph where
each vertex is labeled with an integer. For a breadth-first traversal starting from
vertex 9, we do the following:

1. Add 9 to the traversal-queue and mark it as visited.

2. Dequeue 9 from the traversal-queue.

3. Add 9 to the result-list.

4. Add 6, 7, and 8 to the traversal-queue, marking each of them as visited.

5. Dequeue 6 from the traversal-queue.

6. Add 6 to the result-list.

 for (int i = 0; (i < numVertices) && !found; i++)
 {
 if (adjMatrix[x.intValue()][i] && !visited[i])
 {
 traversalStack.push(new Integer(i));
 resultList.addToRear(vertices[i]);
 visited[i] = true;
 found = true;
 }
 }
 if (!found && !traversalStack.isEmpty())
 traversalStack.pop();
 }
 return new GraphIterator(resultList.iterator());
 }

4

1

3

6

2

5

7

9

8

FIGURE 24.7 A traversal example

M24_LEWI5976_05_SE_C24.indd 857 08/02/19 3:15 AM

858 CHAPTER 24 Graphs

7. Add 3 and 4 to the traversal-queue, marking them both as visited.

8. Dequeue 7 from the traversal-queue and add it to the result-list.

9. Add 5 to the traversal-queue, marking it as visited.

10. Dequeue 8 from the traversal-queue and add it to the result-list. (We
do not add any new vertices to the traversal-queue because there are no
neighbors of 8 that have not already been visited.)

11. Dequeue 3 from the traversal-queue and add it to the result-list.

12. Add 1 to the traversal-queue, marking it as visited.

13. Dequeue 4 from the traversal-queue and add it to the result-list.

14. Add 2 to the traversal-queue, marking it as visited.

15. Dequeue 5 from the traversal-queue and add it to the result-list. (Because
there are no unvisited neighbors, we continue without adding anything to
the traversal-queue.)

16. Dequeue 1 from the traversal-queue and add it to the result-list. (Because
there are no unvisited neighbors, we continue without adding anything to
the traversal-queue.)

17. Dequeue 2 from the traversal-queue and add it to the result-list.

The result-list now contains the breadth-first order starting at vertex 9: 9, 6, 7, 8,
3, 4, 5, 1, and 2. Try tracing a depth-first search on the same graph from Figure 24.7.

Of course, both of these algorithms could be expressed recursively. For ex-
ample, the following algorithm recursively defines a depth-first search:

DepthFirstSearch(node x)
{
 visit(x)
 result-list.addToRear(x)
 for each node y adjacent to x
 if y not visited
 DepthFirstSearch(y)
}

Testing for Connectivity
In our earlier discussion, we defined a graph as connected if for any
two vertices in the graph, there is a path between them. This defini-
tion holds true for both undirected and directed graphs. Given the
algorithm we just discussed, there is a simple solution to the question
of whether a graph is connected: The graph is connected if and only
if for each vertex v in a graph containing n vertices, the size of the
result of a breadth-first traversal starting at v is n.

KEY CONCEPT
A graph is connected if and only if the
number of vertices in the breadth-first
traversal is the same as the number of
vertices in the graph regardless of the
starting vertex.

M24_LEWI5976_05_SE_C24.indd 858 08/02/19 3:15 AM

 24.4 Common Graph Algorithms 859

Let’s look at the examples of undirected graphs in Figure 24.8. We stated ear-
lier that the graph on the left is connected and that the graph on the right is not.
Let’s confirm that by following our algorithm. Figure 24.9 shows the breadth-first
traversals for the graph on the left using each of the vertices as a starting point.
As you can see, all of the traversals yield n = 4 vertices, so the graph is connected.
Figure 24.10 shows the breadth-first traversals for the graph on the right using
each of the vertices as a starting point. Not only does none of the traversals con-
tain n = 4 vertices, but the one starting at vertex D has only the one vertex. Thus
the graph is not connected.

A B

D C

A B

D C

FIGURE 24.8 Connectivity in an undirected graph

Breadth-First
Traversal

A A, B, C, D

B B, A, D, C

C C, B, A, D

D D, B, A, C

Starting
Vertex

FIGURE 24.9 Breadth-first traversal for a connected undirected graph

Breadth-First
Traversal

A A, B, C

B B, A, C

C C, B, A

D D

Starting
Vertex

FIGURE 24.10 Breadth-first traversal for an unconnected undirected graph

M24_LEWI5976_05_SE_C24.indd 859 08/02/19 3:15 AM

860 CHAPTER 24 Graphs

Minimum Spanning Trees
A spanning tree is a tree that includes all of the vertices of a graph
and some, but possibly not all, of the edges. Because trees are also
graphs, for some graphs the graph itself will be a spanning tree,
and thus the only spanning tree for that graph will include all of
the edges. Figure 24.11 shows a spanning tree for our graph from
Figure 24.7.

One interesting application of spanning trees is to find a minimum
spanning tree for a weighted graph. A minimum spanning tree is a
spanning tree where the sum of the weights of the edges is less than
or equal to the sum of the weights for any other spanning tree for the
same graph.

The algorithm for developing a minimum spanning tree was
 developed by Prim (1957) and is quite elegant. As we discussed earlier, each edge is
represented by a triple that includes the starting vertex, the ending vertex, and the
weight. We then pick an arbitrary starting vertex (it does not matter which one)
and add it to our minimum spanning tree (MST). Next we add all of the edges that
include our starting vertex to a minheap ordered by weight. Keep in mind that if
we are dealing with a directed network, we will add only edges that start at the
given vertex.

Next we remove the minimum edge from the minheap and add the edge and
the new vertex to our MST. Next we add to our minheap all of the edges that in-
clude this new vertex and whose other vertex is not already in our MST. We con-
tinue this process until either our MST includes all of the vertices in our original
graph or the minheap is empty. Figure 24.12 shows a weighted network and its
associated minimum spanning tree. The getMST method illustrates this algorithm.

4

1

3

6

2

5

7

9

8

FIGURE 24.11 A spanning tree

KEY CONCEPT
A minimum spanning tree is a
spanning tree where the sum of the
weights of the edges is less than or
equal to the sum of the weights for
any other spanning tree for the same
graph.

KEY CONCEPT
A spanning tree is a tree that includes
all of the vertices of a graph and some,
but possibly not all, of the edges.

M24_LEWI5976_05_SE_C24.indd 860 08/02/19 3:15 AM

 24.4 Common Graph Algorithms 861

4

1

3

2

3

12

8
6

11

1

5

4

1

3

2

3 8
6

1

Network Minimum Spanning Tree

5

FIGURE 24.12 A network and its minimum spanning tree

 /**
 * Returns a minimum spanning tree of the network.
 *
 * @return a minimum spanning tree of the network
 */
 public Network mstNetwork()
 {
 int x, y;
 int index;
 double weight;
 int[] edge = new int[2];
 HeapADT<Double> minHeap = new LinkedHeap<Double>();
 Network<T> resultGraph = new Network<T>();

 if (isEmpty() || !isConnected())
 return resultGraph;

 resultGraph.adjMatrix = new double[numVertices][numVertices];
 for (int i = 0; i < numVertices; i++)
 for (int j = 0; j < numVertices; j++)
 resultGraph.adjMatrix[i][j] = Double.POSITIVE_INFINITY;
 resultGraph.vertices = (T[])(new Object[numVertices]);

 boolean[] visited = new boolean[numVertices];
 for (int i = 0; i < numVertices; i++)
 visited[i] = false;

 edge[0] = 0;
 resultGraph.vertices[0] = this.vertices[0];
 resultGraph.numVertices++;
 visited[0] = true;

M24_LEWI5976_05_SE_C24.indd 861 08/02/19 3:15 AM

862 CHAPTER 24 Graphs

 // Add all edges, which are adjacent to the starting vertex,
 // to the heap

 for (int i = 0; i < numVertices; i++)
 minHeap.addElement(new Double(adjMatrix[0][i]));

 while ((resultGraph.size() < this.size()) && !minHeap.isEmpty())
 {

 // Get the edge with the smallest weight that has exactly
 // one vertex already in the resultGraph

 do
 {
 weight = (minHeap.removeMin()).doubleValue();
 edge = getEdgeWithWeightOf(weight, visited);
 } while (!indexIsValid(edge[0]) || !indexIsValid(edge[1]));

 x = edge[0];
 y = edge[1];
 if (!visited[x])
 index = x;
 else
 index = y;

 // Add the new edge and vertex to the resultGraph

 resultGraph.vertices[index] = this.vertices[index];
 visited[index] = true;
 resultGraph.numVertices++;

 resultGraph.adjMatrix[x][y] = this.adjMatrix[x][y];
 resultGraph.adjMatrix[y][x] = this.adjMatrix[y][x];

 // Add all edges, that are adjacent to the newly added vertex,
 // to the heap

 for (int i = 0; i < numVertices; i++)
 {
 if (!visited[i] && (this.adjMatrix[i][index] <
 Double.POSITIVE_INFINITY))
 {
 edge[0] = index;
 edge[1] = i;
 minHeap.addElement(new Double(adjMatrix[index][i]));
 }
 }
 }
 return resultGraph;
 }

M24_LEWI5976_05_SE_C24.indd 862 08/02/19 3:15 AM

 24.5 Strategies for Implementing Graphs 863

Determining the Shortest Path
There are two possibilities for determining the “shortest” path in a graph. The
first, and perhaps simplest, possibility is to determine the literal shortest path be-
tween a starting vertex and a target vertex—that is, the least number of edges
between the two vertices. This turns out to be a simple variation of our earlier
breadth-first traversal algorithm.

To convert this algorithm to find the shortest path, we simply store two addi-
tional pieces of information for each vertex during our traversal: the path length
from the starting vertex to this vertex, and the vertex that is the predecessor of
this vertex in that path. Then we modify our loop to terminate when we reach our
target vertex. The path length for the shortest path is simply the path length to the
predecessor of the target +1, and if we wish to output the vertices along the short-
est path, we can simply backtrack along the chain of predecessors.

The second possibility for determining the shortest path is to look for the
cheapest path in a weighted graph. Dijkstra (1959) developed an algorithm for
this possibility that is similar to our previous algorithm. However, instead of
using a queue of vertices that causes us to progress through the graph in the order
in which we encounter vertices, we use a minheap or a priority queue storing ver-
tex and weight pairs based on total weight (the sum of the weights from the start-
ing vertex to this vertex) so that we always traverse through the graph following
the cheapest path first. For each vertex, we must store the label of the vertex, the
weight of the cheapest path (thus far) to that vertex from our starting point, and
the predecessor of that vertex along that path. On the minheap, we will store
vertex and weight pairs for each possible path that we have encountered but not
yet traversed. As we remove a (vertex, weight) pair from the minheap, if we en-
counter a vertex with a weight less than the one already stored with the vertex,
we update the cost.

24.5 Strategies for Implementing Graphs

Let us begin our discussion of implementation strategies by examining what op-
erations will need to be available for a graph. Of course, we will need to be able to
add vertices and edges to the graph and to remove them from it. There will need
to be traversals (perhaps breadth-first and depth-first) beginning with a particular
vertex, and these might be implemented as iterators, as we did for binary trees.
Other operations like size, isEmpty, toString, and find will be useful as well.
In addition to these, operations to determine the shortest path from a particular
vertex to a particular target vertex, to determine the adjacency of two vertices, to
construct a minimum spanning tree, and to test for connectivity will all probably
need to be implemented.

M24_LEWI5976_05_SE_C24.indd 863 08/02/19 3:15 AM

864 CHAPTER 24 Graphs

Whatever storage mechanism we use for vertices must allow us to mark vertices
as visited during traversals and other algorithms. This can be accomplished by
simply adding a Boolean variable to the class representing the vertices.

Adjacency Lists
Because trees are graphs, perhaps the best introduction to how we might imple-
ment graphs is to consider the discussions and examples that we have already seen
concerning the implementation of trees. One might immediately think of using a
set of nodes where each node contains an element and n-1 links to other nodes.
When we use this strategy with trees, the number of connections from any given
node is limited by the order of the tree (e.g., a maximum of two directed edges
starting at any particular node in a binary tree). Because of this limitation, we can
specify, for example, that a binary node has a left and a right child pointer. Even if
the binary node is a leaf, the pointer still exists. It is simply set to null.

In the case of a graph node, because each node could have up to n - 1 edges
connecting it to other nodes, it would be better to use a dynamic structure such
as a linked list to store the edges within each node. This list is called an adjacency
list. In the case of a network or a weighted graph, each edge would be stored as
a triple including the weight. In the case of an undirected graph, an edge (A, B)
would appear in the adjacency list of both vertex A and vertex B.

Adjacency Matrices
Keep in mind that we must somehow efficiently (in terms of both space and access
time) store both vertices and edges. Because vertices are just elements, we can use any
of our collections to store the vertices. In fact, we often talk about a “set of vertices,”
the term set implying an implementation strategy. However, another solution for
storing edges is motivated by our use of array implementations of trees, but instead
of using a one-dimensional array, we will use a two-dimensional array that we call an
adjacency matrix. In an adjacency matrix, each position of the two-dimensional array
represents an intersection between two vertices in the graph. Each of these intersec-
tions is represented by a Boolean value indicating whether or not the two vertices are
connected. Figure 24.13 shows the undirected graph that we began with at the begin-
ning of this chapter. Figure 24.14 shows the adjacency matrix for this graph.

For any position (row, column) in the matrix, that position is true if and only
if the edge (Vrow, Vcolumn) is in the graph. Because edges in an undirected graph are
bi-directional, if (A, B) is an edge in the graph, then (B, A) is also in the graph.

Notice that this matrix is symmetrical—that is, each side of the diagonal is
a mirror image of the other. This is because we are representing an undirected
graph. For undirected graphs, it may not be necessary to represent the entire ma-
trix; one side or the other of the diagonal may be enough.

M24_LEWI5976_05_SE_C24.indd 864 08/02/19 3:15 AM

 24.6 Implementing Undirected Graphs with an Adjacency Matrix 865

However, for directed graphs, because all of the edges are directional, the result
can be quite different. Figure 24.15 shows a directed graph, and Figure 24.16
shows the adjacency matrix for this graph.

Adjacency matrices may also be used with networks or weighted graphs by sim-
ply storing an object at each position of the matrix to represent the weight of the
edge. Positions in the matrix where edges do not exist would simply be set to null.

24.6 Implementing Undirected Graphs
with an Adjacency Matrix

Like the other collections we have discussed, the first step in implementing a graph
is to determine its interface. Listing 24.1 illustrates the GraphADT interface. Listing
24.2 illustrates the NetworkADT interface that extends the GraphADT interface.
Note that our interfaces include methods to add and remove vertices, methods to
add and remove edges, iterators for both breadth-first and depth-first traversals,
methods to determine the shortest path between two vertices and to determine
whether the graph is connected, and our usual collection of methods to determine
the size of the collection, to determine whether it is empty, and to return a string
representation of it.

A B C D

A F T T F

B F F T T

C F F F F

D F F F F

FIGURE 24.16 The adjacency matrix for the directed graph shown
in Figure 24.15

A B

D C

FIGURE 24.15 A
directed graph

A B C D

A F T T F

B T F T T

C T T F F

D F T F F

FIGURE 24.14 An adjacency matrix for an undirected graph

A B

D C

FIGURE 24.13 An
undirected graph

M24_LEWI5976_05_SE_C24.indd 865 08/02/19 3:15 AM

866 CHAPTER 24 Graphs

L I S T I N G 2 4 . 1

package jsjf;
import java.util.Iterator;

/**
 * GraphADT defines the interface to a graph data structure.
 *
 * @author Java Foundations
 * @version 4.0
 */
public interface GraphADT<T>
{
 /**
 * Adds a vertex to this graph, associating object with vertex.
 *
 * @param vertex the vertex to be added to this graph
 */
 public void addVertex(T vertex);

 /**
 * Removes a single vertex with the given value from this graph.
 *
 * @param vertex the vertex to be removed from this graph
 */
 public void removeVertex(T vertex);

 /**
 * Inserts an edge between two vertices of this graph.
 *
 * @param vertex1 the first vertex
 * @param vertex2 the second vertex
 */
 public void addEdge(T vertex1, T vertex2);

 /**
 * Removes an edge between two vertices of this graph.
 *
 * @param vertex1 the first vertex
 * @param vertex2 the second vertex
 */
 public void removeEdge(T vertex1, T vertex2);

 /**
 * Returns a breadth first iterator starting with the given vertex.
 *

M24_LEWI5976_05_SE_C24.indd 866 08/02/19 3:15 AM

 24.6 Implementing Undirected Graphs with an Adjacency Matrix 867

 * @param startVertex the starting vertex
 * @return a breadth first iterator beginning at the given vertex
 */
 public Iterator iteratorBFS(T startVertex);

 /**
 * Returns a depth first iterator starting with the given vertex.
 *
 * @param startVertex the starting vertex
 * @return a depth first iterator starting at the given vertex
 */
 public Iterator iteratorDFS(T startVertex);

 /**
 * Returns an iterator that contains the shortest path between
 * the two vertices.
 *
 * @param startVertex the starting vertex
 * @param targetVertex the ending vertex
 * @return an iterator that contains the shortest path
 * between the two vertices
 */
 public Iterator iteratorShortestPath(T startVertex, T targetVertex);

 /**
 * Returns true if this graph is empty, false otherwise.
 *
 * @return true if this graph is empty
 */
 public boolean isEmpty();

 /**
 * Returns true if this graph is connected, false otherwise.
 *
 * @return true if this graph is connected
 */
 public boolean isConnected();

 /**
 * Returns the number of vertices in this graph.
 *
 * @return the integer number of vertices in this graph
 */
 public int size();

L I S T I N G 2 4 . 1 continued

M24_LEWI5976_05_SE_C24.indd 867 08/02/19 3:15 AM

868 CHAPTER 24 Graphs

 /**
 * Returns a string representation of the adjacency matrix.
 *
 * @return a string representation of the adjacency matrix
 */
 public String toString();
}

L I S T I N G 2 4 . 1 continued

L I S T I N G 2 4 . 2

package jsjf;

import java.util.Iterator;

/**
 * NetworkADT defines the interface to a network.
 *
 * @author Java Foundations
 * @version 4.0
 */
public interface NetworkADT<T> extends GraphADT<T>
{
 /**
 * Inserts an edge between two vertices of this graph.
 *
 * @param vertex1 the first vertex
 * @param vertex2 the second vertex
 * @param weight the weight
 */
 public void addEdge(T vertex1, T vertex2, double weight);

 /**
 * Returns the weight of the shortest path in this network.
 *
 * @param vertex1 the first vertex
 * @param vertex2 the second vertex
 * @return the weight of the shortest path in this network
 */
 public double shortestPathWeight(T vertex1, T vertex2);
}

M24_LEWI5976_05_SE_C24.indd 868 08/02/19 3:15 AM

 24.6 Implementing Undirected Graphs with an Adjacency Matrix 869

Of course, this interface could be implemented a variety of ways, but we will
focus our discussion on an adjacency matrix implementation. The other imple-
mentations of undirected graphs and networks, as well as the implementations of
directed graphs and networks, are left as programming projects. The header and
instance data for our implementation are presented to provide context. Note that
the adjacency matrix is represented by a two-dimensional Boolean array.

package jsjf;

import jsjf.exceptions.*;
import java.util.*;

/**
 * Graph represents an adjacency matrix implementation of a graph.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class Graph<T> implements GraphADT<T>
{
 protected final int DEFAULT_CAPACITY = 5;
 protected int numVertices; // number of vertices in the graph
 protected boolean[][] adjMatrix; // adjacency matrix
 protected T[] vertices; // values of vertices
 protected int modCount;

 /**
 * Creates an empty graph.
 */
 public Graph()
 {
 numVertices = 0;
 this.adjMatrix = new boolean[DEFAULT_CAPACITY][DEFAULT_CAPACITY];
 this.vertices = (T[])(new Object[DEFAULT_CAPACITY]);
 }

Our constructor simply initializes the number of vertices to zero, constructs the
adjacency matrix, and sets up an array of generic objects (T[]) to represent the
vertices.

M24_LEWI5976_05_SE_C24.indd 869 08/02/19 3:15 AM

870 CHAPTER 24 Graphs

The addEdge Method
Once we have established our list of vertices and our adjacency matrix, adding an
edge is simply a matter of setting the appropriate locations in the adjacency ma-
trix to true. Our addEdge method uses the getIndex method to locate the proper
indices and calls a different version of the addEdge method to make the assign-
ments if the indices are valid.

 /**
 * Inserts an edge between two vertices of the graph.
 *
 * @param vertex1 the first vertex
 * @param vertex2 the second vertex
 */
 public void addEdge(T vertex1, T vertex2)
 {
 addEdge(getIndex(vertex1), getIndex(vertex2));
 }

/**
 * Inserts an edge between two vertices of the graph.
 *
 * @param index1 the first index
 * @param index2 the second index
 */
public void addEdge(int index1, int index2)
{
 if (indexIsValid(index1) && indexIsValid(index2))
 {
 adjMatrix[index1][index2] = true;
 adjMatrix[index2][index1] = true;
 modCount++;
 }
}

The addVertex Method
Adding a vertex to the graph involves adding the vertex in the next available
position in the array and setting all of the appropriate locations in the adjacency
matrix to false.

M24_LEWI5976_05_SE_C24.indd 870 08/02/19 3:15 AM

 24.6 Implementing Undirected Graphs with an Adjacency Matrix 871

The expandCapacity Method
The expandCapacity method for our adjacency matrix implementation of a
graph is more interesting than the similar method in other array implementations.
It is no longer just a case of expanding one array and copying the contents. Keep
in mind that for our graph, we must not only expand the array of vertices and
copy the existing vertices into the new array; we must also expand the capacity of
the adjacency list and copy the old contents into the new list.

/**
 * Adds a vertex to the graph, expanding the capacity of the graph
 * if necessary. It also associates an object with the vertex.
 *
 * @param vertex the vertex to add to the graph
 */
public void addVertex(T vertex)
{
 if ((numVertices + 1) == adjMatrix.length)
 expandCapacity();

 vertices[numVertices] = vertex;
 for (int i = 0; i < numVertices; i++)
 {
 adjMatrix[numVertices][i] = false;
 adjMatrix[i][numVertices] = false;
 }
 numVertices++;
 modCount++;
}

/**
 * Creates new arrays to store the contents of the graph with
 * twice the capacity.
 */
protected void expandCapacity()
{
 T[] largerVertices = (T[])(new Object[vertices.length*2]);
 boolean[][] largerAdjMatrix =
 new boolean[vertices.length*2][vertices.length*2];

 for (int i = 0; i < numVertices; i++)
 {
 for (int j = 0; j < numVertices; j++)
 {

M24_LEWI5976_05_SE_C24.indd 871 08/02/19 3:15 AM

872 CHAPTER 24 Graphs

Other Methods
The remaining methods for our graph implementation are left as programming
projects, as is the implementation of a network.

 largerAdjMatrix[i][j] = adjMatrix[i][j];
 }
 largerVertices[i] = vertices[i];
 }
 vertices = largerVertices;
 adjMatrix = largerAdjMatrix;
}

M24_LEWI5976_05_SE_C24.indd 872 08/02/19 3:15 AM

Summary of Key Concepts

■■ An undirected graph is a graph where the pairings that represent the edges
are unordered.

■■ Two vertices in a graph are adjacent if there is an edge connecting them.

■■ An undirected graph is considered complete if it has the maximum number
of edges connecting vertices.

■■ A path is a sequence of edges that connects two vertices in a graph.

■■ A cycle is a path in which the first and last vertices are the same and none of
the edges is repeated.

■■ An undirected tree is a connected, acyclic, undirected graph with one ele-
ment designated as the root.

■■ A directed graph, sometimes referred as a digraph, is a graph where the
edges are ordered pairs of vertices.

■■ A path in a directed graph is a sequence of directed edges that connects two
vertices in the graph.

■■ A network, or a weighted graph, is a graph with weights or costs associated
with each edge.

■■ The only difference between a depth-first traversal of a graph and a breadth-
first traversal is that the depth-first traversal uses a stack instead of a queue
to manage the traversal.

■■ A graph is connected if and only if the number of vertices in the breadth-first
traversal is the same as the number of vertices in the graph, regardless of the
starting vertex.

■■ A spanning tree is a tree that includes all of the vertices of a graph and some,
but possibly not all, of the edges.

■■ A minimum spanning tree is a spanning tree where the sum of the weights of
the edges is less than or equal to the sum of the weights for any other span-
ning tree for the same graph.

Summary of Terms
acyclic A graph that has no cycles.

adjacency list For any given node in a graph, the list of edges connecting it
to other nodes. In the case of a network, each entry in the list also includes
the weight or cost of the edge.

 Summary of Terms 873

M24_LEWI5976_05_SE_C24.indd 873 08/02/19 3:15 AM

874 CHAPTER 24 Graphs

adjacency matrix A two-dimensional array where each location in the array
represents the intersection between two vertices in the graph. In the case of
an undirected graph, each position in the array is simply a Boolean. In the
case of a weighted graph, the weight of the edge is stored in the array.

adjacent Two vertices are adjacent if there is an edge connecting them.

breadth-first traversal A traversal of a graph that behaves like a level-order
traversal of a tree.

complete An undirected graph is considered complete if it has the maxi-
mum number of edges connecting vertices.

connected An undirected graph is considered connected if for any two verti-
ces in the graph, there is a path between them.

cycle A path in which the first and last vertices are the same and none of
the edges is repeated.

directed graph (digraph) A graph where the edges are ordered pairs of
vertices.

depth-first traversal A traversal of a graph that behaves like a preorder
 traversal of a tree.

edges Connections between nodes in a graph.

graph A graph is made up of nodes and the connections between those nodes.

minimum spanning tree A spanning tree for a network where the sum of the
weights of the edges is less than or equal to the sum of the weights for any
other spanning tree.

network (weighted graph) A graph with weights or costs associated with
each edge.

path A path is a sequence of edges that connects two vertices in a graph.

path length The number of edges in the path (or the number of vertices – 1).

self-loop An edge of a graph that connects a vertex to itself.

spanning tree A tree that includes all of the vertices of a graph and some,
but possibly not all, of the edges.

topological order The order of vertices for an acyclic directed graph where
A precedes B if an edge exists from A to B.

undirected graph A graph where the pairings that represent the edges are
unordered.

vertices Nodes within a graph.

M24_LEWI5976_05_SE_C24.indd 874 08/02/19 3:15 AM

 Programming Projects 875

Self-Review Questions
SR 24.1 What is the difference between a graph and a tree?

SR 24.2 What is an undirected graph?

SR 24.3 What is a directed graph?

SR 24.4 What does it mean to say that a graph is complete?

SR 24.5 What is the maximum number of edges for an undirected graph?
What is the maximum number of edges for a directed graph?

SR 24.6 Give the definition of path and the definition of a cycle.

SR 24.7 What is the difference between a network and a graph?

SR 24.8 What is a spanning tree? What is a minimum spanning tree?

Exercises
EX 24.1 Draw the undirected graph that is represented as follows:

Vertices: 1, 2, 3, 4, 5, 6, 7

Edges: (1, 2), (1, 4), (2, 3), (2, 4), (3, 7), (4, 7),
(4, 6), (5, 6), (5, 7), (6, 7)

EX 24.2 Is the graph from Exercise 24.1 connected? Is it complete?

EX 24.3 List all of the cycles in the graph from Exercise 24.1.

EX 24.4 Draw a spanning tree for the graph from Exercise 24.1.

EX 24.5 Using the data in Exercise 24.1, draw the resulting directed graph.

EX 24.6 Is the directed graph of Exercise 24.5 connected? Is it complete?

EX 24.7 List all of the cycles in the graph of Exercise 24.5.

EX 24.8 Draw a spanning tree for the graph of Exercise 24.5.

EX 24.9 Consider the weighted graph shown in Figure 24.10. List all of
the possible paths from vertex 2 to vertex 3 along with the total
weight of each path.

Programming Projects
PP 24.1 Implement an undirected graph using an adjacency list. Keep in

mind that you must store both vertices and edges. Your imple-
mentation must implement the GraphADT interface.

M24_LEWI5976_05_SE_C24.indd 875 08/02/19 3:15 AM

876 CHAPTER 24 Graphs

PP 24.2 Repeat Programming Project 24.1 for a directed graph.

PP 24.3 Complete the implementation of a graph using an adjacency
 matrix that was presented in this chapter.

PP 24.4 Extend the adjacency matrix implementation presented in this
chapter to create an implementation of a weighted graph or
network.

PP 24.5 Extend the adjacency matrix implementation presented in this
chapter to create a directed graph.

PP 24.6 Extend your implementation from Programming Project 24.1 to
create a weighted, undirected graph.

PP 24.7 Create a limited airline scheduling system that will allow a user
to enter city-to-city connections and their prices. Your system
should then allow a user to enter two cities and should return the
shortest path and the cheapest path between the two cities. Your
system should report if there is no connection between two cities.
Assume an undirected network.

PP 24.8 Repeat Programming Project 24.7 assuming a directed network.

PP 24.9 Create a simple graphical application that will produce a textual
representation of the shortest path and the cheapest path between
two vertices in a network.

PP 24.10 Create a network routing system that, given the point-to-point
connections in the network and the costs of utilizing each, will
produce cheapest-path connections from each point to each point
in the network and will report any disconnected locations.

Answers to Self-Review Questions
SRA 24.1 A graph is the more general concept without the restriction that

each node have one and only one parent except for the root,
which does not have a parent. In the case of a graph, there is no
root, and each vertex can be connected to up to n - 1 other
vertices.

SRA 24.2 An undirected graph is a graph where the pairings that represent
the edges are unordered.

SRA 24.3 A directed graph, sometimes referred as a digraph, is a graph
where the edges are ordered pairs of vertices.

SRA 24.4 A graph is considered complete if it has the maximum number of
edges connecting vertices.

M24_LEWI5976_05_SE_C24.indd 876 08/02/19 3:15 AM

 References 877

SRA 24.5 The maximum number of edges for an undirected graph is n
(n - 1)/2. For a directed graph, it is n(n - 1).

SRA 24.6 A path is a sequence of edges that connects two vertices in a
graph. A cycle is a path in which the first and last vertices are the
same and none of the edges is repeated.

SRA 24.7 A network is a graph, either directed or undirected, with weights
or costs associated with each edge.

SRA 24.8 A spanning tree is a tree that includes all of the vertices of a graph
and some, but possibly not all, of the edges. A minimum spanning
tree is a spanning tree where the sum of the weights of the edges
is less than or equal to the sum of the weights for any other
spanning tree for the same graph.

References
Collins, W. J. Data Structures: An Object-Oriented Approach. Reading,

Mass.: Addison-Wesley, 1992.

Dijkstra, E. W. “A Note on Two Problems in Connection with Graphs.”
 Numerische Mathematik 1 (1959): 269–271.

Drosdek, A. Data Structures and Algorithms in Java. Pacific Grove, Cal.:
Brooks/Cole, 2001.

Prim, R. C. “Shortest Connection Networks and Some Generalizations.” Bell
System Technical Journal 36 (1957): 1389–1401.

M24_LEWI5976_05_SE_C24.indd 877 08/02/19 3:15 AM

879

25
This chapter provides an introduction to databases

and interacting with databases using Java. A database is a

large repository of data organized for efficient storage and

searching. Discussing databases and the way we interact

with them through a Java program is a natural extension

of the concept of collections that has been a major theme

throughout this book.

C H A P T E R O B J E C T I V E S
■■ Understand the basic concept of a database as it relates to data
storage.

■■ Explain the concepts behind relational databases.

■■ Examine how Java programs can connect to databases for the
purposes of creating, reading, updating, and deleting data.

■■ Briefly introduce the syntax of several different types of SQL
statements.

Databases 25

M25_LEWI5976_05_SE_C25.indd 879 08/02/19 3:17 AM

880 CHAPTER 25 Databases

25.1 Introduction to Databases

A database is a potentially large repository of data, organized so that the data can
be quickly stored, searched, and organized in various ways. A database manage-
ment system is software that provides the ability to quickly search or query the

data contained within the database and generally perform four pri-
mary operations on the data: create, read, update, and delete (also
known as CRUD). Applications such as a university’s class schedul-
ing system and an airline reservation system use a database to orga-
nize and manage large amounts of data.

There are many different types of databases, each with its own
strengths and weaknesses. For example, there are object-oriented databases, flat-
file databases, and relational databases. A comprehensive discussion of the vari-
ous types of databases is beyond the scope of this text, but we will focus on the
most commonly used type of database in existence today—a relational database.
A relational database organizes its basic information into one or more tables.
And, perhaps more important, the relationships among various data elements are
also stored in tables.

A simple example of a relational database (or a database that uses the rela-
tional model) appears in the following two tables, which we shall call Person and
Location. Let’s look at each more closely. The Person table contains a series of
rows, which are called records. Each record in the table contains the information
about one person in our database. Each person’s record provides a number of
fields, including that person’s first name, her or his last name, and two integer val-
ues: personID and locationID. The personID is a unique integer value (that is,
unique within the Person table) used to identify a particular record. For example,
Peter’s personalID is 1. John’s personalID is 2. Each record also contains a
locationID. This value is used to find (or “look up”) a particular matching re-
cord in the Location table; hence the name locationID that contains the table
name as part of the field name.

KEY CONCEPT
Databases are software applications
used to provide data to other
programs.

Person
personID firstName lastName locationID

0 Matthew Williamson 0

1 Peter DePasquale 0

2 John Lewis 1

3 Jason Smithson 2

Location
locationID city state

0 Portsmouth RI

1 Blacksburg VA

2 Maple Glen PA

3 San Jose CA

M25_LEWI5976_05_SE_C25.indd 880 08/02/19 3:17 AM

 25.1 Introduction to Databases 881

Thus, by using the locationID value in Peter’s record in the Person table,
and finding that value in the Location table, we can determine that Peter lives in
Portsmouth, RI. Matthew Williamson lives there as well. But what do these tables
really get us? There are several answers to that question. First of all, we pointed
out that both Matt and Peter live in the same town in the same state. If we didn’t
have a Location table in use, the city and state strings would probably be a part
of the Person table, so we would be using more space in our database to replicate
the same values over and over. By using the Location table, we can conserve space
by avoiding data replication.

There’s another advantage to the use of tables in this manner. We can eas-
ily query our database (ask it a question) to determine which people live in
Portsmouth, RI. Each record of each person that we have stored in the Person
table will contain the value 0 in the locationID field. There’s actually a more
complex way of joining the tables to determine the answer to our
query, but that’s really outside the scope of this text.

Our query can be quickly executed because we are using the
strength of the relational database model. If we were replicating
our data (“Portsmouth”, “RI”) over and over in several records of
the Person table, searching for all residents of Portsmouth would
be rather inefficient and time-consuming, because we’d be searching each record
looking for two string values.

Tables in our database are related by the use of the locationID. A locationID
value helps to relate a specific person record in the Person table to a specific re-
cord in the Location table. Additionally, as you may have noted, each record in
the Location table has its own unique identifier (locationID). The use of these
identifiers and the way we utilize them between tables enable us to
establish the relationships between the records in our tables.

For the purposes of this discussion, we will be using the open
source database MySQL (see http://www.mysql.com to obtain
a copy). There are other databases that we could have chosen,
including Oracle, SQLServer, Access, and PostgreSQL. Some of these databases
are open source and freely available; others can be purchased for a fee.

Before we can interact with a database in a Java program, we must first es-
tablish a connection to it. To do that, we’ll use the Java Database Connectivity
(JDBC) API. The JDBC API provides us the classes and methods required to man-
age our data from within the Java program. Fortunately, the JDBC API has been
a component of the Java Development Environment (JDK) since JDK 1.1, so we
won’t have to download any additional software to obtain the API functionality.
However, to connect to our database, we will need a database-specific driver, dis-
cussed in the next section.

KEY CONCEPT
The JDBC API is used to establish a
connection to a database.

KEY CONCEPT
A relational database creates relation-
ships between records in different
tables by using unique identifiers.

M25_LEWI5976_05_SE_C25.indd 881 08/02/19 3:17 AM

882 CHAPTER 25 Databases

25.2 Establishing a Connection to a Database

In order to establish communications to our database, we’ll need a specialized
piece of software that communicates our database requests to the database
application (known as the server, which generally resides on another machine).
This software is known as a driver. The response from the database is communi-
cated back to our program via the driver, as well.

Obtaining a Database Driver
There are over two hundred JDBC drivers available for various databases.
To find one for your system, check Java’s JDBC Data Access API web page at
developers.sun.com/product/jdbc/drivers. We’ll be using the MySQL connector
driver (www.mysql.com/products/connector/) to provide our connection to a data-
base hosted on another computer. We downloaded our connector in jar file form
from the MySQL website and placed in it a directed named “connector.”

Once installed, we need only refer to its location via the CLASSPATH environ-
ment variable (during compilation and execution). Depending on your configura-
tion, you can save these values in a shell configuration or just provide them on the
command line. As we demonstrate the coding steps necessary to create and issue
queries, and obtain and process responses from the server, we’ll also show you
how to include the driver into the CLASSPATH.

In Listing 25.1, we have a simple program that includes the use of several
JDBC-specific classes. The code demonstrates the loading of our JDBC driver,
attempting to establish a connection to our database server, and closing the con-
nection once we have confirmed that the connection was opened.

The program starts by attempting to load our JDBC driver (com.mysql.
jdbc.Driver) from our downloaded jar file. When our driver is loaded, it will
create an instance of itself and register itself with the DriverManager (java.
sql.DriverManager) class.

Next, we attempt to establish a connection to our database through the
DriverManager class. The DriverManager will attempt to select an appropri-
ate driver from among the set of drivers registered with the DriverManager. In
our case, this will be easy; we’re using only one driver for this program, and it
is the only possible driver that can be selected. The call to the getConnection
method of the DriverManager accepts a URL that defines our database instance.
It comprises several components that we must provide, including the hostname
(the name of the machine where our database server is residing), the name of the
database, and the username and password that will provide us access to the se-
lected database.

M25_LEWI5976_05_SE_C25.indd 882 08/02/19 3:17 AM

 25.2 Establishing a Connection to a Database 883

L I S T I N G 2 5 . 1

import java.sql.*;

/**
 * Demonstrates the establishment of a JDBC connector.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class DatabaseConnector
{
 /**
 * Establishes the connection to the database and prints an
 * appropriate confirmation message.
 */
 public static void main (String args[])
 {
 try
 {
 Connection conn = null;

 // Loads the class object for the mysql driver into the DriverManager.

 Class.forName("com.mysql.jdbc.Driver");

 // Attempt to establish a connection to the specified database via the
 // DriverManager

 conn = DriverManager.getConnection("jdbc:mysql://comtor.org/"+
 "javafoundations?user=jf2e&password=hirsch");

 if (conn != null)
 {
 System.out.println("We have connected to our database!");
 conn.close();
 }

 } catch (SQLException ex) {
 System.out.println("SQLException: " + ex.getMessage());
 ex.printStackTrace();
 } catch (Exception ex) {

M25_LEWI5976_05_SE_C25.indd 883 08/02/19 3:17 AM

884 CHAPTER 25 Databases

If all goes well, and there are no problems (such as the database server not run-
ning, or a communications issue between our machine where our Java program
is executing and the host on which the database server is executing), we will be
returned a Connection (java.sql.Connection) object. This object represents a
single connection to our database and will be the conduit for our queries to, and
responses from, the database. Finally, our program checks to determine whether
we did in fact receive a non-null Connection object, and if so, it prints a success
message to the user and then closes the connection to the database.

In order to execute a program called Example1, the CLASSPATH will need
to reflect the location of the driver. It is not necessary for it to do so when we
compile the Example1 program, because we need only the Driver class from
the JDBC jar file at run-time when the program attempts to load and register the
Driver object. Working on the UNIX command line, after successful compila-
tion, we can execute the program with the following command:

$ java -cp .:../connector/mysql-connector-java-5.1.7-bin.jar
Example1

Under Windows, the command will be

java -cp .;..\connector\mysql-connector-java-5.1.7-bin.jar
Example1

The resulting output is

We have connected to our database!

This assumes that the download location of our JDBC jar file is the adjacent con-
nector directory from the current directory. We could have placed our jar file in
the same directory where the source code is located, but we prefer not to mix our
source code and jar files, so they are placed in the connector directory.

We’ll do more with our database in the next section, including creating and
altering tables in our database.

 System.out.println("Exception: " + ex.getMessage());
 ex.printStackTrace();
 }
 }
}

L I S T I N G 2 5 . 1 continued

M25_LEWI5976_05_SE_C25.indd 884 08/02/19 3:17 AM

 25.3 Creating and Altering Database Tables 885

25.3 Creating and Altering Database Tables

In the previous section, we showed how to establish a connection to our database,
check that the connection was successful, and disconnect. Let’s expand on those
abilities and create a new database table.

Create Table
The start of the SQL statement to create a database table is CREATE TABLE

<tablename>. We will also need to specify the name of the table and any fields
that will be present at creation. For example, let’s create a new table
of students. For now, this table will contain an ID value (known as
a key) and the students’ first and last names. To do so, our creation
command will be the following string:

CREATE TABLE Student (student_ID INT UNSIGNED NOT NULL
AUTO_INCREMENT, PRIMARY KEY (student_ID), firstName
varchar(255), lastName varchar(255))

Each field of the table is specified in the comma-separated list in the parentheses
that follow the table name (Student). Our table will initially include the follow-
ing fields:

■■ student_ID—an unsigned integer value, which cannot be null and will
automatically increment each time we add a new student to the table.

■■ firstName—a variable-length character string up to 255 characters in length.

■■ lastName—a variable-length character string up to 255 characters in length.

You may be asking yourself about the PRIMARY KEY field that we skipped men-
tioning. It isn’t really a field but a setting on the table itself that specifies which
field or fields make the record unique among the other records. Because each
student will have a unique identifier, the student_ID field will be sufficient to be
our table’s key. Again, this is a database topic that you really need to study in the
database course, so we will leave it at that for now.

To create the table in our existing code from Listing 25.1, we’ll add the follow-
ing lines immediately after the successful connection message.

Statement stmt = conn.createStatement();
boolean result = stmt.execute("CREATE TABLE Student " +
 " (student_ID INT UNSIGNED NOT NULL AUTO_INCREMENT, " +
 " PRIMARY KEY (student_ID), firstName varchar(255), " +
 " lastName varchar(255))");
System.out.print("\tTable creation result: " + result + "\t");
System.out.println("(false is the expected result)");

KEY CONCEPT
The CREATE TABLE SQL statement is
used to create new database tables.

M25_LEWI5976_05_SE_C25.indd 885 08/02/19 3:17 AM

886 CHAPTER 25 Databases

The Statement class (java.sql.Statement) is an interface class, which
we will use to prepare and execute our SQL statement(s). We can ask our
Connection object to create our Statement object for us. Once we have our
Statement object, we can call its execute method and pass it the SQL query
string (our CREATE TABLE string) for execution by the database. The execute
method returns a TRUE value if there is a ResultSet object (we’ll talk about this
shortly) returned after the call, or returns a false otherwise.

When we execute our code, we anticipate that we will be returned a FALSE
value and the table will be created. In fact, that is what happens (see the out-
put below). However, note that if an attempt to execute the same program
is again made, the program will throw an exception stating that the table al-
ready exists. That’s fine for now. We’ll discuss removal of tables later in this
chapter.

We have connected to our database!
 Table creation result: false (false is the expected result)

Alter Table
So far, so good! Our new database has a new table called Student. Now let’s add a
few fields in our new table. Often the structure of a table will be established when it
is created and will not be changed subsequently, but from time to time the need to
alter an existing table arises. We could drop (delete) the existing table and create a
new one from scratch. But if we do, we’ll lose the data currently stored in the table.
It’s usually preferable to add new fields or remove existing fields (and their data)
from an existing table.

Let’s add age and gpa fields for our students. For the age field,
we can use the smallest unsigned integer field possible (conserv-
ing the most amount of space). This is an unsigned tinyint for
MySQL (be sure to check the datatype listing for your database);
it will range from 0 to 255, sufficient for an age field. We’ll also

need an additional column for our gpa field. Here we will use an unsigned
float that uses three digits total, and two digits for the fractional part.

In order to modify our table and add the missing fields, we need to create a new
Statement object and use the ALTER TABLE <tablename> ADD COLUMN SQL
statement. Following the ADD COLUMN portion of the string, we specify our new
fields in a parenthetical list, separated by commas. Once the string is constructed,
we call the execute method of the Statement object to execute the query. Again
here, we expect a FALSE value to be returned, indicating that no result set is re-
turned to us.

KEY CONCEPT
The ALTER TABLE SQL statement
can be used to modify an existing
database table.

M25_LEWI5976_05_SE_C25.indd 886 08/02/19 3:17 AM

 25.4 Querying the Database 887

Statement stmt2 = conn.createStatement();
result = stmt2.execute("ALTER TABLE Student ADD COLUMN " +
 " (age tinyint UNSIGNED, gpa FLOAT (3,2) unsigned)");

System.out.print("\tTable modification result: " + result + "\t");
System.out.println("(false is the expected result)");

Our output is not surprising:

We have connected to our database!
 Table creation result: false (false is the expected result)
 Table modification result: false (false is the expected result)

Drop Column
Of course, we may also wish to alter a table by dropping a column, rather than add-
ing one or more. To do so, we can use the ALTER TABLE SQL statement and follow
the table name with the DROP COLUMN command. DROP COLUMN is followed by one
or more column names, separated by commas. For example, if we wanted to drop
the firstName column of our Student table, we could use the following statements:

Statement stmt3 = conn.createStatement();
result = stmt3.execute("ALTER TABLE Student DROP COLUMN firstName");

System.out.print("\tTable modification result: " + result + "\t");
System.out.println("(false is the expected result)");

Again, our output is fairly straightforward:

We have connected to our database!
 Table creation result: false (false is the expected result)
 Table modification result: false (false is the expected result)
 Table modification result: false (false is the expected result)

But how do we know this is really modifying the table? What we really want to
be able to do is ask the database to tell us what the structure of our table is at any
point in time. We’ll discuss that in the next section.

25.4 Querying the Database

At this point, we have a single table in our database with no data. One of the
activities we would like to do at this point is query the database regarding the
structure of our table. To do this, we will build another Statement and send it to

M25_LEWI5976_05_SE_C25.indd 887 08/02/19 3:17 AM

888 CHAPTER 25 Databases

the database server for processing. However, the difference here, compared to our
earlier examples, is that we expect to be returned a ResultSet object—an object
that manages a set of records that contains our result.

How to obtain and use a ResultSet is an important piece of the knowledge
we will need to master in order to obtain information from our database. A
ResultSet functions in much the same way a Scanner object does; it provides
a method of accessing and traversing through a set of data (in this case, data
obtained from our database). A default ResultSet object permits moving
through the data from the first object to the last object in the set, and it cannot
be updated. Other variations of the ResultSet object can permit bidirectional
movement and the ability to be updated.

Show Columns
The simplest example we can provide of using a ResultSet is querying the data-
base about the structure of our table. In the following sections of this chapter, we

will use the ResultSet in more complex ways. In the code below,
we form our query and submit it to the server. Apart from the syntax
of the SHOW COLUMNS <tablename> statement, the remainder of the
code is very straightforward and similar to our previous examples.
Note that we are expecting a ResultSet object to be returned from
our execution of the query.

Statement stmt5 = conn.createStatement();
ResultSet rSet = stmt5.executeQuery("SHOW COLUMNS FROM Student");

Once we have our results returned from the query, we can obtain some
information from the ResultSet’s ResultSetMetaData object (which contains
“meta” information about the results returned). For instance, in the next two
lines of code, we use information from the ResultSetMetaData object to pro-
duce output for the user (including the table name and the number of columns
in the result).

ResultSetMetaData rsmd = rSet.getMetaData();
int numColumns = rsmd.getColumnCount();

Our ResultSet is essentially a two-dimensional table that contains columns (our
fields) and rows of data (records in the result). By utilizing the metadata regarding
the number of columns in the ResultSet, we can print out some basic informa-
tion about the structure of our Student table.

String resultString = null;
if (numColumns > 0)

KEY CONCEPT
The SHOW COLUMNS SQL statement
can be used to obtain a list of a table’s
columns and configuration settings.

M25_LEWI5976_05_SE_C25.indd 888 08/02/19 3:17 AM

 25.4 Querying the Database 889

{
 resultString = "Table: Student\n" +

 "===" +
 "===\n\t";
 for (int colNum = 1; colNum <= numColumns; colNum++)
 resultString += rsmd.getColumnLabel(colNum) + '\t';
}
System.out.println(resultString);
System.out.println(
 "===" +
 "===\n\t");

The program will now print out a table of our column headers in the ResultSet,
which is really a list of property names for each field in our table.

We have connected to our database!
 Table creation result: false (false is the expected result)
 Table modification result: false (false is the expected result)
 Table modification result: false (false is the expected result)
Table: Student
===
 Field Type Null Key Default Extra
===

Let’s get the rows of data as well from the ResultSet so that we can see the full
structure of our table. We need to add additional statements to our program that
will iterate through the ResultSet rows and obtain the value of each column as
a string.

We have connected to our database!
 Table creation result: false (false is the expected result)
 Table modification result: false (false is the expected result)
 Table modification result: false (false is the expected result)
Table: Student
===
Field Type Null Key Default Extra
===
student_ID int(10) unsigned NO PRI auto_increment

lastName varchar(255) YES

age tinyint(3) unsigned YES

gpa float(3,2) unsigned YES

It’s not very pretty, but we can now see the basic configuration information
for each field in our table. Each record from the ResultSet contains the field
name, the field (data) type, whether the field can hold a null value, whether the

M25_LEWI5976_05_SE_C25.indd 889 08/02/19 3:17 AM

890 CHAPTER 25 Databases

field is part of a key, the default value for the field (if not provided), and any
extra information.

Let’s turn this printed table into something easier to read. With a little more
work, we could have attempted to output the table structure in a format like the one
shown in the following table. This is left up to you as a string formatting exercise.

Field Type Null Key Default Extra
student_ID int(10) unsigned NO PRI auto_increment

lastName varchar(255) YES

age tinyint(3) unsigned YES

gpa float(3, 2) unsigned YES

We used our Statement object as the vehicle to obtain information from our
database. In this case, the information we sought was the structure of the Student
table. However, we can change our Statement string and query the database
quite easily.

In terms of outputting the results, we’ll do the same iteration through the
ResultSet. However, there’s one problem. Our Student table does not yet have
any data in it. We’ll address that problem in the next section and then show how
to query the table.

25.5 Inserting, Viewing, and Updating Data

A table without data is like a day without sunshine. It’s time to put some real data
into our Student table. Since the studentID field is an auto_increment field (it
will automatically increment by 1 each time data are placed into the table), we re-
ally only needed to insert data for student lastnames, age, and gpa. Let’s add the
following values into our database.

lastName age gpa
Campbell 19 3.79

Garcia 28 2.37

Fuller 19 3.18

Cooper 26 2.13

Walker 27 2.14

Griego 31 2.10

M25_LEWI5976_05_SE_C25.indd 890 08/02/19 3:17 AM

 25.5 Inserting, Viewing, and Updating Data 891

Insert
To insert the data, we need to create a new Statement and use the
INSERT <tablename> SQL statement. The INSERT statement takes the form

INSERT <tablename> (column name, ...) VALUES (expression, ...)

Following the tablename, one or more columns are specified by
name. Then the values to be placed in the specified fields, respec-
tively, are listed in the same order in which the columns are speci-
fied. For example, to insert the Campbell row into the database, we
will create an SQL statement that looks like this:

INSERT Student (lastName, age, gpa) VALUES ("Campbell", 19, 3.79)

We can use the following two lines of source code to perform the insertion on the table.

Statement stmt2 = conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,
 ResultSet.CONCUR_UPDATABLE);
int rowCount = stmt2.executeUpdate("INSERT Student " +
 "(lastName, age, gpa) VALUES (\"Campbell\", 19, 3.79)");

In order for the update of the table’s data values to take place, we need to make
two method calls different from those we have done previously. First, when we
construct the Statement object (via the createStatement method), we specify
that the resulting ResultSet’s pointer may move only forward and that changes
to the ResultSet are passed on to the database.

Second, we called the executeUpdate method, rather than the execute or
executeQuery methods used earlier. The executeUpdate method returns the
number of rows affected by the update query; in this case, only 1 row was modi-
fied. Similar executeQuery statements can follow, enabling us to insert each row
of students shown in the Student table. Alternatively, we could read our data from
an input file and use a loop to process the data from the input file into the database.

It’s been a while since we have seen the full body of code of our program. Along the
way we have made a number of additions and changes. Listing 25.2 on the next page
updates us on the source code we’re using in discussing our database connections.

SELECT . . . FROM
One of the actions we perform most frequently on a database is
 issuing queries to view to retrieve the data. The SELECT . . . FROM
SQL statement permits users to construct a request for data based
on a number of criteria. The basic syntax of the SELECT. . . FROM
statement is as follows:

KEY CONCEPT
The INSERT SQL statement is used
to add new data to a database table.

KEY CONCEPT
The SELECT SQL statement is used
to retrieve data from a database table.

M25_LEWI5976_05_SE_C25.indd 891 08/02/19 3:17 AM

892 CHAPTER 25 Databases

L I S T I N G 2 5 . 2
import java.sql.*;

/**
 * Demonstrates interaction between a Java program and a database.
 *
 * @author Java Foundations
 * @version 4.0
 */
public class DatabaseModification
{
 /**
 * Carries out various CRUD operations after establishing the
 * database connection.
 */
 public static void main (String args[])
 {
 Connection conn = null;
 try
 {

 // Loads the class object for the mysql driver into the DriverManager.
 Class.forName("com.mysql.jdbc.Driver");

 // Attempt to establish a connection to the specified database via the
 // DriverManager

 conn = DriverManager.getConnection("jdbc:mysql://comtor.org/" +
 "javafoundations?user=jf2e&password=hirsch");

 // Check the connection

 if (conn != null)
 {
 System.out.println("We have connected to our database!");

 // Create the table and show the table structure

 Statement stmt = conn.createStatement();
 boolean result = stmt.execute("CREATE TABLE Student " +
 " (student_ID INT UNSIGNED NOT NULL AUTO_INCREMENT, " +
 " PRIMARY KEY (student_ID), lastName varchar(255), " +
 " age tinyint UNSIGNED, gpa FLOAT (3,2) unsigned)");

M25_LEWI5976_05_SE_C25.indd 892 08/02/19 3:17 AM

 25.5 Inserting, Viewing, and Updating Data 893

 System.out.println("\tTable creation result: " + result);
 DatabaseModification.showColumns(conn);

 // Insert the data into the database and show the values in the table

 Statement stmt2 = conn.createStatement(ResultSet.TYPE_FORWARD_ONLY,
 ResultSet.CONCUR_UPDATABLE);
 int rowCount = stmt2.executeUpdate("INSERT Student " +
 "(lastName, age, gpa) VALUES (\"Campbell\", 19, 3.79)");
 DatabaseModification.showValues(conn);

 // Close the database

 conn.close();
 }

 } catch (SQLException ex) {
 System.out.println("SQLException: " + ex.getMessage());
 ex.printStackTrace();

 } catch (Exception ex) {
 System.out.println("Exception: " + ex.getMessage());
 ex.printStackTrace();
 }
 }

 /**
 * Obtains and displays a ResultSet from the Student table.
 */
 public static void showValues(Connection conn)
 {
 try
 {
 Statement stmt = conn.createStatement();
 ResultSet rset = stmt.executeQuery("SELECT * FROM Student");
 DatabaseModification.showResults("Student", rset);
 } catch (SQLException ex) {
 System.out.println("SQLException: " + ex.getMessage());
 ex.printStackTrace();
 }
 }

 /**
 * Displays the structure of the Student table.
 */

L I S T I N G 2 5 . 2 continued

M25_LEWI5976_05_SE_C25.indd 893 08/02/19 3:17 AM

894 CHAPTER 25 Databases

 public static void showColumns(Connection conn)
 {
 try
 {
 Statement stmt = conn.createStatement();
 ResultSet rset = stmt.executeQuery("SHOW COLUMNS FROM Student");
 DatabaseModification.showResults("Student", rset);
 } catch (SQLException ex) {
 System.out.println("SQLException: " + ex.getMessage());
 ex.printStackTrace();
 }
 }

 /**
 * Displays the contents of the specified ResultSet.
 */
 public static void showResults(String tableName, ResultSet rSet)
 {
 try
 {
 ResultSetMetaData rsmd = rSet.getMetaData();
 int numColumns = rsmd.getColumnCount();
 String resultString = null;
 if (numColumns > 0)
 {
 resultString = "\nTable: " + tableName + "\n" +
 "===\n";
 for (int colNum = 1; colNum <= numColumns; colNum++)
 resultString += rsmd.getColumnLabel(colNum) + " ";
 }
 System.out.println(resultString);
 System.out.println(
 "===");

 while (rSet.next())
 {
 resultString = "";
 for (int colNum = 1; colNum <= numColumns; colNum++)
 {
 String column = rSet.getString(colNum);
 if (column != null)
 resultString += column + " ";
 }
 System.out.println(resultString + '\n' +
 "--");
 }

L I S T I N G 2 5 . 2 continued

M25_LEWI5976_05_SE_C25.indd 894 08/02/19 3:17 AM

 25.5 Inserting, Viewing, and Updating Data 895

 } catch (SQLException ex) {
 System.out.println("SQLException: " + ex.getMessage());
 ex.printStackTrace();
 }
 }
}

L I S T I N G 2 5 . 2 continued

SELECT <columns, ...> FROM <tablename> WHERE <condition, ...>

The SELECT statement has many parts (most of which are beyond the scope of
this text). We will talk about just a few to get you started using the statement.

The SELECT statement allows you to ask for only certain columns to be re-
turned following the query. For example, if we wanted only a list of student
lastNames and gpas from our Student table, we would construct our query as
follows:

SELECT lastName, gpa FROM Student

If we wanted to make our query even more specific, and get the lastNames
and gpas only of students whose age is 21 and over, our statement would look
like this:

SELECT lastName, gpa FROM Student WHERE age >= 21

The WHERE condition clause is optional, and if it is not provided, all rows from
the specified table will be selected. A condition is an expression that must evalu-
ate to TRUE and can contain functions and operators such as && (and), || (or),
and many others. For example, we can further refine our query to limit results to
those students who are 21 years old or older and who have a grade point average
of 3.0 or less:

SELECT lastName, gpa FROM Student WHERE age >= 21 && gpa <= 3.0

The selected items to return (lastName and gpa in our examples above) are speci-
fied by listing them with a comma between them. However, if you wish to have
all of the columns from a table returned, you can substitute an asterisk (*) for the
column listings:

SELECT * FROM Student WHERE age >= 21 && gpa <= 3.0

M25_LEWI5976_05_SE_C25.indd 895 08/02/19 3:17 AM

896 CHAPTER 25 Databases

As like our INSERT statement, the SELECT statement will be a parameter to an
executeQuery method call. The output from the execution of this statement
would look something like

Table: Student
===
student_ID lastName age gpa
===
2 Jones 22 2.40

There are a number of other capabilities that the SELECT SQL statement pro-
vides, including the ability to join two or more tables, to limit our output to a set
number of rows, and to group our results by one or more columns. Often, the
most useful additional clause is ORDER BY <columnname> <direction>.

The ORDER BY clause, appended to the statement following the where clause,
will direct the statement to sort our results in an ascending or descending fashion.
To specify ascending, place the string ASC in the direction portion; to specify de-
scending, use DESC. For example, the query

SELECT * FROM Student ORDER BY gpa DESC

produces the following results:

Table: Student
===
lastName age gpa
===
Hampton 31 3.88

Campbell 19 3.79

Smith 21 3.69

Jones 22 2.40

Update
Updating data in a database is another frequently used skill. Fortunately, it is
a rather simple process. We can break the process down into three steps. First,
we obtain a ResultSet and navigate to the row we wish to update. Second, we
update the ResultSet’s value that we wish to change. Finally, we update the da-
tabase with the record from the ResultSet.

Let’s look at these steps in more detail. We first want to obtain a ResultSet
on which we will operate. The type of change you wish to make to the database

M25_LEWI5976_05_SE_C25.indd 896 08/02/19 3:17 AM

 25.6 Deleting Data and Database Tables 897

(updating one row vs. updating multiple rows) will likely direct the
ResultSet you obtain to operate on the data. Generally speaking, it’s
a good idea to limit your ResultSet to the database rows you wish to
modify. Thus, if you are going to change only one row’s values, your
ResultSet should really comprise only that row.

Once we have our ResultSet, we need to navigate the ResultSet cursor (a
pointer into the set). You may have noted from Listing 25.2 that we iterated through
the ResultSet by repeatedly calling the next method on the ResultSet object. We
can actually navigate via a number of methods (first, last, next, previous, and so
on). Because the cursor is placed prior to the first row in a ResultSet, we simply used
the next method to move forward each time we attempted to read a row of data.

If we are modifying only one row of data and our ResultSet contains only
one row, we can just jump to the first row by executing a call to our set’s first
method. Then, we can modify our data by using the updateXXX methods (update-
String, updateFloat, and so on) on our set. We make our changes permanent
in the database by calling the updateRow method. Here is an example:

ResultSet rst = stmt2.executeQuery("SELECT * FROM Student
WHERE " +
 "lastName=\"Jones\"");
rst.first();
rst.updateFloat("gpa", 3.41f);
rst.updateRow();

Obviously, if we are attempting to update multiple rows of records from a
ResultSet, the navigation and updating statements will be more involved, pos-
sibly utilizing a loop. Additionally, prior to inserting, we can update any number
of values in the row or rows in the ResultSet. The updateRow call simply com-
municates the changes back to the database once the ResultSet contains all of
the necessary changes.

25.6 Deleting Data and Database Tables

The last piece of our JDBC knowledge is the ability to delete data and tables from
the database. We’ll first look at the deleting of data.

Deleting Data
The SQL statement that deletes data from a table is the DELETE FROM statement.
This statement has the syntax

DELETE FROM <tablename> WHERE condition

KEY CONCEPT
Updates to a database can be
performed through changes to a
ResultSet.

M25_LEWI5976_05_SE_C25.indd 897 08/02/19 3:17 AM

898 CHAPTER 25 Databases

The WHERE condition clause is optional, and if it is not provided,
all rows from the specified table will be deleted. A condition is an
expression that must evaluate to TRUE and can contain functions and
operators such as && (and), || (or), and many others. For example, if
we wished to delete all of the students whose age is greater than or
equal to 30, we would use the following SQL statement.

DELETE FROM Student WHERE age >= 30

If we wished to delete all students whose age is greater than or equal to 30
and whose gpa is less than 3.5, we would use

DELETE FROM Student WHERE age >=30 && gpa < 3.5

As with the INSERT statement in the previous section, we will need to use a
Statement that produces RecordSet objects that are forward-scrolling only
(ResultSet.TYPE_FORWARD_ONLY), and that update the database (ResultSet.
CONCUR_UPDATABLE).

Deleting Database Tables
Deleting tables from our database is rather simple to accomplish. We use the
executeUpdate method of a Statement object and pass it the DROP TABLE
<tablename> SQL statement.

For example, if we wanted to drop the Student table, we could
do so using the following Java statement in our program.

int rowCount = stmt.executeUpdate("DROP TABLE
Student");

Keep in mind that when the table is dropped, any data stored within
the table are dropped as well.

KEY CONCEPT
The DELETE FROM SQL statement
is used to delete data from a database
table.

KEY CONCEPT
The DROP TABLE SQL statement is
used to delete data from a database
table.

M25_LEWI5976_05_SE_C25.indd 898 08/02/19 3:17 AM

Summary of Key Concepts

■■ Databases are software applications used to provide data to other programs.

■■ A relational database creates relationships between records in different tables
by using unique identifiers.

■■ The JDBC API is used to establish a connection to a database.

■■ The CREATE TABLE SQL statement is used to create new database tables.

■■ The ALTER TABLE SQL statement can be used to modify an existing data-
base table.

■■ The SHOW COLUMNS SQL statement can be used to obtain a list of a table’s
columns and configuration settings.

■■ The INSERT SQL statement is used to add new data to a database table.

■■ The SELECT SQL statement is used to retrieve data from a database table.

■■ The DELETE FROM SQL statement is used to delete data from a database
table.

■■ The DROP TABLE SQL statement is used to delete an entire database table.

■■ Updates to a database can be performed through changes to a ResultSet.

Self-Review Questions
SR 25.1 What are the four primary operations on database data?

SR 25.2 In relational databases, where are the relationships stored, and
how are they stored?

SR 25.3 Name two popular database products on the market today.

SR 25.4 Where can one obtain the JDBC?

SR 25.5 What role does a database driver play?

SR 25.6 What does the java.sql.DriverManager class assist with?

SR 25.7 Which class do we use to prepare and execute SQL statements?

SR 25.8 Which JDBC class is used to manage a set of records that is usu-
ally the result of a database query?

SR 25.9 Which SQL statement is used to add new data to a database
table?

SR 25.10 Which SQL statement is used to remove a database table from the
database?

 Self-Review Questions 899

M25_LEWI5976_05_SE_C25.indd 899 08/02/19 3:17 AM

900 CHAPTER 25 Databases

Exercises
EX 25.1 Design a table for storing the names and contact information (ad-

dresses, phone numbers, email addresses) of your closest friends
and family members. What fields would you use?

EX 25.2 Design one or more tables for managing a list of courses run by your
university. How many tables do you need? What fields are in each
table? Be sure to include such data as the instructor’s names, the
number of credits awarded for successful completion of the course,
the department that offers the course, and the current enrollment in
the course.

EX 25.3 Research the SQL statements needed to perform the CRUD operations
on an Oracle database, on an Access database, and on a PostgreSQL
database. How do they differ from those presented in this chapter?

EX 25.4 Using the MySQL documentation (http://dev.mysql.com/doc),
determine how to create a temporary table and what the implica-
tions of using a temporary table are.

EX 25.5 How would you go about modifying a table and adding a new
column in front of an existing one?

EX 25.6 What is the SQL statement needed to add a new column named
employeeNumber to a table named Employees? Assume that the
employeeNumber is a 7-digit integer value.

EX 25.7 What is the SQL statement needed to delete a column named
ProductCode from a table named Products?

EX 25.8 Given the Person and Location tables provided at the beginning
of this chapter, indicate what SQL statement is needed to return a
query that lists all of the states that any person resides in.

EX 25.9 What SQL statement is needed to insert, in the Student table dis-
cussed earlier in this chapter, a new field that will store the total
number of credits each student has accumulated? What data type
should be used, and why?

EX 25.10 What SQL statement is needed to delete the age column from the
Student table discussed earlier in this chapter?

Programming Projects
Use the MySQL world database (https://dev.mysql.com/doc/world-setup/en/world-
setup.html) to populate a database and complete Programming Projects 25.1
through 25.5.

M25_LEWI5976_05_SE_C25.indd 900 08/02/19 3:17 AM

 Programming Projects 901

PP 25.1 Write a program to query the world database to obtain a list of
all the cities of the world that contain a population that exceeds 5
million residents.

PP 25.2 Write a Java program that queries the world database to deter-
mine the total population of all cities in New Jersey.

PP 25.3 Write a program that queries the world database to determine in
which country the residents have the greatest life expectancy.

PP 25.4 Research how to accomplish a JOIN on two tables. Then write a
program that queries the world database to list the population of
the capitol city for any country in Asia.

PP 25.5 Write a program with a graphical user interface that connects to
a database, creates a CDs table (if it does not already exist), and
provides the user the ability to manage a music album database.
The database should include fields for the album title, artist
name, number of tracks, and price. The user should be able to
enter new album information, delete existing albums, and obtain
a list of albums in the database.

PP 25.6 Using the free tool at http://www.fakenamegenerator.com, cre-
ate 1,000 fake identifications to a text file. Then write a Java
program that will populate a database table with the fake names
from the text file. Finally, print a list of individuals in the data-
base whose first (given) name is John and who live in Tennessee.

PP 25.7 Write a program that connects to a database, creates a Movies
table (if it does not already exist), and provides the user the abil-
ity to manage a movie listing database. The database should
include fields for a movie’s name, run-time, rating code, date of
release, and two primary stars. The user should be able to enter
new movie information, delete existing movies, and obtain a list
of movies in the database.

PP 25.8 Write a program with a graphical user interface that prompts
the user to enter a database hostname, username, password, and
database name. Once connected, the program should allow the
user to browse the database by selecting a table and then choose
to display either the structure of the table (SHOW COLUMNS) or the
data contained within the selected table.

PP 25.9 Write a program that connects to a database, creates two tables
(Teams and Games, if they don’t already exist), and allows the
user to manage a series of games between different opponents.
Games includes a score value for each team, a unique identifier

M25_LEWI5976_05_SE_C25.indd 901 08/02/19 3:17 AM

902 CHAPTER 25 Databases

for each game. Teams includes identifiers for each team, as well
as their names and overall win/loss records. This problem can be
solved with or without the knowledge of table joins in SQL state-
ments. The user should be able enter new game results, add new
teams, and navigate through each table or read the data.

PP 25.10 Write program that connects to a database, creates and populates the
Student table, prints a display of the data contained in the Student
table, and then deletes the Student table along with its data.

Answers to Self-Review Questions
SRA 25.1 The four primary database operations are create, read, update,

and delete.

SRA 25.2 Relational databases store their relationships in the database
tables themselves in the form of unique identifiers that are used to
join the database tables.

SRA 25.3 Some popular database products are MySQL, PostgreSQL,
SQLServer, Oracle, and Access.

SRA 25.4 As of JDK 1.1, the JDBC API is part of the JDK.

SRA 25.5 A database driver helps to establish communications from our
JDBC statements to the specific database we are attempting to
communicate with.

SRA 25.6 The java.sql.DriverManager class registers and manages each
of the database drivers loaded at run-time.

SRA 25.7 The java.sql.Statement is used to prepare and execute SQL
statements.

SRA 25.8 The ResultSet object is a JDBC class that is used to manage a
set of database query result records.

SRA 25.9 The INSERT SQL statement is used to add new data to a database
table.

SRA 25.10 The DROP TABLE SQL statement is used to delete a database table
and its data.

M25_LEWI5976_05_SE_C25.indd 902 08/02/19 3:17 AM

AA

903

Glossary A Appendix

abstract—A Java reserved word that serves as a modifier for
classes, interfaces, and methods. An abstract class cannot
be instantiated and is used to specify bodiless abstract meth-
ods that are given definitions by derived classes. Interfaces
are inherently abstract.

abstract class—See abstract.

abstract data type (ADT)—A collection of data and the
operations that are defined on those data. An abstract data
type might be implemented in a variety of ways, but the
interface operations are consistent.

abstract method—See abstract.

Abstract Windowing Toolkit (AWT)—The package in the Java
API (java.awt) that contains classes related to graphics and
GUIs. See also Swing.

abstraction—The concept of hiding details. If the right
details are hidden at the right times, abstraction can sig-
nificantly help control complexity and focus attention on
appropriate issues.

access—The ability to reference a variable or invoke a
method from outside the class in which it is declared.
Controlled by the visibility modifier used to declare the vari-
able or method. Also called the level of encapsulation. See
also visibility modifier.

access modifier—See visibility modifier.

actual parameter—The value passed to a method as a
parameter. See also formal parameter.

adaptor class—See listener adaptor class.

Z01_LEWI5976_05_SE_APPA.indd 903 08/02/19 2:53 PM

904 APPENDIX A Glossary

address—(1) A numeric value that
uniquely identifies a particular memory
location in a computer’s main memory.
(2) A designation that uniquely identi-
fies a computer among all others on a
network.

adjacency list—A list of all the edges
in a graph grouped by the vertices
that each edge touches. See also edge,
graph, vertex.

adjacency matrix—A matrix (two-
dimensional array) that stores the list
of edges in a graph. Each position in
the array represents an intersection
between two vertices in the graph. See
also array, edge, graph, vertex.

ADT—See abstract data type (ADT).

aggregate object—An object that con-
tains variables that are references to
other objects. See also has-a relationship.

aggregation—Something that is com-
posed, at least in part, of other things.
See also aggregate object.

algorithm—A step-by-step process for
solving a problem. A program is based
on one or more algorithms.

alias—A reference to an object that is
currently also referred to by another
reference. Each reference is an alias of
the other.

analog—A representation that is in
direct proportion to the source of the
information. See also digital.

animation—A series of images or
drawings that gives the appearance of
movement when displayed in order at
a particular speed.

ANT—A build tool generally used
with Java program development. See
also build tool.

API—See application programming
interface (API).

applet—A Java program that is linked
into an HTML document and is then
retrieved and executed using a Web
browser, as opposed to a stand-alone
Java application.

appletviewer—A software tool that
interprets and displays Java applets
through links in HTML documents.
Part of the Java Development Kit.

application—(1) A generic term for
any program. (2) A Java program
that can be run without the use of a
Web browser, as opposed to a Java
applet.

application programming interface
(API)—A set of classes that defines
services for a programmer. Not part of
the language itself, but often relied on
to perform even basic tasks. See also
class library.

arc angle—In the definition of an arc,
the radial distance that defines the arc’s
length. See also start angle.

architectural design—A high-level
design that identifies the large portions
of a software system and key data
structures. See also detailed design.

architecture—See computer architecture.

architecture neutral—Not specific to
any particular hardware platform.
Java code is considered architecture
neutral because it is compiled into
bytecode and then interpreted on any
machine with a Java interpreter. See
also bytecode.

arithmetic operator—An operator that
performs a basic arithmetic computa-
tion, such as addition or multiplication.

Z01_LEWI5976_05_SE_APPA.indd 904 08/02/19 2:53 PM

 APPENDIX A Glossary 905

arithmetic promotion—The act of pro-
moting the type of a numeric operand
to be consistent with the other operand.

array—A programming language con-
struct used to store an ordered list of
primitive values or objects. Each ele-
ment in the array is referenced using a
numeric index from 0 to N–1, where N
is the size of the array.

array element—A value or object that
is stored in an array.

array element type—The type of the
values or objects that are stored in an
array.

ASCII—A popular character set used
by many programming languages.
ASCII stands for American Standard
Code for Information Interchange. It is
a subset of the Unicode character set,
which is used by Java.

assembly language—A low-level lan-
guage that uses mnemonics to repre-
sent program commands.

assert—A Java reserved word that is
used to make an assertion that a condi-
tion is fulfilled. See also assertion.

assertion—A programming language
construct that is used to declare a pro-
grammatic assumption (that is usually
true). Assertions are used by JUnit for
the purposes of unit testing. See also
JUnit, unit testing.

assignment conversion—Some data
types can be converted to another data
type in an assignment statement. See
widening conversion.

assignment operator—An operator
that results in an assignment to a vari-
able. The = operator performs basic
assignment. Many other assignment

operators, such as the *= operator,
perform additional operations prior to
the assignment.

association—A relationship between
two classes in which one uses the
other or is related to it in some way.
See also operator association, use
relationship.

asymptotic complexity—The order, or
dominant term, of a growth func-
tion. See also dominant term, growth
function.

AWT—See Abstract Windowing Toolkit.

background color—(1) The color of
the background of a GUI component.
(2) The color of the background of an
HTML page. See also foreground color.

bag—A collection that facilitates the
selection of random elements from a
group. See also collection.

balanced tree—A tree whose leaves are
all on the same level or within one level
of each other. See also leaf, tree.

base—The numeric value on which a
particular number system is based. It
determines the number of digits avail-
able in that number system and the
place value of each digit in a number.
See also binary, decimal, hexadecimal,
octal, place value.

base 2—See binary.

base 8—See octal.

base 10—See decimal.

base 16—See hexadecimal.

base case—The situation that termi-
nates recursive processing, allowing
the active recursive methods to begin
returning to their point of invocation.

base class—See superclass.

Z01_LEWI5976_05_SE_APPA.indd 905 08/02/19 2:53 PM

906 APPENDIX A Glossary

behavior—The functional characteris-
tics of an object, defined by its meth-
ods. See also identity, state.

binary—The base-2 number system.
Modern computer systems store infor-
mation as strings of binary digits (bits).

binary operator—An operator that
uses two operands.

binary search—A searching algorithm
that requires that the list be sorted.
It repetitively compares the “middle”
element of the list to the target value,
narrowing the scope of the search each
time. See also linear search.

binary search tree—A binary tree with
the added property that for each node,
the left child is less than the parent,
and the right child is greater than or
equal to the parent. See also node, tree.

binary string—A series of binary digits
(bits).

binary tree—A tree data structure in
which each node can have no more
than two child nodes.

binding—The process of associating
an identifier with the construct that it
represents. For example, the process of
binding a method name to the specific
definition that it invokes.

bit—A binary digit, either 0 or 1.

bit shifting—The act of shifting the bits
of a data value to the left or right, los-
ing bits on one end and inserting bits
on the other.

bits per second (bps)—A measurement
rate for data transfer devices.

bitwise operator—An operator that
manipulates individual bits of a value,
either by calculation or by shifting.

black-box testing—Producing and
evaluating test cases on the basis of the
input and expected output of a soft-
ware component. The test cases focus
on covering the equivalence categories
and boundary values of the input. See
also white-box testing.

block—A group of programming state-
ments and declarations delimited by
braces ({}).

boolean—A Java reserved word rep-
resenting a logical primitive data type
that can take only the value true or
the value false.

boolean expression—An expression that
evaluates to a true or false result; such
expressions are used primarily as condi-
tions in selection and repetition statements.

boolean operator—Any of the bitwise
operators AND (&), OR (|), and XOR
(^) when applied to boolean operands.
The results are equivalent to their logi-
cal counterparts, except that boolean
operators are not short-circuited.

border—A graphical edge around a
GUI component to enhance its appear-
ance or to group components visually.
An empty border creates a buffer of
space around a component.

boundary values—The input values cor-
responding to the edges of equivalence
categories. Used in black-box testing.

bounding rectangle—A rectangle that
delineates a region in which an oval or
arc is defined.

bounds checking—The process of deter-
mining whether an array index is in
bounds, given the size of the array. Java
performs automatic bounds checking.

Z01_LEWI5976_05_SE_APPA.indd 906 08/02/19 2:53 PM

 APPENDIX A Glossary 907

bps—See bits per second.

breadth-first traversal—A graph tra-
versal that starts at a given vertex, then
visits all neighboring vertices one edge
from the starting vertex, then visits all
vertices two edges from the starting
vertex, and so on. See also depth-first
traversal, graph, vertex.

break—A Java reserved word used to
interrupt the flow of control by break-
ing out of the current loop or switch
statement.

breakpoints—A special flag or tag in
a debugger that pauses execution of
the program being debugged when the
execution reaches the breakpoint.

browser—Software that retrieves
HTML documents across network con-
nections and formats them for viewing.
A browser is the primary vehicle for
accessing the World Wide Web.

bubble sort—A sorting algorithm in
which values are repeatedly compared to
neighboring elements in the list and their
positions are swapped if they are not in
order relative to each other. See also heap
sort, insertion sort, merge sort, quick
sort, radix sort, selection sort.

bug—A slang term for a defect or error
in a computer program.

build-and-fix approach—An approach
to software development in which a pro-
gram is created without any significant
planning or design and then is modified
until it reaches some level of acceptance.
It is a prevalent, but unwise, approach.

build tool—A software application
used to automate, define, and execute
a consistent process for building soft-
ware applications.

bus—A group of wires in the com-
puter that carries data between com-
ponents such as the CPU and main
memory.

button—A GUI component that allows
the user to initiate an action, set a
condition, or choose an option with a
mouse click. There are several kinds of
GUI buttons. See also check box, push
button, radio button.

byte—(1) A unit of binary storage
equal to 8 bits. (2) A Java reserved
word that represents a primitive inte-
ger type, stored using 8 bits in two’s
complement format.

byte stream—An I/O stream that man-
ages 8-bit bytes of raw binary data. See
also character stream.

bytecode—The low-level format into
which the Java compiler translates
Java source code. The bytecode is
interpreted and executed by the Java
interpreter, perhaps after transporta-
tion over the Internet.

capacity—See storage capacity.

case—(1) A Java reserved word that is
used to identify each unique option in
a switch statement. (2) The orienta-
tion of an alphabetic character (upper-
case or lowercase).

case sensitive—Differentiating between
the uppercase and lowercase versions
of an alphabetic letter. Java is case sen-
sitive; therefore, the identifier total
and the identifier Total are considered
to be different identifiers.

cast—A Java operation expressed using
a type or class name in parentheses to
explicitly convert and return a value of
one data type into another.

Z01_LEWI5976_05_SE_APPA.indd 907 08/02/19 2:53 PM

908 APPENDIX A Glossary

catch—A Java reserved word that is
used to specify an exception handler,
defined after a try block.

CD-Recordable (CD-R)—A compact
disc on which information can be
stored once using a home computer
with an appropriate drive. See also
CD-Rewritable, CD-ROM.

CD-Rewritable (CD-RW)—A compact
disc on which information can be
stored and rewritten multiple times
using a home computer with an appro-
priate drive. See also CD-Recordable,
CD-ROM.

CD-ROM—An optical secondary
memory medium that stores binary
information in a manner similar to a
musical compact disc.

central processing unit (CPU)—The
hardware component that controls the
main activity of a computer, including
the flow of information and the execu-
tion of commands.

char—A Java reserved word that rep-
resents the primitive character type.
All Java characters are members of the
Unicode character set and are stored
using 16 bits.

character font—A specification that
defines the distinct look of a character
when it is printed or drawn.

character set—An ordered list of char-
acters, such as the ASCII and the
Unicode character sets. Each charac-
ter corresponds to a specific, unique
numeric value within a given char-
acter set. A programming language
adopts a particular character set to
use for character representation and
management.

character stream—An I/O stream that
manages 16-bit Unicode characters.
See also byte stream.

character string—A series of ordered
characters. Represented in Java using
the String class and string literals such
as “hello”.

check box—A GUI component that
allows the user to set a boolean condi-
tion with a mouse click. A check box can
be used alone or independently among
other check boxes. See also radio button.

checked exception—A Java exception
that must be either caught or explicitly
thrown to the calling method. See also
unchecked exception.

child class—See subclass.

circular array—Conceptually, an array
whose last index is followed by the
first index.

class—(1) A Java reserved word used
to define a class. (2) The blueprint of
an object—the model that defines the
variables and methods an object will
contain when instantiated.

class diagram—A diagram that shows
the relationships between classes, includ-
ing inheritance and use relationships.
See also Unified Modeling Language.

class hierarchy—A tree-like structure
created when classes are derived from
other classes through inheritance. See
also interface hierarchy.

class library—A set of classes that defines
useful services for a programmer. See also
application programming interface (API).

class method—A method that can be
invoked using only the class name. An
instantiated object is not required, as

Z01_LEWI5976_05_SE_APPA.indd 908 08/02/19 2:53 PM

 APPENDIX A Glossary 909

it is with instance methods. Defined in
a Java program by using the static
reserved word.

class variable—A variable that is shared
among all objects of a class. It can also
be referenced through the class name,
without instantiating any object of that
class. Defined in a Java program by
using the static reserved word.

CLASSPATH—An operating system
setting that determines where the Java
interpreter searches for class files.

client-server model—A manner in
which to construct a software design
based on objects (clients) making
use of the services provided by other
objects (servers).

coding guidelines—A series of conven-
tions that describe how programs should
be constructed. They make programs
easier to read, exchange, and integrate.
Sometimes referred to as coding stan-
dards, especially when they are enforced.

coding standard—See coding guidelines.

cohesion—The strength of the relation-
ship among the parts within a software
component. See also coupling.

collection—An object that serves as a
repository for other objects.

collision—The process of two hash
values producing the same hash code.
See also hash code, hashing.

color chooser—A GUI component, often
displayed as a dialog box, that allows
the user to select or specify a color.

combo box—A GUI component that
allows the user to select one of several
options. A combo box displays the
most recent selection. See also list.

command-line arguments—The values
that follow the program name on the
command line. Accessed within a Java
program through the String array
parameter to the main method.

command shell—A text-based user
interface for issuing commands to a
computer operating system.

comment—A programming language
construct that allows a programmer
to embed human-readable annota-
tions into the source code. See also
documentation.

compile-time error—Any error that
occurs during the compilation process,
often indicating that a program does
not conform to the language syntax
or that an operation was attempted on
an inappropriate data type. See also
logical error, run-time error, syntax
error.

compiler—A program that translates
code from one language to equiva-
lent code in another language. The
Java compiler translates Java source
code into Java bytecode. See also
interpreter.

complete tree—A tree that is balanced
and all of whose leaves at the bottom
level are on the left side of the tree. See
also balanced tree, leaf.

component—Any portion of a soft-
ware system that performs a specific
task, transforming input to output. See
also GUI component.

computer architecture—The structure
and interaction of the hardware com-
ponents of a computer.

concatenation—See string concatenation.

Z01_LEWI5976_05_SE_APPA.indd 909 08/02/19 2:53 PM

910 APPENDIX A Glossary

condition—A boolean expression used
to determine whether the body of a
selection or repetition statement should
be executed.

conditional coverage—A strategy used
in white-box testing in which all condi-
tions in a program are executed, pro-
ducing both true and false results.
See also statement coverage.

conditional operator—A Java ternary
operator that evaluates one of two
expressions on the basis of a condition.

conditional statement—See selection
statement.

connected graph—A graph in which a
path exists between any two vertices.
See also graph, path, vertex.

const—A Java reserved word that is
not currently used.

constant—An identifier that contains a
value that cannot be modified. Used to
make code more readable and to facili-
tate changes. Defined in Java using the
final modifier.

constant complexity—A growth function
of an algorithm that executes in a set
amount of time regardless of the size of
the problem. See also growth function.

constructor—A special method in a
class that is invoked when an object
is instantiated from the class. Used to
initialize the object.

container—A Java GUI component
that can hold other components. See
also containment hierarchy.

containment hierarchy—The relation-
ships among graphical components of
a user interface. See also container.

content pane—The part of a top-level
container to which components are
added.

control characters—See nonprintable
characters.

controllers—Hardware devices that
control the interaction between a com-
puter system and a particular kind of
peripheral.

coupling—The strength of the relation-
ship between two software compo-
nents. See also cohesion.

CPU—See central processing unit.

cycle—A path in a graph in which the
first and last vertices are the same and
none of the edges are repeated. See also
graph.

data stream—An I/O stream that rep-
resents a particular source or destina-
tion for data, such as a file. See also
processing stream.

data structure—Any programming con-
struct, defined either in the language or
by a programmer, used to organize data
into a format to facilitate access and pro-
cessing. Arrays, linked lists, and stacks
can all be considered data structures.

data transfer device—A hardware com-
ponent, such as a modem, that makes
it possible to send information between
computers.

data type—A designation that specifies
a set of values (which may be infinite).
For example, each variable has a data
type that specifies the kinds of values
that can be stored in it.

debugger—A software tool that allows a
programmer to step through an executing

Z01_LEWI5976_05_SE_APPA.indd 910 08/02/19 2:53 PM

 APPENDIX A Glossary 911

program and examine the value of vari-
ables at any point. See also jdb.

debugging—The act of locating and
correcting run-time and logical errors
in a program.

decimal—The base-10 number system,
which humans use in everyday life. See
also binary.

default—A Java reserved word that
is used to indicate the default case of
a switch statement. Used if no other
cases match.

default visibility—The level of access
designated when no explicit vis-
ibility modifier is used to declare a
class, interface, method, or variable.
Sometimes referred to as package vis-
ibility. Classes and interfaces declared
with default visibility can be used
within their package. A method or
variable declared with default visibility
is inherited and accessible by all sub-
classes in the same package.

defect testing—Testing designed to
uncover errors in a program.

defined—Existing for use in a derived
class, even if it can be accessed only
indirectly. See also inheritance.

degenerate tree—A tree whose nodes
are located primarily on one side. See
also tree.

delimiter—Any symbol or word used
to set the boundaries of a program-
ming language construct, such as the
braces ({}) used to define a Java block.

deprecated—Something, such as a par-
ticular method, that is considered old-
fashioned and should not be used.

depth-first traversal—A graph tra-
versal that starts at a given vertex
and traverses as far as possible along
a sequence of edges before backtrack-
ing and traversing alternative, skipped
edges. See also breadth-first traversal,
graph, vertex.

derived class—See subclass.

design—(1) The plan for implementing
a program, which includes a specifica-
tion of the classes and objects used
and an expression of the important
program algorithms. (2) The process of
creating a program design.

desk check—A type of review in which
a developer carefully examines a design
or program to find errors.

detailed design—(1) The low-level
algorithmic steps of a method. (2) The
development stage at which low-level
algorithmic steps are determined.

development stage—The software life-
cycle stage in which a software system
is first created; this stage precedes use,
maintenance, and eventual retirement.

dialog box—A graphical window that
pops up to allow brief, specific user
interaction.

digital—A representation that breaks
information down into pieces, which
are in turn represented as numbers. All
modern computer systems are digital.

digitize—The act of converting an ana-
log representation into a digital one by
breaking it down into pieces.

digraph—See directed graph.

dimension—The number of index levels
of a particular array.

Z01_LEWI5976_05_SE_APPA.indd 911 08/02/19 2:53 PM

912 APPENDIX A Glossary

direct recursion—The process of a
method invoking itself. See also indi-
rect recursion.

directed graph—A graph data struc-
ture in which each edge has a specific
direction. See also edge.

disable—Make a GUI component inac-
tive so that it cannot be used. A dis-
abled component is grayed to indicate
its disabled status. See also enable.

DNS—See Domain Name System.

do—A Java reserved word that repre-
sents a repetition construct. A do state-
ment is executed one or more times.
See also for, while.

documentation—Supplemental informa-
tion about a program, including com-
ments in a program’s source code and
printed reports such as a user’s guide.

domain name—The portion of an
Internet address that specifies the orga-
nization to which the computer belongs.

Domain Name System (DNS)—Software
that translates an Internet address into
an IP address using a domain server.

domain server—A file server that
maintains a list of Internet addresses
and their corresponding IP addresses.

dominant term—The term in a growth
function that increases the most as the
problem size (n) increases. The domi-
nant term is the basis of determining
the order of an algorithm. See also
growth function, order.

double—A Java reserved word that
represents a primitive floating point
numeric type, stored using 64 bits in
IEEE 754 format.

doubly linked list—A linked list with two
references in each node: one that refers
to the next node in the list and one that
refers to the previous node in the list.

dynamic binding—The process of asso-
ciating an identifier with its definition
during run-time. See also binding.

dynamic structure—A set of objects
that are linked using references, which
can be modified as needed during pro-
gram execution.

edge—A connector (in a linked struc-
ture, a reference) between two nodes in a
tree or graph. See also graph, node, tree.

editor—A software tool that allows the
user to enter and store a file of char-
acters on a computer. Often used by
programmers to enter the source code
of a program.

efficiency—The characteristic of an
algorithm that specifies the required
number of a particular operation in
order to complete its task. For exam-
ple, the efficiency of a sort can be mea-
sured by the number of comparisons
required to sort a list. See also order.

element—A value or object stored in
another object such as an array.

element type—See array element type.

else—A Java reserved word that des-
ignates the portion of code in an if
statement that will be executed if the
condition is false.

enable—Make a GUI component active
so that it can be used. See also disable.

encapsulation—The characteristic of
an object that limits access to the
variables and methods contained in it.

Z01_LEWI5976_05_SE_APPA.indd 912 08/02/19 2:53 PM

 APPENDIX A Glossary 913

All interaction with an object occurs
through a well-defined interface that
supports a modular design.

environment variable—A variable
located in the system’s settings or com-
mand shell that can store a value (typi-
cally the path to a file or directory).
Environment variables can be used
within a command shell or program
for configuration purposes. See also
command shell.

equality operator—One of two Java
operators that returns a boolean result
based on whether two values are equal
(==) or not equal (!=).

equivalence category—A range of
functionally equivalent input values
as specified by the requirements of the
software component. Used when devel-
oping black-box test cases.

error—(1) Any defect in a design or
program. (2) An object that can be
thrown and processed by special catch
blocks, although errors should not usu-
ally be caught. See also compile-time
error, exception, logical error, run-time
error, syntax error.

escape sequence—In Java, a sequence
of characters that begins with the
backslash character (\) and is used to
indicate a special situation when print-
ing values. For example, the escape
sequence \t specifies that a horizontal
tab should be printed.

exception—(1) A situation that arises
during program execution that is erro-
neous or out of the ordinary. (2) An
object that can be thrown and processed
by special catch blocks. See also error.

exception handler—The code in a
catch clause of a try statement, exe-
cuted when a particular type of excep-
tion is thrown.

exception propagation—The process
that occurs when an exception is
thrown: control returns to each call-
ing method in the stack trace until the
exception is caught and handled or until
the exception is thrown from the main
method, terminating the program.

exponent—The portion of a floating
point value’s internal representation
that specifies how far the decimal point
is shifted. See also mantissa.

exponential complexity—An equation
that specifies the efficiency of an algo-
rithm and whose dominant term con-
tains the problem size as an exponent
(for example, 2n). See also growth
function.

expression—A combination of opera-
tors and operands that produces a result.

extends—A Java reserved word used
to specify the parent class in the defini-
tion of a child class.

event—(1) A user action, such as a
mouse click or key press. (2) An object
that represents a user action, to which
the program can respond. See also
event-driven programming.

event-driven programming—An approach
to software development in which the
program is designed to acknowledge that
an event has occurred and to act accord-
ingly. See also event.

factorial—The product of all integers
between 1 and any positive integer N
(written N!).

Z01_LEWI5976_05_SE_APPA.indd 913 08/02/19 2:53 PM

914 APPENDIX A Glossary

false—A Java reserved word that
serves as one of the two boolean liter-
als (true and false).

fetch-decode-execute—The cycle
through which the CPU continually
obtains instructions from main mem-
ory and executes them.

FIFO—See first-in, first-out (FIFO).

file—A named collection of data stored
on a secondary storage device such as a
disk. See also text file.

file chooser—A GUI component, usu-
ally displayed as a dialog box, that
allows the user to select a file from a
storage device.

file server—A computer in a network,
usually with a large secondary storage
capacity, that is dedicated to storing
software needed by many network users.

filtering stream—See processing stream.

final—A Java reserved word that serves
as a modifier for classes, methods, and
variables. A final class cannot be used
to derive a new class. A final method
cannot be overridden. A final variable
is a constant.

finalize—A Java method defined in the
Object class that can be overridden
in any other class. It is called after the
object becomes a candidate for garbage
collection and before it is destroyed.
It can be used to perform “clean-up”
activity that is not performed auto-
matically by the garbage collector.

finalizer method—A Java method,
known as finalize, that is called
before an object is destroyed. See also
finalize.

finally—A Java reserved word that des-
ignates a block of code to be executed
when an exception is thrown, after any
appropriate catch handler is processed.

first-in, first-out (FIFO)—A data man-
agement technique in which the first
value that is stored in a data structure
is the first value that comes out. See
also last-in, first-out (LIFO); queue.

float—A Java reserved word that
represents a primitive floating point
numeric type, stored using 32 bits in
IEEE 754 format.

flushing—The process of forcing the
contents of the output buffer to be dis-
played on the output device.

font—See character font.

for—A Java reserved word that rep-
resents a repetition construct. A for
statement is executed zero or more
times and is generally used when a
precise number of iterations is known.

foreground color—The color in which
any current drawing will be rendered.
See also background color.

formal parameter—An identifier
that serves as a parameter name in
a method. It receives its initial value
from the actual parameter passed to it.
See also actual parameter.

fourth-generation language—A high-
level language that provides built-in
functionality, such as automatic report
generation or database management,
beyond that of traditional high-level
languages.

full tree—An n-ary tree whose leaves
are all on the same level and in which

Z01_LEWI5976_05_SE_APPA.indd 914 08/02/19 2:53 PM

 APPENDIX A Glossary 915

every node is a leaf or has exactly n
children. See also leaf, level, node, tree.

function—A named group of decla-
rations and programming statements
that can be invoked (executed) when
needed. A function that is part of a class
is called a method. Java has no func-
tions because all code is part of a class.

garbage—(1) An unspecified or unini-
tialized value in a memory location.
(2) An object that cannot be accessed
anymore because all references to it
have been lost.

garbage collection—The process of
reclaiming unneeded, dynamically allo-
cated memory. Java performs automatic
garbage collection of objects that no
longer have any valid references to them.

general tree—A tree with no limit to the
number of children a node may contain
or reference. See also node, tree.

generic type—A class designed so that
it stores, operates on, and manages
objects whose type is not specified
until the class is instantiated.

gigabyte (GB)—A unit of binary stor-
age, equal to 230 (approximately 1
billion) bytes.

glass-box testing—See white-box testing.

goto—(1) A Java reserved word that
is not currently used. (2) An uncondi-
tional branch.

grammar—A representation of lan-
guage syntax that specifies how reserved
words, symbols, and identifiers can be
combined into valid programs.

graph—A nonlinear data structure
made up of vertices and edges that

connect the vertices. See also directed
graph, undirected graph, vertex, edge.

graphical user interface (GUI)—
Software that provides the means to
interact with a program or operating
system by making use of graphical
images and point-and-click mecha-
nisms such as buttons and text fields.

graphics context—The drawing sur-
face and related coordinate system on
which a drawing is rendered or GUI
components are placed.

growth function—A function that
shows the complexity of an algorithm
relative to the size of the problem (n).
A growth function can represent the
time complexity or space complexity of
the algorithm. See also order.

GUI—See graphical user interface (GUI).

GUI component—A visual element,
such as a button or text field, that is
used to make up a GUI.

hardware—The tangible components
of a computer system, such as the key-
board, monitor, and circuit boards.

has-a relationship—The relationship
between two objects in which one is
composed, at least in part, of one or
more of the other. See also aggregate
object, is-a relationship.

hash code—An integer value calculated
from any given data value or object,
used to determine where a value should
be stored in a hash table. Also called a
hash value. See also hashing.

hash method—A method that calcu-
lates a hash code from a data value or
object. The same data value or object

Z01_LEWI5976_05_SE_APPA.indd 915 08/02/19 2:53 PM

916 APPENDIX A Glossary

will always produce the same hash
code. Also called a hash function. See
also hashing.

hash table—A data structure in which
values are stored for efficient retrieval.
See also hashing.

hashing—A technique for storing items
so that they can be found efficiently.
Items are stored in a hash table at a
position specified by a calculated hash
code. See also hash method.

heap—A complete binary tree in which
each element is greater than or equal
to both of its children. See also binary
tree, minheap.

heap sort—A sorting algorithm in
which a set of elements is sorted by
adding each one to a heap and then
removing them one at a time. See also
bubble sort, merge sort, quick sort,
radix sort, selection sort.

hexadecimal—The base-16 number
system, often used as an abbreviated
representation of binary strings.

hierarchy—An organizational tech-
nique in which items are layered or
grouped to reduce complexity.

high-level language—A programming
language in which each statement repre-
sents many machine-level instructions.

HTML—See HyperText Markup
Language.

hybrid object-oriented language—A
programming language that can be used
to implement a program in a procedural
manner or an object-oriented manner,
at the programmer’s discretion. See also
pure object-oriented language.

hypermedia—The concept of hypertext
extended to include other media types
such as graphics, audio, video, and
programs.

hypertext—A document representation
that allows a user to navigate through
it easily in other than a linear fashion.
Links to other parts of the document
are embedded at the appropriate places
to allow the user to jump from one
part of the document to another. See
also hypermedia.

HyperText Markup Language (HTML)—
The notation used to define Web pages.
See also browser, World Wide Web.

icon—A small, fixed-sized picture, often
used to decorate a GUI. See also image.

IDE—See integrated development
environment.

identifier—Any name that a program-
mer makes up to use in a program,
such as a class name or variable name.

identity—The designation of an object,
which, in Java, is an object’s reference
name. See also state, behavior.

IEEE 754—A standard for representing
floating point values. Used by Java to
represent float and double data types.

if—A Java reserved word that specifies a
simple conditional construct. See also else.

image—A picture, often specified using
a GIF or JPEG format. See also icon.

IMAP—See Internet Message Access
Protocol.

immutable—Unchanging. For example,
the contents of a Java character string
are immutable once the string has been
defined.

Z01_LEWI5976_05_SE_APPA.indd 916 08/02/19 2:53 PM

 APPENDIX A Glossary 917

implementation—(1) The process of
translating a design into source code.
(2) The source code that defines a
method, class, abstract data type, or
other programming entity.

implements—A Java reserved word that
is used in a class declaration to specify
that the class implements the methods
specified in a particular interface.

import—A Java reserved word that
is used to specify the packages and
classes that are used in a particular
Java source code file.

index—The integer value used to spec-
ify a particular element in an array.

index operator—The brackets ([]) in
which an array index is specified.

indirect recursion—The process of
a method invoking another method,
which eventually results in the original
method being invoked again. See also
direct recursion.

infinite loop—A loop that does not
terminate because the condition con-
trolling the loop never becomes false.

infinite recursion—A recursive series
of invocations that does not terminate
because the base case is never reached.
See also base case.

infix expression—An expression in
which the operators are positioned
between the operands on which they
work. See also postfix expression.

inheritance—The ability to derive a new
class from an existing one. Inherited vari-
ables and methods of the original (par-
ent) class are available in the new (child)
class just as if they were declared locally.

initialize—To give an initial value to a
variable.

initializer list—A comma-separated list
of values, delimited by braces ({}),
used to initialize and specify the size
of an array.

inline documentation—Comments that
are included in the source code of a
program.

inner class—A nonstatic, nested class.

inorder traversal—A tree traversal that
is accomplished by visiting the left
child of the node, then the node, and
then any remaining nodes. See also
level-order traversal, postorder tra-
versal, preorder traversal.

input/output buffer—A storage location
for data on their way from the user to
the computer (input buffer) or from the
computer to the user (output buffer).

input/output devices—Hardware com-
ponents that allow the human user to
interact with the computer, such as a
keyboard, mouse, and monitor.

input/output stream—A sequence of
bytes that represents a source of data
(input stream) or a destination for data
(output stream).

insertion sort—A sorting algorithm
in which each value, one at a time,
is inserted into a sorted subset of the
entire list. See also bubble sort, heap
sort, merge sort, quick sort, radix sort,
selection sort.

inspection—See walkthrough.

instance—An object created from a
class. Multiple objects can be instanti-
ated from a single class.

Z01_LEWI5976_05_SE_APPA.indd 917 08/02/19 2:53 PM

918 APPENDIX A Glossary

instance method—A method that must
be invoked through a particular instance
of a class, as opposed to a class method.

instance variable—A variable that
must be referenced through a particu-
lar instance of a class, as opposed to a
class variable.

instanceof—A Java reserved word that
is also an operator, used to determine
the class or type of a variable.

instantiation—The act of creating an
object from a class.

int—A Java reserved word that represents
a primitive integer type, stored using 32
bits in two’s complement format.

integrated development environment
(IDE)—A software application used
by software developers to create and
debug programs.

integration test—The process of testing
software components that are made
up of other interacting components.
Stresses the communication between
components rather than the functional-
ity of individual components.

interface—(1) A Java reserved word that
is used to define a set of abstract meth-
ods that will be implemented by par-
ticular classes. (2) The set of messages
to which an object responds, defined by
the methods that can be invoked from
outside of the object. (3) The techniques
through which a human user interacts
with a program, often graphically. See
also graphical user interface.

interface hierarchy—A tree-like struc-
ture created when interfaces are
derived from other interfaces through
inheritance. See also class hierarchy.

internal node—A tree node that is not
the root node and that has at least one
child. See also node, root, tree.

Internet—The most pervasive wide-area
network in the world; it has become
the primary vehicle for computer-to-
computer communication. See also
wide-area network.

Internet address—A designation that
uniquely identifies a particular com-
puter or device on the Internet.

Internet Message Access Protocol
(IMAP)—Protocol that defines the
communications commands required
to communicate with another machine
for the purposes of reading email.

Internet Naming Authority—The gov-
erning body that approves all Internet
addresses.

interpreter—A program that translates
and executes code on a particular
machine. The Java interpreter trans-
lates and executes Java bytecode. See
also compiler.

invisible component—A GUI compo-
nent that can be added to a container
to provide buffering space between
other components.

invocation—See method invocation.

I/O devices—See input/output devices.

IP address—A series of several integer
values, separated by periods (.), that
uniquely identifies a particular computer
or device on the Internet. Each Internet
address has a corresponding IP address.

is-a relationship—The relationship cre-
ated through properly derived classes
via inheritance. The subclass is-a more

Z01_LEWI5976_05_SE_APPA.indd 918 08/02/19 2:53 PM

 APPENDIX A Glossary 919

specific version of the superclass. See
also has-a relationship.

ISO-Latin-1—A 128-character exten-
sion to the ASCII character set defined
by the International Organization for
Standardization (ISO). The characters
correspond to the numeric values 128
through 255 in both ASCII and Unicode.

iteration—(1) One execution of the
body of a repetition statement. (2) One
pass through a cyclic process, such as
an iterative development process.

iteration statement—See repetition
statement.

iterative development process—A step-
by-step approach for creating soft-
ware, which contains a series of stages
that are performed repetitively.

jar—A file format used by Java to pack-
age and compress a group of files and
directories, suitable for exchanging with
another computer. The jar file format is
based on the zip file format. See also zip.

java—The Java command-line inter-
preter, which translates and exe-
cutes Java bytecode. Part of the Java
Development Kit (JDK).

Java—The programming language
used throughout this text to demon-
strate software development concepts.
Described by its developers as object-
oriented, robust, secure, architecture
neutral, portable, high-performance,
interpreted, threaded, and dynamic.

Java API—See application program-
ming interface (API).

Java Development Kit (JDK)—A col-
lection of software tools available free

from Sun Microsystems, the creators
of the Java programming language. See
also Software Development Kit.

Java Virtual Machine (JVM)—The
conceptual device, implemented in
software, on which Java bytecode is
executed. Bytecode, which is architec-
ture neutral, does not run on a particu-
lar hardware platform; instead, it runs
on the JVM.

javac—The Java command-line com-
piler, which translates Java source code
into Java bytecode. Part of the Java
Development Kit.

javadoc—A software tool that creates
external documentation in HTML for-
mat about the contents and structure
of a Java software system. Part of the
Java Development Kit.

javah—A software tool that generates
C header and source files, used for
implementing native methods. Part of
the Java Development Kit.

javap—A software tool that disas-
sembles a Java class file, containing
unreadable bytecode, into a human-
readable version. Part of the Java
Development Kit.

jdb—The Java command-line debug-
ger. Part of the Java Development Kit.

JDK—See Java Development Kit.

JUnit—A unit testing framework for
Java applications. See also unit testing.

JVM—See Java Virtual Machine.

kilobit (Kb)—A unit of binary storage,
equal to 210, or 1024, bits.

kilobyte (K or KB)—A unit of binary
storage, equal to 210, or 1024, bytes.

Z01_LEWI5976_05_SE_APPA.indd 919 08/02/19 2:53 PM

920 APPENDIX A Glossary

label—(1) A GUI component that dis-
plays text, an image, or both. (2) An
identifier in Java used to specify a
particular line of code. The break and
continue statements can jump to a
specific, labeled line in the program.

LAN—See local-area network.

last-in, first-out (LIFO)—A data man-
agement technique in which the last
value that is stored in a data structure
is the first value that comes out. See
also first-in, first-out (FIFO); stack.

layout manager—An object that speci-
fies the presentation of GUI compo-
nents. Each container is governed by a
particular layout manager.

leaf—A tree node that has no children.
See also node, tree.

level—A conceptual horizontal line in
a tree on which all elements that are
the same distance from the root node
are located.

level-order traversal—A tree traversal
that is accomplished by visiting all of
the nodes at each level, one level at a
time. See also inorder traversal, level,
postorder traversal, preorder traversal.

lexicographic ordering—The ordering
of characters and strings based on a
particular character set such as Unicode.

life cycle—The stages through which a
software product is developed and used.

LIFO—See last-in, first-out (LIFO).

linear search—A search algorithm in
which each item in the list is compared
to the target value until the target is
found or the list is exhausted. See also
binary search.

link—(1) A designation in a hyper-
text document that “jumps” to a new
document (or to a new part of the same
document) when clicked. (2) An object
reference used to connect two items in
a dynamically linked structure.

linked list—A structure in which one
object refers to the next, creating a
linear ordering of the objects in the list.
See also linked structure.

linked structure—A dynamic data
structure in which objects are con-
nected using references.

Linux—A computer operating system,
similar to Unix, developed by hobby-
ists and generally available free. See
also operating system, Unix.

list—(1) A GUI component that pres-
ents a list of items from which the user
can choose. The current selection is
highlighted in the list. See also combo
box. (2) A collection of objects arranged
in a linear manner. See also linked list.

listener—An object that is set up to
respond to an event when it occurs.

listener adaptor class—A class defined
with empty methods corresponding to
the methods invoked when particular
events occur. A listener object can be
derived from an adaptor class. See also
listener interface.

listener interface—A Java interface that
defines the methods invoked when par-
ticular events occur. A listener object can
be created by implementing a listener
interface. See also listener adaptor class.

literal—A primitive value used explic-
itly in a program, such as the numeric
literal 147 or the string literal “hello”.

Z01_LEWI5976_05_SE_APPA.indd 920 08/02/19 2:53 PM

 APPENDIX A Glossary 921

local-area network (LAN)—A com-
puter network designed to span short
distances and connect a relatively small
number of computers. See also wide-
area network.

local variable—A variable, defined within
a method, that does not exist except dur-
ing the execution of the method.

logarithmic complexity—An equation
that specifies the efficiency of an algo-
rithm and whose dominant term con-
tains the problem size as the base of
a logarithm (for example, log2n). See
also growth function.

logical error—A problem stemming from
inappropriate processing in the code. It
does not cause an abnormal termination
of the program, but it produces incorrect
results. See also compile-time error, run-
time error, syntax error.

logical line of code—A logical pro-
gramming statement in a source code
program, which may extend over mul-
tiple physical lines. See also physical
line of code.

logical operator—One of the operators
that perform a logical NOT (!), AND
(&&), or OR (||), returning a boolean
result. The logical operators are short-
circuited, meaning that if their left oper-
and is sufficient to determine the result,
the right operand is not evaluated.

long—A Java reserved word that repre-
sents a primitive integer type, stored using
64 bits in two’s complement format.

loop—See repetition statement.

loop control variable—A variable whose
value specifically determines how many
times a loop body is executed.

low-level language—Either machine
language or assembly language, which
are considered “low-level” because they
are conceptually closer to the basic pro-
cessing of a computer than high-level
languages are.

machine language—The native language
of a particular CPU. Any software that
runs on a particular CPU must be trans-
lated into its machine language.

main memory—The volatile hardware
storage device where programs and data
are held when they are actively needed
by the CPU. See also secondary memory.

maintenance—(1) The process of fix-
ing errors in, or making enhancements
to, a released software product. (2)
The software life-cycle phase in which
the software is in use and changes are
made to it as needed.

make—A build tool generally used
with C and C++ program development.
See also build tool.

mantissa—The portion of a floating
point value’s internal representation
that specifies the magnitude of the
number. See also exponent.

max heap—A complete binary tree in
which each element is greater than or
equal to both of its children. See also
binary tree, min heap.

megabyte (MB)—A unit of binary stor-
age, equal to 220 (approximately 1 mil-
lion) bytes.

member—A variable or method in an
object or class.

memory—Hardware devices that store
programs and data. See also main
memory, secondary memory.

Z01_LEWI5976_05_SE_APPA.indd 921 08/02/19 2:53 PM

922 APPENDIX A Glossary

memory location—An individual,
addressable cell inside main memory
in which data can be stored.

memory management—The process
of controlling dynamically allocated
portions of main memory, especially
the act of returning allocated memory
when it is no longer required. See also
garbage collection.

merge sort—A sorting algorithm in
which a list is recursively divided in
half until each sublist has one element.
Then the sublists are recombined in
order. See also bubble sort, heap sort,
insertion sort, quick sort, radix sort,
selection sort.

method—A named group of decla-
rations and programming statements
that can be invoked (executed) when
needed. A method is part of a class.

method call conversion—The auto-
matic widening conversion that can
occur when a value of one type is passed
to a formal parameter of another type.

method definition—The specification
of the code that gets executed when
the method is invoked. The definition
includes declarations of local variables
and formal parameters.

method invocation—A line of code
that causes a method to be executed. It
specifies any values that are passed to
the method as parameters.

method overloading—See overloading.

min heap—A complete binary tree
in which each element is less than or
equal to both of its children. See also
binary tree, max heap.

minimum spanning tree—A spanning
tree where the sum of the weights of
the edges is less than or equal to the
sum of the weights of the edges for any
other spanning tree for the same graph.
See also edge, spanning tree.

mnemonic—(1) A word or identifier
that specifies a command or data value
in an assembly language. (2) A key-
board character used as a alternative
means to activate a GUI component
such as a button.

modal—Having multiple modes (such
as a dialog box).

modem—A data transfer device that
allows information to be sent along a
telephone line.

modifier—A designation used in a Java
declaration that specifies particular
characteristics to the construct being
declared.

monitor—The screen in the com-
puter system that serves as an output
device.

multidimensional array—An array that
uses more than one index to specify a
value stored in it.

multiple inheritance—Deriving a class
from more than one parent, inherit-
ing methods and variables from each.
Multiple inheritance is not supported
in Java.

multiplicity—The numeric relationship
between two objects, often shown in
class diagrams.

n-ary tree—A tree that limits to the
value of n the number of children a
node can contain or reference.

Z01_LEWI5976_05_SE_APPA.indd 922 08/02/19 2:53 PM

 APPENDIX A Glossary 923

NaN—An abbreviation that stands for
“not a number,” which is the designa-
tion for an inappropriate or undefined
numeric value.

narrowing conversion—A conversion
between two values of different but
compatible data types. Narrowing
conversions could lose information
because the converted type usually has
an internal representation smaller than
the original storage space. See also
widening conversion.

native—A Java reserved word that
serves as a modifier for methods.
A native method is implemented in
another programming language.

natural language—A language that
humans use to communicate, such as
English or French.

negative infinity—A special floating
point value that represents the “lowest
possible” value. See also positive infinity.

nested class—A class declared within
another class in order to facilitate
implementation and restrict access.

nested if statement—An if statement
that has another if statement as its
body.

network—(1) Two or more computers
connected together so that they can
exchange data and share resources. (2)
See weighted graph.

network address—See address.

new—A Java reserved word that is
also an operator, used to instantiate an
object from a class.

newline character—A nonprintable
character that indicates the end of a line.

nodes—Objects in a collection that
generally manage the structure of the
collection. Nodes can be found in
linked implementations of graphs,
linked structures, and trees. See also
graph, linked structure, trees.

nonprintable character—Any charac-
ter, such as an escape or newline char-
acter, that does not have a symbolic
representation that can be displayed on
a monitor or printed by a printer. See
also printable character.

nonvolatile—The characteristic of a
memory device that retains its stored
information even after the power supply
is turned off. Secondary memory devices
are nonvolatile. See also volatile.

null—A Java reserved word that is a refer-
ence literal, used to indicate that a refer-
ence does not currently refer to any object.

number system—A set of values and
operations defined by a particular base
value that determines the number of
digits available and the place value of
each digit.

object—(1) The primary software con-
struct in the object-oriented paradigm.
(2) An encapsulated collection of data
variables and methods. (3) An instance
of a class.

object diagram—A visual representa-
tion of the objects in a program at a
given point in time, often showing the
status of instance data.

object-oriented programming—An
approach to software design and
implementation that revolves around
objects and classes. See also procedural
programming.

Z01_LEWI5976_05_SE_APPA.indd 923 08/02/19 2:53 PM

924 APPENDIX A Glossary

octal—The base-8 number system,
sometimes used to abbreviate binary
strings. See also binary, hexadecimal.

off-by-one error—An error caused by
a calculation or condition being off by
one, such as when a loop is set up to
access one too many array elements.

operand—A value on which an opera-
tor performs its function. For example,
in the expression 5 + 2, the values 5
and 2 are operands.

operating system—The collection of
programs that provides the primary
user interface to a computer and man-
ages its resources, such as memory and
the CPU.

operator—A symbol that represents a par-
ticular operation in a programming lan-
guage, such as the addition operator (+).

operator association—The order in
which operators within the same pre-
cedence level are evaluated, either right
to left or left to right. See also operator
precedence.

operator overloading—Assigning addi-
tional meaning to an operator. Operator
overloading is not supported in Java,
although method overloading is.

operator precedence—The order in
which operators are evaluated in an
expression as specified by a well-defined
hierarchy.

order—The dominant term in an equa-
tion that specifies the efficiency of an
algorithm. For example, selection sort
is of order n2.

order of tree—The maximum number
of children a tree node may contain or
reference. See also node, tree.

overflow—A problem that occurs
when a data value grows too large for
its storage size, which can cause inac-
curate arithmetic processing. See also
underflow.

overloading—Assigning additional mean-
ing to a programming language construct,
such as a method or operator. Method
overloading is supported by Java, but
operator overloading is not.

overriding—The process of modifying
the definition of an inherited method
to suit the purposes of the subclass. See
also shadowing variables.

package—A Java reserved word that is
used to specify a group of related classes.

package visibility—See default visibility.

panel—A GUI container that holds and
organizes other GUI components.

parameter—(1) A value passed from a
method invocation to its definition. (2)
The identifier in a method definition
that accepts the value passed to it when
the method is invoked. See also actual
parameter, formal parameter.

parameter list—The list of actual or
formal parameters to a method.

parameterized type—See generic type.

parent class—See superclass.

partition element—An arbitrarily cho-
sen element in a list of values that is
used by the quick sort algorithm to
partition the list for recursive process-
ing. See also quick sort.

pass by reference—The process of pass-
ing a reference to a value into a method
as the parameter. In Java, all objects are
managed using references, so an object’s

Z01_LEWI5976_05_SE_APPA.indd 924 08/02/19 2:53 PM

 APPENDIX A Glossary 925

formal parameter is an alias to the origi-
nal. See also pass by value.

pass by value—The process of making
a copy of a value and passing the copy
into a method. Therefore, any change
made to the value inside the method is
not reflected in the original value. All
Java primitive types are passed by value.

path—A sequence of edges in a tree
or graph that connects two nodes. See
also edge, graph, node, tree.

PDL—See Program Design Language.

peripheral—Any hardware device
other than the CPU or main memory.

persistence—The ability of an object
to stay in existence after the executing
program that creates it terminates. See
also serialize.

physical line of code—A line in a
source code file, terminated by a new-
line or similar character. See also logi-
cal line of code.

pixel—A picture element. A digitized
picture is made up of many pixels.

place value—The value of each digit
position in a number, which determines
the overall contribution of that digit to
the value. See also number system.

point-to-point connection—The link
between two networked devices that
are connected directly by a wire.

pointer—A variable that can hold a
memory address. Instead of pointers,
Java uses references, which provide
essentially the same functionality as
pointers but without the complications.

polyline—A shape made up of a series
of connected line segments. A polyline

is similar to a polygon, but the shape
is not closed.

polymorphism—An object-oriented
technique by which a reference that
is used to invoke a method can result
in different methods being invoked at
different times. All Java method invoca-
tions are potentially polymorphic in that
they invoke the method of the object
type, not that of the reference type.

polynomial complexity—An equation
that specifies the efficiency of an algo-
rithm and whose dominant term contains
the problem size raised to a power (for
example, n2). See also growth function.

POP—See Post Office Protocol.

portability—The ability of a program
to be moved from one hardware plat-
form to another without having to be
changed. Because Java bytecode is not
related to any particular hardware envi-
ronment, Java programs are considered
portable. See also architecture neutral.

positive infinity—A special floating point
value that represents the “highest pos-
sible” value. See also negative infinity.

Post Office Protocol—Protocol that
defines the communications commands
required to communicate with another
machine for the purposes of reading email.

postfix expression—An expression in
which an operator is positioned after
the operands on which it works. See
also infix expression.

postfix operator—In Java, an opera-
tor that is positioned behind its single
operand and whose evaluation yields
the value prior to the operation
being performed. Both the increment

Z01_LEWI5976_05_SE_APPA.indd 925 08/02/19 2:53 PM

926 APPENDIX A Glossary

operator (++) and the decrement oper-
ator (––) can be applied postfix. See
also prefix operator.

postorder traversal—A tree traversal
that is accomplished by visiting the
children and then the node. See also
inorder traversal, level-order traversal,
preorder traversal.

precedence—See operator precedence.

prefix operator—In Java, an operator
that is positioned in front of its single
operand and whose evaluation yields the
value after the operation has been per-
formed. Both the increment operator (++)
and the decrement operator (––) can be
applied prefix. See also postfix operator.

preorder traversal—A tree traversal
that is accomplished by visiting each
node and then its children. See also
inorder traversal, level-order traversal,
postorder traversal.

primitive data type—A data type that is
predefined in a programming language.

printable character—Any character that
has a symbolic representation that can
be displayed on a monitor or printed by
a printer. See also nonprintable character.

private—A Java reserved word that
serves as a visibility modifier for meth-
ods and variables. Private methods
and variables are not inherited by sub-
classes, and they can be accessed only
in the class in which they are declared.

procedural programming—An approach
to software design and implementation
that revolves around procedures (or
functions) and their interaction. See also
object-oriented programming.

processing stream—An I/O stream that
performs some type of manipulation
on the data in the stream. Sometimes
called a filtering stream. See also data
stream.

program—A series of instructions exe-
cuted by hardware, one after another.

Program Design Language (PDL)—A
language in which a program’s design
and algorithms are expressed. See also
pseudocode.

programming language—A specifica-
tion of the syntax and semantics of the
statements used to create a program.

programming language statement—An
individual instruction in a given pro-
gramming language.

prompt—A message or symbol used to
request information from the user.

propagation—See exception propagation.

protected—A Java reserved word that
serves as a visibility modifier for meth-
ods and variables. Protected meth-
ods and variables are inherited by all
subclasses and are accessible from all
classes in the same package.

prototype—A program used to explore
an idea or prove the feasibility of a
particular approach.

pseudocode—Structured and abbrevi-
ated natural language used to express
the algorithmic steps of a program. See
also Program Design Language.

pseudo–random number—A value
generated by software that performs
extensive calculations based on an initial
seed value. The result is not truly ran-
dom because it is based on a calculation,

Z01_LEWI5976_05_SE_APPA.indd 926 08/02/19 2:53 PM

 APPENDIX A Glossary 927

but it is usually random enough for
most purposes.

public—A Java reserved word that serves
as a visibility modifier for classes, inter-
faces, methods, and variables. A public
class or interface can be used anywhere. A
public method or variable is inherited by
all subclasses and is accessible anywhere.

pure object-oriented language—A pro-
gramming language that enforces, to
some degree, software development
using an object-oriented approach. See
also hybrid object-oriented language.

push button—A GUI component that
allows the user to initiate an action
with a mouse click. See also check box,
radio button.

queue—An abstract data type that
manages information in a first-in, first-
out manner.

quick sort—A sorting algorithm in
which the list to sort is partitioned on
the basis of an arbitrarily chosen ele-
ment. Then the sublists on either side
of the partition element are recursively
sorted. See also bubble sort, heap sort,
insertion sort, merge sort, radix sort,
selection sort.

radio button—A GUI component that
allows the user to choose one of a set of
options with a mouse click. A radio but-
ton is useful only as part of a group of
other radio buttons. See also check box.

radix—The base, or number of possi-
ble unique digits, of a number system.

radix sort—A sorting algorithm that
utilizes a series of queues. See also
bubble sort, heap sort, insertion sort,
merge sort, selection sort, quick sort.

RAM—See random access memory
(RAM).

random access device—A memory
device whose information can be directly
accessed. See also random access mem-
ory, sequential access device.

random access memory (RAM)—A
term basically interchangeable with
main memory. Should probably be
called read-write memory, to distin-
guish it from read-only memory.

random-number generator—Software
that produces a pseudo-random num-
ber, generated by calculations based on
a seed value.

read-only memory (ROM)—Any mem-
ory device whose stored information is
stored permanently when the device is
created. It can be read from but not
written to.

recursion—The process of a method
invoking itself, either directly or indi-
rectly. Recursive algorithms sometimes
provide elegant, though perhaps inef-
ficient, solutions to a problem.

refactoring—The process of modifying
existing source code to clean up redun-
dant portions introduced during the
development of additional source code.

reference—A variable that holds the
address of an object. In Java, a ref-
erence can be used to interact with
an object, but its address cannot be
accessed, set, or operated on directly.

refinement—One iteration of an evolu-
tionary development cycle in which a
particular aspect of the system, such as
the user interface or a particular algo-
rithm, is addressed.

Z01_LEWI5976_05_SE_APPA.indd 927 08/02/19 2:53 PM

928 APPENDIX A Glossary

refinement scope—The specific issues
that are addressed in a particular
refinement during evolutionary soft-
ware development.

register—A small area of storage in the
CPU of the computer.

regression testing—The process of re-
executing test cases after the addition
of a new feature or the correction of
an existing bug to ensure that code
modifications did not introduce any
new problems.

relational operator—One of several
operators that determine the ordering
relationship between two values: less
than (<), less than or equal to (<=),
greater than (>), and greater than or
equal to (>=). See also equality operator.

release—A version of a software
product that is made available to the
customer.

repetition statement—A programming
construct that allows a set of state-
ments to be executed repetitively as
long as a particular condition is true.
The body of the repetition statement
should eventually make the condition
false. Also called an iteration statement
or loop. See also do, for, while.

requirements—(1) The specification of
what a program must do and what
it must not do. (2) An early phase of
the software development process in
which the program requirements are
established.

reserved word—A word that has spe-
cial meaning in a programming lan-
guage and cannot be used for any other
purpose.

retirement—The phase of a program’s
life cycle in which the program is taken
out of active use.

return—A Java reserved word that causes
the flow of program execution to return
from a method to the point of invocation.

return type—The type of value returned
from a method, specified before the
method name in the method declara-
tion. Could be void, which indicates
that no value is returned.

reuse—Using existing software compo-
nents to create new ones.

review—The process of critically exam-
ining a design or program to discover
errors. There are many types of reviews.
See also desk check, walkthrough.

RGB value—A collection of three val-
ues that defines a color. Each value rep-
resents the contribution of the primary
colors red, green, and blue.

ROM—See read-only memory (ROM).

rotation—An operation on a tree that
seeks to relocate nodes in an attempt
to assist in the balance of the tree. See
also balanced tree, node.

run-time error—A problem that occurs
during program execution and causes
the program to terminate abnormally.
See also compile-time error, logical
error, syntax error.

scope—The areas within a program in
which an identifier, such as a variable,
can be referenced. See also access.

scroll pane—A GUI container that
offers a limited view of a component
and provides horizontal and/or vertical
scroll bars to change that view.

Z01_LEWI5976_05_SE_APPA.indd 928 08/02/19 2:53 PM

 APPENDIX A Glossary 929

SDK—See Software Development Kit
(SDK).

search pool—A group of items over
which a search is performed.

search tree—A tree whose elements are
structured to facilitate finding a particu-
lar element when needed. See also tree.

searching—The process of determining
the existence or location of a target
value within a list of values. See also
binary search, linear search.

secondary memory—Hardware storage
devices, such as magnetic disks or tapes,
that store information in a relatively per-
manent manner. See also main memory.

seed value—A value used by a random-
number generator as a base for the
calculations that produce a pseudo-
random number.

selection sort—A sorting algorithm in
which each value, one at a time, is
placed in its final, sorted position. See
also bubble sort, heap sort, insertion
sort, merge sort, quick sort, radix sort.

selection statement—A programming
construct that allows a set of state-
ments to be executed if a particular
condition is true. See also if, switch.

self-loop—An edge of a graph that
connects a vertex to itself.

self-referential object—An object that
contains a reference to a second object
of the same type.

semantics—The interpretation of a
program or programming construct.

sentinel value—A specific value used to
indicate a special condition, such as the
end of input.

serialize—The process of converting
an object into a linear series of bytes
so that it can be saved to a file or sent
across a network. See also persistence.

service methods—Methods in an object
that are declared with public visibility
and define a service that the object’s
client can invoke.

shadowing variables—The process of
defining a variable in a subclass that
supersedes an inherited version.

shell—See command shell.

short—A Java reserved word that repre-
sents a primitive integer type, stored using
16 bits in two’s complement format.

siblings—Two items in a tree or hierar-
chy, such as a class inheritance hierar-
chy, that have the same parent.

sign bit—A bit in a numeric value that
represents the sign (positive or nega-
tive) of that value.

signed numeric value—A value that
stores a sign (positive or negative). All
Java numeric values are signed. A Java
character is stored as an unsigned value.

signature—The number, types, and
order of the parameters of a method.
Overloaded methods must each have a
unique signature.

Simple Mail Transfer Protocol—A pro-
tocol that defines the communications
commands required to send email.

slider—A GUI component that allows
the user to specify a numeric value
within a bounded range by moving a
knob to the appropriate place in the
range.

sling—See self-loop.

Z01_LEWI5976_05_SE_APPA.indd 929 08/02/19 2:53 PM

930 APPENDIX A Glossary

SMTP—See Simple Mail Transfer
Protocol.

software—(1) Programs and data. (2)
The intangible components of a com-
puter system.

software component—See component.

Software Development Kit (SDK)—A
collection of software tools that assists
in the development of software. The Java
Software Development Kit is another
name for the Java Development Kit.

software engineering—The discipline
within computer science that addresses
the process of developing high-quality
software within practical constraints.

sort key—A particular value that is
present in each member of a collection
of objects and on which a sort is based.

sorting—The process of putting a list
of values into a well-defined order. See
also bubble sort, heap sort, insertion
sort, merge sort, radix sort, selection
sort, quick sort.

spanning tree—A tree that includes all
of the vertices of a graph and some, but
possibly not all, of the edges. See also
edge, vertex.

split pane—A GUI container that dis-
plays two components, either side by
side or one on top of the other, sepa-
rated by a moveable divider bar.

stack—An abstract data type that man-
ages data in a last-in, first-out manner.

stack trace—The series of methods called
to reach a certain point in a program.
When an exception is thrown, the stack
trace can be analyzed to assist the pro-
grammer in tracking down the problem.

standard I/O stream—One of three
common I/O streams representing
standard input (usually the keyboard),
standard output (usually the monitor
screen), and standard error (also usu-
ally the monitor). See also stream.

start angle—In the definition of an arc,
the angle at which the arc begins. See
also arc angle.

state—The state of being of an object,
defined by the values of its data. See
also behavior, identity.

statement—See programming language
statement.

statement coverage—A strategy used
in white-box testing in which all state-
ments in a program are executed. See
also condition coverage.

static—A Java reserved word that
serves as a modifier for methods and
variables. A static method is also called
a class method and can be referenced
without an instance of the class. A
static variable is also called a class vari-
able and is common to all instances of
the class.

static data structure—A data structure
that has a fixed size and cannot grow
and shrink as needed. See also dynamic
data structure.

step—The execution of a single pro-
gram statement in a debugger. See also
debugger.

storage capacity—The total number of
bytes that can be stored in a particular
memory device.

stream—A source of input or a desti-
nation for output.

Z01_LEWI5976_05_SE_APPA.indd 930 08/02/19 2:53 PM

 APPENDIX A Glossary 931

strictfp—A Java reserved word that is
used to control certain aspects of float-
ing point arithmetic.

string—See character string.

string concatenation—The process of
attaching the beginning of one charac-
ter string to the end of another, result-
ing in one longer string.

strongly typed language—A program-
ming language in which each variable
is associated with a particular data
type for the duration of its existence.
Variables are not allowed to take on
values or be used in operations that are
inconsistent with their type.

structured programming—An approach
to program development in which each
software component has one entry and
exit point and in which the flow of con-
trol does not cross unnecessarily.

stub—A method that simulates the
functionality of a particular software
component. Often used during unit
testing. See also unit testing.

subclass—A class derived from another
class via inheritance. Also called a
derived class or child class. See also
superclass.

subscript—See index.

super—A Java reserved word that is
a reference to the parent class of the
object making the reference. Often
used to invoke a parent’s constructor.

super reference—See super.

superclass—The class from which
another class is derived via inheritance.
Also called a base class or parent class.
See also subclass.

support methods—Methods in an object
that are not intended for use outside the
class. They provide support functionality
for service methods. Thus they are usu-
ally not declared with public visibility.

swapping—The process of exchanging
the values of two variables.

Swing—The package in the Java API
(javax.swing) that contains classes
related to GUIs. Swing provides alter-
natives to components in the Abstract
Windowing Toolkit package but does
not replace it.

switch—A Java reserved word that
specifies a compound conditional
construct.

synchronization—The process of
ensuring that data shared among mul-
tiple threads cannot be accessed by
more than one thread at a time. See
also synchronized.

synchronized—A Java reserved word that
serves as a modifier for methods. Separate
threads of a process can execute concur-
rently in a method, unless the method
is synchronized, making it a mutually
exclusive resource. Methods that access
shared data should be synchronized.

syntax error—An error produced by
the compiler because a program did
not conform to the syntax of the pro-
gramming language. Syntax errors are
a subset of compile-time errors. See
also compile-time error, logical error,
run-time error, syntax rules.

syntax rules—The set of specifica-
tions that govern how the elements of
a programming language can be put
together to form valid statements.

Z01_LEWI5976_05_SE_APPA.indd 931 08/02/19 2:53 PM

932 APPENDIX A Glossary

system test—The process of testing an
entire software system. Alpha and beta
tests (also known as alpha and beta
releases of software applications) are
system tests.

tabbed pane—A GUI container that
presents a set of cards from which the
user can choose. Each card contains its
own GUI components.

target element—See target value.

target value—The value that is sought
when performing a search on a collec-
tion of data.

targets—User-defined groups of actions
present in an ANT build file.

TCP/IP—Software that controls the
movement of messages across the
Internet. The abbreviation stands
for Transmission Control Protocol/
Internet Protocol.

terabyte (TB)—A unit of binary stor-
age, equal to 240 (approximately 1
trillion) bytes.

termination—The point at which a
program stops executing.

ternary operator—An operator that
uses three operands.

test case—A set of input values and
user actions, along with a specification
of the expected output, used to find
errors in a system.

test-driven development—A software
development style that encourages the
developer to write test cases first and
then develop just enough source code
to see the test cases pass.

test fixture—A method used to instan-
tiate objects used during a test.

test suite—A set of tests that covers
various aspects of the system.

testing—(1) The process of running a
program with various test cases in order
to discover problems. (2) The process of
critically evaluating a design or program.

text area—A GUI component that dis-
plays, or allows the user to enter, mul-
tiple lines of data.

text field—A GUI component that dis-
plays, or allows the user to enter, a
single line of data.

text file—A file that contains data for-
matted as ASCII or Unicode characters.

this—A Java reserved word that is a
reference to the object executing the
code making the reference.

thread—An independent process execut-
ing within a program. A Java program
can have multiple threads running in a
program at one time.

throw—A Java reserved word that is
used to start an exception propagation.

throws—A Java reserved word that
specifies that a method may throw a
particular type of exception.

timer—An object that generates an
event at regular intervals.

token—A portion of a string defined
by a set of delimiters.

tool tip—A short line of text that
appears when the mouse pointer is
allowed to rest on top of a particu-
lar component. Usually, tool tips are
employed to inform the user of the
component’s purpose.

top-level domain—The last part of a net-
work domain name, such as edu or com.

Z01_LEWI5976_05_SE_APPA.indd 932 08/02/19 2:53 PM

 APPENDIX A Glossary 933

transient—A Java reserved word that
serves as a modifier for variables. A
transient variable does not contribute
to the object’s persistent state and
therefore does not need to be saved.
See also serialize.

tree—A nonlinear data structure that
forms a hierarchy stemming from a
single root node.

true—A Java reserved word that serves
as one of the two boolean literals
(true and false).

truth table—A complete enumeration
of all permutations of values involved
in a boolean expression, as well as the
computed result.

try—A Java reserved word that is used to
define the context in which certain excep-
tions will be handled if they are thrown.

two-dimensional array—An array that
uses two indices to specify the location
of an element. The two dimensions
are often thought of as the rows and
columns of a table. See also multidi-
mensional array.

two’s complement—A technique for
representing numeric binary data. Used
by all Java integer primitive types
(byte, short, int, long).

type—See data type.

UML—See Unified Modeling Language
(UML).

unary operator—An operator that uses
only one operand.

unchecked exception—A Java excep-
tion that does not need to be caught
or dealt with if the programmer so
chooses.

underflow—A problem that occurs
when a floating point value becomes
too small for its storage size, which can
cause inaccurate arithmetic processing.
See also overflow.

undirected graph—A graph data struc-
ture in which each edge can be tra-
versed in either direction. See also edge.

Unicode—The international character
set used to define valid Java characters.
Each character is represented using a
16-bit unsigned numeric value.

Unified Modeling Language (UML)—A
graphical notation for visualizing rela-
tionships among classes and objects.
There are many types of UML dia-
grams. See also class diagrams.

uniform resource locator (URL)—
A designation for a resource that can
be located through a Web browser.

unit testing—The process of testing an
individual software component. May
require the creation of stub modules
to simulate other system components.

Unix—A computer operating system
developed by AT&T Bell Labs. See also
Linux, operating system.

unsigned numeric value—A value that
does not store a sign (positive or nega-
tive). The bit usually reserved to repre-
sent the sign is included in the value,
doubling the magnitude of the number
that can be stored. Java characters are
stored as unsigned numeric values, but
there are no primitive numeric types
that are unsigned.

URL—See uniform resource locator
(URL).

Z01_LEWI5976_05_SE_APPA.indd 933 08/02/19 2:53 PM

934 APPENDIX A Glossary

use relationship—A relationship between
two classes, often shown in a class dia-
gram, that establishes that one class uses
another in some way, such as relying on
its services. See also association.

user interface—The manner in which
the user interacts with a software sys-
tem, which is often graphical. See also
graphical user interface (GUI).

variable—An identifier in a program
that represents a memory location in
which a data value is stored.

vertex—A node in a graph. See also
graph.

visibility modifier—A Java modifier
that defines the scope in which a con-
struct can be accessed. The Java visibil-
ity modifiers are public, protected,
private, and default (no modifier
used).

void—A Java reserved word that can
be used as a return value for a method,
indicating that no value is returned.

volatile—(1) A Java reserved word
that serves as a modifier for variables.
A volatile variable might be changed
asynchronously and therefore indicates
that the compiler should not attempt
optimizations on it. (2) The charac-
teristic of a memory device that loses
stored information when the power
supply is interrupted. Main memory
is a volatile storage device. See also
nonvolatile.

von Neumann architecture—The com-
puter architecture, named after John
von Neumann, in which programs and
data are stored together in the same
memory devices.

walkthrough—A form of review in
which a group of developers, manag-
ers, and quality assurance personnel
examine a design or program in order
to find errors. Sometimes referred to as
an inspection. See also desk check.

WAN—See wide-area network.

waterfall model—One of the earliest
software development process models.
It defines a basically linear interac-
tion among the requirements, design,
implementation, and testing stages.

Web—See World Wide Web.

weighted graph—A graph with weights
or costs associated with each edge.
Weighted graphs are also sometimes
known as networks.

while—A Java reserved word that rep-
resents a repetition construct. A while
statement is executed zero or more
times. See also do, for.

white-box testing—Producing and
evaluating test cases on the basis of
the interior logic of a software compo-
nent. The test cases focus on stressing
decision points and ensuring coverage.
See also black-box testing, condition
coverage, statement coverage.

white space—Spaces, tabs, and blank lines
that are used to set off sections of source
code to make programs more readable.

wide-area network (WAN)—A com-
puter network that connects two or
more local-area networks, usually
across long geographic distances. See
also local-area network.

widening conversion—A conversion
between two values of different but

Z01_LEWI5976_05_SE_APPA.indd 934 08/02/19 2:53 PM

 APPENDIX A Glossary 935

compatible data types. Widening con-
versions usually leave the data value
intact because the converted type has
an internal representation equal to or
larger than the original storage space.
See also narrowing conversion.

word—A unit of binary storage. The
size of a word varies by computer but
is usually 2, 4, or 8 bytes. The word
size indicates the amount of informa-
tion that can be moved through the
machine at one time.

World Wide Web (WWW or Web)—
Software that makes the exchange of
information across a network easier by

providing a common GUI for multiple
types of information. Web browsers
are used to retrieve and format HTML
documents.

wrapper class—A class designed to
store a primitive type in an object.
Generally used when an object refer-
ence is needed and a primitive type will
not suffice.

WWW—See World Wide Web.

zip—A file format used to compress
and store one or more files and direc-
tories into a single file suitable for
exchanging to another computer.

Z01_LEWI5976_05_SE_APPA.indd 935 08/02/19 2:53 PM

937

BB
This appendix contains a detailed introduction to

number systems and their underlying characteristics. The

particular focus is on the binary number system, its use with

computers, and its similarities to other number systems.

This introduction also covers conversions between bases.

In our everyday lives, we use the decimal number system

to represent values, to count, and to perform arithme-

tic. The decimal system is also referred to as the base-10

number system. We use ten digits (0 through 9) to represent

values in the decimal system.

Computers use the binary number system to store and

manage information. The binary system, also called the

base-2 number system, has only two digits (0 and 1). Each

0 and 1 is called a bit, which is short for “binary digit.” A

series of bits is called a binary string.

Appendix

Number Systems

Z02_LEWI5976_05_SE_APPB.indd 937 08/02/19 3:20 AM

938 APPENDIX B Number Systems

There is nothing particularly special about either the binary or the decimal sys-
tem. Long ago, humans adopted the decimal number system, probably because we
have ten fingers on our hands. If humans had twelve fingers, we would probably
be using a base-12 number system regularly and finding it just as easy to deal with
as we do the decimal system now. As you explore and use the binary system, it will
become more familiar and natural.

Binary is used for computer processing because the devices used to manage and
store information are less expensive and more reliable if they have to represent
only two possible values. Computers have been made that use the decimal system,
but they are not as convenient.

There are an infinite number of number systems, and they all follow the same
basic rules. You already know how the binary number system works, but you just
might not be aware that you do. It all goes back to the basic rules of arithmetic.

Place Value
In the decimal number system, we represent the values of 0 through 9 using only
one digit. To represent any value higher than 9, we must use more than one digit.
The position of each digit has a place value that indicates the amount it contrib-
utes to the overall value. In the decimal system, we refer to the one’s column, the
ten’s column, the hundred’s column, and so on forever.

Each place value is determined by the base of the number system, raised to
increasing powers as we move from right to left. In the decimal number system,
the place value of the digit farthest to the right is 100, or 1. The place value of the
next digit is 101, or 10. The place value of the third digit from the right is 102, or
100, and so on. Figure B.1 shows how each digit in a decimal number contributes
to the value.

The binary number system works the same way, except that we exhaust the
available digits much sooner. We can represent 0 and 1 with a single bit, but to
represent any value higher than 1, we must use multiple bits.

Place value:

Decimal number:

Decimal number:

103 102 101 100

8

8

4

4

2

2

103

1000

102

100

101

10

*

*

*

*

*

*

100

1 8427

*

*

1 7

7

8 4 2 7

1

1

1

1

1

5

5

FIGURE B.1 Place values in the decimal number system

Z02_LEWI5976_05_SE_APPB.indd 938 08/02/19 3:20 AM

 APPENDIX B Number Systems 939

The place values in binary are determined by increasing powers of the base as we
move right to left, just as they are in the decimal system. However, in binary, the
base value is 2. Therefore, the place value of the bit farthest to the right is 20, or 1.
The place value of the next bit is 21, or 2. The place value of the third bit from the
right is 22, or 4, and so on. Figure B.2 shows a binary number and its place values.

The number 1101 is a valid binary number, but it is a valid decimal number
as well. Sometimes, to make it clear which number system is being used, the base
value is appended as a subscript to the end of a number. Therefore, you can dis-
tinguish between 11012, which is equivalent to 13 in decimal, and 110110 (one
thousand one hundred and one), which in binary is represented as 100010011012.

A number system with base N has N digits (0 through N – 1). As we have seen,
the decimal system has ten digits (0 through 9), and the binary system has two dig-
its (0 and 1). They all work the same way. For instance, the base-5 number system
has five digits (0 through 4).

Note that in any number system, the place value of the digit farthest to the right
is 1, because any base raised to the zero power is 1. Also note that the value 10,
which we refer to as “ten” in the decimal system, always represents the base value
in any number system. In base 10, 10 is one 10 and zero 1’s. In base 2, 10 is one 2
and zero 1’s. In base 5, 10 is one 5 and zero 1’s.

You may have seen the following geeky joke on a t-shirt: There are 10 types of
people in the world, those who understand binary, and those who don’t.

Bases Higher Than 10
Because all number systems with base N have N digits, base 16 has 16 digits. But
what are they? We are used to the digits 0 through 9, but in bases higher than 10,
we need a single digit, a single symbol, that represents the decimal value 10. In
base 16, which is also called hexadecimal, we need digits that represent the deci-
mal values 10 through 15.

Place value:

Binary number:

Decimal number: 1

1

1

1

0

0

23

8

22

4

21

2

*

*

*

*

*

*

20

1 13

*

*

1

1

1

1

1

1

5

5

1

1

23 22 21 20

1 1 0 1

FIGURE B.2 Place values in the binary number system

Z02_LEWI5976_05_SE_APPB.indd 939 08/02/19 3:20 AM

940 APPENDIX B Number Systems

For number systems higher than 10, we use alphabetic characters as single digits
for values greater than 9. The hexadecimal digits are 0 through F, where 0 through
9 represent the first 10 digits, and A represents the decimal value 10, B represents
11, C represents 12, D represents 13, E represents 14, and F represents 15.

Therefore, the number 2A8E is a valid hexadecimal number. The place values
are determined as they are for decimal and binary, using increasing powers of the
base. So in hexadecimal, the place values are powers of 16. Figure B.3 shows how
the place values of the hexadecimal number 2A8E contribute to the overall value.

All number systems with bases greater than 10 use letters as digits. For ex-
ample, base 12 has the digits 0 through B, and base 19 has the digits 0 through I.
However, apart from each system having a different set of digits and a different
base, the rules governing all number systems are the same.

Keep in mind that when we change number systems, we are simply changing
the way we represent values, not the values themselves. If you have 1810 pencils, it
may be written as 10010 in binary or as 12 in hexadecimal, but it is still the same
number of pencils.

Figure B.4 shows the representations of the decimal values 0 through 20 in
several bases, including base 8, which is also called octal. Note that the larger the
base, the higher the value that can be represented in a single digit.

Conversions
We’ve already seen how a number in another base is converted to decimal by
determining the place value of each digit and computing the result. This process
can be used to convert any number in any base to its equivalent value in base 10.

Now let’s reverse the process, converting a base-10 value to another base. First,
find the highest place value in the new number system that is less than or equal to
the original value. Then divide the original number by that place value to deter-
mine the digit that belongs in that position. The remainder is the value that must

Place value:

Hexadecimal number:

Decimal number: 2

2

10

10

8

8

163

4096

162

256

161

16

*

*

*

*

*

*

160

1 10893

*

*

14

14

163 162 161 160

2 A 8 E

1

1

1

1

1

1

5

5

FIGURE B.3 Place values in the hexadecimal number system

Z02_LEWI5976_05_SE_APPB.indd 940 08/02/19 3:20 AM

 APPENDIX B Number Systems 941

be represented in the remaining digit positions. Continue this process, position by
position, until the entire value is represented.

For example, Figure B.5 shows the process of converting the decimal value 180
to binary. The highest place value in binary that is less than or equal to 180 is 128
(or 27), which is the eighth bit position from the right. Dividing 180 by 128 yields
1 with 52 remaining. Therefore, the first bit is 1, and the decimal value 52 must be
represented in the remaining seven bits. Dividing 52 by 64, which is the next place
value (26), yields 0 with 52 remaining. So the second bit is 0. Dividing 52 by 32
yields 1 with 20 remaining. So the third bit is 1, and the remaining five bits must
represent the value 20. Dividing 20 by 16 yields 1 with 4 remaining. Dividing 4 by
8 yields 0 with 4 remaining. Dividing 4 by 4 yields 0 with 0 remaining.

Binary
(base 2)

Octal
(base 8)

Decimal
(base 10)

Hexadecimal
(base 16)

0

1

10

11

100

101

110

111

1000

1001

1010

1011

1100

1101

1110

1111

10000

10001

10010

10011

10100

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

22

23

24

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

10

11

12

13

14

FIGURE B.4 Counting in various number systems

Z02_LEWI5976_05_SE_APPB.indd 941 08/02/19 3:20 AM

942 APPENDIX B Number Systems

Because the number has been completely represented, the rest of the bits are
zero. Therefore, 18010 is equivalent to 10110100 in binary. This can be confirmed
by converting the new binary number back to decimal to make sure we get the
original value.

This process works to convert any decimal value to any target base. For each
target base, the place values and possible digits change. If you start with the cor-
rect place value, each division operation will yield a valid digit in the new base.

In the example in Figure B.5, the only digits that could have resulted from each
division operation were 1 and 0, since we were converting to binary. However,
when we are converting to other bases, any digit valid in the new base can result.
For example, Figure B.6 shows the process of converting the decimal value 1967
to hexadecimal.

The place value 256, which is 162, is the highest place value less than or equal
to the original number, because the next highest place value is 163, or 4096.
Dividing 1967 by 256 yields 7 with 175 remaining. Dividing 175 by 16 yields

Place
value Number Digit

128

64

32

16

8

4

2

1

180

52

52

20

4

4

0

0

1

0

1

1

0

1

0

0

18010 5 101101002

FIGURE B.5 Converting a decimal value to binary

Place
value Number Digit

256

16

1

1967

175

15

7

A

F

196710 5 7AF16

FIGURE B.6 Converting a decimal value to hexadecimal

Z02_LEWI5976_05_SE_APPB.indd 942 08/02/19 3:20 AM

 APPENDIX B Number Systems 943

10 with 15 remaining. Remember that 10 in decimal can be represented as the
single digit A in hexadecimal. The 15 remaining can be represented as the digit F.
Therefore, 196710 is equivalent to 7AF in hexadecimal.

Shortcut Conversions
We have established techniques for converting any value in any base to its equiva-
lent representation in base 10, and from base 10 to any other base. Therefore, you
can now convert a number in any base to any other base by going through base
10. However, an interesting relationship between the bases that are powers of 2,
such as binary, octal, and hexadecimal, makes possible very quick conversions
between them.

To convert from binary to hexadecimal, for instance, you can simply group the
bits of the original value into groups of four, starting from the right, and then con-
vert each group of four into a single hexadecimal digit. The example in Figure B.7
demonstrates this process.

To go from hexadecimal to binary, we reverse this process, expanding each
hexadecimal digit into four binary digits. Note that you may have to add leading
zeros to the binary version of each expanded hexadecimal digit to make four binary
digits. Figure B.8 shows the conversion of the hexadecimal value 40C6 to binary.

1011111101100112 5 5FB316

101111110110011

1011

BF5 3

5FB3

101 1111 0011

FIGURE B.7 A shortcut conversion from binary to hexadecimal

40C616 5 1000000110001102

100000011000110

40C6

11000100 0000 0110

FIGURE B.8 A shortcut conversion from hexadecimal to binary

Z02_LEWI5976_05_SE_APPB.indd 943 08/02/19 3:20 AM

944 APPENDIX B Number Systems

Why do we use groups of four bits when converting between binary and hexa-
decimal? The answer comes from the relationship between the bases 2 and 16. We
use groups of four bits because 24 = 16. The shortcut conversions work between
binary and any base that is a power of 2. We section the bits into groups of that
power.

Therefore, converting from binary to octal is the same process, except that the
bits are sectioned into groups of three, because 23 = 8. Likewise, when converting
from octal to binary, we expand each octal digit into three bits.

To convert between, say, hexadecimal and octal is now a process of doing two
shortcut conversions. First convert from hexadecimal to binary; then take that
result and perform a shortcut conversion from binary to octal.

By the way, these types of shortcut conversions can be performed between any
base B and any base that is a power of B. For example, conversions between base 3
and base 9 can be accomplished using the shortcut grouping technique, sectioning
or expanding digits into groups of two, because 32 = 9.

Z02_LEWI5976_05_SE_APPB.indd 944 08/02/19 3:20 AM

 APPENDIX B Exercises 945

Exercises
EX B.1 What is the difference between the binary and decimal number

systems?

EX B.2 Why do modern computers use a binary number system to represent
information?

EX B.3 How many digits are used in the base-6 number system? What are
they?

EX B.4 How many digits are used in the base-12 number system? What are
they?

EX B.5 Convert the following binary numbers to decimal.

a. 10

b. 10110

c. 11100

d. 10101010

e. 11001011

f. 10000000001

EX B.6 Convert the following octal numbers to decimal.

a. 10

b. 125

c. 5401

d. 7777

e. 46034

f. 65520

EX B.7 Convert the following hexadecimal numbers to decimal.

a. 10

b. 904

c. 6C3

d. ABC

e. 5D0BF

f. FFF

EX B.8 Convert the following decimal numbers to binary.

a. 2

b. 10

Z02_LEWI5976_05_SE_APPB.indd 945 08/02/19 3:20 AM

946 APPENDIX B Number Systems

c. 64

d. 80

e. 145

f. 256

EX B.9 Convert the following decimal numbers to octal.

a. 8

b. 10

c. 512

d. 406

e. 349

f. 888

EX B.10 Convert the following decimal numbers to hexadecimal.

a. 16

b. 10

c. 175

d. 256

e. 422

f. 4199

EX B.11 Convert the following binary numbers to hexadecimal.

a. 101000110110

b. 1110101111

c. 1100110000010111

d. 1000000000011011

e. 1010111100010

f. 110001110000100011110000

EX B.12 Convert the following binary numbers to octal.

a. 101011111011

b. 1001101011

c. 111111000101110

d. 11010000110111110001

e. 111110101100011010001

f. 1100010001110101111011100111

Z02_LEWI5976_05_SE_APPB.indd 946 08/02/19 3:20 AM

EX B.13 Convert the following hexadecimal numbers to binary.

a. 555

b. B74

c. 47A9

d. FDCB

e. 10101010

f. 5B60F9D

EX B.14 Convert the following octal numbers to binary.

a. 555

b. 760

c. 152

d. 3032

e. 76543

f. 6351732

 APPENDIX B Exercises 947

Z02_LEWI5976_05_SE_APPB.indd 947 08/02/19 3:20 AM

949

CC
The Java programming language uses the Unicode

character set for managing text. A character set is simply an

ordered list of characters, each corresponding to a particu-

lar numeric value. Unicode is an international character set

that contains letters, symbols, and ideograms for languages

all over the world. Each character is represented as a 16-bit

unsigned numeric value. Unicode, therefore, can support

over 65,000 unique characters. In fact, with a technique

that uses more than two bytes in some cases, it can repre-

sent more than that.

Many programming languages still use the ASCII char-

acter set. ASCII stands for the American Standard Code for

Information Interchange. The 8-bit extended ASCII set is

quite small, so the developers of Java opted to use Unicode

in order to support international users. However, ASCII is

essentially a subset of Unicode, including the corresponding

numeric values, so programmers who are accustomed to us-

ing ASCII should have no problems with Unicode.

AppendixThe Unicode
Character Set

Z03_LEWI5976_05_SE_APPC.indd 949 08/02/19 3:21 AM

950 APPENDIX C The Unicode Character Set

Figure C.1 shows a list of commonly used characters and their Unicode
numeric values. These characters also happen to be ASCII characters. All of
the characters in Figure C.1 are called printable characters, because they have
a symbolic representation that can be displayed on a monitor or printed by a
printer. Characters that have no such symbolic representation are called non-
printable characters. Note that the space character (numeric value 32) is con-
sidered a printable character, even though no symbol is printed when it is
displayed. Nonprintable characters are sometimes called control characters,
because many of them can be generated by holding down the control key on a
keyboard and pressing another key.

The Unicode characters with numeric values 0 through 31 are nonprintable
characters. Also, the delete character, with numeric value 127, is a nonprintable
character. All of these characters are ASCII characters as well. Many of them have

Value Char Value Char Value Char Value Char Value Char

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

|

}

~

3

4

5

6

7

8

9

:

;

<

>

?

@

A

B

C

D

E

Y

Z

[

\

]

ˆ

–

'

a

b

c

d

e

f

g

h

i

j

k

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

space

!

"

#

$

%

&

'

(

)

*

+

'

–

.

/

0

1

2

=

FIGURE C.1 The printable ASCII subset of the Unicode character set

Z03_LEWI5976_05_SE_APPC.indd 950 08/02/19 3:21 AM

 APPENDIX C The Unicode Character Set 951

fairly common and well-defined uses, whereas others are more general. The table
in Figure C.2 lists a small sample of the nonprintable characters.

Nonprintable characters are used in many situations to represent special
conditions. For example, certain nonprintable characters can be stored in a
text document to indicate, among other things, the beginning of a new line.
An editor will process these characters by starting the text that follows it on
a new line, instead of printing a symbol to the screen. Various types of com-
puter systems use different nonprintable characters to represent particular
conditions.

Except for having no visible representation, nonprintable characters are essen-
tially equivalent to printable characters. They can be stored in a Java character
variable and can be part of a character string. They are stored using 16 bits,
can be converted to their numeric value, and can be compared using relational
operators.

The first 128 characters of the Unicode character set correspond to the com-
mon ASCII character set. The first 256 characters correspond to the ISO-Latin-1
extended ASCII character set. Many operating systems and Web browsers will
handle these characters, but they may not be able to print the other Unicode
characters.

Value Character

0

7

8

9

10

12

13

27

127

null

bell

backspace

tab

line feed

form feed

carriage return

escape

delete

FIGURE C.2 Some nonprintable characters in the Unicode
character set

Z03_LEWI5976_05_SE_APPC.indd 951 08/02/19 3:21 AM

952 APPENDIX C The Unicode Character Set

The Unicode character set contains most alphabets in use today, including
Greek, Hebrew, Cyrillic, and various Asian ideographs. It also includes Braille and
several sets of symbols used in mathematics and music. Figure C.3 shows a few
characters from non-Western alphabets.

Value Character Source

Russian (Cyrillic)

Thai

Cherokee

Letterlike Symbols

Arrows

Braille

Chinese/Japanese/Korean (Common)

1071

3593

5098

8478

8652

10287

13407

FIGURE C.3 Some non-ASCII characters in the Unicode character set

Z03_LEWI5976_05_SE_APPC.indd 952 08/02/19 3:21 AM

953

DD
Java operators are evaluated according to the pre-

cedence hierarchy shown in Figure D.1. Operators at

low precedence levels are evaluated before operators

at higher levels. Operators within the same precedence

level are evaluated according to the specified associa-

tion, either right to left (R to L) or left to right (L to R).

Operators in the same precedence level are not listed in

any particular order.

The order of operator evaluation can always be

forced by the use of parentheses. It is sometimes a good

idea to use parentheses even when they are not required,

to make it explicitly clear to a human reader how an

expression is evaluated.

Appendix

Java Operators

Z04_LEWI5976_05_SE_APPD.indd 953 08/02/19 3:22 AM

954 APPENDIX D Java Operators

For some operators, the operand types determine which operation is carried
out. For instance, if the + operator is used on two strings, string concatenation is
performed, but if it is applied to two numeric types, they are added in the arith-
metic sense. If only one of the operands is a string, the other is converted to a
string, and string concatenation is performed. Similarly, the operators &, ^, and |
perform bitwise operations on numeric operands but perform boolean operations
on boolean operands.

The boolean operators & and | differ from the logical operators && and || in
a subtle way. The logical operators are “short-circuited” in that if the result of
an expression can be determined by evaluating only the left operand, the right

Precedence
Level Operator Operation Associates

array indexing
object member reference
parameter evaluation and method invocation
postfix increment
postfix decrement

1 L to R

prefix increment
prefix decrement
unary plus
unary minus
bitwise NOT
logical NOT

R to L

[]
.

(parameters)
++
--

2 ++
--
+
-
~
!

object instantiation
cast

R to L3 new
(type)

multiplication
division
remainder

L to R4 *
/
%

addition
string concatenation
subtraction

L to R

L to R

5 +
+
-

less than
less than or equal
greater than
greater than or equal
type comparison

L to R7 <
<=
>
>=

instanceof

equal
not equal

L to R8 ==
!=

left shift
right shift with sign
right shift with zero

6 <<
>>
>>>

FIGURE D.1 Java operator precedence

Z04_LEWI5976_05_SE_APPD.indd 954 08/02/19 3:22 AM

 APPENDIX D Java Operators 955

operand is not evaluated. The boolean versions always evaluate both sides of the
expression. There is no logical operator that performs an exclusive OR (XOR)
operation.

Java Bitwise Operators
The Java bitwise operators operate on individual bits within a primitive value.
Because they are not discussed in the chapters of this book, we explore them fur-
ther here. The bitwise operators are defined only for integers and characters. They
are unique among all Java operators, because they let us work at the lowest level
of binary storage. Figure D.2 on the next page lists the Java bitwise operators.

Three of the bitwise operators are similar to the logical operators !, &&, and
||. The bitwise NOT, AND, and OR operations work in basically the same way

Precedence
Level Operator Operation Associates

bitwise AND
boolean AND

L to R9 &
&

bitwise XOR
boolean XOR

L to R10 ˆ
ˆ

bitwise OR
boolean OR

L to R11 |
|

logical AND L to R12 &&

logical OR L to R13 ||

conditional operator R to L14 ?:

assignment
addition, then assignment
string concatenation, then assignment
subtraction, then assignment
multiplication, then assignment
division, then assignment
remainder, then assignment
left shift, then assignment
right shift (sign), then assignment
right shift (zero), then assignment
bitwise AND, then assignment
boolean AND, then assignment
bitwise XOR, then assignment
boolean XOR, then assignment
bitwise OR, then assignment
boolean OR, then assignment

R to L15 =
+=
+=
-=
*=
/=
%=
<<=
>>=
>>>=
&=
&=
ˆ=
ˆ=
|=
|=

FIGURE D.1 Java operator precedence (continued)

Z04_LEWI5976_05_SE_APPD.indd 955 08/02/19 3:22 AM

956 APPENDIX D Java Operators

as their logical counterparts, except they work on individual bits of a value. The
rules are essentially the same. Figure D.3 shows the results of bitwise operators on
all combinations of two bits. Compare this chart to the truth tables for the logical
operators in Chapter 4 to see the similarities.

The bitwise operators include the XOR operator, which stands for exclusive
OR. The logical || operator is an inclusive OR operation, which means that it
returns true if both operands are true. The | bitwise operator is also inclusive and
yields a 1 if both corresponding bits are 1. However, the exclusive OR operator (^)
yields a 0 if both operands are 1. There is no logical exclusive OR operator in Java.

When the bitwise operators are applied to integer values, the operation is per-
formed individually on each bit in the value. For example, suppose the integer
variable number is declared to be of type byte and currently holds the value 45.
Stored as an 8-bit byte, it is represented in binary as 00101101. When the bitwise
complement operator (~) is applied to number, each bit in the value is inverted,
yielding 11010010. Because integers are stored using two’s complement represen-
tation, the value represented is now negative, specifically – 46.

Operator Description

~

&

|

ˆ

<<

>>

>>>

bitwise NOT

bitwise AND

bitwise OR

bitwise XOR

left shift

right shift with sign

right shift with zero fill

FIGURE D.2 The Java bitwise operators

a b ~ a a | ba & b a b

0

0

1

1

0

0

0

1

0

1

1

1

0

1

1

0

0

1

0

1

1

1

0

0

FIGURE D.3 Bitwise operations on individual bits

Z04_LEWI5976_05_SE_APPD.indd 956 08/02/19 3:22 AM

 APPENDIX D Java Operators 957

Similarly, for all bitwise operators, the operations are applied bit by bit, which
is where the term bitwise comes from. For binary operators (with two operands),
the operations are applied to corresponding bits in each operand. For example,
assume that num1 and num2 are byte integers, num1 holds the value 45, and num2
holds the value 14. Figure D.4 shows the results of several bitwise operations.

The operators &, |, and ^ can also be applied to boolean values, and they have
basically the same meaning as their logical counterparts. When used with boolean
values, they are called boolean operators. However, unlike the operators && and
||, which are “short-circuited,” the boolean operators are not short-circuited.
Both sides of the expression are evaluated every time.

Like the other bitwise operators, the three bitwise shift operators manipulate
the individual bits of an integer value. They all take two operands. The left op-
erand is the value whose bits are shifted; the right operand specifies how many
positions they should move. Before a shift is performed, byte and short values are
promoted to int for all shift operators. Furthermore, if either of the operands is
long, the other operand is promoted to long. For readability, we use only 16 bits
in the examples in this section, but the concepts are the same when carried out to
32- or 64-bit strings.

When bits are shifted, some bits are lost off one end, and others need to be filled
in on the other. The left-shift operator (<<) shifts bits to the left, filling the right
bits with zeros. For example, if the integer variable number currently has the value
13, then the statement

number = number << 2;

stores the value 52 into number. Initially, number contains the bit
string 0000000000001101. When shifted to the left, the value becomes
0000000000110100, or 52. Notice that for each position shifted to the left, the
original value is multiplied by 2.

The sign bit of a number is shifted along with all of the others. Therefore, the sign
of the value can change if enough bits are shifted to change the sign bit. For exam-
ple, the value –8 is stored in binary two’s complement form as 1111111111111000.

num1 & num2 num1 | num2 num1 num2

00101101

& 00001110

= 00001100

00101101

| 00001110

= 00101111

00101101

ˆ 00001110

= 00100011

FIGURE D.4 Bitwise operations on bytes

Z04_LEWI5976_05_SE_APPD.indd 957 08/02/19 3:22 AM

958 APPENDIX D Java Operators

When shifted left two positions, it becomes 1111111111100000, which is –32.
However, if enough positions are shifted, a negative number can become positive,
and vice versa.

There are two forms of the right-shift operator: one that preserves the sign of
the original value (>>) and one that fills the leftmost bits with zeros (>>>).

Let’s examine two examples of the right-shift-with-sign-fill operator. If the int
variable number currently has the value 39, the expression (number >> 2) results
in the value 9. The original bit string stored in number is 0000000000100111, and
the result of a right shift two positions is 0000000000001001. The leftmost sign
bit, which in this case is a zero, is used to fill from the left.

If number has an original value of –16, or 1111111111110000, the right-
shift (with sign fill) expression (number >>> 3) results in the binary string
1111111111111110, or –2. The leftmost sign bit is a 1 in this case and is used to
fill in the new left bits, maintaining the sign.

If maintaining the sign is not desirable, the right-shift-with-zero-fill operator
(>>>) can be used. It operates similarly to the >> operator but fills with zero no
matter what the sign of the original value is.

Z04_LEWI5976_05_SE_APPD.indd 958 08/02/19 3:22 AM

959

EE
This appendix summarizes the modifiers that give

particular characteristics to Java classes, interfaces,

methods, and variables. For discussion purposes, the set

of all Java modifiers is divided into two groups: visibility

modifiers and all others.

Appendix
Java Modifiers

Z05_LEWI5976_05_SE_APPE.indd 959 08/02/19 3:43 PM

960 APPENDIX E Java Modifiers

Java Visibility Modifiers
The table in Figure E.1 describes the effect of Java visibility modifiers on various
constructs. Some relationships are not applicable (N/A). For instance, a class can-
not be declared with protected visibility. Note that each visibility modifier oper-
ates in the same way on classes and interfaces and in the same way on methods
and variables.

Default visibility means that no visibility modifier was explicitly used. Default
visibility is sometimes called package visibility, but you cannot use the reserved
word package as a modifier. Classes and interfaces can have default or public
visibility; this visibility determines whether a class or interface can be referenced
outside of its package. Only an inner class can have private visibility, in which case
only the enclosing class may access it.

A Visibility Example
Consider the situation depicted in Figure E.2. Class P is the parent class that
is used to derive child classes C1 and C2. Class C1 is in the same package as
class P, but class C2 is not. Class P contains four methods, each with differ-
ent visibility modifiers. One object has been instantiated from each of these
classes.

The public method a() has been inherited by C1 and C2, and any code
with access to object x can invoke x.a(). The private method d() is not vis-
ible to C1 or C2, so objects y and z have no such method available to them.
Furthermore, d() is fully encapsulated and can be invoked only from within
object x.

Modifier Classes and interfaces Methods and variables

default (no modifier) Visible in its package. Visible to any class in the same package as its class.

Visible anywhere. Visible anywhere.

N/A Visible by any class in the same package as its class.

Visible to the enclosing
class only.

Not visible by any other class.

public

protected

private

FIGURE E.1 Java visibility modifiers

Z05_LEWI5976_05_SE_APPE.indd 960 08/02/19 3:43 PM

 APPENDIX E Java Modifiers 961

The protected method b() is visible in both C1 and C2. A method in y could
invoke x.b(), but a method in z could not. Furthermore, an object of any class
in package One could invoke x.b(), even those that are not related to class P by
inheritance, such as an object created from class Another1.

Method c() has default visibility, because no visibility modifier was used to
declare it. Therefore, object y can refer to the method c() as if it were declared
locally, but object z cannot. Object y can invoke x.c(), as can an object instanti-
ated from any class in package One, such as Another1. Object z cannot invoke
x.c().

These rules generalize in the same way for variables. The visibility rules may
appear complicated initially, but they can be mastered with a little effort.

Other Java Modifiers
Figure E.3 summarizes the rest of the Java modifiers, which address a variety of
issues. These modifiers have different effects on classes, interfaces, methods, and
variables. Some modifiers cannot be used with certain constructs and therefore are
listed as not applicable (N/A).

class Another1

package One
class P

public a()
protected b()

c()
private d()

class Another2

package Two

P x = new P();

C1 y = new C1();

C2 z = new C2();

class C2
class C1

FIGURE E.2 A situation demonstrating Java visibility modifiers

Z05_LEWI5976_05_SE_APPE.indd 961 08/02/19 3:43 PM

962 APPENDIX E Java Modifiers

The transient modifier is used to indicate data that need not be stored in
a persistent (serialized) object. That is, when an object is written to a serialized
stream, the object representation will include all data that are not specified as
transient.

Modifier Class Interface Method Variable

The class may con-
tain abstract meth-
ods. It cannot be
instantiated.

All interfaces are
inherently abstract.
The modifier is
optional.

No method body is
defined. The method
requires implementation
when inherited.

The class cannot be
used to derive new
classes.

N/A

N/A N/AN/A

N/AN/A

N/A N/A

The variable will not
be serialized.

The variable is changed
asynchronously. The
compiler should not
perform optimizations
on it.

N/A

N/AN/A

N/A

N/A

N/AN/A

The method cannot be
overridden.

No method body is neces-
sary since implementation
is in another language.

The execution of the
method is mutually exclu-
sive among all threads.

Defines a class method. It
does not require an instan-
tiated object to be invoked.
It cannot reference non-
static methods or variables.
It is implicitly final.

Defines a class variable. It
does not require an instan-
tiated object to be refer-
enced. It is shared (com-
mon memory space) among
all instances of the class.

The variable is a constant,
whose value cannot be
changed once initially set.

N/Aabstract

final

native

static

synchro-
nized

transient

volatile

FIGURE E.3 The rest of the Java modifiers

Z05_LEWI5976_05_SE_APPE.indd 962 08/02/19 3:43 PM

963

F
Chapter 6 covers the issues related to developing a

graphical user interface (GUI) for a Java program using

the JavaFX API, but it doesn’t discuss the mechanisms

used to draw shapes and manage colors. This appendix

addresses the concepts and techniques used to manage

graphics.

JavaFX Graphics FAppendix

Z06_LEWI5976_05_SE_APPF.indd 963 08/02/19 3:24 AM

964 APPENDIX F JavaFX Graphics

Coordinate Systems

An image or drawing is represented on a computer by breaking it down into pixels,
a term that is short for “picture elements.” A complete picture is stored by storing
the color of each individual pixel. The more pixels used to represent a picture, the
more realistic it looks when it is reproduced. The number of pixels used to rep-
resent a picture is called the picture resolution. The number of pixels that can be
displayed by a monitor is called the monitor resolution.

When drawn, each picture pixel is mapped to a pixel on the monitor screen.
Unlike a traditional two-dimensional coordinate system, the origin point (0, 0)
of the Java coordinate system is in the upper left corner of a graphical compo-
nent. The x-axis coordinates get larger as you move to the right and the y-axis
coordinates get larger as you move down. Figure F.1 compares the two coordi-
nate systems.

Representing Colors

A color in Java is defined by three numbers that are collectively referred to as an
RGB value. RGB stands for Red-Green-Blue. Each number represents the contri-

bution of the corresponding color. This approach mirrors the way the
human eye combines the wavelengths of light corresponding to red,
green, and blue.

Typically, each number in an RGB value is in the range 0–255. For
example, a color with an RGB value of 255, 255, 0 has a full contribu-

tion of red and green, and no contribution of blue. This results in the color yellow.

Y Axis

X Axis

Y Axis

(0,0)

(0,0)

x

y

X Axis

(x,y)

FIGURE F.1 A traditional coordinate system and the Java coordinate system

KEY CONCEPT
Java represents colors using RGB
values.

Z06_LEWI5976_05_SE_APPF.indd 964 08/02/19 3:24 AM

 APPENDIX F JavaFX Graphics 965

A pink color can be defined with an RGB value of 255, 175, 175 (full red and
partial green and blue). Any variation in the RGB numbers changes the color,
although small changes might not be able to be perceived.

In Java, a color is represented by a Color object. The Color class has a static method
called rgb that returns a Color object with the RGB value specified by the parameters:

Color purple = Color.rgb(183, 44, 150);

The Color class has another static method called color that allows you to
specify the RGB value as a set of percentages. The following call creates a maroon
color based on 60% red, 10% green, and 0% blue:

Color maroon = Color.color(0.6, 0.1, 0.0);

Using these methods, any color can be defined. However, for convenience, a large
set of Color objects have been predefined—Figure F.2 lists only a few of them. The
previous JavaFX examples in this chapter makes use of several predefined colors.

Basic Shapes

Shapes in JavaFX are represented by classes in the javafx.scene.shape package.
Objects created from those classes can be added to a scene to be displayed.

Color Object RGB Value

black

white

gray

red

maroon

lime

green

blue

navy

yellow

magenta

cyan

pink

orange

Color.black

Color.white

Color.gray

Color.red

Color.maroon

Color.lime

Color.green

Color.blue

Color.navy

Color.yellow

Color.magenta

Color.cyan

Color.pink

Color.orange

0, 0, 0

255, 255, 255

128, 128, 128

255, 0, 0

128, 0, 0

0, 255, 0

0, 128, 0

0, 0, 255

0, 0, 128

255, 255, 0

255, 0, 255

0, 255, 255

255, 192, 203

255, 165, 0

FIGURE F.2 Some of the predefined colors in the Color class

Z06_LEWI5976_05_SE_APPF.indd 965 08/02/19 3:24 AM

966 APPENDIX F JavaFX Graphics

Figure F.3 shows example constructor calls for creating shapes. The construc-
tor parameters specify the position and size of the shape. For example, the Line
constructor accepts four integer parameters, representing the two end points of a
line segment. It doesn’t matter which point is specified as the start or end point.

The first two parameters of the Rectangle constructor specify the location of
the upper left corner of the rectangle and the other two parameters specify the
rectangle’s width and height.

The first two parameters of the Circle and Ellipse constructors specify the
center point of the shape. A circle also has a single radius value. The shape of an
ellipse is based on two radius values: one along the horizontal, or x-axis, and one
along the vertical, or y-axis.

Listing F.1 shows a JavaFX program that displays a snowman scene.

new Line (start X, start Y, end X, end Y)
A line that runs from point (10, 20) to point (300, 80):

new Rectangle (x, y, width, height)
A 200 3 70 rectangle whose upper-left corner is at point (30, 50):

A circle with radius 40 and a center point of (100, 150):

new Ellipse (center X, center Y, radius X, radius Y)
An ellipse centered at (100, 50) with a horizontal radius of 80 and a vertical
radius of 30:

new Line (10, 20, 300, 80)

new Rectangle (30, 50, 200, 70)

new Circle(100, 150, 40)

new Ellipse (100, 50, 80, 30)

new Circle (center X, center Y, radius)

FIGURE F.3 Constructors for some JavaFX shape classes

L I S T I N G F . 1

//**
// Snowman.java Java Foundations
//
// Demonstrates the use of JavaFX shape objects.
//**

import javafx.application.Application;
import javafx.stage.Stage;
import javafx.scene.Group;

Z06_LEWI5976_05_SE_APPF.indd 966 08/02/19 3:24 AM

 APPENDIX F JavaFX Graphics 967

import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.shape.*;

public class Snowman extends Application
{
 //---
 // Presents a snowman scene.
 //---
 public void start(Stage primaryStage)
 {
 Ellipse base = new Ellipse(80, 210, 80, 60);
 base.setFill(Color.WHITE);

 Ellipse middle = new Ellipse(80, 130, 50, 40);
 middle.setFill(Color.WHITE);

 Circle head = new Circle(80, 70, 30);
 head.setFill(Color.WHITE);

 Circle rightEye = new Circle(70, 60, 5);
 Circle leftEye = new Circle(90, 60, 5);
 Line mouth = new Line(70, 80, 90, 80);

 Circle topButton = new Circle(80, 120, 6);
 topButton.setFill(Color.RED);
 Circle bottomButton = new Circle(80, 140, 6);
 bottomButton.setFill(Color.RED);

 Line leftArm = new Line(110, 130, 160, 130);
 leftArm.setStrokeWidth(3);
 Line rightArm = new Line(50, 130, 0, 100);
 rightArm.setStrokeWidth(3);

 Rectangle stovepipe = new Rectangle(60, 0, 40, 50);
 Rectangle brim = new Rectangle(50, 45, 60, 5);
 Group hat = new Group(stovepipe, brim);
 hat.setTranslateX(10);
 hat.setRotate(15);

 Group snowman = new Group(base, middle, head, leftEye, rightEye,
 mouth, topButton, bottomButton, leftArm, rightArm, hat);
 snowman.setTranslateX(170);
 snowman.setTranslateY(50);

L I S T I N G F . 1 continued

Z06_LEWI5976_05_SE_APPF.indd 967 08/02/19 3:24 AM

968 APPENDIX F JavaFX Graphics

 Circle sun = new Circle(50, 50, 30);
 sun.setFill(Color.GOLD);

 Rectangle ground = new Rectangle(0, 250, 500, 100);
 ground.setFill(Color.STEELBLUE);

 Group root = new Group(ground, sun, snowman);
 Scene scene = new Scene(root, 500, 350, Color.LIGHTBLUE);

 primaryStage.setTitle("Snowman");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

D I S P L A Y

L I S T I N G F . 1 continued

The Snowman example groups elements in various ways so that their properties
can be adjusted appropriately. As in previous examples, the root node of the scene
is a Group object, which contains the ground, the sun, and the snowman. The snow-
man is itself a group, made up of elements such as body sections, eyes, buttons,

 See a full-color version of
this figure at the end of the text.

Z06_LEWI5976_05_SE_APPF.indd 968 08/02/19 3:24 AM

 APPENDIX F JavaFX Graphics 969

arms, and hat. The hat is another group, made up of the stovepipe and brim parts.
The element hierarchy of this scene is shown in Figure F.4.

If you call setTranslateX on a shape or group, it translates (shifts) the position
of the shape along the x-axis. Likewise, a call to setTranslateY shifts the shape

FIGURE F.4 Hierarchy of Snowman scene elements

Z06_LEWI5976_05_SE_APPF.indd 969 08/02/19 3:24 AM

970 APPENDIX F JavaFX Graphics

along the y-axis. If you scrutinize the values used to position the elements of the
snowman, you discover that it would be drawn in the upper left corner of the scene.
It is moved into its final position with the appropriate method calls. Figure F.5 shows
the snowman scene as it would be displayed without shifting the snowman’s position.

Defining a complex element like the snowman as a Group object allows you to
perform operations such as shifting on the entire group. To move the snowman
further to the right, for instance, you’d only need to change the value passed

to one method. If it wasn’t grouped, the position of each element
would have to be changed.

Similarly, a call to setRotate will rotate a shape or group around
its center point a specified number of degrees. In the Snowman exam-
ple, the hat is shifted and then rotated 15 degrees clockwise so that it

sits jauntily on the snowman’s head. If the value passed to the setRotate method
is negative, the rotation will be in a counterclockwise direction.

Arcs

In JavaFX, an arc can be thought of as a portion of an ellipse. The constructor of
the Arc class can take six parameters. The first four match the pa-
rameters of an ellipse, specifying the center (x, y) point of the ellipse,
and the radius lengths along the x and y axes, which give the ellipse
(and thus the arc) its shape.

FIGURE F.5 Without translating (shifting) the snowman’s position

KEY CONCEPT
Shapes and groups can be shifted and
rotated as needed.

KEY CONCEPT
An arc is defined as a portion of an
ellipse.

 See a full-color version of
this figure at the end of the text.

Z06_LEWI5976_05_SE_APPF.indd 970 08/02/19 3:24 AM

 APPENDIX F JavaFX Graphics 971

The last two parameters of the Arc constructor specify the start angle of the arc
(where it begins relative to the horizontal) and the arc length. Both the start angle
and arc length are measured in degrees.

For example:

Arc myArc = new Arc(150, 100, 70, 30, 45, 90);

That line of code creates an arc whose underlying ellipse is centered at (150,
100), has a horizontal radius of 70 and a vertical radius of 30, begins at 45 degrees
and continues for another 90 degrees (counterclockwise):

L I S T I N G F . 2

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.Group;
import javafx.scene.paint.Color;

An arc also has an arc type, as defined by constants in the ArcType class, listed
in Figure F.6.

Listing F.2 shows a JavaFX program that creates and displays three arcs, one of
each type, all defined using the same underlying ellipse.

FIGURE F.6 JavaFX arc types

Arc Type Description

ArcType.OPEN The curve formed by the specified portion of the ellipse.

ArcType.CHORD An arc whose end points are connected by a straight line.

ArcType.ROUND An arc whose end points are connected to the center point of the
specified ellipse, forming a “pie” shape with a rounded edge.

Z06_LEWI5976_05_SE_APPF.indd 971 08/02/19 3:24 AM

972 APPENDIX F JavaFX Graphics

import javafx.scene.shape.Arc;
import javafx.scene.shape.ArcType;
import javafx.scene.shape.Ellipse;
import javafx.stage.Stage;

//**
// ArcDisplay.java Java Foundations
//
// Demonstrates the use of the JavaFX Arc class.
//**

public class ArcDisplay extends Application
{
 //--
 // Draws three arcs based on the same underlying ellipse.
 //--
 public void start(Stage primaryStage)
 {
 Ellipse backgroundEllipse = new Ellipse(250, 150, 170, 100);
 backgroundEllipse.setFill(null);
 backgroundEllipse.setStroke(Color.GRAY);
 backgroundEllipse.getStrokeDashArray().addAll(5.0, 5.0);

 Arc arc1 = new Arc(250, 150, 170, 100, 90, 90);
 arc1.setType(ArcType.OPEN);
 arc1.setStroke(Color.RED);
 arc1.setFill(null);

 Arc arc2 = new Arc(250, 150, 170, 100, 20, 50);
 arc2.setType(ArcType.ROUND);
 arc2.setStroke(Color.GREEN);
 arc2.setFill(Color.GREEN);

 Arc arc3 = new Arc(250, 150, 170, 100, 230, 130);
 arc3.setType(ArcType.CHORD);
 arc3.setStroke(Color.BLUE);
 arc3.setFill(null);

 Group root = new Group(backgroundEllipse, arc1, arc2, arc3);
 Scene scene = new Scene(root, 500, 300, Color.LIGHTYELLOW);

L I S T I N G F . 2 continued

Z06_LEWI5976_05_SE_APPF.indd 972 08/02/19 3:24 AM

 APPENDIX F JavaFX Graphics 973

The first arc (red) is an open arc that follows the top left curve of the ellipse,
starting at 90 degrees and sweeping for 90 degrees. This arc is unfilled, so it simply
follows the ellipse outline. All else being equal, a filled open arc and a filled chord
arc are visually the same.

The second (green) arc is a filled round arc, forming a skewed pie shape. It
starts at 20 degrees above the horizontal and sweeps for 50 degrees.

The third (blue) arc is an unfilled chord arc, so the outline shows the connec-
tion between the two end points of the arc, which starts at 230 degrees and has a
length of 130 degrees.

 primaryStage.setTitle("Arc Display");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

D I S P L A Y

L I S T I N G F . 2 continued

 See a full-color version of
this figure at the end of the text.

Z06_LEWI5976_05_SE_APPF.indd 973 08/02/19 3:24 AM

974 APPENDIX F JavaFX Graphics

The start angle or the arc length could be specified using negative
values. If negative, the angle is measured clockwise instead of coun-
terclockwise. Here’s an alternative way to specify the red open arc
from the example:

Arc arc1 = new Arc(250, 150, 170, 100, -180, -90);

Images

An Image object represents a graphical image and supports loading an image from
a file or URL. Supported formats include jpeg, gif, and png.

An ImageView is a JavaFX node that is used to display an Image
object. An Image cannot be added directly to a container.

The program in Listing F.3 displays an image centered in a
window.

KEY CONCEPT
An image is represented by an Image
object but is displayed using an
ImageView object.

KEY CONCEPT
Positive start angles and lengths are
measured counterclockwise. Negative
values are measured clockwise.

L I S T I N G F . 3

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.image.Image;
import javafx.scene.image.ImageView;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

//**
// ImageDisplay.java Java Foundations
//
// Demonstrates a the use of Image and ImageView objects.
//**

public class ImageDisplay extends Application
{
 //--
 // Displays an image centered in a window.
 //--
 public void start(Stage primaryStage)
 {
 Image img = new Image("gull.jpg");
 ImageView imgView = new ImageView(img);

 StackPane pane = new StackPane(imgView);
 pane.setStyle("-fx-background-color: cornsilk");

Z06_LEWI5976_05_SE_APPF.indd 974 08/02/19 3:24 AM

 APPENDIX F JavaFX Graphics 975

Unlike previous JavaFX examples, which used a Group object as the root
node of the scene, this program displays the image in a StackPane object. The
StackPane class is one of several layout panes provided with the JavaFX API (as
discussed in Chapter 6).

The nodes in a StackPane are stacked on top of each other. For example, you might
use a StackPane to overlay text on top of a shape. In this example, the ImageView ob-
ject is the only node added to the pane, so it simply serves to keep the image centered
in the window. We’ll explore other layout panes as needed in the upcoming examples.

 Scene scene = new Scene(pane, 500, 350);

 primaryStage.setTitle("Image Display");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

D I S P L A Y

L I S T I N G F . 3 continued

 See a full-color version of this
figure at the end of the text.

Z06_LEWI5976_05_SE_APPF.indd 975 08/02/19 3:24 AM

976 APPENDIX F JavaFX Graphics

A call to the setStyle method of the StackPane is used to set the background col-
or of the pane. In previous examples, we’ve set the background color of the scene itself,
but the layout panes have their own background color. The setStyle method accepts
a string that can specify many style properties. JavaFX style properties are modelled af-
ter cascading style sheets (CSS), which are used to define the look of HTML elements
on a Web page. JavaFX style property names begin with the prefix “-fx-”.

The parameter to the Image constructor can be a pathname relative to the Java
class directory. For example, the following line of code specifies an image in the
directory myPix:

Image logo = new Image("myPix/smallLogo.png");

The image can also be obtained from a URL:

Image logo = new Image("http://example.com/images/bio.jpg");

If a URL is specified, the protocol (such as http://) must be included.

A viewport is a rectangular area that can be used to restrict the pixels displayed
in an ImageView. For example:

imgView.setViewport(new Rectangle2D(200, 80, 70, 60));

If this line were added to the ImageDisplay program, the following portion of
the image would be visible:

A viewport does not change the underlying image in any way and can be up-
dated programmatically as needed.

Fonts

A Font object is used to affect what text looks like when it is displayed. A font
can be applied to a Text object or any control that displays text, including Label
and Button objects.

 See a full-color version
of this figure at the end of
the text.

Z06_LEWI5976_05_SE_APPF.indd 976 08/02/19 3:24 AM

 APPENDIX F JavaFX Graphics 977

A font is first defined by the font family (or font face). All characters
in a particular font family share the same general design. Examples of
font families include Arial, Courier, Helvetica, Garamond, and Times
New Roman.

A font is further refined with other characteristics. The font size is
expressed in units called points. The font weight determines how bold the charac-
ters are and the font posture determines if the characters are shown in italic or not.
For example, you might display text in 14-point bold Garamond.

The program in Listing F.4 displays three Text objects with various fonts
applied.

KEY CONCEPT
A character font applied to a Text,
Label, or Button object is
represented by the Font class.

L I S T I N G F . 4

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.Group;
import javafx.scene.paint.Color;
import javafx.scene.text.Font;
import javafx.scene.text.FontPosture;
import javafx.scene.text.FontWeight;
import javafx.scene.text.Text;
import javafx.stage.Stage;

//**
// FontDemo.java Java Foundations
//
// Demonstrates the creation and use of fonts.
//**

public class FontDemo extends Application
{
 //---
 // Displays three Text objects using various font styles.
 //--

public void start(Stage primaryStage)
 {
 Font font1 = new Font("Courier", 36);
 Font font2 = Font.font("Times", FontWeight.BOLD,
 FontPosture.ITALIC, 28);
 Font font3 = Font.font("Arial", FontPosture.ITALIC, 14);

 Text text1 = new Text(30, 55, "Dream Big");
 text1.setFont(font1);
 text1.setUnderline(true);

Z06_LEWI5976_05_SE_APPF.indd 977 08/02/19 3:24 AM

978 APPENDIX F JavaFX Graphics

A Font object is applied to a particular Text object using its setFont method.
The Font itself is created using either the Font constructor or by calling the static
font method.

The Font constructor can only take a font size, or a font family and size. In
this example, the first font, applied to the text “Dream Big,” is set to be 36-point
Courier. The font weight and font posture are normal by default.

 Text text2 = new Text(150, 110, "Know thyself!");
 text2.setFont(font2);
 text2.setFill(Color.GREEN);

 Text text3 = new Text(50, 150, "In theory, there is no difference " +
 "between theory\nand practice, but in practice there is.");
 text3.setFont(font3);

 Group root = new Group(text1, text2, text3);
 Scene scene = new Scene(root, 400, 200, Color.LIGHTCYAN);

 primaryStage.setTitle("Font Demo");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

D I S P L A Y

L I S T I N G F . 4 continued

 See a full-color version of this
figure at the end of the text.

Z06_LEWI5976_05_SE_APPF.indd 978 08/02/19 3:24 AM

 APPENDIX F JavaFX Graphics 979

The other two Font objects created in this program use the font method, which
can take many different combinations of the various font characteristics. For ex-
ample, the second font is created to be both bold and italic, whereas the third font
is italic, leaving it at its default font weight.

The font weight is specified using constants defined in the FontWeight enumer-
ated type, which allows you to specify several levels of boldness. Likewise, the font
posture is defined by the FontPosture enumerated type, but the only options for
posture are Italic or Regular.

Note that underlined text, and the color of the text, are not governed by the font.
These characteristics are determined using calls to setUnderline and setFill on
the Text object itself. Characters can also be displayed with a “strike through”
effect using a call to the text’s setStrikethrough method.

Also note that the third text object uses an embedded \n escape character to
display the text on multiple lines.

Graphic Transformations

A JavaFX transformation is an effect applied to a node that changes the way it is
presented visually. The four basic transformation types are:

■■ translation—changes the position of the node along the x or y axis.

■■ scaling—causes the node to appear larger or smaller.

■■ rotation—rotates the node around its center point.

■■ shearing—rotates one axis so that the x and y axes are no longer
perpendicular.

Applying a transformation to an object sets its transformation
properties, but does not change its underlying characteristics. For ex-
ample, translating a shape along an axis does not change the node’s
original position value.

Translation
A translation is accomplished using calls to the setTranslateX and
setTranslateY methods. The following code creates two rectangles in the same
position, but then translates the position of the second one.

Rectangle rec1 = new Rectangle(100, 100, 200, 50);
rec1.setFill(Color.STEELBLUE);

Rectangle rec2 = new Rectangle(100, 100, 200, 50);
rec2.setFill(Color.ORANGE);

KEY CONCEPT
A transformation changes the visual
presentation of a node.

Z06_LEWI5976_05_SE_APPF.indd 979 08/02/19 3:24 AM

980 APPENDIX F JavaFX Graphics

rec2.setTranslateX(70);
rec2.setTranslateY(10);

Here’s the result:

If the orange rectangle was not translated, it would completely block the blue
one. But its position is shifted by 70 along the x-axis and by 10 along the y-axis.
The translation values are added to the original, so that the translated position of
the upper left corner of the orange rectangle is (170, 110).

Scaling
Scaling a node is accomplished with calls to the setScaleX and setScaleY meth-
ods, which take a double value representing the scaling factor. For example, a scal-
ing factor of 0.5 will display a node at half its original size on that axis. A scaling
factor of 1.3 will display it 30% larger than the original.

The following code creates two ImageView objects from the same image, and
scales the second one:

Image img = new Image("water lily.jpg");
ImageView imgView1 = new ImageView(img);

ImageView imgView2 = new ImageView(img);
imgView2.setX(300);
imgView2.setScaleX(0.7);
imgView2.setScaleY(0.7);

Note that it is the ImageView that is scaled, not the image itself. The second image
view is displayed at 70% of its original size (30% smaller) on both the x and y axes.

 See a full-color version of this
figure at the end of the text.

 See a full-color version
of these figures at the end of
the text.

Z06_LEWI5976_05_SE_APPF.indd 980 08/02/19 3:24 AM

 APPENDIX F JavaFX Graphics 981

The x position of the second ImageView is set just to move it to a different position
than the first. Here’s the result:

This example keeps the image in proportion to the original by using
the same scaling factor on both the x and y axes. If only one axis is
scaled, or they are scaled a different amount, the result will be distorted.

Rotation
A call to setRotate causes a node to be rotated around its center point. Its parameter
specifies the number of degrees the node is rotated. Consider the following lines of code:

Rectangle rec = new Rectangle(50, 100, 200, 50);
rec.setFill(Color.STEELBLUE);
rec.setRotate(40);

Text text = new Text(270, 125, "Tilted Text!");
text.setFont(new Font("Courier", 24));
text.setRotate(-15);

If the value passed to setRotate is positive, the node is rotated clockwise. If
the value is negative, the node is rotated counterclockwise. So the first three lines
of this code create a blue rectangle and rotate it 40 degrees clockwise. The next
three lines create a Text object and rotate it 15 degrees counterclockwise. Here’s
the result:

KEY CONCEPT
Use the same scaling factor on both
axes to keep a node in proportion to
the original.

To rotate a node around a point other than its center point, you can create
a Rotate object and add it to the list of transformations that are applied to the
node. For example, to rotate a node 45 degrees around the point (70, 150):

node.getTransforms().add(new Rotate(45, 70, 150));

Each transformation has a corresponding class that represents it, so all transfor-
mations can be applied in this way.

 See a full-color version
of this figure at the end of
the text.

Z06_LEWI5976_05_SE_APPF.indd 981 08/02/19 3:24 AM

982 APPENDIX F JavaFX Graphics

Shearing
A shearing transformation can only be applied by creating a Shear object and
adding it to the list of transformations for the node. The following code creates
an ImageView and applies a shear of 40% on the x-axis and 20% on the y-axis:

Image img = new Image("duck.jpg");
ImageView imgView = new ImageView(img);
imgView.getTransforms().add(new Shear(0.4, 0.2));

Here is the result:

KEY CONCEPT
A polyline is similar to a polygon
except that a polyline is not a closed
shape.

Polygons and Polylines

A polygon is a multisided figure that is represented in the JavaFX API by the
Polygon class. A polygon is defined using a series of (x, y) points that specify the
vertices of the polygon. Arrays are often used to store the list of coordinates used
to define a polygon.

A polygon is always a closed shape. A line segment is always
drawn from the last point in the polygon’s list of vertices to the first
point.

A polyline, on the other hand, is an open shape. A polyline is simply
a series of points connected by line segments. The first and last vertices
of a polyline are not automatically connected.

The program in Listing F.5 uses two Polygon objects and a Polyline object to
display a rocket blasting off. One polygon forms the hull of the rocket itself, and
the other forms the hatch in the side of the rocket. The polyline is used to represent
the flames coming out of the bottom of the rocket.

 See a full-color version
of this figure at the end of
the text.

Z06_LEWI5976_05_SE_APPF.indd 982 08/02/19 3:24 AM

 APPENDIX F JavaFX Graphics 983

L I S T I N G F . 5

import javafx.application.Application;
import javafx.scene.Group;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.scene.shape.Polygon;
import javafx.scene.shape.Polyline;
import javafx.stage.Stage;

//**
// Rocket.java Java Foundations
//
// Demonstrates the use of polygons and polylines.
//**

public class Rocket extends Application
{
 //--
 // Displays a rocket lifting off. The rocket and hatch are polygons
 // and the flame is a polyline.
 //--
 public void start(Stage primaryStage)
 {
 double[] hullPoints = {200, 25, 240, 60, 240, 230, 270, 260,
 270, 300, 140, 300, 140, 260, 160, 230, 160, 60};

 Polygon rocket = new Polygon(hullPoints);
 rocket.setFill(Color.BEIGE);

 double[] hatchPoints = {185, 70, 215, 70, 220, 120, 180, 120};

 Polygon hatch = new Polygon(hatchPoints);
 hatch.setFill(Color.MAROON);

 double[] flamePoints = {142, 310, 142, 330, 150, 325, 155, 380,
 165, 340, 175, 360, 190, 350, 200, 375, 215, 330, 220, 360,
 225, 355, 230, 370, 240, 340, 255, 370, 260, 335, 268, 340,
 268, 310};

 Polyline flame = new Polyline(flamePoints);
 flame.setStroke(Color.RED);
 flame.setStrokeWidth(3);

 Group root = new Group(rocket, hatch, flame);

 Scene scene = new Scene(root, 400, 400, Color.BLACK);

Z06_LEWI5976_05_SE_APPF.indd 983 08/02/19 3:24 AM

984 APPENDIX F JavaFX Graphics

 primaryStage.setTitle("Rocket");
 primaryStage.setScene(scene);
 primaryStage.show();
 }
}

D I S P L A Y

L I S T I N G F . 5 continued

 See a full-color version
of this figure at the end of
the text.

Z06_LEWI5976_05_SE_APPF.indd 984 08/02/19 3:24 AM

 APPENDIX F JavaFX Graphics 985

For each shape, the coordinate values that make up the vertices are stored in
an array of double values, and the array is passed to the Polygon or Polyline
constructor when the shape object is created. Each array is created using an ini-
tialization list.

Each pair of coordinates in the array represents a point. For example, the first
point in the polygon that makes up the hull is (200, 25), which is the nose of the
rocket. The next point is (240, 60). The third is (240, 230), and so on moving
clockwise around the hull.

If you don’t know all the coordinates initially, you can add vertices after the
shapes are created by retrieving the current list of vertices and adding additional
ones. The following line of code adds two more vertices, one at (50, 75) and an-
other at (100, 30), to the specified polygon:

myPolygon.getPoints().addAll(50, 75, 100, 30);

Note that the arrays can hold floating-point values (double), but we store inte-
gers in them. All coordinates in JavaFX are stored as doubles so that they can be
determined by computations that may involve floating-point calculations.

Like other shapes, the fill color, stroke color, and stroke width of polygons and
polylines can be set using calls to the appropriate methods.

Z06_LEWI5976_05_SE_APPF.indd 985 08/02/19 3:24 AM

987

GG
The graphics and GUI examples developed throughout

this book were done “by hand” in the sense that the con-

trols and layout containers were created through explicit

calls in the code. One of the advantages of JavaFX is that

GUIs can also be defined easily and efficiently using a

separate program called the JavaFX Scene Builder. This ap-

pendix provides an overview and some examples using this

tool.

JavaFX Scene Builder enables you to create GUIs by

dragging and dropping components onto a central design

area. You then modify and style the components as desired.

When complete, the GUI is saved in an XML-based repre-

sentation called FXML. Your development environment,

such as NetBeans or Eclipse, uses the FXML representation

to generate the GUI automatically.

When developing a GUI by hand, it can be difficult to get

the layout and styling just right. With JavaFX Scene Builder,

you don’t write the GUI code at all.

JavaFX Scene Builder is a standalone application. In

order to capitalize on it, the IDE you use has to support the

generation of the GUI code from the FXML. For example,

the Eclipse and NetBeans IDEs both support FXML. We use

NetBeans for the examples in this appendix.

Appendix JavaFX Scene
Builder

Z07_LEWI5976_05_SE_APPG.indd 987 08/02/19 3:25 AM

988 APPENDIX G JavaFX Scene Builder

Hello Moon
The first example we’ll develop using JavaFX Scene Builder will be called
HelloMoon (a variation on the HelloWorld starter program). The program sim-
ply displays a label and an image—there is no user interaction. But it demonstrates
key aspects of the drag-and-drop GUI building approach.

When the program runs, it will display a window similar to the one shown in
Figure G.1.

When you open NetBeans, a start page is displayed that includes links to
recently opened projects as well as links to the NetBeans documentation.

An application in NetBeans is defined as a project, which is a group of all files
that pertain to the project. These include source code files, images, and the FXML
file that represents the GUI. To create a new project, select File > New Project... in
the File menu or click the button on the toolbar. This will display the New Project
dialog box, as shown in Figure G.2. Choose JavaFX project under Categories and
a JavaFX FXML Application under Projects. Then click the Next button.

Next, in the New JavaFX Application window, you specify the project name
(HelloMoon), the project location, the FXML file name (which doesn’t have to be

FIGURE G.1 A JavaFX program with a GUI generated by JavaFX Scene Builder

E
rn

ie
 W

ri
gh

t/
N

A
SA

 I
m

ag
es

Z07_LEWI5976_05_SE_APPG.indd 988 08/02/19 3:25 AM

 APPENDIX G JavaFX Scene Builder 989

the same as the project name, but could be), and the application class name. If the
Create Application Class checkbox is checked, NetBeans will create a class with
the specified name containing the program’s main method. When this information
is set, click the Finish button to create the project.

When NetBeans creates a JavaFX project, it creates some initial files for you. In
the upper left corner of the NetBeans window, you’ll see the Projects tab, where
you can access all of the files in your project. Click on the HelloMoon entry, and
then Source Packages, and finally <default package> to expand each node. The
Projects tab should appear similar to the one shown in Figure G.3.

When we created the project, we didn’t specify a package name, so our source
files are in the default package. If you specify a package name, your files will be
listed under that package.

The three files NetBeans created for this project are:

■■ HelloMoon.fxml—the FXML representation of the GUI

■■ HelloMoon.java—the class that displays the GUI

■■ HelloMoonController.java—the class that handles user events

Double clicking a file name will open that file in an editing tab in the center of
the NetBeans window. Take a look at each one.

FIGURE G.2 The NetBeans New Project window

Z07_LEWI5976_05_SE_APPG.indd 989 08/02/19 3:25 AM

990 APPENDIX G JavaFX Scene Builder

Remember, the FXML file is not Java code—it is an XML representation of the
GUI. The default GUI contains a label and a button. Although we could change this
file by editing the text of the FXML, that would be defeating the purpose. Instead,
we’ll use the JavaFX Scene Builder application to change it.

The HelloMoon.java file, shown below without documentation, contains
a class that extends the JavaFX Application class, similar to those created in
any hand-coded example. It contains a start method, plus a main method that
launches the application. Unlike previous examples, though, the start method in
HelloMoon class doesn’t explicitly create the elements of the GUI. Instead, it loads
the GUI from its FXML representation as a Parent object. Then the scene and
stage are set.

import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.Parent;
import javafx.scene.Scene;
import javafx.stage.Stage;

 public class HelloMoon extends Application
 {
 public void start(Stage stage) throws Exception

 {

 Parent root = FXMLLoader.load(
 getClass().getResource("HelloMoon.fxml"));

 Scene scene = new Scene(root);

FIGURE G.3 The Projects tab in the NetBeans window

Z07_LEWI5976_05_SE_APPG.indd 990 08/02/19 3:25 AM

 APPENDIX G JavaFX Scene Builder 991

 stage.setScene(scene);
 stage.show();
 }

 public static void main(String[] args)
 {
 launch(args);
 }
 }

Except for updating the documentation, we don’t have to change the HelloMoon
class at all. In fact, for this example we don’t have to write any Java code explic-
itly to create the HelloMoon application. All the changes can be made to the GUI
through the JavaFX Scene Builder.

The HelloMoonController class is used to handle events as the user inter-
acts with the GUI. In HelloMoon, there is no user interaction, so this file is not
needed at all in this application. You can right click on the file name in the
Projects tab and select delete to remove it. We’ll see the use of this file in our
next example.

Before modifying the GUI, add the image of the moon to the project by drag-
ging the image file (moon.jpg) to the default package in the Projects tab. You
could also add the image to the package by copying it into the src folder where the
project is stored.

Now we get to the heart of the matter—updating the GUI using the stand-
alone, drag-and-drop application called JavaFX Scene Builder. To launch
Scene Builder directly from NetBeans, right click the HelloMoon.fxml file
and select Open.

The JavaFX Scene Builder window is shown in Figure G.4. The middle section
shows a visual representation of the GUI. The Library section (top left) contains
the various elements you may want to include in your GUI. The Document sec-
tion (bottom left) lists the elements that are currently in your GUI. (The default
GUI file created by NetBeans contains a Button and a Label on an AnchorPane.)
The Inspector section (right) allows you to tailor the characteristics of the selected
element.

To create the GUI for HelloMoon, we’ll first delete the controls provided
in the default file. In the Hierarchy tab of the Document section, click on the
Button element to select it. Then press the Delete or Backspace key to remove
it. You’ll be asked to confirm that you want to delete it. Repeat the process for
the Label.

Instead of using the provided AnchorPane, we’ll use a VBox layout container,
which organizes its nodes in a vertical column. To make this change, drag a

Z07_LEWI5976_05_SE_APPG.indd 991 08/02/19 3:25 AM

992 APPENDIX G JavaFX Scene Builder

VBox from the Containers tab of the Library onto the central panel. Then use
the Select > Trim Document to Selection menu option, which will remove the
AnchorPane.

Before adding any elements to the VBox, let’s modify some of its character-
istics. First, select the VBox in the Document Hierarchy. Then, in the Inspector
Properties tab, set its Alignment to CENTER, which will center its contents
horizontally. Under Style, set the –fx-background-color property to #000,
which will make the background of the entire VBox black. Finally, in the
Inspector Layout tab, set the VBox Preferred Width and Height to be 400 and
325, respectively.

Now, add a label to the VBox by dragging a Label from the Library Controls
tab to the central panel. In the Inspector Preferences tab, set the text of the label
to “Hello, Moon!,” change the color (Text Fill) to white, and change the font to
be bold and 36 point.

Finally, we’ll add the moon image. Drag an ImageView from the Library
Controls tab onto the central panel below the label. In the Inspector Properties
tab, click the ellipses (. . .) button next to Image property which will let you select
the file to be displayed. You can also set the Fit Width and Fit Height values in
Inspector Layout tab to 0 to have the image displayed in its original size.

That completes the GUI set up. Save your changes in JavaFX Scene Builder,
which will update the FXML file in your NetBeans project. You can now run the
program in NetBeans.

FIGURE G.4 JavaFX Scene Builder

Z07_LEWI5976_05_SE_APPG.indd 992 08/02/19 3:25 AM

 APPENDIX G JavaFX Scene Builder 993

Note that all of the GUI configuration could have been accomplished using
regular method calls in the Java code. But using the JavaFX Scene Builder tool may
make it easier to get the visual presentation correct faster. By representing the GUI
in a standard XML file, the automated translation from FXML to Java is efficient
and accurate.

Handling Events in JavaFX Scene Builder
The HelloMoon program displayed a label and an image, but the user couldn’t
interact with it. Let’s look at another example that uses controls that the user can
manipulate.

Figure G.5 displays an application that computes miles per gallon given the
number of miles driven and the gallons of gas consumed. The user sets the miles
value using a slider. The gallons are set using a value typed into a text field. When
the user presses the Calculate MPG button, the result is displayed in a label at the
bottom of the window.

As with the HelloMoon example, we will use JavaFX Scene Builder to develop
the GUI. Unlike HelloMoon, the MilesPerGallon program will rely on a control-
ler class to handle user events.

Create a new project in NetBeans as you did with the HelloMoon example.
The MilesPerGallon.java file, containing the main class, will once again be used
as generated. All changes to the GUI will be accomplished through JavaFX Scene
Builder.

Open the FXML file in Scene Builder by right clicking the file and selecting
Open. Remove the default controls. As with HelloMoon, add a VBox as the root
element of the GUI.

FIGURE G.5 A JavaFX program that computes miles per gallon

Z07_LEWI5976_05_SE_APPG.indd 993 08/02/19 3:25 AM

994 APPENDIX G JavaFX Scene Builder

The top element in the VBox will be another layout container, a GridPane ob-
ject, which allows elements to be laid out in a grid. We’ll use a 2 * 2 GridPane
to display the top two rows of elements in the GUI. The left column will display
the labels for the miles and gas used, while the right column will display the slider
and the text field.

Drag a GridPane from the Library Containers tab onto the central design area.
It defaults to a 2 * 3 grid, as shown in Figure G.6. To remove the unneeded row,
select the third row and press Backspace or Delete. Now drag two Label objects
from Library Controls into each cell of the left column (column 0). Then drag a
horizontal Slider into the top cell of the right column, and a TextField into the
bottom cell of the right column.

Before we configure the look of these elements, add the remaining elements to
the GUI. Drag a Button to the VBox (not in the GridPane, under it). Then add
another label under the button to display the results.

At this point, all the pieces are in place, but they don’t look like we want.
Select each component in turn and use the Inspector to tailor its characteristics.
For example, set the text of the labels and the button. Set the left column of the
GridPane to be right aligned. Set the size of the slider and text field.

In the Inspector Properties of the Slider, set its min and max values to 0 and
500, respectively. Set its default value to 100. Set the results label to display “—”
initially, since no value for gas consumed has been entered.

FIGURE G.6 A GridPane in JavaFX Scene Builder

Z07_LEWI5976_05_SE_APPG.indd 994 08/02/19 3:25 AM

 APPENDIX G JavaFX Scene Builder 995

With the initial design of the GUI established, we can turn our attention to
handling user interaction. Each node that we need to reference in the code must
be given an fx:id using Scene Builder. For example, select the Slider, then in the
Inspector Code tab set its fx:id to milesSlider. This corresponds to the variable
name used in the Java code to refer to this slider.

The MilesPerGallonController class handles the events generated when the
user slides the slider or presses the button. The variables labeled with the @FXL an-
notation correspond to the fx:id property of key components. Some components,
like the “Gas Used” label, do not need to be referred to in the code and therefore
don’t need an fx:id.

Here’s the final version of the MilesPerGallonController class:

import javafx.beans.value.ChangeListener;
import javafx.beans.value.ObservableValue;
import javafx.event.ActionEvent;
import javafx.fxml.FXML;
import javafx.fxml.Initializable;
import javafx.scene.control.Button;
import javafx.scene.control.Label;
import javafx.scene.control.Slider;
import javafx.scene.control.TextField;

public class MilesPerGallonController
{

 private int milesTraveled = 100;

 @FXML
 private Label milesLabel;

 @FXML
 private Slider milesSlider;

 @FXML
 private TextField gasTextField;

 @FXML
 private Button calculateButton;

 @FXML
 private Label resultLabel;

 @FXML
 private void calculateMPG(ActionEvent event)
 {
 double gasUsed =
 Double.parseDouble(gasTextField.getText());

Z07_LEWI5976_05_SE_APPG.indd 995 08/02/19 3:25 AM

996 APPENDIX G JavaFX Scene Builder

 double mpg = milesTraveled/gasUsed;
 resultLabel.setText(String.format("MPG: %.2f", mpg));
 }

 public void initialize()
 {
 milesSlider.valueProperty().addListener(new
 SliderListener());
 }

 // An inner class that serves as the listener for the slider.
 private class SliderListener implements
 ChangeListener<Number>
 {
 @Override
 public void changed(ObservableValue<? extends
 Number> ov,
 Number oldValue, Number newValue)
 {
 milesTraveled = newValue.intValue();
 milesLabel.setText("Miles: " + milesTraveled);
 }
 }
}

The calculateMPG method calculates the miles per gallon and updates the re-
sult label. We want this method to be executed whenever the button is pressed in
the GUI. In JavaFX Scene Builder, select the button and open the Inspector Code
tab. In the drop down menu for the On Action event, choose the calculateMPG
method.

The initialize method is called when the GUI is loaded and can be used to
set up the controller. In this case, a SliderListener object is created and added
to the slider. The SliderListener class is defined as an inner class and updates
the miles traveled (and the value displayed) as the slider is changed.

This example shows the relationship between the settings in JavaFX Scene
Builder and the Java code that handles user interaction. By letting Scene Builder
handle the majority of the GUI design, we can focus on the underlying calculations
in the program itself.

Z07_LEWI5976_05_SE_APPG.indd 996 08/02/19 3:25 AM

997

HH
Throughout this text, we’ve used the Scanner class to

read interactive input from the user and parse strings into

individual tokens such as words. In Chapter 4, we also

used it to read input from a data file. Usually we used the

default whitespace delimiters for tokens in the scanner

input.

The Scanner class can also be used to parse its input

according to a regular expression, which is a character

string that represents a pattern. A regular expression

can be used to set the delimiters used when extracting

tokens, or it can be used in methods such as findInLine

to match a particular string.

Some of the general rules for constructing regular

expressions follow.
■■ The dot (.) character matches any single character.

■■ The asterisk (*) character, which is called the Kleene
star, matches zero or more characters.

■■ A string of characters in brackets ([]) matches any
single character in the string.

■■ The \ character followed by a special character (such
as the ones in this list) matches the character itself.

■■ The \ character followed by a character matches the
pattern specified by that character (see Figure H.1)
on the next page.

AppendixRegular
Expressions

Z08_LEWI5976_05_SE_APPH.indd 997 08/02/19 3:26 AM

998 APPENDIX H Regular Expressions

For example, the regular expression B.b* matches Bob, Bubba, and Baby. The
regular expression T[aei]*ing matches Taking, Tickling, and Telling.

Figure H.1 shows some of the patterns that can be matched in a Java regular
expression. This list is not complete—see the online documentation for the
Pattern class for a complete list.

x

.

[abc]

[^abc]

[a-z][A-Z]

[a-o[m-p]]

[a-z&&[def]]

[a-z&&[^bc]]

[a-z&&[^m-p]]

\d

\D

\s

\S

^

$

The character x

Any character

a, b, or c

Any character except a, b, or c (negation)

a through z or A through Z, inclusive (range)

a through d or m through p (union)

d, e, or f (intersection)

a through z, except for b and c (subtraction)

a through z but not m through p (subtraction)

A digit: [0–9]

A non-digit: [^0–9]

A whitespace character

A non-whitespace character

The beginning of a line

The end of a line

Regular Expression Matches

FIGURE H.1 Some patterns that can be specified in a Java regular expression

Z08_LEWI5976_05_SE_APPH.indd 998 08/02/19 3:26 AM

999

II
In Chapter 11, we discussed the idea that a binary

search tree is, in effect, an efficient implementation of a

set or a map. In this appendix, we examine hashing, an

approach to implementing a set or map collection that

can be even more efficient than binary search trees.

Appendix
Hashing

Z09_LEWI5976_05_SE_APPI.indd 999 08/02/19 3:39 PM

1000 APPENDIX I Hashing

I.1 A Hashing

In all of our discussions of the implementations of collections, we have proceeded
with one of two assumptions about the order of elements in a collection:

■■ Order is determined by the order in which elements are added to and/or
removed from our collection, as in the case of stacks, queues, unordered
lists, and indexed lists.

■■ Order is determined by comparing the values of the elements (or some key
component of the elements) to be stored in the collection, as in the case of
ordered lists and binary search trees.

In this appendix, we will explore the concept of hashing, which means that
the order—and, more specifically, the location of an item within the collection—
is determined by some function of the value of the element to be stored, or some
function of a key value of the element to be stored. In hashing, elements are
stored in a hash table, and the location of each element in the table is determined

by a hashing function. Each location in the table may be referred
to as a cell or a bucket. We will discuss hashing functions further
in Section I.2. We will discuss implementation strategies and al-
gorithms, and we will leave the implementations as programming
projects.

Consider a simple example where we create an array that will
hold 26 elements. Wishing to store names in our array, we create a hashing
function that equates each name to the position in the array associated with the
first letter of the name. (For example, a first letter of A would be mapped to
position 0 of the array, a first letter of D would be mapped to position 3 of the
array, and so on.) Figure I.1 illustrates this scenario after several names have
been added.

Notice that, unlike our earlier implementations of collections, using a hashing
approach results in the access time to a particular element being inde-
pendent of the number of elements in the table. This means that all of
the operations on an element of a hash table should be O(1). This is
the result of no longer having to do comparisons to find a particular
element or to locate the appropriate position for a given element. Using
hashing, we simply calculate where a particular element should be.

However, this efficiency is fully realized only if each element maps
to a unique position in the table. Consider our example from Figure
I.1. What will happen if we attempt to store the name “Ann” and the
name “Andrew”? This situation, where two elements or keys map to
the same location in the table, is called a collision. We will discuss
how to resolve collisions in Section I.3.

KEY CONCEPT
A hashing function that maps each ele-
ment to a unique position in the table
is said to be a perfect hashing function.

KEY CONCEPT
The situation where two elements or
keys map to the same location in the
table is called a collision.

KEY CONCEPT
In hashing, elements are stored in a
hash table, and the location of each
element in the table is determined by
a hashing function.

Z09_LEWI5976_05_SE_APPI.indd 1000 08/02/19 3:39 PM

 APPENDIX I Hashing 1001

A hashing function that maps each element to a unique position in the table is
said to be a perfect hashing function. Although it is possible in some situations
to develop a perfect hashing function, a hashing function that does a good job
of distributing the elements among the table positions will still result in constant
time (O(1)) access to elements in the table and an improvement over our earlier
algorithms that were either O(n) in the case of our linear approaches or O(log n)
in the case of search trees.

Another issue surrounding hashing is the question of how large the table
should be. If the data set is of known size and a perfect hashing function can
be used, then we simply make the table the same size as the data set. If a per-
fect hashing function is not available or practical but the size of the data set is
known, a good rule of thumb is to make the table 150 percent of the size of the
data set.

The third case is very common and far more interesting. What if we do not
know the size of the data set? In this case, we depend on dynamic resizing.
Dynamic resizing of a hash table involves creating a new hash table that is larger
than—perhaps even twice as large as—the original, inserting all of the elements of
the original table into the new table, and then discarding the original table. When
to resize is also an interesting question. One possibility is to use the same method
we used with our earlier array implementations and simply expand the table
when it is full. However, it is the nature of hash tables that their performance
seriously degrades as they become full. A better approach is to use a load factor.
The load factor of a hash table is the percentage occupancy of the table at which
the table will be resized. For example, if the load factor were set to 0.50, then the
table would be resized each time it reached 50 percent capacity.

I.2 Hashing Functions

Although perfect hashing functions are possible if the data set is known, we do
not need the hashing function to be perfect to get good performance from the
hash table. Our goal is simply to develop a function that does a rea-
sonably good job of distributing our elements in the table such that
we avoid collisions. A reasonably good hashing function will still
result in constant time access (O(1)) to our data set.

There are a variety of approaches to developing a hashing func-
tion for a particular data set. The method that we used in our
example in the previous section is called extraction. Extraction involves using
only a part of the element’s value or key to compute the location at which to
store the element. In our previous example, we simply extracted the first letter of
a string and computed its value relative to the letter A.

KEY CONCEPT
Extraction involves using only a
part of the element’s value or key to
compute the location at which to store
the element.

Ann

Doug
Elizabeth

Hal

Mary

Tim

Walter

Young

FIGURE I .1 A
simple hashing

example

Z09_LEWI5976_05_SE_APPI.indd 1001 08/02/19 3:39 PM

1002 APPENDIX I Hashing

Other examples of extraction include storing phone numbers according to the
last four digits and storing information about cars according to the first three
characters of the license plate.

The Division Method
Creating a hashing function by division simply means using the remainder of the
key divided by some positive integer p as the index for the given element. This
function could be defined as follows:

Hashcode(key) = Math.abs(key)% p

This function will yield a result in the range of 0 to p–1. If we use our table size
as p, we then have an index that maps directly to a location in the table.

Using a prime number p as the table size and the divisor helps provide a better
distribution of keys to locations in the table.

For example, if our key value is 79 and our table size is 43, then the division
method will result in an index value of 36. The division method is very effective
when one is dealing with an unknown set of key values.

The Folding Method
In the folding method, the key is divided into parts that are then combined or
folded together to create an index into the table. This is done by first dividing
the key into parts where each of the parts of the key will be the same length as
the desired index, except possibly the last one. In the shift folding method, these
parts are then added together to create the index. For example, if our key were the
Social Security number 987-65-4321, we might divide this into three parts: 987,
654, and 321. Adding these together would yield 1962. Assuming that we are
looking for a three-digit key, at this point we could use either division or extrac-

tion to get our index.

A second possibility is boundary folding. There are a number
of variations on this approach. However, generally, they involve
reversing some of the parts of the key before adding. One variation
on this approach is to imagine that the parts of the key are writ-

ten side by side on a piece of paper and that the piece of paper is folded along
the boundaries of the parts of the key. In this way, if we begin with the same
key (987-65-4321), we first divide it into parts: 987, 654, and 321. We then re-
verse every other part of the key, which yields 987, 456, and 321. Adding these
together yields 1764, and once again we can proceed with either extraction or

KEY CONCEPT
In the shift folding method, the parts
of the key are added together to create
the index.

Z09_LEWI5976_05_SE_APPI.indd 1002 08/02/19 3:39 PM

 APPENDIX I Hashing 1003

division to get our index. Other variations on folding use different algorithms to
determine which parts of the key to reverse.

Folding may also be a useful method for building a hashing function for a
key that is a string. One approach to this is to divide the string into substrings
the same length (in bytes) as the desired index and then combine these strings
using an exclusive-or function. This is also a useful way to convert a string into
a number so that other methods, such as division, may be applied to strings.

The Mid-Square Method
In the mid-square method, the key is multiplied by itself, and then the extraction
method is used to extract the appropriate number of digits from the middle of
the squared result to serve as an index. The same “middle” digits must be chosen
each time, to provide consistency. For example, if our key were 4321, we would
multiply the key by itself, which would yield 18671041. Assuming that we need a
three-digit key, we might extract 671 or 710, depending on how we construct our
algorithm. It is also possible to extract bits instead of digits and then construct the
index from the extracted bits.

The mid-square method may also be effectively used with strings by manipu-
lating the binary representations of the characters in the string.

The Radix Transformation Method
In the radix transformation method, the key is transformed into another numeric
base. For example, if our key were 23 in base 10, we might convert it into 32 in
base 7. We would then use the division method and divide the converted key by the
table size and use the remainder as our index. Continuing our previous example,
if our table size were 17, we would compute the function

Hashcode(23) = Math.abs(32)%17
= 15

The Digit Analysis Method
In the digit analysis method, the index is formed by extracting, and then manipulat-
ing, specific digits from the key. For example, if our key were 1234567, we might
select the digits in positions 2 through 4, obtaining 234, and then manipulate them
to form our index. This manipulation can take many forms, including simply re-
versing the digits (which yields 432), performing a circular shift to the right (which
yields 423), performing a circular shift to the left (which yields 342), swapping each

Z09_LEWI5976_05_SE_APPI.indd 1003 08/02/19 3:39 PM

1004 APPENDIX I Hashing

pair of digits (which yields 324), or any number of other possibilities, including the
methods we have already discussed. The goal is simply to provide a function that
does a reasonable job of distributing keys to locations in the table.

The Length-Dependent Method
In the length-dependent method, the key and the length of the key are combined in
some way to form either the index itself or an intermediate value that is then used
with one of our other methods to form the index. For example, if our key were

8765, we might multiply the first two digits by the length and then
divide by the last digit, which would yield 69. If our table size were
43, we would then use the division method, which would result in an
index of 26.

The length-dependent method may also be effectively used with
strings by manipulating the binary representations of the characters
in the string.

Hashing Functions in the Java Language
The java.lang.Object class defines a method called hashcode that returns
an integer based on the memory location of the object. This is generally not
very useful. Classes that are derived from Object often override the inherited
definition of hashcode to provide their own version. For example, the String

and Integer classes define their own hashcode methods. These
more specific hashcode functions can be very effective for hashing.
Having the hashcode method defined in the Object class means
that all Java objects can be hashed. However, it is also possible—
and often preferable—to define your own hashcode method for
any class that you intend to store in a hash table.

I.3 Resolving Collisions

If we are able to develop a perfect hashing function for a particular data set, then
we do not need to concern ourselves with collisions, the situation where more than
one element or key map to the same location in the table. However, when a per-
fect hashing function is not possible or practical, there are a number of ways to
handle collisions. Similarly, if we are able to develop a perfect hashing function
for a particular data set, then we do not need to concern ourselves with the size of
the table. In this case, we will simply make the table the exact size of the data set.

KEY CONCEPT
Although Java provides a hashcode
method for all objects, it is often
preferable to define a specific hashing
function for any particular class.

KEY CONCEPT
The length-dependent method and the
mid-square method may also be effec-
tively used with strings by manipulat-
ing the binary representations of the
characters in the string.

Z09_LEWI5976_05_SE_APPI.indd 1004 08/02/19 3:39 PM

 APPENDIX I Hashing 1005

Otherwise, if the size of the data set is known, it is generally a good idea to set
the initial size of the table to about 150 percent of the expected element count. If
the size of the data set is not known, then dynamic resizing of the table becomes
an issue.

Chaining
The chaining method for handling collisions simply treats the hash
table conceptually as a table of collections rather than as a table of
individual cells. Thus each cell is a pointer to the collection associ-
ated with that location in the table. Usually this internal collection is
either an unordered list or an ordered list. Figure I.2 illustrates this
conceptual approach.

Chaining can be implemented in a variety of ways. One approach is to make the
array holding the table larger than the number of cells in the table and use the extra
space as an overflow area to store the linked lists associated with each table location.
In this method, each position in the array can store both an element (or a key) and
the array index of the next element in its list. The first element mapped to a particu-
lar location in the table would actually be stored in that location. The next element
mapped to that location would be stored in a free location in this overflow area,
and the array index of this second element would be
stored with the first element in the table. If a third ele-
ment were mapped to the same location, the third ele-
ment would also be stored in this overflow area, and
the index of the third element would be stored with
the second element. Figure I.3 illustrates this strategy.

Note that when this method is used, the table
itself can never be full. However, if the table is im-
plemented as an array, the array can become full,
requiring a decision on whether to throw an ex-
ception or simply expand capacity. In our earlier
collections, we chose to expand the capacity of the
array. In this case, expanding the capacity of the
array but leaving the embedded table the original
size would have disastrous effects on efficiency. A
more satisfactory solution is to expand the array
and expand the embedded table within the array.
This will, however, require that all of the elements
in the table be rehashed using the new table size.
We will discuss the dynamic resizing of hash tables
further in Section I.5.

FIGURE I .2 The chain-
ing method of collision

handling

KEY CONCEPT
The chaining method for handling colli-
sions simply treats the hash table con-
ceptually as a table of collections rather
than as a table of individual cells.

Z09_LEWI5976_05_SE_APPI.indd 1005 08/02/19 3:39 PM

1006 APPENDIX I Hashing

With this method, the worst case is that our
hashing function will not do a good job of dis-
tributing elements to locations in the table, and
consequently we end up with one linked list of n
elements, or a small number of linked lists with
roughly n/k elements each, where k is some rela-
tively small constant. In this case, hash tables be-
come O(n) for both insertions and searches. Thus
you can see how important it is to develop a good
hashing function.

A second method for implementing chaining
is using links. In this method, each cell or buck-
et in the hash table would be something like the
LinearNode class used earlier in this text to con-
struct linked lists. In this way, as a second element
is mapped to a particular bucket, we simply cre-
ate a new LinearNode, set the next reference of
the existing node to point to the new node, set the
element reference of the new node to the element
being inserted, and set the next reference of the
new node to null. The result is an implementation
model that looks exactly like the conceptual model
shown in Figure I.2.

A third method for implementing chaining is to
literally make each position in the table a pointer
to a collection. In this way, we could represent each
position in the table with a list or perhaps even a

more efficient collection (such as a balanced binary search tree), and this would
improve our worst case. Keep in mind, however, that if our hashing function is do-
ing a good job of distributing elements to locations in the table, this approach may
incur a great deal of overhead while achieving very little improvement.

Open Addressing
The open addressing method for handling collisions looks for an open position
in the table other than the one to which the element is originally hashed. There
are a variety of methods for finding another available location in the table. We
will examine three of these methods: linear probing, quadratic probing, and
double hashing.

The simplest of these methods is linear probing. In linear probing, if an element
hashes to position p, and position p is already occupied, we simply try position

Overflow
area

FIGURE I.3 Chaining using
an overflow area

Z09_LEWI5976_05_SE_APPI.indd 1006 08/02/19 3:39 PM

 APPENDIX I Hashing 1007

(p + 1)%s, where s is the size of the table. If position (p + 1)%s is
already occupied, we try position (p + 2)%s, and so on until either we
find an open position or we find ourselves back at the original position.
If we find an open position, we insert the new element. What to do
if we do not find an open position is a design decision made when
creating a hash table. As we have discussed before, one possibility
is to throw an exception if the table is full. Another possibility is to
expand the capacity of the table and rehash the existing entries.

The problem with linear probing is that it tends to create clusters of filled posi-
tions within the table, and these clusters then affect the performance of insertions and
searches. Figure I.4 illustrates the linear probing method and the creation of a cluster
using our earlier hashing function of extracting the first character of the string.

In this example, Ann was entered, followed by Andrew. Because Ann already
occupied position 0 of the array, Andrew was
placed in position 1. Later, Bob was entered.
Because Andrew already occupied position 1, Bob
was placed in the next open position, which was
position 2. Doug and Elizabeth were already in
the table by the time Betty arrived, so Betty could
not be placed in position 1, 2, 3, or 4 and was
placed in the next open position, position 5. After
Barbara, Hal, and Bill were added, we find that
there is now a nine-location cluster at the front
of the table, which will continue to grow as more
names are added. Thus we see that linear probing
may not be the best approach.

A second form of the open addressing method
is quadratic probing. If we use quadratic probing,
instead of a linear approach, then once we have a
collision, we follow a formula such as

newhashcode(x) = hashcode (x) +

(−1)i−1 ((i + 1)/2)2

for i in the range of 1 to s–1, where s is the table
size.

The result of this formula is the search se-
quence p, p+1, p-1, p+4, p-4, p+9, p-9,
. . . . Of course, this new hash code is then put
through the division method to keep it within
the table range. As with linear probing, the same
possibility exists that we will eventually get back

KEY CONCEPT
The open addressing method for han-
dling collisions looks for an open posi-
tion in the table other than the one to
which the element is originally hashed.

Ann

Doug
Elizabeth

Hal

Mary

Tim

Walter

Young

Andrew
Bob

Betty
Barbara

Bill

Primary
Cluster

FIGURE I .4 Open address-
ing using linear probing

Z09_LEWI5976_05_SE_APPI.indd 1007 08/02/19 3:39 PM

1008 APPENDIX I Hashing

to the original hash code without having found an open position in which to
insert. This “full” condition can be handled in all of the same ways that we
described for chaining and linear probing. The benefit of the quadratic prob-
ing method is that it does not have as strong a tendency toward clustering as
linear probing. Figure I.5 illustrates quadratic probing for the same key set and
hashing function that we used in Figure I.4. Notice that after the same data
have been entered, we still have a cluster at the front of the table. However, this
cluster occupies only six buckets instead of the nine-bucket cluster created by
linear probing.

A third form of the open addressing method is double hashing. Using the double
hashing method, we resolve collisions by providing a secondary hashing function
to be used when the primary hashing function results in a collision. For example,
if a key x hashes to a position p that is already occupied, then the next position p˝
that we try is

Ann

Doug
Elizabeth

Hal

Mary

Tim

Walter

Young

Andrew
Bob

Barbara

Bill

Betty

FIGURE I .5 Open addressing using quadratic probing

Z09_LEWI5976_05_SE_APPI.indd 1008 08/02/19 3:39 PM

 APPENDIX I Hashing 1009

p" = p + secondaryhashcode(x)

If this new position is also occupied, then we
look to position

p" = p + 2 * secondaryhashcode(x)

We continue searching in this way, of course
using the division method to maintain our index
within the bounds of the table, until an open po-
sition is found. This method, although it is some-
what more costly because of the introduction of an
additional function, tends to further reduce cluster-
ing beyond the improvement gained by quadratic
probing. Figure I.6 illustrates this approach, again
using the same key set and hashing function as our
previous examples. For this example, the second-
ary hashing function is the length of the string.
Notice that with the same data, we no longer have
a cluster at the front of the table. However, we have
developed a six-bucket cluster from Doug through
Barbara. The advantage of double hashing is that
even after a cluster has been created, it will tend to
grow more slowly than it would if we were using
linear probing or even quadratic probing.

I.4 Deleting Elements from a Hash Table

Thus far, our discussion has centered on the efficiency of insertion of and search-
ing for elements in a hash table. What happens if we remove an element from a
hash table? The answer to this question depends on which implementation we
have chosen.

Deleting from a Chained Implementation
If we have chosen to implement our hash table using a chained implementation
and an array with an overflow area, then removing an element falls into one of
five cases:

Case 1 The element we are attempting to remove is the only one mapped
to the particular location in the table. In this case, we simply remove the ele-
ment by setting the table position to null.

Ann

Doug
Elizabeth

Hal

Mary

Tim

Walter

Young

Bob

Bill
Andrew

Betty

Barbara

FIGURE I .6 Open address-
ing using double hashing

Z09_LEWI5976_05_SE_APPI.indd 1009 08/02/19 3:39 PM

1010 APPENDIX I Hashing

Case 2 The element we are attempting to remove is stored in the table
(not in the overflow area) but has an index into the overflow area for the next
element at the same position. In this case, we replace the element and the next
index value in the table with the element and next index value of the array
position pointed to by the element to be removed. We then also must set the
position in the overflow area to null and add it back to whatever mechanism
we are using to maintain a list of free positions.

Case 3 The element we are attempting to remove is at the end of the list
of elements stored at that location in the table. In this case, we set its position
in the overflow area to null, and we set the next index value of the previous
element in the list to null as well. We then also must set the position in the
overflow area to null and add it back to whatever mechanism we are using to
maintain a list of free positions.

Case 4 The element we are attempting to remove is in the middle of
the list of elements stored at that location in the table. In this case, we set
its position in the overflow area to null, and we set the next index value of
the previous element in the list to the next index value of the element being
removed. We then also must add it back to whatever mechanism we are
using to maintain a list of free positions.

Case 5 The element we are attempting to remove is not in the list. In this
case, we throw an ElementNotFoundException.

If we have chosen to implement our hash table using a chained implementation
where each element in the table is a collection, then we simply remove the target
element from the collection.

Deleting from an Open Addressing Implementation
If we have chosen to implement our hash table using an open addressing imple-
mentation, then deletion creates more of a challenge. Consider the example in
Figure I.7. Note that the elements “Ann,” “Andrew,” and “Amy” all mapped to
the same location in the table and the collision was resolved using linear probing.
What happens if we now remove “Andrew”? If we then search for “Amy” we will
not find that element because the search will find “Ann” and then follow the linear
probing rule to look in the next position, find it null, and return an exception.

The solution to this problem is to mark items as deleted but not actually
remove them from the table until some future point when the deleted element
is overwritten by a new inserted element or the entire table is rehashed, either
because it is being expanded or because we have reached some predetermined
threshold for the percentage of deleted records in the table. This means that we
will need to add a boolean flag to each node in the table and modify all of our
algorithms to test and/or manipulate that flag.

Ann

Doug
Elizabeth

Hal

Mary

Tim

Walter

Young

Bob
Andrew

Bill
Amy

Barbara
Betty

FIGURE I .7 Open
addressing and

deletion

Z09_LEWI5976_05_SE_APPI.indd 1010 08/02/19 3:39 PM

 APPENDIX I Hashing 1011

I.5 Hash Tables in the Java Collections API

The Java Collections API provides seven implementations of hashing: Hashtable,
HashMap, HashSet, IdentityHashMap, LinkedHashSet, LinkedHashMap, and
WeakHashMap. To understand these different solutions, we must first remind our-
selves of the distinction between a set and a map in the Java Collections API as
well as some of our other pertinent definitions.

A set is a collection of objects where in order to find an object, we must have
an exact copy of the object we are looking for. A map, on the other
hand, is a collection that stores key-value pairs so that, given the key,
we can find the associated value.

Another definition that will be useful to us as we explore the Java
Collections API implementations of hashing is that of a load factor. The
load factor, as stated earlier, is the maximum percentage occupancy allowed
in the hash table before it is resized. For the implementations that we are
going to discuss here, the default is 0.75. Thus, using this default, when one of these imple-
mentations becomes 75 percent full, a new hash table is created that is twice the size of the
current one, and then all of the elements from the current table are inserted into the new
table. The load factor of these implementations can be altered when the table is created.

All of these implementations rely on the hashcode method of the object be-
ing stored to return an integer. This integer is then processed using the division
method (using the table size) to produce an index within the bounds of the table.
As stated earlier, the best practice is to define your own hashcode method for any
class that you intend to store in a hash table.

Let’s look at each of these implementations.

The Hashtable Class
The Hashtable implementation of hashing is the oldest of the implementations in
the Java Collections API. In fact, it predates the Collections API and was modified
in version 1.2 to implement the Map interface so that it would become a part of the
Collections API. Unlike the newer Java Collections implementations, Hashtable
is synchronized. Figure I.8 shows the operations for the Hashtable class.

Creation of a Hashtable requires two parameters: initial capacity (with a de-
fault of 11) and load factor (with a default of 0.75). The capacity is the number
of cells or locations in the initial table. As we noted earlier, the load factor is the
maximum percentage occupancy allowed in the hash table before it is resized.
Hashtable uses the chaining method for resolving collisions.

The Hashtable class is a legacy class that will be most useful if you are con-
necting to legacy code or require synchronization. Otherwise, it is preferable to
use the HashMap class.

KEY CONCEPT
The load factor is the maximum
percentage occupancy allowed in the
hash table before it is resized.

Z09_LEWI5976_05_SE_APPI.indd 1011 08/02/19 3:39 PM

1012 APPENDIX I Hashing

Return
Value

Method

void

Object

boolean

boolean

boolean

Enumeration

Set

boolean

Object

int

boolean

Enumeration

Set

Object

void

protected
void

Object

int

String

Collection

Hashtable()

Hashtable(int
initialCapacity)

Hashtable(int
initialCapacity,
float loadFactor)

Hashtable (Map t)

clear()

clone()

contains(Object value)

containsKey(Object key)

containsValue

elements()

entrySet()

equals(Object o)

get(Object key)

hashCode()

isEmpty()

keys()

keysSet()

put(Object key
Object value)

putAll(Map t)

rehash()

remove(Object key)

size()

toString()

values()

Description

Constructs a new, empty hash table with a default initial
capacity (11) and load factor, which is 0.75.
Constructs a new, empty hash table with the specified
initial capacity and default load factor, which is 0.75.
Constructs a new, empty hash table with the specified
initial capacity and the specified load factor.

Constructs a new hash table with the same mappings
as the given Map.

Clears this hash table so that it contains no keys.
Creates a shallow copy of this hash table.
Tests if some key maps into the specified value
in this hash table.
Tests if the specified object is a key in this hash table.
Returns true if this hash table maps one or more
keys to this value.
Returns an enumeration of the values in this hash table.
Returns a Set view of the entries contained in
this hash table.
Compares the specified Object with this Map for equality,
as per the definition in the Map interface.
Returns the value to which the specified key is mapped
in this hash table.
Returns the hash code value for this Map as per the
definition in the Map interface.
Tests if this hash table maps no keys to values.
Returns an enumeration of the keys in this hash table.
Returns a Set view of the keys contained in this hash table.
Maps the specified key to the specified value in
this hash table.
Copies all of the mappings from the specified Map to
this hash table. These mappings will replace any
mappings that this hash table had for any of the keys
currently in the specified Map.
Increases the capacity of and internally reorganizes this
hash table, in order to accommodate and access
its entries more efficiently.
Removes the key (and its corresponding value) from
this hash table.
Returns the number of keys in this hash table.
Returns a string representation of this hash table object
in the form of a set of entries, enclosed in braces and
separated by the ASCII characters comma and space.
Returns a Collection view of the values contained in
this hash table.

(Object value)

FIGURE I .8 Operations on the Hashtable class

Z09_LEWI5976_05_SE_APPI.indd 1012 08/02/19 3:39 PM

 APPENDIX I Hashing 1013

The HashSet Class
The HashSet class implements the Set interface using a hash table. The HashSet
class, like most of the Java Collections API implementations of hashing, uses
chaining to resolve collisions (each table position effectively being a linked list).
The HashSet implementation does not guarantee the order of the set on itera-
tion and does not guarantee that the order will remain constant over time. This is
because the iterator simply steps through the table in order. Because the hashing
function will somewhat randomly distribute the elements to table positions, order
cannot be guaranteed. Further, if the table is expanded, all of the elements are
rehashed relative to the new table size, and the order may change.

Like the Hashtable class, the HashSet class requires two parameters: initial
capacity and load factor. The default for the load factor is the same as it is
for Hashtable (0.75). The default for initial capacity is currently unspecified
(originally it was 101). Figure I.9 shows the operations for the HashSet class.
The HashSet class is not synchronized and permits null values.

The HashMap Class
The HashMap class implements the Map interface using a hash table. The HashMap
class also uses a chaining method to resolve collisions. Like the HashSet class, the
HashMap class is not synchronized and allows null values. Also like the previous

Return
Value

Method

boolean

void

Object

boolean

boolean

iterator()

boolean

int

HashSet() Constructs a new, empty set; the backing HashMap
instance has the default capacity and load
factor, which is 0.75.
Constructs a new set containing the elements in
the specified collection.
Constructs a new, empty set; the backing HashMap
instance has the specified initial capacity and default
load factor, which is 0.75.
Constructs a new, empty set; the backing HashMap
instance has the specified initial capacity and the
specified load factor.
Adds the specified element to this set if it is not
already present.
Removes all of the elements from this set.
Returns a shallow copy of this HashSet instance:
the elements themselves are not cloned.
Returns true if this set contains the specified element.
Returns true if this set contains no elements.
Returns an iterator over the elements in this set.
Removes the given element from this set if it is present.
Returns the number of elements in
this set (its cardinality).

Description

HashSet(Collection c)

HashSet(int
initialCapacity)

HashSet(int initial
Capacity, float
loadFactor)

add(Object o)

clear()

clone()

contains(Object o)

isEmpty()

iterator()

remove(Object o)

size()

FIGURE I .9 Operations on the HashSet class

Z09_LEWI5976_05_SE_APPI.indd 1013 08/02/19 3:39 PM

1014 APPENDIX I Hashing

implementations, the default load factor is 0.75. Like the HashSet class, the cur-
rent default initial capacity is unspecified, although it was also originally 101.

Figure I.10 shows the operations on the HashMap class.

The IdentityHashMap Class
The IdentityHashMap class implements the Map interface using a hash table. The
difference between this and the HashMap class is that the IdentityHashMap class uses
reference-equality instead of object-equality when comparing both keys and values.
This is the difference between using key1==key2 and using key1.equals(key2).

This class has one parameter: expected maximum size. This is the maximum
number of key-value pairs that the table is expected to hold. If the table exceeds
this maximum, then the table size will be increased and the table entries rehashed.

Return
Value

Method

void

Object

boolean

boolean

set

Object

boolean

Set

Object

void

Object

int

Collection

Description

Constructs a new, empty map with a default capacity and
load factor, which is 0.75.
Constructs a new, empty map with the specified initial
capacity and default load factor, which is 0.75.
Constructs a new, empty map with the specified initial
capacity and the specified load factor.

Constructs a new map with the same mappings as
the given map.
Removes all mappings from this map.
Returns a shallow copy of this HashMap instance:
the keys and values themselves are not cloned.
Returns true if this map contains a mapping for the
specified key.
Returns true if this map maps one or more keys to the
specified value.
Returns a collection view of the mappings contained
in this map.
Returns the value to which this map maps the
specified key.
Returns true if this map contains no key-value mappings.
Returns a set view of the keys contained in this map.
Associates the specified value with the specified key
in this map.
Copies all of the mappings from the specified map
to this one.
Removes the mapping for this key from this map if present.
Returns the number of key-value mappings in this map.
Returns a collection view of the values contained
in this map.

HashMap()

HashMap(int initial
Capacity)

HashMap(int initial
Capacity, float
loadFactor)

HashMap(Map t)

clear()

clone()

containsKey(Object key)

containsValue

entrySet()

get(Object key)

isEmpty()

keySet()

put(Object key,
Object value)

putAll(Map t)

remove(Object key)

size()

values()

(Object value)

FIGURE I .10 Operations on the HashMap class

Z09_LEWI5976_05_SE_APPI.indd 1014 08/02/19 3:39 PM

 APPENDIX I Hashing 1015

Figure I.11 shows the operations on the IdentityHashMap class.

The WeakHashMap Class

The WeakHashMap class implements the Map interface using a hash table. This class
is specifically designed with weak keys so that an entry in a WeakHashMap will au-
tomatically be removed when its key is no longer in use. In other words, if the use
of the key in a mapping in the WeakHashMap is the only remaining use of the key,
the garbage collector will collect it anyway.

Return
Value

Method Description

IdentityHashMap()

IdentityHashMap(int
expectedMaxSize)

IdentityHashMap(Map m)

clear()

clone()

containsKey(Object key)

containsValue

entrySet()

equals(Object o)

get(Object key)

hashCode()

isEmpty()

keySet()

put(Object key,
Object value)

putAll(Map t)

remove(Object key)

size()

values()

Constructs a new, empty identity hash map with a default
expected maximum size (21).
Constructs a new, empty map with the specified expected
maximum size.
Constructs a new identity hash map containing the
key-value mappings in the specified map.
Removes all mappings from this map.
Returns a shallow copy of this identity hash map:
the keys and values themselves are not cloned.
Tests whether the specified object reference is a key
in this identity hash map.
Tests whether the specified object reference is a value
in this identity hash map.
Returns a set view of the mappings contained in this map.

Compares the specified object with this map for equality.
Returns the value to which the specified key is mapped in
this identity hash map, or null if the map contains no
mapping for this key.
Returns the hash code value for this map.
Returns true if this identity hash map contains no
key-value mappings.
Returns an identity-based set view of the keys
contained in this map.
Associates the specified value with the specified key in
this identity hash map.
Copies all of the mappings from the specified map to
this map. These mappings will replace any mappings
that this map had for any of the keys currently in
the specified map.
Removes the mapping for this key from this map if present.
Returns the number of key-value mappings in this
identity hash map.
Returns a collection view of the values contained
in this map.

void

Object

boolean

boolean

Set

boolean

Object

int

boolean

Set

Object

void

Object

int

Collection

(Object value)

FIGURE I .11 Operations on the IdentityHashMap class

Z09_LEWI5976_05_SE_APPI.indd 1015 08/02/19 3:39 PM

1016 APPENDIX I Hashing

The WeakHashMap class allows both null values and null keys, and it has the
same tuning parameters as the HashMap class: initial capacity and load factor.

Figure I.12 shows the operations on the WeakHashMap class.

LinkedHashSet and LinkedHashMap
The two remaining hashing implementations are extensions of previous classes. The
LinkedHashSet class extends the HashSet class, and the LinkedHashMap class ex-
tends the HashMap class. Both of them are designed to solve the problem of iterator
order. These implementations maintain a doubly linked list running through the
entries to maintain the insertion order of the elements. Thus the iterator order for
these implementations is the order in which the elements were inserted.

Figure I.13 shows the additional operations on the LinkedHashSet class.
Figure I.14 shows the additional operations on the LinkedHashMap class.

Return
Value

Method Description

WeakHashMap()

WeakHashMap(int
initialCapacity)

WeakHashMap(int
initial Capacity, float
loadFactor)

WeakHashMap(Map t)

clear()

containsKey(Object key)

entrySet()

get(Object key)

isEmpty()

keySet()

put(Object key,
Object value)

putAll(Map t)

remove(Object key)

size()

values()

void

boolean

Set

Object

boolean

Set

Object

void

Object

int

Collection

Constructs a new, empty WeakHashMap with the default
initial capacity and the default load factor, which is 0.75.
Constructs a new, empty WeakHashMap with the given
initial capacity and the default load factor, which is 0.75.
Constructs a new, empty WeakHashMap with the given
initial capacity and the given load factor.

Constructs a new WeakHashMap with the same mappings
as the specified map.
Removes all mappings from this map.
Returns true if this map contains a mapping for the
specified key.
Returns a set view of the mappings in this map.
Returns the value to which this map maps the
specified key.
Returns true if this map contains no key-value mappings.
Returns a set view of the keys contained in this map.
Associates the specified value with the specified key
in this map.
Copies all of the mappings from the specified map
to this map. These mappings will replace any mappings
that this map had for any of the keys currently in
the specified map.
Removes the mapping for the given key from this map,
if present.
Returns the number of key-value mappings in this map.
Returns a collection view of the values contained in this map.

FIGURE I .12 Operations on the WeakHashMap class

Z09_LEWI5976_05_SE_APPI.indd 1016 08/02/19 3:39 PM

 APPENDIX I Hashing 1017

Return
Value

Method Description

Constructs a new, empty linked hash set with the default
initial capacity (16) and load factor (0.75).
Constructs a new linked hash set with the same elements
as the specified collection.
Constructs a new, empty linked hash set with the
specified initial capacity and the default load factor (0.75).
Constructs a new, empty linked hash set with the
specified initial capacity and load factor.

LinkedHashSet()

LinkedHashSet

LinkedHashSet

LinkedHashSet(int
initialCapacity,
float loadFactor)

(Collection c)

(int initialCapacity)

FIGURE I .13 Additional operations on the LinkedHashSet class

Return
Value

Method Description

void

boolean

Object

protected
boolean

Constructs an empty insertion-ordered LinkedHashMap
instance with a default capacity (16) and load factor (0.75).
Constructs an empty insertion-ordered LinkedHashMap
instance with the specified initial capacity and a
default load factor (0.75).
Constructs an empty insertion-ordered LinkedHashMap
instance with the specified initial capacity and load factor.

Constructs an empty LinkedHashMap instance with the
specified initial capacity, load factor, and ordering mode.

Constructs an insertion-ordered LinkedHashMap
instance with the same mappings as the specified map.
Removes all mappings from this map.
Returns true if this map maps one or more keys to
the specified value.
Returns the value to which this map maps the specified key.
Returns true if this map should remove its eldest entry.

LinkedHashMap()

LinkedHashMap

LinkedHashMap

float loadFactor)

LinkedHashMap

float loadFactor,
boolean accessOrder)

LinkedHashMap(Map m)

clear()

containsValue

get(Object key)

removeEldestEntry

(int initialCapacity)

(int initialCapacity,

(int initialCapacity,

(Object value)

(Map.Entry eldest)

FIGURE I .14 Additional operations on the LinkedHashMap class

Z09_LEWI5976_05_SE_APPI.indd 1017 08/02/19 3:39 PM

1018 APPENDIX I Hashing

Summary of Key Concepts
■■ In hashing, elements are stored in a hash table, and their location in the table

is determined by a hashing function.

■■ The situation where two elements or keys map to the same location in the
table is called a collision.

■■ A hashing function that maps each element to a unique position in the table
is said to be a perfect hashing function.

■■ Extraction involves using only a part of the element’s value or key to
compute the location at which to store the element.

■■ The division method is very effective when one is dealing with an unknown
set of key values.

■■ In the shift folding method, the parts of the key are added together to create
the index.

■■ The length-dependent method and the mid-square method may also be ef-
fectively used with strings by manipulating the binary representations of the
characters in the string.

■■ Although Java provides a hashcode method for all objects, it is often prefer-
able to define a specific hashing function for any particular class.

■■ The chaining method for handling collisions simply treats the hash table con-
ceptually as a table of collections rather than as a table of individual cells.

■■ The open addressing method for handling collisions looks for an open
position in the table other than the one to which the element is originally
hashed.

■■ The load factor is the maximum percentage occupancy allowed in the hash
table before it is resized.

Self-Review Questions
SR I.1 What is the difference between a hash table and the other collections

we have discussed?

SR I.2 What is a collision in a hash table?

SR I.3 What is a perfect hashing function?

SR I.4 What is our goal for a hashing function?

SR I.5 What is the consequence of not having a good hashing function?

SR I.6 What is the extraction method?

Z09_LEWI5976_05_SE_APPI.indd 1018 08/02/19 3:39 PM

SR I.7 What is the division method?

SR I.8 What is the shift folding method?

SR I.9 What is the boundary folding method?

SR I.10 What is the mid-square method?

SR I.11 What is the radix transformation method?

SR I.12 What is the digit analysis method?

SR I.13 What is the length-dependent method?

SR I.14 What is chaining?

SR I.15 What is open addressing?

SR I.16 What are linear probing, quadratic probing, and double hashing?

SR I.17 Why is deletion from an open addressing implementation a
problem?

SR I.18 What is the load factor, and how does it affect table size?

Exercises
EX I.1 Draw the hash table that results from adding the following inte-

gers (34 45 3 87 65 32 1 12 17) to a hash table of size 11 using
the division method and linked chaining.

EX I.2 Draw the hash table from Exercise I.1 using a hash table of size 11
and array chaining with a total array size of 20.

EX I.3 Draw the hash table from Exercise I.1 using a table size of 17 and
open addressing with linear probing.

EX I.4 Draw the hash table from Exercise I.1 using a table size of 17 and
open addressing with quadratic probing.

EX I.5 Draw the hash table from Exercise I.1 using a table size of 17 and
double hashing using extraction of the first digit as the secondary
hashing function.

EX I.6 Draw the hash table that results from adding the following integers
(1983, 2312, 6543, 2134, 3498, 7654, 1234, 5678, 6789) to a hash
table using shift folding of the first two digits with the last two dig-
its. Use a table size of 13.

EX I.7 Draw the hash table from Exercise I.6 using boundary folding.

EX I.8 Draw a UML diagram that shows how all of the various implemen-
tations of hashing within the Java Collections API are constructed.

 APPENDIX I Hashing 1019

Z09_LEWI5976_05_SE_APPI.indd 1019 08/02/19 3:39 PM

Programming Projects
PP I.1 Implement the hash table illustrated in Figure I.1 using the array

version of chaining.

PP I.2 Implement the hash table illustrated in Figure I.1 using the linked
version of chaining.

PP I.3 Implement the hash table illustrated in Figure I.1 using open ad-
dressing with linear probing.

PP I.4 Implement a dynamically resizable hash table to store people’s
names and Social Security numbers. Use the extraction method with
division using the last four digits of the Social Security number. Use
an initial table size of 31 and a load factor of 0.80. Use open ad-
dressing with double hashing using an extraction method on the first
three digits of the Social Security number.

PP I.5 Implement the problem from Programming Project I.4 using linked
chaining.

PP I.6 Implement the problem from Programming Project I.4 using the
HashMap class of the Java Collections API.

PP I.7 Create a new implementation of the bag collection called
HashtableBag using a hash table.

PP I.8 Implement the problem from Programming Project I.4 using shift
folding with the Social Security number divided into three equal
three-digit parts.

PP I.9 Create a graphical system that will allow a user to add and remove
employees where each employee has an employee id (a six-digit
number), an employee name, and years of service. Use the hashcode
method of the Integer class as your hashing function, and use one
of the Java Collections API implementations of hashing.

PP I.10 Complete Programming Project I.9 using your own hashcode
function. Use extraction of the first three digits of the employee
id as the hashing function and use one of the Java Collections
API implementations of hashing.

PP I.11 Complete Programming Project I.9 using your own hashcode func-
tion and your own implementation of a hash table.

PP I.12 Create a system that will allow a user to add and remove vehicles
from an inventory system. Vehicles will be represented by license
number (an eight-character string), make, model, and color. Use your
own array-based implementation of a hash table using chaining.

PP I.13 Complete Programming Project I.12 using a linked implementation
with open addressing and double hashing.

1020 APPENDIX I Hashing

Z09_LEWI5976_05_SE_APPI.indd 1020 08/02/19 3:39 PM

Answers to Self-Review Questions
SRA I.1 Elements are placed into a hash table at an index produced by a

function of the value of the element or a key of the element. This is
different from other collections, where the position/location of an el-
ement in the collection is determined either by comparison with the
other values in the collection or by the order in which the elements
were added or removed from the collection.

SRA I.2 The situation where two elements or keys map to the same location
in the table is called a collision.

SRA I.3 A hashing function that maps each element to a unique position in
the table is said to be a perfect hashing function.

SRA I.4 We need a hashing function that will do a good job of distributing
elements into positions in the table.

SRA I.5 If we do not have a good hashing function, the result will be too
many elements mapped to the same location in the table. This will
result in poor performance.

SRA I.6 Extraction involves using only a part of the element’s value or key to
compute the location at which to store the element.

SRA I.7 The division method involves dividing the key by some positive in-
teger p (usually the table size and usually prime) and then using the
remainder as the index.

SRA I.8 Shift folding involves dividing the key into parts (usually the same
length as the desired index) and then adding the parts. Extraction
or division is then used to get an index within the bounds of the
table.

SRA I.9 Like shift folding, boundary folding involves dividing the key into
parts (usually the same length as the desired index). However, some
of the parts are then reversed before adding. One example is to
imagine that the parts are written side by side on a piece of paper,
which is then folded on the boundaries between parts. In this way,
every other part is reversed.

SRA I.10 The mid-square method involves multiplying the key by itself and
then extracting some number of digits or bytes from the middle of
the result. Division can then be used to guarantee an index within
the bounds of the table.

SRA I.11 The radix transformation method is a variation on the division
method where the key is first converted to another numeric base
and then divided by the table size with the remainder used as the
index.

 APPENDIX I Hashing 1021

Z09_LEWI5976_05_SE_APPI.indd 1021 08/02/19 3:39 PM

SRA I.12 In the digit analysis method, the index is formed by extracting, and
then manipulating, specific digits from the key.

SRA I.13 In the length-dependent method, the key and the length of the key
are combined in some way to form either the index itself or an in-
termediate value that is then used with one of our other methods to
form the index.

SRA I.14 The chaining method for handling collisions simply treats the hash
table conceptually as a table of collections, rather than as a table of
individual cells. Thus each cell is a pointer to the collection associ-
ated with that location in the table. This internal collection usually
is either an unordered list or an ordered list.

SRA I.15 The open addressing method for handling collisions looks for an
open position in the table other than the one to which the element is
originally hashed.

SRA I.16 Linear probing, quadratic probing, and double hashing are methods
for determining the next table position to try if the original hash
causes a collision.

SRA I.17 Because of the way a path is formed in open addressing, deleting
an element from the middle of that path can cause elements beyond
that point on the path to be unreachable.

SRA I.18 The load factor is the maximum percentage occupancy allowed in
the hash table before it is resized. Once the load factor has been
reached, a new table is created that is twice the size of the current
table, and then all of the elements in the current table are inserted
into the new table.

1022 APPENDIX I Hashing

Z09_LEWI5976_05_SE_APPI.indd 1022 08/02/19 3:39 PM

1023

JJ
This appendix contains syntax diagrams that collec-

tively describe the way in which Java language elements

can be constructed. Rectangles indicate something that

is further defined in another syntax diagram, and ovals

indicate a literal word or character. Though largely

complete, not all Java constructs are represented in this

collection of syntax diagrams.

Appendix
Java Syntax

Z10_LEWI5976_05_SE_APPJ.indd 1023 08/02/19 3:29 AM

1024 APPENDIX J Java Syntax

Compilation Unit

Package Declaration Import Declaration Type Declaration

Package Declaration

package Name ;

Import Declaration

Type Declaration

Interface Declaration

Class Declaration

import Name Identifier.

*

;

Z10_LEWI5976_05_SE_APPJ.indd 1024 08/02/19 3:29 AM

 APPENDIX J Java Syntax 1025

Class Declaration

Modifier

class Identifier Class BodyClass Associations

Class Associations

implements Name Listextends Name

Class Body

Class Member
}{

Class Member

Block

Interface Declaration

Class Declaration

Method Declaration

Constructor Declaration

Field Declaration

static

Interface Declaration

Modifier

interface Identifier Interface Body

extends Name List

Interface Body

Interface Member
}{

Interface Member

Interface Declaration

Class Declaration

Method Declaration

Field Declaration

Z10_LEWI5976_05_SE_APPJ.indd 1025 08/02/19 3:29 AM

1026 APPENDIX J Java Syntax

Field Declaration

Modifier
Type Variable Declarator

,

;

Variable Declarator

Identifier

= Expression

Array Initializer

Type

Primitive Type

[Name]

Modifier

public

private

protected

static

final

abstract

native

synchronized

transient

volatile

Primitive Type

boolean

char

byte

short

int

long

float

double

Array Initializer

Expression

Array Initializer

{ }

,

Name

Identifier

.

Name List

Name

,

Z10_LEWI5976_05_SE_APPJ.indd 1026 08/02/19 3:29 AM

 APPENDIX J Java Syntax 1027

Method Declaration

Modifier

Parameters

void

Type Identifier Throws Clause Method Body

Parameters

()

IdentifierType

,

Throws Clause

throws Name List

Method Body

Block

;

Constructor Declaration

Modifier

ParametersIdentifier Throws Clause Constructor Body

Constructor Body

{ }

Block StatementConstructor Invocation

Constructor Invocation

this ;Arguments

Expression

super Arguments

.

Z10_LEWI5976_05_SE_APPJ.indd 1027 08/02/19 3:29 AM

1028 APPENDIX J Java Syntax

Block

{ }

Block Statement

Block Statement

Class Declaration

Statement

Local Variable Declaration ;

Local Variable Declaration

Type Variable Declarator

,final

Statement

Try Statement

Throw Statement

Return Statement

For Statement

Empty Statement

Break Statement

Do Statement

While Statement

Switch Statement

If Statement

Basic Assignment

Statement Expression

Synchronized Statement

Block

Continue Statement

Labeled Statement

Z10_LEWI5976_05_SE_APPJ.indd 1028 08/02/19 3:29 AM

 APPENDIX J Java Syntax 1029

If Statement

if () Statement

else Statement

Expression

Switch Statement

switch ()
Switch Case

Expression { }

Switch Case

case

default

Expression :

:
Block Statement

While Statement

while () StatementExpression

For Statement

for
For Init

;
Expression

;
For Update

)(Statement

For Init

Local Variable Declaration

Statement Expression

,

For Update

Statement Expression

,

Do Statement

do ()whileStatement ;Expression

Z10_LEWI5976_05_SE_APPJ.indd 1029 08/02/19 3:29 AM

1030 APPENDIX J Java Syntax

Return Statement

return

Expression

;

Throw Statement

throw Expression ;

Synchronized Statement

(Expressionsynchronized) Block

Empty Statement

;

Break Statement

break

Identifier

;

Continue Statement

continue

Identifier

;

Labeled Statement

Identifier : Statement

Basic Assignment

ExpressionIdentifier = ;

Try Statement

Blocktry catch

finally

Block

Block

()Type Indentifier

Z10_LEWI5976_05_SE_APPJ.indd 1030 08/02/19 3:29 AM

 APPENDIX J Java Syntax 1031

Expression

Instance Expression

Conditional Expression

Bitwise Expression

Logical Expression

Relational Expression

Equality Expression

Arithmetic Expression

Assignment

Primary Expression

Unary Expression

Cast Expression

Primary Expression

this

Primary Suffix
Literal

super . Identifier

()Expression

Allocation

Name

Primary Suffix

[]Expression

Identifier.

.

.

Allocation.

this

class

Arguments

Z10_LEWI5976_05_SE_APPJ.indd 1031 08/02/19 3:29 AM

1032 APPENDIX J Java Syntax

Arguments

()

Expression

,

Allocation

new Primitive Type

Array Initializer
Name

Array Dimensions

Arguments

Class Body

Array Dimensions

[]Expression
[]

Statement Expression

Postfix Expression

Prefix Expression

Assignment ;

Assignment

ExpressionExpression =

+=

-=

*=

/=

%=

<<=

>>=

>>>=

&=

^=

|=

Z10_LEWI5976_05_SE_APPJ.indd 1032 08/02/19 3:29 AM

 APPENDIX J Java Syntax 1033

Arithmetic Expression

+ ExpressionExpression

-

*

/

%

Equality Expression

== ExpressionExpression

!=

Relational Expression

>=

< ExpressionExpression

>

<=

Logical Expression

&& ExpressionExpression

||

Bitwise Expression

ExpressionExpression &

|

^

<<

>>

>>>

Conditional Expression

? Expression :Expression Expression

Instance Expression

instanceOf TypeExpression

Cast Expression

(Type) Expression

Z10_LEWI5976_05_SE_APPJ.indd 1033 08/02/19 3:29 AM

1034 APPENDIX J Java Syntax

Unary Expression

+

-

Expression

Prefix Expression

Postfix Expression

!

~

Prefix Expression

++

--

Expression

Postfix Expression

++

--

Expression

Literal

Boolean Literal

String Literal

Character Literal

Floating Point Literal

Integer Literal

null

Integer Literal

Hex Integer Literal

Octal Integer Literal

Decimal Integer Literal

Decimal Integer Literal

0

1 - 9 0 - 9 L

l

Octal Integer Literal

0 0 - 7
L

l

Hex Integer Literal

0
L

l

Hex DigitX

x

Hex Digit

a - f

0 - 9

A - F

Z10_LEWI5976_05_SE_APPJ.indd 1034 08/02/19 3:29 AM

 APPENDIX J Java Syntax 1035

Floating Point Literal

0 - 9

.

.0 - 9

0 - 9 Exponent Part

Float Suffix

Exponent Part

e

E +

-

0 - 9

Float Suffix

f

F

d

D

Character Literal

' any character

Escape Sequence

'

Unicode Escape

Boolean Literal

true

false

Escape Sequence

\ n

t

0 - 70 - 3 0 - 7

b

r

f

\

'

"

String Literal

"
any character

Escape Sequence

"

Unicode Escape

Z10_LEWI5976_05_SE_APPJ.indd 1035 08/02/19 3:29 AM

1036 APPENDIX J Java Syntax

Identifier

Java Letter

Java Letter

Java Digit

Java Letter

a - z

A - Z

_

$

Unicode Escape

other Java letter *

Java Digit

0 - 9

Unicode Escape

other Java digit *

* The "other Java letter" category includes letters
 from many languages other than English.

* The "other Java digit" category includes
 additional digits defined in Unicode.

Unicode Escape*

\ Hex Digitu Hex Digit Hex Digit Hex Digit

* In some contexts, the character represented
 by a Unicode Escape is restricted.

Z10_LEWI5976_05_SE_APPJ.indd 1036 08/02/19 3:29 AM

1037

\r, carriage return escape sequence, 40
\t, tab escape sequence, 40
^, bitwise XOR operator, 955–956
{}, block statements, 121–124
{}, class definition, 3
{}, initializer lists, 350
|, bitwise OR operator, 955–956
||, logical OR operator, 114–116
~, bitwise NOT operator, 955–956
+, addition operator, 51–52, 54
+, string concatenation, 36–39, 54
++, increment operator, 56–57
+=, addition assignment, 57–58
<>, generic class type notation, 667
<>, infix notation, 488–489
<, less than operator, 113–114
<<, left-shift operator, 957
<=, less than or equal to operator,

113–114
=, assignment operator, 45, 54, 57–59, 66
==, equal to equality operator, 113–114,

127, 129
>, greater than operator, 113–114
>=, greater than or equal to operator,

113–114
>>, right-shift with sign fill operator,

958
>>>, right-shift with zero fill operator,

958

A
Abstract classes and methods, 379–380,

384, 398
inheritance and, 380
interfaces as methods, 409
polymorphism and, 398

Symbols
&&, logical AND operator, 114–116
/=, division assignment, 57
-=, subtraction assignment, 57
!, logical NOT operator, 114–116
!=, not equal to equality operator,

113–114
“”, character strings, 4, 34, 40, 78
#, protected modifier notation, 368
%, remainder operator, 51, 54
%=, remainder assignment, 57
&, bitwise AND operator, 955–956
(), expression precedence, 53–54
*, import declaration (Kleene star), 85,

997–998
*, multiplication operator, 51, 54
*=, multiplication assignment, 57
–, decrement operator, 56–57
–, subtraction operator, 51–52, 54
., dot operator, 77, 997
/* and */, comments, 5, 6, 480
/, division operator, 51–52, 54
/, slash character, 148
//, comments, 3, 5–6
;, program statement termination,

4–5, 425
? ;, conditional operator, 124–125
@, Javadoc tags, 480
[], index operator, 366–367, 385
[], strings of characters in, 997
\”, double quote escape sequence, 40–41
\‘, single quote escape sequence, 40
\, slash character in expressions, 997
\\, backslash escape sequence, 40
\b, backspace escape sequence, 40
\n, newline escape sequence, 40

Index

Z11_LEWI5976_05_SE_IDX.indd 1037 08/02/19 2:58 PM

1038 INDEX

graph implementation
and, 864–872

lists, 864
matrices, 864–872
vertices and, 850, 864–872

Aggregate object, 206
Aggregation (has-a) relationships,

206–211, 233
Algorithms, 212, 449–462, 643–644,

658–659, 854–863
analysis of, 449–462, 643–644
asymptotic complexity, 451–453
Big-Oh notation O(), 451–453
connectivity testing, 858–863
dominant term, 451
efficiency, 450–451, 453–455
exponential complexity, 454
graphs, 854–863
growth functions, 451–455
iterative, 855–857
logarithmic, 659
loop execution analysis, 455–457
method call analysis, 457–459
minimum spanning trees (MST),

860–862
nested loop analysis, 456–457
order of, 452
processor speed and, 453–455
recursive, 643–644
search, analysis of, 658–659
shortest path determination, 863
space complexity, 451
spanning trees, 860–862
time complexity, 451
traversals, 854–858

Aliases, 78–80
Allocation, 1029
ALTER TABLE <tablename> statement,

886–887
American Standard Code for

Information Interchange (ASCII)
character set, 49–50, 66, 949–950

Ancestors, tree nodes, 694–695, 732

Abstract data types (ADT),
466–469. See also Interfaces

binary search trees, 743–745
binary trees, 703–707
collections, 464–467, 699
data structures compared to,

466–467
heaps, 780–781
lists, 581–587
queues, 535–536, 545–546
stacks, 467–469, 482–484
trees, 699, 703–707

Abstract Windowing
Toolkit (AWT), 246

Abstraction, 465–466, 496
Accessor methods, 183–188, 233
Action events, 251, 306
Activation record, 512–513, 528
Actual parameters (arguments),

196, 232
Acyclic graph, 851, 873
add()operation, 535–536, 568, 582,

592–593, 809
queues, 535–536
sets, 809
unordered lists, 568, 582, 592–593

addAfter operation, 582, 593–594
addAll operation, 809
addEdge method, 870
addElement operation, 743, 746–748

array-based implementation using,
797–798

binary search trees, 743, 746–748
heaps, 780, 782–783, 788–790,

797–798
linked Implementation using,

746–748, 788–790
Adding elements to binary search tree,

739–740
addToFront operation, 582, 593
addToRear operation, 582, 593
addVertex method, 870–871
Adjacency, 850, 864–872

Z11_LEWI5976_05_SE_IDX.indd 1038 08/02/19 2:58 PM

 INDEX 1039

two-dimensional, 341–345
variable-length parameter lists,

337–340
ArrayStack class, 487–495
Assembly language, 12–13, 26
Assignment conversion, 60
Assignment operator, =, 45, 54,

57–58, 66
Assignment statements, 44–46,

66, 79, 1030
Assignment syntax, 1032
Asterisk import notation *, 85–86
Asymptotic complexity, 451–453, 461
Attributes of objects, 22, 171–172
Autoboxing, 102–103
AVL trees, 762–766, 773

B
B-trees, 840–843, 844
Balance factor, 763–766, 773
Balanced trees, 695–696, 759–762.

See also Rotation techniques;
Unbalanced trees

Base case, 624–626, 645
Base class, 363, 386
Base number systems, 937, 939–941
Behavior of objects, 22, 171
Big-Oh notation, O(), 451–453, 460
Binary number system, 937–939
Binary search, 656–659
Binary search trees, 699, 737–778

abstract data types (ADT), 743–745
addElement operation, 743, 746–748
adding elements to, 739–740
AVL tree, 762–766
balance factor for, 763–766
balanced, 759–771
degenerate, 759–762
efficiency of, 699, 759–760
exceptions, 752–753
FindMax operation, 743
FindMin operation, 743
implementation of, 743–755, 762–771

AND logical operator, &&, 114–116, 159
Application programming interface

(API), 467. See also Java application
programming interfaces (API)

Architecture-neutral approach, 14–15
Arguments, 196, 1032
Arithmetic expression syntax, 1033
ArrayList class, 568, 588–591
Arrays, 313–360, 485–494, 552–559,

587–594, 615–617, 662–664, 665,
666, 697–698, 795–800, 1026

bounds checking, 318–323
capacity management, 486–487, 489
circular, 533–536
command-line arguments, 335–337
computational strategy for, 697
declaring, 315–325
dimensions, 1032
element type, 315–316
elements, 314–315
fixed, 552–553, 587–594
freelist, 697
heap implementation using, 795–800
index, 314–326
index operator [], 314–315, 318, 341
initializer lists, 324–325, 1026
iterator implementation using,

615–617
link simulation for, 697–698
list implementation using, 587–594
multidimensional, 344–345
objects, 325–335
off–by-one error, 318
one-dimensional, 314–315, 341
parameters, 325, 335–336
queue implementation using, 552–559
ragged, 345
size, 315–316
sorting, 662–663, 664–665
stack implementation using, 485–494
subscript, 314–325
syntax, 323, 1026
tree implementation, 697–698

Z11_LEWI5976_05_SE_IDX.indd 1039 08/02/19 2:58 PM

1040 INDEX

Bitwise expression syntax, 1032
Bitwise operators, 955–958
Black-box testing, 226–227, 233
Block statements {}, 121–124,

158, 1027
Body of a loop, 134–135
Boolean data, 50
Boolean expressions, 112–116,

127–130, 134–136, 151–153,
158, 954–955, 957

bitwise operators and, 957
conditional statement execution and,

112–113
equality operators, 113–114
Java operators, 954–955, 957
logical operators, 114–116
loop execution and, 134–136,

151–153
relational operators, 113–114
truth tables for, 115–116

boolean hasNext() method, 606
boolean value, 50, 100
Boundary folding, 956–957
Bounds checking, 318–323, 354

dialog, 279–283
Breadth-first traversal, 854–858
break statement, 131–132, 144–145,

159, 1030
Breakpoints, 230
Bubble sort, 660, 666–668
Bucket, hashing, 824, 826, 1000
Buttons, 259–266

check boxes, 259–262
item events from, 259
push, 251–256
radio, 263–267
toggle, 267

byte value, 47, 58–59, 100
Bytecode, 14–15, 26

C
Caesar cipher, 536, 560
Call stack trace, 428, 444, 513
Called methods, 189

Binary search trees (continued)
integer values, 738
linked implementation, 745–755
nodes, 699, 745–755
ordered list implementation using,

755–759
parent-child relationships, 699, 738,

742–743
promoted nodes, 749–751
red/black, 766–781
removeAllOccurances operation, 743,

751–752
removeElement operation, 743,

779–783
removeMax operation, 743
removeMin operation, 743, 753–755
removing elements from, 740–742
replacement method, 749–752
rotation techniques for, 760–766
unbalanced, 759–766

Binary trees, 695–696, 703–732. See
also Binary search trees; Heaps

abstract data types (ADT), 703–707
classification as, 695–696
contains operation, 703
decision trees built from, 720–723
evaluate methods, 707–718
expression trees built from, 707–718
find operation, 703, 728–730
getRoot operation, 703
implementation of, 723–731
isEmpty operation, 703
iterator operations, 703, 730–731
linked implementation of, 743–745
LinkedBinaryTree class, 708,

719–720, 723–728
postfix expression evaluation,

713–717
size() operation, 703
toString operation, 703

BinaryTreeNode class, 725–728,
788–789

Binding a method, 223–224, 396–420
Bits (binary digits), 47–48

Z11_LEWI5976_05_SE_IDX.indd 1040 08/02/19 2:58 PM

 INDEX 1041

quote marks for " ", 4, 34, 40
string concatenation, 36–39, 67
string literals, 34, 67
syntax, 1035

Character types, 48–50, 127–128
Check boxes, 259–262
Checked exceptions, 439, 444
Child class (subclass), 363–372,

376–377, 382
creating, 363–372
inheritance hierarchies and, 376–377
is-a relationships, 363–367
protected modifier, 367–368
super reserved word, 368–372

Children, tree nodes, 694–696, 733
Choice boxes, 349–353
Circular array, implementation strategy,

553–556, 560
ClassCastException class, 752–753
Classes, 3, 23–24, 75–109, 169–243,

393, 397–414, 470–472, 1025
abstract, 398–399
aggregation (has-a) relationships,

206–211
assigning responsibilities, 173
association, 179–181, 1025
base, 363
body, 1025
child (subclass), 363–372, 376–377
constructors, 77, 103, 176, 198–199
creating objects, 76–80
DecimalFormat method, 94–96
declaration, 1025
definition {}, 3
dependency relationships, 203–206
enumerated types, 97–99
formatting output, 92–97
generic types, 471–472
header notation < >, 471–472
hierarchies, 376–380, 398–399,

470–471
identification of, 171–173
import declaration, 84–86
inheritance, 24, 361–371, 397–409

Calling methods, 4–5, 189. See also
Invoking methods

Capacity, management of,
486–487, 489

Cascading Style Sheets (CSS), 387
Case sensitivity, 8, 26
Cast expression syntax, 1033
Casting (data conversion), 60–61, 66
catch clause, 428, 432–435, 444
Cell, hashing, 824, 826, 1000
Chaining method, 1005–1006,

1009–1010
collision avoidance using, 1005–1006
deleting elements from implementation

of, 1009–1010
hash tables, 1005–1006, 1009–1010

Change listener, 289–292
char value, 50, 58–59, 100
Character data type, 48–50, 127–128,

320–323, 949–952
array counters, 320–323
ASCII character set, 49–50, 949–950
comparison of, 127–128
control characters, 950
nonprintable characters, 950–951
non-Western characters, 952
printable characters, 950
sets, 49–50, 67
Unicode character set, 50, 128,

949–952
Character literals ‘’, 48–50
Character strings, 4, 34–41, 48, 77–79,

128–130, 1035
assignment statements, 79
comparing objects, 128–130
conditional statements for, 128–130
data as, 34–41, 48
escape sequences, 40–41, 67
invoking (calling) methods with,

4, 34–36, 77–78
object instantiation and, 77–78
parameters, 34–35, 67
print method, 34–36
println method, 34–36

Z11_LEWI5976_05_SE_IDX.indd 1041 08/02/19 2:58 PM

1042 INDEX

elements of, 461
encapsulation of elements, 463
interfaces, 462–463
iterable interface for, 606–607
iterators and, 605–621
Java Collections API, 464
linear, 461–462
lists, 565–604
maps, 807–825
nonlinear, 464–465
queues, 533–563
sets, 807–814, 823–825
stacks, 463–501, 503–532

Collisions, 824, 826, 1000, 1004–1009.
See also Hash tables

avoidance of, 1004–1009
chaining method, 1005–1006
hashing and, 824, 1000, 1004–1009
open addressing methods, 1006–1009

Color pickers, 267–270
Combo box, 353
Command-line arguments,

335–337, 346
Comments, 3, 5–6, 26, 480
Comparable interface, 415,

652, 661, 739
ComparatorDemo class, 684–685
Comparator<T> interface, 679
Comparator interface, for sorting,

679–685
Comparator objects, 679–683
Comparators, 679–683
compare method, 679, 681, 739
compareTo method, 129–130, 652,

661, 679, 681
Compilation unit syntax, 1024
Compile-time error, 18, 39–41
Compiler, 14, 26
Complete graph, 850
Complete trees, 696, 732, 782–783, 803
Components, 256–279

check boxes, 259–262
radio buttons, 263–267
text fields, 256–259

Classes (continued)
instance, 77, 178–179
interface implementation, 409–414
library, 83–84
Math methods, 89–92
members, 175, 1025
method declaration, 173–178, 188–199
Numberformat method, 92–94
Object methods, 377–379
object-oriented programming and,

23–24
objects and, 22–24, 75–109, 170–173,

203–211
packages, 83–86
parent (superclass), 363
polymorphism and, 397–409
printf method, 96–97
Random methods, 86–89
relationships, 170–171, 203–212
static methods, 89, 101, 199–203
String methods, 77–83, 128–130
subclass creation, 362–372
syntax, 1025
this reference, 211–212
Unified Modeling Language (UML)

diagrams, 179–181, 234
variable declaration, 178–179,

197–200
visibility, 367–368, 381–383
wrapper, 99–102
writing, 169–243

CLASSPATH environment variable,
882–884

clear() operation, 809–810
Client, 181, 233
Code keys, 536–539
Collections, 463–501, 503–532, 533–

563, 565–604, 605–621, 807–825
abstract data types (ADT), 465–467
abstraction as, 462–463
application programming interface

(API), 464
data structure, 463–464
data types, 463

Z11_LEWI5976_05_SE_IDX.indd 1042 08/02/19 2:58 PM

 INDEX 1043

contains() operation, 581, 591–592,
703, 809

array-based implementation, 591–592
binary trees, 703–707
lists, 581, 591–592
sets, 809

containsAll operation, 809
containsKey operation, 810
containsValue operation, 810
Continue execution, 231
continue statement, 144–145, 1030
Control characters, 49, 950
Conversion of data, 58–61

assignment, 60
casting, 60–61, 66
narrowing, 59
promotion, 60
techniques, 60–61
widening, 58–59

Conversions of number systems,
940–944

CREATE TABLE <tablename> statement,
885–886

Cycle, graphs, 851, 874

D
Data, 33–73, 97–102, 111–168,

178–179, 197–198, 439–443,
465–470, 482–485

abstract data types (ADT), 465–470,
482–485

assignment statements, 44–46, 66
boolean, 50, 112–116
character literals, 48–50
character strings, 34–41, 48,

128–130
character types, 48–50, 127–128
comparisons of, 127–130
conditional, 111–168
constants, 46–47
conversion, 58–61
enumerated types, 97–99
errors, 39–41, 52
escape sequences, 40–41, 67

Computational implementation strategy,
697–698

Computer error, 17
ConcurrentModificationException

class, 608, 614–616
Conditional operator ?; , 124–125, 158
Conditional statements, 111–168, 1033

block statements {}, 121–124
boolean expressions, 112–116,

127–130, 134–136, 151–153
break statement, 131–132, 144–145
compareTo method, 129–130
data comparisons, 127–130
do statement, 148–151
equals method, 128–129
execution using, 112–113
flow of control, 112
for statement, 151–157
if statements, 112, 116–127
if–else statements, 119–121,

125–127
indentation of, 117, 123, 126–127
iterators, 145–148, 156
loops and, 112–113, 134–157
nested, 125–127, 134, 141–144,

155, 158
operators, 113–116, 127–130
switch statement, 130–134
syntax, 1033
true/false conditions, 115–121
while statement, 134–145

Connected graphs, 851–852,
858–859

Constants, 46–47
Constructors, 77–78, 103, 176,

198–199, 1027
body, 1027
declaration, 199, 1027
default, 199
invocation, 1027
method invoking (calling), 77–78
syntax, 1027
writing classes using, 176, 198–199

Contact objects, 660–662

Z11_LEWI5976_05_SE_IDX.indd 1043 08/02/19 2:58 PM

1044 INDEX

enter into or step over methods,
230–231

errors, 18, 229–231
print statements for, 230
step execution, 231
writing classes and, 229–231

Decimal number system, 937–939, 1034
DecimalFormat class method, 94–96
DecisionTree class, 720–723
Declaration, 41–43, 76–77, 84–86,

173–179, 188–200, 315–325
arrays, 315–325
bounds checking, 318–323
class method declaration, 173–178,

188–189
constructors, 199
driver programs, 190–191
element type, 315–316
import statement, 84–86
initialization and, 76–78
initializer lists, 324–325
instance data, 178–179
local data (variables), 197–198
methods, 76–77, 173–178, 188–199
object creation and, 76–78
parameters (), 189, 196–197, 325
reference variables, 76–78
return statement, 194–196
static class, 199–200
syntax and, 323
variables, 41–43, 76–77, 178–179,

197–200
Decomposition of methods, 213–218
Decrement operators ––, 56–57
Default capacity, 489
default case, 131–132
Default constructor, 199
Default visibility, 960–961
Defect testing, 226–227, 233
Degenerate tree, 759–760, 773
DELETE FROM <tablename> statement,

897–898
Delimiters, 62, 67, 148, 997
Dependency relationships, 203–206

Data (continued)
expressions, 51–58, 67
floating-point, 47–48, 51, 127
input/output (I/O) exceptions,

439–443
instance, 178–179
integers, 47–48, 51
local, 197–198
loops, 112–113, 134–157
operator precedence, 52–56, 67
primitive types, 47–50, 58–61, 67,

99–102
reading input, 61–65
streams, 439–443
structure, 466–467, 496
types, 466, 469–470
Unicode character set, 50, 67, 128
variables, 41–43, 67, 178–179, 197–198
wrapper classes, 99–102

Databases, 879–902
altering tables, 886–887
CLASSPATH environment variable,

882–884
creating tables, 885–886
deleting data, 897–898
deleting tables, 922
driver, 882–884
inserting data, 891–895
Java Database Connectivity (JDBC),

881–884
management system, 904
querying, 887–890
relational, 880–881
ResultSet object, 888–890, 896–897
retrieval of (viewing) data, 891,

895–896
showing table columns, 888–890
tables for, 880–881, 885–898
updating (modifying) data, 896–897

Date picker, 267–270
Debugger, 15, 229–230
Debugging, 18, 229–231, 233

breakpoints, 230
continue execution, 231

Z11_LEWI5976_05_SE_IDX.indd 1044 08/02/19 2:58 PM

 INDEX 1045

Element type, 315–316
ElementNotFoundException class,

748, 752
Elements, 315–316, 345, 464–466,

506–510, 566–568, 582–587, 608,
832–842, 1009–1010. See also
Nodes

accessing, 506–507
adding to binary search tree, 739–740
adding to lists, 582–587
arrays, 314–315, 345
collection objects, 464–466
deleting from hash tables, 1010–1011
encapsulation of, 466
inserting in trees, 833–835, 839
iterator order of, 608
linked (nodes), 506–510
list placement of, 566–568
multi-way search tree balance and,

832–842
removing from binary search tree,

738–740
removing from trees, 835–838, 839
without links, 511–512

else clause, 119–121, 125–127
Empty statement, 1030
EmptyCollectionException class,

492, 494
Encapsulation, 23–24, 26, 181–188,

233, 466
accessor methods, 183–188
collection elements, 466
modifiers, 182–183
mutator methods, 183–188
objects, 23–24, 181–182
service (public) methods, 182–183
support (private) methods, 182–183
visibility modifiers, 182–183

Encoding, queues used for, 536–539
Encryptable interface, 409–414
enqueue operation, 534–535, 548–549,

556–558, 562
entrySet() operation, 810
Enumerated types, 97–99, 103

Deprecated Java elements, 2, 26
Depth-first traversal, 854–858
dequeue interface, 510–511, 559
dequeue operation, 534–535, 550–551,

558–559, 560
Descendants, 695, 732
Development environments, 15–16
Digit analysis method, hash functions,

1003–1004
Direct recursion, 629, 645
Directed (digraph), 851–852, 865
Disabling control, 299–304
Division method, hash functions, 1002
do statement, 148–151, 157,

159, 1029
Documentation, 3, 6
Dominant term, 451
Dot operator ., 77
Double-ended queues (dequeue), 559
Double hashing, 1008–1009
double value, 47–48, 59, 100
Doubly linked lists, 509–510, 528
Driver programs, 190–191
Drivers, databases, 882–884
DROP COLUMN command, 887
DROP TABLE <tablename> statement,

897–898
Drop-out sack, 484
Dynamic (late) binding, 396, 419

E
E Next() method, 607
Eclipse, 16
Edges, 694, 732, 850–852

graphs connections, 850–852
tree nodes, 694, 732

Editor, 13–14, 26
Efficiency, 450–451, 453–455, 699,

759–760
algorithms, 450–451, 453–455
balanced binary search trees, 699,

759–760
sorting, 679–692
tree implementation and, 699

Z11_LEWI5976_05_SE_IDX.indd 1045 08/02/19 2:58 PM

1046 INDEX

catch clause, 427, 431–444
checked, 448
class hierarchy, 444–448
ClassCastException class, 752–753
ConcurrentModificationException

class, 609, 615–617
ElementNotFoundException

class, 591, 752
EmptyCollectionException class,

492, 494
errors compared to, 426
fail-fast iterators, 609
finally clause, 430–431
handler, 428
input/output (I/O) streams, 439–443
iterator implementation, 609, 614–619
list implementation, 589–591
NoSuchElementException class, 590,

616–617
propagation, 431–434
remove() operations, 589–591
run-time errors as, 18, 425
RuntimeException class, 494
stacks, 481–482, 492, 494
throw statement, 436–439
try-catch statement, 428–432
uncaught, 427–428
unchecked, 439
UnsupportedOperationException

class, 618–620
Execution of loops, 134–136, 151–153
expandCapacity method, 490–491,

871–872
Exponential complexity,

algorithms, 454
Exponential part syntax, 454, 1035
Expressions, 51–58, 67, 112–116, 127–

130, 134–136, 472–480, 707–708,
954–955, 997–998, 1031–1034

arithmetic operators, 51–52
assignment operators =, 57–58
Boolean, 112–116, 127–130, 134–136,

954–955
data as, 51, 67

Equality expression syntax, 1033
Equality operators, == and !=, 113–114,

127, 129, 159
equals method, 128–129, 590–591,

809, 810
conditional statements, 128–129
lists, 590–591
maps, 810
remove() operations and, 590–591
sets, 809

Equivalence categories, 226–227
Errors, 17–18, 39–41, 52, 123, 129,

131, 135, 224–231, 318, 375,
425–448, 481–482, 489, 626

break statements, use of, 131
compile-time, 18, 39–41
computer, 17
debugging, 18, 229–231
division operator / and, 52
equal to = =, use of, 129
escape sequences, 40–41, 67
exceptions and, 18, 425–448, 481–482
generic type instantiation, 489
indentation and, 123
logical, 18, 26
off-by-one, 135, 318
overriding vs. overloaded methods, 375
program development and, 17–18
recursion use of base case, 626
robust programs and, 18
run-time, 18, 27
stacks, 481–482
string concatenation and, 39
syntax, 18, 27
testing for, 224–229

Escape sequences, 40–41, 67, 1035
evaluateNode method, 712
evaluateTree method, 712
ExamComparator class, 682–683
Exceptions, 18, 425–448, 481–482,

492, 494, 589–591, 609, 615–620,
752–753

binary search trees, 752–753
call stack trace, 428

Z11_LEWI5976_05_SE_IDX.indd 1046 08/02/19 2:58 PM

 INDEX 1047

Folding method, hash functions,
1002–1003

for-each statement, 156
for statement, 151–157, 607, 1029

boolean conditions for, 151–153
iterators and, 156, 607
loop execution and, 151–153
nested loops, 155
syntax, 1029

Formal parameters, 196, 223
Formatting output, 92–97
Fourth-generation language (4GL), 13
Freelist, 697, 732
Full tree, 695, 732
Functional interface, 253, 306
Functional specification, 20

G
Garbage, 80
Garbage collection, 80, 103
General trees, 695, 732
Generic class types, 471–472, 489, 497
Generic methods, 653–654
get() method, 810
get() operations, 568
getRoot operation, 703
Graph node, 864
Graphical user interface (GUI), 16, 26,

245–312
and array, 346–353
boxes, 279–286
check boxes, 259–263
choice boxes, 349–353
combo box, 353
control, 249
dialog boxes, 279–286
disable controls, 299–304
event handler, 249
EventHandler interface, 252–253
events, 249, 270–279
event sources, 253–255
elements of, 249–252
file chooser, 283–286
HelloJavaFX, 246–248

decrement operators ––, 56–57
delimiters and, 997
floating-point data in, 51
increment operators ++, 56–57
integers in, 51
operator precedence, 52–56
parentheses () for precedence of, 53–54
postfix evaluation, 472–480, 713–718
postfix operator form, 56–57
prefix operator form, 56–57
primary, 1031
regular, 997–998
stack evaluation of, 472–480
syntax, 1031–1034
tree evaluation of, 707–718
unary operators, 52

ExpressionTree class, 707–718
Extraction, hash functions, 1001–1002

F
Factorial function !, 625–626
false value, 50
Field declaration, 1026
File chooser, 283–286
final modifier, 384–385
finally clause, 431–432, 445
find method, 590–591, 703, 728–730

binary trees, 703, 728–730
find method for, 590–591
lists, 590–591
remove() operations and, 590–591

findMax operation, 743
findMin operation, 743, 780, 784,

795, 800
First in, first out (FIFO) process,

534, 560
first operation, 534–535, 551
Fixed array implementation strategy,

552–553, 589–595
float value, 47–48, 58–59, 100
Floating-point data, 47–48, 51, 127
Floating-point division, 51–52
Floating-point syntax, 1035
Flow of control, 112, 159

Z11_LEWI5976_05_SE_IDX.indd 1047 08/02/19 2:58 PM

1048 INDEX

collisions, 824, 1000, 1004–1009
deleting elements in, 1009–1010
double hashing, 1008–1009
dynamic resizing, 1001
Java API implementations, 1011–1017
linear probing, 1006–1007
load factor, 1001, 1011
open addressing methods,

1006–1009, 1010
quadratic probing, 1007–1008

hashCode() method, 809, 810, 825
Hashing, 823–825, 999–1022

collisions, 824, 1000, 1004–1017
functions, 824, 1000, 1001–1004
hash tables, 824–825, 826,

1000–1001, 1004–1017
Java API implementations, 1011–1017
map implementation using,

823–825, 1011
set implementation using, 823–825,

1011
Hashing functions, 824, 826, 1000,

1001–1004
boundary folding, 1002–1003
digit analysis method, 1003–1004
division method, 1002
extraction, 1001–1002
folding method, 1002–1003
initial capacity, 824
Java language and, 1004
length-dependent method, 1004
load factor, 824
mid-square method, 1003
perfect, 824
radix transformation method, 1003
shift folding, 1002

HashMap class, 811, 823–825, 1013–1014
HashSet class, 811, 823–825, 1013
hasNext method, 614, 615
Heap sort, 800–802
Heap store, 506
Heaps, 779–806

abstract data types (ADT), 780–781
addElement operation, 780, 782–783,

788–792, 797–798

Graphical user interface (GUI) (continued)
JavaFX, 246–249
key events, 276–279
mouse events, 270–276
text fields, 256–259
tool tip, 299–304

Graphs, 849–877
acyclic, 851
addEdge method, 870
addVertex method, 870–871
adjacency lists, 864
adjacency matrices, 864–872
algorithms, 854–863
complete, 850
connected, 851–852, 858–859
directed (digraph), 851–852, 865
edges (connections), 850–852
expandCapacity method, 871–872
implementation strategies, 863–872
minimum spanning trees (MST),

860–862
networks (weighted graphs), 853–854,

865
nodes, 864
path, 851–852, 863
shortest path determination, 863
testing for connectivity, 858–859
traversals, 854–858
undirected, 850–851, 864, 865–872
vertices (nodes), 850–852, 864–865

Greater than operator, >, 113–114
Greater than or equal to operator, >=,

113–114
Growth functions, 451–455, 460

H
Has-a (aggregation) relationships,

206–211
Hash tables, 824–825, 826, 1000–1001,

1004–1017
bucket, 824, 1000
cell, 824, 1000
chaining method, 1005–1006,

1009–1010

Z11_LEWI5976_05_SE_IDX.indd 1048 08/02/19 2:58 PM

 INDEX 1049

conditional operator? ;, 124–125
else clause added to, 119–121,

125–127
execution using, 112
indentation of, 117, 123, 126–127
nested, 125–127
syntax, 1029
true/false conditions, 116–121

if–else statements, 119–121,
125–127

Immutable objects, 80, 103
Implementation, 21, 473–484, 485–495,

510–511, 520–527, 535–536,
546–559, 568, 587–596, 606–608,
615–619, 697–699, 707–731,
743–755, 762–771, 784–796,
823–825, 1011–1017

add() operation, 592–593
addAfter operation, 593–594
addEdge method, 870
addElement operation, 747–749,

788–792, 793–794
addVertex method, 870–871
adjacency lists, 864
adjacency matrices, 864–872
array-based, 485–495, 552–559,

587–594, 615–619, 791–796
ArrayList class, 568, 588–591
ArrayStack class, 587–589
AVL trees, 762–766
B-trees, 842–843
balance factor for, 763–766
binary search trees used for, 762–771
binary search trees, 743–755,

762–771
binary trees, 723–731
capacity and, 486–487, 489
circular array strategy, 553–556
computational strategy for, 697–698
contains operation, 591–592
decision trees, 719–723
dequeue operation, 550–551,

558–559
efficiency of, 699
enqueue operation, 549–550, 556–558

array-based implementation, 795–800
complete binary tree structure, 746–747
findMin operation, 780, 784, 795, 800
implementation of, 788–800
linked implementation of, 788–795
maxheap, 780
minheap, 780
priority queues and, 784–788
removeMin operation, 566, 783–784,

792–795, 798–800
sorting with, 800–802

Height of trees, 695
Hexadecimal (base-16) number

system, 939–940, 1034
Hierarchy, 376–380, 389, 398–399,

414–415, 435–439, 470–471,
694–696

abstract class and, 379–380, 399
ancestors, 694–695
binary trees, 743
child class and, 376–377
children, 694–696
class, 376–380, 398–399, 435–439,

470–471
descendants, 695
Exception class, 435–439
inheritance and, 376–380, 389
interface, 414–415
node placement, 694–696
Object class and, 377–379
parent-child relationships, 694–695, 718
polymorphism and, 398–399,

414–415
siblings, 376, 694
stacks, 470–471
throwing exceptions using, 435–439
trees, 694–695

High-level language, 12–13, 26

I
Identifiers, 7–9, 26, 1036
IdentityHashMap class, 1014–1015
if statements, 112, 116–127,

159, 1029
block statements {}, 121–124

Z11_LEWI5976_05_SE_IDX.indd 1049 08/02/19 2:58 PM

1050 INDEX

rotation techniques for, 759–765
sets, 823–825
simulated link strategy for, 679–680
size() operation, 527, 552, 581
StackADT interface, 482–485, 520
stacks, 485–495, 510–511, 520–527
toString operation, 552, 560
trees, 679–680, 707–731, 745–755
trees used for, 823
undirected graphs, 864, 865–872

import declaration, 84–86, 104, 1024
Increment operators ++, 56–57
Increments, loop execution, 151
Index (subscript) arrays, 314–325
Index operator [], 314–315, 318, 341
Indexed lists, 566–568, 579–580, 598

element placement and, 566–568
Josephus problem, 579–581

Indirect recursion, 629–630, 645
Infinite loops, 140–141, 159
Infinite recursion, 625–626, 645
Infix notation <>, 472–473
Inheritance, 24, 26, 361–393, 397–409,

470–471, 580–582
abstract classes, 379–380, 398–399
class hierarchies, 376–380, 398–399,

470–471
designing for, 383–385
final modifier, 384–385
is-a relationships, 363–367, 397
Java interfaces for, 372
lists, 582–587
multiple, 372
object class, 377–379
object-oriented programming use of,

24, 383–385
overriding methods, 373–376
polymorphism via, 397–409
protected modifier, 367–368
restricting, 384–385
shadow variables, 376
single, 372
software reuse, 24, 366–367
stacks, 470–471

Implementation (continued)
exceptions for, 494, 589–591, 608,

614–619
expandCapacity method, 490–491,

871–872
expression trees, 707–718
findMin operation, 795, 800
first operation, 551
fixed array strategy, 552–553,

587–590
freelist, 698
graph strategies, 863
hash tables, 1011–1017
hashing used for, 823–825
heaps, 788–800
isEmpty operation, 552
iterators, 606–608, 615–619
Java API for, 510–511, 606–608,

1011–1017
Java.util.Stack class, 474–475,

510–511, 535
linked structure strategies, 679–680,

707–731, 745–755, 788–795
LinkedList class, 510–511, 568,

597–598
linked-list, 520–527, 547–552,

596–597, 617–619
LinkedStack class, 520–527
lists, 568, 590–598, 755–759
maps, 823–825
peek operation, 493, 510, 527
pop operation, 492–493, 510, 526–527
priority queues, 784–788
push operation, 490–491, 510,

524–526
queues, 535, 547–560
red/black trees, 765–770
remove() operations, 568, 591–592,

596–597
removeAllOccurances operation,

752–753
removeElement operation, 748–752
removeMin operation, 753–755,

792–795, 798–800

Z11_LEWI5976_05_SE_IDX.indd 1050 08/02/19 2:58 PM

 INDEX 1051

encapsulation and, 181–182
Encryptable, 409–414
hierarchies, 414–415
Iterable, 606–607
Iterator, 415–416, 606–607
iterators, 606–607
Map, 808–811
member, 1025
multiple inheritance and, 372
polymorphism via, 416–419
Queue, 535–536
QueueADT, 545–546
Set, 808–811
StackADT, 482–485
syntax, 1025
UML class diagrams for, 412–414

Internal nodes, 694, 732, 837–838
Interpreter, 14–15
Invoking (calling) methods, 4–5, 34–36,

77–78, 189–190, 626–630
character strings for, 4,

34–36, 77–78
constructors, 77–78
flow of control and, 189–190
print, 34–36
println, 34–36
recursion and, 626–630

Is-a relationships, 363–367,
389, 397. See also Inheritance

isempty operation, 468, 527,
535, 551, 703, 809, 810

binary trees, 703
maps, 810
queues, 535, 551
sets, 809
stacks, 468, 527

Iterable interface, 606–607, 612
Iterative algorithms, 855–857
Iterator interface, 415–416, 577,

606–607
iterator operations, 703,

730–731, 809
Iterator<E>iterator() method,

606, 626

subclasses (child class), 362–372
super reserved word, 368–372
visibility, 367–368, 381–383

Initial capacity, hashing, 824
Initialization, 76–78, 151

loop execution and, 151
variable declaration and, 76–78

initialize method, 996
Initializer lists, 324–325, 346
Inline documentation, 3, 6
Inorder successor, 741–742
Inorder traversals, 700–707, 732
Input/output (I/O) exceptions, 439–444
Input stream, 439, 446
Input validation, 139–140
INSERT <tablename> statement,

891–895
Insertion sort, 660, 664–666, 680
InsertionSortDemo class, 681–683
insertionSort method, 684
Instance data, 178–179, 199, 233
Instance expression syntax, 1033
Instance of a class, 77, 104, 178–179
Instantiation, 77, 104
int value, 47–48, 58–59, 100–101
Integer division, 51–52, 67
Integer literal syntax, 1034
Integers, 47–48, 51
Integrated development environment

(IDE), 15–16, 26
Integration testing, 228, 233
Interfaces, 181–182, 233, 372,

409–419, 465–466, 482–485,
510–511, 535–536, 559, 606–607,
703–707, 743–755, 808–811, 1025

abstract methods as, 409, 465
BinarySearchTree, 743–755
BinaryTree, 703–707
body, 1025
class implementation, 409–414
collections, 465–466
Comparable, 415
declaration, 1025
Deque, 510–511, 559

Z11_LEWI5976_05_SE_IDX.indd 1051 08/02/19 2:58 PM

1052 INDEX

class packages, 83–84
collections use of, 467
dequeue interface, 510–511
hash table implementations,

1011–1017
HashMap class, 811, 1013–1014
HashSet class, 811, 1013
Hashtable class, 1011–1012
IdentityHashMap class,

1014–1015
Java.util.Stack class,

474–475, 510–511, 535
language software uses, 3, 26
linked structures, 510–511
LinkedHashMap class, 1016–1017
LinkedHashSet class, 1016–1017
LinkedList class, 510–511, 568
lists, 568
maps, 808–811, 1011
object-oriented design and, 467
queue implementation, 535–536
sets, 808–811, 1011
stack implementation, 487–495,

510–511
TreeMap class, 811
TreeSet class, 811
WeakHashMap class, 1015–1016

JavaFX API, 246–249
ColorPicker class, 267
creating GUI, 249–252
DatePicker object, 268
FlowPane, 251
HelloJavaFX class, 246–248
inheritance, 385–387
using theatre metaphor, 248

JavaFX property, 286–289
Java Database Connectivity (JDBC),

881–884
Java Development Environment

(JDK), 881
Java Development Kit (JDK), 16
Java programming, 1–31

architecture-neutral approach, 14–15
case sensitivity, 8, 26

Iterators, 145–148, 156, 159, 605–621,
629, 703, 730–731

array-based implementation, 615–617
binary trees, 703, 730–731
boolean hasNext() method, 606
collection definition and, 606–608
E Next() method, 606
element order and, 608
exceptions for, 608, 613–619
fail-fast implementation, 608
for statement and, 156, 607
hasNext method, 613–614, 615
implementation of, 615–619
interfaces for, 606–607
Iterable interface, 606–607, 612
Iterator<E>iterator() method, 606
Java standard class library for, 145
linked-list implementation, 617–619
lists and, 608–612
loops for, 607, 612–613
modification count for, 615
object definition and, 606–608
ProgramOfStudy class management,

608–614
reading text files using, 146–148
recursion compared to, 629
remove() operation, 607, 613–614
traversal and, 703
void remove() method, 606

J
Java, 953–998, 1023–1036

modifiers, 959–962
operators, 953–958
regular expressions, 997–998
syntax, 1023–1036

Java 2 platform, 2, 26
Java Applications Programming

Interface (API), 3, 26, 83–84, 467,
487–495, 510–511, 535–536, 568,
808–811, 1011–1017. See also
Interfaces

ArrayList class, 568
ArrayStack class, 487–495

Z11_LEWI5976_05_SE_IDX.indd 1052 08/02/19 2:58 PM

 INDEX 1053

repeating, 536–539
sort, 675, 678–679

keySet() operation, 810

L
Labeled statement, 1030
Language, 2–15, 16–17, 26–27, 41–47,

1004
assembly, 12–13, 26
assignment statements, 44–46
bytecode, 14, 26
case sensitivity, 8, 26, 46
character strings " ", 4
comments, 3, 5–6, 26
constants, 46–47
documentation, 3, 6
fourth-generation (4GL), 13
hashing functions and, 1004
high-level, 12–13, 26
identifiers, 7–9, 26
Java Application Programmer

Interfaces (API), 3, 26
Java programming and, 2–11
levels for program development, 11–13
low-level, 12
machine, 12–15, 26
methods, 3–5
mnemonics, 12
natural, 17, 26
object-oriented programming, 2–3
reserved words, 7–9, 27
semantics, 16–17, 27
source code, 14–15
standard class library, 3
statements, 4–5
strongly typed, 45, 67
syntax, 16–17, 27
target, 14
translation, 14–15
variables, 41–43
white space, 9–11, 27

Last in, first out (LIFO) process,
467, 497

Layout pane, 251, 261, 306, 975

character strings " ", 4
class definition {}, 3
comments, 3, 5–6, 26
compiler, 14, 26
deprecated elements, 2, 26
development environments, 15–16
development of, 11–18
documentation, 3
editor, 13–14, 26
errors, 17–18
identifiers, 7–9, 26
implementation, 21
interpreter, 14–15
language, 2–15, 16–17
methods, 3–5
object-oriented programming, 2–3,

21–24, 26
problem solving, 18–19
reserved words, 7–9, 27
semantics, 16–17, 27
software development activities,

20–21
statement termination ;, 4–5
statements, 2, 27
syntax, 16–17, 27
testing, 21
white space, 9–11, 27

Java standard class library, 83–84, 103,
145

java.lang package, 84, 89
java.text package, 85, 92
java.util package, 84–86
Java.util.Stack class, 478–479,

510–511, 535
Javadoc, 6
Javadoc comments, 480
jGRASP, 16
Josephus problem, 579–581, 600

K
Keys, 536–539, 675, 678–679, 818

maps, 818
object retrieval, 818
queue coding, 536–539

Z11_LEWI5976_05_SE_IDX.indd 1053 08/02/19 2:58 PM

1054 INDEX

heap implementation using, 783–790
lists, 504–507, 520–527
implementation and, 520–527
management of lists, 505–507
nodes, 504–507, 524–525
object references as, 503–505
pointers, 503–504
removeAllOccurrances operation,

752–759
removeElement operation, 748–752
removeMin operation, 753–755,

787–790
replacement method, 748–751
self–referential objects, 504
stacks and, 503–532
tree implementation and, 697–698,

707–731, 745–755
LinkedBinaryTree class, 708, 719–720,

723–728
LinkedHashMap class, 1016–1017
LinkedHashSet class, 1016–1017
LinkedList class, 509–510, 568,

595–596
LinkedStack class, 520–524
Listeners, 418–419

polymorphism event processing and,
418–419

Lists, 337–340, 565–604, 608–614,
662, 664–669, 672, 676

abstract data types (ADT), 581–587
add() operation, 568, 582, 592–593
addAfter operation, 582, 593–594
adding elements to, 582–588
addToFront operation, 582, 593
addToRear operation, 582, 593
adjacency, 864
array-based implementation, 587–594
collections as, 566–568
comparison of linked lists to, 566
contains operation, 581, 591–592
element placement in, 566–568
exceptions in, 589–591
get() operations, 568
graph implementation using, 864

Leaf nodes, 694, 733
Length-dependent method, hash

functions, 1004
Less than operator, <, 113–114
Less than or equal to operator, <=,

113–114
Level of tree nodes, 694, 733
Level-order traversals, 700, 702–703, 733
Lexicographic order, 130
Linear probing, 1006–1007
Linear search, 654–656, 658
Linear structure (collections), 464–465
Linked lists, 504–507, 520–527, 546–

551, 566, 594–596, 617–619
accessing elements, 505–506
comparison of lists to, 566
deleting nodes, 507
in JavaFX, 597–599
inserting nodes, 506–507
iterator implementation using, 617–619
list implementation using,

594–596
management of, 505–507
nodes, 504–507, 524–525
queue implementation using, 546–551
stack implementation using, 520–527

Linked structures, 503–532, 697–698,
707–731, 745–755, 788–795

addElement operation, 746–748,
788–792

application programming interfaces
(API), 509–510

array implementation using, 697–698
binary search tree implementation
using, 745–755
linked implementation, 745–755
binary tree implementation using,

723–731
decision tree implementation using,

718–723
doubly linked lists, 508–509
dynamic properties, 505
expression tree implementation using,

707–718

Z11_LEWI5976_05_SE_IDX.indd 1054 08/02/19 2:58 PM

 INDEX 1055

continue statement, 144–145
do statement, 148–151
execution of, 134–136, 151–153,

455–457
flow of control, 112
for statement, 151–157, 607
infinite, 140–141
loops for, 607, 612–613
iterators and, 145–148, 156, 607,

612–613
maps, reading input files using, 818
nested, 141–144, 456–457
off-by-one error, 135
sorted, 597–599
sorting, 664, 666–668, 671
while statement, 134–145, 149–151

Low-level language, 12

M
Machine language, 12–15, 26
main method, 3–4, 42–43
Management system, 880
Maps, 807–, 1011, 1013–1017

collections as, 808
hash table implementation using,

1013–1017
hashing for implementation of,

823–825, 1011
HashMap class, 811, 823–825,

1013–1014
IdentityHashMap class, 1014–1015
implementation of, 823–825
Java API interface for, 808–811
keys for object retrieval, 818
LinkedHashMap class, 1016–1017
loops used for reading input files, 818
sets and, 807–814, 823–825
tracking product sales using, 814–818
trees for implementation of, 823
user management system development,

818–822
WeakHashMap class, 1015–1016

Math class methods, 89–92
Mathematical use of recursion, 625–626

implementation of, 568, 587–592
indexed, 566–568, 579–582
inheritance used for, 582–584
iterators and, 608–614
Java API implementation, 568
java.util.List interface, 568
Josephus problem, 579–581
linked-list implementation, 594–596
observable, 597
ordered, 566, 568, 581–587, 592–593
ProgramOfStudy class management,

569–578, 608–614
remove() operations, 568, 581,

589–591, 595–596
set() operation, 568
size() operation, 568, 581
sorting, 662, 664–669, 672
unordered, 566–567, 569–578,

581–587, 593–594
variable-length parameter, 337–340

Literal expression syntax, 1034
Load factor, hashing, 824, 1001, 1011
Local data (variables), 197–198, 223,

1027
Logarithmic algorithm, 659
Logarithmic sorts, 659–660, 672–679,

681
merge sort, 660, 672–675
radix sort, 660, 675–679
sort key, 675, 678–679

Logical error, 18, 26
Logical expression syntax, 1033
Logical operators, 114–116, 159
long value, 47, 58–59, 100
Loops, 112–113, 134–157, 159,

455–457, 607, 612–613, 664,
666–668, 671, 818

algorithm analysis of, 455–457
body, 134–135
boolean conditions for, 134–136,

151–153
break statement, 144
comparisons of, 157
conditional execution using, 113

Z11_LEWI5976_05_SE_IDX.indd 1055 08/02/19 2:58 PM

1056 INDEX

Java applications, 3–5
Java programming language and, 3–5
local data, 197–198
main, 4
Math class, 89–92
mutator, 183–188
Numberformat class, 92–94
object comparison using, 128–130
object-oriented programming and, 22
objects, 22, 77–78, 80–83
overloaded, 223–224
overriding, 373–376
parameters (), 189, 196–197
print, 34–36
printf, 96–97
println, 4–5, 34–36
private visibility, –, 182–183
public visibility, +, 182–183
Random class, 86–89
recursive calls to, 626–630
return statement, 194–196
returned value, 77–78
searching use of, 653–654
service (public visibility), 182–183
signature, 223
stacks, 512–513
statement termination ;, 4–5
static (class), 89, 101, 200–203, 653
String class, 77–78, 80–83
support (private visibility), 182–183
syntax, 1027
visibility modifiers, 180, 182–183
wrapper classes and, 101
writing classes using, 203

Mid-square method, hash functions, 1003
Minheap, 780, 804
Minimum spanning trees (MST),

860–862, 874
Modification count, 615
Modifiers, 182–183, 234, 367–368,

381–383, 959–962, 1026
encapsulation and, 182–183
inheritance and, 3667–368, 381–383
Java lists of, 959–962

Matrices, adjacency, 864–872
Maxheap, 780, 804
Maze traversal, 511–519, 630–638

recursion used for, 630–638
stacks used for, 511–519

Members of a class, 175
Merge sort, 660, 672–675
Message encoding and decoding,

536–539
Method calls, algorithm analysis of,

457–459
Method design, 212–222

algorithms, 212
decomposition of methods, 213–218
parameters, 218–222
pseudocode, 212

Method reference, 251, 306
Methods, 3–5, 22, 26, 34–36, 77–78,

80–83, 86–97, 101, 128–130,
173–203, 223–224, 373–376,
379–380, 396, 428, 512–513,
626–630, 653–654, 1027

abstract, 379–380
accessor, 183–188
activation record, 512–513
binding, 223–224, 396
body, 1027
call stack trace, 428, 512
called, 189
calling (invoking), 4–5, 34–36,

189–190, 626–632
character strings " ", 4, 34–36
compareTo, 129–130
DecimalFormat class, 94–96
declaration, 173–178, 188–199, 1027
dot operator ., 77
driver programs, 190–191
encapsulation and, 181–188
equals, 128–129
formatting output, 92–97
generic, 653–654
inheritance and, 373–3776, 379–380
invocation (call), 4–5, 26
invoking, 4–5, 34–36, 77–78, 189–190

Z11_LEWI5976_05_SE_IDX.indd 1056 08/02/19 2:58 PM

 INDEX 1057

children, 694–696
descendants, 695
deleting, 508
edges, 694
graphs, 864
inserting, 507–508
internal, 694, 837–838
leaf, 694
level of, 694
linked lists, 505–508, 524–527,

745–747
multi-way search tree characteristics,

832–842
object references as, 505, 694
parent-child relationships, 694–695,

699, 747
promoted, 748–752
root, 694–695, 746–747
sentinel (dummy), 508
siblings, 694
trees, 694–699
2–4 trees, 838–839
2–3 trees, 832–838

Nonlinear structure (collections),
464–465, 694–695

Nonprintable characters, 906–907
Non-Western characters, 908
NoSuchElementException class, 590,

616–617
NOT operators, 114–116, 159, 912
Number systems, 937–903

bases, 937, 939–940
binary, 937–939
conversions, 940–944
decimal, 937–939
place value, 938–939

Numberformat class method, 92–94

O
Object class, 377–379
Object-oriented programming, 2–3,

21–24, 26, 383–385
attributes of object, 22
behavior of object, 22

syntax, 1026
visibility, 182–183, 367–368,

381–383, 960–961
moveTower method, 640–642
Multidimensional arrays, 344–345, 346
Multiple inheritance, 372, 389
Multi-way search trees, 831–847

B-, 840–843
implementation strategies for, 842–843
inserting elements in, 833–835, 839
node characteristics in, 832–842
removing elements from, 835–838, 839
2–4, 838–839
2–3, 827–838
underflow, 836–837
internal nodes, 837–838

Mutator methods, 183–188, 234

N
n-ary trees, 695, 733
Name, syntax, 1026
Name list, syntax, 1026
Narrowing conversions, 59, 67
Natural language, 17, 26
Nested statements, 125–127, 134,

141–144, 155, 158, 456–457
algorithm analysis of, 456–457
for statements, 155
if statements, 125–127, 158
indentation of, 125–127
loops, 141–144, 158, 456–457
switch statements, 134
while statements, 141–144

NetBeans, 16
Networks (weighted graphs), 853–854,

865, 874
new operator, 77
Nodes, 505–508, 524–527, 528,

694–699, 745–755, 832–842, 864
accessing elements, 506–507
adjacency lists, 864
ancestors, 694–695
B-trees, 840–842
binary search trees, 842–755

Z11_LEWI5976_05_SE_IDX.indd 1057 08/02/19 2:58 PM

1058 INDEX

object-oriented programming use of,
21–24, 26

pointer, 504–505
primitive data, 22, 100–102
reference variables, 76–78, 507–508,

524–527
ResultSet, 888–890, 896–897
self-governing concept, 23, 181
self-referential, 504
state of`, 22, 171
String class methods, 77–83,

128–130, 326–327
writing classes for, 170–173,

203–211
Octal (base-8) number system,

940, 1034
Off–by-one error, 135, 318, 355
offer operation, 535–536
One-dimensional arrays, 314–315,

341, 355
Open addressing methods, 1006–1009,

1010
deleting elements from implementation

of, 1010
double hashing, 1008–1009
hash tables, 996–1009, 1010
linear probing, 1006–1007
quadratic probing, 1007–1008

Open source projects, 16
Operators, 45, 51–58, 113–116,

127–130, 953–958
addition +, 51–52, 54
addition assignment +=, 57–58
AND logical &&, 114–116
arithmetic, 51–52
assignment =, 45, 57–58
bitwise, 955–958
boolean (conditional) expressions,

113–116, 954–955, 957
conditional ?:, 124–125
data comparisons using, 127–130
data expressions and, 51–58
decrement –, 56–57
division /, 51–52, 54
division assignment /=, 58

Object-oriented programming (continued)
class definition, 23
designing for inheritance, 383–385
encapsulation, 23–24, 26
inheritance, 24, 26
language, 2–3, 27
methods, 22
objects and, 21–24, 26
polymorphism, 24, 26
primitive data, 22
principles of, 21–24
restricting inheritance, 384–385
state of object, 22

Objects, 21–24, 26, 75–109, 128–130,
170–173, 181–182, 203–211,
325–335, 504–505, 507–508,
524–527, 605–621, 888–890,
896–897

aliases, 78–80
aggregation (has-a) relationships,

206–211
arrays of, 325–335
assignment statements, 79
attributes, 22, 171–172
behavior, 22, 172
binary search tree, 739
character strings, 78–79, 128–130
classes and, 22–24, 75–109, 170–173
client, 181
comparison of, 128–130
constructor, 77
creation of, 76–80
declarations of variables, 76–77
dependency, 203–206
dot operator ., 77
encapsulation, 23–24, 181–182
enumerated types, 97–99
garbage, 80
identification of, 171–173
immutable, 80
iterators, 605–621
interface, 181–182
instantiation, 77
list structures, 505, 507–508, 524–527
methods, 22, 77–78

Z11_LEWI5976_05_SE_IDX.indd 1058 08/02/19 2:58 PM

 INDEX 1059

Numberformat methods, 92–94
printf methods, 96–97

Output stream, 439, 445
Overloaded methods, 223–224, 234
Overriding methods, 373–376, 389

P
Packages, 83–86, 882–884,

960, 1024
asterisk import notation *, 85–86
class library, 83–86
CLASSPATH environment variable,

882–884
declaration, 1024
import declaration, 84–86, 1024
Java application programming

interface (API), 83–84
visibility, 960

Palindrome, 142–144
Parameter list, 196
Parameters, 34–35, 67, 77–78, 189,

196–197, 218–224, 325,
335–340, 1027

actual (arguments), 196
arrays, 325, 335–340
character strings, 34–35, 67
command-line arguments,

335–337
declaring methods, 196–197
formal, 196
invoking methods, 77–78, 189
method design and, 218–222
method invocation and, 196–197
method overloading, 223–224
passed by value, 218–222, 325
passing, 196–197, 218–222, 325
reference (object), 77–78,

218–222
syntax, 1027
tracing, 221–222
variable-length lists, 337–340

Parent-child relationships,
694–695, 718

Parent class (superclass), 363, 389
Partition element, 668–672

equal to ==, 113–114, 127, 129
equality, == and !=, 113–114, 127, 129
greater than >, 113–114
greater than or equal to >=, 113–114
increment ++, 56–57
Java, 953–958
left-shift <<, 957
less than <, 113–114
less than or equal to <=, 113–114
logical, 114–116
multiplication *, 51, 54
multiplication assignment *=, 57
not equal to !=, 113–114
NOT bitwise, 955–956
NOT logical !, 114–116
order of, 52–56, 953–955
OR bitwise inclusive, 956
OR logical ||, 114–116, 956
postfix form, 56–57
parentheses for (), 52–56
precedence, 52–56, 953–955
prefix form, 56–57
relational, 113–114
remainder (modulus) %, 51, 54
remainder assignment %=, 57
right-shift with sign fill >>, 958
right-shift with zero fill >>>, 958
subtraction–, 51–52, 54
subtraction assignment –=, 57
ternary, 124
XOR bitwise exclusive, 956

OR operators, 114–116, 159, 956
Ordered lists, 566, 568, 581–587,

592–593, 600, 755–759
add() operation, 568, 582, 592–593
adding elements to, 582, 585–586
array-based implementation,

592–593
binary search tree implementation of,

755–759
element placement and, 566

Ordinal value, 98
Output, 85, 92–97
DecimalFormat methods, 94–96
formatting, 85, 92–97

Z11_LEWI5976_05_SE_IDX.indd 1059 08/02/19 2:58 PM

1060 INDEX

conversion, 58–61
floating-point, 47–48
integers, 47–48
Java programming and, 22
signed numeric values, 47–48
syntax, 1026
wrapper class representation,

100–102
print method, 34–36
print statements, 230
Printable characters, 950
printf methods, 96–97
println method, 4–5, 34–36
Priority queues, 784–788, 804
Private visibility (support) methods,

182–183, 234, 381–383
Problem solving, 18–19
Processor speed, algorithms and,

453–455
Program, 2, 27
Program development, 11–18

architecture-neutral approach, 14–15
bytecode, 14–15, 26
compiler, 14, 26
development environments, 15–16
editor, 13–14, 26
errors, 17–18
interpreter, 14–15
language levels, 11–13
semantics, 16–17, 27
software tools, 13–15
source code, 14–15
syntax, 16–17, 27

Program (run-time) stack, 528
Programming, 1–31, 383–385,

511–519, 626–642
Java, 1–31
object-oriented, 2–3, 21–24, 27,

383–385
recursive, 626–642
stacks and, 511–519
statements, 2, 27
Towers of Hanoi puzzle, 638–642
traversing a maze, 511–519, 630–638

Path, 694–695, 733, 851–852, 865
connected graphs, 851–852
cycle, 851
graphs, 851–852, 865
length, 695
shortest, determination of, 863
trees, 694–695, 733

peek operation, 468–469, 493, 510, 527
Perfect hashing function, 824, 826
Place value, 938–939
Pointers, 504–505
poll operation, 536
Polymorphic reference, 396–398,

416–418, 419, 470
Polymorphism, 24, 395–423, 470–471

binding a method, 396
hierarchies, 398–399, 414–415,

470–471
inheritance for, 397–409
interfaces for, 409–418
object-oriented programming use of,

24, 396
reference variables, 396–398,

416–418, 470
stacks, 470–471

pop operation, 468–469, 492–493, 510,
526–527

Postfix expression evaluation, 472–480,
713–718

Postfix operator form, 56–57, 1034
Postorder traversals, 700, 701–702, 733
Precedence, 52–56, 953–955

expression tree, 53
hierarchy, 52–56
left-to-right association, 53, 953
operators, 52–56, 953–955
parentheses for, 53–54, 953

Prefix operator form, 56–57, 1034
Preorder traversals, 700–701, 733
Primitive data types, 22, 47–50, 58–61,

67, 100–102, 1026
autoboxing, 102
boolean, 50
character literals, 48–50

Z11_LEWI5976_05_SE_IDX.indd 1060 08/02/19 2:58 PM

 INDEX 1061

interfaces, 535–536
isEmpty operation, 535, 551
Java API implementation, 535–536
linked-list implementation of, 546–551
message encoding and decoding with,

536–539
priority, 784–788
radix sort, 675–679
size operation, 535, 551
toString operation, 535, 551, 559
waiting line (ticket counter) simula-

tion, 540–544
Quick sort, 660, 668–672

R
Radio buttons, 263–267, 307
Radix sort, 660, 675–679
Radix transformation method, hash

functions, 1003
Ragged arrays, 345
Random class methods, 86–89
Reading data input, 61–65
Reading input files, maps

used for, 818
Reading text files, iterators used

for, 146–148
Recursion, 623–649

algorithm analysis, 643–644
base case, 624–626
calling (invoking) methods,

626–630
concept of, 624–626
direct, 629
factorial function !, 625–626
indirect, 629–630
infinite, 624–625
iteration compared to, 629
mathematical, 625–626
programming, 626–630
Towers of Hanoi puzzle using,

638–642
traversing a maze using, 630–638

Recursive thinking, 624–626
Red/black trees, 766–771, 773

ProgramOfStudy class management,
569–578, 609–615

iterators for, 609–615
lists for, 569–578
printing courses, 613
removing courses, 614–615

Promoted nodes, 748–752, 773
Promotion (data conversion), 60
Propagation class, 432–435
protected modifier, 367–368
Pseudocode, 212
Pseudorandom number generator,

86–89, 104
Public visibility (service) methods,

182–183, 234
push operation, 468, 490–491, 510,

524–525
put() operation, 811
putAll operation, 811

Q
Quadratic probing, 1007–1008
QueueADT interface, 545–546
Queues, 533–563, 675–679, 784–788

abstract data types (ADT), 534–535,
545–546

array-based implementation of,
552–559

circular array implementation strategy,
553–556

code keys and, 536–539
concepts of, 534–535
dequeue interface, 559
dequeue operation, 534–535,

550–551, 558–559
double-ended (dequeue), 559
enqueue operation, 534–535,

548–549, 556–558
first in, first out (FIFO) process, 534
first operation, 534–535, 551
fixed array implementation strategy,

552–553
head/tail element references, 534
implementation of, 535–536, 546–559

Z11_LEWI5976_05_SE_IDX.indd 1061 08/02/19 2:58 PM

1062 INDEX

replacement method, 749–752
Reserved words, 7–9, 27
ResultSet object, 888–890, 896–897
retainAll operation, 809
return statement, 194–196, 234, 1030
Returned values, 77–78
Reviews, 225, 234
Robust programs, 18, 140
Root node, 248, 307
Root of tree, 694–695, 733
Rotation techniques, 760–766

AVL tree, 763–766
balance factor for, 763–766
binary search tree balance using,

760–766
degenerate tree, 759–760
left rotation, 761–762, 764
leftright rotation, 762, 763,

765–766
right rotation, 760–761, 763–764
rightleft rotation, 762, 764, 765

Rubber banding effect, 274
Run-time error, 18, 426. See also

Exceptions
Running sum, 138, 159
Run-time stack, 513
RuntimeException class, 494

S
Scanner class, 61–65
Scope of variables, 178–179
Search pool, 652, 636–659
Search tree, 738. See also Binary

search trees
Searching, 651–659

algorithm comparisons, 658–659
binary search, 656–659
Comparable interface, 652
generic methods, 653–654
linear search, 654–656, 658
search pool, 652, 656–659
static (class) methods, 653
target element, 652, 654–655
viable candidates, 656–658

Reference variables, 76–78, 396–398,
416–418, 504–505, 507–508,
524–527

nodes, 505, 507–508, 524–527
object declaration, 76–78
pointers, 504–505
polymorphic, 396–398, 416–418
list structures, 505, 507–508, 524–527

Regression testing, 225
Regular expressions, 997–998
Relational databases, 880–881
Relational expression syntax, 1033
Relational operators, 113–114, 159
remove() operations, 528, 568, 581,

589–591, 595–596, 607, 614–615,
809, 811

array-based list implementation,
589–591

equals method for, 590–591
exceptions in, 589–591
find method for, 590–591
iterators and, 607, 614–615
linked-list implementation, 595–596
list interfaces, 568, 581, 589–591,

595–596
loops and, 607, 614–615
maps, 811
queues, 536
sets, 809

removeAll operation, 809
removeAllOccurances operation, 743,

752–753
removeElement operation, 743, 748–752
removeMax operation, 743
removeMin operation, 743, 753–755,

783–784, 792–795, 798–800
array-based implementation using,

798–800
binary search trees, 743, 753–755
heaps, 783–784, 792–795, 798–800
linked implementation using, 753–755,

792–795
Repeating key, 536–539
Repetition statement, see Loops

Z11_LEWI5976_05_SE_IDX.indd 1062 08/02/19 2:58 PM

 INDEX 1063

Simulated link implementation strategy,
697–698

Single inheritance, 372, 389
size() operation, 468, 527, 535, 551,

568, 581, 703, 809, 811
binary trees, 703
lists, 568, 581
maps, 811
queues, 535, 855
sets, 809
stacks, 468, 527

Sliders, 292–295
Software development activities, 20–21
Software Development Kit (SDK), 16
Software reuse, 24, 362–363. See also

Inheritance
Software tools, 13–15

compiler, 14, 26
editor, 13–14, 26
interpreter, 14–15

solve method, 639–640
Sort key, 675, 678–679
Sorting, 659–679, 800–802

arrays, 662–664, 665–666
bubble sort, 660, 666–668
Comparable interface, 661
Contact objects, 660–662
heap sort, 800–802
insertion sort, 660, 664–666
keys for, 675, 678–679
lists of values, 662, 664–669, 672
logarithmic, 659–660
loops for, 664, 666–668, 671
merge sort, 660, 672–675
partition element, 668–672
process, 659–662
quick sort, 660, 668–672
radix sort, 660, 675–679
selection sort, 660, 662–664
sequential, 659–660
swapping, 664, 666–668

Source code, 14–15
Space complexity, algorithms, 451
Spanning trees, 860–862, 874

Seed value, 86
SELECT...FROM statement, 891,

895–896
Selection sort, 660, 662–664
Selection statement, see Conditional

statements
Self–referential object, 504
Semantics, 16–17, 27
Sentinel (dummy) node, 508, 528
Sentinel value, 135
Sequential sorts, 659–660, 668

bubble sort, 660, 666–668
insertion sort, 660, 664–666
partition element, 668–672
quick sort, 660, 668–672
selection sort, 660, 662–664
swapping, 664, 666–668

Serializable interface, 577–578
Serialization, 577–578, 600
Service (public visibility) methods,

182–183, 234
set() operation, 568
Sets, 807–814, 823–825, 1011, 1013,

1016–1017
blocked domains using, 811–814
collections as, 808
hash table implementation using,

1013, 1016–1017
hashing for implementation of,

823–825, 1011
HashSet class, 811, 823–825, 1013
implementation of, 823–825
Java API interface for, 808–811
LinkedHashSet class, 1016–1017
maps and, 807–814, 823–825
trees for implementation of, 823

Shadow variables, 376
Shift folding, 1002
short value, 47–48, 58–59, 100
SHOW COLUMNS <tablename> statement,

888–890
Siblings, 376, 694, 733
Signature, 223, 234
Signed numeric values, 47–48

Z11_LEWI5976_05_SE_IDX.indd 1063 08/02/19 2:58 PM

1064 INDEX

Standard class library, 3. See also
Java Application Programmer
Interfaces (API)

Standard input stream, 61, 67
State of objects, 22, 171
Statement coverage, 227
Statement syntax, 1028, 1032
Statement termination ;, 4–5
static (class) members, 89, 101,

199–203, 234, 653
declaration, 199–200
methods, 89, 101, 200–203, 234
searching use of, 653
variables, 199–200, 234
writing classes using, 199–203

Step execution, 231
Streams, 439–443
String class, 77–83, 128–130,

326–327
alias creation of, 78–79
arrays of objects, 326–327
assignment statements, 79
comparing objects, 128–130
compareTo method, 129–130
equals method, 128–129
immutable objects, 80
index specifications, 80
methods, 80–83
object instantiation and, 77–79,

326–327
returned values of, 77–78

String concatenation +, 36–39, 54, 67
String literals " ", 34, 67, 78, 1035
Strongly typed language, 45, 67
Subclasses (child class), 363–372, 389
Subscript (index) arrays, 314–325
sum method, 627–629
super reserved word, 368–372
Superclass (parent class), 363, 389
Support (private visibility) methods,

182–183, 234
Swapping, 664, 666–668
switch statement, 130–134, 159, 1028
Synchronized statement, 1030

Spinner, 295–298
StackADT interface, 482–484, 485
Stacks, 463–501, 503–532

abstract data types (ADT), 467–469,
482–484

application programming interfaces
(API), 487–495, 510–511

array implementation of, 485–494
capacity management, 486–487, 489
class hierarchy for, 470–471
collections, 467–469
drop-out, 484
elements without links, 509–510
exceptions, 481–482, 492, 494
generic class types, 471–472, 489
implementation, 485–495, 510–511,

520–527
infix notation <>, 472–473
inheritance and, 470–471
isempty operation, 468, 527
Java API implementation, 510–511
Java.util.Stack class, 478–479,

510–511
last in, first out (LIFO) process, 467
linked structures, 503–532
linked-list implementation

of, 520–527
object-oriented programming and,

469–472
peek operation, 468–469, 493, 510,

527
polymorphism and, 470–471
pop operation, 468–469, 492–493,

510, 526–527
postfix expression evaluation,

472–480
program (run-time), 513
push operation, 468, 490–491, 510,

524–525
size() operation, 468, 527
toString() operation, 469, 527
traversing a maze using, 511–519
type checking and compatibility,

469–470

Z11_LEWI5976_05_SE_IDX.indd 1064 08/02/19 2:58 PM

 INDEX 1065

Topological order of vertices, 852
toString() operation, 469, 527, 703
Towers of Hanoi puzzle, 638–642, 645
Tracking product sales using maps,

814–818
transient modifier, 962
Traversals, 511–519, 630–638,

700–703, 854–858
breadth-first, 854–858
depth-first, 854–858
graph algorithm for, 854–858
inorder, 700–701, 732
level-order, 700, 702–703, 733
maze, 511–519, 630–638
postorder, 700, 701–702, 733
preorder, 700–701, 733
recursion used for, 630–638
stacks used for, 511–519
trees, 700–703

traverse method, 635–638
TreeMap class, 811, 814–818, 823
Trees, 693–736, 737–777, 779–806,

823, 831–847, 860–862
abstract data types (ADT), 699,

703–707, 743–745
array-based implementation, 697–699
AVL tree, 762–766
B-, 840–843, 844
balanced, 695–696, 759–762
binary, 695–696, 703–731
binary search, 699, 747–777
classification of, 695–696
complete, 696, 782–783
decision, 719–723
degenerate, 759–760
efficiency of implementation of other

collections using, 699
expert systems from, 719–723
expression, 707–718
full, 696
general, 695
graph algorithms for, 860–862
heaps, 779–806
height of, 695

Syntax, 16–17, 27, 323, 1023–1036
arrays, 323
error, 18, 27
Java diagrams, 1023–1036
programming language, 16–17

System heap, 506
System testing, 228, 234

T
Tables, 880–881, 885–898. See also

Databases
Tags @, Javadoc, 480
Target element, 652, 654–655
Target language, 14
Ternary operator, 124
Test case, 226
Test suite, 226, 234
Test-driven development, 228–229
Testing, 21, 224–229, 234, 858–859

black-box, 226–227
defect, 226–227
equivalence categories, 226–227
errors and, 224–225
graph connectivity, 858–859
integration, 228
programs, 21
regression, 225
reviews, 225
statement coverage, 227
system, 228
test-driven development, 228–229
unit, 227–228
walkthrough, 225
white-box, 227
writing classes and, 224–229

Text area, 283–286
Text fields, 256–259, 307
this reference, 211–212
throw statement, 436–439, 1027, 1030
Time complexity, algorithms, 451,

455–459
toArray() operations, 810
Tokens, 62–63, 67
Tool tip, 299–304

Z11_LEWI5976_05_SE_IDX.indd 1065 08/02/19 2:58 PM

1066 INDEX

degenerate tree, 759–760
left rotation, 761–762, 763
leftright rotation, 762, 765–766
node insertion or deletion causing, 763
right rotation, 760–761, 763–764
rightleft rotation, 762, 764

Uncaught exceptions, 427–428
Unchecked exceptions, 439, 445
Underflow, 836–837, 844
Undirected graphs, 850–851, 864,

865–872
Unicode character set, 50, 67, 128,

949–952, 1036
Unified Modeling Language (UML)

diagrams, 179–181, 234, 367–368,
412–414

inheritance, 367–368
interfaces, 412–414
visibility modifier notation for, 180,

234, 367–368
writing classes using, 179–181

Uninitialized variables, 76
Unit testing, 227–228, 234
Unordered lists, 566–567, 569–578,

581–587, 593–594, 600
addAfter operation, 582, 593–594
adding elements to, 582, 586–587
addToFront operation, 582, 593
addToRear operation, 582, 593
array-based implementation, 593–594
element placement and, 566–567
iterator method, 577
ProgramOfStudy class management,

569–578
Serializable interface, 577–578

UnsupportedOperationException class,
617–619

User management system development,
818–822

V
values() operation, 811
Variable-length parameter lists,

337–340, 355

Trees (continued)
hierarchy, 694–696
implementation strategies, 697–699,

724–731, 842–843
linked implementation, 724–731,

745–755
map implementation using, 823
minimum spanning (MST), 860–862
multi-way search, 831–847
n-ary (general), 695
nodes, 694–699, 745–755, 832–842
nonlinear structure of, 694–695
parent-child relationships, 694–695, 718
red/black, 766–771
rotation of, 760–766
set implementation using, 823
spanning, 860–862
traversals, 700–703
unbalanced, 695–696, 759–766

TreeSet class, 811–814, 823
true value, 50
true/false conditions, 50, 115–121
Truth tables, 115–116, 160
try-catch statement, 428–432,

445, 1030
Two-dimensional arrays, 341–345, 355
2–4 trees, 838–839, 844
2–3 trees, 832–838, 844
Type checking and compatibility,

469–470
Type declaration, 1024

U
Unary expression syntax, 1034
Unary operators, 52
Unbalanced trees, 695–696, 759–766
and() and remove() operations

and, 759
AVL tree, 762–766
balance factor for, 762–766
balancing techniques for, 759–766
binary search tree implementation and,

759–766
classification as, 695–696

Z11_LEWI5976_05_SE_IDX.indd 1066 08/02/19 2:58 PM

 INDEX 1067

WeakHashMap class, 1015–1016
Weighted graphs (networks), 853–854,

865, 874
while statement, 134–145, 149–151,

157, 160, 1028
do statement use of, 149–151
infinite loops, 140–141
input validation, 139–140
nested loops, 141–144, 155
running sum, 138
sentinel value, 135
syntax, 1028

White space, 9–11, 27
White-box testing, 227, 234
Widening conversions, 58–59, 67
Wrapper classes, 100–102, 104
Writing classes, 169–243

aggregation (has-a) relationships,
206–211

assigning responsibilities, 173
class and object relationships, 170–171
class relationships to classes, 203–212
class method declaration, 173–181
constructors, 198–199
dependency relationships, 203–206
encapsulation, 181–188
identification of objects and classes,

171–173
method declarations, 173–178,

188–199
method design, 212–222
object attributes and behavior,

170–171
overloaded methods, 223–224
parameters, 189, 196–197, 218–222
static class members, 199–203
testing, 224–229
this reference, 211–212
Unified Modeling Language (UML)

class diagrams, 179–181
variable declaration, 178–179

X
XOR bitwise exclusive operator, 956

Variables, 41–43, 67, 76–78, 97–99,
178–179, 197–200, 376, 396–398,
416–418, 507–508, 524–527,
882–884, 1026

CLASSPATH, 882–884
data as, 41–43
declaration, 41–43, 178–179,

197–200, 1026
enumerated types, 97–99
environment, 882–884
instance data, 178–179, 199
list structures, 507–508, 524–527
local data as, 197–198
method declaration, 197–198
polymorphic reference, 396–398,

416–418
reference (object), 76–78, 507–508,

524–527
scope of, 178–179, 197
shadow, 376
static, 199–200
uninitialized, 76

Vertices (nodes), graphs, 850–852,
864–865

Viable candidates, 656–658
Visibility modifiers, 180, 182–183, 234,

367–368, 381–383, 960–961
default, 960–961
inheritance and, 367–368, 381–383
package, 960
private (support) methods, 182–183,

234, 381–383
protected methods, 367–368, 960–961
protected notation #, 368
public (service) methods, 182–183, 234
Unified Modeling Language (UML)

class diagrams, 180, 234, 367–368
void data, 100
void remove() method, 606

W
Waiting line (ticket counter) simulation,

540–544
Walkthrough, 225

Z11_LEWI5976_05_SE_IDX.indd 1067 08/02/19 2:58 PM

 Color Sect ion 1

L I S T I N G 6 . 1 : D I S P L AY

L I S T I N G 6 . 2 : D I S P L AY

L I S T I N G 6 . 3 : D I S P L AY

Z12_LEWI5976_05_SE_CINS.indd 1 08/02/19 3:33 AM

2 Color Sect ion

L I S T I N G 6 . 4 : D I S P L AY

L I S T I N G 6 . 6 : D I S P L AY

L I S T I N G 6 . 6 : D I S P L AY (c o n t i n u e d)

Z12_LEWI5976_05_SE_CINS.indd 2 08/02/19 3:33 AM

L I S T I N G 6 . 1 0 : D I S P L AY

L I S T I N G 6 . 8 : D I S P L AY

L I S T I N G 6 . 8 : D I S P L AY (c o n t i n u e d)

 Color Sect ion 3

Z12_LEWI5976_05_SE_CINS.indd 3 08/02/19 3:33 AM

4 Color Sect ion

L I S T I N G 6 . 1 1 : D I S P L AY

L I S T I N G 6 . 1 1 : D I S P L AY (c o n t i n u e d)

Z12_LEWI5976_05_SE_CINS.indd 4 08/02/19 3:33 AM

 Color Sect ion 5

L I S T I N G 6 . 1 2 : D I S P L AY

L I S T I N G 6 . 1 3 : D I S P L AY

L I S T I N G 6 . 1 3 : D I S P L AY (c o n t i n u e d)

Z12_LEWI5976_05_SE_CINS.indd 5 08/02/19 3:33 AM

6 Color Sect ion

L I S T I N G 6 . 1 4 : D I S P L AY (c o n t i n u e d)

L I S T I N G 6 . 1 4 : D I S P L AY (c o n t i n u e d)

L I S T I N G 6 . 1 4 : D I S P L AY

L I S T I N G 6 . 1 5 : D I S P L AY

Z12_LEWI5976_05_SE_CINS.indd 6 08/02/19 3:33 AM

 Color Sect ion 7

L I S T I N G 6 . 1 5 : D I S P L AY (c o n t i n u e d)

Z12_LEWI5976_05_SE_CINS.indd 7 08/02/19 3:33 AM

L I S T I N G 6 . 1 6 : D I S P L AY

L I S T I N G 6 . 1 6 : D I S P L AY (c o n t i n u e d)

8 Color Sect ion

Z12_LEWI5976_05_SE_CINS.indd 8 08/02/19 3:33 AM

 Color Sect ion 9

L I S T I N G 6 . 1 8 : D I S P L AY (c o n t i n u e d)

L I S T I N G 6 . 1 8 : D I S P L AY

Z12_LEWI5976_05_SE_CINS.indd 9 08/02/19 3:33 AM

10 Color Sect ion

L I S T I N G 6 . 1 9 : D I S P L AY (c o n t i n u e d)

L I S T I N G 6 . 1 9 : D I S P L AY

Z12_LEWI5976_05_SE_CINS.indd 10 08/02/19 3:33 AM

 Color Sect ion 11

L I S T I N G 6 . 2 0 : D I S P L AY

F I G U R E 6 . 3

Z12_LEWI5976_05_SE_CINS.indd 11 08/02/19 3:33 AM

12 Color Sect ion

L I S T I N G 7 . 1 5 : D I S P L AY

L I S T I N G 7 . 1 6 : D I S P L AY

L I S T I N G 7 . 1 6 : D I S P L AY (c o n t i n u e d)

Z12_LEWI5976_05_SE_CINS.indd 12 08/02/19 3:33 AM

 Color Sect ion 13

F I G U R E F. 5

L I S T I N G F. 1 : D I S P L AY

Z12_LEWI5976_05_SE_CINS.indd 13 08/02/19 3:33 AM

14 Color Sect ion

L I S T I N G F. 2 : D I S P L AY

L I S T I N G F. 3 : D I S P L AY

Z12_LEWI5976_05_SE_CINS.indd 14 08/02/19 3:33 AM

 Color Sect ion 15

L I S T I N G F. 4 : D I S P L AY

L I S T I N G F. 5 : D I S P L AY

Z12_LEWI5976_05_SE_CINS.indd 15 08/02/19 3:33 AM

16 Color Sect ion

G r a p h i c T r a n s f o r m a t i o n i m a g e s f r o m A p p e n d i x F

Z12_LEWI5976_05_SE_CINS.indd 16 08/02/19 3:33 AM

	Cover
	Preface
	Contents
	Chapter 1 Introduction
	1.1 The Java Programming Language
	A Java Program
	Comments
	Identifiers and Reserved Words
	White Space

	1.2 Program Development
	Programming Language Levels
	Editors, Compilers, and Interpreters
	Development Environments
	Syntax and Semantics
	Errors

	1.3 Problem Solving
	1.4 Software Development Activities
	1.5 Object-Oriented Programming
	Object-Oriented Software Principles

	Chapter 2 Data and Expressions
	2.1 Character Strings
	The print and println Methods
	String Concatenation
	Escape Sequences

	2.2 Variables and Assignment
	Variables
	The Assignment Statement
	Constants

	2.3 Primitive Data Types
	Integers and Floating Points
	Characters
	Booleans

	2.4 Expressions
	Arithmetic Operators
	Operator Precedence
	Increment and Decrement Operators
	Assignment Operators

	2.5 Data Conversion
	Conversion Techniques

	2.6 Reading Input Data
	The Scanner Class

	Chapter 3 Using Classes and Objects
	3.1 Creating Objects
	Aliases

	3.2 The String Class
	3.3 Packages
	The import Declaration

	3.4 The Random Class
	3.5 The Math Class
	3.6 Formatting Output
	The NumberFormat Class
	The DecimalFormat Class
	The printf Method

	3.7 Enumerated Types
	3.8 Wrapper Classes
	Autoboxing

	Chapter 4 Conditionals and Loops
	4.1 Boolean Expressions
	Equality and Relational Operators
	Logical Operators

	4.2 The if Statement
	The if-else Statement
	Using Block Statements
	The Conditional Operator
	Nested if Statements

	4.3 Comparing Data
	Comparing Floats
	Comparing Characters
	Comparing Objects

	4.4 The switch Statement
	4.5 The while Statement
	Infinite Loops
	Nested Loops
	Other Loop Controls

	4.6 Iterators
	Reading Text Files

	4.7 The do Statement
	4.8 The for Statement
	Iterators and for Loops
	Comparing Loops

	Chapter 5 Writing Classes
	5.1 Classes and Objects Revisited
	Identifying Classes and Objects
	Assigning Responsibilities

	5.2 Anatomy of a Class
	Instance Data
	UML Class Diagrams

	5.3 Encapsulation
	Visibility Modifiers
	Accessors and Mutators

	5.4 Anatomy of a Method
	The return Statement
	Parameters
	Local Data
	Constructors Revisited

	5.5 Static Class Members
	Static Variables
	Static Methods

	5.6 Class Relationships
	Dependency
	Dependencies among Objects of the Same Class
	Aggregation
	The this Reference

	5.7 Method Design
	Method Decomposition
	Method Parameters Revisited

	5.8 Method Overloading
	5.9 Testing
	Reviews
	Defect Testing
	Unit Testing
	Integration Testing
	System Testing
	Test-Driven Development

	5.10 Debugging
	Simple Debugging with print Statements
	Debugging Concepts

	Chapter 6 Graphical User Interfaces
	6.1 Introduction to JavaFX
	GUI Elements
	Alternate Ways to Specify Event Handlers
	Determining Event Sources

	6.2 Other GUI Controls
	Text Fields
	Check Boxes
	Radio Buttons
	Color and Date Pickers

	6.3 Mouse and Key Events
	Mouse Events
	Key Events

	6.4 Dialog Boxes
	File Choosers

	6.5 JavaFX Properties
	Change Listeners
	Sliders
	Spinners

	6.6 Tool Tips and Disabling Controls

	Chapter 7 Arrays
	7.1 Array Elements
	7.2 Declaring and Using Arrays
	Bounds Checking
	Alternative Array Syntax
	Initializer Lists
	Arrays as Parameters

	7.3 Arrays of Objects
	7.4 Command-Line Arguments
	7.5 Variable-Length Parameter Lists
	7.6 Two-Dimensional Arrays
	Multidimensional Arrays

	7.7 Arrays and GUIs
	An Array of Color Objects
	Choice Boxes

	Chapter 8 Inheritance
	8.1 Creating Subclasses
	The protected Modifier
	The super Reference
	Multiple Inheritance

	8.2 Overriding Methods
	Shadowing Variables

	8.3 Class Hierarchies
	The Object Class
	Abstract Classes

	8.4 Visibility
	8.5 Designing for Inheritance
	Restricting Inheritance

	8.6 Inheritance in JavaFX

	Chapter 9 Polymorphism
	9.1 Dynamic Binding
	9.2 Polymorphism via Inheritance
	9.3 Interfaces
	Interface Hierarchies
	The Comparable Interface
	The Iterator Interface

	9.4 Polymorphism via Interfaces

	Chapter 10 Exceptions
	10.1 Exception Handling
	10.2 Uncaught Exceptions
	10.3 The try-catch Statement
	The finally Clause

	10.4 Exception Propagation
	10.5 The Exception Class Hierarchy
	Checked and Unchecked Exceptions

	10.6 I/O Exceptions

	Chapter 11 Analysis of Algorithms
	11.1 Algorithm Efficiency
	11.2 Growth Functions and Big-Oh Notation
	11.3 Comparing Growth Functions
	11.4 Determining Time Complexity
	Analyzing Loop Execution
	Nested Loops
	Method Calls

	Chapter 12 Introduction to Collections - Stacks
	12.1 Collections
	Abstract Data Types
	The Java Collections API

	12.2 A Stack Collection
	12.3 Crucial OO Concepts
	Inheritance and Polymorphism
	Generics

	12.4 Using Stacks: Evaluating Postfix Expressions
	Javadoc

	12.5 Exceptions
	12.6 A Stack ADT
	12.7 Implementing a Stack: With Arrays
	Managing Capacity

	12.8 The ArrayStack Class
	The Constructors
	The push Operation
	The pop Operation
	The peek Operation
	Other Operations
	The EmptyCollectionException Class
	Other Implementations

	Chapter 13 Linked Structures - Stacks
	13.1 References as Links
	13.2 Managing Linked Lists
	Accessing Elements
	Inserting Nodes
	Deleting Nodes

	13.3 Elements without Links
	Doubly Linked Lists

	13.4 Stacks in the Java API
	13.5 Using Stacks: Traversing a Maze
	13.6 Implementing a Stack: With Links
	The LinkedStack Class
	The push Operation
	The pop Operation
	Other Operations

	Chapter 14 Queues
	14.1 A Conceptual Queue
	14.2 Queues in the Java API
	14.3 Using Queues: Code Keys
	14.4 Using Queues: Ticket Counter Simulation
	14.5 A Queue ADT
	14.6 A Linked Implementation of a Queue
	The enqueue Operation
	The dequeue Operation
	Other Operations

	14.7 Implementing Queues: With Arrays
	The enqueue Operation
	The dequeue Operation
	Other Operations

	14.8 Double-Ended Queues (Dequeue)

	Chapter 15 Lists
	15.1 A List Collection
	15.2 Lists in the Java Collections API
	15.3 Using Unordered Lists: Program of Study
	15.4 Using Indexed Lists: Josephus
	15.5 A List ADT
	Adding Elements to a List

	15.6 Implementing Lists with Arrays
	The remove Operation
	The contains Operation
	The add Operation for an Ordered List
	Operations Particular to Unordered Lists
	The addAfter Operation for an Unordered List

	15.7 Implementing Lists with Links
	The remove Operation

	15.8 Lists in JavaFX
	Observable List
	Sorted List

	Chapter 16 Iterators
	16.1 What???s an Iterator?
	Other Iterator Issues

	16.2 Using Iterators: Program of Study Revisited
	Printing Certain Courses
	Removing Courses

	16.3 Implementing Iterators: With Arrays
	16.4 Implementing Iterators: With Links

	Chapter 17 Recursion
	17.1 Recursive Thinking
	Infinite Recursion
	Recursion in Math

	17.2 Recursive Programming
	Recursion versus Iteration
	Direct versus Indirect Recursion

	17.3 Using Recursion
	Traversing a Maze
	The Towers of Hanoi

	17.4 Analyzing Recursive Algorithms

	Chapter 18 Searching and Sorting
	18.1 Searching
	Static Methods
	Generic Methods
	Linear Search
	Binary Search
	Comparing Search Algorithms

	18.2 Sorting
	Selection Sort
	Insertion Sort
	Bubble Sort
	Quick Sort
	Merge Sort

	18.3 Radix Sort
	18.4 A Different Way to Sort???Comparator

	Chapter 19 Trees
	19.1 Trees
	Tree Classifications

	19.2 Strategies for Implementing Trees
	Computational Strategy for Array Implementation of Trees
	Simulated Link Strategy for Array Implementation of Trees
	Analysis of Trees

	19.3 Tree Traversals
	Preorder Traversal
	Inorder Traversal
	Postorder Traversal
	Level-Order Traversal

	19.4 A Binary Tree ADT
	19.5 Using Binary Trees: Expression Trees
	19.6 A Back Pain Analyzer
	19.7 Implementing Binary Trees with Links
	The find Method
	The iteratorInOrder Method

	Chapter 20 Binary Search Trees
	20.1 Binary Search Trees
	Adding an Element to a Binary Search Tree
	Removing an Element from a Binary Search Tree

	20.2 Implementing a Binary Search Tree
	20.3 Implementing Binary Search Trees: With Links
	The addElement Operation
	The removeElement Operation
	The removeAllOccurrences Operation
	The removeMin Operation
	Implementing Binary Search Trees: With Arrays

	20.4 Using Binary Search Trees: Implementing Ordered Lists
	Analysis of the BinarySearchTreeList Implementation

	20.5 Balanced Binary Search Trees
	Right Rotation
	Left Rotation
	Rightleft Rotation
	Leftright Rotation

	20.6 Implementing Binary Search Trees: AVL Trees
	Right Rotation in an AVL Tree
	Left Rotation in an AVL Tree
	Rightleft Rotation in an AVL Tree
	Leftright Rotation in an AVL Tree

	20.7 Implementing Binary Search Trees: Red/Black Trees
	Insertion into a Red/Black Tree
	Element Removal from a Red/Black Tree

	Chapter 21 Heaps and Priority Queues
	21.1 A Heap
	The addElement Operation
	The removeMin Operation
	The findMin Operation

	21.2 Using Heaps: Priority Queues
	21.3 Implementing Heaps: With Links
	The addElement Operation
	The removeMin Operation
	The findMin Operation

	21.4 Implementing Heaps: With Arrays
	The addElement Operation
	The removeMin Operation
	The findMin Operation

	21.5 Using Heaps: Heap Sort

	Chapter 22 Sets and Maps
	22.1 Set and Map Collections
	22.2 Sets and Maps in the Java API
	22.3 Using Sets: Domain Blocker
	22.4 Using Maps: Product Sales
	22.5 Using Maps: User Management
	22.6 Implementing Sets and Maps Using Trees
	22.7 Implementing Sets and Maps Using Hashing

	Chapter 23 Multi-way Search Trees
	23.1 Combining Tree Concepts
	23.2 2-3 Trees
	Inserting Elements into a 2-3 Tree
	Removing Elements from a 2-3 Tree

	23.3 2-4 Trees
	23.4 B-Trees
	B*-Trees
	B + -Trees
	Analysis of B-Trees

	23.5 Implementation Strategies for B-Trees

	Chapter 24 Graphs
	24.1 Undirected Graphs
	24.2 Directed Graphs
	24.3 Networks
	24.4 Common Graph Algorithms
	Traversals
	Testing for Connectivity
	Minimum Spanning Trees
	Determining the Shortest Path

	24.5 Strategies for Implementing Graphs
	Adjacency Lists
	Adjacency Matrices

	24.6 Implementing Undirected Graphs with an Adjacency Matrix
	The addEdge Method
	The addVertex Method
	The expandCapacity Method
	Other Methods

	Chapter 25 Databases
	25.1 Introduction to Databases
	25.2 Establishing a Connection to a Database
	Obtaining a Database Driver

	25.3 Creating and Altering Database Tables
	Create Table
	Alter Table
	Drop Column

	25.4 Querying the Database
	Show Columns

	25.5 Inserting, Viewing, and Updating Data
	Insert
	SELECT ... FROM
	Update

	25.6 Deleting Data and Database Tables
	Deleting Data
	Deleting Database Tables

	Appendix A Glossary
	Appendix B Number Systems
	Place Value
	Bases Higher Than 10
	Conversions
	Shortcut Conversions

	Appendix C The Unicode Character Set
	Appendix D Java Operators
	Java Bitwise Operators

	Appendix E Java Modifiers
	Java Visibility Modifiers
	A Visibility Example
	Other Java Modifiers

	Appendix F JavaFX Graphics
	Coordinate Systems
	Representing Colors
	Basic Shapes
	Arcs
	Images
	Fonts
	Graphic Transformations
	Translation
	Scaling
	Rotation
	Shearing
	Polygons and Polylines

	Appendix G JavaFX Scene Builder
	Hello Moon
	Handling Events in JavaFX Scene Builder

	Appendix H Regular Expressions
	Appendix I Hashing
	I.1 A Hashing
	I.2 Hashing Functions
	The Division Method
	The Folding Method
	The Mid-Square Method
	The Radix Transformation Method
	The Digit Analysis Method
	The Length-Dependent Method
	Hashing Functions in the Java Language

	I.3 Resolving Collisions
	Chaining
	Open Addressing

	I.4 Deleting Elements from a Hash Table
	Deleting from a Chained Implementation
	Deleting from an Open Addressing Implementation

	I.5 Hash Tables in the Java Collections API
	The Hashtable Class
	The HashSet Class
	The HashMap Class
	The IdentityHashMap Class

	I.6 The WeakHashMap Class
	LinkedHashSet and LinkedHashMap

	Appendix J Java Syntax
	Index: A-L
	Index: M-Z

