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Introduction
The	first	sentence	of	this	introduction	was	supposed	to	be	this	one:	"Interpreters	are	magical".	But
one	of	the	earliest	reviewers,	who	wishes	to	remain	anonymous,	said	that	"sounds	super	stupid".
Well,	Christian,	I	don't	think	so!	I	still	think	that	interpreters	are	magical!	Let	me	tell	you	why.

On	 the	 surface	 they	 look	 deceptively	 simple:	 text	 goes	 in	 and	 something	 comes	 out.	 They	 are
programs	 that	 take	other	programs	as	 their	 input	and	produce	something.	Simple,	 right?	But	 the
more	you	think	about	it,	the	more	fascinating	it	becomes.	Seemingly	random	characters	-	letters,
numbers	and	special	characters	 -	are	 fed	 into	 the	 interpreter	and	suddenly	become	meaningful.
The	interpreter	gives	them	meaning!	It	makes	sense	out	of	nonsense.	And	the	computer,	a	machine
that's	built	on	understanding	ones	and	zeroes,	now	understands	and	acts	upon	this	weird	language
we	feed	into	it	-	thanks	to	an	interpreter	that	translates	this	language	while	reading	it.

I	kept	asking	myself:	how	does	this	work?	And	the	first	 time	this	question	began	forming	in	my
mind,	 I	already	knew	that	 I'll	only	be	satisfied	with	an	answer	 if	 I	get	 to	 it	by	writing	my	own
interpreter.	So	I	set	out	to	do	so.

A	lot	of	books,	articles,	blog	posts	and	 tutorials	on	 interpreters	exist.	Most	of	 the	 time,	 though,
they	 fall	 into	one	of	 two	categories.	Either	 they	are	huge,	 incredibly	heavy	on	 theory	and	more
targeted	 towards	people	who	already	have	a	vast	understanding	of	 the	 topic,	or	 they	are	 really
short,	provide	 just	a	small	 introduction	 to	 the	 topic,	use	external	 tools	as	black	boxes	and	only
concern	themselves	with	"toy	interpreters".

One	 of	 the	 main	 sources	 of	 frustration	 was	 this	 latter	 category	 of	 resources,	 because	 the
interpreters	they	explain	only	interpret	languages	with	a	really	simple	syntax.	I	didn't	want	to	take
a	 shortcut!	 I	 truly	wanted	 to	understand	how	 interpreters	work	 and	 that	 included	understanding
how	 lexers	 and	 parsers	 work.	 Especially	 with	 a	 C-like	 language	 and	 its	 curly	 braces	 and
semicolons,	where	I	didn't	even	know	how	to	start	parsing	them.	The	academic	textbooks	had	the
answers	 I	 was	 looking	 for,	 of	 course.	 But	 rather	 inaccessible	 to	 me,	 behind	 their	 lengthy,
theoretical	explanations	and	mathematical	notation.

What	 I	wanted	was	 something	between	 the	900	page	book	on	compilers	 and	 the	blog	post	 that
explains	how	to	write	a	Lisp	interpreter	in	50	lines	of	Ruby	code.

So	I	wrote	this	book,	for	you	and	me.	This	is	the	book	I	wish	I	had.	This	is	a	book	for	people	who
love	to	look	under	the	hood.	For	people	that	love	to	learn	by	understanding	how	something	really
works.

In	this	book	we're	going	to	write	our	own	interpreter	for	our	own	programming	language	-	from
scratch.	We	won't	 be	 using	 any	 3rd	 party	 tools	 and	 libraries.	 The	 result	 won't	 be	 production-
ready,	it	won't	have	the	performance	of	a	fully-fledged	interpreter	and,	of	course,	the	language	it's
built	to	interpret	will	be	missing	features.	But	we're	going	to	learn	a	lot.



It's	difficult	to	make	generic	statements	about	interpreters	since	the	variety	is	so	high	and	none	are
alike.	What	can	be	said	is	that	the	one	fundamental	attribute	they	all	share	is	that	they	take	source
code	 and	 evaluate	 it	 without	 producing	 some	 visible,	 intermediate	 result	 that	 can	 later	 be
executed.	That's	in	contrast	to	compilers,	which	take	source	code	and	produce	output	in	another
language	that	the	underlying	system	can	understand.

Some	 interpreters	 are	 really	 small,	 tiny,	 and	do	not	 even	bother	with	 a	 parsing	 step.	They	 just
interpret	the	input	right	away.	Look	at	one	of	the	many	Brainfuck	interpreters	out	there	to	see	what
I	mean.

On	the	other	end	of	the	spectrum	are	much	more	elaborate	types	of	interpreters.	Highly	optimized
and	 using	 advanced	 parsing	 and	 evaluation	 techniques.	 Some	 of	 them	 don't	 just	 evaluate	 their
input,	but	compile	it	into	an	internal	representation	called	bytecode	and	then	evaluate	this.	Even
more	advanced	are	JIT	interpreters	 that	compile	 the	 input	 just-in-time	into	native	machine	code
that	gets	then	executed.

But	then,	in	between	those	two	categories,	there	are	interpreters	that	parse	the	source	code,	build
an	 abstract	 syntax	 tree	 (AST)	 out	 of	 it	 and	 then	 evaluate	 this	 tree.	 This	 type	 of	 interpreter	 is
sometimes	called	"tree-walking"	interpreter,	because	it	"walks"	the	AST	and	interprets	it.

What	we	will	be	building	in	this	book	is	such	a	tree-walking	interpreter.

We're	 going	 to	 build	 our	 own	 lexer,	 our	 own	parser,	 our	 own	 tree	 representation	 and	our	 own
evaluator.	We'll	see	what	"tokens"	are,	what	an	abstract	syntax	tree	is,	how	to	build	such	a	tree,
how	to	evaluate	it	and	how	to	extend	our	language	with	new	data	structures	and	built-in	functions.



The	Monkey	Programming	Language	&	Interpreter

Every	 interpreter	 is	 built	 to	 interpret	 a	 specific	 programming	 language.	 That's	 how	 you
"implement"	 a	 programming	 language.	 Without	 a	 compiler	 or	 an	 interpreter	 a	 programming
language	is	nothing	more	than	an	idea	or	a	specification.

We're	going	to	parse	and	evaluate	our	own	language	called	Monkey.	It's	a	language	specifically
designed	for	this	book.	Its	only	implementation	is	the	one	we're	going	to	build	in	this	book	-	our
interpreter.

Expressed	as	a	list	of	features,	Monkey	has	the	following:

C-like	syntax
variable	bindings
integers	and	booleans
arithmetic	expressions
built-in	functions
first-class	and	higher-order	functions
closures
a	string	data	structure
an	array	data	structure
a	hash	data	structure

We're	going	to	take	a	detailed	look	at	and	implement	each	of	these	features	in	the	rest	of	this	book.
But	for	now,	let's	see	what	Monkey	looks	like.

Here	is	how	we	bind	values	to	names	in	Monkey:

let	age	=	1;

let	name	=	"Monkey";

let	result	=	10	*	(20	/	2);

Besides	 integers,	 booleans	 and	 strings,	 the	Monkey	 interpreter	 we're	 going	 to	 build	 will	 also
support	arrays	and	hashes.	Here's	what	binding	an	array	of	integers	to	a	name	looks	like:

let	myArray	=	[1,	2,	3,	4,	5];

And	here	is	a	hash,	where	values	are	associated	with	keys:

let	thorsten	=	{"name":	"Thorsten",	"age":	28};

Accessing	the	elements	in	arrays	and	hashes	is	done	with	index	expressions:

myArray[0]							//	=>	1

thorsten["name"]	//	=>	"Thorsten"

The	let	statements	can	also	be	used	to	bind	functions	to	names.	Here's	a	small	function	that	adds
two	numbers:



let	add	=	fn(a,	b)	{	return	a	+	b;	};

But	Monkey	not	only	supports	return	statements.	Implicit	return	values	are	also	possible,	which
means	we	can	leave	out	the	return	if	we	want	to:

let	add	=	fn(a,	b)	{	a	+	b;	};

And	calling	a	function	is	as	easy	as	you'd	expect:

add(1,	2);

A	more	complex	function,	such	as	a	fibonacci	 function	that	returns	 the	Nth	Fibonacci	number,
might	look	like	this:

let	fibonacci	=	fn(x)	{

		if	(x	==	0)	{

				0

		}	else	{

				if	(x	==	1)	{

						1

				}	else	{

						fibonacci(x	-	1)	+	fibonacci(x	-	2);

				}

		}

};

Note	the	recursive	calls	to	fibonacci	itself!

Monkey	 also	 supports	 a	 special	 type	 of	 functions,	 called	 higher	 order	 functions.	 These	 are
functions	that	take	other	functions	as	arguments.	Here	is	an	example:

let	twice	=	fn(f,	x)	{

		return	f(f(x));

};

let	addTwo	=	fn(x)	{

		return	x	+	2;

};

twice(addTwo,	2);	//	=>	6

Here	 twice	 takes	 two	 arguments:	 another	 function	 called	 addTwo	 and	 the	 integer	 2.	 It	 calls
addTwo	two	times	with	first	2	as	argument	and	then	with	the	return	value	of	the	first	call.	The	last
line	produces	6.

Yes,	we	can	use	functions	as	arguments	in	function	calls.	Functions	in	Monkey	are	just	values,	like
integers	or	strings.	That	feature	is	called	"first	class	functions".

The	interpreter	we're	going	to	build	in	this	book	will	implement	all	these	features.	It	will	tokenize
and	 parse	Monkey	 source	 code	 in	 a	 REPL,	 building	 up	 an	 internal	 representation	 of	 the	 code
called	abstract	syntax	tree	and	then	evaluate	this	tree.	It	will	have	a	few	major	parts:

the	lexer
the	parser
the	Abstract	Syntax	Tree	(AST)



the	internal	object	system
the	evaluator

We're	going	to	build	these	parts	in	exactly	this	order,	from	the	bottom	up.	Or	better	put:	starting
with	the	source	code	and	ending	with	the	output.	The	drawback	of	this	approach	is	that	it	won't
produce	 a	 simple	 "Hello	 World"	 after	 the	 first	 chapter.	 The	 advantage	 is	 that	 it's	 easier	 to
understand	how	all	the	pieces	fit	together	and	how	the	data	flows	through	the	program.

But	why	the	name?	Why	is	it	called	"Monkey"?	Well,	because	monkeys	are	magnificent,	elegant,
fascinating	and	funny	creatures.	Exactly	like	our	interpreter.

And	why	the	name	of	the	book?



Why	Go?

If	 you	 read	 this	 far	 without	 noticing	 the	 title	 and	 the	 words	 "in	 Go"	 in	 it,	 first	 of	 all:
congratulations,	that's	pretty	remarkable.	And	second:	we	will	write	our	interpreter	in	Go.	Why
Go?

I	like	writing	code	in	Go.	I	enjoy	using	the	language,	its	standard	library	and	the	tools	it	provides.
But	other	than	that	I	think	that	Go	is	in	possession	of	a	few	attributes	that	make	it	a	great	fit	for	this
particular	book.

Go	is	really	easy	to	read	and	subsequently	understand.	You	won't	need	to	decipher	the	Go	code	I
present	to	you	in	this	book.	Even	if	you	are	not	an	experienced	Go	programmer.	I'd	bet	that	you
can	follow	this	book	along	even	if	you've	never	written	a	single	line	of	Go	in	your	life.

Another	reason	is	the	great	tooling	Go	provides.	The	focus	of	this	book	is	the	interpreter	we	are
writing	-	the	ideas	and	concepts	behind	it	and	its	implementation.	With	Go's	universal	formatting
style	thanks	to	gofmt	and	a	testing	framework	built-in,	we	can	concentrate	on	our	interpreter	and
not	worry	about	3rd	party	libraries,	tools	and	dependencies.	We	won't	be	using	any	other	tools	in
this	book	other	than	the	ones	provided	by	the	Go	programming	language.

But	I	think	much	more	important	is	that	the	Go	code	presented	in	this	book	maps	closely	to	other
and	possibly	more	low-level	languages,	 like	C,	C++	and	Rust.	Maybe	the	reason	for	this	is	Go
itself,	with	 its	 focus	on	 simplicity,	 its	 stripped-down	charm	and	 lack	of	programming	 language
constructs	 that	are	absent	 in	other	 languages	and	hard	 to	 translate.	Or	maybe	 it's	because	of	 the
way	I	chose	to	write	Go	for	this	book.	Either	way,	there	won't	be	any	meta-programming	tricks	to
take	 a	 shortcut	 that	 nobody	 understands	 anymore	 after	 two	 weeks	 and	 no	 grandiose	 object-
oriented	designs	and	patterns	that	need	pen,	paper	and	the	sentence	"actually,	it's	pretty	easy"	to
explain.

All	of	these	reasons	make	the	code	presented	here	easy	to	understand	(on	a	conceptual	as	well	as
a	technical	level)	and	reusable	for	you.	And	if	you,	after	reading	this	book,	choose	to	write	your
own	interpreter	in	another	language	this	should	come	in	handy.	With	this	book	I	want	to	provide	a
starting	point	in	your	understanding	and	construction	of	interpreters	and	I	think	the	code	reflects
that.



How	to	Use	this	Book

This	book	is	neither	a	reference,	nor	is	it	a	theory-laden	paper	describing	concepts	of	interpreter
implementation	with	code	in	the	appendix.	This	book	is	meant	to	be	read	from	start	to	finish	and	I
recommend	that	you	follow	along	by	reading,	typing	out	and	modifying	the	presented	code.

Each	chapter	builds	upon	its	predecessor	-	 in	code	and	in	prose.	And	in	each	chapter	we	build
another	part	of	our	interpreter,	piece	by	piece.	To	make	it	easier	to	follow	along,	the	book	comes
with	a	folder	called	code,	 that	contains,	well,	code.	 If	your	copy	of	 the	book	came	without	 the
folder,	you	can	download	it	here:

https://interpreterbook.com/waiig_code_1.1.zip

The	code	folder	is	divided	into	several	subfolders,	with	one	for	each	chapter,	containing	the	final
result	of	the	corresponding	chapter.

Sometimes	 I'll	 only	 allude	 to	 something	 being	 in	 the	 code,	 without	 showing	 the	 code	 itself
(because	either	 it	would	 take	up	 too	much	space,	 as	 is	 the	case	with	 the	 test	 files,	or	 it	 is	 just
some	detail)	-	you	can	find	this	code	in	the	folder	accompanying	the	chapter,	too.

Which	 tools	 do	 you	 need	 to	 follow	 along?	 Not	 much:	 a	 text	 editor	 and	 the	 Go	 programming
language.	 Any	 Go	 version	 above	 1.0	 should	 work,	 but	 just	 as	 a	 disclaimer	 and	 for	 future
generations:	at	the	time	of	writing	I'm	using	Go	1.7.

I	also	recommend	using	direnv,	which	can	change	the	environment	of	your	shell	according	to	an
.envrc	file.	Each	sub-folder	in	the	code	folder	accompanying	this	book	contains	such	an	.envrc
file	that	sets	the	GOPATH	correctly	for	this	sub-folder.	That	allows	us	to	easily	work	with	the	code
of	different	chapters.

And	with	that	out	of	the	way,	let's	get	started!

https://interpreterbook.com/waiig_code_1.1.zip
http://direnv.net/




Lexing



1.1	-	Lexical	Analysis

In	order	for	us	to	work	with	source	code	we	need	to	turn	it	into	a	more	accessible	form.	As	easy
as	 plain	 text	 is	 to	work	with	 in	 our	 editor,	 it	 becomes	 cumbersome	 pretty	 fast	when	 trying	 to
interpret	it	in	a	programming	language	as	another	programming	language.

So,	what	we	need	to	do	is	represent	our	source	code	in	other	forms	that	are	easier	to	work	with.
We're	going	to	change	the	representation	of	our	source	code	two	times	before	we	evaluate	it:

The	first	transformation,	from	source	code	to	tokens,	is	called	"lexical	analysis",	or	"lexing"	for
short.	It's	done	by	a	lexer	(also	called	tokenizer	or	scanner	--	some	use	one	word	or	the	other	to
denote	subtle	differences	in	behaviour,	which	we	can	ignore	in	this	book).

Tokens	itself	are	small,	easily	categorizable	data	structures	that	are	then	fed	to	the	parser,	which
does	the	second	transformation	and	turns	the	tokens	into	an	"Abstract	Syntax	Tree".

Here's	an	example.	This	is	the	input	one	gives	to	a	lexer:

"let	x	=	5	+	5;"

And	what	comes	out	of	the	lexer	looks	kinda	like	this:

[

		LET,

		IDENTIFIER("x"),

		EQUAL_SIGN,

		INTEGER(5),

		PLUS_SIGN,

		INTEGER(5),

		SEMICOLON

]

All	of	 these	 tokens	have	 the	original	 source	code	 representation	attached.	"let"	 in	 the	case	of
LET,	 "+"	 in	 the	 case	 of	 PLUS_SIGN,	 and	 so	 on.	 Some,	 like	 IDENTIFIER	 and	 INTEGER	 in	 our
example,	 also	 have	 the	 concrete	 values	 they	 represent	 attached:	 5	 (not	 "5"!)	 in	 the	 case	 of
INTEGER	 and	 "x"	 in	 the	 case	 of	 IDENTIFIER.	 But	 what	 exactly	 constitutes	 a	 "token"	 varies
between	different	lexer	implementations.	As	an	example,	some	lexers	only	convert	the	"5"	to	an
integer	in	the	parsing	stage,	or	even	later,	and	not	when	constructing	tokens.

A	thing	to	note	about	this	example:	whitespace	has	been	ignored.	In	our	case	that's	okay,	because
whitespace	is	not	significant	in	the	Monkey	language.	It	doesn't	matter	if	we	type	this:

let	x	=	5;

Or	if	we	type	this:

let			x			=			5;



In	other	languages,	like	Python,	the	whitespace	is	significant.	That	means	the	lexer	can't	just	"eat
up"	the	whitespace	and	newline	characters.	It	has	to	output	them	as	tokens	so	the	parser	can	later
on	 make	 sense	 of	 them	 (or	 output	 an	 error,	 of	 course,	 if	 there	 is	 not	 enough	 or	 too	 much
whitespace).

A	 production-ready	 lexer	might	 also	 attach	 the	 line	 number,	 column	 number	 and	 filename	 to	 a
token.	Why?	For	example,	to	later	output	more	useful	error	messages	in	the	parsing	stage.	Instead
of	"error:	expected	semicolon	token"	it	can	output:

"error:	expected	semicolon	token.	line	42,	column	23,	program.monkey"

We're	not	going	to	bother	with	that.	Not	because	it's	too	complex,	but	because	it	would	take	away
from	the	essential	simpleness	of	the	tokens	and	the	lexer,	making	it	harder	to	understand.



1.2	-	Defining	Our	Tokens

The	first	thing	we	have	to	do	is	to	define	the	tokens	our	lexer	is	going	to	output.	We're	going	to
start	with	just	a	few	token	definitions	and	then	add	more	when	extending	the	lexer.

The	subset	of	the	Monkey	language	we're	going	to	lex	in	our	first	step	looks	like	this:

let	five	=	5;

let	ten	=	10;

let	add	=	fn(x,	y)	{

		x	+	y;

};

let	result	=	add(five,	ten);

Let's	break	this	down:	which	types	of	tokens	does	this	example	contain?	First	of	all,	there	are	the
numbers	like	5	and	10.	These	are	pretty	obvious.	Then	we	have	the	variable	names	x,	y,	add	and
result.	And	then	there	are	also	these	parts	of	the	language	that	are	not	numbers,	just	words,	but
no	variable	names	either,	like	let	and	fn.	Of	course,	there	are	also	a	lot	of	special	characters:	(,
),	{,	},	=,	,,	;.

The	numbers	are	just	integers	and	we're	going	to	treat	them	as	such	and	give	them	a	separate	type.
In	the	lexer	or	parser	we	don't	care	if	the	number	is	5	or	10,	we	just	want	to	know	if	it's	a	number.
The	same	goes	for	"variable	names":	we'll	call	them	"identifiers"	and	treat	them	the	same.	Now,
the	other	words,	the	ones	that	look	like	identifiers,	but	aren't	really	identifiers,	since	they're	part
of	 the	 language,	 are	 called	 "keywords".	We	won't	 group	 these	 together	 since	 it	 should	make	 a
difference	in	the	parsing	stage	whether	we	encounter	a	let	or	a	fn.	The	same	goes	for	 the	 last
category	we	identified:	the	special	characters.	We'll	treat	each	of	them	separately,	since	it	is	a	big
difference	whether	or	not	we	have	a	(	or	a	)	in	the	source	code.

Let's	define	our	Token	data	structure.	Which	fields	does	it	need?	As	we	just	saw,	we	definitely
need	a	"type"	attribute,	so	we	can	distinguish	between	"integers"	and	"right	bracket"	for	example.
And	it	also	needs	a	field	that	holds	the	literal	value	of	the	token,	so	we	can	reuse	it	later	and	the
information	whether	a	"number"	token	is	a	5	or	a	10	doesn't	get	lost.

In	a	new	token	package	we	define	our	Token	struct	and	our	TokenType	type:

//	token/token.go

package	token

type	TokenType	string

type	Token	struct	{

				Type				TokenType

				Literal	string

}

We	defined	the	TokenType	type	to	be	a	string.	That	allows	us	to	use	many	different	values	as
TokenTypes,	 which	 in	 turn	 allows	 us	 to	 distinguish	 between	 different	 types	 of	 tokens.	 Using
string	 also	 has	 the	 advantage	 of	 being	 easy	 to	 debug	without	 a	 lot	 of	 boilerplate	 and	 helper



functions:	 we	 can	 just	 print	 a	 string.	 Of	 course,	 using	 a	 string	 might	 not	 lead	 to	 the	 same
performance	as	using	an	int	or	a	byte	would,	but	for	this	book	a	string	is	perfect.

As	we	just	saw,	there	is	a	limited	number	of	different	token	types	in	the	Monkey	language.	That
means	we	can	define	the	possible	TokenTypes	as	constants.	In	the	same	file	we	add	this:

//	token/token.go

const	(

				ILLEGAL	=	"ILLEGAL"

				EOF					=	"EOF"

				//	Identifiers	+	literals

				IDENT	=	"IDENT"	//	add,	foobar,	x,	y,	...

				INT			=	"INT"			//	1343456

				//	Operators

				ASSIGN			=	"="

				PLUS					=	"+"

				//	Delimiters

				COMMA					=	","

				SEMICOLON	=	";"

				LPAREN	=	"("

				RPAREN	=	")"

				LBRACE	=	"{"

				RBRACE	=	"}"

				//	Keywords

				FUNCTION	=	"FUNCTION"

				LET						=	"LET"

)

As	you	can	see	there	are	two	special	types:	ILLEGAL	and	EOF.	We	didn't	see	them	in	the	example
above,	but	we'll	need	 them.	ILLEGAL	 signifies	 a	 token/character	we	don't	 know	about	 and	EOF
stands	for	"end	of	file",	which	tells	our	parser	later	on	that	it	can	stop.

So	far	so	good!	We	are	ready	to	start	writing	our	lexer.



1.3	-	The	Lexer

Before	we	start	to	write	code,	let's	be	clear	about	the	goal	of	this	section.	We're	going	to	write
our	own	 lexer.	 It	will	 take	source	code	as	 input	and	output	 the	 tokens	 that	 represent	 the	source
code.	It	will	go	through	its	input	and	output	the	next	token	it	recognizes.	It	doesn't	need	to	buffer	or
save	tokens,	since	there	will	only	be	one	method	called	NextToken(),	which	will	output	the	next
token.

That	means,	we'll	initialize	the	lexer	with	our	source	code	and	then	repeatedly	call	NextToken()
on	it	to	go	through	the	source	code,	token	by	token,	character	by	character.	We'll	also	make	life
simpler	here	by	using	string	as	the	type	for	our	source	code.	Again:	in	a	production	environment
it	makes	 sense	 to	 attach	 filenames	 and	 line	numbers	 to	 tokens,	 to	better	 track	down	 lexing	 and
parsing	errors.	So	it	would	be	better	to	initialize	the	lexer	with	an	io.Reader	and	the	filename.
But	since	that	would	add	more	complexity	we're	not	here	to	handle,	we'll	start	small	and	just	use
a	string	and	ignore	filenames	and	line	numbers.

Having	 thought	 this	 through,	we	now	realize	 that	what	our	 lexer	needs	 to	do	 is	pretty	clear.	So
let's	create	a	new	package	and	add	a	first	test	that	we	can	continuously	run	to	get	feedback	about
the	working	state	of	the	lexer.	We're	starting	small	here	and	will	extend	the	test	case	as	we	add
more	capabilities	to	the	lexer:

//	lexer/lexer_test.go

package	lexer

import	(

				"testing"

				"monkey/token"

)

func	TestNextToken(t	*testing.T)	{

				input	:=	`=+(){},;`

				tests	:=	[]struct	{

								expectedType				token.TokenType

								expectedLiteral	string

				}{

								{token.ASSIGN,	"="},

								{token.PLUS,	"+"},

								{token.LPAREN,	"("},

								{token.RPAREN,	")"},

								{token.LBRACE,	"{"},

								{token.RBRACE,	"}"},

								{token.COMMA,	","},

								{token.SEMICOLON,	";"},

								{token.EOF,	""},

				}

				l	:=	New(input)

				for	i,	tt	:=	range	tests	{

								tok	:=	l.NextToken()

								if	tok.Type	!=	tt.expectedType	{

												t.Fatalf("tests[%d]	-	tokentype	wrong.	expected=%q,	got=%q",

																i,	tt.expectedType,	tok.Type)

								}



								if	tok.Literal	!=	tt.expectedLiteral	{

												t.Fatalf("tests[%d]	-	literal	wrong.	expected=%q,	got=%q",

																i,	tt.expectedLiteral,	tok.Literal)

								}

				}

}

Of	the	course,	the	tests	fail	--	we	haven't	written	any	code	yet:

$	go	test	./lexer

#	monkey/lexer

lexer/lexer_test.go:27:	undefined:	New

FAIL				monkey/lexer	[build	failed]

So	let's	start	by	defining	the	New()	function	that	returns	*Lexer.

//	lexer/lexer.go

package	lexer

type	Lexer	struct	{

				input								string

				position					int		//	current	position	in	input	(points	to	current	char)

				readPosition	int		//	current	reading	position	in	input	(after	current	char)

				ch											byte	//	current	char	under	examination

}

func	New(input	string)	*Lexer	{

				l	:=	&Lexer{input:	input}

				return	l

}

Most	of	the	fields	in	Lexer	are	pretty	self-explanatory.	The	ones	that	might	cause	some	confusion
right	now	are	position	and	readPosition.	Both	will	be	used	to	access	characters	in	input	by
using	 them	as	an	 index,	e.g.:	l.input[l.readPosition].	The	 reason	 for	 these	 two	"pointers"
pointing	into	our	input	string	is	the	fact	that	we	will	need	to	be	able	to	"peek"	further	into	the	input
and	look	after	the	current	character	to	see	what	comes	up	next.	readPosition	always	points	to
the	"next"	character	in	the	input.	position	points	to	the	character	in	the	input	that	corresponds	to
the	ch	byte.

A	 first	 helper	 method	 called	 readChar()	 should	 make	 the	 usage	 of	 these	 fields	 easier	 to
understand:

//	lexer/lexer.go

func	(l	*Lexer)	readChar()	{

				if	l.readPosition	>=	len(l.input)	{

								l.ch	=	0

				}	else	{

								l.ch	=	l.input[l.readPosition]

				}

				l.position	=	l.readPosition

				l.readPosition	+=	1

}

The	purpose	of	readChar	is	to	give	us	the	next	character	and	advance	our	position	in	the	input
string.	The	 first	 thing	 it	 does	 is	 to	 check	whether	we	 reached	 the	 end	of	input	 and	 can't	 read
anymore	characters.	 If	 that's	 the	case	 it	 sets	l.ch	 to	0,	which	 is	 the	ASCII	code	 for	 the	"NUL"
character	 and	 signifies	 either	 "we	haven't	 read	 anything	 yet"	 or	 "end	 of	 file"	 for	 us.	But	 if	we
haven't	 reached	 the	 end	 of	 input	 yet	 it	 sets	 l.ch	 to	 the	 next	 character	 by	 accessing



l.input[l.readPosition].

After	 that	 l.position	 is	 updated	 to	 the	 just	 used	 l.readPosition	 and	 l.readPosition	 is
incremented	by	one.	That	way,	l.readPosition	always	points	to	the	next	position	where	we're
going	to	read	from	next	and	l.position	always	points	to	the	position	where	we	last	read.	This
will	come	in	handy	soon	enough.

While	 talking	 about	 readChar	 it's	 worth	 pointing	 out	 that	 the	 lexer	 only	 supports	 ASCII
characters	 instead	of	 the	 full	Unicode	 range.	Why?	Because	 this	 lets	us	keep	 things	simple	and
concentrate	on	the	essential	parts	of	our	interpreter.	In	order	to	fully	support	Unicode	and	UTF-8
we	 would	 need	 to	 change	 l.ch	 from	 a	 byte	 to	 rune	 and	 change	 the	 way	 we	 read	 the	 next
characters,	 since	 they	 could	 be	 multiple	 bytes	 wide	 now.	 Using	 l.input[l.readPosition]
wouldn't	work	anymore.	And	 then	we'd	also	need	 to	change	a	 few	other	methods	and	functions
we'll	see	later	on.	So	it's	left	as	an	exercise	to	the	reader	to	fully	support	Unicode	(and	emojis!)
in	Monkey.

Let's	use	readChar	in	our	New()	function	so	our	*Lexer	is	in	a	fully	working	state	before	anyone
calls	NextToken(),	with	l.ch,	l.position	and	l.readPosition	already	initialized:

//	lexer/lexer.go

func	New(input	string)	*Lexer	{

				l	:=	&Lexer{input:	input}

				l.readChar()

				return	l

}

Our	 tests	 now	 tell	 us	 that	 calling	 New(input)	 doesn't	 result	 in	 problems	 anymore,	 but	 the
NextToken()	method	is	still	missing.	Let's	fix	that	by	adding	a	first	version:

//	lexer/lexer.go

import	"monkey/token"

func	(l	*Lexer)	NextToken()	token.Token	{

				var	tok	token.Token

				switch	l.ch	{

				case	'=':

								tok	=	newToken(token.ASSIGN,	l.ch)

				case	';':

								tok	=	newToken(token.SEMICOLON,	l.ch)

				case	'(':

								tok	=	newToken(token.LPAREN,	l.ch)

				case	')':

								tok	=	newToken(token.RPAREN,	l.ch)

				case	',':

								tok	=	newToken(token.COMMA,	l.ch)

				case	'+':

								tok	=	newToken(token.PLUS,	l.ch)

				case	'{':

								tok	=	newToken(token.LBRACE,	l.ch)

				case	'}':

								tok	=	newToken(token.RBRACE,	l.ch)

				case	0:

								tok.Literal	=	""

								tok.Type	=	token.EOF

				}



				l.readChar()

				return	tok

}

func	newToken(tokenType	token.TokenType,	ch	byte)	token.Token	{

				return	token.Token{Type:	tokenType,	Literal:	string(ch)}

}

That's	 the	 basic	 structure	 of	 the	 NextToken()	method.	We	 look	 at	 the	 current	 character	 under
examination	(l.ch)	and	 return	a	 token	depending	on	which	character	 it	 is.	Before	 returning	 the
token	we	advance	our	pointers	into	the	input	so	when	we	call	NextToken()	again	the	l.ch	field
is	already	updated.	A	small	function	called	newToken	helps	us	with	initializing	these	tokens.

Running	the	tests	we	can	see	that	they	pass:

$	go	test	./lexer

ok						monkey/lexer	0.007s

Great!	Let's	now	extend	the	test	case	so	it	starts	to	resemble	Monkey	source	code.

//	lexer/lexer_test.go

func	TestNextToken(t	*testing.T)	{

				input	:=	`let	five	=	5;

let	ten	=	10;

let	add	=	fn(x,	y)	{

		x	+	y;

};

let	result	=	add(five,	ten);

`

				tests	:=	[]struct	{

								expectedType				token.TokenType

								expectedLiteral	string

				}{

								{token.LET,	"let"},

								{token.IDENT,	"five"},

								{token.ASSIGN,	"="},

								{token.INT,	"5"},

								{token.SEMICOLON,	";"},

								{token.LET,	"let"},

								{token.IDENT,	"ten"},

								{token.ASSIGN,	"="},

								{token.INT,	"10"},

								{token.SEMICOLON,	";"},

								{token.LET,	"let"},

								{token.IDENT,	"add"},

								{token.ASSIGN,	"="},

								{token.FUNCTION,	"fn"},

								{token.LPAREN,	"("},

								{token.IDENT,	"x"},

								{token.COMMA,	","},

								{token.IDENT,	"y"},

								{token.RPAREN,	")"},

								{token.LBRACE,	"{"},

								{token.IDENT,	"x"},

								{token.PLUS,	"+"},

								{token.IDENT,	"y"},

								{token.SEMICOLON,	";"},

								{token.RBRACE,	"}"},

								{token.SEMICOLON,	";"},

								{token.LET,	"let"},

								{token.IDENT,	"result"},

								{token.ASSIGN,	"="},

								{token.IDENT,	"add"},



								{token.LPAREN,	"("},

								{token.IDENT,	"five"},

								{token.COMMA,	","},

								{token.IDENT,	"ten"},

								{token.RPAREN,	")"},

								{token.SEMICOLON,	";"},

								{token.EOF,	""},

				}

//	[...]

}

Most	 notably	 the	 input	 in	 this	 test	 case	 has	 changed.	 It	 looks	 like	 a	 subset	 of	 the	 Monkey
language.	 It	 contains	 all	 the	 symbols	we	 already	 successfully	 turned	 into	 tokens,	 but	 also	 new
things	that	are	now	causing	our	tests	to	fail:	identifiers,	keywords	and	numbers.

Let's	start	with	the	identifiers	and	keywords.	What	our	lexer	needs	to	do	is	recognize	whether	the
current	character	 is	a	 letter	and	 if	so,	 it	needs	 to	 read	 the	rest	of	 the	 identifier/keyword	until	 it
encounters	a	non-letter-character.	Having	read	that	identifier/keyword,	we	then	need	to	find	out	if
it	 is	 a	 identifier	 or	 a	 keyword,	 so	we	 can	use	 the	 correct	token.TokenType.	 The	 first	 step	 is
extending	our	switch	statement:

//	lexer/lexer.go

import	"monkey/token"

func	(l	*Lexer)	NextToken()	token.Token	{

				var	tok	token.Token

				switch	l.ch	{

//	[...]

				default:

								if	isLetter(l.ch)	{

												tok.Literal	=	l.readIdentifier()

												return	tok

								}	else	{

												tok	=	newToken(token.ILLEGAL,	l.ch)

								}

				}

//	[...]

}

func	(l	*Lexer)	readIdentifier()	string	{

				position	:=	l.position

				for	isLetter(l.ch)	{

								l.readChar()

				}

				return	l.input[position:l.position]

}

func	isLetter(ch	byte)	bool	{

				return	'a'	<=	ch	&&	ch	<=	'z'	||	'A'	<=	ch	&&	ch	<=	'Z'	||	ch	==	'_'

}

We	added	a	default	branch	to	our	switch	statement,	so	we	can	check	for	identifiers	whenever
the	l.ch	is	not	one	of	the	recognized	characters.	We	also	added	the	generation	of	token.ILLEGAL
tokens.	If	we	end	up	there,	we	truly	don't	know	how	to	handle	the	current	character	and	declare	it
as	token.ILLEGAL.

The	isLetter	helper	function	just	checks	whether	the	given	argument	is	a	letter.	That	sounds	easy
enough,	but	what's	noteworthy	about	isLetter	is	that	changing	this	function	has	a	larger	impact
on	 the	 language	our	 interpreter	will	be	able	 to	parse	 than	one	would	expect	 from	such	a	 small



function.	As	you	can	see,	 in	our	case	 it	contains	 the	check	ch	==	'_',	which	means	 that	we'll
treat	_	as	a	letter	and	allow	it	in	identifiers	and	keywords.	That	means	we	can	use	variable	names
like	foo_bar.	Other	 programming	 languages	 even	 allow	!	 and	?	 in	 identifiers.	 If	 you	want	 to
allow	that	too,	this	is	the	place	to	sneak	it	in.

readIdentifier()	does	exactly	what	 its	name	suggests:	 it	 reads	 in	an	identifier	and	advances
our	lexer's	positions	until	it	encounters	a	non-letter-character.

In	the	default:	branch	of	 the	switch	statement	we	use	readIdentifier()	 to	set	 the	Literal
field	of	our	current	token.	But	what	about	its	Type?	Now	that	we	have	read	identifiers	like	let,
fn	or	foobar,	we	need	to	be	able	to	tell	user-defined	identifiers	apart	from	language	keywords.
We	need	a	function	that	returns	the	correct	TokenType	for	the	token	literal	we	have.	What	better
place	than	the	token	package	to	add	such	a	function?

//	token/token.go

var	keywords	=	map[string]TokenType{

				"fn":		FUNCTION,

				"let":	LET,

}

func	LookupIdent(ident	string)	TokenType	{

				if	tok,	ok	:=	keywords[ident];	ok	{

								return	tok

				}

				return	IDENT

}

LookupIdent	checks	the	keywords	table	to	see	whether	the	given	identifier	is	in	fact	a	keyword.
If	 it	 is,	 it	 returns	 the	keyword's	TokenType	 constant.	 If	 it	 isn't,	we	 just	get	back	token.IDENT,
which	is	the	TokenType	for	all	user-defined	identifiers.

With	this	in	hand	we	can	now	complete	the	lexing	of	identifiers	and	keywords:

//	lexer/lexer.go

func	(l	*Lexer)	NextToken()	token.Token	{

				var	tok	token.Token

				switch	l.ch	{

//	[...]

				default:

								if	isLetter(l.ch)	{

												tok.Literal	=	l.readIdentifier()

												tok.Type	=	token.LookupIdent(tok.Literal)

												return	tok

								}	else	{

												tok	=	newToken(token.ILLEGAL,	l.ch)

								}

				}

//	[...]

}

The	 early	 exit	 here,	 our	 return	 tok	 statement,	 is	 necessary	 because	 when	 calling
readIdentifier(),	 we	 call	 readChar()	 repeatedly	 and	 advance	 our	 readPosition	 and
position	 fields	 past	 the	 last	 character	 of	 the	 current	 identifier.	 So	 we	 don't	 need	 the	 call	 to
NextToken()	after	the	switch	statement	again.



Running	our	tests	now,	we	can	see	that	let	is	identified	correctly	but	the	tests	still	fail:

$	go	test	./lexer

---	FAIL:	TestNextToken	(0.00s)

		lexer_test.go:70:	tests[1]	-	tokentype	wrong.	expected="IDENT",	got="ILLEGAL"

FAIL

FAIL				monkey/lexer	0.008s

The	problem	is	the	next	token	we	want:	a	IDENT	token	with	"five"	in	its	Literal	field.	Instead
we	get	an	ILLEGAL	 token.	Why	 is	 that?	Because	of	 the	whitespace	character	between	"let"	and
"five".	But	in	Monkey	whitespace	is	not	significant,	so	we	need	to	skip	over	it	entirely:

//	lexer/lexer.go

func	(l	*Lexer)	NextToken()	token.Token	{

				var	tok	token.Token

				l.skipWhitespace()

				switch	l.ch	{

//	[...]

}

func	(l	*Lexer)	skipWhitespace()	{

				for	l.ch	==	'	'	||	l.ch	==	'\t'	||	l.ch	==	'\n'	||	l.ch	==	'\r'	{

								l.readChar()

				}

}

This	little	helper	function	is	found	in	a	lot	of	parsers.	Sometimes	it's	called	eatWhitespace	and
sometimes	 consumeWhitespace	 and	 sometimes	 something	 entirely	 different.	Which	 characters
these	 functions	 actually	 skip	 depends	 on	 the	 language	 being	 lexed.	 Some	 language
implementations	do	create	tokens	for	newline	characters	for	example	and	throw	parsing	errors	if
they	are	not	at	the	correct	place	in	the	stream	of	tokens.	We	skip	over	newline	characters	to	make
the	parsing	step	later	on	a	little	easier.

With	skipWhitespace()	in	place,	the	lexer	trips	over	the	5	 in	the	let	five	=	5;	part	of	our
test	 input.	And	that's	 right,	 it	doesn't	know	yet	how	to	 turn	numbers	 into	 tokens.	 It's	 time	to	add
this.

As	we	 did	 previously	 for	 identifiers,	 we	 now	 need	 to	 add	more	 functionality	 to	 the	 default
branch	of	our	switch	statement.

//	lexer/lexer.go

func	(l	*Lexer)	NextToken()	token.Token	{

				var	tok	token.Token

				l.skipWhitespace()

				switch	l.ch	{

//	[...]

				default:

								if	isLetter(l.ch)	{

												tok.Literal	=	l.readIdentifier()

												tok.Type	=	token.LookupIdent(tok.Literal)

												return	tok

								}	else	if	isDigit(l.ch)	{

												tok.Type	=	token.INT

												tok.Literal	=	l.readNumber()



												return	tok

								}	else	{

												tok	=	newToken(token.ILLEGAL,	l.ch)

								}

				}

//	[...]

}

func	(l	*Lexer)	readNumber()	string	{

				position	:=	l.position

				for	isDigit(l.ch)	{

								l.readChar()

				}

				return	l.input[position:l.position]

}

func	isDigit(ch	byte)	bool	{

				return	'0'	<=	ch	&&	ch	<=	'9'

}

As	you	can	see,	 the	added	code	closely	mirrors	the	part	concerned	with	reading	identifiers	and
keywords.	The	readNumber	method	is	exactly	the	same	as	readIdentifier	except	for	its	usage
of	isDigit	instead	of	isLetter.	We	could	probably	generalize	this	by	passing	in	the	character-
identifying	functions	as	arguments,	but	won't,	for	simplicity's	sake	and	ease	of	understanding.

The	isDigit	 function	 is	as	simple	as	isLetter.	 It	 just	 returns	whether	 the	passed	 in	byte	 is	a
Latin	digit	between	0	and	9.

With	this	added,	our	tests	pass:

$	go	test	./lexer

ok						monkey/lexer	0.008s

I	 don't	 know	 if	 you	 noticed,	 but	 we	 simplified	 things	 a	 lot	 in	 readNumber.	 We	 only	 read	 in
integers.	What	about	floats?	Or	numbers	in	hex	notation?	Octal	notation?	We	ignore	them	and	just
say	that	Monkey	doesn't	support	this.	Of	course,	the	reason	for	this	is	again	the	educational	aim
and	limited	scope	of	this	book.

It's	 time	 to	 pop	 the	 champagne	 and	 celebrate:	 we	 successfully	 turned	 the	 small	 subset	 of	 the
Monkey	language	we	used	in	the	our	test	case	into	tokens!

With	 this	 victory	 under	 our	 belt,	 it's	 easy	 to	 extend	 the	 lexer	 so	 it	 can	 tokenize	 a	 lot	more	 of
Monkey	source	code.



1.4	-	Extending	our	Token	Set	and	Lexer

In	order	to	eliminate	the	need	to	jump	between	packages	when	later	writing	our	parser,	we	need
to	extend	our	lexer	so	it	can	recognize	more	of	the	Monkey	language	and	output	more	tokens.	So	in
this	section	we	will	add	support	for	==,	!,	!=,	-,	/,	*,	<,	>	and	 the	keywords	true,	false,	if,
else	and	return.

The	new	tokens	we	will	need	to	add,	build	and	output	can	be	classified	as	one	of	these	three:	one-
character	 token	 (e.g.	 -),	 two-character	 token	 (e.g.	 ==)	 and	 keyword	 token	 (e.g.	 return).	 We
already	know	how	to	handle	one-character	and	keyword	tokens,	so	we	add	support	for	these	first,
before	extending	the	lexer	for	two-character	tokens.

Adding	support	for	-,	/,	*,	<	and	>	is	trivial.	The	first	thing	we	need	to	do,	of	course,	is	modify
the	input	of	our	test	case	in	lexer/lexer_test.go	to	include	these	characters.	Just	like	we	did
before.	In	the	code	accompanying	this	chapter	you	can	also	find	the	extended	tests	table,	which	I
won't	show	in	the	remainder	of	this	chapter,	in	order	to	save	space	and	to	keep	you	from	getting
bored.

//	lexer/lexer_test.go

func	TestNextToken(t	*testing.T)	{

				input	:=	`let	five	=	5;

let	ten	=	10;

let	add	=	fn(x,	y)	{

		x	+	y;

};

let	result	=	add(five,	ten);

!-/*5;

5	<	10	>	5;

`

//	[...]

}

Note	that	although	the	input	looks	like	an	actual	piece	of	Monkey	source	code,	some	lines	don't
really	make	sense,	with	gibberish	like	!-/*5.	That's	okay.	The	lexer's	job	is	not	to	tell	us	whether
code	makes	sense,	works	or	contains	errors.	That	comes	in	a	later	stage.	The	lexer	should	only
turn	 this	 input	 into	 tokens.	For	 that	 reason	 the	 test	cases	 I	write	 for	 lexers	cover	all	 tokens	and
also	 try	 to	 provoke	 off-by-one	 errors,	 edge	 cases	 at	 end-of-file,	 newline	 handling,	 multi-digit
number	parsing	and	so	on.	That's	why	the	"code"	looks	like	gibberish.

Running	 the	 test	we	 get	 undefined:	 errors,	 because	 the	 tests	 contain	 references	 to	 undefined
TokenTypes.	To	fix	them	we	add	the	following	constants	to	token/token.go:

//	token/token.go

const	(

//	[...]

				//	Operators

				ASSIGN			=	"="

				PLUS					=	"+"

				MINUS				=	"-"



				BANG					=	"!"

				ASTERISK	=	"*"

				SLASH				=	"/"

				LT	=	"<"

				GT	=	">"

//	[...]

)

With	 the	 new	 constants	 added,	 the	 tests	 still	 fail,	 because	we	 don't	 return	 the	 tokens	with	 the
expected	TokenTypes.

$	go	test	./lexer

---	FAIL:	TestNextToken	(0.00s)

		lexer_test.go:84:	tests[36]	-	tokentype	wrong.	expected="!",	got="ILLEGAL"

FAIL

FAIL				monkey/lexer	0.007s

Turning	 these	 tests	 from	 failing	 to	 passing	 requires	 us	 to	 extend	 our	 switch	 statement	 in	 the
NextToken()	method	of	Lexer:

//	lexer/lexer.go

func	(l	*Lexer)	NextToken()	token.Token	{

//	[...]

				switch	l.ch	{

				case	'=':

								tok	=	newToken(token.ASSIGN,	l.ch)

				case	'+':

								tok	=	newToken(token.PLUS,	l.ch)

				case	'-':

								tok	=	newToken(token.MINUS,	l.ch)

				case	'!':

								tok	=	newToken(token.BANG,	l.ch)

				case	'/':

								tok	=	newToken(token.SLASH,	l.ch)

				case	'*':

								tok	=	newToken(token.ASTERISK,	l.ch)

				case	'<':

								tok	=	newToken(token.LT,	l.ch)

				case	'>':

								tok	=	newToken(token.GT,	l.ch)

				case	';':

								tok	=	newToken(token.SEMICOLON,	l.ch)

				case	',':

								tok	=	newToken(token.COMMA,	l.ch)

//	[...]

}

The	tokens	are	now	added	and	the	cases	of	the	switch	statement	have	been	reordered	to	reflect	the
structure	of	the	constants	in	token/token.go.	This	small	change	makes	our	tests	pass:

$	go	test	./lexer

ok						monkey/lexer	0.007s

The	new	one-character	 tokens	have	been	successfully	added.	Next	step:	add	 the	new	keywords
true,	false,	if,	else	and	return.

Again,	the	first	step	is	to	extend	the	input	in	our	test	to	include	these	new	keywords.	Here	is	what
the	input	in	TestNextToken	looks	like	now:



//	lexer/lexer_test.go

func	TestNextToken(t	*testing.T)	{

				input	:=	`let	five	=	5;

let	ten	=	10;

let	add	=	fn(x,	y)	{

		x	+	y;

};

let	result	=	add(five,	ten);

!-/*5;

5	<	10	>	5;

if	(5	<	10)	{

				return	true;

}	else	{

				return	false;

}`

//	[...]

}

The	tests	do	not	even	compile	since	the	references	in	the	test	expectations	to	the	new	keywords
are	 undefined.	Fixing	 that,	 again,	means	 just	 adding	new	constants	 and	 in	 this	 case,	 adding	 the
keywords	to	the	lookup	table	for	LookupIdent().

//	token/token.go

const	(

//	[...]

				//	Keywords

				FUNCTION	=	"FUNCTION"

				LET						=	"LET"

				TRUE					=	"TRUE"

				FALSE				=	"FALSE"

				IF							=	"IF"

				ELSE					=	"ELSE"

				RETURN			=	"RETURN"

)

var	keywords	=	map[string]TokenType{

				"fn":					FUNCTION,

				"let":				LET,

				"true":			TRUE,

				"false":		FALSE,

				"if":					IF,

				"else":			ELSE,

				"return":	RETURN,

}

And	 it	 turns	 out	 that	we	not	 only	 fixed	 the	 compilation	 error	 by	 fixing	 references	 to	 undefined
variables,	we	even	made	the	tests	pass:

$	go	test	./lexer

ok						monkey/lexer	0.007s

The	 lexer	 now	 recognizes	 the	 new	 keywords	 and	 the	 necessary	 changes	 were	 trivial,	 easy	 to
predict	and	easy	to	make.	I'd	say	a	pat	on	the	back	is	in	order.	We	did	a	great	job!

But	before	we	can	move	onto	the	next	chapter	and	start	with	our	parser,	we	still	need	to	extend	the
lexer	so	it	recognizes	tokens	that	are	composed	of	two	characters.	The	tokens	we	want	to	support
look	like	this	in	the	source	code:	==	and	!=.



At	first	glance	you	may	be	thinking:	"why	not	add	a	new	case	to	our	switch	statement	and	be	done
with	it?"	Since	our	switch	statement	takes	the	current	character	l.ch	as	the	expression	to	compare
against	 the	cases,	we	can't	 just	add	new	cases	 like	case	"=="	 -	 the	compiler	won't	 let	us.	We
can't	compare	our	l.ch	byte	with	strings	like	"==".

What	we	can	do	 instead	 is	 to	 reuse	 the	existing	branches	for	'='	and	'!'	and	extend	 them.	So
what	we're	going	to	do	is	to	look	ahead	in	the	input	and	then	determine	whether	to	return	a	token
for	=	or	==.	After	extending	input	in	lexer/lexer_test.go	again,	it	now	looks	like	this:

//	lexer/lexer_test.go

func	TestNextToken(t	*testing.T)	{

				input	:=	`let	five	=	5;

let	ten	=	10;

let	add	=	fn(x,	y)	{

		x	+	y;

};

let	result	=	add(five,	ten);

!-/*5;

5	<	10	>	5;

if	(5	<	10)	{

				return	true;

}	else	{

				return	false;

}

10	==	10;

10	!=	9;

`

//	[...]

}

Before	we	start	working	on	the	switch	statement	in	NextToken(),	we	need	to	add	a	new	helper
method	defined	on	*Lexer	called	peekChar():

//	lexer/lexer.go

func	(l	*Lexer)	peekChar()	byte	{

				if	l.readPosition	>=	len(l.input)	{

								return	0

				}	else	{

								return	l.input[l.readPosition]

				}

}

peekChar()	 is	 really	similar	 to	readChar(),	 except	 that	 it	doesn't	 increment	l.position	 and
l.readPosition.	We	only	want	 to	"peek"	ahead	in	 the	 input	and	not	move	around	in	 it,	so	we
know	 what	 a	 call	 to	 readChar()	 would	 return.	 Most	 lexers	 and	 parser	 have	 such	 a	 "peek"
function	that	looks	ahead	and	most	of	the	time	it	only	returns	the	immediately	next	character.	The
difficulty	of	parsing	different	languages	often	comes	down	to	how	far	you	have	to	peek	ahead	(or
look	backwards!)	in	the	source	code	to	make	sense	of	it.

With	peekChar()	added,	the	code	with	the	updated	test	input	doesn't	compile.	Of	course,	since
we're	referencing	undefined	token	constants	in	the	tests.	Fixing	that,	again,	is	easy:

//	token/token.go



const	(

//	[...]

				EQ					=	"=="

				NOT_EQ	=	"!="

//	[...]

)

With	 the	references	 to	token.EQ	and	token.NOT_EQ	 in	 the	 tests	 for	 the	 lexer	 fixed,	 running	go
test	now	returns	the	correct	failure	message:

$	go	test	./lexer

---	FAIL:	TestNextToken	(0.00s)

		lexer_test.go:118:	tests[66]	-	tokentype	wrong.	expected="==",	got="="

FAIL

FAIL				monkey/lexer	0.007s

When	the	lexer	comes	upon	a	==	in	the	input	it	creates	two	token.ASSIGN	tokens	instead	of	one
token.EQ	 token.	 The	 solution	 is	 to	 use	 our	 new	 peekChar()	 method.	 In	 the	 branches	 of	 the
switch	statement	for	'='	and	'!'	we	"peek"	ahead.	If	the	next	token	is	also	a	=	we	create	either	a
token.EQ	or	a	token.NOT_EQ	token:

//	lexer/lexer.go

func	(l	*Lexer)	NextToken()	token.Token	{

//	[...]

				switch	l.ch	{

				case	'=':

								if	l.peekChar()	==	'='	{

												ch	:=	l.ch

												l.readChar()

												tok	=	token.Token{Type:	token.EQ,	Literal:	string(ch)	+	string(l.ch)}

								}	else	{

												tok	=	newToken(token.ASSIGN,	l.ch)

								}

//	[...]

				case	'!':

								if	l.peekChar()	==	'='	{

												ch	:=	l.ch

												l.readChar()

												tok	=	token.Token{Type:	token.NOT_EQ,	Literal:	string(ch)	+	string(l.ch)}

								}	else	{

												tok	=	newToken(token.BANG,	l.ch)

								}

//	[...]

}

Note	 that	we	save	l.ch	 in	 a	 local	 variable	before	 calling	l.readChar()	 again.	 This	way	we
don't	 lose	 the	current	character	and	can	safely	advance	 the	 lexer	 so	 it	 leaves	 the	NextToken()
with	l.position	and	l.readPosition	in	the	correct	state.	If	we	were	to	start	supporting	more
two-character	 tokens	 in	Monkey,	we	 should	probably	 abstract	 the	behaviour	 away	 in	 a	method
called	makeTwoCharToken	that	peeks	and	advances	if	it	found	the	right	token.	Because	those	two
branches	 look	awfully	similar.	For	now	 though	==	and	!=	 are	 the	only	 two-character	 tokens	 in
Monkey,	so	let's	leave	it	as	it	is	and	run	our	tests	again	to	make	sure	it	works:

$	go	test	./lexer

ok						monkey/lexer	0.006s

They	pass!	We	did	it!	The	lexer	can	now	produce	the	extended	set	of	tokens	and	we're	ready	to



write	our	parser.	But	before	we	do	that,	let's	lay	another	ground	stone	we	can	build	upon	in	the
coming	chapters...



1.5	-	Start	of	a	REPL

The	Monkey	language	needs	a	REPL.	REPL	stands	for	"Read	Eval	Print	Loop"	and	you	probably
know	 what	 it	 is	 from	 other	 interpreted	 languages:	 Python	 has	 a	 REPL,	 Ruby	 has	 one,	 every
JavaScript	runtime	has	one,	most	Lisps	have	one	and	a	lot	of	other	languages	too.	Sometimes	the
REPL	 is	 called	 "console",	 sometimes	 "interactive	mode".	 The	 concept	 is	 the	 same:	 the	 REPL
reads	input,	sends	it	to	the	interpreter	for	evaluation,	prints	the	result/output	of	the	interpreter	and
starts	again.	Read,	Eval,	Print,	Loop.

We	don't	know	how	to	fully	"Eval"	Monkey	source	code	yet.	We	only	have	one	part	of	the	process
that	hides	behind	"Eval":	we	can	tokenize	Monkey	source	code.	But	we	also	know	how	to	read
and	print	something,	and	I	don't	think	looping	poses	a	problem.

Here	 is	 a	 REPL	 that	 tokenizes	Monkey	 source	 code	 and	 prints	 the	 tokens.	 Later	 on,	 we	 will
expand	on	this	and	add	parsing	and	evaluation	to	it.

//	repl/repl.go

package	repl

import	(

				"bufio"

				"fmt"

				"io"

				"monkey/lexer"

				"monkey/token"

)

const	PROMPT	=	">>	"

func	Start(in	io.Reader,	out	io.Writer)	{

				scanner	:=	bufio.NewScanner(in)

				for	{

								fmt.Printf(PROMPT)

								scanned	:=	scanner.Scan()

								if	!scanned	{

												return

								}

								line	:=	scanner.Text()

								l	:=	lexer.New(line)

								for	tok	:=	l.NextToken();	tok.Type	!=	token.EOF;	tok	=	l.NextToken()	{

												fmt.Printf("%+v\n",	tok)

								}

				}

}

This	is	all	pretty	straightforward:	read	from	the	input	source	until	encountering	a	newline,	take	the
just	read	line	and	pass	it	to	an	instance	of	our	lexer	and	finally	print	all	the	tokens	the	lexer	gives
us	until	we	encounter	EOF.

In	a	main.go	file	(which	we've	been	missing	until	now!)	we	welcome	the	user	of	the	REPL	and
start	it:

//	main.go



package	main

import	(

				"fmt"

				"os"

				"os/user"

				"monkey/repl"

)

func	main()	{

				user,	err	:=	user.Current()

				if	err	!=	nil	{

								panic(err)

				}

				fmt.Printf("Hello	%s!	This	is	the	Monkey	programming	language!\n",

								user.Username)

				fmt.Printf("Feel	free	to	type	in	commands\n")

				repl.Start(os.Stdin,	os.Stdout)

}

And	with	that	we	can	now	interactively	produce	tokens:

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	let	add	=	fn(x,	y)	{	x	+	y;	};

{Type:let	Literal:let}

{Type:IDENT	Literal:add}

{Type:=	Literal:=}

{Type:fn	Literal:fn}

{Type:(	Literal:(}

{Type:IDENT	Literal:x}

{Type:,	Literal:,}

{Type:IDENT	Literal:y}

{Type:)	Literal:)}

{Type:{	Literal:{}

{Type:IDENT	Literal:x}

{Type:+	Literal:+}

{Type:IDENT	Literal:y}

{Type:;	Literal:;}

{Type:}	Literal:}}

{Type:;	Literal:;}

>>

Perfect!	And	now	it's	time	to	start	parsing	these	tokens.





Parsing



2.1	-	Parsers

Everyone	who	has	ever	programmed	has	probably	heard	about	parsers,	mostly	by	encountering	a
"parser	error".	Or	maybe	heard	or	even	said	something	 like	"we	need	 to	parse	 this",	 "after	 it's
parsed",	"the	parser	blows	up	with	this	input".	The	word	"parser"	is	as	common	as	"compiler",
"interpreter"	 and	 "programming	 language".	 Everyone	 knows	 that	 parsers	 exist.	 They	 have	 to,
right?	Because	who	else	would	be	responsible	for	"parser	errors"?

But	what	is	a	parser	exactly?	What	is	its	job	and	how	does	it	do	it?	This	is	what	Wikipedia	has	to
say:

A	parser	 is	 a	 software	 component	 that	 takes	 input	 data	 (frequently	 text)	 and	builds	 a	 data
structure	–	often	some	kind	of	parse	tree,	abstract	syntax	tree	or	other	hierarchical	structure	–
giving	a	structural	representation	of	the	input,	checking	for	correct	syntax	in	the	process.	[...]
The	parser	is	often	preceded	by	a	separate	lexical	analyser,	which	creates	tokens	from	the
sequence	of	input	characters;

For	 a	 Wikipedia	 article	 about	 a	 computer	 science	 topic	 this	 excerpt	 is	 remarkably	 easy	 to
understand.	We	can	even	recognize	our	lexer	in	there!

A	parser	turns	its	input	into	a	data	structure	that	represents	the	input.	That	sounds	pretty	abstract,
so	let	me	illustrate	this	with	an	example.	Here	is	a	little	bit	of	JavaScript:

>	var	input	=	'{"name":	"Thorsten",	"age":	28}';

>	var	output	=	JSON.parse(input);

>	output

{	name:	'Thorsten',	age:	28	}

>	output.name

'Thorsten'

>	output.age

28

>

Our	input	is	just	some	text,	a	string.	We	then	pass	it	to	a	parser	hidden	behind	the	JSON.parse
function	and	receive	an	output	value.	This	output	is	the	data	structure	that	represents	the	input:	a
JavaScript	object	with	 two	 fields	named	name	 and	age,	 their	 values	 also	 corresponding	 to	 the
input.	We	can	now	easily	work	with	this	data	structure	as	demonstrated	by	accessing	the	name	and
age	fields.

"But",	 I	 hear	 you	 say,	 "a	 JSON	parser	 isn't	 the	 same	 as	 a	 parser	 for	 a	 programming	 language!
They're	different!"	I	can	see	where	you're	coming	from	with	this,	but	no,	they	are	not	different.	At
least	not	on	a	conceptual	level.	A	JSON	parser	takes	text	as	input	and	builds	a	data	structure	that
represents	 the	 input.	 That's	 exactly	 what	 the	 parser	 of	 a	 programming	 language	 does.	 The
difference	is	that	in	the	case	of	a	JSON	parser	you	can	see	the	data	structure	when	looking	at	the
input.	Whereas	if	you	look	at	this

if	((5	+	2	*	3)	==	91)	{	return	computeStuff(input1,	input2);	}

it's	not	immediately	obvious	how	this	could	be	represented	with	a	data	structure.	This	is	why,	at

https://en.wikipedia.org/wiki/Parsing#Parser


least	 for	 me,	 they	 seemed	 different	 on	 a	 deeper,	 conceptional	 level.	 My	 guess	 is	 that	 this
perception	 of	 conceptional	 difference	 is	mainly	 due	 to	 a	 lack	 of	 familiarity	with	 programming
language	parsers	and	the	data	structures	they	produce.	I	have	a	lot	more	experience	with	writing
JSON,	 parsing	 it	 with	 a	 parser	 and	 inspecting	 the	 output	 of	 the	 parser	 than	 with	 parsing
programming	languages.	As	users	of	programming	languages	we	seldom	get	to	see	or	interact	with
the	parsed	source	code,	with	 its	 internal	 representation.	Lisp	programmers	are	 the	exception	 to
the	rule	--	in	Lisp	the	data	structures	used	to	represent	the	source	code	are	the	ones	used	by	a	Lisp
user.	The	parsed	source	code	is	easily	accessible	as	data	in	the	program.	"Code	is	data,	data	is
code"	is	something	you	hear	a	lot	from	Lisp	programmers.

So,	 in	 order	 to	 bring	 our	 conceptual	 understanding	 of	 programming	 language	 parsers	 up	 to	 the
level	 of	 our	 familiarity	 and	 intuitiveness	 with	 parsers	 of	 serialization	 languages	 (like	 JSON,
YAML,	TOML,	INI,	and	so	on)	we	need	to	understand	the	data	structures	they	produce.

In	most	 interpreters	 and	 compilers	 the	data	 structure	 used	 for	 the	 internal	 representation	of	 the
source	code	is	called	a	"syntax	tree"	or	an	"abstract	syntax	tree"	(AST	for	short).	The	"abstract"
is	 based	 on	 the	 fact	 that	 certain	 details	 visible	 in	 the	 source	 code	 are	 omitted	 in	 the	 AST.
Semicolons,	newlines,	whitespace,	 comments,	braces,	bracket	 and	parentheses	 --	depending	on
the	 language	 and	 the	 parser	 these	 details	 are	 not	 represented	 in	 the	AST,	 but	merely	 guide	 the
parser	when	constructing	it.

A	fact	to	note	is	that	there	is	not	one	true,	universal	AST	format	that's	used	by	every	parser.	Their
implementations	 are	 all	 pretty	 similar,	 the	 concept	 is	 the	 same,	 but	 they	 differ	 in	 details.	 The
concrete	implementation	depends	on	the	programming	language	being	parsed.

A	small	example	should	make	things	clearer.	Let's	say	that	we	have	the	following	source	code:

if	(3	*	5	>	10)	{

		return	"hello";

}	else	{

		return		"goodbye";

}

And	let's	say	we	are	using	JavaScript,	have	a	MagicLexer,	a	MagicParser	and	the	AST	is	built
out	of	JavaScript	objects,	then	the	parsing	step	might	produce	something	like	this:

>	var	input	=	'if	(3	*	5	>	10)	{	return	"hello";	}	else	{	return	"goodbye";	}';

>	var	tokens	=	MagicLexer.parse(input);

>	MagicParser.parse(tokens);

{

		type:	"if-statement",

		condition:	{

				type:	"operator-expression",

				operator:	">",

				left:	{

						type:	"operator-expression",

						operator:	"*",

						left:	{	type:	"integer-literal",	value:	3	},

						right:	{	type:	"integer-literal",	value:	5	}

				},

				right:	{	type:	"integer-literal",	value:	10	}

		},

		consequence:	{

				type:	"return-statement",



				returnValue:	{	type:	"string-literal",	value:	"hello"	}

		},

		alternative:	{

				type:	"return-statement",

				returnValue:	{	type:	"string-literal",	value:	"goodbye"	}

		}

}

As	you	can	see,	the	output	of	the	parser,	the	AST,	is	pretty	abstract:	there	are	no	parentheses,	no
semicolons	and	no	braces.	But	it	does	represent	the	source	code	pretty	accurately,	don't	you	think?
I	bet	that	you	can	now	"see"	the	AST	structure	when	looking	back	at	the	source	code!

So,	this	is	what	parsers	do.	They	take	source	code	as	input	(either	as	text	or	tokens)	and	produce
a	 data	 structure	 which	 represents	 this	 source	 code.	While	 building	 up	 the	 data	 structure,	 they
unavoidably	 analyse	 the	 input,	 checking	 that	 it	 conforms	 to	 the	 expected	 structure.	 Thus	 the
process	of	parsing	is	also	called	syntactic	analysis.

In	this	chapter,	we're	going	to	write	our	parser	for	 the	Monkey	programming	language.	Its	 input
will	be	the	tokens	we	defined	in	the	previous	chapter,	produced	by	the	lexer	we	already	wrote.
We	will	 define	 our	 own	AST,	 suited	 to	 our	 needs	 as	 interpreters	 of	 the	Monkey	 programming
language,	and	construct	instances	of	this	AST	while	recursively	parsing	tokens.



2.2	-	Why	not	a	parser	generator?

Maybe	you've	already	heard	about	parser	generators,	like	the	tools	yacc,	bison	or	ANTLR.	Parser
generators	are	 tools	 that,	when	fed	with	a	formal	description	of	a	 language,	produce	parsers	as
their	output.	This	output	is	code	that	can	then	be	compiled/interpreted	and	itself	fed	with	source
code	as	input	to	produce	a	syntax	tree.

There	 are	 a	 lot	 of	 parser	 generators,	 differing	 in	 the	 format	 of	 the	 input	 they	 accept	 and	 the
language	of	the	output	they	produce.	The	majority	of	them	use	a	context-free	grammar	(CFG)	as
their	 input.	A	CFG	 is	 a	 set	 of	 rules	 that	 describe	 how	 to	 form	 correct	 (valid	 according	 to	 the
syntax)	sentences	 in	a	 language.	The	most	common	notational	 formats	of	CFGs	are	 the	Backus-
Naur	Form	(BNF)	or	the	Extended	Backus-Naur	Form	(EBNF).

PrimaryExpression	::=	"this"

																				|	ObjectLiteral

																				|	(	"("	Expression	")"	)

																				|	Identifier

																				|	ArrayLiteral

																				|	Literal

Literal	::=	(	<DECIMAL_LITERAL>

												|	<HEX_INTEGER_LITERAL>

												|	<STRING_LITERAL>

												|	<BOOLEAN_LITERAL>

												|	<NULL_LITERAL>

												|	<REGULAR_EXPRESSION_LITERAL>	)

Identifier	::=	<IDENTIFIER_NAME>

ArrayLiteral	::=	"["	(	(	Elision	)?	"]"

																	|	ElementList	Elision	"]"

																	|	(	ElementList	)?	"]"	)

ElementList	::=	(	Elision	)?	AssignmentExpression

																(	Elision	AssignmentExpression	)*

Elision	::=	(	","	)+

ObjectLiteral	::=	"{"	(	PropertyNameAndValueList	)?	"}"

PropertyNameAndValueList	::=	PropertyNameAndValue	(	","	PropertyNameAndValue

																																																		|	","	)*

PropertyNameAndValue	::=	PropertyName	":"	AssignmentExpression

PropertyName	::=	Identifier

														|	<STRING_LITERAL>

														|	<DECIMAL_LITERAL>

This	is	part	of	a	full	description	of	the	EcmaScript	syntax,	in	BNF.	A	parser	generator	would	take
something	like	this	and	turn	it	into	compilable	C	code,	for	example.

Maybe	you've	also	heard	 that	you	should	use	a	parser	generator	 instead	of	writing	a	parser	by
hand.	"Just	skip	this	part",	they	say,	"it's	a	solved	problem."	The	reason	for	this	recommendation
is	 that	parsers	are	exceptionally	well	suited	to	being	automatically	generated.	Parsing	is	one	of
the	most	well-understood	 branches	 of	 computer	 science	 and	 really	 smart	 people	 have	 already
invested	 a	 lot	 of	 time	 into	 the	 problems	 of	 parsing.	 The	 results	 of	 their	work	 are	 CFG,	BNF,
EBNF,	parser	generators	and	advanced	parsing	techniques	used	in	them.	Why	shouldn't	you	take
advantage	of	that?

I	 don't	 think	 that	 learning	 to	 write	 your	 own	 parser	 is	 a	 waste	 of	 time.	 I	 actually	 think	 it's
immensely	valuable.	Only	after	having	written	your	own	parser,	or	at	least	attempted	to,	will	you
see	the	benefits	parser	generators	provide,	the	drawbacks	they	have	and	the	problems	they	solve.

http://tomcopeland.blogs.com/EcmaScript.html


For	me	the	concept	of	a	parser	generator	only	"clicked"	after	I	wrote	my	first	parser.	I	looked	at	it
and	only	then	really	and	truly	understood	how	it's	possible	to	generate	this	code	automatically.

Most	 people,	 that	 recommend	 using	 a	 parser	 generator,	 when	 others	 want	 to	 get	 started	 with
interpreters	 and	 compilers	 only	 do	 so	 because	 they've	 written	 a	 parser	 themselves	 before.
They've	seen	the	problems	and	solutions	available	and	decided	it's	better	to	use	an	existing	tool
for	the	job.	And	they're	correct	-	when	you	want	to	get	something	done	and	are	in	a	production
environment,	where	correctness	and	robustness	are	priorities.	Of	course	you	shouldn't	try	to	write
your	own	parser	then,	especially	not	if	you've	never	written	one	before.

But	we	are	here	to	learn,	we	want	to	understand	how	parsers	work.	And	it's	my	opinion	that	the
best	way	to	do	that	is	by	getting	our	hands	dirty	and	writing	a	parser	ourselves.	Also,	I	think	it's
immense	fun.



2.3	-	Writing	a	Parser	for	the	Monkey	Programming	Language

There	 are	 two	 main	 strategies	 when	 parsing	 a	 programming	 language:	 top-down	 parsing	 or
bottom-up	parsing.	A	lot	of	slightly	different	forms	of	each	strategy	exist.	For	example,	"recursive
descent	parsing",	"Early	parsing"	or	"predictive	parsing"	are	all	variations	of	top	down	parsing.

The	parser	we	are	going	to	write	is	a	recursive	descent	parser.	And	in	particular,	it's	a	"top	down
operator	precedence"	parser,	sometimes	called	"Pratt	parser",	after	its	inventor	Vaughan	Pratt.

I	won't	go	into	the	details	of	different	parsing	strategies	here,	because	this	is	neither	the	place	nor
am	 I	 qualified	 enough	 to	 accurately	 describe	 them.	 Instead,	 let	me	 just	 say,	 that	 the	 difference
between	top	down	and	bottom	up	parsers	is	that	the	former	starts	with	constructing	root	node	of
the	AST	 and	 then	 descends	while	 the	 latter	 does	 it	 the	 other	way	 around.	A	 recursive	 descent
parser,	which	works	from	the	top	down,	is	often	recommended	for	newcomers	to	parsing,	since	it
closely	 mirrors	 the	 way	 we	 think	 about	 ASTs	 and	 their	 construction.	 I	 personally	 found	 the
recursive	approach	starting	at	 the	 root	node	 really	nice,	even	 though	 it	 took	writing	some	code
before	the	concept	really	clicked.	Which	is	another	reason	to	get	started	with	the	code	instead	of
delving	into	parsing	strategies.

Now,	when	writing	a	parser	ourselves,	we	have	to	make	some	trade-offs,	yes.	Our	parser	won't
be	 the	 fastest	of	all	 time,	we	won't	have	 formal	proof	of	 its	 correctness	and	 its	 error-recovery
process	and	detection	of	erroneous	syntax	won't	be	bullet	proof.	The	last	one	is	especially	hard	to
get	right	without	extensive	study	of	the	theory	surrounding	parsing.	But	what	we're	going	to	have
is	 a	 fully	working	parser	 for	 the	Monkey	programming	 language	 that's	 open	 for	 extensions	 and
improvements,	easy	to	understand	and	a	great	start	to	further	dive	into	the	topic	of	parsing,	if	one
were	so	inclined.

We're	 going	 to	 start	 by	 parsing	 statements:	 let	 and	 return	 statements.	 When	 we	 can	 parse
statements	and	the	basic	structure	of	our	parser	stands,	we	will	 look	at	expressions	and	how	to
parse	these	(this	is	were	Vaughan	Pratt	will	come	into	play).	Afterwards	we	extend	the	parser	to
make	it	capable	of	parsing	a	large	subset	of	the	Monkey	programming	language.	As	we	go	along
we	build	up	the	necessary	structures	for	our	AST.



2.4	-	Parser's	first	steps:	parsing	let	statements

In	Monkey,	variable	bindings	are	statements	of	the	following	form:

let	x	=	5;

let	y	=	10;

let	foobar	=	add(5,	5);

let	barfoo	=	5	*	5	/	10	+	18	-	add(5,	5)	+	multiply(124);

let	anotherName	=	barfoo;

These	 statements	 are	 called	 "let	 statements"	 and	bind	a	value	 to	 the	given	name.	let	 x	 =	 5;
binds	the	value	5	 to	the	name	x.	Our	job	in	this	section	is	 to	parse	let	statements	correctly.	For
now	 we're	 going	 to	 skip	 parsing	 the	 expressions	 that	 produce	 the	 value	 of	 a	 given	 variable
binding	and	come	back	to	this	later	-	as	soon	as	we	know	how	to	parse	expressions	on	their	own.

What	does	it	mean	to	parse	let	statements	correctly?	It	means	that	the	parser	produces	an	AST	that
accurately	 represents	 the	 information	 contained	 in	 the	 original	 let	 statement.	 That	 sounds
reasonable,	but	we	don't	have	an	AST	yet,	nor	do	we	know	what	it	should	look	like.	So	our	first
task	 is	 to	 take	a	close	 look	at	Monkey	source	code	and	see	how	 it's	 structured,	 so	 that	we	can
define	the	necessary	parts	of	an	AST	that's	able	to	accurately	represent	let	statements.

Here	is	a	fully	valid	program	written	in	Monkey:

let	x	=	10;

let	y	=	15;

let	add	=	fn(a,	b)	{

		return	a	+	b;

};

Programs	in	Monkey	are	a	series	of	statements.	In	this	example	we	can	see	three	statements,	three
variable	bindings	-	let	statements	-	of	the	following	form:

let	<identifier>	=	<expression>;

A	let	statement	in	Monkey	consists	of	two	changing	parts:	an	identifier	and	an	expression.	In	the
example	above	x,	y	and	add	are	identifiers.	10,	15	and	the	function	literal	are	expressions.

Before	 we	 go	 on,	 a	 few	 words	 about	 the	 difference	 between	 statements	 and	 expressions	 are
needed.	 Expressions	 produce	 values,	 statements	 don't.	 let	 x	 =	 5	 doesn't	 produce	 a	 value,
whereas	5	does	(the	value	it	produces	is	5).	A	return	5;	statement	doesn't	produce	a	value,	but
add(5,	 5)	 does.	 This	 distinction	 -	 expressions	 produce	 values,	 statements	 don't	 -	 changes
depending	on	who	you	ask,	but	it's	good	enough	for	our	needs.

What	exactly	an	expression	is	or	a	statement,	what	produces	values	and	what	doesn't,	depends	on
the	programming	language.	In	some	languages	function	literals	(e.g.:	fn(x,	y)	{	return	x	+
y;	})	are	expressions	and	can	be	used	 in	any	place	where	any	other	expression	 is	allowed.	In
other	programming	 languages	 though	 function	 literals	can	only	be	part	of	a	 function	declaration
statement,	 in	 the	 top	 level	 of	 the	 program.	 Some	 languages	 also	 have	 "if	 expressions",	 where
conditionals	are	expressions	and	produce	a	value.	This	is	entirely	dependent	on	the	choices	the



language	 designers	 made.	 As	 you'll	 see,	 a	 lot	 of	 things	 in	Monkey	 are	 expressions,	 including
function	literals.

Back	to	our	AST.	Looking	at	the	example	above,	we	can	see	that	it	needs	two	different	types	of
nodes:	expressions	and	statements.	Take	a	look	at	the	start	of	our	AST:

//	ast/ast.go

package	ast

type	Node	interface	{

				TokenLiteral()	string

}

type	Statement	interface	{

				Node

				statementNode()

}

type	Expression	interface	{

				Node

				expressionNode()

}

Here	we	have	three	interfaces	called	Node,	Statement	and	Expression.	Every	node	in	our	AST
has	 to	 implement	 the	Node	 interface,	meaning	 it	has	 to	provide	a	TokenLiteral()	method	 that
returns	the	literal	value	of	the	token	it's	associated	with.	TokenLiteral()	will	be	used	only	for
debugging	 and	 testing.	 The	 AST	 we	 are	 going	 to	 construct	 consists	 solely	 of	 Nodes	 that	 are
connected	to	each	other	-	it's	a	tree	after	all.	Some	of	these	nodes	implement	the	Statement	and
some	 the	 Expression	 interface.	 These	 interfaces	 only	 contain	 dummy	 methods	 called
statementNode	and	expressionNode	 respectively.	They	are	not	 strictly	necessary	but	help	us
by	guiding	 the	Go	compiler	and	possibly	causing	 it	 to	 throw	errors	when	we	use	a	Statement
where	an	Expression	should've	been	used,	and	vice	versa.

And	here	is	our	first	implementation	of	Node:

//	ast/ast.go

type	Program	struct	{

				Statements	[]Statement

}

func	(p	*Program)	TokenLiteral()	string	{

				if	len(p.Statements)	>	0	{

								return	p.Statements[0].TokenLiteral()

				}	else	{

								return	""

				}

}

This	Program	node	is	going	to	be	the	root	node	of	every	AST	our	parser	produces.	Every	valid
Monkey	 program	 is	 a	 series	 of	 statements.	 These	 statements	 are	 contained	 in	 the
Program.Statements,	 which	 is	 just	 a	 slice	 of	 AST	 nodes	 that	 implement	 the	 Statement
interface.

With	these	basic	building	blocks	for	our	AST	construction	defined,	let's	think	about	what	a	node
for	a	variable	binding	in	the	form	of	let	x	=	5;	might	look	like.	Which	fields	should	it	have?



Definitely	one	for	the	name	of	the	variable.	And	it	also	needs	a	field	that	points	to	the	expression
on	the	right	side	of	the	equal	sign.	It	needs	to	be	able	to	point	to	any	expression.	It	can't	just	point
to	a	literal	value	(the	integer	literal	5	in	this	case),	since	every	expression	is	valid	after	the	equal
sign:	let	x	=	5	*	5	is	as	valid	as	let	y	=	add(2,	2)	*	5	/	10;.	And	then	the	node	also
needs	 to	 keep	 track	 of	 the	 token	 the	 AST	 node	 is	 associated	 with,	 so	 we	 can	 implement	 the
TokenLiteral()	method.	That	makes	three	fields:	one	for	the	identifier,	one	for	the	expression
that	produces	the	value	in	the	let	statement	and	one	for	the	token.

//	ast/ast.go

import	"monkey/token"

//	[...]

type	LetStatement	struct	{

				Token	token.Token	//	the	token.LET	token

				Name		*Identifier

				Value	Expression

}

func	(ls	*LetStatement)	statementNode()							{}

func	(ls	*LetStatement)	TokenLiteral()	string	{	return	ls.Token.Literal	}

type	Identifier	struct	{

				Token	token.Token	//	the	token.IDENT	token

				Value	string

}

func	(i	*Identifier)	expressionNode()						{}

func	(i	*Identifier)	TokenLiteral()	string	{	return	i.Token.Literal	}

LetStatement	has	the	fields	we	need:	Name	 to	hold	the	identifier	of	the	binding	and	Value	 for
the	 expression	 that	 produces	 the	 value.	 The	 two	methods	 statementNode	 and	 TokenLiteral
satisfy	the	Statement	and	Node	interfaces	respectively.

To	hold	the	identifier	of	the	binding,	the	x	in	let	x	=	5;,	we	have	the	Identifier	struct	type,
which	implements	the	Expression	interface.	But	the	identifier	in	a	let	statement	doesn't	produce
a	value,	right?	So	why	is	it	an	Expression?	It's	to	keep	things	simple.	Identifiers	in	other	parts	of
a	Monkey	 program	do	 produce	values,	 e.g.:	let	 x	 =	 valueProducingIdentifier;.	 And	 to
keep	the	number	of	different	node	types	small,	we'll	use	Identifier	here	to	represent	the	name
in	 a	 variable	 binding	 and	 later	 reuse	 it,	 to	 represent	 an	 identifier	 as	 part	 of	 or	 as	 a	 complete
expression.

With	Program,	LetStatement	and	Identifier	defined	this	piece	of	Monkey	source	code

let	x	=	5;

could	be	represented	by	an	AST	looking	like	this:



Now	that	we	know	what	it's	supposed	to	look	like,	the	next	task	is	to	construct	such	an	AST.	So,
without	further	ado	here	is	the	beginning	of	our	parser:

//	parser/parser.go

package	parser

import	(

				"monkey/ast"

				"monkey/lexer"

				"monkey/token"

)

type	Parser	struct	{

				l	*lexer.Lexer

				curToken		token.Token

				peekToken	token.Token

}

func	New(l	*lexer.Lexer)	*Parser	{

				p	:=	&Parser{l:	l}

				//	Read	two	tokens,	so	curToken	and	peekToken	are	both	set

				p.nextToken()

				p.nextToken()

				return	p

}

func	(p	*Parser)	nextToken()	{

				p.curToken	=	p.peekToken

				p.peekToken	=	p.l.NextToken()

}

func	(p	*Parser)	ParseProgram()	*ast.Program	{

				return	nil

}



The	Parser	 has	 three	 fields:	l,	curToken	and	peekToken.	l	 is	 a	pointer	 to	 an	 instance	of	 the
lexer,	on	which	we	repeatedly	call	NextToken()	to	get	the	next	token	in	the	input.	curToken	and
peekToken	act	exactly	like	the	two	"pointers"	our	lexer	has:	position	and	peekPosition.	But
instead	of	pointing	to	a	character	in	the	input,	they	point	to	the	current	and	the	next	token.	Both	are
important:	we	 need	 to	 look	 at	 the	curToken,	which	 is	 the	 current	 token	 under	 examination,	 to
decide	what	to	do	next,	and	we	also	need	peekToken	for	this	decision	if	curToken	doesn't	give
us	enough	information.	Think	of	a	single	line	only	containing	5;.	Then	curToken	is	a	token.INT
and	we	need	peekToken	to	decide	whether	we	are	at	the	end	of	the	line	or	if	we	are	at	just	the
start	of	an	arithmetic	expression.

The	 New	 function	 is	 pretty	 self-explanatory	 and	 the	 nextToken	 method	 is	 a	 small	 helper	 that
advances	both	curToken	and	peekToken.	But	ParseProgram	is	empty,	for	now.

Now	before	we	start	writing	tests	and	filling	out	the	ParseProgram	method	I	want	to	show	you
the	 basic	 idea	 and	 structure	 behind	 a	 recursive	 descent	 parser.	 That	 makes	 it	 a	 lot	 easier	 to
understand	 our	 own	 parser	 later	 on.	 What	 follows	 are	 the	 major	 parts	 of	 such	 a	 parser	 in
pseudocode.	 Read	 this	 carefully	 and	 try	 to	 understand	 what	 happens	 in	 the	 parseProgram
function:

function	parseProgram()	{

		program	=	newProgramASTNode()

		advanceTokens()

		for	(currentToken()	!=	EOF_TOKEN)	{

				statement	=	null

				if	(currentToken()	==	LET_TOKEN)	{

						statement	=	parseLetStatement()

				}	else	if	(currentToken()	==	RETURN_TOKEN)	{

						statement	=	parseReturnStatement()

				}	else	if	(currentToken()	==	IF_TOKEN)	{

						statement	=	parseIfStatement()

				}

				if	(statement	!=	null)	{

						program.Statements.push(statement)

				}

				advanceTokens()

		}

		return	program

}

function	parseLetStatement()	{

		advanceTokens()

		identifier	=	parseIdentifier()

		advanceTokens()

		if	currentToken()	!=	EQUAL_TOKEN	{

				parseError("no	equal	sign!")

				return	null

		}

		advanceTokens()

		value	=	parseExpression()



		variableStatement	=	newVariableStatementASTNode()

		variableStatement.identifier	=	identifier

		variableStatement.value	=	value

		return	variableStatement

}

function	parseIdentifier()	{

		identifier	=	newIdentifierASTNode()

		identifier.token	=	currentToken()

		return	identifier

}

function	parseExpression()	{

		if	(currentToken()	==	INTEGER_TOKEN)	{

				if	(nextToken()	==	PLUS_TOKEN)		{

						return	parseOperatorExpression()

				}	else	if	(nextToken()	==	SEMICOLON_TOKEN)	{

						return	parseIntegerLiteral()

				}

		}	else	if	(currentToken()	==	LEFT_PAREN)	{

				return	parseGroupedExpression()

		}

//	[...]

}

function	parseOperatorExpression()	{

		operatorExpression	=	newOperatorExpression()

		operatorExpression.left	=	parseIntegerLiteral()

		operatorExpression.operator	=	currentToken()

		operatorExpression.right	=	parseExpression()

		return	operatorExpression()

}

//	[...]

Since	 this	 is	 pseudocode	 there	 are	 a	 lot	 of	 omissions,	 of	 course.	 But	 the	 basic	 idea	 behind
recursive-descent	 parsing	 is	 there.	The	 entry	 point	 is	parseProgram	 and	 it	 constructs	 the	 root
node	 of	 the	 AST	 (newProgramASTNode()).	 It	 then	 builds	 the	 child	 nodes,	 the	 statements,	 by
calling	other	functions	that	know	which	AST	node	to	construct	based	on	the	current	token.	These
other	functions	call	each	other	again,	recursively.

The	most	recursive	part	of	this	is	in	parseExpression	and	is	only	hinted	at.	But	we	can	already
see	 that	 in	order	 to	parse	 an	 expression	 like	5	 +	 5,	we	need	 to	 first	 parse	5	+	 and	 then	 call
parseExpression()	 again	 to	 parse	 the	 rest,	 since	 after	 the	 +	 might	 be	 another	 operator
expression,	 like	 this:	5	+	5	*	10.	We	will	 get	 to	 this	 later	 and	 look	at	 expression	parsing	 in
detail,	 since	 it's	 probably	 the	most	 complicated	 but	 also	 the	most	 beautiful	 part	 of	 the	 parser,
making	heavy	use	of	"Pratt	parsing".

But	for	now,	we	can	already	see	what	the	parser	has	to	do.	It	repeatedly	advances	the	tokens	and
checks	the	current	token	to	decide	what	to	do	next:	either	call	another	parsing	function	or	throw	an
error.	Each	function	then	does	its	job	and	possibly	constructs	an	AST	node	so	that	the	"main	loop"
in	parseProgram()	can	advance	the	tokens	and	decide	what	to	do	again.

If	 you	 looked	 at	 that	 pseudocode	 and	 thought	 "Well,	 that's	 actually	pretty	 easy	 to	understand"	 I
have	great	news	for	you:	our	ParseProgram	method	and	the	parser	will	look	pretty	similar!	Let's
get	to	work!



Again,	we're	starting	with	a	test	before	we	flesh	out	ParseProgram.	Here	is	a	test	case	to	make
sure	that	the	parsing	of	let	statements	works:

//	parser/parser_test.go

package	parser

import	(

				"testing"

				"monkey/ast"

				"monkey/lexer"

)

func	TestLetStatements(t	*testing.T)	{

				input	:=	`

let	x	=	5;

let	y	=	10;

let	foobar	=	838383;

`

				l	:=	lexer.New(input)

				p	:=	New(l)

				program	:=	p.ParseProgram()

				if	program	==	nil	{

								t.Fatalf("ParseProgram()	returned	nil")

				}

				if	len(program.Statements)	!=	3	{

								t.Fatalf("program.Statements	does	not	contain	3	statements.	got=%d",

												len(program.Statements))

				}

				tests	:=	[]struct	{

								expectedIdentifier	string

				}{

								{"x"},

								{"y"},

								{"foobar"},

				}

				for	i,	tt	:=	range	tests	{

								stmt	:=	program.Statements[i]

								if	!testLetStatement(t,	stmt,	tt.expectedIdentifier)	{

												return

								}

				}

}

func	testLetStatement(t	*testing.T,	s	ast.Statement,	name	string)	bool	{

				if	s.TokenLiteral()	!=	"let"	{

								t.Errorf("s.TokenLiteral	not	'let'.	got=%q",	s.TokenLiteral())

								return	false

				}

				letStmt,	ok	:=	s.(*ast.LetStatement)

				if	!ok	{

								t.Errorf("s	not	*ast.LetStatement.	got=%T",	s)

								return	false

				}

				if	letStmt.Name.Value	!=	name	{

								t.Errorf("letStmt.Name.Value	not	'%s'.	got=%s",	name,	letStmt.Name.Value)

								return	false

				}

				if	letStmt.Name.TokenLiteral()	!=	name	{

								t.Errorf("s.Name	not	'%s'.	got=%s",	name,	letStmt.Name)

								return	false

				}

				return	true

}



The	test	case	follows	the	same	principle	as	the	test	for	our	lexer	and	pretty	much	every	other	unit
test	we're	going	to	write:	we	provide	Monkey	source	code	as	input	and	then	set	expectations	on
what	we	want	the	AST	-	that's	produced	by	the	parser	-	to	look	like.	We	do	this	by	checking	as
many	 fields	 of	 the	AST	 nodes	 as	 possible	 to	make	 sure	 that	 nothing	 is	missing.	 I	 found	 that	 a
parser	is	a	breeding	ground	for	off-by-one	bugs	and	the	more	tests	and	assertions	it	has	the	better.

I	 choose	not	 to	mock	or	 stub	out	 the	 lexer	and	provide	 source	code	as	 input	 instead	of	 tokens,
since	that	makes	the	tests	much	more	readable	and	understandable.	Of	course	there's	the	problem
of	bugs	in	the	lexer	blowing	up	tests	for	the	parser	and	generating	unneeded	noise,	but	I	deem	the
risk	too	minimal,	especially	judged	against	the	advantages	of	using	readable	source	code	as	input.

There	are	 two	noteworthy	 things	about	 this	 test	case.	The	first	one	 is	 that	we	 ignore	 the	Value
field	of	the	*ast.LetStatement.	Why	don't	we	check	if	the	integer	literals	(5,	10,	...)	are	parsed
correctly?	 Answer:	 we're	 going	 to!	 But	 first	 we	 need	 to	 make	 sure	 that	 the	 parsing	 of	 let
statements	works	and	ignore	the	Value.

The	second	one	is	the	helper	function	testLetStatement.	It	might	seem	like	over-engineering	to
use	a	separate	function,	but	we're	going	to	need	this	function	soon	enough.	And	then	it's	going	to
make	our	test	cases	a	lot	more	readable	than	lines	and	lines	of	type	conversions	strewn	about.

As	an	aside:	we	won't	look	at	all	of	the	parser	tests	in	this	chapter,	since	they	are	just	too	long.
But	the	code	provided	with	the	book	contains	all	of	them.

That	being	said,	the	tests	fail	as	expected:

$	go	test	./parser

---	FAIL:	TestLetStatements	(0.00s)

		parser_test.go:20:	ParseProgram()	returned	nil

FAIL

FAIL				monkey/parser				0.007s

It's	time	to	flesh	out	the	ParseProgram()	method	of	the	Parser.

//	parser/parser.go

func	(p	*Parser)	ParseProgram()	*ast.Program	{

				program	:=	&ast.Program{}

				program.Statements	=	[]ast.Statement{}

				for	p.curToken.Type	!=	token.EOF	{

								stmt	:=	p.parseStatement()

								if	stmt	!=	nil	{

												program.Statements	=	append(program.Statements,	stmt)

								}

								p.nextToken()

				}

				return	program

}

Doesn't	 this	 look	 really	 similar	 to	 the	parseProgram()	 pseudocode	 function	we	 saw	 earlier?
See!	I	told	you!	And	what	it	does	is	the	same	too.

The	first	thing	ParseProgram	does	 is	construct	 the	root	node	of	 the	AST,	an	*ast.Program.	 It



then	iterates	over	every	token	in	the	input	until	it	encounters	an	token.EOF	token.	It	does	this	by
repeatedly	 calling	 nextToken,	 which	 advances	 both	 p.curToken	 and	 p.peekToken.	 In	 every
iteration	 it	 calls	 parseStatement,	 whose	 job	 it	 is	 to	 parse	 a	 statement.	 If	 parseStatement
returned	something	other	 than	nil,	a	ast.Statement,	 its	 return	value	 is	added	 to	Statements
slice	of	the	AST	root	node.	When	nothing	is	left	to	parse	the	*ast.Program	root	node	is	returned.

The	parseStatement	method	looks	like	this:

//	parser/parser.go

func	(p	*Parser)	parseStatement()	ast.Statement	{

				switch	p.curToken.Type	{

				case	token.LET:

								return	p.parseLetStatement()

				default:

								return	nil

				}

}

Don't	 worry,	 the	 switch	 statement	 will	 get	 more	 branches.	 But	 for	 now,	 it	 only	 calls
parseLetStatement	when	 it	 encounters	 a	token.LET	 token.	And	 parseLetStatement	 is	 the
method	where	we	turn	our	tests	from	red	to	green:

//	parser/parser.go

func	(p	*Parser)	parseLetStatement()	*ast.LetStatement	{

				stmt	:=	&ast.LetStatement{Token:	p.curToken}

				if	!p.expectPeek(token.IDENT)	{

								return	nil

				}

				stmt.Name	=	&ast.Identifier{Token:	p.curToken,	Value:	p.curToken.Literal}

				if	!p.expectPeek(token.ASSIGN)	{

								return	nil

				}

				//	TODO:	We're	skipping	the	expressions	until	we

				//	encounter	a	semicolon

				for	!p.curTokenIs(token.SEMICOLON)	{

								p.nextToken()

				}

				return	stmt

}

func	(p	*Parser)	curTokenIs(t	token.TokenType)	bool	{

				return	p.curToken.Type	==	t

}

func	(p	*Parser)	peekTokenIs(t	token.TokenType)	bool	{

				return	p.peekToken.Type	==	t

}

func	(p	*Parser)	expectPeek(t	token.TokenType)	bool	{

				if	p.peekTokenIs(t)	{

								p.nextToken()

								return	true

				}	else	{

								return	false

				}

}



It	works!	The	tests	are	green:

$	go	test	./parser

ok						monkey/parser			0.007s

We	can	parse	let	statements!	That's	amazing!	But,	wait,	how?

Let's	start	with	parseLetStatement.	 It	constructs	an	*ast.LetStatement	node	with	 the	 token
it's	currently	sitting	on	(a	token.LET	token)	and	then	advances	the	tokens	while	making	assertions
about	 the	next	 token	with	calls	 to	expectPeek.	First	 it	 expects	a	token.IDENT	 token,	which	 it
then	 uses	 to	 construct	 an	*ast.Identifier	 node.	 Then	 it	 expects	 an	 equal	 sign	 and	 finally	 it
jumps	over	the	expression	following	the	equal	sign	until	it	encounters	a	semicolon.	The	skipping
of	expressions	will	be	replaced,	of	course,	as	soon	as	we	know	how	to	parse	them.

The	curTokenIs	and	peekTokenIs	methods	do	not	need	much	of	an	explanation.	They	are	useful
methods	that	we	will	see	again	and	again	when	fleshing	out	the	parser.	Already,	we	can	replace
the	 p.curToken.Type	 !=	 token.EOF	 condition	 of	 the	 for-loop	 in	 ParseProgram	 with
!p.curTokenIs(token.EOF).

Instead	of	dissecting	these	tiny	methods,	let's	talk	about	expectPeek.	The	expectPeek	method	is
one	of	the	"assertion	functions"	nearly	all	parsers	share.	Their	primary	purpose	is	to	enforce	the
correctness	of	the	order	of	tokens	by	checking	the	type	of	the	next	token.	Our	expectPeek	here
checks	 the	 type	of	 the	peekToken	 and	only	 if	 the	 type	 is	correct	does	 it	 advance	 the	 tokens	by
calling	nextToken.	As	you'll	see,	this	is	something	a	parser	does	a	lot.

But	what	happens	if	we	encounter	a	token	in	expectPeek	that's	not	of	the	expected	type?	At	the
moment,	 we	 just	 return	 nil,	 which	 gets	 ignored	 in	 ParseProgram,	 which	 results	 in	 entire
statements	being	ignored	because	of	an	error	in	the	input.	Silently.	You	can	probably	imagine	that
this	makes	debugging	really	tough.	And	since	nobody	likes	tough	debugging	we	need	to	add	error
handling	to	our	parser.

Thankfully,	the	changes	we	need	to	make	are	minimal:

//	parser/parser.go

type	Parser	struct	{

//	[...]

				errors	[]string

//	[...]

}

func	New(l	*lexer.Lexer)	*Parser	{

				p	:=	&Parser{

								l:						l,

								errors:	[]string{},

				}

//	[...]

}

func	(p	*Parser)	Errors()	[]string	{

				return	p.errors

}

func	(p	*Parser)	peekError(t	token.TokenType)	{



				msg	:=	fmt.Sprintf("expected	next	token	to	be	%s,	got	%s	instead",

								t,	p.peekToken.Type)

				p.errors	=	append(p.errors,	msg)

}

The	Parser	now	has	an	errors	field,	which	is	just	a	slice	of	strings.	This	field	gets	initialized	in
New	and	the	helper	function	peekError	can	now	be	used	to	add	an	error	to	errors	when	the	type
of	peekToken	doesn't	match	the	expectation.	With	the	Errors	method	we	can	check	if	the	parser
encountered	any	errors.

Extending	the	test	suite	to	make	use	of	this	is	as	easy	as	you'd	expect:

//	parser/parser_test.go

func	TestLetStatements(t	*testing.T)	{

//	[...]

				program	:=	p.ParseProgram()

				checkParserErrors(t,	p)

//	[...]

}

func	checkParserErrors(t	*testing.T,	p	*Parser)	{

				errors	:=	p.Errors()

				if	len(errors)	==	0	{

								return

				}

				t.Errorf("parser	has	%d	errors",	len(errors))

				for	_,	msg	:=	range	errors	{

								t.Errorf("parser	error:	%q",	msg)

				}

				t.FailNow()

}

The	new	checkParserErrors	helper	function	does	nothing	more	than	check	the	parser	for	errors
and	 if	 it	 has	 any	 it	 prints	 them	as	 test	 errors	 and	 stops	 the	 execution	 of	 the	 current	 test.	 Pretty
straightforward.

But	nothing	in	our	parser	creates	errors	yet.	By	changing	expectPeek	we	can	automatically	add
an	error	every	time	one	of	our	expectations	about	the	next	token	was	wrong:

//	parser/parser.go

func	(p	*Parser)	expectPeek(t	token.TokenType)	bool	{

				if	p.peekTokenIs(t)	{

								p.nextToken()

								return	true

				}	else	{

								p.peekError(t)

								return	false

				}

}

If	we	now	change	our	test	case	input	from	this

input	:=	`

let	x	=	5;

let	y	=	10;

let	foobar	=	838383;

`



to	this	invalid	input	where	tokens	are	missing

				input	:=	`

let	x	5;

let	=	10;

let	838383;

`

we	can	run	our	tests	to	see	our	new	parser	errors:

$	go	test	./parser

---	FAIL:	TestLetStatements	(0.00s)

		parser_test.go:20:	parser	has	3	errors

		parser_test.go:22:	parser	error:	"expected	next	token	to	be	=,\

				got	INT	instead"

		parser_test.go:22:	parser	error:	"expected	next	token	to	be	IDENT,\

				got	=	instead"

		parser_test.go:22:	parser	error:	"expected	next	token	to	be	IDENT,\

				got	INT	instead"

FAIL

FAIL				monkey/parser			0.007s

As	 you	 can	 see,	 our	 parser	 showcases	 a	 neat	 little	 feature	 here:	 it	 gives	 us	 errors	 for	 each
erroneous	statement	 it	encounters.	 It	doesn't	exit	on	 the	first	one,	potentially	saving	us	 the	grunt
work	 of	 rerunning	 the	 parsing	 process	 again	 and	 again	 to	 catch	 all	 of	 the	 syntax	 errors.	That's
pretty	helpful	-	even	with	line	and	column	numbers	missing.



2.5	-	Parsing	Return	Statements

I	said	earlier	that	we're	going	to	flesh	out	our	sparse	looking	ParseProgram	method.	Now's	the
time.	We're	going	to	parse	return	statements.	And	the	first	step,	as	with	let	statements	before	them,
is	 to	 define	 the	 necessary	 structures	 in	 the	 ast	 package	 with	 which	 we	 can	 represent	 return
statements	in	our	AST.

Here	is	what	return	statements	look	like	in	Monkey:

return	5;

return	10;

return	add(15);

Experienced	with	let	statements,	we	can	easily	spot	the	structure	behind	these	statements:

return	<expression>;

Return	 statements	 consist	 solely	 of	 the	 keyword	 return	 and	 an	 expression.	 That	 makes	 the
definition	of	ast.ReturnStatement	really	simple:

//	ast/ast.go

type	ReturnStatement	struct	{

				Token							token.Token	//	the	'return'	token

				ReturnValue	Expression

}

func	(rs	*ReturnStatement)	statementNode()							{}

func	(rs	*ReturnStatement)	TokenLiteral()	string	{	return	rs.Token.Literal	}

There	is	nothing	about	this	node	that	you	haven't	seen	before:	it	has	a	field	for	the	initial	token	and
a	ReturnValue	field	that	will	contain	the	expression	that's	to	be	returned.	We	will	again	skip	the
parsing	of	the	expressions	and	the	semicolon	handling	for	now,	but	will	come	back	to	this	later.
The	statementNode	 and	TokenLiteral	methods	 are	 there	 to	 fulfill	 the	 Node	 and	 Statement
interfaces	and	look	identical	to	the	methods	defined	on	*ast.LetStatement.

The	test	we	write	next	also	looks	pretty	similar	to	the	one	for	let	statements:

//	parser/parser_test.go

func	TestReturnStatements(t	*testing.T)	{

				input	:=	`

return	5;

return	10;

return	993322;

`

				l	:=	lexer.New(input)

				p	:=	New(l)

				program	:=	p.ParseProgram()

				checkParserErrors(t,	p)

				if	len(program.Statements)	!=	3	{

								t.Fatalf("program.Statements	does	not	contain	3	statements.	got=%d",

												len(program.Statements))

				}

				for	_,	stmt	:=	range	program.Statements	{



								returnStmt,	ok	:=	stmt.(*ast.ReturnStatement)

								if	!ok	{

												t.Errorf("stmt	not	*ast.returnStatement.	got=%T",	stmt)

												continue

								}

								if	returnStmt.TokenLiteral()	!=	"return"	{

												t.Errorf("returnStmt.TokenLiteral	not	'return',	got	%q",

																returnStmt.TokenLiteral())

								}

				}

}

Of	course	these	test	cases	will	also	have	to	be	extended	as	soon	as	expression	parsing	is	in	place.
But	that's	okay,	tests	are	not	immutable.	But	they	are,	in	fact,	failing:

$	go	test	./parser

---	FAIL:	TestReturnStatements	(0.00s)

		parser_test.go:77:	program.Statements	does	not	contain	3	statements.	got=0

FAIL

FAIL				monkey/parser			0.007s

So	 let's	 make	 them	 pass	 by	 changing	 our	 ParseProgram	 method	 to	 also	 take	 token.RETURN
tokens	into	account:

//	parser/parser.go

func	(p	*Parser)	parseStatement()	ast.Statement	{

				switch	p.curToken.Type	{

				case	token.LET:

								return	p.parseLetStatement()

				case	token.RETURN:

								return	p.parseReturnStatement()

				default:

								return	nil

				}

}

I	could	make	a	 lot	of	 fuzz	about	 the	parseReturnStatement	method	before	showing	 it	 to	you,
but,	well,	I	won't.	Because	it's	tiny.	There	is	nothing	to	fuzz	about.

//	parser/parser.go

func	(p	*Parser)	parseReturnStatement()	*ast.ReturnStatement	{

				stmt	:=	&ast.ReturnStatement{Token:	p.curToken}

				p.nextToken()

				//	TODO:	We're	skipping	the	expressions	until	we

				//	encounter	a	semicolon

				for	!p.curTokenIs(token.SEMICOLON)	{

								p.nextToken()

				}

				return	stmt

}

I	told	you:	it's	tiny.	The	only	thing	it	does	is	construct	a	ast.ReturnStatement,	with	the	current
token	it's	sitting	on	as	Token.	It	then	brings	the	parser	in	place	for	the	expression	that	comes	next
by	calling	nextToken()	 and	 finally,	 there's	 the	 cop-out.	 It	 skips	 over	 every	 expression	until	 it
encounters	a	semicolon.	That's	it.	Our	tests	pass:

$	go	test	./parser

ok						monkey/parser			0.009s



It's	time	to	celebrate	again!	We	can	now	parse	all	of	the	statements	in	the	Monkey	programming
language!	That's	right:	there	are	only	two	of	them.	Let	statements	and	return	statements.	The	rest	of
the	language	consists	solely	of	expressions.	And	that's	what	we're	going	to	parse	next.



2.6	-	Parsing	Expressions

Personally,	I	think	that	parsing	expressions	is	the	most	interesting	part	of	writing	a	parser.	As	we
just	saw,	parsing	statements	is	relatively	straightforward.	We	process	tokens	from	"left	to	right",
expect	or	reject	the	next	tokens	and	if	everything	fits	we	return	an	AST	node.

Parsing	expressions,	on	the	other	hand,	contains	a	few	more	challenges.	Operator	precedence	is
probably	 the	 first	one	 that	comes	 to	mind	and	 is	best	 illustrated	with	an	example.	Let's	 say	we
want	to	parse	the	following	arithmetic	expression:

5	*	5	+	10

What	we	want	here	is	an	AST	that	represents	the	expression	like	this:

((5	*	5)	+	10)

That	is	to	say,	5	*	5	needs	to	be	"deeper"	in	the	AST	and	evaluated	earlier	than	the	addition.	In
order	to	produce	an	AST	that	looks	like	this,	the	parser	has	to	know	about	operator	precedences
where	 the	 precedence	 of	 *	 is	 higher	 than	 +.	 That's	 the	 most	 common	 example	 for	 operator
precedence,	but	there	are	a	lot	more	cases	where	it's	important.	Consider	this	expression:

5	*	(5	+	10)

Here	the	parenthesis	group	together	the	5	+	10	expression	and	give	them	a	"precedence	bump":
the	addition	now	has	to	be	evaluated	before	the	multiplication.	That's	because	parentheses	have	a
higher	precedence	than	the	*	operator.	As	we	will	soon	see,	 there	are	a	few	more	cases	where
precedence	is	playing	a	crucial	role.

The	 other	 big	 challenge	 is	 that	 in	 expressions	 tokens	 of	 the	 same	 type	 can	 appear	 in	multiple
positions.	 In	 contrast	 to	 this,	 the	 let	 token	 can	 only	 appear	 once	 at	 the	 beginning	 of	 a	 let
statement,	which	makes	it	easy	to	determine	what	the	rest	of	the	statement	is	supposed	to	be.	Now
look	at	this	expression:

-5	-	10

Here	the	-	operator	appears	at	the	beginning	of	the	expression,	as	a	prefix	operator,	and	then	as	an
infix	operator	in	the	middle.	A	variation	of	the	same	challenge	appears	here:

5	*	(add(2,	3)	+	10)

Even	though	you	might	not	recognize	the	parentheses	as	operators	yet,	they	pose	the	same	problem
to	us	as	the	-	 in	 the	previous	example.	The	outer	pair	of	parentheses	 in	 this	example	denotes	a
grouped	expression.	The	inner	pair	denotes	a	"call	expression".	The	validity	of	a	token's	position
now	depends	on	the	context,	the	tokens	that	come	before	and	after,	and	their	precedence.

Expressions	in	Monkey



In	 the	 Monkey	 programming	 language	 everything	 besides	 let	 and	 return	 statements	 is	 an
expression.	These	expressions	come	in	different	varieties.

Monkey	has	expressions	involving	prefix	operators:

-5

!true

!false

And	of	course	it	has	infix	operators	(or	"binary	operators"):

5	+	5

5	-	5

5	/	5

5	*	5

Besides	these	basic	arithmetic	operators,	there	are	also	the	following	comparison	operators:

foo	==	bar

foo	!=	bar

foo	<	bar

foo	>	bar

And	of	course,	as	we	previously	saw,	we	can	use	parentheses	to	group	expressions	and	influence
the	order	of	evaluation:

5	*	(5	+	5)

((5	+	5)	*	5)	*	5

Then	there	are	call	expressions:

add(2,	3)

add(add(2,	3),	add(5,	10))

max(5,	add(5,	(5	*	5)))

Identifiers	are	expressions	too:

foo	*	bar	/	foobar

add(foo,	bar)

Functions	in	Monkey	are	first-class	citizens	and,	yes,	function	literals	are	expressions	too.	We	can
use	a	let	statement	to	bind	a	function	to	a	name.	The	function	literal	is	just	the	expression	in	the
statement:

let	add	=	fn(x,	y)	{	return	x	+	y	};

And	here	we	use	a	function	literal	in	place	of	an	identifier:

fn(x,	y)	{	return	x	+	y	}(5,	5)

(fn(x)	{	return	x	}(5)	+	10	)	*	10

In	 contrast	 to	 a	 lot	 of	 widely	 used	 programming	 languages	 we	 also	 have	 "if	 expressions"	 in
Monkey:

let	result	=	if	(10	>	5)	{	true	}	else	{	false	};



result	//	=>	true

Looking	at	all	 these	different	forms	of	expressions	it	becomes	clear	 that	we	need	a	really	good
approach	to	parse	them	correctly	and	in	an	understandable	and	extendable	way.	Our	old	approach
of	 deciding	what	 to	 do	 based	 on	 the	 current	 token	won't	 get	 us	 very	 far	 -	 at	 least	 not	without
wanting	to	tear	our	hair	out.	And	that	is	where	Vaughan	Pratt	comes	in.

Top	Down	Operator	Precedence	(or:	Pratt	Parsing)

In	 his	 paper	 "Top	Down	Operator	 Precedence"	Vaughan	Pratt	 presents	 an	 approach	 to	 parsing
expressions	that,	in	his	own	words:

[...]	 is	 very	 simple	 to	 understand,	 trivial	 to	 implement,	 easy	 to	 use,	 extremely	 efficient	 in
practice	if	not	in	theory,	yet	flexible	enough	to	meet	most	reasonable	syntactic	needs	of	users
[...]

The	paper	was	published	 in	1973	but	 in	 the	many	years	since	 then	 the	 ideas	presented	by	Pratt
didn't	gain	a	huge	following.	Only	in	recent	years,	other	programmers	rediscovered	Pratt's	paper,
wrote	 about	 it	 and	 caused	 Pratt's	 approach	 to	 parsing	 to	 rise	 in	 popularity.	 There's	 Douglas
Crockford's	 (of	 "JavaScript:	 The	 Good	 Parts"	 fame)	 article	 called	 "Top	 Down	 Operator
Precedence"	that	shows	how	to	translate	Pratt's	ideas	to	JavaScript	(which	Crockford	did	when
building	JSLint).	And	then	there's	the	highly	recommended	article	by	Bob	Nystrom,	author	of	the
excellent	 "Game	 Programming	 Patterns"	 book,	 that	 makes	 Pratt's	 approach	 really	 easy	 to
understand	and	to	follow	by	providing	clean	example	code	in	Java.

The	parsing	 approach	described	by	 all	 three,	which	 is	 called	Top	Down	Operator	Precedence
Parsing,	 or	 Pratt	 parsing,	 was	 invented	 as	 an	 alternative	 to	 parsers	 based	 on	 context-free
grammars	and	the	Backus-Naur-Form.

And	 that	 is	 also	 the	 main	 difference:	 instead	 of	 associating	 parsing	 functions	 (think	 of	 our
parseLetStatement	 method	 here)	 with	 grammar	 rules	 (defined	 in	 BNF	 or	 EBNF),	 Pratt
associates	these	functions	(which	he	calls	"semantic	code")	with	single	token	types.	A	crucial	part
of	this	idea	is	that	each	token	type	can	have	two	parsing	functions	associated	with	it,	depending
on	the	token's	position	-	infix	or	prefix.

I	guess	that	doesn't	make	a	lot	of	sense	yet.	We	never	saw	how	to	associate	parsing	functions	with
grammar	rules,	so	the	idea	of	using	token	types	instead	of	these	rules	doesn't	register	as	anything
really	 novel	 or	 revelatory.	 To	 be	 completely	 honest:	 I	 was	 facing	 a	 chicken-and-egg	 problem
when	writing	this	section.	Is	it	better	to	explain	this	algorithm	in	abstract	terms	and	then	show	the
implementation,	 possibly	 causing	 you	 to	 jump	 back	 and	 forth	 between	 pages,	 or	 to	 show	 the
implementation	 with	 the	 explanation	 following,	 causing	 you	 to	 probably	 skip	 over	 the
implementation	and	not	getting	a	lot	out	of	the	explanation?

The	answer,	 I	decided,	 is	neither	of	 these	 two	options.	What	we're	going	 to	do	 instead	 is	 start
implementing	the	expression	parsing	part	of	our	parser.	Then	we're	going	to	take	a	closer	look	at

http://javascript.crockford.com/tdop/tdop.html
http://journal.stuffwithstuff.com/2011/03/19/pratt-parsers-expression-parsing-made-easy/


it	and	its	algorithm.	Afterwards	we	will	extend	and	complete	it	so	it's	able	to	parse	all	possible
expressions	in	Monkey.

And	before	we	start	writing	any	code,	let's	just	be	clear	on	the	terminology.

Terminology

A	prefix	operator	is	an	operator	"in	front	of"	its	operand.	Example:

--5

Here	the	operator	is	--	(decrement),	the	operand	is	the	integer	literal	5	and	the	operator	is	in	the
prefix	position.

A	postfix	operator	is	an	operator	"after"	its	operand.	Example:

foobar++

Here	the	operator	is	++	(increment),	the	operand	is	the	identifier	foobar	and	the	operator	is	in	the
postfix	position.	The	Monkey	interpreter	we'll	build	won't	have	postfix	operators.	Not	because	of
some	technical	limitations,	but	purely	in	order	to	keep	the	scope	of	the	book	limited.

Now,	 infix	operators	 are	 something	we've	 all	 seen	 before.	An	 infix	 operator	 sits	 between	 its
operands,	like	this:

5	*	8

The	*	operator	sits	in	the	infix	position	between	the	two	integer	literals	5	and	8.	Infix	operators
appear	in	binary	expressions	-	where	the	operator	has	two	operands.

The	other	term	we	already	stumbled	upon	and	will	find	again	later	is	operator	precedence.	And
alternative	 term	 for	 this	 is	 order	 of	 operations,	 which	 should	 make	 clearer	 what	 operator
precedence	describes:	which	priority	do	different	operators	have.	The	canonical	example	is	this
one,	which	we	saw	earlier:

5	+	5	*	10

The	result	of	 this	expression	 is	55	and	not	100.	And	 that's	because	 the	*	operator	has	a	higher
precedence,	a	"higher	rank".	It's	"more	important"	than	the	+	operator.	It	gets	evaluated	before	the
other	operator.	I	sometimes	think	of	operator	precedence	as	"operator	stickiness":	how	much	do
the	operands	next	to	the	operator	"stick"	to	it.

These	are	all	basic	 terms:	prefix,	postfix,	 infix	operator	and	precedence.	But	 it's	 important	 that
we	keep	these	simple	definitions	in	mind	later	on,	where	we'll	use	these	terms	in	other	places.

But	for	now:	let's	get	typing	and	write	some	code!



Preparing	the	AST

The	first	thing	we	need	to	do	for	expression	parsing	is	to	prepare	our	AST.	As	we	saw	before,	a
program	in	Monkey	is	a	series	of	statements.	Some	are	let	statements,	others	return	statements.	We
need	to	add	a	third	type	of	statement	to	our	AST:	expression	statements.

This	 may	 sound	 confusing,	 after	 I	 told	 you	 that	 let	 and	 return	 statements	 are	 the	 only	 type	 of
statements	 in	 Monkey.	 But	 an	 expression	 statement	 is	 not	 really	 a	 distinct	 statement;	 it's	 a
statement	that	consists	solely	of	one	expression.	It's	only	a	wrapper.	We	need	it	because	it's	totally
legal	in	Monkey	to	write	the	following	code:

let	x	=	5;

x	+	10;

The	first	line	is	a	let	statement,	the	second	line	is	an	expression	statement.	Other	languages	don't
have	these	expression	statements,	but	most	scripting	languages	do.	They	make	it	possible	to	have
one	line	consisting	only	of	an	expression.	So	let's	add	this	node	type	to	our	AST:

//	ast/ast.go

type	ExpressionStatement	struct	{

				Token						token.Token	//	the	first	token	of	the	expression

				Expression	Expression

}

func	(es	*ExpressionStatement)	statementNode()							{}

func	(es	*ExpressionStatement)	TokenLiteral()	string	{	return	es.Token.Literal	}

The	ast.ExpressionStatement	type	has	two	fields:	the	Token	field,	which	every	node	has,	and
the	 Expression	 field,	 which	 holds	 the	 expression.	 ast.ExpressionStatement	 fulfills	 the
ast.Statement	interface,	which	means	we	can	add	it	to	the	Statements	slice	of	ast.Program.
And	that's	the	whole	reason	why	we're	adding	ast.ExpressionStatement.

With	ast.ExpressionStatement	defined	we	could	resume	work	on	the	parser.	But	instead,	let's
make	our	lives	much	easier	by	adding	a	String()	method	to	our	AST	nodes.	This	will	allow	us
to	print	AST	nodes	for	debugging	and	to	compare	them	with	other	AST	nodes.	This	is	going	to	be
really	handy	in	tests!

We're	going	to	make	this	String()	method	part	of	the	ast.Node	interface:

//	ast/ast.go

type	Node	interface	{

				TokenLiteral()	string

				String()	string

}

Now	every	node	type	in	our	ast	package	has	to	implement	this	method.	With	that	change	made,
our	 code	 won't	 compile	 because	 the	 compiler	 complains	 about	 our	 AST	 nodes	 not	 fully
implementing	 the	updated	Node	 interface.	Let's	start	with	*ast.Program	 and	add	 its	String()
method	first:



//	ast/ast.go

import	(

//	[...]

				"bytes"

)

func	(p	*Program)	String()	string	{

				var	out	bytes.Buffer

				for	_,	s	:=	range	p.Statements	{

								out.WriteString(s.String())

				}

				return	out.String()

}

This	 method	 doesn't	 do	 much.	 It	 only	 creates	 a	 buffer	 and	 writes	 the	 return	 value	 of	 each
statements	String()	method	to	it.	And	then	it	returns	the	buffer	as	a	string.	It	delegates	most	of	its
work	to	the	Statements	of	*ast.Program.

The	 "real	 work"	 happens	 in	 the	 String()	 methods	 of	 our	 three	 statement	 types
ast.LetStatement,	ast.ReturnStatement	and	ast.ExpressionStatement:

//	ast/ast.go

func	(ls	*LetStatement)	String()	string	{

				var	out	bytes.Buffer

				out.WriteString(ls.TokenLiteral()	+	"	")

				out.WriteString(ls.Name.String())

				out.WriteString("	=	")

				if	ls.Value	!=	nil	{

								out.WriteString(ls.Value.String())

				}

				out.WriteString(";")

				return	out.String()

}

func	(rs	*ReturnStatement)	String()	string	{

				var	out	bytes.Buffer

				out.WriteString(rs.TokenLiteral()	+	"	")

				if	rs.ReturnValue	!=	nil	{

								out.WriteString(rs.ReturnValue.String())

				}

				out.WriteString(";")

				return	out.String()

}

func	(es	*ExpressionStatement)	String()	string	{

				if	es.Expression	!=	nil	{

								return	es.Expression.String()

				}

				return	""

}

The	nil-checks	will	be	taken	out,	later	on,	when	we	can	fully	build	expressions.

Now	we	only	need	to	add	a	last	String()	method	to	ast.Identifier:



//	ast/ast.go

func	(i	*Identifier)	String()	string	{	return	i.Value	}

With	 these	 methods	 in	 place,	 we	 can	 now	 just	 call	 String()	 on	 *ast.Program	 and	 get	 our
whole	program	back	as	a	string.	That	makes	the	structure	of	*ast.Program	easily	testable.	Let's
use	the	following	line	of	Monkey	source	code	as	an	example:

let	myVar	=	anotherVar;

If	we	construct	an	AST	out	of	this,	we	can	make	an	assertion	about	the	return	value	of	String()
like	this:

//	ast/ast_test.go

package	ast

import	(

				"monkey/token"

				"testing"

)

func	TestString(t	*testing.T)	{

				program	:=	&Program{

								Statements:	[]Statement{

												&LetStatement{

																Token:	token.Token{Type:	token.LET,	Literal:	"let"},

																Name:	&Identifier{

																				Token:	token.Token{Type:	token.IDENT,	Literal:	"myVar"},

																				Value:	"myVar",

																},

																Value:	&Identifier{

																				Token:	token.Token{Type:	token.IDENT,	Literal:	"anotherVar"},

																				Value:	"anotherVar",

																},

												},

								},

				}

				if	program.String()	!=	"let	myVar	=	anotherVar;"	{

								t.Errorf("program.String()	wrong.	got=%q",	program.String())

				}

}

In	this	test	we	construct	the	AST	by	hand.	When	writing	tests	for	the	parser	we	don't,	of	course,
but	make	 assertions	 about	 the	AST	 the	 parser	 produces.	 For	 demonstration	 purposes,	 this	 test
shows	us	how	we	can	add	another	easily	readable	layer	of	tests	for	our	parser	by	just	comparing
the	parser	output	with	strings.	That's	going	to	be	especially	handy	when	parsing	expressions.

So,	good	news:	preparation	is	done!	It's	time	to	write	a	Pratt	parser.

Implementing	the	Pratt	Parser

A	Pratt	 parser's	main	 idea	 is	 the	 association	 of	 parsing	 functions	 (which	 Pratt	 calls	 "semantic
code")	with	token	types.	Whenever	this	token	type	is	encountered,	the	parsing	functions	are	called
to	parse	the	appropriate	expression	and	return	an	AST	node	that	represents	it.	Each	token	type	can
have	up	to	two	parsing	functions	associated	with	it,	depending	on	whether	the	token	is	found	in	a
prefix	or	an	infix	position.



The	first	thing	we	need	to	do	is	to	setup	these	associations.	We	define	two	types	of	functions:	a
prefix	parsing	functions	and	an	infix	parsing	function.

//	parser/parser.go

type	(

				prefixParseFn	func()	ast.Expression

				infixParseFn		func(ast.Expression)	ast.Expression

)

Both	function	types	return	an	ast.Expression,	since	that's	what	we're	here	to	parse.	But	only	the
infixParseFn	 takes	an	argument:	another	ast.Expression.	This	argument	is	"left	side"	of	the
infix	operator	 that's	being	parsed.	A	prefix	operator	doesn't	have	a	"left	 side",	per	definition.	 I
know	that	this	doesn't	make	a	lot	of	sense	yet,	but	bear	with	me	here,	you'll	see	how	this	works.
For	 now,	 just	 remember	 that	 prefixParseFns	 gets	 called	 when	 we	 encounter	 the	 associated
token	type	in	prefix	position	and	infixParseFn	gets	called	when	we	encounter	the	token	type	in
infix	position.

In	order	for	our	parser	to	get	the	correct	prefixParseFn	or	infixParseFn	for	the	current	token
type,	we	add	two	maps	to	the	Parser	structure:

//	parser/parser.go

type	Parser	struct	{

				l						*lexer.Lexer

				errors	[]string

				curToken		token.Token

				peekToken	token.Token

				prefixParseFns	map[token.TokenType]prefixParseFn

				infixParseFns		map[token.TokenType]infixParseFn

}

With	these	maps	in	place,	we	can	just	check	if	the	appropriate	map	(infix	or	prefix)	has	a	parsing
function	associated	with	curToken.Type.

We	also	give	the	Parser	two	helper	methods	that	add	entries	to	these	maps:

//	parser/parser.go

func	(p	*Parser)	registerPrefix(tokenType	token.TokenType,	fn	prefixParseFn)	{

				p.prefixParseFns[tokenType]	=	fn

}

func	(p	*Parser)	registerInfix(tokenType	token.TokenType,	fn	infixParseFn)	{

				p.infixParseFns[tokenType]	=	fn

}

Now	we	are	ready	to	get	to	the	heart	of	the	algorithm.

Identifiers

We're	 going	 to	 start	 with	 possibly	 the	 simplest	 expression	 type	 in	 the	 Monkey	 programming
language:	identifiers.	Used	in	an	expression	statement	an	identifier	looks	like	this:



foobar;

Of	course,	the	foobar	is	arbitrary	and	identifiers	are	expressions	in	other	contexts	too,	not	just	in
an	expression	statements:

add(foobar,	barfoo);

foobar	+	barfoo;

if	(foobar)	{

		//	[...]

}

Here	we	have	identifiers	as	arguments	in	a	function	call,	as	operands	in	an	infix	expression	and	as
a	 standalone	 expression	 as	 part	 of	 a	 conditional.	 They	 can	 be	 used	 in	 all	 of	 these	 contexts,
because	identifiers	are	expressions	just	like	1	+	2.	And	just	like	any	other	expression	identifiers
produce	a	value:	they	evaluate	to	the	value	they	are	bound	to.

We	start	with	a	test:

//	parser/parser_test.go

func	TestIdentifierExpression(t	*testing.T)	{

				input	:=	"foobar;"

				l	:=	lexer.New(input)

				p	:=	New(l)

				program	:=	p.ParseProgram()

				checkParserErrors(t,	p)

				if	len(program.Statements)	!=	1	{

								t.Fatalf("program	has	not	enough	statements.	got=%d",

												len(program.Statements))

				}

				stmt,	ok	:=	program.Statements[0].(*ast.ExpressionStatement)

				if	!ok	{

								t.Fatalf("program.Statements[0]	is	not	ast.ExpressionStatement.	got=%T",

												program.Statements[0])

				}

				ident,	ok	:=	stmt.Expression.(*ast.Identifier)

				if	!ok	{

								t.Fatalf("exp	not	*ast.Identifier.	got=%T",	stmt.Expression)

				}

				if	ident.Value	!=	"foobar"	{

								t.Errorf("ident.Value	not	%s.	got=%s",	"foobar",	ident.Value)

				}

				if	ident.TokenLiteral()	!=	"foobar"	{

								t.Errorf("ident.TokenLiteral	not	%s.	got=%s",	"foobar",

												ident.TokenLiteral())

				}

}

That's	a	lot	of	lines,	but	it's	mostly	just	grunt	work.	We	parse	our	input	foobar;,	check	the	parser
for	errors,	make	an	assertion	about	the	number	of	statements	in	the	*ast.Program	node	and	then
check	that	the	only	statement	in	program.Statements	is	an	*ast.ExpressionStatement.	Then
we	check	 that	 the	*ast.ExpressionStatement.Expression	 is	 an	*ast.Identifier.	 Finally
we	check	that	our	identifier	has	the	correct	value	of	"foobar".

Of	course,	the	parser	tests	fail:

$	go	test	./parser

---	FAIL:	TestIdentifierExpression	(0.00s)



		parser_test.go:110:	program	has	not	enough	statements.	got=0

FAIL

FAIL				monkey/parser			0.007s

The	parser	doesn't	know	anything	about	expressions	yet.	We	need	to	write	a	parseExpression
method.

The	first	thing	we	need	to	do	is	to	extend	the	parseStatement()	method	of	the	parser,	so	that	it
parses	expression	statements.	Since	the	only	two	real	statement	types	in	Monkey	are	let	and	return
statements,	we	try	to	parse	expression	statements	if	we	don't	encounter	one	of	the	other	two:

//	parser/parser.go

func	(p	*Parser)	parseStatement()	ast.Statement	{

				switch	p.curToken.Type	{

				case	token.LET:

								return	p.parseLetStatement()

				case	token.RETURN:

								return	p.parseReturnStatement()

				default:

								return	p.parseExpressionStatement()

				}

}

The	parseExpressionStatement	method	looks	like	this:

//	parser/parser.go

func	(p	*Parser)	parseExpressionStatement()	*ast.ExpressionStatement	{

				stmt	:=	&ast.ExpressionStatement{Token:	p.curToken}

				stmt.Expression	=	p.parseExpression(LOWEST)

				if	p.peekTokenIs(token.SEMICOLON)	{

								p.nextToken()

				}

				return	stmt

}

We	already	know	the	drill:	we	build	our	AST	node	and	then	try	to	fill	 its	field	by	calling	other
parsing	functions.	In	this	case	there	are	a	few	differences	though:	we	call	parseExpression(),
which	doesn't	exist	yet,	with	the	constant	LOWEST,	that	doesn't	exist	yet,	and	then	we	check	for	an
optional	semicolon.	Yes,	it's	optional.	If	the	peekToken	is	a	token.SEMICOLON,	we	advance	so
it's	the	curToken.	 If	 it's	not	 there,	 that's	okay	too,	we	don't	add	an	error	 to	the	parser	 if	 it's	not
there.	That's	because	we	want	expression	statements	to	have	optional	semicolons	(which	makes	it
easier	to	type	something	like	5	+	5	into	the	REPL	later	on).

If	we	now	run	 the	 tests	we	can	see	 that	compilation	 fails,	because	LOWEST	 is	undefined.	That's
alright,	let's	add	it	now,	by	defining	the	precedences	of	the	Monkey	programming	language:

//	parser/parser.go

const	(

				_	int	=	iota

				LOWEST

				EQUALS						//	==

				LESSGREATER	//	>	or	<

				SUM									//	+

				PRODUCT					//	*



				PREFIX						//	-X	or	!X

				CALL								//	myFunction(X)

)

Here	we	 use	iota	 to	 give	 the	 following	 constants	 incrementing	 numbers	 as	 values.	 The	 blank
identifier	_	takes	the	zero	value	and	the	following	constants	get	assigned	the	values	1	to	7.	Which
numbers	we	use	doesn't	matter,	but	the	order	and	the	relation	to	each	other	do.	What	we	want	out
of	 these	constants	 is	 to	 later	be	able	 to	answer:	"does	 the	*	operator	have	a	higher	precedence
than	the	==	operator?	Does	a	prefix	operator	have	a	higher	preference	than	a	call	expression?"

In	parseExpressionStatement	we	pass	the	lowest	possible	precedence	to	parseExpression,
since	we	didn't	parse	anything	yet	and	we	can't	compare	precedences.	That's	going	to	make	more
sense	in	a	short	while,	I	promise.	Let's	write	parseExpression:

//	parser/parser.go

func	(p	*Parser)	parseExpression(precedence	int)	ast.Expression	{

				prefix	:=	p.prefixParseFns[p.curToken.Type]

				if	prefix	==	nil	{

								return	nil

				}

				leftExp	:=	prefix()

				return	leftExp

}

That's	 the	 first	 version.	All	 it	 does	 is	 checking	whether	we	have	 a	parsing	 function	 associated
with	p.curToken.Type	 in	 the	prefix	position.	 If	we	do,	 it	 calls	 this	parsing	 function,	 if	not,	 it
returns	nil.	Which	it	does	at	the	moment,	since	we	haven't	associated	any	tokens	with	any	parsing
functions	yet.	That's	our	next	step:

//	parser/parser.go

func	New(l	*lexer.Lexer)	*Parser	{

//	[...]

				p.prefixParseFns	=	make(map[token.TokenType]prefixParseFn)

				p.registerPrefix(token.IDENT,	p.parseIdentifier)

//	[...]

}

func	(p	*Parser)	parseIdentifier()	ast.Expression	{

				return	&ast.Identifier{Token:	p.curToken,	Value:	p.curToken.Literal}

}

We	modified	the	New()	function	to	initialize	the	prefixParseFns	map	on	Parser	and	register	a
parsing	 function:	 if	we	 encounter	 a	 token	 of	 type	 token.IDENT	 the	 parsing	 function	 to	 call	 is
parseIdentifier,	a	method	we	defined	on	*Parser.

The	 parseIdentifier	 method	 doesn't	 do	 a	 lot.	 It	 only	 returns	 a	 *ast.Identifier	 with	 the
current	token	in	the	Token	field	and	the	literal	value	of	the	token	in	Value.	It	doesn't	advance	the
tokens,	it	doesn't	call	nextToken.	That's	important.	All	of	our	parsing	functions,	prefixParseFn
or	infixParseFn,	are	going	to	follow	this	protocol:	start	with	curToken	being	the	type	of	token
you're	 associated	 with	 and	 return	 with	 curToken	 being	 the	 last	 token	 that's	 part	 of	 your
expression	type.	Never	advance	the	tokens	too	far.



Believe	it	or	not,	our	tests	pass:

$	go	test	./parser

ok						monkey/parser			0.007s

We	successfully	parsed	an	identifier	expression!	Alright!	But,	before	we	get	off	the	computer,	find
someone	and	proudly	tell	them,	let's	keep	our	breath	a	little	longer	and	write	some	more	parsing
functions.

Integer	Literals

Nearly	as	easy	to	parse	as	identifiers	are	integer	literals,	which	look	like	this:

5;

Yes,	that's	it.	Integer	literals	are	expressions.	The	value	they	produce	is	the	integer	itself.	Again,
imagine	in	which	places	integer	literals	can	occur	to	understand	why	they	are	expressions:

let	x	=	5;

add(5,	10);

5	+	5	+	5;

We	 can	 use	 any	 other	 expression	 instead	 of	 integer	 literals	 here	 and	 it	 would	 still	 be	 valid:
identifiers,	call	expressions,	grouped	expressions,	function	literals	and	so	on.	All	the	expression
types	are	interchangeable	and	integer	literals	are	one	of	them.

The	test	case	for	integer	literals	looks	really	similar	to	the	one	for	identifiers:

//	parser/parser_test.go

func	TestIntegerLiteralExpression(t	*testing.T)	{

				input	:=	"5;"

				l	:=	lexer.New(input)

				p	:=	New(l)

				program	:=	p.ParseProgram()

				checkParserErrors(t,	p)

				if	len(program.Statements)	!=	1	{

								t.Fatalf("program	has	not	enough	statements.	got=%d",

												len(program.Statements))

				}

				stmt,	ok	:=	program.Statements[0].(*ast.ExpressionStatement)

				if	!ok	{

								t.Fatalf("program.Statements[0]	is	not	ast.ExpressionStatement.	got=%T",

												program.Statements[0])

				}

				literal,	ok	:=	stmt.Expression.(*ast.IntegerLiteral)

				if	!ok	{

								t.Fatalf("exp	not	*ast.IntegerLiteral.	got=%T",	stmt.Expression)

				}

				if	literal.Value	!=	5	{

								t.Errorf("literal.Value	not	%d.	got=%d",	5,	literal.Value)

				}

				if	literal.TokenLiteral()	!=	"5"	{

								t.Errorf("literal.TokenLiteral	not	%s.	got=%s",	"5",

												literal.TokenLiteral())

				}

}



And	as	in	the	test	case	for	identifiers	we	use	a	simple	input,	feed	it	to	the	parser	and	then	check
that	 the	 parser	 didn't	 encounter	 any	 errors	 and	 produced	 the	 correct	 number	 of	 statements	 in
*ast.Program.Statements.	 Then	 we	 add	 an	 assertion	 that	 the	 first	 statement	 is	 an
*ast.ExpressionStatement.	And	finally	we	expect	a	well-formed	*ast.IntegerLiteral.

The	 tests	 do	 not	 compile,	 since	 *ast.IntegerLiteral	 doesn't	 exist	 yet.	 Defining	 it	 is	 easy
though:

//	ast/ast.go

type	IntegerLiteral	struct	{

				Token	token.Token

				Value	int64

}

func	(il	*IntegerLiteral)	expressionNode()						{}

func	(il	*IntegerLiteral)	TokenLiteral()	string	{	return	il.Token.Literal	}

func	(il	*IntegerLiteral)	String()	string							{	return	il.Token.Literal	}

*ast.IntegerLiteral	fulfills	the	ast.Expression	interface,	just	like	*ast.Identifier	does,
but	there's	a	notable	difference	to	ast.Identifier	in	the	structure	itself:	Value	is	an	int64	and
not	a	string.	This	is	the	field	that's	going	to	contain	the	actual	value	the	integer	literal	represents
in	 the	source	code.	When	we	build	an	*ast.IntegerLiteral	we	have	 to	convert	 the	string	 in
*ast.IntegerLiteral.Token.Literal	(which	is	something	like	"5")	to	an	int64.

The	 best	 place	 to	 do	 this	 is	 in	 the	 parsing	 function	 associated	 with	 token.INT,	 called
parseIntegerLiteral:

//	parser/parser.go

import	(

//	[...]

				"strconv"

)

func	(p	*Parser)	parseIntegerLiteral()	ast.Expression	{

				lit	:=	&ast.IntegerLiteral{Token:	p.curToken}

				value,	err	:=	strconv.ParseInt(p.curToken.Literal,	0,	64)

				if	err	!=	nil	{

								msg	:=	fmt.Sprintf("could	not	parse	%q	as	integer",	p.curToken.Literal)

								p.errors	=	append(p.errors,	msg)

								return	nil

				}

				lit.Value	=	value

				return	lit

}

Like	parseIdentifier	the	method	is	strikingly	simple.	The	only	thing	that's	really	different	is	a
call	 to	strconv.ParseInt,	which	 converts	 the	 string	 in	p.curToken.Literal	 into	 an	int64.
The	 int64	 then	 gets	 saved	 to	 the	 Value	 field	 and	 we	 return	 the	 newly	 constructed
*ast.IntegerLiteral	 node.	 If	 that	doesn't	work,	we	add	a	new	error	 to	 the	parser's	errors
field.

But	the	tests	don't	pass	yet:



$	go	test	./parser

---	FAIL:	TestIntegerLiteralExpression	(0.00s)

		parser_test.go:162:	exp	not	*ast.IntegerLiteral.	got=<nil>

FAIL

FAIL				monkey/parser			0.008s

We	 have	 a	 nil	 instead	 of	 an	 *ast.IntegerLiteral	 in	 our	 AST.	 The	 reason	 is	 that
parseExpression	can't	find	a	prefixParseFn	for	a	token	of	type	token.INT.	All	we	have	to	do
to	make	the	tests	pass	is	to	register	our	parseIntegerLiteral	method:

//	parser/parser.go

func	New(l	*lexer.Lexer)	*Parser	{

//	[...]

				p.prefixParseFns	=	make(map[token.TokenType]prefixParseFn)

				p.registerPrefix(token.IDENT,	p.parseIdentifier)

				p.registerPrefix(token.INT,	p.parseIntegerLiteral)

//	[...]

}

With	 parseIntegerLiteral	 registered,	 parseExpression	 now	 knows	 what	 to	 do	 with	 a
token.INT	 token,	 calls	 parseIntegerLiteral	 and	 returns	 its	 return	 value,	 an
*ast.IntegerLiteral.	The	tests	pass:

$	go	test	./parser

ok						monkey/parser			0.007s

I	think	it's	time	to	say:	we	are	on	a	roll	here!	Identifiers	and	integer	literals	are	in	the	bag,	let's
step	it	up	a	notch	and	parse	prefix	operators.

Prefix	Operators

There	 are	 two	prefix	 operators	 in	 the	Monkey	programming	 language:	!	 and	-.	 Their	 usage	 is
pretty	much	what	you'd	expect	from	other	languages:

-5;

!foobar;

5	+	-10;

The	structure	of	their	usage	is	the	following:

<prefix	operator><expression>;

Yes,	that's	right.	Any	expression	can	follow	a	prefix	operator	as	operand.	These	are	valid:

!isGreaterThanZero(2);

5	+	-add(5,	5);

That	means	that	an	AST	node	for	a	prefix	operator	expression	has	to	be	flexible	enough	to	point	to
any	expression	as	its	operand.

But	first	things	first,	here	is	the	test	case	for	prefix	operators,	or	"prefix	expressions":

//	parser/parser_test.go



func	TestParsingPrefixExpressions(t	*testing.T)	{

				prefixTests	:=	[]struct	{

								input								string

								operator					string

								integerValue	int64

				}{

								{"!5;",	"!",	5},

								{"-15;",	"-",	15},

				}

				for	_,	tt	:=	range	prefixTests	{

								l	:=	lexer.New(tt.input)

								p	:=	New(l)

								program	:=	p.ParseProgram()

								checkParserErrors(t,	p)

								if	len(program.Statements)	!=	1	{

												t.Fatalf("program.Statements	does	not	contain	%d	statements.	got=%d\n",

																1,	len(program.Statements))

								}

								stmt,	ok	:=	program.Statements[0].(*ast.ExpressionStatement)

								if	!ok	{

												t.Fatalf("program.Statements[0]	is	not	ast.ExpressionStatement.	got=%T",

																program.Statements[0])

								}

								exp,	ok	:=	stmt.Expression.(*ast.PrefixExpression)

								if	!ok	{

												t.Fatalf("stmt	is	not	ast.PrefixExpression.	got=%T",	stmt.Expression)

								}

								if	exp.Operator	!=	tt.operator	{

												t.Fatalf("exp.Operator	is	not	'%s'.	got=%s",

																tt.operator,	exp.Operator)

								}

								if	!testIntegerLiteral(t,	exp.Right,	tt.integerValue)	{

												return

								}

				}

}

This	 test	 function,	again,	has	a	 lot	of	 lines.	For	 two	 reasons:	manually	creating	error	messages
with	t.Errorf	takes	up	some	space	and	we're	using	a	table-driven	testing	approach.	The	reason
for	this	approach	is	that	it	saves	us	a	lot	of	test	code.	Yes,	it's	only	two	test	cases,	but	duplicating
the	complete	test	setup	for	each	case	would	mean	a	lot	more	lines.	And	since	the	logic	behind	the
test	assertions	is	 the	same,	we	share	the	test	setup.	Both	test	cases	(!5	and	-15	as	 input)	differ
only	in	the	expected	operators	and	integer	values	(which	we	define	here	in	prefixTests).

In	 the	 test	 function	 we	 iterate	 through	 our	 slice	 of	 test	 inputs	 and	 make	 assertions	 about	 the
produced	AST	based	on	the	values	defined	in	the	prefixTests	slice	of	structs.	As	you	can	see,
at	the	end	we	use	a	new	helper	function	called	testIntegerLiteral	to	test	that	the	Right	value
of	*ast.PrefixExpression	is	the	correct	integer	literal.	We	introduce	this	helper	function	here,
so	 the	 focus	 of	 the	 test	 case	 is	 on	 *ast.PrefixExpression	 and	 its	 fields	 and	 we	 will	 soon
enough	need	it	again.	It	looks	like	this:

//	parser/parser_test.go

func	testIntegerLiteral(t	*testing.T,	il	ast.Expression,	value	int64)	bool	{

				integ,	ok	:=	il.(*ast.IntegerLiteral)

				if	!ok	{

								t.Errorf("il	not	*ast.IntegerLiteral.	got=%T",	il)

								return	false

				}



				if	integ.Value	!=	value	{

								t.Errorf("integ.Value	not	%d.	got=%d",	value,	integ.Value)

								return	false

				}

				if	integ.TokenLiteral()	!=	fmt.Sprintf("%d",	value)	{

								t.Errorf("integ.TokenLiteral	not	%d.	got=%s",	value,

												integ.TokenLiteral())

								return	false

				}

				return	true

}

There	is	nothing	new	here,	we've	seen	this	before	in	TestIntegerLiteralExpression.	But	now
it's	hidden	behind	a	small	helper	function	that	makes	these	new	tests	more	readable.

As	expected	the	tests	don't	even	compile:

$	go	test	./parser

#	monkey/parser

parser/parser_test.go:210:	undefined:	ast.PrefixExpression

FAIL				monkey/parser	[build	failed]

We	need	to	define	the	ast.PrefixExpression	node:

//	ast/ast.go

type	PrefixExpression	struct	{

				Token				token.Token	//	The	prefix	token,	e.g.	!

				Operator	string

				Right				Expression

}

func	(pe	*PrefixExpression)	expressionNode()						{}

func	(pe	*PrefixExpression)	TokenLiteral()	string	{	return	pe.Token.Literal	}

func	(pe	*PrefixExpression)	String()	string	{

				var	out	bytes.Buffer

				out.WriteString("(")

				out.WriteString(pe.Operator)

				out.WriteString(pe.Right.String())

				out.WriteString(")")

				return	out.String()

}

This	 doesn't	 contain	 any	 surprises.	 The	 *ast.PrefixExpression	 node	 has	 two	 noteworthy
fields:	Operator	and	Right.	Operator	is	a	string	that's	going	to	contain	either	"-"	or	"!".	The
Right	field	contains	the	expression	to	the	right	of	the	operator.

In	the	String()	method	we	deliberately	add	parentheses	around	the	operator	and	its	operand,	the
expression	in	Right.	That	allows	us	to	see	which	operands	belong	to	which	operator.

With	*ast.PrefixExpression	defined,	the	tests	now	fail	with	a	strange	error	message:

$	go	test	./parser

---	FAIL:	TestParsingPrefixExpressions	(0.00s)

		parser_test.go:198:	program.Statements	does	not	contain	1	statements.	got=2

FAIL

FAIL				monkey/parser			0.007s



Why	does	program.Statements	contain	one	statement	instead	of	the	expected	two?	The	reason
is	 that	 parseExpression	 doesn't	 recognize	 our	 prefix	 operators	 yet	 and	 simply	 returns	 nil.
program.Statements	does	not	contain	one	statement	but	simply	one	nil.

We	can	do	better	than	this,	we	can	extend	our	parser	and	the	parseExpression	method	to	give	us
better	error	messages	when	this	happens:

//	parser/parser.go

func	(p	*Parser)	noPrefixParseFnError(t	token.TokenType)	{

				msg	:=	fmt.Sprintf("no	prefix	parse	function	for	%s	found",	t)

				p.errors	=	append(p.errors,	msg)

}

func	(p	*Parser)	parseExpression(precedence	int)	ast.Expression	{

				prefix	:=	p.prefixParseFns[p.curToken.Type]

				if	prefix	==	nil	{

								p.noPrefixParseFnError(p.curToken.Type)

								return	nil

				}

				leftExp	:=	prefix()

				return	leftExp

}

The	 small	 helper	method	 noPrefixParseFnError	 just	 adds	 a	 formatted	 error	message	 to	 our
parser's	errors	field.	But	that's	enough	to	get	better	error	messages	in	our	failing	test:

$	go	test	./parser

---	FAIL:	TestParsingPrefixExpressions	(0.00s)

		parser_test.go:227:	parser	has	1	errors

		parser_test.go:229:	parser	error:	"no	prefix	parse	function	for	!	found"

FAIL

FAIL				monkey/parser			0.010s

Now	it's	clear	what	we	have	to	do:	write	a	parsing	function	for	prefix	expressions	and	register	it
in	our	parser.

//	parser/parser.go

func	New(l	*lexer.Lexer)	*Parser	{

//	[...]

				p.registerPrefix(token.BANG,	p.parsePrefixExpression)

				p.registerPrefix(token.MINUS,	p.parsePrefixExpression)

//	[...]

}

func	(p	*Parser)	parsePrefixExpression()	ast.Expression	{

				expression	:=	&ast.PrefixExpression{

								Token:				p.curToken,

								Operator:	p.curToken.Literal,

				}

				p.nextToken()

				expression.Right	=	p.parseExpression(PREFIX)

				return	expression

}

For	token.BANG	and	token.MINUS	we	register	the	same	method	as	prefixParseFn:	 the	newly
created	 parsePrefixExpression.	 This	 method	 builds	 an	 AST	 node,	 in	 this	 case



*ast.PrefixExpression,	 just	 like	 the	 parsing	 functions	 we	 saw	 before.	 But	 then	 it	 does
something	different:	it	actually	advances	our	tokens	by	calling	p.nextToken()!

When	 parsePrefixExpression	 is	 called,	 p.curToken	 is	 either	 of	 type	 token.BANG	 or
token.MINUS,	because	otherwise	it	wouldn't	have	been	called.	But	in	order	to	correctly	parse	a
prefix	expression	like	-5	more	than	one	token	has	to	be	"consumed".	So	after	using	p.curToken
to	 build	 a	 *ast.PrefixExpression	 node,	 the	 method	 advances	 the	 tokens	 and	 calls
parseExpression	again.	This	time	with	the	precedence	of	prefix	operators	as	argument.	It's	still
unused,	but	we'll	shortly	see	what	it's	good	for	and	how	to	make	use	of	it.

Now,	 when	 parseExpression	 is	 called	 by	 parsePrefixExpression	 the	 tokens	 have	 been
advanced	 and	 the	 current	 token	 is	 the	 one	 after	 the	 prefix	 operator.	 In	 the	 case	 of	 -5,	 when
parseExpression	 is	 called	 the	 p.curToken.Type	 is	 token.INT.	 parseExpression	 then
checks	the	registered	prefix	parsing	functions	and	finds	parseIntegerLiteral,	which	builds	an
*ast.IntegerLiteral	 node	 and	 returns	 it.	 parseExpression	 returns	 this	 newly	 constructed
node	and	parsePrefixExpression	uses	it	to	fill	the	Right	field	of	*ast.PrefixExpression.

Yes,	this	works,	our	tests	pass:

$	go	test	./parser

ok						monkey/parser			0.007s

Note	 how	 the	 "protocol"	 for	 our	 parsing	 functions	 plays	 out	 here:	 parsePrefixExpression
starts	with	p.curToken	 being	 the	 token	of	 the	 prefix	 operator	 and	 it	 returns	with	p.curToken
being	the	operand	of	the	prefix	expression,	which	is	the	last	token	of	the	expression.	The	tokens
get	advanced	just	enough,	which	works	beautifully.	The	neat	thing	is	how	few	lines	of	code	are
needed	for	this.	The	power	lies	in	the	recursive	approach.

Granted,	 the	 precedence	 argument	 in	 parseExpression	 is	 confusing,	 since	 it's	 unused.	 But
we've	 already	 seen	 something	 important	 about	 its	 usage:	 the	 value	 changes	 depending	 on	 the
caller's	knowledge	and	its	context.	parseExpressionStatement	(the	top-level	method	that	kicks
off	expression	parsing	here)	knows	nothing	about	a	precedence	level	and	just	uses	LOWEST.	But
parsePrefixExpression	passes	the	PREFIX	precedence	to	parseExpression,	since	it's	parsing
a	prefix	expression.

And	now	we'll	see	how	precedence	in	parseExpression	is	used.	Because	now	we're	going	to
parse	infix	expressions.

Infix	Operators

Next	up	we're	going	to	parse	these	eight	infix	operators:

5	+	5;

5	-	5;

5	*	5;

5	/	5;

5	>	5;

5	<	5;



5	==	5;

5	!=	5;

Don't	be	bothered	by	the	5	here.	As	with	prefix	operator	expressions,	we	can	use	any	expressions
to	the	left	and	right	of	the	operator.

<expression>	<infix	operator>	<expression>

Because	 of	 the	 two	 operands	 (left	 and	 right)	 these	 expressions	 are	 sometimes	 called	 "binary
expressions"	(whereas	our	prefix	expressions	would	be	called	"unary	expressions").	Even	though
we	can	use	any	expressions	on	either	side	of	the	operator,	we're	going	to	start	by	writing	a	test
that	only	uses	integer	literals	as	operands.	As	soon	as	we	can	get	the	test	to	pass,	we'll	extend	it	to
incorporate	more	operand	types.	Here	it	is:

//	parser/parser_test.go

func	TestParsingInfixExpressions(t	*testing.T)	{

				infixTests	:=	[]struct	{

								input						string

								leftValue		int64

								operator			string

								rightValue	int64

				}{

								{"5	+	5;",	5,	"+",	5},

								{"5	-	5;",	5,	"-",	5},

								{"5	*	5;",	5,	"*",	5},

								{"5	/	5;",	5,	"/",	5},

								{"5	>	5;",	5,	">",	5},

								{"5	<	5;",	5,	"<",	5},

								{"5	==	5;",	5,	"==",	5},

								{"5	!=	5;",	5,	"!=",	5},

				}

				for	_,	tt	:=	range	infixTests	{

								l	:=	lexer.New(tt.input)

								p	:=	New(l)

								program	:=	p.ParseProgram()

								checkParserErrors(t,	p)

								if	len(program.Statements)	!=	1	{

												t.Fatalf("program.Statements	does	not	contain	%d	statements.	got=%d\n",

																1,	len(program.Statements))

								}

								stmt,	ok	:=	program.Statements[0].(*ast.ExpressionStatement)

								if	!ok	{

												t.Fatalf("program.Statements[0]	is	not	ast.ExpressionStatement.	got=%T",

																program.Statements[0])

								}

								exp,	ok	:=	stmt.Expression.(*ast.InfixExpression)

								if	!ok	{

												t.Fatalf("exp	is	not	ast.InfixExpression.	got=%T",	stmt.Expression)

								}

								if	!testIntegerLiteral(t,	exp.Left,	tt.leftValue)	{

												return

								}

								if	exp.Operator	!=	tt.operator	{

												t.Fatalf("exp.Operator	is	not	'%s'.	got=%s",

																tt.operator,	exp.Operator)

								}

								if	!testIntegerLiteral(t,	exp.Right,	tt.rightValue)	{

												return



								}

				}

}

This	 test	 is	 nearly	 a	 straight	 copy	 of	 TestParsingPrefixExpressions,	 except	 that	 we	 now
make	assertions	about	the	Right	and	Left	fields	of	the	resulting	AST	node.	Here	the	table-driven
approach	 gives	 us	 great	 leverage	 that	we'll	 soon	 use	when	we	 extend	 the	 test	 to	 also	 include
identifiers.

The	tests	fail,	of	course,	because	they	can't	find	a	definition	of	*ast.InfixExpression.	And	in
order	to	get	real	failing	tests,	we	define	ast.InfixExpression:

//	ast/ast.go

type	InfixExpression	struct	{

				Token				token.Token	//	The	operator	token,	e.g.	+

				Left					Expression

				Operator	string

				Right				Expression

}

func	(oe	*InfixExpression)	expressionNode()						{}

func	(oe	*InfixExpression)	TokenLiteral()	string	{	return	oe.Token.Literal	}

func	(oe	*InfixExpression)	String()	string	{

				var	out	bytes.Buffer

				out.WriteString("(")

				out.WriteString(oe.Left.String())

				out.WriteString("	"	+	oe.Operator	+	"	")

				out.WriteString(oe.Right.String())

				out.WriteString(")")

				return	out.String()

}

Just	 like	 with	 ast.PrefixExpression,	 we	 define	 ast.InfixExpression	 to	 fulfill	 the
ast.Expression	 and	 ast.Node	 interfaces,	 by	 defining	 the	 expressionNode(),
TokenLiteral()	and	String()	methods.	The	only	difference	to	ast.PrefixExpression	is	the
new	field	called	Left,	which	can	hold	any	expression.

With	that	out	of	the	way,	we	can	build	and	run	our	tests.	And	the	tests	even	return	one	of	our	own
new	error	messages:

$	go	test	./parser

---	FAIL:	TestParsingInfixExpressions	(0.00s)

		parser_test.go:246:	parser	has	1	errors

		parser_test.go:248:	parser	error:	"no	prefix	parse	function	for	+	found"

FAIL

FAIL				monkey/parser			0.007s

But	that	error	message	is	deceiving.	It	says	"no	prefix	parse	function	for	+	found".	The	problem	is
that	we	do	not	want	our	parser	to	find	a	prefix	parse	function	for	+.	We	want	 it	 to	find	an	infix
parse	function.

This	is	the	point	where	we're	going	from	"I	guess	it's	neat"	to	"Wow,	this	is	beautiful",	because
we	 now	 need	 to	 complete	 our	 parseExpression	 method.	 And	 to	 do	 that,	 we	 first	 need	 a
precedence	table	and	a	few	helper	methods:



//	parser/parser.go

var	precedences	=	map[token.TokenType]int{

				token.EQ:							EQUALS,

				token.NOT_EQ:			EQUALS,

				token.LT:							LESSGREATER,

				token.GT:							LESSGREATER,

				token.PLUS:					SUM,

				token.MINUS:				SUM,

				token.SLASH:				PRODUCT,

				token.ASTERISK:	PRODUCT,

}

//	[...]

func	(p	*Parser)	peekPrecedence()	int	{

				if	p,	ok	:=	precedences[p.peekToken.Type];	ok	{

								return	p

				}

				return	LOWEST

}

func	(p	*Parser)	curPrecedence()	int	{

				if	p,	ok	:=	precedences[p.curToken.Type];	ok	{

								return	p

				}

				return	LOWEST

}

precedences	 is	 our	 precedence	 table:	 it	 associates	 token	 types	 with	 their	 precedence.	 The
precedence	values	 themselves	are	 the	constants	we	defined	earlier,	 the	 integers	with	 increasing
value.	 This	 table	 can	 now	 tell	 us	 that	 +	 (token.PLUS)	 and	 -	 (token.MINUS)	 have	 the	 same
precedence,	which	is	lower	than	the	precedence	of	*	(token.ASTERISK)	and	/	 (token.SLASH),
for	example.

The	 peekPrecedence	 method	 returns	 the	 precedence	 associated	 with	 the	 token	 type	 of
p.peekToken.	If	it	doesn't	find	a	precedence	for	p.peekToken	it	defaults	to	LOWEST,	the	lowest
possible	precedence	any	operator	can	have.	The	curPrecedence	method	does	the	same	thing,	but
for	p.curToken.

The	next	step	is	to	register	one	infix	parse	function	for	all	of	our	infix	operators:

//	parser/parser.go

func	New(l	*lexer.Lexer)	*Parser	{

//	[...]

				p.infixParseFns	=	make(map[token.TokenType]infixParseFn)

				p.registerInfix(token.PLUS,	p.parseInfixExpression)

				p.registerInfix(token.MINUS,	p.parseInfixExpression)

				p.registerInfix(token.SLASH,	p.parseInfixExpression)

				p.registerInfix(token.ASTERISK,	p.parseInfixExpression)

				p.registerInfix(token.EQ,	p.parseInfixExpression)

				p.registerInfix(token.NOT_EQ,	p.parseInfixExpression)

				p.registerInfix(token.LT,	p.parseInfixExpression)

				p.registerInfix(token.GT,	p.parseInfixExpression)

//	[...]

}

We	already	have	the	registerInfix	method	in	our	repertoire	and	now	we	finally	use	it.	Every
infix	 operator	 gets	 associated	with	 the	 same	 parsing	 function	 called	 parseInfixExpression,



which	looks	like	this:

//	parser/parser.go

func	(p	*Parser)	parseInfixExpression(left	ast.Expression)	ast.Expression	{

				expression	:=	&ast.InfixExpression{

								Token:				p.curToken,

								Operator:	p.curToken.Literal,

								Left:					left,

				}

				precedence	:=	p.curPrecedence()

				p.nextToken()

				expression.Right	=	p.parseExpression(precedence)

				return	expression

}

The	 notable	 difference	 here	 is	 that,	 in	 contrast	 to	 parsePrefixExpression,	 this	 new	method
takes	 an	 argument,	 an	 ast.Expression	 called	 left.	 It	 uses	 this	 argument	 to	 construct	 an
*ast.InfixExpression	node,	with	left	being	in	the	Left	field.	Then	it	assigns	the	precedence
of	 the	 current	 token	 (which	 is	 the	 operator	 of	 the	 infix	 expression)	 to	 the	 local	 variable
precedence,	before	advancing	the	tokens	by	calling	nextToken	and	filling	the	Right	field	of	the
node	with	another	call	to	parseExpression	-	this	time	passing	in	the	precedence	of	the	operator
token.

It's	 time	 to	 lift	 the	 curtain.	 Here	 is	 the	 heart	 of	 our	 Pratt	 parser,	 here	 is	 the	 final	 version	 of
parseExpression:

//	parser/parser.go

func	(p	*Parser)	parseExpression(precedence	int)	ast.Expression	{

				prefix	:=	p.prefixParseFns[p.curToken.Type]

				if	prefix	==	nil	{

								p.noPrefixParseFnError(p.curToken.Type)

								return	nil

				}

				leftExp	:=	prefix()

				for	!p.peekTokenIs(token.SEMICOLON)	&&	precedence	<	p.peekPrecedence()	{

								infix	:=	p.infixParseFns[p.peekToken.Type]

								if	infix	==	nil	{

												return	leftExp

								}

								p.nextToken()

								leftExp	=	infix(leftExp)

				}

				return	leftExp

}

And,	boom!	Our	tests	pass!	It's	all	green,	baby:

$	go	test	./parser

ok						monkey/parser			0.006s

We	are	now	officially	able	to	parse	infix	operator	expressions	correctly!	Wait,	what?	What	the
hell	did	just	happen?	How	does	this	work?



Obviously	parseExpression	 now	 does	 a	 few	more	 things.	We	 already	 know	 how	 it	 finds	 an
associated	prefixParseFn	with	the	current	token	and	calls	it.	We've	seen	this	work	with	prefix
operators,	identifiers	and	integer	literals.

What's	new	is	the	loop	right	in	the	middle	of	parseExpression.	 In	 the	 loop's	body	the	method
tries	to	find	infixParseFns	for	the	next	token.	If	it	finds	such	a	function,	it	calls	it,	passing	in	the
expression	 returned	by	a	prefixParseFn	 as	 an	 argument.	And	 it	 does	 all	 this	 again	 and	 again
until	it	encounters	a	token	that	has	a	higher	precedence.

This	works	beautifully.	Look	at	these	tests	that	use	multiple	operators	with	different	precedences
and	how	the	AST	in	string	form	correctly	represents	this:

//	parser/parser_test.go

func	TestOperatorPrecedenceParsing(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	string

				}{

								{

												"-a	*	b",

												"((-a)	*	b)",

								},

								{

												"!-a",

												"(!(-a))",

								},

								{

												"a	+	b	+	c",

												"((a	+	b)	+	c)",

								},

								{

												"a	+	b	-	c",

												"((a	+	b)	-	c)",

								},

								{

												"a	*	b	*	c",

												"((a	*	b)	*	c)",

								},

								{

												"a	*	b	/	c",

												"((a	*	b)	/	c)",

								},

								{

												"a	+	b	/	c",

												"(a	+	(b	/	c))",

								},

								{

												"a	+	b	*	c	+	d	/	e	-	f",

												"(((a	+	(b	*	c))	+	(d	/	e))	-	f)",

								},

								{

												"3	+	4;	-5	*	5",

												"(3	+	4)((-5)	*	5)",

								},

								{

												"5	>	4	==	3	<	4",

												"((5	>	4)	==	(3	<	4))",

								},

								{

												"5	<	4	!=	3	>	4",

												"((5	<	4)	!=	(3	>	4))",

								},

								{

												"3	+	4	*	5	==	3	*	1	+	4	*	5",

												"((3	+	(4	*	5))	==	((3	*	1)	+	(4	*	5)))",



								},

								{

												"3	+	4	*	5	==	3	*	1	+	4	*	5",

												"((3	+	(4	*	5))	==	((3	*	1)	+	(4	*	5)))",

								},

				}

				for	_,	tt	:=	range	tests	{

								l	:=	lexer.New(tt.input)

								p	:=	New(l)

								program	:=	p.ParseProgram()

								checkParserErrors(t,	p)

								actual	:=	program.String()

								if	actual	!=	tt.expected	{

												t.Errorf("expected=%q,	got=%q",	tt.expected,	actual)

								}

				}

}

They're	 all	 passing!	That's	 pretty	 amazing,	 isn't	 it?	The	 different	*ast.InfixExpressions	 are
nested	 correctly,	 which	 we	 can	 observe	 thanks	 to	 our	 usage	 of	 parentheses	 in	 the	 String()
methods	of	the	AST	nodes.

If	you're	scratching	your	head	and	wondering	how	all	of	this	works,	don't	worry.	We're	now	going
to	take	a	really	close	look	at	our	parseExpression	method.



2.7	-	How	Pratt	Parsing	Works

The	algorithm	behind	the	parseExpression	method	and	its	combination	of	parsing	functions	and
precedences	is	fully	described	by	Vaughan	Pratt	in	his	"Top	Down	Operator	Precedence"	paper.
But	there	are	differences	between	his	and	our	implementation.

Pratt	doesn't	use	a	Parser	 structure	 and	doesn't	 pass	 around	methods	defined	on	*Parser.	 He
also	doesn't	use	maps	and,	of	course,	he	didn't	use	Go.	His	paper	predates	the	release	of	Go	by	36
years.	And	then	there	are	naming	differences:	what	we	call	prefixParseFns	are	"nuds"	(for	"null
denotations")	for	Pratt.	infixParseFns	are	"leds"	(for	"left	denotations").

Formulated	in	pseudocode	though,	our	parseExpression	method	looks	strikingly	similar	to	the
code	presented	in	Pratt's	paper.	It	uses	the	same	algorithm	with	barely	any	changes.

We're	going	to	skip	the	theory	that	answers	why	it	works	and	just	follow	how	it	works	and	how
all	the	pieces	(parseExpression,	parsing	functions	and	precedences)	fit	 together	by	looking	at
an	example.	Suppose	we're	parsing	the	following	expression	statement:

1	+	2	+	3;

The	big	challenge	here	is	not	to	represent	every	operator	and	operand	in	the	resulting	AST,	but	to
nest	the	nodes	of	the	AST	correctly.	What	we	want	is	an	AST	that	(serialized	as	a	string)	looks
like	this:

((1	+	2)	+	3)

The	 AST	 needs	 to	 have	 two	 *ast.InfixExpression	 nodes.	 The	 *ast.InfixExpression
higher	in	the	tree	should	have	the	integer	literal	3	as	its	Right	child	node	and	its	Left	child	node
needs	to	be	the	other	*ast.InfixExpression.	This	second	*ast.InfixExpression	then	needs
to	have	the	integer	literals	1	and	2	as	its	Left	and	Right	child	nodes,	respectively.	Like	this:

And	this	is	exactly	what	our	parser	outputs	when	it	parses	1	+	2	+	3;.	But	how?	We'll	answer
that	question	in	the	following	paragraphs.	We're	going	take	a	close	look	at	what	the	parser	does	as



soon	as	parseExpressionStatement	 is	called	 for	 the	 first	 time.	 It's	not	a	mistake	 to	have	 the
code	open	while	reading	the	following	paragraphs.

So	here	we	go.	Here	is	what	happens	when	we	parse	1	+	2	+	3;:

parseExpressionStatement	 calls	 parseExpression(LOWEST).	 The	 p.curToken	 and
p.peekToken	are	the	1	and	the	first	+:

The	 first	 thing	 parseExpression	 then	 does	 is	 to	 check	 whether	 there	 is	 a	 prefixParseFn
associated	 with	 the	 current	 p.curToken.Type,	 which	 is	 a	 token.INT.	 And,	 yes,	 there	 is:
parseIntegerLiteral.	 So	 it	 calls	 parseIntegerLiteral,	 which	 returns	 an
*ast.IntegerLiteral.	parseExpression	assigns	this	to	leftExp.

Then	comes	the	new	for-loop	in	parseExpression.	Its	condition	evaluates	to	true:

for	!p.peekTokenIs(token.SEMICOLON)	&&	precedence	<	p.peekPrecedence()	{

//	[...]

}

p.peekToken	is	not	a	token.SEMICOLON	and	peekPrecedence	(which	returns	the	precedence	of
the	+	token)	is	higher	than	the	argument	passed	to	parseExpression,	which	is	LOWEST.	Here	are
our	defined	precedences	again	to	refresh	our	memory:

//	parser/parser.go

const	(

				_	int	=	iota

				LOWEST

				EQUALS						//	==

				LESSGREATER	//	>	or	<

				SUM									//	+

				PRODUCT					//	*

				PREFIX						//	-X	or	!X

				CALL								//	myFunction(X)

)

So	 the	condition	evaluates	 to	 true	and	parseExpression	 executes	 the	body	of	 the	 loop,	which
looks	like	this:

infix	:=	p.infixParseFns[p.peekToken.Type]

if	infix	==	nil	{

		return	leftExp

}

p.nextToken()

leftExp	=	infix(leftExp)

Now	 it	 fetches	 the	 infixParseFn	 for	 p.peekToken.Type,	 which	 is	 parseInfixExpression



defined	 on	 *Parser.	 Before	 calling	 it	 and	 assigning	 its	 return	 value	 to	 leftExp	 (reusing	 the
leftExp	variable!)	it	advances	the	tokens	so	they	now	look	like	this:

With	 the	 tokens	 in	 this	state,	 it	calls	parseInfixExpression	 and	passes	 in	 the	already	parsed
*ast.IntegerLiteral	 (assigned	 to	 leftExp	 outside	 the	 for-loop).	 What	 happens	 next	 in
parseInfixExpression	is	where	things	get	interesting.	Here	is	the	method	again:

//	parser/parser.go

func	(p	*Parser)	parseInfixExpression(left	ast.Expression)	ast.Expression	{

				expression	:=	&ast.InfixExpression{

								Token:				p.curToken,

								Operator:	p.curToken.Literal,

								Left:					left,

				}

				precedence	:=	p.curPrecedence()

				p.nextToken()

				expression.Right	=	p.parseExpression(precedence)

				return	expression

}

It's	important	to	note	that	left	is	our	already	parsed	*ast.IntegerLiteral	 that	represents	the
1.

parseInfixExpression	saves	the	precedence	of	p.curToken	(the	first	+	 token!),	advances	the
tokens	 and	 calls	 parseExpression	 -	 passing	 in	 the	 just	 saved	 precedence.	 So	 now
parseExpression	is	called	the	second	time,	with	the	tokens	looking	like	this:

The	first	thing	parseExpression	does	again	 is	 to	 look	for	a	prefixParseFn	 for	p.curToken.
And	again	it's	parseIntegerLiteral.	But	now	the	condition	of	the	for-loop	doesn't	evaluate	to
true:	precedence	 (the	 argument	 passed	 to	parseExpression)	 is	 the	 precedence	 of	 the	 first	 +
operator	in	1	+	2	+	3,	which	is	not	smaller	than	the	precedence	of	p.peekToken,	the	second	+
operator.	 They	 are	 equal.	 The	 body	 of	 the	 for-loop	 is	 not	 executed	 and	 the
*ast.IntegerLiteral	representing	the	2	is	returned.

Now	back	in	parseInfixExpression	 the	 return-value	of	parseExpression	 is	assigned	 to	 the
Right	field	of	the	newly	constructed	*ast.InfixExpression.	So	now	we	have	this:



This	*ast.InfixExpressions	gets	returned	by	parseInfixExpression	and	now	we're	back	in
the	outer-most	call	to	parseExpression,	where	precedence	is	still	LOWEST.	We	are	back	where
we	started	and	the	condition	of	the	for-loop	is	evaluated	again.

for	!p.peekTokenIs(token.SEMICOLON)	&&	precedence	<	p.peekPrecedence()	{

//	[...]

}

This	still	evaluates	to	true,	since	precedence	is	LOWEST	and	peekPrecedence	now	returns	 the
precedence	of	 the	second	+	 in	our	expression,	which	 is	higher.	parseExpression	 executes	 the
body	 of	 the	 for-loop	 a	 second	 time.	 The	 difference	 is	 that	 now	 leftExp	 is	 not	 an
*ast.IntegerLiteral	 representing	 the	 1,	 but	 the	 *ast.InfixExpression	 returned	 by
parseInfixExpression,	representing	1	+	2.

In	the	body	of	the	loop	parseExpression	fetches	parseInfixExpression	as	the	infixParseFn
for	 p.peekToken.Type	 (which	 is	 the	 second	 +),	 advances	 the	 tokens	 and	 calls
parseInfixExpression	with	leftExp	 as	 the	 argument.	parseInfixExpression	 in	 turn	 calls
parseExpression	again,	which	returns	the	last	*ast.IntegerLiteral	(that	represents	the	3	 in
our	expression).

After	all	this,	at	the	end	of	the	loop-body,	leftExp	looks	like	this:



That's	exactly	what	we	wanted!	The	operators	and	operands	are	nested	correctly!	And	our	tokens
look	like	this:

The	condition	of	the	for-loop	evaluates	to	false:

for	!p.peekTokenIs(token.SEMICOLON)	&&	precedence	<	p.peekPrecedence()	{

//	[...]

}

Now	p.peekTokenIs(token.SEMICOLON)	 evaluates	 to	 true,	which	 stops	 the	 body	of	 the	 loop
from	being	executed	again.

(The	call	to	p.peekTokenIs(token.SEMICOLON)	is	not	strictly	necessary.	Our	peekPrecedence
method	returns	LOWEST	as	the	default	value	if	no	precedence	for	p.peekToken.Type	can	be	found
-	 which	 is	 the	 case	 for	 token.SEMICOLON	 tokens.	 But	 I	 think	 it	 makes	 the	 behaviour	 of
semicolons	as	expression-ending-delimiters	more	explicit	and	easier	to	understand.)

And	 that's	 it!	 The	 for-loop	 is	 done	 and	 leftExp	 is	 returned.	 We're	 back	 in
parseExpressionStatement	 and	have	 the	 final	 and	 correct	*ast.InfixExpression	 at	 hand.
And	that's	used	as	the	Expression	in	*ast.ExpressionStatement.

Now	we	know	how	our	parser	manages	to	parse	1	+	2	+	3	correctly.	It's	pretty	fascinating,	isn't
it?	I	think	the	usage	of	precedence	and	peekPrecedence	is	particularly	interesting.

But	what	 about	 "real	 precedence	 issues"?	 In	 our	 example	 every	 operator	 (the	+)	 had	 the	 same
precedence.	What	do	the	different	precedence	levels	for	operators	accomplish?	Couldn't	we	just
use	LOWEST	per	default	and	something	called	HIGHEST	for	all	operators?



No,	 because	 that	 would	 give	 us	 a	 wrong	 AST.	 The	 goal	 is	 to	 have	 expressions	 involving
operators	 with	 a	 higher	 precedence	 to	 be	 deeper	 in	 the	 tree	 than	 expressions	 with	 lower
precedence	 operators.	 This	 is	 accomplished	 by	 the	 precedence	 value	 (the	 argument)	 in
parseExpression.

When	parseExpression	is	called	the	value	of	precedence	stands	for	the	current	"right-binding
power"	 of	 the	 current	 parseExpression	 invocation.	What	 does	 "right-binding	 power"	 mean?
Well,	 the	higher	it	 is,	 the	more	tokens/operators/operands	to	the	right	of	 the	current	expressions
(the	future	peek	tokens)	can	we	"bind"	to	it,	or	as	I	like	to	think,	"suck	in".

In	case	our	current	right-binding	power	 is	of	 the	highest	possible	value,	what	we	parsed	so	far
(assigned	to	leftExp)	is	never	passed	to	an	infixParseFn	associated	with	the	next	operator	(or
token).	 It	will	never	end	up	as	a	"left"	child	node.	Because	 the	condition	of	 the	 for-loop	never
evaluates	to	true.

A	counterpart	to	right-binding	power	exists	and	it's	called	(you	guessed	it!)	"left-binding	power".
But	 which	 value	 signifies	 this	 left-binding	 power?	 Since	 the	 precedence	 argument	 in
parseExpression	stands	for	the	current	right-binding	power,	where	does	the	left-binding	power
of	 the	next	operator	come	from?	Simply	put:	 from	our	call	 to	peekPrecedence.	The	value	 this
call	returns	stands	for	the	left-binding	power	of	the	next	operator,	of	p.peekToken.

It	all	comes	down	to	the	precedence	<	p.peekPrecedence()	condition	of	our	for-loop.	This
condition	 checks	 if	 the	 left-binding	power	of	 the	next	 operator/token	 is	 higher	 than	our	 current
right-binding	power.	If	it	is,	what	we	parsed	so	far	gets	"sucked	in"	by	the	next	operator,	from	left
to	right,	and	ends	up	being	passed	to	the	infixParseFn	of	the	next	operator.

An	example:	let's	say	we're	parsing	the	expression	statement	-1	+	2;.	What	we	want	the	AST	to
represent	 is	 (-1)	 +	 2	 and	 not	 -(1	 +	 2).	 The	 first	 method	 we	 end	 up	 in	 (after
parseExpressionStatement	 and	 parseExpression)	 is	 the	 prefixParseFn	 we	 associated
with	 token.MINUS:	 parsePrefixExpression.	 To	 refresh	 our	 memory	 of
parsePrefixExpression	here	it	is	in	its	entirety:

//	parser/parser.go

func	(p	*Parser)	parsePrefixExpression()	ast.Expression	{

		expression	:=	&ast.PrefixExpression{

				Token:				p.curToken,

				Operator:	p.curToken.Literal,

		}

		p.nextToken()

		expression.Right	=	p.parseExpression(PREFIX)

		return	expression

}

This	passes	PREFIX	to	parseExpression	as	precedence,	turning	PREFIX	 into	the	right-binding
power	 of	 that	 parseExpression	 invocation.	 PREFIX	 is	 a	 really	 high	 precedence,	 as	 per	 our
definition.	The	result	of	this	is	that	parseExpression(PREFIX)	is	never	going	to	parse	the	1	 in
-1	and	pass	it	to	another	infixParseFn.	The	precedence	<	p.peekPrecedence()	will	never
be	 true	 in	 this	case,	meaning	 that	no	other	infixParseFn	 is	going	 to	get	our	1	 as	 the	 left	 arm.



Instead	 the	1	 is	 returned	as	 the	"right"	arm	of	our	prefix	expression.	 Just	 the	1,	 not	 some	other
expression	that	comes	after	and	needs	to	be	parsed.

Back	in	the	outer	call	to	parseExpression	(in	which	we	called	parsePrefixExpression	as	a
prefixParseFn),	 right	after	 the	first	leftExp	:=	prefix(),	 the	value	of	precedence	 is	still
LOWEST.	Since	that	was	the	value	we	used	in	the	outer-most	call.	Our	right-binding	power	is	still
LOWEST.	The	p.peekToken	is	now	the	+	in	-1	+	2.

We're	now	sitting	on	the	condition	of	the	for-loop	and	evaluate	it	to	determine	whether	we	should
execute	the	body	of	the	loop.	And	it	turns	out	that	the	precedence	of	the	+	operator	(returned	by
p.peekPrecedence())	 is	 higher	 than	 our	 current	 right-binding	 power.	What	we	 parsed	 so	 far
(the	 -1	 prefix	 expression)	 is	 now	 passed	 to	 the	 infixParseFn	 associated	 with	 +.	 The	 left-
binding	power	of	the	+	"sucks	in"	what	we	parsed	so	far	and	uses	it	as	the	"left	arm"	of	the	AST
node	it	is	constructing.

The	infixParseFn	for	+	is	parseInfixExpression,	which	now	uses	the	precedence	of	+	as	the
right-binding	power	in	its	call	to	parseExpression.	It	doesn't	use	LOWEST,	because	 that	would
result	in	another	+	having	a	higher	 left-binding	power	and	"sucking"	away	our	"right	arm".	 If	 it
did,	then	an	expression	like	a	+	b	+	c	would	result	in	(a	+	(b	+	c)),	which	is	not	what	we
want.	We	want	((a	+	b)	+	c).

The	high	precedence	of	prefix	operators	worked.	And	it	even	works	great	for	infix	operators.	In
the	classic	example	for	operator	precedences	1	+	2	*	3,	the	left-binding	power	of	*	would	be
higher	 than	 the	right-binding	power	of	+.	Parsing	 this	would	result	 in	 the	2	 being	passed	 to	 the
infixParseFn	associated	with	the	*	token.

Notable	is	that	in	our	parser,	every	token	has	the	same	right-	and	left-binding	power.	We	simply
use	one	value	(in	our	precedences	table)	as	both.	What	this	value	means	changes	depending	on
the	context.

If	an	operator	should	be	right-associative	instead	of	left-associative	(in	the	case	of	+	that	would
result	in	(a	+	(b	+	c))	instead	of	((a	+	b)	+	c),	then	we	must	use	a	smaller	"right-binding
power"	when	parsing	the	"right	arm"	of	the	operator	expression.	If	you	think	about	the	++	and	--
operators	in	other	languages,	where	they	can	be	used	in	a	pre-	and	a	postfix	position,	you	can	see
why	it's	sometimes	useful	to	have	differing	left-	and	right-binding	powers	for	operators.

Since	we	did	not	define	separate	right-	and	left-binding	powers	for	operators,	but	only	use	one
value,	 we	 can't	 just	 change	 a	 definition	 to	 achieve	 this.	 But,	 as	 an	 example,	 to	make	 +	 right-
associate	we	can	decrement	its	precedence	when	calling	parseExpression:

//	parser/parser.go

func	(p	*Parser)	parseInfixExpression(left	ast.Expression)	ast.Expression	{

				expression	:=	&ast.InfixExpression{

								Token:				p.curToken,

								Operator:	p.curToken.Literal,

								Left:					left,

				}



				precedence	:=	p.curPrecedence()

				p.nextToken()

				expression.Right	=	p.parseExpression(precedence)

				//																																			^^^	decrement	here	for	right-associativity

				return	expression

}

For	demonstration	purposes,	let's	change	this	method	for	a	minute	and	see	what	happens:

//	parser/parser.go

func	(p	*Parser)	parseInfixExpression(left	ast.Expression)	ast.Expression	{

				expression	:=	&ast.InfixExpression{

								Token:				p.curToken,

								Operator:	p.curToken.Literal,

								Left:					left,

				}

				precedence	:=	p.curPrecedence()

				p.nextToken()

				if	expression.Operator	==	"+"	{

								expression.Right	=	p.parseExpression(precedence	-	1)

				}	else	{

								expression.Right	=	p.parseExpression(precedence)

				}

				return	expression

}

With	this	change	made,	our	tests	tell	us	that	+	is	officially	right-associative:

$	go	test	-run	TestOperatorPrecedenceParsing	./parser

---	FAIL:	TestOperatorPrecedenceParsing	(0.00s)

		parser_test.go:359:	expected="((a	+	b)	+	c)",	got="(a	+	(b	+	c))"

		parser_test.go:359:	expected="((a	+	b)	-	c)",	got="(a	+	(b	-	c))"

		parser_test.go:359:	expected="(((a	+	(b	*	c))	+	(d	/	e))	-	f)",\

				got="(a	+	((b	*	c)	+	((d	/	e)	-	f)))"

FAIL

And	 that	marks	 the	 end	 of	 our	 deep	 dive	 into	 the	 bowels	 of	parseExpression.	 If	 you're	 still
unsure	and	can't	grasp	how	it	works,	don't	worry,	I	felt	the	same.	What	really	helped	though	was
putting	 tracing	 statements	 in	 the	methods	 of	 Parser	 to	 see	what	 was	 happening	when	 parsing
certain	expressions.	 In	 the	 folder	of	code	accompanying	 this	chapter	 I've	 included	a	 file	called
./parser/parser_tracing.go,	 which	 we	 haven't	 looked	 at	 before.	 The	 file	 includes	 two
function	definitions	that	are	really	helpful	when	trying	to	understand	what	the	parser	does:	trace
and	untrace.	Use	them	like	this:

//	parser/parser.go

func	(p	*Parser)	parseExpressionStatement()	*ast.ExpressionStatement	{

				defer	untrace(trace("parseExpressionStatement"))

//	[...]

}

func	(p	*Parser)	parseExpression(precedence	int)	ast.Expression	{

				defer	untrace(trace("parseExpression"))

//	[...]

}

func	(p	*Parser)	parseIntegerLiteral()	ast.Expression	{

				defer	untrace(trace("parseIntegerLiteral"))

//	[...]



}

func	(p	*Parser)	parsePrefixExpression()	ast.Expression	{

				defer	untrace(trace("parsePrefixExpression"))

//	[...]

}

func	(p	*Parser)	parseInfixExpression(left	ast.Expression)	ast.Expression	{

				defer	untrace(trace("parseInfixExpression"))

//	[...]

}

With	these	tracing	statements	included	we	can	now	use	our	parser	and	see	what	it	does.	Here	is
the	output	when	parsing	the	expression	statement	-1	*	2	+	3	in	the	test	suite:

$	go	test	-v	-run	TestOperatorPrecedenceParsing	./parser

===	RUN			TestOperatorPrecedenceParsing

BEGIN	parseExpressionStatement

								BEGIN	parseExpression

																BEGIN	parsePrefixExpression

																								BEGIN	parseExpression

																																BEGIN	parseIntegerLiteral

																																END	parseIntegerLiteral

																								END	parseExpression

																END	parsePrefixExpression

																BEGIN	parseInfixExpression

																								BEGIN	parseExpression

																																BEGIN	parseIntegerLiteral

																																END	parseIntegerLiteral

																								END	parseExpression

																END	parseInfixExpression

																BEGIN	parseInfixExpression

																								BEGIN	parseExpression

																																BEGIN	parseIntegerLiteral

																																END	parseIntegerLiteral

																								END	parseExpression

																END	parseInfixExpression

								END	parseExpression

END	parseExpressionStatement

---	PASS:	TestOperatorPrecedenceParsing	(0.00s)

PASS

ok						monkey/parser			0.008s



2.8	-	Extending	the	Parser

Before	we	move	on	and	extend	our	parser,	we	first	need	to	clean	up	and	extend	our	existing	test
suite.	I	won't	bore	you	by	listing	the	complete	changes,	but	I	will	show	you	a	few	small	helper
functions	that	make	the	tests	easier	to	understand.

We	already	have	a	testIntegerLiteral	test	helper.	A	second	function	called	testIdentifier
can	clean	up	a	lot	of	other	tests:

//	parser/parser_test.go

func	testIdentifier(t	*testing.T,	exp	ast.Expression,	value	string)	bool	{

				ident,	ok	:=	exp.(*ast.Identifier)

				if	!ok	{

								t.Errorf("exp	not	*ast.Identifier.	got=%T",	exp)

								return	false

				}

				if	ident.Value	!=	value	{

								t.Errorf("ident.Value	not	%s.	got=%s",	value,	ident.Value)

								return	false

				}

				if	ident.TokenLiteral()	!=	value	{

								t.Errorf("ident.TokenLiteral	not	%s.	got=%s",	value,

												ident.TokenLiteral())

								return	false

				}

				return	true

}

The	 fun	 part	 is	 now	 using	 testIntegerLiteral	 and	 testIdentifier	 to	 build	more	 generic
helper	functions:

//	parser/parser_test.go

func	testLiteralExpression(

				t	*testing.T,

				exp	ast.Expression,

				expected	interface{},

)	bool	{

				switch	v	:=	expected.(type)	{

				case	int:

								return	testIntegerLiteral(t,	exp,	int64(v))

				case	int64:

								return	testIntegerLiteral(t,	exp,	v)

				case	string:

								return	testIdentifier(t,	exp,	v)

				}

				t.Errorf("type	of	exp	not	handled.	got=%T",	exp)

				return	false

}

func	testInfixExpression(t	*testing.T,	exp	ast.Expression,	left	interface{},

				operator	string,	right	interface{})	bool	{

				opExp,	ok	:=	exp.(*ast.InfixExpression)

				if	!ok	{

								t.Errorf("exp	is	not	ast.OperatorExpression.	got=%T(%s)",	exp,	exp)

								return	false

				}

				if	!testLiteralExpression(t,	opExp.Left,	left)	{



								return	false

				}

				if	opExp.Operator	!=	operator	{

								t.Errorf("exp.Operator	is	not	'%s'.	got=%q",	operator,	opExp.Operator)

								return	false

				}

				if	!testLiteralExpression(t,	opExp.Right,	right)	{

								return	false

				}

				return	true

}

With	these	in	place	it's	possible	to	write	test	code	like	this:

testInfixExpression(t,	stmt.Expression,	5,	"+",	10)

testInfixExpression(t,	stmt.Expression,	"alice",	"*",	"bob")

That	 makes	 it	 a	 lot	 easier	 to	 test	 properties	 of	 the	 ASTs	 produced	 by	 our	 parser.	 See
parser/parser_test.go	for	the	cleaned	up	and	extended	test	suite.

Boolean	Literals

There	are	a	few	things	 in	 the	Monkey	programming	language	that	we	still	need	to	 implement	 in
our	parser	and	AST.	Easiest	are	boolean	literals.	In	Monkey	we	can	use	booleans	in	place	of	any
other	expression:

true;

false;

let	foobar	=	true;

let	barfoo	=	false;

Like	identifiers	and	integer	literals	their	AST	representation	is	simple	and	small:

//	ast/ast.go

type	Boolean	struct	{

				Token	token.Token

				Value	bool

}

func	(b	*Boolean)	expressionNode()						{}

func	(b	*Boolean)	TokenLiteral()	string	{	return	b.Token.Literal	}

func	(b	*Boolean)	String()	string							{	return	b.Token.Literal	}

The	Value	 field	can	hold	values	of	 the	 type	bool,	which	means	 that	we're	going	 to	save	either
true	or	false	in	there	(the	Go	bool	values,	not	the	Monkey	literals).

With	the	AST	node	defined	we	can	now	add	our	tests.	The	single	TestBooleanExpression	test
function	 is	 so	 similar	 to	 TestIdentifierExpression	 and	 TestIntegerLiteralExpression
that	 I	 won't	 show	 it	 here.	 It's	 enough	 to	 show	 the	 error	 message	 which	 points	 us	 in	 the	 right
direction	as	to	how	to	implement	boolean	literal	parsing:

$	go	test	./parser

---	FAIL:	TestBooleanExpression	(0.00s)

		parser_test.go:470:	parser	has	1	errors



		parser_test.go:472:	parser	error:	"no	prefix	parse	function	for	true	found"

FAIL

FAIL				monkey/parser			0.008s

Of	course,	yes.	We	need	to	register	a	prefixParseFn	for	token.TRUE	and	token.FALSE	tokens.

//	parser/parser.go

func	New(l	*lexer.Lexer)	*Parser	{

//	[...]

				p.registerPrefix(token.TRUE,	p.parseBoolean)

				p.registerPrefix(token.FALSE,	p.parseBoolean)

//	[...]

}

And	the	parseBoolean	method	is	exactly	what	you	imagine	it	to	be:

//	parser/parser.go

func	(p	*Parser)	parseBoolean()	ast.Expression	{

				return	&ast.Boolean{Token:	p.curToken,	Value:	p.curTokenIs(token.TRUE)}

}

The	 only	 mildly	 interesting	 part	 about	 this	 method	 is	 the	 inlining	 of	 the
p.curTokenIs(token.TRUE)	 call,	 which	 is	 not	 really	 interesting.	 Other	 than	 that	 it's
straightforward,	maybe	even	boring.	Or	in	other	words:	the	structure	of	our	parser	serves	us	well!
That	actually	is	one	of	the	beauties	of	Pratt's	approach:	it's	so	easy	to	extend.

And	boom!	The	tests	are	green:

$	go	test	./parser

ok						monkey/parser			0.006s

But	 what's	 interesting	 is	 that	 we	 can	 now	 extend	 several	 tests	 to	 incorporate	 the	 newly
implemented	boolean	literals.	The	first	candidate	is	TestOperatorPrecedenceParsing,	with	its
string	comparison	mechanism:

//	parser/parser_test.go

func	TestOperatorPrecedenceParsing(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	string

				}{

//	[...]

								{

												"true",

												"true",

								},

								{

												"false",

												"false",

								},

								{

												"3	>	5	==	false",

												"((3	>	5)	==	false)",

								},

								{

												"3	<	5	==	true",

												"((3	<	5)	==	true)",

								},

//	[...]



}

We	can	 test	 for	boolean	 literals	 in	even	more	 tests	by	extending	our	testLiteralExpression
helper	and	providing	a	new	testBooleanLiteral	function:

//	parser_test.go

func	testLiteralExpression(

				t	*testing.T,

				exp	ast.Expression,

				expected	interface{},

)	bool	{

				switch	v	:=	expected.(type)	{

//	[...]

				case	bool:

								return	testBooleanLiteral(t,	exp,	v)

				}

//	[...]

}

func	testBooleanLiteral(t	*testing.T,	exp	ast.Expression,	value	bool)	bool	{

				bo,	ok	:=	exp.(*ast.Boolean)

				if	!ok	{

								t.Errorf("exp	not	*ast.Boolean.	got=%T",	exp)

								return	false

				}

				if	bo.Value	!=	value	{

								t.Errorf("bo.Value	not	%t.	got=%t",	value,	bo.Value)

								return	false

				}

				if	bo.TokenLiteral()	!=	fmt.Sprintf("%t",	value)	{

								t.Errorf("bo.TokenLiteral	not	%t.	got=%s",

												value,	bo.TokenLiteral())

								return	false

				}

				return	true

}

Nothing	surprising	here,	 just	another	case	 in	a	 switch	statement	and	a	new	helper	 function.	But
with	this	in	place,	it's	easy	to	extend	TestParsingInfixExpressions:

//	parser/parser_test.go

func	TestParsingInfixExpressions(t	*testing.T)	{

				infixTests	:=	[]struct	{

								input						string

								leftValue		interface{}

								operator			string

								rightValue	interface{}

				}{

//	[...]

								{"true	==	true",	true,	"==",	true},

								{"true	!=	false",	true,	"!=",	false},

								{"false	==	false",	false,	"==",	false},

				}

//	[...]

				if	!testLiteralExpression(t,	exp.Left,	tt.leftValue)	{

						return

				}

				if	!testLiteralExpression(t,	exp.Right,	tt.rightValue)	{

						return

				}



//	[...]

}

And	also	TestParsingPrefixExpressions	 is	easy	to	extend	by	just	adding	new	entries	to	the
test	table:

//	parser/parser_test.go

func	TestParsingPrefixExpressions(t	*testing.T)	{

				prefixTests	:=	[]struct	{

								input				string

								operator	string

								value				interface{}

				}{

//	[...]

								{"!true;",	"!",	true},

								{"!false;",	"!",	false},

				}

//	[...]

}

It's	time	to	pat	ourselves	on	the	back!	We	implemented	the	parsing	of	booleans	and	extended	our
tests	in	a	way	that	gives	us	more	test	coverage	now	and	better	tools	later	on.	Good	job!

Grouped	Expressions

What	we're	about	to	see	next	is	sometimes	called	"the	greatest	trick	Vaughan	Pratt	ever	pulled".
Actually,	no,	I	just	lied	there,	nobody	says	that.	But	they	should!	I'm	talking	about	parsing	grouped
expressions,	of	course.	 In	Monkey	we	can	group	expression	with	parantheses	 to	 influence	 their
precedence	 and	 thus	 the	 order	 in	 which	 they	 are	 evaluated	 in	 their	 context.	 We've	 seen	 the
canonical	example	for	this	before:

(5	+	5)	*	2;

The	 parentheses	 group	 the	 5	 +	 5	 expression	 in	 order	 to	 give	 them	 a	 higher	 precedence	 and
position	them	deeper	 in	 the	AST,	resulting	in	 the	correct	evaluation	order	for	 this	mathematical
expression.

Now	you	might	be	 thinking	"Oh	come	on,	 not	with	 the	precedence	 stuff	 again!	My	head	 still
hurts!	This	guy...	"	 and	you	contemplate	whether	 to	 skip	 to	 the	 end	of	 this	 chapter.	Don't!	You
have	to	see	this!

We're	not	going	to	write	a	unit	test	for	grouped	expressions,	since	they	are	not	represented	by	a
separate	AST	node	type.	Yes,	 that's	 right.	We	do	not	need	to	change	our	AST	in	order	 to	parse
grouped	 expressions	 correctly!	 What	 we're	 going	 to	 do	 instead	 is	 to	 extend	 our
TestOperatorPrecedenceParsing	 test	 function	 to	 make	 sure	 that	 parentheses	 actually	 group
expressions	and	have	an	effect	on	the	resulting	AST.

//	parser/parser_test.go

func	TestOperatorPrecedenceParsing(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	string



				}{

//	[...]

								{

												"1	+	(2	+	3)	+	4",

												"((1	+	(2	+	3))	+	4)",

								},

								{

												"(5	+	5)	*	2",

												"((5	+	5)	*	2)",

								},

								{

												"2	/	(5	+	5)",

												"(2	/	(5	+	5))",

								},

								{

												"-(5	+	5)",

												"(-(5	+	5))",

								},

								{

												"!(true	==	true)",

												"(!(true	==	true))",

								},

				}

//	[...]

}

They	fail,	as	expected:

$	go	test	./parser

---	FAIL:	TestOperatorPrecedenceParsing	(0.00s)

		parser_test.go:531:	parser	has	3	errors

		parser_test.go:533:	parser	error:	"no	prefix	parse	function	for	(	found"

		parser_test.go:533:	parser	error:	"no	prefix	parse	function	for	)	found"

		parser_test.go:533:	parser	error:	"no	prefix	parse	function	for	+	found"

FAIL

FAIL				monkey/parser			0.007s

Here	comes	the	mind-blowing	part.	In	order	to	get	these	tests	to	pass,	all	we	need	to	do	is	add
this:

//	parser/parser.go

func	New(l	*lexer.Lexer)	*Parser	{

//	[...]

				p.registerPrefix(token.LPAREN,	p.parseGroupedExpression)

//	[...]

}

func	(p	*Parser)	parseGroupedExpression()	ast.Expression	{

				p.nextToken()

				exp	:=	p.parseExpression(LOWEST)

				if	!p.expectPeek(token.RPAREN)	{

								return	nil

				}

				return	exp

}

And	that's	it!	Yes,	it	really	is.	The	tests	pass	and	the	parentheses	work	as	expected	by	boosting	the
precedence	 of	 the	 enclosed	 expressions.	The	 concept	 of	 associating	 token	 types	with	 functions
really	shines	here.	That's	all	 there	is	to	it.	There	is	nothing	happening	here	that	we	haven't	seen
before.



I	told	you,	didn't	I?	It's	a	great	trick.	With	that	said,	let's	keep	some	of	the	magic	and	move	on.

If	Expressions

In	Monkey	we	 can	 use	if	 and	else	 just	 like	we	 did	 hundreds	 of	 times	 in	 other	 programming
languages:

if	(x	>	y)	{

		return	x;

}	else	{

		return	y;

}

The	else	is	optional	and	can	be	left	out:

if	(x	>	y)	{

		return	x;

}

That's	all	very	familiar.	In	Monkey	though,	if-else-conditionals	are	expressions.	That	means	that
they	produce	a	value	and	in	the	case	of	if	expressions	that's	the	last	evaluated	line.	We	don't	need
the	return	statements	here:

let	foobar	=	if	(x	>	y)	{	x	}	else	{	y	};

Explaining	the	structure	of	if-else-conditionals	is	probably	not	necessary,	but	just	so	we're	clear
on	the	naming,	here	it	is:

if	(<condition>)	<consequence>	else	<alternative>

The	braces	are	part	of	consequence	and	alternative,	because	both	are	block	statements.	Block
statements	are	a	series	of	statements	(just	like	programs	in	Monkey)	enclosed	by	an	opening	{	and
a	closing	}.

So	 far	 our	 recipe	 for	 success	 has	 been	 to	 "define	AST	 nodes,	write	 tests,	make	 tests	 pass	 by
writing	parsing	code,	celebrate,	pat	ourselves	on	the	back,	congratulate	each	other,	tell	everyone"
and,	well,	there's	no	reason	to	change	it	now.

Here	is	the	definition	of	the	ast.IfExpression	AST	node:

//	ast/ast.go

type	IfExpression	struct	{

				Token							token.Token	//	The	'if'	token

				Condition			Expression

				Consequence	*BlockStatement

				Alternative	*BlockStatement

}

func	(ie	*IfExpression)	expressionNode()						{}

func	(ie	*IfExpression)	TokenLiteral()	string	{	return	ie.Token.Literal	}

func	(ie	*IfExpression)	String()	string	{

				var	out	bytes.Buffer

				out.WriteString("if")

				out.WriteString(ie.Condition.String())



				out.WriteString("	")

				out.WriteString(ie.Consequence.String())

				if	ie.Alternative	!=	nil	{

								out.WriteString("else	")

								out.WriteString(ie.Alternative.String())

				}

				return	out.String()

}

No	 surprises	 here.	 ast.IfExpression	 fulfills	 the	 ast.Expression	 interface	 and	 has	 three
fields	that	can	represent	an	if-else-conditional.	Condition	holds	the	condition,	which	can	be	any
expression,	and	Consequence	and	Alternative	point	to	the	consequence	and	alternative	of	the
conditional	 respectively.	 But	 they	 reference	 a	 new	 type,	 ast.BlockStatement.	 As	 we	 saw
before,	 the	 consequence/alternative	of	 an	 if-else-condition	 is	 just	 a	 series	 of	 statements.	That's
exactly	what	ast.BlockStatement	represents:

//	ast/ast.go

type	BlockStatement	struct	{

				Token						token.Token	//	the	{	token

				Statements	[]Statement

}

func	(bs	*BlockStatement)	statementNode()							{}

func	(bs	*BlockStatement)	TokenLiteral()	string	{	return	bs.Token.Literal	}

func	(bs	*BlockStatement)	String()	string	{

				var	out	bytes.Buffer

				for	_,	s	:=	range	bs.Statements	{

								out.WriteString(s.String())

				}

				return	out.String()

}

The	next	step	in	our	recipe	for	success	is	 to	add	a	test.	By	now,	we	know	the	drill	and	the	test
looks	familiar:

//	parser/parser_test.go

func	TestIfExpression(t	*testing.T)	{

				input	:=	`if	(x	<	y)	{	x	}`

				l	:=	lexer.New(input)

				p	:=	New(l)

				program	:=	p.ParseProgram()

				checkParserErrors(t,	p)

				if	len(program.Statements)	!=	1	{

								t.Fatalf("program.Body	does	not	contain	%d	statements.	got=%d\n",

												1,	len(program.Statements))

				}

				stmt,	ok	:=	program.Statements[0].(*ast.ExpressionStatement)

				if	!ok	{

								t.Fatalf("program.Statements[0]	is	not	ast.ExpressionStatement.	got=%T",

												program.Statements[0])

				}

				exp,	ok	:=	stmt.Expression.(*ast.IfExpression)

				if	!ok	{

								t.Fatalf("stmt.Expression	is	not	ast.IfExpression.	got=%T",

												stmt.Expression)

				}



				if	!testInfixExpression(t,	exp.Condition,	"x",	"<",	"y")	{

								return

				}

				if	len(exp.Consequence.Statements)	!=	1	{

								t.Errorf("consequence	is	not	1	statements.	got=%d\n",

												len(exp.Consequence.Statements))

				}

				consequence,	ok	:=	exp.Consequence.Statements[0].(*ast.ExpressionStatement)

				if	!ok	{

								t.Fatalf("Statements[0]	is	not	ast.ExpressionStatement.	got=%T",

												exp.Consequence.Statements[0])

				}

				if	!testIdentifier(t,	consequence.Expression,	"x")	{

								return

				}

				if	exp.Alternative	!=	nil	{

								t.Errorf("exp.Alternative.Statements	was	not	nil.	got=%+v",	exp.Alternative)

				}

}

I	also	added	a	TestIfElseExpression	test	function	that	uses	the	following	test	input:

if	(x	<	y)	{	x	}	else	{	y	}

In	 TestIfElseExpression	 there	 are	 additional	 assertions	 on	 the	 Alternative	 field	 of
*ast.IfExpression.	 Both	 tests	 make	 assertions	 about	 the	 structure	 of	 the	 resulting
*ast.IfExpression	 node	 and	 use	 the	 helper	 functions	 testInfixExpression	 and
testIdentifier	to	keep	the	focus	on	the	conditional	itself	but	also	make	sure	that	the	rest	of	our
parser	is	correctly	integrated.

Both	tests	fail	with	a	lot	of	error	messages.	But	we	are	familiar	with	all	of	them	by	now:

$	go	test	./parser

---	FAIL:	TestIfExpression	(0.00s)

		parser_test.go:659:	parser	has	3	errors

		parser_test.go:661:	parser	error:	"no	prefix	parse	function	for	IF	found"

		parser_test.go:661:	parser	error:	"no	prefix	parse	function	for	{	found"

		parser_test.go:661:	parser	error:	"no	prefix	parse	function	for	}	found"

---	FAIL:	TestIfElseExpression	(0.00s)

		parser_test.go:659:	parser	has	6	errors

		parser_test.go:661:	parser	error:	"no	prefix	parse	function	for	IF	found"

		parser_test.go:661:	parser	error:	"no	prefix	parse	function	for	{	found"

		parser_test.go:661:	parser	error:	"no	prefix	parse	function	for	}	found"

		parser_test.go:661:	parser	error:	"no	prefix	parse	function	for	ELSE	found"

		parser_test.go:661:	parser	error:	"no	prefix	parse	function	for	{	found"

		parser_test.go:661:	parser	error:	"no	prefix	parse	function	for	}	found"

FAIL

FAIL				monkey/parser			0.007s

We're	going	to	start	with	the	first	failing	test:	TestIfExpression.	Clearly,	we	need	to	register	a
prefixParseFn	for	token.IF	tokens.

//	parser/parser.go

func	New(l	*lexer.Lexer)	*Parser	{

//	[...]

				p.registerPrefix(token.IF,	p.parseIfExpression)

//	[...]

}



func	(p	*Parser)	parseIfExpression()	ast.Expression	{

				expression	:=	&ast.IfExpression{Token:	p.curToken}

				if	!p.expectPeek(token.LPAREN)	{

								return	nil

				}

				p.nextToken()

				expression.Condition	=	p.parseExpression(LOWEST)

				if	!p.expectPeek(token.RPAREN)	{

								return	nil

				}

				if	!p.expectPeek(token.LBRACE)	{

								return	nil

				}

				expression.Consequence	=	p.parseBlockStatement()

				return	expression

}

In	 no	 other	 parsing	 function	 did	we	 use	expectPeek	 so	 extensively.	 There	 just	wasn't	 a	 need.
Here	 it	 makes	 sense.	 expectPeek	 adds	 an	 error	 to	 the	 parser	 if	 p.peekToken	 is	 not	 of	 the
expected	 type,	but	 if	 it	 is,	 then	 it	advances	 the	 tokens	by	calling	 the	nextToken	method.	That's
exactly	what	we	need	here.	We	need	there	to	be	a	(	right	after	the	if	and	if	it's	there	we	need	to
jump	over	it.	The	same	goes	for	the	)	after	the	expression	and	the	{	that	marks	the	beginning	of	a
block	statement.

This	method	also	follows	our	parsing	function	protocol:	 the	tokens	get	advanced	just	enough	so
that	parseBlockStatement	sits	on	the	{	with	p.curToken	being	of	type	token.LBRACE.	Here	is
parseBlockStatement:

//	parser/parser.go

func	(p	*Parser)	parseBlockStatement()	*ast.BlockStatement	{

				block	:=	&ast.BlockStatement{Token:	p.curToken}

				block.Statements	=	[]ast.Statement{}

				p.nextToken()

				for	!p.curTokenIs(token.RBRACE)	{

								stmt	:=	p.parseStatement()

								if	stmt	!=	nil	{

												block.Statements	=	append(block.Statements,	stmt)

								}

								p.nextToken()

				}

				return	block

}

parseBlockStatement	calls	parseStatement	until	it	encounters	the	}	that	marks	the	end	of	the
block	statement.	This	looks	really	similar	to	our	top-level	ParseProgram	method,	where	we	also
call	 parseStatement	 repeatedly	 until	 we	 encounter	 an	 "end	 token",	 which	 in	 the	 case	 of
ParseProgram	 is	 a	 token.EOF	 token.	 The	 duplication	 of	 the	 loop	 doesn't	 hurt	 though,	 so	 we
leave	these	two	methods	be	and	instead	take	care	of	our	tests:

$	go	test	./parser

---	FAIL:	TestIfElseExpression	(0.00s)



		parser_test.go:659:	parser	has	3	errors

		parser_test.go:661:	parser	error:	"no	prefix	parse	function	for	ELSE	found"

		parser_test.go:661:	parser	error:	"no	prefix	parse	function	for	{	found"

		parser_test.go:661:	parser	error:	"no	prefix	parse	function	for	}	found"

FAIL

FAIL				monkey/parser			0.007s

TestIfExpression	passes	and	TestIfElseExpression	does	not,	exactly	as	expected.	Now,	in
order	to	support	the	else	part	of	an	if-else-condition,	we	need	to	check	if	it	even	exists	and	if	so
we	need	to	parse	the	block	statement	that	comes	directly	after	the	else:

//	parser/parser.go

func	(p	*Parser)	parseIfExpression()	ast.Expression	{

//	[...]

				expression.Consequence	=	p.parseBlockStatement()

				if	p.peekTokenIs(token.ELSE)	{

								p.nextToken()

								if	!p.expectPeek(token.LBRACE)	{

												return	nil

								}

								expression.Alternative	=	p.parseBlockStatement()

				}

				return	expression

}

That's	 all	 there	 is	 to	 it.	 The	whole	 part	 of	 this	method	 is	 constructed	 in	 a	way	 that	 allows	 an
optional	else	but	doesn't	 add	a	parser	error	 if	 there	 is	none.	After	we	parse	 the	consequence-
block-statement	 we	 check	 if	 the	 next	 token	 is	 a	 token.ELSE	 token.	 Remember,	 at	 the	 end	 of
parseBlockStatement	we're	sitting	on	the	}.	If	we	have	a	token.ELSE,	we	advance	the	tokens
two	times.	The	first	time	with	a	call	to	nextToken,	since	we	already	know	that	the	p.peekToken
is	the	else.	Then	with	a	call	to	expectPeek	since	now	the	next	token	has	to	be	the	opening	brace
of	a	block	statement,	otherwise	the	program	is	invalid.

Yes,	 parsing	 is	 prone	 to	 off-by-one	 errors.	 It's	 easy	 to	 forget	 advancing	 the	 tokens	 or	make	 a
wrong	call	to	nextToken.	Having	a	strict	protocol	that	dictates	how	every	parsing	function	has	to
advance	tokens	helps	a	 lot.	Luckily	we	also	have	a	great	 test	suite	 that	 lets	us	know	everything
works:

$	go	test	./parser

ok						monkey/parser			0.007s

I	don't	think	I	have	to	tell	you	anymore:	good	job	all	around!	We	did	it	-	again.

Function	Literals

You	may	have	noticed	that	the	parseIfExpression	method	we	just	added	has	a	lot	more	meat	to
it	than	any	of	the	prefixParseFns	or	infixParseFns	we	wrote	before.	The	main	reason	is	that
we	had	 to	work	with	many	different	 token	and	expression	 types	and	even	optional	parts.	What
we're	going	to	do	next	is	similar	in	its	difficulty	and	variety	of	involved	token	types.	We're	going
to	parse	function	literals.



In	Monkey	a	function	literal	is	how	we	define	functions:	which	parameters	they	have	and	what	the
function	does.	Function	literals	look	like	this:

fn(x,	y)	{

		return	x	+	y;

}

It	 starts	with	 the	keyword	fn,	 followed	by	a	 list	of	parameters,	 followed	by	a	block	statement,
which	is	the	function's	body,	that	gets	executed	when	the	function	is	called.	The	abstract	structure
of	a	function	literal	is	this:

fn	<parameters>	<block	statement>

We	 already	 know	what	 block	 statements	 are	 and	 how	 to	 parse	 them.	 The	 parameters	 are	 new
though,	but	not	much	more	difficult	 to	parse.	They	are	 just	a	 list	of	 identifiers	 that	are	comma-
separated	and	surrounded	by	parentheses:

(<parameter	one>,	<parameter	two>,	<parameter	three>,	...)

This	list	can	also	be	empty:

fn()	{

		return	foobar	+	barfoo;

}

That's	 the	 structure	 of	 function	 literals.	 But	 what	 type	 of	 AST	 node	 are	 they?	 Expressions,	 of
course!	We	 can	 use	 function	 literals	 in	 every	 place	 where	 any	 other	 expression	 is	 valid.	 For
example,	here	is	a	function	literal	as	the	expression	in	a	let	statement:

let	myFunction	=	fn(x,	y)	{	return	x	+	y;	}

And	here	is	a	function	literal	as	the	expression	in	a	return	statement	inside	another	function	literal:

fn()	{

		return	fn(x,	y)	{	return	x	>	y;	};

}

Using	a	function	literal	as	an	argument	when	calling	another	function	is	also	possible:

myFunc(x,	y,	fn(x,	y)	{	return	x	>	y;	});

That	does	sound	complicated,	but	it's	not.	One	of	the	great	things	about	our	parser	is	that	once	we
define	 function	 literals	 as	 expressions	 and	 provide	 a	 function	 to	 correctly	 parse	 them	 the	 rest
works.	Sounds	amazing?	I	agree.

We	just	saw	that	the	two	main	parts	of	a	function	literal	are	the	list	of	parameters	and	the	block
statement	that	 is	 the	function's	body.	That's	all	we	need	to	keep	in	mind	when	defining	the	AST
node:

//	ast/ast.go

type	FunctionLiteral	struct	{

				Token						token.Token	//	The	'fn'	token



				Parameters	[]*Identifier

				Body							*BlockStatement

}

func	(fl	*FunctionLiteral)	expressionNode()						{}

func	(fl	*FunctionLiteral)	TokenLiteral()	string	{	return	fl.Token.Literal	}

func	(fl	*FunctionLiteral)	String()	string	{

				var	out	bytes.Buffer

				params	:=	[]string{}

				for	_,	p	:=	range	fl.Parameters	{

								params	=	append(params,	p.String())

				}

				out.WriteString(fl.TokenLiteral())

				out.WriteString("(")

				out.WriteString(strings.Join(params,	",	"))

				out.WriteString(")	")

				out.WriteString(fl.Body.String())

				return	out.String()

}

The	Parameters	field	is	a	slice	of	*ast.Identifiers,	because	that's	all	there	is	to	it,	and	Body
is	an	*ast.BlockStatement,	which	we	saw	and	used	before.

Here	 is	 the	 test,	 in	 which	 we	 can	 use	 our	 helper	 functions	 testLiteralExpression	 and
testInfixExpression	again:

//	parser/parser_test.go

func	TestFunctionLiteralParsing(t	*testing.T)	{

				input	:=	`fn(x,	y)	{	x	+	y;	}`

				l	:=	lexer.New(input)

				p	:=	New(l)

				program	:=	p.ParseProgram()

				checkParserErrors(t,	p)

				if	len(program.Statements)	!=	1	{

								t.Fatalf("program.Body	does	not	contain	%d	statements.	got=%d\n",

												1,	len(program.Statements))

				}

				stmt,	ok	:=	program.Statements[0].(*ast.ExpressionStatement)

				if	!ok	{

								t.Fatalf("program.Statements[0]	is	not	ast.ExpressionStatement.	got=%T",

												program.Statements[0])

				}

				function,	ok	:=	stmt.Expression.(*ast.FunctionLiteral)

				if	!ok	{

								t.Fatalf("stmt.Expression	is	not	ast.FunctionLiteral.	got=%T",

												stmt.Expression)

				}

				if	len(function.Parameters)	!=	2	{

								t.Fatalf("function	literal	parameters	wrong.	want	2,	got=%d\n",

												len(function.Parameters))

				}

				testLiteralExpression(t,	function.Parameters[0],	"x")

				testLiteralExpression(t,	function.Parameters[1],	"y")

				if	len(function.Body.Statements)	!=	1	{

								t.Fatalf("function.Body.Statements	has	not	1	statements.	got=%d\n",

												len(function.Body.Statements))

				}



				bodyStmt,	ok	:=	function.Body.Statements[0].(*ast.ExpressionStatement)

				if	!ok	{

								t.Fatalf("function	body	stmt	is	not	ast.ExpressionStatement.	got=%T",

												function.Body.Statements[0])

				}

				testInfixExpression(t,	bodyStmt.Expression,	"x",	"+",	"y")

}

So,	the	test	has	three	main	parts:	check	that	the	*ast.FunctionLiteral	 is	there,	check	that	the
parameter	list	is	correct	and	make	sure	that	the	function	body	contains	the	correct	statements.	The
last	part	is	not	strictly	necessary,	since	we	already	tested	parsing	block	statements	before	in	our
tests	 for	IfExpressions.	But	 I'm	okay	with	duplicating	 some	 test	 assertions	here	 that	possibly
alarm	us	when	hooking	up	the	parsing	of	block	statements	failed.

With	only	ast.FunctionLiteral	defined	and	nothing	changed	in	the	parser,	the	tests	fail:

$	go	test	./parser

---	FAIL:	TestFunctionLiteralParsing	(0.00s)

		parser_test.go:755:	parser	has	6	errors

		parser_test.go:757:	parser	error:	"no	prefix	parse	function	for	FUNCTION	found"

		parser_test.go:757:	parser	error:	"expected	next	token	to	be	),	got	,	instead"

		parser_test.go:757:	parser	error:	"no	prefix	parse	function	for	,	found"

		parser_test.go:757:	parser	error:	"no	prefix	parse	function	for	)	found"

		parser_test.go:757:	parser	error:	"no	prefix	parse	function	for	{	found"

		parser_test.go:757:	parser	error:	"no	prefix	parse	function	for	}	found"

FAIL

FAIL				monkey/parser			0.007s

It's	clear	that	we	need	to	register	a	new	prefixParseFn	for	token.FUNCTION	tokens.

//	parser/parser.go

func	New(l	*lexer.Lexer)	*Parser	{

//	[...]

				p.registerPrefix(token.FUNCTION,	p.parseFunctionLiteral)

//	[...]

}

func	(p	*Parser)	parseFunctionLiteral()	ast.Expression	{

				lit	:=	&ast.FunctionLiteral{Token:	p.curToken}

				if	!p.expectPeek(token.LPAREN)	{

								return	nil

				}

				lit.Parameters	=	p.parseFunctionParameters()

				if	!p.expectPeek(token.LBRACE)	{

								return	nil

				}

				lit.Body	=	p.parseBlockStatement()

				return	lit

}

The	parseFunctionParameters	method	we	use	here	to	parse	the	literal's	parameters	looks	like
this:

//	parser/parser.go

func	(p	*Parser)	parseFunctionParameters()	[]*ast.Identifier	{

				identifiers	:=	[]*ast.Identifier{}



				if	p.peekTokenIs(token.RPAREN)	{

								p.nextToken()

								return	identifiers

				}

				p.nextToken()

				ident	:=	&ast.Identifier{Token:	p.curToken,	Value:	p.curToken.Literal}

				identifiers	=	append(identifiers,	ident)

				for	p.peekTokenIs(token.COMMA)	{

								p.nextToken()

								p.nextToken()

								ident	:=	&ast.Identifier{Token:	p.curToken,	Value:	p.curToken.Literal}

								identifiers	=	append(identifiers,	ident)

				}

				if	!p.expectPeek(token.RPAREN)	{

								return	nil

				}

				return	identifiers

}

There's	the	heart	of	the	matter.	parseFunctionParameters	constructs	the	slice	of	parameters	by
repeatedly	building	identifiers	from	the	comma	separated	list.	It	also	makes	an	early	exit	if	the	list
is	empty	and	it	carefully	handles	lists	of	varying	sizes.

For	a	method	like	this	it	really	pays	off	to	have	another	set	of	tests	that	check	the	edge	cases:	an
empty	parameter	list,	a	list	with	one	parameter	and	a	list	with	multiple	parameters.

//	parser/parser_test.go

func	TestFunctionParameterParsing(t	*testing.T)	{

				tests	:=	[]struct	{

								input										string

								expectedParams	[]string

				}{

								{input:	"fn()	{};",	expectedParams:	[]string{}},

								{input:	"fn(x)	{};",	expectedParams:	[]string{"x"}},

								{input:	"fn(x,	y,	z)	{};",	expectedParams:	[]string{"x",	"y",	"z"}},

				}

				for	_,	tt	:=	range	tests	{

								l	:=	lexer.New(tt.input)

								p	:=	New(l)

								program	:=	p.ParseProgram()

								checkParserErrors(t,	p)

								stmt	:=	program.Statements[0].(*ast.ExpressionStatement)

								function	:=	stmt.Expression.(*ast.FunctionLiteral)

								if	len(function.Parameters)	!=	len(tt.expectedParams)	{

												t.Errorf("length	parameters	wrong.	want	%d,	got=%d\n",

																len(tt.expectedParams),	len(function.Parameters))

								}

								for	i,	ident	:=	range	tt.expectedParams	{

												testLiteralExpression(t,	function.Parameters[i],	ident)

								}

				}

}

Both	of	these	test	functions	now	pass:

$	go	test	./parser



ok						monkey/parser			0.007s

Function	 literals	 are	 in	 the	 bag!	Sweet!	There	 is	 only	 one	 last	 thing	 to	 do	 now	before	we	 can
leave	the	parser	and	start	talking	about	the	evaluation	of	our	AST.

Call	Expressions

Now	that	we	know	how	to	parse	function	literals	the	next	step	is	to	parse	the	calling	of	a	function:
call	expressions.	Here	is	their	structure:

<expression>(<comma	separated	expressions>)

What?	Yup,	that's	it,	but	granted,	a	few	examples	are	needed.	Here	is	the	normal	call	expression
we	all	know:

add(2,	3)

Now	think	about	this:	the	add	 is	an	identifier.	And	identifiers	are	expressions.	The	arguments	2
and	3	are	expressions	too	-	integer	literals.	But	they	don't	have	to	be,	the	arguments	are	just	a	list
of	expressions:

add(2	+	2,	3	*	3	*	3)

That's	valid,	too.	The	first	argument	is	the	infix	expression	2	+	2	and	the	second	one	is	3	*	3	*
3.	So	far,	so	good.	Now,	let's	look	at	the	function	that's	being	called	here.	In	this	case	the	function
is	bound	 to	 the	 identifier	add.	The	 identifier	add	 returns	 this	 function	when	 it's	evaluated.	That
means,	we	 could	 go	 straight	 to	 the	 source,	 skip	 the	 identifier	 and	 replace	add	 with	 a	 function
literal:

fn(x,	y)	{	x	+	y;	}(2,	3)

Yes,	that's	valid.	We	can	also	use	function	literals	as	arguments:

callsFunction(2,	3,	fn(x,	y)	{	x	+	y;	});

Let's	look	at	the	structure	again:

<expression>(<comma	separated	expressions>)

Call	expressions	consist	of	an	expression	that	results	 in	a	function	when	evaluated	and	a	list	of
expressions	that	are	the	arguments	to	this	function	call.	As	an	AST	node	they	look	like	this:

//	ast/ast.go

type	CallExpression	struct	{

				Token					token.Token	//	The	'('	token

				Function		Expression		//	Identifier	or	FunctionLiteral

				Arguments	[]Expression

}

func	(ce	*CallExpression)	expressionNode()						{}

func	(ce	*CallExpression)	TokenLiteral()	string	{	return	ce.Token.Literal	}

func	(ce	*CallExpression)	String()	string	{



				var	out	bytes.Buffer

				args	:=	[]string{}

				for	_,	a	:=	range	ce.Arguments	{

								args	=	append(args,	a.String())

				}

				out.WriteString(ce.Function.String())

				out.WriteString("(")

				out.WriteString(strings.Join(args,	",	"))

				out.WriteString(")")

				return	out.String()

}

The	test	case	for	call	expressions	is	just	like	the	rest	of	our	test	suite	and	makes	assertions	about
the	*ast.CallExpression	structure:

//	parser/parser_test.go

func	TestCallExpressionParsing(t	*testing.T)	{

				input	:=	"add(1,	2	*	3,	4	+	5);"

				l	:=	lexer.New(input)

				p	:=	New(l)

				program	:=	p.ParseProgram()

				checkParserErrors(t,	p)

				if	len(program.Statements)	!=	1	{

								t.Fatalf("program.Statements	does	not	contain	%d	statements.	got=%d\n",

												1,	len(program.Statements))

				}

				stmt,	ok	:=	program.Statements[0].(*ast.ExpressionStatement)

				if	!ok	{

								t.Fatalf("stmt	is	not	ast.ExpressionStatement.	got=%T",

												program.Statements[0])

				}

				exp,	ok	:=	stmt.Expression.(*ast.CallExpression)

				if	!ok	{

								t.Fatalf("stmt.Expression	is	not	ast.CallExpression.	got=%T",

												stmt.Expression)

				}

				if	!testIdentifier(t,	exp.Function,	"add")	{

								return

				}

				if	len(exp.Arguments)	!=	3	{

								t.Fatalf("wrong	length	of	arguments.	got=%d",	len(exp.Arguments))

				}

				testLiteralExpression(t,	exp.Arguments[0],	1)

				testInfixExpression(t,	exp.Arguments[1],	2,	"*",	3)

				testInfixExpression(t,	exp.Arguments[2],	4,	"+",	5)

}

As	with	function	literals	and	parameter	parsing	it's	also	a	good	idea	to	add	a	separate	test	for	the
argument	parsing.	Just	to	make	sure	that	every	corner	case	works	and	is	covered	by	a	test.	I	added
a	TestCallExpressionParameterParsing	test	function	that	does	exactly	this.	You	can	see	it	in
the	code	for	this	chapter.

So	far,	so	familiar.	But	now	comes	the	twist.	If	we	run	the	tests	we	get	this	error	message:

$	go	test	./parser



---	FAIL:	TestCallExpressionParsing	(0.00s)

		parser_test.go:853:	parser	has	4	errors

		parser_test.go:855:	parser	error:	"expected	next	token	to	be	),	got	,	instead"

		parser_test.go:855:	parser	error:	"no	prefix	parse	function	for	,	found"

		parser_test.go:855:	parser	error:	"no	prefix	parse	function	for	,	found"

		parser_test.go:855:	parser	error:	"no	prefix	parse	function	for	)	found"

FAIL

FAIL				monkey/parser			0.007s

Huh,	 that	 doesn't	 make	 a	 lot	 of	 sense.	Why	 is	 there	 no	 error	 message	 telling	 us	 to	 register	 a
prefixParseFn	for	call	expressions?	Because	there	are	no	new	token	types	in	call	expressions.
So	what	do	we	do	instead	of	registering	a	prefixParseFn?	Take	at	look	at	this:

add(2,	3);

The	 add	 is	 an	 identifier	 that's	 parsed	 by	 a	 prefixParseFn.	 And	 after	 the	 identifier	 comes	 a
token.LPAREN,	right	between	the	identifier	and	the	list	of	arguments,	just	in	the	middle,	in	infix
position...	Yes,	we	need	to	register	an	infixParseFn	for	token.LPAREN.	This	way	we	parse	the
expression	 that	 is	 the	 function	 (either	 an	 identifier,	 or	 a	 function	 literal),	 then	 check	 for	 an
infixParseFn	associated	with	token.LPAREN	and	call	it	with	the	already	parsed	expression	as
argument.	And	in	this	infixParseFn	we	can	then	parse	the	argument	list.	Perfect!

//	parser/parser.go

func	New(l	*lexer.Lexer)	*Parser	{

//	[...]

				p.registerInfix(token.LPAREN,	p.parseCallExpression)

//	[...]

}

func	(p	*Parser)	parseCallExpression(function	ast.Expression)	ast.Expression	{

				exp	:=	&ast.CallExpression{Token:	p.curToken,	Function:	function}

				exp.Arguments	=	p.parseCallArguments()

				return	exp

}

func	(p	*Parser)	parseCallArguments()	[]ast.Expression	{

				args	:=	[]ast.Expression{}

				if	p.peekTokenIs(token.RPAREN)	{

								p.nextToken()

								return	args

				}

				p.nextToken()

				args	=	append(args,	p.parseExpression(LOWEST))

				for	p.peekTokenIs(token.COMMA)	{

								p.nextToken()

								p.nextToken()

								args	=	append(args,	p.parseExpression(LOWEST))

				}

				if	!p.expectPeek(token.RPAREN)	{

								return	nil

				}

				return	args

}

parseCallExpression	 receives	 the	 already	 parsed	 function	 as	 argument	 and	 uses	 it	 to
construct	 an	 *ast.CallExpression	 node.	 To	 parse	 the	 argument	 list	 we	 call
parseCallArguments,	 which	 looks	 strikingly	 similar	 to	 parseFunctionParameters,	 except



that	it's	more	generic	and	returns	a	slice	of	ast.Expression	and	not	*ast.Identifier.

There	is	nothing	here	we	haven't	seen	before.	All	we	did	was	register	a	new	infixParseFn.	The
tests	still	fail	though:

$	go	test	./parser

---	FAIL:	TestCallExpressionParsing	(0.00s)

		parser_test.go:853:	parser	has	4	errors

		parser_test.go:855:	parser	error:	"expected	next	token	to	be	),	got	,	instead"

		parser_test.go:855:	parser	error:	"no	prefix	parse	function	for	,	found"

		parser_test.go:855:	parser	error:	"no	prefix	parse	function	for	,	found"

		parser_test.go:855:	parser	error:	"no	prefix	parse	function	for	)	found"

FAIL

FAIL				monkey/parser			0.007s

The	reason	that	it	still	doesn't	work	is	that	the	(	in	add(1,	2)	acts	like	an	infix	operator	now,	but
we	 haven't	 assigned	 a	 precedence	 to	 it.	 It	 doesn't	 have	 the	 right	 "stickiness"	 yet,	 so
parseExpression	doesn't	return	what	we	want.	But	call	expressions	have	the	highest	precedence
of	all,	so	it's	important	that	we	fix	our	precedences	table:

//	parser/parser.go

var	precedences	=	map[token.TokenType]int{

//	[...]

				token.LPAREN:			CALL,

}

To	make	 sure	 that	 call	 expressions	 really	 have	 the	 highest	 precedence	we	 can	 just	 extend	 our
TestOperatorPrecedenceParsing	test	function:

//	parser/parser_test.go

func	TestOperatorPrecedenceParsing(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	string

				}{

//	[...]

								{

												"a	+	add(b	*	c)	+	d",

												"((a	+	add((b	*	c)))	+	d)",

								},

								{

												"add(a,	b,	1,	2	*	3,	4	+	5,	add(6,	7	*	8))",

												"add(a,	b,	1,	(2	*	3),	(4	+	5),	add(6,	(7	*	8)))",

								},

								{

												"add(a	+	b	+	c	*	d	/	f	+	g)",

												"add((((a	+	b)	+	((c	*	d)	/	f))	+	g))",

								},

				}

//	[...]

}

If	we	now	run	the	tests	again,	we	can	see	that	all	of	them	pass:

$	go	test	./parser

ok						monkey/parser			0.008s

Yes,	all	of	them:	the	unit	test,	the	test	for	argument	parsing	and	the	precedence	tests	-	wow!	They



all	pass!	And	if	that	wasn't	enough,	here's	some	more	good	news:	we	are	done.	Yes,	the	parser	is
finished.	Granted,	we'll	come	back	to	it	later,	at	the	end	of	the	book,	to	extend	it	once	more.	But
for	now:	that's	it!	The	AST	is	fully	defined	and	the	parser	works	-	it's	time	to	move	on	to	the	topic
of	evaluation.

Before	we	do	that	 though,	let's	remove	the	TODOs	we	left	 in	the	code	and	extend	our	REPL	to
integrate	the	parser.

Removing	TODOs

When	we	wrote	the	code	that	parses	let	and	return	statements	we	took	a	shortcut	by	skipping	over
the	expressions:

//	parser/parser.go

func	(p	*Parser)	parseLetStatement()	*ast.LetStatement	{

				stmt	:=	&ast.LetStatement{Token:	p.curToken}

				if	!p.expectPeek(token.IDENT)	{

								return	nil

				}

				stmt.Name	=	&ast.Identifier{Token:	p.curToken,	Value:	p.curToken.Literal}

				if	!p.expectPeek(token.ASSIGN)	{

								return	nil

				}

				//	TODO:	We're	skipping	the	expressions	until	we

				//	encounter	a	semicolon

				for	!p.curTokenIs(token.SEMICOLON)	{

								p.nextToken()

				}

				return	stmt

}

The	same	TODO	sits	in	parseReturnStatement.	It's	time	to	get	rid	of	them.	No	shortcuts.	First	of
all,	we	need	to	extend	our	existing	tests	to	make	sure	that	the	expressions,	that	are	parsed	as	part
of	a	let	or	return	statement,	are	actually	there.	We	do	this	by	using	our	helper	functions	(that	don't
distract	 from	 the	 focus	 of	 the	 test)	 and	 different	 expression	 types,	 so	 we	 know	 that
parseExpression	is	correctly	integrated.

Here	is	what	the	TestLetStatement	function	looks	like:

//	parser/parser_test.go

func	TestLetStatements(t	*testing.T)	{

				tests	:=	[]struct	{

								input														string

								expectedIdentifier	string

								expectedValue						interface{}

				}{

								{"let	x	=	5;",	"x",	5},

								{"let	y	=	true;",	"y",	true},

								{"let	foobar	=	y",	"foobar",	"y"},

				}

				for	_,	tt	:=	range	tests	{



								l	:=	lexer.New(tt.input)

								p	:=	New(l)

								program	:=	p.ParseProgram()

								checkParserErrors(t,	p)

								if	len(program.Statements)	!=	1	{

												t.Fatalf("program.Statements	does	not	contain	1	statements.	got=%d",

																len(program.Statements))

								}

								stmt	:=	program.Statements[0]

								if	!testLetStatement(t,	stmt,	tt.expectedIdentifier)	{

												return

								}

								val	:=	stmt.(*ast.LetStatement).Value

								if	!testLiteralExpression(t,	val,	tt.expectedValue)	{

												return

								}

				}

}

The	same	needs	to	be	done	for	TestReturnStatements.	And	the	fix	is	trivial,	since	we	did	such
great	work	before.	We	merely	need	 to	hook	up	parseExpression	 in	 parseReturnStatement
and	 parseLetStatement.	 And	 we	 also	 need	 to	 take	 care	 of	 optional	 semicolons,	 which	 we
already	 know	 how	 to	 do	 from	 parseExpressionStatement.	 The	 updated,	 fully-working
versions	of	parseReturnStatement	and	parseLetStatement	look	like	this:

//	parser/parser.go

func	(p	*Parser)	parseReturnStatement()	*ast.ReturnStatement	{

				stmt	:=	&ast.ReturnStatement{Token:	p.curToken}

				p.nextToken()

				stmt.ReturnValue	=	p.parseExpression(LOWEST)

				if	p.peekTokenIs(token.SEMICOLON)	{

								p.nextToken()

				}

				return	stmt

}

func	(p	*Parser)	parseLetStatement()	*ast.LetStatement	{

				stmt	:=	&ast.LetStatement{Token:	p.curToken}

				if	!p.expectPeek(token.IDENT)	{

								return	nil

				}

				stmt.Name	=	&ast.Identifier{Token:	p.curToken,	Value:	p.curToken.Literal}

				if	!p.expectPeek(token.ASSIGN)	{

								return	nil

				}

				p.nextToken()

				stmt.Value	=	p.parseExpression(LOWEST)

				if	p.peekTokenIs(token.SEMICOLON)	{

								p.nextToken()

				}

				return	stmt

}



Ah!	All	TODOs	removed	from	the	code.	Let's	take	this	parser	for	a	test	drive.



2.9	-	Read-Parse-Print-Loop

Up	 until	 now	 our	 REPL	 was	 more	 of	 a	 RLPL,	 a	 read-lex-print-loop.	We	 don't	 know	 how	 to
evaluate	code	yet,	so	replacing	the	"lex"	with	"evaluate"	is	still	out	of	the	question.	But	what	we
most	 certainly	know	by	now	 is	 parsing.	 It's	 time	 to	 replace	 the	 "lex"	with	 "parse"	 and	build	 a
RPPL.

//	repl/repl.go

func	Start(in	io.Reader,	out	io.Writer)	{

				scanner	:=	bufio.NewScanner(in)

				for	{

								fmt.Printf(PROMPT)

								scanned	:=	scanner.Scan()

								if	!scanned	{

												return

								}

								line	:=	scanner.Text()

								l	:=	lexer.New(line)

								p	:=	parser.New(l)

								program	:=	p.ParseProgram()

								if	len(p.Errors())	!=	0	{

												printParserErrors(out,	p.Errors())

												continue

								}

								io.WriteString(out,	program.String())

								io.WriteString(out,	"\n")

				}

}

func	printParserErrors(out	io.Writer,	errors	[]string)	{

				for	_,	msg	:=	range	errors	{

								io.WriteString(out,	"\t"+msg+"\n")

				}

}

Here	we	extend	our	loop	to	parse	the	line	we	just	entered	in	the	REPL.	The	output	of	the	parser,
an	 *ast.Program,	 is	 then	 printed	 by	 calling	 its	 String	 method,	 which	 recursively	 calls	 the
String	method	of	all	statements	belonging	to	that	program.	Now	we	can	take	the	parser	for	a	spin
-	interactively	on	the	command	line:

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	let	x	=	1	*	2	*	3	*	4	*	5

let	x	=	((((1	*	2)	*	3)	*	4)	*	5);

>>	x	*	y	/	2	+	3	*	8	-	123

((((x	*	y)	/	2)	+	(3	*	8))	-	123)

>>	true	==	false

(true	==	false)

>>

Sweet!	Now	instead	of	calling	String	we	could	use	any	string-based	representation	of	the	AST
to	output	here.	We	could	add	a	PrettyPrint	method	 that	prints	 the	 type	of	 the	AST	node	and
intends	its	child	nodes	correctly,	or	we	could	use	ASCII	color	codes,	or	we	could	print	an	ASCII
graph,	or...	The	point	is:	the	sky	is	the	limit.



But	our	RPPL	still	has	a	huge	drawback.	Here	is	what	happens	when	the	parser	runs	into	an	error:

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	let	x	12	*	3;

								expected	next	token	to	be	=,	got	INT	instead

>>

That's	not	a	very	nice	error	message.	I	mean,	it	does	the	job,	yes,	but	it's	not	very	nice,	is	it?	The
Monkey	programming	language	deserves	better.	Here	is	a	more	user-friendly	printParseError
function	that	enhances	the	user-experience:

//	repl/repl.go

const	MONKEY_FACE	=	`												__,__

			.--.		.-"					"-.		.--.

		/	..	\/		.-.	.-.		\/	..	\

	|	|		'|		/			Y			\		|'		|	|

	|	\			\		\	0	|	0	/		/			/	|

		\	'-	,\.-"""""""-./,	-'	/

			''-'	/_			^	^			_\	'-''

							|		\._			_./		|

							\			\	'~'	/			/

								'._	'-=-'	_.'

											'-----'

`

func	printParserErrors(out	io.Writer,	errors	[]string)	{

				io.WriteString(out,	MONKEY_FACE)

				io.WriteString(out,	"Woops!	We	ran	into	some	monkey	business	here!\n")

				io.WriteString(out,	"	parser	errors:\n")

				for	_,	msg	:=	range	errors	{

								io.WriteString(out,	"\t"+msg+"\n")

				}

}

That's	better!	If	we	now	run	into	any	parser	errors,	we	get	to	see	a	monkey,	which,	really,	is	more
than	anyone	could	ask	for:

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	let	x	12	*	3

												__,__

			.--.		.-"					"-.		.--.

		/	..	\/		.-.	.-.		\/	..	\

	|	|		'|		/			Y			\		|'		|	|

	|	\			\		\	0	|	0	/		/			/	|

		\	'-	,\.-"""""""-./,	-'	/

			''-'	/_			^	^			_\	'-''

							|		\._			_./		|

							\			\	'~'	/			/

								'._	'-=-'	_.'

											'-----'

Woops!	We	ran	into	some	monkey	business	here!

	parser	errors:

								expected	next	token	to	be	=,	got	INT	instead

>>

On	second	thought...	Anyway,	it's	time	to	start	evaluating	our	AST.





Evaluation



3.1	-	Giving	Meaning	to	Symbols

We	are	finally	here.	Evaluation.	The	E	in	REPL	and	the	last	thing	an	interpreter	has	to	do	when
processing	 source	 code.	 This	 is	 where	 code	 becomes	 meaningful.	 Without	 evaluation	 an
expression	like	1	+	2	is	just	a	series	of	characters,	tokens,	or	a	tree	structure	that	represents	this
expression.	 It	doesn't	mean	anything.	Evaluated,	of	course,	1	+	2	becomes	3.	5	 >	 1	 becomes
true,	5	<	1	becomes	false	and	puts("Hello	World!")	becomes	the	friendly	message	we	all
know.

The	evaluation	process	of	an	interpreter	defines	how	the	programming	language	being	interpreted
works.

let	num	=	5;

if	(num)	{

		return	a;

}	else	{

		return	b;

}

Whether	 this	 returns	 a	 or	 b	 depends	 on	 the	 decision	 of	 the	 interpreter's	 evaluation	 process
whether	the	integer	5	is	truthy	or	not.	In	some	languages	it's	truthy,	in	others	we'd	need	to	use	an
expression	that	produces	a	boolean	like	5	!=	0.

Consider	this:

let	one	=	fn()	{

		printLine("one");

		return	1;

};

let	two	=	fn()	{

		printLine("two");

		return	2;

};

add(one(),	two());

Does	this	first	output	one	and	then	two	or	the	other	way	around?	It	depends	on	the	specification	of
the	 language	 and	 ultimately	 on	 the	 implementation	 of	 its	 interpreter	 and	 in	 which	 order	 it
evaluates	the	arguments	in	a	call	expression.

In	 this	chapter	 there	will	be	many	more	 small	 choices	 like	 these,	where	we	get	 to	decide	how
Monkey	is	going	to	work	and	how	our	interpreter	evaluates	Monkey	source	code.

Maybe	you're	skeptical,	after	I	told	you	that	writing	a	parser	was	fun,	but	trust	me:	this	is	the	best
part.	This	is	where	the	Monkey	programming	language	comes	to	life,	where	source	code	quickens
and	starts	to	breathe.



3.2	-	Strategies	of	Evaluation

Evaluation	 is	 also	 where	 interpreter	 implementations	 (regardless	 of	 which	 language	 they're
interpreting)	 diverge	 the	 most.	 There	 are	 a	 lot	 of	 different	 strategies	 to	 choose	 from	 when
evaluating	source	code.	I've	already	hinted	at	this	in	the	introduction	of	this	book,	where	we	took
a	brief	look	at	different	interpreter	architectures.	Now	that	we're	here,	AST	in	hand,	the	question
of	what	 to	do	with	 it	and	how	to	evaluate	 this	shiny	 tree	of	ours	 is	more	relevant	 than	ever,	so
looking	at	different	options	again	is	worthwhile.

Before	 we	 start,	 though,	 it's	 also	 worth	 noting	 again	 that	 the	 line	 between	 interpreters	 and
compilers	is	a	blurry	one.	The	notion	of	an	interpreter	as	something	that	doesn't	leave	executable
artifacts	behind	(in	contrast	to	a	compiler,	which	does	just	that)	gets	fuzzy	real	fast	when	looking
at	the	implementations	of	real-world	and	highly-optimized	programming	languages.

With	 that	 said,	 the	 most	 obvious	 and	 classical	 choice	 of	 what	 to	 do	 with	 the	 AST	 is	 to	 just
interpret	it.	Traverse	the	AST,	visit	each	node	and	do	what	the	node	signifies:	print	a	string,	add
two	numbers,	execute	a	function's	body	-	all	on	the	fly.	Interpreters	working	this	way	are	called
"tree-walking	interpreters"	and	are	the	archetype	of	interpreters.	Sometimes	their	evaluation	step
is	preceded	by	small	optimizations	that	rewrite	the	AST	(e.g.	remove	unused	variable	bindings)
or	convert	it	 into	another	intermediate	representation	(IR)	that's	more	suitable	for	recursive	and
repeated	evaluation.

Other	 interpreters	 also	 traverse	 the	 AST,	 but	 instead	 of	 interpreting	 the	 AST	 itself	 they	 first
convert	it	to	bytecode.	Bytecode	is	another	IR	of	the	AST	and	a	really	dense	one	at	that.	The	exact
format	and	of	which	opcodes	(the	instructions	that	make	up	the	bytecode)	it's	composed	of	varies
and	 depends	 on	 the	 guest	 and	 host	 programming	 languages.	 In	 general	 though,	 the	 opcodes	 are
pretty	 similar	 to	 the	 mnemonics	 of	 most	 assembly	 languages;	 it's	 a	 safe	 bet	 to	 say	 that	 most
bytecode	definitions	contain	opcodes	for	push	and	pop	 to	do	stack	operations.	But	bytecode	 is
not	 native	 machine	 code,	 nor	 is	 it	 assembly	 language.	 It	 can't	 and	 won't	 be	 executed	 by	 the
operating	system	and	the	CPU	of	the	machine	the	interpreter	is	running	on.	Instead	it's	interpreted
by	a	virtual	machine,	that's	part	of	the	interpreter.	Just	like	VMWare	and	VirtualBox	emulate	real
machines	 and	CPUs,	 these	 virtual	machines	 emulate	 a	machine	 that	 understands	 this	 particular
bytecode	format.	This	approach	can	yield	great	performance	benefits.

A	variation	of	this	strategy	doesn't	involve	an	AST	at	all.	Instead	of	building	an	AST	the	parser
emits	bytecode	directly.	Now,	are	we	still	talking	about	interpreters	or	compilers?	Isn't	emitting
bytecode	that	gets	then	interpreted	(or	should	we	say	"executed"?)	a	form	of	compilation?	I	told
you:	 the	 line	 becomes	 blurry.	 And	 to	 make	 it	 even	 more	 fuzzy,	 consider	 this:	 some
implementations	of	programming	languages	parse	the	source	code,	build	an	AST	and	convert	this
AST	to	bytecode.	But	instead	of	executing	the	operations	specified	by	the	bytecode	directly	in	a
virtual	machine,	 the	 virtual	machine	 then	 compiles	 the	 bytecode	 to	 native	machine	 code,	 right
before	its	executed	-	just	in	time.	That's	called	a	JIT	(for	"just	in	time")	interpreter/compiler.

Others	skip	the	compilation	to	bytecode.	They	recursively	traverse	the	AST	but	before	executing



a	particular	branch	of	it	the	node	is	compiled	to	native	machine	code.	And	then	executed.	Again,
"just	in	time".

A	 slight	 variation	 of	 this	 is	 a	 mixed	 mode	 of	 interpretation	 where	 the	 interpreter	 recursively
evaluates	the	AST	and	only	after	evaluating	a	particular	branch	of	the	AST	multiple	times	does	it
compile	the	branch	to	machine	code.

Amazing,	isn't	it?	So	many	different	ways	to	go	about	this	task	of	evaluation,	so	many	twists	and
variations.

The	choice	of	which	strategy	to	choose	largely	depends	on	performance	and	portability	needs,	the
programming	language	that's	being	interpreted	and	how	far	you're	willing	to	go.	A	tree-walking
interpreter	that	recursively	evaluates	an	AST	is	probably	the	slowest	of	all	approaches,	but	easy
to	build,	extend,	reason	about	and	as	portable	as	the	language	it's	implemented	in.

An	interpreter	that	compiles	to	bytecode	and	uses	a	virtual	machine	to	evaluate	said	bytecode	is
going	to	be	a	lot	faster.	But	more	complicated	and	harder	to	build,	too.	Throw	JIT	compilation	to
machine	code	into	the	mix	and	now	you	also	need	to	support	multiple	machine	architectures	if	you
want	the	interpreter	to	work	on	both	ARM	and	x86	CPUs.

All	of	these	approaches	can	be	found	in	real-world	programming	languages.	And	most	of	the	time
the	chosen	approach	changed	with	the	lifetime	of	the	language.	Ruby	is	a	great	example	here.	Up
to	 and	 including	 version	 1.8	 the	 interpreter	was	 a	 tree-walking	 interpreter,	 executing	 the	AST
while	traversing	it.	But	with	version	1.9	came	the	switch	to	a	virtual	machine	architecture.	Now
the	 Ruby	 interpreter	 parses	 source	 code,	 builds	 an	 AST	 and	 then	 compiles	 this	 AST	 into
bytecode,	which	gets	then	executed	in	a	virtual	machine.	The	increase	in	performance	was	huge.

The	WebKit	JavaScript	engine	JavaScriptCore	and	its	interpreter	named	"Squirrelfish"	also	used
AST	walking	 and	 direct	 execution	 as	 its	 approach.	Then	 in	 2008	 came	 the	 switch	 to	 a	 virtual
machine	 and	 bytecode	 interpretation.	Nowadays	 the	 engine	 has	 four	 (!)	 different	 stages	 of	 JIT
compilation,	 which	 kick	 in	 at	 different	 times	 in	 the	 lifetime	 of	 the	 interpreted	 program	 --
depending	on	which	part	of	the	program	needs	the	best	performance.

Another	example	is	Lua.	The	main	implementation	of	the	Lua	programming	language	started	out	as
an	 interpreter	 that	 compiles	 to	 bytecode	 and	 executes	 the	 bytecode	 in	 a	 register-based	 virtual
machine.	12	years	after	its	first	release	another	implementation	of	the	language	was	born:	LuaJIT.
The	clear	goal	of	Mike	Pall,	the	creator	of	LuaJIT,	was	to	create	the	fastest	Lua	implementation
possible.	And	 he	 did.	By	 JIT	 compiling	 a	 dense	 bytecode	 format	 to	 highly-optimized	machine
code	 for	 different	 architectures	 the	 LuaJIT	 implementation	 beats	 the	 original	 Lua	 in	 every
benchmark.	And	not	just	by	a	tiny	bit,	no;	it's	sometimes	50	times	faster.

So,	a	lot	of	interpreters	started	out	small	with	room	for	improvement.	That's	exactly	what	we're
going	 to	do.	There	are	a	 lot	of	ways	 to	build	a	 faster	 interpreter,	but	not	necessarily	one	 that's
easier	to	understand.	We	are	here	to	learn,	to	understand	and	to	be	able	to	build	upon	our	work.



3.3	-	A	Tree-Walking	Interpreter

What	we're	going	to	build	is	a	tree-walking	interpreter.	We're	going	to	take	the	AST	our	parser
builds	for	us	and	interpret	it	"on	the	fly",	without	any	preprocessing	or	compilation	step.

Our	 interpreter	 will	 be	 a	 lot	 like	 a	 classic	 Lisp	 interpreter.	 The	 design	we're	 going	 to	 use	 is
heavily	 inspired	 by	 the	 interpreter	 presented	 in	 "The	 Structure	 and	 Interpretation	 of	 Computer
Programs"	(SICP),	especially	its	usage	of	environments.	That	doesn't	mean	that	we're	copying	one
particular	interpreter,	no,	we're	rather	using	a	blueprint	that	you	can	see	in	lot	of	other	interpreters
too,	if	you	squint	hard	enough.	There	are	really	good	reasons	for	the	prevalence	of	this	particular
design:	it's	the	easiest	way	to	get	started,	it's	easy	to	understand	and	to	extend	later	on.

We	only	need	two	things	really:	a	tree-walking	evaluator	and	a	way	to	represent	Monkey	values
in	our	host	language	Go.	Evaluator	sounds	mighty	and	grand,	but	it	will	be	just	one	function	called
"eval".	 Its	 job	 is	 to	 evaluate	 the	 AST.	 Here	 is	 a	 pseudocode	 version	 that	 illustrates	 what
"evaluating	on	the	fly"	and	"tree-walking"	mean	in	the	context	of	interpretation:

function	eval(astNode)	{

		if	(astNode	is	integerliteral)	{

				return	astNode.integerValue

		}	else	if	(astNode	is	booleanLiteral)	{

				return	astNode.booleanValue

		}	else	if	(astNode	is	infixExpression)	{

				leftEvaluated	=	eval(astNode.Left)

				rightEvaluated	=	eval(astNode.Right)

				if	astNode.Operator	==	"+"	{

						return	leftEvaluated	+	rightEvaluated

				}	else	if	ast.Operator	==	"-"	{

						return	leftEvaluated	-	rightEvaluated

				}

		}

}

As	 you	 can	 see,	eval	 is	 recursive.	When	astNode	 is	 infixExpression	 is	 true,	 eval	 calls
itself	again	two	times	to	evaluate	the	left	and	the	right	operands	of	the	infix	expression.	This	in
turn	may	lead	to	the	evaluation	of	another	infix	expression	or	an	integer	literal	or	a	boolean	literal
or	an	identifier...	We've	already	seen	recursion	at	work	when	building	and	testing	the	AST.	The
same	concepts	apply	here,	except	that	we're	evaluating	the	tree	and	not	building	it.

Looking	 at	 this	 snippet	 of	 pseudocode	 you	 can	 probably	 imagine	 how	 easy	 it	 is	 to	 extend	 this
function.	That	comes	to	our	advantage.	We're	going	to	build	up	our	own	Eval	function	piece	by
piece	and	add	new	branches	and	capabilities	as	we	go	along	and	extend	our	interpreter.

But	the	most	interesting	lines	of	this	snippet	are	the	return	statements.	What	do	they	return?	Here
are	two	lines	that	bind	the	return	value	of	a	call	to	eval	to	names:

leftEvaluated	=	eval(astNode.Left)

rightEvaluated	=	eval(astNode.Right)



What	does	eval	return	here?	Of	which	type	are	the	return	values?	The	answer	to	these	questions
is	the	same	as	the	one	for	"what	kind	of	internal	object	system	will	our	interpreter	have?"



3.4	-	Representing	Objects

Wait,	what?	You	never	said	Monkey	was	object	oriented!	Yes,	I	never	did	and	it's	not.	Why	do
we	need	"a	object	 system"	 then?	Call	 it	 a	 "value	system"	or	 "object	 representation"	 then.	The
point	is,	we	need	to	define	what	our	"eval"	function	returns.	We	need	a	system	that	can	represent
the	values	our	AST	represents	or	values	that	we	generate	when	evaluating	the	AST	in	memory.

Let's	say	we're	evaluating	the	following	Monkey	code:

let	a	=	5;

//	[...]

a	+	a;

As	you	can	see,	we're	binding	the	integer	literal	5	to	the	name	a.	Then	things	happen.	It	doesn't
matter	what.	What	matters	is	that	when	we	come	across	the	a	+	a	expression	 later	we	need	 to
access	the	value	a	is	bound	to.	In	order	to	evaluate	a	+	a	we	need	to	get	to	the	5.	In	the	AST	it's
represented	as	an	*ast.IntegerLiteral,	but	how	are	we	going	to	keep	track	of	and	represent
the	5	while	we're	evaluating	the	rest	of	the	AST?

There	 are	 a	 lot	 of	 different	 choices	 when	 building	 an	 internal	 representation	 of	 values	 in	 an
interpreted	 language.	 And	 there	 is	 a	 lot	 of	 wisdom	 about	 this	 topic	 spread	 throughout	 the
codebases	 of	 the	 world's	 interpreters	 and	 compilers.	 Each	 interpreter	 has	 its	 own	 way	 to
represent	 values,	 always	 slightly	 differing	 from	 the	 solution	 that	 came	 before,	 adjusted	 for	 the
requirements	of	the	interpreted	language.

Some	use	native	 types	 (integers,	 booleans,	 etc.)	 of	 the	host	 language	 to	 represent	values	 in	 the
interpreted	language,	not	wrapped	in	anything.	In	other	languages	values/objects	are	represented
only	as	pointers,	whereas	in	some	programming	languages	native	types	and	pointers	are	mixed.

Why	 the	 variety?	 For	 one,	 the	 host	 languages	 differ.	 How	 you	 represent	 a	 string	 of	 your
interpreted	language	depends	on	how	a	string	can	be	represented	in	the	language	the	interpreter	is
implemented	in.	An	interpreter	written	in	Ruby	can't	represent	values	the	same	way	an	interpreter
written	in	C	can.

And	 not	 only	 do	 the	 host	 languages	 differ,	 but	 the	 languages	 being	 interpreted	 do	 too.	 Some
interpreted	 languages	 may	 only	 need	 representations	 of	 primitive	 data	 types,	 like	 integers,
characters	or	bytes.	But	in	others	you'll	have	lists,	dictionaries,	functions	or	compound	data	types.
These	differences	lead	to	highly	different	requirements	in	regards	to	value	representation.

Besides	 the	host	 language	and	 the	 interpreted	 language,	 the	biggest	 influence	on	 the	design	and
implementation	 of	 value	 representations	 are	 the	 resulting	 execution	 speed	 and	 the	 memory
consumption	while	evaluating	programs.	If	you	want	to	build	a	fast	interpreter	you	can't	get	away
with	a	slow	and	bloated	object	system.	And	if	you're	going	to	write	your	own	garbage	collector,
you	need	to	think	about	how	it'll	keep	track	of	the	values	in	the	system.	But,	on	the	other	hand,	if
you	 don't	 care	 about	 performance,	 then	 it	 does	make	 sense	 to	 keep	 things	 simple	 and	 easy	 to
understand	until	further	requirements	arise.



The	point	is	this:	there	are	a	lot	of	different	ways	to	represent	values	of	the	interpreted	languages
in	 the	 host	 language.	 The	 best	 (and	 maybe	 the	 only)	 way	 to	 learn	 about	 these	 different
representations	is	to	actually	read	through	the	source	code	of	some	popular	interpreters.	I	heartily
recommended	 the	 Wren	 source	 code,	 which	 includes	 two	 types	 of	 value	 representation,
enabled/disabled	by	using	a	compiler	flag.

Besides	 the	representation	of	values	 inside	 the	host	 language	 there	 is	also	 the	matter	of	how	to
expose	these	values	and	their	representation	to	the	user	of	the	interpreted	language.	What	does	the
"public	API"	of	these	values	look	like?

Java,	for	example,	offers	both	"primitive	data	types"	(int,	byte,	short,	long,	float,	double,	boolean,
char)	and	reference	types	to	the	user.	The	primitive	data	types	do	not	have	a	huge	representation
inside	the	Java	implementation,	they	closely	map	to	their	native	counterparts.	Reference	types	on
the	other	hand	are	references	to	compound	data	structures	defined	in	the	host	language.

In	Ruby	 the	user	doesn't	have	access	 to	"primitive	data	 types",	nothing	 like	a	native	value	 type
exists	 because	 everything	 is	 an	 object	 and	 thus	 wrapped	 inside	 an	 internal	 representation.
Internally	Ruby	doesn't	distinguish	between	a	byte	and	an	instance	of	the	class	Pizza:	both	are	the
same	value	type,	wrapping	different	values.

There	are	a	myriad	ways	to	expose	data	to	users	of	programming	languages.	Which	one	to	choose
depends	on	the	language	design	and	also,	again,	on	performance	requirements.	If	you	don't	care
about	 performance	 everything	 goes.	 But	 if	 you	 do,	 you	 need	 to	make	 some	 smart	 decisions	 to
achieve	your	goals.

Foundation	of	our	Object	System

Carefree	 as	we	 still	 are	 about	 the	performance	of	 our	Monkey	 interpreter,	we	 choose	 the	 easy
way:	we're	going	to	represent	every	value	we	encounter	when	evaluating	Monkey	source	code	as
an	Object,	an	interface	of	our	design.	Every	value	will	be	wrapped	inside	a	struct,	which	fulfills
this	Object	interface.

In	a	new	object	package	we	define	the	Object	interface	and	the	ObjectType	type:

//	object/object.go

package	object

type	ObjectType	string

type	Object	interface	{

				Type()	ObjectType

				Inspect()	string

}

That's	pretty	simple	and	looks	a	lot	like	what	we	did	in	the	token	package	with	the	Token	and
TokenType	types.	Except	that	instead	of	being	a	struct	like	Token	the	Object	type	is	an	interface.
The	reason	 is	 that	every	value	needs	a	different	 internal	 representation	and	 it's	easier	 to	define
two	different	struct	types	than	trying	to	fit	booleans	and	integers	into	the	same	struct	field.

https://github.com/munificent/wren


At	 the	 moment	 we	 only	 have	 three	 data	 types	 in	 our	 Monkey	 interpreter:	 null,	 booleans	 and
integers.	Let's	start	with	implementing	the	integer	representation	and	build	up	our	object	system.

Integers

The	object.Integer	type	is	as	small	as	you'd	expect	it	to	be:

//	object/object.go

import	(

				"fmt"

)

type	Integer	struct	{

				Value	int64

}

func	(i	*Integer)	Inspect()	string	{	return	fmt.Sprintf("%d",	i.Value)	}

Whenever	 we	 encounter	 an	 integer	 literal	 in	 the	 source	 code	 we	 first	 turn	 it	 into	 an
ast.IntegerLiteral	 and	 then,	 when	 evaluating	 that	 AST	 node,	 we	 turn	 it	 into	 an
object.Integer,	saving	the	value	inside	our	struct	and	passing	around	a	reference	to	this	struct.

In	 order	 for	 object.Integer	 to	 fulfill	 the	 object.Object	 interface,	 it	 still	 needs	 a	 Type()
method	that	returns	its	ObjectType.	Just	like	we	did	with	token.TokenType	we	define	constants
for	each	ObjectType:

//	object/object.go

import	"fmt"

type	ObjectType	string

const	(

				INTEGER_OBJ	=	"INTEGER"

)

As	I	said,	this	is	pretty	much	what	we	did	in	the	token	package.	And	with	that	in	place	we	can
add	the	Type()	method	to	*object.Integer:

//	object/object.go

func	(i	*Integer)	Type()	ObjectType	{	return	INTEGER_OBJ	}

And	we're	done	with	Integer!	Onto	another	data	type:	booleans.

Booleans

If	you	were	expecting	big	things	of	this	section,	I'm	sorry	to	disappoint.	object.Boolean	 is	as
tiny	as	it	gets:

//	object/object.go

const	(

//	[...]

				BOOLEAN_OBJ	=	"BOOLEAN"



)

type	Boolean	struct	{

				Value	bool

}

func	(b	*Boolean)	Type()	ObjectType	{	return	BOOLEAN_OBJ	}

func	(b	*Boolean)	Inspect()	string		{	return	fmt.Sprintf("%t",	b.Value)	}

Just	a	struct	that	wraps	a	single	value,	a	bool.

We're	close	 to	finishing	the	foundation	of	our	object	system.	The	last	 thing	we	need	to	do	now,
before	we	can	start	with	our	Eval	function,	is	to	represent	a	value	that	isn't	there.

Null

Tony	Hoare	 introduced	 null	 references	 to	 the	ALGOL	W	 language	 in	 1965	 and	 called	 this	 his
"billion-dollar	 mistake".	 Since	 their	 introduction	 countless	 systems	 have	 crashed	 because	 of
references	 to	 "null",	 a	 value	 that	 represents	 the	 absence	 of	 a	 value.	Null	 (or	 "nil"	 as	 in	 some
languages)	doesn't	have	the	best	reputation,	to	say	the	least.

I	debated	with	myself	whether	Monkey	should	have	null.	On	one	hand,	yes,	the	language	would	be
safer	to	use	if	it	doesn't	allow	null	or	null	references.	But	on	the	other,	we're	not	trying	to	reinvent
the	wheel,	but	 to	 learn	something.	And	I	 found	 that	having	null	at	my	disposal	 lead	me	 to	 think
twice	whenever	there	was	a	chance	to	use	it.	Kinda	like	having	something	explosive	in	your	car
leads	you	to	driving	slower	and	more	carefully.	It	really	made	me	appreciate	the	choices	that	go
into	 the	 design	 of	 a	 programming	 language.	 That's	 something	 I	 consider	 worthwhile.	 So	 let's
implement	the	Null	type	and	keep	a	close	look	and	steady	hand	when	using	it	later	on.

//	object/object.go

const	(

//	[...]

				NULL_OBJ		=	"NULL"

)

type	Null	struct{}

func	(n	*Null)	Type()	ObjectType	{	return	NULL_OBJ	}

func	(n	*Null)	Inspect()	string		{	return	"null"	}

object.Null	 is	a	struct	just	like	object.Boolean	and	object.Integer,	except	that	 it	doesn't
wrap	any	value.	It	represents	the	absence	of	any	value.

With	object.Null	added,	our	object	system	is	now	capable	of	representing	boolean,	integer	and
null	values.	That's	more	than	enough	to	get	started	with	Eval.

https://www.infoq.com/presentations/Null-References-The-Billion-Dollar-Mistake-Tony-Hoare


3.5	-	Evaluating	Expressions

Alright,	here	we	go.	Let's	start	writing	Eval!	We	have	our	AST	and	we	have	a	new	object	system,
that	allows	us	to	keep	track	of	values	we	encounter	when	executing	Monkey	source	code.	It's	time
to	finally	evaluate	the	AST.

Here	is	what	the	signature	of	Eval	will	look	like	in	its	first	version:

func	Eval(node	ast.Node)	object.Object

Eval	will	take	an	ast.Node	as	input	and	return	an	object.Object.	Remember	that	every	node
we	defined	 in	 the	ast	package	fulfills	 the	ast.Node	 interface	and	can	 thus	be	passed	 to	Eval.
This	allows	us	to	use	Eval	recursively	and	call	itself	while	evaluating	a	part	of	the	AST.	Each
AST	node	needs	a	different	form	of	evaluation	and	Eval	is	the	place	where	we	decide	what	these
forms	 look	 like.	As	 an	 example,	 let's	 say	 that	we	 pass	 an	*ast.Program	 node	 to	Eval.	What
Eval	should	do	then	is	to	evaluate	each	of	*ast.Program.Statements	by	calling	itself	with	a
single	statement.	The	return	value	of	the	outer	call	to	Eval	is	the	return	value	of	the	last	call.

We're	going	to	start	by	implementing	self-evaluating	expressions.	That's	what	we	call	literals	in
the	land	of	Eval.	Specifically,	boolean	and	integer	literals.	They	are	the	constructs	in	Monkey	that
are	easiest	 to	evaluate,	because	they	evaluate	 to	 themselves.	If	I	 type	5	 into	my	REPL	then	5	 is
also	what	should	come	out.	And	if	I	type	in	true	then	true	is	what	I	want.

Sounds	easy	enough?	It	is!	So,	let's	turn	"type	in	5,	get	back	5"	into	reality.

Integer	Literals

Before	writing	any	code	 though,	what	does	 this	mean	exactly?	We're	given	a	 single	expression
statement	as	input,	which	only	contains	an	integer	literal,	and	want	to	evaluate	it	so	that	the	integer
itself	is	returned.

Translated	 into	 the	 language	of	our	system,	 it	means	 that,	given	an	*ast.IntegerLiteral,	 our
Eval	function	should	return	an	*object.Integer	whose	Value	field	contains	the	same	integer	as
*ast.IntegerLiteral.Value.

We	can	easily	write	a	test	for	this	in	our	new	evaluator	package:

//	evaluator/evaluator_test.go

package	evaluator

import	(

				"monkey/lexer"

				"monkey/object"

				"monkey/parser"

				"testing"

)

func	TestEvalIntegerExpression(t	*testing.T)	{

				tests	:=	[]struct	{



								input				string

								expected	int64

				}{

								{"5",	5},

								{"10",	10},

				}

				for	_,	tt	:=	range	tests	{

								evaluated	:=	testEval(tt.input)

								testIntegerObject(t,	evaluated,	tt.expected)

				}

}

func	testEval(input	string)	object.Object	{

				l	:=	lexer.New(input)

				p	:=	parser.New(l)

				program	:=	p.ParseProgram()

				return	Eval(program)

}

func	testIntegerObject(t	*testing.T,	obj	object.Object,	expected	int64)	bool	{

				result,	ok	:=	obj.(*object.Integer)

				if	!ok	{

								t.Errorf("object	is	not	Integer.	got=%T	(%+v)",	obj,	obj)

								return	false

				}

				if	result.Value	!=	expected	{

								t.Errorf("object	has	wrong	value.	got=%d,	want=%d",

												result.Value,	expected)

								return	false

				}

				return	true

}

That's	a	lot	of	code	for	such	a	small	test,	isn't	it?	As	with	our	parser	tests,	we're	building	up	our
testing	 infrastructure	 here.	 The	 TestEvalIntegerExpression	 test	 will	 need	 to	 grow	 and	 its
current	structure	makes	this	really	easy.	The	testEval	and	testIntegerObject	will	also	find	a
lot	of	use.

The	heart	of	the	test	is	the	call	to	Eval	inside	testEval.	We	take	our	input,	pass	it	to	the	lexer,
pass	the	lexer	to	the	parser	and	get	back	an	AST.	And	then,	this	is	new,	we	pass	the	AST	to	Eval.
The	return	value	of	Eval	is	what	we	make	assertions	about.	In	this	case,	we	want	the	return	value
to	be	an	*object.Integer	with	the	correct	.Value.	In	other	words:	we	want	5	to	evaluate	to	5.

Of	 course,	 the	 test	 fails	 because	we	haven't	 defined	Eval	 yet.	But	we	 already	know	 that	Eval
should	take	an	ast.Node	as	argument	and	return	an	object.Object.	And	whenever	it	encounters
an	 *ast.IntegerLiteral	 it	 should	 return	 an	 *object.Integer	 with	 the	 correct	 .Value.
Turning	this	into	code	and	defining	our	new	Eval	with	this	behaviour	in	the	evaluator	package,
we	get	this:

//	evaluator/evaluator.go

package	evaluator

import	(

				"monkey/ast"

				"monkey/object"

)

func	Eval(node	ast.Node)	object.Object	{

				switch	node	:=	node.(type)	{



				case	*ast.IntegerLiteral:

								return	&object.Integer{Value:	node.Value}

				}

				return	nil

}

Nothing	surprising	here,	it	does	just	what	we	said	it	should.	Except	that	it	doesn't	work.	The	test
still	fails	because	Eval	returns	nil	instead	of	an	*object.Integer.

$	go	test	./evaluator

---	FAIL:	TestEvalIntegerExpression	(0.00s)

		evaluator_test.go:36:	object	is	not	Integer.	got=<nil>	(<nil>)

		evaluator_test.go:36:	object	is	not	Integer.	got=<nil>	(<nil>)

FAIL

FAIL				monkey/evaluator								0.006s

The	 reason	 for	 this	 failure	 is	 that	we	 never	 encounter	 an	*ast.IntegerLiteral	 in	 Eval.	We
don't	traverse	the	AST.	We	should	always	start	at	the	top	of	the	tree,	receiving	an	*ast.Program,
and	then	traverse	every	node	in	it.	And	that's	exactly	what	we're	not	doing	here.	We're	just	waiting
for	 an	 *ast.IntegerLiteral.	 The	 fix	 is	 to	 actually	 traverse	 the	 tree	 and	 evaluate	 every
statement	of	the	*ast.Program:

//	evaluator/evaluator.go

func	Eval(node	ast.Node)	object.Object	{

				switch	node	:=	node.(type)	{

				//	Statements

				case	*ast.Program:

								return	evalStatements(node.Statements)

				case	*ast.ExpressionStatement:

								return	Eval(node.Expression)

				//	Expressions

				case	*ast.IntegerLiteral:

								return	&object.Integer{Value:	node.Value}

				}

				return	nil

}

func	evalStatements(stmts	[]ast.Statement)	object.Object	{

				var	result	object.Object

				for	_,	statement	:=	range	stmts	{

								result	=	Eval(statement)

				}

				return	result

}

With	this	changes	we	evaluate	every	statement	in	a	Monkey	program.	And	if	the	statement	is	an
*ast.ExpressionStatement	we	evaluate	its	expression.	That	mirrors	the	AST	structure	we	get
from	a	one	line	input	like	5:	a	program	that	consists	of	one	statement,	an	expression	statement	(not
a	return	statement	and	not	a	let	statement)	with	an	integer	literal	as	its	expression.

$	go	test	./evaluator

ok						monkey/evaluator								0.006s

Alright,	the	tests	pass!	We	can	evaluate	integer	literals!	Hey	everyone,	if	we	type	in	a	number,	a



number	comes	out	and	it	only	took	us	a	couple	thousand	lines	of	code	and	tests	to	do	so!	Okay,
granted,	it	doesn't	 look	like	much.	But	it's	a	start.	We're	beginning	to	see	how	evaluation	works
and	how	we	can	extend	our	evaluator.	The	structure	of	Eval	won't	change,	we'll	only	add	to	and
extend	it.

Next	up	on	our	list	of	self-evaluating	expressions	are	boolean	literals.	But	before	we	do	that,	we
should	celebrate	our	first	evaluation	success	and	treat	ourselves.	Let's	put	the	E	in	REPL!

Completing	the	REPL

Up	until	now	the	E	in	in	our	REPL	was	missing	and	we	had	nothing	but	a	RPPL	-	a	Read-Parse-
Print-Loop.	Now	that	we	have	Eval	we	can	build	a	real	Read-Evaluate-Print-Loop!

Using	the	evaluator	in	the	repl	package	is	as	easy	as	you'd	think	it	is:

//	repl/repl.go

import	(

//	[...]

				"monkey/evaluator"

)

//	[...]

func	Start(in	io.Reader,	out	io.Writer)	{

				scanner	:=	bufio.NewScanner(in)

				for	{

								fmt.Printf(PROMPT)

								scanned	:=	scanner.Scan()

								if	!scanned	{

												return

								}

								line	:=	scanner.Text()

								l	:=	lexer.New(line)

								p	:=	parser.New(l)

								program	:=	p.ParseProgram()

								if	len(p.Errors())	!=	0	{

												printParserErrors(out,	p.Errors())

												continue

								}

								evaluated	:=	evaluator.Eval(program)

								if	evaluated	!=	nil	{

												io.WriteString(out,	evaluated.Inspect())

												io.WriteString(out,	"\n")

								}

				}

}

Instead	of	printing	program	(the	AST	returned	by	the	parser)	we	pass	program	to	Eval.	If	Eval
returns	a	non-nil	value,	an	object.Object,	we	print	the	output	of	its	Inspect()	method.	In	the
case	of	an	*object.Integer	that	would	be	the	string	representation	of	the	integer	it's	wrapping.

And	with	that	we	now	have	a	working	REPL:

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!



Feel	free	to	type	in	commands

>>	5

5

>>	10

10

>>	999

999

>>

Feels	good,	doesn't	it?	Lexing,	parsing,	evaluating	-	it's	all	in	there.	We've	come	a	long	way.

Boolean	Literals

Boolean	 literals,	 just	 like	 their	 integer	 counterparts,	 evaluate	 to	 themselves.	true	 evaluates	 to
true	 and	false	 to	false.	 Implementing	 this	 in	Eval	 is	 as	 easy	 as	 adding	 support	 for	 integer
literals	was.	The	tests	are	equally	boring:

//	evaluator/evaluator_test.go

func	TestEvalBooleanExpression(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	bool

				}{

								{"true",	true},

								{"false",	false},

				}

				for	_,	tt	:=	range	tests	{

								evaluated	:=	testEval(tt.input)

								testBooleanObject(t,	evaluated,	tt.expected)

				}

}

func	testBooleanObject(t	*testing.T,	obj	object.Object,	expected	bool)	bool	{

				result,	ok	:=	obj.(*object.Boolean)

				if	!ok	{

								t.Errorf("object	is	not	Boolean.	got=%T	(%+v)",	obj,	obj)

								return	false

				}

				if	result.Value	!=	expected	{

								t.Errorf("object	has	wrong	value.	got=%t,	want=%t",

												result.Value,	expected)

								return	false

				}

				return	true

}

We'll	extend	the	tests	slice	as	soon	as	we	support	more	expressions	that	result	in	booleans.	For
now,	we	only	make	sure	that	we	get	the	correct	output	when	we	enter	true	or	false.	The	 tests
fail:

$	go	test	./evaluator

---	FAIL:	TestEvalBooleanExpression	(0.00s)

		evaluator_test.go:42:	Eval	didn't	return	BooleanObject.	got=<nil>	(<nil>)

		evaluator_test.go:42:	Eval	didn't	return	BooleanObject.	got=<nil>	(<nil>)

FAIL

FAIL				monkey/evaluator								0.006s

Making	 this	 green	 is	 as	 easy	 as	 copying	 the	 case	 branch	 from	 *ast.IntegerLiteral	 and
changing	two	identifiers:



//	evaluator/evaluator.go

func	Eval(node	ast.Node)	object.Object	{

//	[...]

				case	*ast.Boolean:

								return	&object.Boolean{Value:	node.Value}

//	[...]

}

That's	it!	Let's	give	it	a	spin	in	the	REPL:

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	true

true

>>	false

false

>>

Pretty!	But,	let	me	ask	you	this:	the	fact	that	we're	creating	a	new	object.Boolean	every	time	we
encounter	a	true	or	false	 is	 absurd,	 isn't	 it?	There	 is	 no	difference	between	 two	trues.	 The
same	goes	for	false.	Why	use	new	instances	every	time?	There	are	only	two	possible	values,	so
let's	reference	them	instead	of	creating	new	ones.

//	evaluator/evaluator.go

var	(

				TRUE		=	&object.Boolean{Value:	true}

				FALSE	=	&object.Boolean{Value:	false}

)

func	Eval(node	ast.Node)	object.Object	{

//	[...]

				case	*ast.Boolean:

								return	nativeBoolToBooleanObject(node.Value)

//	[...]

}

func	nativeBoolToBooleanObject(input	bool)	*object.Boolean	{

				if	input	{

								return	TRUE

				}

				return	FALSE

}

Now	there	are	only	two	instances	of	object.Boolean	in	our	package:	TRUE	and	FALSE	and	we
reference	them	instead	of	allocating	new	object.Booleans.	That	makes	much	more	sense	and	is
a	small	performance	improvement	we	get	without	a	lot	of	work.	And	while	we're	at	it,	let's	take
care	of	null,	too.

Null

Just	as	there	is	only	one	true	and	one	false,	there	should	only	be	one	reference	to	a	null	value.
There	 are	 no	 variations	 of	 null.	No	 kinda-but-not-quite-null,	 no	 half-null	 and	 no	 basically-the-
same-as-the-other-null.	Either	something	is	this	one	null,	or	it	isn't.	So	let's	create	one	NULL	we
can	reference	throughout	our	evaluator	instead	of	creating	new	object.Nulls.

//	evaluator/evaluator.go



var	(

				NULL		=	&object.Null{}

				TRUE		=	&object.Boolean{Value:	true}

				FALSE	=	&object.Boolean{Value:	false}

)

And	that's	all	there	is	to	it.	Now	we	have	one	NULL	we	can	reference.

With	 integer	 literals	 and	 our	 trio	 of	 NULL,	 TRUE	 and	 FALSE	 in	 place	 we're	 ready	 to	 evaluate
operator	expressions.

Prefix	Expressions

The	 simplest	 form	of	 operator	 expressions	Monkey	 supports	 is	 the	 prefix	 expression,	 or	 unary
operator	expression,	where	one	operand	follows	 the	operator.	 In	our	parser	we	treated	a	 lot	of
language	constructs	like	prefix	expressions,	because	that's	 the	easiest	way	to	parse	them.	But	in
this	section	prefix	expressions	are	just	operator	expressions	with	one	operator	and	one	operand.
Monkey	supports	two	of	these	prefix	operators:	!	and	-.

Evaluating	 operator	 expression	 (especially	with	 a	 prefix	 operator	 and	 one	 operand)	 isn't	 hard.
We'll	do	it	in	small	steps	and	build	up	the	desired	behaviour	bit	by	bit.	But	we	also	need	to	pay
close	attention.	What	we're	about	to	implement	has	far	reaching	consequences.	Remember:	in	the
evaluation	 process	 the	 input	 language	 receives	 meaning;	 we're	 defining	 the	 semantics	 of	 the
Monkey	programming	language.	A	small	change	in	 the	evaluation	of	operator	expressions	might
cause	something	unintended	in	a	part	of	the	language	that	seems	entirely	unrelated.	Tests	help	us	to
nail	down	the	desired	behaviour	and	also	act	as	a	specification	for	us.

We're	going	to	start	by	implementing	support	for	the	!	operator.	The	tests	show	that	the	operator
should	"convert"	its	operand	to	a	boolean	value	and	negate	it:

//	evaluator/evaluator_test.go

func	TestBangOperator(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	bool

				}{

								{"!true",	false},

								{"!false",	true},

								{"!5",	false},

								{"!!true",	true},

								{"!!false",	false},

								{"!!5",	true},

				}

				for	_,	tt	:=	range	tests	{

								evaluated	:=	testEval(tt.input)

								testBooleanObject(t,	evaluated,	tt.expected)

				}

}

As	I	said,	this	is	where	we	decide	how	the	language	works.	The	!true	and	!false	expressions
and	 their	 expected	 results	 seem	 like	 common	 sense,	 but	 the	!5	may	 be	 something	where	 other
language	designers	feel	an	error	should	be	returned.	But	what	we're	saying	here	is	that	5	acts	as



"truthy".

The	tests	don't	pass,	of	course,	because	Eval	returns	nil	instead	of	TRUE	or	FALSE.	The	first	step
to	 evaluating	 a	 prefix	 expression	 is	 to	 evaluate	 its	 operand	 and	 then	 use	 the	 result	 of	 this
evaluation	with	the	operator:

//	evaluator/evaluator.go

func	Eval(node	ast.Node)	object.Object	{

//	[...]

				case	*ast.PrefixExpression:

								right	:=	Eval(node.Right)

								return	evalPrefixExpression(node.Operator,	right)

//	[...]

}

After	the	first	call	to	Eval	here,	right	may	be	an	*object.Integer	or	an	*object.Boolean	or
maybe	even	NULL.	We	then	take	this	right	operand	and	pass	it	to	evalPrefixExpression	which
checks	if	the	operator	is	supported:

//	evaluator/evaluator.go

func	evalPrefixExpression(operator	string,	right	object.Object)	object.Object	{

				switch	operator	{

				case	"!":

								return	evalBangOperatorExpression(right)

				default:

								return	NULL

				}

}

If	the	operator	is	not	supported	we	return	NULL.	 Is	 that	 the	best	choice?	Maybe,	maybe	not.	For
now,	it's	definitely	the	easiest	choice,	since	we	don't	have	any	error	handling	implemented	yet.

The	evalBangOperatorExpression	function	is	where	the	behaviour	of	the	!	is	specified:

//	evaluator/evaluator.go

func	evalBangOperatorExpression(right	object.Object)	object.Object	{

				switch	right	{

				case	TRUE:

								return	FALSE

				case	FALSE:

								return	TRUE

				case	NULL:

								return	TRUE

				default:

								return	FALSE

				}

}

And	with	that	the	tests	pass!

$	go	test	./evaluator

ok						monkey/evaluator								0.007s

Let's	move	 on	 to	 the	-	 prefix	 operator.	We	 can	 extend	 our	TestEvalIntegerExpression	 test
function	to	incorporate	it:

//	evaluator/evaluator_test.go



func	TestEvalIntegerExpression(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	int64

				}{

								{"5",	5},

								{"10",	10},

								{"-5",	-5},

								{"-10",	-10},

				}

//	[...]

}

I	choose	to	extend	this	test	rather	than	writing	a	new	test	function	solely	for	the	-	prefix	operator
for	 two	 reasons.	 First,	 integers	 are	 the	 only	 supported	 operands	 of	 the	 -	 operator	 in	 prefix
position.	And	second,	because	this	test	function	should	grow	to	encompass	all	integer	arithmetic
in	order	to	have	one	place	that	shows	the	desired	behaviour	in	a	clear	and	neat	way.

We	have	 to	extend	 the	evalPrefixExpression	 function	we	wrote	earlier	 in	order	 to	make	 the
test	cases	pass.	A	new	branch	in	the	switch	statement	is	needed:

//	evaluator/evaluator.go

func	evalPrefixExpression(operator	string,	right	object.Object)	object.Object	{

				switch	operator	{

				case	"!":

								return	evalBangOperatorExpression(right)

				case	"-":

								return	evalMinusPrefixOperatorExpression(right)

				default:

								return	NULL

				}

}

The	evalMinusPrefixOperatorExpression	function	looks	like	this:

//	evaluator/evaluator.go

func	evalMinusPrefixOperatorExpression(right	object.Object)	object.Object	{

				if	right.Type()	!=	object.INTEGER_OBJ	{

								return	NULL

				}

				value	:=	right.(*object.Integer).Value

				return	&object.Integer{Value:	-value}

}

The	first	thing	we	do	here	is	to	check	if	the	operand	is	an	integer.	If	it	isn't,	we	return	NULL.	But	if
it	 is,	we	extract	 the	value	of	 the	*object.Integer.	Then	we	allocate	 a	new	object	 to	wrap	a
negated	version	of	this	value.

That	wasn't	a	lot	of	code,	was	it?	But	still,	it	did	the	job:

$	go	test	./evaluator

ok						monkey/evaluator								0.007s

Excellent!	Now	we	can	give	our	prefix	expressions	a	spin	in	the	REPL	before	moving	on	to	their
infix	friends:



$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	-5

-5

>>	!true

false

>>	!-5

false

>>	!!-5

true

>>	!!!!-5

true

>>	-true

null

Amazing!

Infix	Expressions

As	a	refresher,	here	are	the	eight	infix	operators	that	Monkey	supports:

5	+	5;

5	-	5;

5	*	5;

5	/	5;

5	>	5;

5	<	5;

5	==	5;

5	!=	5;

These	 eight	 operators	 can	 be	 separated	 into	 two	 groups:	 one	 group	 of	 operators	 produces
booleans	as	their	result	and	one	group	doesn't.	We'll	start	by	implementing	support	for	the	second
group:	+,	-,	*,	/.	And	 first	 only	 in	 combination	with	 integer	 operands.	As	 soon	 as	 that	works,
we'll	add	support	for	booleans	on	either	side	of	the	operator.

The	 test	 infrastructure	 is	already	 in	place.	We'll	 just	extend	our	TestEvalIntegerExpression
test	function	with	test	cases	for	these	new	operators:

//	evaluator/evaluator_test.go

func	TestEvalIntegerExpression(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	int64

				}{

								{"5",	5},

								{"10",	10},

								{"-5",	-5},

								{"-10",	-10},

								{"5	+	5	+	5	+	5	-	10",	10},

								{"2	*	2	*	2	*	2	*	2",	32},

								{"-50	+	100	+	-50",	0},

								{"5	*	2	+	10",	20},

								{"5	+	2	*	10",	25},

								{"20	+	2	*	-10",	0},

								{"50	/	2	*	2	+	10",	60},

								{"2	*	(5	+	10)",	30},

								{"3	*	3	*	3	+	10",	37},

								{"3	*	(3	*	3)	+	10",	37},

								{"(5	+	10	*	2	+	15	/	3)	*	2	+	-10",	50},

				}



//	[...]

}

Yes,	there	are	probably	some	test	cases	that	can	be	removed	because	they	duplicate	another	one
and	some	add	nothing	new,	but	 to	be	honest:	 I	was	 really	 trigger	happy	with	 these	 tests	once	 I
realized	that	the	implementation	works	and	I	just	couldn't	believe	it.	"It	can't	be	that	easy,	can	it?"
Well,	yes,	it	can.

To	get	these	test	cases	to	pass,	the	first	thing	we	need	to	do	is	to	extend	our	switch	statement	in
Eval:

//	evaluator/evaluator.go

func	Eval(node	ast.Node)	object.Object	{

//	[...]

				case	*ast.InfixExpression:

								left	:=	Eval(node.Left)

								right	:=	Eval(node.Right)

								return	evalInfixExpression(node.Operator,	left,	right)

//	[...]

}

Just	as	with	*ast.PrefixExpression	we	evaluate	the	operands	first.	And	now	we	have	two:	the
left	and	the	right	arm	of	the	AST	node.	We	already	know	that	these	may	be	any	other	expression	-
a	 function	call,	 an	 integer	 literal,	 an	operator	 expression,	 etc.	We	don't	 care.	We	 let	Eval	 take
care	of	it.

After	 evaluating	 the	 operands	 we	 take	 the	 returned	 values	 and	 the	 operator	 and	 pass	 them	 to
evalIntegerInfixExpressions,	which	looks	like	this:

//	evaluator/evaluator.go

func	evalInfixExpression(

				operator	string,

				left,	right	object.Object,

)	object.Object	{

				switch	{

				case	left.Type()	==	object.INTEGER_OBJ	&&	right.Type()	==	object.INTEGER_OBJ:

								return	evalIntegerInfixExpression(operator,	left,	right)

				default:

								return	NULL

				}

}

In	 case	 the	 operands	 aren't	 both	 integers	we	 return	NULL,	 just	 as	 I	 promised.	Of	 course,	we'll
extend	this	function	later	on,	but	in	order	to	get	the	tests	to	pass,	this	is	enough.	The	heart	of	the
matter	 lies	 in	 evalIntegerInfixExpression,	 where	 the	 values	 wrapped	 by
*object.Integers	are	added,	subtracted,	multiplied	and	divided:

//	evaluator/evaluator.go

func	evalIntegerInfixExpression(

				operator	string,

				left,	right	object.Object,

)	object.Object	{

				leftVal	:=	left.(*object.Integer).Value

				rightVal	:=	right.(*object.Integer).Value

				switch	operator	{



				case	"+":

								return	&object.Integer{Value:	leftVal	+	rightVal}

				case	"-":

								return	&object.Integer{Value:	leftVal	-	rightVal}

				case	"*":

								return	&object.Integer{Value:	leftVal	*	rightVal}

				case	"/":

								return	&object.Integer{Value:	leftVal	/	rightVal}

				default:

								return	NULL

				}

}

And	now,	believe	it	or	not,	the	tests	pass.	Yes,	really,	they	do:

$	go	test	./evaluator

ok						monkey/evaluator								0.007s

Go	on,	add	a	few	more.	Knock	yourself	out.	And	then	come	back	here	so	we	can	add	support	for
the	operators	that	result	in	booleans:	==,	!=,	<	and	>.

We	 can	 extend	 our	 TestEvalBooleanExpression	 test	 function	 with	 test	 cases	 for	 these
operators,	since	they	all	produce	a	boolean:

//	evaluator/evaluator_test.go

func	TestEvalBooleanExpression(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	bool

				}{

								{"true",	true},

								{"false",	false},

								{"1	<	2",	true},

								{"1	>	2",	false},

								{"1	<	1",	false},

								{"1	>	1",	false},

								{"1	==	1",	true},

								{"1	!=	1",	false},

								{"1	==	2",	false},

								{"1	!=	2",	true},

				}

//	[...]

}

A	 few	 added	 lines	 in	evalIntegerInfixExpression	 is	 all	 that's	 needed	 to	 get	 these	 tests	 to
pass:

//	evaluator/evaluator.go

func	evalIntegerInfixExpression(

				operator	string,

				left,	right	object.Object,

)	object.Object	{

				leftVal	:=	left.(*object.Integer).Value

				rightVal	:=	right.(*object.Integer).Value

				switch	operator	{

//	[...]

				case	"<":

								return	nativeBoolToBooleanObject(leftVal	<	rightVal)

				case	">":

								return	nativeBoolToBooleanObject(leftVal	>	rightVal)

				case	"==":

								return	nativeBoolToBooleanObject(leftVal	==	rightVal)



				case	"!=":

								return	nativeBoolToBooleanObject(leftVal	!=	rightVal)

				default:

								return	NULL

				}

}

The	 nativeBoolToBooleanObject	 function	 we	 already	 used	 for	 boolean	 literals	 now	 finds
some	reuse	when	we	need	to	return	either	TRUE	or	FALSE	based	on	the	comparison	between	the
unwrapped	values.

And	that's	it!	Well,	at	least	for	integers.	We	now	fully	support	the	eight	infix	operators	when	both
operands	are	integers.	What's	left	in	this	section	is	adding	support	for	boolean	operands.

Monkey	only	supports	boolean	operands	for	the	equality	operators	==	and	!=.	It	doesn't	support
adding,	 subtracting,	 dividing	 and	multiplying	 booleans.	Checking	whether	true	 is	 greater	 than
false	 with	 <	 or	 >	 is	 also	 unsupported.	 That	 reduces	 our	 task	 to	 just	 adding	 support	 for	 two
operators.

The	 first	 thing	we	have	 to	 do,	 as	 you	know,	 is	 to	 add	 tests.	And,	 as	 before,	we	 can	 extend	 an
existing	test	function.	In	this	case,	we'll	use	TestEvalBooleanExpression	and	add	test	cases	for
the	==	and	!=	operators:

//	evaluator/evaluator_test.go

func	TestEvalBooleanExpression(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	bool

				}{

//	[...]

								{"true	==	true",	true},

								{"false	==	false",	true},

								{"true	==	false",	false},

								{"true	!=	false",	true},

								{"false	!=	true",	true},

								{"(1	<	2)	==	true",	true},

								{"(1	<	2)	==	false",	false},

								{"(1	>	2)	==	true",	false},

								{"(1	>	2)	==	false",	true},

				}

//	[...]

}

Strictly	speaking,	only	the	first	five	cases	are	necessary	to	test	the	new	and	desired	behaviour.	But
let's	throw	in	the	other	four	too	to	check	the	comparison	between	generated	booleans.

So	far,	so	good.	Nothing	surprising	here.	Just	another	set	of	of	failing	tests:

$	go	test	./evaluator

---	FAIL:	TestEvalBooleanExpression	(0.00s)

		evaluator_test.go:121:	object	is	not	Boolean.	got=*object.Null	(&{})

		evaluator_test.go:121:	object	is	not	Boolean.	got=*object.Null	(&{})

		evaluator_test.go:121:	object	is	not	Boolean.	got=*object.Null	(&{})

		evaluator_test.go:121:	object	is	not	Boolean.	got=*object.Null	(&{})

		evaluator_test.go:121:	object	is	not	Boolean.	got=*object.Null	(&{})

		evaluator_test.go:121:	object	is	not	Boolean.	got=*object.Null	(&{})

		evaluator_test.go:121:	object	is	not	Boolean.	got=*object.Null	(&{})

		evaluator_test.go:121:	object	is	not	Boolean.	got=*object.Null	(&{})

		evaluator_test.go:121:	object	is	not	Boolean.	got=*object.Null	(&{})



FAIL

FAIL				monkey/evaluator								0.007s

And	here's	something	neat	to	make	those	tests	pass:

//	evaluator/evaluator.go

func	evalInfixExpression(

				operator	string,

				left,	right	object.Object,

)	object.Object	{

				switch	{

//	[...]

				case	operator	==	"==":

								return	nativeBoolToBooleanObject(left	==	right)

				case	operator	==	"!=":

								return	nativeBoolToBooleanObject(left	!=	right)

				default:

								return	NULL

				}

}

Yes,	that's	right.	We	only	add	four	lines	to	our	existing	evalInfixExpression	and	the	tests	pass.
We're	using	pointer	comparison	here	to	check	for	equality	between	booleans.	That	works	because
we're	 always	using	pointers	 to	our	objects	 and	 in	 the	 case	of	booleans	we	only	 ever	use	 two:
TRUE	and	FALSE.	So,	if	something	has	the	same	value	as	TRUE	(the	memory	address	that	is)	then
it's	true.	This	also	works	with	NULL.

This	 doesn't	 work	 for	 integers	 or	 other	 data	 types	 we	 might	 add	 later	 on.	 In	 the	 case	 of
*object.Integer	we're	always	allocating	new	instances	of	object.Integer	and	thus	use	new
pointers.	We	 can't	 compare	 these	 pointers	 to	 different	 instances,	 otherwise	 5	 ==	 5	 would	 be
false,	which	is	not	what	we	want.	In	this	case	we	want	to	explicitly	compare	the	values	and	not
the	objects	that	wrap	these	values.

That's	why	the	check	for	integer	operands	has	to	be	higher	up	in	the	switch	statement	and	match
earlier	 than	 these	 newly	 added	case	 branches.	As	 long	 as	we're	 taking	 care	 of	 other	 operand
types	before	arriving	at	these	pointer	comparisons	we're	fine	and	it	works.

In	ten	years,	when	Monkey	is	a	famous	programming	language	and	the	discussion	about	research-
ignoring	 dilettantes	 designing	 programming	 languages	 is	 still	 ongoing	 and	we're	 both	 rich	 and
famous,	someone	will	ask	on	StackOverflow	why	integer	comparison	in	Monkey	is	slower	than
boolean	comparison.	The	answer	will	be	written	by	either	you	or	me	and	one	of	us	will	say	that
Monkey's	object	system	doesn't	allow	pointer	comparison	for	integer	objects.	It	has	to	unwrap	the
value	before	a	comparison	can	be	made.	Thus	the	comparison	between	booleans	is	faster.	We'll
add	a	"Source:	I	wrote	it."	to	the	bottom	of	our	answer	and	earn	an	unheard	of	amount	of	karma.

But	I	digress.	To	get	back	to	topic,	let	me	just	say:	Wow!	We	did	it!	I	know,	I'm	pretty	lavish	with
my	praise	and	can	spot	a	cause	for	celebration	pretty	easily,	but	if	there	ever	was	a	time	to	pop
the	champagne,	it's	now.	Yes,	we	did	it.	Just	look	at	what	our	interpreter	can	do	now:

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	5	*	5	+	10
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>>	3	+	4	*	5	==	3	*	1	+	4	*	5

true

>>	5	*	10	>	40	+	5

true

>>	(10	+	2)	*	30	==	300	+	20	*	3

true

>>	(5	>	5	==	true)	!=	false

false

>>	500	/	2	!=	250

false

So,	now	we	have	a	fully	functional	calculator	that's	ready	to	do	more.	Let's	give	him	more.	Let's
make	it	look	more	like	a	programming	language.



3.6	-	Conditionals

You'll	be	amazed	how	easy	it	is	to	add	support	for	conditionals	in	our	evaluator.	The	only	hard
thing	 about	 their	 implementation	 is	 deciding	 when	 to	 evaluate	 what.	 Because	 that's	 the	 whole
point	of	conditionals:	only	ever	evaluate	something	based	on	a	condition.	Consider	this:

if	(x	>	10)	{

		puts("everything	okay!");

}	else	{

		puts("x	is	too	low!");

		shutdownSystem();

}

When	evaluating	this	if-else-expression	the	important	thing	is	to	only	evaluate	the	correct	branch.
If	the	condition	is	met,	we	must	never	evaluate	the	else-branch,	only	the	if-branch.	And	if	it	isn't
met	we	must	only	evaluate	the	else-branch.

In	other	words:	we	can	only	evaluate	the	else-branch	of	this	conditional	if	the	condition	x	>	10
is	not	...	well,	when	it's	not	what	exactly?	Should	we	evaluate	the	consequence,	the	"everything
okay!"	 branch,	 only	 when	 the	 condition	 expression	 generates	 a	 true	 or	 when	 it	 generates
something	"truthy",	something	that's	not	false	or	not	null?

And	that's	the	tough	part	about	this,	because	that's	a	design	decision,	a	language	design	decision
to	be	exact,	with	wide	ranging	consequences.

In	 the	 case	 of	 Monkey,	 the	 consequence	 part	 of	 the	 conditional	 will	 be	 evaluated	 when	 the
condition	is	"truthy".	And	"truthy"	means:	it's	not	null	and	it's	not	false.	It	doesn't	necessarily	need
to	be	true.

let	x	=	10;

if	(x)	{

		puts("everything	okay!");

}	else	{

		puts("x	is	too	high!");

		shutdownSystem();

}

In	 this	 example	 "everything	 okay!"	 should	 be	 printed.	 Why?	 Because	 x	 is	 bound	 to	 10,
evaluates	to	10	and	10	is	not	null	and	not	false.	That's	how	conditionals	are	supposed	to	work	in
Monkey.

Now	that	we've	talked	about	this,	we	can	turn	this	specification	into	a	set	of	test	cases:

//	evaluator/evaluator_test.go

func	TestIfElseExpressions(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	interface{}

				}{

								{"if	(true)	{	10	}",	10},

								{"if	(false)	{	10	}",	nil},

								{"if	(1)	{	10	}",	10},

								{"if	(1	<	2)	{	10	}",	10},

								{"if	(1	>	2)	{	10	}",	nil},



								{"if	(1	>	2)	{	10	}	else	{	20	}",	20},

								{"if	(1	<	2)	{	10	}	else	{	20	}",	10},

				}

				for	_,	tt	:=	range	tests	{

								evaluated	:=	testEval(tt.input)

								integer,	ok	:=	tt.expected.(int)

								if	ok	{

												testIntegerObject(t,	evaluated,	int64(integer))

								}	else	{

												testNullObject(t,	evaluated)

								}

				}

}

func	testNullObject(t	*testing.T,	obj	object.Object)	bool	{

				if	obj	!=	NULL	{

								t.Errorf("object	is	not	NULL.	got=%T	(%+v)",	obj,	obj)

								return	false

				}

				return	true

}

This	 test	 function	 also	 specifies	 behaviour	 we	 haven't	 talked	 about	 yet.	 When	 a	 conditional
doesn't	evaluate	to	a	value	it's	supposed	to	return	NULL,	e.g.:

if	(false)	{	10	}

The	else	is	missing	and	thus	the	conditional	should	produce	NULL.

We	have	to	do	a	little	type	assertion	and	conversion	dance	to	allow	nil	in	our	expected	 field,
granted,	but	the	tests	are	readable	and	clearly	show	the	desired	and	hereby	specified	behaviour.
They	also	fail,	because	we	don't	return	any	*object.Integers	or	NULL:

$	go	test	./evaluator

---	FAIL:	TestIfElseExpressions	(0.00s)

		evaluator_test.go:125:	object	is	not	Integer.	got=<nil>	(<nil>)

		evaluator_test.go:153:	object	is	not	NULL.	got=<nil>	(<nil>)

		evaluator_test.go:125:	object	is	not	Integer.	got=<nil>	(<nil>)

		evaluator_test.go:125:	object	is	not	Integer.	got=<nil>	(<nil>)

		evaluator_test.go:153:	object	is	not	NULL.	got=<nil>	(<nil>)

		evaluator_test.go:125:	object	is	not	Integer.	got=<nil>	(<nil>)

		evaluator_test.go:125:	object	is	not	Integer.	got=<nil>	(<nil>)

FAIL

FAIL				monkey/evaluator								0.007s

Earlier	I	told	you	that	you'll	be	amazed	at	how	easy	it	is	to	implement	support	for	conditionals.
Didn't	believe	me?	Well,	look	at	this	small	amount	of	code	necessary	to	make	the	tests	pass:

//	evaluator/evaluator.go

func	Eval(node	ast.Node)	object.Object	{

//	[...]

				case	*ast.BlockStatement:

								return	evalStatements(node.Statements)

				case	*ast.IfExpression:

								return	evalIfExpression(node)

//	[...]

}

func	evalIfExpression(ie	*ast.IfExpression)	object.Object	{

				condition	:=	Eval(ie.Condition)

				if	isTruthy(condition)	{



								return	Eval(ie.Consequence)

				}	else	if	ie.Alternative	!=	nil	{

								return	Eval(ie.Alternative)

				}	else	{

								return	NULL

				}

}

func	isTruthy(obj	object.Object)	bool	{

				switch	obj	{

				case	NULL:

								return	false

				case	TRUE:

								return	true

				case	FALSE:

								return	false

				default:

								return	true

				}

}

As	I	said:	the	only	hard	thing	is	deciding	what	to	evaluate.	And	that	decision	is	encapsulated	in
evalIfExpression	 where	 the	 logic	 of	 the	 behaviour	 is	 pretty	 clear.	 isTruthy	 is	 equally
expressive.	 Besides	 these	 two	 functions	 we	 also	 added	 the	 case	 branch	 for
*ast.BlockStatement	 to	 our	 Eval	 switch	 statement,	 because	 the	 .Consequence	 and
.Alternative	of	*ast.IfExpression	are	both	block	statements.

We	added	 two	new	and	concise	 functions	 that	 show	 the	 semantics	of	 the	Monkey	programming
language	in	a	clear	way,	reused	another	function	we	already	had	in	place	and	with	doing	so	added
support	 for	 conditionals	 and	 made	 the	 tests	 pass.	 Our	 interpreter	 now	 supports	 if-else-
expressions!	We're	 now	 leaving	 calculator	 territory	 and	 heading	 straight	 towards	 programming
language	land:

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	if	(5	*	5	+	10	>	34)	{	99	}	else	{	100	}

99

>>	if	((1000	/	2)	+	250	*	2	==	1000)	{	9999	}

9999

>>



3.7	-	Return	Statements

Now	here's	something	that	you	won't	find	on	your	standard	calculator:	return	statements.	Monkey
has	them,	like	a	lot	of	other	languages.	They	can	be	used	in	the	bodies	of	functions	but	also	as	top-
level	 statements	 in	a	Monkey	program.	But	 it	doesn't	 really	matter	where	 they're	used,	because
how	they	work	doesn't	change:	return	statements	stop	the	evaluation	of	a	series	of	statements	and
leave	behind	the	value	their	expression	has	evaluated	to.

Here	is	a	top-level	return	statement	in	a	Monkey	program:

5	*	5	*	5;

return	10;

9	*	9	*	9;

When	evaluated	 this	program	should	return	10.	 If	 these	statements	were	 the	body	of	a	 function,
calling	the	function	should	evaluate	to	10.	The	important	thing	is	that	the	last	line,	the	9	*	9	*	9
expression,	is	never	going	to	be	evaluated.

There	are	a	few	different	ways	to	implement	return	statements.	In	some	host	languages	we	could
use	gotos	or	exceptions.	But	 in	Go	a	"rescue"	or	"catch"	are	not	easy	 to	come	by	and	we	don't
really	 have	 the	 option	 of	 using	 gotos	 in	 a	 clean	 way.	 That's	 why,	 in	 order	 to	 support	 return
statements,	we'll	 be	 passing	 a	 "return	 value"	 through	 our	 evaluator.	Whenever	we	 encounter	 a
return	we'll	wrap	the	value	it's	supposed	to	return	inside	an	object,	so	we	can	keep	track	of	it.
And	we	need	to	keep	track	of	it	so	we	can	later	decide	whether	to	stop	evaluation	or	not.

Here	is	the	implementation	of	said	object.	Here	is	object.ReturnValue:

//	object/object.go

const	(

//	[...]

				RETURN_VALUE_OBJ	=	"RETURN_VALUE"

)

type	ReturnValue	struct	{

				Value	Object

}

func	(rv	*ReturnValue)	Type()	ObjectType	{	return	RETURN_VALUE_OBJ	}

func	(rv	*ReturnValue)	Inspect()	string		{	return	rv.Value.Inspect()	}

Since	 this	 is	 just	a	wrapper	around	another	object	nothing	here	 is	surprising.	What's	 interesting
about	object.ReturnValue	is	when	and	how	it's	used.

Here	 are	 the	 tests	 that	 demonstrate	what	we	 expect	 of	 the	 return	 statement	 in	 the	 context	 of	 a
Monkey	program:

//	evaluator/evaluator_test.go

func	TestReturnStatements(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	int64

				}{



								{"return	10;",	10},

								{"return	10;	9;",	10},

								{"return	2	*	5;	9;",	10},

								{"9;	return	2	*	5;	9;",	10},

				}

				for	_,	tt	:=	range	tests	{

								evaluated	:=	testEval(tt.input)

								testIntegerObject(t,	evaluated,	tt.expected)

				}

}

In	order	 to	get	 these	 tests	 to	pass	we	have	 to	change	 the	evalStatements	 function	we	already
have	and	add	a	case	branch	for	*ast.ReturnStatement	to	Eval:

//	evaluator/evaluator.go

func	Eval(node	ast.Node)	object.Object	{

//	[...]

				case	*ast.ReturnStatement:

								val	:=	Eval(node.ReturnValue)

								return	&object.ReturnValue{Value:	val}

//	[...]

}

func	evalStatements(stmts	[]ast.Statement)	object.Object	{

				var	result	object.Object

				for	_,	statement	:=	range	stmts	{

								result	=	Eval(statement)

								if	returnValue,	ok	:=	result.(*object.ReturnValue);	ok	{

												return	returnValue.Value

								}

				}

				return	result

}

The	 first	 part	 of	 this	 change	 is	 the	 evaluation	 of	 *ast.ReturnValue,	 where	 we	 evaluate	 the
expression	associated	with	the	return	statement.	We	then	wrap	the	result	of	this	call	to	Eval	in	our
new	object.ReturnValue	so	we	can	keep	track	of	it.

In	evalStatements,	which	is	used	by	evalProgramStatements	and	evalBlockStatements	to
evaluate	 a	 series	 of	 statements,	 we	 check	 if	 the	 last	 evaluation	 result	 is	 such	 an
object.ReturnValue	and	if	so,	we	stop	the	evaluation	and	return	the	unwrapped	value.	That's
important.	We	don't	 return	an	object.ReturnValue,	but	only	 the	value	 it's	wrapping,	which	 is
what	the	user	expects	to	be	returned.

There's	 a	 problem,	 though.	 Sometimes	 we	 have	 to	 keep	 track	 of	 object.ReturnValues	 for
longer	and	can't	unwrap	their	values	on	the	first	encounter.	That's	the	case	with	block	statements.
Take	a	look	at	this:

if	(10	>	1)	{

		if	(10	>	1)	{

				return	10;

		}

		return	1;

}



This	program	should	return	10.	But	with	our	current	 implementation,	 it	doesn't	and	returns	1.	A
small	test	case	confirms	this:

//	evaluator/evaluator_test.go

func	TestReturnStatements(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	int64

				}{

//	[...]

								{

												`

if	(10	>	1)	{

		if	(10	>	1)	{

				return	10;

		}

		return	1;

}

`,

												10,

								},

				}

//	[...]

}

This	test	case	fails	with	the	expected	message:

$	go	test	./evaluator

---	FAIL:	TestReturnStatements	(0.00s)

		evaluator_test.go:159:	object	has	wrong	value.	got=1,	want=10

FAIL

FAIL				monkey/evaluator								0.007s

I	bet	that	you've	already	figured	out	what	the	problem	with	our	current	implementation	is.	But	if
you	want	me	to	spell	 it	out,	here	it	comes:	if	we	have	nested	block	statements	(which	is	totally
legit	 in	a	Monkey	program!)	we	can't	unwrap	the	value	of	object.ReturnValue	on	first	sight,
because	we	need	to	further	keep	track	of	it	so	we	can	stop	the	execution	in	the	outermost	block
statement.

Non-nested	block	statements	work	fine	with	our	current	implementation.	But	to	get	nested	ones	to
work,	the	first	thing	we	have	to	do	is	to	accept	that	we	can't	reuse	our	evalStatements	function
for	evaluating	block	statements.	That's	why	we're	going	to	rename	it	to	evalProgram	and	make	it
less	generic.

//	evaluator/evaluator.go

func	Eval(node	ast.Node)	object.Object	{

//	[...]

				case	*ast.Program:

								return	evalProgram(node)

//	[...]

}

func	evalProgram(program	*ast.Program)	object.Object	{

				var	result	object.Object

				for	_,	statement	:=	range	program.Statements	{

								result	=	Eval(statement)

								if	returnValue,	ok	:=	result.(*object.ReturnValue);	ok	{



												return	returnValue.Value

								}

				}

				return	result

}

For	 evaluating	 an	 *ast.BlockStatement	 we	 introduce	 a	 new	 function	 called
evalBlockStatement:

//	evaluator/evaluator.go

func	Eval(node	ast.Node)	object.Object	{

//	[...]

				case	*ast.BlockStatement:

								return	evalBlockStatement(node)

//	[...]

}

func	evalBlockStatement(block	*ast.BlockStatement)	object.Object	{

				var	result	object.Object

				for	_,	statement	:=	range	block.Statements	{

								result	=	Eval(statement)

								if	result	!=	nil	&&	result.Type()	==	object.RETURN_VALUE_OBJ	{

												return	result

								}

				}

				return	result

}

Here	we	explicitly	don't	unwrap	the	return	value	and	only	check	the	Type()	of	each	evaluation
result.	If	it's	object.RETURN_VALUE_OBJ	we	simply	return	the	*object.ReturnValue,	without
unwrapping	its	.Value,	so	it	stops	execution	in	a	possible	outer	block	statement	and	bubbles	up
to	 evalProgram,	 where	 it	 finally	 get's	 unwrapped.	 (That	 last	 part	 will	 change	 when	 we
implement	the	evaluation	of	function	calls.)

And	with	that	the	tests	pass:

$	go	test	./evaluator

ok						monkey/evaluator								0.007s

Return	statements	are	implemented.	Now	we're	definitely	not	building	a	calculator	anymore.	And
since	evalProgram	and	evalBlockStatement	are	still	so	fresh	in	our	mind	let's	keep	working
on	them.



3.8	-	Abort!	Abort!	There's	been	a	mistake!,	or:	Error	Handling

Remember	all	the	NULLs	we	were	returning	earlier	and	I	said	that	you	shouldn't	worry	and	we'll
come	 back	 to	 them?	Here	we	 are.	 It's	 time	 to	 implement	 some	 real	 error	 handling	 in	Monkey
before	it's	too	late	and	we'd	have	to	backpedal	too	much.	Granted,	we	have	to	backpedal	a	little
bit	and	correct	previous	code,	but	not	much.	We	didn't	implement	error	handling	as	the	first	thing
in	our	interpreter,	because,	and	to	be	completely	honest,	I	thought	implementing	expressions	first
is	a	lot	more	fun	than	error	handling.	But	we're	now	at	a	point	where	we	need	to	add	it,	otherwise
debugging	and	using	our	interpreter	becomes	too	cumbersome	in	the	near	future.

First	of	all,	let's	define	what	I	mean	with	"real	error	handling".	It	is	not	user-defined	exceptions.
It's	internal	error	handling.	Errors	for	wrong	operators,	unsupported	operations,	and	other	user	or
internal	errors	that	may	arise	during	execution.

As	for	the	implementation	of	such	errors:	this	will	probably	sound	weird,	but	the	error	handling	is
implemented	 in	 nearly	 the	 same	 way	 as	 handling	 return	 statements	 is.	 The	 reason	 for	 this
similarity	 is	 easy	 to	 find:	 errors	 and	 return	 statements	 both	 stop	 the	 evaluation	 of	 a	 series	 of
statements.

The	first	thing	we	need	is	an	error	object:

//	object/object.go

const	(

//	[...]

				ERROR_OBJ	=	"ERROR"

)

type	Error	struct	{

				Message	string

}

func	(e	*Error)	Type()	ObjectType	{	return	ERROR_OBJ	}

func	(e	*Error)	Inspect()	string		{	return	"ERROR:	"	+	e.Message	}

As	you	can	see,	object.Error	is	really,	really	simple.	It	only	wraps	a	string	that	serves	as	error
message.	In	a	production-ready	interpreter	we'd	want	to	attach	a	stack	trace	to	such	error	objects,
add	the	line	and	column	numbers	of	its	origin	and	provide	more	than	just	a	message.	That's	not	so
hard	to	do,	provided	that	line	and	column	numbers	are	attached	to	the	tokens	by	the	lexer.	Since
our	lexer	doesn't	do	that,	to	keep	things	simple,	we	only	use	an	error	message,	which	still	serves
us	a	great	deal	by	giving	us	some	feedback	and	stopping	execution.

We	 will	 add	 support	 for	 errors	 in	 a	 few	 places	 now.	 Later,	 with	 increased	 capability	 of	 our
interpreter,	we'll	add	more	where	appropriate.	For	now,	this	test	function	shows	what	we	expect
the	error	handling	to	do:

//	evaluator/evaluator_test.go

func	TestErrorHandling(t	*testing.T)	{

				tests	:=	[]struct	{

								input											string

								expectedMessage	string



				}{

								{

												"5	+	true;",

												"type	mismatch:	INTEGER	+	BOOLEAN",

								},

								{

												"5	+	true;	5;",

												"type	mismatch:	INTEGER	+	BOOLEAN",

								},

								{

												"-true",

												"unknown	operator:	-BOOLEAN",

								},

								{

												"true	+	false;",

												"unknown	operator:	BOOLEAN	+	BOOLEAN",

								},

								{

												"5;	true	+	false;	5",

												"unknown	operator:	BOOLEAN	+	BOOLEAN",

								},

								{

												"if	(10	>	1)	{	true	+	false;	}",

												"unknown	operator:	BOOLEAN	+	BOOLEAN",

								},

								{

												`

if	(10	>	1)	{

		if	(10	>	1)	{

				return	true	+	false;

		}

		return	1;

}

`,

												"unknown	operator:	BOOLEAN	+	BOOLEAN",

								},

				}

				for	_,	tt	:=	range	tests	{

								evaluated	:=	testEval(tt.input)

								errObj,	ok	:=	evaluated.(*object.Error)

								if	!ok	{

												t.Errorf("no	error	object	returned.	got=%T(%+v)",

																evaluated,	evaluated)

												continue

								}

								if	errObj.Message	!=	tt.expectedMessage	{

												t.Errorf("wrong	error	message.	expected=%q,	got=%q",

																tt.expectedMessage,	errObj.Message)

								}

				}

}

When	we	run	the	tests	we	meet	our	old	friend	NULL	again:

$	go	test	./evaluator

---	FAIL:	TestErrorHandling	(0.00s)

		evaluator_test.go:193:	no	error	object	returned.	got=*object.Null(&{})

		evaluator_test.go:193:	no	error	object	returned.\

				got=*object.Integer(&{Value:5})

		evaluator_test.go:193:	no	error	object	returned.	got=*object.Null(&{})

		evaluator_test.go:193:	no	error	object	returned.	got=*object.Null(&{})

		evaluator_test.go:193:	no	error	object	returned.\

				got=*object.Integer(&{Value:5})

		evaluator_test.go:193:	no	error	object	returned.	got=*object.Null(&{})

		evaluator_test.go:193:	no	error	object	returned.\

				got=*object.Integer(&{Value:10})

FAIL



FAIL				monkey/evaluator								0.007s

But	there	are	also	unexpected	*object.Integers.	That's	because	these	test	cases	actually	assert
two	things:	that	errors	are	created	for	unsupported	operations	and	that	errors	prevent	any	further
evaluation.	When	 the	 test	 fails	 because	of	 an	*object.Integer	 being	 returned,	 the	 evaluation
didn't	stop	correctly.

Creating	errors	and	passing	them	around	in	Eval	is	easy.	We	just	need	a	helper	function	to	help	us
create	new	*object.Errors	and	return	them	when	we	think	we	should:

//	evaluator/evaluator.go

func	newError(format	string,	a	...interface{})	*object.Error	{

				return	&object.Error{Message:	fmt.Sprintf(format,	a...)}

}

This	newError	function	finds	its	use	in	every	place	where	we	didn't	know	what	to	do	before	and
returned	NULL	instead:

//	evaluator/evaluator.go

func	evalPrefixExpression(operator	string,	right	object.Object)	object.Object	{

				switch	operator	{

//	[...]

				default:

								return	newError("unknown	operator:	%s%s",	operator,	right.Type())

				}

}

func	evalInfixExpression(

				operator	string,

				left,	right	object.Object,

)	object.Object	{

				switch	{

//	[...]

				case	left.Type()	!=	right.Type():

								return	newError("type	mismatch:	%s	%s	%s",

												left.Type(),	operator,	right.Type())

				default:

								return	newError("unknown	operator:	%s	%s	%s",

												left.Type(),	operator,	right.Type())

				}

}

func	evalMinusPrefixOperatorExpression(right	object.Object)	object.Object	{

				if	right.Type()	!=	object.INTEGER_OBJ	{

								return	newError("unknown	operator:	-%s",	right.Type())

				}

//	[...]

}

func	evalIntegerInfixExpression(

				operator	string,

				left,	right	object.Object,

)	object.Object	{

//	[...]

				switch	operator	{

//	[...]

				default:

								return	newError("unknown	operator:	%s	%s	%s",

												left.Type(),	operator,	right.Type())

				}

}



With	these	changes	made	the	number	of	failing	test	cases	has	been	reduced	to	just	two:

$	go	test	./evaluator

---	FAIL:	TestErrorHandling	(0.00s)

		evaluator_test.go:193:	no	error	object	returned.\

				got=*object.Integer(&{Value:5})

		evaluator_test.go:193:	no	error	object	returned.\

				got=*object.Integer(&{Value:5})

FAIL

FAIL				monkey/evaluator								0.007s

That	output	tells	us	that	creating	errors	poses	no	problem	but	stopping	the	evaluation	still	does.
We	 already	 know	 where	 to	 look	 though,	 don't	 we?	 Yes,	 that's	 right:	 evalProgram	 and
evalBlockStatement.	Here	 are	 both	 functions	 in	 their	 entirety,	with	 newly	 added	 support	 for
error	handling:

//	evaluator/evaluator.go

func	evalProgram(program	*ast.Program)	object.Object	{

				var	result	object.Object

				for	_,	statement	:=	range	program.Statements	{

								result	=	Eval(statement)

								switch	result	:=	result.(type)	{

								case	*object.ReturnValue:

												return	result.Value

								case	*object.Error:

												return	result

								}

				}

				return	result

}

func	evalBlockStatement(block	*ast.BlockStatement)	object.Object	{

				var	result	object.Object

				for	_,	statement	:=	range	block.Statements	{

								result	=	Eval(statement)

								if	result	!=	nil	{

												rt	:=	result.Type()

												if	rt	==	object.RETURN_VALUE_OBJ	||	rt	==	object.ERROR_OBJ	{

																return	result

												}

								}

				}

				return	result

}

That	did	it.	Evaluation	is	stopped	at	the	right	places	and	the	tests	now	pass:

$	go	test	./evaluator

ok						monkey/evaluator								0.010s

There's	still	one	 last	 thing	we	need	to	do.	We	need	to	check	for	errors	whenever	we	call	Eval
inside	of	Eval,	in	order	to	stop	errors	from	being	passed	around	and	then	bubbling	up	far	away
from	their	origin:

//	evaluator/evaluator.go

func	isError(obj	object.Object)	bool	{



				if	obj	!=	nil	{

								return	obj.Type()	==	object.ERROR_OBJ

				}

				return	false

}

func	Eval(node	ast.Node)	object.Object	{

				switch	node	:=	node.(type)	{

//	[...]

				case	*ast.ReturnStatement:

								val	:=	Eval(node.ReturnValue)

								if	isError(val)	{

												return	val

								}

								return	&object.ReturnValue{Value:	val}

//	[...]

				case	*ast.PrefixExpression:

								right	:=	Eval(node.Right)

								if	isError(right)	{

												return	right

								}

								return	evalPrefixExpression(node.Operator,	right)

				case	*ast.InfixExpression:

								left	:=	Eval(node.Left)

								if	isError(left)	{

												return	left

								}

								right	:=	Eval(node.Right)

								if	isError(right)	{

												return	right

								}

								return	evalInfixExpression(node.Operator,	left,	right)

//	[...]

}

func	evalIfExpression(ie	*ast.IfExpression)	object.Object	{

				condition	:=	Eval(ie.Condition)

				if	isError(condition)	{

								return	condition

				}

//	[...]

}

And	that's	it.	Error	handling	is	in	place.



3.9	-	Bindings	&	The	Environment

Up	next	we're	going	to	add	bindings	to	our	interpreter	by	adding	support	for	let	statements.	But
not	only	do	we	need	to	support	let	statements,	no,	we	need	to	support	the	evaluation	of	identifiers,
too.	Let's	say	we	have	evaluated	the	following	piece	of	code:

let	x	=	5	*	5;

Only	adding	support	for	the	evaluation	of	this	statement	is	not	enough.	We	also	need	to	make	sure
that	the	x	evaluates	to	10	after	interpreting	the	line	above.

So,	our	task	in	this	section	is	to	evaluate	let	statements	and	identifiers.	We	evaluate	let	statements
by	evaluating	their	value-producing	expression	and	keeping	track	of	the	produced	value	under	the
specified	name.	To	evaluate	identifiers	we	check	if	we	already	have	a	value	bound	to	the	name.	If
we	do,	the	identifier	evaluates	to	this	value,	and	if	we	don't,	we	return	an	error.

Sounds	like	a	good	plan?	Alright,	so	let's	kick	this	off	with	a	few	tests:

//	evaluator/evaluator_test.go

func	TestLetStatements(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	int64

				}{

								{"let	a	=	5;	a;",	5},

								{"let	a	=	5	*	5;	a;",	25},

								{"let	a	=	5;	let	b	=	a;	b;",	5},

								{"let	a	=	5;	let	b	=	a;	let	c	=	a	+	b	+	5;	c;",	15},

				}

				for	_,	tt	:=	range	tests	{

								testIntegerObject(t,	testEval(tt.input),	tt.expected)

				}

}

The	test	cases	assert	that	these	two	things	should	work:	evaluating	the	value-producing	expression
in	a	 let	statement	and	evaluating	an	 identifier	 that's	bound	 to	a	name.	But	we	also	need	 tests	 to
make	sure	that	we	get	an	error	when	we	try	to	evaluate	an	unbound	identifier.	And	for	that	we	can
simply	extend	our	existing	TestErrorHandling	function:

//	evaluator/evaluator_test.go

func	TestErrorHandling(t	*testing.T)	{

				tests	:=	[]struct	{

								input											string

								expectedMessage	string

				}{

//	[...]

								{

												"foobar",

												"identifier	not	found:	foobar",

								},

				}

//	[...]

}

How	do	we	make	 these	 tests	pass?	Obviously	 the	first	 thing	we	have	 to	do	 is	add	a	new	case



branch	for	*ast.LetStatement	to	Eval.	And	in	this	branch	we	need	to	Eval	 the	expression	of
the	let	statement,	correct?	So	let's	start	with	that:

//	evaluator/evaluator.go

func	Eval(node	ast.Node)	object.Object	{

//	[...]

				case	*ast.LetStatement:

								val	:=	Eval(node.Value)

								if	isError(val)	{

												return	val

								}

				//	Huh?	Now	what?

//	[...]

}

The	comment	 is	 right:	now	what?	How	to	we	keep	 track	of	values?	We	have	 the	value	and	we
have	 the	 name	we	 should	 bind	 it	 too,	 node.Name.Value.	 How	 do	we	 associate	 one	with	 the
other?

This	is	where	something	called	the	environment	comes	into	play.	The	environment	is	what	we	use
to	keep	track	of	value	by	associating	them	with	a	name.	The	name	"environment"	is	a	classic	one,
used	 in	a	 lot	of	other	 interpreters,	 especially	Lispy	ones.	But	even	 though	 the	name	may	sound
sophisticated,	at	its	heart	the	environment	is	a	hash	map	that	associates	strings	with	objects.	And
that's	exactly	what	we're	going	to	use	for	our	implementation.

We'll	add	a	new	Environment	struct	to	the	object	package.	And	yes,	for	now	it	really	is	just	a
thin	wrapper	around	a	map:

//	object/environment.go

package	object

func	NewEnvironment()	*Environment	{

				s	:=	make(map[string]Object)

				return	&Environment{store:	s}

}

type	Environment	struct	{

				store	map[string]Object

}

func	(e	*Environment)	Get(name	string)	(Object,	bool)	{

				obj,	ok	:=	e.store[name]

				return	obj,	ok

}

func	(e	*Environment)	Set(name	string,	val	Object)	Object	{

				e.store[name]	=	val

				return	val

}

Let	me	guess	what	you're	thinking:	Why	not	use	a	map?	Why	the	wrapper?	It'll	all	make	sense	as
soon	as	we	start	implementing	functions	and	function	calls	in	the	next	section,	I	promise.	This	is
the	groundwork	we'll	build	upon	later.



As	it	is,	the	usage	of	object.Environment	itself	is	self-explanatory.	But	how	do	we	use	it	inside
Eval?	How	and	where	do	we	keep	track	of	the	environment?	We	pass	it	around	by	making	it	a
parameter	of	Eval:

//	evaluator/evaluator.go

func	Eval(node	ast.Node,	env	*object.Environment)	object.Object	{

//	[...]

}

With	that	change	nothing	compiles	anymore,	because	we	have	to	change	every	call	to	Eval	make
use	of	the	environment.	And	not	only	the	calls	to	Eval	in	Eval	itself,	but	also	the	ones	in	functions
such	 as	evalProgram,	evalIfExpression	 and	 so	 on.	This	 requires	more	manual	 editor	work
than	anything	else,	so	I	won't	bore	you	by	showing	the	list	of	changes	here.

The	calls	to	Eval	in	our	REPL	and	in	our	test	suite	need	to	use	an	environment	too,	of	course.	In
the	REPL	we	use	a	single	environment:

//	repl/repl.go

func	Start(in	io.Reader,	out	io.Writer)	{

				scanner	:=	bufio.NewScanner(in)

				env	:=	object.NewEnvironment()

				for	{

//	[...]

								evaluated	:=	evaluator.Eval(program,	env)

								if	evaluated	!=	nil	{

												io.WriteString(out,	evaluated.Inspect())

												io.WriteString(out,	"\n")

								}

				}

}

The	environment	we	use	here,	env,	persists	between	calls	to	Eval.	If	it	didn't,	binding	a	value	to
a	 name	 in	 the	 REPL	 would	 be	 without	 any	 effect.	 As	 soon	 as	 the	 next	 line	 is	 evaluated,	 the
association	wouldn't	be	in	the	new	environment.

That's	exactly	what	we	want	in	our	test	suite,	though.	We	don't	want	to	keep	state	around	for	each
test	function	and	each	test	case.	Each	call	 to	testEval	 should	have	a	 fresh	environment	so	we
don't	run	into	weird	bugs	involving	global	state	caused	by	the	order	in	which	tests	are	run.	Every
call	to	Eval	here	gets	a	fresh	environment:

//	evaluator/evaluator_test.go

func	testEval(input	string)	object.Object	{

				l	:=	lexer.New(input)

				p	:=	parser.New(l)

				program	:=	p.ParseProgram()

				env	:=	object.NewEnvironment()

				return	Eval(program,	env)

}

With	updated	Eval	calls	the	tests	compile	again	and	we	can	start	making	them	pass,	which	is	not
too	hard	with	*object.Environemnt	available.	In	the	case	branch	for	*ast.LetStatement	we
can	just	use	the	name	and	value	we	already	have	and	save	them	in	the	current	environment:



//	evaluator/evaluator.go

func	Eval(node	ast.Node,	env	*object.Environment)	object.Object	{

//	[...]

				case	*ast.LetStatement:

								val	:=	Eval(node.Value,	env)

								if	isError(val)	{

												return	val

								}

								env.Set(node.Name.Value,	val)

//	[...]

}

Now	we're	adding	associations	 to	 the	environment	when	evaluating	 let	statements.	But	we	also
need	to	get	these	values	out	when	we're	evaluating	identifiers.	Doing	that	is	pretty	easy,	too:

//	evaluator/evaluator.go

func	Eval(node	ast.Node,	env	*object.Environment)	object.Object	{

//	[...]

				case	*ast.Identifier:

								return	evalIdentifier(node,	env)

//	[...]

}

func	evalIdentifier(

				node	*ast.Identifier,

				env	*object.Environment,

)	object.Object	{

				val,	ok	:=	env.Get(node.Value)

				if	!ok	{

								return	newError("identifier	not	found:	"	+	node.Value)

				}

				return	val

}

evalIdentifier	will	be	extended	in	 the	next	section.	For	now	it	simply	checks	 if	a	value	has
been	associated	with	 the	given	name	 in	 the	current	 environment.	 If	 that's	 the	case	 it	 returns	 the
value,	otherwise	an	error.

Look	at	this:

$	go	test	./evaluator

ok						monkey/evaluator								0.007s

Yes,	 you're	 right,	 that's	 exactly	 what	 this	 means:	 we're	 now	 firmly	 standing	 in	 programming
language	land.

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	let	a	=	5;

>>	let	b	=	a	>	3;

>>	let	c	=	a	*	99;

>>	if	(b)	{	10	}	else	{	1	};

10

>>	let	d	=	if	(c	>	a)	{	99	}	else	{	100	};

>>	d

99

>>	d	*	c	*	a;

245025



3.10	-	Functions	&	Function	Calls

This	 is	what	we've	been	working	towards.	This	 is	 the	third	act.	We're	going	to	add	support	for
functions	and	function	calls	to	our	interpreter.	When	we're	done	with	this	section,	we'll	be	able	to
do	this	in	our	REPL:

>>	let	add	=	fn(a,	b,	c,	d)	{	return	a	+	b	+	c	+	d	};

>>	add(1,	2,	3,	4);

10

>>	let	addThree	=	fn(x)	{	return	x	+	3	};

>>	addThree(3);

6

>>	let	max	=	fn(x,	y)	{	if	(x	>	y)	{	x	}	else	{	y	}	};

>>	max(5,	10)

10

>>	let	factorial	=	fn(n)	{	if	(n	==	0)	{	1	}	else	{	n	*	factorial(n	-	1)	}	};

>>	factorial(5)

120

If	 that	 doesn't	 impress	 you	 then	 take	 a	 look	 at	 this.	 Passing	 around	 functions,	 higher-order
functions	and	closures	will	also	work:

>>	let	callTwoTimes	=	fn(x,	func)	{	func(func(x))	};

>>	callTwoTimes(3,	addThree);

9

>>	callTwoTimes(3,	fn(x)	{	x	+	1	});

5

>>	let	newAdder	=	fn(x)	{	fn(n)	{	x	+	n	}	};

>>	let	addTwo	=	newAdder(2);

>>	addTwo(2);

4

Yes,	that's	right,	we	will	be	able	to	do	all	of	that.

In	order	to	get	from	where	we	currently	are	to	there	we	need	to	do	two	things:	define	an	internal
representation	of	functions	in	our	object	system	and	add	support	for	function	calls	to	Eval.

But	don't	worry.	It's	easy.	The	work	we	did	in	the	last	sections	now	pays	off.	We	can	reuse	and
extend	a	lot	of	things	we	already	built.	You'll	see	that	a	lot	of	things	just	start	to	fit	together	at	a
certain	point	in	this	section.

Since	"one	step	at	a	time"	brought	us	here	there's	no	reason	to	abandon	this	strategy	now.	The	first
step	is	to	take	care	of	the	internal	representation	of	functions.

The	need	to	represent	functions	internally	comes	from	the	fact	that	functions	in	Monkey	are	treated
like	 any	 other	 value:	we	 can	 bind	 them	 to	 names,	 use	 them	 in	 expressions,	 pass	 them	 to	 other
functions,	 return	 them	 from	 functions	 and	 so	 on.	 And	 like	 other	 values,	 functions	 need	 a
representation	in	our	object	system,	so	we	can	pass	around,	assign	and	return	them.

But	 how	 do	 we	 represent	 a	 function	 internally,	 as	 an	 object?	 Our	 definition	 of
ast.FunctionLiteral	gives	us	a	starting	point:

//	ast/ast.go



type	FunctionLiteral	struct	{

				Token						token.Token	//	The	'fn'	token

				Parameters	[]*Identifier

				Body							*BlockStatement

}

We	don't	need	 the	Token	 field	 in	a	 function	object,	but	Parameters	and	Body	make	 sense.	We
can't	evaluate	a	function	without	its	body	and	we	can't	evaluate	the	body	if	we	don't	know	which
parameters	the	function	has.	Besides	Parameters	and	Body	we	also	need	a	third	field	in	our	new
function	object:

//	object/object.go

const	(

//	[...]

				FUNCTION_OBJ	=	"FUNCTION"

)

type	Function	struct	{

				Parameters	[]*ast.Identifier

				Body							*ast.BlockStatement

				Env								*Environment

}

func	(f	*Function)	Type()	ObjectType	{	return	FUNCTION_OBJ	}

func	(f	*Function)	Inspect()	string	{

				var	out	bytes.Buffer

				params	:=	[]string{}

				for	_,	p	:=	range	f.Parameters	{

								params	=	append(params,	p.String())

				}

				out.WriteString("fn")

				out.WriteString("(")

				out.WriteString(strings.Join(params,	",	"))

				out.WriteString(")	{\n")

				out.WriteString(f.Body.String())

				out.WriteString("\n}")

				return	out.String()

}

This	definition	of	object.Function	has	the	Parameters	and	Body	fields.	But	it	also	has	Env,	a
field	 that	holds	a	pointer	 to	an	object.Environment,	because	 functions	 in	Monkey	carry	 their
own	environment	with	them.	That	allows	for	closures,	which	"close	over"	the	environment	they're
defined	in	and	can	later	access	it.	That	will	make	more	sense	when	we	start	using	the	Env	 field.
You'll	see.

With	 that	 definition	done,	we	 can	now	write	 a	 test	 to	 assert	 that	 our	 interpreter	 knows	how	 to
build	functions:

//	evaluator/evaluator_test.go

func	TestFunctionObject(t	*testing.T)	{

				input	:=	"fn(x)	{	x	+	2;	};"

				evaluated	:=	testEval(input)

				fn,	ok	:=	evaluated.(*object.Function)

				if	!ok	{

								t.Fatalf("object	is	not	Function.	got=%T	(%+v)",	evaluated,	evaluated)

				}



				if	len(fn.Parameters)	!=	1	{

								t.Fatalf("function	has	wrong	parameters.	Parameters=%+v",

												fn.Parameters)

				}

				if	fn.Parameters[0].String()	!=	"x"	{

								t.Fatalf("parameter	is	not	'x'.	got=%q",	fn.Parameters[0])

				}

				expectedBody	:=	"(x	+	2)"

				if	fn.Body.String()	!=	expectedBody	{

								t.Fatalf("body	is	not	%q.	got=%q",	expectedBody,	fn.Body.String())

				}

}

This	 test	 function	 asserts	 that	 evaluating	 a	 function	 literal	 results	 in	 the	 correct
*object.Function	being	returned,	with	correct	parameters	and	the	correct	body.	The	function's
environment	will	be	tested	later	on	in	other	tests,	implicitly.	Making	this	test	pass	takes	just	a	few
lines	of	code	added	to	Eval	in	the	form	of	a	new	case	branch:

//	evaluator/evaluator.go

func	Eval(node	ast.Node,	env	*object.Environment)	object.Object	{

//	[...]

				case	*ast.FunctionLiteral:

								params	:=	node.Parameters

								body	:=	node.Body

								return	&object.Function{Parameters:	params,	Env:	env,	Body:	body}

//	[...]

}

Easy,	 right?	The	 test	 passes.	We	 just	 reuse	 the	Parameters	 and	Body	 fields	 of	 the	AST	node.
Notice	how	we	use	the	current	environment	when	building	the	function	object.

With	 that	 relatively	 low-level	 test	passing	and	 thus	having	made	sure	 that	we	build	 the	 internal
representation	of	functions	correctly,	we	can	turn	to	the	topic	of	function	application.	That	means,
extending	our	interpreter	so	that	we	can	call	functions.	The	tests	for	this	are	much	more	readable
and	easier	to	write:

//	evaluator/evaluator_test.go

func	TestFunctionApplication(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	int64

				}{

								{"let	identity	=	fn(x)	{	x;	};	identity(5);",	5},

								{"let	identity	=	fn(x)	{	return	x;	};	identity(5);",	5},

								{"let	double	=	fn(x)	{	x	*	2;	};	double(5);",	10},

								{"let	add	=	fn(x,	y)	{	x	+	y;	};	add(5,	5);",	10},

								{"let	add	=	fn(x,	y)	{	x	+	y;	};	add(5	+	5,	add(5,	5));",	20},

								{"fn(x)	{	x;	}(5)",	5},

				}

				for	_,	tt	:=	range	tests	{

								testIntegerObject(t,	testEval(tt.input),	tt.expected)

				}

}

Each	test	case	here	does	the	same	thing:	define	a	function,	apply	it	to	arguments	and	then	make	an
assertion	about	the	produced	value.	But	with	their	slight	differences	they	test	multiple	important



things:	returning	values	implicitly,	returning	values	using	return	statements,	using	parameters	in
expressions,	multiple	parameters	and	evaluating	arguments	before	passing	them	to	the	function.

We	are	also	testing	two	possible	forms	of	*ast.CallExpression	here.	One	where	the	function	is
an	 identifier	 that	 evaluates	 to	 a	 function	 object,	 and	 the	 second	 one	 where	 the	 function	 is	 a
function	literal.	The	neat	thing	is	that	it	doesn't	really	matter.	We	already	know	how	to	evaluate
identifiers	and	function	literals:

//	evaluator/evaluator.go

func	Eval(node	ast.Node,	env	*object.Environment)	object.Object	{

//	[...]

				case	*ast.CallExpression:

								function	:=	Eval(node.Function,	env)

								if	isError(function)	{

												return	function

								}

//	[...]

}

Yes,	 we're	 just	 using	 Eval	 to	 get	 the	 function	 we	 want	 to	 call.	 Whether	 that's	 an
*ast.Identifier	 or	 an	 *ast.FunctionLiteral:	 Eval	 returns	 an	 *object.Function	 (if
there's	no	error,	of	course).

But	how	do	we	do	call	this	*object.Function?	The	first	step	is	to	evaluate	the	arguments	of	a
call	expression.	The	reason	is	simple:

let	add	=	fn(x,	y)	{	x	+	y	};

add(2	+	2,	5	+	5);

Here	we	want	to	pass	4	and	10	to	the	add	function	as	arguments	and	not	the	expressions	2	+	2
and	5	+	5.

Evaluating	the	arguments	is	nothing	more	than	evaluating	a	list	of	expressions	and	keeping	track	of
the	produced	values.	But	we	also	have	to	stop	the	evaluation	process	as	soon	as	it	encounters	an
error.	That	leads	us	to	this	code:

//	evaluator/evaluator.go

func	Eval(node	ast.Node,	env	*object.Environment)	object.Object	{

//	[...]

				case	*ast.CallExpression:

								function	:=	Eval(node.Function,	env)

								if	isError(function)	{

												return	function

								}

								args	:=	evalExpressions(node.Arguments,	env)

								if	len(args)	==	1	&&	isError(args[0])	{

												return	args[0]

								}

//	[...]

}

func	evalExpressions(

				exps	[]ast.Expression,

				env	*object.Environment,

)	[]object.Object	{

				var	result	[]object.Object



				for	_,	e	:=	range	exps	{

								evaluated	:=	Eval(e,	env)

								if	isError(evaluated)	{

												return	[]object.Object{evaluated}

								}

								result	=	append(result,	evaluated)

				}

				return	result

}

Nothing	fancy	going	on	here.	We	just	iterate	over	a	list	of	ast.Expressions	and	evaluate	them	in
the	context	of	the	current	environment.	If	we	encounter	an	error,	we	stop	the	evaluation	and	return
the	 error.	 This	 is	 also	 the	 part	where	we	 decided	 to	 evaluate	 the	 arguments	 from	 left-to-right.
Hopefully	we	won't	be	writing	code	in	Monkey	that	makes	assertions	about	the	order	of	argument
evaluation,	but	if	we	do,	we're	on	the	conservative	and	safe	side	of	programming	language	design.

So!	Now	that	we	have	both	the	function	and	the	list	of	evaluated	arguments,	how	do	we	"call	the
function"?	How	do	we	apply	the	function	to	the	arguments?

The	obvious	answer	 is	 that	we	have	 to	evaluate	 the	body	of	 the	function,	which	 is	 just	a	block
statement.	We	already	know	how	to	evaluate	those,	so	why	not	just	call	Eval	and	pass	it	the	body
of	 the	 function?	One	word:	 arguments.	 The	 body	 of	 the	 function	 can	 contain	 references	 to	 the
parameters	of	the	function	and	just	evaluating	the	body	in	the	current	environment	would	result	in
references	to	unknown	names,	which	would	lead	to	errors,	which	is	not	what	we	want.	Evaluating
the	body	as	it	is,	in	the	current	environment,	does	not	work.

What	we	need	to	do	instead	is	change	the	environment	in	which	the	function	is	evaluated,	so	that
the	references	to	parameters	in	the	function's	body	resolve	to	the	correct	arguments.	But	we	can't
just	add	these	arguments	to	the	current	environment.	That	could	lead	to	previous	bindings	being
overwritten,	which	is	not	what	we	want.	We	want	this	to	work:

let	i	=	5;

let	printNum	=	fn(i)	{

		puts(i);

};

printNum(10);

puts(i);

With	 a	 puts	 function	 that	 prints	 lines,	 this	 should	 print	 two	 lines,	 containing	 10	 and	 5
respectively.	 If	 we	 were	 to	 overwrite	 the	 current	 environment	 before	 evaluating	 the	 body	 of
printNum,	the	last	line	would	also	result	in	10	being	printed.

So	 adding	 the	 arguments	 of	 the	 function	 call	 to	 the	 current	 environment	 in	 order	 to	make	 them
accessible	 in	 the	 function's	 body	 does	 not	 work.	What	 we	 need	 to	 do	 instead	 is	 to	 preserve
previous	bindings	while	at	the	same	time	making	new	ones	available	-	we'll	call	that	"extending
the	environment".

Extending	the	environment	means	that	we	create	a	new	instance	of	object.Environment	with	a
pointer	 to	 the	 environment	 it	 should	 extend.	 By	 doing	 that	 we	 enclose	 a	 fresh	 and	 empty
environment	with	an	existing	one.



When	the	new	environment's	Get	method	 is	called	and	 it	 itself	doesn't	have	a	value	associated
with	 the	 given	 name,	 it	 calls	 the	Get	 of	 the	 enclosing	 environment.	 That's	 the	 environment	 it's
extending.	 And	 if	 that	 enclosing	 environment	 can't	 find	 the	 value,	 it	 calls	 its	 own	 enclosing
environment	and	so	on	until	there	is	no	enclosing	environment	anymore	and	we	can	safely	say	that
we	have	an	"ERROR:	unknown	identifier:	foobar".

//	object/environment.go

package	object

func	NewEnclosedEnvironment(outer	*Environment)	*Environment	{

				env	:=	NewEnvironment()

				env.outer	=	outer

				return	env

}

func	NewEnvironment()	*Environment	{

				s	:=	make(map[string]Object)

				return	&Environment{store:	s,	outer:	nil}

}

type	Environment	struct	{

				store	map[string]Object

				outer	*Environment

}

func	(e	*Environment)	Get(name	string)	(Object,	bool)	{

				obj,	ok	:=	e.store[name]

				if	!ok	&&	e.outer	!=	nil	{

								obj,	ok	=	e.outer.Get(name)

				}

				return	obj,	ok

}

func	(e	*Environment)	Set(name	string,	val	Object)	Object	{

				e.store[name]	=	val

				return	val

}

object.Environment	now	has	a	new	field	called	outer	that	can	contain	a	reference	to	another
object.Environment,	 which	 is	 the	 enclosing	 environment,	 the	 one	 it's	 extending.	 The
NewEnclosedEnvironment	function	makes	creating	such	an	enclosed	environment	easy.	The	Get
method	has	also	been	changed.	It	now	checks	the	enclosing	environment	for	the	given	name,	too.

This	new	behaviour	mirrors	how	we	think	about	variable	scopes.	There	is	an	inner	scope	and	an
outer	scope.	If	something	is	not	found	in	 the	 inner	scope,	 it's	 looked	up	in	 the	outer	scope.	The
outer	scope	encloses	the	inner	scope.	And	the	inner	scope	extends	the	outer	one.

With	our	updated	object.Environment	functionality	we	can	correctly	evaluate	function	bodies.
Remember,	the	problem	was	this:	possibly	overwriting	existing	bindings	in	a	environment	when
binding	the	arguments	of	a	function	call	to	the	parameter	names	of	the	function.	Now,	instead	of
overwriting	 bindings,	we	 create	 a	 new	 environment	 that's	 enclosed	 by	 the	 current	 environment
and	add	our	bindings	to	this	fresh	and	empty	environment.

But	we	won't	use	the	current	environment	as	the	enclosing	environment,	no.	Instead	we'll	use	the
environment	our	*object.Function	carries	around.	Remember	that	one?	That's	the	environment
our	function	was	defined	in.



Here	is	the	updated	version	of	Eval	that	handles	function	calls	completely	and	correctly:

//	evaluator/evaluator.go

func	Eval(node	ast.Node,	env	*object.Environment)	object.Object	{

//	[...]

				case	*ast.CallExpression:

								function	:=	Eval(node.Function,	env)

								if	isError(function)	{

												return	function

								}

								args	:=	evalExpressions(node.Arguments,	env)

								if	len(args)	==	1	&&	isError(args[0])	{

												return	args[0]

								}

								return	applyFunction(function,	args)

//	[...]

}

func	applyFunction(fn	object.Object,	args	[]object.Object)	object.Object	{

				function,	ok	:=	fn.(*object.Function)

				if	!ok	{

								return	newError("not	a	function:	%s",	fn.Type())

				}

				extendedEnv	:=	extendFunctionEnv(function,	args)

				evaluated	:=	Eval(function.Body,	extendedEnv)

				return	unwrapReturnValue(evaluated)

}

func	extendFunctionEnv(

				fn	*object.Function,

				args	[]object.Object,

)	*object.Environment	{

				env	:=	object.NewEnclosedEnvironment(fn.Env)

				for	paramIdx,	param	:=	range	fn.Parameters	{

								env.Set(param.Value,	args[paramIdx])

				}

				return	env

}

func	unwrapReturnValue(obj	object.Object)	object.Object	{

				if	returnValue,	ok	:=	obj.(*object.ReturnValue);	ok	{

								return	returnValue.Value

				}

				return	obj

}

In	the	new	applyFunction	function	we	not	only	check	that	we	really	have	a	*object.Function
at	 hand	 but	 also	 convert	 the	 fn	 parameter	 to	 a	 *object.Function	 reference	 in	 order	 to	 get
access	to	the	function's	.Env	and	.Body	fields	(which	object.Object	doesn't	define).

The	extendFunctionEnv	 function	creates	a	new	*object.Environment	 that's	enclosed	by	 the
function's	environment.	 In	 this	new,	enclosed	environment	 it	binds	 the	arguments	of	 the	function
call	to	the	function's	parameter	names.

And	this	newly	enclosed	and	updated	environment	is	then	the	environment	in	which	the	function's
body	is	evaluated.	The	result	of	 this	evaluation	is	unwrapped	if	 it's	an	*object.ReturnValue.
That's	 necessary,	 because	 otherwise	 a	 return	 statement	 would	 bubble	 up	 through	 several
functions	and	stop	the	evaluation	in	all	of	them.	But	we	only	want	to	stop	the	evaluation	of	the	last



called	function's	body.	That's	why	we	need	unwrap	it,	so	that	evalBlockStatement	won't	stop
evaluating	 statements	 in	 "outer"	 functions.	 I	 also	 added	 a	 few	 test	 cases	 to	 our	 previous
TestReturnStatements	function	to	make	sure	that	this	works.

Those	were	the	last	missing	pieces.	What?	Really?	Yeah!	Take	a	look	a	this:

$	go	test	./evaluator

ok						monkey/evaluator								0.007s

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	let	addTwo	=	fn(x)	{	x	+	2;	};

>>	addTwo(2)

4

>>	let	multiply	=	fn(x,	y)	{	x	*	y	};

>>	multiply(50	/	2,	1	*	2)

50

>>	fn(x)	{	x	==	10	}(5)

false

>>	fn(x)	{	x	==	10	}(10)

true

Whaaat?	Yes!	It	works!	We	can	now	finally	define	and	call	functions!	There's	a	saying	that	goes
"this	is	nothing	to	write	home	about".	Well,	this	is!	But	before	we	put	on	our	party	hats,	it's	worth
taking	a	closer	look	at	the	interaction	between	functions	and	their	environment	and	what	it	means
for	function	application.	Because	what	we've	seen	is	not	all	we	can	do,	there	is	a	lot	more.

So,	 I	 bet	 that	 one	 question	 still	 bugs	 you:	 "Why	 extend	 the	 function's	 environment	 and	 not	 the
current	environment?"	The	short	answer	is	this:

//	evaluator/evaluator_test.go

func	TestClosures(t	*testing.T)	{

				input	:=	`

let	newAdder	=	fn(x)	{

		fn(y)	{	x	+	y	};

};

let	addTwo	=	newAdder(2);

addTwo(2);`

				testIntegerObject(t,	testEval(input),	4)

}

This	test	passes.	Yes,	really:

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	let	newAdder	=	fn(x)	{	fn(y)	{	x	+	y	}	};

>>	let	addTwo	=	newAdder(2);

>>	addTwo(3);

5

>>	let	addThree	=	newAdder(3);

>>	addThree(10);

13

Monkey	has	closures	and	 they	already	work	 in	our	 interpreter.	How	cool	 is	 that?	Exactly.	Very
cool.	But	 the	 connection	 between	 closures	 and	 the	 original	 question	might	 not	 be	 so	 clear	 yet.
Closures	are	functions	 that	"close	over"	 the	environment	 they	were	defined	 in.	They	carry	 their



own	environment	around	and	whenever	they're	called	they	can	access	it.

The	two	important	lines	from	the	example	above	are	these:

let	newAdder	=	fn(x)	{	fn(y)	{	x	+	y	}	};

let	addTwo	=	newAdder(2);

newAdder	here	is	a	higher-order	function.	Higher-order	functions	are	functions	that	either	return
other	functions	or	receive	them	as	arguments.	In	this	case	newAdder	returns	another	function.	But
not	 just	 any	 function:	 a	 closure.	 addTwo	 is	 bound	 to	 the	 closure	 that's	 returned	 when	 calling
newAdder	with	2	as	the	sole	argument.

And	what	makes	addTwo	a	closure?	The	bindings	it	has	access	to	when	called.

When	addTwo	is	called	it	not	only	has	access	to	the	arguments	of	the	call,	the	y	parameter,	but	it
can	also	reach	 the	value	x	was	bound	 to	at	 the	 time	of	 the	newAdder(2)	 call,	 even	 though	 that
binding	is	long	out	of	scope	and	not	existent	in	the	current	environment	anymore:

>>	let	newAdder	=	fn(x)	{	fn(y)	{	x	+	y	}	};

>>	let	addTwo	=	newAdder(2);

>>	x

ERROR:	identifier	not	found:	x

x	is	not	bound	to	a	value	in	our	top-level	environment.	But	addTwo	still	has	access	to	it:

>>	addTwo(3);

5

In	 other	 words:	 the	 closure	 addTwo	 still	 has	 access	 to	 the	 environment	 that	 was	 the	 current
environment	 at	 the	 time	of	 its	 definition.	Which	 is	when	 the	 last	 line	of	newAdder's	 body	was
evaluated.	This	last	line	is	a	function	literal.	Remember:	when	function	literals	are	evaluated	we
build	an	object.Function	and	keep	a	reference	to	the	current	environment	in	its	.Env	field.

When	we	later	on	evaluate	the	body	of	addTwo,	we	don't	evaluate	it	in	the	current	environment,
but	instead	in	the	function's	environment.	And	we	do	that	by	extending	the	function's	environment
and	passing	it	to	Eval	instead	of	the	current	environment.	Why?	So	it	can	still	access	it.	Why?	So
we	can	use	closures.	Why?	Because	they're	freaking	amazing	and	I	love	them!

And	 since	 we're	 talking	 about	 amazing	 things,	 it's	 worth	 mentioning	 that	 we	 not	 only	 support
returning	 functions	 from	other	 functions	but	 also	 accepting	 functions	 as	 arguments	 in	 a	 function
call.	Yes,	functions	are	first-class	citizens	in	Monkey	and	we	can	pass	them	around	like	any	other
value:

>>	let	add	=	fn(a,	b)	{	a	+	b	};

>>	let	sub	=	fn(a,	b)	{	a	-	b	};

>>	let	applyFunc	=	fn(a,	b,	func)	{	func(a,	b)	};

>>	applyFunc(2,	2,	add);

4

>>	applyFunc(10,	2,	sub);

8

Here	we	pass	the	add	and	sub	functions	as	arguments	to	applyFunc.	applyFunc	 then	calls	 this



function	without	any	problems:	the	func	parameter	resolves	to	the	function	object	which	then	gets
called	 with	 two	 arguments.	 There	 is	 not	 much	 more	 to	 it,	 everything	 works	 already	 in	 our
interpreter.

I	know	what	you're	thinking	right	now	and	here	is	a	template	for	the	message	you	want	to	send:

Dear	 NAME_OF_FRIEND,	 remember	 when	 I	 said	 that	 someday	 I'll	 be	 someone	 and	 do
something	 great	 people	 will	 remember	 me	 for?	 Well,	 today's	 the	 day.	 My	 Monkey
interpreter	works	 and	 it	 supports	 functions,	 higher-order	 functions,	 closures	 and	 integers
and	arithmetic	and	long	story	short:	I've	never	been	happier	in	my	life!

We	did	it.	We	built	a	fully	working	Monkey	interpreter	that	supports	functions	and	function	calls,
higher-order	functions	and	closures.	Go	on,	celebrate!	I'll	be	waiting	here.



3.11	-	Who's	taking	the	trash	out?

At	the	beginning	of	this	book	I	promised	you	that	we	wouldn't	take	any	shortcuts	and	build	a	fully
functional	interpreter	with	our	own	hands,	from	scratch	and	without	any	third	party	tools.	And	we
did!	But	now	I	have	a	small	confession	to	make.

Consider	what	happens	when	we	run	this	snippet	of	Monkey	code	in	our	interpreter:

let	counter	=	fn(x)	{

		if	(x	>	100)	{

				return	true;

		}	else	{

				let	foobar	=	9999;

				counter(x	+	1);

		}

};

counter(0);

Obviously,	 it	 would	 return	 'true'	 after	 evaluating	 the	 body	 of	 counter	 101	 times.	 But	 a	 lot	 is
happening	until	the	last	of	these	recursive	calls	to	counter	returns.

The	first	thing	is	the	evaluation	if-else-expression	condition:	x	>	100.	 If	 the	produced	value	is
not	 truthy,	 the	 alternative	 of	 the	 if-else-expression	 gets	 evaluated.	 In	 the	 alternative	 the	 integer
literal	9999	 gets	 bound	 to	 the	 name	foobar,	which	 is	 never	 referenced	 again.	 Then	x	 +	 1	 is
evaluated.	The	result	of	that	call	to	Eval	is	then	passed	to	another	call	to	counter.	And	then	it	all
starts	again,	until	x	>	100	evaluates	to	TRUE.

The	point	is	this:	in	each	call	to	counter	a	lot	of	objects	are	allocated.	Or	to	put	it	in	terms	of	our
Eval	 function	 and	 our	 object	 system:	 each	 evaluation	 of	 counter's	 body	 results	 in	 a	 lot	 of
object.Integer	being	allocated	and	instantiated.	The	unused	9999	integer	literal	and	the	result
of	x	+	1	are	obvious.	But	even	the	literals	100	and	1	produce	new	object.Integers	every	time
the	body	of	counter	is	evaluated.

If	we	were	to	modify	our	Eval	function	to	track	every	instance	of	&object.Integer{},	we'd	see
that	running	this	small	snippet	of	code	results	in	around	400	allocated	object.Integers.

What's	the	problem	with	that?

Our	objects	are	stored	in	memory.	The	more	objects	we	use	the	more	memory	we	need.	And	even
though	 the	number	of	objects	 in	 the	example	 is	 tiny	compared	 to	other	programs	memory	 is	not
infinite.

With	 each	 call	 to	 counter	 the	 memory	 usage	 of	 our	 interpreter	 process	 should	 rise	 until	 it
eventually	 runs	 out	 of	 memory	 and	 the	 operating	 system	 kills	 it.	 But	 if	 we	 were	 to	 monitor
memory	usage	while	 running	 the	snippet	above,	we'd	see	 that	 it	doesn't	 steadily	 rise	and	never
goes	down.	Instead	it	increases	and	decreases.	Why?

The	 answer	 to	 that	 question	 is	 the	 heart	 of	 the	 confession	 I	 have	 to	make:	we're	 reusing	Go's



garbage	collector	as	a	garbage	collector	for	our	guest	language.	We	do	not	need	to	write	our	own.

Go's	garbage	collector	(GC)	is	the	reason	why	we	don't	run	out	of	memory.	It	manages	memory
for	us.	Even	when	we	call	the	counter	function	from	above	many,	many	times	and	thus	add	a	lot
more	unused	integer	literals	and	object	allocations,	we	won't	run	out	of	memory.	Because	the	GC
keeps	 track	 of	 which	 object.Integer	 are	 still	 reachable	 by	 us	 and	 which	 are	 not.	When	 it
notices	that	an	object	is	not	reachable	anymore	it	makes	the	object's	memory	available	again.

The	example	above	generates	a	lot	of	integer	objects	that	are	unreachable	after	a	call	to	counter:
the	literals	1	and	100	and	the	nonsense	9999	bound	to	foobar.	There	is	no	way	to	access	these
objects	after	counter	 returns.	In	 the	case	of	1	and	100	 it's	clear	 that	 they're	unreachable,	since
they're	not	bound	to	a	name.	But	even	the	9999	bound	to	foobar	is	unreachable	since	foobar	 is
out	of	scope	when	the	function	returns.	The	environment	that	was	constructed	for	the	evaluation	of
counter's	body	gets	destroyed	(also	by	Go's	GC,	mind	you!)	and	with	it	the	foobar	binding.

These	unreachable	objects	are	useless	and	take	up	memory.	That's	why	the	GC	collects	them	and
frees	up	the	memory	they	used.

And	that's	super	handy	for	us!	That	saves	us	a	lot	of	work!	If	we	were	to	write	our	interpreter	in	a
language	 like	C,	where	we	don't	have	a	GC,	we'd	need	 to	 implement	one	ourselves	 to	manage
memory	for	users	of	the	interpreter.

What	would	 such	a	hypothetical	GC	need	 to	do?	 In	 short:	keep	 track	of	object	 allocations	and
references	 to	 objects,	 make	 enough	 memory	 available	 for	 future	 object	 allocations	 and	 give
memory	 back	 when	 it's	 not	 needed	 anymore.	 This	 last	 point	 is	 what	 garbage	 collection	 is	 all
about.	Without	it	the	programs	would	"leak"	and	finally	run	out	of	memory.

There	 are	 a	 myriad	 ways	 to	 accomplish	 all	 of	 the	 above,	 involving	 different	 algorithms	 and
implementations.	 For	 example,	 there's	 the	 basic	 "mark	 and	 sweep"	 algorithm.	 In	 order	 to
implement	it	one	has	to	decide	whether	the	GC	will	be	a	generational	GC	or	not,	or	whether	it's	a
stop-the-world	 GC	 or	 a	 concurrent	 GC,	 or	 how	 it's	 organizing	memory	 and	 handling	memory
fragmentation.	Having	decided	all	of	that	an	efficient	implementation	is	still	a	lot	of	hard	work.

But	maybe	you're	asking	yourself:	Okay,	so	we	have	the	GC	of	Go	available.	But	can't	we	just
write	our	own	GC	for	the	guest	language	and	use	that	one	instead?

Unfortunately,	 no.	We'd	have	 to	disable	Go's	GC	and	 find	 a	way	 to	 take	over	 all	 of	 its	 duties.
That's	 easier	 said	 than	done.	 It's	 a	 huge	undertaking	 since	we	would	 also	 have	 to	 take	 care	 of
allocating	and	freeing	memory	ourselves	-	in	a	language	that	per	default	prohibits	exactly	that.

That's	why	I	decided	to	not	add	a	"Let's	write	our	own	GC	next	to	Go's	GC"	section	to	this	book
and	to	instead	reuse	Go's	GC.	Garbage	collection	itself	is	a	huge	topic	and	adding	the	dimension
of	working	around	an	existing	GC	blows	it	out	of	the	scope	of	this	book.	But	still,	I	hope	that	this
section	gave	you	a	rough	idea	of	what	a	GC	does	and	which	problems	it	solves.	Maybe	you	even
know	 now	what	 to	 do	 if	 you	were	 to	 translate	 the	 interpreter	 we	 built	 here	 into	 another	 host



language	without	garbage	collection.

And	with	that...	we're	done!	Our	interpreter	works.	All	that's	left	for	us	is	to	extend	it	and	make	it
more	useful	by	adding	more	data	types	and	functions.





Extending	the	Interpreter



4.1	-	Data	Types	&	Functions

Even	though	our	interpreter	works	amazingly	well	and	has	some	mind-blowing	features,	like	first-
class	 functions	 and	 closures,	 the	 only	 data	 types	 we	 had	 available	 as	 users	 of	Monkey	 were
integers	and	booleans.	That's	not	especially	useful	 and	a	 lot	 less	 than	what	we're	used	 to	 from
other	programming	languages.	In	this	chapter	we're	going	to	change	that.	We're	going	to	add	new
data	types	to	our	interpreter.

The	great	thing	about	this	endeavor	is	that	it	takes	us	through	the	whole	interpreter	again.	We	will
add	new	token	types,	modify	the	lexer,	extend	the	parser	and	finally	add	support	for	the	data	types
to	our	evaluator	and	the	object	system.

Even	better	is	that	the	data	types	we're	going	to	add	are	already	present	in	Go.	That	means	that	we
only	 need	 to	make	 them	 available	 in	Monkey.	We	 don't	 need	 to	 implement	 them	 from	 scratch,
which	is	pretty	handy,	since	this	book	isn't	called	"Implementing	Common	Data	Structures	In	Go"
and	we	can	concentrate	on	our	interpreter.

In	addition	to	that	we're	also	going	to	make	the	interpreter	much	more	powerful	by	adding	some
new	functions.	Of	course,	as	users	of	our	interpreter	we	could	define	functions	ourselves	just	fine,
but	those	were	limited	in	what	they	could	do.	These	new	ones,	called	built-in	functions,	will	be
much	more	powerful,	since	they	have	access	to	the	inner	workings	of	 the	Monkey	programming
language.

The	 first	 thing	 we're	 going	 to	 do	 is	 add	 a	 data	 type	 we	 all	 know:	 the	 string.	 Nearly	 every
programming	language	has	it	and	Monkey	shall	have	it	too.



4.2	-	Strings

In	Monkey	 strings	 are	 a	 sequence	 of	 characters.	 They	 are	 first-class	 values,	 can	 be	 bound	 to
identifiers,	used	as	arguments	in	functions	calls	and	be	returned	by	functions.	They	look	just	like
the	strings	in	many	other	programming	languages:	characters	enclosed	by	double	quotes.

Besides	 the	 data	 type	 itself,	 in	 this	 section	we'll	 also	 add	 support	 for	 string	 concatenation	 by
supporting	the	infix	operator	+	for	strings.

At	the	end,	we'll	be	able	to	do	this:

$	go	run	main.go

Hello	mrnugget!	This	is	micro,	your	own	programming	language!

Feel	free	to	type	in	commands

>>	let	firstName	=	"Thorsten";

>>	let	lastName	=	"Ball";

>>	let	fullName	=	fn(first,	last)	{	first	+	"	"	+	last	};

>>	fullName(firstName,	lastName);

Thorsten	Ball

Supporting	Strings	in	our	Lexer

The	first	thing	we	have	to	do	is	add	support	for	string	literals	to	our	lexer.	The	basic	structure	of
strings	is	this:

"<sequence	of	characters>"

That's	not	too	hard,	right?	A	sequence	of	characters	enclosed	by	double	quotes.

What	we	want	from	our	lexer	is	a	single	token	for	each	string	literal.	So	in	the	case	of	"Hello
World"	we	want	a	single	token,	instead	of	tokens	for	",	Hello,	World	and	".	A	single	token	for
string	literals	makes	handling	them	in	our	parser	a	lot	easier	and	we	move	the	bulk	of	the	work	to
one	small	method	in	the	lexer.

Of	 course,	 the	 approach	 using	 multiple	 tokens	 is	 also	 valid	 and	 maybe	 beneficial	 in	 some
cases/parsers.	We	could	use	"	surrounding	token.IDENT	tokens.	But	in	our	case,	we'll	mirror	the
token.INT	 integer	 tokens	 we	 already	 have	 and	 carry	 the	 string	 literal	 itself	 around	 in	 the
.Literal	field	of	the	token.

And	with	that	being	clear,	it's	time	to	work	on	our	tokens	and	our	lexer	again.	We	haven't	touched
those	since	the	first	chapter,	but	I'm	sure	we'll	do	just	fine.

The	first	thing	we	need	to	do	is	add	a	new	STRING	token	type	to	our	token	package:

//	token/token.go

const	(

//	[...]

				STRING	=	"STRING"

//	[...]

)



With	that	in	place	we	can	add	a	test	case	for	our	lexer	to	see	if	strings	are	properly	supported.	To
do	that	we	just	extend	the	input	in	our	TestNextToken	test	function:

//	lexer/lexer_test.go

func	TestNextToken(t	*testing.T)	{

				input	:=	`let	five	=	5;

let	ten	=	10;

let	add	=	fn(x,	y)	{

		x	+	y;

};

let	result	=	add(five,	ten);

!-/*5;

5	<	10	>	5;

if	(5	<	10)	{

				return	true;

}	else	{

				return	false;

}

10	==	10;

10	!=	9;

"foobar"

"foo	bar"

`

				tests	:=	[]struct	{

								expectedType				token.TokenType

								expectedLiteral	string

				}{

//	[...]

								{token.STRING,	"foobar"},

								{token.STRING,	"foo	bar"},

								{token.EOF,	""},

				}

//	[...]

}

The	 input	 now	 has	 two	more	 lines	 containing	 the	 string	 literals	we	want	 to	 turn	 into	 tokens.
There's	"foobar"	to	make	sure	that	lexing	of	string	literals	works	and	"foo	bar"	 to	make	sure
that	it	still	works	even	with	whitespace	inside	a	literal.

Of	course,	the	tests	fail,	because	we	haven't	changed	anything	in	the	Lexer	yet:

$	go	test	./lexer

---	FAIL:	TestNextToken	(0.00s)

		lexer_test.go:122:	tests[73]	-	tokentype	wrong.	expected="STRING",\

				got="ILLEGAL"

FAIL

FAIL				monkey/lexer				0.006s

Fixing	the	tests	is	easier	than	you	might	think.	All	we	need	to	do	is	add	a	case	branch	for	"	to	the
switch	statement	in	our	Lexer	and	add	a	small	helper	method:

//	lexer/lexer.go

func	(l	*Lexer)	NextToken()	token.Token	{

//	[...]

				switch	l.ch	{

//	[...]

				case	'"':



								tok.Type	=	token.STRING

								tok.Literal	=	l.readString()

//	[...]

				}

//	[...]

}

func	(l	*Lexer)	readString()	string	{

				position	:=	l.position	+	1

				for	{

								l.readChar()

								if	l.ch	==	'"'	{

												break

								}

				}

				return	l.input[position:l.position]

}

There's	really	nothing	mysterious	about	these	changes.	A	new	case	branch	and	a	helper	function
that	calls	readChar	until	it	encounters	a	closing	double	quote.

If	 you	 think	 that	 this	 is	 too	 easy,	 feel	 free	 to	 add	 support	 for	 character	 escaping	 so	 that	 string
literals	like	"hello	\"world\"",	"hello\n	world"	and	"hello\t\t\tworld"	work.

Meanwhile,	our	tests	are	passing:

$	go	test	./lexer

ok						monkey/lexer				0.006s

Great!	Our	lexer	now	knows	how	to	handle	string	literals.	It's	time	to	teach	the	parser	how	to	do
the	same.

Parsing	Strings

In	order	 for	our	parser	 to	 turn	token.STRING	 into	a	string	 literal	AST	node	we	need	 to	define
said	 node.	 Thankfully	 the	 definition	 couldn't	 be	 simpler.	 It	 looks	 really	 similar	 to
ast.IntegerLiteral,	except	that	the	Value	field	now	contains	a	string	instead	of	an	int64.

//	ast/ast.go

type	StringLiteral	struct	{

				Token	token.Token

				Value	string

}

func	(sl	*StringLiteral)	expressionNode()						{}

func	(sl	*StringLiteral)	TokenLiteral()	string	{	return	sl.Token.Literal	}

func	(sl	*StringLiteral)	String()	string							{	return	sl.Token.Literal	}

Of	course,	string	literals	are	expressions	and	not	statements.	They	evaluate	to	the	string.

With	 that	 definition	 we	 can	 write	 a	 small	 test	 case	 that	 makes	 sure	 the	 parser	 knows	 how	 to
handle	token.STRING	tokens	and	outputs	*ast.StringLiterals:

//	parser/parser_test.go

func	TestStringLiteralExpression(t	*testing.T)	{



				input	:=	`"hello	world";`

				l	:=	lexer.New(input)

				p	:=	New(l)

				program	:=	p.ParseProgram()

				checkParserErrors(t,	p)

				stmt	:=	program.Statements[0].(*ast.ExpressionStatement)

				literal,	ok	:=	stmt.Expression.(*ast.StringLiteral)

				if	!ok	{

								t.Fatalf("exp	not	*ast.StringLiteral.	got=%T",	stmt.Expression)

				}

				if	literal.Value	!=	"hello	world"	{

								t.Errorf("literal.Value	not	%q.	got=%q",	"hello	world",	literal.Value)

				}

}

Running	the	tests	results	in	a	well	known	type	of	parser	error:

$	go	test	./parser

---	FAIL:	TestStringLiteralExpression	(0.00s)

		parser_test.go:888:	parser	has	1	errors

		parser_test.go:890:	parser	error:	"no	prefix	parse	function	for	STRING	found"

FAIL

FAIL				monkey/parser			0.007s

We've	seen	that	many	times	before	and	we	know	how	to	fix	it.	All	we	have	to	do	is	register	a	new
prefixParseFn	 for	 token.STRING	 tokens.	 This	 parse	 function	 then	 returns	 an
*ast.StringLiteral:

//	parser/parser.go

func	New(l	*lexer.Lexer)	*Parser	{

//	[...]

				p.registerPrefix(token.STRING,	p.parseStringLiteral)

//	[...]

}

func	(p	*Parser)	parseStringLiteral()	ast.Expression	{

				return	&ast.StringLiteral{Token:	p.curToken,	Value:	p.curToken.Literal}

}

Three	new	lines!	That's	all	it	takes	to	make	the	tests	pass:

$	go	test	./parser

ok						monkey/parser			0.007s

So	now	our	lexer	turns	string	literals	into	token.STRING	 tokens	and	 the	parser	 turns	 those	 into
*ast.StringLiteral	 nodes.	We're	 now	 ready	 to	make	 changes	 to	 our	 object	 system	 and	 the
evaluator.

Evaluating	Strings

Representing	 a	 string	 in	 our	 object	 system	 is	 as	 easy	 as	 representing	 integers.	And	 the	 biggest
reason	why	it's	so	easy	is	that	we	reuse	Go's	string	data	type.	Imagine	adding	a	data	type	to	the
guest	 language	 that	 can't	 be	 represented	with	built-in	data	 structures	of	 the	host	 language.	E.g.:
strings	 in	C.	That's	a	 lot	more	work.	But	 instead,	all	we	have	to	do	is	define	a	new	object	 that
holds	a	string:



//	object/object.go

const	(

//	[...]

				STRING_OBJ	=	"STRING"

)

type	String	struct	{

				Value	string

}

func	(s	*String)	Type()	ObjectType	{	return	STRING_OBJ	}

func	(s	*String)	Inspect()	string		{	return	s.Value	}

Now	 we	 need	 to	 extend	 our	 evaluator	 so	 it	 turns	 *ast.StringLiteral	 in	 object.String
objects.	The	test	to	make	sure	that	this	works	is	tiny:

//	evaluator/evaluator_test.go

func	TestStringLiteral(t	*testing.T)	{

				input	:=	`"Hello	World!"`

				evaluated	:=	testEval(input)

				str,	ok	:=	evaluated.(*object.String)

				if	!ok	{

								t.Fatalf("object	is	not	String.	got=%T	(%+v)",	evaluated,	evaluated)

				}

				if	str.Value	!=	"Hello	World!"	{

								t.Errorf("String	has	wrong	value.	got=%q",	str.Value)

				}

}

The	call	to	Eval	doesn't	return	an	*object.String	yet	but	nil:

$	go	test	./evaluator

---	FAIL:	TestStringLiteral	(0.00s)

		evaluator_test.go:317:	object	is	not	String.	got=<nil>	(<nil>)

FAIL

FAIL				monkey/evaluator								0.007s

Getting	this	test	to	pass	needs	even	fewer	lines	than	in	the	parser.	Just	two:

//	evaluator/evaluator.go

func	Eval(node	ast.Node,	env	*object.Environment)	object.Object	{

//	[...]

				case	*ast.StringLiteral:

								return	&object.String{Value:	node.Value}

//	[...]

}

That	makes	the	tests	pass	and	we	can	now	use	strings	in	our	REPL:

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	"Hello	world!"

Hello	world!

>>	let	hello	=	"Hello	there,	fellow	Monkey	users	and	fans!"

>>	hello

Hello	there,	fellow	Monkey	users	and	fans!

>>	let	giveMeHello	=	fn()	{	"Hello!"	}

>>	giveMeHello()



Hello!

We	now	have	full	support	for	strings	in	our	interpreter!	Sweet!	Or	should	I	say...

>>	"This	is	amazing!"

This	is	amazing!

String	Concatenation

Having	 the	 string	 data	 type	 available	 is	 great.	 But	we	 can't	 do	much	with	 strings	 yet,	 besides
creating	 them.	 Let's	 change	 that!	 In	 this	 section	we're	 going	 to	 add	 string	 concatenation	 to	 our
interpreter.	And	we'll	do	that	by	adding	support	for	the	+	infix	operator	with	string	operands.

What	we	want	is	perfectly	described	by	this	test:

//	evaluator/evaluator_test.go

func	TestStringConcatenation(t	*testing.T)	{

				input	:=	`"Hello"	+	"	"	+	"World!"`

				evaluated	:=	testEval(input)

				str,	ok	:=	evaluated.(*object.String)

				if	!ok	{

								t.Fatalf("object	is	not	String.	got=%T	(%+v)",	evaluated,	evaluated)

				}

				if	str.Value	!=	"Hello	World!"	{

								t.Errorf("String	has	wrong	value.	got=%q",	str.Value)

				}

}

We	can	also	extend	our	TestErrorHandling	function	to	make	sure	that	we	only	add	support	for
the	+	operator	and	nothing	more:

//	evaluator/evaluator_test.go

func	TestErrorHandling(t	*testing.T)	{

				tests	:=	[]struct	{

								input											string

								expectedMessage	string

				}{

//	[...]

								{

												`"Hello"	-	"World"`,

												"unknown	operator:	STRING	-	STRING",

								},

//	[...]

				}

//	[...]

}

This	 test	 case	 is	 already	 green	 and	 acts	more	 as	 specification	 and	 regression	 testing	 than	 as	 a
guide	for	an	implementation.	But	our	concatenation	test	is	failing:

$	go	test	./evaluator

---	FAIL:	TestStringConcatenation	(0.00s)

		evaluator_test.go:336:	object	is	not	String.	got=*object.Error\

				(&{Message:unknown	operator:	STRING	+	STRING})

FAIL

FAIL				monkey/evaluator								0.007s



The	place	where	we	need	 to	make	changes	 is	evalInfixExpression.	Here	we	need	 to	 add	a
new	branch	to	the	existing	switch	statement	that's	evaluated	when	both	operands	are	strings:

//	evaluator/evaluator.go

func	evalInfixExpression(

				operator	string,

				left,	right	object.Object,

)	object.Object	{

				switch	{

//	[...]

				case	left.Type()	==	object.STRING_OBJ	&&	right.Type()	==	object.STRING_OBJ:

								return	evalStringInfixExpression(operator,	left,	right)

//	[...]

				}

}

The	evalStringInfixExpression	is	the	most	minimal	implementation	possible:

//	evaluator/evaluator.go

func	evalStringInfixExpression(

				operator	string,

				left,	right	object.Object,

)	object.Object	{

				if	operator	!=	"+"	{

								return	newError("unknown	operator:	%s	%s	%s",

												left.Type(),	operator,	right.Type())

				}

				leftVal	:=	left.(*object.String).Value

				rightVal	:=	right.(*object.String).Value

				return	&object.String{Value:	leftVal	+	rightVal}

}

The	 first	 thing	here	 is	 the	check	 for	 the	correct	operator.	 If	 it's	 the	 supported	+	we	unwrap	 the
string	objects	and	construct	a	new	string	that's	a	concatenation	of	both	operands.

If	we	want	to	support	more	operators	for	strings	this	is	the	place	where	to	add	them.	Also,	if	we
want	to	support	comparison	of	strings	with	the	==	and	!=	we'd	need	to	add	this	here	too.	Pointer
comparison	doesn't	work	for	strings,	at	least	not	in	the	way	we	want	it	to:	with	strings	we	want	to
compare	values	and	not	pointers.

And	that's	it!	Our	tests	pass:

$	go	test	./evaluator

ok						monkey/evaluator								0.007s

We	can	now	use	string	literals,	pass	them	around,	bind	them	to	names,	return	them	from	functions
and	also	concatenate	them:

>>	let	makeGreeter	=	fn(greeting)	{	fn(name)	{	greeting	+	"	"	+	name	+	"!"	}	};

>>	let	hello	=	makeGreeter("Hello");

>>	hello("Thorsten");

Hello	Thorsten!

>>	let	heythere	=	makeGreeter("Hey	there");

>>	heythere("Thorsten");

Hey	there	Thorsten!

Alright!	 I'd	 say	 strings	 are	 now	 working	 very	 well	 in	 our	 interpreter.	 But	 we	 can	 still	 add



something	else	to	work	with	them...



4.3	-	Built-in	Functions

In	 this	section	we're	going	 to	add	built-in	 functions	 to	our	 interpreter.	They're	called	"built-in",
because	 they're	not	defined	by	a	user	of	 the	 interpreter	and	 they're	not	Monkey	code	 -	 they	are
built	right	into	the	interpreter,	into	the	language	itself.

These	built-in	functions	are	defined	by	us,	in	Go,	and	bridge	the	world	of	Monkey	with	the	world
of	 our	 interpreter	 implementation.	A	 lot	 of	 language	 implementations	provide	 such	 functions	 to
offer	functionality	to	the	language's	user	that's	not	provided	"inside"	the	language.

Here's	 an	example:	 a	 function	 that	 returns	 the	current	 time.	 In	order	 to	get	 the	current	 time	one
could	ask	the	kernel	(or	another	computer,	etc.).	Asking	and	talking	to	the	kernel	is	normally	done
via	something	called	system	calls.	But	 if	 the	programming	 language	doesn't	offer	users	 to	make
such	 system	 calls	 themselves,	 then	 the	 language	 implementation,	 be	 it	 the	 compiler	 or	 the
interpreter,	has	to	provide	something	to	make	these	system	calls	on	behalf	of	the	users	instead.

So,	 again,	 the	 built-in	 functions	we're	 going	 to	 add	 are	 defined	 by	 us,	 the	 implementers	 of	 the
interpreter.	The	user	of	the	interpreter	can	call	them,	but	we	define	them.	What	these	functions	can
do,	 we	 leave	 open.	 The	 only	 restriction	 they	 have	 is	 that	 they	 need	 to	 accept	 zero	 or	 more
object.Object	as	arguments	and	return	an	object.Object.

//	object/object.go

type	BuiltinFunction	func(args	...Object)	Object

That's	 the	 type	 definition	 of	 a	 callable	 Go	 function.	 But	 since	 we	 need	 to	 make	 these
BuiltinFunctions	available	to	our	users	we	need	to	fit	them	into	our	object	system.	We	do	that
by	wrapping	them:

//	object/object.go

const	(

//	[...]

				BUILTIN_OBJ	=	"BUILTIN"

)

type	Builtin	struct	{

				Fn	BuiltinFunction

}

func	(b	*Builtin)	Type()	ObjectType	{	return	BUILTIN_OBJ	}

func	(b	*Builtin)	Inspect()	string		{	return	"builtin	function"	}

There's	 not	 much	 to	 object.Builtin,	 as	 you	 can	 see.	 It's	 clearly	 just	 a	 wrapper.	 But	 in
combination	with	object.BuiltinFunction	it's	enough	to	get	us	started.

len

The	 first	 built-in	 function	we're	 going	 to	 add	 to	 our	 interpreter	 is	len.	 Its	 job	 is	 to	 return	 the
number	of	characters	in	a	string.	It's	impossible	to	define	this	function	as	a	user	of	Monkey.	That's
why	we	need	it	to	be	built-in.	What	we	want	from	len	is	this:



>>	len("Hello	World!")

12

>>	len("")

0

>>	len("Hey	Bob,	how	ya	doin?")

21

I	think	that	makes	the	idea	behind	len	pretty	clear.	So	clear	in	fact,	that	we	can	easily	write	a	test
for	it:

//	evaluator/evaluator_test.go

func	TestBuiltinFunctions(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	interface{}

				}{

								{`len("")`,	0},

								{`len("four")`,	4},

								{`len("hello	world")`,	11},

								{`len(1)`,	"argument	to	`len`	not	supported,	got	INTEGER"},

								{`len("one",	"two")`,	"wrong	number	of	arguments.	got=2,	want=1"},

				}

				for	_,	tt	:=	range	tests	{

								evaluated	:=	testEval(tt.input)

								switch	expected	:=	tt.expected.(type)	{

								case	int:

												testIntegerObject(t,	evaluated,	int64(expected))

								case	string:

												errObj,	ok	:=	evaluated.(*object.Error)

												if	!ok	{

																t.Errorf("object	is	not	Error.	got=%T	(%+v)",

																				evaluated,	evaluated)

																continue

												}

												if	errObj.Message	!=	expected	{

																t.Errorf("wrong	error	message.	expected=%q,	got=%q",

																				expected,	errObj.Message)

												}

								}

				}

}

So	here	we	have	a	few	test	cases	that	run	len	through	its	paces:	an	empty	string,	a	normal	string
and	a	string	containing	whitespace.	It	really	shouldn't	matter	if	there's	whitespace	in	the	string,	but
you'll	never	know,	so	I	put	the	test	case	in.	The	last	two	test	cases	are	more	interesting:	we	want
to	make	sure	that	len	returns	an	*object.Error	when	called	with	an	integer	or	with	the	wrong
number	of	arguments.

If	we	run	the	tests	we	can	see	that	calling	len	gives	us	an	error,	but	not	the	one	expected	in	our
test	case:

$	go	test	./evaluator

---	FAIL:	TestBuiltinFunctions	(0.00s)

		evaluator_test.go:389:	object	is	not	Integer.	got=*object.Error\

				(&{Message:identifier	not	found:	len})

		evaluator_test.go:389:	object	is	not	Integer.	got=*object.Error\

				(&{Message:identifier	not	found:	len})

		evaluator_test.go:389:	object	is	not	Integer.	got=*object.Error\

				(&{Message:identifier	not	found:	len})

		evaluator_test.go:371:	wrong	error	message.\

				expected="argument	to	`len`	not	supported,	got	INTEGER",\

				got="identifier	not	found:	len"



FAIL

FAIL				monkey/evaluator								0.007s

len	can't	be	found,	which	isn't	that	baffling	considering	that	we	haven't	defined	it	yet.

In	 order	 to	 do	 that,	 the	 first	 thing	we	 have	 to	 do	 is	 provide	 a	way	 for	 built-in	 functions	 to	 be
found.	One	 option	 is	 to	 add	 them	 to	 the	 top-level	object.Environment,	 that	 gets	 passed	 into
Eval.	But	instead	we're	going	to	keep	a	separate	environment	of	built-in	functions:

//	evaluator/builtins.go

package	evaluator

import	"monkey/object"

var	builtins	=	map[string]*object.Builtin{

				"len":	&object.Builtin{

								Fn:	func(args	...object.Object)	object.Object	{

												return	NULL

								},

				},

}

In	order	 to	make	use	of	 that,	we	need	 to	 edit	 our	evalIdentifier	 function	 to	 lookup	 built-in
functions	 as	 a	 fallback	 when	 the	 given	 identifier	 is	 not	 bound	 to	 a	 value	 in	 the	 current
environment:

//	evaluator/evaluator.go

func	evalIdentifier(

				node	*ast.Identifier,

				env	*object.Environment,

)	object.Object	{

				if	val,	ok	:=	env.Get(node.Value);	ok	{

								return	val

				}

				if	builtin,	ok	:=	builtins[node.Value];	ok	{

								return	builtin

				}

				return	newError("identifier	not	found:	"	+	node.Value)

}

So	now	len	is	found	when	looking	up	the	len	identifier,	calling	it	doesn't	work	yet:

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	len()

ERROR:	not	a	function:	BUILTIN

>>

Running	 the	 tests	 gives	 us	 the	 same	 error.	 We	 need	 to	 teach	 our	 applyFunction	 about
*object.Builtin	and	object.BuiltinFunction:

//	evaluator/evaluator.go

func	applyFunction(fn	object.Object,	args	[]object.Object)	object.Object	{

				switch	fn	:=	fn.(type)	{

				case	*object.Function:



								extendedEnv	:=	extendFunctionEnv(fn,	args)

								evaluated	:=	Eval(fn.Body,	extendedEnv)

								return	unwrapReturnValue(evaluated)

				case	*object.Builtin:

								return	fn.Fn(args...)

				default:

								return	newError("not	a	function:	%s",	fn.Type())

				}

}

Besides	 moving	 the	 existing	 lines	 around,	 what	 changed	 here	 is	 the	 addition	 of	 the	 case
*object.Builtin	branch,	in	which	we	call	the	object.BuiltinFunction.	Doing	so	is	as	easy
as	using	the	args	slice	as	arguments	and	calling	the	function.

Of	 note	 is	 that	 we	 don't	 need	 to	 unwrapReturnValue	 when	 calling	 a	 built-in	 function.	 That's
because	we	never	return	an	*object.ReturnValue	from	these	functions.

Now	the	tests	are	rightfully	complaining	about	NULL	being	returned	when	calling	len:

$	go	test	./evaluator

---	FAIL:	TestBuiltinFunctions	(0.00s)

		evaluator_test.go:389:	object	is	not	Integer.	got=*object.Null	(&{})

		evaluator_test.go:389:	object	is	not	Integer.	got=*object.Null	(&{})

		evaluator_test.go:389:	object	is	not	Integer.	got=*object.Null	(&{})

		evaluator_test.go:366:	object	is	not	Error.	got=*object.Null	(&{})

		evaluator_test.go:366:	object	is	not	Error.	got=*object.Null	(&{})

FAIL

FAIL				monkey/evaluator								0.007s

That	means	that	calling	len	works	though!	It's	just	that	it	returns	only	NULL.	But	fixing	this	is	as
easy	as	writing	any	other	Go	function:

//	evaluator/builtins.go

import	(

				"monkey/object"

				"unicode/utf8"

)

var	builtins	=	map[string]*object.Builtin{

				"len":	&object.Builtin{

								Fn:	func(args	...object.Object)	object.Object	{

												if	len(args)	!=	1	{

																return	newError("wrong	number	of	arguments.	got=%d,	want=1",

																				len(args))

												}

												switch	arg	:=	args[0].(type)	{

												case	*object.String:

																return	&object.Integer{Value:	int64(len(arg.Value))}

												default:

																return	newError("argument	to	`len`	not	supported,	got	%s",

																				args[0].Type())

												}

								},

				},

}

The	most	 important	 part	 of	 this	 function	 is	 the	 call	 to	 Go's	 len	 and	 the	 returning	 of	 a	 newly
allocated	object.Integer.	Besides	 that	we	have	error	 checking	 that	makes	 sure	 that	we	can't
call	this	function	with	the	wrong	number	of	arguments	or	with	an	argument	of	an	unsupported	type.



And	alas,	our	tests	pass:

$	go	test	./evaluator

ok						monkey/evaluator								0.007s

That	means	we	can	take	len	on	a	test	drive	in	our	REPL:

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	len("1234")

4

>>	len("Hello	World!")

12

>>	len("Woooooohooo!",	"len	works!!")

ERROR:	wrong	number	of	arguments.	got=2,	want=1

>>	len(12345)

ERROR:	argument	to	`len`	not	supported,	got	INTEGER

Perfect!	Our	first	built-in	function	works	and	is	ready	to	go.



4.4	-	Array

The	data	type	we're	going	to	add	to	our	Monkey	interpreter	in	this	section	is	the	array.	In	Monkey
an	array	is	an	ordered	list	of	elements	of	possibly	different	types.	Each	element	in	the	array	can
be	accessed	individually.	Arrays	are	constructed	by	using	their	literal	form:	a	comma	separated
list	of	elements,	enclosed	by	brackets.

Initializing	 a	 new	array,	 binding	 it	 to	 a	 name	 and	 accessing	 individual	 elements	will	 look	 like
this:

>>	let	myArray	=	["Thorsten",	"Ball",	28,	fn(x)	{	x	*	x	}];

>>	myArray[0]

Thorsten

>>	myArray[2]

28

>>	myArray[3](2);

4

As	you	can	see,	Monkey	arrays	really	don't	care	about	the	types	of	their	elements.	Every	possible
value	 in	Monkey	can	be	an	element	 in	an	array.	 In	 this	example	myArray	holds	 two	strings,	 an
integer	and	a	function.

Accessing	individual	elements	by	their	index	in	the	array,	as	seen	in	the	last	three	lines,	is	done
with	a	new	operator,	called	the	index	operator:	array[index].

In	this	section	we'll	also	add	support	for	arrays	to	our	newly	added	len	function	and	also	add	a
few	more	built-in	functions	that	work	with	arrays:

>>	let	myArray	=	["one",	"two",	"three"];

>>	len(myArray)

3

>>	first(myArray)

one

>>	rest(myArray)

[two,	three]

>>	last(myArray)

three

>>	push(myArray,	"four")

[one,	two,	three,	four]

The	basis	for	our	implementation	of	the	Monkey	array	in	our	interpreter	will	be	a	Go	slice	of	type
[]object.Object.	That	means	that	we	don't	have	to	implement	a	new	data	structure.	We	can	just
reuse	Go's	slice.

Sounds	awesome?	Good!	The	first	thing	we	have	to	do	is	teach	our	lexer	a	few	new	tokens.

Supporting	Arrays	in	our	Lexer

In	 order	 to	 correctly	 parse	 array	 literals	 and	 the	 index	 operator,	 our	 lexer	 needs	 to	 be	 able	 to
identify	more	tokens	than	it	currently	does.	All	the	tokens	we	need	in	order	to	construct	and	use
arrays	in	Monkey	are	[,	]	and	,.	The	lexer	already	knows	about	,	so	we	only	need	to	add	support
for	[	and	].



The	first	step	is	to	define	these	new	token	types	in	the	token	package:

//	token/token.go

const	(

//	[...]

				LBRACKET	=	"["

				RBRACKET	=	"]"

//	[...]

)

The	second	step	is	to	extend	the	test	suite	of	the	lexer,	which	is	easy,	since	we've	done	this	many
times	before:

//	lexer/lexer_test.go

func	TestNextToken(t	*testing.T)	{

				input	:=	`let	five	=	5;

let	ten	=	10;

let	add	=	fn(x,	y)	{

		x	+	y;

};

let	result	=	add(five,	ten);

!-/*5;

5	<	10	>	5;

if	(5	<	10)	{

				return	true;

}	else	{

				return	false;

}

10	==	10;

10	!=	9;

"foobar"

"foo	bar"

[1,	2];

`

				tests	:=	[]struct	{

								expectedType				token.TokenType

								expectedLiteral	string

				}{

//	[...]

								{token.LBRACKET,	"["},

								{token.INT,	"1"},

								{token.COMMA,	","},

								{token.INT,	"2"},

								{token.RBRACKET,	"]"},

								{token.SEMICOLON,	";"},

								{token.EOF,	""},

				}

//	[...]

}

Again	the	input	 is	extended	to	 include	new	tokens	([1,	2]	 in	 this	case)	and	new	tests	have
been	 added	 to	 make	 sure	 the	 lexer's	 NextToken	 method	 really	 returns	 token.LBRACKET	 and
token.RBRACKET.

Making	the	test	pass	is	as	easy	as	adding	these	four	lines	to	our	NextToken()	method.	Yes,	just
four:



//	lexer/lexer.go

func	(l	*Lexer)	NextToken()	token.Token	{

//	[...]

				case	'[':

								tok	=	newToken(token.LBRACKET,	l.ch)

				case	']':

								tok	=	newToken(token.RBRACKET,	l.ch)

//	[...]

}

Alright!	The	tests	are	passing:

$	go	test	./lexer

ok						monkey/lexer				0.006s

In	our	parser	we'll	now	use	token.LBRACKET	and	token.RBRACKET	to	parse	arrays.

Parsing	Array	Literals

As	we	saw	before,	an	array	literal	in	Monkey	is	a	comma-separated	list	of	expressions	enclosed
by	an	opening	and	a	closing	bracket.

[1,	2,	3	+	3,	fn(x)	{	x	},	add(2,	2)]

Yes,	 the	 elements	 in	 an	 array	 literal	 can	 be	 any	 type	 of	 expression.	 Integer	 literals,	 function
literals,	infix	or	prefix	expressions.

If	that	sounds	complicated,	don't	worry.	We	already	know	how	to	parse	comma-separated	lists	of
expressions	 -	 function	call	 arguments	 are	 just	 that.	And	we	also	know	how	 to	parse	 something
enclosed	by	matching	tokens.	In	other	words:	let's	get	to	it!

The	first	thing	we	have	to	do	is	define	the	AST	node	for	array	literals.	Since	we	already	have	the
essential	pieces	in	place	for	this,	the	definition	is	rather	self-explanatory:

//	ast/ast.go

type	ArrayLiteral	struct	{

				Token				token.Token	//	the	'['	token

				Elements	[]Expression

}

func	(al	*ArrayLiteral)	expressionNode()						{}

func	(al	*ArrayLiteral)	TokenLiteral()	string	{	return	al.Token.Literal	}

func	(al	*ArrayLiteral)	String()	string	{

				var	out	bytes.Buffer

				elements	:=	[]string{}

				for	_,	el	:=	range	al.Elements	{

								elements	=	append(elements,	el.String())

				}

				out.WriteString("[")

				out.WriteString(strings.Join(elements,	",	"))

				out.WriteString("]")

				return	out.String()

}



The	 following	 test	 function	 makes	 sure	 that	 parsing	 array	 literals	 results	 in	 a
*ast.ArrayLiteral	being	returned.	(I	also	added	a	test	function	for	empty	array	literals	to	make
sure	that	we	don't	run	into	nasty	edge-cases)

//	parser/parser_test.go

func	TestParsingArrayLiterals(t	*testing.T)	{

				input	:=	"[1,	2	*	2,	3	+	3]"

				l	:=	lexer.New(input)

				p	:=	New(l)

				program	:=	p.ParseProgram()

				checkParserErrors(t,	p)

				stmt,	ok	:=	program.Statements[0].(*ast.ExpressionStatement)

				array,	ok	:=	stmt.Expression.(*ast.ArrayLiteral)

				if	!ok	{

								t.Fatalf("exp	not	ast.ArrayLiteral.	got=%T",	stmt.Expression)

				}

				if	len(array.Elements)	!=	3	{

								t.Fatalf("len(array.Elements)	not	3.	got=%d",	len(array.Elements))

				}

				testIntegerLiteral(t,	array.Elements[0],	1)

				testInfixExpression(t,	array.Elements[1],	2,	"*",	2)

				testInfixExpression(t,	array.Elements[2],	3,	"+",	3)

}

Just	to	make	sure	that	the	parsing	of	expressions	really	works	the	test	input	contains	two	different
infix	operator	expressions,	even	though	integer	or	boolean	literals	would	be	enough.	Other	than
that	the	test	is	pretty	boring	and	asserts	that	the	parser	really	returns	an	*ast.ArrayLiteral	with
the	correct	number	of	elements.

In	order	to	get	the	tests	to	pass	we	need	to	register	a	new	prefixParseFn	in	our	parser,	since	the
opening	token.LBRACKET	of	an	array	literal	is	in	prefix	position.

//	parser/parser.go

func	New(l	*lexer.Lexer)	*Parser	{

//	[...]

				p.registerPrefix(token.LBRACKET,	p.parseArrayLiteral)

//	[...]

}

func	(p	*Parser)	parseArrayLiteral()	ast.Expression	{

				array	:=	&ast.ArrayLiteral{Token:	p.curToken}

				array.Elements	=	p.parseExpressionList(token.RBRACKET)

				return	array

}

We've	added	prefixParseFns	before,	so	that	part's	not	really	exciting.	What's	interesting	here	is
the	 new	 method	 called	 parseExpressionList.	 This	 method	 is	 a	 modified	 and	 generalized
version	of	parseCallArguments,	which	we	used	before	 in	parseCallExpression	 to	 parse	 a
list	of	comma	separated	arguments:

//	parser/parser.go



func	(p	*Parser)	parseExpressionList(end	token.TokenType)	[]ast.Expression	{

				list	:=	[]ast.Expression{}

				if	p.peekTokenIs(end)	{

								p.nextToken()

								return	list

				}

				p.nextToken()

				list	=	append(list,	p.parseExpression(LOWEST))

				for	p.peekTokenIs(token.COMMA)	{

								p.nextToken()

								p.nextToken()

								list	=	append(list,	p.parseExpression(LOWEST))

				}

				if	!p.expectPeek(end)	{

								return	nil

				}

				return	list

}

Again,	we've	seen	this	before	under	the	name	parseCallArguments.	The	only	change	is	that	this
new	version	now	accepts	an	end	parameter	that	tells	the	method	which	token	signifies	the	end	of
the	 list.	The	updated	parseCallExpression	method,	 in	which	we	used	parseCallArguments
before,	now	looks	like	this:

//	parser/parser.go

func	(p	*Parser)	parseCallExpression(function	ast.Expression)	ast.Expression	{

				exp	:=	&ast.CallExpression{Token:	p.curToken,	Function:	function}

				exp.Arguments	=	p.parseExpressionList(token.RPAREN)

				return	exp

}

The	only	change	is	the	call	 to	parseExpressionList	with	token.RPAREN	 (which	signifies	 the
end	of	the	arguments	list).	We	could	reuse	a	relatively	big	method	by	changing	a	few	lines.	Great!
And	the	best	of	all?	The	tests	are	passing:

$	go	test	./parser

ok						monkey/parser			0.007s

We	can	mark	"parsing	array	literals"	as	"done".

Parsing	Index	Operator	Expressions

To	 fully	 support	arrays	 in	Monkey	we	not	only	need	 to	be	able	 to	parse	array	 literals	but	also
index	operator	expressions.	Maybe	 the	name	"index	operator"	doesn't	 ring	a	bell,	but	 I	bet	you
know	what	it	is.	Index	operator	expressions	look	like	this:

myArray[0];

myArray[1];

myArray[2];

That's	 the	 basic	 form	 at	 least,	 but	 there	 are	 many.	 Take	 a	 look	 at	 these	 examples	 to	 spot	 the
structure	underlying	them	all:



[1,	2,	3,	4][2];

let	myArray	=	[1,	2,	3,	4];

myArray[2];

myArray[2	+	1];

returnsArray()[1];

Yep,	you're	totally	correct!	The	basic	structure	is	this	one:

<expression>[<expression>]

That	seems	simple	enough.	We	can	define	a	new	AST	node,	called	ast.IndexExpression,	 that
reflects	this	structure:

//	ast/ast.go

type	IndexExpression	struct	{

				Token	token.Token	//	The	[	token

				Left		Expression

				Index	Expression

}

func	(ie	*IndexExpression)	expressionNode()						{}

func	(ie	*IndexExpression)	TokenLiteral()	string	{	return	ie.Token.Literal	}

func	(ie	*IndexExpression)	String()	string	{

				var	out	bytes.Buffer

				out.WriteString("(")

				out.WriteString(ie.Left.String())

				out.WriteString("[")

				out.WriteString(ie.Index.String())

				out.WriteString("])")

				return	out.String()

}

It's	 important	 to	note	 that	both	Left	and	Index	are	 just	Expressions.	Left	 is	 the	object	 that's
being	accessed	and	we've	seen	that	it	can	be	of	any	type:	an	identifier,	an	array	literal,	a	function
call.	The	same	goes	for	Index.	It	can	be	any	expression.	Syntactically	it	doesn't	make	a	difference
which	one	it	is,	but	semantically	it	has	to	produce	an	integer.

The	fact	that	both	Left	and	Index	are	expressions	makes	the	parsing	process	easier,	because	we
can	use	our	parseExpression	method	to	parse	them.	But	first	things	first!	Here	is	the	test	case
that	makes	sure	our	parser	knows	how	to	return	an	*ast.IndexExpression:

//	parser/parser_test.go

func	TestParsingIndexExpressions(t	*testing.T)	{

				input	:=	"myArray[1	+	1]"

				l	:=	lexer.New(input)

				p	:=	New(l)

				program	:=	p.ParseProgram()

				checkParserErrors(t,	p)

				stmt,	ok	:=	program.Statements[0].(*ast.ExpressionStatement)

				indexExp,	ok	:=	stmt.Expression.(*ast.IndexExpression)

				if	!ok	{

								t.Fatalf("exp	not	*ast.IndexExpression.	got=%T",	stmt.Expression)

				}



				if	!testIdentifier(t,	indexExp.Left,	"myArray")	{

								return

				}

				if	!testInfixExpression(t,	indexExp.Index,	1,	"+",	1)	{

								return

				}

}

Now,	 this	 test	 only	 asserts	 that	 the	 parser	 outputs	 the	 correct	 AST	 for	 a	 single	 expression
statement	 containing	 an	 index	 expression.	 But	 equally	 important	 is	 that	 the	 parser	 handles	 the
precedence	of	the	index	operator	correctly.	The	index	operator	has	to	have	the	highest	precedence
of	 all	 operators	 yet.	 Making	 sure	 of	 that	 is	 as	 easy	 as	 extending	 our	 existing
TestOperatorPrecedenceParsing	test	function:

//	parser/parser_test.go

func	TestOperatorPrecedenceParsing(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	string

				}{

//	[...]

								{

												"a	*	[1,	2,	3,	4][b	*	c]	*	d",

												"((a	*	([1,	2,	3,	4][(b	*	c)]))	*	d)",

								},

								{

												"add(a	*	b[2],	b[1],	2	*	[1,	2][1])",

												"add((a	*	(b[2])),	(b[1]),	(2	*	([1,	2][1])))",

								},

				}

//	[...]

}

The	additional	(	and	)	in	the	String()	output	of	*ast.IndexExpression	help	us	when	writing
these	tests,	since	they	make	the	precedence	of	the	index	operator	visible.	In	these	added	test	cases
we	 expect	 that	 the	 precedence	 of	 the	 index	 operator	 is	 higher	 than	 the	 precedence	 of	 call
expressions	or	even	the	*	operator	in	infix	expressions.

The	tests	fail	because	the	parser	doesn't	know	anything	about	index	expressions	yet:

$	go	test	./parser

---	FAIL:	TestOperatorPrecedenceParsing	(0.00s)

		parser_test.go:393:	expected="((a	*	([1,	2,	3,	4][(b	*	c)]))	*	d)",\

				got="(a	*	[1,	2,	3,	4])([(b	*	c)]	*	d)"

		parser_test.go:968:	parser	has	4	errors

		parser_test.go:970:	parser	error:	"expected	next	token	to	be	),	got	[	instead"

		parser_test.go:970:	parser	error:	"no	prefix	parse	function	for	,	found"

		parser_test.go:970:	parser	error:	"no	prefix	parse	function	for	,	found"

		parser_test.go:970:	parser	error:	"no	prefix	parse	function	for	)	found"

---	FAIL:	TestParsingIndexExpressions	(0.00s)

		parser_test.go:835:	exp	not	*ast.IndexExpression.	got=*ast.Identifier

FAIL

FAIL				monkey/parser			0.007s

Even	 though	 the	 tests	 complain	 about	 a	 missing	 prefixParseFn	 what	 we	 want	 is	 an
infixParseFn.	Yes,	 index	 operator	 expressions	 do	 not	 really	 have	 a	 single	 operator	 between
operands	on	each	side.	But	in	order	to	parse	them	without	a	lot	of	trouble	it's	of	advantage	to	act
like	 they	 do,	 just	 like	we	 did	with	 call	 expressions.	 Specifically,	 that	means	 treating	 the	 [	 in



myArray[0]	as	the	infix	operator,	myArray	as	the	left	operand	and	0	as	the	right	operand.

Doing	this	makes	the	implementation	fit	really	nicely	into	our	parser:

//	parser/parser.go

func	New(l	*lexer.Lexer)	*Parser	{

//	[...]

				p.registerInfix(token.LBRACKET,	p.parseIndexExpression)

//	[...]

}

func	(p	*Parser)	parseIndexExpression(left	ast.Expression)	ast.Expression	{

				exp	:=	&ast.IndexExpression{Token:	p.curToken,	Left:	left}

				p.nextToken()

				exp.Index	=	p.parseExpression(LOWEST)

				if	!p.expectPeek(token.RBRACKET)	{

								return	nil

				}

				return	exp

}

Neat!	But	that	doesn't	fix	our	tests:

$	go	test	./parser

---	FAIL:	TestOperatorPrecedenceParsing	(0.00s)

		parser_test.go:393:	expected="((a	*	([1,	2,	3,	4][(b	*	c)]))	*	d)",\

				got="(a	*	[1,	2,	3,	4])([(b	*	c)]	*	d)"

		parser_test.go:968:	parser	has	4	errors

		parser_test.go:970:	parser	error:	"expected	next	token	to	be	),	got	[	instead"

		parser_test.go:970:	parser	error:	"no	prefix	parse	function	for	,	found"

		parser_test.go:970:	parser	error:	"no	prefix	parse	function	for	,	found"

		parser_test.go:970:	parser	error:	"no	prefix	parse	function	for	)	found"

---	FAIL:	TestParsingIndexExpressions	(0.00s)

		parser_test.go:835:	exp	not	*ast.IndexExpression.	got=*ast.Identifier

FAIL

FAIL				monkey/parser			0.008s

That's	because	the	whole	idea	behind	our	Pratt	parser	hinges	on	the	idea	of	precedences	and	we
haven't	defined	the	precedence	of	our	index	operator	yet:

//	parser/parser.go

const	(

				_	int	=	iota

//	[...]

				INDEX							//	array[index]

)

var	precedences	=	map[token.TokenType]int{

//	[...]

				token.LBRACKET:	INDEX,

}

It's	important	that	the	definition	of	INDEX	is	the	last	line	in	the	const	block.	That	gives	INDEX	the
highest	 value	 of	 all	 defined	 precedence	 constants,	 thanks	 to	 the	 iota.	 The	 added	 entry	 in
precedences	gives	token.LBRACKET	 this	highest	precedence	of	all,	INDEX.	And,	well,	 it	does
wonders:



$	go	test	./parser

ok						monkey/parser			0.007s

Lexer	done,	parser	done.	See	you	in	the	evaluator!

Evaluating	Array	Literals

Evaluating	 array	 literals	 is	 not	 hard.	Mapping	Monkey	 arrays	 to	Go's	 slices	makes	 life	 pretty,
pretty	 sweet.	We	don't	 have	 to	 implement	 a	 new	data	 structure.	We	only	 need	 to	 define	 a	 new
object.Array	type,	since	that's	what	the	evaluation	of	array	literals	produces.	And	the	definition
of	object.Array	is	simple,	since	arrays	in	Monkey	are	simple:	they	are	just	a	list	of	objects.

//	object/object.go

const	(

//	[...]

				ARRAY_OBJ	=	"ARRAY"

)

type	Array	struct	{

				Elements	[]Object

}

func	(ao	*Array)	Type()	ObjectType	{	return	ARRAY_OBJ	}

func	(ao	*Array)	Inspect()	string	{

				var	out	bytes.Buffer

				elements	:=	[]string{}

				for	_,	e	:=	range	ao.Elements	{

								elements	=	append(elements,	e.Inspect())

				}

				out.WriteString("[")

				out.WriteString(strings.Join(elements,	",	"))

				out.WriteString("]")

				return	out.String()

}

I	think	you'll	agree	with	me	when	I	say	that	the	most	complicated	thing	about	this	definition	is	the
Inspect	method.	And	even	that	one	is	pretty	easy	to	understand.

Here	is	the	evaluator	test	for	array	literals:

//	evaluator/evaluator_test.go

func	TestArrayLiterals(t	*testing.T)	{

				input	:=	"[1,	2	*	2,	3	+	3]"

				evaluated	:=	testEval(input)

				result,	ok	:=	evaluated.(*object.Array)

				if	!ok	{

								t.Fatalf("object	is	not	Array.	got=%T	(%+v)",	evaluated,	evaluated)

				}

				if	len(result.Elements)	!=	3	{

								t.Fatalf("array	has	wrong	num	of	elements.	got=%d",

												len(result.Elements))

				}

				testIntegerObject(t,	result.Elements[0],	1)

				testIntegerObject(t,	result.Elements[1],	4)

				testIntegerObject(t,	result.Elements[2],	6)



}

We	can	reuse	some	existing	code	to	get	this	test	to	pass,	just	like	we	did	in	our	parser.	And	again
the	code	we're	reusing	was	originally	written	for	call	expressions.	Here	is	the	case	branch	that
evaluates	*ast.ArrayLiterals	and	produces	array	objects:

//	evaluator/evaluator.go

func	Eval(node	ast.Node,	env	*object.Environment)	object.Object	{

//	[...]

				case	*ast.ArrayLiteral:

								elements	:=	evalExpressions(node.Elements,	env)

								if	len(elements)	==	1	&&	isError(elements[0])	{

												return	elements[0]

								}

								return	&object.Array{Elements:	elements}

				}

//	[...]

}

Isn't	that	one	of	the	great	joys	of	programming?	Reusing	existing	code	without	having	to	turn	it	into
a	super	generic,	over-engineered	spaceship.

The	tests	are	passing	and	we	can	use	array	literals	in	our	REPL	to	produce	arrays:

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	[1,	2,	3,	4]

[1,	2,	3,	4]

>>	let	double	=	fn(x)	{	x	*	2	};

>>	[1,	double(2),	3	*	3,	4	-	3]

[1,	4,	9,	1]

>>

Amazing,	isn't	it?	But	what	we	can't	do	yet	is	accessing	single	elements	of	the	array	by	using	the
index	operator.

Evaluating	Index	Operator	Expressions

Great	news:	much	harder	than	evaluating	index	expressions	is	parsing	them.	And	we	already	did
that.	The	only	problem	left	is	the	possibility	of	off-by-one	errors	when	accessing	and	retrieving
the	elements	in	an	array.	But	for	that	we'll	just	add	a	few	tests	to	our	test	suite:

//	evaluator/evaluator_test.go

func	TestArrayIndexExpressions(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	interface{}

				}{

								{

												"[1,	2,	3][0]",

												1,

								},

								{

												"[1,	2,	3][1]",

												2,



								},

								{

												"[1,	2,	3][2]",

												3,

								},

								{

												"let	i	=	0;	[1][i];",

												1,

								},

								{

												"[1,	2,	3][1	+	1];",

												3,

								},

								{

												"let	myArray	=	[1,	2,	3];	myArray[2];",

												3,

								},

								{

												"let	myArray	=	[1,	2,	3];	myArray[0]	+	myArray[1]	+	myArray[2];",

												6,

								},

								{

												"let	myArray	=	[1,	2,	3];	let	i	=	myArray[0];	myArray[i]",

												2,

								},

								{

												"[1,	2,	3][3]",

												nil,

								},

								{

												"[1,	2,	3][-1]",

												nil,

								},

				}

				for	_,	tt	:=	range	tests	{

								evaluated	:=	testEval(tt.input)

								integer,	ok	:=	tt.expected.(int)

								if	ok	{

												testIntegerObject(t,	evaluated,	int64(integer))

								}	else	{

												testNullObject(t,	evaluated)

								}

				}

}

Okay,	I'll	admit,	these	tests	might	seem	excessive.	A	lot	of	the	things	we're	testing	implicitly	here
have	 already	 been	 tested	 elsewhere.	 But	 the	 test	 cases	 are	 so	 easy	 to	write!	 And	 they	 are	 so
readable!	I	love	these	tests.

Take	note	of	the	desired	behaviour	these	tests	specify.	They	contain	something	we	haven't	talked
about	 yet:	 when	 we	 use	 an	 index	 that's	 out	 of	 the	 arrays	 bounds,	 we'll	 return	 NULL.	 Some
languages	produce	an	error	in	such	a	case	and	some	return	a	null	value.	I	choose	to	return	NULL.

As	expected	the	tests	are	failing.	And	not	only	that,	they're	blowing	up:

$	go	test	./evaluator

---	FAIL:	TestArrayIndexExpressions	(0.00s)

		evaluator_test.go:492:	object	is	not	Integer.	got=<nil>	(<nil>)

		evaluator_test.go:492:	object	is	not	Integer.	got=<nil>	(<nil>)

		evaluator_test.go:492:	object	is	not	Integer.	got=<nil>	(<nil>)

		evaluator_test.go:492:	object	is	not	Integer.	got=<nil>	(<nil>)

		evaluator_test.go:492:	object	is	not	Integer.	got=<nil>	(<nil>)

		evaluator_test.go:492:	object	is	not	Integer.	got=<nil>	(<nil>)

panic:	runtime	error:	invalid	memory	address	or	nil	pointer	dereference

[signal	SIGSEGV:	segmentation	violation	code=0x1	addr=0x28	pc=0x70057]



[redacted:	backtrace	here]

FAIL				monkey/evaluator								0.011s

So	how	do	we	 fix	 this	 and	evaluate	 index	expressions?	As	we've	 seen,	 the	 left	operand	of	 the
index	operator	can	be	any	expression	and	the	index	itself	can	be	any	expression.	That	means	we
need	to	evaluate	both	before	we	can	evaluate	the	"indexing"	itself.	Otherwise	we'd	try	to	access
elements	of	an	identifier	or	a	function	call,	which	doesn't	work.

Here	is	the	case	branch	for	*ast.IndexExpression	that	makes	these	desired	calls	to	Eval:

//	evaluator/evaluator.go

func	Eval(node	ast.Node,	env	*object.Environment)	object.Object	{

//	[...]

				case	*ast.IndexExpression:

								left	:=	Eval(node.Left,	env)

								if	isError(left)	{

												return	left

								}

								index	:=	Eval(node.Index,	env)

								if	isError(index)	{

												return	index

								}

								return	evalIndexExpression(left,	index)

//	[...]

}

And	here	is	the	evalIndexExpression	function	it	uses:

//	evaluator/evaluator.go

func	evalIndexExpression(left,	index	object.Object)	object.Object	{

				switch	{

				case	left.Type()	==	object.ARRAY_OBJ	&&	index.Type()	==	object.INTEGER_OBJ:

								return	evalArrayIndexExpression(left,	index)

				default:

								return	newError("index	operator	not	supported:	%s",	left.Type())

				}

}

An	if-conditional	would	do	the	job	of	the	switch	statement	here	just	fine,	but	we're	going	to	add
another	case	branch	 later	 in	 this	chapter.	Besides	 the	error	handling	 (for	which	 I	also	added	a
test)	 nothing	 really	 interesting	 happens	 in	 this	 function.	 The	 meat	 of	 the	 operation	 is	 in
evalArrayIndexExpression:

//	evaluator/evaluator.go

func	evalArrayIndexExpression(array,	index	object.Object)	object.Object	{

				arrayObject	:=	array.(*object.Array)

				idx	:=	index.(*object.Integer).Value

				max	:=	int64(len(arrayObject.Elements)	-	1)

				if	idx	<	0	||	idx	>	max	{

								return	NULL

				}

				return	arrayObject.Elements[idx]

}

Here	we	actually	retrieve	the	element	with	the	specified	index	from	the	array.	Besides	the	little



type	assertion	and	conversion	dances	this	function	is	pretty	straightforward:	it	checks	if	the	given
index	is	out	of	range	and	if	that's	the	case	it	returns	NULL,	otherwise	the	desired	element.	Just	like
we	specified	in	our	tests,	which	are	now	passing:

$	go	test	./evaluator

ok						monkey/evaluator								0.007s

Okay,	now	take	a	deep	breath,	relax	and	take	a	look	at	this:

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	let	a	=	[1,	2	*	2,	10	-	5,	8	/	2];

>>	a[0]

1

>>	a[1]

4

>>	a[5	-	3]

5

>>	a[99]

null

Retrieving	elements	from	an	array	works!	Sweet!	I	can	only	repeat	myself	here:	it's	amazing	how
easy	it	was	to	implement	this	language	feature,	isn't	it?

Adding	Built-in	Functions	for	Arrays

We	are	now	able	to	construct	arrays	by	using	array	literals.	And	we	can	access	single	elements	by
using	index	expressions.	Just	those	two	things	alone	make	arrays	quite	useful	to	have.	But	in	order
to	make	them	even	more	useful,	we	need	to	add	a	few	built-in	functions	that	make	working	with
them	more	convenient.	In	this	sub-section	we're	going	to	do	exactly	that.

I	won't	be	showing	any	test	code	and	test	cases	in	this	section.	The	reason	is	that	these	particular
tests	take	up	space	without	adding	anything	new.	Our	"framework"	for	testing	built-in	functions	is
already	 in	place	with	TestBuiltinFunctions	 and	 the	added	 tests	 follow	 the	existing	 scheme.
You	can	find	them	in	the	accompanying	code.

Our	goal	is	to	add	new	built-in	functions.	But	the	first	thing	we	actually	have	to	do	is	not	adding	a
new	one	but	changing	an	existing	function.	We	need	to	add	support	for	arrays	to	len,	which	only
supported	strings	until	now:

//	evaluator/builtins.go

var	builtins	=	map[string]*object.Builtin{

				"len":	&object.Builtin{

								Fn:	func(args	...object.Object)	object.Object	{

												if	len(args)	!=	1	{

																return	newError("wrong	number	of	arguments.	got=%d,	want=1",

																				len(args))

												}

												switch	arg	:=	args[0].(type)	{

												case	*object.Array:

																return	&object.Integer{Value:	int64(len(arg.Elements))}

												case	*object.String:

																return	&object.Integer{Value:	int64(len(arg.Value))}

												default:



																return	newError("argument	to	`len`	not	supported,	got	%s",

																				args[0].Type())

												}

								},

				},

//	[...]

}

The	only	 change	 is	 the	 added	case	 branch	 for	*object.Array.	And	with	 that	 out	 of	 the	way,
we're	ready	to	start	adding	new	functions.	Yay!

The	 first	 of	 these	new	built-in	 functions	 is	first.	first	 returns	 the	 first	 element	 of	 the	 given
array.	Yes,	calling	myArray[0]	does	the	same	thing.	But	first	 is	arguably	prettier.	Here	 is	 its
implementation:

//	evaluator/builtins.go

var	builtins	=	map[string]*object.Builtin{

//	[...]

				"first":	&object.Builtin{

								Fn:	func(args	...object.Object)	object.Object	{

												if	len(args)	!=	1	{

																return	newError("wrong	number	of	arguments.	got=%d,	want=1",

																				len(args))

												}

												if	args[0].Type()	!=	object.ARRAY_OBJ	{

																return	newError("argument	to	`first`	must	be	ARRAY,	got	%s",

																				args[0].Type())

												}

												arr	:=	args[0].(*object.Array)

												if	len(arr.Elements)	>	0	{

																return	arr.Elements[0]

												}

												return	NULL

								},

				},

}

Great!	That	works!	And	what	comes	after	first?	You're	correct,	the	next	function	we're	going	to
add	is	called	last.

The	purpose	of	last	 is	 to	 return	 the	 last	 element	of	 the	given	array.	 In	 index	operator	 terms	 it
returns	myArray[len(myArray)-1].	And	as	it	turns	out,	implementing	last	 is	not	much	harder
than	implementing	first	-	who	would	have	thought	that?	Here	it	is:

//	evaluator/builtins.go

var	builtins	=	map[string]*object.Builtin{

//	[...]

				"last":	&object.Builtin{

								Fn:	func(args	...object.Object)	object.Object	{

												if	len(args)	!=	1	{

																return	newError("wrong	number	of	arguments.	got=%d,	want=1",

																				len(args))

												}

												if	args[0].Type()	!=	object.ARRAY_OBJ	{

																return	newError("argument	to	`last`	must	be	ARRAY,	got	%s",

																				args[0].Type())

												}



												arr	:=	args[0].(*object.Array)

												length	:=	len(arr.Elements)

												if	length	>	0	{

																return	arr.Elements[length-1]

												}

												return	NULL

								},

				},

}

The	next	function	we're	going	to	add	would	be	called	cdr	in	Scheme.	In	some	other	languages	it's
sometimes	 called	 tail.	We're	 going	 to	 call	 it	 rest.	 rest	 returns	 a	 new	 array	 containing	 all
elements	of	the	array	passed	as	argument,	except	the	first	one.	Here's	what	using	it	looks	like:

>>	let	a	=	[1,	2,	3,	4];

>>	rest(a)

[2,	3,	4]

>>	rest(rest(a))

[3,	4]

>>	rest(rest(rest(a)))

[4]

>>	rest(rest(rest(rest(a))))

[]

>>	rest(rest(rest(rest(rest(a)))))

null

Its	implementation	is	simple,	but	keep	in	mind	that	we're	returning	a	newly	allocated	array.	We're
not	modifying	the	array	passed	to	rest:

//	evaluator/builtins.go

var	builtins	=	map[string]*object.Builtin{

//	[...]

				"rest":	&object.Builtin{

								Fn:	func(args	...object.Object)	object.Object	{

												if	len(args)	!=	1	{

																return	newError("wrong	number	of	arguments.	got=%d,	want=1",

																				len(args))

												}

												if	args[0].Type()	!=	object.ARRAY_OBJ	{

																return	newError("argument	to	`rest`	must	be	ARRAY,	got	%s",

																				args[0].Type())

												}

												arr	:=	args[0].(*object.Array)

												length	:=	len(arr.Elements)

												if	length	>	0	{

																newElements	:=	make([]object.Object,	length-1,	length-1)

																copy(newElements,	arr.Elements[1:length])

																return	&object.Array{Elements:	newElements}

												}

												return	NULL

								},

				},

}

The	 last	 array	 function	we're	 going	 to	 build	 into	 our	 interpreter	 is	 called	push.	 It	 adds	 a	 new
element	to	the	end	of	the	array.	But,	and	here's	the	kicker,	it	doesn't	modify	the	given	array.	Instead
it	 allocates	 a	 new	 array	with	 the	 same	 elements	 as	 the	 old	 one	 plus	 the	 new,	 pushed	 element.
Arrays	are	immutable	in	Monkey.	Here	is	push	in	action:



>>	let	a	=	[1,	2,	3,	4];

>>	let	b	=	push(a,	5);

>>	a

[1,	2,	3,	4]

>>	b

[1,	2,	3,	4,	5]

And	here	is	its	implementation:

//	evaluator/builtins.go

var	builtins	=	map[string]*object.Builtin{

//	[...]

				"push":	&object.Builtin{

								Fn:	func(args	...object.Object)	object.Object	{

												if	len(args)	!=	2	{

																return	newError("wrong	number	of	arguments.	got=%d,	want=1",

																				len(args))

												}

												if	args[0].Type()	!=	object.ARRAY_OBJ	{

																return	newError("argument	to	`push`	must	be	ARRAY,	got	%s",

																				args[0].Type())

												}

												arr	:=	args[0].(*object.Array)

												length	:=	len(arr.Elements)

												newElements	:=	make([]object.Object,	length+1,	length+1)

												copy(newElements,	arr.Elements)

												newElements[length]	=	args[1]

												return	&object.Array{Elements:	newElements}

								},

				},

}

Test-Driving	Arrays

We	now	have	array	literals,	the	index	operator	and	a	few	built-in	functions	to	work	with	arrays.
It's	time	to	take	them	for	a	spin.	Let's	see	what	they	can	do.

With	first,	rest	and	push	we	can	build	a	map	function:

let	map	=	fn(arr,	f)	{

		let	iter	=	fn(arr,	accumulated)	{

				if	(len(arr)	==	0)	{

						accumulated

				}	else	{

						iter(rest(arr),	push(accumulated,	f(first(arr))));

				}

		};

		iter(arr,	[]);

};

And	with	map	we	can	do	things	like	this:

>>	let	a	=	[1,	2,	3,	4];

>>	let	double	=	fn(x)	{	x	*	2	};

>>	map(a,	double);

[2,	4,	6,	8]

Isn't	 this	 amazing?	 There's	 more!	 Based	 on	 the	 same	 built-in	 functions	 we	 can	 also	 define	 a



reduce	function:

let	reduce	=	fn(arr,	initial,	f)	{

		let	iter	=	fn(arr,	result)	{

				if	(len(arr)	==	0)	{

						result

				}	else	{

						iter(rest(arr),	f(result,	first(arr)));

				}

		};

		iter(arr,	initial);

};

And	reduce,	in	turn,	can	be	used	to	define	a	sum	function:

let	sum	=	fn(arr)	{

		reduce(arr,	0,	fn(initial,	el)	{	initial	+	el	});

};

And	it	works	like	a	charm:

>>	sum([1,	2,	3,	4,	5]);

15

As	you	probably	know,	I'm	not	a	fan	of	patting	oneself	on	the	back,	but	let	me	just	say	this:	holy
monkey!	Look	at	what	our	interpreter	can	do!	A	map	function?!	reduce?!	We've	come	a	long,	long
way!

And	 that's	 not	 even	 all	 of	 it!	There's	 a	 lot	more	we	 can	do	now	and	 I	 urge	you	 to	 explore	 the
possibilities	 the	array	data	 type	and	 the	 few	built-in	 functions	give	us.	But	you	know	what	you
should	do	first?	Take	some	time	off,	brag	about	this	to	your	friends	and	family,	enjoy	the	praise
and	compliments.	And	when	you	come	back,	we'll	add	another	data	type.



4.5	-	Hashes

The	next	data	 type	we're	going	 to	add	 is	called	"hash".	A	hash	 in	Monkey	 is	what's	 sometimes
called	hash,	map,	hash	map	or	dictionary	in	other	programming	languages.	It	maps	keys	to	values.

In	order	to	construct	a	hash	in	Monkey	one	uses	the	hash	literal:	a	comma-separated	list	of	key-
value	 pairs	 that's	 enclosed	 by	 curly	 braces.	 Each	 key-value	 pair	 uses	 a	 colon	 to	 differentiate
between	the	key	and	the	value.	Here	is	what	using	a	hash	literal	looks	like:

>>	let	myHash	=	{"name":	"Jimmy",	"age":	72,	"band":	"Led	Zeppelin"};

>>	myHash["name"]

Jimmy

>>	myHash["age"]

72

>>	myHash["band"]

Led	Zeppelin

In	this	example	myHash	contains	three	key-value	pairs.	The	keys	are	all	strings.	And,	as	you	can
see,	we	can	use	index	operator	expressions	to	get	values	out	of	the	hash	again,	just	like	we	can
with	 arrays.	 Except	 that	 in	 this	 example	 the	 index	 values	 are	 strings,	 which	 don't	 work	 with
arrays.	And	that's	not	even	the	only	data	type	that's	usable	as	a	hash	key:

>>	let	myHash	=	{true:	"yes,	a	boolean",	99:	"correct,	an	integer"};

>>	myHash[true]

yes,	a	boolean

>>	myHash[99]

correct,	an	integer

That's	also	valid.	In	fact,	besides	string,	integer	and	boolean	literals	we	can	use	any	expression	as
index	in	index	operator	expressions:

>>	myHash[5	>	1]

yes,	a	boolean

>>	myHash[100	-	1]

correct,	an	integer

As	 long	as	 these	expressions	evaluate	 to	either	 strings,	 integers	or	booleans	 they	are	usable	as
hash	keys.	Here	5	>	1	evaluates	to	true	and	100	-	1	evaluates	to	99,	both	of	which	are	valid
and	mapped	to	values	in	myHash.

Rather	unsurprisingly	our	implementation	will	use	Go's	map	as	 the	underlying	data	structure	 for
Monkey	hashes.	But	since	we	want	to	use	strings,	integers	and	booleans	interchangeably	as	keys,
we	need	to	build	something	on	top	of	plain	old	map	to	make	it	work.	We'll	come	to	that	when	we
extend	our	object	system.	But	first	we	have	to	turn	hash	literals	into	tokens.

Lexing	Hash	Literals

How	do	we	turn	hash	literals	 into	tokens?	Which	tokens	do	we	need	to	recognize	and	output	in
our	lexer	so	that	we	can	later	work	with	them	in	the	parser?	Here	is	the	hash	literal	from	above
again:



{"name":	"Jimmy",	"age":	72,	"band":	"Led	Zeppelin"}

Besides	the	string	literals	there	are	four	characters	in	use	here	that	are	important:	{,	},	,	and	:.
We	 already	 know	 how	 to	 lex	 the	 first	 three.	 Our	 lexer	 turns	 these	 into	 token.LBRACE,
token.RBRACE	 and	 token.COMMA	 respectively.	 That	 means,	 all	 that's	 left	 for	 us	 to	 do	 in	 this
section	is	to	turn	:	into	a	token.

And	for	that	we	first	need	to	define	the	necessary	token	type	in	the	token	package:

//	token/token.go

const	(

//	[...]

				COLON	=	":"

//	[...]

)

Next	 we're	 going	 to	 add	 a	 new	 test	 for	 the	 NextToken	 method	 of	 Lexer	 that	 expects	 a
token.COLON:

//	lexer/lexer_test.go

func	TestNextToken(t	*testing.T)	{

				input	:=	`let	five	=	5;

let	ten	=	10;

let	add	=	fn(x,	y)	{

		x	+	y;

};

let	result	=	add(five,	ten);

!-/*5;

5	<	10	>	5;

if	(5	<	10)	{

				return	true;

}	else	{

				return	false;

}

10	==	10;

10	!=	9;

"foobar"

"foo	bar"

[1,	2];

{"foo":	"bar"}

`

				tests	:=	[]struct	{

								expectedType				token.TokenType

								expectedLiteral	string

				}{

//	[...]

								{token.LBRACE,	"{"},

								{token.STRING,	"foo"},

								{token.COLON,	":"},

								{token.STRING,	"bar"},

								{token.RBRACE,	"}"},

								{token.EOF,	""},

				}

//	[...]

}

We	could	get	away	with	adding	a	single	:	to	the	test	input,	but	using	a	hash	literal	as	we	did	here



provides	a	little	more	context	when	later	reading	and	eventually	debugging	the	test.

Turning	:	into	token.COLON	is	as	easy	as	it	gets:

//	lexer/lexer.go

func	(l	*Lexer)	NextToken()	token.Token	{

//	[...]

				case	':':

								tok	=	newToken(token.COLON,	l.ch)

//	[...]

}

Only	two	new	lines	and	the	lexer	now	spits	out	token.COLON:

$	go	test	./lexer

ok						monkey/lexer				0.006s

Boom!	 The	 lexer	 now	 returns	 token.LBRACE,	 token.RBRACE,	 token.COMMA	 and	 the	 new
token.COLON.	That's	all	we	need	in	order	to	parse	to	hash	literals.

Parsing	Hash	Literals

Before	we	 start	working	 on	 our	 parser	 or	 even	writing	 a	 test,	 let's	 look	 at	 the	 basic	 syntactic
structure	of	a	hash	literal:

{<expression>	:	<expression>,	<expression>	:	<expression>,	...	}

It's	a	comma-separated	list	of	pairs.	Each	pair	consists	of	two	expressions.	One	produces	the	hash
key	 and	one	produces	 the	value.	The	key	 is	 separated	 from	 the	value	with	 a	 colon.	The	 list	 is
enclosed	by	a	pair	of	curly	braces.

When	we	 turn	 this	 into	an	AST	node,	we	have	 to	keep	 track	of	 the	key-value	pairs.	Now	how
would	we	do	that?	We'll	use	a	map,	yes,	but	of	what	type	are	the	keys	and	the	values	in	this	map?

We	 said	 earlier	 that	 the	 only	 admissible	 data	 types	 for	 hash	 keys	 are	 strings,	 integers	 and
booleans.	But	we	can't	enforce	that	in	the	parser.	Instead	we'll	have	to	validate	hash	key	types	in
the	evaluation	stage	and	generate	possible	errors	there.

That's	because	a	 lot	of	different	expressions	can	produce	strings,	 integers	or	booleans.	Not	 just
their	literal	forms.	Enforcing	the	data	type	of	hash	keys	in	the	parsing	stage	would	prevent	us	from
doing	something	like	this:

let	key	=	"name";

let	hash	=	{key:	"Monkey"};

Here	key	evaluates	to	"name"	and	is	thus	totally	valid	as	a	hash	key,	even	though	it's	an	identifier.
In	order	to	allow	this,	we	need	to	allow	any	expression	as	a	key	and	any	expression	as	a	value	in
a	hash	literal.	At	least	in	the	parsing	stage.	Following	that	our	ast.HashLiteral	definition	looks
like	this:



//	ast/ast.go

type	HashLiteral	struct	{

				Token	token.Token	//	the	'{'	token

				Pairs	map[Expression]Expression

}

func	(hl	*HashLiteral)	expressionNode()						{}

func	(hl	*HashLiteral)	TokenLiteral()	string	{	return	hl.Token.Literal	}

func	(hl	*HashLiteral)	String()	string	{

				var	out	bytes.Buffer

				pairs	:=	[]string{}

				for	key,	value	:=	range	hl.Pairs	{

								pairs	=	append(pairs,	key.String()+":"+value.String())

				}

				out.WriteString("{")

				out.WriteString(strings.Join(pairs,	",	"))

				out.WriteString("}")

				return	out.String()

}

Now	that	we're	clear	about	the	structure	of	hash	literals	and	have	ast.HashLiteral	defined,	we
can	write	tests	for	our	parser:

//	parser/parser_test.go

func	TestParsingHashLiteralsStringKeys(t	*testing.T)	{

				input	:=	`{"one":	1,	"two":	2,	"three":	3}`

				l	:=	lexer.New(input)

				p	:=	New(l)

				program	:=	p.ParseProgram()

				checkParserErrors(t,	p)

				stmt	:=	program.Statements[0].(*ast.ExpressionStatement)

				hash,	ok	:=	stmt.Expression.(*ast.HashLiteral)

				if	!ok	{

								t.Fatalf("exp	is	not	ast.HashLiteral.	got=%T",	stmt.Expression)

				}

				if	len(hash.Pairs)	!=	3	{

								t.Errorf("hash.Pairs	has	wrong	length.	got=%d",	len(hash.Pairs))

				}

				expected	:=	map[string]int64{

								"one":			1,

								"two":			2,

								"three":	3,

				}

				for	key,	value	:=	range	hash.Pairs	{

								literal,	ok	:=	key.(*ast.StringLiteral)

								if	!ok	{

												t.Errorf("key	is	not	ast.StringLiteral.	got=%T",	key)

								}

								expectedValue	:=	expected[literal.String()]

								testIntegerLiteral(t,	value,	expectedValue)

				}

}

And	of	 course,	we	also	have	 to	be	 sure	 that	we	parse	an	empty	hash	 literal	 correctly,	because
such	edge-cases	are	the	root	of	all	hair	loss	in	programming:



//	parser/parser_test.go

func	TestParsingEmptyHashLiteral(t	*testing.T)	{

				input	:=	"{}"

				l	:=	lexer.New(input)

				p	:=	New(l)

				program	:=	p.ParseProgram()

				checkParserErrors(t,	p)

				stmt	:=	program.Statements[0].(*ast.ExpressionStatement)

				hash,	ok	:=	stmt.Expression.(*ast.HashLiteral)

				if	!ok	{

								t.Fatalf("exp	is	not	ast.HashLiteral.	got=%T",	stmt.Expression)

				}

				if	len(hash.Pairs)	!=	0	{

								t.Errorf("hash.Pairs	has	wrong	length.	got=%d",	len(hash.Pairs))

				}

}

I	also	added	 two	more	 tests	 that	are	 similar	 to	TestHashLiteralStringKeys	 but	use	 integers
and	booleans	as	hash	keys	and	make	sure	the	parser	turns	those	into	*ast.IntegerLiteral	and
*ast.Boolean	respectively.	And	then	there	is	a	fifth	test	function	that	makes	sure	the	values	in	a
hash	literal	can	be	any	expression,	even	operator	expressions.	It	looks	like	this:

//	parser/parser_test.go

func	TestParsingHashLiteralsWithExpressions(t	*testing.T)	{

				input	:=	`{"one":	0	+	1,	"two":	10	-	8,	"three":	15	/	5}`

				l	:=	lexer.New(input)

				p	:=	New(l)

				program	:=	p.ParseProgram()

				checkParserErrors(t,	p)

				stmt	:=	program.Statements[0].(*ast.ExpressionStatement)

				hash,	ok	:=	stmt.Expression.(*ast.HashLiteral)

				if	!ok	{

								t.Fatalf("exp	is	not	ast.HashLiteral.	got=%T",	stmt.Expression)

				}

				if	len(hash.Pairs)	!=	3	{

								t.Errorf("hash.Pairs	has	wrong	length.	got=%d",	len(hash.Pairs))

				}

				tests	:=	map[string]func(ast.Expression){

								"one":	func(e	ast.Expression)	{

												testInfixExpression(t,	e,	0,	"+",	1)

								},

								"two":	func(e	ast.Expression)	{

												testInfixExpression(t,	e,	10,	"-",	8)

								},

								"three":	func(e	ast.Expression)	{

												testInfixExpression(t,	e,	15,	"/",	5)

								},

				}

				for	key,	value	:=	range	hash.Pairs	{

								literal,	ok	:=	key.(*ast.StringLiteral)

								if	!ok	{

												t.Errorf("key	is	not	ast.StringLiteral.	got=%T",	key)

												continue

								}

								testFunc,	ok	:=	tests[literal.String()]

								if	!ok	{

												t.Errorf("No	test	function	for	key	%q	found",	literal.String())

												continue



								}

								testFunc(value)

				}

}

So	how	are	all	of	these	test	functions	doing?	Not	so	well,	to	be	honest.	We	get	a	lot	of	failures	and
parser	errors:

$	go	test	./parser

---	FAIL:	TestParsingEmptyHashLiteral	(0.00s)

		parser_test.go:1173:	parser	has	2	errors

		parser_test.go:1175:	parser	error:	"no	prefix	parse	function	for	{	found"

		parser_test.go:1175:	parser	error:	"no	prefix	parse	function	for	}	found"

---	FAIL:	TestParsingHashLiteralsStringKeys	(0.00s)

		parser_test.go:1173:	parser	has	7	errors

		parser_test.go:1175:	parser	error:	"no	prefix	parse	function	for	{	found"

[...	more	errors	...]

---	FAIL:	TestParsingHashLiteralsBooleanKeys	(0.00s)

		parser_test.go:1173:	parser	has	5	errors

		parser_test.go:1175:	parser	error:	"no	prefix	parse	function	for	{	found"

[...	more	errors	...]

---	FAIL:	TestParsingHashLiteralsIntegerKeys	(0.00s)

		parser_test.go:967:	parser	has	7	errors

		parser_test.go:969:	parser	error:	"no	prefix	parse	function	for	{	found"

[...	more	errors	...]

---	FAIL:	TestParsingHashLiteralsWithExpressions	(0.00s)

		parser_test.go:1173:	parser	has	7	errors

		parser_test.go:1175:	parser	error:	"no	prefix	parse	function	for	{	found"

[...	more	errors	...]

FAIL

FAIL				monkey/parser			0.008s

It	might	sound	unbelievable	but	there's	good	news:	it	only	takes	one	function	to	make	all	of	these
tests	 pass.	 One	 prefixParseFn,	 to	 be	 exact.	 Since	 the	 token.LBRACE	 of	 a	 hash	 literal	 is	 in
prefix	 position,	 just	 like	 the	 token.LBRACKET	 of	 an	 array	 literal,	 we	 can	 define	 a
parseHashLiteral	method	as	a	prefixParseFn:

//	parser/parser.go

func	New(l	*lexer.Lexer)	*Parser	{

//	[...]

				p.registerPrefix(token.LBRACE,	p.parseHashLiteral)

//	[...]

}

func	(p	*Parser)	parseHashLiteral()	ast.Expression	{

				hash	:=	&ast.HashLiteral{Token:	p.curToken}

				hash.Pairs	=	make(map[ast.Expression]ast.Expression)

				for	!p.peekTokenIs(token.RBRACE)	{

								p.nextToken()

								key	:=	p.parseExpression(LOWEST)

								if	!p.expectPeek(token.COLON)	{

												return	nil

								}

								p.nextToken()

								value	:=	p.parseExpression(LOWEST)

								hash.Pairs[key]	=	value

								if	!p.peekTokenIs(token.RBRACE)	&&	!p.expectPeek(token.COMMA)	{

												return	nil

								}

				}



				if	!p.expectPeek(token.RBRACE)	{

								return	nil

				}

				return	hash

}

It	may	 look	 intimidating,	 but	 there	 is	 nothing	 in	parseHashLiteral	we	 haven't	 seen	 before.	 It
only	loops	over	key-value	expression	pairs	by	checking	for	a	closing	token.RBRACE	and	calling
parseExpression	two	times.	That	and	the	filling	of	hash.Pairs	are	the	most	important	parts	of
this	method.	It	does	its	job	well:

$	go	test	./parser

ok						monkey/parser			0.006s

All	of	our	parser	tests	pass!	And	judging	by	the	numbers	of	tests	we	added,	we	can	be	reasonably
sure	that	our	parser	now	knows	how	to	parse	hash	literals.	That	means	we're	now	coming	to	the
most	 interesting	part	of	adding	hashes	 to	our	 interpreter:	 representing	 them	in	 the	object	system
and	evaluating	hash	literals.

Hashing	Objects

Besides	extending	the	lexer	and	parser,	adding	a	new	data	type	also	means	representing	it	in	the
object	system.	We	successfully	did	that	for	integers,	strings	and	arrays.	But	whereas	implementing
these	other	data	types	just	meant	defining	a	struct	 that	has	a	.Value	 field	with	 the	correct	 type,
hashes	require	a	little	bit	more	effort.	Let	me	explain	why.

Let's	say	we	defined	a	new	object.Hash	type	like	this:

type	Hash	struct	{

		Pairs	map[Object]Object

}

That's	 the	most	obvious	choice	for	implementing	a	Hash	data	type	based	on	Go's	map.	But	with
this	 definition,	 how	would	we	 fill	 the	Pairs	map?	And	more	 importantly,	 how	would	we	 get
values	back	out	of	it?

Consider	this	piece	of	Monkey	code:

let	hash	=	{"name":	"Monkey"};

hash["name"]

Let's	say	we	are	evaluating	these	two	lines	and	are	using	the	object.Hash	definition	from	above.
When	evaluating	 the	hash	 literal	 in	 the	 first	 line	we	 take	every	key-value	pair	 and	put	 it	 in	 the
map[Object]Object	 map,	 resulting	 in	 .Pairs	 having	 the	 following	 mapping:	 an
*object.String	with	.Value	being	"name"	mapped	to	an	*object.String	with	.Value	being
"Monkey".

So	far,	so	good.	But	the	problem	arises	in	the	second	line	where	we	use	an	index	expression	to	try
to	access	the	"Monkey"	string.



In	 this	second	 line	 the	"name"	 string	 literal	of	 the	 index	expression	evaluates	 to	a	new,	 freshly
allocated	*object.String.	And	even	though	this	new	*object.String	also	contains	"name"	in
its	 .Value	 field,	 just	 like	 the	 other	 *object.String	 in	 Pairs,	 we	 can't	 use	 the	 new	 one	 to
retrieve	"Monkey".

The	reason	for	this	is	that	they're	pointers	pointing	to	different	memory	locations.	The	fact	that	the
content	 of	 the	memory	 locations	 they	 point	 to	 is	 the	 same	 ("name")	 doesn't	matter.	 Comparing
these	 pointers	 would	 tell	 us	 that	 they're	 not	 equal.	 That	 means	 using	 the	 newly	 created
*object.String	as	a	key	doesn't	get	us	"Monkey".	That's	how	pointers	and	comparison	between
them	works	in	Go.

Here	 is	 an	 example	 that	 demonstrates	 the	 problem	 we'd	 face	 with	 the	 object.Hash
implementation	from	above:

name1	:=	&object.String{Value:	"name"}

monkey	:=	&object.String{Value:	"Monkey"}

pairs	:=	map[object.Object]object.Object{}

pairs[name1]	=	monkey

fmt.Printf("pairs[name1]=%+v\n",	pairs[name1])

//	=>	pairs[name1]=&{Value:Monkey}

name2	:=	&object.String{Value:	"name"}

fmt.Printf("pairs[name2]=%+v\n",	pairs[name2])

//	=>	pairs[name2]=<nil>

fmt.Printf("(name1	==	name2)=%t\n",	name1	==	name2)

//	=>	(name1	==	name2)=false

As	 a	 solution	 to	 this	 problem	 we	 could	 iterate	 over	 every	 key	 in	 .Pairs,	 check	 if	 it's	 an
*object.String	and	compare	its	.Value	to	the	.Value	of	the	key	in	the	index	expression.	We'd
find	the	matching	value	this	way,	but	this	method	turns	the	lookup	time	for	a	given	key	from	O(1)
into	O(n),	defeating	the	entire	purpose	of	using	hashes	in	the	first	place.

Another	 option	 is	 to	 define	 Pairs	 as	 a	 map[string]Object	 and	 then	 use	 the	 .Value	 of
*object.String	as	the	keys.	That	works,	but	not	for	integers	and	booleans.

No,	what	we	need	is	a	way	to	generate	hashes	for	objects	that	we	can	easily	compare	and	use	as
hash	 keys	 in	 our	 object.Hash.	 We	 need	 to	 be	 able	 to	 generate	 a	 hash	 key	 for	 an
*object.String	that's	comparable	and	equal	to	the	hash	key	of	another	*object.String	with
the	 same	 .Value.	 The	 same	 goes	 for	 *object.Integer	 and	 *object.Boolean.	 But	 the	 hash
keys	for	an	*object.String	must	never	be	equal	to	the	hash	key	for	an	*object.Integer	or	an
*object.Boolean.	Between	types	the	hash	keys	always	have	to	differ.

We	can	express	the	desired	behaviour	in	a	set	of	test	functions	in	our	object	system:

//	object/object_test.go

package	object

import	"testing"



func	TestStringHashKey(t	*testing.T)	{

				hello1	:=	&String{Value:	"Hello	World"}

				hello2	:=	&String{Value:	"Hello	World"}

				diff1	:=	&String{Value:	"My	name	is	johnny"}

				diff2	:=	&String{Value:	"My	name	is	johnny"}

				if	hello1.HashKey()	!=	hello2.HashKey()	{

								t.Errorf("strings	with	same	content	have	different	hash	keys")

				}

				if	diff1.HashKey()	!=	diff2.HashKey()	{

								t.Errorf("strings	with	same	content	have	different	hash	keys")

				}

				if	hello1.HashKey()	==	diff1.HashKey()	{

								t.Errorf("strings	with	different	content	have	same	hash	keys")

				}

}

That's	exactly	what	we	want	from	a	HashKey()	method.	And	not	just	for	*object.String	but	for
*object.Boolean	and	*object.Integer,	which	is	why	the	same	test	function	exists	for	both	of
them	too.

To	stop	the	tests	from	blowing	up	we	need	to	 implement	 the	HashKey()	method	on	each	of	 the
three	types:

//	object/object.go

import	(

//	[...]

				"hash/fnv"

)

type	HashKey	struct	{

				Type		ObjectType

				Value	uint64

}

func	(b	*Boolean)	HashKey()	HashKey	{

				var	value	uint64

				if	b.Value	{

								value	=	1

				}	else	{

								value	=	0

				}

				return	HashKey{Type:	b.Type(),	Value:	value}

}

func	(i	*Integer)	HashKey()	HashKey	{

				return	HashKey{Type:	i.Type(),	Value:	uint64(i.Value)}

}

func	(s	*String)	HashKey()	HashKey	{

				h	:=	fnv.New64a()

				h.Write([]byte(s.Value))

				return	HashKey{Type:	s.Type(),	Value:	h.Sum64()}

}

Every	HashKey()	method	returns	a	HashKey.	As	you	can	see	in	its	definition,	HashKey	is	nothing
fancy.	 The	 Type	 field	 contains	 an	 ObjectType	 and	 thus	 effectively	 "scopes"	 HashKeys	 to
different	object	types.	The	Value	field	holds	the	actual	hash,	which	is	 just	an	integer.	Since	it's
just	two	integers	we	can	easily	compare	a	HashKey	to	another	HashKey	by	using	the	==	operator.



And	that	also	makes	HashKey	usable	as	a	key	in	a	Go	map.

The	 problem	we	 demonstrated	 earlier	 is	 solved	 by	 using	 this	 newly	 defined	 HashKey	 and	 the
HashKey()	methods:

name1	:=	&object.String{Value:	"name"}

monkey	:=	&object.String{Value:	"Monkey"}

pairs	:=	map[object.HashKey]object.Object{}

pairs[name1.HashKey()]	=	monkey

fmt.Printf("pairs[name1.HashKey()]=%+v\n",	pairs[name1.HashKey()])

//	=>	pairs[name1.HashKey()]=&{Value:Monkey}

name2	:=	&object.String{Value:	"name"}

fmt.Printf("pairs[name2.HashKey()]=%+v\n",	pairs[name2.HashKey()])

//	=>	pairs[name2.HashKey()]=&{Value:Monkey}

fmt.Printf("(name1	==	name2)=%t\n",	name1	==	name2)

//	=>	(name1	==	name2)=false

fmt.Printf("(name1.HashKey()	==	name2.HashKey())=%t\n",

		name1.HashKey()	==	name2.HashKey())

//	=>	(name1.HashKey()	==	name2.HashKey())=true

That's	 exactly	 what	 we	 want!	 The	 HashKey	 definition	 and	 the	 HashKey()	 method
implementations	solve	the	problems	we	had	with	our	naive	Hash	definition.	They	also	make	the
tests	pass:

$	go	test	./object

ok						monkey/object			0.008s

Now	we	can	define	object.Hash	and	use	this	new	HashKey	type:

//	object/object.go

const	(

//	[...]

				HASH_OBJ	=	"HASH"

)

type	HashPair	struct	{

				Key			Object

				Value	Object

}

type	Hash	struct	{

				Pairs	map[HashKey]HashPair

}

func	(h	*Hash)	Type()	ObjectType	{	return	HASH_OBJ	}

This	 adds	 both	 the	 definition	 of	 Hash	 and	 HashPair.	 HashPair	 is	 the	 type	 of	 the	 values	 in
Hash.Pairs.	 You	 might	 be	 wondering	 why	 we	 use	 that	 and	 not	 just	 define	 Pairs	 as	 a
map[HashKey]Object.

The	reason	is	the	Inspect()	method	of	Hash.	When	we	later	print	a	Monkey	hash	in	our	REPL,
we	 want	 to	 print	 the	 values	 contained	 in	 the	 hash	 as	 well	 as	 its	 keys.	 And	 just	 printing	 the
HashKeys	 is	not	 really	useful.	So	we	keep	 track	of	 the	objects	 that	generated	 the	HashKeys	 by



using	 HashPairs	 as	 values,	 where	 we	 save	 the	 original	 key	 object	 and	 the	 value	 object	 its
mapped	 to.	 That	 way	 we	 can	 call	 the	 Inspect()	 methods	 of	 the	 key	 objects	 to	 generate	 the
Inspect()	output	for	*object.Hash.	Here	is	said	Inspect()	method:

//	object/object.go

func	(h	*Hash)	Inspect()	string	{

				var	out	bytes.Buffer

				pairs	:=	[]string{}

				for	_,	pair	:=	range	h.Pairs	{

								pairs	=	append(pairs,	fmt.Sprintf("%s:	%s",

												pair.Key.Inspect(),	pair.Value.Inspect()))

				}

				out.WriteString("{")

				out.WriteString(strings.Join(pairs,	",	"))

				out.WriteString("}")

				return	out.String()

}

The	 Inspect()	 method	 is	 not	 the	 only	 reason	why	 it's	 good	 to	 keep	 track	 of	 the	 objects	 that
generated	the	HashKey.	That	would	also	be	necessary	if	we	were	to	implement	something	like	a
range	function	for	Monkey	hashes,	which	iterates	over	keys	and	values	in	the	hash.	Or	if	we	want
to	add	a	firstPair	function	that	returns	the	first	key	and	value	of	a	given	hash	as	an	array.	Or	if
we	want...	You	get	the	drift.	Keeping	track	of	keys	is	highly	useful,	even	though	for	now	only	the
Inspect()	method	benefits.

And	that's	it!	That's	the	whole	implementation	of	object.Hash.	But	there's	a	small	thing	we	ought
to	do	while	we	still	have	the	object	package	open:

//	object/object.go

type	Hashable	interface	{

				HashKey()	HashKey

}

We	can	use	this	interface	in	our	evaluator	to	check	if	the	given	object	is	usable	as	a	hash	key	when
we	evaluate	hash	literals	or	index	expressions	for	hashes.

At	 the	 moment	 it's	 only	 implemented	 by	 *object.String,	 *object.Boolean	 and
*object.Integer.

Granted,	 there's	 one	 more	 thing	 we	 could	 do	 before	 moving	 on:	 we	 could	 optimize	 the
performance	of	the	HashKey()	methods	by	caching	their	return	values,	but	that	sounds	like	a	nice
exercise	for	the	performance-minded	reader.

Evaluating	Hash	Literals

We're	about	 to	 start	 evaluating	hash	 literals	and	 I'll	be	completely	honest	with	you:	 the	hardest
part	about	adding	hashes	to	our	interpreter	is	over.	It's	smooth	sailing	from	here	on	out.	So,	let's
enjoy	the	ride,	relax	and	write	a	test:



//	evaluator/evaluator_test.go

func	TestHashLiterals(t	*testing.T)	{

				input	:=	`let	two	=	"two";

				{

								"one":	10	-	9,

								two:	1	+	1,

								"thr"	+	"ee":	6	/	2,

								4:	4,

								true:	5,

								false:	6

				}`

				evaluated	:=	testEval(input)

				result,	ok	:=	evaluated.(*object.Hash)

				if	!ok	{

								t.Fatalf("Eval	didn't	return	Hash.	got=%T	(%+v)",	evaluated,	evaluated)

				}

				expected	:=	map[object.HashKey]int64{

								(&object.String{Value:	"one"}).HashKey():			1,

								(&object.String{Value:	"two"}).HashKey():			2,

								(&object.String{Value:	"three"}).HashKey():	3,

								(&object.Integer{Value:	4}).HashKey():						4,

								TRUE.HashKey():																													5,

								FALSE.HashKey():																												6,

				}

				if	len(result.Pairs)	!=	len(expected)	{

								t.Fatalf("Hash	has	wrong	num	of	pairs.	got=%d",	len(result.Pairs))

				}

				for	expectedKey,	expectedValue	:=	range	expected	{

								pair,	ok	:=	result.Pairs[expectedKey]

								if	!ok	{

												t.Errorf("no	pair	for	given	key	in	Pairs")

								}

								testIntegerObject(t,	pair.Value,	expectedValue)

				}

}

This	 test	 function	shows	what	we	want	 from	Eval	when	 it	encounters	a	*ast.HashLiteral:	 a
fresh	*object.Hash	with	the	correct	number	of	HashPairs	mapped	to	the	matching	HashKeys	in
its	Pairs	attribute.

And	it	also	shows	another	requirement	we	have:	strings,	 identifiers,	 infix	operator	expressions,
booleans	and	 integers	 -	 they	should	all	be	usable	as	keys.	Any	expression	 really.	As	 long	as	 it
produces	an	object	that	implements	the	Hashable	interface	it	should	usable	as	a	hash	key.

Then	there	are	the	values.	They	can	be	produced	by	any	expression,	too.	We	test	for	this	here	by
asserting	that	10	-	9	evaluates	to	1,	6	/	2	to	3	and	so	on.

As	expected	the	test	fails:

$	go	test	./evaluator

---	FAIL:	TestHashLiterals	(0.00s)

		evaluator_test.go:522:	Eval	didn't	return	Hash.	got=<nil>	(<nil>)

FAIL

FAIL				monkey/evaluator								0.008s

We	know	how	to	get	it	 to	pass,	though.	We	need	to	extend	our	Eval	 function	with	another	case
branch	for	*ast.HashLiterals:



//	evaluator/evaluator.go

func	Eval(node	ast.Node,	env	*object.Environment)	object.Object	{

//	[...]

				case	*ast.HashLiteral:

								return	evalHashLiteral(node,	env)

//	[...]

}

The	evalHashLiteral	function	here	may	look	intimidating,	but	trust	me,	it	doesn't	bite:

//	evaluator/evaluator.go

func	evalHashLiteral(

				node	*ast.HashLiteral,

				env	*object.Environment,

)	object.Object	{

				pairs	:=	make(map[object.HashKey]object.HashPair)

				for	keyNode,	valueNode	:=	range	node.Pairs	{

								key	:=	Eval(keyNode,	env)

								if	isError(key)	{

												return	key

								}

								hashKey,	ok	:=	key.(object.Hashable)

								if	!ok	{

												return	newError("unusable	as	hash	key:	%s",	key.Type())

								}

								value	:=	Eval(valueNode,	env)

								if	isError(value)	{

												return	value

								}

								hashed	:=	hashKey.HashKey()

								pairs[hashed]	=	object.HashPair{Key:	key,	Value:	value}

				}

				return	&object.Hash{Pairs:	pairs}

}

When	iterating	over	the	node.Pairs	the	keyNode	is	the	first	to	be	evaluated.	Besides	checking	if
the	call	to	Eval	produced	an	error	we	also	make	a	type	assertion	about	the	evaluation	result:	 it
needs	to	implement	the	object.Hashable	interface,	otherwise	it's	unusable	as	a	hash	key.	That's
exactly	why	we	added	the	Hashable	definition.

Then	we	call	Eval	 again,	 to	 evaluate	valueNode.	 If	 that	 call	 to	Eval	 also	 doesn't	 produce	 an
error,	we	can	add	the	newly	produced	key-value	pair	to	our	pairs	map.	We	do	this	by	generating
a	HashKey	 for	 the	aptly-named	hashKey	object	with	a	call	 to	HashKey().	Then	we	 initialize	a
new	HashPair,	pointing	to	both	key	and	value	and	add	it	to	pairs.

And	that's	all	it	takes.	The	tests	are	now	passing:

$	go	test	./evaluator

ok						monkey/evaluator								0.007s

That	means	we	can	already	start	using	hash	literals	in	our	REPL:

$	go	run	main.go



Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	{"name":	"Monkey",	"age":	0,	"type":	"Language",	"status":	"awesome"}

{age:	0,	type:	Language,	status:	awesome,	name:	Monkey}

That's	 awesome!	 But	 we	 can't	 get	 elements	 out	 of	 the	 hash	 yet,	 which	 kinda	 diminishes	 their
usefulness:

>>	let	bob	=	{"name":	"Bob",	"age":	99};

>>	bob["name"]

ERROR:	index	operator	not	supported:	HASH

That's	what	we're	going	to	fix	now.

Evaluating	Index	Expressions	With	Hashes

Remember	that	switch	statement	we	added	to	evalIndexExpression	 in	our	evaluator?	And	do
you	also	remember	when	I	told	you	that	we're	going	to	add	another	case	branch?	Well,	here	we
are!

But	first	of	all	we	need	to	add	a	test	function	that	makes	sure	accessing	values	in	a	hash	via	an
index	expression	works:

//	evaluator/evaluator_test.go

func	TestHashIndexExpressions(t	*testing.T)	{

				tests	:=	[]struct	{

								input				string

								expected	interface{}

				}{

								{

												`{"foo":	5}["foo"]`,

												5,

								},

								{

												`{"foo":	5}["bar"]`,

												nil,

								},

								{

												`let	key	=	"foo";	{"foo":	5}[key]`,

												5,

								},

								{

												`{}["foo"]`,

												nil,

								},

								{

												`{5:	5}[5]`,

												5,

								},

								{

												`{true:	5}[true]`,

												5,

								},

								{

												`{false:	5}[false]`,

												5,

								},

				}

				for	_,	tt	:=	range	tests	{

								evaluated	:=	testEval(tt.input)

								integer,	ok	:=	tt.expected.(int)



								if	ok	{

												testIntegerObject(t,	evaluated,	int64(integer))

								}	else	{

												testNullObject(t,	evaluated)

								}

				}

}

Just	 like	 in	TestArrayIndexExpressions	we're	making	sure	using	 index	operator	expressions
produces	the	correct	value	-	only	this	time	with	hashes.	The	different	test	cases	here	use	string,
integer	or	boolean	hash	keys	when	retrieving	values	out	of	a	hash.	So,	in	essence,	what	the	test
really	asserts	is	that	the	HashKey	methods	implemented	by	various	data	types	are	called	correctly.

And	 to	make	 sure	 that	 using	 an	 object	 as	 hash	 key	 that	 does	 not	 implement	object.Hashable
produces	an	error,	we	can	add	another	test	to	our	TestErrorHandling	test	function:

//	evaluator/evaluator_test.go

func	TestErrorHandling(t	*testing.T)	{

				tests	:=	[]struct	{

								input											string

								expectedMessage	string

				}{

//	[...]

								{

												`{"name":	"Monkey"}[fn(x)	{	x	}];`,

												"unusable	as	hash	key:	FUNCTION",

								},

				}

//	[...]

}

Running	go	test	now	results	in	the	expected	failures:

$	go	test	./evaluator

---	FAIL:	TestErrorHandling	(0.00s)

		evaluator_test.go:228:	no	error	object	returned.	got=*object.Null(&{})

---	FAIL:	TestHashIndexExpressions	(0.00s)

		evaluator_test.go:611:	object	is	not	Integer.	got=*object.Null	(&{})

		evaluator_test.go:611:	object	is	not	Integer.	got=*object.Null	(&{})

		evaluator_test.go:611:	object	is	not	Integer.	got=*object.Null	(&{})

		evaluator_test.go:611:	object	is	not	Integer.	got=*object.Null	(&{})

		evaluator_test.go:611:	object	is	not	Integer.	got=*object.Null	(&{})

FAIL

FAIL				monkey/evaluator								0.007s

That	 means	 we're	 ready	 to	 add	 another	 case	 branch	 to	 the	 switch	 statement	 in
evalIndexExpression:

//	evaluator/evaluator.go

func	evalIndexExpression(left,	index	object.Object)	object.Object	{

				switch	{

				case	left.Type()	==	object.ARRAY_OBJ	&&	index.Type()	==	object.INTEGER_OBJ:

								return	evalArrayIndexExpression(left,	index)

				case	left.Type()	==	object.HASH_OBJ:

								return	evalHashIndexExpression(left,	index)

				default:

								return	newError("index	operator	not	supported:	%s",	left.Type())

				}

}



The	new	case	branch	calls	a	new	function:	evalHashIndexExpression.	And	we	already	know
how	 evalHashIndexExpression	 has	 to	 work,	 since	 we	 successfully	 tested	 the	 usage	 of	 the
object.Hashable	 interface	 before	 -	 in	 our	 tests	 and	 when	 evaluating	 hash	 literals.	 So	 no
surprises	here:

//	evaluator/evaluator.go

func	evalHashIndexExpression(hash,	index	object.Object)	object.Object	{

				hashObject	:=	hash.(*object.Hash)

				key,	ok	:=	index.(object.Hashable)

				if	!ok	{

								return	newError("unusable	as	hash	key:	%s",	index.Type())

				}

				pair,	ok	:=	hashObject.Pairs[key.HashKey()]

				if	!ok	{

								return	NULL

				}

				return	pair.Value

}

Adding	evalHashIndexExpression	to	the	switch	statement	made	the	tests	pass:

$	go	test	./evaluator

ok						monkey/evaluator								0.007s

We	can	now	successfully	retrieve	values	from	our	hashes!	Don't	believe	me?	Think	the	tests	are
lying	to	us?	I	faked	the	test	output?	It	can't	be?	The	whole	book	is	full	of	li..	what?	No,	watch	this.

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	let	people	=	[{"name":	"Alice",	"age":	24},	{"name":	"Anna",	"age":	28}];

>>	people[0]["name"];

Alice

>>	people[1]["age"];

28

>>	people[1]["age"]	+	people[0]["age"];

52

>>	let	getName	=	fn(person)	{	person["name"];	};

>>	getName(people[0]);

Alice

>>	getName(people[1]);

Anna



4.6	-	The	Grand	Finale

Our	Monkey	 interpreter	 is	 now	 fully	 functional.	 It	 supports	mathematical	 expressions,	 variable
bindings,	functions	and	the	application	of	those	functions,	conditionals,	return	statements	and	even
advanced	concepts	like	higher-order	functions	and	closures.	And	then	there	are	the	different	data
types:	integers,	booleans,	strings,	arrays	and	hashes.	We	can	be	proud	of	ourselves.

But...	 and	 here	 comes	 the	 but...	 our	 interpreter	 still	 does	 not	 pass	 the	 most	 basic	 of	 all
programming	language	tests:	printing	something.	Yes,	our	Monkey	interpreter	can't	communicate
with	the	outside	world.	Even	programming	language	scoundrel	like	Bash	and	Brainfuck	manage	to
do	that.	It's	clear	what	we	have	to	do.	We	have	to	add	one	last	built-in	function:	puts.

puts	prints	the	given	arguments	on	new	lines	to	STDOUT.	It	calls	the	Inspect()	method	on	the
objects	passed	in	as	arguments	and	prints	the	return	value	of	these	calls.	The	Inspect()	method
is	part	of	the	Object	interface,	so	every	entity	in	our	object	system	supports	it.	Using	puts	should
look	kinda	like	this:

>>	puts("Hello!")

Hello!

>>	puts(1234)

1234

>>	puts(fn(x)	{	x	*	x	})

fn(x)	{

(x	*	x)

}

And	puts	is	a	variadic	function.	It	takes	an	unlimited	number	of	arguments	and	prints	each	on	a
separate	line:

>>	puts("hello",	"world",	"how",	"are",	"you")

hello

world

how

are

you

Of	course,	puts	is	all	about	printing	things	and	not	producing	a	value,	so	we	need	to	make	sure
that	it	returns	NULL:

>>	let	putsReturnValue	=	puts("foobar");

foobar

>>	putsReturnValue

null

That	also	means	that	our	REPL	will	print	the	null	in	addition	to	the	output	we	expect	from	puts.
So	it	will	look	like	this:

>>	puts("Hello!")

Hello!

null

Now	that's	more	than	enough	information	and	specification	to	complete	this	last	quest	of	ours.	Are
you	ready?



Here	 it	 is,	 here's	 what	 this	 section	 has	 been	 building	 up	 to,	 here	 is	 the	 complete,	 working
implementation	of	puts:

//	evaluator/builtins.go

import	(

				"fmt"

				"monkey/object"

				"unicode/utf8"

)

var	builtins	=	map[string]*object.Builtin{

//	[...]

				"puts":	&object.Builtin{

								Fn:	func(args	...object.Object)	object.Object	{

												for	_,	arg	:=	range	args	{

																fmt.Println(arg.Inspect())

												}

												return	NULL

								},

				},

}

And	 with	 that,	 we	 did	 it.	 We're	 done.	 Even	 if	 you	 were	 wary	 of	 our	 little	 celebrations	 and
shrugged	them	off	before,	now's	the	time	to	go	looking	for	a	funny	party	hat	and	put	it	on.

In	chapter	three	we	brought	the	Monkey	programming	language	to	life.	It	started	to	breathe.	With
our	last	change,	we	made	it	talk.	Now,	Monkey	is	finally	a	real	programming	language:

$	go	run	main.go

Hello	mrnugget!	This	is	the	Monkey	programming	language!

Feel	free	to	type	in	commands

>>	puts("Hello	World!")

Hello	World!

null

>>
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Feedback
If	 you	 spot	 a	 typo,	 find	 something	 wrong	 with	 the	 code,	 have	 a	 suggestion	 to	 make	 or	 just	 a
question,	feel	free	to	send	me	an	email:

me@thorstenball.com

mailto:me@thorstenball.com




Changelog
8	December	2016	-	1.1

Besides	fixed	typos	and	spelling	errors:

Introduction
Change	the	"How	To	Use	This	Book"	subsection	to	include	a	link	to	the	downloadable
archive	of	the	accompanying	code

Section	1.4:
Add	hint	about	accompanying	code
Show	the	last,	fully	extended	version	of	the	test	input	for	TestNextToken

Section	2.6:
The	 failing	 test	 output	 for	 TestParsingPrefixExpressions	 in	 the	 book	 text	 was
wrong.	It's	corrected	to	match	the	actual	output	one	gets	when	building	the	parser	from
scratch
Fix	wording	that	didn't	match	the	described	test	output
Remove	token.LPAREN	 from	 the	precedences	 table	 here.	 It	 somehow	 slipped	 in	 at
this	point,	but	should	only	be	added	later	on	in	section	2.8,	where	tests	are	supposed	to
fail	because	it's	missing

Section	2.8:
Fix	wrong	test	expectation	("x"	changed	to	"y")	in	TestLetStatement
Change	parser_parser_test.go	to	parser_test.go
Better	 show	 how	 to	 use	 testLiteralExpression	 in
TestParsingInfixExpressions

Fix	 outdated	 test	 output	 for	 failing	 TestOperatorPrecedenceParsing,
TestIfExpression,	TestIfElseExpression,	TestFunctionLiteralParsing

Section	3.10:
Change	the	Inspect()	method	of	*object.Function	 to	use	fn	 instead	of	function
and	newlines	in	output
Remove	needless	semicolons	in	example

Section	3.5:
Change	from	if/else	to	"if	and	return"	in	nativeBoolToBooleanObject

Section	3.6:
Update	the	version	of	testNullObject	to	be	the	one	in	the	accompanying	code,	with	a
correct	call	to	t.Errorf

Section	4.4:
Name	the	token.Token	field	of	ast.ArrayLiteral
Fix	 possible	 panic	 through	 nil	 error	 in	 "first",	 "last",	 "rest",	 and	 "push"	 functions	 by
adding	separate	check

Section	4.5:
Name	the	token.Token	field	of	ast.HashLiteral
Replace	 null	 in	 output	 with	 missing	 error	 message	 when	 trying	 to	 access	 hash	 via



index	expression	before	it's	implemented
Section	4.6:

Change	 the	 expected	 output	 using	 puts	 with	 a	 function	 literal	 to	 match	 the	 updated
Inspect()	of	*object.Function
Explain	the	nulls	in	the	expected	output	of	put	better

23	November	2016	-	1.0

Initial	Release
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