

Let’s Go teaches you step-by-step how to create fast, secure and maintainable web

applications using the fantastic programming language Go.

The idea behind this book is to help you learn by doing. Together we’ll walk through the start-

to-finish build of a web application — from structuring your workspace, through to session

management, authenticating users, securing your server and testing your application.

Building a complete web application in this way has several benefits. It helps put the things

you’re learning into context, it demonstrates how different parts of your codebase link

together, and it forces us to work through the edge-cases and difficulties that come up when

writing software in real-life. In essence, you’ll learn more than you would by just reading Go’s

(great) documentation or standalone blog posts.

By the end of the book you’ll have the understanding — and confidence — to build your own

production-ready web applications with Go.

Although you can read this book cover-to-cover, it’s designed specifically so you can follow

along with the project build yourself.

Break out your text editor, and happy coding!

— Alex

https://golang.org/

Contents

1. Introduction

1.1. Prerequisites

2. Foundations

2.1. Project setup and creating a module

2.2. Web application basics

2.3. Routing requests

2.4. Customizing HTTP headers

2.5. URL query strings

2.6. Project structure and organization

2.7. HTML templating and inheritance

2.8. Serving static files

2.9. The http.Handler interface

3. Configuration and error handling

3.1. Managing configuration settings

3.2. Leveled logging

3.3. Dependency injection

3.4. Centralized error handling

3.5. Isolating the application routes

4. Database-driven responses

4.1. Setting up MySQL

4.2. Installing a database driver

4.3. Modules and reproducible builds

4.4. Creating a database connection pool

4.5. Designing a database model

4.6. Executing SQL statements

4.7. Single-record SQL queries

4.8. Multiple-record SQL queries

4.9. Transactions and other details

5. Dynamic HTML templates

5.1. Displaying dynamic data

5.2. Template actions and functions

5.3. Caching templates

5.4. Catching runtime errors

5.5. Common dynamic data

5.6. Custom template functions

6. Middleware

6.1. How middleware works

6.2. Setting security headers

6.3. Request logging

6.4. Panic recovery

6.5. Composable middleware chains

7. Advanced routing

7.1. Choosing a router

7.2. Clean URLs and method-based routing

8. Processing forms

8.1. Setting up a HTML form

8.2. Parsing form data

8.3. Validating form data

8.4. Displaying errors and repopulating fields

8.5. Creating validation helpers

8.6. Automatic form parsing

9. Stateful HTTP

9.1. Choosing a session manager

9.2. Setting up the session manager

9.3. Working with session data

10. Security improvements

10.1. Generating a self-signed TLS certificate

10.2. Running a HTTPS server

10.3. Configuring HTTPS settings

10.4. Connection timeouts

11. User authentication

11.1. Routes setup

11.2. Creating a users model

11.3. User signup and password encryption

11.4. User login

11.5. User logout

11.6. User authorization

11.7. CSRF protection

12. Using request context

12.1. How request context works

12.2. Request context for authentication/authorization

13. Optional Go features

13.1. Using embedded files

13.2. Using generics

14. Testing

14.1. Unit testing and sub-tests

14.2. Testing HTTP handlers and middleware

14.3. End-to-end testing

14.4. Customizing how tests run

14.5. Mocking dependencies

14.6. Testing HTML forms

14.7. Integration testing

14.8. Profiling test coverage

15. Conclusion

16. Further reading and useful links

17. Guided exercises

17.1. Add an 'About' page to the application

17.2. Add a debug mode

17.3. Test the snippetCreate handler

17.4. Add an 'Account' page to the application

17.5. Redirect user appropriately after login

17.6. Implement a 'Change Password' feature

Chapter 1.

Introduction

In this book we’ll be building a web application called Snippetbox, which lets people paste

and share snippets of text — a bit like Pastebin or GitHub’s Gists. Towards the end of the build

it will look a bit like this:

Our application will start off super simple, with just one web page. Then with each chapter

we’ll build it up step-by-step until a user is able save and view snippets via the app. This will

take us through topics like how to structure a project, routing requests, working with a

database, processing forms and displaying dynamic data safely.

Then later in the book we’ll add user accounts, and restrict the application so that only

registered users can create snippets. This will take us through more advanced topics like

configuring a HTTPS server, session management, user authentication and middleware.

https://pastebin.com/
https://gist.github.com/

Conventions

Throughout this book code blocks are shown with a silver background like below. If the code

is particularly long, parts that aren’t relevant may be replaced with an ellipsis. To make it easy

to follow along, most code blocks also have a title bar at the top indicating the name of the

file that we’re working on.

File: hello.go

package main

... // Indicates that some existing code has been omitted.

func sayHello() {

 fmt.Println("Hello world!")

}

Terminal (command line) instructions are shown with a black background and start with a

dollar symbol. These commands should work on any Unix-based operating system, including

Mac OSX and Linux. Sample output is shown in silver beneath the command, like so:

$ echo "Hello world!"

Hello world!

If you’re using Windows, you should replace the command with the DOS equivalent or carry

out the action via the normal Windows GUI.

Some chapters in this book end with an additional information section. These sections

contain information that isn’t relevant to our application build, but is still important (or

sometimes, just interesting) to know about. If you’re very new to Go, you might want to skip

these parts and circle back to them later.

Hint: If you’re following along with the application build I recommend using the HTML

version of this book instead of the PDF or EPUB. The HTML version works in all browsers,

and the proper formatting of code blocks is retained if you want to copy-and-paste code

directly from the book.

About the author

Hey, I’m Alex Edwards, a full-stack web developer and author. I live near Innsbruck, Austria.

I’ve been working with Go for over 8 years, building production applications for myself and

commercial clients, and helping people all around the world improve their Go skills.

You can see more of my writing on my blog (where I publish detailed tutorials), some of my

open-source work on GitHub, and you can also follow me on Instagram and Twitter.

Copyright and disclaimer

Let’s Go: Learn to build professional web applications with Go. Copyright © 2022 Alex Edwards.

Last updated 2022-05-06 17:12:23 UTC. Version 2.18.2.

The Go gopher was designed by Renee French and is used under the Creative Commons 3.0

Attributions license. Cover gopher adapted from vectors by Egon Elbre.

The information provided within this book is for general informational purposes only. While the

author and publisher have made every effort to ensure the accuracy of the information within

this book was correct at time of publication there are no representations or warranties, express

or implied, about the completeness, accuracy, reliability, suitability or availability with respect

to the information, products, services, or related graphics contained in this book for any

purpose. Any use of this information is at your own risk.

https://www.alexedwards.net/blog/
https://github.com/alexedwards/
https://www.instagram.com/ajmedwards/
https://twitter.com/ajmedwards
http://reneefrench.blogspot.com/
https://github.com/egonelbre/gophers

Chapter 1.1.

Prerequisites

Background knowledge

This book is designed for people who are new to Go, but you’ll probably find it more

enjoyable if you have a general understanding of Go’s syntax first. If you find yourself

struggling with the syntax, the Little Book of Go by Karl Seguin is a fantastic tutorial, or if you

want something more interactive I recommend running through the Tour of Go.

I’ve also assumed that you’ve got a (very) basic understanding of HTML/CSS and SQL, and

some familiarity with using your terminal (or command line for Windows users). If you’ve built

a web application in any other language before — whether it’s Ruby, Python, PHP or C# —

then this book should be a good fit for you.

Go 1.18

The information in this book is correct for the latest major release of Go (version 1.18), and

you should install this if you’d like to code-along with the application build.

If you’ve already got Go installed, you can check the version number from your terminal by

using the go version command. The output should look similar to this:

$ go version

go version go1.18 linux/amd64

If you need to upgrade your version of Go — or install Go from scratch — then please go ahead

and do that now. Detailed instructions for different operating systems can be found here:

Removing an old version of Go

Installing Go on Mac OS X

Installing Go on Windows

Installing Go on Linux

Other software

There are a few other bits of software that you should make sure are available on your

http://openmymind.net/The-Little-Go-Book/
https://tour.golang.org/welcome/1
https://golang.org/doc/devel/release.html
https://golang.org/doc/manage-install#uninstalling
https://golang.org/doc/install#tarball
https://golang.org/doc/install#windows
https://golang.org/doc/install#tarball

computer if you want to follow along fully. They are:

The curl tool for working with HTTP requests and responses from your terminal. On MacOS

and Linux machines it should be pre-installed or available in your software repositories.

Otherwise, you can download the latest version from here.

A web browser with good developer tools. I’ll be using Firefox in this book, but Chromium,

Chrome or Microsoft Edge will work too.

Your favorite text editor �

https://curl.haxx.se/
https://curl.haxx.se/download.html
https://www.mozilla.org/en-US/firefox/new/

Chapter 2.

Foundations

Alright, let’s get started! In this first section of the book we’re going to lay the groundwork for

our project and explain the main principles that you need to know for the rest of the

application build.

You’ll learn how to:

Setup a project directory which follows the Go conventions.

Start a web server and listen for incoming HTTP requests.

Route requests to different handlers based on the request path.

Send different HTTP responses, headers and status codes to users.

Fetch and validate untrusted user input from URL query string parameters.

Structure your project in a sensible and scalable way.

Render HTML pages and use template inheritance to keep your markup free of duplicate

boilerplate code.

Serve static files like images, CSS and JavaScript from your application.

Chapter 2.1.

Project setup and creating a module

Before we write any code, you’ll need to create a snippetbox directory on your computer to

act as the top-level ‘home’ for this project. All the Go code we write throughout the book will

live in here, along with other project-specific assets like HTML templates and CSS files.

So, if you’re following along, open your terminal and create a new project directory called

snippetbox anywhere on your computer. I’m going to locate my project directory under

$HOME/code, but you can choose a different location if you wish.

$ mkdir -p $HOME/code/snippetbox

Creating a module

The next thing you need to do is choose a module path for your project.

If you’re not already familiar with Go modules, you can think of a module path as basically

being a canonical name or identifier for your project.

You can pick almost any string as your module path, but the important thing to focus on is

uniqueness. To avoid potential import conflicts with other people’s projects or the standard

library in the future, you want to pick a module path that is globally unique and unlikely to be

used by anything else. In the Go community, a common convention is to base your module

paths on a URL that you own.

In my case, a clear, succinct and unlikely-to-be-used-by-anything-else module path for this

project would be snippetbox.alexedwards.net, and I’ll use this throughout the rest of the

book. If possible, you should swap this for something that’s unique to you instead.

Now that we’ve decided a unique module path, the next thing that we need to do is turn our

project directory into a module.

Make sure that you’re in the root of the directory and then run the go mod init command —

passing in your module path as a parameter like so:

$ cd $HOME/code/snippetbox

$ go mod init snippetbox.alexedwards.net

go: creating new go.mod: module snippetbox.alexedwards.net

https://github.com/golang/go/wiki/Modules
https://golang.org/ref/mod#go-mod-file-ident

At this point your project directory should look a bit like the screenshot below. Notice the

go.mod file which has been created?

At the moment there’s not much going on in this file, and if you open it up in your text editor

it should look like this (but preferably with your own unique module path instead):

File: go.mod

module snippetbox.alexedwards.net

go 1.18

We’ll talk about modules in more detail later in the book, but for now it’s enough to know

that when there is a valid go.mod file in the root of your project directory, your project is a

module. Setting up your project as a module has a number of advantages — including making

it much easier to manage third-party dependencies, avoid supply-chain attacks, and ensure

reproducible builds of your application in the future.

Hello world!

Before we continue, let’s quickly check that everything is set up correctly. Go ahead and

create a new main.go in your project directory containing the following code:

https://go.dev/blog/supply-chain

$ touch main.go

File: main.go

package main

import "fmt"

func main() {

 fmt.Println("Hello world!")

}

Save this file, then use the go run . command in your terminal to compile and execute the

code in the current directory. All being well, you will see the following output:

$ go run .

Hello world!

Additional information

Module paths for downloadable packages

If you’re creating a project which can be downloaded and used by other people and

programs, then it’s good practice for your module path to equal the location that the code

can be downloaded from.

For instance, if your package is hosted at https://github.com/foo/bar then the module path

for the project should be github.com/foo/bar.

Chapter 2.2.

Web application basics

Now that everything is set up correctly let’s make the first iteration of our web application.

We’ll begin with the three absolute essentials:

The first thing we need is a handler. If you’re coming from an MVC-background, you can

think of handlers as being a bit like controllers. They’re responsible for executing your

application logic and for writing HTTP response headers and bodies.

The second component is a router (or servemux in Go terminology). This stores a mapping

between the URL patterns for your application and the corresponding handlers. Usually

you have one servemux for your application containing all your routes.

The last thing we need is a web server. One of the great things about Go is that you can

establish a web server and listen for incoming requests as part of your application itself.

You don’t need an external third-party server like Nginx or Apache.

Let’s put these components together in the main.go file to make a working application.

File: main.go

package main

import (

 "log"

 "net/http"

)

// Define a home handler function which writes a byte slice containing

// "Hello from Snippetbox" as the response body.

func home(w http.ResponseWriter, r *http.Request) {

 w.Write([]byte("Hello from Snippetbox"))

}

func main() {

 // Use the http.NewServeMux() function to initialize a new servemux, then

 // register the home function as the handler for the "/" URL pattern.

 mux := http.NewServeMux()

 mux.HandleFunc("/", home)

 // Use the http.ListenAndServe() function to start a new web server. We pass in

 // two parameters: the TCP network address to listen on (in this case ":4000")

 // and the servemux we just created. If http.ListenAndServe() returns an error

 // we use the log.Fatal() function to log the error message and exit. Note

 // that any error returned by http.ListenAndServe() is always non-nil.

 log.Println("Starting server on :4000")

 err := http.ListenAndServe(":4000", mux)

 log.Fatal(err)

}

Note: The home handler function is just a regular Go function with two parameters. The

http.ResponseWriter parameter provides methods for assembling a HTTP response

and sending it to the user, and the *http.Request parameter is a pointer to a struct

which holds information about the current request (like the HTTP method and the URL

being requested). We’ll talk more about these parameters and demonstrate how to use

them as we progress through the book.

When you run this code, it should start a web server listening on port 4000 of your local

machine. Each time the server receives a new HTTP request it will pass the request on to the

servemux and — in turn — the servemux will check the URL path and dispatch the request to

the matching handler.

Let’s give this a whirl. Save your main.go file and then try running it from your terminal using

the go run command.

$ cd $HOME/code/snippetbox

$ go run .

2022/01/29 11:13:26 Starting server on :4000

While the server is running, open a web browser and try visiting http://localhost:4000 . If

everything has gone to plan you should see a page which looks a bit like this:

http://localhost:4000/

Important: Before we continue, I should explain that Go’s servemux treats the URL

pattern "/" like a catch-all. So at the moment all HTTP requests to our server will be

handled by the home function, regardless of their URL path. For instance, you can visit a

different URL path like http://localhost:4000/foo and you’ll receive exactly the same

response.

If you head back to your terminal window, you can stop the server by pressing Ctrl+c on your

keyboard.

Additional information

Network addresses

The TCP network address that you pass to http.ListenAndServe() should be in the format

"host:port" . If you omit the host (like we did with ":4000") then the server will listen on all

your computer’s available network interfaces. Generally, you only need to specify a host in

the address if your computer has multiple network interfaces and you want to listen on just

one of them.

In other Go projects or documentation you might sometimes see network addresses written

using named ports like ":http" or ":http-alt" instead of a number. If you use a named port

then Go will attempt to look up the relevant port number from your /etc/services file when

starting the server, or will return an error if a match can’t be found.

Using go run

During development the go run command is a convenient way to try out your code. It’s

essentially a shortcut that compiles your code, creates an executable binary in your /tmp

directory, and then runs this binary in one step.

It accepts either a space-separated list of .go files, the path to a specific package (where the .

character represents your current directory), or the full module path. For our application at

the moment, the three following commands are all equivalent:

$ go run .

$ go run main.go

$ go run snippetbox.alexedwards.net

http://localhost:4000/foo

Chapter 2.3.

Routing requests

Having a web application with just one route isn’t very exciting… or useful! Let’s add a couple

more routes so that the application starts to shape up like this:

URL Pattern Handler Action

/ home Display the home page

/snippet/view snippetView Display a specific snippet

/snippet/create snippetCreate Create a new snippet

Reopen the main.go file and update it as follows:

File: main.go

package main

import (

 "log"

 "net/http"

)

func home(w http.ResponseWriter, r *http.Request) {

 w.Write([]byte("Hello from Snippetbox"))

}

// Add a snippetView handler function.

func snippetView(w http.ResponseWriter, r *http.Request) {

 w.Write([]byte("Display a specific snippet..."))

}

// Add a snippetCreate handler function.

func snippetCreate(w http.ResponseWriter, r *http.Request) {

 w.Write([]byte("Create a new snippet..."))

}

func main() {

 // Register the two new handler functions and corresponding URL patterns with

 // the servemux, in exactly the same way that we did before.

 mux := http.NewServeMux()

 mux.HandleFunc("/", home)

 mux.HandleFunc("/snippet/view", snippetView)

 mux.HandleFunc("/snippet/create", snippetCreate)

 log.Println("Starting server on :4000")

 err := http.ListenAndServe(":4000", mux)

 log.Fatal(err)

}

Make sure these changes are saved and then restart the web application:

$ cd $HOME/code/snippetbox

$ go run .

2022/01/29 11:16:43 Starting server on :4000

If you visit the following links in your web browser you should now get the appropriate

response for each route:

http://localhost:4000/snippet/view

http://localhost:4000/snippet/create

http://localhost:4000/snippet/view
http://localhost:4000/snippet/create

Fixed path and subtree patterns

Now that the two new routes are up and running let’s talk a bit of theory.

Go’s servemux supports two different types of URL patterns: fixed paths and subtree paths.

Fixed paths don’t end with a trailing slash, whereas subtree paths do end with a trailing slash.

Our two new patterns — "/snippet/view" and "/snippet/create" — are both examples of

fixed paths. In Go’s servemux, fixed path patterns like these are only matched (and the

corresponding handler called) when the request URL path exactly matches the fixed path.

In contrast, our pattern "/" is an example of a subtree path (because it ends in a trailing

slash). Another example would be something like "/static/". Subtree path patterns are

matched (and the corresponding handler called) whenever the start of a request URL path

matches the subtree path. If it helps your understanding, you can think of subtree paths as

acting a bit like they have a wildcard at the end, like "/**" or "/static/**".

This helps explain why the "/" pattern is acting like a catch-all. The pattern essentially means

match a single slash, followed by anything (or nothing at all) .

Restricting the root url pattern

So what if you don’t want the "/" pattern to act like a catch-all?

For instance, in the application we’re building we want the home page to be displayed if —

and only if — the request URL path exactly matches "/" . Otherwise, we want the user to

receive a 404 page not found response.

It’s not possible to change the behavior of Go’s servemux to do this, but you can include a

simple check in the home hander which ultimately has the same effect:

File: main.go

package main

...

func home(w http.ResponseWriter, r *http.Request) {

 // Check if the current request URL path exactly matches "/". If it doesn't, use

 // the http.NotFound() function to send a 404 response to the client.

 // Importantly, we then return from the handler. If we don't return the handler

 // would keep executing and also write the "Hello from SnippetBox" message.

 if r.URL.Path != "/" {

 http.NotFound(w, r)

 return

 }

 w.Write([]byte("Hello from Snippetbox"))

}

...

Go ahead and make that change, then restart the server and make a request for an

unregistered URL path like http://localhost:4000/missing . You should get a 404 response

which looks a bit like this:

http://localhost:4000/missing

The DefaultServeMux

If you’ve been working with Go for a while you might have come across the http.Handle()

and http.HandleFunc() functions. These allow you to register routes without declaring a

servemux, like this:

func main() {

 http.HandleFunc("/", home)

 http.HandleFunc("/snippet/view", snippetView)

 http.HandleFunc("/snippet/create", snippetCreate)

 log.Println("Starting server on :4000")

 err := http.ListenAndServe(":4000", nil)

 log.Fatal(err)

}

Behind the scenes, these functions register their routes with something called the

DefaultServeMux. There’s nothing special about this — it’s just regular servemux like we’ve

already been using, but which is initialized by default and stored in a net/http global

variable. Here’s the relevant line from the Go source code:

var DefaultServeMux = NewServeMux()

Although this approach can make your code slightly shorter, I don’t recommend it for

https://pkg.go.dev/net/http/#Handle
https://pkg.go.dev/net/http/#HandleFunc

production applications.

Because DefaultServeMux is a global variable, any package can access it and register a route

— including any third-party packages that your application imports. If one of those third-

party packages is compromised, they could use DefaultServeMux to expose a malicious

handler to the web.

So, for the sake of security, it’s generally a good idea to avoid DefaultServeMux and the

corresponding helper functions. Use your own locally-scoped servemux instead, like we have

been doing in this project so far.

Additional information

Servemux features and quirks

In Go’s servemux, longer URL patterns always take precedence over shorter ones. So, if a

servemux contains multiple patterns which match a request, it will always dispatch the

request to the handler corresponding to the longest pattern. This has the nice side-effect

that you can register patterns in any order and it won’t change how the servemux behaves.

Request URL paths are automatically sanitized. If the request path contains any . or ..

elements or repeated slashes, the user will automatically be redirected to an equivalent

clean URL. For example, if a user makes a request to /foo/bar/..//baz they will

automatically be sent a 301 Permanent Redirect to /foo/baz instead.

If a subtree path has been registered and a request is received for that subtree path

without a trailing slash, then the user will automatically be sent a 301 Permanent Redirect

to the subtree path with the slash added. For example, if you have registered the subtree

path /foo/ , then any request to /foo will be redirected to /foo/ .

Host name matching

It’s possible to include host names in your URL patterns. This can be useful when you want to

redirect all HTTP requests to a canonical URL, or if your application is acting as the back end

for multiple sites or services. For example:

mux := http.NewServeMux()

mux.HandleFunc("foo.example.org/", fooHandler)

mux.HandleFunc("bar.example.org/", barHandler)

mux.HandleFunc("/baz", bazHandler)

When it comes to pattern matching, any host-specific patterns will be checked first and if

there is a match the request will be dispatched to the corresponding handler. Only when

there isn’t a host-specific match found will the non-host specific patterns also be checked.

What about RESTful routing?

It’s important to acknowledge that the routing functionality provided by Go’s servemux is

pretty lightweight. It doesn’t support routing based on the request method, it doesn’t

support clean URLs with variables in them, and it doesn’t support regexp-based patterns. If

you have a background in using frameworks like Rails, Django or Laravel you might find this a

bit restrictive… and surprising!

But don’t let that put you off. The reality is that Go’s servemux can still get you quite far, and

for many applications is perfectly sufficient. For the times that you need more, there’s a huge

choice of third-party routers that you can use instead of Go’s servemux. We’ll look at some of

the popular options later in the book.

Chapter 2.4.

Customizing HTTP headers

Let’s now update our application so that the /snippet/create route only responds to HTTP

requests which use the POST method, like so:

Method Pattern Handler Action

ANY / home Display the home page

ANY /snippet/view snippetView Display a specific snippet

POST /snippet/create snippetCreate Create a new snippet

Making this change is important because — later in our application build — requests to the

/snippet/create route will result in a new snippet being created in a database. Creating a

new snippet in a database is a non-idempotent action that changes the state of our server, so

we should follow HTTP good practice and restrict this route to act on POST requests only.

But the main reason I want to cover this now is because it’s a good excuse to talk about HTTP

response headers and explain how to customize them.

HTTP status codes

Let’s begin by updating our snippetCreate handler function so that it sends a 405 (method

not allowed) HTTP status code unless the request method is POST. To do this we’ll need to use

the w.WriteHeader() method like so:

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol#Request_methods

File: main.go

package main

...

func snippetCreate(w http.ResponseWriter, r *http.Request) {

 // Use r.Method to check whether the request is using POST or not.

 if r.Method != "POST" {

 // If it's not, use the w.WriteHeader() method to send a 405 status

 // code and the w.Write() method to write a "Method Not Allowed"

 // response body. We then return from the function so that the

 // subsequent code is not executed.

 w.WriteHeader(405)

 w.Write([]byte("Method Not Allowed"))

 return

 }

 w.Write([]byte("Create a new snippet..."))

}

...

Although this change looks straightforward there are a couple of nuances I should explain:

It’s only possible to call w.WriteHeader() once per response, and after the status code has

been written it can’t be changed. If you try to call w.WriteHeader() a second time Go will

log a warning message.

If you don’t call w.WriteHeader() explicitly, then the first call to w.Write() will

automatically send a 200 OK status code to the user. So, if you want to send a non-200

status code, you must call w.WriteHeader() before any call to w.Write() .

Let’s take a look at this in action.

Restart the server, then open a second terminal window and use curl to make a POST request

to http://localhost:4000/snippet/create. You should get a HTTP response with a 200 OK

status code similar to this:

$ curl -i -X POST http://localhost:4000/snippet/create

HTTP/1.1 200 OK

Date: Sat, 29 Jan 2022 10:27:14 GMT

Content-Length: 23

Content-Type: text/plain; charset=utf-8

Create a new snippet...

But if you use a different request method — like GET , PUT or DELETE — you should now get

response with a 405 Method Not Allowed status code. For example:

http://localhost:4000/snippet/create

$ curl -i -X PUT http://localhost:4000/snippet/create

HTTP/1.1 405 Method Not Allowed

Date: Sat, 29 Jan 2022 10:27:55 GMT

Content-Length: 18

Content-Type: text/plain; charset=utf-8

Method Not Allowed

Customizing headers

Another improvement we can make is to include an Allow header with the

405 Method Not Allowed response to let the user know which request methods are

supported for that particular URL.

We can do this by using the w.Header().Set() method to add a new header to the response

header map, like so:

File: main.go

package main

...

func snippetCreate(w http.ResponseWriter, r *http.Request) {

 if r.Method != "POST" {

 // Use the Header().Set() method to add an 'Allow: POST' header to the

 // response header map. The first parameter is the header name, and

 // the second parameter is the header value.

 w.Header().Set("Allow", "POST")

 w.WriteHeader(405)

 w.Write([]byte("Method Not Allowed"))

 return

 }

 w.Write([]byte("Create a new snippet..."))

}

...

Important: Changing the response header map after a call to w.WriteHeader() or

w.Write() will have no effect on the headers that the user receives. You need to make

sure that your response header map contains all the headers you want before you call

these methods.

Let’s take a look at this in action again by sending a non-POST request to our

/snippet/create URL, like so:

$ curl -i -X PUT http://localhost:4000/snippet/create

HTTP/1.1 405 Method Not Allowed

Allow: POST

Date: Sat, 29 Jan 2022 10:29:12 GMT

Content-Length: 18

Content-Type: text/plain; charset=utf-8

Method Not Allowed

Notice how the response now includes our new Allow: POST header?

The http.Error shortcut

If you want to send a non-200 status code and a plain-text response body (like we are in the

code above) then it’s a good opportunity to use the http.Error() shortcut. This is a

lightweight helper function which takes a given message and status code, then calls the

w.WriteHeader() and w.Write() methods behind-the-scenes for us.

Let’s update the code to use this instead.

File: main.go

package main

...

func snippetCreate(w http.ResponseWriter, r *http.Request) {

 if r.Method != "POST" {

 w.Header().Set("Allow", "POST")

 // Use the http.Error() function to send a 405 status code and "Method Not

 // Allowed" string as the response body.

 http.Error(w, "Method Not Allowed", 405)

 return

 }

 w.Write([]byte("Create a new snippet..."))

}

...

In terms of functionality this is almost exactly the same. The biggest difference is that we’re

now passing our http.ResponseWriter to another function, which sends a response to the

user for us.

The pattern of passing http.ResponseWriter to other functions is super-common in Go, and

something we’ll do a lot throughout this book. In practice, it’s quite rare to use the w.Write()

and w.WriteHeader() methods directly like we have been doing so far. But I wanted to

introduce them upfront because they underpin the more advanced (and interesting!) ways to

send responses.

https://pkg.go.dev/net/http/#Error

The net/http constants

One final tweak we can make is to use constants from the net/http package for HTTP

methods and status codes, instead of writing the strings and integers ourselves.

Specifically, we can use the constant http.MethodPost instead of the string "POST", and the

constant http.StatusMethodNotAllowed instead of the integer 405 . Like so:

File: main.go

package main

...

func snippetCreate(w http.ResponseWriter, r *http.Request) {

 if r.Method != http.MethodPost {

 w.Header().Set("Allow", http.MethodPost)

 http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)

 return

 }

 w.Write([]byte("Create a new snippet..."))

}

...

Using these constants is good practice because it helps prevent runtime errors due to typos,

and in the case of the HTTP status code constants, it can also help make your code clearer

and self-documenting — especially when dealing with less-commonly-used status codes.

Hint: You can find the complete list of the net/http package’s constants here.

Additional information

System-generated headers and content sniffing

When sending a response Go will automatically set three system-generated headers for you:

Date and Content-Length and Content-Type.

The Content-Type header is particularly interesting. Go will attempt to set the correct one for

you by content sniffing the response body with the http.DetectContentType() function. If

this function can’t guess the content type, Go will fall back to setting the header

Content-Type: application/octet-stream instead.

https://pkg.go.dev/net/http/#pkg-constants
https://pkg.go.dev/net/http/#DetectContentType

The http.DetectContentType() function generally works quite well, but a common gotcha

for web developers new to Go is that it can’t distinguish JSON from plain text. So, by default,

JSON responses will be sent with a Content-Type: text/plain; charset=utf-8 header. You

can prevent this from happening by setting the correct header manually like so:

w.Header().Set("Content-Type", "application/json")

w.Write([]byte(`{"name":"Alex"}`))

Manipulating the header map

In the code above we used w.Header().Set() to add a new header to the response header

map. But there’s also Add() , Del() , Get() and Values() methods that you can use to read

and manipulate the header map too.

// Set a new cache-control header. If an existing "Cache-Control" header exists

// it will be overwritten.

w.Header().Set("Cache-Control", "public, max-age=31536000")

// In contrast, the Add() method appends a new "Cache-Control" header and can

// be called multiple times.

w.Header().Add("Cache-Control", "public")

w.Header().Add("Cache-Control", "max-age=31536000")

// Delete all values for the "Cache-Control" header.

w.Header().Del("Cache-Control")

// Retrieve the first value for the "Cache-Control" header.

w.Header().Get("Cache-Control")

// Retrieve a slice of all values for the "Cache-Control" header.

w.Header().Values("Cache-Control")

Header canonicalization

When you’re using the Set() , Add() , Del() , Get() and Values() methods on the header map,

the header name will always be canonicalized using the

textproto.CanonicalMIMEHeaderKey() function. This converts the first letter and any letter

following a hyphen to upper case, and the rest of the letters to lowercase. This has the

practical implication that when calling these methods the header name is case-insensitive.

If you need to avoid this canonicalization behavior you can edit the underlying header map

directly (it has the type map[string][]string). For example:

w.Header()["X-XSS-Protection"] = []string{"1; mode=block"}

https://pkg.go.dev/net/textproto/#CanonicalMIMEHeaderKey

Note: If a HTTP/2 connection is being used, Go will always automatically convert the

header names and values to lowercase for you as per the HTTP/2 specifications.

Suppressing system-generated headers

The Del() method doesn’t remove system-generated headers. To suppress these, you need

to access the underlying header map directly and set the value to nil . If you want to suppress

the Date header, for example, you need to write:

w.Header()["Date"] = nil

https://tools.ietf.org/html/rfc7540#section-8.1.2

Chapter 2.5.

URL query strings

While we’re on the subject of routing, let’s update the snippetView handler so that it accepts

an id query string parameter from the user like so:

Method Pattern Handler Action

ANY / home Display the home page

ANY /snippet/view?id=1 snippetView Display a specific snippet

POST /snippet/create snippetCreate Create a new snippet

Later we’ll use this id parameter to select a specific snippet from a database and show it to

the user. But for now, we’ll just read the value of the id parameter and interpolate it with a

placeholder response.

To make this work we’ll need to update the snippetView handler function to do two things:

1. It needs to retrieve the value of the id parameter from the URL query string, which we can

do using the r.URL.Query().Get() method. This will always return a string value for a

parameter, or the empty string "" if no matching parameter exists.

2. Because the id parameter is untrusted user input, we should validate it to make sure it’s

sane and sensible. For the purpose of our Snippetbox application, we want to check that

it contains a positive integer value. We can do this by trying to convert the string value to

an integer with the strconv.Atoi() function, and then checking the value is greater than

zero.

Here’s how:

https://pkg.go.dev/strconv/#Atoi

File: main.go

package main

import (

 "fmt" // New import

 "log"

 "net/http"

 "strconv" // New import

)

...

func snippetView(w http.ResponseWriter, r *http.Request) {

 // Extract the value of the id parameter from the query string and try to

 // convert it to an integer using the strconv.Atoi() function. If it can't

 // be converted to an integer, or the value is less than 1, we return a 404 page

 // not found response.

 id, err := strconv.Atoi(r.URL.Query().Get("id"))

 if err != nil || id < 1 {

 http.NotFound(w, r)

 return

 }

 // Use the fmt.Fprintf() function to interpolate the id value with our response

 // and write it to the http.ResponseWriter.

 fmt.Fprintf(w, "Display a specific snippet with ID %d...", id)

}

...

Let’s try this out.

Restart the application, and try visiting a URL like

http://localhost:4000/snippet/view?id=123 . You should see a response which looks like

this:

http://localhost:4000/snippet/view?id=123

You might also like to try visiting some URLs which have invalid values for the id parameter,

or no parameter at all. For instance:

http://localhost:4000/snippet/view

http://localhost:4000/snippet/view?id=-1

http://localhost:4000/snippet/view?id=foo

For all these requests you should get a 404 page not found response.

The io.writer interface

The code above introduced another new thing behind-the-scenes. If you take a look at the

documentation for the fmt.Fprintf() function you’ll notice that it takes an io.Writer as the

first parameter…

func Fprintf(w io.Writer, format string, a ...any) (n int, err error)

…but we passed it our http.ResponseWriter object instead — and it worked fine.

We’re able to do this because the io.Writer type is an interface, and the

http.ResponseWriter object satisfies the interface because it has a w.Write() method.

http://localhost:4000/snippet/view
http://localhost:4000/snippet/view?id=-1
http://localhost:4000/snippet/view?id=foo
https://pkg.go.dev/fmt/#Fprintf
https://pkg.go.dev/io/#Writer

If you’re new to Go, then the concept of interfaces can be a bit confusing and I don’t want to

get too hung up on it right now. It’s enough to know that — in practice — anywhere you see an

io.Writer parameter it’s OK to pass in your http.ResponseWriter object. Whatever is being

written will subsequently be sent as the body of the HTTP response.

https://www.alexedwards.net/blog/interfaces-explained

Chapter 2.6.

Project structure and organization

Before we add any more code to our main.go file it’s a good time to think how to organize and

structure this project.

It’s important to explain upfront that there’s no single right — or even recommended — way

to structure web applications in Go. And that’s both good and bad. It means that you have

freedom and flexibility over how you organize your code, but it’s also easy to get stuck down

a rabbit-hole of uncertainty when trying to decide what the best structure should be.

As you gain experience with Go, you’ll get a feel for which patterns work well for you in

different situations. But as a starting point, the best advice I can give you is don’t over-

complicate things. Try hard to add structure and complexity only when it’s demonstrably

needed.

For this project we’ll implement an outline structure which follows a popular and tried-and-

tested approach. It’s a solid starting point, and you should be able to reuse the general

structure in a wide variety of projects.

If you’re following along, make sure that you’re in the root of your project repository and run

the following commands:

$ cd $HOME/code/snippetbox

$ rm main.go

$ mkdir -p cmd/web internal ui/html ui/static

$ touch cmd/web/main.go

$ touch cmd/web/handlers.go

The structure of your project repository should now look like this:

https://github.com/thockin/go-build-template
https://peter.bourgon.org/go-best-practices-2016/#repository-structure

Let’s take a moment to discuss what each of these directories will be used for.

The cmd directory will contain the application-specific code for the executable applications

in the project. For now we’ll have just one executable application — the web application —

which will live under the cmd/web directory.

The internal directory will contain the ancillary non-application-specific code used in the

project. We’ll use it to hold potentially reusable code like validation helpers and the SQL

database models for the project.

The ui directory will contain the user-interface assets used by the web application.

Specifically, the ui/html directory will contain HTML templates, and the ui/static

directory will contain static files (like CSS and images).

So why are we using this structure?

There are two big benefits:

1. It gives a clean separation between Go and non-Go assets. All the Go code we write will

live exclusively under the cmd and internal directories, leaving the project root free to

hold non-Go assets like UI files, makefiles and module definitions (including our go.mod

file). This can make things easier to manage when it comes to building and deploying your

application in the future.

2. It scales really nicely if you want to add another executable application to your project.

For example, you might want to add a CLI (Command Line Interface) to automate some

administrative tasks in the future. With this structure, you could create this CLI application

under cmd/cli and it will be able to import and reuse all the code you’ve written under

the internal directory.

Refactoring your existing code

Let’s quickly port the code we’ve already written to use this new structure.

File: cmd/web/main.go

package main

import (

 "log"

 "net/http"

)

func main() {

 mux := http.NewServeMux()

 mux.HandleFunc("/", home)

 mux.HandleFunc("/snippet/view", snippetView)

 mux.HandleFunc("/snippet/create", snippetCreate)

 log.Println("Starting server on :4000")

 err := http.ListenAndServe(":4000", mux)

 log.Fatal(err)

}

File: cmd/web/handlers.go

package main

import (

 "fmt"

 "net/http"

 "strconv"

)

func home(w http.ResponseWriter, r *http.Request) {

 if r.URL.Path != "/" {

 http.NotFound(w, r)

 return

 }

 w.Write([]byte("Hello from Snippetbox"))

}

func snippetView(w http.ResponseWriter, r *http.Request) {

 id, err := strconv.Atoi(r.URL.Query().Get("id"))

 if err != nil || id < 1 {

 http.NotFound(w, r)

 return

 }

 fmt.Fprintf(w, "Display a specific snippet with ID %d...", id)

}

func snippetCreate(w http.ResponseWriter, r *http.Request) {

 if r.Method != http.MethodPost {

 w.Header().Set("Allow", http.MethodPost)

 http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)

 return

 }

 w.Write([]byte("Create a new snippet..."))

}

So now our web application consists of multiple Go source code files under the cmd/web

directory. To run these, we can use the go run command like so:

$ cd $HOME/code/snippetbox

$ go run ./cmd/web

2022/01/29 12:02:26 Starting server on :4000

Additional information

The internal directory

It’s important to point out that the directory name internal carries a special meaning and

behavior in Go: any packages which live under this directory can only be imported by code

inside the parent of the internal directory. In our case, this means that any packages which

live in internal can only be imported by code inside our snippetbox project directory.

Or, looking at it the other way, this means that any packages under internal cannot be

imported by code outside of our project.

This is useful because it prevents other codebases from importing and relying on the

(potentially unversioned and unsupported) packages in our internal directory — even if the

project code is publicly available somewhere like GitHub.

Chapter 2.7.

HTML templating and inheritance

Let’s inject a bit of life into the project and develop a proper home page for our Snippetbox

web application. Over the next couple of chapters we’ll work towards creating a page which

looks like this:

Let’s start by creating a template file at ui/html/pages/home.tmpl which contains the HTML

content for our home page. Like so:

$ cd $HOME/code/snippetbox

$ mkdir ui/html/pages

$ touch ui/html/pages/home.tmpl

File: ui/html/pages/home.tmpl

<!doctype html>

<html lang='en'>

 <head>

 <meta charset='utf-8'>

 <title>Home - Snippetbox</title>

 </head>

 <body>

 <header>

 <h1>Snippetbox</h1>

 </header>

 <main>

 <h2>Latest Snippets</h2>

 <p>There's nothing to see here yet!</p>

 </main>

 <footer>Powered by Go</footer>

 </body>

</html>

Note: The .tmpl extension doesn’t convey any special meaning or behavior here. I’ve

only chosen this extension because it’s a nice way of making it clear that the file

contains a Go template when you’re browsing a list of files. But, if you want, you could

use the extension .html instead (which may make your text editor recognize the file as

HTML for the purpose of syntax highlighting or autocompletion) — or you could even

use a ‘double extension’ like .tmpl.html. The choice is yours, but we’ll stick to using

.tmpl for our templates throughout this book.

Now that we’ve created a template file containing the HTML markup for the home page, the

next question is how do we get our home handler to render it?

For this we need to use Go’s html/template package, which provides a family of functions for

safely parsing and rendering HTML templates. We can use the functions in this package to

parse the template file and then execute the template.

I’ll demonstrate. Open the cmd/web/handlers.go file and add the following code:

https://pkg.go.dev/html/template/

File: cmd/web/handlers.go

package main

import (

 "fmt"

 "html/template" // New import

 "log" // New import

 "net/http"

 "strconv"

)

func home(w http.ResponseWriter, r *http.Request) {

 if r.URL.Path != "/" {

 http.NotFound(w, r)

 return

 }

 // Use the template.ParseFiles() function to read the template file into a

 // template set. If there's an error, we log the detailed error message and use

 // the http.Error() function to send a generic 500 Internal Server Error

 // response to the user.

 ts, err := template.ParseFiles("./ui/html/pages/home.tmpl")

 if err != nil {

 log.Println(err.Error())

 http.Error(w, "Internal Server Error", 500)

 return

 }

 // We then use the Execute() method on the template set to write the

 // template content as the response body. The last parameter to Execute()

 // represents any dynamic data that we want to pass in, which for now we'll

 // leave as nil.

 err = ts.Execute(w, nil)

 if err != nil {

 log.Println(err.Error())

 http.Error(w, "Internal Server Error", 500)

 }

}

...

It’s important to point out that the file path that you pass to the template.ParseFiles()

function must either be relative to your current working directory, or an absolute path. In the

code above I’ve made the path relative to the root of the project directory.

So, with that said, make sure you’re in the root of your project directory and restart the

application:

$ cd $HOME/code/snippetbox

$ go run ./cmd/web

2022/01/29 12:06:02 Starting server on :4000

Then open http://localhost:4000 in your web browser. You should find that the HTML

homepage is shaping up nicely.

http://localhost:4000/

Template composition

As we add more pages to this web application there will be some shared, boilerplate, HTML

markup that we want to include on every page — like the header, navigation and metadata

inside the <head> HTML element.

To save us typing and prevent duplication, it’s a good idea to create a base (or master)

template which contains this shared content, which we can then compose with the page-

specific markup for the individual pages.

Go ahead and create a new ui/html/base.tmpl file…

$ touch ui/html/base.tmpl

And add the following markup (which we want to appear on every page):

File: ui/html/base.tmpl

{{define "base"}}

<!doctype html>

<html lang='en'>

 <head>

 <meta charset='utf-8'>

 <title>{{template "title" .}} - Snippetbox</title>

 </head>

 <body>

 <header>

 <h1>Snippetbox</h1>

 </header>

 <main>

 {{template "main" .}}

 </main>

 <footer>Powered by Go</footer>

 </body>

</html>

{{end}}

Hopefully this feels familiar if you’ve used templating in other languages before. It’s

essentially just regular HTML with some extra actions in double curly braces.

Here we’re using the {{define "base"}}...{{end}} action to define a distinct named

template called base, which contains the content we want to appear on every page.

Inside this we use the {{template "title" .}} and {{template "main" .}} actions to

denote that we want to invoke other named templates (called title and main) at a particular

point in the HTML.

Note: If you’re wondering, the dot at the end of the {{template "title" .}} action

represents any dynamic data that you want to pass to the invoked template. We’ll talk

more about this later in the book.

Now let’s go back to the ui/html/pages/home.tmpl file and update it to define title and

main named templates containing the specific content for the home page.

File: ui/html/pages/home.tmpl

{{define "title"}}Home{{end}}

{{define "main"}}

 <h2>Latest Snippets</h2>

 <p>There's nothing to see here yet!</p>

{{end}}

Once that’s done, the next step is to update the code in your home handler so that it parses

both template files, like so:

File: cmd/web/handlers.go

package main

...

func home(w http.ResponseWriter, r *http.Request) {

 if r.URL.Path != "/" {

 http.NotFound(w, r)

 return

 }

 // Initialize a slice containing the paths to the two files. It's important

 // to note that the file containing our base template must be the *first*

 // file in the slice.

 files := []string{

 "./ui/html/base.tmpl",

 "./ui/html/pages/home.tmpl",

 }

 // Use the template.ParseFiles() function to read the files and store the

 // templates in a template set. Notice that we can pass the slice of file

 // paths as a variadic parameter?

 ts, err := template.ParseFiles(files...)

 if err != nil {

 log.Println(err.Error())

 http.Error(w, "Internal Server Error", 500)

 return

 }

 // Use the ExecuteTemplate() method to write the content of the "base"

 // template as the response body.

 err = ts.ExecuteTemplate(w, "base", nil)

 if err != nil {

 log.Println(err.Error())

 http.Error(w, "Internal Server Error", 500)

 }

}

...

So now, instead of containing HTML directly, our template set contains 3 named templates —

base, title and main. We use the ExecuteTemplate() method to tell Go that we specifically

want to respond using the content of the base template (which in turn invokes our title and

main templates).

Feel free to restart the server and give this a try. You should find that it renders the same

output as before (although there will be some extra whitespace in the HTML source where the

actions are).

Embedding partials

For some applications you might want to break out certain bits of HTML into partials that can

be reused in different pages or layouts. To illustrate, let’s create a partial containing the

primary navigation bar for our web application.

Create a new ui/html/partials/nav.tmpl file containing a named template called "nav" , like

so:

$ mkdir ui/html/partials

$ touch ui/html/partials/nav.tmpl

File: ui/html/partials/nav.tmpl

{{define "nav"}}

 <nav>

 Home

</nav>

{{end}}

Then update the base template so that it invokes the navigation partial using the

{{template "nav" .}} action:

File: ui/html/base.tmpl

{{define "base"}}

<!doctype html>

<html lang='en'>

 <head>

 <meta charset='utf-8'>

 <title>{{template "title" .}} - Snippetbox</title>

 </head>

 <body>

 <header>

 <h1>Snippetbox</h1>

 </header>

 <!-- Invoke the navigation template -->

 {{template "nav" .}}

 <main>

 {{template "main" .}}

 </main>

 <footer>Powered by Go</footer>

 </body>

</html>

{{end}}

Finally, we need to update the home handler to include the new ui/html/partials/nav.tmpl

file when parsing the template files:

File: cmd/web/handlers.go

package main

...

func home(w http.ResponseWriter, r *http.Request) {

 if r.URL.Path != "/" {

 http.NotFound(w, r)

 return

 }

 // Include the navigation partial in the template files.

 files := []string{

 "./ui/html/base.tmpl",

 "./ui/html/partials/nav.tmpl",

 "./ui/html/pages/home.tmpl",

 }

 ts, err := template.ParseFiles(files...)

 if err != nil {

 log.Println(err.Error())

 http.Error(w, "Internal Server Error", 500)

 return

 }

 err = ts.ExecuteTemplate(w, "base", nil)

 if err != nil {

 log.Println(err.Error())

 http.Error(w, "Internal Server Error", 500)

 }

}

...

Once you restart the server, the base template should now invoke the nav template and your

home page should look like this:

Additional information

The block action

In the code above we’ve used the {{template}} action to invoke one template from another.

But Go also provides a {{block}}...{{end}} action which you can use instead. This acts like

the {{template}} action, except it allows you to specify some default content if the template

being invoked doesn’t exist in the current template set.

In the context of a web application, this is useful when you want to provide some default

content (such as a sidebar) which individual pages can override on a case-by-case basis if they

need to.

Syntactically you use it like this:

{{define "base"}}

 <h1>An example template</h1>

 {{block "sidebar" .}}

 <p>My default sidebar content</p>

 {{end}}

{{end}}

But — if you want — you don’t need to include any default content between the {{block}}

and {{end}} actions. In that case, the invoked template acts like it’s ‘optional’. If the template

exists in the template set, then it will be rendered. But if it doesn’t, then nothing will be

displayed.

Embedding files

Go 1.16 introduced the embed package which makes it possible to embed files into your Go

program itself rather than reading them from disk.

For now, reading our template files from disk works fine and it’s conceptually simpler than

using the embed package, but we’ll revisit this and explain how to use the embed functionality

as an alternative later in the book.

https://pkg.go.dev/embed/

Chapter 2.8.

Serving static files

Now let’s improve the look and feel of the home page by adding some static CSS and image

files to our project, along with a tiny bit of JavaScript to highlight the active navigation item.

If you’re following along, you can grab the necessary files and extract them into the

ui/static folder that we made earlier with the following commands:

$ cd $HOME/code/snippetbox

$ curl https://www.alexedwards.net/static/sb-v2.tar.gz | tar -xvz -C ./ui/static/

The contents of your ui/static directory should now look like this:

The http.Fileserver handler

Go’s net/http package ships with a built-in http.FileServer handler which you can use to

serve files over HTTP from a specific directory. Let’s add a new route to our application so that

all requests which begin with "/static/" are handled using this, like so:

https://pkg.go.dev/net/http/#FileServer

Method Pattern Handler Action

ANY / home Display the home page

ANY /snippet/view?id=1 snippetView Display a specific snippet

POST /snippet/create snippetCreate Create a new snippet

ANY /static/ http.FileServer Serve a specific static file

Remember: The pattern "/static/" is a subtree path pattern, so it acts a bit like there

is a wildcard at the end.

To create a new http.FileServer handler, we need to use the http.FileServer() function

like this:

fileServer := http.FileServer(http.Dir("./ui/static/"))

When this handler receives a request, it will remove the leading slash from the URL path and

then search the ./ui/static directory for the corresponding file to send to the user.

So, for this to work correctly, we must strip the leading "/static" from the URL path before

passing it to http.FileServer . Otherwise it will be looking for a file which doesn’t exist and

the user will receive a 404 page not found response. Fortunately Go includes a

http.StripPrefix() helper specifically for this task.

Open your main.go file and add the following code, so that the file ends up looking like this:

https://pkg.go.dev/net/http/#FileServer
https://pkg.go.dev/net/http/#StripPrefix

File: cmd/web/main.go

package main

import (

 "log"

 "net/http"

)

func main() {

 mux := http.NewServeMux()

 // Create a file server which serves files out of the "./ui/static" directory.

 // Note that the path given to the http.Dir function is relative to the project

 // directory root.

 fileServer := http.FileServer(http.Dir("./ui/static/"))

 // Use the mux.Handle() function to register the file server as the handler for

 // all URL paths that start with "/static/". For matching paths, we strip the

 // "/static" prefix before the request reaches the file server.

 mux.Handle("/static/", http.StripPrefix("/static", fileServer))

 // Register the other application routes as normal.

 mux.HandleFunc("/", home)

 mux.HandleFunc("/snippet/view", snippetView)

 mux.HandleFunc("/snippet/create", snippetCreate)

 log.Println("Starting server on :4000")

 err := http.ListenAndServe(":4000", mux)

 log.Fatal(err)

}

Once that’s complete, restart the application and open http://localhost:4000/static/ in

your browser. You should see a navigable directory listing of the ui/static folder which looks

like this:

http://localhost:4000/static/

Feel free to have a play around and browse through the directory listing to view individual

files. For example, if you navigate to http://localhost:4000/static/css/main.css you

should see the CSS file appear in your browser like so:

http://localhost:4000/static/css/main.css

Using the static files

With the file server working properly, we can now update the ui/html/base.tmpl file to make

use of the static files:

File: ui/html/base.tmpl

{{define "base"}}

<!doctype html>

<html lang='en'>

 <head>

 <meta charset='utf-8'>

 <title>{{template "title" .}} - Snippetbox</title>

 <!-- Link to the CSS stylesheet and favicon -->

 <link rel='stylesheet' href='/static/css/main.css'>

 <link rel='shortcut icon' href='/static/img/favicon.ico' type='image/x-icon'>

 <!-- Also link to some fonts hosted by Google -->

 <link rel='stylesheet' href='https://fonts.googleapis.com/css?family=Ubuntu+Mono:400,700'>

 </head>

 <body>

 <header>

 <h1>Snippetbox</h1>

 </header>

 {{template "nav" .}}

 <main>

 {{template "main" .}}

 </main>

 <footer>Powered by Go</footer>

 <!-- And include the JavaScript file -->

 <script src="/static/js/main.js" type="text/javascript"></script>

 </body>

</html>

{{end}}

Make sure you save the changes, then visit http://localhost:4000 . Your home page should

now look like this:

http://localhost:4000/

Additional information

Features and functions

Go’s file server has a few really nice features that are worth mentioning:

It sanitizes all request paths by running them through the path.Clean() function before

searching for a file. This removes any . and .. elements from the URL path, which helps to

stop directory traversal attacks. This feature is particularly useful if you’re using the

fileserver in conjunction with a router that doesn’t automatically sanitize URL paths.

Range requests are fully supported. This is great if your application is serving large files

and you want to support resumable downloads. You can see this functionality in action if

you use curl to request bytes 100-199 of the logo.png file, like so:

https://pkg.go.dev/path/#Clean
https://benramsey.com/blog/2008/05/206-partial-content-and-range-requests

$ curl -i -H "Range: bytes=100-199" --output - http://localhost:4000/static/img/logo.png

HTTP/1.1 206 Partial Content

Accept-Ranges: bytes

Content-Length: 100

Content-Range: bytes 100-199/1075

Content-Type: image/png

Last-Modified: Thu, 04 May 2017 13:07:52 GMT

Date: Sat, 29 Jan 2022 14:33:59 GMT

[binary data]

The Last-Modified and If-Modified-Since headers are transparently supported. If a file

hasn’t changed since the user last requested it, then http.FileServer will send a

304 Not Modified status code instead of the file itself. This helps reduce latency and

processing overhead for both the client and server.

The Content-Type is automatically set from the file extension using the

mime.TypeByExtension() function. You can add your own custom extensions and content

types using the mime.AddExtensionType() function if necessary.

Performance

In the code above we’ve set up our file server so that it serves files out of the ./ui/static

directory on your hard disk.

But it’s important to note that, once the application is up-and-running, http.FileServer

probably won’t be reading these files from disk. Both Windows and Unix-based operating

systems cache recently-used files in RAM, so (for frequently-served files at least) it’s likely that

http.FileServer will be serving them from RAM rather than making the relatively slow

round-trip to your hard disk.

Serving single files

Sometimes you might want to serve a single file from within a handler. For this there’s the

http.ServeFile() function, which you can use like so:

func downloadHandler(w http.ResponseWriter, r *http.Request) {

 http.ServeFile(w, r, "./ui/static/file.zip")

}

Warning: http.ServeFile() does not automatically sanitize the file path. If you’re

constructing a file path from untrusted user input, to avoid directory traversal attacks

you must sanitize the input with filepath.Clean() before using it.

https://pkg.go.dev/mime/#TypeByExtension
https://pkg.go.dev/mime/#AddExtensionType
https://docs.microsoft.com/en-us/windows/desktop/fileio/file-caching
https://www.tldp.org/LDP/sag/html/buffer-cache.html
https://gist.github.com/jboner/2841832
https://pkg.go.dev/net/http/#ServeFile
https://pkg.go.dev/path/filepath/#Clean

Disabling directory listings

If you want to disable directory listings there are a few different approaches you can take.

The simplest way? Add a blank index.html file to the specific directory that you want to

disable listings for. This will then be served instead of the directory listing, and the user will

get a 200 OK response with no body. If you want to do this for all directories under

./ui/static you can use the command:

$ find ./ui/static -type d -exec touch {}/index.html \;

A more complicated (but arguably better) solution is to create a custom implementation of

http.FileSystem , and have it return an os.ErrNotExist error for any directories. A full

explanation and sample code can be found in this blog post.

https://pkg.go.dev/net/http/#FileSystem
https://www.alexedwards.net/blog/disable-http-fileserver-directory-listings

Chapter 2.9.

The http.Handler interface

Before we go any further there’s a little theory that we should cover. It’s a bit complicated, so

if you find this chapter hard-going don’t worry. Carry on with the application build and circle

back to it later once you’re more familiar with Go.

In the previous chapters I’ve thrown around the term handler without explaining what it truly

means. Strictly speaking, what we mean by handler is an object which satisfies the

http.Handler interface:

type Handler interface {

 ServeHTTP(ResponseWriter, *Request)

}

In simple terms, this basically means that to be a handler an object must have a ServeHTTP()

method with the exact signature:

ServeHTTP(http.ResponseWriter, *http.Request)

So in its simplest form a handler might look something like this:

type home struct {}

func (h *home) ServeHTTP(w http.ResponseWriter, r *http.Request) {

 w.Write([]byte("This is my home page"))

}

Here we have an object (in this case it’s a home struct, but it could equally be a string or

function or anything else), and we’ve implemented a method with the signature

ServeHTTP(http.ResponseWriter, *http.Request) on it. That’s all we need to make a

handler.

You could then register this with a servemux using the Handle method like so:

mux := http.NewServeMux()

mux.Handle("/", &home{})

When this servemux receives a HTTP request for "/" , it will then call the ServeHTTP() method

of the home struct — which in turn writes the HTTP response.

https://pkg.go.dev/net/http/#Handler

Handler functions

Now, creating an object just so we can implement a ServeHTTP() method on it is long-winded

and a bit confusing. Which is why in practice it’s far more common to write your handlers as a

normal function (like we have been so far). For example:

func home(w http.ResponseWriter, r *http.Request) {

 w.Write([]byte("This is my home page"))

}

But this home function is just a normal function; it doesn’t have a ServeHTTP() method. So in

itself it isn’t a handler.

Instead we can transform it into a handler using the http.HandlerFunc() adapter, like so:

mux := http.NewServeMux()

mux.Handle("/", http.HandlerFunc(home))

The http.HandlerFunc() adapter works by automatically adding a ServeHTTP() method to

the home function. When executed, this ServeHTTP() method then simply calls the content of

the original home function. It’s a roundabout but convenient way of coercing a normal function

into satisfying the http.Handler interface.

Throughout this project so far we’ve been using the HandleFunc() method to register our

handler functions with the servemux. This is just some syntactic sugar that transforms a

function to a handler and registers it in one step, instead of having to do it manually. The

code above is functionality equivalent to this:

mux := http.NewServeMux()

mux.HandleFunc("/", home)

Chaining handlers

The eagle-eyed of you might have noticed something interesting right at the start of this

project. The http.ListenAndServe() function takes a http.Handler object as the second

parameter…

func ListenAndServe(addr string, handler Handler) error

… but we’ve been passing in a servemux.

https://pkg.go.dev/net/http/#HandlerFunc
https://pkg.go.dev/net/http/#ListenAndServe

We were able to do this because the servemux also has a ServeHTTP() method, meaning that

it too satisfies the http.Handler interface.

For me it simplifies things to think of the servemux as just being a special kind of handler,

which instead of providing a response itself passes the request on to a second handler. This

isn’t as much of a leap as it might first sound. Chaining handlers together is a very common

idiom in Go, and something that we’ll do a lot of later in this project.

In fact, what exactly is happening is this: When our server receives a new HTTP request, it calls

the servemux’s ServeHTTP() method. This looks up the relevant handler based on the

request URL path, and in turn calls that handler’s ServeHTTP() method. You can think of a Go

web application as a chain of ServeHTTP() methods being called one after another.

Requests are handled concurrently

There is one more thing that’s really important to point out: all incoming HTTP requests are

served in their own goroutine. For busy servers, this means it’s very likely that the code in or

called by your handlers will be running concurrently. While this helps make Go blazingly fast,

the downside is that you need to be aware of (and protect against) race conditions when

accessing shared resources from your handlers.

https://pkg.go.dev/net/http/#ServeMux.ServeHTTP
https://www.alexedwards.net/blog/understanding-mutexes

Chapter 3.

Configuration and error handling

In this section of the book we’re going to do some housekeeping. We won’t add much new

functionality, but instead focus on making improvements that’ll make it easier to manage our

application as it grows.

You’ll learn how to:

Set configuration settings for your application at runtime in an easy and idiomatic way

using command-line flags.

Improve your application log messages to include more information, and manage them

differently depending on the type (or level) of log message.

Make dependencies available to your handlers in a way that’s extensible, type-safe, and

doesn’t get in the way when it comes to writing tests.

Centralize error handling so that you don’t need to repeat yourself when writing code.

Chapter 3.1.

Managing configuration settings

Our web application’s main.go file currently contains a couple of hard-coded configuration

settings:

The network address for the server to listen on (currently ":4000")

The file path for the static files directory (currently "./ui/static")

Having these hard-coded isn’t ideal. There’s no separation between our configuration

settings and code, and we can’t change the settings at runtime (which is important if you

need different settings for development, testing and production environments).

In this chapter we’ll start to improve that, and make the network address for our server

configurable at runtime.

Command-line flags

In Go, a common and idiomatic way to manage configuration settings is to use command-line

flags when starting an application. For example:

$ go run ./cmd/web -addr=":80"

The easiest way to accept and parse a command-line flag from your application is with a line

of code like this:

addr := flag.String("addr", ":4000", "HTTP network address")

This essentially defines a new command-line flag with the name addr, a default value of

":4000" and some short help text explaining what the flag controls. The value of the flag will

be stored in the addr variable at runtime.

Let’s use this in our application and swap out the hard-coded network address in favor of a

command-line flag instead:

File: cmd/web/main.go

package main

import (

 "flag" // New import

 "log"

 "net/http"

)

func main() {

 // Define a new command-line flag with the name 'addr', a default value of ":4000"

 // and some short help text explaining what the flag controls. The value of the

 // flag will be stored in the addr variable at runtime.

 addr := flag.String("addr", ":4000", "HTTP network address")

 // Importantly, we use the flag.Parse() function to parse the command-line flag.

 // This reads in the command-line flag value and assigns it to the addr

 // variable. You need to call this *before* you use the addr variable

 // otherwise it will always contain the default value of ":4000". If any errors are

 // encountered during parsing the application will be terminated.

 flag.Parse()

 mux := http.NewServeMux()

 fileServer := http.FileServer(http.Dir("./ui/static/"))

 mux.Handle("/static/", http.StripPrefix("/static", fileServer))

 mux.HandleFunc("/", home)

 mux.HandleFunc("/snippet/view", snippetView)

 mux.HandleFunc("/snippet/create", snippetCreate)

 // The value returned from the flag.String() function is a pointer to the flag

 // value, not the value itself. So we need to dereference the pointer (i.e.

 // prefix it with the * symbol) before using it. Note that we're using the

 // log.Printf() function to interpolate the address with the log message.

 log.Printf("Starting server on %s", *addr)

 err := http.ListenAndServe(*addr, mux)

 log.Fatal(err)

}

Save this file and try using the -addr flag when you start the application. You should find that

the server now listens on whatever address you specify, like so:

$ go run ./cmd/web -addr=":9999"

2022/01/29 15:50:20 Starting server on :9999

Note: Ports 0-1023 are restricted and (typically) can only be used by services which have

root privileges. If you try to use one of these ports you should get a

bind: permission denied error message on start-up.

Default values

Command-line flags are completely optional. For instance, if you run the application with no

-addr flag the server will fall back to listening on address :4000 (which is the default value we

specified).

$ go run ./cmd/web

2022/01/29 15:51:36 Starting server on :4000

There are no rules about what to use as the default values for your command-line flags. I like

to use defaults which make sense for my development environment, because it saves me time

and typing when I’m building an application. But YMMV. You might prefer the safer approach

of setting defaults for your production environment instead.

Type conversions

In the code above we’ve used the flag.String() function to define the command-line flag.

This has the benefit of converting whatever value the user provides at runtime to a string

type. If the value can’t be converted to a string then the application will log an error and exit.

Go also has a range of other functions including flag.Int(), flag.Bool() and

flag.Float64(). These work in exactly the same way as flag.String() , except they

automatically convert the command-line flag value to the appropriate type.

Automated help

Another great feature is that you can use the -help flag to list all the available command-line

flags for an application and their accompanying help text. Give it a try:

$ go run ./cmd/web -help

Usage of /tmp/go-build3672328037/b001/exe/web:

 -addr string

 HTTP network address (default ":4000")

So, all in all, this is starting to look really good. We’ve introduced an idiomatic way of

managing configuration settings for our application at runtime, and have also got an explicit

and documented interface between our application and its operating configuration.

Additional information

https://pkg.go.dev/flag/#Int
https://pkg.go.dev/flag/#Bool
https://pkg.go.dev/flag/#Float64

Environment variables

If you’ve built and deployed web applications before, then you’re probably thinking what

about environment variables? Surely it’s good-practice to store configuration settings there?

If you want, you can store your configuration settings in environment variables and access

them directly from your application by using the os.Getenv() function like so:

addr := os.Getenv("SNIPPETBOX_ADDR")

But this has some drawbacks compared to using command-line flags. You can’t specify a

default setting (the return value from os.Getenv() is the empty string if the environment

variable doesn’t exist), you don’t get the -help functionality that you do with command-line

flags, and the return value from os.Getenv() is always a string — you don’t get automatic

type conversions like you do with flag.Int() and the other command line flag functions.

Instead, you can get the best of both worlds by passing the environment variable as a

command-line flag when starting the application. For example:

$ export SNIPPETBOX_ADDR=":9999"

$ go run ./cmd/web -addr=$SNIPPETBOX_ADDR

2022/01/29 15:54:29 Starting server on :9999

Boolean flags

For flags defined with flag.Bool() omitting a value is the same as writing -flag=true . The

following two commands are equivalent:

$ go run ./example -flag=true

$ go run ./example -flag

You must explicitly use -flag=false if you want to set a boolean flag value to false.

Pre-existing variables

It’s possible to parse command-line flag values into the memory addresses of pre-existing

variables, using the flag.StringVar(), flag.IntVar() , flag.BoolVar() and other functions.

This can be useful if you want to store all your configuration settings in a single struct. As a

rough example:

http://12factor.net/config
https://pkg.go.dev/os/#Getenv
https://pkg.go.dev/flag/#FlagSet.StringVar
https://pkg.go.dev/flag/#FlagSet.IntVar
https://pkg.go.dev/flag/#FlagSet.BoolVar

type config struct {

 addr string

 staticDir string

}

...

var cfg config

flag.StringVar(&cfg.addr, "addr", ":4000", "HTTP network address")

flag.StringVar(&cfg.staticDir, "static-dir", "./ui/static", "Path to static assets")

flag.Parse()

Chapter 3.2.

Leveled logging

At the moment in our main.go file we’re outputting log messages using the log.Printf() and

log.Fatal() functions.

Both these functions output messages via Go’s standard logger, which — by default —

prefixes messages with the local date and time and writes them to the standard error stream

(which should display in your terminal window). The log.Fatal() function will also call

os.Exit(1) after writing the message, causing the application to immediately exit.

In our application, we can break apart our log messages into two distinct types — or levels.

The first type is informational messages (like "Starting server on :4000") and the second

type is error messages.

log.Printf("Starting server on %s", *addr) // Information message

err := http.ListenAndServe(*addr, mux)

log.Fatal(err) // Error message

Let’s improve our application by adding some leveled logging capability, so that information

and error messages are managed slightly differently. Specifically:

We will prefix informational messages with "INFO" and output the message to standard

out (stdout).

We will prefix error messages with "ERROR" and output them to standard error (stderr),

along with the relevant file name and line number that called the logger (to help with

debugging).

There are a couple of different ways to do this, but a simple and clear approach is to use the

log.New() function to create two new custom loggers.

Open up your main.go file and update it as follows:

https://pkg.go.dev/log/#Printf
https://pkg.go.dev/log/#Fatal
https://pkg.go.dev/log/#New

File: cmd/web/main.go

package main

import (

 "flag"

 "log"

 "net/http"

 "os" // New import

)

func main() {

 addr := flag.String("addr", ":4000", "HTTP network address")

 flag.Parse()

 // Use log.New() to create a logger for writing information messages. This takes

 // three parameters: the destination to write the logs to (os.Stdout), a string

 // prefix for message (INFO followed by a tab), and flags to indicate what

 // additional information to include (local date and time). Note that the flags

 // are joined using the bitwise OR operator |.

 infoLog := log.New(os.Stdout, "INFO\t", log.Ldate|log.Ltime)

 // Create a logger for writing error messages in the same way, but use stderr as

 // the destination and use the log.Lshortfile flag to include the relevant

 // file name and line number.

 errorLog := log.New(os.Stderr, "ERROR\t", log.Ldate|log.Ltime|log.Lshortfile)

 mux := http.NewServeMux()

 fileServer := http.FileServer(http.Dir("./ui/static/"))

 mux.Handle("/static/", http.StripPrefix("/static", fileServer))

 mux.HandleFunc("/", home)

 mux.HandleFunc("/snippet/view", snippetView)

 mux.HandleFunc("/snippet/create", snippetCreate)

 // Write messages using the two new loggers, instead of the standard logger.

 infoLog.Printf("Starting server on %s", *addr)

 err := http.ListenAndServe(*addr, mux)

 errorLog.Fatal(err)

}

Alright… let’s try these out!

Go ahead and run the application, then open another terminal window and try to run it a

second time. This should generate an error because the network address our server wants to

listen on (":4000") is already in use.

The log output in your second terminal should look a bit like this:

$ go run ./cmd/web

INFO 2022/01/29 16:00:50 Starting server on :4000

ERROR 2022/01/29 16:00:50 main.go:37: listen tcp :4000: bind: address already in use

exit status 1

Notice how the two messages are prefixed differently — so they can be easily distinguished in

the terminal — and our error message also includes the file name and line number

(main.go:37) that called the logger?

Tip: If you want to include the full file path in your log output, instead of just the file

name, you can use the log.Llongfile flag instead of log.Lshortfile when creating

your custom logger. You can also force your logger to use UTC datetimes (instead of

local ones) by adding the log.LUTC flag.

Decoupled logging

A big benefit of logging your messages to the standard streams (stdout and stderr) like we are

is that your application and logging are decoupled. Your application itself isn’t concerned

with the routing or storage of the logs, and that can make it easier to manage the logs

differently depending on the environment.

During development, it’s easy to view the log output because the standard streams are

displayed in the terminal.

In staging or production environments, you can redirect the streams to a final destination for

viewing and archival. This destination could be on-disk files, or a logging service such as

Splunk. Either way, the final destination of the logs can be managed by your execution

environment independently of the application.

For example, we could redirect the stdout and stderr streams to on-disk files when starting

the application like so:

$ go run ./cmd/web >>/tmp/info.log 2>>/tmp/error.log

Note: Using the double arrow >> will append to an existing file, instead of truncating it

when starting the application.

The http.Server error log

There is one more change we need to make to our application. By default, if Go’s HTTP server

encounters an error it will log it using the standard logger. For consistency it’d be better to

use our new errorLog logger instead.

To make this happen we need to initialize a new http.Server struct containing the

configuration settings for our server, instead of using the http.ListenAndServe() shortcut.

It’s probably easiest to demonstrate this:

File: cmd/web/main.go

package main

...

func main() {

 addr := flag.String("addr", ":4000", "HTTP network address")

 flag.Parse()

 infoLog := log.New(os.Stdout, "INFO\t", log.Ldate|log.Ltime)

 errorLog := log.New(os.Stderr, "ERROR\t", log.Ldate|log.Ltime|log.Lshortfile)

 mux := http.NewServeMux()

 fileServer := http.FileServer(http.Dir("./ui/static/"))

 mux.Handle("/static/", http.StripPrefix("/static", fileServer))

 mux.HandleFunc("/", home)

 mux.HandleFunc("/snippet/view", snippetView)

 mux.HandleFunc("/snippet/create", snippetCreate)

 // Initialize a new http.Server struct. We set the Addr and Handler fields so

 // that the server uses the same network address and routes as before, and set

 // the ErrorLog field so that the server now uses the custom errorLog logger in

 // the event of any problems.

 srv := &http.Server{

 Addr: *addr,

 ErrorLog: errorLog,

 Handler: mux,

 }

 infoLog.Printf("Starting server on %s", *addr)

 // Call the ListenAndServe() method on our new http.Server struct.

 err := srv.ListenAndServe()

 errorLog.Fatal(err)

}

Additional information

Additional logging methods

So far in this book we’ve used the Println() , Printf() and Fatal() methods to write log

messages, but Go provides a range of other methods that are worth familiarizing yourself

with.

As a rule of thumb, you should avoid using the Panic() and Fatal() variations outside of

https://pkg.go.dev/net/http/#Server
https://pkg.go.dev/log/#Logger

your main() function — it’s good practice to return errors instead, and only panic or exit

directly from main().

Concurrent logging

Custom loggers created by log.New() are concurrency-safe. You can share a single logger and

use it across multiple goroutines and in your handlers without needing to worry about race

conditions.

That said, if you have multiple loggers writing to the same destination then you need to be

careful and ensure that the destination’s underlying Write() method is also safe for

concurrent use.

Logging to a file

As I said above, my general recommendation is to log your output to standard streams and

redirect the output to a file at runtime. But if you don’t want to do this, you can always open a

file in Go and use it as your log destination. As a rough example:

f, err := os.OpenFile("/tmp/info.log", os.O_RDWR|os.O_CREATE, 0666)

if err != nil {

 log.Fatal(err)

}

defer f.Close()

infoLog := log.New(f, "INFO\t", log.Ldate|log.Ltime)

Chapter 3.3.

Dependency injection

There’s one more problem with our logging that we need to address. If you open up your

handlers.go file you’ll notice that the home handler function is still writing error messages

using Go’s standard logger, not the errorLog logger that we want to be using.

func home(w http.ResponseWriter, r *http.Request) {

 ...

 ts, err := template.ParseFiles(files...)

 if err != nil {

 log.Println(err.Error()) // This isn't using our new error logger.

 http.Error(w, "Internal Server Error", 500)

 return

 }

 err = ts.ExecuteTemplate(w, "base", nil)

 if err != nil {

 log.Println(err.Error()) // This isn't using our new error logger.

 http.Error(w, "Internal Server Error", 500)

 }

}

This raises a good question: how can we make our new errorLog logger available to our home

function from main()?

And this question generalizes further. Most web applications will have multiple dependencies

that their handlers need to access, such as a database connection pool, centralized error

handlers, and template caches. What we really want to answer is: how can we make any

dependency available to our handlers?

There are a few different ways to do this, the simplest being to just put the dependencies in

global variables. But in general, it is good practice to inject dependencies into your handlers. It

makes your code more explicit, less error-prone and easier to unit test than if you use global

variables.

For applications where all your handlers are in the same package, like ours, a neat way to

inject dependencies is to put them into a custom application struct, and then define your

handler functions as methods against application .

I’ll demonstrate.

Open your main.go file and create a new application struct like so:

https://www.alexedwards.net/blog/organising-database-access

File: cmd/web/main.go

package main

import (

 "flag"

 "log"

 "net/http"

 "os"

)

// Define an application struct to hold the application-wide dependencies for the

// web application. For now we'll only include fields for the two custom loggers, but

// we'll add more to it as the build progresses.

type application struct {

 errorLog *log.Logger

 infoLog *log.Logger

}

func main() {

 ...

}

And then in the handlers.go file update your handler functions so that they become methods

against the application struct…

File: cmd/web/handlers.go

package main

import (

 "fmt"

 "html/template"

 "net/http"

 "strconv"

)

// Change the signature of the home handler so it is defined as a method against

// *application.

func (app *application) home(w http.ResponseWriter, r *http.Request) {

 if r.URL.Path != "/" {

 http.NotFound(w, r)

 return

 }

 files := []string{

 "./ui/html/base.tmpl",

 "./ui/html/partials/nav.tmpl",

 "./ui/html/pages/home.tmpl",

 }

 ts, err := template.ParseFiles(files...)

 if err != nil {

 // Because the home handler function is now a method against application

 // it can access its fields, including the error logger. We'll write the log

 // message to this instead of the standard logger.

 app.errorLog.Println(err.Error())

 http.Error(w, "Internal Server Error", 500)

 return

 }

 err = ts.ExecuteTemplate(w, "base", nil)

 if err != nil {

 // Also update the code here to use the error logger from the application

 // struct.

 app.errorLog.Println(err.Error())

 http.Error(w, "Internal Server Error", 500)

 }

}

// Change the signature of the snippetView handler so it is defined as a method

// against *application.

func (app *application) snippetView(w http.ResponseWriter, r *http.Request) {

 id, err := strconv.Atoi(r.URL.Query().Get("id"))

 if err != nil || id < 1 {

 http.NotFound(w, r)

 return

 }

 fmt.Fprintf(w, "Display a specific snippet with ID %d...", id)

}

// Change the signature of the snippetCreate handler so it is defined as a method

// against *application.

func (app *application) snippetCreate(w http.ResponseWriter, r *http.Request) {

 if r.Method != http.MethodPost {

 w.Header().Set("Allow", http.MethodPost)

 http.Error(w, "Method Not Allowed", http.StatusMethodNotAllowed)

 return

 }

 w.Write([]byte("Create a new snippet..."))

}

And finally let’s wire things together in our main.go file:

File: cmd/web/main.go

package main

import (

 "flag"

 "log"

 "net/http"

 "os"

)

type application struct {

 errorLog *log.Logger

 infoLog *log.Logger

}

func main() {

 addr := flag.String("addr", ":4000", "HTTP network address")

 flag.Parse()

 infoLog := log.New(os.Stdout, "INFO\t", log.Ldate|log.Ltime)

 errorLog := log.New(os.Stderr, "ERROR\t", log.Ldate|log.Ltime|log.Lshortfile)

 // Initialize a new instance of our application struct, containing the

 // dependencies.

 app := &application{

 errorLog: errorLog,

 infoLog: infoLog,

 }

 // Swap the route declarations to use the application struct's methods as the

 // handler functions.

 mux := http.NewServeMux()

 fileServer := http.FileServer(http.Dir("./ui/static/"))

 mux.Handle("/static/", http.StripPrefix("/static", fileServer))

 mux.HandleFunc("/", app.home)

 mux.HandleFunc("/snippet/view", app.snippetView)

 mux.HandleFunc("/snippet/create", app.snippetCreate)

 srv := &http.Server{

 Addr: *addr,

 ErrorLog: errorLog,

 Handler: mux,

 }

 infoLog.Printf("Starting server on %s", *addr)

 err := srv.ListenAndServe()

 errorLog.Fatal(err)

}

I understand that this approach might feel a bit complicated and convoluted, especially when

an alternative is to simply make the infoLog and errorLog loggers global variables. But stick

with me. As the application grows, and our handlers start to need more dependencies, this

pattern will begin to show its worth.

Adding a deliberate error

Let’s try this out by quickly adding a deliberate error to our application.

Open your terminal and rename the ui/html/pages/home.tmpl to ui/html/pages/home.bak.

When we run our application and make a request for the home page, this now should result in

an error because the ui/html/pages/home.tmpl no longer exists.

Go ahead and make the change:

$ cd $HOME/code/snippetbox

$ mv ui/html/pages/home.tmpl ui/html/pages/home.bak

Then run the application and make a request to http://localhost:4000 . You should get an

Internal Server Error HTTP response in your browser, and see a corresponding error

message in your terminal similar to this:

$ go run ./cmd/web

INFO 2022/01/29 16:12:36 Starting server on :4000

ERROR 2022/01/29 16:12:40 handlers.go:29: open ./ui/html/pages/home.tmpl: no such file or directory

Notice how the log message is now prefixed with ERROR and originated from line 25 of the

handlers.go file? This demonstrates nicely that our custom errorLog logger is being passed

through to our home handler as a dependency, and is working as expected.

Leave the deliberate error in place for now; we’ll need it again in the next chapter.

Additional information

Closures for dependency injection

The pattern that we’re using to inject dependencies won’t work if your handlers are spread

across multiple packages. In that case, an alternative approach is to create a config package

exporting an Application struct and have your handler functions close over this to form a

closure. Very roughly:

func main() {

 app := &config.Application{

 ErrorLog: log.New(os.Stderr, "ERROR\t", log.Ldate|log.Ltime|log.Lshortfile)

 }

 mux.Handle("/", examplePackage.ExampleHandler(app))

}

http://localhost:4000/

func ExampleHandler(app *config.Application) http.HandlerFunc {

 return func(w http.ResponseWriter, r *http.Request) {

 ...

 ts, err := template.ParseFiles(files...)

 if err != nil {

 app.ErrorLog.Println(err.Error())

 http.Error(w, "Internal Server Error", 500)

 return

 }

 ...

 }

}

You can find a complete and more concrete example of how to use the closure pattern in this

Gist.

https://gist.github.com/alexedwards/5cd712192b4831058b21

Chapter 3.4.

Centralized error handling

Let’s neaten up our application by moving some of the error handling code into helper

methods. This will help separate our concerns and stop us repeating code as we progress

through the build.

Go ahead and add a new helpers.go file under the cmd/web directory:

$ cd $HOME/code/snippetbox

$ touch cmd/web/helpers.go

And add the following code:

File: cmd/web/helpers.go

package main

import (

 "fmt"

 "net/http"

 "runtime/debug"

)

// The serverError helper writes an error message and stack trace to the errorLog,

// then sends a generic 500 Internal Server Error response to the user.

func (app *application) serverError(w http.ResponseWriter, err error) {

 trace := fmt.Sprintf("%s\n%s", err.Error(), debug.Stack())

 app.errorLog.Println(trace)

 http.Error(w, http.StatusText(http.StatusInternalServerError), http.StatusInternalServerError)

}

// The clientError helper sends a specific status code and corresponding description

// to the user. We'll use this later in the book to send responses like 400 "Bad

// Request" when there's a problem with the request that the user sent.

func (app *application) clientError(w http.ResponseWriter, status int) {

 http.Error(w, http.StatusText(status), status)

}

// For consistency, we'll also implement a notFound helper. This is simply a

// convenience wrapper around clientError which sends a 404 Not Found response to

// the user.

func (app *application) notFound(w http.ResponseWriter) {

 app.clientError(w, http.StatusNotFound)

}

There’s not a huge amount of new code here, but it does introduce a couple of features which

are worth discussing.

In the serverError() helper we use the debug.Stack() function to get a stack trace for the

https://deviq.com/separation-of-concerns/
https://pkg.go.dev/runtime/debug/#Stack

current goroutine and append it to the log message. Being able to see the execution path

of the application via the stack trace can be helpful when you’re trying to debug errors.

In the clientError() helper we use the http.StatusText() function to automatically

generate a human-friendly text representation of a given HTTP status code. For example,

http.StatusText(400) will return the string "Bad Request" .

Once that’s done, head back to your handlers.go file and update it to use the new helpers:

https://pkg.go.dev/net/http/#StatusText

File: cmd/web/handlers.go

package main

import (

 "fmt"

 "html/template"

 "net/http"

 "strconv"

)

func (app *application) home(w http.ResponseWriter, r *http.Request) {

 if r.URL.Path != "/" {

 app.notFound(w) // Use the notFound() helper

 return

 }

 files := []string{

 "./ui/html/base.tmpl",

 "./ui/html/partials/nav.tmpl",

 "./ui/html/pages/home.tmpl",

 }

 ts, err := template.ParseFiles(files...)

 if err != nil {

 app.serverError(w, err) // Use the serverError() helper.

 return

 }

 err = ts.ExecuteTemplate(w, "base", nil)

 if err != nil {

 app.serverError(w, err) // Use the serverError() helper.

 }

}

func (app *application) snippetView(w http.ResponseWriter, r *http.Request) {

 id, err := strconv.Atoi(r.URL.Query().Get("id"))

 if err != nil || id < 1 {

 app.notFound(w) // Use the notFound() helper.

 return

 }

 fmt.Fprintf(w, "Display a specific snippet with ID %d...", id)

}

func (app *application) snippetCreate(w http.ResponseWriter, r *http.Request) {

 if r.Method != http.MethodPost {

 w.Header().Set("Allow", http.MethodPost)

 app.clientError(w, http.StatusMethodNotAllowed) // Use the clientError() helper.

 return

 }

 w.Write([]byte("Create a new snippet..."))

}

When that’s updated, restart your application and make a request to http://localhost:4000

in your browser.

Again, this should result in our (deliberate) error being raised and you should see the

corresponding error message and stack trace in your terminal:

http://localhost:4000/

$ go run ./cmd/web

INFO 2022/01/29 16:22:14 Starting server on :4000

ERROR 2022/01/29 16:22:19 helpers.go:13: open ./ui/html/pages/home.tmpl: no such file or directory

goroutine 6 [running]:

runtime/debug.Stack()

 /usr/local/go/src/runtime/debug/stack.go:24 +0x65

main.(*application).serverError(0xc000012ca0, {0x79eb70, 0xc0001481c0}, {0x798180, 0xc000101830})

 /home/alex/Desktop/snippetbox.v2/cmd/web/helpers.go:12 +0x66

main.(*application).home(0xc000151a30, {0x79eb70, 0xc0001481c0}, 0x0)

 /home/alex/Desktop/snippetbox.v2/cmd/web/handlers.go:24 +0x194

net/http.HandlerFunc.ServeHTTP(0x0, {0x79eb70, 0xc0001481c0}, 0x0)

 /usr/local/go/src/net/http/server.go:2046 +0x2f

net/http.(*ServeMux).ServeHTTP(0x0, {0x79eb70, 0xc0001481c0}, 0xc000170000)

 /usr/local/go/src/net/http/server.go:2424 +0x149

net/http.serverHandler.ServeHTTP({0xc000101170}, {0x79eb70, 0xc0001481c0}, 0xc000170000)

 /usr/local/go/src/net/http/server.go:2878 +0x43b

net/http.(*conn).serve(0xc000110e60, {0x79fdc0, 0xc000101080})

 /usr/local/go/src/net/http/server.go:1929 +0xb08

created by net/http.(*Server).Serve

 /usr/local/go/src/net/http/server.go:3033 +0x4e8

If you look closely at this you’ll notice a small problem: the file name and line number being

reported in the ERROR log line is now helpers.go:13 — because this is where the log message

is now being written from.

What we want to report is the file name and line number one step back in the stack trace,

which would give us a clearer idea of where the error actually originated from.

We can do this by changing the serverError() helper to use our logger’s Output() function

and setting the frame depth to 2. Reopen your helpers.go file and update it like so:

File: cmd/web/helpers.go

package main

...

func (app *application) serverError(w http.ResponseWriter, err error) {

 trace := fmt.Sprintf("%s\n%s", err.Error(), debug.Stack())

 app.errorLog.Output(2, trace)

 http.Error(w, http.StatusText(http.StatusInternalServerError), http.StatusInternalServerError)

}

...

And if you try again now, you should find that the appropriate file name and line number

(handlers.go:24) is being reported in the ERROR log line:

https://pkg.go.dev/log/#Logger.Output

$ go run ./cmd/web

INFO 2022/01/29 16:24:00 Starting server on :4000

ERROR 2022/01/29 16:24:02 handlers.go:24: open ./ui/html/pages/home.tmpl: no such file or directory

goroutine 6 [running]:

runtime/debug.Stack()

 /usr/local/go/src/runtime/debug/stack.go:24 +0x65

main.(*application).serverError(0xc000012ca0, {0x79eb90, 0xc0001481c0}, {0x798180, 0xc000101830})

 /home/alex/Desktop/snippetbox.v2/cmd/web/helpers.go:10 +0x58

main.(*application).home(0xc000151a30, {0x79eb90, 0xc0001481c0}, 0x0)

 /home/alex/Desktop/snippetbox.v2/cmd/web/handlers.go:24 +0x194

net/http.HandlerFunc.ServeHTTP(0x0, {0x79eb90, 0xc0001481c0}, 0x0)

 /usr/local/go/src/net/http/server.go:2046 +0x2f

net/http.(*ServeMux).ServeHTTP(0x0, {0x79eb90, 0xc0001481c0}, 0xc000170000)

 /usr/local/go/src/net/http/server.go:2424 +0x149

net/http.serverHandler.ServeHTTP({0xc000101170}, {0x79eb90, 0xc0001481c0}, 0xc000170000)

 /usr/local/go/src/net/http/server.go:2878 +0x43b

net/http.(*conn).serve(0xc000110f00, {0x79fde0, 0xc000101080})

 /usr/local/go/src/net/http/server.go:1929 +0xb08

created by net/http.(*Server).Serve

 /usr/local/go/src/net/http/server.go:3033 +0x4e8

Revert the deliberate error

At this point we don’t need the deliberate error anymore, so go ahead and fix it like so:

$ cd $HOME/code/snippetbox

$ mv ui/html/pages/home.bak ui/html/pages/home.tmpl

Chapter 3.5.

Isolating the application routes

While we’re refactoring our code there’s one more change worth making.

Our main() function is beginning to get a bit crowded, so to keep it clear and focused I’d like

to move the route declarations for the application into a standalone routes.go file, like so:

$ cd $HOME/code/snippetbox

$ touch cmd/web/routes.go

File: cmd/web/routes.go

package main

import "net/http"

// The routes() method returns a servemux containing our application routes.

func (app *application) routes() *http.ServeMux {

 mux := http.NewServeMux()

 fileServer := http.FileServer(http.Dir("./ui/static/"))

 mux.Handle("/static/", http.StripPrefix("/static", fileServer))

 mux.HandleFunc("/", app.home)

 mux.HandleFunc("/snippet/view", app.snippetView)

 mux.HandleFunc("/snippet/create", app.snippetCreate)

 return mux

}

We can then update the main.go file to use this instead:

File: cmd/web/main.go

package main

...

func main() {

 addr := flag.String("addr", ":4000", "HTTP network address")

 flag.Parse()

 infoLog := log.New(os.Stdout, "INFO\t", log.Ldate|log.Ltime)

 errorLog := log.New(os.Stderr, "ERROR\t", log.Ldate|log.Ltime|log.Lshortfile)

 app := &application{

 errorLog: errorLog,

 infoLog: infoLog,

 }

 srv := &http.Server{

 Addr: *addr,

 ErrorLog: errorLog,

 // Call the new app.routes() method to get the servemux containing our routes.

 Handler: app.routes(),

 }

 infoLog.Printf("Starting server on %s", *addr)

 err := srv.ListenAndServe()

 errorLog.Fatal(err)

}

This is quite a bit neater. The routes for our application are now isolated and encapsulated in

the app.routes() method, and the responsibilities of our main() function are limited to:

Parsing the runtime configuration settings for the application;

Establishing the dependencies for the handlers; and

Running the HTTP server.

Chapter 4.

Database-driven responses

For our Snippetbox web application to become truly useful we need somewhere to store (or

persist) the data entered by users, and the ability to query this data store dynamically at

runtime.

There are many different data stores we could use for our application — each with different

pros and cons — but we’ll opt for the popular relational database MySQL.

Note: All of the general code patterns in this section of the book also apply to other

databases like PostgreSQL or SQLite too. If you’re following along and would prefer to

use an alternative database, you can, but I recommend using MySQL for now to get a

feeling for how everything works and then swapping databases as a practice exercise

once you’ve finished the book.

In this section you’ll learn how to:

Install a database driver to act as a ‘middleman’ between MySQL and your Go application.

Connect to MySQL from your web application (specifically, you’ll learn how to establish a

pool of reusable connections).

Create a standalone models package, so that your database logic is reusable and

decoupled from your web application.

Use the appropriate functions in Go’s database/sql package to execute different types of

SQL statements, and how to avoid common errors that can lead to your server running out

of resources.

Prevent SQL injection attacks by correctly using placeholder parameters.

Use transactions, so that you can execute multiple SQL statements in one atomic action.

https://www.mysql.com/

Chapter 4.1.

Setting up MySQL

If you’re following along, you’ll need to install MySQL on your computer at this point. The

official MySQL documentation contains comprehensive installation instructions for all types

of operating systems, but if you’re using Mac OS you should be able to install it with:

$ brew install mysql

Or if you’re using a Linux distribution which supports apt (like Debian and Ubuntu) you can

install it with:

$ sudo apt install mysql-server

While you are installing MySQL you might be asked to set a password for the root user.

Remember to keep a mental note of this if you are; you’ll need it in the next step.

Scaffolding the database

Once MySQL is installed you should be able to connect to it from your terminal as the root

user. The command to do this will vary depending on the version of MySQL that you’ve got

installed. For MySQL 5.7 and newer you should be able to connect by typing this:

$ sudo mysql

mysql>

But if that doesn’t work then try the following command instead, entering the password that

you set during the installation.

$ mysql -u root -p

Enter password:

mysql>

Once connected, the first thing we need to do is establish a database in MySQL to store all the

data for our project. Copy and paste the following commands into the mysql prompt to

create a new snippetbox database using UTF8 encoding.

https://dev.mysql.com/doc/refman/8.0/en/installing.html

-- Create a new UTF-8 `snippetbox` database.

CREATE DATABASE snippetbox CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

-- Switch to using the `snippetbox` database.

USE snippetbox;

Then copy and paste the following SQL statement to create a new snippets table to hold the

text snippets for our application:

-- Create a `snippets` table.

CREATE TABLE snippets (

 id INTEGER NOT NULL PRIMARY KEY AUTO_INCREMENT,

 title VARCHAR(100) NOT NULL,

 content TEXT NOT NULL,

 created DATETIME NOT NULL,

 expires DATETIME NOT NULL

);

-- Add an index on the created column.

CREATE INDEX idx_snippets_created ON snippets(created);

Each record in this table will have an integer id field which will act as the unique identifier for

the text snippet. It will also have a short text title and the snippet content itself will be

stored in the content field. We’ll also keep some metadata about the times that the snippet

was created and when it expires .

Let’s also add some placeholder entries to the snippets table (which we’ll use in the next

couple of chapters). I’ll use some short haiku as the content for the text snippets, but it really

doesn’t matter what they contain.

-- Add some dummy records (which we'll use in the next couple of chapters).

INSERT INTO snippets (title, content, created, expires) VALUES (

 'An old silent pond',

 'An old silent pond...\nA frog jumps into the pond,\nsplash! Silence again.\n\n– Matsuo Bashō',
 UTC_TIMESTAMP(),

 DATE_ADD(UTC_TIMESTAMP(), INTERVAL 365 DAY)

);

INSERT INTO snippets (title, content, created, expires) VALUES (

 'Over the wintry forest',

 'Over the wintry\nforest, winds howl in rage\nwith no leaves to blow.\n\n– Natsume Soseki',

 UTC_TIMESTAMP(),

 DATE_ADD(UTC_TIMESTAMP(), INTERVAL 365 DAY)

);

INSERT INTO snippets (title, content, created, expires) VALUES (

 'First autumn morning',

 'First autumn morning\nthe mirror I stare into\nshows my father''s face.\n\n– Murakami Kijo',

 UTC_TIMESTAMP(),

 DATE_ADD(UTC_TIMESTAMP(), INTERVAL 7 DAY)

);

Creating a new user

From a security point of view it’s not a good idea to connect to MySQL as the root user from a

web application. Instead it’s better to create a database user with restricted permissions on

the database.

So, while you’re still connected to the MySQL prompt run the following commands to create a

new web user with SELECT and INSERT privileges only on the database.

CREATE USER 'web'@'localhost';

GRANT SELECT, INSERT, UPDATE, DELETE ON snippetbox.* TO 'web'@'localhost';

-- Important: Make sure to swap 'pass' with a password of your own choosing.

ALTER USER 'web'@'localhost' IDENTIFIED BY 'pass';

Once that’s done type exit to leave the MySQL prompt.

Test the new user

You should now be able to connect to the snippetbox database as the web user using the

following command. When prompted enter the password that you just set.

$ mysql -D snippetbox -u web -p

Enter password:

mysql>

If the permissions are working correctly you should find that you’re able to perform SELECT

and INSERT operations on the database correctly, but other commands such as DROP TABLE

and GRANT will fail.

mysql> SELECT id, title, expires FROM snippets;

+----+------------------------+---------------------+

| id | title | expires |

+----+------------------------+---------------------+

| 1 | An old silent pond | 2023-04-05 07:20:05 |

| 2 | Over the wintry forest | 2023-04-05 07:20:05 |

| 3 | First autumn morning | 2022-04-12 07:20:05 |

+----+------------------------+---------------------+

3 rows in set (0.00 sec)

mysql> DROP TABLE snippets;

ERROR 1142 (42000): DROP command denied to user 'web'@'localhost' for table 'snippets'

Chapter 4.2.

Installing a database driver

To use MySQL from our Go web application we need to install a database driver. This

essentially acts as a middleman, translating commands between Go and the MySQL database

itself.

You can find a comprehensive list of available drivers on the Go wiki, but for our application

we’ll use the popular go-sql-driver/mysql driver.

To download it, go to your project directory and run the go get command like so:

$ cd $HOME/code/snippetbox

$ go get github.com/go-sql-driver/mysql@v1

go: downloading github.com/go-sql-driver/mysql v1.6.0

Notice here that we’re postfixing the package path with @v1 to indicate that we want to

download the latest available version of the package with the major release number 1.

At the time of writing this is v1.6.0, but the version you download might be v1.6.1, v1.7.0 or

similar — and that’s OK. Because the go-sql-driver/mysql package uses semantic versioning

for its releases any v1.x.x version should be compatible with the rest of the code in this

book.

As an aside, if you want to download the latest version, irrespective of version number, you

can simply omit the @version suffix like so:

$ go get github.com/go-sql-driver/mysql

Or if you want to download a specific version of a package, you can use the full version

number. For example:

$ go get github.com/go-sql-driver/mysql@v1.0.3

https://github.com/golang/go/wiki/SQLDrivers
https://github.com/go-sql-driver/mysql
https://github.com/go-sql-driver/mysql/releases
https://semver.org/

Chapter 4.3.

Modules and reproducible builds

Now that the MySQL driver is installed, let’s take a look at the go.mod file (which we created

right at the start of the book). You should see a new require line containing the package path

and exact version number of the driver which was downloaded:

File: go.mod

module snippetbox.alexedwards.net

go 1.18

require github.com/go-sql-driver/mysql v1.6.0

This new line in go.mod essentially tells the Go command which exact version of

github.com/go-sql-driver/mysql should be used when you run a command like go run ,

go test or go build from your project directory. In our case, it tells Go that we always want

to use version v1.6.0.

This makes it easy to have multiple projects on the same machine where different versions of

the same package are used. Our project uses v1.6.0 of the MySQL driver, but you could have

another codebase on your computer which uses v1.5.0 and that would be A-OK.

You’ll also see that a new file has been created in the root of your project directory called

go.sum.

This go.sum file contains the cryptographic checksums representing the content of the

required packages. If you open it up you should see something like this:

File: go.sum

github.com/go-sql-driver/mysql v1.6.0 h1:BCTh4TKNUYmOmMUcQ3IipzF5prigylS7XXjEkfCHuOE=

github.com/go-sql-driver/mysql v1.6.0/go.mod h1:DCzpHaOWr8IXmIStZouvnhqoel9Qv2LBy8hT2VhHyBg=

The go.sum file isn’t designed to be human-editable and generally you won’t need to open it.

But it serves two useful functions:

If you run the go mod verify command from your terminal, this will verify that the

checksums of the downloaded packages on your machine match the entries in go.sum, so

you can be confident that they haven’t been altered.

$ go mod verify

all modules verified

If someone else needs to download all the dependencies for the project — which they can

do by running go mod download — they will get an error if there is any mismatch between

the packages they are downloading and the checksums in the file.

So, in summary:

You (or someone else in the future) can run go mod download to download the exact

versions of all the packages that your project needs.

You can run go mod verify to ensure that nothing in those downloaded packages has

been changed unexpectedly.

Whenever you run go run , go test or go build , the exact package versions listed in

go.mod will always be used.

And those things together makes it much easier to reliably create reproducible builds of your

Go applications.

Additional information

Upgrading packages

Once a package has been downloaded and added to your go.mod file the package and version

are ‘fixed’. But there are many reasons why you might want to upgrade to use a newer version

of a package in the future.

To upgrade to latest available minor or patch release of a package, you can simply run go get

with the -u flag like so:

$ go get -u github.com/foo/bar

Or alternatively, if you want to upgrade to a specific version then you should run the same

command but with the appropriate @version suffix. For example:

$ go get -u github.com/foo/bar@v2.0.0

Removing unused packages

Sometimes you might go get a package only to realize later that you don’t need it anymore.

When this happens you’ve got two choices.

You could either run go get and postfix the package path with @none , like so:

$ go get github.com/foo/bar@none

https://en.wikipedia.org/wiki/Reproducible_builds

Or if you’ve removed all references to the package in your code, you could run go mod tidy ,

which will automatically remove any unused packages from your go.mod and go.sum files.

$ go mod tidy -v

Chapter 4.4.

Creating a database connection pool

Now that the MySQL database is all set up and we’ve got a driver installed, the natural next

step is to connect to the database from our web application.

To do this we need Go’s sql.Open() function, which you use a bit like this:

// The sql.Open() function initializes a new sql.DB object, which is essentially a

// pool of database connections.

db, err := sql.Open("mysql", "web:pass@/snippetbox?parseTime=true")

if err != nil {

 ...

}

There are a few things about this code to explain and emphasize:

The first parameter to sql.Open() is the driver name and the second parameter is the data

source name (sometimes also called a connection string or DSN) which describes how to

connect to your database.

The format of the data source name will depend on which database and driver you’re

using. Typically, you can find information and examples in the documentation for your

specific driver. For the driver we’re using you can find that documentation here.

The parseTime=true part of the DSN above is a driver-specific parameter which instructs

our driver to convert SQL TIME and DATE fields to Go time.Time objects.

The sql.Open() function returns a sql.DB object. This isn’t a database connection — it’s a

pool of many connections. This is an important difference to understand. Go manages the

connections in this pool as needed, automatically opening and closing connections to the

database via the driver.

The connection pool is safe for concurrent access, so you can use it from web application

handlers safely.

The connection pool is intended to be long-lived. In a web application it’s normal to

initialize the connection pool in your main() function and then pass the pool to your

handlers. You shouldn’t call sql.Open() in a short-lived handler itself — it would be a

waste of memory and network resources.

https://pkg.go.dev/database/sql/#Open
https://github.com/go-sql-driver/mysql#dsn-data-source-name
https://pkg.go.dev/database/sql/#DB

Usage in our web application

Let’s look at how to use sql.Open() in practice. Open up your main.go file and add the

following code:

File: cmd/web/main.go

package main

import (

 "database/sql" // New import

 "flag"

 "log"

 "net/http"

 "os"

 _ "github.com/go-sql-driver/mysql" // New import

)

...

func main() {

 addr := flag.String("addr", ":4000", "HTTP network address")

 // Define a new command-line flag for the MySQL DSN string.

 dsn := flag.String("dsn", "web:pass@/snippetbox?parseTime=true", "MySQL data source name")

 flag.Parse()

 infoLog := log.New(os.Stdout, "INFO\t", log.Ldate|log.Ltime)

 errorLog := log.New(os.Stderr, "ERROR\t", log.Ldate|log.Ltime|log.Lshortfile)

 // To keep the main() function tidy I've put the code for creating a connection

 // pool into the separate openDB() function below. We pass openDB() the DSN

 // from the command-line flag.

 db, err := openDB(*dsn)

 if err != nil {

 errorLog.Fatal(err)

 }

 // We also defer a call to db.Close(), so that the connection pool is closed

 // before the main() function exits.

 defer db.Close()

 app := &application{

 errorLog: errorLog,

 infoLog: infoLog,

 }

 srv := &http.Server{

 Addr: *addr,

 ErrorLog: errorLog,

 Handler: app.routes(),

 }

 infoLog.Printf("Starting server on %s", *addr)

 // Because the err variable is now already declared in the code above, we need

 // to use the assignment operator = here, instead of the := 'declare and assign'

 // operator.

 err = srv.ListenAndServe()

 errorLog.Fatal(err)

}

// The openDB() function wraps sql.Open() and returns a sql.DB connection pool

// for a given DSN.

func openDB(dsn string) (*sql.DB, error) {

 db, err := sql.Open("mysql", dsn)

 if err != nil {

 return nil, err

 }

 if err = db.Ping(); err != nil {

 return nil, err

 }

 return db, nil

}

There’re a few things about this code which are interesting:

Notice how the import path for our driver is prefixed with an underscore? This is because

our main.go file doesn’t actually use anything in the mysql package. So if we try to import

it normally the Go compiler will raise an error. However, we need the driver’s init()

function to run so that it can register itself with the database/sql package. The trick to

getting around this is to alias the package name to the blank identifier. This is standard

practice for most of Go’s SQL drivers.

The sql.Open() function doesn’t actually create any connections, all it does is initialize the

pool for future use. Actual connections to the database are established lazily, as and when

needed for the first time. So to verify that everything is set up correctly we need to use the

db.Ping() method to create a connection and check for any errors.

At this moment in time, the call to defer db.Close() is a bit superfluous. Our application

is only ever terminated by a signal interrupt (i.e. Ctrl+c) or by errorLog.Fatal(). In both

of those cases, the program exits immediately and deferred functions are never run. But

including db.Close() is a good habit to get into and it could be beneficial later in the

future if you add a graceful shutdown to your application.

Testing a connection

Make sure that the file is saved, and then try running the application. If everything has gone to

plan, the connection pool should be established and the db.Ping() method should be able to

create a connection without any errors. All being well, you should see the normal Starting

server… log message like so:

$ go run ./cmd/web

INFO 2022/01/30 21:52:25 Starting server on :4000

If the application fails to start and you get an "Access denied..." error message like below,

then the problem probably lies with your DSN. Double-check that the username and

password are correct, that your database users have the right permissions, and that your

https://pkg.go.dev/database/sql/#DB.Ping

MySQL instance is using standard settings.

$ go run ./cmd/web

ERROR 2022/01/30 21:53:01 main.go:32: Error 1045: Access denied for user 'web'@'localhost' (using password: YES)

exit status 1

Chapter 4.5.

Designing a database model

In this chapter we’re going to sketch out a database model for our project.

If you don’t like the term model, you might want to think of it as a service layer or data access

layer instead. Whatever you prefer to call it, the idea is that we will encapsulate the code for

working with MySQL in a separate package to the rest of our application.

For now, we’ll create a skeleton database model and have it return a bit of dummy data. It

won’t do much, but I’d like to explain the pattern before we get into the nitty-gritty of SQL

queries.

Sound OK? Then let’s go ahead and create a new internal/models directory containing a

snippets.go file:

$ cd $HOME/code/snippetbox

$ mkdir -p internal/models

$ touch internal/models/snippets.go

Remember: The internal directory is being used to hold ancillary non-application-

specific code, which could potentially be reused. A database model which could be used

by other applications in the future (like a command line interface application) fits the bill

here.

Let’s open the internal/models/snippets.go file and add a new Snippet struct to represent

the data for an individual snippet, along with a SnippetModel type with methods on it to

access and manipulate the snippets in our database. Like so:

File: internal/models/snippets.go

package models

import (

 "database/sql"

 "time"

)

// Define a Snippet type to hold the data for an individual snippet. Notice how

// the fields of the struct correspond to the fields in our MySQL snippets

// table?

type Snippet struct {

 ID int

 Title string

 Content string

 Created time.Time

 Expires time.Time

}

// Define a SnippetModel type which wraps a sql.DB connection pool.

type SnippetModel struct {

 DB *sql.DB

}

// This will insert a new snippet into the database.

func (m *SnippetModel) Insert(title string, content string, expires int) (int, error) {

 return 0, nil

}

// This will return a specific snippet based on its id.

func (m *SnippetModel) Get(id int) (*Snippet, error) {

 return nil, nil

}

// This will return the 10 most recently created snippets.

func (m *SnippetModel) Latest() ([]*Snippet, error) {

 return nil, nil

}

Using the SnippetModel

To use this model in our handlers we need to establish a new SnippetModel struct in our

main() function and then inject it as a dependency via the application struct — just like we

have with our other dependencies.

Here’s how:

File: cmd/web/main.go

package main

import (

 "database/sql"

 "flag"

 "log"

 "net/http"

 "os"

 // Import the models package that we just created. You need to prefix this with

 // whatever module path you set up back in chapter 02.01 (Project Setup and Creating

 // a Module) so that the import statement looks like this:

 // "{your-module-path}/internal/models". If you can't remember what module path you

 // used, you can find it at the top of the go.mod file.

 "snippetbox.alexedwards.net/internal/models"

 _ "github.com/go-sql-driver/mysql"

)

// Add a snippets field to the application struct. This will allow us to

// make the SnippetModel object available to our handlers.

type application struct {

 errorLog *log.Logger

 infoLog *log.Logger

 snippets *models.SnippetModel

}

func main() {

 addr := flag.String("addr", ":4000", "HTTP network address")

 dsn := flag.String("dsn", "web:pass@/snippetbox?parseTime=true", "MySQL data source name")

 flag.Parse()

 infoLog := log.New(os.Stdout, "INFO\t", log.Ldate|log.Ltime)

 errorLog := log.New(os.Stderr, "ERROR\t", log.Ldate|log.Ltime|log.Lshortfile)

 db, err := openDB(*dsn)

 if err != nil {

 errorLog.Fatal(err)

 }

 defer db.Close()

 // Initialize a models.SnippetModel instance and add it to the application

 // dependencies.

 app := &application{

 errorLog: errorLog,

 infoLog: infoLog,

 snippets: &models.SnippetModel{DB: db},

 }

 srv := &http.Server{

 Addr: *addr,

 ErrorLog: errorLog,

 Handler: app.routes(),

 }

 infoLog.Printf("Starting server on %s", *addr)

 err = srv.ListenAndServe()

 errorLog.Fatal(err)

}

...

Additional information

Benefits of this structure

If you take a step back, you might be able to see a few benefits of setting up our project in this

way:

There’s a clean separation of concerns. Our database logic isn’t tied to our handlers which

means that handler responsibilities are limited to HTTP stuff (i.e. validating requests and

writing responses). This will make it easier to write tight, focused, unit tests in the future.

By creating a custom SnippetModel type and implementing methods on it we’ve been able

to make our model a single, neatly encapsulated object, which we can easily initialize and

then pass to our handlers as a dependency. Again, this makes for easier to maintain,

testable code.

Because the model actions are defined as methods on an object — in our case

SnippetModel — there’s the opportunity to create an interface and mock it for unit testing

purposes.

And finally, we have total control over which database is used at runtime, just by using the

-dsn command-line flag.

Chapter 4.6.

Executing SQL statements

Now let’s update the SnippetModel.Insert() method — which we’ve just made — so that it

creates a new record in our snippets table and then returns the integer id for the new

record.

To do this we’ll want to execute the following SQL query on our database:

INSERT INTO snippets (title, content, created, expires)

VALUES(?, ?, UTC_TIMESTAMP(), DATE_ADD(UTC_TIMESTAMP(), INTERVAL ? DAY))

Notice how in this query we’re using the ? character to indicate placeholder parameters for

the data that we want to insert in the database? Because the data we’ll be using will

ultimately be untrusted user input from a form, it’s good practice to use placeholder

parameters instead of interpolating data in the SQL query.

Executing the query

Go provides three different methods for executing database queries:

DB.Query() is used for SELECT queries which return multiple rows.

DB.QueryRow() is used for SELECT queries which return a single row.

DB.Exec() is used for statements which don’t return rows (like INSERT and DELETE).

So, in our case, the most appropriate tool for the job is DB.Exec() . Let’s jump in the deep end

and demonstrate how to use this in our SnippetModel.Insert() method. We’ll discuss the

details afterwards.

Open your internal/models/snippets.go file and update it like so:

https://pkg.go.dev/database/sql/#DB.Query
https://pkg.go.dev/database/sql/#DB.QueryRow
https://pkg.go.dev/database/sql/#DB.Exec

File: internal/models/snippets.go

package models

...

type SnippetModel struct {

 DB *sql.DB

}

func (m *SnippetModel) Insert(title string, content string, expires int) (int, error) {

 // Write the SQL statement we want to execute. I've split it over two lines

 // for readability (which is why it's surrounded with backquotes instead

 // of normal double quotes).

 stmt := `INSERT INTO snippets (title, content, created, expires)

 VALUES(?, ?, UTC_TIMESTAMP(), DATE_ADD(UTC_TIMESTAMP(), INTERVAL ? DAY))`

 // Use the Exec() method on the embedded connection pool to execute the

 // statement. The first parameter is the SQL statement, followed by the

 // title, content and expiry values for the placeholder parameters. This

 // method returns a sql.Result type, which contains some basic

 // information about what happened when the statement was executed.

 result, err := m.DB.Exec(stmt, title, content, expires)

 if err != nil {

 return 0, err

 }

 // Use the LastInsertId() method on the result to get the ID of our

 // newly inserted record in the snippets table.

 id, err := result.LastInsertId()

 if err != nil {

 return 0, err

 }

 // The ID returned has the type int64, so we convert it to an int type

 // before returning.

 return int(id), nil

}

...

Let’s quickly discuss the sql.Result type returned by DB.Exec() . This provides two methods:

LastInsertId() — which returns the integer (an int64) generated by the database in

response to a command. Typically this will be from an “auto increment” column when

inserting a new row, which is exactly what’s happening in our case.

RowsAffected() — which returns the number of rows (as an int64) affected by the

statement.

Important: Not all drivers and databases support the LastInsertId() and

RowsAffected() methods. For example, LastInsertId() is not supported by

PostgreSQL. So if you’re planning on using these methods it’s important to check the

documentation for your particular driver first.

https://pkg.go.dev/database/sql/#Result
https://github.com/lib/pq/issues/24

Also, it is perfectly acceptable (and common) to ignore the sql.Result return value if you

don’t need it. Like so:

_, err := m.DB.Exec("INSERT INTO ...", ...)

Using the model in our handlers

Let’s bring this back to something more concrete and demonstrate how to call this new code

from our handlers. Open your cmd/web/handlers.go file and update the snippetCreate

handler like so:

File: cmd/web/handlers.go

package main

...

func (app *application) snippetCreate(w http.ResponseWriter, r *http.Request) {

 if r.Method != http.MethodPost {

 w.Header().Set("Allow", http.MethodPost)

 app.clientError(w, http.StatusMethodNotAllowed)

 return

 }

 // Create some variables holding dummy data. We'll remove these later on

 // during the build.

 title := "O snail"

 content := "O snail\nClimb Mount Fuji,\nBut slowly, slowly!\n\n– Kobayashi Issa"

 expires := 7

 // Pass the data to the SnippetModel.Insert() method, receiving the

 // ID of the new record back.

 id, err := app.snippets.Insert(title, content, expires)

 if err != nil {

 app.serverError(w, err)

 return

 }

 // Redirect the user to the relevant page for the snippet.

 http.Redirect(w, r, fmt.Sprintf("/snippet/view?id=%d", id), http.StatusSeeOther)

}

Start up the application, then open a second terminal window and use curl to make a

POST /snippet/create request, like so (note that the -L flag instructs curl to automatically

follow redirects):

$ curl -iL -X POST http://localhost:4000/snippet/create

HTTP/1.1 303 See Other

Location: /snippet/view?id=4

Date: Mon, 31 Jan 2022 16:36:18 GMT

Content-Length: 0

HTTP/1.1 200 OK

Date: Mon, 31 Jan 2022 16:36:18 GMT

Content-Length: 40

Content-Type: text/plain; charset=utf-8

Display a specific snippet with ID 4...

So this is working pretty nicely. We’ve just sent a HTTP request which triggered our

snippetCreate handler, which in turn called our SnippetModel.Insert() method. This

inserted a new record in the database and returned the ID of this new record. Our handler

then issued a redirect to another URL with the ID as a query string parameter.

Feel free to take a look in the snippets table of your MySQL database. You should see the

new record with an ID of 4 similar to this:

mysql> SELECT id, title, expires FROM snippets;

+----+------------------------+---------------------+

| id | title | expires |

+----+------------------------+---------------------+

| 1 | An old silent pond | 2023-04-05 07:20:05 |

| 2 | Over the wintry forest | 2023-04-05 07:20:05 |

| 3 | First autumn morning | 2022-04-12 07:20:05 |

| 4 | O snail | 2022-04-12 07:32:45 |

+----+------------------------+---------------------+

4 rows in set (0.00 sec)

Additional information

Placeholder parameters

In the code above we constructed our SQL statement using placeholder parameters, where ?

acted as a placeholder for the data we want to insert.

The reason for using placeholder parameters to construct our query (rather than string

interpolation) is to help avoid SQL injection attacks from any untrusted user-provided input.

Behind the scenes, the DB.Exec() method works in three steps:

1. It creates a new prepared statement on the database using the provided SQL statement.

The database parses and compiles the statement, then stores it ready for execution.

https://en.wikipedia.org/wiki/Prepared_statement

2. In a second separate step, Exec() passes the parameter values to the database. The

database then executes the prepared statement using these parameters. Because the

parameters are transmitted later, after the statement has been compiled, the database

treats them as pure data. They can’t change the intent of the statement. So long as the

original statement is not derived from an untrusted data, injection cannot occur.

3. It then closes (or deallocates) the prepared statement on the database.

The placeholder parameter syntax differs depending on your database. MySQL, SQL Server

and SQLite use the ? notation, but PostgreSQL uses the $N notation. For example, if you were

using PostgreSQL instead you would write:

_, err := m.DB.Exec("INSERT INTO ... VALUES ($1, $2, $3)", ...)

Chapter 4.7.

Single-record SQL queries

The pattern for SELECTing a single record from the database is a little more complicated. Let’s

explain how to do it by updating our SnippetModel.Get() method so that it returns a single

specific snippet based on its ID.

To do this, we’ll need to run the following SQL query on the database:

SELECT id, title, content, created, expires FROM snippets

WHERE expires > UTC_TIMESTAMP() AND id = ?

Because our snippets table uses the id column as its primary key this query will only ever

return exactly one database row (or none at all). The query also includes a check on the expiry

time so that we don’t return any snippets that have expired.

Notice too that we’re using a placeholder parameter again for the id value?

Open the internal/models/snippets.go file and add the following code:

File: internal/models/snippets.go

package models

import (

 "database/sql"

 "errors" // New import

 "time"

)

...

func (m *SnippetModel) Get(id int) (*Snippet, error) {

 // Write the SQL statement we want to execute. Again, I've split it over two

 // lines for readability.

 stmt := `SELECT id, title, content, created, expires FROM snippets

 WHERE expires > UTC_TIMESTAMP() AND id = ?`

 // Use the QueryRow() method on the connection pool to execute our

 // SQL statement, passing in the untrusted id variable as the value for the

 // placeholder parameter. This returns a pointer to a sql.Row object which

 // holds the result from the database.

 row := m.DB.QueryRow(stmt, id)

 // Initialize a pointer to a new zeroed Snippet struct.

 s := &Snippet{}

 // Use row.Scan() to copy the values from each field in sql.Row to the

 // corresponding field in the Snippet struct. Notice that the arguments

 // to row.Scan are *pointers* to the place you want to copy the data into,

 // and the number of arguments must be exactly the same as the number of

 // columns returned by your statement.

 err := row.Scan(&s.ID, &s.Title, &s.Content, &s.Created, &s.Expires)

 if err != nil {

 // If the query returns no rows, then row.Scan() will return a

 // sql.ErrNoRows error. We use the errors.Is() function check for that

 // error specifically, and return our own ErrNoRecord error

 // instead (we'll create this in a moment).

 if errors.Is(err, sql.ErrNoRows) {

 return nil, ErrNoRecord

 } else {

 return nil, err

 }

 }

 // If everything went OK then return the Snippet object.

 return s, nil

}

...

Behind the scenes of rows.Scan() your driver will automatically convert the raw output from

the SQL database to the required native Go types. So long as you’re sensible with the types

that you’re mapping between SQL and Go, these conversions should generally Just Work.

Usually:

CHAR, VARCHAR and TEXT map to string.

BOOLEAN maps to bool.

INT maps to int ; BIGINT maps to int64 .

DECIMAL and NUMERIC map to float .

TIME, DATE and TIMESTAMP map to time.Time .

Note: A quirk of our MySQL driver is that we need to use the parseTime=true parameter

in our DSN to force it to convert TIME and DATE fields to time.Time . Otherwise it returns

these as []byte objects. This is one of the many driver-specific parameters that it offers.

If you try to run the application at this point, you should get a compile-time error saying that

the ErrNoRecord value is undefined:

$ go run ./cmd/web/

snippetbox.alexedwards.net/internal/models

internal/models/snippets.go:82:25: undefined: ErrNoRecord

Let’s go ahead and create that now in a new internal/models/errors.go file. Like so:

$ touch internal/models/errors.go

File: internal/models/errors.go

package models

import (

 "errors"

)

var ErrNoRecord = errors.New("models: no matching record found")

As an aside, you might be wondering why we’re returning the ErrNoRecord error from our

SnippetModel.Get() method, instead of sql.ErrNoRows directly. The reason is to help

encapsulate the model completely, so that our application isn’t concerned with the

underlying datastore or reliant on datastore-specific errors for its behavior.

Using the model in our handlers

Alright, let’s put the SnippetModel.Get() method into action.

Open your cmd/web/handlers.go file and update the snippetView handler so that it returns

the data for a specific record as a HTTP response:

https://github.com/go-sql-driver/mysql#parameters

File: cmd/web/handlers.go

package main

import (

 "errors" // New import

 "fmt"

 "html/template"

 "net/http"

 "strconv"

 "snippetbox.alexedwards.net/internal/models" // New import

)

...

func (app *application) snippetView(w http.ResponseWriter, r *http.Request) {

 id, err := strconv.Atoi(r.URL.Query().Get("id"))

 if err != nil || id < 1 {

 app.notFound(w)

 return

 }

 // Use the SnippetModel object's Get method to retrieve the data for a

 // specific record based on its ID. If no matching record is found,

 // return a 404 Not Found response.

 snippet, err := app.snippets.Get(id)

 if err != nil {

 if errors.Is(err, models.ErrNoRecord) {

 app.notFound(w)

 } else {

 app.serverError(w, err)

 }

 return

 }

 // Write the snippet data as a plain-text HTTP response body.

 fmt.Fprintf(w, "%+v", snippet)

}

...

Let’s give this a try. Go to your web browser and visit

http://localhost:4000/snippet/view?id=1 . You should see a HTTP response which looks

similar to this:

http://localhost:4000/snippet/view?id=1

You might also want to try making some requests for other snippets which are expired or

don’t yet exist (like id=99) to verify that they return a 404 Not Found response:

Additional information

Checking for specific errors

A couple of times in this chapter we’ve used the errors.Is() function to check whether an

error matches a specific value. Like this:

if errors.Is(err, models.ErrNoRecord) {

 app.notFound(w)

} else {

 app.serverError(w, err)

}

Prior to Go 1.13, the idiomatic way to do this was to use the equality operator == to perform

the check, like so:

if err == models.ErrNoRecord {

 app.notFound(w)

} else {

 app.serverError(w, err)

}

But, while this code still compiles, it’s now safer and best practice to use the errors.Is()

function instead.

This is because Go 1.13 introduced the ability to add additional information to errors by

wrapping them. If an error happens to get wrapped, a entirely new error value is created —

which in turn means that it’s not possible to check the value of the original underlying error

using the regular == equality operator.

In contrast, the errors.Is() function works by unwrapping errors as necessary before

checking for a match.

Basically, if you are running Go 1.13 or newer, prefer to use errors.Is() . It’s a sensible way

to future-proof your code and prevent bugs caused by you — or any packages that your code

imports — deciding to wrap errors in the future.

There is also another function, errors.As() which you can use to check if a (potentially

wrapped) error has a specific type. We’ll use this later on this book.

Shorthand single-record queries

I’ve deliberately made the code in SnippetModel.Get() slightly long-winded to help clarify

and emphasize what is going on behind-the-scenes of your code.

https://tip.golang.org/pkg/errors/#Is
https://go.dev/blog/go1.13-errors#wrapping-errors-with-w
https://tip.golang.org/pkg/errors/#As

In practice, you can shorten the code slightly by leveraging the fact that errors from

DB.QueryRow() are deferred until Scan() is called. It makes no functional difference, but if

you want it’s perfectly OK to re-write the code to look something like this:

func (m *SnippetModel) Get(id int) (*Snippet, error) {

 s := &Snippet{}

 err := m.DB.QueryRow("SELECT ...", id).Scan(&s.ID, &s.Title, &s.Content, &s.Created, &s.Expires)

 if err != nil {

 if errors.Is(err, sql.ErrNoRows) {

 return nil, ErrNoRecord

 } else {

 return nil, err

 }

 }

 return s, nil

}

Chapter 4.8.

Multiple-record SQL queries

Finally let’s look at the pattern for executing SQL statements which return multiple rows. I’ll

demonstrate by updating the SnippetModel.Latest() method to return the most recently

created ten snippets (so long as they haven’t expired) using the following SQL query:

SELECT id, title, content, created, expires FROM snippets

WHERE expires > UTC_TIMESTAMP() ORDER BY id DESC LIMIT 10

Open up the internal/models/snippets.go file and add the following code:

File: internal/models/snippets.go

package models

...

func (m *SnippetModel) Latest() ([]*Snippet, error) {

 // Write the SQL statement we want to execute.

 stmt := `SELECT id, title, content, created, expires FROM snippets

 WHERE expires > UTC_TIMESTAMP() ORDER BY id DESC LIMIT 10`

 // Use the Query() method on the connection pool to execute our

 // SQL statement. This returns a sql.Rows resultset containing the result of

 // our query.

 rows, err := m.DB.Query(stmt)

 if err != nil {

 return nil, err

 }

 // We defer rows.Close() to ensure the sql.Rows resultset is

 // always properly closed before the Latest() method returns. This defer

 // statement should come *after* you check for an error from the Query()

 // method. Otherwise, if Query() returns an error, you'll get a panic

 // trying to close a nil resultset.

 defer rows.Close()

 // Initialize an empty slice to hold the Snippet structs.

 snippets := []*Snippet{}

 // Use rows.Next to iterate through the rows in the resultset. This

 // prepares the first (and then each subsequent) row to be acted on by the

 // rows.Scan() method. If iteration over all the rows completes then the

 // resultset automatically closes itself and frees-up the underlying

 // database connection.

 for rows.Next() {

 // Create a pointer to a new zeroed Snippet struct.

 s := &Snippet{}

 // Use rows.Scan() to copy the values from each field in the row to the

 // new Snippet object that we created. Again, the arguments to row.Scan()

 // must be pointers to the place you want to copy the data into, and the

 // number of arguments must be exactly the same as the number of

 // columns returned by your statement.

 err = rows.Scan(&s.ID, &s.Title, &s.Content, &s.Created, &s.Expires)

 if err != nil {

 return nil, err

 }

 // Append it to the slice of snippets.

 snippets = append(snippets, s)

 }

 // When the rows.Next() loop has finished we call rows.Err() to retrieve any

 // error that was encountered during the iteration. It's important to

 // call this - don't assume that a successful iteration was completed

 // over the whole resultset.

 if err = rows.Err(); err != nil {

 return nil, err

 }

 // If everything went OK then return the Snippets slice.

 return snippets, nil

}

Important: Closing a resultset with defer rows.Close() is critical in the code above. As

long as a resultset is open it will keep the underlying database connection open… so if

something goes wrong in this method and the resultset isn’t closed, it can rapidly lead

to all the connections in your pool being used up.

Using the model in our handlers

Head back to your cmd/web/handlers.go file and update the home handler to use the

SnippetModel.Latest() method, dumping the snippet contents to a HTTP response. For now

just comment out the code relating to template rendering, like so:

File: cmd/web/handlers.go

package main

import (

 "errors"

 "fmt"

 // "html/template"

 "net/http"

 "strconv"

 "snippetbox.alexedwards.net/internal/models"

)

func (app *application) home(w http.ResponseWriter, r *http.Request) {

 if r.URL.Path != "/" {

 app.notFound(w)

 return

 }

 snippets, err := app.snippets.Latest()

 if err != nil {

 app.serverError(w, err)

 return

 }

 for _, snippet := range snippets {

 fmt.Fprintf(w, "%+v\n", snippet)

 }

 // files := []string{

 // "./ui/html/base.tmpl",

 // "./ui/html/partials/nav.tmpl",

 // "./ui/html/pages/home.tmpl",

 // }

 // ts, err := template.ParseFiles(files...)

 // if err != nil {

 // app.serverError(w, err)

 // return

 // }

 // err = ts.ExecuteTemplate(w, "base", nil)

 // if err != nil {

 // app.serverError(w, err)

 // }

}

...

If you run the application now and visit http://localhost:4000 in your browser you should

get a response similar to this:

http://localhost:4000/

Chapter 4.9.

Transactions and other details

The database/sql package

As you’re probably starting to realize, the database/sql package essentially provides a

standard interface between your Go application and the world of SQL databases.

So long as you use the database/sql package, the Go code you write will generally be

portable and will work with any kind of SQL database — whether it’s MySQL, PostgreSQL,

SQLite or something else. This means that your application isn’t so tightly coupled to the

database that you’re currently using, and the theory is that you can swap databases in the

future without re-writing all of your code (driver-specific quirks and SQL implementations

aside).

It’s important to note that while database/sql generally does a good job of providing a

standard interface for working with SQL databases, there are some idiosyncrasies in the way

that different drivers and databases operate. It’s always a good idea to read over the

documentation for a new driver to understand any quirks and edge cases before you begin

using it.

Verbosity

If you’re coming from Ruby, Python or PHP, the code for querying SQL databases may feel a

bit verbose, especially if you’re used to dealing with an abstraction layer or ORM.

But the upside of the verbosity is that our code is non-magical; we can understand and

control exactly what is going on. And with a bit of time, you’ll find that the patterns for

making SQL queries become familiar and you can copy-and-paste from previous work.

If the verbosity really is starting to grate on you, you might want to consider trying the

jmoiron/sqlx package. It’s well designed and provides some good extensions that make

working with SQL queries quicker and easier. Another, newer, option you may want to

consider is the blockloop/scan package.

Managing null values

One thing that Go doesn’t do very well is managing NULL values in database records.

https://github.com/jmoiron/sqlx
https://github.com/blockloop/scan

Let’s pretend that the title column in our snippets table contains a NULL value in a

particular row. If we queried that row, then rows.Scan() would return an error because it

can’t convert NULL into a string:

sql: Scan error on column index 1: unsupported Scan, storing driver.Value type

<nil> into type *string

Very roughly, the fix for this is to change the field that you’re are scanning into from a string

to a sql.NullString type. See this gist for a working example.

But, as a rule, the easiest thing to do is simply avoid NULL values altogether. Set NOT NULL

constraints on all your database columns, like we have done in this book, along with sensible

DEFAULT values as necessary.

Working with transactions

It’s important to realize that calls to Exec(), Query() and QueryRow() can use any connection

from the sql.DB pool. Even if you have two calls to Exec() immediately next to each other in

your code, there is no guarantee that they will use the same database connection.

Sometimes this isn’t acceptable. For instance, if you lock a table with MySQL’s LOCK TABLES

command you must call UNLOCK TABLES on exactly the same connection to avoid a deadlock.

To guarantee that the same connection is used you can wrap multiple statements in a

transaction. Here’s the basic pattern:

https://gist.github.com/alexedwards/dc3145c8e2e6d2fd6cd9

type ExampleModel struct {

 DB *sql.DB

}

func (m *ExampleModel) ExampleTransaction() error {

 // Calling the Begin() method on the connection pool creates a new sql.Tx

 // object, which represents the in-progress database transaction.

 tx, err := m.DB.Begin()

 if err != nil {

 return err

 }

 // Defer a call to tx.Rollback() to ensure it is always called before the

 // function returns. If the transaction succeeds it will be already be

 // committed by the time tx.Rollback() is called, making tx.Rollback() a

 // no-op. Otherwise, in the event of an error, tx.Rollback() will rollback

 // the changes before the function returns.

 defer tx.Rollback()

 // Call Exec() on the transaction, passing in your statement and any

 // parameters. It's important to notice that tx.Exec() is called on the

 // transaction object just created, NOT the connection pool. Although we're

 // using tx.Exec() here you can also use tx.Query() and tx.QueryRow() in

 // exactly the same way.

 _, err = tx.Exec("INSERT INTO ...")

 if err != nil {

 return err

 }

 // Carry out another transaction in exactly the same way.

 _, err = tx.Exec("UPDATE ...")

 if err != nil {

 return err

 }

 // If there are no errors, the statements in the transaction can be committed

 // to the database with the tx.Commit() method.

 err = tx.Commit()

 return err

}

Important: You must always call either Rollback() or Commit() before your function

returns. If you don’t the connection will stay open and not be returned to the

connection pool. This can lead to hitting your maximum connection limit/running out of

resources. The simplest way to avoid this is to use defer tx.Rollback() like we are in

the example above.

Transactions are also super-useful if you want to execute multiple SQL statements as a single

atomic action. So long as you use the tx.Rollback() method in the event of any errors, the

transaction ensures that either:

All statements are executed successfully; or

No statements are executed and the database remains unchanged.

https://pkg.go.dev/database/sql/#Tx.Rollback

Prepared statements

As I mentioned earlier, the Exec(), Query() and QueryRow() methods all use prepared

statements behind the scenes to help prevent SQL injection attacks. They set up a prepared

statement on the database connection, run it with the parameters provided, and then close

the prepared statement.

This might feel rather inefficient because we are creating and recreating the same prepared

statements every single time.

In theory, a better approach could be to make use of the DB.Prepare() method to create our

own prepared statement once, and reuse that instead. This is particularly true for complex

SQL statements (e.g. those which have multiple JOINS) and are repeated very often (e.g. a

bulk insert of tens of thousands of records). In these instances, the cost of re-preparing

statements may have a noticeable effect on run time.

Here’s the basic pattern for using your own prepared statement in a web application:

https://pkg.go.dev/database/sql/#DB.Prepare

// We need somewhere to store the prepared statement for the lifetime of our

// web application. A neat way is to embed in the model alongside the connection

// pool.

type ExampleModel struct {

 DB *sql.DB

 InsertStmt *sql.Stmt

}

// Create a constructor for the model, in which we set up the prepared

// statement.

func NewExampleModel(db *sql.DB) (*ExampleModel, error) {

 // Use the Prepare method to create a new prepared statement for the

 // current connection pool. This returns a sql.Stmt object which represents

 // the prepared statement.

 insertStmt, err := db.Prepare("INSERT INTO ...")

 if err != nil {

 return nil, err

 }

 // Store it in our ExampleModel object, alongside the connection pool.

 return &ExampleModel{db, insertStmt}, nil

}

// Any methods implemented against the ExampleModel object will have access to

// the prepared statement.

func (m *ExampleModel) Insert(args...) error {

 // Notice how we call Exec directly against the prepared statement, rather

 // than against the connection pool? Prepared statements also support the

 // Query and QueryRow methods.

 _, err := m.InsertStmt.Exec(args...)

 return err

}

// In the web application's main function we will need to initialize a new

// ExampleModel struct using the constructor function.

func main() {

 db, err := sql.Open(...)

 if err != nil {

 errorLog.Fatal(err)

 }

 defer db.Close()

 // Create a new ExampleModel object, which includes the prepared statement.

 exampleModel, err := NewExampleModel(db)

 if err != nil {

 errorLog.Fatal(err)

 }

 // Defer a call to Close() on the prepared statement to ensure that it is

 // properly closed before our main function terminates.

 defer exampleModel.InsertStmt.Close()

}

There are a few things to be wary of though.

Prepared statements exist on database connections. So, because Go uses a pool of many

database connections, what actually happens is that the first time a prepared statement (i.e.

the sql.Stmt object) is used it gets created on a particular database connection. The

sql.Stmt object then remembers which connection in the pool was used. The next time, the

sql.Stmt object will attempt to use the same database connection again. If that connection is

closed or in use (i.e. not idle) the statement will be re-prepared on another connection.

Under heavy load, it’s possible that a large amount of prepared statements will be created on

multiple connections. This can lead to statements being prepared and re-prepared more

often than you would expect — or even running into server-side limits on the number of

statements (in MySQL the default maximum is 16,382 prepared statements).

The code too is more complicated than not using prepared statements.

So, there is a trade-off to be made between performance and complexity. As with anything,

you should measure the actual performance benefit of implementing your own prepared

statements to determine if it’s worth doing. For most cases, I would suggest that using the

regular Query() , QueryRow() and Exec() methods — without preparing statements yourself —

is a reasonable starting point.

Chapter 5.

Dynamic HTML templates

In this section of the book we’re going to concentrate on displaying the dynamic data from

our MySQL database in some proper HTML pages.

You’ll learn how to:

Pass dynamic data to your HTML templates in a simple, scalable and type-safe way.

Use the various actions and functions in Go’s html/template package to control the

display of dynamic data.

Create a template cache so that your templates aren’t being read from disk for each HTTP

request.

Gracefully handle template rendering errors at runtime.

Implement a pattern for passing common dynamic data to your web pages without

repeating code.

Create your own custom functions to format and display data in your HTML templates.

Chapter 5.1.

Displaying dynamic data

Currently our snippetView hander function fetches a models.Snippet object from the

database and then dumps the contents out in a plain-text HTTP response.

In this section we’ll update this so that the data is displayed in a proper HTML webpage which

looks a bit like this:

Let’s start in the snippetView handler and add some code to render a new view.tmpl

template file (which we will create in a minute). Hopefully this should look familiar to you

from earlier in the book.

File: cmd/web/handlers.go

package main

import (

 "errors"

 "fmt"

 "html/template" // Uncomment import

 "net/http"

 "strconv"

 "snippetbox.alexedwards.net/internal/models"

)

...

func (app *application) snippetView(w http.ResponseWriter, r *http.Request) {

 id, err := strconv.Atoi(r.URL.Query().Get("id"))

 if err != nil || id < 1 {

 app.notFound(w)

 return

 }

 snippet, err := app.snippets.Get(id)

 if err != nil {

 if errors.Is(err, models.ErrNoRecord) {

 app.notFound(w)

 } else {

 app.serverError(w, err)

 }

 return

 }

 // Initialize a slice containing the paths to the view.tmpl file,

 // plus the base layout and navigation partial that we made earlier.

 files := []string{

 "./ui/html/base.tmpl",

 "./ui/html/partials/nav.tmpl",

 "./ui/html/pages/view.tmpl",

 }

 // Parse the template files...

 ts, err := template.ParseFiles(files...)

 if err != nil {

 app.serverError(w, err)

 return

 }

 // And then execute them. Notice how we are passing in the snippet

 // data (a models.Snippet struct) as the final parameter?

 err = ts.ExecuteTemplate(w, "base", snippet)

 if err != nil {

 app.serverError(w, err)

 }

}

...

Next up we need to create the view.tmpl file containing the HTML markup for the page. But

before we do, there’s a little theory that I need to explain…

Within your HTML templates, any dynamic data that you pass in is represented by the .

character (referred to as dot).

In this specific case, the underlying type of dot will be a models.Snippet struct. When the

underlying type of dot is a struct, you can render (or yield) the value of any exported field in

your templates by postfixing dot with the field name. So, because our models.Snippet struct

has a Title field, we could yield the snippet title by writing {{.Title}} in our templates.

I’ll demonstrate. Create a new file at ui/html/pages/view.tmpl and add the following

markup:

$ touch ui/html/pages/view.tmpl

File: ui/html/pages/view.tmpl

{{define "title"}}Snippet #{{.ID}}{{end}}

{{define "main"}}

 <div class='snippet'>

 <div class='metadata'>

 {{.Title}}

 #{{.ID}}

 </div>

 <pre><code>{{.Content}}</code></pre>

 <div class='metadata'>

 <time>Created: {{.Created}}</time>

 <time>Expires: {{.Expires}}</time>

 </div>

 </div>

{{end}}

If you restart the application and visit http://localhost:4000/snippet/view?id=1 in your

browser, you should find that the relevant snippet is fetched from the database, passed to the

template, and the content is rendered correctly.

http://localhost:4000/snippet/view?id=1

Rendering multiple pieces of data

An important thing to explain is that Go’s html/template package allows you to pass in one —

and only one — item of dynamic data when rendering a template. But in a real-world

application there are often multiple pieces of dynamic data that you want to display in the

same page.

A lightweight and type-safe way to achieve this is to wrap your dynamic data in a struct which

acts like a single ‘holding structure’ for your data.

Let’s create a new cmd/web/templates.go file, containing a templateData struct to do exactly

that.

$ touch cmd/web/templates.go

File: cmd/web/templates.go

package main

import "snippetbox.alexedwards.net/internal/models"

// Define a templateData type to act as the holding structure for

// any dynamic data that we want to pass to our HTML templates.

// At the moment it only contains one field, but we'll add more

// to it as the build progresses.

type templateData struct {

 Snippet *models.Snippet

}

And then let’s update the snippetView handler to use this new struct when executing our

templates:

File: cmd/web/handlers.go

package main

...

func (app *application) snippetView(w http.ResponseWriter, r *http.Request) {

 id, err := strconv.Atoi(r.URL.Query().Get("id"))

 if err != nil || id < 1 {

 app.notFound(w)

 return

 }

 snippet, err := app.snippets.Get(id)

 if err != nil {

 if errors.Is(err, models.ErrNoRecord) {

 app.notFound(w)

 } else {

 app.serverError(w, err)

 }

 return

 }

 files := []string{

 "./ui/html/base.tmpl",

 "./ui/html/partials/nav.tmpl",

 "./ui/html/pages/view.tmpl",

 }

 ts, err := template.ParseFiles(files...)

 if err != nil {

 app.serverError(w, err)

 return

 }

 // Create an instance of a templateData struct holding the snippet data.

 data := &templateData{

 Snippet: snippet,

 }

 // Pass in the templateData struct when executing the template.

 err = ts.ExecuteTemplate(w, "base", data)

 if err != nil {

 app.serverError(w, err)

 }

}

...

So now, our snippet data is contained in a models.Snippet struct within a templateData

struct. To yield the data, we need to chain the appropriate field names together like so:

File: ui/html/pages/view.tmpl

{{define "title"}}Snippet #{{.Snippet.ID}}{{end}}

{{define "main"}}

 <div class='snippet'>

 <div class='metadata'>

 {{.Snippet.Title}}

 #{{.Snippet.ID}}

 </div>

 <pre><code>{{.Snippet.Content}}</code></pre>

 <div class='metadata'>

 <time>Created: {{.Snippet.Created}}</time>

 <time>Expires: {{.Snippet.Expires}}</time>

 </div>

 </div>

{{end}}

Feel free to restart the application and visit http://localhost:4000/snippet/view?id=1

again. You should see the same page rendered in your browser as before.

Additional information

Dynamic content escaping

The html/template package automatically escapes any data that is yielded between {{ }}

tags. This behavior is hugely helpful in avoiding cross-site scripting (XSS) attacks, and is the

reason that you should use the html/template package instead of the more generic

text/template package that Go also provides.

As an example of escaping, if the dynamic data you wanted to yield was:

{{"<script>alert('xss attack')</script>"}}

It would be rendered harmlessly as:

<script>alert('xss attack')</script>

The html/template package is also smart enough to make escaping context-dependent. It

will use the appropriate escape sequences depending on whether the data is rendered in a

part of the page that contains HTML, CSS, Javascript or a URI.

Nested templates

http://localhost:4000/snippet/view?id=1

It’s really important to note that when you’re invoking one template from another template,

dot needs to be explicitly passed or pipelined to the template being invoked. You do this by

including it at the end of each {{template}} or {{block}} action, like so:

{{template "main" .}}

{{block "sidebar" .}}{{end}}

As a general rule, my advice is to get into the habit of always pipelining dot whenever you

invoke a template with the {{template}} or {{block}} actions, unless you have a good

reason not to.

Calling methods

If the type that you’re yielding between {{ }} tags has methods defined against it, you can

call these methods (so long as they are exported and they return only a single value — or a

single value and an error).

For example, if .Snippet.Created has the underlying type time.Time (which it does) you

could render the name of the weekday by calling its Weekday() method like so:

{{.Snippet.Created.Weekday}}

You can also pass parameters to methods. For example, you could use the AddDate() method

to add six months to a time like so:

{{.Snippet.Created.AddDate 0 6 0}}

Notice that this is different syntax to calling functions in Go — the parameters are not

surrounded by parentheses and are separated by a single space character, not a comma.

Html comments

Finally, the html/template package always strips out any HTML comments you include in

your templates, including any conditional comments.

The reason for this is to help avoid XSS attacks when rendering dynamic content. Allowing

conditional comments would mean that Go isn’t always able to anticipate how a browser will

interpret the markup in a page, and therefore it wouldn’t necessarily be able to escape

everything appropriately. To solve this, Go simply strips out all HTML comments.

https://pkg.go.dev/time/#Time.Unix
https://pkg.go.dev/time/#Time.AddDate
https://en.wikipedia.org/wiki/Conditional_comment

Chapter 5.2.

Template actions and functions

In this section we’re going to look at the template actions and functions that Go provides.

We’ve already talked about some of the actions — {{define}}, {{template}} and {{block}}

— but there are three more which you can use to control the display of dynamic data —

{{if}}, {{with}} and {{range}} .

Action Description

{{if .Foo}} C1 {{else}} C2 {{end}} If .Foo is not empty then render the content C1,

otherwise render the content C2.

{{with .Foo}} C1 {{else}} C2 {{end}} If .Foo is not empty, then set dot to the value of

.Foo and render the content C1, otherwise render the

content C2.

{{range .Foo}} C1 {{else}} C2 {{end}} If the length of .Foo is greater than zero then loop

over each element, setting dot to the value of each

element and rendering the content C1. If the length of

.Foo is zero then render the content C2. The underlying

type of .Foo must be an array, slice, map, or channel.

There are a few things about these actions to point out:

For all three actions the {{else}} clause is optional. For instance, you can write

{{if .Foo}} C1 {{end}} if there’s no C2 content that you want to render.

The empty values are false, 0, any nil pointer or interface value, and any array, slice, map,

or string of length zero.

It’s important to grasp that the with and range actions change the value of dot. Once you

start using them, what dot represents can be different depending on where you are in the

template and what you’re doing.

The html/template package also provides some template functions which you can use to add

extra logic to your templates and control what is rendered at runtime. You can find a

complete listing of functions here, but the most important ones are:

https://pkg.go.dev/text/template/#hdr-Functions

Function Description

{{eq .Foo .Bar}} Yields true if .Foo is equal to .Bar

{{ne .Foo .Bar}} Yields true if .Foo is not equal to .Bar

{{not .Foo}} Yields the boolean negation of .Foo

{{or .Foo .Bar}} Yields .Foo if .Foo is not empty; otherwise yields .Bar

{{index .Foo i}} Yields the value of .Foo at index i. The underlying type of

.Foo must be a map, slice or array, and i must be an integer

value.

{{printf "%s-%s" .Foo .Bar}} Yields a formatted string containing the .Foo and .Bar values.

Works in the same way as fmt.Sprintf().

{{len .Foo}} Yields the length of .Foo as an integer.

{{$bar := len .Foo}} Assign the length of .Foo to the template variable $bar

The final row is an example of declaring a template variable. Template variables are

particularly useful if you want to store the result from a function and use it in multiple places

in your template. Variable names must be prefixed by a dollar sign and can contain

alphanumeric characters only.

Using the with action

A good opportunity to use the {{with}} action is the view.tmpl file that we created in the

previous chapter. Go ahead and update it like so:

File: ui/html/pages/view.tmpl

{{define "title"}}Snippet #{{.Snippet.ID}}{{end}}

{{define "main"}}

 {{with .Snippet}}

 <div class='snippet'>

 <div class='metadata'>

 {{.Title}}

 #{{.ID}}

 </div>

 <pre><code>{{.Content}}</code></pre>

 <div class='metadata'>

 <time>Created: {{.Created}}</time>

 <time>Expires: {{.Expires}}</time>

 </div>

 </div>

 {{end}}

{{end}}

So now, between {{with .Snippet}} and the corresponding {{end}} tag, the value of dot is

set to .Snippet. Dot essentially becomes the models.Snippet struct instead of the parent

templateData struct.

Using the if and range actions

Let’s also use the {{if}} and {{range}} actions in a concrete example and update our

homepage to display a table of the latest snippets, a bit like this:

First update the templateData struct so that it contains a Snippets field for holding a slice of

snippets, like so:

File: cmd/web/templates.go

package main

import "snippetbox.alexedwards.net/internal/models"

// Include a Snippets field in the templateData struct.

type templateData struct {

 Snippet *models.Snippet

 Snippets []*models.Snippet

}

Then update the home handler function so that it fetches the latest snippets from our

database model and passes them to the home.tmpl template:

File: cmd/web/handlers.go

package main

...

func (app *application) home(w http.ResponseWriter, r *http.Request) {

 if r.URL.Path != "/" {

 app.notFound(w)

 return

 }

 snippets, err := app.snippets.Latest()

 if err != nil {

 app.serverError(w, err)

 return

 }

 files := []string{

 "./ui/html/base.tmpl",

 "./ui/html/partials/nav.tmpl",

 "./ui/html/pages/home.tmpl",

 }

 ts, err := template.ParseFiles(files...)

 if err != nil {

 app.serverError(w, err)

 return

 }

 // Create an instance of a templateData struct holding the slice of

 // snippets.

 data := &templateData{

 Snippets: snippets,

 }

 // Pass in the templateData struct when executing the template.

 err = ts.ExecuteTemplate(w, "base", data)

 if err != nil {

 app.serverError(w, err)

 }

}

...

Now let’s head over to the ui/html/pages/home.tmpl file and update it to display these

snippets in a table using the {{if}} and {{range}} actions. Specifically:

We want to use the {{if}} action to check whether the slice of snippets is empty or not. If

it’s empty, we want to display a "There's nothing to see here yet! message.

Otherwise, we want to render a table containing the snippet information.

We want to use the {{range}} action to iterate over all snippets in the slice, rendering the

contents of each snippet in a table row.

Here’s the markup:

File: ui/html/pages/home.tmpl

{{define "title"}}Home{{end}}

{{define "main"}}

 <h2>Latest Snippets</h2>

 {{if .Snippets}}

 <table>

 <tr>

 <th>Title</th>

 <th>Created</th>

 <th>ID</th>

 </tr>

 {{range .Snippets}}

 <tr>

 <td>{{.Title}}</td>

 <td>{{.Created}}</td>

 <td>#{{.ID}}</td>

 </tr>

 {{end}}

 </table>

 {{else}}

 <p>There's nothing to see here... yet!</p>

 {{end}}

{{end}}

Make sure all your files are saved, restart the application and visit http://localhost:4000 in

a web browser. If everything has gone to plan, you should see a page which looks a bit like

this:

http://localhost:4000/

Additional information

Combining functions

It’s possible to combine multiple functions in your template tags, using the parentheses () to

surround the functions and their arguments as necessary.

For example, the following tag will render the content C1 if the length of Foo is greater than

99:

{{if (gt (len .Foo) 99)}} C1 {{end}}

Or as another example, the following tag will render the content C1 if .Foo equals 1 and .Bar

is less than or equal to 20:

{{if (and (eq .Foo 1) (le .Bar 20))}} C1 {{end}}

Controlling loop behavior

Within a {{range}} action you can use the {{break}} command to end the loop early, and

{{continue}} to immediately start the next loop iteration.

{{range .Foo}}

 // Skip this iteration if the .ID value equals 99.

 {{if eq .ID 99}}

 {{continue}}

 {{end}}

 // ...

{{end}}

{{range .Foo}}

 // End the loop if the .ID value equals 99.

 {{if eq .ID 99}}

 {{break}}

 {{end}}

 // ...

{{end}}

Chapter 5.3.

Caching templates

Before we add any more functionality to our HTML templates, it’s a good time to make some

optimizations to our codebase. There are two main issues at the moment:

1. Each and every time we render a web page, our application reads and parses the relevant

template files using the template.ParseFiles() function. We could avoid this duplicated

work by parsing the files once — when starting the application — and storing the parsed

templates in an in-memory cache.

2. There’s duplicated code in the home and snippetView handlers, and we could reduce this

duplication by creating a helper function.

Let’s tackle the first point first, and create an in-memory map with the type

map[string]*template.Template to cache the parsed templates. Open your

cmd/web/templates.go file and add the following code:

File: cmd/web/templates.go

package main

import (

 "html/template" // New import

 "path/filepath" // New import

 "snippetbox.alexedwards.net/internal/models"

)

...

func newTemplateCache() (map[string]*template.Template, error) {

 // Initialize a new map to act as the cache.

 cache := map[string]*template.Template{}

 // Use the filepath.Glob() function to get a slice of all filepaths that

 // match the pattern "./ui/html/pages/*.tmpl". This will essentially gives

 // us a slice of all the filepaths for our application 'page' templates

 // like: [ui/html/pages/home.tmpl ui/html/pages/view.tmpl]

 pages, err := filepath.Glob("./ui/html/pages/*.tmpl")

 if err != nil {

 return nil, err

 }

 // Loop through the page filepaths one-by-one.

 for _, page := range pages {

 // Extract the file name (like 'home.tmpl') from the full filepath

 // and assign it to the name variable.

 name := filepath.Base(page)

 // Create a slice containing the filepaths for our base template, any

 // partials and the page.

 files := []string{

 "./ui/html/base.tmpl",

 "./ui/html/partials/nav.tmpl",

 page,

 }

 // Parse the files into a template set.

 ts, err := template.ParseFiles(files...)

 if err != nil {

 return nil, err

 }

 // Add the template set to the map, using the name of the page

 // (like 'home.tmpl') as the key.

 cache[name] = ts

 }

 // Return the map.

 return cache, nil

}

The next step is to initialize this cache in the main() function and make it available to our

handlers as a dependency via the application struct, like this:

File: cmd/web/main.go

package main

import (

 "database/sql"

 "flag"

 "html/template" // New import

 "log"

 "net/http"

 "os"

 "snippetbox.alexedwards.net/internal/models"

 _ "github.com/go-sql-driver/mysql"

)

// Add a templateCache field to the application struct.

type application struct {

 errorLog *log.Logger

 infoLog *log.Logger

 snippets *models.SnippetModel

 templateCache map[string]*template.Template

}

func main() {

 addr := flag.String("addr", ":4000", "HTTP network address")

 dsn := flag.String("dsn", "web:pass@/snippetbox?parseTime=true", "MySQL data source name")

 flag.Parse()

 infoLog := log.New(os.Stdout, "INFO\t", log.Ldate|log.Ltime)

 errorLog := log.New(os.Stderr, "ERROR\t", log.Ldate|log.Ltime|log.Lshortfile)

 db, err := openDB(*dsn)

 if err != nil {

 errorLog.Fatal(err)

 }

 defer db.Close()

 // Initialize a new template cache...

 templateCache, err := newTemplateCache()

 if err != nil {

 errorLog.Fatal(err)

 }

 // And add it to the application dependencies.

 app := &application{

 errorLog: errorLog,

 infoLog: infoLog,

 snippets: &models.SnippetModel{DB: db},

 templateCache: templateCache,

 }

 srv := &http.Server{

 Addr: *addr,

 ErrorLog: errorLog,

 Handler: app.routes(),

 }

 infoLog.Printf("Starting server on %s", *addr)

 err = srv.ListenAndServe()

 errorLog.Fatal(err)

}

...

So, at this point, we’ve got an in-memory cache of the relevant template set for each of our

pages, and our handlers have access to this cache via the application struct.

Let’s now tackle the second issue of duplicated code, and create a helper method so that we

can easily render the templates from the cache.

Open up your cmd/web/helpers.go file and add the following render() method:

File: cmd/web/helpers.go

package main

...

func (app *application) render(w http.ResponseWriter, status int, page string, data *templateData) {

 // Retrieve the appropriate template set from the cache based on the page

 // name (like 'home.tmpl'). If no entry exists in the cache with the

 // provided name, then create a new error and call the serverError() helper

 // method that we made earlier and return.

 ts, ok := app.templateCache[page]

 if !ok {

 err := fmt.Errorf("the template %s does not exist", page)

 app.serverError(w, err)

 return

 }

 // Write out the provided HTTP status code ('200 OK', '400 Bad Request'

 // etc).

 w.WriteHeader(status)

 // Execute the template set and write the response body. Again, if there

 // is any error we call the the serverError() helper.

 err := ts.ExecuteTemplate(w, "base", data)

 if err != nil {

 app.serverError(w, err)

 }

}

With that complete, we now get to see the pay-off from these changes and can dramatically

simplify the code in our handlers:

File: cmd/web/handlers.go

package main

import (

 "errors"

 "fmt"

 "net/http"

 "strconv"

 "snippetbox.alexedwards.net/internal/models"

)

func (app *application) home(w http.ResponseWriter, r *http.Request) {

 if r.URL.Path != "/" {

 app.notFound(w)

 return

 }

 snippets, err := app.snippets.Latest()

 if err != nil {

 app.serverError(w, err)

 return

 }

 // Use the new render helper.

 app.render(w, http.StatusOK, "home.tmpl", &templateData{

 Snippets: snippets,

 })

}

func (app *application) snippetView(w http.ResponseWriter, r *http.Request) {

 id, err := strconv.Atoi(r.URL.Query().Get("id"))

 if err != nil || id < 1 {

 app.notFound(w)

 return

 }

 snippet, err := app.snippets.Get(id)

 if err != nil {

 if errors.Is(err, models.ErrNoRecord) {

 app.notFound(w)

 } else {

 app.serverError(w, err)

 }

 return

 }

 // Use the new render helper.

 app.render(w, http.StatusOK, "view.tmpl", &templateData{

 Snippet: snippet,

 })

}

...

If you restart the application and try visiting http://localhost:4000 and

http://localhost:4000/snippet/view?id=1 again you should see that the pages are

rendered in exactly the same way as before.

http://localhost:4000/
http://localhost:4000/snippet/view?id=1

Automatically parsing partials

Before we move on, let’s make our newTemplateCache() function a bit more flexible so that it

automatically parses all templates in the ui/html/partials folder — rather than only our

nav.tmpl file.

This will save us time, typing and potential bugs if we want to add additional partials in the

future.

File: cmd/web/templates.go

package main

...

func newTemplateCache() (map[string]*template.Template, error) {

 cache := map[string]*template.Template{}

 pages, err := filepath.Glob("./ui/html/pages/*.tmpl")

 if err != nil {

 return nil, err

 }

 for _, page := range pages {

 name := filepath.Base(page)

 // Parse the base template file into a template set.

 ts, err := template.ParseFiles("./ui/html/base.tmpl")

 if err != nil {

 return nil, err

 }

 // Call ParseGlob() *on this template set* to add any partials.

 ts, err = ts.ParseGlob("./ui/html/partials/*.tmpl")

 if err != nil {

 return nil, err

 }

 // Call ParseFiles() *on this template set* to add the page template.

 ts, err = ts.ParseFiles(page)

 if err != nil {

 return nil, err

 }

 // Add the template set to the map as normal...

 cache[name] = ts

 }

 return cache, nil

}

Chapter 5.4.

Catching runtime errors

As soon as we begin adding dynamic behavior to our HTML templates there’s a risk of

encountering runtime errors.

Let’s add a deliberate error to the view.tmpl template and see what happens:

File: ui/html/pages/view.tmpl

{{define "title"}}Snippet #{{.Snippet.ID}}{{end}}

{{define "main"}}

 {{with .Snippet}}

 <div class='snippet'>

 <div class='metadata'>

 {{.Title}}

 #{{.ID}}

 </div>

 {{len nil}} <!-- Deliberate error -->

 <pre><code>{{.Content}}</code></pre>

 <div class='metadata'>

 <time>Created: {{.Created}}</time>

 <time>Expires: {{.Expires}}</time>

 </div>

 </div>

 {{end}}

{{end}}

In this markup above we’ve added the line {{len nil}} , which should generate an error at

runtime because in Go the value nil does not have a length.

Try running the application now. You’ll find that everything still compiles OK:

$ go run ./cmd/web

INFO 2022/02/01 10:20:21 Starting server on :4000

But if you use curl to make a request to http://localhost:4000/snippet/view?id=1 you’ll

get a response which looks a bit like this.

http://localhost:4000/snippet/view?id=1

$ curl -i "http://localhost:4000/snippet/view?id=1"

HTTP/1.1 200 OK

Date: Tue, 01 Feb 2022 09:20:49 GMT

Content-Length: 762

Content-Type: text/html; charset=utf-8

<!doctype html>

<html lang='en'>

 <head>

 <meta charset='utf-8'>

 <title>Snippet #1 - Snippetbox</title>

 <link rel='stylesheet' href='/static/css/main.css'>

 <link rel='shortcut icon' href='/static/img/favicon.ico' type='image/x-icon'>

 <link rel='stylesheet' href='https://fonts.googleapis.com/css?family=Ubuntu+Mono:400,700'>

 </head>

 <body>

 <header>

 <h1>Snippetbox</h1>

 </header>

 <nav>

 Home

</nav>

 <main>

 <div class='snippet'>

 <div class='metadata'>

 An old silent pond

 #1

 </div>

 Internal Server Error

This is pretty bad. Our application has thrown an error, but the user has wrongly been sent a

200 OK response. And even worse, they’ve received a half-complete HTML page.

To fix this we need to make the template render a two-stage process. First, we should make a

‘trial’ render by writing the template into a buffer. If this fails, we can respond to the user with

an error message. But if it works, we can then write the contents of the buffer to our

http.ResponseWriter .

Let’s update the render() helper to use this approach instead:

File: cmd/web/helpers.go

package main

import (

 "bytes" // New import

 "fmt"

 "net/http"

 "runtime/debug"

)

...

func (app *application) render(w http.ResponseWriter, status int, page string, data *templateData) {

 ts, ok := app.templateCache[page]

 if !ok {

 err := fmt.Errorf("the template %s does not exist", page)

 app.serverError(w, err)

 return

 }

 // Initialize a new buffer.

 buf := new(bytes.Buffer)

 // Write the template to the buffer, instead of straight to the

 // http.ResponseWriter. If there's an error, call our serverError() helper

 // and then return.

 err := ts.ExecuteTemplate(buf, "base", data)

 if err != nil {

 app.serverError(w, err)

 return

 }

 // If the template is written to the buffer without any errors, we are safe

 // to go ahead and write the HTTP status code to http.ResponseWriter.

 w.WriteHeader(status)

 // Write the contents of the buffer to the http.ResponseWriter. Note: this

 // is another time where we pass our http.ResponseWriter to a function that

 // takes an io.Writer.

 buf.WriteTo(w)

}

Restart the application and try making the same request again. You should now get a proper

error message and 500 Internal Server Error response.

$ curl -i "http://localhost:4000/snippet/view?id=1"

HTTP/1.1 500 Internal Server Error

Content-Type: text/plain; charset=utf-8

X-Content-Type-Options: nosniff

Date: Tue, 01 Feb 2022 09:30:33 GMT

Content-Length: 22

Internal Server Error

Great stuff. That’s looking much better.

Before we move on to the next chapter, head back to the view.tmpl file and remove the

deliberate error:

File: ui/html/pages/view.tmpl

{{define "title"}}Snippet #{{.Snippet.ID}}{{end}}

{{define "main"}}

 {{with .Snippet}}

 <div class='snippet'>

 <div class='metadata'>

 {{.Title}}

 #{{.ID}}

 </div>

 <pre><code>{{.Content}}</code></pre>

 <div class='metadata'>

 <time>Created: {{.Created}}</time>

 <time>Expires: {{.Expires}}</time>

 </div>

 </div>

 {{end}}

{{end}}

Chapter 5.5.

Common dynamic data

In some web applications there may be common dynamic data that you want to include on

more than one — or even every — webpage. For example, you might want to include the

name and profile picture of the current user, or a CSRF token in all pages with forms.

In our case let’s begin with something simple, and say that we want to include the current

year in the footer on every page.

To do this we’ll begin by adding a new CurrentYear field to the templateData struct, like so:

File: cmd/web/templates.go

package main

...

// Add a CurrentYear field to the templateData struct.

type templateData struct {

 CurrentYear int

 Snippet *models.Snippet

 Snippets []*models.Snippet

}

...

The next step is to add a newTemplateData() helper method to our application, which will

return a templateData struct initialized with the current year.

I’ll demonstrate:

File: cmd/web/helpers.go

package main

import (

 "bytes"

 "fmt"

 "net/http"

 "runtime/debug"

 "time" // New import

)

...

// Create an newTemplateData() helper, which returns a pointer to a templateData

// struct initialized with the current year. Note that we're not using the

// *http.Request parameter here at the moment, but we will do later in the book.

func (app *application) newTemplateData(r *http.Request) *templateData {

 return &templateData{

 CurrentYear: time.Now().Year(),

 }

}

...

Then let’s update our home and snippetView handlers to use the newTemplateData() helper,

like so:

File: cmd/web/handlers.go

package main

...

func (app *application) home(w http.ResponseWriter, r *http.Request) {

 if r.URL.Path != "/" {

 app.notFound(w)

 return

 }

 snippets, err := app.snippets.Latest()

 if err != nil {

 app.serverError(w, err)

 return

 }

 // Call the newTemplateData() helper to get a templateData struct containing

 // the 'default' data (which for now is just the current year), and add the

 // snippets slice to it.

 data := app.newTemplateData(r)

 data.Snippets = snippets

 // Pass the data to the render() helper as normal.

 app.render(w, http.StatusOK, "home.tmpl", data)

}

func (app *application) snippetView(w http.ResponseWriter, r *http.Request) {

 id, err := strconv.Atoi(r.URL.Query().Get("id"))

 if err != nil || id < 1 {

 app.notFound(w)

 return

 }

 snippet, err := app.snippets.Get(id)

 if err != nil {

 if errors.Is(err, models.ErrNoRecord) {

 app.notFound(w)

 } else {

 app.serverError(w, err)

 }

 return

 }

 // And do the same thing again here...

 data := app.newTemplateData(r)

 data.Snippet = snippet

 app.render(w, http.StatusOK, "view.tmpl", data)

}

...

And then the final thing we need to do is update the ui/html/base.tmpl file to display the

year in the footer, like so:

File: ui/html/base.tmpl

{{define "base"}}

<!doctype html>

<html lang='en'>

 <head>

 <meta charset='utf-8'>

 <title>{{template "title" .}} - Snippetbox</title>

 <link rel='stylesheet' href='/static/css/main.css'>

 <link rel='shortcut icon' href='/static/img/favicon.ico' type='image/x-icon'>

 <link rel='stylesheet' href='https://fonts.googleapis.com/css?family=Ubuntu+Mono:400,700'>

 </head>

 <body>

 <header>

 <h1>Snippetbox</h1>

 </header>

 {{template "nav" .}}

 <main>

 {{template "main" .}}

 </main>

 <footer>

 <!-- Update the footer to include the current year -->

 Powered by Go in {{.CurrentYear}}

 </footer>

 <script src="/static/js/main.js" type="text/javascript"></script>

 </body>

</html>

{{end}}

If you restart the application and visit the home page at http://localhost:4000 , you now

should see the current year in the footer. Like this:

http://localhost:4000/

Chapter 5.6.

Custom template functions

In the last part of this section about templating and dynamic data, I’d like to explain how to

create your own custom functions to use in Go templates.

To illustrate this, let’s create a custom humanDate() function which outputs datetimes in a

nice ‘humanized’ format like 02 Jan 2022 at 15:04 , instead of outputting dates in the

default format of 2022-01-02 15:04:00 +0000 UTC like we are currently.

There are two main steps to doing this:

1. We need to create a template.FuncMap object containing the custom humanDate()

function.

2. We need to use the template.Funcs() method to register this before parsing the

templates.

Go ahead and add the following code to your templates.go file:

https://pkg.go.dev/text/template/#FuncMap
https://pkg.go.dev/html/template/#Template.Funcs

File: cmd/web/templates.go

package main

import (

 "html/template"

 "path/filepath"

 "time" // New import

 "snippetbox.alexedwards.net/internal/models"

)

...

// Create a humanDate function which returns a nicely formatted string

// representation of a time.Time object.

func humanDate(t time.Time) string {

 return t.Format("02 Jan 2006 at 15:04")

}

// Initialize a template.FuncMap object and store it in a global variable. This is

// essentially a string-keyed map which acts as a lookup between the names of our

// custom template functions and the functions themselves.

var functions = template.FuncMap{

 "humanDate": humanDate,

}

func newTemplateCache() (map[string]*template.Template, error) {

 cache := map[string]*template.Template{}

 pages, err := filepath.Glob("./ui/html/pages/*.tmpl")

 if err != nil {

 return nil, err

 }

 for _, page := range pages {

 name := filepath.Base(page)

 // The template.FuncMap must be registered with the template set before you

 // call the ParseFiles() method. This means we have to use template.New() to

 // create an empty template set, use the Funcs() method to register the

 // template.FuncMap, and then parse the file as normal.

 ts, err := template.New(name).Funcs(functions).ParseFiles("./ui/html/base.tmpl")

 if err != nil {

 return nil, err

 }

 ts, err = ts.ParseGlob("./ui/html/partials/*.tmpl")

 if err != nil {

 return nil, err

 }

 ts, err = ts.ParseFiles(page)

 if err != nil {

 return nil, err

 }

 cache[name] = ts

 }

 return cache, nil

}

Before we continue, I should explain: custom template functions (like our humanDate()

function) can accept as many parameters as they need to, but they must return one value

only. The only exception to this is if you want to return an error as the second value, in which

case that’s OK too.

Now we can use our humanDate() function in the same way as the built-in template functions:

File: ui/html/pages/home.tmpl

{{define "title"}}Home{{end}}

{{define "main"}}

 <h2>Latest Snippets</h2>

 {{if .Snippets}}

 <table>

 <tr>

 <th>Title</th>

 <th>Created</th>

 <th>ID</th>

 </tr>

 {{range .Snippets}}

 <tr>

 <td>{{.Title}}</td>

 <!-- Use the new template function here -->

 <td>{{humanDate .Created}}</td>

 <td>#{{.ID}}</td>

 </tr>

 {{end}}

 </table>

 {{else}}

 <p>There's nothing to see here... yet!</p>

 {{end}}

{{end}}

File: ui/html/pages/view.tmpl

{{define "title"}}Snippet #{{.Snippet.ID}}{{end}}

{{define "main"}}

 {{with .Snippet}}

 <div class='snippet'>

 <div class='metadata'>

 {{.Title}}

 #{{.ID}}

 </div>

 <pre><code>{{.Content}}</code></pre>

 <div class='metadata'>

 <!-- Use the new template function here -->

 <time>Created: {{humanDate .Created}}</time>

 <time>Expires: {{humanDate .Expires}}</time>

 </div>

 </div>

 {{end}}

{{end}}

Once that’s done restart the application. If you visit http://localhost:4000 and

http://localhost:4000/snippet/view?id=1 in your browser you should see the new, nicely

formatted, dates being used.

http://localhost:4000/
http://localhost:4000/snippet/view?id=1

Additional information

Pipelining

In the code above, we called our custom template function like this:

<time>Created: {{humanDate .Created}}</time>

An alternative approach is to use the | character to pipeline values to a function. This works a

bit like pipelining outputs from one command to another in Unix terminals. We could re-write

the above as:

<time>Created: {{.Created | humanDate}}</time>

A nice feature of pipelining is that you can make an arbitrarily long chain of template

functions which use the output from one as the input for the next. For example, we could

pipeline the output from our humanDate function to the inbuilt printf function like so:

<time>{{.Created | humanDate | printf "Created: %s"}}</time>

Chapter 6.

Middleware

When you’re building a web application there’s probably some shared functionality that you

want to use for many (or even all) HTTP requests. For example, you might want to log every

request, compress every response, or check a cache before passing the request to your

handlers.

A common way of organizing this shared functionality is to set it up as middleware. This is

essentially some self-contained code which independently acts on a request before or after

your normal application handlers.

In this section of the book you’ll learn:

An idiomatic pattern for building and using custom middleware which is compatible with

net/http and many third-party packages.

How to create middleware which sets useful security headers on every HTTP response.

How to create middleware which logs the requests received by your application.

How to create middleware which recovers panics so that they are gracefully handled by

your application.

How to create and use composable middleware chains to help manage and organize your

middleware.

Chapter 6.1.

How middleware works

Earlier in the book I said something that I’d like to expand on in this chapter:

“You can think of a Go web application as a chain of ServeHTTP() methods being called one

after another.”

Currently, in our application, when our server receives a new HTTP request it calls the

servemux’s ServeHTTP() method. This looks up the relevant handler based on the request

URL path, and in turn calls that handler’s ServeHTTP() method.

The basic idea of middleware is to insert another handler into this chain. The middleware

handler executes some logic, like logging a request, and then calls the ServeHTTP() method

of the next handler in the chain.

In fact, we’re actually already using some middleware in our application — the

http.StripPrefix() function from serving static files, which removes a specific prefix from

the request’s URL path before passing the request on to the file server.

The pattern

The standard pattern for creating your own middleware looks like this:

func myMiddleware(next http.Handler) http.Handler {

 fn := func(w http.ResponseWriter, r *http.Request) {

 // TODO: Execute our middleware logic here...

 next.ServeHTTP(w, r)

 }

 return http.HandlerFunc(fn)

}

The code itself is pretty succinct, but there’s quite a lot in it to get your head around.

The myMiddleware() function is essentially a wrapper around the next handler.

It establishes a function fn which closes over the next handler to form a closure. When fn

is run it executes our middleware logic and then transfers control to the next handler by

calling it’s ServeHTTP() method.

Regardless of what you do with a closure it will always be able to access the variables that

are local to the scope it was created in — which in this case means that fn will always have

access to the next variable.

We then convert this closure to a http.Handler and return it using the

http.HandlerFunc() adapter.

If this feels confusing, you can think of it more simply: myMiddleware() is a function that

accepts the next handler in a chain as a parameter. It returns a handler which executes some

logic and then calls the next handler.

Simplifying the middleware

A tweak to this pattern is to use an anonymous function inside myMiddleware() middleware,

like so:

func myMiddleware(next http.Handler) http.Handler {

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 // TODO: Execute our middleware logic here...

 next.ServeHTTP(w, r)

 })

}

This pattern is very common in the wild, and the one that you’ll probably see most often if

you’re reading the source code of other applications or third-party packages.

Positioning the middleware

It’s important to explain that where you position the middleware in the chain of handlers will

affect the behavior of your application.

If you position your middleware before the servemux in the chain then it will act on every

request that your application receives.

myMiddleware → servemux → application handler

A good example of where this would be useful is middleware to log requests — as that’s

typically something you would want to do for all requests.

Alternatively, you can position the middleware after the servemux in the chain — by wrapping

a specific application handler. This would cause your middleware to only be executed for a

specific route.

servemux → myMiddleware → application handler

An example of this would be something like authorization middleware, which you may only

want to run on specific routes.

We’ll demonstrate how to do both of these things in practice as we progress through the

book.

Chapter 6.2.

Setting security headers

Let’s put the pattern we learned in the previous chapter to use, and make our own

middleware which automatically adds the following HTTP security headers to every response,

inline with current OWASP guidance.

Content-Security-Policy: default-src 'self'; style-src 'self' fonts.googleapis.com; font-src fonts.gstatic.com

Referrer-Policy: origin-when-cross-origin

X-Content-Type-Options: nosniff

X-Frame-Options: deny

X-XSS-Protection: 0

If you’re not familiar with these headers, I’ll quickly explain what they do.

Content-Security-Policy (often abbreviated to CSP) headers are used to restrict where

the resources for your web page (e.g. JavaScript, images, fonts etc) can be loaded from.

Setting a strict CSP policy helps prevent a variety of cross-site scripting, clickjacking, and

other code-injection attacks.

CSP headers and how they work is a big topic, and I recommend reading this primer if you

haven’t come across them before. But, in our case, the header tells the browser that it’s OK

to load fonts from fonts.gstatic.com , stylesheets from fonts.googleapis.com and self

(our own origin), and then everything else only from self. Inline JavaScript is blocked by

default.

Referrer-Policy is used to control what information is included in a Referer header

when a user navigates away from your web page. In our case, we’ll set the value to

origin-when-cross-origin , which means that the full URL will be included for same-

origin requests, but for all other requests information like the URL path and any query

string values will be stripped out.

X-Content-Type-Options: nosniff instructs browsers to not MIME-type sniff the content-

type of the response, which in turn helps to prevent content-sniffing attacks.

X-Frame-Options: deny is used to help prevent clickjacking attacks in older browsers that

don’t support CSP headers.

X-XSS-Protection: 0 is used to disable the blocking of cross-site scripting attacks.

Previously it was good practice to set this header to X-XSS-Protection: 1; mode=block ,

but when you’re using CSP headers like we are the recommendation is to disable this

feature altogether.

https://owasp.org/www-project-secure-headers
https://developer.mozilla.org/en-US/docs/Web/HTTP/CSP
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://security.stackexchange.com/questions/7506/using-file-extension-and-mime-type-as-output-by-file-i-b-combination-to-dete/7531#7531
https://developer.mozilla.org/en-US/docs/Web/Security/Types_of_attacks#click-jacking
https://owasp.org/www-project-secure-headers/#x-xss-protection

OK, let’s get back to our Go code and begin by creating a new middleware.go file. We’ll use

this to hold all the custom middleware that we write throughout this book.

$ touch cmd/web/middleware.go

Then open it up and add a secureHeaders() function using the pattern that we introduced in

the previous chapter:

File: cmd/web/middleware.go

package main

import (

 "net/http"

)

func secureHeaders(next http.Handler) http.Handler {

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 // Note: This is split across multiple lines for readability. You don't

 // need to do this in your own code.

 w.Header().Set("Content-Security-Policy",

 "default-src 'self'; style-src 'self' fonts.googleapis.com; font-src fonts.gstatic.com")

 w.Header().Set("Referrer-Policy", "origin-when-cross-origin")

 w.Header().Set("X-Content-Type-Options", "nosniff")

 w.Header().Set("X-Frame-Options", "deny")

 w.Header().Set("X-XSS-Protection", "0")

 next.ServeHTTP(w, r)

 })

}

Because we want this middleware to act on every request that is received, we need it to be

executed before a request hits our servemux. We want the flow of control through our

application to look like:

secureHeaders → servemux → application handler

To do this we’ll need the secureHeaders middleware function to wrap our servemux. Let’s

update the routes.go file to do exactly that:

File: cmd/web/routes.go

package main

import "net/http"

// Update the signature for the routes() method so that it returns a

// http.Handler instead of *http.ServeMux.

func (app *application) routes() http.Handler {

 mux := http.NewServeMux()

 fileServer := http.FileServer(http.Dir("./ui/static/"))

 mux.Handle("/static/", http.StripPrefix("/static", fileServer))

 mux.HandleFunc("/", app.home)

 mux.HandleFunc("/snippet/view", app.snippetView)

 mux.HandleFunc("/snippet/create", app.snippetCreate)

 // Pass the servemux as the 'next' parameter to the secureHeaders middleware.

 // Because secureHeaders is just a function, and the function returns a

 // http.Handler we don't need to do anything else.

 return secureHeaders(mux)

}

Important: Make sure that you update the signature of the routes() method so that it

returns a http.Handler here, otherwise you’ll get a compile-time error.

Go ahead and give this a try. Run the application then open a second terminal window and

play around making some requests with curl. You should see that the security headers are

now included in every response.

$ curl -I http://localhost:4000/

HTTP/1.1 200 OK

Content-Security-Policy: default-src 'self'; style-src 'self' fonts.googleapis.com; font-src fonts.gstatic.com

Referrer-Policy: origin-when-cross-origin

X-Content-Type-Options: nosniff

X-Frame-Options: deny

X-Xss-Protection: 0

Date: Sun, 06 Feb 2022 07:24:11 GMT

Content-Type: text/html; charset=utf-8

Additional information

Flow of control

It’s important to know that when the last handler in the chain returns, control is passed back

up the chain in the reverse direction. So when our code is being executed the flow of control

actually looks like this:

secureHeaders → servemux → application handler → servemux → secureHeaders

In any middleware handler, code which comes before next.ServeHTTP() will be executed on

the way down the chain, and any code after next.ServeHTTP() — or in a deferred function —

will be executed on the way back up.

func myMiddleware(next http.Handler) http.Handler {

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 // Any code here will execute on the way down the chain.

 next.ServeHTTP(w, r)

 // Any code here will execute on the way back up the chain.

 })

}

Early returns

Another thing to mention is that if you call return in your middleware function before you call

next.ServeHTTP(), then the chain will stop being executed and control will flow back

upstream.

As an example, a common use-case for early returns is authentication middleware which only

allows execution of the chain to continue if a particular check is passed. For instance:

func myMiddleware(next http.Handler) http.Handler {

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 // If the user isn't authorized send a 403 Forbidden status and

 // return to stop executing the chain.

 if !isAuthorized(r) {

 w.WriteHeader(http.StatusForbidden)

 return

 }

 // Otherwise, call the next handler in the chain.

 next.ServeHTTP(w, r)

 })

}

We’ll use this ‘early return’ pattern later in the book to restrict access to certain parts of our

application.

Debugging CSP issues

While CSP headers are great and you should definitely use them, it’s worth saying that I’ve

spent hours trying to debug why something isn’t working as expected, only to eventually

realize that a critical resource or script is being blocked by my own CSP rules � .

If you’re working on a project which is using CSP headers, like this one, I recommend keeping

your web browser developer tools handy and getting into the habit of checking the logs early

on if you run into any unexpected problems. In Firefox, any blocked resources will be shown

as an error in the console logs — similar to this:

Chapter 6.3.

Request logging

Let’s continue in the same vein and add some middleware to log HTTP requests. Specifically,

we’re going to use the information logger that we created earlier to record the IP address of

the user, and which URL and method are being requested.

Open your middleware.go file and create a logRequest() method using the standard

middleware pattern, like so:

File: cmd/web/middleware.go

package main

...

func (app *application) logRequest(next http.Handler) http.Handler {

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 app.infoLog.Printf("%s - %s %s %s", r.RemoteAddr, r.Proto, r.Method, r.URL.RequestURI())

 next.ServeHTTP(w, r)

 })

}

Notice that this time we’re implementing the middleware as a method on application?

This is perfectly valid to do. Our middleware method has the same signature as before, but

because it is a method against application it also has access to the handler dependencies

including the information logger.

Now let’s update our routes.go file so that the logRequest middleware is executed first, and

for all requests, so that the flow of control (reading from left to right) looks like this:

logRequest ↔ secureHeaders ↔ servemux ↔ application handler

File: cmd/web/routes.go

package main

import "net/http"

func (app *application) routes() http.Handler {

 mux := http.NewServeMux()

 fileServer := http.FileServer(http.Dir("./ui/static/"))

 mux.Handle("/static/", http.StripPrefix("/static", fileServer))

 mux.HandleFunc("/", app.home)

 mux.HandleFunc("/snippet/view", app.snippetView)

 mux.HandleFunc("/snippet/create", app.snippetCreate)

 // Wrap the existing chain with the logRequest middleware.

 return app.logRequest(secureHeaders(mux))

}

Alright… let’s give it a try!

Restart your application, browse around, and then check your terminal window. You should

see log output which looks a bit like this:

$ go run ./cmd/web

INFO 2022/02/06 09:08:29 Starting server on :4000

INFO 2022/02/06 09:08:31 127.0.0.1:45988 - HTTP/1.1 GET /

INFO 2022/02/06 09:08:31 127.0.0.1:45988 - HTTP/1.1 GET /static/css/main.css

INFO 2022/02/06 09:08:31 127.0.0.1:45988 - HTTP/1.1 GET /static/js/main.js

INFO 2022/02/06 09:08:31 127.0.0.1:45988 - HTTP/1.1 GET /static/img/logo.png

INFO 2022/02/06 09:08:31 127.0.0.1:45988 - HTTP/1.1 GET /static/img/favicon.ico

INFO 2022/02/06 09:08:34 127.0.0.1:45988 - HTTP/1.1 GET /snippet/view?id=2

Note: Depending on how your browser caches static files, you might need to do a hard

refresh (or open a new incognito/private browsing tab) to see any requests for static

files.

Chapter 6.4.

Panic recovery

In a simple Go application, when your code panics it will result in the application being

terminated straight away.

But our web application is a bit more sophisticated. Go’s HTTP server assumes that the effect

of any panic is isolated to the goroutine serving the active HTTP request (remember, every

request is handled in it’s own goroutine).

Specifically, following a panic our server will log a stack trace to the server error log, unwind

the stack for the affected goroutine (calling any deferred functions along the way) and close

the underlying HTTP connection. But it won’t terminate the application, so importantly, any

panic in your handlers won’t bring down your server.

But if a panic does happen in one of our handlers, what will the user see?

Let’s take a look and introduce a deliberate panic into our home handler.

File: cmd/web/handlers.go

package main

...

func (app *application) home(w http.ResponseWriter, r *http.Request) {

 if r.URL.Path != "/" {

 app.notFound(w)

 return

 }

 panic("oops! something went wrong") // Deliberate panic

 snippets, err := app.snippets.Latest()

 if err != nil {

 app.serverError(w, err)

 return

 }

 data := app.newTemplateData(r)

 data.Snippets = snippets

 app.render(w, http.StatusOK, "home.tmpl", data)

}

...

Restart your application…

https://pkg.go.dev/builtin/#panic

$ go run ./cmd/web

INFO 2022/02/06 09:16:38 Starting server on :4000

… and make a HTTP request for the home page from a second terminal window:

$ curl -i http://localhost:4000

curl: (52) Empty reply from server

Unfortunately, all we get is an empty response due to Go closing the underlying HTTP

connection following the panic.

This isn’t a great experience for the user. It would be more appropriate and meaningful to

send them a proper HTTP response with a 500 Internal Server Error status instead.

A neat way of doing this is to create some middleware which recovers the panic and calls our

app.serverError() helper method. To do this, we can leverage the fact that deferred

functions are always called when the stack is being unwound following a panic.

Open up your middleware.go file and add the following code:

File: cmd/web/middleware.go

package main

import (

 "fmt" // New import

 "net/http"

)

...

func (app *application) recoverPanic(next http.Handler) http.Handler {

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 // Create a deferred function (which will always be run in the event

 // of a panic as Go unwinds the stack).

 defer func() {

 // Use the builtin recover function to check if there has been a

 // panic or not. If there has...

 if err := recover(); err != nil {

 // Set a "Connection: close" header on the response.

 w.Header().Set("Connection", "close")

 // Call the app.serverError helper method to return a 500

 // Internal Server response.

 app.serverError(w, fmt.Errorf("%s", err))

 }

 }()

 next.ServeHTTP(w, r)

 })

}

There are two details about this which are worth explaining:

Setting the Connection: Close header on the response acts as a trigger to make Go’s

HTTP server automatically close the current connection after a response has been sent. It

also informs the user that the connection will be closed. Note: If the protocol being used is

HTTP/2, Go will automatically strip the Connection: Close header from the response (so it

is not malformed) and send a GOAWAY frame.

The value returned by the builtin recover() function has the type any , and its underlying

type could be string, error , or something else — whatever the parameter passed to

panic() was. In our case, it’s the string "oops! something went wrong" . In the code

above, we normalize this into an error by using the fmt.Errorf() function to create a new

error object containing the default textual representation of the any value, and then pass

this error to the app.serverError() helper method.

Let’s now put this to use in the routes.go file, so that it is the first thing in our chain to be

executed (so that it covers panics in all subsequent middleware and handlers).

File: cmd/web/routes.go

package main

import "net/http"

func (app *application) routes() http.Handler {

 mux := http.NewServeMux()

 fileServer := http.FileServer(http.Dir("./ui/static/"))

 mux.Handle("/static/", http.StripPrefix("/static", fileServer))

 mux.HandleFunc("/", app.home)

 mux.HandleFunc("/snippet/view", app.snippetView)

 mux.HandleFunc("/snippet/create", app.snippetCreate)

 // Wrap the existing chain with the recoverPanic middleware.

 return app.recoverPanic(app.logRequest(secureHeaders(mux)))

}

If you restart the application and make a request for the homepage now, you should see a

nicely formed 500 Internal Server Error response following the panic, including the

Connection: close header that we talked about.

$ go run ./cmd/web

INFO 2022/02/06 09:20:10 Starting server on :4000

https://go-review.googlesource.com/c/net/+/121415/

$ curl -i http://localhost:4000

HTTP/1.1 500 Internal Server Error

Connection: close

Content-Security-Policy: default-src 'self'; style-src 'self' fonts.googleapis.com; font-src fonts.gstatic.com

Content-Type: text/plain; charset=utf-8

Referrer-Policy: origin-when-cross-origin

X-Content-Type-Options: nosniff

X-Frame-Options: deny

X-Xss-Protection: 0

Date: Sun, 06 Feb 2022 08:20:27 GMT

Content-Length: 22

Internal Server Error

Before we continue, head back to your home handler and remove the deliberate panic from

the code.

File: cmd/web/handlers.go

package main

...

func (app *application) home(w http.ResponseWriter, r *http.Request) {

 if r.URL.Path != "/" {

 app.notFound(w)

 return

 }

 snippets, err := app.snippets.Latest()

 if err != nil {

 app.serverError(w, err)

 return

 }

 data := app.newTemplateData(r)

 data.Snippets = snippets

 app.render(w, http.StatusOK, "home.tmpl", data)

}

...

Additional information

Panic recovery in other background goroutines

It’s important to realise that our middleware will only recover panics that happen in the same

goroutine that executed the recoverPanic() middleware.

If, for example, you have a handler which spins up another goroutine (e.g. to do some

background processing), then any panics that happen in the second goroutine will not be

recovered — not by the recoverPanic() middleware… and not by the panic recovery built

into Go HTTP server. They will cause your application to exit and bring down the server.

So, if you are spinning up additional goroutines from within your web application and there is

any chance of a panic, you must make sure that you recover any panics from within those too.

For example:

func myHandler(w http.ResponseWriter, r *http.Request) {

 ...

 // Spin up a new goroutine to do some background processing.

 go func() {

 defer func() {

 if err := recover(); err != nil {

 log.Println(fmt.Errorf("%s\n%s", err, debug.Stack()))

 }

 }()

 doSomeBackgroundProcessing()

 }()

 w.Write([]byte("OK"))

}

Chapter 6.5.

Composable middleware chains

In this chapter I’d like to introduce the justinas/alice package to help us manage our

middleware/handler chains.

You don’t need to use this package, but the reason I recommend it is because it makes it easy

to create composable, reusable, middleware chains — and that can be a real help as your

application grows and your routes become more complex. The package itself is also small and

lightweight, and the code is clear and well written.

To demonstrate its features in one example, it allows you to rewrite a handler chain like this:

return myMiddleware1(myMiddleware2(myMiddleware3(myHandler)))

Into this, which is a bit clearer to understand at a glance:

return alice.New(myMiddleware1, myMiddleware2, myMiddleware3).Then(myHandler)

But the real power lies in the fact that you can use it to create middleware chains that can be

assigned to variables, appended to, and reused. For example:

myChain := alice.New(myMiddlewareOne, myMiddlewareTwo)

myOtherChain := myChain.Append(myMiddleware3)

return myOtherChain.Then(myHandler)

If you’re following along, please install the justinas/alice package using go get :

$ go get github.com/justinas/alice@v1

go: downloading github.com/justinas/alice v1.2.0

And if you open the go.mod file for your project, you should see a new corresponding require

statement, like so:

https://github.com/justinas/alice

File: go.mod

module snippetbox.alexedwards.net

go 1.18

require (

 github.com/go-sql-driver/mysql v1.6.0

 github.com/justinas/alice v1.2.0

)

OK, let’s update our routes.go file to use the justinas/alice package as follows:

File: cmd/web/routes.go

package main

import (

 "net/http"

 "github.com/justinas/alice" // New import

)

func (app *application) routes() http.Handler {

 mux := http.NewServeMux()

 fileServer := http.FileServer(http.Dir("./ui/static/"))

 mux.Handle("/static/", http.StripPrefix("/static", fileServer))

 mux.HandleFunc("/", app.home)

 mux.HandleFunc("/snippet/view", app.snippetView)

 mux.HandleFunc("/snippet/create", app.snippetCreate)

 // Create a middleware chain containing our 'standard' middleware

 // which will be used for every request our application receives.

 standard := alice.New(app.recoverPanic, app.logRequest, secureHeaders)

 // Return the 'standard' middleware chain followed by the servemux.

 return standard.Then(mux)

}

If you want, feel free to restart the application at this point. You should find that everything

compiles correctly and the application continues to work in the same way as before.

Chapter 7.

Advanced routing

In the next section of this book we’re going to add a HTML form to our application so that

users can create new snippets.

To make this work smoothly, we’ll first need to update our application routes so that requests

to /snippet/create are handled differently based on the request method. Specifically:

For GET /snippet/create requests we want to show the user the HTML form for adding a

new snippet.

For POST /snippet/create requests we want to process this form data and then insert a

new snippet record into our database.

While we’re at it, there are a couple of other routing-related improvements that we’ll also

make:

We’ll restrict all our other routes — which simply return information — to only support GET

requests.

We’ll use clean URLs so that any variables are included in the URL path (like

/snippet/view/123) and not appended as a query string (like /snippet/view?id=123).

Essentially, we want to rejig our application routes and handlers so that they end up looking

like this:

Method Pattern Handler Action

GET / home Display the home page

GET /snippet/view/:id snippetView Display a specific snippet

GET /snippet/create snippetCreate Display a HTML form for creating a new snippet

POST /snippet/create snippetCreatePost Create a new snippet

GET /static/ http.FileServer Serve a specific static file

As I mentioned earlier in the book, Go’s servemux doesn’t support method based routing or

clean URLs with variables in them. There are some tricks you can use to get around this, but

most people tend to decide that it’s easier to reach for a third-party package to help with

routing.

https://en.wikipedia.org/wiki/Clean_URL
https://youtu.be/yi5A3cK1LNA?t=11m44s

In this section of the book we will:

Briefly discuss the features of a few good third-party routers.

Update our application to use one of these routers and demonstrate how to use method-

based routing and clean URLs.

Chapter 7.1.

Choosing a router

There a literally hundreds of third-party routers for Go to pick from. And (fortunately or

unfortunately, depending on your perspective) they all work a bit differently. They have

different APIs, different logic for matching routes, and different behavioral quirks.

Out of all the third-party routers I’ve tried there are three that I recommend as a starting

point: julienschmidt/httprouter, go-chi/chi and gorilla/mux . They all have good

documentation, decent test coverage, and work well with the standard patterns for handlers

and middleware that we’ve used in this book.

All three routers also support method-based routing and clean URLs, but beyond that they

have slightly different behaviors and features. You should pick between them depending on

the specific requirements that your project has.

In summary:

julienschmidt/httprouter is the most focused, lightweight and fastest of the three

packages, and is about as close to ‘perfect’ as any third-party router gets in terms of its

compliance with the HTTP specs. It automatically handles OPTIONS requests and sends

405 responses correctly, and allows you to set custom handlers for 404 and 405 responses

too.

go-chi/chi is generally similar to httprouter in terms of its features, with the main

differences being that it also supports regexp route patterns and ‘grouping’ of routes

which use specific middleware. This route grouping feature is really valuable in larger

applications where you have lots routes and middleware to manage.

Two downsides of chi are that it doesn’t automatically handle OPTIONS requests, and it

doesn’t set an Allow header in 405 responses.

gorilla/mux is the most full-featured of the three routers. It supports regexp route

patterns, and allows you to route requests based on scheme, host and headers. It’s also

the only one to support custom routing rules and route ‘reversing’ (like you get in Django,

Rails or Laravel).

The main downside of gorilla/mux is that it’s comparatively slow and memory hungry —

although for a database-driven web application like ours the impact over the lifetime of a

whole HTTP request is likely to be small. Like chi , it also doesn’t automatically handle

OPTIONS requests, and it doesn’t set an Allow header in 405 responses.

https://github.com/julienschmidt/httprouter
https://github.com/go-chi/chi
https://github.com/gorilla/mux

Note: If you’re interested in a more detailed comparison of these routers I’ve written up

a guide and flowchart to help you choose between them in this blog post.

In our case, our application is fairly small and we don’t need support for anything beyond

basic method-based routing and clean URLs. So, for the sake of performance and correctness,

we’ll opt to use julienschmidt/httprouter in this project.

https://www.alexedwards.net/blog/which-go-router-should-i-use

Chapter 7.2.

Clean URLs and method-based routing

If you’re following along, please go ahead and install the latest version of httprouter like so:

$ go get github.com/julienschmidt/httprouter@v1

go: downloading github.com/julienschmidt/httprouter v1.3.0

Before we get into the nitty-gritty of actually using httprouter, let’s begin with a simple

example to help demonstrate and explain the syntax:

router := httprouter.New()

router.HandlerFunc(http.MethodGet, "/snippet/view/:id", app.snippetView)

In this example:

We initialize the httprouter router and then use the HandlerFunc() method to add a new

route which dispatches requests to our snippetView handler function.

Note: httprouter also provides a Handler() method that you can use to dispatch

requests to a regular http.Handler (like our static file server).

The first argument to HandlerFunc() is the HTTP method that the request needs to have

to be considered a matching request. Note that we’re using the constant http.MethodGet

here rather than the string "GET" .

The second argument is the pattern that the request URL path must match.

Patterns can include named parameters in the form :name , which act like a wildcard for a

specific path segment. A request with a URL path like /snippet/view/123 or

/snippet/view/foo would match our example pattern /snippet/view/:id , but a request

for /snippet/bar or /snippet/view/foo/baz wouldn’t.

Patterns can also include a single catch-all parameter in the form *name . These match

everything and should be used at the end of a pattern, like as /static/*filepath .

The pattern "/" will only match requests where the URL path is exactly "/" .

With all that in mind, let’s head over to our routes.go file and update it so it uses httprouter

and supports the following routes:

https://pkg.go.dev/github.com/julienschmidt/httprouter?utm_source=godoc#Router.HandlerFunc
https://pkg.go.dev/github.com/julienschmidt/httprouter?utm_source=godoc#Router.Handler

Method Pattern Handler Action

GET / home Display the home page

GET /snippet/view/:id snippetView Display a specific snippet

GET /snippet/create snippetCreate Display a HTML form for creating a new snippet

POST /snippet/create snippetCreatePost Create a new snippet

GET /static/*filepath http.FileServer Serve a specific static file

File: cmd/web/routes.go

package main

import (

 "net/http"

 "github.com/julienschmidt/httprouter" // New import

 "github.com/justinas/alice"

)

func (app *application) routes() http.Handler {

 // Initialize the router.

 router := httprouter.New()

 // Update the pattern for the route for the static files.

 fileServer := http.FileServer(http.Dir("./ui/static/"))

 router.Handler(http.MethodGet, "/static/*filepath", http.StripPrefix("/static", fileServer))

 // And then create the routes using the appropriate methods, patterns and

 // handlers.

 router.HandlerFunc(http.MethodGet, "/", app.home)

 router.HandlerFunc(http.MethodGet, "/snippet/view/:id", app.snippetView)

 router.HandlerFunc(http.MethodGet, "/snippet/create", app.snippetCreate)

 router.HandlerFunc(http.MethodPost, "/snippet/create", app.snippetCreatePost)

 // Create the middleware chain as normal.

 standard := alice.New(app.recoverPanic, app.logRequest, secureHeaders)

 // Wrap the router with the middleware and return it as normal.

 return standard.Then(router)

}

Now that’s done, there’s are a few changes we need to make to our handlers.go file. Go

ahead and update it as follows:

File: cmd/web/handlers.go

package main

import (

 "errors"

 "fmt"

 "net/http"

 "strconv"

 "snippetbox.alexedwards.net/internal/models"

 "github.com/julienschmidt/httprouter" // New import

)

func (app *application) home(w http.ResponseWriter, r *http.Request) {

 // Because httprouter matches the "/" path exactly, we can now remove the

 // manual check of r.URL.Path != "/" from this handler.

 snippets, err := app.snippets.Latest()

 if err != nil {

 app.serverError(w, err)

 return

 }

 data := app.newTemplateData(r)

 data.Snippets = snippets

 app.render(w, http.StatusOK, "home.tmpl", data)

}

func (app *application) snippetView(w http.ResponseWriter, r *http.Request) {

 // When httprouter is parsing a request, the values of any named parameters

 // will be stored in the request context. We'll talk about request context

 // in detail later in the book, but for now it's enough to know that you can

 // use the ParamsFromContext() function to retrieve a slice containing these

 // parameter names and values like so:

 params := httprouter.ParamsFromContext(r.Context())

 // We can then use the ByName() method to get the value of the "id" named

 // parameter from the slice and validate it as normal.

 id, err := strconv.Atoi(params.ByName("id"))

 if err != nil || id < 1 {

 app.notFound(w)

 return

 }

 snippet, err := app.snippets.Get(id)

 if err != nil {

 if errors.Is(err, models.ErrNoRecord) {

 app.notFound(w)

 } else {

 app.serverError(w, err)

 }

 return

 }

 data := app.newTemplateData(r)

 data.Snippet = snippet

 app.render(w, http.StatusOK, "view.tmpl", data)

}

// Add a new snippetCreate handler, which for now returns a placeholder

// response. We'll update this shortly to show a HTML form.

func (app *application) snippetCreate(w http.ResponseWriter, r *http.Request) {

 w.Write([]byte("Display the form for creating a new snippet..."))

}

// Rename this handler to snippetCreatePost.

func (app *application) snippetCreatePost(w http.ResponseWriter, r *http.Request) {

 // Checking if the request method is a POST is now superfluous and can be

 // removed, because this is done automatically by httprouter.

 title := "O snail"

 content := "O snail\nClimb Mount Fuji,\nBut slowly, slowly!\n\n– Kobayashi Issa"

 expires := 7

 id, err := app.snippets.Insert(title, content, expires)

 if err != nil {

 app.serverError(w, err)

 return

 }

 // Update the redirect path to use the new clean URL format.

 http.Redirect(w, r, fmt.Sprintf("/snippet/view/%d", id), http.StatusSeeOther)

}

Finally, we need to update the table in our home.tmpl file so that the links in the HTML also

use the new clean URL style of /snippet/view/:id .

{{define "title"}}Home{{end}}

{{define "main"}}

 <h2>Latest Snippets</h2>

 {{if .Snippets}}

 <table>

 <tr>

 <th>Title</th>

 <th>Created</th>

 <th>ID</th>

 </tr>

 {{range .Snippets}}

 <tr>

 <!-- Use the new clean URL style-->

 <td>{{.Title}}</td>

 <td>{{humanDate .Created}}</td>

 <td>#{{.ID}}</td>

 </tr>

 {{end}}

 </table>

 {{else}}

 <p>There's nothing to see here... yet!</p>

 {{end}}

{{end}}

With that done, restart the application and you should now be able to view the text snippets

via the clean URLs. For instance: http://localhost:4000/snippet/view/1.

http://localhost:4000/snippet/view/1

You can also see that requests using an unsupported HTTP method are met with a

405 Method Not Allowed response. For example, try making a POST request to the same URL

using curl:

$ curl -i -X POST http://localhost:4000/snippet/view/1

HTTP/1.1 405 Method Not Allowed

Allow: GET, OPTIONS

Content-Security-Policy: default-src 'self'; style-src 'self' fonts.googleapis.com; font-src fonts.gstatic.com

Content-Type: text/plain; charset=utf-8

Referrer-Policy: origin-when-cross-origin

X-Content-Type-Options: nosniff

X-Frame-Options: deny

X-Xss-Protection: 0

Date: Sun, 06 Feb 2022 21:06:59 GMT

Content-Length: 19

Method Not Allowed

Custom error handlers

Before we continue, you might also like to try making the following two requests:

$ curl http://localhost:4000/snippet/view/99

Not Found

$ curl http://localhost:4000/missing

404 page not found

So that’s a bit strange. We can see that both requests result in 404 responses, but they have

slightly different response bodies.

This is happening because the first request ends up calling out to our app.notFound() helper

when no snippet with ID 99 can be found, whereas the second response is returned

automatically by httprouter when no matching route is found.

Fortunately httprouter makes it easy to set a custom handler for dealing with 404 responses,

like so:

File: cmd/web/routes.go

package main

import (

 "net/http"

 "github.com/julienschmidt/httprouter"

 "github.com/justinas/alice"

)

func (app *application) routes() http.Handler {

 router := httprouter.New()

 // Create a handler function which wraps our notFound() helper, and then

 // assign it as the custom handler for 404 Not Found responses. You can also

 // set a custom handler for 405 Method Not Allowed responses by setting

 // router.MethodNotAllowed in the same way too.

 router.NotFound = http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 app.notFound(w)

 })

 fileServer := http.FileServer(http.Dir("./ui/static/"))

 router.Handler(http.MethodGet, "/static/*filepath", http.StripPrefix("/static", fileServer))

 router.HandlerFunc(http.MethodGet, "/", app.home)

 router.HandlerFunc(http.MethodGet, "/snippet/view/:id", app.snippetView)

 router.HandlerFunc(http.MethodGet, "/snippet/create", app.snippetCreate)

 router.HandlerFunc(http.MethodPost, "/snippet/create", app.snippetCreatePost)

 standard := alice.New(app.recoverPanic, app.logRequest, secureHeaders)

 return standard.Then(router)

}

If you restart the application and try making the same requests again, you’ll find that the

responses now match.

$ curl http://localhost:4000/snippet/view/99

Not Found

$ curl http://localhost:4000/missing

Not Found

Additional information

Conflicting route patterns

It’s important to be aware that httprouter doesn’t allow conflicting route patterns which

potentially match the same request. So, for example, you cannot register a route like

GET /foo/new and another route with a named parameter segment or catch-all parameter

that conflicts with it — like GET /foo/:name or GET /foo/*name .

In most cases this is a positive thing. Because conflicting routes aren’t allowed, there are no

routing-priority rules that you need to worry about, and it reduces the risk of bugs and

unintended behavior in your application.

But if you do need to support conflicting routes (for example, you might need to replicate the

endpoints of an existing application exactly for backwards-compatibility), then I would

recommend using chi or gorilla/mux instead — both of which do permit conflicting routes.

Customizing httprouter behavior

The httprouter package provides a few configuration options that you can use to customize

the behavior of your application further, including enabling trailing slash redirects and

enabling automatic URL path cleaning.

More information about the available settings can be found here.

Restful routing

If you’ve got a background in Ruby-on-Rails, Laravel or similar, you might be wondering why

we aren’t structuring our routes and handlers to be more ‘RESTful’ and look like this:

https://pkg.go.dev/github.com/julienschmidt/httprouter?tab=doc#Router

Method Pattern Handler Action

GET /snippets snippetIndex Display a list of all snippets

GET /snippets/:id snippetView Display a specific snippet

GET /snippets/new snippetNew Display a HTML form for creating a new snippet

POST /snippets snippetCreate Create a new snippet

… … … …

There are a couple of reasons.

The first reason is that the GET /snippets/:id and GET /snippets/new routes conflict with

each other — a HTTP request to /snippets/new potentially matches both routes (with the id

value being set to the string "new"). As mentioned above, httprouter doesn’t allow

conflicting route patterns, and it’s generally good practice to avoid them anyway because

they are a potential source of bugs.

The second reason is that the HTML form presented on /snippets/new would need to post to

/snippets when submitted. This means that when we re-render the HTML form to show any

validation errors, the URL in the user’s browser will also change to /snippets . YMMV on

whether you consider this a problem or not. Most users don’t look at URLs, but I think it’s a bit

clunky and confusing in terms of UX — especially if a GET request to /snippets normally

renders something else (like a list of all snippets).

Handler naming

I’d also like to emphasize that there is no right or wrong way to name your handlers in Go.

In this project, we’ll follow the convention of postfixing the names of any handlers that deal

with POST requests with the word ‘Post’. Like so:

Method Pattern Handler Action

GET /snippet/create snippetCreate Display a HTML form for creating a new snippet

POST /snippet/create snippetCreatePost Create a new snippet

Alternatively, you could postfix the names of any handlers that display forms with the word

‘Form’ or ‘View’, like this:

Method Pattern Handler Action

GET /snippet/create snippetCreateForm Display a HTML form for creating a new snippet

POST /snippet/create snippetCreate Create a new snippet

Or even prefix handler names with the words ‘show’ and ‘do’…

Method Pattern Handler Action

GET /snippet/create showSnippetCreate Display a HTML form for creating a new snippet

POST /snippet/create doSnippetCreate Create a new snippet

Basically, you have the freedom in Go to choose a naming convention which works for you

and fits with your brain.

Chapter 8.

Processing forms

In this section of the book we’re going to focus on allowing users of our web application to

create new snippets via a HTML form which looks a bit like this:

The high-level workflow for processing this form will follow a standard Post-Redirect-Get

pattern and look like this:

1. The user is shown the blank form when they make a GET request to /snippet/create .

2. The user completes the form and it’s submitted to the server via a POST request to

/snippet/create .

3. The form data will be validated by our snippetCreatePost handler. If there are any

validation failures the form will be re-displayed with the appropriate form fields

highlighted. If it passes our validation checks, the data for the new snippet will be added

to the database and then we’ll redirect the user to "/snippet/view/:id" .

As part of this you’ll learn:

How to parse and access form data sent in a POST request.

Some techniques for performing common validation checks on the form data.

A user-friendly pattern for alerting the user to validation failures and re-populating form

fields with previously submitted data.

How to keep your handlers clean by using helpers for form processing and validation.

Chapter 8.1.

Setting up a HTML form

Let’s begin by making a new ui/html/pages/create.tmpl file to hold the HTML for the form…

$ touch ui/html/pages/create.tmpl

… and then add the following markup, using the same pattern that we used earlier in the

book:

File: ui/html/pages/create.tmpl

{{define "title"}}Create a New Snippet{{end}}

{{define "main"}}

<form action='/snippet/create' method='POST'>

 <div>

 <label>Title:</label>

 <input type='text' name='title'>

 </div>

 <div>

 <label>Content:</label>

 <textarea name='content'></textarea>

 </div>

 <div>

 <label>Delete in:</label>

 <input type='radio' name='expires' value='365' checked> One Year

 <input type='radio' name='expires' value='7'> One Week

 <input type='radio' name='expires' value='1'> One Day

 </div>

 <div>

 <input type='submit' value='Publish snippet'>

 </div>

</form>

{{end}}

There’s nothing particularly special about this so far. Our main template contains a standard

HTML form which sends three form values: title , content and expires (the number of days

until the snippet should expire). The only thing to really point out is the form’s action and

method attributes — we’ve set these up so that the form will POST the data to the URL

/snippet/create when it’s submitted.

Now let’s add a new ‘Create snippet’ link to the navigation bar for our application, so that

clicking it will take the user to this new form.

File: ui/html/partials/nav.tmpl

{{define "nav"}}

 <nav>

 Home

 <!-- Add a link to the new form -->

 Create snippet

</nav>

{{end}}

And finally, we need to update the snippetCreateForm handler so that it renders our new

page like so:

File: cmd/web/handlers.go

package main

...

func (app *application) snippetCreate(w http.ResponseWriter, r *http.Request) {

 data := app.newTemplateData(r)

 app.render(w, http.StatusOK, "create.tmpl", data)

}

...

At this point you can fire up the application and visit

http://localhost:4000/snippet/create in your browser. You should see a form which looks

like this:

http://localhost:4000/snippet/create

Chapter 8.2.

Parsing form data

Thanks to the work we did previously in the advanced routing section, any

POST /snippets/create requests are already being dispatched to our snippetCreatePost

handler. We’ll now update this handler to process and use the form data when it’s submitted.

At a high-level we can break this down into two distinct steps.

1. First, we need to use the r.ParseForm() method to parse the request body. This checks

that the request body is well-formed, and then stores the form data in the request’s

r.PostForm map. If there are any errors encountered when parsing the body (like there is

no body, or it’s too large to process) then it will return an error. The r.ParseForm()

method is also idempotent; it can safely be called multiple times on the same request

without any side-effects.

2. We can then get to the form data contained in r.PostForm by using the r.PostForm.Get()

method. For example, we can retrieve the value of the title field with

r.PostForm.Get("title") . If there is no matching field name in the form this will return

the empty string "", similar to the way that query string parameters worked earlier in the

book.

Open your cmd/web/handlers.go file and update it to include the following code:

https://pkg.go.dev/net/http/#Request.ParseForm
https://pkg.go.dev/net/http/#Request

File: cmd/web/handlers.go

package main

...

func (app *application) snippetCreatePost(w http.ResponseWriter, r *http.Request) {

 // First we call r.ParseForm() which adds any data in POST request bodies

 // to the r.PostForm map. This also works in the same way for PUT and PATCH

 // requests. If there are any errors, we use our app.ClientError() helper to

 // send a 400 Bad Request response to the user.

 err := r.ParseForm()

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 // Use the r.PostForm.Get() method to retrieve the title and content

 // from the r.PostForm map.

 title := r.PostForm.Get("title")

 content := r.PostForm.Get("content")

 // The r.PostForm.Get() method always returns the form data as a *string*.

 // However, we're expecting our expires value to be a number, and want to

 // represent it in our Go code as an integer. So we need to manually covert

 // the form data to an integer using strconv.Atoi(), and we send a 400 Bad

 // Request response if the conversion fails.

 expires, err := strconv.Atoi(r.PostForm.Get("expires"))

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 id, err := app.snippets.Insert(title, content, expires)

 if err != nil {

 app.serverError(w, err)

 return

 }

 http.Redirect(w, r, fmt.Sprintf("/snippet/view/%d", id), http.StatusSeeOther)

}

Alright, let’s give this a try! Restart the application and try filling in the form with the title and

content of a snippet, a bit like this:

And then submit the form. If everything has worked, you should be redirected to a page

displaying your new snippet like so:

Additional information

The r.Form map

In our code above, we accessed the form values via the r.PostForm map. But an alternative

approach is to use the (subtly different) r.Form map.

The r.PostForm map is populated only for POST, PATCH and PUT requests, and contains the

form data from the request body.

In contrast, the r.Form map is populated for all requests (irrespective of their HTTP method),

and contains the form data from any request body and any query string parameters. So, if our

form was submitted to /snippet/create?foo=bar , we could also get the value of the foo

parameter by calling r.Form.Get("foo") . Note that in the event of a conflict, the request

body value will take precedent over the query string parameter.

Using the r.Form map can be useful if your application sends data in a HTML form and in the

URL, or you have an application that is agnostic about how parameters are passed. But in our

case those things aren’t applicable. We expect our form data to be sent in the request body

only, so it’s for sensible for us to access it via r.PostForm.

The FormValue and PostFormValue methods

The net/http package also provides the methods r.FormValue() and r.PostFormValue() .

These are essentially shortcut functions that call r.ParseForm() for you, and then fetch the

appropriate field value from r.Form or r.PostForm respectively.

I recommend avoiding these shortcuts because they silently ignore any errors returned by

r.ParseForm() . That’s not ideal — it means our application could be encountering errors and

failing for users, but there’s no feedback mechanism to let them know.

Multiple-value fields

Strictly speaking, the r.PostForm.Get() method that we’ve used above only returns the first

value for a specific form field. This means you can’t use it with form fields which potentially

send multiple values, such as a group of checkboxes.

<input type="checkbox" name="items" value="foo"> Foo

<input type="checkbox" name="items" value="bar"> Bar

<input type="checkbox" name="items" value="baz"> Baz

In this case you’ll need to work with the r.PostForm map directly. The underlying type of the

r.PostForm map is url.Values, which in turn has the underlying type map[string][]string .

So, for fields with multiple values you can loop over the underlying map to access them like

so:

for i, item := range r.PostForm["items"] {

 fmt.Fprintf(w, "%d: Item %s\n", i, item)

}

Limiting form size

Unless you’re sending multipart data (i.e. your form has the enctype="multipart/form-data"

attribute) then POST, PUT and PATCH request bodies are limited to 10MB. If this is exceeded

then r.ParseForm() will return an error.

If you want to change this limit you can use the http.MaxBytesReader() function like so:

https://pkg.go.dev/net/http/#Request.FormValue
https://pkg.go.dev/net/http/#Request.PostFormValue
https://pkg.go.dev/net/url/#Values
https://pkg.go.dev/net/http/#MaxBytesReader

// Limit the request body size to 4096 bytes

r.Body = http.MaxBytesReader(w, r.Body, 4096)

err := r.ParseForm()

if err != nil {

 http.Error(w, "Bad Request", http.StatusBadRequest)

 return

}

With this code only the first 4096 bytes of the request body will be read during

r.ParseForm() . Trying to read beyond this limit will cause the MaxBytesReader to return an

error, which will subsequently be surfaced by r.ParseForm() .

Additionally — if the limit is hit — MaxBytesReader sets a flag on http.ResponseWriter which

instructs the server to close the underlying TCP connection.

Chapter 8.3.

Validating form data

Right now there’s a glaring problem with our code: we’re not validating the (untrusted) user

input from the form in any way. We should do this to ensure that the form data is present, of

the correct type and meets any business rules that we have.

Specifically for this form we want to:

Check that the title and content fields are not empty.

Check that the title field is not more than 100 characters long.

Check that the expires value exactly matches one of our permitted values (1 , 7 or 365

days).

All of these checks are fairly straightforward to implement using some if statements and

various functions in Go’s strings and unicode/utf8 packages.

Open up your handlers.go file and update the snippetCreatePost handler to include the

appropriate validation rules like so:

File: cmd/web/handlers.go

package main

import (

 "errors"

 "fmt"

 "net/http"

 "strconv"

 "strings" // New import

 "unicode/utf8" // New import

 "snippetbox.alexedwards.net/internal/models"

 "github.com/julienschmidt/httprouter"

)

...

func (app *application) snippetCreatePost(w http.ResponseWriter, r *http.Request) {

 err := r.ParseForm()

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 title := r.PostForm.Get("title")

 content := r.PostForm.Get("content")

 expires, err := strconv.Atoi(r.PostForm.Get("expires"))

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

https://pkg.go.dev/strings/
https://pkg.go.dev/unicode/utf8/

 return

 }

 // Initialize a map to hold any validation errors for the form fields.

 fieldErrors := make(map[string]string)

 // Check that the title value is not blank and is not more than 100

 // characters long. If it fails either of those checks, add a message to the

 // errors map using the field name as the key.

 if strings.TrimSpace(title) == "" {

 fieldErrors["title"] = "This field cannot be blank"

 } else if utf8.RuneCountInString(title) > 100 {

 fieldErrors["title"] = "This field cannot be more than 100 characters long"

 }

 // Check that the Content value isn't blank.

 if strings.TrimSpace(content) == "" {

 fieldErrors["content"] = "This field cannot be blank"

 }

 // Check the expires value matches one of the permitted values (1, 7 or

 // 365).

 if expires != 1 && expires != 7 && expires != 365 {

 fieldErrors["expires"] = "This field must equal 1, 7 or 365"

 }

 // If there are any errors, dump them in a plain text HTTP response and

 // return from the handler.

 if len(fieldErrors) > 0 {

 fmt.Fprint(w, fieldErrors)

 return

 }

 id, err := app.snippets.Insert(title, content, expires)

 if err != nil {

 app.serverError(w, err)

 return

 }

 http.Redirect(w, r, fmt.Sprintf("/snippet/view/%d", id), http.StatusSeeOther)

}

Note: When we check the length of the title field, we’re using the

utf8.RuneCountInString() function — not Go’s len() function. This is because we want

to count the number of characters in the title rather than the number of bytes. To

illustrate the difference, the string "Zoë" has 3 characters but a length of 4 bytes

because of the umlauted ë character.

Alright, let’s give this a try! Restart the application and try submitting the form with a too-long

snippet title and blank content field, a bit like this…

https://pkg.go.dev/unicode/utf8/#RuneCountInString

And you should see a dump of the appropriate validation failure messages, like so:

Tip: You can find a bunch of code patterns for processing and validating different types

of inputs in this blog post.

https://www.alexedwards.net/blog/validation-snippets-for-go

Chapter 8.4.

Displaying errors and repopulating

fields

Now that the snippetCreatePost handler is validating the data, the next stage is to manage

these validation errors gracefully.

If there are any validation errors we want to re-display the HTML form, highlighting the fields

which failed validation and automatically re-populating any previously submitted data (so

that the user doesn’t need to enter it again).

To do this, let’s begin by adding a new Form field to our templateData struct:

File: cmd/web/templates.go

package main

import (

 "html/template"

 "path/filepath"

 "time"

 "snippetbox.alexedwards.net/internal/models"

)

// Add a Form field with the type "any".

type templateData struct {

 CurrentYear int

 Snippet *models.Snippet

 Snippets []*models.Snippet

 Form any

}

...

We’ll use this Form field to pass the validation errors and previously submitted data back to

the template when we re-display the form.

Next let’s head back to our cmd/web/handlers.go file and define a new snippetCreateForm

struct type to hold the form data and any validation errors, and update our

snippetCreatePost handler to use this.

Like so:

File: cmd/web/handlers.go

package main

package main

...

// Define a snippetCreateForm struct to represent the form data and validation

// errors for the form fields. Note that all the struct fields are deliberately

// exported (i.e. start with a capital letter). This is because struct fields

// must be exported in order to be read by the html/template package when

// rendering the template.

type snippetCreateForm struct {

 Title string

 Content string

 Expires int

 FieldErrors map[string]string

}

func (app *application) snippetCreatePost(w http.ResponseWriter, r *http.Request) {

 err := r.ParseForm()

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 // Get the expires value from the form as normal.

 expires, err := strconv.Atoi(r.PostForm.Get("expires"))

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 // Create an instance of the snippetCreateForm struct containing the values

 // from the form and an empty map for any validation errors.

 form := snippetCreateForm{

 Title: r.PostForm.Get("title"),

 Content: r.PostForm.Get("content"),

 Expires: expires,

 FieldErrors: map[string]string{},

 }

 // Update the validation checks so that they operate on the snippetCreateForm

 // instance.

 if strings.TrimSpace(form.Title) == "" {

 form.FieldErrors["title"] = "This field cannot be blank"

 } else if utf8.RuneCountInString(form.Title) > 100 {

 form.FieldErrors["title"] = "This field cannot be more than 100 characters long"

 }

 if strings.TrimSpace(form.Content) == "" {

 form.FieldErrors["content"] = "This field cannot be blank"

 }

 if form.Expires != 1 && form.Expires != 7 && form.Expires != 365 {

 form.FieldErrors["expires"] = "This field must equal 1, 7 or 365"

 }

 // If there are any validation errors re-display the create.tmpl template,

 // passing in the snippetCreateForm instance as dynamic data in the Form

 // field. Note that we use the HTTP status code 422 Unprocessable Entity

 // when sending the response to indicate that there was a validation error.

 if len(form.FieldErrors) > 0 {

 data := app.newTemplateData(r)

 data.Form = form

 app.render(w, http.StatusUnprocessableEntity, "create.tmpl", data)

 return

 }

 // We also need to update this line to pass the data from the

 // snippetCreateForm instance to our Insert() method.

 id, err := app.snippets.Insert(form.Title, form.Content, form.Expires)

 id, err := app.snippets.Insert(form.Title, form.Content, form.Expires)

 if err != nil {

 app.serverError(w, err)

 return

 }

 http.Redirect(w, r, fmt.Sprintf("/snippet/view/%d", id), http.StatusSeeOther)

}

OK, so now when there are any validation errors we are re-displaying the create.tmpl

template, passing in the previous data and validation errors in a snippetCreateForm struct via

the template data’s Form field.

If you like, you should be able to run the application at this point and the code should

compile without any errors.

Updating the HTML template

The next thing that we need to do is update our create.tmpl template to display the

validation errors and re-populate any previous data.

Re-populating the form data is straightforward enough — we should be able to render this in

the templates using tags like {{.Form.Title}} and {{.Form.Content}} , in the same way that

we displayed the snippet data earlier in the book.

For the validation errors, the underlying type of our FieldErrors field is a

map[string]string , which uses the form field names as keys. For maps, it’s possible to

access the value for a given key by simply chaining the key name. So, for example, to render a

validation error for the title field we can use the tag {{.Form.FieldErrors.title}} in our

template.

Note: Unlike struct fields, map key names don’t have to be capitalized in order to access

them from a template.

With that in mind, let’s update the create.tmpl file to re-populate the data and display the

error messages for each field, if they exist.

File: ui/html/pages/create.tmpl

{{define "title"}}Create a New Snippet{{end}}

{{define "main"}}

<form action='/snippet/create' method='POST'>

 <div>

 <label>Title:</label>

 <!-- Use the `with` action to render the value of .Form.FieldErrors.title

 if it is not empty. -->

 {{with .Form.FieldErrors.title}}

 <label class='error'>{{.}}</label>

 {{end}}

 <!-- Re-populate the title data by setting the `value` attribute. -->

 <input type='text' name='title' value='{{.Form.Title}}'>

 </div>

 <div>

 <label>Content:</label>

 <!-- Likewise render the value of .Form.FieldErrors.content if it is not

 empty. -->

 {{with .Form.FieldErrors.content}}

 <label class='error'>{{.}}</label>

 {{end}}

 <!-- Re-populate the content data as the inner HTML of the textarea. -->

 <textarea name='content'>{{.Form.Content}}</textarea>

 </div>

 <div>

 <label>Delete in:</label>

 <!-- And render the value of .Form.FieldErrors.expires if it is not empty. -->

 {{with .Form.FieldErrors.expires}}

 <label class='error'>{{.}}</label>

 {{end}}

 <!-- Here we use the `if` action to check if the value of the re-populated

 expires field equals 365. If it does, then we render the `checked`

 attribute so that the radio input is re-selected. -->

 <input type='radio' name='expires' value='365' {{if (eq .Form.Expires 365)}}checked{{end}}> One Year

 <!-- And we do the same for the other possible values too... -->

 <input type='radio' name='expires' value='7' {{if (eq .Form.Expires 7)}}checked{{end}}> One Week

 <input type='radio' name='expires' value='1' {{if (eq .Form.Expires 1)}}checked{{end}}> One Day

 </div>

 <div>

 <input type='submit' value='Publish snippet'>

 </div>

</form>

{{end}}

Hopefully this markup and our use of Go’s templating actions is generally clear — it’s just

using techniques that we’ve already seen and discussed earlier in the book.

There’s one final thing we need to do. If we tried to run the application now, we would get a

500 Internal Server Error when we first visit the form at

http://localhost:4000/snippet/create. This is because our snippetCreate handler

currently doesn’t set a value for the templateData.Form field, meaning that when Go tries to

evaluate a template tag like {{with .Form.FieldErrors.title}} it would result in an error

because Form is nil .

Let’s fix that by updating our snippetCreate handler so that it initializes a new

createSnippetForm instance and passes it to the template, like so:

http://localhost:4000/snippet/create

File: cmd/web/handlers.go

package main

...

func (app *application) snippetCreate(w http.ResponseWriter, r *http.Request) {

 data := app.newTemplateData(r)

 // Initialize a new createSnippetForm instance and pass it to the template.

 // Notice how this is also a great opportunity to set any default or

 // 'initial' values for the form --- here we set the initial value for the

 // snippet expiry to 365 days.

 data.Form = snippetCreateForm{

 Expires: 365,

 }

 app.render(w, http.StatusOK, "create.tmpl", data)

}

...

Now that’s done, please restart the application and visit

http://localhost:4000/snippet/create in your browser. You should find that the page

renders correctly without any errors.

The try adding some content and changing the default expiry time, but leave the title field

blank like so:

http://localhost:4000/snippet/create

After submission you should now see the form re-displayed, with the correctly re-populated

snippet content and expiry option, and a “This field cannot be blank” error message

alongside the title field:

Before we continue, feel free to spend some time playing around with the form and validation

rules until you’re confident that everything is working as you expect it to.

Chapter 8.5.

Creating validation helpers

OK, so we’re now in the position where our application is validating the form data according

to our business rules and gracefully handling any validation errors. That’s great, but it’s taken

quite a bit of work to get there.

And while the approach we’ve taken is fine as a one-off, if your application has many forms

then you can end up with quite a lot of repetition in your code and validation rules. Not to

mention, writing code for validating forms isn’t exactly the most exciting way to spend your

time.

So to help us with validation throughout the rest of this project, we’ll create our own small

internal/validator package to abstract some of this behavior and reduce the boilerplate

code in our handlers. We won’t actually change how the application works for the user at all;

it’s really just a refactoring of our codebase.

Adding a validator package

If you’re coding-along, please go ahead and create the following directory and file on your

machine:

$ mkdir internal/validator

$ touch internal/validator/validator.go

Then in this new internal/validator/validator.go file add the following code:

File: internal/validator/validator.go

package validator

import (

 "strings"

 "unicode/utf8"

)

// Define a new Validator type which contains a map of validation errors for our

// form fields.

type Validator struct {

 FieldErrors map[string]string

}

// Valid() returns true if the FieldErrors map doesn't contain any entries.

func (v *Validator) Valid() bool {

 return len(v.FieldErrors) == 0

}

// AddFieldError() adds an error message to the FieldErrors map (so long as no

// entry already exists for the given key).

func (v *Validator) AddFieldError(key, message string) {

 // Note: We need to initialize the map first, if it isn't already

 // initialized.

 if v.FieldErrors == nil {

 v.FieldErrors = make(map[string]string)

 }

 if _, exists := v.FieldErrors[key]; !exists {

 v.FieldErrors[key] = message

 }

}

// CheckField() adds an error message to the FieldErrors map only if a

// validation check is not 'ok'.

func (v *Validator) CheckField(ok bool, key, message string) {

 if !ok {

 v.AddFieldError(key, message)

 }

}

// NotBlank() returns true if a value is not an empty string.

func NotBlank(value string) bool {

 return strings.TrimSpace(value) != ""

}

// MaxChars() returns true if a value contains no more than n characters.

func MaxChars(value string, n int) bool {

 return utf8.RuneCountInString(value) <= n

}

// PermittedInt() returns true if a value is in a list of permitted integers.

func PermittedInt(value int, permittedValues ...int) bool {

 for i := range permittedValues {

 if value == permittedValues[i] {

 return true

 }

 }

 return false

}

To summarize this:

In the code above we’ve defined a custom Validator type which contains a map of errors.

The Validator type provides a CheckField() method for conditionally adding errors to the

map, and a Valid() method which returns whether the errors map is empty or not. We’ve

also added NotBlank() , MaxChars() and PermittedInt() functions to help us perform some

specific validation checks.

Conceptually this Validator type is quite basic, but that’s not a bad thing. As we’ll see over

the course of this book, it’s surprisingly powerful in practice and gives us a lot of flexibility

and control over validation checks and how we perform them.

Using the helpers

Alright, let’s start putting the Validator type to use!

We’ll head back to our cmd/web/handlers.go file and update it to embed a Validator

instance in our snippetCreateForm struct, and then use this to perform the necessary

validation checks on the form data.

Tip: If you’re not familiar with the concept of embedding structs in Go, Eli Bendersky

has written a good introduction on the topic and I recommend quickly reading it before

you continue.

Like so:

File: cmd/web/handlers.go

package main

import (

 "errors"

 "fmt"

 "net/http"

 "strconv"

 "snippetbox.alexedwards.net/internal/models"

 "snippetbox.alexedwards.net/internal/validator" // New import

 "github.com/julienschmidt/httprouter"

)

...

// Remove the explicit FieldErrors struct field and instead embed the Validator

// type. Embedding this means that our snippetCreateForm "inherits" all the

// fields and methods of our Validator type (including the FieldErrors field).

type snippetCreateForm struct {

 Title string

 Content string

 Expires int

 validator.Validator

https://eli.thegreenplace.net/2020/embedding-in-go-part-1-structs-in-structs/

 validator.Validator

}

func (app *application) snippetCreatePost(w http.ResponseWriter, r *http.Request) {

 err := r.ParseForm()

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 expires, err := strconv.Atoi(r.PostForm.Get("expires"))

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 form := snippetCreateForm{

 Title: r.PostForm.Get("title"),

 Content: r.PostForm.Get("content"),

 Expires: expires,

 // Remove the FieldErrors assignment from here.

 }

 // Because the Validator type is embedded by the snippetCreateForm struct,

 // we can call CheckField() directly on it to execute our validation checks.

 // CheckField() will add the provided key and error message to the

 // FieldErrors map if the check does not evaluate to true. For example, in

 // the first line here we "check that the form.Title field is not blank". In

 // the second, we "check that the form.Title field has a maximum character

 // length of 100" and so on.

 form.CheckField(validator.NotBlank(form.Title), "title", "This field cannot be blank")

 form.CheckField(validator.MaxChars(form.Title, 100), "title", "This field cannot be more than 100 characters long")

 form.CheckField(validator.NotBlank(form.Content), "content", "This field cannot be blank")

 form.CheckField(validator.PermittedInt(form.Expires, 1, 7, 365), "expires", "This field must equal 1, 7 or 365")

 // Use the Valid() method to see if any of the checks failed. If they did,

 // then re-render the template passing in the form in the same way as

 // before.

 if !form.Valid() {

 data := app.newTemplateData(r)

 data.Form = form

 app.render(w, http.StatusUnprocessableEntity, "create.tmpl", data)

 return

 }

 id, err := app.snippets.Insert(form.Title, form.Content, form.Expires)

 if err != nil {

 app.serverError(w, err)

 return

 }

 http.Redirect(w, r, fmt.Sprintf("/snippet/view/%d", id), http.StatusSeeOther)

}

So this is shaping up really nicely.

We’ve now got an internal/validator package with validation rules and logic that can be

reused across our application, and it can easily be extended to include additional rules in the

future. Both form data and errors are neatly encapsulated in a single snippetCreateForm

struct — which we can easily pass to our templates — and the API for displaying error

messages and re-populating the data in our templates is simple and consistent.

If you like, go ahead and re-run the application now. All being well, you should find that the

form and validation rules are working correctly and in exactly the same manner as before.

Chapter 8.6.

Automatic form parsing

Another thing we can do to simplify our handlers is use a third-party package like

go-playground/form or gorilla/schema to automatically decode the form data into the

createSnippetForm struct. Using an automatic decoder is totally optional, but it can help to

save you time and typing — especially if your application has lots of forms, or you need to

process a very large form.

In this chapter we’ll look at how to use the go-playground/form package. If you’re following

along, please go ahead and install it like so:

$ go get github.com/go-playground/form/v4@v4

go get: added github.com/go-playground/form/v4 v4.2.0

Using the form decoder

To get this working, the first thing that we need to do is initialize a new *form.Decoder

instance in our main.go file and make it available to our handlers as a dependency. Like this:

File: cmd/web/main.go

package main

import (

 "database/sql"

 "flag"

 "html/template"

 "log"

 "net/http"

 "os"

 "snippetbox.alexedwards.net/internal/models"

 "github.com/go-playground/form/v4" // New import

 _ "github.com/go-sql-driver/mysql"

)

// Add a formDecoder field to hold a pointer to a form.Decoder instance.

type application struct {

 errorLog *log.Logger

 infoLog *log.Logger

 snippets *models.SnippetModel

 templateCache map[string]*template.Template

 formDecoder *form.Decoder

}

func main() {

 addr := flag.String("addr", ":4000", "HTTP network address")

 dsn := flag.String("dsn", "web:pass@/snippetbox?parseTime=true", "MySQL data source name")

https://github.com/go-playground/form
https://github.com/gorilla/schema
https://pkg.go.dev/github.com/go-playground/form?utm_source=godoc#Decoder

 flag.Parse()

 infoLog := log.New(os.Stdout, "INFO\t", log.Ldate|log.Ltime)

 errorLog := log.New(os.Stderr, "ERROR\t", log.Ldate|log.Ltime|log.Lshortfile)

 db, err := openDB(*dsn)

 if err != nil {

 errorLog.Fatal(err)

 }

 defer db.Close()

 templateCache, err := newTemplateCache()

 if err != nil {

 errorLog.Fatal(err)

 }

 // Initialize a decoder instance...

 formDecoder := form.NewDecoder()

 // And add it to the application dependencies.

 app := &application{

 errorLog: errorLog,

 infoLog: infoLog,

 snippets: &models.SnippetModel{DB: db},

 templateCache: templateCache,

 formDecoder: formDecoder,

 }

 srv := &http.Server{

 Addr: *addr,

 ErrorLog: errorLog,

 Handler: app.routes(),

 }

 infoLog.Printf("Starting server on %s", *addr)

 err = srv.ListenAndServe()

 errorLog.Fatal(err)

}

...

Next let’s go to our cmd/web/handlers.go file and update it to use this new decoder, like so:

File: cmd/web/handlers.go

package main

...

// Update our snippetCreateForm struct to include struct tags which tell the

// decoder how to map HTML form values into the different struct fields. So, for

// example, here we're telling the decoder to store the value from the HTML form

// input with the name "title" in the Title field. The struct tag `form:"-"`

// tells the decoder to completely ignore a field during decoding.

type snippetCreateForm struct {

 Title string `form:"title"`

 Content string `form:"content"`

 Expires int `form:"expires"`

 validator.Validator `form:"-"`

}

func (app *application) snippetCreatePost(w http.ResponseWriter, r *http.Request) {

 err := r.ParseForm()

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 // Declare a new empty instance of the snippetCreateForm struct.

 var form snippetCreateForm

 // Call the Decode() method of the form decoder, passing in the current

 // request and *a pointer* to our snippetCreateForm struct. This will

 // essentially fill our struct with the relevant values from the HTML form.

 // If there is a problem, we return a 400 Bad Request response to the client.

 err = app.formDecoder.Decode(&form, r.PostForm)

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 // Then validate and use the data as normal...

 form.CheckField(validator.NotBlank(form.Title), "title", "This field cannot be blank")

 form.CheckField(validator.MaxChars(form.Title, 100), "title", "This field cannot be more than 100 characters long")

 form.CheckField(validator.NotBlank(form.Content), "content", "This field cannot be blank")

 form.CheckField(validator.PermittedInt(form.Expires, 1, 7, 365), "expires", "This field must equal 1, 7 or 365")

 if !form.Valid() {

 data := app.newTemplateData(r)

 data.Form = form

 app.render(w, http.StatusUnprocessableEntity, "create.tmpl", data)

 return

 }

 id, err := app.snippets.Insert(form.Title, form.Content, form.Expires)

 if err != nil {

 app.serverError(w, err)

 return

 }

 http.Redirect(w, r, fmt.Sprintf("/snippet/view/%d", id), http.StatusSeeOther)

}

Hopefully you can see the benefit of this pattern. We can use simple struct tags to define a

mapping between our HTML form and the ‘destination’ data fields, and unpacking the form

data to the destination now only requires us to write a few lines of code — irrespective of how

large the form is.

Importantly, type conversions are handled automatically too. We can see that in the code

above, where the expires value is automatically mapped to an int data type.

So that’s really good. But there is one problem.

When we call app.formDecoder.Decode() it requires a non-nil pointer as the target decode

destination. If we try to pass in something that isn’t a non-nil pointer, then Decode() will

return a form.InvalidDecoderError error.

If this ever happens, it’s a critical problem with our application code (rather than a client error

due to bad input). So we need to check for this error specifically and manage it as a special

case, rather than just returning a 400 Bad Request response.

Creating a decodePostForm helper

To assist with this, let’s create a new decodePostForm() helper which does three things:

Calls r.ParseForm() on the current request.

Calls app.formDecoder.Decode() to unpack the HTML form data to a target destination.

Checks for a form.InvalidDecoderError error and triggers a panic if we ever see it.

If you’re following along, please go ahead and add this to your cmd/web/helpers.go file like

so:

https://pkg.go.dev/github.com/go-playground/form/v4#InvalidDecoderError

File: cmd/web/helpers.go

package main

import (

 "bytes"

 "errors"

 "fmt"

 "net/http"

 "runtime/debug"

 "time"

 "github.com/go-playground/form/v4" // New import

)

...

// Create a new decodePostForm() helper method. The second parameter here, dst,

// is the target destination that we want to decode the form data into.

func (app *application) decodePostForm(r *http.Request, dst any) error {

 // Call ParseForm() on the request, in the same way that we did in our

 // createSnippetPost handler.

 err := r.ParseForm()

 if err != nil {

 return err

 }

 // Call Decode() on our decoder instance, passing the target destination as

 // the first parameter.

 err = app.formDecoder.Decode(dst, r.PostForm)

 if err != nil {

 // If we try to use an invalid target destination, the Decode() method

 // will return an error with the type *form.InvalidDecoderError.We use

 // errors.As() to check for this and raise a panic rather than returning

 // the error.

 var invalidDecoderError *form.InvalidDecoderError

 if errors.As(err, &invalidDecoderError) {

 panic(err)

 }

 // For all other errors, we return them as normal.

 return err

 }

 return nil

}

And with that done, we can make the final simplification to our createSnippetPost handler.

Go ahead and update it to use the decodePostForm() helper and remove the r.ParseForm()

call, so that the code looks like this:

File: cmd/web/handlers.go

package main

...

func (app *application) snippetCreatePost(w http.ResponseWriter, r *http.Request) {

 var form snippetCreateForm

 err := app.decodePostForm(r, &form)

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 form.CheckField(validator.NotBlank(form.Title), "title", "This field cannot be blank")

 form.CheckField(validator.MaxChars(form.Title, 100), "title", "This field cannot be more than 100 characters long")

 form.CheckField(validator.NotBlank(form.Content), "content", "This field cannot be blank")

 form.CheckField(validator.PermittedInt(form.Expires, 1, 7, 365), "expires", "This field must equal 1, 7 or 365")

 if !form.Valid() {

 data := app.newTemplateData(r)

 data.Form = form

 app.render(w, http.StatusUnprocessableEntity, "create.tmpl", data)

 return

 }

 id, err := app.snippets.Insert(form.Title, form.Content, form.Expires)

 if err != nil {

 app.serverError(w, err)

 return

 }

 http.Redirect(w, r, fmt.Sprintf("/snippet/view/%d", id), http.StatusSeeOther)

}

That’s looking really good.

Our handler code is now nice and succinct, but still very clear in terms of it’s behavior and

what it is doing. And we have a general pattern in place for form processing and validation

that we can easily re-use on other forms in our project — such as the user signup and login

forms that we’ll build shortly.

Chapter 9.

Stateful HTTP

A nice touch to improve our user experience would be to display a one-time confirmation

message which the user sees after they’ve added a new snippet. Like so:

A confirmation message like this should only show up for the user once (immediately after

creating the snippet) and no other users should ever see the message. If you’ve been

programming for a while already, you might know this type of functionality as a flash message

or a toast.

To make this work, we need to start sharing data (or state) between HTTP requests for the

same user. The most common way to do that is to implement a session for the user.

In this section you’ll learn:

What session managers are available to help us implement sessions in Go.

How to use sessions to safely and securely share data between requests for a particular

user.

How you can customize session behavior (including timeouts and cookie settings) based

on your application’s needs.

Chapter 9.1.

Choosing a session manager

There are a lot of security considerations when it comes to working with sessions, and proper

implementation is not trivial. Unless you really need to roll your own implementation, it’s a

good idea to use an existing, well-tested, third-party package here.

I recommend using either gorilla/sessions, or alexedwards/scs , depending on your

project’s needs.

gorilla/sessions is the most established and well-known session management package

for Go. It has a simple and easy-to-use API, and let’s you store session data client-side (in

signed and encrypted cookies) or server-side (in a database like MySQL, PostgreSQL or

Redis).

However — importantly — it doesn’t provide a mechanism to renew session IDs (which is

necessary to reduce risks associated with session fixation attacks if you’re using one of the

server-side session stores).

alexedwards/scs lets you store session data server-side only. It supports automatic

loading and saving of session data via middleware, has a nice interface for type-safe

manipulation of data, and does allow renewal of session IDs. Like gorilla/sessions, it

also supports a variety of databases (including MySQL, PostgreSQL and Redis).

In summary, if you want to store session data client-side in a cookie then gorilla/sessions is

a good choice, but otherwise alexedwards/scs is generally the better option due to the ability

to renew session IDs.

For this project we’ve already got a MySQL database set up, so we’ll opt to use

alexedwards/scs and store the session data server-side in MySQL.

If you’re following along, make sure that you’re in your project directory and install the

necessary packages like so:

$ go get github.com/alexedwards/scs/v2@v2

go: downloading github.com/alexedwards/scs/v2 v2.5.0

go get: added github.com/alexedwards/scs/v2 v2.5.0

$ go get github.com/alexedwards/scs/mysqlstore

go: downloading github.com/alexedwards/scs/mysqlstore v0.0.0-20220216073957-c252878bcf5a

go get: added github.com/alexedwards/scs/mysqlstore v0.0.0-20220216073957-c252878bcf5a

https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html
https://github.com/gorilla/sessions
https://github.com/alexedwards/scs
https://cheatsheetseries.owasp.org/cheatsheets/Session_Management_Cheat_Sheet.html#renew-the-session-id-after-any-privilege-level-change

Chapter 9.2.

Setting up the session manager

In this chapter I’ll run through the process of setting up and using the alexedwards/scs

package, but if you’re going to use it in a production application I recommend reading the

documentation and API reference to familiarize yourself with the full range of features.

The first thing we need to do is create a sessions table in our MySQL database to hold the

session data for our users. Start by connecting to MySQL from your terminal window as the

root user and execute the following SQL statement to setup the sessions table:

USE snippetbox;

CREATE TABLE sessions (

 token CHAR(43) PRIMARY KEY,

 data BLOB NOT NULL,

 expiry TIMESTAMP(6) NOT NULL

);

CREATE INDEX sessions_expiry_idx ON sessions (expiry);

In this table:

The token field will contain a unique, randomly-generated, identifier for each session.

The data field will contain the actual session data that you want to share between HTTP

requests. This is stored as binary data in a BLOB (binary large object) type.

The expiry field will contain an expiry time for the session. The scs package will

automatically delete expired sessions from the sessions table so that it doesn’t grow too

large.

The next thing we need to do is establish a session manager in our main.go file and make it

available to our handlers via the application struct. The session manager holds the

configuration settings for our sessions, and also provides some middleware and helper

methods to handle the loading and saving of session data.

Open your main.go file and update it as follows:

File: cmd/web/main.go

package main

import (

 "database/sql"

 "flag"

https://github.com/alexedwards/scs
https://pkg.go.dev/github.com/alexedwards/scs/v2

 "flag"

 "html/template"

 "log"

 "net/http"

 "os"

 "time" // New import

 "snippetbox.alexedwards.net/internal/models"

 "github.com/alexedwards/scs/mysqlstore" // New import

 "github.com/alexedwards/scs/v2" // New import

 "github.com/go-playground/form/v4"

 _ "github.com/go-sql-driver/mysql"

)

// Add a new sessionManager field to the application struct.

type application struct {

 errorLog *log.Logger

 infoLog *log.Logger

 snippets *models.SnippetModel

 templateCache map[string]*template.Template

 formDecoder *form.Decoder

 sessionManager *scs.SessionManager

}

func main() {

 addr := flag.String("addr", ":4000", "HTTP network address")

 dsn := flag.String("dsn", "web:pass@/snippetbox?parseTime=true", "MySQL data source name")

 flag.Parse()

 infoLog := log.New(os.Stdout, "INFO\t", log.Ldate|log.Ltime)

 errorLog := log.New(os.Stderr, "ERROR\t", log.Ldate|log.Ltime|log.Lshortfile)

 db, err := openDB(*dsn)

 if err != nil {

 errorLog.Fatal(err)

 }

 defer db.Close()

 templateCache, err := newTemplateCache()

 if err != nil {

 errorLog.Fatal(err)

 }

 formDecoder := form.NewDecoder()

 // Use the scs.New() function to initialize a new session manager. Then we

 // configure it to use our MySQL database as the session store, and set a

 // lifetime of 12 hours (so that sessions automatically expire 12 hours

 // after first being created).

 sessionManager := scs.New()

 sessionManager.Store = mysqlstore.New(db)

 sessionManager.Lifetime = 12 * time.Hour

 // And add the session manager to our application dependencies.

 app := &application{

 errorLog: errorLog,

 infoLog: infoLog,

 snippets: &models.SnippetModel{DB: db},

 templateCache: templateCache,

 formDecoder: formDecoder,

 sessionManager: sessionManager,

 }

 srv := &http.Server{

 Addr: *addr,

 ErrorLog: errorLog,

 Handler: app.routes(),

 Handler: app.routes(),

 }

 infoLog.Printf("Starting server on %s", *addr)

 err = srv.ListenAndServe()

 errorLog.Fatal(err)

}

...

Note: The scs.New() function returns a pointer to a SessionManager struct which holds

configuration settings for your sessions. In the code above we’ve set the Store and

Lifetime fields of this struct, but there’s a range of other fields that you can and should

configure depending on your application’s needs.

For the sessions to work, we also need to wrap our application routes with the middleware

provided by the SessionManager.LoadAndSave() method. This middleware automatically

loads and saves session data with every HTTP request and response.

It’s important to note that we don’t need this middleware to act on all our application routes.

Specifically, we don’t need it on the /static/*filepath route, because all this does is serve

static files and there is no need for any stateful behavior.

So, because of that, it doesn’t make sense to add the session middleware to our existing

standard middleware chain.

Instead, let’s create a new dynamic middleware chain containing the middleware appropriate

for our dynamic application routes only.

Open the routes.go file and update it like so:

https://pkg.go.dev/github.com/alexedwards/scs/v2#SessionManager
https://pkg.go.dev/github.com/alexedwards/scs/v2#SessionManager
https://pkg.go.dev/github.com/alexedwards/scs/v2#SessionManager.LoadAndSave

File: cmd/web/routes.go

package main

import (

 "net/http"

 "github.com/julienschmidt/httprouter"

 "github.com/justinas/alice"

)

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 app.notFound(w)

 })

 // Leave the static files route unchanged.

 fileServer := http.FileServer(http.Dir("./ui/static/"))

 router.Handler(http.MethodGet, "/static/*filepath", http.StripPrefix("/static", fileServer))

 // Create a new middleware chain containing the middleware specific to our

 // dynamic application routes. For now, this chain will only contain the

 // LoadAndSave session middleware but we'll add more to it later.

 dynamic := alice.New(app.sessionManager.LoadAndSave)

 // Update these routes to use the new dynamic middleware chain followed by

 // the appropriate handler function. Note that because the alice ThenFunc()

 // method returns a http.Handler (rather than a http.HandlerFunc) we also

 // need to switch to registering the route using the router.Handler() method.

 router.Handler(http.MethodGet, "/", dynamic.ThenFunc(app.home))

 router.Handler(http.MethodGet, "/snippet/view/:id", dynamic.ThenFunc(app.snippetView))

 router.Handler(http.MethodGet, "/snippet/create", dynamic.ThenFunc(app.snippetCreate))

 router.Handler(http.MethodPost, "/snippet/create", dynamic.ThenFunc(app.snippetCreatePost))

 standard := alice.New(app.recoverPanic, app.logRequest, secureHeaders)

 return standard.Then(router)

}

If you run the application now you should find that it compiles all OK, and your application

routes continue to work as normal.

Additional information

Without using alice

If you’re not using the justinas/alice package to help manage your middleware chains,

then you’d need to use the http.HandlerFunc() adapter to convert your handler functions

like app.home to a http.Handler, and then wrap that with session middleware instead. Like

this:

router := httprouter.New()

router.Handler(http.MethodGet, "/", app.sessionManager.LoadAndSave(http.HandlerFunc(app.home)))

router.Handler(http.MethodGet, "/snippet/view/:id", app.sessionManager.LoadAndSave(http.HandlerFunc(app.snippetView)))

// ... etc

Chapter 9.3.

Working with session data

In this chapter let’s put the session functionality to work and use it to persist the confirmation

flash message between HTTP requests that we discussed earlier.

We’ll begin in our cmd/web/handlers.go file and update our snippetCreatePost so that a

flash message is added to the user’s session data if — and only if — the snippet was created

successfully. Like so:

File: cmd/web/handlers.go

package main

...

func (app *application) snippetCreatePost(w http.ResponseWriter, r *http.Request) {

 var form snippetCreateForm

 err := app.decodePostForm(r, &form)

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 form.CheckField(validator.NotBlank(form.Title), "title", "This field cannot be blank")

 form.CheckField(validator.MaxChars(form.Title, 100), "title", "This field cannot be more than 100 characters long")

 form.CheckField(validator.NotBlank(form.Content), "content", "This field cannot be blank")

 form.CheckField(validator.PermittedInt(form.Expires, 1, 7, 365), "expires", "This field must equal 1, 7 or 365")

 if !form.Valid() {

 data := app.newTemplateData(r)

 data.Form = form

 app.render(w, http.StatusUnprocessableEntity, "create.tmpl", data)

 return

 }

 id, err := app.snippets.Insert(form.Title, form.Content, form.Expires)

 if err != nil {

 app.serverError(w, err)

 return

 }

 // Use the Put() method to add a string value ("Snippet successfully

 // created!") and the corresponding key ("flash") to the session data.

 app.sessionManager.Put(r.Context(), "flash", "Snippet successfully created!")

 http.Redirect(w, r, fmt.Sprintf("/snippet/view/%d", id), http.StatusSeeOther)

}

That’s nice and simple, but there are a couple of things to point out:

The first parameter that we pass to app.sessionManager.Put() is the current request

context. We’ll talk properly about what the request context is and how to use it later in the

https://pkg.go.dev/github.com/alexedwards/scs/v2#SessionManager.Put

book, but for now you can just think of it as somewhere that the session manager

temporarily stores information while your handlers are dealing with the request.

The second parameter (in our case the string "flash") is the key for the specific message

that we are adding to the session data. We’ll subsequently retrieve the message from the

session data using this key too.

If there’s no existing session for the current user (or their session has expired) then a new,

empty, session for them will automatically be created by the session middleware.

Next up we want our snippetView handler to retrieve the flash message (if one exists in the

session for the current user) and pass it to the HTML template for subsequent display.

Because we want to display the flash message once only, we actually want to retrieve and

remove the message from the session data. We can do both these operations at the same

time by using the PopString() method.

I’ll demonstrate:

https://pkg.go.dev/github.com/alexedwards/scs/v2#SessionManager.PopString

File: cmd/web/handlers.go

package main

...

func (app *application) snippetView(w http.ResponseWriter, r *http.Request) {

 params := httprouter.ParamsFromContext(r.Context())

 id, err := strconv.Atoi(params.ByName("id"))

 if err != nil || id < 1 {

 app.notFound(w)

 return

 }

 snippet, err := app.snippets.Get(id)

 if err != nil {

 if errors.Is(err, models.ErrNoRecord) {

 app.notFound(w)

 } else {

 app.serverError(w, err)

 }

 return

 }

 // Use the PopString() method to retrieve the value for the "flash" key.

 // PopString() also deletes the key and value from the session data, so it

 // acts like a one-time fetch. If there is no matching key in the session

 // data this will return the empty string.

 flash := app.sessionManager.PopString(r.Context(), "flash")

 data := app.newTemplateData(r)

 data.Snippet = snippet

 // Pass the flash message to the template.

 data.Flash = flash

 app.render(w, http.StatusOK, "view.tmpl", data)

}

...

Info: If you want to retrieve a value from the session data only (and leave it in there) you

can use the GetString() method instead. The scs package also provides methods for

retrieving other common data types, including GetInt(), GetBool() , GetBytes() and

GetTime() .

If you try to run the application now, the compiler will (rightly) grumble that the Flash field

isn’t defined in our templateData struct. Go ahead and add it in like so:

File: cmd/web/templates.go

package main

import (

 "html/template"

 "path/filepath"

 "time"

 "snippetbox.alexedwards.net/internal/models"

)

type templateData struct {

 CurrentYear int

 Snippet *models.Snippet

 Snippets []*models.Snippet

 Form any

 Flash string // Add a Flash field to the templateData struct.

}

...

And now, we can update our base.tmpl file to display the flash message, if one exists.

File: ui/html/base.tmpl

{{define "base"}}

<!doctype html>

<html lang='en'>

 <head>

 <meta charset='utf-8'>

 <title>{{template "title" .}} - Snippetbox</title>

 <link rel='stylesheet' href='/static/css/main.css'>

 <link rel='shortcut icon' href='/static/img/favicon.ico' type='image/x-icon'>

 <link rel='stylesheet' href='https://fonts.googleapis.com/css?family=Ubuntu+Mono:400,700'>

 </head>

 <body>

 <header>

 <h1>Snippetbox</h1>

 </header>

 {{template "nav" .}}

 <main>

 <!-- Display the flash message if one exists -->

 {{with .Flash}}

 <div class='flash'>{{.}}</div>

 {{end}}

 {{template "main" .}}

 </main>

 <footer>

 Powered by Go in {{.CurrentYear}}

 </footer>

 <script src="/static/js/main.js" type="text/javascript"></script>

 </body>

</html>

{{end}}

Remember, the {{with .Flash}} block will only be executed if the value of .Flash is not the

empty string. So, if there’s no "flash" key in the current user’s session, the result is that the

chunk of new markup simply won’t be displayed.

Once that’s done, save all your files and restart the application. Try adding a new snippet like

so…

And after redirection you should see the flash message now being displayed:

If you try refreshing the page, you can confirm that the flash message is no longer shown — it

was a one-off message for the current user immediately after they created the snippet.

Auto-displaying flash messages

A little improvement we can make (which will save us some work later in the project) is to

automate the display of flash messages, so that any message is automatically included the

next time any page is rendered.

We can do this by adding any flash message to the template data via the newTemplateData()

helper method that we made earlier, like so:

File: cmd/web/helpers.go

package main

...

func (app *application) newTemplateData(r *http.Request) *templateData {

 return &templateData{

 CurrentYear: time.Now().Year(),

 // Add the flash message to the template data, if one exists.

 Flash: app.sessionManager.PopString(r.Context(), "flash"),

 }

}

...

Making that change means that we no longer need to check for the flash message within the

snippetView handler, and the code can be reverted to look like this:

File: cmd/web/handlers.go

package main

...

func (app *application) snippetView(w http.ResponseWriter, r *http.Request) {

 params := httprouter.ParamsFromContext(r.Context())

 id, err := strconv.Atoi(params.ByName("id"))

 if err != nil || id < 1 {

 app.notFound(w)

 return

 }

 snippet, err := app.snippets.Get(id)

 if err != nil {

 if errors.Is(err, models.ErrNoRecord) {

 app.notFound(w)

 } else {

 app.serverError(w, err)

 }

 return

 }

 data := app.newTemplateData(r)

 data.Snippet = snippet

 app.render(w, http.StatusOK, "view.tmpl", data)

}

...

Feel free to try running the application again and creating another snippet. You should find

that the flash message functionality still works as expected.

Additional information

Behind-the-scenes of session management

I’d like to take a moment to unpack some of the ‘magic’ behind session management and

explain how it works behind-the-scenes.

If you like, open up the developer tools in your web browser and take a look at the cookie

data for one of the pages. You should see a cookie named session in the request data, similar

to this:

This is the session cookie, and it will be sent back to the Snippetbox application with every

request that your browser makes.

The session cookie contains the session token — also sometimes known as the session ID. The

session token is a high-entropy random string, which in my case is the value

y9y1-mXyQUoAM6V5s9lXNjbZ_vXSGkO7jy-KL-di7A4 (yours will be different).

It’s important to emphasize that the session token is just a random string. In itself, it doesn’t

carry or convey any session data (like the flash message that we set in this chapter).

Next, you might like to open up a terminal to MySQL and run a SELECT query against the

sessions table to lookup the session token that you see in your browser. Like so:

mysql> SELECT * FROM sessions WHERE token = 'y9y1-mXyQUoAM6V5s9lXNjbZ_vXSGkO7jy-KL-di7A4';

+---+--+----------------------------+

| token | data | expiry |

+---+--+----------------------------+

| y9y1-mXyQUoAM6V5s9lXNjbZ_vXSGkO7jy-KL-di7A4 | 0x26FF81030102FF820001020108446561646C696E6501FF8400010656616C75657301FF8600000010FF830501010454696D6501FF8400000027FF85040101176D61705B737472696E675D696E74657266616365207B7D01FF8600010C0110000016FF82010F010000000ED9F4496109B650EBFFFF010000 | 2022-04-22 06:59:45.162943 |

+---+--+----------------------------+

1 row in set (0.00 sec)

This should return one record. The data value here is the thing that actually contains our

session data. Specifically, what we’re looking at is a MySQL BLOB (binary large object)

containing a gob-encoded representation of the session data.

https://pkg.go.dev/encoding/gob

Each and every time we make a change to our session data, this data value will be updated to

reflect the changes.

Lastly, the final column in the database is the expiry time, after which the session will no

longer be considered valid.

So, what happens in our application is that the LoadAndSave() middleware checks each

incoming request for a session cookie. If a session cookie is present, it reads the session token

and retrieves the corresponding session data from the database (while also checking that the

session hasn’t expired). It then adds the session data to the request context so it can be used

in your handlers.

Any changes that you make to the session data in your handlers are updated in the request

context, and then the LoadAndSave() middleware updates the database with any changes to

the session data before it returns.

Chapter 10.

Security improvements

In this section of the book we’re going to make some improvements to our application so that

our data is kept secure during transit and our server is better able to deal with some common

types of denial-of-service attacks.

You’ll learn:

How to quickly and easily create a self-signed TLS certificate, using only Go.

The fundamentals of setting up your application so that all requests and responses are

served securely over HTTPS.

Some sensible tweaks to the default TLS settings to help keep user information secure and

our server performing quickly.

How to set connection timeouts on our server to mitigate slow-client attacks.

Chapter 10.1.

Generating a self-signed TLS certificate

HTTPS is essentially HTTP sent across a TLS (Transport Layer Security) connection. Because

it’s sent over a TLS connection the data is encrypted and signed, which helps ensure its

privacy and integrity during transit.

If you’re not familiar with the term, TLS is essentially the modern version of SSL (Secure

Sockets Layer). SSL now has been officially deprecated due to security concerns, but the

name still lives on in the public consciousness and is often used interoperably with TLS. For

clarity and accuracy, we’ll stick with the term TLS throughout this book.

Before our server can start using HTTPS, we need to generate a TLS certificate.

For production servers I recommend using Let’s Encrypt to create your TLS certificates, but

for development purposes the simplest thing to do is to generate your own self-signed

certificate.

A self-signed certificate is the same as a normal TLS certificate, except that it isn’t

cryptographically signed by a trusted certificate authority. This means that your web browser

will raise a warning the first time it’s used, but it will nonetheless encrypt HTTPS traffic

correctly and is fine for development and testing purposes.

Handily, the crypto/tls package in Go’s standard library includes a generate_cert.go tool

that we can use to easily create our own self-signed certificate.

If you’re following along, first create a new tls directory in the root of your project repository

to hold the certificate and change into it:

$ cd $HOME/code/snippetbox

$ mkdir tls

$ cd tls

To run the generate_cert.go tool, you’ll need to know the place on your computer where the

source code for the Go standard library is installed. If you’re using Linux, macOS or FreeBSD

and followed the official install instructions, then the generate_cert.go file should be

located under /usr/local/go/src/crypto/tls.

If you’re using macOS and installed Go using Homebrew, the file will probably be at

/usr/local/Cellar/go/<version>/libexec/src/crypto/tls/generate_cert.go or a similar

path.

https://letsencrypt.org/
https://golang.org/doc/install#install

Once you know where it is located, you can then run the generate_cert.go tool like so:

$ go run /usr/local/go/src/crypto/tls/generate_cert.go --rsa-bits=2048 --host=localhost

2022/02/17 18:51:29 wrote cert.pem

2022/02/17 18:51:29 wrote key.pem

Behind the scenes the generate_cert.go tool works in two stages:

1. First it generates a 2048-bit RSA key pair, which is a cryptographically secure public key

and private key.

2. It then stores the private key in a key.pem file, and generates a self-signed TLS certificate

for the host localhost containing the public key — which it stores in a cert.pem file. Both

the private key and certificate are PEM encoded, which is the standard format used by

most TLS implementations.

Your project repository should now look something like this:

And that’s it! We’ve now got a self-signed TLS certificate (and corresponding private key) that

we can use during development.

https://www.fastly.com/blog/key-size-for-tls
https://en.wikipedia.org/wiki/Public-key_cryptography

Chapter 10.2.

Running a HTTPS server

Now that we have a self-signed TLS certificate and corresponding private key, starting a

HTTPS web server is lovely and simple — we just need open the main.go file and swap the

srv.ListenAndServe() method for srv.ListenAndServeTLS() instead.

Alter your main.go file to match the following code:

https://pkg.go.dev/net/http/#Server.ListenAndServeTLS

File: cmd/web/main.go

package main

...

func main() {

 addr := flag.String("addr", ":4000", "HTTP network address")

 dsn := flag.String("dsn", "web:pass@/snippetbox?parseTime=true", "MySQL data source name")

 flag.Parse()

 infoLog := log.New(os.Stdout, "INFO\t", log.Ldate|log.Ltime)

 errorLog := log.New(os.Stderr, "ERROR\t", log.Ldate|log.Ltime|log.Lshortfile)

 db, err := openDB(*dsn)

 if err != nil {

 errorLog.Fatal(err)

 }

 defer db.Close()

 templateCache, err := newTemplateCache()

 if err != nil {

 errorLog.Fatal(err)

 }

 formDecoder := form.NewDecoder()

 sessionManager := scs.New()

 sessionManager.Store = mysqlstore.New(db)

 sessionManager.Lifetime = 12 * time.Hour

 // Make sure that the Secure attribute is set on our session cookies.

 // Setting this means that the cookie will only be sent by a user's web

 // browser when a HTTPS connection is being used (and won't be sent over an

 // unsecure HTTP connection).

 sessionManager.Cookie.Secure = true

 app := &application{

 errorLog: errorLog,

 infoLog: infoLog,

 snippets: &models.SnippetModel{DB: db},

 templateCache: templateCache,

 formDecoder: formDecoder,

 sessionManager: sessionManager,

 }

 srv := &http.Server{

 Addr: *addr,

 ErrorLog: errorLog,

 Handler: app.routes(),

 }

 infoLog.Printf("Starting server on %s", *addr)

 // Use the ListenAndServeTLS() method to start the HTTPS server. We

 // pass in the paths to the TLS certificate and corresponding private key as

 // the two parameters.

 err = srv.ListenAndServeTLS("./tls/cert.pem", "./tls/key.pem")

 errorLog.Fatal(err)

}

...

When we run this, our server will still be listening on port 4000 — the only difference is that it

will now be talking HTTPS instead of HTTP.

Go ahead and run it as normal:

$ cd $HOME/code/snippetbox

$ go run ./cmd/web

INFO 2022/02/17 19:04:18 Starting server on :4000

If you open up your web browser and visit https://localhost:4000/ you will probably get a

browser warning similar to the screenshot below.

If you’re using Firefox like me, click “Advanced” then “Accept the Risk and Continue”.

If you’re using Chrome or Chromium, click “Advanced” and then the “Proceed to localhost

(unsafe)” link.

After that the application homepage should appear (although it will still carry a warning in the

URL bar because the TLS certificate is self-signed).

In Firefox, it should look a bit like this:

https://localhost:4000/

If you’re using Firefox, I recommend pressing Ctrl+i to inspect the Page Info for your

homepage:

The ‘Security > Technical Details’ section here confirms that our connection is encrypted and

working as expected.

In my case, I can see that TLS version 1.3 is being used, and the cipher suite for my HTTPS

connection is TLS_AES_128_GCM_SHA256. We’ll talk more about cipher suites in the next

chapter.

Aside: If you’re wondering who or what ‘Acme Co’ is in the Web Site Identity section of

the screenshot above, it’s just a hard-coded placeholder name that the

generate_cert.go tool uses.

Additional information

HTTP requests

It’s important to note that our HTTPS server only supports HTTPS. If you try making a regular

HTTP request to it, the server will send the user a 400 Bad Request status and the message

"Client sent an HTTP request to an HTTPS server" . Nothing will be logged.

$ curl -i http://localhost:4000/

HTTP/1.0 400 Bad Request

Client sent an HTTP request to an HTTPS server.

HTTP/2 connections

A big plus of using HTTPS is that — if a client supports HTTP/2 connections — Go’s HTTPS

server will automatically upgrade the connection to use HTTP/2.

This is good because it means that, ultimately, our pages will load faster for users. If you’re

not familiar with HTTP/2 you can get a run-down of the basics and a flavor of how has been

implemented behind the scenes in this GoSF meetup talk by Brad Fitzpatrick.

If you’re using an up-to-date version of Firefox you should be able to see this in action. Press

Ctrl+Shift+E to open the Developer Tools, and if you look at the headers for the homepage

you should see that the protocol being used is HTTP/2.

Certificate permissions

It’s important to note that the user that you’re using to run your Go application must have

read permissions for both the cert.pem and key.pem files, otherwise ListenAndServeTLS()

https://en.wikipedia.org/wiki/HTTP/2
https://www.youtube.com/watch?v=FARQMJndUn0

will return a permission denied error.

By default, the generate_cert.go tool grants read permission to all users for the cert.pem file

but read permission only to the owner of the key.pem file. In my case the permissions look

like this:

$ cd $HOME/code/snippetbox/tls

$ ls -l

total 8

-rw-rw-r-- 1 alex alex 1094 Feb 17 18:51 cert.pem

-rw------- 1 alex alex 1704 Feb 17 18:51 key.pem

Generally, it’s a good idea to keep the permissions of your private keys as tight as possible

and allow them to be read only by the owner or a specific group.

Source control

If you’re using a version control system (like Git or Mercurial) you may want to add an ignore

rule so the contents of the tls directory are not accidentally committed. With Git, for

instance:

$ cd $HOME/code/snippetbox

$ echo 'tls/' >> .gitignore

Chapter 10.3.

Configuring HTTPS settings

Go has good default settings for its HTTPS server, but it’s possible to optimize and customize

how the server behaves.

One change, which is almost always a good idea to make, is to restrict the elliptic curves that

can potentially be used during the TLS handshake. Go supports a few elliptic curves, but as of

Go 1.18 only tls.CurveP256 and tls.X25519 have assembly implementations. The others are

very CPU intensive, so omitting them helps ensure that our server will remain performant

under heavy loads.

To make this tweak, we can create a tls.Config struct containing our non-default TLS

settings, and add it to our http.Server struct before we start the server.

I’ll demonstrate:

https://pkg.go.dev/crypto/tls#Config

File: cmd/web/main.go

package main

import (

 "crypto/tls" // New import

 "database/sql"

 "flag"

 "html/template"

 "log"

 "net/http"

 "os"

 "time"

 "snippetbox.alexedwards.net/internal/models"

 "github.com/alexedwards/scs/mysqlstore"

 "github.com/alexedwards/scs/v2"

 "github.com/go-playground/form/v4"

 _ "github.com/go-sql-driver/mysql"

)

...

func main() {

 ...

 app := &application{

 errorLog: errorLog,

 infoLog: infoLog,

 snippets: &models.SnippetModel{DB: db},

 templateCache: templateCache,

 formDecoder: formDecoder,

 sessionManager: sessionManager,

 }

 // Initialize a tls.Config struct to hold the non-default TLS settings we

 // want the server to use. In this case the only thing that we're changing

 // is the curve preferences value, so that only elliptic curves with

 // assembly implementations are used.

 tlsConfig := &tls.Config{

 CurvePreferences: []tls.CurveID{tls.X25519, tls.CurveP256},

 }

 // Set the server's TLSConfig field to use the tlsConfig variable we just

 // created.

 srv := &http.Server{

 Addr: *addr,

 ErrorLog: errorLog,

 Handler: app.routes(),

 TLSConfig: tlsConfig,

 }

 infoLog.Printf("Starting server on %s", *addr)

 err = srv.ListenAndServeTLS("./tls/cert.pem", "./tls/key.pem")

 errorLog.Fatal(err)

}

...

Additional information

TLS versions

TLS versions are also defined as constants in the crypto/tls package, and Go’s HTTPS server

supports TLS versions 1.0 to 1.3.

You can configure the minimum and maximum TLS versions via the tls.Config.MinVersion

and MaxVersion fields. For instance, if you know that all computers in your user base support

TLS 1.2, but not TLS 1.3, then you may wish to use a configuration like so:

tlsConfig := &tls.Config{

 MinVersion: tls.VersionTLS12,

 MaxVersion: tls.VersionTLS12,

}

Restricting cipher suites

The full range of cipher suites that Go supports are defined in the crypto/tls package

constants.

For some applications, it may be desirable to limit your HTTPS server to only support some of

these cipher suites. For example, you might want to only support cipher suites which use

ECDHE (forward secrecy) and not support weak cipher suites that use RC4, 3DES or CBC. You

can do this via the tls.Config.CipherSuites field like so:

tlsConfig := &tls.Config{

 CipherSuites: []uint16{

 tls.TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,

 tls.TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384,

 tls.TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305,

 tls.TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305,

 tls.TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,

 tls.TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256,

 },

}

Go will automatically choose which of these cipher suites is actually used at runtime based on

the cipher security, performance, and client/server hardware support.

https://pkg.go.dev/crypto/tls/#pkg-constants
https://pkg.go.dev/crypto/tls/#pkg-constants

Important: Restricting the supported cipher suites to only include strong, modern,

ciphers can mean that users with certain older browsers won’t be able to use your

website. There’s a balance to be struck between security and backwards-compatibility

and the right decision for you will depend on the technology typically used by your user

base. Mozilla’s recommended configurations for modern, intermediate and old

browsers may assist you in making a decision here.

It’s also important (and interesting) to note that if a TLS 1.3 connection is negotiated, any

CipherSuites field in your tls.Config will be ignored. The reason for this is that all the cipher

suites that Go supports for TLS 1.3 connections are considered to be safe, so there isn’t much

point in providing a mechanism to configure them.

Basically, using tls.Config to set a custom list of supported cipher suites will affect TLS 1.0-

1.2 connections only.

https://wiki.mozilla.org/Security/Server_Side_TLS

Chapter 10.4.

Connection timeouts

Let’s take a moment to improve the resiliency of our server by adding some timeout settings,

like so:

File: cmd/web/main.go

package main

...

func main() {

 ...

 tlsConfig := &tls.Config{

 CurvePreferences: []tls.CurveID{tls.X25519, tls.CurveP256},

 }

 srv := &http.Server{

 Addr: *addr,

 ErrorLog: errorLog,

 Handler: app.routes(),

 TLSConfig: tlsConfig,

 // Add Idle, Read and Write timeouts to the server.

 IdleTimeout: time.Minute,

 ReadTimeout: 5 * time.Second,

 WriteTimeout: 10 * time.Second,

 }

 infoLog.Printf("Starting server on %s", *addr)

 err = srv.ListenAndServeTLS("./tls/cert.pem", "./tls/key.pem")

 errorLog.Fatal(err)

}

...

All three of these timeouts — IdleTimeout , ReadTimeout and WriteTimeout — are server-wide

settings which act on the underlying connection and apply to all requests irrespective of their

handler or URL.

The IdleTimeout setting

By default, Go enables keep-alives on all accepted connections. This helps reduce latency

(especially for HTTPS connections) because a client can reuse the same connection for

multiple requests without having to repeat the handshake.

By default, keep-alive connections will be automatically closed after a couple of minutes

(with the exact time depending on your operating system). This helps to clear-up connections

https://en.wikipedia.org/wiki/HTTP_persistent_connection
https://github.com/golang/go/issues/23459#issuecomment-374777402

where the user has unexpectedly disappeared — e.g. due to a power cut client-side.

There is no way to increase this default (unless you roll your own net.Listener), but you can

reduce it via the IdleTimeout setting. In our case, we’ve set IdleTimeout to 1 minute, which

means that all keep-alive connections will be automatically closed after 1 minute of inactivity.

The ReadTimeout setting

In our code we’ve also set the ReadTimeout setting to 5 seconds. This means that if the

request headers or body are still being read 5 seconds after the request is first accepted, then

Go will close the underlying connection. Because this is a ‘hard’ closure on the connection,

the user won’t receive any HTTP(S) response.

Setting a short ReadTimeout period helps to mitigate the risk from slow-client attacks — such

as Slowloris — which could otherwise keep a connection open indefinitely by sending partial,

incomplete, HTTP(S) requests.

Important: If you set ReadTimeout but don’t set IdleTimeout , then IdleTimeout will

default to using the same setting as ReadTimeout . For instance, if you set ReadTimeout

to 3 seconds, then there is the side-effect that all keep-alive connections will also be

closed after 3 seconds of inactivity. Generally, my recommendation is to avoid any

ambiguity and always set an explicit IdleTimeout value for your server.

The WriteTimeout setting

The WriteTimeout setting will close the underlying connection if our server attempts to write

to the connection after a given period (in our code, 10 seconds). But this behaves slightly

differently depending on the protocol being used.

For HTTP connections, if some data is written to the connection more than 10 seconds

after the read of the request header finished, Go will close the underlying connection

instead of writing the data.

For HTTPS connections, if some data is written to the connection more than 10 seconds

after the request is first accepted, Go will close the underlying connection instead of

writing the data. This means that if you’re using HTTPS (like we are) it’s sensible to set

WriteTimeout to a value greater than ReadTimeout .

It’s important to bear in mind that writes made by a handler are buffered and written to the

connection as one when the handler returns. Therefore, the idea of WriteTimeout is generally

https://en.wikipedia.org/wiki/Slowloris_(computer_security)

not to prevent long-running handlers, but to prevent the data that the handler returns from

taking too long to write.

Additional information

The ReadHeaderTimeout setting

The http.Server object also provides a ReadHeaderTimeout setting, which we haven’t used in

our application. This works in a similar way to ReadTimeout , except that it applies to the read

of the HTTP(S) headers only. So, if you set ReadHeaderTimeout to 3 seconds a connection will

be closed if the request headers are still being read 3 seconds after the request is accepted.

However, reading of the request body can still take place after 3 seconds has passed, without

the connection being closed.

This can be useful if you want to apply a server-wide limit to reading request headers, but

want to implement different timeouts on different routes when it comes to reading the

request body (possibly using the http.TimeoutHandler() middleware).

For our Snippetbox web application we don’t have any actions that warrant per-route read

timeouts — reading the request headers and bodies for all our routes should be comfortably

completed in 5 seconds, so we’ll stick to using ReadTimeout .

The MaxHeaderBytes setting

The http.Server object also provides a MaxHeaderBytes field, which you can use to control

the maximum number of bytes the server will read when parsing request headers. By default,

Go allows a maximum header length of 1MB.

If you want to limit the maximum header length to 0.5MB, for example, you would write:

srv := &http.Server{

 Addr: *addr,

 MaxHeaderBytes: 524288,

 ...

}

If MaxHeaderBytes is exceeded then the user will automatically be sent a

431 Request Header Fields Too Large response.

There’s a gotcha to point out here: Go always adds an additional 4096 bytes of headroom to

https://pkg.go.dev/net/http/#TimeoutHandler
https://github.com/golang/go/blob/4b36e129f865f802eb87f7aa2b25e3297c5d8cfd/src/net/http/server.go#L871

the figure you set. If you need MaxHeaderBytes to be a precise or very low number you’ll need

to factor this in.

Chapter 11.

User authentication

In this section of the book we’re going to add some user authentication functionality to our

application, so that only registered, logged-in users can create new snippets. Non-logged-in

users will still be able to view the snippets, and will also be able to sign up for an account.

For our application, the process will work like this:

1. A user will register by visiting a form at /user/signup and entering their name, email

address and password. We’ll store this information in a new users database table (which

we’ll create in a moment).

2. A user will log in by visiting a form at /user/login and entering their email address and

password.

3. We will then check the database to see if the email and password they entered match one

of the users in the users table. If there’s a match, the user has authenticated successfully

and we add the relevant id value for the user to their session data, using the key

"authenticatedUserID" .

4. When we receive any subsequent requests, we can check the user’s session data for a

"authenticatedUserID" value. If it exists, we know that the user has already successfully

logged in. We can keep checking this until the session expires, when the user will need to

log in again. If there’s no "authenticatedUserID" in the session, we know that the user is

not logged in.

In many ways, a lot of the content in this section is just putting together the things that we’ve

already learned in a different way. So it’s a good litmus test of your understanding and a

reminder of some key concepts.

You’ll learn:

How to implement basic signup, login and logout functionality for users.

A secure approach to encrypting and storing user passwords securely in your database

using Bcrypt.

A solid and straightforward approach to verifying that a user is logged in using middleware

and sessions.

How to prevent cross-site request forgery (CSRF) attacks.

Chapter 11.1.

Routes setup

Let’s begin this section by adding five new routes to our application, so that it looks like this:

Method Pattern Handler Action

GET / home Display the home page

GET /snippet/view/:id snippetView Display a specific snippet

GET /snippet/create snippetCreate Display a HTML form for creating a new snippet

POST /snippet/create snippetCreatePost Create a new snippet

GET /user/signup userSignup Display a HTML form for signing up a new user

POST /user/signup userSignupPost Create a new user

GET /user/login userLogin Display a HTML form for logging in a user

POST /user/login userLoginPost Authenticate and login the user

POST /user/logout userLogoutPost Logout the user

GET /static/*filepath http.FileServer Serve a specific static file

Notice how the new state-changing actions — userSignupPost, userLoginPost and

userLogoutPost — are all using POST requests, not GET?

Open up your handlers.go file and add placeholders for the five new handler functions as

follows:

File: cmd/web/handlers.go

package main

...

func (app *application) userSignup(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintln(w, "Display a HTML form for signing up a new user...")

}

func (app *application) userSignupPost(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintln(w, "Create a new user...")

}

func (app *application) userLogin(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintln(w, "Display a HTML form for logging in a user...")

}

func (app *application) userLoginPost(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintln(w, "Authenticate and login the user...")

}

func (app *application) userLogoutPost(w http.ResponseWriter, r *http.Request) {

 fmt.Fprintln(w, "Logout the user...")

}

Then when that’s done, let’s create the corresponding routes in our routes.go file:

File: cmd/web/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 app.notFound(w)

 })

 fileServer := http.FileServer(http.Dir("./ui/static/"))

 router.Handler(http.MethodGet, "/static/*filepath", http.StripPrefix("/static", fileServer))

 dynamic := alice.New(app.sessionManager.LoadAndSave)

 router.Handler(http.MethodGet, "/", dynamic.ThenFunc(app.home))

 router.Handler(http.MethodGet, "/snippet/view/:id", dynamic.ThenFunc(app.snippetView))

 router.Handler(http.MethodGet, "/snippet/create", dynamic.ThenFunc(app.snippetCreate))

 router.Handler(http.MethodPost, "/snippet/create", dynamic.ThenFunc(app.snippetCreatePost))

 // Add the five new routes, all of which use our 'dynamic' middleware chain.

 router.Handler(http.MethodGet, "/user/signup", dynamic.ThenFunc(app.userSignup))

 router.Handler(http.MethodPost, "/user/signup", dynamic.ThenFunc(app.userSignupPost))

 router.Handler(http.MethodGet, "/user/login", dynamic.ThenFunc(app.userLogin))

 router.Handler(http.MethodPost, "/user/login", dynamic.ThenFunc(app.userLoginPost))

 router.Handler(http.MethodPost, "/user/logout", dynamic.ThenFunc(app.userLogoutPost))

 standard := alice.New(app.recoverPanic, app.logRequest, secureHeaders)

 return standard.Then(router)

}

Finally, we’ll also need to update the nav.tmpl partial to include navigation items for the new

pages:

File: ui/html/partials/nav.tmpl

{{define "nav"}}

<nav>

 <div>

 Home

 Create snippet

 </div>

 <div>

 Signup

 Login

 <form action='/user/logout' method='POST'>

 <button>Logout</button>

 </form>

 </div>

</nav>

{{end}}

If you like, you can run the application at this point and you should see the new items in the

navigation bar like this:

If you click the new links, they should respond with the relevant placeholder plain-text

response. For example, if you click the ‘Signup’ link you should see a response similar to this:

Chapter 11.2.

Creating a users model

Now that the routes are set up, we need to create a new users database table and a database

model to access it.

Start by connecting to MySQL from your terminal window as the root user and execute the

following SQL statement to setup the users table:

USE snippetbox;

CREATE TABLE users (

 id INTEGER NOT NULL PRIMARY KEY AUTO_INCREMENT,

 name VARCHAR(255) NOT NULL,

 email VARCHAR(255) NOT NULL,

 hashed_password CHAR(60) NOT NULL,

 created DATETIME NOT NULL

);

ALTER TABLE users ADD CONSTRAINT users_uc_email UNIQUE (email);

There’s a couple of things worth pointing out about this table:

The id field is an autoincrementing integer field and the primary key for the table. This

means that the user ID values are guaranteed to be unique positive integers (1, 2, 3… etc).

The type of the hashed_password field is CHAR(60). This is because we’ll be storing hashes

of the user passwords in the database — not the passwords themselves — and the hashed

versions will always be exactly 60 characters long.

We’ve also added a UNIQUE constraint on the email column and named it users_uc_email.

This constraint ensures that we won’t end up with two users who have the same email

address. If we try to insert a record in this table with a duplicate email, MySQL will throw

an ERROR 1062: ER_DUP_ENTRY error.

Building the model in Go

Next let’s setup a model so that we can easily work with the new users table. We’ll follow the

same pattern that we used earlier in the book for modeling access to the snippets table, so

hopefully this should feel familiar and straightforward.

First, open up the internal/models/errors.go file that you created earlier and define a

couple of new error types:

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_dup_entry

File: internal/models/errors.go

package models

import (

 "errors"

)

var (

 ErrNoRecord = errors.New("models: no matching record found")

 // Add a new ErrInvalidCredentials error. We'll use this later if a user

 // tries to login with an incorrect email address or password.

 ErrInvalidCredentials = errors.New("models: invalid credentials")

 // Add a new ErrDuplicateEmail error. We'll use this later if a user

 // tries to signup with an email address that's already in use.

 ErrDuplicateEmail = errors.New("models: duplicate email")

)

Then create a new file at internal/models/users.go…

$ cd $HOME/code/snippetbox

$ touch internal/models/users.go

…and define a new User type and a UserModel types with some placeholder methods for

interacting with our database. Like so:

File: internal/models/users.go

package models

import (

 "database/sql"

 "time"

)

// Define a new User type. Notice how the field names and types align

// with the columns in the database "users" table?

type User struct {

 ID int

 Name string

 Email string

 HashedPassword []byte

 Created time.Time

}

// Define a new UserModel type which wraps a database connection pool.

type UserModel struct {

 DB *sql.DB

}

// We'll use the Insert method to add a new record to the "users" table.

func (m *UserModel) Insert(name, email, password string) error {

 return nil

}

// We'll use the Authenticate method to verify whether a user exists with

// the provided email address and password. This will return the relevant

// user ID if they do.

func (m *UserModel) Authenticate(email, password string) (int, error) {

 return 0, nil

}

// We'll use the Exists method to check if a user exists with a specific ID.

func (m *UserModel) Exists(id int) (bool, error) {

 return false, nil

}

The final stage is to add a new field to our application struct so that we can make this model

available to our handlers. Update the main.go file as follows:

File: cmd/web/main.go

package main

...

// Add a new users field to the application struct.

type application struct {

 errorLog *log.Logger

 infoLog *log.Logger

 snippets *models.SnippetModel

 users *models.UserModel

 templateCache map[string]*template.Template

 formDecoder *form.Decoder

 sessionManager *scs.SessionManager

}

func main() {

 ...

 // Initialize a models.UserModel instance and add it to the application

 // dependencies.

 app := &application{

 errorLog: errorLog,

 infoLog: infoLog,

 snippets: &models.SnippetModel{DB: db},

 users: &models.UserModel{DB: db},

 templateCache: templateCache,

 formDecoder: formDecoder,

 sessionManager: sessionManager,

 }

 tlsConfig := &tls.Config{

 CurvePreferences: []tls.CurveID{tls.X25519, tls.CurveP256},

 }

 srv := &http.Server{

 Addr: *addr,

 ErrorLog: errorLog,

 Handler: app.routes(),

 TLSConfig: tlsConfig,

 IdleTimeout: time.Minute,

 ReadTimeout: 5 * time.Second,

 WriteTimeout: 10 * time.Second,

 }

 infoLog.Printf("Starting server on %s", *addr)

 err = srv.ListenAndServeTLS("./tls/cert.pem", "./tls/key.pem")

 errorLog.Fatal(err)

}

...

Make sure that all the files are all saved, then go ahead and try to run the application. At this

stage you should find that it compiles correctly without any problems.

Chapter 11.3.

User signup and password encryption

Before we can log in any users to our Snippetbox application we first need a way for them to

sign up for an account. We’ll cover how to do that in this chapter.

Go ahead and create a new ui/html/pages/signup.tmpl file containing the following markup.

$ cd $HOME/code/snippetbox

$ touch ui/html/pages/signup.tmpl

File: ui/html/pages/signup.tmpl

{{define "title"}}Signup{{end}}

{{define "main"}}

<form action='/user/signup' method='POST' novalidate>

 <div>

 <label>Name:</label>

 {{with .Form.FieldErrors.name}}

 <label class='error'>{{.}}</label>

 {{end}}

 <input type='text' name='name' value='{{.Form.Name}}'>

 </div>

 <div>

 <label>Email:</label>

 {{with .Form.FieldErrors.email}}

 <label class='error'>{{.}}</label>

 {{end}}

 <input type='email' name='email' value='{{.Form.Email}}'>

 </div>

 <div>

 <label>Password:</label>

 {{with .Form.FieldErrors.password}}

 <label class='error'>{{.}}</label>

 {{end}}

 <input type='password' name='password'>

 </div>

 <div>

 <input type='submit' value='Signup'>

 </div>

</form>

{{end}}

Hopefully this should feel familiar so far. For the signup form we’re using exactly the same

form structure that we used earlier in the book, with three fields: name, email and password

(which use the relevant HTML5 input types).

Important: Notice that we’re not re-displaying the password if the form fails validation?

This is because we don’t want there to be any risk of the browser (or other intermediary)

caching the plain-text password entered by the user.

Then let’s update our cmd/web/handlers.go file to include a new userSignupForm struct

(which will represent and hold the form data), and hook it up to the userSignup handler.

Like so:

File: cmd/web/handlers.go

package main

...

// Create a new userSignupForm struct.

type userSignupForm struct {

 Name string `form:"name"`

 Email string `form:"email"`

 Password string `form:"password"`

 validator.Validator `form:"-"`

}

// Update the handler so it displays the signup page.

func (app *application) userSignup(w http.ResponseWriter, r *http.Request) {

 data := app.newTemplateData(r)

 data.Form = userSignupForm{}

 app.render(w, http.StatusOK, "signup.tmpl", data)

}

...

If you run the application and visit https://localhost:4000/user/signup you should now

see a page which looks like this:

https://ux.stackexchange.com/questions/20418/when-form-submission-fails-password-field-gets-blanked-why-is-that-the-case
https://localhost:4000/user/signup

Validating the user input

When this form is submitted the data will end up being posted to the userSignupPost handler

that we made earlier.

The first task of this handler will be to validate the data to make sure that it is sane and

sensible before we insert it into the database. Specifically, we want to do four things:

1. Check that the provided name, email address and password are not blank.

2. Sanity check the format of the email address.

3. Ensure that the password is at least 8 characters long.

4. Make sure that the email address isn’t already in use.

We can cover the first three checks by heading back to our

internal/validator/validator.go file and creating two helper new methods — MinChars()

and Matches() — along with a regular expression for sanity checking an email address.

Like this:

File: internal/validator/validator.go

package validator

import (

 "regexp" // New import

 "strings"

 "unicode/utf8"

)

// Use the regexp.MustCompile() function to parse a regular expression pattern

// for sanity checking the format of an email address. This returns a pointer to

// a 'compiled' regexp.Regexp type, or panics in the event of an error. Parsing

// this pattern once at startup and storing the compiled *regexp.Regexp in a

// variable is more performant than re-parsing the pattern each time we need it.

var EmailRX = regexp.MustCompile("^[a-zA-Z0-9.!#$%&'*+\\/=?^_`{|}~-]+@[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\\.[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)*$"

...

// MinChars() returns true if a value contains at least n characters.

func MinChars(value string, n int) bool {

 return utf8.RuneCountInString(value) >= n

}

// Matches() returns true if a value matches a provided compiled regular

// expression pattern.

func Matches(value string, rx *regexp.Regexp) bool {

 return rx.MatchString(value)

}

There are a couple of things about the EmailRX regular expression pattern I want to quickly

mention:

The pattern we’re using is the one currently recommended by the W3C and Web Hypertext

Application Technology Working Group. If you’re reading this book in PDF format or on a

narrow device, and can’t see the entire line, then you can find the complete pattern here

and here. But if there’s an alternative pattern that you prefer to use for email address

sanity checking, then feel free to swap it in instead.

Because the EmailRX regexp pattern is written as an interpreted string literal we need to

double-escape special characters in the regexp with \\ for it to work correctly (we can’t

use a raw string literal because the pattern contains a back quote character). If you’re not

familiar with the difference between string literal forms, then this section of the Go spec is

worth a read.

But anyway, I’m digressing. Let’s get back to the task at hand.

Head over to your handlers.go file and add some code to process the form and run the

validation checks like so:

https://html.spec.whatwg.org/multipage/forms.html#valid-e-mail-address
https://www.w3.org/TR/2016/REC-html51-20161101/sec-forms.html#email-state-typeemail
https://www.regular-expressions.info/characters.html
https://golang.org/ref/spec#String_literals

File: cmd/web/handlers.go

package main

...

func (app *application) userSignupPost(w http.ResponseWriter, r *http.Request) {

 // Declare an zero-valued instance of our userSignupForm struct.

 var form userSignupForm

 // Parse the form data into the userSignupForm struct.

 err := app.decodePostForm(r, &form)

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 // Validate the form contents using our helper functions.

 form.CheckField(validator.NotBlank(form.Name), "name", "This field cannot be blank")

 form.CheckField(validator.NotBlank(form.Email), "email", "This field cannot be blank")

 form.CheckField(validator.Matches(form.Email, validator.EmailRX), "email", "This field must be a valid email address")

 form.CheckField(validator.NotBlank(form.Password), "password", "This field cannot be blank")

 form.CheckField(validator.MinChars(form.Password, 8), "password", "This field must be at least 8 characters long")

 // If there are any errors, redisplay the signup form along with a 422

 // status code.

 if !form.Valid() {

 data := app.newTemplateData(r)

 data.Form = form

 app.render(w, http.StatusUnprocessableEntity, "signup.tmpl", data)

 return

 }

 // Otherwise send the placeholder response (for now!).

 fmt.Fprintln(w, "Create a new user...")

}

...

Try running the application now and putting some invalid data into the signup form, like this:

And if you try to submit it, you should see the appropriate validation failures returned like so:

All that remains now is the fourth validation check: make sure that the email address isn’t

already in use. This is a bit trickier to deal with.

Because we’ve got a UNIQUE constraint on the email field of our users table, it’s already

guaranteed that we won’t end up with two users in our database who have the same email

address. So from a business logic and data integrity point of view we are already OK. But the

question remains about how we communicate any email already in use problem to a user.

We’ll tackle this at the end of the chapter.

A brief introduction to bcrypt

If your database is ever compromised by an attacker, it’s hugely important that it doesn’t

contain the plain-text versions of your users’ passwords.

It’s good practice — well, essential, really — to store a one-way hash of the password, derived

with a computationally expensive key-derivation function such as Argon2, scrypt or bcrypt.

Go has implementations of all 3 algorithms in the golang.org/x/crypto package.

However a plus-point of the bcrypt implementation specifically is that it includes helper

functions specifically designed for hashing and checking passwords, and that’s what we’ll use

https://pkg.go.dev/golang.org/x/crypto

here.

If you’re following along, please go ahead and download the latest version of the

golang.org/x/crypto/bcrypt package:

$ go get golang.org/x/crypto/bcrypt@latest

go: downloading golang.org/x/crypto v0.0.0-20220214200702-86341886e292

go get: added golang.org/x/crypto v0.0.0-20220214200702-86341886e292

There are two functions that we’ll use in this book. The first is the

bcrypt.GenerateFromPassword() function which lets us create a hash of a given plain-text

password like so:

hash, err := bcrypt.GenerateFromPassword([]byte("my plain text password"), 12)

This function will return a 60-character long hash which looks a bit like this:

$2a$12$NuTjWXm3KKntReFwyBVHyuf/to.HEwTy.eS206TNfkGfr6HzGJSWG

I’d like to explain that second parameter we pass to bcrypt.GenerateFromPassword()

indicates the cost, which is represented by an integer between 4 and 31. The example above

uses a cost of 12, which means that that 4096 (2^12) bcrypt iterations will be used to generate

the password hash.

The higher the cost, the more expensive the hash will be for an attacker to crack (which is a

good thing). But a higher cost also means that our application needs to do more work to

create the password hash when a user signs up — and that means increased resource use by

your application and additional latency for the end user. So choosing an appropriate cost

value is a balancing act. A cost of 12 is a reasonable minimum, but if possible you should carry

out load testing, and if you can set the cost higher without adversely affecting user experience

then you should.

On the flip side, we can check that a plain-text password matches a particular hash using the

bcrypt.CompareHashAndPassword() function like so:

hash := []byte("$2a$12$NuTjWXm3KKntReFwyBVHyuf/to.HEwTy.eS206TNfkGfr6GzGJSWG")

err := bcrypt.CompareHashAndPassword(hash, []byte("my plain text password"))

The bcrypt.CompareHashAndPassword() function will return nil if the plain-text password

matches a particular hash, or an error if they don’t match.

https://godoc.org/golang.org/x/crypto/bcrypt
https://godoc.org/golang.org/x/crypto/bcrypt#GenerateFromPassword
https://godoc.org/golang.org/x/crypto/bcrypt#CompareHashAndPassword

Storing the user details

The next stage of our build is to update the UserModel.Insert() method so that it creates a

new record in our users table containing the validated name, email and hashed password.

This will be interesting for two reasons: first we want to store the bcrypt hash of the password

(not the password itself) and second, we also need to manage the potential error caused by a

duplicate email violating the UNIQUE constraint that we added to the table.

All errors returned by MySQL have a particular code, which we can use to triage what has

caused the error (a full list of the MySQL error codes and descriptions can be found here). In

the case of a duplicate email, the error code used will be 1062 (ER_DUP_ENTRY) .

Open the internal/models/users.go file and update it to include the following code:

https://dev.mysql.com/doc/mysql-errors/8.0/en/

File: internal/models/users.go

package models

import (

 "database/sql"

 "errors" // New import

 "strings" // New import

 "time"

 "github.com/go-sql-driver/mysql" // New import

 "golang.org/x/crypto/bcrypt" // New import

)

...

type UserModel struct {

 DB *sql.DB

}

func (m *UserModel) Insert(name, email, password string) error {

 // Create a bcrypt hash of the plain-text password.

 hashedPassword, err := bcrypt.GenerateFromPassword([]byte(password), 12)

 if err != nil {

 return err

 }

 stmt := `INSERT INTO users (name, email, hashed_password, created)

 VALUES(?, ?, ?, UTC_TIMESTAMP())`

 // Use the Exec() method to insert the user details and hashed password

 // into the users table.

 _, err = m.DB.Exec(stmt, name, email, string(hashedPassword))

 if err != nil {

 // If this returns an error, we use the errors.As() function to check

 // whether the error has the type *mysql.MySQLError. If it does, the

 // error will be assigned to the mySQLError variable. We can then check

 // whether or not the error relates to our users_uc_email key by

 // checking if the error code equals 1062 and the contents of the error

 // message string. If it does, we return an ErrDuplicateEmail error.

 var mySQLError *mysql.MySQLError

 if errors.As(err, &mySQLError) {

 if mySQLError.Number == 1062 && strings.Contains(mySQLError.Message, "users_uc_email") {

 return ErrDuplicateEmail

 }

 }

 return err

 }

 return nil

}

...

We can then finish this all off by updating the userSignup handler like so:

File: cmd/web/handlers.go

package main

...

func (app *application) userSignupPost(w http.ResponseWriter, r *http.Request) {

 var form userSignupForm

 err := app.decodePostForm(r, &form)

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 form.CheckField(validator.NotBlank(form.Name), "name", "This field cannot be blank")

 form.CheckField(validator.NotBlank(form.Email), "email", "This field cannot be blank")

 form.CheckField(validator.Matches(form.Email, validator.EmailRX), "email", "This field must be a valid email address")

 form.CheckField(validator.NotBlank(form.Password), "password", "This field cannot be blank")

 form.CheckField(validator.MinChars(form.Password, 8), "password", "This field must be at least 8 characters long")

 if !form.Valid() {

 data := app.newTemplateData(r)

 data.Form = form

 app.render(w, http.StatusUnprocessableEntity, "signup.tmpl", data)

 return

 }

 // Try to create a new user record in the database. If the email already

 // exists then add an error message to the form and re-display it.

 err = app.users.Insert(form.Name, form.Email, form.Password)

 if err != nil {

 if errors.Is(err, models.ErrDuplicateEmail) {

 form.AddFieldError("email", "Email address is already in use")

 data := app.newTemplateData(r)

 data.Form = form

 app.render(w, http.StatusUnprocessableEntity, "signup.tmpl", data)

 } else {

 app.serverError(w, err)

 }

 return

 }

 // Otherwise add a confirmation flash message to the session confirming that

 // their signup worked.

 app.sessionManager.Put(r.Context(), "flash", "Your signup was successful. Please log in.")

 // And redirect the user to the login page.

 http.Redirect(w, r, "/user/login", http.StatusSeeOther)

}

...

Save the files, restart the application and try signing up for an account. Make sure to

remember the email address and password that you use… you’ll need them in the next

chapter!

If everything works correctly, you should find that your browser redirects you to

https://localhost:4000/user/login after you submit the form.

At this point it’s worth opening your MySQL database and looking at the contents of the

users table. You should see a new record with the details you just used to sign up and a

bcrypt hash of the password.

mysql> SELECT * FROM users;

+----+-----------+-----------------+--+---------------------+

| id | name | email | hashed_password | created |

+----+-----------+-----------------+--+---------------------+

| 1 | Bob Jones | bob@example.com | $2a$12$mNXQrOwVWp/TqAzCCyDoyegtpV40EXwrzVLnbFpHPpWdvnmIoZ.Q. | 2022-03-01 17:44:59 |

+----+-----------+-----------------+--+---------------------+

1 row in set (0.01 sec)

If you like, try heading back to the signup form and adding another account with the same

email address. You should get a validation failure like so:

Additional information

Using database bcrypt implementations

Some databases provide built-in functions that you can use for password hashing and

verification instead of implementing your own in Go, like we have in the code above.

But it’s probably a good idea to avoid using these for two reasons:

They tend to be vulnerable to side-channel timing attacks due to string comparison time

not being constant, at least in PostgreSQL and MySQL.

Unless you’re very careful, sending a plain-text password to your database risks the

password being accidentally recorded in one of your database logs. A couple of high-

profile examples of this happening were the Github and Twitter incidents in 2018.

Alternatives for checking email duplicates

I understand that the code in our UserModel.Insert() method isn’t very pretty, and that

https://en.wikipedia.org/wiki/Timing_attack
https://www.postgresql.org/docs/9.0/pgcrypto.html#AEN129954
https://security.stackexchange.com/a/83675/210340
https://www.bleepingcomputer.com/news/security/github-accidentally-recorded-some-plaintext-passwords-in-its-internal-logs/
https://www.bleepingcomputer.com/news/security/twitter-admits-recording-plaintext-passwords-in-internal-logs-just-like-github/

checking the error returned by MySQL feels a bit flaky. What if future versions of MySQL

change their error numbers? Or the format of their error messages?

An alternative (but also imperfect) option would be to add an UserModel.EmailTaken()

method to our model which checks to see if a user with a specific email already exists. We

could call this before we try to insert a new record, and add a validation error message to the

form as appropriate.

However, this would introduce a race condition to our application. If two users try to sign up

with the same email address at exactly the same time, both submissions will pass the

validation check but ultimately only one INSERT into the MySQL database will succeed. The

other will violate our UNIQUE constraint and the user would end up receiving a

500 Internal Server Error response.

The outcome of this particular race condition is fairly benign, and some people would advise

you to simply not worry about it. But thinking critically about your application logic and

writing code which avoids race conditions is a good habit to get into, and where there’s a

viable alternative — like there is in this case — it’s better to avoid shipping with known race

conditions in your codebase.

https://stackoverflow.com/questions/25702813/how-to-avoid-race-condition-with-unique-checks-in-django

Chapter 11.4.

User login

In this chapter were going to focus on creating the user login page for our application.

Before we get into the main part of this work, let’s quickly revisit the internal/validator

package that we made earlier and update it to support validation errors which aren’t

associated with one specific form field.

We’ll use this later in the chapter to show the user a generic “your email address or password

is wrong” message if their login fails, as this considered more secure than explicitly indicating

why the login failed.

Please go ahead and update your internal/validator/validator.go file like so:

File: internal/validator/validator.go

package validator

...

// Add a new NonFieldErrors []string field to the struct, which we will use to

// hold any validation errors which are not related to a specific form field.

type Validator struct {

 NonFieldErrors []string

 FieldErrors map[string]string

}

// Update the Valid() method to also check that the NonFieldErrors slice is

// empty.

func (v *Validator) Valid() bool {

 return len(v.FieldErrors) == 0 && len(v.NonFieldErrors) == 0

}

// Create an AddNonFieldError() helper for adding error messages to the new

// NonFieldErrors slice.

func (v *Validator) AddNonFieldError(message string) {

 v.NonFieldErrors = append(v.NonFieldErrors, message)

}

...

Next let’s create a new ui/html/pages/login.tmpl template containing the markup for our

login page. We’ll follow the same pattern for showing validation errors and re-displaying data

that we used for our signup page.

$ cd $HOME/code/snippetbox

$ touch ui/html/pages/login.tmpl

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#authentication-responses

File: ui/html/pages/login.tmpl

{{define "title"}}Login{{end}}

{{define "main"}}

<form action='/user/login' method='POST' novalidate>

 <!-- Notice that here we are looping over the NonFieldErrors and displaying

 them, if any exist -->

 {{range .Form.NonFieldErrors}}

 <div class='error'>{{.}}</div>

 {{end}}

 <div>

 <label>Email:</label>

 {{with .Form.FieldErrors.email}}

 <label class='error'>{{.}}</label>

 {{end}}

 <input type='email' name='email' value='{{.Form.Email}}'>

 </div>

 <div>

 <label>Password:</label>

 {{with .Form.FieldErrors.password}}

 <label class='error'>{{.}}</label>

 {{end}}

 <input type='password' name='password'>

 </div>

 <div>

 <input type='submit' value='Login'>

 </div>

</form>

{{end}}

Then let’s head to our cmd/web/handlers.go file and create a new userLoginForm struct (to

represent and hold the form data), and adapt our userLogin handler to render the login

page.

Like so:

File: cmd/web/handlers.go

package main

...

// Create a new userLoginForm struct.

type userLoginForm struct {

 Email string `form:"email"`

 Password string `form:"password"`

 validator.Validator `form:"-"`

}

// Update the handler so it displays the login page.

func (app *application) userLogin(w http.ResponseWriter, r *http.Request) {

 data := app.newTemplateData(r)

 data.Form = userLoginForm{}

 app.render(w, http.StatusOK, "login.tmpl", data)

}

...

If you run the application and visit https://localhost:4000/user/login you should now see

the login page looking like this:

Verifying the user details

The next step is the interesting part: how do we verify that the email and password submitted

by a user are correct?

The core part of this verification logic will take place in the UserModel.Authenticate()

method of our user model. Specifically, we’ll need it to do two things:

1. First it should retrieve the hashed password associated with the email address from our

MySQL users table. If the email doesn’t exist in the database, or it’s for a user that has

been deactivated, we will return the ErrInvalidCredentials error that we made earlier.

2. Otherwise, we want to compare the hashed password from the users table with the plain-

text password that the user provided when logging in. If they don’t match, we want to

return the ErrInvalidCredentials error again. But if they do match, we want to return

the user’s id value from the database.

Let’s do exactly that. Go ahead and add the following code to your

https://localhost:4000/user/login

internal/models/users.go file:

File: internal/models/users.go

package models

...

func (m *UserModel) Authenticate(email, password string) (int, error) {

 // Retrieve the id and hashed password associated with the given email. If

 // no matching email exists we return the ErrInvalidCredentials error.

 var id int

 var hashedPassword []byte

 stmt := "SELECT id, hashed_password FROM users WHERE email = ?"

 err := m.DB.QueryRow(stmt, email).Scan(&id, &hashedPassword)

 if err != nil {

 if errors.Is(err, sql.ErrNoRows) {

 return 0, ErrInvalidCredentials

 } else {

 return 0, err

 }

 }

 // Check whether the hashed password and plain-text password provided match.

 // If they don't, we return the ErrInvalidCredentials error.

 err = bcrypt.CompareHashAndPassword(hashedPassword, []byte(password))

 if err != nil {

 if errors.Is(err, bcrypt.ErrMismatchedHashAndPassword) {

 return 0, ErrInvalidCredentials

 } else {

 return 0, err

 }

 }

 // Otherwise, the password is correct. Return the user ID.

 return id, nil

}

Our next step involves updating the userLoginPost handler so that it parses the submitted

login form data and calls this UserModel.Authenticate() method.

If the login details are valid, we then want to add the user’s id to their session data so that —

for future requests — we know that they have authenticated successfully and which user they

are.

Head over to your handlers.go file and update it as follows:

File: cmd/web/handlers.go

package main

...

func (app *application) userLoginPost(w http.ResponseWriter, r *http.Request) {

 // Decode the form data into the userLoginForm struct.

 var form userLoginForm

 err := app.decodePostForm(r, &form)

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 // Do some validation checks on the form. We check that both email and

 // password are provided, and also check the format of the email address as

 // a UX-nicety (in case the user makes a typo).

 form.CheckField(validator.NotBlank(form.Email), "email", "This field cannot be blank")

 form.CheckField(validator.Matches(form.Email, validator.EmailRX), "email", "This field must be a valid email address")

 form.CheckField(validator.NotBlank(form.Password), "password", "This field cannot be blank")

 if !form.Valid() {

 data := app.newTemplateData(r)

 data.Form = form

 app.render(w, http.StatusUnprocessableEntity, "login.tmpl", data)

 return

 }

 // Check whether the credentials are valid. If they're not, add a generic

 // non-field error message and re-display the login page.

 id, err := app.users.Authenticate(form.Email, form.Password)

 if err != nil {

 if errors.Is(err, models.ErrInvalidCredentials) {

 form.AddNonFieldError("Email or password is incorrect")

 data := app.newTemplateData(r)

 data.Form = form

 app.render(w, http.StatusUnprocessableEntity, "login.tmpl", data)

 } else {

 app.serverError(w, err)

 }

 return

 }

 // Use the RenewToken() method on the current session to change the session

 // ID. It's good practice to generate a new session ID when the

 // authentication state or privilege levels changes for the user (e.g. login

 // and logout operations).

 err = app.sessionManager.RenewToken(r.Context())

 if err != nil {

 app.serverError(w, err)

 return

 }

 // Add the ID of the current user to the session, so that they are now

 // 'logged in'.

 app.sessionManager.Put(r.Context(), "authenticatedUserID", id)

 // Redirect the user to the create snippet page.

 http.Redirect(w, r, "/snippet/create", http.StatusSeeOther)

}

...

Note: The SessionManager.RenewToken() method that we’re using in the code above

will change the ID of the current user’s session but retain any data associated with the

session. It’s good practice to do this before login to mitigate the risk of a session fixation

attack. For more background and information on this, please see the OWASP Session

Management Cheat Sheet.

Alright, let’s give this a try!

Restart the application and try submitting some invalid user credentials…

You should get a non-field validation error message which looks like this:

https://pkg.go.dev/github.com/alexedwards/scs/v2#SessionManager.RenewToken
https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets/Session_Management_Cheat_Sheet.md#renew-the-session-id-after-any-privilege-level-change

But when you input some correct credentials (use the email address and password for the

user that you created in the previous chapter), the application should log you in and redirect

you to the create snippet page, like so:

We’ve covered quite a lot of ground in the last two chapters, so let’s quickly take stock of

where things are at.

Users can now register with the site using the GET /user/signup form. We store the details

of registered users (including a hashed version of their password) in the users table of our

database.

Registered users can then authenticate using the GET /user/login form to provide their

email address and password. If these match the details of a user, we deem them to have

authenticated successfully and add the relevant "authenticatedUserID" value to their

session data.

Chapter 11.5.

User logout

This brings us nicely to logging out a user. Implementing the user logout is straightforward in

comparison to the signup and login — essentially all we need to do is remove the

"authenticatedUserID" value from their session.

At the same time it’s good practice to renew the session ID again, and we’ll also add a flash

message to the session data to confirm to the user that they’ve been logged out.

Let’s update the userLogoutPost handler to do exactly that.

File: cmd/web/handlers.go

package main

...

func (app *application) userLogoutPost(w http.ResponseWriter, r *http.Request) {

 // Use the RenewToken() method on the current session to change the session

 // ID again.

 err := app.sessionManager.RenewToken(r.Context())

 if err != nil {

 app.serverError(w, err)

 return

 }

 // Remove the authenticatedUserID from the session data so that the user is

 // 'logged out'.

 app.sessionManager.Remove(r.Context(), "authenticatedUserID")

 // Add a flash message to the session to confirm to the user that they've been

 // logged out.

 app.sessionManager.Put(r.Context(), "flash", "You've been logged out successfully!")

 // Redirect the user to the application home page.

 http.Redirect(w, r, "/", http.StatusSeeOther)

}

Save the file and restart the application. If you now click the ‘Logout’ link in the navigation

bar you should be logged out and redirected to the homepage like so:

Chapter 11.6.

User authorization

Being able to authenticate the users of our application is all well and good, but now we need

to do something useful with that information. In this chapter we’ll introduce some

authorization checks so that:

1. Only authenticated (i.e. logged in) users can create a new snippet; and

2. The contents of the navigation bar changes depending on whether a user is authenticated

(logged in) or not. Specifically:

Authenticated users should see links to ‘Home’, ‘Create snippet’ and ‘Logout’.

Unauthenticated users should see links to ‘Home’, ‘Signup’ and ‘Login’.

As I mentioned briefly in the previous chapter, we can check whether a request is being made

by an authenticated user or not by checking for the existence of an "authenticatedUserID"

value in their session data.

So let’s start with that. Open the cmd/web/helpers.go file and add an isAuthenticated()

helper function to return the authentication status like so:

File: cmd/web/helpers.go

package main

...

// Return true if the current request is from an authenticated user, otherwise

// return false.

func (app *application) isAuthenticated(r *http.Request) bool {

 return app.sessionManager.Exists(r.Context(), "authenticatedUserID")

}

Neat. We can now check whether or not the request is coming from an authenticated (logged

in) user by simply calling this isAuthenticated() helper.

The next step is to find a way to pass this information to our HTML templates, so that we can

toggle the contents of the navigation bar appropriately.

There are two parts to this. First, we’ll need to add a new IsAuthenticated field to our

templateData struct:

File: cmd/web/templates.go

package main

import (

 "html/template"

 "path/filepath"

 "time"

 "snippetbox.alexedwards.net/internal/models"

)

type templateData struct {

 CurrentYear int

 Snippet *models.Snippet

 Snippets []*models.Snippet

 Form any

 Flash string

 IsAuthenticated bool // Add an IsAuthenticated field to the templateData struct.

}

...

And the second step is to update our newTemplateData() helper so that this information is

automatically added to the templateData struct every time we render a template. Like so:

File: cmd/web/helpers.go

package main

...

func (app *application) newTemplateData(r *http.Request) *templateData {

 return &templateData{

 CurrentYear: time.Now().Year(),

 Flash: app.sessionManager.PopString(r.Context(), "flash"),

 // Add the authentication status to the template data.

 IsAuthenticated: app.isAuthenticated(r),

 }

}

...

Once that’s done, we can update the ui/html/partials/nav.tmpl file to toggle the

navigation links using the {{if .IsAuthenticated}} action like so:

File: ui/html/partials/nav.tmpl

{{define "nav"}}

<nav>

 <div>

 Home

 <!-- Toggle the link based on authentication status -->

 {{if .IsAuthenticated}}

 Create snippet

 {{end}}

 </div>

 <div>

 <!-- Toggle the links based on authentication status -->

 {{if .IsAuthenticated}}

 <form action='/user/logout' method='POST'>

 <button>Logout</button>

 </form>

 {{else}}

 Signup

 Login

 {{end}}

 </div>

</nav>

{{end}}

Remember: The {{if ...}} action considers empty values (false, 0, any nil pointer or

interface value, and any array, slice, map, or string of length zero) to be false.

Save all the files and try running the application now. If you’re not currently logged in, your

application homepage should look like this:

Otherwise — if you are logged in — your homepage should look like this:

Feel free to have a play around with this, and try logging in and out until you’re confident that

the navigation bar is being changed as you would expect.

Restricting access

As it stands, we’re hiding the ‘Create snippet’ navigation link for any user that isn’t logged in.

But an unauthenticated user could still create a new snippet by visiting the

https://localhost:4000/snippet/create page directly.

Let’s fix that, so that if an unauthenticated user tries to visit any routes with the URL path

/snippet/create they are redirected to /user/login instead.

The simplest way to do this is via some middleware. Open the cmd/web/middleware.go file

and create a new requireAuthentication() middleware function, following the same pattern

that we used earlier in the book:

File: cmd/web/middleware.go

package main

...

func (app *application) requireAuthentication(next http.Handler) http.Handler {

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 // If the user is not authenticated, redirect them to the login page and

 // return from the middleware chain so that no subsequent handlers in

 // the chain are executed.

 if !app.isAuthenticated(r) {

 http.Redirect(w, r, "/user/login", http.StatusSeeOther)

 return

 }

 // Otherwise set the "Cache-Control: no-store" header so that pages

 // require authentication are not stored in the users browser cache (or

 // other intermediary cache).

 w.Header().Add("Cache-Control", "no-store")

 // And call the next handler in the chain.

 next.ServeHTTP(w, r)

 })

}

We can now add this middleware to our cmd/web/routes.go file to protect specific routes.

In our case we’ll want to protect the GET /snippet/create and POST /snippet/create routes.

And there’s not much point logging out a user if they’re not logged in, so it makes sense to

use it on the POST /user/logout route as well.

To help with this, let’s rearrange our application routes into two ‘groups’.

https://localhost:4000/snippet/create

The first group will contain our ‘unprotected’ routes and use our existing dynamic

middleware chain. The second group will contain our ‘protected’ routes and will use a new

protected middleware chain — consisting of the dynamic middleware chain plus our new

requireAuthentication() middleware.

Like this:

File: cmd/web/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 app.notFound(w)

 })

 fileServer := http.FileServer(http.Dir("./ui/static/"))

 router.Handler(http.MethodGet, "/static/*filepath", http.StripPrefix("/static", fileServer))

 // Unprotected application routes using the "dynamic" middleware chain.

 dynamic := alice.New(app.sessionManager.LoadAndSave)

 router.Handler(http.MethodGet, "/", dynamic.ThenFunc(app.home))

 router.Handler(http.MethodGet, "/snippet/view/:id", dynamic.ThenFunc(app.snippetView))

 router.Handler(http.MethodGet, "/user/signup", dynamic.ThenFunc(app.userSignup))

 router.Handler(http.MethodPost, "/user/signup", dynamic.ThenFunc(app.userSignupPost))

 router.Handler(http.MethodGet, "/user/login", dynamic.ThenFunc(app.userLogin))

 router.Handler(http.MethodPost, "/user/login", dynamic.ThenFunc(app.userLoginPost))

 // Protected (authenticated-only) application routes, using a new "protected"

 // middleware chain which includes the requireAuthentication middleware.

 protected := dynamic.Append(app.requireAuthentication)

 router.Handler(http.MethodGet, "/snippet/create", protected.ThenFunc(app.snippetCreate))

 router.Handler(http.MethodPost, "/snippet/create", protected.ThenFunc(app.snippetCreatePost))

 router.Handler(http.MethodPost, "/user/logout", protected.ThenFunc(app.userLogoutPost))

 standard := alice.New(app.recoverPanic, app.logRequest, secureHeaders)

 return standard.Then(router)

}

Save the files, restart the application and make sure that you’re logged out.

Then try visiting https://localhost:4000/snippet/create directly in your browser. You

should find that you get immediately redirected to the login form instead.

If you like, you can also confirm with curl that unauthenticated users are redirected for the

POST /snippet/create route too:

https://localhost:4000/snippet/create

$ curl -ki -X POST https://localhost:4000/snippet/create

HTTP/2 303

content-security-policy: default-src 'self'; style-src 'self' fonts.googleapis.com; font-src fonts.gstatic.com

location: /user/login

referrer-policy: origin-when-cross-origin

vary: Cookie

x-content-type-options: nosniff

x-frame-options: deny

x-xss-protection: 0

content-length: 0

date: Tue, 08 Mar 2022 11:28:05 GMT

Additional information

Without using alice

If you’re not using the justinas/alice package to manage your middleware that’s OK — you

can manually wrap your handlers like this instead:

router.Handler(http.MethodPost, "/snippet/create", app.sessionManager.LoadAndSave(app.requireAuthentication(http.HandlerFunc(app

Chapter 11.7.

CSRF protection

In this chapter we’ll look at how to protect our application from cross-site request forgery

(CSRF) attacks.

If you’re not familiar with the principles of CSRF, it’s a type of attack where a malicious third-

party website sends state-changing HTTP requests to your website. A great explanation of the

basic CSRF attack can be found here.

In our application, the main risk is this:

A user logs into our application. Our session cookie is set to persist for 12 hours, so they

will remain logged in even if they navigate away from the application.

The user then goes to a malicious website which contains some code that sends a cross-

site request to our POST /snippet/create endpoint add a new snippet to our database.

The session cookie will be sent along with this request.

Because the request includes the session cookie, our application will interpret the request

as coming from a logged-in user and it will process the request with that user’s privileges.

So completely unknown to the user, a new snippet will be added to our database.

As well as ‘traditional’ CSRF attacks like the above (where a request is processed with a

logged-in user’s privileges) your application may also be at risk from login and logout CSRF

attacks.

SameSite cookies

One mitigation that we can take to prevent CSRF attacks is to make sure that the SameSite

attribute is appropriately set on our session cookie.

By default the alexedwards/scs package that we’re using always sets SameSite=Lax on the

session cookie. This means that the session cookie won’t be sent by the user’s browser for any

unsafe cross-site requests (i.e. cross-site requests with the HTTP methods POST, PUT and

DELETE).

So long as our application uses the POST method for any state-changing HTTP requests (like

our login, signup, logout and create snippet form submissions), it means that the session

cookie won’t be sent for these requests if they are cross-site — which in turn means that they

should be safe from CSRF attacks.

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
http://www.gnucitizen.org/blog/csrf-demystified/
https://stackoverflow.com/questions/6412813/do-login-forms-need-tokens-against-csrf-attacks
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#samesite-cookie-attribute
https://tools.ietf.org/html/rfc7231#section-4.2.1

However, the SameSite attribute is still relatively new and only fully supported by 90% of

browsers worldwide. So, although it’s something that we can (and should) use as a defensive

measure, we can’t rely on it for all users.

Token-based mitigation

To mitigate the risk of CSRF for all users we’ll also need to implement some form of token

check. Like session management and password hashing, when it comes to this there’s a lot

that you can get wrong so it’s probably safer to use a tried-and-tested third-party package

instead of rolling your own implementation.

The two most popular packages for stopping CSRF attacks in Go web applications are

gorilla/csrf and justinas/nosurf . They both do roughly the same thing, using the double-

submit cookie pattern to prevent attacks. In this pattern a random CSRF token is generated

and sent to the user in a CSRF cookie. This CSRF token is then added to a hidden field in each

HTML form that’s vulnerable to CSRF. When the form is submitted, both packages use some

middleware to check that the hidden field value and cookie value match.

Out of the two packages, we’ll opt to use justinas/nosurf in this book. I prefer it primarily

because it’s self-contained and doesn’t have any additional dependencies. If you’re following

along you can install the latest version like so:

$ go get github.com/justinas/nosurf@v1

go: downloading github.com/justinas/nosurf v1.1.1

go get: added github.com/justinas/nosurf v1.1.1

Using the nosurf package

To use justinas/nosurf , open up your cmd/web/middleware.go file and create a new

noSurf() middleware function like so:

https://caniuse.com/#feat=same-site-cookie-attribute
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#token-based-mitigation
https://github.com/gorilla/csrf
https://github.com/justinas/nosurf
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html#double-submit-cookie

File: cmd/web/middleware.go

package main

import (

 "fmt"

 "net/http"

 "github.com/justinas/nosurf" // New import

)

...

// Create a NoSurf middleware function which uses a customized CSRF cookie with

// the Secure, Path and HttpOnly attributes set.

func noSurf(next http.Handler) http.Handler {

 csrfHandler := nosurf.New(next)

 csrfHandler.SetBaseCookie(http.Cookie{

 HttpOnly: true,

 Path: "/",

 Secure: true,

 })

 return csrfHandler

}

One of the forms that we need to protect from CSRF attacks is our logout form, which is

included in our nav.tmpl partial and could potentially appear on any page of our application.

So, because of this, we need to use our noSurf() middleware on all of our application routes

(apart from /static/*filepath).

So, let’s update the cmd/web/routes.go file to add this noSurf() middleware to the dynamic

middleware chain that we made earlier:

File: cmd/web/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 app.notFound(w)

 })

 fileServer := http.FileServer(http.Dir("./ui/static/"))

 router.Handler(http.MethodGet, "/static/*filepath", http.StripPrefix("/static", fileServer))

 // Use the nosurf middleware on all our 'dynamic' routes.

 dynamic := alice.New(app.sessionManager.LoadAndSave, noSurf)

 router.Handler(http.MethodGet, "/", dynamic.ThenFunc(app.home))

 router.Handler(http.MethodGet, "/snippet/view/:id", dynamic.ThenFunc(app.snippetView))

 router.Handler(http.MethodGet, "/user/signup", dynamic.ThenFunc(app.userSignup))

 router.Handler(http.MethodPost, "/user/signup", dynamic.ThenFunc(app.userSignupPost))

 router.Handler(http.MethodGet, "/user/login", dynamic.ThenFunc(app.userLogin))

 router.Handler(http.MethodPost, "/user/login", dynamic.ThenFunc(app.userLoginPost))

 // Because the 'protected' middleware chain appends to the 'dynamic' chain

 // the noSurf middleware will also be used on the three routes below too.

 protected := dynamic.Append(app.requireAuthentication)

 router.Handler(http.MethodGet, "/snippet/create", protected.ThenFunc(app.snippetCreate))

 router.Handler(http.MethodPost, "/snippet/create", protected.ThenFunc(app.snippetCreatePost))

 router.Handler(http.MethodPost, "/user/logout", protected.ThenFunc(app.userLogoutPost))

 standard := alice.New(app.recoverPanic, app.logRequest, secureHeaders)

 return standard.Then(router)

}

At this point, you might like to fire up the application and try submitting one of the forms.

When you do, the request should be intercepted by the noSurf() middleware and you should

receive a 400 Bad Request response.

To make the form submissions work, we need to use the nosurf.Token() function to get the

CSRF token and add it to a hidden csrf_token field in each of our forms. So the next step is to

add a new CSRFToken field to our templateData struct:

File: cmd/web/templates.go

package main

import (

 "html/template"

 "path/filepath"

 "time"

 "snippetbox.alexedwards.net/internal/models"

)

type templateData struct {

 CurrentYear int

 Snippet *models.Snippet

 Snippets []*models.Snippet

 Form any

 Flash string

 IsAuthenticated bool

 CSRFToken string // Add a CSRFToken field.

}

...

And because the logout form can potentially appear on every page, it makes sense to add the

https://pkg.go.dev/github.com/justinas/nosurf?utm_source=godoc#Token

CSRF token to the template data automatically via our newTemplateData() helper. This will

mean that it’s available to our templates each time we render a page.

Please go ahead and update the cmd/web/helpers.go file as follows:

File: cmd/web/helpers.go

package main

import (

 "bytes"

 "errors"

 "fmt"

 "net/http"

 "runtime/debug"

 "time"

 "github.com/go-playground/form/v4"

 "github.com/justinas/nosurf" // New import

)

...

func (app *application) newTemplateData(r *http.Request) *templateData {

 return &templateData{

 CurrentYear: time.Now().Year(),

 Flash: app.sessionManager.PopString(r.Context(), "flash"),

 IsAuthenticated: app.isAuthenticated(r),

 CSRFToken: nosurf.Token(r), // Add the CSRF token.

 }

}

...

Finally, we need to update all the forms in our application to include this CSRF token in a

hidden field.

Like so:

File: ui/html/pages/create.tmpl

{{define "title"}}Create a New Snippet{{end}}

{{define "main"}}

<form action='/snippet/create' method='POST'>

 <!-- Include the CSRF token -->

 <input type='hidden' name='csrf_token' value='{{.CSRFToken}}'>

 <div>

 <label>Title:</label>

 {{with .Form.FieldErrors.title}}

 <label class='error'>{{.}}</label>

 {{end}}

 <input type='text' name='title' value='{{.Form.Title}}'>

 </div>

 <div>

 <label>Content:</label>

 {{with .Form.FieldErrors.content}}

 <label class='error'>{{.}}</label>

 {{end}}

 <textarea name='content'>{{.Form.Content}}</textarea>

 </div>

 <div>

 <label>Delete in:</label>

 {{with .Form.FieldErrors.expires}}

 <label class='error'>{{.}}</label>

 {{end}}

 <input type='radio' name='expires' value='365' {{if (eq .Form.Expires 365)}}checked{{end}}> One Year

 <input type='radio' name='expires' value='7' {{if (eq .Form.Expires 7)}}checked{{end}}> One Week

 <input type='radio' name='expires' value='1' {{if (eq .Form.Expires 1)}}checked{{end}}> One Day

 </div>

 <div>

 <input type='submit' value='Publish snippet'>

 </div>

</form>

{{end}}

File: ui/html/pages/login.tmpl

{{define "title"}}Login{{end}}

{{define "main"}}

<form action='/user/login' method='POST' novalidate>

 <!-- Include the CSRF token -->

 <input type='hidden' name='csrf_token' value='{{.CSRFToken}}'>

 {{range .Form.NonFieldErrors}}

 <div class='error'>{{.}}</div>

 {{end}}

 <div>

 <label>Email:</label>

 {{with .Form.FieldErrors.email}}

 <label class='error'>{{.}}</label>

 {{end}}

 <input type='email' name='email' value='{{.Form.Email}}'>

 </div>

 <div>

 <label>Password:</label>

 {{with .Form.FieldErrors.password}}

 <label class='error'>{{.}}</label>

 {{end}}

 <input type='password' name='password'>

 </div>

 <div>

 <input type='submit' value='Login'>

 </div>

</form>

{{end}}

File: ui/html/pages/signup.tmpl

{{define "title"}}Signup{{end}}

{{define "main"}}

<form action='/user/signup' method='POST' novalidate>

 <!-- Include the CSRF token -->

 <input type='hidden' name='csrf_token' value='{{.CSRFToken}}'>

 <div>

 <label>Name:</label>

 {{with .Form.FieldErrors.name}}

 <label class='error'>{{.}}</label>

 {{end}}

 <input type='text' name='name' value='{{.Form.Name}}'>

 </div>

 <div>

 <label>Email:</label>

 {{with .Form.FieldErrors.email}}

 <label class='error'>{{.}}</label>

 {{end}}

 <input type='email' name='email' value='{{.Form.Email}}'>

 </div>

 <div>

 <label>Password:</label>

 {{with .Form.FieldErrors.password}}

 <label class='error'>{{.}}</label>

 {{end}}

 <input type='password' name='password'>

 </div>

 <div>

 <input type='submit' value='Signup'>

 </div>

</form>

{{end}}

File: ui/html/partials/nav.tmpl

{{define "nav"}}

<nav>

 <div>

 Home

 {{if .IsAuthenticated}}

 Create snippet

 {{end}}

 </div>

 <div>

 {{if .IsAuthenticated}}

 <form action='/user/logout' method='POST'>

 <!-- Include the CSRF token -->

 <input type='hidden' name='csrf_token' value='{{.CSRFToken}}'>

 <button>Logout</button>

 </form>

 {{else}}

 Signup

 Login

 {{end}}

 </div>

</nav>

{{end}}

Go ahead and run the application again, then view source of one of the forms. You should see

that it now has a CSRF token included in a hidden field, like so.

And if you try submitting the forms it should now work correctly again.

Additional information

SameSite ‘Strict’ setting

If you want, you can change the session cookie to use the SameSite=Strict setting instead of

(the default) SameSite=Lax. Like this:

sessionManager := scs.New()

sessionManager.Cookie.SameSite = http.SameSiteStrictMode

But it’s important to be aware that using SameSite=Strict will block the session cookie being

sent by the user’s browser for all cross-site usage — including safe requests with HTTP

methods like GET and HEAD.

While that might sound even safer (and it is!) the downside is that the session cookie won’t be

sent when a user clicks on a link to your application from another website. In turn, that means

https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.1

that your application would initially treat the user as ‘not logged in’ even if they have an

active session containing their "authenticatedUserID" value.

So if your application will potentially have other websites linking to it (or even links shared in

emails or private messaging services), then SameSite=Lax is generally the more appropriate

setting.

Chapter 12.

Using request context

At the moment our logic for authenticating a user consists of simply checking whether a

"authenticatedUserID" value exists in their session data, like so:

func (app *application) isAuthenticated(r *http.Request) bool {

 return app.sessionManager.Exists(r.Context(), "authenticatedUserID")

}

We could make this check more robust by querying our users database table to make sure

that the "authenticatedUserID" value is a real, valid, value (i.e we haven’t deleted the user’s

account since they last logged in).

But there is a slight problem with doing this additional database check.

Our isAuthenticated() helper can potentially be called multiple times in each request cycle.

Currently we use it twice — once in the requireAuthentication() middleware and again in

the newTemplateData() helper. So, if we query the database from the isAuthenticated()

helper directly, we would end up making duplicated round-trips to the database during every

request. And that’s not very efficient.

A better approach would be to carry out this check in some middleware to determine whether

the current request is from an authenticated user or not, and then pass that information

down to all subsequent handlers in the chain.

So how do we do this? Enter request context.

In this section you’ll learn:

What request context is, how to use it, and when it is appropriate to use it.

How to use request context in practice to pass information about the current user

between your handlers.

Chapter 12.1.

How request context works

Every http.Request that our middleware and handlers process has a context.Context object

embedded in it, which we can use to store information during the lifetime of the request.

As I’ve already hinted at, in a web application a common use-case for this is to pass

information between your pieces of middleware and other handlers.

In our case, we want to use it to check if a user is authenticated once in some middleware,

and if they are, then make this information available to all our other middleware and

handlers.

Let’s start with some theory and explain the syntax for working with request context. Then, in

the next chapter, we’ll get a bit more concrete again and demonstrate how to practically use

it in our application.

The request context syntax

The basic code for adding information to a request’s context looks like this:

// Where r is a *http.Request...

ctx := r.Context()

ctx = context.WithValue(ctx, "isAuthenticated", true)

r = r.WithContext(ctx)

Let’s step through this line-by-line.

First, we use the r.Context() method to retrieve the existing context from a request and

assign it to the ctx variable.

Then we use the context.WithValue() method to create a new copy of the existing

context, containing the key "isAuthenticated" and a value of true.

Then finally we use the r.WithContext() method to create a copy of the request

containing our new context.

Important: Notice that we don’t actually update the context for a request directly. What

we’re doing is creating a new copy of the http.Request object with our new context in it.

I should also point out that, for clarity, I made that code snippet a bit more verbose than it

https://pkg.go.dev/context/#Context

needs to be. It’s more typical to write it like this:

ctx = context.WithValue(r.Context(), "isAuthenticated", true)

r = r.WithContext(ctx)

So that’s how you add data to a request’s context. But what about retrieving it again?

The important thing to explain here is that, behind the scenes, request context values are

stored with the type any . And that means that, after retrieving them from the context, you’ll

need to assert them to their original type before you use them.

To retrieve a value we need to use the r.Context().Value() method, like so:

isAuthenticated, ok := r.Context().Value("isAuthenticated").(bool)

if !ok {

 return errors.New("could not convert value to bool")

}

Avoiding key collisions

In the code samples above, I’ve used the string "isAuthenticated" as the key for storing and

retrieving the data from a request’s context. But this isn’t recommended because there’s a

risk that other third-party packages used by your application will also want to store data

using the key "isAuthenticated" — and that would cause a naming collision.

To avoid this, it’s good practice to create your own custom type which you can use for your

context keys. Extending our sample code, it’s much better to do something like this:

// Declare a custom "contextKey" type for your context keys.

type contextKey string

// Create a constant with the type contextKey that we can use.

const isAuthenticatedContextKey = contextKey("isAuthenticated")

...

// Set the value in the request context, using our isAuthenticatedContextKey

// constant as the key.

ctx := r.Context()

ctx = context.WithValue(ctx, isAuthenticatedContextKey, true)

r = r.WithContext(ctx)

...

// Retrieve the value from the request context using our constant as the key.

isAuthenticated, ok := r.Context().Value(isAuthenticatedContextKey).(bool)

if !ok {

 return errors.New("could not convert value to bool")

}

Chapter 12.2.

Request context for

authentication/authorization

So, with those explanations out of the way, let’s start to use the request context functionality

in our application.

We’ll begin by heading back to our internal/models/users.go file and updating the

UserModel.Exists() method, so that it returns true if a user with a specific ID exists in our

users table, and false otherwise. Like so:

File: internal/models/users.go

package models

...

func (m *UserModel) Exists(id int) (bool, error) {

 var exists bool

 stmt := "SELECT EXISTS(SELECT true FROM users WHERE id = ?)"

 err := m.DB.QueryRow(stmt, id).Scan(&exists)

 return exists, err

}

Then let’s create a new cmd/web/context.go file. In this file we’ll define a custom contextKey

type and an isAuthenticatedContextKey variable, so that we have a unique key we can use to

store and retrieve the authentication status from a request context (without the risk of

naming collisions).

$ touch cmd/web/context.go

File: cmd/web/context.go

package main

type contextKey string

const isAuthenticatedContextKey = contextKey("isAuthenticated")

And now for the exciting part. Let’s create a new authenticate() middleware method which:

1. Retrieves the user’s ID from their session data.

2. Checks the database to see if the ID corresponds to a valid user using the

UserModel.Exists() method.

3. Updates the request context to include an isAuthenticatedContextKey key with the value

true.

Here’s the code:

File: cmd/web/middleware.go

package main

import (

 "context" // New import

 "fmt"

 "net/http"

 "github.com/justinas/nosurf"

)

...

func (app *application) authenticate(next http.Handler) http.Handler {

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 // Retrieve the authenticatedUserID value from the session using the

 // GetInt() method. This will return the zero value for an int (0) if no

 // "authenticatedUserID" value is in the session -- in which case we

 // call the next handler in the chain as normal and return.

 id := app.sessionManager.GetInt(r.Context(), "authenticatedUserID")

 if id == 0 {

 next.ServeHTTP(w, r)

 return

 }

 // Otherwise, we check to see if a user with that ID exists in our

 // database.

 exists, err := app.users.Exists(id)

 if err != nil {

 app.serverError(w, err)

 return

 }

 // If a matching user is found, we know we know that the request is

 // coming from an authenticated user who exists in our database. We

 // create a new copy of the request (with an isAuthenticatedContextKey

 // value of true in the request context) and assign it to r.

 if exists {

 ctx := context.WithValue(r.Context(), isAuthenticatedContextKey, true)

 r = r.WithContext(ctx)

 }

 // Call the next handler in the chain.

 next.ServeHTTP(w, r)

 })

}

The important thing to emphasize here is the following difference:

When we don’t have a valid authenticated user, we pass the original and unchanged

*http.Request to the next handler in the chain.

When we do have a valid authenticated user, we create a copy of the request with a

isAuthenticatedContextKey key and true value stored in the request context. We then

pass this copy of the *http.Request to the next handler in the chain.

Alright, let’s update the cmd/web/routes.go file to include the authenticate() middleware in

our dynamic middleware chain:

File: cmd/web/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 app.notFound(w)

 })

 fileServer := http.FileServer(http.Dir("./ui/static/"))

 router.Handler(http.MethodGet, "/static/*filepath", http.StripPrefix("/static", fileServer))

 // Add the authenticate() middleware to the chain.

 dynamic := alice.New(app.sessionManager.LoadAndSave, noSurf, app.authenticate)

 router.Handler(http.MethodGet, "/", dynamic.ThenFunc(app.home))

 router.Handler(http.MethodGet, "/snippet/view/:id", dynamic.ThenFunc(app.snippetView))

 router.Handler(http.MethodGet, "/user/signup", dynamic.ThenFunc(app.userSignup))

 router.Handler(http.MethodPost, "/user/signup", dynamic.ThenFunc(app.userSignupPost))

 router.Handler(http.MethodGet, "/user/login", dynamic.ThenFunc(app.userLogin))

 router.Handler(http.MethodPost, "/user/login", dynamic.ThenFunc(app.userLoginPost))

 protected := dynamic.Append(app.requireAuthentication)

 router.Handler(http.MethodGet, "/snippet/create", protected.ThenFunc(app.snippetCreate))

 router.Handler(http.MethodPost, "/snippet/create", protected.ThenFunc(app.snippetCreatePost))

 router.Handler(http.MethodPost, "/user/logout", protected.ThenFunc(app.userLogoutPost))

 standard := alice.New(app.recoverPanic, app.logRequest, secureHeaders)

 return standard.Then(router)

}

The last thing that we need to do is update our isAuthenticated() helper, so that instead of

checking the session data it now checks the request context to determine if a user is

authenticated or not.

We can do this like so:

File: cmd/web/helpers.go

package main

...

func (app *application) isAuthenticated(r *http.Request) bool {

 isAuthenticated, ok := r.Context().Value(isAuthenticatedContextKey).(bool)

 if !ok {

 return false

 }

 return isAuthenticated

}

It’s important to point out here that if there isn’t a value in the request context with the

isAuthenticatedContextKey key, or the underlying value isn’t a bool, then this type assertion

will fail. In that case we take a ‘safe’ fall back and return false (i.e we assume that the user isn’t

authenticated).

If you like, try running the application again. It should compile correctly and if you log in as a

certain user and browse around the application should work exactly as before.

Then, if you want, open MySQL and delete the record for the user that you’re logged in as

from the database. For example:

mysql> USE snippetbox;

mysql> DELETE FROM users WHERE email = 'bob@example.com';

And when you go back to your browser and refresh the page, the application is now smart

enough to recognize that the user has been deleted, and you’ll find yourself treated as an

unauthenticated (logged-out) user.

Additional information

Misusing request context

It’s important to emphasize that request context should only be used to store information

relevant to the lifetime of a specific request. The Go documentation for context.Context

warns:

Use context Values only for request-scoped data that transits processes and APIs.

That means you should not use it to pass dependencies that exist outside of the lifetime of a

request — like loggers, template caches and your database connection pool — to your

middleware and handlers.

For reasons of type-safety and clarity of code, it’s almost always better to make these

dependencies available to your handlers explicitly, by either making your handlers methods

against an application struct (like we have in this book) or passing them in a closure (like in

this Gist).

https://gist.github.com/alexedwards/5cd712192b4831058b21

Chapter 13.

Optional Go features

In this section of the book we’re going to talk about two Go features that are relatively new

additions to the language: file embedding and generics.

Using these features is completely optional — our application works absolutely fine without

them — but they are both useful and worth knowing about.

Essentially:

File embedding makes it possible to embed external files into your Go program itself.

Generics can help to reduce the amount of boilerplate code you need to write, while

retaining compile-time type safety.

Let’s jump straight in a take a look at them.

Chapter 13.1.

Using embedded files

One of the headline features of the Go 1.16 release was the embed package, which makes it

possible to embed external files into your Go program itself.

This feature is really nice because it makes it possible to create (and subsequently, distribute)

Go programs that are completely self-contained and have everything that they need to run as

part of the binary executable.

To illustrate how to use the embed package, we’ll update our application to embed and use

the files in our existing ui directory (which contains our static CSS/JavaScript/image files and

the HTML templates).

If you’d like to follow along, first create a new ui/efs.go file:

$ touch ui/efs.go

And then add the following code:

File: ui/efs.go

package ui

import (

 "embed"

)

//go:embed "html" "static"

var Files embed.FS

The important line here is //go:embed "html" "static" .

This looks like a comment, but it is actually a special comment directive. When our application

is compiled, this comment directive instructs Go to store the files from our ui/html and

ui/static folders in an embed.FS embedded filesystem referenced by the global variable

Files .

There are a few important details about this which we need to explain.

The comment directive must be placed immediately above the variable in which you want

to store the embedded files.

https://pkg.go.dev/embed/
https://pkg.go.dev/embed/#FS

The directive has the general format go:embed <paths> , and it’s OK to specify multiple

paths in one directive (like we have in the code above). The paths should be relative to the

source code file containing the directive. So in our case, go:embed "static" "html"

embeds the directories ui/static and ui/html from our project.

You can only use the go:embed directive on global variables at package level, not within

functions or methods. If you try to use it within a function or method, you’ll get the error

"go:embed cannot apply to var inside func" at compile time.

Paths cannot not contain . or .. elements, nor may they begin or end with a / . This

essentially restricts you to only embedding files that are contained in the same directory

(or a subdirectory) as the source code which has the go:embed directive.

If a path is to a directory, then all files in that directory are recursively embedded, except

for files with names that begin with . or _ . If you want to include these files you should use

the all: prefix, like go:embed "all:static" .

The path separator should always be a forward slash, even on Windows machines.

The embedded file system is always rooted in the directory which contains the go:embed

directive. So, in the example above, our Files variable contains an embed.FS embedded

filesystem and the root of that filesystem is our ui directory.

Using the static files

Let’s switch up our application so that it serves our static CSS, JavaScript and image files

from the embedded file system — instead of reading them from the disk at runtime.

Open your cmd/web/routes.go file and update it as follows:

File: cmd/web/routes.go

package main

import (

 "net/http"

 "snippetbox.alexedwards.net/ui" // New import

 "github.com/julienschmidt/httprouter"

 "github.com/justinas/alice"

)

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 app.notFound(w)

 })

 // Take the ui.Files embedded filesystem and convert it to a http.FS type so

 // that it satisfies the http.FileSystem interface. We then pass that to the

 // http.FileServer() function to create the file server handler.

 fileServer := http.FileServer(http.FS(ui.Files))

 // Our static files are contained in the "static" folder of the ui.Files

 // embedded filesystem. So, for example, our CSS stylesheet is located at

 // "static/css/main.css". This means that we now longer need to strip the

 // prefix from the request URL -- any requests that start with /static/ can

 // just be passed directly to the file server and the corresponding static

 // file will be served (so long as it exists).

 router.Handler(http.MethodGet, "/static/*filepath", fileServer)

 dynamic := alice.New(app.sessionManager.LoadAndSave, noSurf, app.authenticate)

 router.Handler(http.MethodGet, "/", dynamic.ThenFunc(app.home))

 router.Handler(http.MethodGet, "/snippet/view/:id", dynamic.ThenFunc(app.snippetView))

 router.Handler(http.MethodGet, "/user/signup", dynamic.ThenFunc(app.userSignup))

 router.Handler(http.MethodPost, "/user/signup", dynamic.ThenFunc(app.userSignupPost))

 router.Handler(http.MethodGet, "/user/login", dynamic.ThenFunc(app.userLogin))

 router.Handler(http.MethodPost, "/user/login", dynamic.ThenFunc(app.userLoginPost))

 protected := dynamic.Append(app.requireAuthentication)

 router.Handler(http.MethodGet, "/snippet/create", protected.ThenFunc(app.snippetCreate))

 router.Handler(http.MethodPost, "/snippet/create", protected.ThenFunc(app.snippetCreatePost))

 router.Handler(http.MethodPost, "/user/logout", protected.ThenFunc(app.userLogoutPost))

 standard := alice.New(app.recoverPanic, app.logRequest, secureHeaders)

 return standard.Then(router)

}

If you save the files and then restart the application, you should find that everything compiles

and runs correctly. When you visit https://localhost:4000 in your browser, the static files

should be served from the embedded filesystem and everything should look normal.

https://localhost:4000/

If you want, you can also navigate directly to the static files to check that they are still

available. For example, visiting https://localhost:4000/static/css/main.css should

display the CSS stylesheet for the webpage from the embedded filesystem.

https://localhost:4000/static/css/main.css

Embedding HTML templates

Next let’s update the cmd/web/templates.go file so that our template cache uses the

embedded HTML template files from ui.Files, instead of the ones on disk.

To help us with this we’ll need to leverage a couple of the special features that Go 1.16

introduced for working with embedded filesystems:

fs.Glob() returns a slice of filepaths matching a glob pattern. It’s effectively the same as

the filepath.Glob() function that we used earlier in the book, except that it works on

embedded filesystems.

Template.ParseFS() can be used to parse the HTML templates from an embedded

filesystem into a template set. This is effectively a replacement for both the

Template.ParseFiles() and Template.ParseGlob() methods that we used earlier.

Template.ParseFiles() is also a variadic function, which allows you to parse multiple

templates in a single call to ParseFiles().

Let’s put these to use in our cmd/web/templates.go file:

https://pkg.go.dev/io/fs#Glob
https://pkg.go.dev/html/template#Template.ParseFS

File: cmd/web/templates.go

package main

import (

 "html/template"

 "io/fs" // New import

 "path/filepath"

 "time"

 "snippetbox.alexedwards.net/internal/models"

 "snippetbox.alexedwards.net/ui" // New import

)

...

func newTemplateCache() (map[string]*template.Template, error) {

 cache := map[string]*template.Template{}

 // Use fs.Glob() to get a slice of all filepaths in the ui.Files embedded

 // filesystem which match the pattern 'html/pages/*.tmpl'. This essentially

 // gives us a slice of all the 'page' templates for the application, just

 // like before.

 pages, err := fs.Glob(ui.Files, "html/pages/*.tmpl")

 if err != nil {

 return nil, err

 }

 for _, page := range pages {

 name := filepath.Base(page)

 // Create a slice containing the filepath patterns for the templates we

 // want to parse.

 patterns := []string{

 "html/base.tmpl",

 "html/partials/*.tmpl",

 page,

 }

 // Use ParseFS() instead of ParseFiles() to parse the template files

 // from the ui.Files embedded filesystem.

 ts, err := template.New(name).Funcs(functions).ParseFS(ui.Files, patterns...)

 if err != nil {

 return nil, err

 }

 cache[name] = ts

 }

 return cache, nil

}

Now that this is done, when our application is built into a binary it will contain all the UI files

that it needs to run.

You can try this out quickly by building an executable binary in your /tmp directory, copying

over the TLS certificates and running the binary. Like so:

$ go build -o /tmp/web ./cmd/web/

$ cp -r ./tls /tmp/

$ cd /tmp/

$./web

INFO 2022/04/01 12:43:12 Starting server on :4000

And again, you should be able to visit https://localhost:4000 in your browser and

everything should work correctly — despite the binary being in a location where it does not

have access to the original UI files on disk.

Note: If you’d like to learn about building binaries and deploying applications, there is a

lot more information and detailed explanation available in Let’s Go Further.

https://localhost:4000/
https://lets-go-further.alexedwards.net/

Chapter 13.2.

Using generics

Go 1.18 is the first version of the language to support generics — also known by the more

technical name of parametric polymorphism.

Very broadly, the new generics functionality allows you to write code that works with different

concrete types.

For example, in older versions of Go, if you wanted to check whether a []string slice and an

[]int slice contained a particular value you would need to write two separate functions —

one function for the string type and another for the int . A bit like this:

func containsString(v string, s []string) bool {

 for i, vs := range s {

 if v == vs {

 return true

 }

 }

 return false

}

func containsInt(v int, s []int) bool {

 for i, vs := range s {

 if v == vs {

 return true

 }

 }

 return false

}

Now, with generics, it’s possible to write a single contains() function that will work for

string, int and all other comparable types. The code looks like this:

func contains[T comparable](v T, s []T) bool {

 for i := range s {

 if v == s[i] {

 return true

 }

 }

 return false

}

If you’re not yet familiar with generics in Go, there’s a lot of great information available which

explains how generics works and walks you through the syntax for writing generic code.

To get up to speed, I highly recommend reading the official Go generics tutorial, and also

watching the first 15 minutes of this video to help consolidate what you’ve learnt.

https://pkg.go.dev/builtin#comparable
https://go.dev/doc/tutorial/generics
https://www.youtube.com/watch?v=Pa_e9EeCdy8

Rather than duplicating that same information here, instead I’d like to talk briefly about a less

common (but just as important!) topic: when to use generics.

When to use generics

For now at least, you should aim to use generics judiciously and cautiously.

I know that might sound a bit boring, but generics are a new language feature and best-

practices around writing generic code are still being established. If you work on a team, or

write code in public, it’s also work keeping in mind that not all other Go developers will

necessarily be familiar with how generic code works yet.

You don’t need to use generics, and it’s OK not to.

But even with those caveats, writing generic code can be really useful in certain scenarios.

Very generally speaking, you might want to consider it when:

You find yourself writing repeated boilerplate code for different data types. Examples of

this might be common operations on slices, maps or channels — or helpers for carrying out

validation checks or test assertions on different data types.

You are writing code and find yourself reaching for the any (empty interface{}) type. An

example of this might be when you are creating a data structure (like a queue, cache or

linked list) which needs to operate on different types.

In contrast, you probably don’t want to use generics:

If it makes your code harder to understand or less clear.

If all the types that you need to work with have a common set of methods — in which case

it’s better to define and use a normal interface type instead.

Just because you can. Instead default to writing simple non-generic code, and switch to a

generic version later only if it is actually needed.

Using generics in our application

In the next section of the book we’ll start to write tests for our application, and in doing that

we’ll generate a lot of duplicate boilerplate code. We’ll use Go’s generics functionality to help

us manage this and create some generic helpers for carrying out test assertions on different

data types.

But for now, there’s not much in our codebase that would benefit from being made generic.

Our application already works — and the code is clear, readable, and doesn’t have much

duplication that generics could easily cut out.

Perhaps the only thing really suited to being made generic is the PermittedInt() function in

our internal/validator/validator.go file.

Let’s go ahead and change this to be a generic PermittedValue() function, which we can then

use each time that we want to check that a user-provided value is in a set of allowed values —

irrespective of whether the user-provided value is a string, int , float64 or any other

comparable type.

Like so:

File: internal/validator/validator.go

package validator

...

// Replace PermittedInt() with a generic PermittedValue() function. This returns

// true if the value of type T equals one of the variadic permittedValues

// parameters.

func PermittedValue[T comparable](value T, permittedValues ...T) bool {

 for i := range permittedValues {

 if value == permittedValues[i] {

 return true

 }

 }

 return false

}

And then we can update our snippetCreatePost handler to use the new PermittedValue()

function in the validation checks, like this:

https://pkg.go.dev/builtin#comparable

File: cmd/web/handlers.go

package main

...

func (app *application) snippetCreatePost(w http.ResponseWriter, r *http.Request) {

 var form snippetCreateForm

 err := app.decodePostForm(r, &form)

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 form.CheckField(validator.NotBlank(form.Title), "title", "This field cannot be blank")

 form.CheckField(validator.MaxChars(form.Title, 100), "title", "This field cannot be more than 100 characters long")

 form.CheckField(validator.NotBlank(form.Content), "content", "This field cannot be blank")

 // Use the generic PermittedValue() function instead of the type-specific

 // PermittedInt() function.

 form.CheckField(validator.PermittedValue(form.Expires, 1, 7, 365), "expires", "This field must equal 1, 7 or 365")

 if !form.Valid() {

 data := app.newTemplateData(r)

 data.Form = form

 app.render(w, http.StatusUnprocessableEntity, "create.tmpl", data)

 return

 }

 id, err := app.snippets.Insert(form.Title, form.Content, form.Expires)

 if err != nil {

 app.serverError(w, err)

 return

 }

 app.sessionManager.Put(r.Context(), "flash", "Snippet successfully created!")

 http.Redirect(w, r, fmt.Sprintf("/snippet/view/%d", id), http.StatusSeeOther)

}

...

After making those changes, you should find that your application compiles correctly and

continues to function the same way as before.

Chapter 14.

Testing

And so we finally come to the topic of testing.

Like structuring and organizing your application code, there’s no single ‘right’ way to

structure and organize your tests in Go. But there are some conventions, patterns and good-

practices that you can follow.

In this section we’re going to add tests for a selection of the code in our application, with the

goal of demonstrating the general syntax for creating tests and illustrating some patterns

that you can reuse in a wide-variety of applications.

You’ll learn:

How to create and run table-driven unit tests and sub-tests in Go.

How to unit test your HTTP handlers and middleware.

How to perform ‘end-to-end’ testing of your web application routes, middleware and

handlers.

How to create mocks of your database models and use them in unit tests.

A pattern for testing CSRF-protected HTML form submissions.

How to use a test instance of MySQL to perform integration tests.

How to easily calculate and profile code coverage for your tests.

Chapter 14.1.

Unit testing and sub-tests

In this chapter we’ll create a unit test to make sure that our humanDate() function (which we

made back in the custom template functions chapter) is outputting time.Time values in the

exact format that we want.

If you can’t remember, the humanDate() function looks like this:

File: cmd/web/templates.go

package main

...

func humanDate(t time.Time) string {

 return t.UTC().Format("02 Jan 2006 at 15:04")

}

...

The reason that I want to start by testing this is because it’s a simple function. We can explore

the basic syntax and patterns for writing tests without getting too caught-up in the

functionality that we’re testing.

Creating a unit test

Let’s jump straight in and create a unit test for this function.

In Go, its standard practice to create your tests in *_test.go files which live directly alongside

the code that you’re testing. So, in this case, the first thing that we’re going to do is create a

new cmd/web/templates_test.go file to hold the test:

$ touch cmd/web/templates_test.go

And then we can create a new unit test for the humanDate function like so:

File: cmd/web/templates_test.go

package main

import (

 "testing"

 "time"

)

func TestHumanDate(t *testing.T) {

 // Initialize a new time.Time object and pass it to the humanDate function.

 tm := time.Date(2022, 3, 17, 10, 15, 0, 0, time.UTC)

 hd := humanDate(tm)

 // Check that the output from the humanDate function is in the format we

 // expect. If it isn't what we expect, use the t.Errorf() function to

 // indicate that the test has failed and log the expected and actual

 // values.

 if hd != "17 Mar 2022 at 10:15" {

 t.Errorf("got %q; want %q", hd, "17 Mar 2022 at 10:15")

 }

}

This pattern is the basic one that you’ll use for nearly all tests that you write in Go. The

important things to take away are:

The test is just regular Go code, which calls the humanDate() function and checks that the

result matches what we expect.

Your unit tests are contained in a normal Go function with the signature

func(*testing.T).

To be a valid unit test the name of this function must begin with the word Test. Typically

this is then followed by the name of the function, method or type that you’re testing to

help make it obvious at a glance what is being tested.

You can use the t.Errorf() function to mark a test as failed and log a descriptive message

about the failure. It’s important to note that calling t.Errorf() doesn’t stop execution of

your test — after you call it Go will continue executing any remaining test code as normal.

Let’s try this out. Save the file, then use the go test command to run all the tests in our

cmd/web package like so:

$ go test ./cmd/web

ok snippetbox.alexedwards.net/cmd/web 0.005s

So, this is good stuff. The ok in this output indicates that all tests in the package (for now, only

our TestHumanDate() test) passed without any problems.

If you want more detail, you can see exactly which tests are being run by using the -v flag to

https://pkg.go.dev/testing/#T.Errorf

get the verbose output:

$ go test -v ./cmd/web

=== RUN TestHumanDate

--- PASS: TestHumanDate (0.00s)

PASS

ok snippetbox.alexedwards.net/cmd/web 0.007s

Table-driven tests

Let’s now expand our TestHumanDate() function to cover some additional test cases.

Specifically, we’re going to update it to also check that:

1. If the input to humanDate() is the zero time, then it returns the empty string "".

2. The output from the humanDate() function always uses the UTC time zone.

In Go, an idiomatic way to run multiple test cases is to use table-driven tests.

Essentially, the idea behind table-driven tests is to create a ‘table’ of test cases containing the

inputs and expected outputs, and to then loop over these, running each test case in a sub-

test. There are a few ways you could set this up, but a common approach is to define your test

cases in an slice of anonymous structs.

I’ll demonstrate:

https://pkg.go.dev/time/#Time.IsZero

File: cmd/web/templates_test.go

package main

import (

 "testing"

 "time"

)

func TestHumanDate(t *testing.T) {

 // Create a slice of anonymous structs containing the test case name,

 // input to our humanDate() function (the tm field), and expected output

 // (the want field).

 tests := []struct {

 name string

 tm time.Time

 want string

 }{

 {

 name: "UTC",

 tm: time.Date(2022, 3, 17, 10, 15, 0, 0, time.UTC),

 want: "17 Mar 2022 at 10:15",

 },

 {

 name: "Empty",

 tm: time.Time{},

 want: "",

 },

 {

 name: "CET",

 tm: time.Date(2022, 3, 17, 10, 15, 0, 0, time.FixedZone("CET", 1*60*60)),

 want: "17 Mar 2022 at 09:15",

 },

 }

 // Loop over the test cases.

 for _, tt := range tests {

 // Use the t.Run() function to run a sub-test for each test case. The

 // first parameter to this is the name of the test (which is used to

 // identify the sub-test in any log output) and the second parameter is

 // and anonymous function containing the actual test for each case.

 t.Run(tt.name, func(t *testing.T) {

 hd := humanDate(tt.tm)

 if hd != tt.want {

 t.Errorf("got %q; want %q", hd, tt.want)

 }

 })

 }

}

Note: In the third test case we’re using CET (Central European Time) as the time zone,

which is one hour ahead of UTC. So we want the output from humanDate() (in UTC) to be

17 Mar 2022 at 09:15 , not 17 Mar 2022 at 10:15 .

OK, let’s run this and see what happens:

$ go test -v ./cmd/web

=== RUN TestHumanDate

=== RUN TestHumanDate/UTC

=== RUN TestHumanDate/Empty

 templates_test.go:44: got "01 Jan 0001 at 00:00"; want ""

=== RUN TestHumanDate/CET

 templates_test.go:44: got "17 Mar 2022 at 10:15"; want "17 Mar 2022 at 09:15"

--- FAIL: TestHumanDate (0.00s)

 --- PASS: TestHumanDate/UTC (0.00s)

 --- FAIL: TestHumanDate/Empty (0.00s)

 --- FAIL: TestHumanDate/CET (0.00s)

FAIL

FAIL snippetbox.alexedwards.net/cmd/web 0.003s

FAIL

So here we can see the individual output for each of our sub-tests. As you might have

guessed, our first test case passed but the Empty and CET tests both failed. Notice how — for

the failed test cases — we get the relevant failure message and filename and line number in

the output?

Let’s head back to our humanDate() function and update it to fix these two problems:

File: cmd/web/templates.go

package main

...

func humanDate(t time.Time) string {

 // Return the empty string if time has the zero value.

 if t.IsZero() {

 return ""

 }

 // Convert the time to UTC before formatting it.

 return t.UTC().Format("02 Jan 2006 at 15:04")

}

...

And when you re-run the tests everything should now pass.

$ go test -v ./cmd/web

=== RUN TestHumanDate

=== RUN TestHumanDate/UTC

=== RUN TestHumanDate/Empty

=== RUN TestHumanDate/CET

--- PASS: TestHumanDate (0.00s)

 --- PASS: TestHumanDate/UTC (0.00s)

 --- PASS: TestHumanDate/Empty (0.00s)

 --- PASS: TestHumanDate/CET (0.00s)

PASS

ok snippetbox.alexedwards.net/cmd/web 0.003s

Helpers for test assertions

As I mentioned briefly earlier in the book, over the next few chapters we’ll be writing a lot of

test assertions that are a variation of this pattern:

if actualValue != expectedValue {

 t.Errorf("got %v; want %v", actualValue, expectedValue)

}

Let’s quickly abstract this code into a helper function.

If you’re following along, go ahead and create a new internal/assert package:

$ mkdir internal/assert

$ touch internal/assert/assert.go

And then add the following code:

File: internal/assert/assert.go

package assert

import (

 "testing"

)

func Equal[T comparable](t *testing.T, actual, expected T) {

 t.Helper()

 if actual != expected {

 t.Errorf("got: %v; want: %v", actual, expected)

 }

}

Notice how we’ve set this up so that Equal() is a generic function? This means that we’ll be

able to use it irrespective of what the type of the actual and expected values is. So long as

both actual and expected have the same type (for example, they are both string values, or

both int values) our test code should compile and work fine when we call Equal() .

Note: The t.Helper() function that we’re using in the code above indicates to the Go

test runner that our Equal() function is a test helper. This means that when t.Errorf()

is called from our Equal() function, the Go test runner will report the filename and line

number of the code which called our Equal() function in the output.

With that in place, we can simplify our TestHumanDate() test like so:

https://pkg.go.dev/testing#T.Helper

File: cmd/web/templates_test.go

package main

import (

 "testing"

 "time"

 "snippetbox.alexedwards.net/internal/assert" // New import

)

func TestHumanDate(t *testing.T) {

 tests := []struct {

 name string

 tm time.Time

 want string

 }{

 {

 name: "UTC",

 tm: time.Date(2022, 3, 17, 10, 15, 0, 0, time.UTC),

 want: "17 Mar 2022 at 10:15",

 },

 {

 name: "Empty",

 tm: time.Time{},

 want: "",

 },

 {

 name: "CET",

 tm: time.Date(2022, 3, 17, 10, 15, 0, 0, time.FixedZone("CET", 1*60*60)),

 want: "17 Mar 2022 at 09:15",

 },

 }

 for _, tt := range tests {

 t.Run(tt.name, func(t *testing.T) {

 hd := humanDate(tt.tm)

 // Use the new assert.Equal() helper to compare the expected and

 // actual values.

 assert.Equal(t, hd, tt.want)

 })

 }

}

Additional information

Sub-tests without a table of test cases

It’s important to point out that you don’t need to use sub-tests in conjunction with table-

driven tests (like we have done so far in this chapter). It’s perfectly valid to execute sub-tests

by calling t.Run() consecutively in your test functions, similar to this:

func TestExample(t *testing.T) {

 t.Run("Example sub-test 1", func(t *testing.T) {

 // Do a test.

 })

 t.Run("Example sub-test 2", func(t *testing.T) {

 // Do another test.

 })

 t.Run("Example sub-test 3", func(t *testing.T) {

 // And another...

 })

}

Chapter 14.2.

Testing HTTP handlers and middleware

Let’s move on and discuss some specific techniques for unit testing your HTTP handlers.

All the handlers that we’ve written for this project so far are a bit complex to test, and to

introduce things I’d prefer to start off with something more simple.

So, if you’re following along, head over to your handlers.go file and create a new ping

handler function which returns a 200 OK status code and an "OK" response body. It’s the type

of handler that you might want to implement for status-checking or uptime monitoring of

your server.

File: cmd/web/handlers.go

package main

...

func ping(w http.ResponseWriter, r *http.Request) {

 w.Write([]byte("OK"))

}

In this chapter we’ll create a new TestPing unit test which:

Checks that the response status code written by the ping handler is 200 .

Checks that the response body written by the ping handler is "OK".

Recording responses

To assist in testing your HTTP handlers Go provides the net/http/httptest package, which

contains a suite of useful tools.

One of these tools is the httptest.ResponseRecorder type. This is essentially an

implementation of http.ResponseWriter which records the response status code, headers

and body instead of actually writing them to a HTTP connection.

So an easy way to unit test your handlers is to create a new httptest.ResponseRecorder

object, pass it to the handler function, and then examine it again after the handler returns.

Let’s try doing exactly that to test the ping handler function.

https://pkg.go.dev/net/http/httptest
https://pkg.go.dev/net/http/httptest/#ResponseRecorder

First, follow the Go conventions and create a new handlers_test.go file to hold the test…

$ touch cmd/web/handlers_test.go

And then add the following code:

File: cmd/web/handlers_test.go

package main

import (

 "bytes"

 "io"

 "net/http"

 "net/http/httptest"

 "testing"

 "snippetbox.alexedwards.net/internal/assert"

)

func TestPing(t *testing.T) {

 // Initialize a new httptest.ResponseRecorder.

 rr := httptest.NewRecorder()

 // Initialize a new dummy http.Request.

 r, err := http.NewRequest(http.MethodGet, "/", nil)

 if err != nil {

 t.Fatal(err)

 }

 // Call the ping handler function, passing in the

 // httptest.ResponseRecorder and http.Request.

 ping(rr, r)

 // Call the Result() method on the http.ResponseRecorder to get the

 // http.Response generated by the ping handler.

 rs := rr.Result()

 // Check that the status code written by the ping handler was 200.

 assert.Equal(t, rs.StatusCode, http.StatusOK)

 // And we can check that the response body written by the ping handler

 // equals "OK".

 defer rs.Body.Close()

 body, err := io.ReadAll(rs.Body)

 if err != nil {

 t.Fatal(err)

 }

 bytes.TrimSpace(body)

 assert.Equal(t, string(body), "OK")

}

Note: In the code above we use the t.Fatal() function in a couple of places to handle

situations where there is an unexpected error in our test code. When called, t.Fatal()

will mark the test as failed, log the error, and then completely stop execution of the

current test (or sub-test).

Typically you should call t.Fatal() in situations where it doesn’t make sense to

continue the current test — such as an error during a setup step, or where an

unexpected error from a Go standard library function means you can’t proceed with the

test.

OK, save the file, then try running go test again with the verbose flag set. Like so:

$ go test -v ./cmd/web/

=== RUN TestPing

--- PASS: TestPing (0.00s)

=== RUN TestHumanDate

=== RUN TestHumanDate/UTC

=== RUN TestHumanDate/Empty

=== RUN TestHumanDate/CET

--- PASS: TestHumanDate (0.00s)

 --- PASS: TestHumanDate/UTC (0.00s)

 --- PASS: TestHumanDate/Empty (0.00s)

 --- PASS: TestHumanDate/CET (0.00s)

PASS

ok snippetbox.alexedwards.net/cmd/web 0.003s

So this is looking good. We can see that our new TestPing test is being run and passing

without any problems.

Testing middleware

It’s also possible to use the same general pattern to unit test your middleware.

We’ll demonstrate how by creating a new TestSecureHeaders test for the secureHeaders()

middleware that we made earlier in the book. As part of this test we want to check that:

The secureHeaders() middleware sets all the expected headers on the HTTP response.

The secureHeaders() middleware correctly calls the next handler in the chain.

First you’ll need to create a cmd/web/middleware_test.go file to hold the test:

$ touch cmd/web/middleware_test.go

And then add the following code:

https://pkg.go.dev/testing/#T.Fatal

File: cmd/web/middleware_test.go

package main

import (

 "bytes"

 "io"

 "net/http"

 "net/http/httptest"

 "testing"

 "snippetbox.alexedwards.net/internal/assert"

)

func TestSecureHeaders(t *testing.T) {

 // Initialize a new httptest.ResponseRecorder and dummy http.Request.

 rr := httptest.NewRecorder()

 r, err := http.NewRequest(http.MethodGet, "/", nil)

 if err != nil {

 t.Fatal(err)

 }

 // Create a mock HTTP handler that we can pass to our secureHeaders

 // middleware, which writes a 200 status code and an "OK" response body.

 next := http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 w.Write([]byte("OK"))

 })

 // Pass the mock HTTP handler to our secureHeaders middleware. Because

 // secureHeaders *returns* a http.Handler we can call its ServeHTTP()

 // method, passing in the http.ResponseRecorder and dummy http.Request to

 // execute it.

 secureHeaders(next).ServeHTTP(rr, r)

 // Call the Result() method on the http.ResponseRecorder to get the results

 // of the test.

 rs := rr.Result()

 // Check that the middleware has correctly set the Content-Security-Policy

 // header on the response.

 expectedValue := "default-src 'self'; style-src 'self' fonts.googleapis.com; font-src fonts.gstatic.com"

 assert.Equal(t, rs.Header.Get("Content-Security-Policy"), expectedValue)

 // Check that the middleware has correctly set the Referrer-Policy

 // header on the response.

 expectedValue = "origin-when-cross-origin"

 assert.Equal(t, rs.Header.Get("Referrer-Policy"), expectedValue)

 // Check that the middleware has correctly set the X-Content-Type-Options

 // header on the response.

 expectedValue = "nosniff"

 assert.Equal(t, rs.Header.Get("X-Content-Type-Options"), expectedValue)

 // Check that the middleware has correctly set the X-Frame-Options header

 // on the response.

 expectedValue = "deny"

 assert.Equal(t, rs.Header.Get("X-Frame-Options"), expectedValue)

 // Check that the middleware has correctly set the X-XSS-Protection header

 // on the response

 expectedValue = "0"

 assert.Equal(t, rs.Header.Get("X-XSS-Protection"), expectedValue)

 // Check that the middleware has correctly called the next handler in line

 // and the response status code and body are as expected.

 assert.Equal(t, rs.StatusCode, http.StatusOK)

 assert.Equal(t, rs.StatusCode, http.StatusOK)

 defer rs.Body.Close()

 body, err := io.ReadAll(rs.Body)

 if err != nil {

 t.Fatal(err)

 }

 bytes.TrimSpace(body)

 assert.Equal(t, string(body), "OK")

}

If you run the tests now, your should see that the TestSecureHeaders test passes without any

issues.

$ go test -v ./cmd/web/

=== RUN TestPing

--- PASS: TestPing (0.00s)

=== RUN TestSecureHeaders

--- PASS: TestSecureHeaders (0.00s)

=== RUN TestHumanDate

=== RUN TestHumanDate/UTC

=== RUN TestHumanDate/Empty

=== RUN TestHumanDate/CET

--- PASS: TestHumanDate (0.00s)

 --- PASS: TestHumanDate/UTC (0.00s)

 --- PASS: TestHumanDate/Empty (0.00s)

 --- PASS: TestHumanDate/CET (0.00s)

PASS

ok snippetbox.alexedwards.net/cmd/web 0.003s

So, in summary, a quick and easy way to unit test your HTTP handlers and middleware is to

simply call them using the httptest.ResponseRecorder type. You can then examine the status

code, headers and response body of the recorded response to make sure that they are

working as expected.

Chapter 14.3.

End-to-end testing

In the last chapter we talked through the general pattern for how to unit test your HTTP

handlers in isolation.

But — most of the time — your HTTP handlers aren’t actually used in isolation. So in this

chapter we’re going to explain how to run end-to-end tests on your web application that

encompass your routing, middleware and handlers. Arguably, end-to-end testing should give

you more confidence that your application is working correctly than unit testing in isolation.

To illustrate this, we’ll adapt our TestPing function so that it runs an end-to-end test on our

code. Specifically, we want the test to ensure that a GET /ping request to our application

calls the ping handler function and results in a 200 OK status code and "OK" response body.

Essentially, we want to test that our application has a route like this:

Method Pattern Handler Action

… … … …

GET /ping ping Return a 200 OK response

Using httptest.Server

The key to end-to-end testing our application is the httptest.NewTLSServer() function,

which spins up a httptest.Server instance that we can make HTTPS requests to.

The whole pattern is a bit too complicated to explain upfront, so it’s probably best to

demonstrate first by writing the code and then we’ll talk through the details afterwards.

With that in mind, head back to your handlers_test.go file and update the TestPing test so

that it looks like this:

https://pkg.go.dev/net/http/httptest/#NewTLSServer
https://pkg.go.dev/net/http/httptest/#Server

File: cmd/web/handlers_test.go

package main

import (

 "bytes"

 "io"

 "log" // New import

 "net/http"

 "net/http/httptest"

 "testing"

 "snippetbox.alexedwards.net/internal/assert"

)

func TestPing(t *testing.T) {

 // Create a new instance of our application struct. For now, this just

 // contains a couple of mock loggers (which discard anything written to

 // them).

 app := &application{

 errorLog: log.New(io.Discard, "", 0),

 infoLog: log.New(io.Discard, "", 0),

 }

 // We then use the httptest.NewTLSServer() function to create a new test

 // server, passing in the value returned by our app.routes() method as the

 // handler for the server. This starts up a HTTPS server which listens on a

 // randomly-chosen port of your local machine for the duration of the test.

 // Notice that we defer a call to ts.Close() so that the server is shutdown

 // when the test finishes.

 ts := httptest.NewTLSServer(app.routes())

 defer ts.Close()

 // The network address that the test server is listening on is contained in

 // the ts.URL field. We can use this along with the ts.Client().Get() method

 // to make a GET /ping request against the test server. This returns a

 // http.Response struct containing the response.

 rs, err := ts.Client().Get(ts.URL + "/ping")

 if err != nil {

 t.Fatal(err)

 }

 // We can then check the value of the response status code and body using

 // the same pattern as before.

 assert.Equal(t, rs.StatusCode, http.StatusOK)

 defer rs.Body.Close()

 body, err := io.ReadAll(rs.Body)

 if err != nil {

 t.Fatal(err)

 }

 bytes.TrimSpace(body)

 assert.Equal(t, string(body), "OK")

}

There are a few things about this code to point out and discuss.

When we call httptest.NewTLSServer() to initialize the test server we need to pass in a

http.Handler as the parameter — and this handler is called each time the test server

receives a HTTPS request. In our case, we’ve passed in the return value from our

app.routes() method, meaning that a request to the test server will use all our real

application routes, middleware and handlers.

This is a big upside of the work that we did earlier in the book to isolate all our application

routing in the app.routes() method.

If you’re testing a HTTP (not HTTPS) server you should use the httptest.NewServer()

function to create the test server instead.

The ts.Client() method returns the test server client — which has the type http.Client

— and we should always use this client to send requests to the test server. It’s possible to

configure the client to tweak its behavior, and we’ll explain how to do that at the end of

this chapter.

You might be wondering why we have set the errorLog and infoLog fields of our

application struct, but none of the other fields. The reason for this is that the loggers are

needed by the logRequest and recoverPanic middlewares, which are used by our

application on every route. Trying to run this test without setting these the two

dependencies will result in a panic.

Anyway, let’s try out the new test:

$ go test ./cmd/web/

--- FAIL: TestPing (0.00s)

 handlers_test.go:41: got 404; want 200

 handlers_test.go:51: got: Not Found; want: OK

FAIL

FAIL snippetbox.alexedwards.net/cmd/web 0.007s

FAIL

If you’re following along, you should get a failure at this point.

We can see from the test output that the response from our GET /ping request has a 404

status code, rather than the 200 we expected. And that’s because we haven’t actually

registered a GET /ping route with our router yet.

Let’s fix that now:

https://pkg.go.dev/net/http/httptest/#NewServer
https://pkg.go.dev/net/http/httptest/#Server.Client
https://pkg.go.dev/net/http/#Client

File: cmd/web/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 app.notFound(w)

 })

 fileServer := http.FileServer(http.FS(ui.Files))

 router.Handler(http.MethodGet, "/static/*filepath", fileServer)

 // Add a new GET /ping route.

 router.HandlerFunc(http.MethodGet, "/ping", ping)

 dynamic := alice.New(app.sessionManager.LoadAndSave, noSurf, app.authenticate)

 router.Handler(http.MethodGet, "/", dynamic.ThenFunc(app.home))

 router.Handler(http.MethodGet, "/snippet/view/:id", dynamic.ThenFunc(app.snippetView))

 router.Handler(http.MethodGet, "/user/signup", dynamic.ThenFunc(app.userSignup))

 router.Handler(http.MethodPost, "/user/signup", dynamic.ThenFunc(app.userSignupPost))

 router.Handler(http.MethodGet, "/user/login", dynamic.ThenFunc(app.userLogin))

 router.Handler(http.MethodPost, "/user/login", dynamic.ThenFunc(app.userLoginPost))

 protected := dynamic.Append(app.requireAuthentication)

 router.Handler(http.MethodGet, "/snippet/create", protected.ThenFunc(app.snippetCreate))

 router.Handler(http.MethodPost, "/snippet/create", protected.ThenFunc(app.snippetCreatePost))

 router.Handler(http.MethodPost, "/user/logout", protected.ThenFunc(app.userLogoutPost))

 standard := alice.New(app.recoverPanic, app.logRequest, secureHeaders)

 return standard.Then(router)

}

And if you run the tests again everything should now pass.

$ go test ./cmd/web/

ok snippetbox.alexedwards.net/cmd/web 0.008s

Using test helpers

Our TestPing test is now working nicely. But there’s a good opportunity to break out some of

this code into helper functions, which we can reuse as we add more end-to-end tests to our

project.

There’s no hard-and-fast rules about where to put helper methods for tests. If a helper is only

used in a specific *_test.go file, then it probably makes sense to include it inline in that file

alongside your tests. At the other end of the spectrum, if you are going to use a helper in tests

across multiple packages, then you might want to put it in a reusable package called

internal/testutils (or similar) which can be imported by your test files.

In our case the helpers will only be used in our cmd/web package and we’ll put them in a new

cmd/web/testutils_test.go file.

If you’re following along, please go ahead and create this now…

$ touch cmd/web/testutils_test.go

And then add the following code:

File: cmd/web/testutils_test.go

package main

import (

 "bytes"

 "io"

 "log"

 "net/http"

 "net/http/httptest"

 "testing"

)

// Create a newTestApplication helper which returns an instance of our

// application struct containing mocked dependencies.

func newTestApplication(t *testing.T) *application {

 return &application{

 errorLog: log.New(io.Discard, "", 0),

 infoLog: log.New(io.Discard, "", 0),

 }

}

// Define a custom testServer type which embeds a httptest.Server instance.

type testServer struct {

 *httptest.Server

}

// Create a newTestServer helper which initalizes and returns a new instance

// of our custom testServer type.

func newTestServer(t *testing.T, h http.Handler) *testServer {

 ts := httptest.NewTLSServer(h)

 return &testServer{ts}

}

// Implement a get() method on our custom testServer type. This makes a GET

// request to a given url path using the test server client, and returns the

// response status code, headers and body.

func (ts *testServer) get(t *testing.T, urlPath string) (int, http.Header, string) {

 rs, err := ts.Client().Get(ts.URL + urlPath)

 if err != nil {

 t.Fatal(err)

 }

 defer rs.Body.Close()

 body, err := io.ReadAll(rs.Body)

 if err != nil {

 t.Fatal(err)

 }

 bytes.TrimSpace(body)

 return rs.StatusCode, rs.Header, string(body)

}

Essentially, this is just a generalization of the code that we’ve already written in this chapter

to spin up a test server and make a GET request against it.

Let’s head back to our TestPing handler and put these new helpers to use:

File: cmd/web/handlers_test.go

package main

import (

 "net/http"

 "testing"

 "snippetbox.alexedwards.net/internal/assert"

)

func TestPing(t *testing.T) {

 app := newTestApplication(t)

 ts := newTestServer(t, app.routes())

 defer ts.Close()

 code, _, body := ts.get(t, "/ping")

 assert.Equal(t, code, http.StatusOK)

 assert.Equal(t, body, "OK")

}

And, again, if you run the tests again everything should still pass.

$ go test ./cmd/web/

ok snippetbox.alexedwards.net/cmd/web 0.013s

This is shaping up nicely now. We have a neat pattern in place for spinning up a test server

and making requests to it, encompassing our routing, middleware and handlers in an end-to-

end test. We’ve also broken apart some of the code into helpers, which will make writing

future tests quicker and easier.

Cookies and redirections

So far in this chapter we’ve been using the default test server client settings. But there are a

couple of changes I’d like to make so that it’s better suited to testing our web application.

Specifically:

We want the client to automatically store any cookies sent in a HTTPS response, so that we

can include them (if appropriate) in any subsequent requests back to the test server. This

will come in handy later in the book when we need cookies to be supported across

multiple requests in order to test our anti-CSRF measures.

We don’t want the client to automatically follow redirects. Instead we want it to return the

first HTTPS response sent by our server so that we can test the response for that specific

request.

To make these changes, let’s go back to the testutils_test.go file we just created and

update the newTestServer() function like so:

File: cmd/web/testutils_test.go

package main

import (

 "bytes"

 "io"

 "log"

 "net/http"

 "net/http/cookiejar" // New import

 "net/http/httptest"

 "testing"

)

...

func newTestServer(t *testing.T, h http.Handler) *testServer {

 // Initialize the test server as normal.

 ts := httptest.NewTLSServer(h)

 // Initialize a new cookie jar.

 jar, err := cookiejar.New(nil)

 if err != nil {

 t.Fatal(err)

 }

 // Add the cookie jar to the test server client. Any response cookies will

 // now be stored and sent with subsequent requests when using this client.

 ts.Client().Jar = jar

 // Disable redirect-following for the test server client by setting a custom

 // CheckRedirect function. This function will be called whenever a 3xx

 // response is received by the client, and by always returning a

 // http.ErrUseLastResponse error it forces the client to immediately return

 // the received response.

 ts.Client().CheckRedirect = func(req *http.Request, via []*http.Request) error {

 return http.ErrUseLastResponse

 }

 return &testServer{ts}

}

...

Chapter 14.4.

Customizing how tests run

Before we continue adding more tests to our application, I want to take a quick break and talk

about a few of the useful flags and options that are available to customize how your tests run.

Controlling which tests are run

So far in this book we’ve been running the tests in a specific package (the cmd/web package)

like so:

$ go test ./cmd/web

But it’s also possible to run all the tests in your current project by using the ./... wildcard

pattern. In our case, we can use it to run all tests in our project like this:

$ go test ./...

ok snippetbox.alexedwards.net/cmd/web 0.007s

? snippetbox.alexedwards.net/internal/models [no test files]

? snippetbox.alexedwards.net/internal/validator [no test files]

? snippetbox.alexedwards.net/ui [no test files]

Or going in the other direction, it’s possible to only run specific tests by using the -run flag.

This allows you to pass in a regular expression — and only tests with a name that matches the

regular expression will be run.

For example, we could opt to run only the TestPing test as follows:

$ go test -v -run="^TestPing$" ./cmd/web/

=== RUN TestPing

--- PASS: TestPing (0.00s)

PASS

ok snippetbox.alexedwards.net/cmd/web 0.008s

And you can even use the -run flag to limit testing to some specific sub-tests using the format

{test regexp}/{sub-test regexp} . For example to run the UTC sub-test of our

TestHumanDate test we could do this:

$ go test -v -run="^TestHumanDate$/^UTC$" ./cmd/web

=== RUN TestHumanDate

=== RUN TestHumanDate/UTC

--- PASS: TestHumanDate (0.00s)

 --- PASS: TestHumanDate/UTC (0.00s)

PASS

ok snippetbox.alexedwards.net/cmd/web 0.003s

Test caching

You’ve perhaps noticed by now that if you run exactly the same test twice — without making

any changes to the package that you’re testing — then a cached version of the test result is

shown (indicated by the (cached) annotation next to the package name).

$ go test ./cmd/web

ok snippetbox.alexedwards.net/cmd/web (cached)

In most cases, the caching of test results is really useful (especially for large codebases)

because it helps reduce the total test runtime. But if you want force your tests to run in full

(and avoid the cache) you can use the -count=1 flag:

$ go test -count=1 ./cmd/web

Note: The count flag is used to tell go test how many times you want to execute each

test. It’s a non-cacheable flag, which means that any time you use it go test will neither

read or write the test results to the cache. So using count=1 is a bit of a trick to avoid the

cache without otherwise affecting how your tests run.

Alternatively, you can clear cached results for all tests with the go clean command:

$ go clean -testcache

Fast failure

It also worth pointing out that when we use the t.Errorf() function to mark a test as failed, it

doesn’t cause go test to immediately exit. All your other tests (and sub-tests) will continue to

be run after a failure.

If you would prefer to terminate the tests immediately after the first failure you can use the

-failfast flag:

$ go test -failfast ./cmd/web

It’s important to note that the -failfast flag only stops tests in the package that had the

failure. If you are running tests in multiple packages (for example by using go test ./...),

then the tests in the other packages will continue to run.

Parallel testing

By default, the go test command executes all tests in a serial manner, one after another.

When you have a small number of tests (like we do) and the runtime is very fast, this is

absolutely fine.

But if you have hundreds or thousands of tests the total run time can start adding up to

something more meaningful. And in that scenario, you may save yourself some time by

running your tests in parallel.

You can indicate that it’s OK for a test to be run concurrently alongside other tests by calling

the t.Parallel() function at the start of the test. For example:

func TestPing(t *testing.T) {

 t.Parallel()

 ...

}

It’s important to note here that:

Tests marked using t.Parallel() will be run in parallel with — and only with — other

parallel tests.

By default, the maximum number of tests that will be run simultaneously is the current

value of GOMAXPROCS. You can override this by setting a specific value via the -parallel

flag. For example:

$ go test -parallel 4 ./...

Not all tests are suitable to be run in parallel. For example, if you have an integration test

which requires a database table to be in a specific known state, then you wouldn’t want to

run it in parallel with other tests that manipulate the same database table.

https://github.com/golang/go/issues/33038
https://pkg.go.dev/runtime/#pkg-constants

Enabling the race detector

The go test command includes a -race flag which enables Go’s race detector when running

tests.

If the code you’re testing leverages concurrency, or you’re running tests in parallel, enabling

this can be a good idea to help to flag up race conditions that exist in your application. You

can use it like so:

$ go test -race ./cmd/web/

It’s important to point out that the race detector is just a tool that flags data races if and when

they are identified at runtime during testing. It doesn’t carry out static analysis of your

codebase, and a clear run doesn’t ensure that your code is free of race conditions.

Enabling the race detector will also increase the overall running time of your tests. So if

you’re running tests very frequently as part of a TDD workflow, you may prefer to use the

-race flag during pre-commit test runs only.

https://golang.org/doc/articles/race_detector.html

Chapter 14.5.

Mocking dependencies

Now that we’ve explained some general patterns for testing your web application, in this

chapter we’re going to get a bit more serious and write some tests for our snippetView

handler and GET /snippet/view/:id route.

But first, let’s talk about dependencies.

Throughout this project we’ve injected dependencies into our handlers via the application

struct, which currently looks like this:

type application struct {

 errorLog *log.Logger

 infoLog *log.Logger

 snippets *models.SnippetModel

 users *models.UserModel

 templateCache map[string]*template.Template

 formDecoder *form.Decoder

 sessionManager *scs.SessionManager

}

When testing, it sometimes makes sense to mock these dependencies instead of using exactly

the same ones that you do in your production application.

For example, in the previous chapter we mocked the errorLog and infoLog dependencies

with loggers that write messages to io.Discard, instead of the os.Stdout and os.Stderr

streams like we do in our production application:

func newTestApplication(t *testing.T) *application {

 return &application{

 errorLog: log.New(io.Discard, "", 0),

 infoLog: log.New(io.Discard, "", 0),

 }

}

The reason for mocking these and writing to io.Discard is to avoid clogging up our test

output with unnecessary log messages when we run go test -v (with verbose mode

enabled).

Note: Depending on your background and programming experiences, you might not

consider these loggers to be mocks. You might call them fakes, stubs or something else

entirely. But the name doesn’t really matter — and different people call them different

things. What’s important is that we’re using something which exposes the same interface

as a production object for the purpose of testing.

The other two dependencies that it makes sense for us to mock are the models.SnippetModel

and models.UserModel database models. By creating mocks of these it’s possible for us to

test the behavior of our handlers without needing to setup an entire test instance of the

MySQL database.

Mocking the database models

If you’re following along, create a new internal/models/mocks package containing

snippets.go and user.go files to hold the database model mocks, like so:

$ mkdir internal/models/mocks

$ touch internal/models/mocks/snippets.go

$ touch internal/models/mocks/users.go

Let’s begin by creating a mock of our models.SnippetModel . To do this, we’re going to create

a simple struct which implements the same methods as our production

models.SnippetModel , but have the methods return some fixed dummy data instead.

https://en.wikipedia.org/wiki/Mock_object#Mocks,_fakes,_and_stubs

File: internal/models/mocks/snippets.go

package mocks

import (

 "time"

 "snippetbox.alexedwards.net/internal/models"

)

var mockSnippet = &models.Snippet{

 ID: 1,

 Title: "An old silent pond",

 Content: "An old silent pond...",

 Created: time.Now(),

 Expires: time.Now(),

}

type SnippetModel struct{}

func (m *SnippetModel) Insert(title string, content string, expires int) (int, error) {

 return 2, nil

}

func (m *SnippetModel) Get(id int) (*models.Snippet, error) {

 switch id {

 case 1:

 return mockSnippet, nil

 default:

 return nil, models.ErrNoRecord

 }

}

func (m *SnippetModel) Latest() ([]*models.Snippet, error) {

 return []*models.Snippet{mockSnippet}, nil

}

And let’s do the same for our models.UserModel, like so:

File: internal/models/mocks/users.go

package mocks

import (

 "snippetbox.alexedwards.net/internal/models"

)

type UserModel struct{}

func (m *UserModel) Insert(name, email, password string) error {

 switch email {

 case "dupe@example.com":

 return models.ErrDuplicateEmail

 default:

 return nil

 }

}

func (m *UserModel) Authenticate(email, password string) (int, error) {

 if email == "alice@example.com" && password == "pa$$word" {

 return 1, nil

 }

 return 0, models.ErrInvalidCredentials

}

func (m *UserModel) Exists(id int) (bool, error) {

 switch id {

 case 1:

 return true, nil

 default:

 return false, nil

 }

}

Initializing the mocks

For the next step in our build, let’s head back to the testutils_test.go file and update the

newTestApplication() function so that it creates an application struct with all the

necessary dependencies for testing.

File: cmd/web/testutils_test.go

package main

import (

 "bytes"

 "io"

 "log"

 "net/http"

 "net/http/cookiejar"

 "net/http/httptest"

 "testing"

 "time" // New import

 "snippetbox.alexedwards.net/internal/models/mocks" // New import

 "github.com/alexedwards/scs/v2" // New import

 "github.com/go-playground/form/v4" // New import

)

func newTestApplication(t *testing.T) *application {

 // Create an instance of the template cache.

 templateCache, err := newTemplateCache()

 if err != nil {

 t.Fatal(err)

 }

 // And a form decoder.

 formDecoder := form.NewDecoder()

 // And a session manager instance. Note that we use the same settings as

 // production, except that we *don't* set a Store for the session manager.

 // If no store is set, the SCS package will default to using a transient

 // in-memory store, which is ideal for testing purposes.

 sessionManager := scs.New()

 sessionManager.Lifetime = 12 * time.Hour

 sessionManager.Cookie.Secure = true

 return &application{

 errorLog: log.New(io.Discard, "", 0),

 infoLog: log.New(io.Discard, "", 0),

 snippets: &mocks.SnippetModel{}, // Use the mock.

 users: &mocks.UserModel{}, // Use the mock.

 templateCache: templateCache,

 formDecoder: formDecoder,

 sessionManager: sessionManager,

 }

}

...

If you go ahead and try to run the tests now, it will fail to compile with the following errors:

$ go test ./cmd/web

snippetbox.alexedwards.net/cmd/web [snippetbox.alexedwards.net/cmd/web.test]

cmd/web/testutils_test.go:40:19: cannot use &mocks.SnippetModel{} (value of type *mocks.SnippetModel) as type *models.SnippetModel in struct literal

cmd/web/testutils_test.go:41:19: cannot use &mocks.UserModel{} (value of type *mocks.UserModel) as type *models.UserModel in struct literal

FAIL snippetbox.alexedwards.net/cmd/web [build failed]

FAIL

This is happening because our application struct is expecting pointers to

models.SnippetModel and models.UserModel instances, but we are trying to use pointers to

mocks.SnippetModel and mocks.UserModel instances instead.

The idiomatic fix for this is to change our application struct so that it uses interfaces which

are satisfied by both our mock and production database models.

Tip: If you’re not familiar with the idea of interfaces in Go, then there is an introduction

in this blog post which I recommend reading.

To do this, let’s head back to our internal/models/snippets.go and create a new

SnippetModelInterface interface type that describes the methods that our actual

SnippetModel struct has.

File: internal/models/snippets.go

package models

import (

 "database/sql"

 "errors"

 "time"

)

type SnippetModelInterface interface {

 Insert(title string, content string, expires int) (int, error)

 Get(id int) (*Snippet, error)

 Latest() ([]*Snippet, error)

}

...

And let’s also do the same thing for our UserModel struct too:

https://www.alexedwards.net/blog/interfaces-explained

File: internal/models/users.go

package models

import (

 "database/sql"

 "errors"

 "strings"

 "time"

 "github.com/go-sql-driver/mysql"

 "golang.org/x/crypto/bcrypt"

)

type UserModelInterface interface {

 Insert(name, email, password string) error

 Authenticate(email, password string) (int, error)

 Exists(id int) (bool, error)

}

...

Now that we’ve defined those interface types, let’s update our application struct to use

them instead of the concrete SnippetModel and UserModel types. Like so:

File: cmd/web/main.go

package main

import (

 "crypto/tls"

 "database/sql"

 "flag"

 "html/template"

 "log"

 "net/http"

 "os"

 "time"

 "snippetbox.alexedwards.net/internal/models"

 "github.com/alexedwards/scs/mysqlstore"

 "github.com/alexedwards/scs/v2"

 "github.com/go-playground/form/v4"

 _ "github.com/go-sql-driver/mysql"

)

type application struct {

 errorLog *log.Logger

 infoLog *log.Logger

 snippets models.SnippetModelInterface // Use our new interface type.

 users models.UserModelInterface // Use our new interface type.

 templateCache map[string]*template.Template

 formDecoder *form.Decoder

 sessionManager *scs.SessionManager

}

...

And if you try running the tests again now, everything should work correctly.

$ go test ./cmd/web/

ok snippetbox.alexedwards.net/cmd/web 0.008s

Let’s take a moment to pause and reflect on what we’ve just done.

We’ve updated the application struct so that instead of the snippets and users fields

having the concrete types *models.SnippetModel and *models.UserModel they are interfaces

instead.

So long as an object has the necessary methods to satisfy the interface, we can use them in

our application struct. Both our ‘real’ database models (like models.SnippetModel) and

mock database models (like mocks.SnippetModel) satisfy the interfaces, so we can now use

them interchangeably.

Testing the snippetView handler

With that all now set up, let’s get stuck into writing an end-to-end test for our snippetView

handler which uses these mocked dependencies.

As part of this test, the code in our snippetView handler will call the

mock.SnippetModel.Get() method. Just to remind you, this mocked model method returns a

models.ErrNoRecord unless the snippet ID is 1 — when it will return the following mock

snippet:

var mockSnippet = &models.Snippet{

 ID: 1,

 Title: "An old silent pond",

 Content: "An old silent pond...",

 Created: time.Now(),

 Expires: time.Now(),

}

So specifically, we want to test that:

1. For the request GET /snippet/view/1 we receive a 200 OK response with the relevant

mocked snippet contained in the HTML response body.

2. For all other requests to GET /snippet/view/* we should receive a 404 Not Found

response.

For the first part here, we want to check that the request body contains some specific

content, rather than being exactly equal to it. Let’s quickly add a new StringContains()

function to our assert package to help with that:

File:

package assert

import (

 "strings" // New import

 "testing"

)

...

func StringContains(t *testing.T, actual, expectedSubstring string) {

 t.Helper()

 if !strings.Contains(actual, expectedSubstring) {

 t.Errorf("got: %q; expected to contain: %q", actual, expectedSubstring)

 }

}

And then open up the cmd/web/handlers_test.go file and create a new TestSnippetView test

like so:

File: cmd/web/handlers_test.go

package main

...

func TestSnippetView(t *testing.T) {

 // Create a new instance of our application struct which uses the mocked

 // dependencies.

 app := newTestApplication(t)

 // Establish a new test server for running end-to-end tests.

 ts := newTestServer(t, app.routes())

 defer ts.Close()

 // Set up some table-driven tests to check the responses sent by our

 // application for different URLs.

 tests := []struct {

 name string

 urlPath string

 wantCode int

 wantBody string

 }{

 {

 name: "Valid ID",

 urlPath: "/snippet/view/1",

 wantCode: http.StatusOK,

 wantBody: "An old silent pond...",

 },

 {

 name: "Non-existent ID",

 urlPath: "/snippet/view/2",

 wantCode: http.StatusNotFound,

 },

 {

 name: "Negative ID",

 urlPath: "/snippet/view/-1",

 wantCode: http.StatusNotFound,

 },

 {

 name: "Decimal ID",

 urlPath: "/snippet/view/1.23",

 wantCode: http.StatusNotFound,

 },

 {

 name: "String ID",

 urlPath: "/snippet/view/foo",

 wantCode: http.StatusNotFound,

 },

 {

 name: "Empty ID",

 urlPath: "/snippet/view/",

 wantCode: http.StatusNotFound,

 },

 }

 for _, tt := range tests {

 t.Run(tt.name, func(t *testing.T) {

 code, _, body := ts.get(t, tt.urlPath)

 assert.Equal(t, code, tt.wantCode)

 if tt.wantBody != "" {

 assert.StringContains(t, body, tt.wantBody)

 }

 })

 }

}

When you run the tests again, everything should pass and you’ll see some output including

the new TestSnippetView tests and which looks a bit like this:

$ go test -v ./cmd/web/

=== RUN TestPing

--- PASS: TestPing (0.00s)

=== RUN TestSnippetView

=== RUN TestSnippetView/Valid_ID

=== RUN TestSnippetView/Non-existent_ID

=== RUN TestSnippetView/Negative_ID

=== RUN TestSnippetView/Decimal_ID

=== RUN TestSnippetView/String_ID

=== RUN TestSnippetView/Empty_ID

--- PASS: TestSnippetView (0.01s)

 --- PASS: TestSnippetView/Valid_ID (0.00s)

 --- PASS: TestSnippetView/Non-existent_ID (0.00s)

 --- PASS: TestSnippetView/Negative_ID (0.00s)

 --- PASS: TestSnippetView/Decimal_ID (0.00s)

 --- PASS: TestSnippetView/String_ID (0.00s)

 --- PASS: TestSnippetView/Empty_ID (0.00s)

=== RUN TestSecureHeaders

--- PASS: TestSecureHeaders (0.00s)

=== RUN TestHumanDate

=== RUN TestHumanDate/UTC

=== RUN TestHumanDate/Empty

=== RUN TestHumanDate/CET

--- PASS: TestHumanDate (0.00s)

 --- PASS: TestHumanDate/UTC (0.00s)

 --- PASS: TestHumanDate/Empty (0.00s)

 --- PASS: TestHumanDate/CET (0.00s)

PASS

ok snippetbox.alexedwards.net/cmd/web 0.015s

There’s one new thing to point out here: notice how the names of the sub-tests have been

canonicalized? Any spaces in the sub-test name have been replaced with an underscore (and

any non-printable characters will also be escaped) in the test output.

Chapter 14.6.

Testing HTML forms

In this chapter we’re going to add an end-to-end test for the POST /user/signup route, which

is handled by our userSignupPost handler.

Testing this route is made a bit more complicated by the anti-CSRF check that our application

does. Any request that we make to POST /user/signup will always receive a 400 Bad Request

response unless the request contains a valid CSRF token and cookie. To get around this we

need to emulate the workflow of a real-life user as part of our test, like so:

1. Make a GET /user/signup request. This will return a response which contains a CSRF

cookie in the response headers and the CSRF token for the signup page in the response

body.

2. Extract the CSRF token from the HTML response body.

3. Make a POST /user/signup request, using the same http.Client that we used in step 1

(so it automatically passes the CSRF cookie with the POST request) and including the CSRF

token alongside the other POST data that we want to test.

Let’s begin by adding a new helper function to our cmd/web/testutils_test.go file for

extracting the CSRF token (if one exists) from a HTML response body:

File: cmd/web/testutils_test.go

package main

import (

 "bytes"

 "html" // New import

 "io"

 "log"

 "net/http"

 "net/http/cookiejar"

 "net/http/httptest"

 "regexp" // New import

 "testing"

 "time"

 "snippetbox.alexedwards.net/internal/models/mocks"

 "github.com/alexedwards/scs/v2"

 "github.com/go-playground/form/v4"

)

// Define a regular expression which captures the CSRF token value from the

// HTML for our user signup page.

var csrfTokenRX = regexp.MustCompile(`<input type='hidden' name='csrf_token' value='(.+)'>`)

func extractCSRFToken(t *testing.T, body string) string {

 // Use the FindStringSubmatch method to extract the token from the HTML body.

 // Note that this returns an array with the entire matched pattern in the

 // first position, and the values of any captured data in the subsequent

 // positions.

 matches := csrfTokenRX.FindStringSubmatch(body)

 if len(matches) < 2 {

 t.Fatal("no csrf token found in body")

 }

 return html.UnescapeString(string(matches[1]))

}

...

Note: You might be wondering why we are using the html.UnescapeString() function

before returning the CSRF token. The reason for this is because Go’s html/template

package automatically escapes all dynamically rendered data… including our CSRF

token. Because the CSRF token is a base64 encoded string it will potentially include the

+ character, and this will be escaped to + . So after extracting the token from the

HTML we need to run it through html.UnescapeString() to get the original token value.

Now that’s in place, let’s go back to our cmd/web/handlers_test.go file and create a new

TestUserSignup test.

To start with, we’ll make this perform a GET /user/signup request and then extract and print

out the CSRF token from the HTML response body. Like so:

https://pkg.go.dev/html#UnescapeString

File: cmd/web/handlers_test.go

package main

...

func TestUserSignup(t *testing.T) {

 // Create the application struct containing our mocked dependencies and set

 // up the test server for running an end-to-end test.

 app := newTestApplication(t)

 ts := newTestServer(t, app.routes())

 defer ts.Close()

 // Make a GET /user/signup request and then extract the CSRF token from the

 // response body.

 _, _, body := ts.get(t, "/user/signup")

 csrfToken := extractCSRFToken(t, body)

 // Log the CSRF token value in our test output using the t.Logf() function.

 // The t.Logf() function works in the same way as fmt.Printf(), but writes

 // the provided message to the test output.

 t.Logf("CSRF token is: %q", csrfToken)

}

Importantly, you must run tests using the -v flag (to enable verbose output) in order to see

any output from the t.Logf() function.

Let’s go ahead and do that now:

$ go test -v -run="TestUserSignup" ./cmd/web/

=== RUN TestUserSignup

 handlers_test.go:81: CSRF token is: "C92tcpQpL1n6aIUaF8XAonwy+YjcVnyaAaOvfkdl6vJqoNSbgaTtdBRC61pFMoGP2ojV+sZ1d0SUikah3mfREQ=="

--- PASS: TestUserSignup (0.01s)

PASS

ok snippetbox.alexedwards.net/cmd/web 0.010s

OK, that looks like it’s working. The test is running without any problems and printing out the

CSRF token that we’ve extracted from the response body HTML.

Note: If you run this test for a second time immediately afterwards, without changing

anything in the cmd/web package, you’ll get the same CSRF token in the test output

because the test results have been cached .

Testing post requests

Now let’s head back to our cmd/web/testutils_test.go file and create a new postForm()

method on our testServer type, which we can use to send a POST request to our test server

with specific form data in the request body.

Go ahead and add the following code (which follows the same general pattern that we used

for the get() method earlier in the book):

File: cmd/web/testutils_test.go

package main

import (

 "bytes"

 "html"

 "io"

 "log"

 "net/http"

 "net/http/cookiejar"

 "net/http/httptest"

 "net/url" // New import

 "regexp"

 "testing"

 "time"

 "snippetbox.alexedwards.net/internal/models/mocks"

 "github.com/alexedwards/scs/v2"

 "github.com/go-playground/form/v4"

)

...

// Create a postForm method for sending POST requests to the test server. The

// final parameter to this method is a url.Values object which can contain any

// form data that you want to send in the request body.

func (ts *testServer) postForm(t *testing.T, urlPath string, form url.Values) (int, http.Header, string) {

 rs, err := ts.Client().PostForm(ts.URL+urlPath, form)

 if err != nil {

 t.Fatal(err)

 }

 // Read the response body from the test server.

 defer rs.Body.Close()

 body, err := io.ReadAll(rs.Body)

 if err != nil {

 t.Fatal(err)

 }

 bytes.TrimSpace(body)

 // Return the response status, headers and body.

 return rs.StatusCode, rs.Header, string(body)

}

And now, at last, we’re ready to add some table-driven sub-tests to test the behavior of our

application’s POST /user/signup route. Specifically, we want to test that:

A valid signup results in a 303 See Other response.

A form submission without a valid CSRF token results in a 400 Bad Request response.

A invalid from submission results in a 422 Unprocessable Entity response and the signup

form being redisplayed. This should happen when:

The name, email or password fields are empty.

The email is not in a valid format.

The password is less than 8 characters long.

The email address is already in use.

Go ahead and update the TestUserSignup function to carry out these tests like so:

File: cmd/web/handlers_test.go

package main

import (

 "net/http"

 "net/url" // New import

 "testing"

 "snippetbox.alexedwards.net/internal/assert"

)

...

func TestUserSignup(t *testing.T) {

 app := newTestApplication(t)

 ts := newTestServer(t, app.routes())

 defer ts.Close()

 _, _, body := ts.get(t, "/user/signup")

 validCSRFToken := extractCSRFToken(t, body)

 const (

 validName = "Bob"

 validPassword = "validPa$$word"

 validEmail = "bob@example.com"

 formTag = "<form action='/user/signup' method='POST' novalidate>"

)

 tests := []struct {

 name string

 userName string

 userEmail string

 userPassword string

 csrfToken string

 wantCode int

 wantFormTag string

 }{

 {

 name: "Valid submission",

 userName: validName,

 userEmail: validEmail,

 userPassword: validPassword,

 csrfToken: validCSRFToken,

 wantCode: http.StatusSeeOther,

 },

 {

 name: "Invalid CSRF Token",

 userName: validName,

 userEmail: validEmail,

 userPassword: validPassword,

 csrfToken: "wrongToken",

 wantCode: http.StatusBadRequest,

 },

 {

 {

 name: "Empty name",

 userName: "",

 userEmail: validEmail,

 userPassword: validPassword,

 csrfToken: validCSRFToken,

 wantCode: http.StatusUnprocessableEntity,

 wantFormTag: formTag,

 },

 {

 name: "Empty email",

 userName: validName,

 userEmail: "",

 userPassword: validPassword,

 csrfToken: validCSRFToken,

 wantCode: http.StatusUnprocessableEntity,

 wantFormTag: formTag,

 },

 {

 name: "Empty password",

 userName: validName,

 userEmail: validEmail,

 userPassword: "",

 csrfToken: validCSRFToken,

 wantCode: http.StatusUnprocessableEntity,

 wantFormTag: formTag,

 },

 {

 name: "Invalid email",

 userName: validName,

 userEmail: "bob@example.",

 userPassword: validPassword,

 csrfToken: validCSRFToken,

 wantCode: http.StatusUnprocessableEntity,

 wantFormTag: formTag,

 },

 {

 name: "Short password",

 userName: validName,

 userEmail: validEmail,

 userPassword: "pa$$",

 csrfToken: validCSRFToken,

 wantCode: http.StatusUnprocessableEntity,

 wantFormTag: formTag,

 },

 {

 name: "Duplicate email",

 userName: validName,

 userEmail: "dupe@example.com",

 userPassword: validPassword,

 csrfToken: validCSRFToken,

 wantCode: http.StatusUnprocessableEntity,

 wantFormTag: formTag,

 },

 }

 for _, tt := range tests {

 t.Run(tt.name, func(t *testing.T) {

 form := url.Values{}

 form.Add("name", tt.userName)

 form.Add("email", tt.userEmail)

 form.Add("password", tt.userPassword)

 form.Add("csrf_token", tt.csrfToken)

 code, _, body := ts.postForm(t, "/user/signup", form)

 assert.Equal(t, code, tt.wantCode)

 if tt.wantFormTag != "" {

 if tt.wantFormTag != "" {

 assert.StringContains(t, body, tt.wantFormTag)

 }

 })

 }

}

If you run the test, you should see that all the sub-tests run and pass successfully — similar to

this:

$ go test -v -run="TestUserSignup" ./cmd/web/

=== RUN TestUserSignup

=== RUN TestUserSignup/Valid_submission

=== RUN TestUserSignup/Invalid_CSRF_Token

=== RUN TestUserSignup/Empty_name

=== RUN TestUserSignup/Empty_email

=== RUN TestUserSignup/Empty_password

=== RUN TestUserSignup/Invalid_email

=== RUN TestUserSignup/Short_password

=== RUN TestUserSignup/Long_password

=== RUN TestUserSignup/Duplicate_email

--- PASS: TestUserSignup (0.01s)

 --- PASS: TestUserSignup/Valid_submission (0.00s)

 --- PASS: TestUserSignup/Invalid_CSRF_Token (0.00s)

 --- PASS: TestUserSignup/Empty_name (0.00s)

 --- PASS: TestUserSignup/Empty_email (0.00s)

 --- PASS: TestUserSignup/Empty_password (0.00s)

 --- PASS: TestUserSignup/Invalid_email (0.00s)

 --- PASS: TestUserSignup/Short_password (0.00s)

 --- PASS: TestUserSignup/Long_password (0.00s)

 --- PASS: TestUserSignup/Duplicate_email (0.00s)

PASS

ok snippetbox.alexedwards.net/cmd/web 0.016s

Chapter 14.7.

Integration testing

Running end-to-end tests with mocked dependencies is a good thing to do, but we could

improve confidence in our application even more if we also verify that our real MySQL

database models are working as expected.

To do this we can run integration tests against a test version our MySQL database, which

mimics our production database but exists for testing purposes only.

As a demonstration, in this chapter we’ll setup an integration test to ensure that our

models.UserModel.Exists() method is working correctly.

Test database setup and teardown

The first step is to create the test version of our MySQL database.

If you’re following along, connect to MySQL from your terminal window as the root user and

execute the following SQL statements to create a new test_snippetbox database and

test_web user:

CREATE DATABASE test_snippetbox CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci;

CREATE USER 'test_web'@'localhost';

GRANT CREATE, DROP, ALTER, INDEX, SELECT, INSERT, UPDATE, DELETE ON test_snippetbox.* TO 'test_web'@'localhost';

ALTER USER 'test_web'@'localhost' IDENTIFIED BY 'pass';

Once that’s done, let’s make two SQL scripts:

1. A setup script to create the database tables (so that they mimic our production database)

and insert a known set of test data than we can work with in our tests.

2. A teardown script which drops the database tables and any data.

The idea is that we’ll call these scripts at the start and end of each integration test, so that the

test database is fully reset each time. This helps ensure that any changes we make during one

test are not ‘leaking’ and affecting the results of another test.

Let’s go ahead and create these scripts in a new internal/models/testdata directory like so:

$ mkdir internal/models/testdata

$ touch internal/models/testdata/setup.sql

$ touch internal/models/testdata/teardown.sql

File: internal/models/testdata/setup.sql

CREATE TABLE snippets (

 id INTEGER NOT NULL PRIMARY KEY AUTO_INCREMENT,

 title VARCHAR(100) NOT NULL,

 content TEXT NOT NULL,

 created DATETIME NOT NULL,

 expires DATETIME NOT NULL

);

CREATE INDEX idx_snippets_created ON snippets(created);

CREATE TABLE users (

 id INTEGER NOT NULL PRIMARY KEY AUTO_INCREMENT,

 name VARCHAR(255) NOT NULL,

 email VARCHAR(255) NOT NULL,

 hashed_password CHAR(60) NOT NULL,

 created DATETIME NOT NULL

);

ALTER TABLE users ADD CONSTRAINT users_uc_email UNIQUE (email);

INSERT INTO users (name, email, hashed_password, created) VALUES (

 'Alice Jones',

 'alice@example.com',

 '$2a$12$NuTjWXm3KKntReFwyBVHyuf/to.HEwTy.eS206TNfkGfr6HzGJSWG',

 '2022-01-01 10:00:00'

);

File: internal/models/testdata/teardown.sql

DROP TABLE users;

DROP TABLE snippets;

Note: The Go tool ignores any directories called testdata, so these scripts will be

ignored when compiling your application (it also ignores any directories or files which

have names that begin with an _ or . character too).

Alright, now that we’ve got the scripts in place let’s create a new file to hold some helper

functions for our integration tests:

$ touch internal/models/testutils_test.go

And add to it a newTestDB() helper function which:

Creates a new *sql.DB connection pool for the test database;

Executes the setup.sql script to create the database tables and dummy data;

Register a ‘cleanup’ function which executes the teardown.sql script and closes the

connection pool.

File: internal/models/testutils_test.go

package models

import (

 "database/sql"

 "os"

 "testing"

)

func newTestDB(t *testing.T) *sql.DB {

 // Establish a sql.DB connection pool for our test database. Because our

 // setup and teardown scripts contains multiple SQL statements, we need

 // to use the "multiStatements=true" parameter in our DSN. This instructs

 // our MySQL database driver to support executing multiple SQL statements

 // in one db.Exec() call.

 db, err := sql.Open("mysql", "test_web:pass@/test_snippetbox?parseTime=true&multiStatements=true")

 if err != nil {

 t.Fatal(err)

 }

 // Read the setup SQL script from file and execute the statements.

 script, err := os.ReadFile("./testdata/setup.sql")

 if err != nil {

 t.Fatal(err)

 }

 _, err = db.Exec(string(script))

 if err != nil {

 t.Fatal(err)

 }

 // Use the t.Cleanup() to register a function *which will automatically be

 // called by Go when the current test (or sub-test) which calls newTestDB()

 // has finished*. In this function we read and execute the teardown script,

 // and close the database connection pool.

 t.Cleanup(func() {

 script, err := os.ReadFile("./testdata/teardown.sql")

 if err != nil {

 t.Fatal(err)

 }

 _, err = db.Exec(string(script))

 if err != nil {

 t.Fatal(err)

 }

 db.Close()

 })

 // Return the database connection pool.

 return db

}

Testing the UserModel.Exists method

Now the preparatory work is done we’re ready to actually write our integration test for the

models.UserModel.Exists() method.

We know that our setup.sql script creates a users table containing one record (which should

have the user ID 1 and email address alice@example.com). So we want to test that:

Calling models.UserModel.Exists(1) returns a true boolean value and a nil error value.

Calling models.UserModel.Exists() with any other user ID returns a false boolean value

and a nil error value.

Let’s first head to our internal/assert package and create a new NilError() assertion,

which we will use to check that an error value is nil . Like so:

File: internal/assert/assert.go

package assert

...

func NilError(t *testing.T, actual error) {

 t.Helper()

 if actual != nil {

 t.Errorf("got: %v; expected: nil", actual)

 }

}

Then let’s follow the Go conventions and create a new users_test.go file for our test, directly

alongside the code being tested:

$ touch internal/models/users_test.go

And add a TestUserModelExists test containing the following code:

File: internal/models/users_test.go

package models

import (

 "testing"

 "snippetbox.alexedwards.net/internal/assert"

)

func TestUserModelExists(t *testing.T) {

 // Set up a suite of table-driven tests and expected results.

 tests := []struct {

 name string

 userID int

 want bool

 }{

 {

 name: "Valid ID",

 userID: 1,

 want: true,

 },

 {

 name: "Zero ID",

 userID: 0,

 want: false,

 },

 {

 name: "Non-existent ID",

 userID: 2,

 want: false,

 },

 }

 for _, tt := range tests {

 t.Run(tt.name, func(t *testing.T) {

 // Call the newTestDB() helper function to get a connection pool to

 // our test database. Calling this here -- inside t.Run() -- means

 // that fresh database tables and data will be set up and torn down

 // for each sub-test.

 db := newTestDB(t)

 // Create a new instance of the UserModel.

 m := UserModel{db}

 // Call the UserModel.Exists() method and check that the return

 // value and error match the expected values for the sub-test.

 exists, err := m.Exists(tt.userID)

 assert.Equal(t, exists, tt.want)

 assert.NilError(t, err)

 })

 }

}

If you run this test, then everything should pass without any problems.

$ go test -v ./internal/models

=== RUN TestUserModelExists

=== RUN TestUserModelExists/Valid_ID

=== RUN TestUserModelExists/Zero_ID

=== RUN TestUserModelExists/Non-existent_ID

--- PASS: TestUserModelExists (1.02s)

 --- PASS: TestUserModelExists/Valid_ID (0.33s)

 --- PASS: TestUserModelExists/Zero_ID (0.29s)

 --- PASS: TestUserModelExists/Non-existent_ID (0.40s)

PASS

ok snippetbox.alexedwards.net/internal/models 1.023s

The last line in the test output here is worth a mention. The total runtime for this test (1.023

seconds in my case) is much longer than for our previous tests — all of which took a few

milliseconds to run. This big increase in runtime is primarily due to the large number of

database operations that we needed to make during the tests.

While 1 second is a totally acceptable time to wait for this test in isolation, if you’re running

hundreds of different integration tests against your database you might end up routinely

waiting minutes — rather than seconds — for your tests to finish.

Skipping long-running tests

When your tests take a long time, you might decide that you want to skip specific long-

running tests under certain circumstances. For example, you might decide to only run your

integration tests before committing a change, instead of more frequently during

development.

A common and idiomatic way to skip long-running tests is to use the testing.Short()

function to check for the presence of a -short flag in your go test command, and then call

the t.Skip() method to skip the test if the flag is present.

Let’s quickly update our TestUserModelExists test to do this before running its tests, like so:

https://pkg.go.dev/testing/#Short
https://pkg.go.dev/testing#T.Skip

File: internal/models/users_test.go

package models

import (

 "testing"

 "snippetbox.alexedwards.net/internal/assert"

)

func TestUserModelExists(t *testing.T) {

 // Skip the test if the "-short" flag is provided when running the test.

 if testing.Short() {

 t.Skip("models: skipping integration test")

 }

 ...

}

And then try running our tests with the -short flag enabled:

$ go test -v -short ./...

=== RUN TestPing

--- PASS: TestPing (0.00s)

=== RUN TestSnippetView

=== RUN TestSnippetView/Valid_ID

=== RUN TestSnippetView/Non-existent_ID

=== RUN TestSnippetView/Negative_ID

=== RUN TestSnippetView/Decimal_ID

=== RUN TestSnippetView/String_ID

=== RUN TestSnippetView/Empty_ID

--- PASS: TestSnippetView (0.01s)

 --- PASS: TestSnippetView/Valid_ID (0.00s)

 --- PASS: TestSnippetView/Non-existent_ID (0.00s)

 --- PASS: TestSnippetView/Negative_ID (0.00s)

 --- PASS: TestSnippetView/Decimal_ID (0.00s)

 --- PASS: TestSnippetView/String_ID (0.00s)

 --- PASS: TestSnippetView/Empty_ID (0.00s)

=== RUN TestUserSignup

=== RUN TestUserSignup/Valid_submission

=== RUN TestUserSignup/Invalid_CSRF_Token

=== RUN TestUserSignup/Empty_name

=== RUN TestUserSignup/Empty_email

=== RUN TestUserSignup/Empty_password

=== RUN TestUserSignup/Invalid_email

=== RUN TestUserSignup/Short_password

=== RUN TestUserSignup/Long_password

=== RUN TestUserSignup/Duplicate_email

--- PASS: TestUserSignup (0.01s)

 --- PASS: TestUserSignup/Valid_submission (0.00s)

 --- PASS: TestUserSignup/Invalid_CSRF_Token (0.00s)

 --- PASS: TestUserSignup/Empty_name (0.00s)

 --- PASS: TestUserSignup/Empty_email (0.00s)

 --- PASS: TestUserSignup/Empty_password (0.00s)

 --- PASS: TestUserSignup/Invalid_email (0.00s)

 --- PASS: TestUserSignup/Short_password (0.00s)

 --- PASS: TestUserSignup/Long_password (0.00s)

 --- PASS: TestUserSignup/Duplicate_email (0.00s)

=== RUN TestSecureHeaders

--- PASS: TestSecureHeaders (0.00s)

=== RUN TestHumanDate

=== RUN TestHumanDate/UTC

=== RUN TestHumanDate/Empty

=== RUN TestHumanDate/CET

--- PASS: TestHumanDate (0.00s)

 --- PASS: TestHumanDate/UTC (0.00s)

 --- PASS: TestHumanDate/Empty (0.00s)

 --- PASS: TestHumanDate/CET (0.00s)

PASS

ok snippetbox.alexedwards.net/cmd/web 0.023s

=== RUN TestUserModelExists

 users_test.go:10: models: skipping integration test

--- SKIP: TestUserModelExists (0.00s)

PASS

ok snippetbox.alexedwards.net/internal/models 0.003s

? snippetbox.alexedwards.net/internal/models/mocks [no test files]

? snippetbox.alexedwards.net/internal/validator [no test files]

? snippetbox.alexedwards.net/ui [no test files]

Notice the SKIP annotation in the output above? This confirms that Go skipped our

TestUserModelExists test during this run.

If you like, feel free to run this again without the -short flag, and you should see that the

TestUserModelExists test is executed as normal.

Chapter 14.8.

Profiling test coverage

A great feature of the go test tool is the metrics and visualizations that it provides for test

coverage.

Go ahead and try running the tests in our project using the -cover flag like so:

$ go test -cover ./...

ok snippetbox.alexedwards.net/cmd/web 0.022s coverage: 46.1% of statements

? snippetbox.alexedwards.net/internal/assert [no test files]

ok snippetbox.alexedwards.net/internal/models 1.081s coverage: 6.5% of statements

? snippetbox.alexedwards.net/internal/models/mocks [no test files]

? snippetbox.alexedwards.net/internal/validator [no test files]

? snippetbox.alexedwards.net/ui [no test files]

From the results here we can see that 46.1% of the statements in our cmd/web package are

executed during our tests, and for our internal/models package the figure is 6.5%.

Note: Your numbers may be slightly different depending on the exact version of the

book you’re reading, or if you’ve made any adaptations to the code as you’ve been

following along.

We can get a more detailed breakdown of test coverage by method and function by using the

-coverprofile flag like so:

$ go test -coverprofile=/tmp/profile.out ./...

This will execute your tests as normal and — if all your tests pass — it will then write a

coverage profile to a specific location (in our case /tmp/profile.out).

You can then view the coverage profile by using the go tool cover command like so:

$ go tool cover -func=/tmp/profile.out

snippetbox.alexedwards.net/cmd/web/handlers.go:15: home 0.0%

snippetbox.alexedwards.net/cmd/web/handlers.go:31: snippetView 92.9%

snippetbox.alexedwards.net/cmd/web/handlers.go:56: snippetCreate 0.0%

snippetbox.alexedwards.net/cmd/web/handlers.go:82: snippetCreatePost 0.0%

snippetbox.alexedwards.net/cmd/web/handlers.go:126: userSignup 100.0%

snippetbox.alexedwards.net/cmd/web/handlers.go:132: userSignupPost 88.5%

snippetbox.alexedwards.net/cmd/web/handlers.go:192: userLogin 0.0%

snippetbox.alexedwards.net/cmd/web/handlers.go:198: userLoginPost 0.0%

snippetbox.alexedwards.net/cmd/web/handlers.go:256: userLogoutPost 0.0%

snippetbox.alexedwards.net/cmd/web/handlers.go:277: ping 100.0%

snippetbox.alexedwards.net/cmd/web/helpers.go:17: serverError 0.0%

snippetbox.alexedwards.net/cmd/web/helpers.go:27: clientError 100.0%

snippetbox.alexedwards.net/cmd/web/helpers.go:34: notFound 100.0%

snippetbox.alexedwards.net/cmd/web/helpers.go:38: newTemplateData 100.0%

snippetbox.alexedwards.net/cmd/web/helpers.go:47: render 58.3%

snippetbox.alexedwards.net/cmd/web/helpers.go:79: decodePostForm 50.0%

snippetbox.alexedwards.net/cmd/web/helpers.go:108: isAuthenticated 75.0%

snippetbox.alexedwards.net/cmd/web/main.go:31: main 0.0%

snippetbox.alexedwards.net/cmd/web/main.go:95: openDB 0.0%

snippetbox.alexedwards.net/cmd/web/middleware.go:11: secureHeaders 100.0%

snippetbox.alexedwards.net/cmd/web/middleware.go:27: logRequest 100.0%

snippetbox.alexedwards.net/cmd/web/middleware.go:35: recoverPanic 66.7%

snippetbox.alexedwards.net/cmd/web/middleware.go:55: requireAuthentication 16.7%

snippetbox.alexedwards.net/cmd/web/middleware.go:78: noSurf 100.0%

snippetbox.alexedwards.net/cmd/web/middleware.go:90: authenticate 38.5%

snippetbox.alexedwards.net/cmd/web/routes.go:12: routes 100.0%

snippetbox.alexedwards.net/cmd/web/templates.go:23: humanDate 100.0%

snippetbox.alexedwards.net/cmd/web/templates.go:40: newTemplateCache 83.3%

snippetbox.alexedwards.net/internal/models/snippets.go:31: Insert 0.0%

snippetbox.alexedwards.net/internal/models/snippets.go:61: Get 0.0%

snippetbox.alexedwards.net/internal/models/snippets.go:98: Latest 0.0%

snippetbox.alexedwards.net/internal/models/users.go:36: Insert 0.0%

snippetbox.alexedwards.net/internal/models/users.go:68: Authenticate 0.0%

snippetbox.alexedwards.net/internal/models/users.go:100: Exists 100.0%

total: (statements) 38.1%

An alternative and more visual way to view the coverage profile is to use the -html flag

instead of -func .

$ go tool cover -html=/tmp/profile.out

This will open a browser window containing a navigable and highlighted representation of

your code, similar to this:

It’s easy to see exactly which statements get executed during your tests (colored green) and

which are not (highlighted red).

You can take this a step further and use the -covermode=count option when running go test

like so:

$ go test -covermode=count -coverprofile=/tmp/profile.out ./...

$ go tool cover -html=/tmp/profile.out

Instead of just highlighting the statements in green and red, using -covermode=count makes

the coverage profile record the exact number of times that each statement is executed during

the tests.

When viewed in the browser, statements which are executed more frequently are then shown

in a more saturated shade of green, similar to this:

Note: If you’re running some of your tests in parallel, you should use the

-covermode=atomic flag (instead of -covermode=count) to ensure an accurate count.

Chapter 15.

Conclusion

Over the course of this book we’ve explicitly covered a lot of topics, including routing,

templating, working with a database, authentication/authorization, using HTTPS, using Go’s

testing package and more.

But there have been some other, more tacit, lessons too. The patterns that we’ve used to

implement features — and the way that our project code is organized and links together — is

something that you should be able to take and apply in your future work.

Importantly, I also wanted the book to convey that you don’t need a framework to build web

applications in Go. Go’s standard library contains almost all the tools that you need… even for

a moderately complex application. For the times that you do need help with a specific task —

like session management, routing or password hashing — there are lightweight and focused

third-party packages that you can reach for.

At this point, if you’ve coded along with the book, I recommend taking a bit of time to review

the code that you’ve written so far. As you go through it, make sure that you’re clear in your

mind about what each part of the codebase does, and how it fits in with the project as a

whole.

You might also want to circle back to any parts of the book that you found difficult to

understand the first-time around. For example, now that you’re more familiar with Go, the

http.Handler interface chapter might be easier to digest. Or, now that you’ve seen how

testing is handled in our application, the decisions we made in the designing a database

model chapter might click into place.

If you bought the Professional Package version of this book, then I strongly recommend

working through the guided exercises in chapter 17 (right at the end of this book, after this

conclusion and the appendices). The exercises should help to consolidate what you’ve

learned — and working through them semi-independently will give you some extra practice

with the patterns and techniques from this book before you use them again in your own

projects.

Let's Go Further

If you’d like to continue learning more, then you might want to check out Let’s Go Further. It’s

written as a follow-up to this book, and covers more advanced patterns for developing,

managing and deploying APIs and web applications.

It guides you through the start-to-finish build and deployment of a RESTful JSON API, and

includes topics like:

Sending and receiving JSON

Working with SQL migrations

Managing background tasks

Performing partial updates and using optimistic locking

Permission-based authorization

Controlling CORS requests

Graceful shutdowns

Exposing application metrics

Automating build and deployment steps

You can check out a sample of the book, and get more information and FAQ answers at

https://lets-go-further.alexedwards.net.

As a small gift for existing readers, you can also use the discount code FURTHER15 at

checkout to get 15% off the regular list price.

https://lets-go-further.alexedwards.net/
https://lets-go-further.alexedwards.net

Chapter 16.

Further reading and useful links

Coding and style guidelines

Effective Go

Clear is better than clever [video] — Presentation by Dave Cheney from GopherCon

Singapore 2019

Go Code Review Comments — Style guidelines plus common mistakes to avoid.

Practical Go — Real world advice for writing maintainable Go programs.

What’s in a name? — Guidelines for naming things in Go.

Go Proverbs — A collection of pithy guidelines for writing idiomatic Go.

Recommended tutorials

Don’t fear the pointer

Interfaces Explained

Data Races vs Race Conditions

Understanding Mutexes

Go 1.11 Modules

Error Value FAQ

An Overview of Go’s Tooling

Traps, Gotchas, and Common Mistakes for New Golang Devs

A Step-by-Step Guide to Go Internationalization & Localization

Learning Go’s Concurrency Through Illustrations

How to write benchmarks in Go

Third-party package lists

Awesome Go

Go Projects

https://golang.org/doc/effective_go.html
https://dave.cheney.net/practical-go/presentations/qcon-china.html
https://github.com/golang/go/wiki/CodeReviewComments
https://dave.cheney.net/practical-go/presentations/qcon-china.html
https://talks.golang.org/2014/names.slide
https://go-proverbs.github.io/
https://bitfieldconsulting.com/golang/pointers
https://www.alexedwards.net/blog/interfaces-explained
https://cronokirby.github.io/posts/data-races-vs-race-conditions/
https://www.alexedwards.net/blog/understanding-mutexes
https://github.com/golang/go/wiki/Modules
https://github.com/golang/go/wiki/ErrorValueFAQ
https://www.alexedwards.net/blog/an-overview-of-go-tooling
http://devs.cloudimmunity.com/gotchas-and-common-mistakes-in-go-golang/
https://phraseapp.com/blog/posts/internationalization-i18n-go/
https://medium.com/@trevor4e/learning-gos-concurrency-through-illustrations-8c4aff603b3
https://dave.cheney.net/2013/06/30/how-to-write-benchmarks-in-go
https://github.com/avelino/awesome-go
https://github.com/golang/go/wiki/Projects

Chapter 17.

Guided exercises

In this section there are six guided exercises for you to work through, all of which extend the

Snippetbox application that we’ve created to include some additional functionality.

The exercises leverage the code patterns and techniques that we’ve already covered in this

book, but they are applied in a slightly different context. So going through them is a good

opportunity to test your understanding of what you’ve learned, and practice putting it into

use.

Each exercise is broken up into a few small-ish steps. And for each step I’ve linked to an

answer containing some ‘suggested code’ which you may wish to look at if you get stuck. You

may also find it interesting to compare and contrast the suggested code against yours —

either at the end of the exercise or as you go along. If your code looks slightly different, no

worries. There’s more than one way to achieve the same goal.

A final note before we get started: A couple of the exercises in this section build on each other,

so I recommend working through them in order.

Chapter 17.1.

Add an ‘About’ page to the application

Your goal for this exercise is to add a new ‘About’ page to the application. It should be

mapped to the GET /about route, available to both authenticated and unauthenticated

users, and look similar to this:

Step 1

Create a GET /about route which maps to a new about handler. Think about which

middleware stack is appropriate for the route to use.

Show suggested code

Step 2

Create a new ui/html/pages/about.tmpl file, following the same template pattern that we’ve

used for the other pages of the application. Include a title, heading and some placeholder

copy for the ‘About’ page.

Show suggested code

Step 3

Update the main navigation bar for the application to include a link to the new ‘About’ page

(the link should be visible to all users, irrespective of whether they are logged in or not).

Show suggested code

Step 4

Update the about handler so that it renders the about.tmpl file that you’ve just created. Then

sanity check that the new page and navigation works by visiting

https://localhost:4000/about in your browser.

Show suggested code

Suggested code

Suggested code for step 1

File: cmd/web/handlers.go

package main

...

func (app *application) about(w http.ResponseWriter, r *http.Request) {

 // Some code will go here later...

}

https://localhost:4000/about

File: cmd/web/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 app.notFound(w)

 })

 fileServer := http.FileServer(http.FS(ui.Files))

 router.Handler(http.MethodGet, "/static/*filepath", fileServer)

 router.HandlerFunc(http.MethodGet, "/ping", ping)

 dynamic := alice.New(app.sessionManager.LoadAndSave, noSurf, app.authenticate)

 router.Handler(http.MethodGet, "/", dynamic.ThenFunc(app.home))

 // Add the about route.

 router.Handler(http.MethodGet, "/about", dynamic.ThenFunc(app.about))

 router.Handler(http.MethodGet, "/snippet/view/:id", dynamic.ThenFunc(app.snippetView))

 router.Handler(http.MethodGet, "/user/signup", dynamic.ThenFunc(app.userSignup))

 router.Handler(http.MethodPost, "/user/signup", dynamic.ThenFunc(app.userSignupPost))

 router.Handler(http.MethodGet, "/user/login", dynamic.ThenFunc(app.userLogin))

 router.Handler(http.MethodPost, "/user/login", dynamic.ThenFunc(app.userLoginPost))

 protected := dynamic.Append(app.requireAuthentication)

 router.Handler(http.MethodGet, "/snippet/create", protected.ThenFunc(app.snippetCreate))

 router.Handler(http.MethodPost, "/snippet/create", protected.ThenFunc(app.snippetCreatePost))

 router.Handler(http.MethodPost, "/user/logout", protected.ThenFunc(app.userLogoutPost))

 standard := alice.New(app.recoverPanic, app.logRequest, secureHeaders)

 return standard.Then(router)

}

Suggested code for step 2

File: ui/html/pages/about.tmpl

{{define "title"}}About{{end}}

{{define "main"}}

 <h2>About</h2>

 <p>Lorem ipsum dolor sit amet, consectetur adipiscing elit. Morbi at mauris dignissim,

 consectetur tellus in, fringilla ante. Pellentesque habitant morbi tristique senectus

 et netus et malesuada fames ac turpis egestas. Sed dignissim hendrerit scelerisque.</p>

 <p>Praesent a dignissim arcu. Cras a metus sagittis, pellentesque odio sit amet,

 lacinia velit. In hac habitasse platea dictumst. </p>

{{end}}

Suggested code for step 3

File: ui/html/partials/nav.tmpl

{{define "nav"}}

<nav>

 <div>

 Home

 <!-- Include a new link, visible to all users -->

 About

 {{if .IsAuthenticated}}

 Create snippet

 {{end}}

 </div>

 <div>

 {{if .IsAuthenticated}}

 <form action='/user/logout' method='POST'>

 <input type='hidden' name='csrf_token' value='{{.CSRFToken}}'>

 <button>Logout</button>

 </form>

 {{else}}

 Signup

 Login

 {{end}}

 </div>

</nav>

{{end}}

Suggested code for step 4

File: cmd/web/handlers.go

package main

...

func (app *application) about(w http.ResponseWriter, r *http.Request) {

 data := app.newTemplateData(r)

 app.render(w, http.StatusOK, "about.tmpl", data)

}

Chapter 17.2.

Add a debug mode

If you’ve used web frameworks for other languages, like Django or Laravel, then you might be

familiar with the idea of a ‘debug’ mode where detailed errors are displayed to the user in a

HTTP response instead of a generic "Internal Server Error" message.

You goal in this exercise is to set up a similar ‘debug mode’ for our application, which can be

enabled by using the -debug flag like so:

$ go run ./cmd/web -debug

When running in debug mode, any detailed errors and stack traces should be displayed in the

browser similar to this:

Step 1

Create a new command line flag with the name debug and a default value of false . Then

make the value from this command-line flag available to your handlers via the application

struct.

Hint: The flag.Bool() function is the most appropriate for this task.

Show suggested code

Step 2

Go to the cmd/web/helpers.go file and update the serverError() helper so that it renders a

detailed error message and stack trace in a HTTP response if — and only if — the debug flag

has been set. Otherwise send a generic error message as normal.

Show suggested code

Step 3

Try out the change. Run the application and force a runtime error by using a DSN without the

parseTime=true parameter:

$ go run ./cmd/web/ -debug -dsn=web:pass@/snippetbox

Visiting https://localhost:4000/ should result in a response like this:

Running the application again without the -debug flag should result in a generic

https://localhost:4000/

"Internal Server Error" message.

Suggested code

Suggested code for step 1

File: cmd/web/main.go

package main

...

type application struct {

 debug bool // Add a new debug field.

 errorLog *log.Logger

 infoLog *log.Logger

 snippets models.SnippetModelInterface

 users models.UserModelInterface

 templateCache map[string]*template.Template

 formDecoder *form.Decoder

 sessionManager *scs.SessionManager

}

func main() {

 addr := flag.String("addr", ":4000", "HTTP network address")

 dsn := flag.String("dsn", "web:pass@/snippetbox?parseTime=true", "MySQL data source name")

 // Create a new debug flag with the default value of false.

 debug := flag.Bool("debug", false, "Enable debug mode")

 flag.Parse()

 infoLog := log.New(os.Stdout, "INFO\t", log.Ldate|log.Ltime)

 errorLog := log.New(os.Stderr, "ERROR\t", log.Ldate|log.Ltime|log.Lshortfile)

 db, err := openDB(*dsn)

 if err != nil {

 errorLog.Fatal(err)

 }

 defer db.Close()

 templateCache, err := newTemplateCache()

 if err != nil {

 errorLog.Fatal(err)

 }

 formDecoder := form.NewDecoder()

 sessionManager := scs.New()

 sessionManager.Store = mysqlstore.New(db)

 sessionManager.Lifetime = 12 * time.Hour

 sessionManager.Cookie.Secure = true

 app := &application{

 debug: *debug, // Add the debug flag value to the application struct.

 errorLog: errorLog,

 infoLog: infoLog,

 snippets: &models.SnippetModel{DB: db},

 users: &models.UserModel{DB: db},

 templateCache: templateCache,

 formDecoder: formDecoder,

 sessionManager: sessionManager,

 }

 }

 tlsConfig := &tls.Config{

 CurvePreferences: []tls.CurveID{tls.X25519, tls.CurveP256},

 }

 srv := &http.Server{

 Addr: *addr,

 ErrorLog: errorLog,

 Handler: app.routes(),

 TLSConfig: tlsConfig,

 IdleTimeout: time.Minute,

 ReadTimeout: 5 * time.Second,

 WriteTimeout: 10 * time.Second,

 }

 infoLog.Printf("Starting server on %s", *addr)

 err = srv.ListenAndServeTLS("./tls/cert.pem", "./tls/key.pem")

 errorLog.Fatal(err)

}

...

Suggested code for step 2

File: cmd/web/helpers.go

...

func (app *application) serverError(w http.ResponseWriter, err error) {

 trace := fmt.Sprintf("%s\n%s", err.Error(), debug.Stack())

 app.errorLog.Output(2, trace)

 if app.debug {

 http.Error(w, trace, http.StatusInternalServerError)

 return

 }

 http.Error(w, http.StatusText(http.StatusInternalServerError), http.StatusInternalServerError)

}

...

Chapter 17.3.

Test the snippetCreate handler

Your goal in this exercise is to create an end-to-end test for the GET /snippet/create route.

Specifically, you want to test that:

Unauthenticated users are redirected to the login form.

Authenticated users are shown the form to create a new snippet.

Step 1

Create a new TestSnippetCreate test in your cmd/web/handlers_test.go file. In this test, use

the pattern and helpers from the end-to-end testing chapter to initialize a new test server

using the application routes and mocked dependencies.

Show suggested code

Step 2

Create a sub-test with the name "Unauthenticated" . In this sub-test, make a

GET /snippet/create request against the test server as an unauthenticated user. Verify that

the response has the status code 302 and a Location: /user/login header. Again, reuse the

helpers that we made in the end-to-end testing chapter.

Show suggested code

Step 3

Create another sub-test with the name "Authenticated”. In this sub-test, mimic the workflow

of logging in as a user to authenticate. Specifically, you’ll need to make a GET /user/login

request, extract the CSRF token from the response body, then make a POST /user/login

request using the credentials in the mock user model (email of "alice@example.com" ,

password of "pa$$word").

Then once you’ve authenticated, make a GET /snippet/create request and verify that you

receive the status code 200 and a HTML body including the text

<form action='/snippet/create' method='POST'> .

Show suggested code

Suggested code

Suggested code for step 1

File: cmd/web/handlers_test.go

...

func TestSnippetCreate(t *testing.T) {

 app := newTestApplication(t)

 ts := newTestServer(t, app.routes())

 defer ts.Close()

}

Suggested code for step 2

File: cmd/web/handlers_test.go

...

func TestSnippetCreate(t *testing.T) {

 app := newTestApplication(t)

 ts := newTestServer(t, app.routes())

 defer ts.Close()

 t.Run("Unauthenticated", func(t *testing.T) {

 code, headers, _ := ts.get(t, "/snippet/create")

 assert.Equal(t, code, http.StatusSeeOther)

 assert.Equal(t, headers.Get("Location"), "/user/login")

 })

}

$ go test -v -run=TestSnippetCreate ./cmd/web/

=== RUN TestSnippetCreate

=== RUN TestSnippetCreate/Unauthenticated

--- PASS: TestSnippetCreate (0.01s)

 --- PASS: TestSnippetCreate/Unauthenticated (0.00s)

PASS

ok snippetbox.alexedwards.net/cmd/web 0.010s

Suggested code for step 3

File: cmd/web/handlers_test.go

...

func TestSnippetCreate(t *testing.T) {

 app := newTestApplication(t)

 ts := newTestServer(t, app.routes())

 defer ts.Close()

 t.Run("Unauthenticated", func(t *testing.T) {

 code, headers, _ := ts.get(t, "/snippet/create")

 assert.Equal(t, code, http.StatusSeeOther)

 assert.Equal(t, headers.Get("Location"), "/user/login")

 })

 t.Run("Authenticated", func(t *testing.T) {

 // Make a GET /user/login request and extract the CSRF token from the

 // response.

 _, _, body := ts.get(t, "/user/login")

 csrfToken := extractCSRFToken(t, body)

 // Make a POST /user/login request using the extracted CSRF token and

 // credentials from our the mock user model.

 form := url.Values{}

 form.Add("email", "alice@example.com")

 form.Add("password", "pa$$word")

 form.Add("csrf_token", csrfToken)

 ts.postForm(t, "/user/login", form)

 // Then check that the authenticated user is shown the create snippet

 // form.

 code, _, body := ts.get(t, "/snippet/create")

 assert.Equal(t, code, http.StatusOK)

 assert.StringContains(t, body, "<form action='/snippet/create' method='POST'>")

 })

}

$ go test -v -run=TestSnippetCreate ./cmd/web/

=== RUN TestSnippetCreate

=== RUN TestSnippetCreate/Unauthenticated

=== RUN TestSnippetCreate/Authenticated

--- PASS: TestSnippetCreate (0.01s)

 --- PASS: TestSnippetCreate/Unauthenticated (0.00s)

 --- PASS: TestSnippetCreate/Authenticated (0.00s)

PASS

ok snippetbox.alexedwards.net/cmd/web 0.012s

Chapter 17.4.

Add an ‘Account’ page to the

application

Your goal for this exercise is to add a new ‘Your Account’ page to the application. It should be

mapped to a new GET /account/view route and display the name, email address, and signup

date for the currently authenticated user, similar to this:

Step 1

In the internal/models/users.go file create a new UserModel.Get() method. This should

accept the ID of a user as a parameter, and return a pointer to a User struct containing all the

information for this user (except for their hashed password, which we don’t need). If no user is

found with the ID, it should return an ErrNoRecord error.

Also, update the UserModelInterface type to include this new Get() method, and add a

corresponding method to our mock mocks.UserModel so that it continues to satisfy the

interface.

Show suggested code

Step 2

Create a GET /account/view route which maps to a new accountView handler. The route

should be restricted to authenticated users only.

Show suggested code

Step 3

Update the accountView handler to get the "authenticatedUserID" from the session, fetch

the details of the relevant user from the database (using the new UserModel.Get() method),

and dump them out in a plain text HTTP response. If no user matching the

"authenticatedUserID" from the session could be found, redirect the client to

GET /user/login to force re-authentication.

When you visit https://localhost:4000/account/view in your browser as an authenticated

user, you should get a response similar to this:

Show suggested code

https://localhost:4000/account/view

Step 4

Create a new ui/html/pages/account.tmpl file which displays the user information in a table.

Then update the accountView handler to render this new template, passing through the

user’s details via the templateData struct.

Show suggested code

Step 5

Additionally, update the main navigation bar for the site to include a link to the view account

page (visible to authenticated users only). Then sanity check that the new page and

navigation works as expected by visiting https://localhost:4000/account/view in your

browser while logged in.

Show suggested code

Suggested code

Suggested code for step 1

File: internal/models/users.go

package models

...

type UserModelInterface interface {

 Insert(name, email, password string) error

 Authenticate(email, password string) (int, error)

 Exists(id int) (bool, error)

 Get(id int) (*User, error)

}

...

func (m *UserModel) Get(id int) (*User, error) {

 var user User

 stmt := `SELECT id, name, email, created FROM users WHERE id = ?`

 err := m.DB.QueryRow(stmt, id).Scan(&user.ID, &user.Name, &user.Email, &user.Created)

 if err != nil {

 if errors.Is(err, sql.ErrNoRows) {

 return nil, ErrNoRecord

 } else {

 return nil, err

 }

 }

 return &user, nil

}

https://localhost:4000/account/view

File: internal/models/mocks/users.go

package mocks

import (

 "time" // New import

 "snippetbox.alexedwards.net/internal/models"

)

...

func (m *UserModel) Get(id int) (*models.User, error) {

 if id == 1 {

 u := &models.User{

 ID: 1,

 Name: "Alice",

 Email: "alice@example.com",

 Created: time.Now(),

 }

 return u, nil

 }

 return nil, models.ErrNoRecord

}

Suggested code for step 2

File: cmd/web/handlers.go

...

func (app *application) accountView(w http.ResponseWriter, r *http.Request) {

 // Some code will go here later...

}

File: cmd/web/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 app.notFound(w)

 })

 fileServer := http.FileServer(http.FS(ui.Files))

 router.Handler(http.MethodGet, "/static/*filepath", fileServer)

 router.HandlerFunc(http.MethodGet, "/ping", ping)

 dynamic := alice.New(app.sessionManager.LoadAndSave, noSurf, app.authenticate)

 router.Handler(http.MethodGet, "/", dynamic.ThenFunc(app.home))

 router.Handler(http.MethodGet, "/about", dynamic.ThenFunc(app.about))

 router.Handler(http.MethodGet, "/snippet/view/:id", dynamic.ThenFunc(app.snippetView))

 router.Handler(http.MethodGet, "/user/signup", dynamic.ThenFunc(app.userSignup))

 router.Handler(http.MethodPost, "/user/signup", dynamic.ThenFunc(app.userSignupPost))

 router.Handler(http.MethodGet, "/user/login", dynamic.ThenFunc(app.userLogin))

 router.Handler(http.MethodPost, "/user/login", dynamic.ThenFunc(app.userLoginPost))

 protected := dynamic.Append(app.requireAuthentication)

 router.Handler(http.MethodGet, "/snippet/create", protected.ThenFunc(app.snippetCreate))

 router.Handler(http.MethodPost, "/snippet/create", protected.ThenFunc(app.snippetCreatePost))

 // Add the view account route, using the protected middleware chain.

 router.Handler(http.MethodGet, "/account/view", protected.ThenFunc(app.accountView))

 router.Handler(http.MethodPost, "/user/logout", protected.ThenFunc(app.userLogoutPost))

 standard := alice.New(app.recoverPanic, app.logRequest, secureHeaders)

 return standard.Then(router)

}

Suggested code for step 3

File: cmd/web/handlers.go

...

func (app *application) accountView(w http.ResponseWriter, r *http.Request) {

 userID := app.sessionManager.GetInt(r.Context(), "authenticatedUserID")

 user, err := app.users.Get(userID)

 if err != nil {

 if errors.Is(err, models.ErrNoRecord) {

 http.Redirect(w, r, "/user/login", http.StatusSeeOther)

 } else {

 app.serverError(w, err)

 }

 return

 }

 fmt.Fprintf(w, "%+v", user)

}

Suggested code for step 4

File: cmd/web/templates.go

...

type templateData struct {

 CurrentYear int

 Snippet *models.Snippet

 Snippets []*models.Snippet

 Form any

 Flash string

 IsAuthenticated bool

 CSRFToken string

 User *models.User

}

...

File: ui/html/pages/account.tmpl

{{define "title"}}Your Account{{end}}

{{define "main"}}

 <h2>Your Account</h2>

 {{with .User}}

 <table>

 <tr>

 <th>Name</th>

 <td>{{.Name}}</td>

 </tr>

 <tr>

 <th>Email</th>

 <td>{{.Email}}</td>

 </tr>

 <tr>

 <th>Joined</th>

 <td>{{humanDate .Created}}</td>

 </tr>

 </table>

 {{end }}

{{end}}

File: cmd/web/handlers.go

...

func (app *application) accountView(w http.ResponseWriter, r *http.Request) {

 userID := app.sessionManager.GetInt(r.Context(), "authenticatedUserID")

 user, err := app.users.Get(userID)

 if err != nil {

 if errors.Is(err, models.ErrNoRecord) {

 http.Redirect(w, r, "/user/login", http.StatusSeeOther)

 } else {

 app.serverError(w, err)

 }

 return

 }

 data := app.newTemplateData(r)

 data.User = user

 app.render(w, http.StatusOK, "account.tmpl", data)

}

Suggested code for step 5

File: ui/html/partials/nav.tmpl

{{define "nav"}}

<nav>

 <div>

 Home

 About

 {{if .IsAuthenticated}}

 Create snippet

 {{end}}

 </div>

 <div>

 {{if .IsAuthenticated}}

 <!-- Add the view account link for authenticated users -->

 Account

 <form action='/user/logout' method='POST'>

 <input type='hidden' name='csrf_token' value='{{.CSRFToken}}'>

 <button>Logout</button>

 </form>

 {{else}}

 Signup

 Login

 {{end}}

 </div>

</nav>

{{end}}

Chapter 17.5.

Redirect user appropriately after login

If an unauthenticated user tries to visit GET /account/view they will be redirected to the login

page. Then after logging in successfully, they will be redirected to the GET /snippet/create

form. This is awkward and confusing for the user, as they end up on a different page to where

they originally wanted to go.

Your goal in this exercise is to update the application so that users are redirected to the page

they were originally trying to visit after logging in.

Step 1

Update the requireAuthentication() middleware so that, before an unauthenticated user is

redirected to the login page, the URL path that they are trying to visit is added to their session

data.

Show suggested code

Step 2

Update the userLogin handler to check the user’s session for a URL path after they

successfully log in. If one exists, remove it from the session data and redirect the user to that

URL path. Otherwise, default to redirecting the user to /snippet/create .

Show suggested code

Suggested code

Suggested code for step 1

File: cmd/web/middleware.go

package main

...

func (app *application) requireAuthentication(next http.Handler) http.Handler {

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 if !app.isAuthenticated(r) {

 // Add the path that the user is trying to access to their session

 // data.

 app.sessionManager.Put(r.Context(), "redirectPathAfterLogin", r.URL.Path)

 http.Redirect(w, r, "/user/login", http.StatusSeeOther)

 return

 }

 w.Header().Add("Cache-Control", "no-store")

 next.ServeHTTP(w, r)

 })

}

...

Suggested code for step 2

File: cmd/web/handlers.go

package main

...

func (app *application) userLoginPost(w http.ResponseWriter, r *http.Request) {

 var form userLoginForm

 err := app.decodePostForm(r, &form)

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 form.CheckField(validator.NotBlank(form.Email), "email", "This field cannot be blank")

 form.CheckField(validator.Matches(form.Email, validator.EmailRX), "email", "This field must be a valid email address")

 form.CheckField(validator.NotBlank(form.Password), "password", "This field cannot be blank")

 if !form.Valid() {

 data := app.newTemplateData(r)

 data.Form = form

 app.render(w, http.StatusUnprocessableEntity, "login.tmpl", data)

 return

 }

 id, err := app.users.Authenticate(form.Email, form.Password)

 if err != nil {

 if errors.Is(err, models.ErrInvalidCredentials) {

 form.AddNonFieldError("Email or password is incorrect")

 data := app.newTemplateData(r)

 data.Form = form

 app.render(w, http.StatusUnprocessableEntity, "login.tmpl", data)

 } else {

 app.serverError(w, err)

 }

 return

 }

 err = app.sessionManager.RenewToken(r.Context())

 if err != nil {

 app.serverError(w, err)

 return

 }

 app.sessionManager.Put(r.Context(), "authenticatedUserID", id)

 // Use the PopString method to retrieve and remove a value from the session

 // data in one step. If no matching key exists this will return the empty

 // string.

 path := app.sessionManager.PopString(r.Context(), "redirectPathAfterLogin")

 if path != "" {

 http.Redirect(w, r, path, http.StatusSeeOther)

 return

 }

 http.Redirect(w, r, "/snippet/create", http.StatusSeeOther)

}

...

Chapter 17.6.

Implement a ‘Change Password’

feature

Your goal in this exercise is to add the facility for an authenticated user to change their

password, using a form which looks similar to this:

During this exercise you should make sure to:

Ask the user for their current password and verify that it matches the hashed password in

the users table (to confirm it is actually them making the request).

Hash their new password before updating the users table.

Step 1

Create two new routes and handlers:

GET /account/password/update which maps to a new accountPasswordUpdate handler.

POST /account/password/update which maps to a new accountPasswordUpdatePost

handler.

Both routes should be restricted to authenticated users only.

Show suggested code

Step 2

Create a new ui/html/pages/password.tmpl file which contains the change password form.

This form should:

Have three fields: currentPassword , newPassword and newPasswordConfirmation .

POST the form data to /account/password/update when submitted.

Display errors for each of the fields in the event of a validation error.

Not re-display passwords in the event of a validation error.

Hint: You might want to use the work we did on the user signup form as a guide here.

Then update the cmd/web/handlers.go file to include a new accountPasswordUpdateForm

struct that you can parse the form data into, and update the accountPasswordUpdate handler

to display this empty form.

When you visit https://localhost:4000/account/password/update as an authenticated user

it should look similar to this:

https://localhost:4000/account/password/update

Show suggested code

Step 3

Update the accountPasswordUpdatePost handler to carry out the following form validation

checks, and re-display the form with the relevant error messages in the event of any failures.

All three fields are required.

The newPassword value must be at least 8 characters long.

The newPassword and newPasswordConfirmation values must match.

Show suggested code

Step 4

In your internal/models/users.go file create a new UserModel.PasswordUpdate() method

with the following signature:

func (m *UserModel) PasswordUpdate(id int, currentPassword, newPassword string) error

In this method:

1. Retrieve the user details for the user with the ID given by the id parameter from the

database.

2. Check that the currentPassword value matches the hashed password for the user. If if

doesn’t match, return an ErrInvalidCredentials error.

3. Otherwise, hash the newPassword value and update the hashed_password column in the

users table for the relevant user.

Also update the UserModelInterface interface type to include the PasswordUpdate() method

that you’ve just created.

Show suggested code

Step 5

Update the accountPasswordUpdatePost handler so that if the form is valid, it calls the

UserModel.PasswordUpdate() method (remember, the user’s ID should be in the session

data).

In the event of a models.ErrInvalidCredentials error, inform the user that they have

entered the wrong value in the currentPassword form field. Otherwise, add a flash message

to the user’s session saying that their password has been successfully changed and redirect

them to their account page.

Show suggested code

Step 6

Update the account to include a link to the change password form, similar to this:

Show suggested code

Step 7

Try running the tests for the application. You should get a failure because the

mocks.UserModel type no longer satisfies the interface specified in the

models.UserModelInterface struct. Fix this by adding the appropriate PasswordUpdate()

method to the mock and make sure that the tests pass.

Show suggested code

Suggested code

Suggested code for step 1

File: cmd/web/handlers.go

package main

...

func (app *application) accountPasswordUpdate(w http.ResponseWriter, r *http.Request) {

 // Some code will go here later...

}

func (app *application) accountPasswordUpdatePost(w http.ResponseWriter, r *http.Request) {

 // Some code will go here later...

}

File: cmd/web/routes.go

package main

...

func (app *application) routes() http.Handler {

 router := httprouter.New()

 router.NotFound = http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {

 app.notFound(w)

 })

 fileServer := http.FileServer(http.FS(ui.Files))

 router.Handler(http.MethodGet, "/static/*filepath", fileServer)

 router.HandlerFunc(http.MethodGet, "/ping", ping)

 dynamic := alice.New(app.sessionManager.LoadAndSave, noSurf, app.authenticate)

 router.Handler(http.MethodGet, "/", dynamic.ThenFunc(app.home))

 router.Handler(http.MethodGet, "/about", dynamic.ThenFunc(app.about))

 router.Handler(http.MethodGet, "/snippet/view/:id", dynamic.ThenFunc(app.snippetView))

 router.Handler(http.MethodGet, "/user/signup", dynamic.ThenFunc(app.userSignup))

 router.Handler(http.MethodPost, "/user/signup", dynamic.ThenFunc(app.userSignupPost))

 router.Handler(http.MethodGet, "/user/login", dynamic.ThenFunc(app.userLogin))

 router.Handler(http.MethodPost, "/user/login", dynamic.ThenFunc(app.userLoginPost))

 protected := dynamic.Append(app.requireAuthentication)

 router.Handler(http.MethodGet, "/snippet/create", protected.ThenFunc(app.snippetCreate))

 router.Handler(http.MethodPost, "/snippet/create", protected.ThenFunc(app.snippetCreatePost))

 router.Handler(http.MethodGet, "/account/view", protected.ThenFunc(app.accountView))

 // Add the two new routes, restricted to authenticated users only.

 router.Handler(http.MethodGet, "/account/password/update", protected.ThenFunc(app.accountPasswordUpdate))

 router.Handler(http.MethodPost, "/account/password/update", protected.ThenFunc(app.accountPasswordUpdatePost))

 router.Handler(http.MethodPost, "/user/logout", protected.ThenFunc(app.userLogoutPost))

 standard := alice.New(app.recoverPanic, app.logRequest, secureHeaders)

 return standard.Then(router)

}

Suggested code for step 2

File: ui/html/pages/password.tmpl

{{define "title"}}Change Password{{end}}

{{define "main"}}

<h2>Change Password</h2>

<form action='/account/password/update' method='POST' novalidate>

 <input type='hidden' name='csrf_token' value='{{.CSRFToken}}'>

 <div>

 <label>Current password:</label>

 {{with .Form.FieldErrors.currentPassword}}

 <label class='error'>{{.}}</label>

 {{end}}

 <input type='password' name='currentPassword'>

 </div>

 <div>

 <label>New password:</label>

 {{with .Form.FieldErrors.newPassword}}

 <label class='error'>{{.}}</label>

 {{end}}

 <input type='password' name='newPassword'>

 </div>

 <div>

 <label>Confirm new password:</label>

 {{with .Form.FieldErrors.newPasswordConfirmation}}

 <label class='error'>{{.}}</label>

 {{end}}

 <input type='password' name='newPasswordConfirmation'>

 </div>

 <div>

 <input type='submit' value='Change password'>

 </div>

</form>

{{end}}

File: cmd/web/handlers.go

package main

...

type accountPasswordUpdateForm struct {

 CurrentPassword string `form:"currentPassword"`

 NewPassword string `form:"newPassword"`

 NewPasswordConfirmation string `form:"newPasswordConfirmation"`

 validator.Validator `form:"-"`

}

func (app *application) accountPasswordUpdate(w http.ResponseWriter, r *http.Request) {

 data := app.newTemplateData(r)

 data.Form = accountPasswordUpdateForm{}

 app.render(w, http.StatusOK, "password.tmpl", data)

}

...

Suggested code for step 3

File: cmd/web/handlers.go

package main

...

func (app *application) accountPasswordUpdatePost(w http.ResponseWriter, r *http.Request) {

 var form accountPasswordUpdateForm

 err := app.decodePostForm(r, &form)

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 form.CheckField(validator.NotBlank(form.CurrentPassword), "currentPassword", "This field cannot be blank")

 form.CheckField(validator.NotBlank(form.NewPassword), "newPassword", "This field cannot be blank")

 form.CheckField(validator.MinChars(form.NewPassword, 8), "newPassword", "This field must be at least 8 characters long")

 form.CheckField(validator.NotBlank(form.NewPasswordConfirmation), "newPasswordConfirmation", "This field cannot be blank")

 form.CheckField(form.NewPassword == form.NewPasswordConfirmation, "newPasswordConfirmation", "Passwords do not match")

 if !form.Valid() {

 data := app.newTemplateData(r)

 data.Form = form

 app.render(w, http.StatusUnprocessableEntity, "password.tmpl", data)

 return

 }

}

Suggested code for step 4

File: internal/models/users.go

package models

...

type UserModelInterface interface {

 Insert(name, email, password string) error

 Authenticate(email, password string) (int, error)

 Exists(id int) (bool, error)

 Get(id int) (*User, error)

 PasswordUpdate(id int, currentPassword, newPassword string) error

}

...

func (m *UserModel) PasswordUpdate(id int, currentPassword, newPassword string) error {

 var currentHashedPassword []byte

 stmt := "SELECT hashed_password FROM users WHERE id = ?"

 err := m.DB.QueryRow(stmt, id).Scan(¤tHashedPassword)

 if err != nil {

 return err

 }

 err = bcrypt.CompareHashAndPassword(currentHashedPassword, []byte(currentPassword))

 if err != nil {

 if errors.Is(err, bcrypt.ErrMismatchedHashAndPassword) {

 return ErrInvalidCredentials

 } else {

 return err

 }

 }

 newHashedPassword, err := bcrypt.GenerateFromPassword([]byte(newPassword), 12)

 if err != nil {

 return err

 }

 stmt = "UPDATE users SET hashed_password = ? WHERE id = ?"

 _, err = m.DB.Exec(stmt, string(newHashedPassword), id)

 return err

}

Suggested code for step 5

File: cmd/web/handlers.go

package main

...

func (app *application) accountPasswordUpdatePost(w http.ResponseWriter, r *http.Request) {

 var form accountPasswordUpdateForm

 err := app.decodePostForm(r, &form)

 if err != nil {

 app.clientError(w, http.StatusBadRequest)

 return

 }

 form.CheckField(validator.NotBlank(form.CurrentPassword), "currentPassword", "This field cannot be blank")

 form.CheckField(validator.NotBlank(form.NewPassword), "newPassword", "This field cannot be blank")

 form.CheckField(validator.MinChars(form.NewPassword, 8), "newPassword", "This field must be at least 8 characters long")

 form.CheckField(validator.NotBlank(form.NewPasswordConfirmation), "newPasswordConfirmation", "This field cannot be blank")

 form.CheckField(form.NewPassword == form.NewPasswordConfirmation, "newPasswordConfirmation", "Passwords do not match")

 if !form.Valid() {

 data := app.newTemplateData(r)

 data.Form = form

 app.render(w, http.StatusUnprocessableEntity, "password.tmpl", data)

 return

 }

 userID := app.sessionManager.GetInt(r.Context(), "authenticatedUserID")

 err = app.users.PasswordUpdate(userID, form.CurrentPassword, form.NewPassword)

 if err != nil {

 if errors.Is(err, models.ErrInvalidCredentials) {

 form.AddFieldError("currentPassword", "Current password is incorrect")

 data := app.newTemplateData(r)

 data.Form = form

 app.render(w, http.StatusUnprocessableEntity, "password.tmpl", data)

 } else if err != nil {

 app.serverError(w, err)

 }

 return

 }

 app.sessionManager.Put(r.Context(), "flash", "Your password has been updated!")

 http.Redirect(w, r, "/account/view", http.StatusSeeOther)

}

Suggested code for step 6

File: ui/html/pages/account.tmpl

{{define "title"}}Your Account{{end}}

{{define "main"}}

 <h2>Your Account</h2>

 {{with .User}}

 <table>

 <tr>

 <th>Name</th>

 <td>{{.Name}}</td>

 </tr>

 <tr>

 <th>Email</th>

 <td>{{.Email}}</td>

 </tr>

 <tr>

 <th>Joined</th>

 <td>{{humanDate .Created}}</td>

 </tr>

 <tr>

 <!-- Add a link to the change password form -->

 <th>Password</th>

 <td>Change password</td>

 </tr>

 </table>

 {{end }}

{{end}}

Suggested code for step 7

$ go test ./...

snippetbox.alexedwards.net/cmd/web [snippetbox.alexedwards.net/cmd/web.test]

cmd/web/testutils_test.go:48:19: cannot use &mocks.UserModel{} (value of type *mocks.UserModel) as type models.UserModelInterface in struct literal:

 *mocks.UserModel does not implement models.UserModelInterface (missing PasswordUpdate method)

FAIL snippetbox.alexedwards.net/cmd/web [build failed]

ok snippetbox.alexedwards.net/internal/models 1.099s

? snippetbox.alexedwards.net/internal/models/mocks [no test files]

? snippetbox.alexedwards.net/internal/validator [no test files]

? snippetbox.alexedwards.net/ui [no test files]

FAIL

File: internal/models/mock/users.go

package mocks

...

func (m *UserModel) PasswordUpdate(id int, currentPassword, newPassword string) error {

 if id == 1 {

 if currentPassword != "pa$$word" {

 return models.ErrInvalidCredentials

 }

 return nil

 }

 return models.ErrNoRecord

}

$ go test ./...

ok snippetbox.alexedwards.net/cmd/web 0.026s

ok snippetbox.alexedwards.net/internal/models (cached)

? snippetbox.alexedwards.net/internal/models/mocks [no test files]

? snippetbox.alexedwards.net/internal/validator [no test files]

? snippetbox.alexedwards.net/ui [no test files]

	Contents
	Introduction
	Conventions
	About the author
	Copyright and disclaimer
	Prerequisites
	Background knowledge
	Go 1.18
	Other software

	Foundations
	Project setup and creating a module
	Creating a module
	Hello world!
	Additional information
	Module paths for downloadable packages

	Web application basics
	Additional information
	Network addresses
	Using go run

	Routing requests
	Fixed path and subtree patterns
	Restricting the root url pattern
	The DefaultServeMux
	Additional information
	Servemux features and quirks
	Host name matching
	What about RESTful routing?

	Customizing HTTP headers
	HTTP status codes
	Customizing headers
	The http.Error shortcut
	The net/http constants
	Additional information
	System-generated headers and content sniffing
	Manipulating the header map
	Header canonicalization
	Suppressing system-generated headers

	URL query strings
	The io.writer interface

	Project structure and organization
	Refactoring your existing code
	Additional information
	The internal directory

	HTML templating and inheritance
	Template composition
	Embedding partials
	Additional information
	The block action
	Embedding files

	Serving static files
	The http.Fileserver handler
	Using the static files
	Additional information
	Features and functions
	Performance
	Serving single files
	Disabling directory listings

	The http.Handler interface
	Handler functions
	Chaining handlers
	Requests are handled concurrently

	Configuration and error handling
	Managing configuration settings
	Command-line flags
	Default values
	Type conversions
	Automated help
	Additional information
	Environment variables
	Boolean flags
	Pre-existing variables

	Leveled logging
	Decoupled logging
	The http.Server error log
	Additional information
	Additional logging methods
	Concurrent logging
	Logging to a file

	Dependency injection
	Adding a deliberate error
	Additional information
	Closures for dependency injection

	Centralized error handling
	Revert the deliberate error

	Isolating the application routes

	Database-driven responses
	Setting up MySQL
	Scaffolding the database
	Creating a new user
	Test the new user

	Installing a database driver
	Modules and reproducible builds
	Additional information
	Upgrading packages
	Removing unused packages

	Creating a database connection pool
	Usage in our web application
	Testing a connection

	Designing a database model
	Using the SnippetModel
	Additional information
	Benefits of this structure

	Executing SQL statements
	Executing the query
	Using the model in our handlers
	Additional information
	Placeholder parameters

	Single-record SQL queries
	Using the model in our handlers
	Additional information
	Checking for specific errors
	Shorthand single-record queries

	Multiple-record SQL queries
	Using the model in our handlers

	Transactions and other details
	The database/sql package
	Verbosity
	Managing null values
	Working with transactions
	Prepared statements

	Dynamic HTML templates
	Displaying dynamic data
	Rendering multiple pieces of data
	Additional information
	Dynamic content escaping
	Nested templates
	Calling methods
	Html comments

	Template actions and functions
	Using the with action
	Using the if and range actions
	Additional information
	Combining functions
	Controlling loop behavior

	Caching templates
	Automatically parsing partials

	Catching runtime errors
	Common dynamic data
	Custom template functions
	Additional information
	Pipelining

	Middleware
	How middleware works
	The pattern
	Simplifying the middleware
	Positioning the middleware

	Setting security headers
	Additional information
	Flow of control
	Early returns
	Debugging CSP issues

	Request logging
	Panic recovery
	Additional information
	Panic recovery in other background goroutines

	Composable middleware chains

	Advanced routing
	Choosing a router
	Clean URLs and method-based routing
	Custom error handlers
	Additional information
	Conflicting route patterns
	Customizing httprouter behavior
	Restful routing
	Handler naming

	Processing forms
	Setting up a HTML form
	Parsing form data
	Additional information
	The r.Form map
	The FormValue and PostFormValue methods
	Multiple-value fields
	Limiting form size

	Validating form data
	Displaying errors and repopulating fields
	Updating the HTML template

	Creating validation helpers
	Adding a validator package
	Using the helpers

	Automatic form parsing
	Using the form decoder
	Creating a decodePostForm helper

	Stateful HTTP
	Choosing a session manager
	Setting up the session manager
	Additional information
	Without using alice

	Working with session data
	Auto-displaying flash messages
	Additional information
	Behind-the-scenes of session management

	Security improvements
	Generating a self-signed TLS certificate
	Running a HTTPS server
	Additional information
	HTTP requests
	HTTP/2 connections
	Certificate permissions
	Source control

	Configuring HTTPS settings
	Additional information
	TLS versions
	Restricting cipher suites

	Connection timeouts
	The IdleTimeout setting
	The ReadTimeout setting
	The WriteTimeout setting
	Additional information
	The ReadHeaderTimeout setting
	The MaxHeaderBytes setting

	User authentication
	Routes setup
	Creating a users model
	Building the model in Go

	User signup and password encryption
	Validating the user input
	A brief introduction to bcrypt
	Storing the user details
	Additional information
	Using database bcrypt implementations
	Alternatives for checking email duplicates

	User login
	Verifying the user details

	User logout
	User authorization
	Restricting access
	Additional information
	Without using alice

	CSRF protection
	SameSite cookies
	Token-based mitigation
	Using the nosurf package
	Additional information
	SameSite ‘Strict’ setting

	Using request context
	How request context works
	The request context syntax
	Avoiding key collisions

	Request context for authentication/authorization
	Additional information
	Misusing request context

	Optional Go features
	Using embedded files
	Using the static files
	Embedding HTML templates

	Using generics
	When to use generics
	Using generics in our application

	Testing
	Unit testing and sub-tests
	Creating a unit test
	Table-driven tests
	Helpers for test assertions
	Additional information
	Sub-tests without a table of test cases

	Testing HTTP handlers and middleware
	Recording responses
	Testing middleware

	End-to-end testing
	Using httptest.Server
	Using test helpers
	Cookies and redirections

	Customizing how tests run
	Controlling which tests are run
	Test caching
	Fast failure
	Parallel testing
	Enabling the race detector

	Mocking dependencies
	Mocking the database models
	Initializing the mocks
	Testing the snippetView handler

	Testing HTML forms
	Testing post requests

	Integration testing
	Test database setup and teardown
	Testing the UserModel.Exists method
	Skipping long-running tests

	Profiling test coverage

	Conclusion
	Let's Go Further

	Further reading and useful links
	Coding and style guidelines
	Recommended tutorials
	Third-party package lists

	Guided exercises
	Add an ‘About’ page to the application
	Step 1
	Step 2
	Step 3
	Step 4
	Suggested code
	Suggested code for step 1
	Suggested code for step 2
	Suggested code for step 3
	Suggested code for step 4

	Add a debug mode
	Step 1
	Step 2
	Step 3
	Suggested code
	Suggested code for step 1
	Suggested code for step 2

	Test the snippetCreate handler
	Step 1
	Step 2
	Step 3
	Suggested code
	Suggested code for step 1
	Suggested code for step 2
	Suggested code for step 3

	Add an ‘Account’ page to the application
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Suggested code
	Suggested code for step 1
	Suggested code for step 2
	Suggested code for step 3
	Suggested code for step 4
	Suggested code for step 5

	Redirect user appropriately after login
	Step 1
	Step 2
	Suggested code
	Suggested code for step 1
	Suggested code for step 2

	Implement a ‘Change Password’ feature
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6
	Step 7
	Suggested code
	Suggested code for step 1
	Suggested code for step 2
	Suggested code for step 3
	Suggested code for step 4
	Suggested code for step 5
	Suggested code for step 6
	Suggested code for step 7

